Science.gov

Sample records for refractory beryllium oxide

  1. Crucible cast from beryllium oxide and refractory cement is impervious to flux and molten metal

    NASA Technical Reports Server (NTRS)

    Jastrzebski, Z. D.

    1966-01-01

    Crucible from a mixture of a beryllium oxide aggregate and hydraulic refractory cement, and coated with an impervious refractory oxide will not deteriorate in the presence of fused salt- molten metal mixtures such as uranium- magnesium-zinc-halide salt systems. Vessels cast by this process are used in the flux reduction of oxides of thorium and uranium.

  2. Some Properties of Beryllium Oxide and Beryllium Oxide - Columbium Ceramals

    NASA Technical Reports Server (NTRS)

    Robards, C F; Gangler, J J

    1951-01-01

    High-temperature tensile and thermal-shock investigations were conducted on beryllium oxide and beryllium oxide plus columbium metal additions. X-ray diffraction and metallographic results are given. The tensile strength of 6150 pounds per square inch for beryllium oxide at 1800 degrees F compared favorably with the zirconia bodies previously tested. Additions of 2, 5, 8, 10, 12, and 15 percent by weight of columbium metal failed to improve the shock resistance over that of pure beryllium oxide.

  3. METHOD FOR PREPARATION OF SINTERABLE BERYLLIUM OXIDE

    DOEpatents

    Sturm, B.J.

    1963-08-13

    High-purity beryllium oxide for nuclear reactor applications can be prepared by precipitation of beryllium oxalate monohydrate from aqueous solution at a temperature above 50 deg C and subsequent calcination of the precipitate. Improved purification with respect to metallic impurities is obtained, and the product beryllium oxide sinters reproducibly to a high density. (AEC)

  4. Method for hot pressing beryllium oxide articles

    DOEpatents

    Ballard, Ambrose H.; Godfrey, Jr., Thomas G.; Mowery, Erb H.

    1988-01-01

    The hot pressing of beryllium oxide powder into high density compacts with little or no density gradients is achieved by employing a homogeneous blend of beryllium oxide powder with a lithium oxide sintering agent. The lithium oxide sintering agent is uniformly dispersed throughout the beryllium oxide powder by mixing lithium hydroxide in an aqueous solution with beryllium oxide powder. The lithium hydroxide is converted in situ to lithium carbonate by contacting or flooding the beryllium oxide-lithium hydroxide blend with a stream of carbon dioxide. The lithium carbonate is converted to lithium oxide while remaining fixed to the beryllium oxide particles during the hot pressing step to assure uniform density throughout the compact.

  5. PREPARATION OF REFRACTORY OXIDE CRYSTALS

    DOEpatents

    Grimes, W.R.; Shaffer, J.H.; Watson, G.M.

    1962-11-13

    A method is given for preparing uranium dioxide, thorium oxide, and beryllium oxide in the form of enlarged individual crystals. The surface of a fused alkali metal halide melt containing dissolved uranium, thorium, or beryllium values is contacted with a water-vapor-bearing inert gas stream at a rate of 5 to 10 cubic centimeters per minute per square centimeter of melt surface area. Growth of individual crystals is obtained by prolonged contact. Beryllium oxide-coated uranium dioxide crystals are prepared by disposing uranium dioxide crystals 5 to 20 microns in diameter in a beryllium-containing melt and contacting the melt with a water-vapor-bearing inert gas stream in the same manner. (AEC)

  6. PREPARATION OF REFRACTORY OXIDE MICROSPHERE

    DOEpatents

    Haws, C.C. Jr.

    1963-09-24

    A method is described of preparing thorium oxide in the form of fused spherical particles about 1 to 2 microns in diameter. A combustible organic solution of thorium nitrate containing additive metal values is dispersed into a reflected, oxygen-fed flame at a temperature above the melting point of the resulting oxide. The metal additive is aluminum at a proportion such as to provide 1 to 10 weight per cent aluminum oxide in the product, silicon at the same proportion, or beryllium at a proportion of 12 to 25 weight per cent beryllium oxide in the product. A minor proportion of uranium values may also be provided in the solution. The metal additive lowers the oxide melting point and allows fusion and sphere formation in conventional equipment. The product particles are suitable for use in thorium oxide slurries for nuclear reactors. (AEC)

  7. Use of Beryllium and Beryllium Oxide in Space Reactors

    SciTech Connect

    Snead, L. L.; Zinkle, S. J.

    2005-02-06

    Beryllium and beryllium oxide are attractive candidate materials for neutron reflector application in space reactors due to their beneficial combination of low density and high neutron moderation and reflection capabilities. Drawbacks to their use include the expense of working with toxic materials, a limited industrial infrastructure, and material properties that are challenging in the non-irradiated state and seriously degrade under neutron irradiation. As an example of neutron effects, mechanical properties degrade under relevant conditions to the point where encasement in structural alloys is necessary. Such measures are required if neutron fluence exceeds {approx}1x1024 n/m2 (E>0.1 MeV). At high temperatures (>500 deg. C for Be and >600 deg. C for BeO), irradiation-induced swelling may also limit the maximum allowable dose without additional engineering measures. Significant volumetric swelling (>5%) can occur in these materials during neutron irradiation at elevated temperatures for neutron fluences above 1x1025 n/m2. This paper will review Be and BeO fabrication considerations, and summarize the effects of neutron irradiation on material properties.

  8. Surface chemistry and structure of beryllium oxide

    SciTech Connect

    Fuller, E.L. Jr.; Eager, M.H.; Smithwick, R.W. III; Smyrl, N.R.

    1982-02-01

    Detailed examination of nitrogen sorption isotherms related to the surface chemistry and structure of high-purity beryllium oxide and the products of alkali treatment aid in a better understanding of the topochemical problems encountered in the production of ceramic items. Details are corroborated by additional techniques: diffuse reflectance infrared Fourier transform (DRIFT); mercury intrusion porosimetry (MIP); and scanning electron microscopy (SEM). The results correlate well with studies on other oxides when the unique thermophysical properties of this material are considered.

  9. The Cryogenic Properties of Several Aluminum-Beryllium Alloys and a Beryllium Oxide Material

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Performance related mechanical properties for two aluminum-beryllium (Al-Be) alloys and one beryllium-oxide (BeO) material were developed at cryogenic temperatures. Basic mechanical properties (Le., ultimate tensile strength, yield strength, percent elongation, and elastic modulus were obtained for the aluminum-beryllium alloy, AlBeMetl62 at cryogenic [-195.5"C (-320 F) and -252.8"C (-423"F)I temperatures. Basic mechanical properties for the Be0 material were obtained at cyrogenic [- 252.8"C (-423"F)] temperatures. Fracture properties were obtained for the investment cast alloy Beralcast 363 at cryogenic [-252.8"C (-423"F)] temperatures. The AlBeMetl62 material was extruded, the Be0 material was hot isostatic pressing (HIP) consolidated, and the Beralcast 363 material was investment cast.

  10. PROCESS OF PRODUCING REFRACTORY URANIUM OXIDE ARTICLES

    DOEpatents

    Hamilton, N.E.

    1957-12-01

    A method is presented for fabricating uranium oxide into a shaped refractory article by introducing a uranium halide fluxing reagent into the uranium oxide, and then mixing and compressing the materials into a shaped composite mass. The shaped mass of uranium oxide and uranium halide is then fired at an elevated temperature so as to form a refractory sintered article. It was found in the present invention that the introduction of a uraninm halide fluxing agent afforded a fluxing action with the uranium oxide particles and that excellent cohesion between these oxide particles was obtained. Approximately 90% of uranium dioxide and 10% of uranium tetrafluoride represent a preferred composition.

  11. Refractory Oxide Coatings on Sic Ceramics

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Jacobson, Nathan S.; Miller, Robert A.

    1994-01-01

    Silicon carbide with a refractory oxide coating is potentially a very attractive ceramic system. It offers the desirable mechanical and physical properties of SiC and the environmental durability of a refractory oxide. The development of a thermal shock resistant plasma-sprayed mullite coating on SiC is discussed. The durability of the mullite/SiC in oxidizing, reducing, and molten salt environments is discussed. In general, this system exhibits better behavior than uncoated SiC. Areas for further developments are discussed.

  12. Oxygen sensitive, refractory oxide composition

    DOEpatents

    Holcombe, Jr., Cressie E.; Smith, Douglas D.

    1976-01-01

    Oxide compositions containing niobium pentoxide and an oxide selected from the group consisting of hafnia, titania, and zirconia have electrical conductivity characteristics which vary greatly depending on the oxygen content.

  13. Oxides reactions with a high-chrome sesquioxide refractory

    SciTech Connect

    Rawers, James C.; Collins, W. Keith; Peck, M.

    2001-10-01

    In slagging coal-gasifier systems, the combination of oxides present as impurities in coal and combustion temperatures that can exceed 1650 degrees C restrict the use of liner materials in the coal combustion chambers to refractories. In this study, the slag-refractory interactions of a new high chrome sesquioxide refractory was characterized. High-temperature cup tests showed that the molten oxides infused into the refractory and that the sesquioxide refractory reacts with the oxides in a manner similar to spinel phase refractories. Studies of the coal slag’s individual oxide components showed CaO reacts with the chrome refractory to form a low melting Ca(CrO2)2. FeO reacts with the sesquioxide to form a interface layer of (Cr,Fe)3O4 spinel phase. Results of this study now make it possible to design studies for improving corrosion resistance to increase refractory life.

  14. A preliminary assessment of beryllium dust oxidation during a wet bypass accident in a fusion reactor

    SciTech Connect

    Brad J. Merrill; Richard L. Moore; J. Phillip Sharp

    2008-09-01

    A beryllium dust oxidation model has been developed at the Idaho National Laboratory (INL) by the Fusion Safety Program (FSP) for the MELCOR safety computer code. The purpose of this model is to investigate hydrogen production from beryllium dust layers on hot surfaces inside a fusion reactor vacuum vessel (VV) during in-vessel loss-of-cooling accidents (LOCAs). This beryllium dust oxidation model accounts for the diffusion of steam into a beryllium dust layer, the oxidation of the dust particles inside this layer based on the beryllium-steam oxidation equations developed at the INL, and the effective thermal conductivity of this beryllium dust layer. This paper details this oxidation model and presents the results of the application of this model to a wet bypass accident scenario in the ITER device.

  15. Risks of beryllium disease related to work processes at a metal, alloy, and oxide production plant.

    PubMed Central

    Kreiss, K; Mroz, M M; Zhen, B; Wiedemann, H; Barna, B

    1997-01-01

    OBJECTIVES: To describe relative hazards in sectors of the beryllium industry, risk factors of beryllium disease and sensitisation related to work process were sought in a beryllium manufacturing plant producing pure metal, oxide, alloys, and ceramics. METHODS: All 646 active employees were interviewed; beryllium sensitisation was ascertained with the beryllium lymphocyte proliferation blood test on 627 employees; clinical evaluation and bronchoscopy were offered to people with abnormal test results; and industrial hygiene measurements related to work processes taken in 1984-93 were reviewed. RESULTS: 59 employees (9.4%) had abnormal blood tests, 47 of whom underwent bronchoscopy. 24 new cases of beryllium disease were identified, resulting in a beryllium disease prevalence of 4.6%, including five known cases (29/632). Employees who had worked in ceramics had the highest prevalence of beryllium disease (9.0%). Employees in the pebble plant (producing beryllium metal) who had been employed after 1983 also had increased risk, with a prevalence of beryllium disease of 6.4%, compared with 1.3% of other workers hired in the same period, and a prevalence of abnormal blood tests of 19.2%. Logistic regression modelling confirmed these two risk factors for beryllium disease related to work processes and the dependence on time of the risk at the pebble plant. The pebble plant was not associated with the highest gravimetric industrial hygiene measurements available since 1984. CONCLUSION: Further characterisation of exposures in beryllium metal production may be important to understanding how beryllium exposures confer high contemporary risk of beryllium disease. PMID:9326165

  16. Laboratory studies of refractory metal oxide smokes

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Nelson, R. N.; Donn, Bertram

    1989-01-01

    Studies of the properties of refractory metal oxide smokes condensed from a gas containing various combinations of SiH4, Fe(CO)5, Al(CH3)3, TiCl4, O2 and N2O in a hydrogen carrier stream at 500 K greater than T greater than 1500 K were performed. Ultraviolet, visible and infrared spectra of pure, amorphous SiO(x), FeO(x), AlO(x) and TiO(x) smokes are discussed, as well as the spectra of various co-condensed amorphous oxides, such as FE(x)SiO(y) or Fe(x)AlO(y). Preliminary studies of the changes induced in the infrared spectra of iron-containing oxide smokes by vacuum thermal annealing suggest that such materials become increasingly opaque in the near infrared with increased processing: hydration may have the opposite effect. More work on the processing of these materials is required to confirm such a trend: this work is currently in progress. Preliminary studies of the ultraviolet spectra of amorphous Si2O3 and MgSiO(x) smokes revealed no interesting features in the region from 200 to 300 nm. Studies of the ultraviolet spectra of both amorphous, hydrated and annealed SiO(x), TiO(x), AlO(x) and FeO(x) smokes are currently in progress. Finally, data on the oxygen isotopic composition of the smokes produced in the experiments are presented, which indicate that the oxygen becomes isotopically fractionated during grain condensation. Oxygen in the grains is as much as 3 percent per amu lighter than the oxygen in the original gas stream. The authors are currently conducting experiments to understand the mechanism by which fractionation occurs.

  17. Comparison of beryllium oxide and pyrolytic graphite crucibles for boron doped silicon epitaxy

    SciTech Connect

    Ali, Dyan; Richardson, Christopher J. K.

    2012-11-15

    This article reports on the comparison of beryllium oxide and pyrolytic graphite as crucible liners in a high-temperature effusion cell used for boron doping in silicon grown by molecular beam epitaxy. Secondary ion mass spectroscopy analysis indicates decomposition of the beryllium oxide liner, leading to significant incorporation of beryllium and oxygen in the grown films. The resulting films are of poor crystal quality with rough surfaces and broad x-ray diffraction peaks. Alternatively, the use of pyrolytic graphite crucible liners results in higher quality films.

  18. Calculated power distribution of a thermionic, beryllium oxide reflected, fast-spectrum reactor

    NASA Technical Reports Server (NTRS)

    Mayo, W.; Lantz, E.

    1973-01-01

    A procedure is developed and used to calculate the detailed power distribution in the fuel elements next to a beryllium oxide reflector of a fast-spectrum, thermionic reactor. The results of the calculations show that, although the average power density in these outer fuel elements is not far from the core average, the power density at the very edge of the fuel closest to the beryllium oxide is about 1.8 times the core avearge.

  19. OVERVIEW OF BERYLLIUM SAMPLING AND ANALYSIS

    SciTech Connect

    Brisson, M

    2009-04-01

    Because of its unique properties as a lightweight metal with high tensile strength, beryllium is widely used in applications including cell phones, golf clubs, aerospace, and nuclear weapons. Beryllium is also encountered in industries such as aluminium manufacturing, and in environmental remediation projects. Workplace exposure to beryllium particulates is a growing concern, as exposure to minute quantities of anthropogenic forms of beryllium may lead to sensitization and to chronic beryllium disease, which can be fatal and for which no cure is currently known. Furthermore, there is no known exposure-response relationship with which to establish a 'safe' maximum level of beryllium exposure. As a result, the current trend is toward ever lower occupational exposure limits, which in turn make exposure assessment, both in terms of sampling and analysis, more challenging. The problems are exacerbated by difficulties in sample preparation for refractory forms of beryllium, such as beryllium oxide, and by indications that some beryllium forms may be more toxic than others. This chapter provides an overview of sources and uses of beryllium, health risks, and occupational exposure limits. It also provides a general overview of sampling, analysis, and data evaluation issues that will be explored in greater depth in the remaining chapters. The goal of this book is to provide a comprehensive resource to aid personnel in a wide variety of disciplines in selecting sampling and analysis methods that will facilitate informed decision-making in workplace and environmental settings.

  20. Preparation, certification and interlaboratory analysis of workplace air filters spiked with high-fired beryllium oxide.

    PubMed

    Oatts, Thomas J; Hicks, Cheryl E; Adams, Amy R; Brisson, Michael J; Youmans-McDonald, Linda D; Hoover, Mark D; Ashley, Kevin

    2012-02-01

    Occupational sampling and analysis for multiple elements is generally approached using various approved methods from authoritative government sources such as the National Institute for Occupational Safety and Health (NIOSH), the Occupational Safety and Health Administration (OSHA) and the Environmental Protection Agency (EPA), as well as consensus standards bodies such as ASTM International. The constituents of a sample can exist as unidentified compounds requiring sample preparation to be chosen appropriately, as in the case of beryllium in the form of beryllium oxide (BeO). An interlaboratory study was performed to collect analytical data from volunteer laboratories to examine the effectiveness of methods currently in use for preparation and analysis of samples containing calcined BeO powder. NIST SRM(®) 1877 high-fired BeO powder (1100 to 1200 °C calcining temperature; count median primary particle diameter 0.12 μm) was used to spike air filter media as a representative form of beryllium particulate matter present in workplace sampling that is known to be resistant to dissolution. The BeO powder standard reference material was gravimetrically prepared in a suspension and deposited onto 37 mm mixed cellulose ester air filters at five different levels between 0.5 μg and 25 μg of Be (as BeO). Sample sets consisting of five BeO-spiked filters (in duplicate) and two blank filters, for a total of twelve unique air filter samples per set, were submitted as blind samples to each of 27 participating laboratories. Participants were instructed to follow their current process for sample preparation and utilize their normal analytical methods for processing samples containing substances of this nature. Laboratories using more than one sample preparation and analysis method were provided with more than one sample set. Results from 34 data sets ultimately received from the 27 volunteer laboratories were subjected to applicable statistical analyses. The observed

  1. Fusion Techniques for the Oxidation of Refractory Actinide Oxides

    SciTech Connect

    Rudisill, T.S.

    1999-04-15

    Small-scale experiments were performed to demonstrate the feasibility of fusing refractory actinide oxides with a series of materials commonly used to decompose minerals, glasses, and other refractories as a pretreatment to dissolution and subsequent recovery operations. In these experiments, 1-2 g of plutonium or neptunium oxide (PuO2 or NpO2) were calcined at 900 degrees Celsius, mixed and heated with the fusing reagent(s), and dissolved. For refractory PuO2, the most effective material tested was a lithium carbonate (Li2CO3)/sodium tetraborate (Na2B4O7) mixture which aided in the recovery of 90 percent of the plutonium. The fused product was identified as a lithium plutonate (Li3PuO4) by x-ray diffraction. The use of a Li2CO3/Na2B4O7 mixture to solubilize high-fired NpO2 was not as effective as demonstrated for refractory PuO2. In a small-scale experiment, 25 percent of the NpO2 was oxidized to a neptunium (VI) species that dissolved in nitric acid. The remaining neptunium was then easily recovered from the residue by fusing with sodium peroxide (Na2O2). Approximately 70 percent of the neptunium dissolved in water to yield a basic solution of neptunium (VII). The remainder was recovered as a neptunium (VI) solution by dissolving the residue in 8M nitric acid. In subsequent experiments with Na2O2, the ratio of neptunium (VII) to (VI) was shown to be a function of the fusion temperature, with higher temperatures (greater than approximately 400 degrees C) favoring the formation of neptunium (VII). The fusion of an actual plutonium-containing residue with Na2O2 and subsequent dissolution was performed to demonstrate the feasibility of a pretreatment process on a larger scale. Sodium peroxide was chosen due

  2. Crack resistance of tungsten hardened by dispersed refractory oxides

    SciTech Connect

    Babak, A.V.; Uskov, E.I.

    1985-05-01

    The authors present the results of an investigation of the crack resistance in a wide temperature range of the production types of tungsten VMP-S (conditionally designated technical purity tungsten with a higher degree of deformation than type VMP tungsten), VMP-3 (hardened with refractory oxides), and VMP-4 (with the addition of copper and hardened with refractory oxides) produced using the same method. It is reported that hardening of technical purity tungsten with refractory oxides increases the resistance of the material to crack development in the 20-2000C range, but the upper boundary of the temperature area of the ductile-to-brittle transition is shifted in the direction of higher temperatures, which must be taken into consideration in the use of the investigated alloys as structural materials for objects of new technology.

  3. Laser fabrication of beryllium components

    SciTech Connect

    Hanafee, J.E.; Ramos, T.J.

    1995-08-01

    Working with the beryllium industry on commercial applications and using prototype parts, the authors have found that the use of lasers provides a high-speed, low-cost method of cutting beryllium metal, beryllium alloys, and beryllium-beryllium oxide composites. In addition, they have developed laser welding processes for commercial structural grades of beryllium that do not need a filler metal; i.e., autogenous welds were made in commercial structural grades of beryllium by using lasers.

  4. Failure Mechanisms in High Chrome Oxide Gasifier Refractories

    NASA Astrophysics Data System (ADS)

    Bennett, James P.; Kwong, Kyei-Sing

    2011-04-01

    Gasification is a high-temperature, high-pressure chemical process used to convert a carbon feedstock into CO and H2 (syngas) for use in power generation and the production of chemicals. It is also a leading candidate as a source of hydrogen in a hydrogen economy and is one of several technologies expected to see increased use in advanced fossil fuel power systems in the future. Gasification is being evaluated because of its high efficiency, its ability to capture CO2 for sequestration or reuse in other applications, and its potential for carbon feedstock fuel flexibility. At the heart of the gasification process is a gasifier, a high pressure chemical reaction vessel used to contain the interactions between carbon and water in a shortage of oxygen, producing syngas. The gasifier is lined with high chrome oxide materials to protect the containment vessel. Gasifiers are complex systems, and failure of the refractories used to line them was identified by industry as a limitation to their reliability and availability and to their increased use. NETL researchers have examined spent high-Cr2O3 (over 90 pct Cr2O3) refractories from numerous gasifiers to determine in-service failure mechanisms. This analysis revealed that premature failure of the high chrome oxide refractories was related to ash in the carbon feedstock, which liquefies during gasification and interacts with the refractories, leading to wear by chemical dissolution or spalling (structural and chemical). A discussion of this postmortem wear of spent refractory materials and of thermodynamic modeling used to explain microstructural changes leading to wear are explained in this article. This information will serve the basis to develop improved performance refractory materials.

  5. Deuterium retention and out-gassing from beryllium oxide on beryllium

    SciTech Connect

    Roth, J.; Wampler, W. R.; Oberkofler, M.; van Deusen, S.; Elgeti, S.

    2014-06-27

    We studied the desorption of D implanted into Be with a superficial oxide layer. We found that the different oxide thicknesses and implantation at different energies resulted in a strong variation of the fraction stopped within the oxide layer. Thermal desorption of D was subsequently performed, intermitted by nuclear reaction analysis for assessment of the D depth distributions and total retained amounts. Moreover, for the conditions, where part of the D was deposited in the Be substrate, a sharp decrease of the retained amount of D occurs around 200 °C. This is attributed to the release from metallic Be. Correspondingly, the D and O depth profiles show that above 200 °C the remaining D is only retained in the BeO layer. Apparently, the superficial BeO layer does not act as a diffusion barrier for D that is released from the metallic substrate. The retained amount of D deposited within the BeO layer decreases steadily and is not completely released at 350 °C, the foreseen bake-out temperature in ITER.

  6. Deuterium retention and out-gassing from beryllium oxide on beryllium

    DOE PAGESBeta

    Roth, J.; Wampler, W. R.; Oberkofler, M.; van Deusen, S.; Elgeti, S.

    2014-06-27

    We studied the desorption of D implanted into Be with a superficial oxide layer. We found that the different oxide thicknesses and implantation at different energies resulted in a strong variation of the fraction stopped within the oxide layer. Thermal desorption of D was subsequently performed, intermitted by nuclear reaction analysis for assessment of the D depth distributions and total retained amounts. Moreover, for the conditions, where part of the D was deposited in the Be substrate, a sharp decrease of the retained amount of D occurs around 200 °C. This is attributed to the release from metallic Be. Correspondingly,more » the D and O depth profiles show that above 200 °C the remaining D is only retained in the BeO layer. Apparently, the superficial BeO layer does not act as a diffusion barrier for D that is released from the metallic substrate. The retained amount of D deposited within the BeO layer decreases steadily and is not completely released at 350 °C, the foreseen bake-out temperature in ITER.« less

  7. Chemical, mass spectrometric, and spectrochemical analysis of, and physical tests on, beryllium oxide powder

    SciTech Connect

    Not Available

    1981-01-01

    Beryllium oxide is used in the fabrication of nuclear components. In order to be suitable for this purpose, the material must meet certain criteria for impurity content and physical properties. The analytical and physical testing procedures in this standard are designed to show whether or not a given material meets accepted specifications. Test methods described in detail are: total carbon by the combustion-thermal conductivity method; iron by colorimetric (orthophenanthroline) method; nitride nitrogen by the micro Kjeldahl method; chloride by nephelometry; lithium by atomic absorption spectrophotometry; sulfur by combustion-iodometric titration method; beryllium oxide in beryllium oxide powders by impurity correction method; trace elements by the complete-burning spectrochemical method; impurity elements by a spark-source mass spectrographic method; density by toluene displacement method; density (pour and tap) by the tap-pak volumetric method; particle size distribution analysis by the coulter counter method; sieve analysis; bulk and real densities, porosity, and pore size-pore volume distribution mercury-penetration porosimetry; surface area by nitrogen absorption method. (JMT)

  8. Beryllium chloride-induced oxidative DNA damage and alteration in the expression patterns of DNA repair-related genes.

    PubMed

    Attia, Sabry M; Harisa, Gamaleldin I; Hassan, Memy H; Bakheet, Saleh A

    2013-09-01

    Beryllium metal has physical properties that make its use essential for very specific applications, such as medical diagnostics, nuclear/fusion reactors and aerospace applications. Because of the widespread human exposure to beryllium metals and the discrepancy of the genotoxic results in the reported literature, detail assessments of the genetic damage of beryllium are warranted. Mice exposed to beryllium chloride at an oral dose of 23mg/kg for seven consecutive days exhibited a significant increase in the level of DNA-strand breaking and micronuclei formation as detected by a bone marrow standard comet assay and micronucleus test. Whereas slight beryllium chloride-induced oxidative DNA damage was detected following formamidopyrimidine DNA glycosylase digestion, digestion with endonuclease III resulted in considerable increases in oxidative DNA damage after the 11.5 and 23mg/kg/day treatment as detected by enzyme-modified comet assays. Increased 8-hydroxydeoxyguanosine was also directly correlated with increased bone marrow micronuclei formation and DNA strand breaks, which further confirm the involvement of oxidative stress in the induction of bone marrow genetic damage after exposure to beryllium chloride. Gene expression analysis on the bone marrow cells from beryllium chloride-exposed mice showed significant alterations in genes associated with DNA damage repair. Therefore, beryllium chloride may cause genetic damage to bone marrow cells due to the oxidative stress and the induced unrepaired DNA damage is probably due to the down-regulation in the expression of DNA repair genes, which may lead to genotoxicity and eventually cause carcinogenicity. PMID:23793613

  9. Oxidation behavior of plasma sintered beryllium-titanium intermetallic compounds as an advanced neutron multiplier

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hwan; Nakamichi, Masaru

    2013-07-01

    Beryllium intermetallic compounds (beryllides) such as Be12Ti are very promising candidates for advanced neutron multiplier materials in a demonstration fusion power reactor (DEMO). However, beryllides are too brittle to be fabricated either into pebble-type or rod-type shapes via conventional methods (i.e. arc melting and hot isostatic pressing). We have proposed a plasma sintering technique as a new method for beryllide fabrication, and our studies on the properties of plasma sintered beryllides are ongoing. In the present work, the oxidation properties of plasma sintered beryllides were investigated at 1273 K for 24 h in a dry air atmosphere to evaluate the high temperature properties of this material. Thermal gravimetry measurements indicate that specimens with larger fractions of Be12Ti phase corresponding to samples that have been sintered for longer time periods, exhibit superior oxidation properties. Our evaluation of the oxidation behavior of each phase in our beryllide samples is as follows: Be12Ti and Be17Ti2 both have good oxidation resistance, owing to the formation of dense and protective scales, while the Be and Be2Ti phases are mainly responsible for thermal-gravimetry (TG) weight gains, which is indicative of severe oxidation. We attribute the degradation in oxidation resistance specifically to Be2Ti that transforms into TiO2, and also find this phase to be the cause of deterioration in the mechanical properties of samples, owing to cracks near Be2Ti phase conglomerates.

  10. Reprocessing technology development for irradiated beryllium

    SciTech Connect

    Kawamura, H.; Sakamoto, N.; Tatenuma, K.

    1995-09-01

    At present, beryllium is under consideration as a main candidate material for neutron multiplier and plasma facing material in a fusion reactor. Therefore, it is necessary to develop the beryllium reprocessing technology for effective resource use. And, we have proposed reprocessing technology development on irradiated beryllium used in a fusion reactor. The preliminary reprocessing tests were performed using un-irradiated and irradiated beryllium. At first, we performed beryllium separation tests using un-irradiated beryllium specimens. Un-irradiated beryllium with beryllium oxide which is a main impurity and some other impurities were heat-treated under chlorine gas flow diluted with Ar gas. As the results high purity beryllium chloride was obtained in high yield. And it appeared that beryllium oxide and some other impurities were removed as the unreactive matter, and the other chloride impurities were separated by the difference of sublimation temperature on beryllium chloride. Next, we performed some kinds of beryllium purification tests from beryllium chloride. And, metallic beryllium could be recovered from beryllium chloride by the reduction with dry process. In addition, as the results of separation and purification tests using irradiated beryllium specimens, it appeared that separation efficiency of Co-60 from beryllium was above 96%. It is considered that about 4% Co-60 was carried from irradiated beryllium specimen in the form of cobalt chloride. And removal efficiency of tritium from irradiated beryllium was above 95%.

  11. Volatile-refractory element reactions and breakdown of refractory oxides under conditions of a giant impact

    NASA Astrophysics Data System (ADS)

    Tschauner, O. D.; Ma, C.

    2015-12-01

    Whereas much or most of the highly volatile elements reside in atmosphere and oceans, understanding the global budget of these elements requires knowledge about their abundance in the Earth's interior. One piece of this puzzle is the early history of the Earth where large impacts, notably giant impacts, provided conditions where both volatile and refractory elements were mixed on atomic scale in extremely hot dense fluids. Carbides and nitrides that have recently been found in mantle rock are possible remnants of such large scale dynamic pressure-temperature conditions. In particular carbides and nitrides of lithophile refractory elements like Zr, Hf, Nb, Ta may remain in the mantle for extended time and contribute to the mantle geochemical budget of these elements as well as that of C and N. In a first step towards testing such a hypothesis, we conducted a series of shock experiments. Deflagration of C-N-O-H compounds was triggered by shockwaves. The resulting reaction wave front propagated into aggregates of refractory minerals like zircon, baddeleyite, rutile. This fluid-solid mix was subjected to shock compression to shock pressures of 20-50 GPa and temperatures in the range of 0.5-1.104 K by means of reverberating shock. Recovered sample material was analyzed by synchrotron X-ray diffraction and by EPMA.

  12. Accurate Electronic, Transport, and Bulk Properties of Wurtzite Beryllium Oxide (BeO)

    NASA Astrophysics Data System (ADS)

    Bamba, Cheick Oumar; Malozovsky, Yuriy; Franklin, Lashounda; Bagayoko, Diola

    We present ab-initio, self-consistent density functional theory (DFT) description of electronic, transport, and bulk properties of wurtzite Beryllium oxide (w-BeO). We used a local density approximation potential (LDA) and the linear combination of atomic orbitals (LCOA) formalism. Our implementation of the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), ensures the full, physical content of our local density approximation (LDA) calculations - as per the derivation of DFT [AIP Advances, 4, 127104 (2014) We report the band gap, density of states, partial density of state, effective masses, and the bulk modulus. Our calculated band gap of 10.29 eV, using an experimental, room temperature lattice constant of 2.6979 A at room temperature is in agreement with the experimental value of 10.6 eV. Acknowledgments:This work was funded in part the US National Science Foundation [NSF, Award Nos. EPS-1003897, NSF (2010-2015)-RII-SUBR, and HRD-1002541], the US Department of Energy, National Nuclear Security Administration (NNSA, Award No. DE-NA0002630), LaSPACE, and LONI-SUBR.

  13. A study of highly crystalline novel beryllium oxide film using atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Yum, J. H.; Akyol, T.; Lei, M.; Ferrer, D. A.; Hudnall, Todd. W.; Downer, M.; Bielawski, C. W.; Bersuker, G.; Lee, J. C.; Banerjee, S. K.

    2011-11-01

    Beryllium oxide (BeO), which has excellent electrical insulating characteristics and high thermal stability, is a promising gate dielectric and interface passivation layer (IPL), because of its high energy bandgap (10.6 eV) and short bond distance between Be and O atoms. In a previous study, we demonstrated the excellent electrical and physical characteristics of BeO grown after atomic layer deposition (ALD) on Si and GaAs substrates. Here we report, for the first time, ALD growth of crystalline BeO as a potential high-k gate dielectric and IPL. From TEM, SAD, RHEED, and XRD, we have found that highly crystalline BeO thin film may be grown in a wurtzite structure as a (101) plane on a Si (100) oriented surface. We have also investigated a germanium epitaxial layer grown on BeO as a semiconductor-on-insulator (SOI) application, and the crystallinity of BeO on a GaAs (100) substrate for III-V MOS device applications.

  14. Role of Oxidative Stress in Refractory Epilepsy: Evidence in Patients and Experimental Models

    PubMed Central

    Cardenas-Rodriguez, Noemi; Huerta-Gertrudis, Bernardino; Rivera-Espinosa, Liliana; Montesinos-Correa, Hortencia; Bandala, Cindy; Carmona-Aparicio, Liliana; Coballase-Urrutia, Elvia

    2013-01-01

    Oxidative stress, a state of imbalance in the production of reactive oxygen species and nitrogen, is induced by a wide variety of factors. This biochemical state is associated with systemic diseases, and diseases affecting the central nervous system. Epilepsy is a chronic neurological disorder with refractoriness to drug therapy at about 30%. Currently, experimental evidence supports the involvement of oxidative stress in seizures, in the process of their generation, and in the mechanisms associated with refractoriness to drug therapy. Hence, the aim of this review is to present information in order to facilitate the handling of this evidence and determine the therapeutic impact of the biochemical status for this pathology. PMID:23344052

  15. Evaluating the Relationship between Slabbing of Cr2O3/MgO Refractories Used in Steelmaking and Spalling of High Chrome Oxide Refractories Used in Gasification

    SciTech Connect

    Bennett, J.P.; Thomas, H.; Kwong, K.-S.

    2006-10-01

    Because of its excellent corrosion resistance and high temperature properties, chrome oxide refractories have been used in a number of severe service environments, including steelmaking and gasification. Refractory failure of Cr2O3/MgO or MgO/Cr2O3 refractories in steelmaking can involve a phenomena called slabbing, peeling, or chemical spalling. A similar failure mechanism exists in the high chrome oxide materials used in gasification. Gasifiers contain the reaction between a carbon feedstock, water, and oxygen under reducing conditions; producing H2 and CO used in chemicals or as fuel for power plants. A slagging gasifier typically operates between 1250- 1575°C, and with pressures between 300-1000 psi. Gasification refractory failure is by chemical dissolution and/or by spalling. Spalling is caused by slag penetration of the porous refractory surface and by expansion differences between the penetrated/non-penetrated areas, and is exacerbated by thermal cycling. Similarities between slabbing of steelmaking refractories and spalling of gasification refractories will be discussed.

  16. Beryllium Toxicity

    MedlinePlus

    ... potential for exposure to it. People working in industries where beryllium is mined, processed, machined, or converted into metal, alloys, and other chemicals may be exposed to high levels of beryllium. ...

  17. Measurements of Total Hemispherical Emissivity of Several Stably Oxidized Metals and Some Refractory Oxide Coatings

    NASA Technical Reports Server (NTRS)

    Wade, William R.

    1959-01-01

    A description of the apparatus and methods used for obtaining total hemispherical emissivity is presented, and data for several stably oxidized metals are included. The metals which were tested included type 347 stainless steel, tungsten, and Haynes alloys B, C, X, and 25. No values of emissivity were obtained for tungsten or Haynes alloy B because of the nature of the oxides produced. The refractory oxide coatings tested were flame-sprayed alumina and zirconia. The results of the investigation indicate that strongly adherent, oxidized surfaces of a high stable emissivity can be produced on type 347 stainless steel for which the total hemispherical emissivity varied from 0.87 to 0.91 for temperatures from 600 F to 2,000 F. For this same temperature range, the Haynes alloys tested showed values of total hemispherical emissivity from 0.90 to 0.96 for alloy C, from 0.85 to 0.88 for alloy X, and from 0.85 to 0.89 for alloy 25. Haynes alloy B and tungsten formed nonadherent oxides at elevated temperatures and, therefore, stable emissivities were not obtained. The results obtained for the flame-sprayed ceramics (alumina and zirconia) showed considerably higher values of total emissivity than those measured for coatings applied by other methods. Emissivity values ranging from 0.69 to 0.44 for aluminum oxide and from 0.62 to 0.44 for zirconium oxide were measured for temperatures from 800 F to 2,000 F.

  18. High-quantum efficiency, long-lived luminescing refractory oxides

    DOEpatents

    Chen, Yok; Gonzalez, Roberto; Summers, Geoffrey P.

    1984-01-01

    A crystal having a high-quantum efficiency and a long period of luminescence is formed of an oxide selected from the group consisting of magnesium oxide and calcium oxide and possessing a concentration ratio of H.sup.- ions to F centers in the range of about 0.05 to about 10.

  19. Plasma-Sprayed Refractory Oxide Coatings on Silicon-Base Ceramics

    NASA Technical Reports Server (NTRS)

    Tewari, Surendra

    1997-01-01

    Silicon-base ceramics are promising candidate materials for high temperature structural applications such as heat exchangers, gas turbines and advanced internal combustion engines. Composites based on these materials are leading candidates for combustor materials for HSCT gas turbine engines. These materials possess a combination of excellent physical and mechanical properties at high temperatures, for example, high strength, high toughness, high thermal shock resistance, high thermal conductivity, light weight and excellent oxidation resistance. However, environmental durability can be significantly reduced in certain conditions such as when molten salts, H2 or water vapor are present. The oxidation resistance of silicon-base materials is provided by SiO2 protective layer. Molten salt reacts with SiO2 and forms a mixture of SiO2 and liquid silicate at temperatures above 800C. Oxygen diffuses more easily through the chemically altered layer, resulting in a catastrophic degradation of the substrate. SiC and Si3N4 are not stable in pure H2 and decompose to silicon and gaseous species such as CH4, SiH, SiH4, N2, and NH3. Water vapor is known to slightly increase the oxidation rate of SiC and Si3N4. Refractory oxides such as alumina, yttria-stabilized zirconia, yttria and mullite (3Al2O3.2SiO2) possess excellent environmental durability in harsh conditions mentioned above. Therefore, refractory oxide coatings on silicon-base ceramics can substantially improve the environmental durability of these materials by acting as a chemical reaction barrier. These oxide coatings can also serve as a thermal barrier. The purpose of this research program has been to develop refractory oxide chemical/thermal barrier coatings on silicon-base ceramics to provide extended temperature range and lifetime to these materials in harsh environments.

  20. Compatibility of water-cooled chromia-containing refractories with a high iron oxide acidic coal-ash slag at 1575/sup 0/C

    SciTech Connect

    Kennedy, C.R.

    1981-12-01

    Sixteen water-cooled refractories were exposed to a synthetic high iron oxide acidic coal slag. The importance of high chromia content and density in minimizing corrosive attack was evident. The beneficial effect of water cooling was also demonstrated. All the refractories reacted with the slag to form complex intermediate spinel layers. Refractories high in chromia resist fluxing by iron oxide better than refractories high in alumina.

  1. Certification of beryllium mass fraction in SRM 1877 Beryllium Oxide Powder using high-performance inductively coupled plasma optical emission spectrometry with exact matching.

    PubMed

    Winchester, Michael R; Turk, Gregory C; Butler, Therese A; Oatts, Thomas J; Coleman, Charles; Nadratowski, Donald; Sud, Ritu; Hoover, Mark D; Stefaniak, Aleksandr B

    2009-03-15

    High-performance inductively coupled plasma optical emission spectrometry (HP-ICP-OES) was used to certify the Be mass fraction in National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 1877 Beryllium Oxide Powder. The certified value and expanded uncertainty expressed at a 95% confidence level is (0.3576 +/- 0.0024) g/g. To obtain best results, the Be mass fractions, Mn (internal standard) mass fractions, and matrix compositions of the calibration solutions were carefully matched to those of the sample solutions for each individual HP-ICP-OES analysis. This "exact matching" approach was used because experience at NIST has shown that it often affords improved accuracy and precision in HP-ICP-OES analysis. NIST has never published these observations. Due to the toxicity of BeO and the difficulty of containing the very fine powder material, sets of solutions for HP-ICP-OES analysis were prepared by laboratories collaborating with NIST who have the experience and equipment needed to work with the material safely. Each laboratory utilized a unique digestion protocol(s). After preparing the sets of solutions, the collaborating laboratories shipped them to NIST for HP-ICP-OES analysis. NIST provided the collaborating laboratories with solution preparation kits and spreadsheets to help establish traceability of the HP-ICP-OES results to the International System of Units (SI) and to allow exact matching to be accomplished. The agreement observed among the four individual Be mass fraction values determined from the sets of solutions prepared by the collaborating laboratories was 0.074% relative (1s of mean). The excellent agreement provides a measure of confidence in the robustness of each of the digestion procedures, as well as in the certified Be mass fraction value. The analytical benefits of using exact matching for this particular certification were investigated. Results show that exactly matching the matrix compositions of the

  2. Refractory Oxide Coatings on Titanium for Nitric Acid Applications

    NASA Astrophysics Data System (ADS)

    Ravi Shankar, A.; Kamachi Mudali, U.

    2014-07-01

    Tantalum and Niobium have good corrosion resistance in nitric acid as well as in molten chloride salt medium encountered in spent fuel nuclear reprocessing plants. Commercially, pure Ti (Cp-Ti) exhibits good corrosion resistance in nitric acid medium; however, in vapor condensates of nitric acid, significant corrosion was observed. In the present study, a thermochemical diffusion method was pursued to coat Ta2O5, Nb2O5, and Ta2O5 + Nb2O5 on Ti to improve the corrosion resistance and enhance the life of critical components in reprocessing plants. The coated samples were characterized by XRD, SEM, EDX, profilometry, micro-scratch test, and ASTM A262 Practice-C test in 65 pct boiling nitric acid. The SEM micrograph of the coated samples showed that uniform dense coating containing Ta2O5 and/or Nb2O5 was formed. XRD patterns indicated the formation of TiO2, Ta2O5/Nb2O5, and mixed oxide/solid solution phase on coated Ti samples. ASTM A262 Practice-C test revealed reproducible outstanding corrosion resistance of Ta2O5-coated sample in comparison to Nb2O5- and Ta2O5 + Nb2O5-coated sample. The hardness of the Ta2O5-coated Cp-Ti sample was found to be twice that of uncoated Cp-Ti. The SEM and XRD results confirmed the presence of protective oxide layer (Ta2O5, rutile TiO2, and mixed phase) on coated sample which improved the corrosion resistance remarkably in boiling liquid phase of nitric acid compared to uncoated Cp-Ti and Ti-5Ta-1.8Nb alloy. Three phase corrosion test conducted on Ta2O5-coated samples in boiling 11.5 M nitric acid showed poor corrosion resistance in vapor and condensate phases of nitric acid due to poor adhesion of the coating. The adhesive strength of the coated samples needs to be optimized in order to improve the corrosion resistance in vapor and condensate phases of nitric acid.

  3. Method of nitriding, carburizing, or oxidizing refractory metal articles using microwaves

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Tiegs, Terry N.

    1992-01-01

    A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  4. Method of nitriding, carburizing, or oxidizing refractory metal articles using microwaves

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.; Tiegs, T.N.

    1992-10-13

    A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  5. Kinetic investigation of sulfidizing annealing of scorodite in processing of refractory oxidized gold-containing ores

    NASA Astrophysics Data System (ADS)

    Boboev, I. R.; Strizhko, L. S.; Bobozoda, Sh.; Gorbunov, E. P.

    2016-03-01

    The results of kinetic studies on the removal of arsenic from scorodite using sulfidizing annealing are presented. The reaction order with respect to the reactant and the activation energy are established from the experimental data. The rate-determining step of the sulfidizing annealing process is determined. The main reactions that occur during the sulfidizing of arsenic in scorodite are proposed on the basis of the obtained results and confirmed by thermodynamic calculations and chemical analyses. The major results of testing this technology, as applied to the refractory oxidized ores in which arsenic is mainly concentrated in scorodite, are presented. Arsenic removal from this ore is confirmed by chemical and quantitative X-ray diffraction analyses and by qualitative phase analysis. Industrial use of this technology provides safe and efficient processing of refractory gold-containing ores, where arsenic is mainly concentrated in scorodite.

  6. Beryllium thin films for resistor applications

    NASA Technical Reports Server (NTRS)

    Fiet, O.

    1972-01-01

    Beryllium thin films have a protective oxidation resistant property at high temperature and high recrystallization temperature. However, the experimental film has very low temperature coefficient of resistance.

  7. Application of diffusion barriers to the refractory fibers of tungsten, columbium, carbon and aluminum oxide

    NASA Technical Reports Server (NTRS)

    Douglas, F. C.; Paradis, E. L.; Veltri, R. D.

    1973-01-01

    A radio frequency powered ion-plating system was used to plate protective layers of refractory oxides and carbide onto high strength fiber substrates. Subsequent overplating of these combinations with nickel and titanium was made to determine the effectiveness of such barrier layers in preventing diffusion of the overcoat metal into the fibers with consequent loss of fiber strength. Four substrates, five coatings, and two metal matrix materials were employed for a total of forty material combinations. The substrates were tungsten, niobium, NASA-Hough carbon, and Tyco sapphire. The diffusion-barrier coatings were aluminum oxide, yttrium oxide, titanium carbide, tungsten carbide with 14% cobalt addition, and zirconium carbide. The metal matrix materials were IN 600 nickel and Ti 6/4 titanium. Adhesion of the coatings to all substrates was good except for the NASA-Hough carbon, where flaking off of the oxide coatings in particular was observed.

  8. Containerless processing of beryllium

    NASA Technical Reports Server (NTRS)

    Wouch, G.; Keith, G. H.; Frost, R. T.; Pinto, N. P.

    1977-01-01

    Melting and solidification of a beryllium alloy containing 1.5% BeO by weight in the weightless environment of space has produced cast beryllium with a relatively uniform dispersion of BeO throughout. Examination of the cast material shows that it is coarse grained, although the BeO is not heavily agglomerated in the flight specimen. Ground based comparison experiments show extreme agglomeration and segregation of BeO, resulting in large zones which are practically free of the oxide. Several postulated hypotheses for the failure to grain refine the beryllium are formulated. These are: (1) spherodization of the BeO particles during specimen preparation and during the molten phase of the experiment; (2) loss of nucleation potency through aging in the molten phase; and (3) inability of BeO to act as a grain refiner for beryllium. Further investigation with non spherodized particles and shorter dwell times molten may delineate which of these hypotheses are valid. The results of this flight experiment indicate that the weightless environment of space is an important asset in conducting research to find grain refiners for beryllium and other metals for which cast dispersions of grain refining agents cannot be prepared terrestrially due to gravitationally driven settling and agglomeration.

  9. Beryllium disease

    SciTech Connect

    Not Available

    1991-12-20

    After two workers at the nuclear weapons plant at Oak Ridge National Laboratory in Tennessee were diagnosed earlier this year with chronic beryllium disease (CBD), a rare and sometimes fatal scarring of the lungs, the Department of Energy ordered up a 4-year probe. Now, part of that probe has begun - tests conducted by the Oak Ridge Associated Universities' Center for Epidemiological Research measuring beryllium sensitivity in 3,000 people who've been exposed to the metal's dust since Manhattan Project managers opened the Y-12 plant at Oak Ridge in 1943. Currently, 119 Y-12 employees process beryllium, which has a number of industrial uses, including rocket heat shields and nuclear weapon and electrical components. The disease often takes 20 to 25 years to develop, and the stricken employees haven't worked with beryllium for years. There is no cure for CBD, estimated to strike 2% of people exposed to the metal. Anti-inflammatory steroids alleviate such symptoms as a dry cough, weight loss, and fatigue. Like other lung-fibrosis diseases that are linked to lung cancer, some people suspect CBD might cause some lung cancer. While difficult to diagnose, about 900 cases of CBD have been reported since a Beryllium Case Registry was established in 1952. The Department of Energy (DOE) estimates that about 10,000 DOE employees and 800,000 people in private industry have worked with beryllium.

  10. Chronic Beryllium Disease

    MedlinePlus

    ... an immune response or “allergy” to beryllium metal, ceramic or alloy, termed beryllium sensitization (BeS). Beryllium sensitization ... Mroz MM, Newman LS. Beryllium disease screening in ceramics industry: Blood test performance and exposure-disease relations. ...

  11. Method for welding beryllium

    DOEpatents

    Dixon, Raymond D.; Smith, Frank M.; O'Leary, Richard F.

    1997-01-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon.

  12. Beryllium--important for national defense

    USGS Publications Warehouse

    Boland, M.A.

    2012-01-01

    Beryllium is one of the lightest and stiffest metals, but there was little industrial demand for it until the 1930s and 1940s when the aerospace, defense, and nuclear sectors began using beryllium and its compounds. Beryllium is now classified by the U.S. Department of Defense as a strategic and critical material because it is used in products that are vital to national security. The oxide form of beryllium was identified in 1797, and scientists first isolated metallic beryllium in 1828. The United States is the world's leading source of beryllium. A single mine at Spor Mountain, Utah, produced more than 85 percent of the beryllium mined worldwide in 2010. China produced most of the remainder, and less than 2 percent came from Mozambique and other countries. National stockpiles also provide significant amounts of beryllium for processing. To help predict where future beryllium supplies might be located, U.S.Geological Survey (USGS) scientists study how and where beryllium resources are concentrated in Earth's crust and use that knowledge to assess the likelihood that undiscovered beryllium resources may exist. Techniques to assess mineral resources have been developed by the USGS to support the stewardship of Federal lands and to better evaluate mineral resource availability in a global context. The USGS also compiles statistics and information on the worldwide supply of, demand for, and flow of beryllium. These data are used to inform U.S. national policymaking.

  13. Method for enhancement of useful luminescence from vacancy defects in refractory oxides for tunable lasers

    DOEpatents

    Chen, Yok

    1990-01-01

    Refractory oxide crystals suitable for use in tunable lasers and a method for preparing the same are provided. The crystals are characterized by high quantum efficiency, high thermal stability, good crystal transparency, and a high percentage of useful luminescence. The method for preparation of the crystals involves removing substantially all the hydrogen, thermochemically reducing the crystal's oxygen content to produce oxygen (anion) vacancy defects, and subsequently irradiating the crystal with electrons to inactivate trace H.sup.- ions so that an increased amount of short lived F.sup.+ luminescence is produced when the crystal is optically excited.

  14. US Beryllium Case Registry through 1977

    SciTech Connect

    Sprince, N.L.; Kazemi, H.

    1980-02-01

    A synopsis of the cases reported to the Beryllium Case Registry between 1973 and 1977 is presented. As of 1973, there were 832 cases of beryllium disease entered into the Registry. In the five years since that report, 55 additional cases have been added, 40 men and 15 women. Exposures occured in the electronics and nuclear industries in the production and use of beryllium containing alloys and beryllium oxide ceramis. Pathological changes in the lung tissue are described. Cases continue to be reported in which the diagnosis was sarcoidosis until the history of beryllium exposure led to the finding of beryllium in the lung tissue or mediastinal lymph node biopsy. Data from the Registry support the fact that chronic beryllium disease is a continued occupational hazard.

  15. Development of MgO-C Refractory Having High Oxidation Resistance by Metal Coating Process.

    PubMed

    Kim, Eun-Hee; Cho, Geon-Ho; Lim, Hyung-Tea; Byeun, Yun-Ki; Jung, Yeon-Gil

    2015-01-01

    Graphite has been modified with a coating reagent, which can form coating layer of a metal on the surface of graphite, to effectively prevent the oxidation of graphite used as a carbon source, compared to common antioxidants. The oxidation of graphite is resisted by the high oxidation reactivity of metal and the oxygen barrier effect of coating layer. Therefore, the metal layer should be homogeneously and continuously coated on the surface of graphite and the coating efficiency of metal should be increased. The metal layer was formed with a metal precursor existed only with a ion phase in an aqueous solution. The unmodified graphite was totally degraded and oxidized after the combustion test at 1000 degrees C in air. However, as graphite was modified by the metal precursor, the color of carbon was not changed after the heat treatment. These results mean that the coating layer is individually and uniformly formed on a surface of graphite, delaying the oxidation of graphite. Consequently, MgO-C refractory with the high oxidation resistance could be successfully fabricated by the modification of graphite with the metal precursor. PMID:26328392

  16. Presence, segregation and reactivity of H, C and N dissolved in some refractory oxides

    NASA Technical Reports Server (NTRS)

    Freund, F.

    1986-01-01

    The sources of impurities, particularly carbon, in high melting oxides and silicates are discussed, along with detection and quantification methods. The impurities are important for their effects on bulk material properties through the media of, e.g., surface or grain boundary characteristics. The impurities are usually encountered by the contact of the oxide (refractory) material with volatiles such as H2O and CO2, which become incorporated in the material and form anion complexes with oxygen acting as a covalent bonded ligand. The specific processes undergone by MgO in assimilating C impurities are delineated, using data obtained with X-ray photoelectron spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry and nuclear reaction profiling. Finally, maintenance of a supersaturated solid solution with C impurities by space charge control is described as a means of offset impurity effects.

  17. Beryllium fluoride film protects beryllium against corrosion

    NASA Technical Reports Server (NTRS)

    O donnell, P. M.; Odonnell, P. M.

    1967-01-01

    Film of beryllium fluoride protects beryllium against corrosion and stress corrosion cracking in water containing chloride ion concentrations. The film is formed by exposing the beryllium to fluorine gas at 535 degrees C or higher and makes beryllium suitable for space applications.

  18. Refractory oxide hosts for a high power, broadly tunable laser with high quantum efficiency and method of making same

    DOEpatents

    Chen, Yok; Gonzalez, Roberto

    1986-01-01

    Refractory oxide crystals having high-quantum efficiency and high thermal stability for use as broadly tunable laser host materials. The crystals are formed by removing hydrogen from a single crystal of the oxide material to a level below about 10.sup.12 protons per cm.sup.3 and subsequently thermochemically reducing the oxygen content of the crystal to form sufficient oxygen anion vacancies so that short-lived F.sup.+ luminescence is produced when the crystal is optically excited.

  19. Refractory oxide hosts for a high power, broadly tunable laser with high quantum efficiency and method of making same

    DOEpatents

    Chen, Yok; Gonzalez, R.

    1985-07-03

    Refractory oxide crystals having high-quantum efficiency and high thermal stability for use as broadly tunable laser host materials. The crystals are formed by removing hydrogen from a single crystal of the oxide material to a level below about 10/sup 12/ protons per cm/sup 3/ and subsequently thermochemically reducing the oxygen content of the crystal to form sufficient oxygen anion vacancies so that short-lived F/sup +/ luminescence is produced when the crystal is optically excited.

  20. Molecular dynamics analysis of oxidation, segregation and stress corrosion failures of refractory alloys

    NASA Astrophysics Data System (ADS)

    Verners, Osvalds

    The focuses of the thesis are heating induced segregation/mixing of refractory alloys, along with oxidation and stress corrosion properties of selected fcc metals and thin oxide layers formed on the surfaces thereof. The particular studies include segregation and oxidation simulation of Mo3Ni alloy clusters. These reveal favorable stabilizing oxidation resistance properties due to the Ni component, which diffuses during annealing to the surface of the clusters. A comparative study has been done for different sized Al grains in Fe or Ni bulk matrices. Its results indicate that Ni matrix is favorable due to the grain dissolution and energetic stability properties upon heating and cooling of the structures. Oxidation simulation of the same structures in slab structures indicate that unmixed metals oxidize first and the alloy layer, which forms only for the Ni matrix, eventually segregates to single-metal layers, which oxidize subsequently. The stress corrosion properties of Al oxide slab/thin film structures in water, noble gas and vacuum environments have been studied with the aim of subsequent stress corrosion simulation of alloys or metals with protective surface oxide layers. The obtained results indicate brittle type failures, which involve shear deformation and localized amorphization. The plasticity enhancing fluid environment effects are found to be similar for both reactive and nonreactive species, which indicates significant pressure effects and passivated reactivity of surfaces. Parallel to the corrosion study, strain rate effects and cyclic loading behavior for slab structures in vacuum have been characterized and compared at different temperatures. These indicate time dependent deformation mechanisms including temperature enhanced local amorphization prior to crack formation. Complementary analyses include extended timescale crack behavior of a slab structure in vacuum using parallel replica dynamics and steady state analysis of a slab structure in water

  1. Method for welding beryllium

    DOEpatents

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1997-04-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs.

  2. Oxidation of Refractory Benzothiazoles with PMS/CuFe2O4: Kinetics and Transformation Intermediates.

    PubMed

    Zhang, Tao; Chen, Yin; Leiknes, TorOve

    2016-06-01

    Benzothiazole (BTH) and its derivatives 2-(methylthio)bezothiazole (MTBT), 2-benzothiazolsulfonate (BTSA), and 2-hydroxybenzothiazole (OHBT) are refractory pollutants ubiquitously existing in urban runoff at relatively high concentrations. Here, we report their oxidation by CuFe2O4-activated peroxomonosulfate (PMS/CuFe2O4), focusing on kinetics and transformation intermediates. These benzothiazoles can be efficiently degraded by this oxidation process, which is confirmed to generate mainly sulfate radicals (with negligible hydroxyl-radical formation) under slightly acidic to neutral pH conditions. The molar exposure ratio of sulfate radical to residual PMS (i.e., Rct) for this process is a constant that is related to the reaction condition and can be easily determined. The reaction rate constants of these benzothiazoles toward sulfate radical are (3.3 ± 0.3) × 10(9), (1.4 ± 0.3) × 10(9), (1.5 ± 0.1) × 10(9), and (4.7 ± 0.5) × 10(9) M(-1) s(-1), respectively (pH 7 and 20 °C). On the basis of Rct and these rate constants, their degradation in the presence of organic matter can be well-predicted. A number of transformation products were detected and tentatively identified using triple-quadruple/linear ion trap MS/MS and high-resolution MS. It appears that sulfate radicals attack BTH, MTBT, and BTSA on their benzo ring via electron transfer, generating multiple hydroxylated intermediates that are reactive toward common oxidants. For OHBT oxidation, the thiazole ring is preferentially broken down. Due to competitions of the transformation intermediates, a minimum PMS/pollutant molar ratio of 10-20 is required for effective degradation. The flexible PMS/CuFe2O4 could be a useful process to remove the benzothiazoles from low dissolved organic carbon waters like urban runoff or polluted groundwater. PMID:27144396

  3. Defense programs beryllium good practice guide

    SciTech Connect

    Herr, M.

    1997-07-01

    Within the DOE, it has recently become apparent that some contractor employees who have worked (or are currently working) with and around beryllium have developed chronic beryllium disease (CBD), an occupational granulomatous lung disorder. Respiratory exposure to aerosolized beryllium, in susceptible individuals, causes an immunological reaction that can result in granulomatous scarring of the lung parenchyma, shortness of breath, cough, fatigue, weight loss, and, ultimately, respiratory failure. Beryllium disease was originally identified in the 1940s, largely in the fluorescent light industry. In 1950, the Atomic Energy Commission (AEC) introduced strict exposure standards that generally curtailed both the acute and chronic forms of the disease. Beginning in 1984, with the identification of a CBD case in a DOE contractor worker, there was increased scrutiny of both industrial hygiene practices and individuals in this workforce. To date, over 100 additional cases of beryllium-specific sensitization and/or CBD have been identified. Thus, a disease previously thought to be largely eliminated by the adoption of permissible exposure standards 45 years ago is still a health risk in certain workforces. This good practice guide forms the basis of an acceptable program for controlling workplace exposure to beryllium. It provides (1) Guidance for minimizing worker exposure to beryllium in Defense Programs facilities during all phases of beryllium-related work, including the decontamination and decommissioning (D&D) of facilities. (2) Recommended controls to be applied to the handling of metallic beryllium and beryllium alloys, beryllium oxide, and other beryllium compounds. (3) Recommendations for medical monitoring and surveillance of workers exposed (or potentially exposed) to beryllium, based on the best current understanding of beryllium disease and medical diagnostic tests available. (4) Site-specific safety procedures for all processes of beryllium that is likely to

  4. The effects of beryllium additions on the oxidation of nickel aluminide and titanium aluminide based intermetallics

    SciTech Connect

    Hanrahan, R.J. Jr.; Chen, K.C.; Brady, M.P.

    1998-12-31

    The effects of Be additions on the oxidation behavior of {beta}-NiAl in moist air at 1,000 C and borderline alumina-forming {gamma} (TiAl) + Laves Ti-Al-Cr based alloys at 800 C and 1,000 C in dry and moist air were investigated. The addition of Be to {beta}-NiAl suppressed the formation of transient alumina, and resulted in the formation of a protective BeAl{sub 2}O{sub 4} spinel phase. In dry air, the addition of Be to the Ti-Al-Cr alloys also resulted in the formation of a protective BeAl{sub 2}O{sub 4} spinel phase. In moist air, only Ti-Al-Cr-Be alloys with a high Cr content (10 to 15 a/o) formed the protective BeAl{sub 2}O{sub 4} scale.

  5. The effects of beryllium additions on the oxidation of nickel aluminide and titanium aluminide based intermetallics

    SciTech Connect

    Hanrahan, R.J. Jr.; Chen, K.C.; Brady, M.P.

    1998-11-01

    The effects of Be additions on the oxidation behavior of {beta}-NiAl in moist air at 1,000 C as well as on the borderline alumina-forming {gamma} + Laves Ti-Al-Cr based alloys at 800 C and 1,000 C in dry and moist air were investigated. The addition of Be to {beta}-NiAl suppressed the formation of transient alumina and resulted in the formation of a protective BeAl{sub 2}O{sub 4} spinel phase. In dry air, the addition of Be to the Ti-Al-Cr alloys also resulted in the formation of a protective BeAl{sub 2}O{sub 4} spinel phase. In moist air, only Ti-Al-Cr-Be alloys with a high Cr content (10 to 15 a/o) formed the protective BeAl{sub 2}O{sub 4} scale.

  6. Some characteristics of fine beryllium particle combustion

    NASA Astrophysics Data System (ADS)

    Davydov, D. A.; Kholopova, O. V.; Kolbasov, B. N.

    2007-08-01

    Beryllium dust will be produced under plasma interaction with beryllium armor of the first wall in ITER. Exothermal reaction of this dust with water steam or air, which can leak into the reactor vacuum chamber in some accidents, gives concern in respect to reactor safety. Results of studies devoted to combustion of fine beryllium particles are reviewed in the paper. A chemically active medium and elevated temperature are prerequisite to the combustion of beryllium particles. Their ignition is hampered by oxide films, which form a diffusion barrier on the particle surface as a result of pre-flame oxidation. The temperature to initiate combustion of particles depends on flame temperature, particle size, composition of combustible mixture, heating rate and other factors. In mixtures enriched with combustible, the flame temperature necessary to ignite individual particles approaches the beryllium boiling temperature.

  7. An analysis of the causes of failure in high chrome oxide refractory materials from slagging gasifiers

    SciTech Connect

    Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.; Thomas, Hugh; Krabbe, Rick

    2006-01-01

    High Cr2O3 refractory materials are used to line the hot face of slagging gasifiers. Gasifiers are reaction chambers that convert water, oxygen, and a carbon feedstock into CO, H2, and methane at temperatures as high as 1575DGC and pressures up to 1000 psi. Ash in the carbon feedstock liquefies, erodes and corrodes the gasifier's refractory liner, contributing to liner failure within a few months to two years. The failure of a refractory liner decreases a gasifier's on-line availability and causes costly system downtime and repairs. Many factors contribute to refractory lining failure, including slag penetration and corrosion, thermal cycling, gasifier environment, and mechanical loads. The results of refractory post-mortem failure analysis and how observations relate to gasifier service life will be discussed.

  8. Analysis of the causes of failure in high chrome oxide refractory materials from slagging gasifiers

    SciTech Connect

    Bennett, J.P.; Kwong, K.-S.; Powell, C.A.; Thomas, H.; Krabbe, R.A.

    2006-03-01

    High Cr2O3 refractory materials are used to line the hot face of slagging gasifiers. Gasifiers are reaction chambers that convert water, oxygen, and a carbon feedstock into CO, H2, and methane at temperatures as high as 1575oC and pressures up to 1000 psi. Ash in the carbon feedstock liquefies, erodes and corrodes the gasifier’s refractory liner, contributing to liner failure within a few months to two years. The failure of a refractory liner decreases a gasifier’s on-line availability and causes costly system downtime and repairs. Many factors contribute to refractory lining failure, including slag penetration and corrosion, thermal cycling, gasifier environment, and mechanical loads. The results of refractory post-mortem failure analysis and how observations relate to gasifier service life will be discussed.

  9. Fabrication of Smooth Patterned Structures of Refractory Metals, Semiconductors, and Oxides via Template Stripping

    PubMed Central

    2013-01-01

    The template-stripping method can yield smooth patterned films without surface contamination. However, the process is typically limited to coinage metals such as silver and gold because other materials cannot be readily stripped from silicon templates due to strong adhesion. Herein, we report a more general template-stripping method that is applicable to a larger variety of materials, including refractory metals, semiconductors, and oxides. To address the adhesion issue, we introduce a thin gold layer between the template and the deposited materials. After peeling off the combined film from the template, the gold layer can be selectively removed via wet etching to reveal a smooth patterned structure of the desired material. Further, we demonstrate template-stripped multilayer structures that have potential applications for photovoltaics and solar absorbers. An entire patterned device, which can include a transparent conductor, semiconductor absorber, and back contact, can be fabricated. Since our approach can also produce many copies of the patterned structure with high fidelity by reusing the template, a low-cost and high-throughput process in micro- and nanofabrication is provided that is useful for electronics, plasmonics, and nanophotonics. PMID:24001174

  10. Novel refractory alkaline earth silicate sealing glasses for planar solid oxide fuel cells

    SciTech Connect

    Chou, Y. S.; Stevenson, Jeffry W.; Singh, Prabhakar

    2007-07-01

    A novel “refractory” Sr-Ca-Y-B-Si sealing glass (glass-ceramic) was developed for solid oxide fuel cells (SOFCs). The objective was to develop sealing glass with desired thermal properties and minimal interfacial reactions with SOFC components, ceramic electrolyte and metallic interconnect. The current glass was different from conventional sealing glass in that the sealing temperatures were targeted higher (>950 degree C) and hence more refractory. Six glasses were formulated and made by conventional glass-making process. Thermal properties were characterized in the glass state and the sintered (crystallized) state. The effect of formulation on thermal properties was discussed. Candidate glasses were also aged for 1000 to 2000 h at elevated temperatures. Thermal expansion measurements showed minimal change after aging. A candidate glass (YSO-1) was used in sealing ceramic electrolyte to a metallic interconnect from 900 degree C to 1050 degree C in air. The interfacial microstructure was characterized and SrCrO4 was identified near the metal interface. Possible reaction mechanism for the chromate formation was discussed.

  11. Nucleation, Growth, Annealing, and Coagulation of Refractory Oxides and Metals: Recent Experimental Progress and Applications to Astrophysical Systems

    NASA Technical Reports Server (NTRS)

    Nuth, J. A.; Rietmeijer, F. J. M.; Hallenbeck, S. L.; Withey, P. A.

    1999-01-01

    Starting with cooling, refractory vapors diluted in significant quantities of H and He there are four processes that most natural systems will undergo: nucleation, growth, annealing, and coagulation. Nucleation is the processes by which the first stable refractory nuclei form in the vapor. These are the seeds onto which the remaining vapors will condense during the growth stage. Solids of any composition will try to arrange themselves into the least energetic configuration, provided that there is sufficient energy available to support such processes as diffusion and the breaking of chemical bonds. There is a significant activation energy associated with the annealing process in refractory solids due to the relatively high energy of the chemical bonds in solids. The grains formed in most cosmochemical systems are extremely small and often tightly coupled to the gas. Because of their small physical cross sections coagulation may be a very slow process unless there is another driving force involved in addition to normal Brownian motion. In what follows we will briefly cover each of these four stages for refractory oxide and metal grains, although in inverse order.

  12. Joining of Beryllium

    SciTech Connect

    Goldberg, A

    2006-02-01

    A handbook dealing with the many aspects of beryllium that would be important for the users of this metal is currently being prepared. With an introduction on the applications, advantages and limitations in the use of this metal the following topics will be discussed in this handbook: physical, thermal, and nuclear properties; extraction from the ores; purification and casting of ingots; production and types of beryllium powders; consolidation methods, grades, and properties; mechanical properties with emphasis on the various factors affecting these properties; forming and mechanical working; welding, brazing, bonding, and fastening; machining; powder deposition; corrosion; health aspects; and examples of production of components. This report consists of ''Section X--Joining'' from the handbook. The prefix X is maintained here for the figures, tables and references. In this section the different methods used for joining beryllium and the advantages, disadvantages and limitations of each are presented. The methods discussed are fusion welding, brazing, solid state bonding (diffusion bonding and deformation bonding), soldering, and mechanical fastening. Since beryllium has a high affinity for oxygen and nitrogen with the formation of oxides and nitrides, considerable care must be taken on heating the metal, to protect it from the ambient atmosphere. In addition, mating surfaces must be cleaned and joints must be designed to minimize residual stresses as well as locations for stress concentration (notch effects). In joining any two metals the danger exists of having galvanic corrosion if the part is subjected to moisture or to any type of corroding environment. This becomes a problem if the less noble (anodic) metal has a significantly smaller area than the more noble (cathodic) metal since the ions (positive charges) from the anodic (corroding) metal must correspond to the number of electrons (negative charges) involved at the cathode. Beryllium is anodic to almost

  13. Processing Irradiated Beryllium For Disposal

    SciTech Connect

    T. J. Tranter; R. D. Tillotson; N. R. Mann; G. R. Longhurst

    2005-11-01

    The purpose of this research was to develop a process for decontaminating irradiated beryllium that will allow it to be disposed of through normal radwaste channels. Thus, the primary objectives of this ongoing study are to remove the transuranic (TRU) isotopes to less than 100 nCi/g and remove {sup 60}Co, and {sup 137}Cs, to levels that will allow the beryllium to be contact handled. One possible approach that appears to have the most promise is aqueous dissolution and separation of the isotopes by selected solvent extraction followed by precipitation, resulting in a granular form for the beryllium that may be fixed to prevent it from becoming respirable and therefore hazardous. Beryllium metal was dissolved in nitric and fluorboric acids. Isotopes of {sup 241}Am, {sup 239}Pu, {sup 85}Sr, and {sup 137}Cs were then added to make a surrogate beryllium waste solution. A series of batch contacts was performed with the spiked simulant using chlorinated cobalt dicarbollide (CCD) and polyethylene glycol diluted with sulfone to extract the isotopes of Cs and Sr. Another series of batch contacts was performed using a combination of octyl (phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) in tributyl phosphate (TBP) diluted with dodecane for extracting the isotopes of Pu and Am. The results indicate that greater than 99.9% removal can be achieved for each isotope with only three contact stages.

  14. BERYLLIUM MEASUREMENT IN COMMERCIALLY AVAILABLE WET WIPES

    SciTech Connect

    Youmans-Mcdonald, L.

    2011-02-18

    Analysis for beryllium by fluorescence is now an established method which is used in many government-run laboratories and commercial facilities. This study investigates the use of this technique using commercially available wet wipes. The fluorescence method is widely documented and has been approved as a standard test method by ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The procedure involves dissolution of samples in aqueous ammonium bifluoride solution and then adding a small aliquot to a basic hydroxybenzoquinoline sulfonate fluorescent dye (Berylliant{trademark} Inc. Detection Solution Part No. CH-2) , and measuring the fluorescence. This method is specific to beryllium. This work explores the use of three different commercial wipes spiked with beryllium, as beryllium acetate or as beryllium oxide and subsequent analysis by optical fluorescence. The effect of possible interfering metals such as Fe, Ti and Pu in the wipe medium is also examined.

  15. Production of crystalline refractory metal oxides containing colloidal metal precipitates and useful as solar-effective absorbers

    DOEpatents

    Narayan, Jagdish; Chen, Yok

    1983-01-01

    This invention is a new process for producing refractory crystalline oxides having improved or unusual properties. The process comprises the steps of forming a doped-metal crystal of the oxide; exposing the doped crystal in a bomb to a reducing atmosphere at superatmospheric pressure and a temperature effecting precipitation of the dopant metal in the crystal lattice of the oxide but insufficient to effect net diffusion of the metal out of the lattice; and then cooling the crystal. Preferably, the cooling step is effected by quenching. The process forms colloidal precipitates of the metal in the oxide lattice. The process may be used, for example, to produce thermally stable black MgO crystalline bodies containing magnetic colloidal precipitates consisting of about 99% Ni. The Ni-containing bodies are solar-selective absorbers, having a room-temperature absorptivity of about 0.96 over virtually all of the solar-energy spectrum and exhibiting an absorption edge in the region of 2 .mu.m. The process parameters can be varied to control the average size of the precipitates. The process can produce a black MgO crystalline body containing colloidal Ni precipitates, some of which have the face-centered-cubic structure and others of which have the body-centered cubic structure. The products of the process are metal-precipitate-containing refractory crystalline oxides which have improved or unique optical, mechanical, magnetic, and/or electronic properties.

  16. New processing methods to produce silicon carbide and beryllium oxide inert matrix and enhanced thermal conductivity oxide fuels

    NASA Astrophysics Data System (ADS)

    Sarma, K. H.; Fourcade, J.; Lee, S.-G.; Solomon, A. A.

    2006-06-01

    For inert matrix fuels, SiC and BeO represent two possible matrix phase compounds that exhibit very high thermal conductivity, high melting points, low neutron absorption, and reasonably high radiation stability. BeO is chemically compatible with UO2, PuO2 and Zircaloy to very high temperatures, but SiC reacts with all three at somewhat lower temperatures. We have developed the Polymer Impregnation and Pyrolysis or PIP method, making use of a commercial SiC polymeric precursor, to consolidate both particulate fuels like 'TRISO' microsphere fuels, and to impregnate UO2 fuels with pure stoichiometric SiC to improve their thermal conductivity. This method was employed to fabricate Enhanced Conductivity Oxide fuels, or ECO fuels with 5-10 vol.% of the high conductivity phase, and with 50 vol.% for TRISO dispersion fuels. For ECO fuels, a new 'slug/bisque' method of fabricating the UO2 fuel granules was necessary to produce sintered fuel with open pore structures, allowing almost complete impregnation of the continuous SiC phase. The advantages of the PIP process are that it is a non-damaging consolidation process for particulates (TRU, UC or TRISO microspheres), forms a continuous, pure β-SiC phase at temperatures as low as 1573 K, and allows the maximum in fissile atom density. However, several PIP impregnation cycles and high crystallization temperatures are necessary to obtain high thermal conductivity SiC. For producing IMF fuels using the PIP process, the fissile PuC and/or TRU actinides can be added in small concentrations along with SiC 'filler particles' and consolidated with the SiC precursor for either open or closed fuel cycles. For BeO, a second approach was developed for ECO fuels that involves a 'co-sintering' route to produce high density fuels with a continuous BeO phase of 5-10 vol.%. Special granulation and mixing techniques were developed, but only one normal sintering cycle is required. For BeO matrix IMF fuels, PuO2 granules and TRU actinides or

  17. ZPPR-20 phase D : a cylindrical assembly of polyethylene moderated U metal reflected by beryllium oxide and polyethylene.

    SciTech Connect

    Lell, R.; Grimm, K.; McKnight, R.; Shaefer, R.; Nuclear Engineering Division; INL

    2006-09-30

    The Zero Power Physics Reactor (ZPPR) fast critical facility was built at the Argonne National Laboratory-West (ANL-W) site in Idaho in 1969 to obtain neutron physics information necessary for the design of fast breeder reactors. The ZPPR-20D Benchmark Assembly was part of a series of cores built in Assembly 20 (References 1 through 3) of the ZPPR facility to provide data for developing a nuclear power source for space applications (SP-100). The assemblies were beryllium oxide reflected and had core fuel compositions containing enriched uranium fuel, niobium and rhenium. ZPPR-20 Phase C (HEU-MET-FAST-075) was built as the reference flight configuration. Two other configurations, Phases D and E, simulated accident scenarios. Phase D modeled the water immersion scenario during a launch accident, and Phase E (SUB-HEU-MET-FAST-001) modeled the earth burial scenario during a launch accident. Two configurations were recorded for the simulated water immersion accident scenario (Phase D); the critical configuration, documented here, and the subcritical configuration (SUB-HEU-MET-MIXED-001). Experiments in Assembly 20 Phases 20A through 20F were performed in 1988. The reference water immersion configuration for the ZPPR-20D assembly was obtained as reactor loading 129 on October 7, 1988 with a fissile mass of 167.477 kg and a reactivity of -4.626 {+-} 0.044{cents} (k {approx} 0.9997). The SP-100 core was to be constructed of highly enriched uranium nitride, niobium, rhenium and depleted lithium. The core design called for two enrichment zones with niobium-1% zirconium alloy fuel cladding and core structure. Rhenium was to be used as a fuel pin liner to provide shut down in the event of water immersion and flooding. The core coolant was to be depleted lithium metal ({sup 7}Li). The core was to be surrounded radially with a niobium reactor vessel and bypass which would carry the lithium coolant to the forward inlet plenum. Immediately inside the reactor vessel was a rhenium

  18. Treatment of refractory nano-filtration reject from a tannery using Pd-catalyzed wet air oxidation.

    PubMed

    Tripathi, Pranav K; Rao, Nageswara N; Chauhan, Chetan; Pophali, Girish R; Kashyap, Sanjay M; Lokhande, Satish K; Gan, Lihua

    2013-10-15

    We attempted catalytic wet air oxidation (CWAO) of nanofiltration (NF)-reject using Pd based catalyst viz., Pd/activated charcoal (AC) and PdCl2 with the objective of degradation of refractory organic pollutants. Refractory organic pollutants in NF-reject before and after WAO and CWAO were confirmed by GC-MS analysis. Experiments were conducted to investigate the effects of temperature, catalyst dosage and air partial pressure on the rate of removal of total organic carbon (TOC). The reaction kinetics can be conveniently described by considering two-stage first order kinetics. The use of Pd/AC afforded 85% TOC removal, the corresponding rate constant (k) was 2.90 ± 0.075 × 10(-3)min(-1) (Pd/AC, 100mg/L; T, 473.15K; Pair, 0.69 MPa). On the other hand, 75% TOC was removed with k=2.31 ± 0.075 × 10(-3)min(-1) using Pd(2+) catalyst (Pd(2+), 16.66 mg/L; T, 473.15K; Pair, 0.69 MPa). The observed rate of mineralization under Pd-catalyzed conditions was significantly higher than that of the uncatalyzed oxidation (41%) under the similar experimental conditions. Catalyst stability experiments were performed and TEM, SEM, XRD, Raman and XPS characterization data collected. Despite some morphological transformation of support, Pd catalyst was stable under CWAO conditions. PMID:23911829

  19. A possible method for the characterization of amorphous slags: Recovery of refractory metal oxides from tin slags

    NASA Astrophysics Data System (ADS)

    Gaballah, I.; Allain, E.; Meyer-Joly, M.-Ch.; Malau, K.

    1992-06-01

    As X-ray, neutron scattering, and vibrational spectroscopy are not useful for amorphous solids characterization, microprobe analysis is used in determining the composition of these materials. The correlation coefficient matrix between the slag’s elements is obtained by a simple computer program which is commercially available. This matrix is employed for the constitution of the neighborhood of an element, which may be called the “pseudo-structure” (PS). The proposed method is a statistical view of the probable associations between the elements. It gives an insight into the amorphous solids' structure. The lixiviation of tin slags in order to recover the refractory metals they contain is used to illustrate the importance of the PS. A multistage acid-basic (AB) leaching leads to the dissolution of the matrix composed of Ca, Al, Fe, Mn, Si, ... oxides and the concentration of refractory metal oxides in the residues. The optimum tantalum and niobium recovery rates are 93 and 78 pct, respectively. The results of this research indicate that the leaching of the amorphous tin slag is a structure-sensitive operation. However, one may emphasize that the PS of amorphous solids is a simplification of the real neighborhood of ele-ments. It may be considered as a complement to other methods of investigation of the amorphous solids and may facilitate the hydrometallurgical process planning.

  20. Superplasticity of beryllium

    NASA Astrophysics Data System (ADS)

    Papirov, I. I.; Nikolaenko, A. A.; Shokurov, V. S.; Tuzov, Yu. V.

    2016-04-01

    Beryllium is a metal having unique physicomechanical properties, including a record specific rigidity, but it undergoes cold and red brittleness. As a result of long-term investigations, we were the first to manufacture high-purity fine-grained beryllium, which has the room-temperature plasticity that is higher than that of commercial-purity powdered beryllium by an order of magnitude and exhibits superplastic flow at elevated temperatures. In this review, we summarize the results of the long-term study of the superplastic flow of beryllium and the mechanisms of high-temperature deformation.

  1. Characteristics of beryllium exposure to small particles at a beryllium production facility.

    PubMed

    Virji, M Abbas; Stefaniak, Aleksandr B; Day, Gregory A; Stanton, Marcia L; Kent, Michael S; Kreiss, Kathleen; Schuler, Christine R

    2011-01-01

    Epidemiological studies have reported process-specific elevated prevalence of beryllium sensitization (BeS) and chronic beryllium disease (CBD) among workers. However, exposure-response relationships have been inconsistent, possibly due to incomplete characterization of many biologically relevant aspects of exposure, including particle size. In 1999, two surveys were conducted 3-5 months apart at a beryllium metal, oxide, and alloy production facility during which personal impactor samples (n = 198) and personal 37-mm closed-face cassette (CFC) 'total' samples (n = 4026) were collected. Among process areas, median particle mass median aerodynamic diameter ranged from 5 to 14 μm. A large fraction of the beryllium aerosol was in the nonrespirable size range. Respirable beryllium concentrations were among the highest for oxide production [geometric mean (GM) = 2.02 μg m⁻³, geometric standard deviation (GSD) = 1.3] and pebbles plant (GM = 1.05 μg m⁻³, GSD = 2.9), areas historically associated with high risk of BeS and CBD. The relationship between GM 'CFC total' and GM respirable beryllium for jobs varied by process areas; the rank order of the jobs showed high overall consistency (Spearman r = 0.84), but the overall correlation was moderate (Pearson r = 0.43). Total beryllium concentrations varied greatly within and between workers among process areas; within-worker variance was larger than between-worker variance for most processes. A review of exposure characteristics among process areas revealed variation in chemical forms and solubility. Process areas with high risk of BeS and CBD had exposure to both soluble and insoluble forms of beryllium. Consideration of biologically relevant aspects of exposure such as beryllium particle size distribution, chemical form, and solubility will likely improve exposure assessment. PMID:20805261

  2. Beryllium Desorption from Sediments

    NASA Astrophysics Data System (ADS)

    Boschi, V.; Willenbring, J. K.

    2015-12-01

    Beryllium isotopes have provided a useful tool in the field of geochronology and geomorphology over the last 25 years. The amount of cosmogenic meteoric 10Be and native 9Be absorbed to soils often scales with the residence time and chemical weathering of sediments in a landscape, respectively. Thus, the concentrations in river sediment may be used to quantify the denudation of specific watersheds. When deposited in ocean sediment, these concentrations are thought to record the history of denudation on Earth over the last ~10 Ma. The use of both isotopes often relies on the premise of beryllium retention to sediment surfaces in order to preserve a landscape's erosion and weathering signature. Changes in setting, en route from the soil to fluvial system to the ocean, can cause beryllium desorption and may preclude some applications of the 10Be/9Be system. Four mechanisms were tested to determine the desorption potential of beryllium including a reduction in pH, an increase in ionic strength and complexation with soluble organic and inorganic species. These processes have the potential to mobilize beryllium into solution. For example, by both reducing the pH and increasing the ionic strength, competition for adsorption sites increases, potentially liberating beryllium from the sediment surface. In addition, organic and inorganic ligands can complex beryllium causing it to become mobilized. To determine which of these alterations influence beryllium desorption and to quantify the effect, we prepared separate solutions of beryllium bound to minerals and organic compounds and measured beryllium concentrations in solution before and after adjusting the pH, ionic strength, and changing inorganic and organic ligand concentrations. We conclude from our observations that overall, beryllium sorbed to organic compounds was more resistant to desorption relative to mineral-associated beryllium. Among the methods tested, a reduction in pH resulted in the greatest amount of

  3. SU-C-16A-02: A Beryllium Oxide (BeO) Fibre-Coupled Luminescence Dosimeter for High Dose Rate Brachytherapy

    SciTech Connect

    Santos, A; Mohammadi, M; Afshar, V.S.

    2014-06-15

    Purpose: Beryllium oxide (BeO) ceramics have an effective atomic number, zeff ∼7.1, closely matched to water, zeff ∼7.4. The purpose of this study was to evaluate the use of a beryllium oxide (BeO) ceramic fibrecoupled luminescence dosimeter, named RL/OSL BeO FOD, for high dose rate (HDR) brachytherapy dosimetry. In our dosimetry system the radioluminescence (RL) of BeO ceramics is utilized for dose-rate measurements, and the optically stimulated luminescence (OSL) can be read post exposure for accumulated dose measurements. Methods: The RL/OSL BeO FOD consists of a 1 mm diameter × 1 mm long cylinder of BeO ceramic coupled to a 15 m long silica-silica optical fibre. The optical fibre is connected to a custom developed portable RL and OSL reader, located outside of the treatment suite. The x-ray energy response was evaluated using superficial x-rays, an Ir-192 source and high energy linear accelerators. The RL/OSL BeO FOD was then characterised for an Ir-192 source, investigating the dose response and angular dependency. A depth dose curve for the Ir-192 source was also measured. Results: The RL/OSL BeO FOD shows an under-response at low energy x-rays as expected. Though at higher x-ray energies, the OSL response continued to increase, while the RL response remained relatively constant. The dose response for the RL is found to be linear up to doses of 15 Gy, while the OSL response becomes more supralinear to doses above 15 Gy. Little angular dependency is observed and the depth dose curve measured agreed within 4% of that calculated based on TG-43. Conclusion: This works shows that the RL/OSL BeO FOD can be useful in HDR dosimetry. With the RL/OSL BeO FODs current size, it is capable of being inserted into intraluminal catheters and interstitial needles to verify HDR treatments.

  4. Electrical Stability of a Novel Refractory Sealing Glass in a Dual Environment for Solid Oxide Fuel Cell Applications

    SciTech Connect

    Chou, Y. S.; Stevenson, Jeffry W.; Meinhardt, Kerry D.

    2010-03-01

    A novel refractory alkaline-earth silicate (Sr-Ca-Y-B-Si) sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was sealed between two metallic interconnect plates and tested for electrical stability at elevated temperatures and duel environments under DC loading. The isothermal aging results showed very stable electrical resistivity with values 5-9 orders of magnititudes higher than typical SOFC function materials at 850 degrees C for ~700 hr. For comparison, the state-of-the-art sealing glass (G18, Ba-Ca-Al-B-Si) was also evaluated in a similar condition and showed less stable in accelerated tests at 830 degrees C for ~100 hr. Interfacial microstruicture was characterized and possible reactions were discussed.

  5. CFB refractory repair

    SciTech Connect

    Sur, C.; Nagar, A.; Singh, D.K.; Chakraborty, I.N.

    2006-01-15

    ACC Refractories has provided the refractories of 13 of the 20 circulating fluidized-bed combustion (CFBC) plants in India. If high levels of sulfur oxide gases are generated in India's coal, lignite or pet coke fuelled power plants they can wreak havoc on furnace liners. Calcium sulfate was the most common denominator in failed castable matrices analysed by ACC. To solve the problem, Accplast 80, a phosphate-bonded aluminous plastic has been used successfully. The article gives advice on installation of plastic refractories and on steps to prevent erosion. 10 figs., 1 tab., 4 photos.

  6. METHOD OF BRAZING BERYLLIUM

    DOEpatents

    Hanks, G.S.; Keil, R.W.

    1963-05-21

    A process is described for brazing beryllium metal parts by coating the beryllium with silver (65- 75 wt%)-aluminum alloy using a lithium fluoride (50 wt%)-lithium chloride flux, and heating the coated joint to a temperature of about 700 un. Concent 85% C for about 10 minutes. (AEC)

  7. METHOD OF WORKING BERYLLIUM

    DOEpatents

    Macherey, R.E.

    1959-02-01

    >A process is presented for fabricating beryllium metal. The billet cf beryllium metal is sheathed with a jacket of either copper or stainless steel. It may then be worked by drawing or the like at a tcmperature of 300 to 400 C.

  8. Radiation growth of beryllium

    NASA Astrophysics Data System (ADS)

    Chakin, V. P.; Posevin, А. О.; Оbukhov, А. V.; Silantyev, P. P.

    2009-04-01

    Beryllium will be used as a neutron multiplier material in the present European HCPB (Helium Cooled Pebble Bed) blanket concept of the DEMO fusion reactor. Therefore, investigation of neutron irradiation influence on dimension stability of beryllium is very important. In this paper, the radiation damage of the TE-56 beryllium grade manufactured by hot extrusion was investigated. The beryllium samples were irradiated in the SM reactor at the temperatures of 70 °С and 200 °С up to neutron fluence of (1.3-14.2) 10 22 cm -2 (Е > 0.1 MeV). The measurements of the sample dimensions and density as well as microstructure examinations by X-rays and TEM were carried out. It was shown that superposition of two processes - radiation growth and anisotropic swelling occurs in beryllium under neutron irradiation.

  9. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    DOEpatents

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  10. Beryllium disease: a clinical perspective

    SciTech Connect

    Hardy, H.L.

    1980-02-01

    A relatively new occupational disease, beryllium poisoning, is discussed. The history of this respiratory disease among workers after beryllium exposure from extraction and alloy manufacturing is not well documented in the US Attempts by industry to delay investigations into beryllium toxicity are described. The specific incidents occurring at a fluorescent lamp manufacturing plant in Salem, Massachusetts are presented. Clinical observations of chronic beryllium disease are discussed. Symptoms are described. The current status of diagnosis and treatment of beryllium poisoning is presented.

  11. Effective treatment of vascular endothelial growth factor refractory hindlimb ischemia by a mutant endothelial nitric oxide synthase gene.

    PubMed

    Qian, H S; Liu, P; Huw, L-Y; Orme, A; Halks-Miller, M; Hill, S M; Jin, F; Kretschmer, P; Blasko, E; Cashion, L; Szymanski, P; Vergona, R; Harkins, R; Yu, J; Sessa, W C; Dole, W P; Rubanyi, G M; Kauser, K

    2006-09-01

    Gene delivery of angiogenic growth factors is a promising approach for the treatment of ischemic cardiovascular diseases. However, success of this new therapeutic principle is hindered by the lack of critical understanding as to how disease pathology affects the efficiency of gene delivery and/or the downstream signaling pathways of angiogenesis. Critical limb ischemia occurs in patients with advanced atherosclerosis often exhibiting deficiency in endothelial nitric oxide production. Similar to these patients, segmental femoral artery resection progresses into severe ischemic necrosis in mice deficient in endothelial nitric oxide synthase (ecNOS-KO) as well as in balb/c mice. We used these models to evaluate the influence of severe ischemia on transfection efficiency and duration of transgene expression in the skeletal muscle following plasmid injection in combination with electroporation. Subsequently, we also explored the potential therapeutic effect of the phosphomimetic mutant of ecNOS gene (NOS1177D) using optimized delivery parameters, and found significant benefit both in ecNOS-KO and balb/c mice. Our results indicate that NOS1177D gene delivery to the ischemic skeletal muscle can be efficient to reverse critical limb ischemia in pathological settings, which are refractory to treatments with a single growth factor, such as vascular endothelial growth factor. PMID:16642030

  12. Dissolution of beryllium in artificial lung alveolar macrophage phagolysosomal fluid.

    PubMed

    Stefaniak, Aleksandr B; Virji, M Abbas; Day, Gregory A

    2011-05-01

    Dissolution of a lung burden of poorly soluble beryllium particles is hypothesized to be necessary for development of chronic beryllium lung disease (CBD) in humans. As such, particle dissolution rate must be sufficient to activate the lung immune response and dissolution lifetime sufficient to maintain chronic inflammation for months to years to support development of disease. The purpose of this research was to investigate the hypothesis that poorly soluble beryllium compounds release ions via dissolution in lung fluid. Dissolution kinetics of 17 poorly soluble particulate beryllium materials that span extraction through ceramics machining (ores, hydroxide, metal, copper-beryllium [CuBe] fume, oxides) and three CuBe alloy reference materials (chips, solid block) were measured over 31 d using artificial lung alveolar macrophage phagolysosomal fluid (pH 4.5). Differences in beryllium-containing particle physicochemical properties translated into differences in dissolution rates and lifetimes in artificial phagolysosomal fluid. Among all materials, dissolution rate constant values ranged from 10(-5) to 10(-10)gcm(-2)d(-1) and half-times ranged from tens to thousands of days. The presence of magnesium trisilicate in some beryllium oxide materials may have slowed dissolution rates. Materials associated with elevated prevalence of CBD had faster beryllium dissolution rates [10(-7)-10(-8)gcm(-2)d(-1)] than materials not associated with elevated prevalence (p<0.05). PMID:21251696

  13. Beryllium Manufacturing Processes

    SciTech Connect

    Goldberg, A

    2006-06-30

    This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product. Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61

  14. Joined Beryllium Mirror Demonstrator

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Parsonage, Tom; Burdine, Robert (Technical Monitor)

    2001-01-01

    Fabrications of large Beryllium optical components are fundamentally limited by available facility capabilities. To overcome this limitation, NASA funded Brush Wellman Corp to study a Be joining process. Four 76 mm diameters samples and a 0.5 mm diameter Joined Beryllium Mirror Demonstrator (JBMD) were fabricated. This presentation will review the fabrication of these samples and summarize the results of their cryogenic testing at MSFCs XRCF.

  15. Preparation and characterization of beryllium doped organic plasma polymer coatings

    SciTech Connect

    Brusasco, R.; Letts, S.; Miller, P.; Saculla, M.; Cook, R.

    1995-10-04

    We report the formation of beryllium doped plasma polymerized coatings derived from a helical resonator deposition apparatus, using diethylberyllium as the organometaric source. These coatings had an appearance not unlike plain plasma polymer and were relatively stable to ambient exposure. The coatings were characterized by Inductively Coupled Plasma Mass Spectrometry and X-Ray Photoelectron Spectroscopy. Coating rates approaching 0.7 {mu}m hr{sup {minus}1} were obtained with a beryllium-to-carbon ratio of 1:1.3. There is also a significant oxygen presence in the coating as well which is attributed to oxidation upon exposure of the coating to air. The XPS data show only one peak for beryllium with the preponderance of the XPS data suggesting that the beryllium exists as BeO. Diethylberyllium was found to be inadequate as a source for beryllium doped plasma polymer, due to thermal decomposition and low vapor recovery rates.

  16. Release of beryllium into artificial airway epithelial lining fluid.

    PubMed

    Stefaniak, Aleksandr B; Virji, M Abbas; Day, Gregory A

    2012-01-01

    Inhaled beryllium particles that deposit in the lung airway lining fluid may dissolve and interact with immune-competent cells resulting in sensitization. As such, solubilization of 17 beryllium-containing materials (ore, hydroxide, metal, oxide, alloys, and process intermediates) was investigated using artificial human airway epithelial lining fluid. The maximum beryllium release in 7 days was 11.78% (from a beryl ore melter dust), although release from most materials was < 1%. Calculated dissolution half-times ranged from 30 days (reduction furnace material) to 74,000 days (hydroxide). Despite rapid mechanical clearance, billions of beryllium ions may be released in the respiratory tract via dissolution in airway lining fluid. Beryllium-containing particles that deposit in the respiratory tract dissolve in artificial lung epithelial lining fluid, thereby providing ions for absorption in the lung and interaction with immune-competent cells in the respiratory tract. PMID:23074979

  17. Crocin "saffron" protects against beryllium chloride toxicity in rats through diminution of oxidative stress and enhancing gene expression of antioxidant enzymes.

    PubMed

    El-Beshbishy, Hesham A; Hassan, Memy H; Aly, Hamdy A A; Doghish, Ahmed S; Alghaithy, Abdulaziz A A

    2012-09-01

    Beryllium chloride (BeCl(2)) is a highly toxic substance that accumulates in different tissues after absorption. The purpose of this study was to investigate protective role of crocin against BeCl(2)-intoxication in rats. Male Wistar rats were used in this study and categorised into four groups (n=8). Group I served as normal control rats. Group II treated orally with BeCl(2) 86 mg/kg b.w. for five consecutive days. This dose was equivalent to experimental LD(50). Group III treated intraperitoneally with crocin 200 mg/kg b.w. for seven consecutive days. Group IV received crocin for seven consecutive days before BeCl(2) administration. Blood samples and liver and brain homogenates were obtained for haematological, biochemical and RT-PCR examinations. The haematocrit value, RBCs count and haemoglobin concentration were significantly decreased in BeCl(2)-treated rats. A significant increase was observed in rat liver and brain malondialdehyde level and protein carbonyls content in BeCl(2) exposed group compared to the control group, and these values were significantly declined upon administration of crocin. Lactate dehydrogenase levels in rat liver and brain significantly increased compared to the control group and was associated with significant decrease in catalase and superoxide dismutase activities. Reduced glutathione hepatic contents of BeCl(2)-treated rats were significantly decreased. There was significant decline in mRNA expression of catalase and superoxide dismutase genes in BeCl(2)-intoxicated rats compared to the normal rats. Crocin treatment prior to BeCl(2) intake resulted in significant increase in mRNA expressions of catalase and superoxide dismutase genes near to normalcy. The haematological and biochemical parameters were restored near to normal levels. Our results suggested that, BeCl(2) induced oxidation of cellular lipids and proteins and that administration of crocin reduced BeCl(2)-induced oxidative stress combined with initiation of m

  18. Beryllium solubility in occupational airborne particles: Sequential extraction procedure and workplace application.

    PubMed

    Rousset, Davy; Durand, Thibaut

    2016-01-01

    Modification of an existing sequential extraction procedure for inorganic beryllium species in the particulate matter of emissions and in working areas is described. The speciation protocol was adapted to carry out beryllium extraction in closed-face cassette sampler to take wall deposits into account. This four-step sequential extraction procedure aims to separate beryllium salts, metal, and oxides from airborne particles for individual quantification. Characterization of the beryllium species according to their solubility in air samples may provide information relative to toxicity, which is potentially related to the different beryllium chemical forms. Beryllium salts (BeF(2), BeSO(4)), metallic beryllium (Bemet), and beryllium oxide (BeO) were first individually tested, and then tested in mixtures. Cassettes were spiked with these species and recovery rates were calculated. Quantitative analyses with matched matrix were performed using inductively coupled plasma mass spectrometry (ICP-MS). Method Detection Limits (MDLs) were calculated for the four matrices used in the different extraction steps. In all cases, the MDL was below 4.2 ng/sample. This method is appropriate for assessing occupational exposure to beryllium as the lowest recommended threshold limit values are 0.01 µg.m(-3) in France([) (1) (]) and 0.05 µg.m(-3) in the USA.([ 2 ]) The protocol was then tested on samples from French factories where occupational beryllium exposure was suspected. Beryllium solubility was variable between factories and among the same workplace between different tasks. PMID:26327570

  19. HANFORD BERYLLIUM STEERING GROUP CHARTER

    SciTech Connect

    HEWITT, E.R.

    2003-11-19

    The purpose of the Beryllium Steering Group (BSG) is to (1) provide a forum for discussion of beryllium issues and concerns among Hanford prime contractors and DOE; (2) review proposed changes in prime contractor Chronic Beryllium Disease Prevention Programs (CBDPP) to determine if these changes will result in significant impacts to other contractors and their employees; (3) review proposed changes to Beryllium Hanford Facilities List prior to updating of this list.

  20. SINTERED REFRACTORY MASS

    DOEpatents

    Williams, A.E.

    1955-09-01

    A method is given for joining sintered masses of refractory compounds. It consists in maintaining the masses in contact with each other by application of a moderate pressure, while they are at sintering temperature. The sintered masses are subjected to am applied pressure of about 1/2 to 1 ton per square inch of the surface in contact for about 10 minutes, and the temperature employed may be fropn about 1400 deg C to 2000 deg C. Refractory oxides to which the invention may be applied are beryllia, alumina, thoria, and magnesia.

  1. Tritium release from beryllium discs and lithium ceramics irradiated in the SIBELIUS experiment

    SciTech Connect

    Johnson, C.E.; Kopasz, J.P.; Baldwin, D.L.

    1993-11-01

    The SIBELIUS experiment was designed to obtain information on the compatibility between beryllium and ceramics, as well as beryllium and steel, in a neutron environment. This experiment comprised irradiation of eight capsules, seven of which were independently purged with a He/0.1% H{sub 2} gas mixture. Four capsules were used to examine beryllium/ceramic (Li{sub 2}O, LiAlO{sub 2}, Li{sub 4}SiO{sub 4}, and Li{sub 2}ZrO{sub 3}) and beryllium/steel (Types 316L and 1.4914) compacts. Isothermal anneal experiments have been run on representative beryllium and ceramic disks from each of the four capsules at 550{degrees}C to 850{degrees}C in steps of 100{degrees}C. The results indicate that tritium release from the beryllium did not exhibit burst release behavior, as previously reported, but rather a progressive release with increasing temperature. Generally, {approximately}99% of the tritium was released by 850{degrees}C. Tritium release from the ceramic discs was quite similar to the behavior shown in other dynamic tritium release experiments on lithium ceramics. The tritium content in beryllium discs adjacent to a steel sample was found to be significantly lower than that found in a beryllium disc adjacent to a ceramic sample. Recoil of tritium from the ceramic into the beryllium appears to be the source of tritium entering the beryllium, probably residing in the beryllium oxide layer.

  2. -C Refractories

    NASA Astrophysics Data System (ADS)

    Xu, Yibiao; Sang, Shaobai; Li, Yawei; Ren, Bo; Zhao, Lei; Li, Yuanbing; Li, Shujing

    2014-06-01

    Al2O3-C refractories were first fabricated in a coke bed at 1673 K (1400 °C) using tabular corundum, reactive alumina, carbon black, silicon, and microsilica as the starting materials and phenol resin as the binder. Then the alkali attack resistance of those materials was conducted in the powder mixture of carbon black and potassium carbonate (1:1 wt pct) in a graphite crucible at 1273 K (1000 °C) for 10 hours. The correlation between pore size, permeability of Al2O3-C refractories, and their alkali (K2CO3) attack was investigated by means of mercury intrusion porosimetry, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results showed that the pore structure of Al2O3-C refractories was controlled by the addition of silicon, ultrafine reactive alumina, and microsilica to in-situ form SiC whiskers and mullite in the preparation process. The mean pore size of Al2O3-C refractories was strongly associated with permeability. With the decrease of the mean pore size, the permeability of the Al2O3-C refractories reduced constantly. The alkali attack test also verified that the Al2O3-C refractories with lower permeability had better alkali corrosion resistance, because the penetration of K vapor into the materials could be restricted effectively. The corrosion mechanism of Al2O3-C refractories supposes that (1) K2CO3 was reduced to K vapor and penetrated into the specimen through the open pores and (2) K vapor reacted with SiC, SiO2, and alumina to form KAlSi2O6 and KAlSiO4, which is in agreement with the thermodynamic prediction.

  3. Beryllium and compounds

    Integrated Risk Information System (IRIS)

    Beryllium and compounds ; CASRN 7440 - 41 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarci

  4. EVALUATION OF THE POTENTIAL CARCINOGENICITY OF BERYLLIUM, BERYLLIUM CHLORIDE, BERYLLIUM FLUORIDE, AND BERYLLIUM NITRATE

    EPA Science Inventory

    Beryllium is a probable human carcinogen, classified as weight-of-evidence Group B2 under the EPA Guidelines for Carcinogen Risk Assessment (U.S. EPA, 1986a). vidence on potential arcinogenicity from animal studies is "Sufficient," and the evidence from human studies is "Inadequa...

  5. The Use Of Phosphates To Reduce Slag Penetration In Cr203-Based Refractories

    DOEpatents

    Kwong, Kyei-Sing; Dogan, Cynthia P.; Bennett, James P.; Chinn, Richard E.; Petty, Arthur V.

    2004-11-09

    A high-chromium refractory material that provides improved resistance to coal slag penetration is presented. The refractory mixture comprises a blend of chromium oxide, aluminum oxide and phosphates. The refractory mixture may be blended with an aggregate and cured. In addition a phosphorous oxide may be blended with chromium oxide and aluminum oxide and additionally an aggregate. The refractory mixture reduces the rate of coal slag penetration into the surface of the cured refractory.

  6. Use of Phosphates to Reduce Slag Penetration in CR203-Based Refractories

    SciTech Connect

    Kwong, Kyei-Sing; Dogan, Cynthia P.; Bennett, James P.; Chinn, Richard E.; Petty, Arthur V.

    2004-11-09

    A high-chromium refractory material that provides improved resistance to coal slag penetration is presented. The refractory mixture comprises a blend of chromium oxide, aluminum oxide and phosphates. The refractory mixture may be blended with an aggregate and cured. In addition a phosphorus oxide may be blended with chromium oxide and aluminum oxide and additionally an aggregate. The refractory mixture reduces the rate of coal slag penetration into the surface of the cured refractory.

  7. Use of phosphates to reduce slag penetration in Cr2O3-based refractories

    DOEpatents

    Kwong, Kyei-Sing; Dogan, Cynthia P.; Bennett, James P.; Chinn, Richard E.; Petty, Arthur V.

    2004-11-09

    A high-chromium refractory material that provides improved resistance to coal slag penetration is presented. The refractory mixture comprises a blend of chromium oxide, aluminum oxide and phosphates. The refractory mixture may be blended with an aggregate and cured. In addition a phosphorous oxide may be blended with chromium oxide and aluminum oxide and additionally an aggregate. The refractory mixture reduces the rate of coal slag penetration into the surface of the cured refractory.

  8. Designer ligands for beryllium: Stability and detection of beryllium?

    SciTech Connect

    Keizer, T. S.; Scott, B. L.; Sauer, N. N.; McCleskey, T. M.

    2004-01-01

    With the incorporation of beryllium into mainstream consumer products, there is a concern with the environmental and health implications of wide spread beryllium use. With little experimental research undertaken to address the toxic nature of beryllium (the worst case leading to chronic beryllium disease), there is a need for a fundamental understanding of the way the metal interacts with the environment and it's interaction within the human body. In addition, a better insight into beryllium interactions can lead to improvements in detection methods, which are vital with respect to preventing exposure and for the rapid clean up of beryllium in the environment. The MHC-class II receptor has been identified as the receptor that binds Be in the body. The proposed key binding sites in the antigen consist of two sections of the sequence, and each section contains three carboxylates in a row. Therefore, efforts in characterization of compounds with multiple carboxylates and hydroxides species are pursued.

  9. Synthesis of refractory materials

    DOEpatents

    Holt, J.B.

    1983-08-16

    Refractory metal nitrides are synthesized during a self-propagating combustion process utilizing a solid source of nitrogen. For this purpose, a metal azide is employed, preferably NaN/sub 3/. The azide is combusted with Mg or Ca, and a metal oxide is selected from Groups III-A, IV-A, III-B, IV-B, or a rare earth metal oxide. The mixture of azide, Ca or Mg and metal oxide is heated to the mixture's ignition temperature. At that temperature the mixture is ignited and undergoes self-sustaining combustion until the starter materials are exhausted, producing the metal nitride.

  10. Synthesis of refractory materials

    DOEpatents

    Holt, Joseph B.

    1984-01-01

    Refractory metal nitrides are synthesized during a self-propagating combustion process utilizing a solid source of nitrogren. For this purpose, a metal azide is employed, preferably NaN.sub.3. The azide is combusted with Mg or Ca, and a metal oxide is selected from Groups III-A, IV-A, III-B, IV-B, or a rare earth metal oxide. The mixture of azide, Ca or Mg and metal oxide is heated to the mixture's ignition temperature. At that temperature the mixture is ignited and undergoes self-sustaining combustion until the starter materials are exhausted, producing the metal nitride.

  11. T cell recognition of beryllium.

    PubMed

    Dai, Shaodong; Falta, Michael T; Bowerman, Natalie A; McKee, Amy S; Fontenot, Andrew P

    2013-12-01

    Chronic beryllium disease (CBD) is a granulomatous lung disorder caused by a hypersensitivity to beryllium and characterized by the accumulation of beryllium-specific CD4(+) T cells in the lung. Genetic susceptibility to beryllium-induced disease is strongly associated with HLA-DP alleles possessing a glutamic acid at the 69th position of the β-chain (βGlu69). The structure of HLA-DP2, the most prevalent βGlu69-containing molecule, revealed a unique solvent-exposed acidic pocket that includes βGlu69 and represents the putative beryllium-binding site. The delineation of mimotopes and endogenous self-peptides that complete the αβTCR ligand for beryllium-specific CD4(+) T cells suggests a unique role of these peptides in metal ion coordination and the generation of altered self-peptides, blurring the distinction between hypersensitivity and autoimmunity. PMID:23978481

  12. Rocky Flats Beryllium Health Surveillance.

    PubMed

    Stange, A W; Furman, F J; Hilmas, D E

    1996-10-01

    The Rocky Flats Beryllium Health Surveillance Program (BHSP), initiated in June 1991, was designed to provide medical surveillance for current and former employees exposed to beryllium. The BHSP identifies individuals who have developed beryllium sensitivity using the beryllium lymphocyte proliferation test (BeLPT). A detailed medical evaluation to determine the prevalence of chronic beryllium disease (CBD) is offered to individuals identified as beryllium sensitized or to those who have chest X-ray changes suggestive of CBD. The BHSP has identified 27 cases of CBD and another 74 cases of beryllium sensitization out of 4268 individuals tested. The distribution of BeLPT values for normal, sensitized, and CBD-identified individuals is described. Based on the information collected during the first 3 1/3 years of the BHSP, the BeLPT is the most effective means for the early identification of beryllium-sensitized individuals and to identify individuals who may have CBD. The need for BeLPT retesting is demonstrated through the identification of beryllium sensitization in individuals who previously tested normal. Posterior/anterior chest X-rays were not effective in the identification of CBD. PMID:8933045

  13. Rocky Flats beryllium health surveillance

    SciTech Connect

    Stange, A.W.; Furman, F.J.; Hilmas, D.E.

    1996-10-01

    The Rocky Flats Beryllium Health Surveillance Program (BHSP), initiated in June 1991, was designed to provide medical surveillance for current and former employees exposed to beryllium. The BHSP identifies individuals who have developed beryllium sensitivity using the beryllium lymphocyte proliferation test (BeLPT). A detailed medical evaluation to determine the prevalence of chronic beryllium disease (CBD) is offered to individuals identified as beryllium sensitized or to those who have chest X-ray changes suggestive of CBD. The BHSP has identified 27 cases of CBD and another 74 cases of beryllium sensitization out of 4268 individuals tested. The distribution of BeLPT values for normal, sensitized, and CBD-identified individuals is described. Based on the information collected during the first 3 1/3 years of the BHSP, the BeLPT is the most effective means for the early identification of beryllium-sensitized individuals and to identify individuals who may have CBD. The need for BeLPT retesting is demonstrated through the identification of beryllium sensitization in individuals who previously tested normal. Posterior/anterior chest X-rays were not effective in the identification of CBD. 12 refs., 8 tabs.

  14. Characterization of Shocked Beryllium

    SciTech Connect

    Cady, Carl M; Adams, Chris D; Hull, Lawrence M; Gray III, George T; Prime, Michael B; Addessio, Francis L; Wynn, Thomas A; Brown, Eric N

    2012-08-24

    Beryllium metal has many excellent structural properties in addition to its unique radiation characteristics, including: high elastic modulus, low Poisson's ratio, low density, and high melting point. However, it suffers from several major mechanical drawbacks: 1) high anisotropy - due to its hexagonal lattice structure and its susceptibility to crystallographic texturing; 2) susceptibility to impurity-induced fracture - due to grain boundary segregation; and 3) low intrinsic ductility at ambient temperatures thereby limiting fabricability. While large ductility results from deformation under the conditions of compression, the material can exhibit a brittle behavior under tension. Furthermore, there is a brittle to ductile transition at approximately 200 C under tensile conditions. While numerous studies have investigated the low-strain-rate constitutive response of beryllium, the combined influence of high strain rate and temperature on the mechanical behavior and microstructure of beryllium has received limited attention over the last 40 years. Prior studies have focused on tensile loading behavior, or limited conditions of dynamic strain rate and/or temperature. The beryllium used in this study was Grade S200-F (Brush Wellman, Inc., Elmore, OH) material. The work focused on high strain rate deformation and examine the validity of constitutive models in deformation rate regimes, including shock, the experiments were modeled using a Lagrangian hydrocode. Two constitutive strength (plasticity) models, the Preston-Tonks-Wallace (PTW) and Mechanical Threshold Stress (MTS) models, were calibrated using the same set of quasi-static and Hopkinson bar data taken at temperatures from 77K to 873K and strain rates from 0.001/sec to 4300/sec. In spite of being calibrated on the same data, the two models give noticeably different results when compared with the measured wave profiles. These high strain rate tests were conducted using both explosive drive and a gas gun to

  15. 5. VIEW OF BERYLLIUM PROCESSING AREA, ROLLING MILL. BERYLLIUM FORMING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF BERYLLIUM PROCESSING AREA, ROLLING MILL. BERYLLIUM FORMING BEGAN IN SIDE A OF THE BUILDING IN 1962. (11/5/73) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  16. Chronic Beryllium Disease and Sensitization at a Beryllium Processing Facility

    PubMed Central

    Rosenman, Kenneth; Hertzberg, Vicki; Rice, Carol; Reilly, Mary Jo; Aronchick, Judith; Parker, John E.; Regovich, Jackie; Rossman, Milton

    2005-01-01

    We conducted a medical screening for beryllium disease of 577 former workers from a beryllium processing facility. The screening included a medical and work history questionnaire, a chest radiograph, and blood lymphocyte proliferation testing for beryllium. A task exposure and a job exposure matrix were constructed to examine the association between exposure to beryllium and the development of beryllium disease. More than 90% of the cohort completed the questionnaire, and 74% completed the blood and radiograph component of the screening. Forty-four (7.6%) individuals had definite or probable chronic beryllium disease (CBD), and another 40 (7.0%) were sensitized to beryllium. The prevalence of CBD and sensitization in our cohort was greater than the prevalence reported in studies of other beryllium-exposed cohorts. Various exposure measures evaluated included duration; first decade worked; last decade worked; cumulative, mean, and highest job; and highest task exposure to beryllium (to both soluble and nonsoluble forms). Soluble cumulative and mean exposure levels were lower in individuals with CBD. Sensitized individuals had shorter duration of exposure, began work later, last worked longer ago, and had lower cumulative and peak exposures and lower nonsoluble cumulative and mean exposures. A possible explanation for the exposure–response findings of our study may be an interaction between genetic predisposition and a decreased permanence of soluble beryllium in the body. Both CBD and sensitization occurred in former workers whose mean daily working lifetime average exposures were lower than the current allowable Occupational Safety and Health Administration workplace air level of 2 μg/m3 and the Department of Energy guideline of 0.2 μg/m3. PMID:16203248

  17. Technical Basis for PNNL Beryllium Inventory

    SciTech Connect

    Johnson, Michelle Lynn

    2014-07-09

    The Department of Energy (DOE) issued Title 10 of the Code of Federal Regulations Part 850, “Chronic Beryllium Disease Prevention Program” (the Beryllium Rule) in 1999 and required full compliance by no later than January 7, 2002. The Beryllium Rule requires the development of a baseline beryllium inventory of the locations of beryllium operations and other locations of potential beryllium contamination at DOE facilities. The baseline beryllium inventory is also required to identify workers exposed or potentially exposed to beryllium at those locations. Prior to DOE issuing 10 CFR 850, Pacific Northwest Nuclear Laboratory (PNNL) had documented the beryllium characterization and worker exposure potential for multiple facilities in compliance with DOE’s 1997 Notice 440.1, “Interim Chronic Beryllium Disease.” After DOE’s issuance of 10 CFR 850, PNNL developed an implementation plan to be compliant by 2002. In 2014, an internal self-assessment (ITS #E-00748) of PNNL’s Chronic Beryllium Disease Prevention Program (CBDPP) identified several deficiencies. One deficiency is that the technical basis for establishing the baseline beryllium inventory when the Beryllium Rule was implemented was either not documented or not retrievable. In addition, the beryllium inventory itself had not been adequately documented and maintained since PNNL established its own CBDPP, separate from Hanford Site’s program. This document reconstructs PNNL’s baseline beryllium inventory as it would have existed when it achieved compliance with the Beryllium Rule in 2001 and provides the technical basis for the baseline beryllium inventory.

  18. Method for fabricating beryllium structures

    DOEpatents

    Hovis, Jr., Victor M.; Northcutt, Jr., Walter G.

    1977-01-01

    Thin-walled beryllium structures are prepared by plasma spraying a mixture of beryllium powder and about 2500 to 4000 ppm silicon powder onto a suitable substrate, removing the plasma-sprayed body from the substrate and placing it in a sizing die having a coefficient of thermal expansion similar to that of the beryllium, exposing the plasma-sprayed body to a moist atmosphere, outgassing the plasma-sprayed body, and then sintering the plasma-sprayed body in an inert atmosphere to form a dense, low-porosity beryllium structure of the desired thin-wall configuration. The addition of the silicon and the exposure of the plasma-sprayed body to the moist atmosphere greatly facilitate the preparation of the beryllium structure while minimizing the heretofore deleterious problems due to grain growth and grain orientation.

  19. Refractory lining for electrochemical cell

    DOEpatents

    Blander, Milton; Cook, Glenn M.

    1987-01-01

    Apparatus for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contcat with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight oxygen and not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom.

  20. Electrical Properties of Nanometer-Width Refractory Metal Lines Fabricated by Focused Ion Beam and Oxide Resists

    NASA Astrophysics Data System (ADS)

    Koshida, Nobuyoshi; Watanuki, Shinichi; Yoshida, Kazuyoshi; Endo, Kinju; Komuro, Masanori; Atoda, Nobufumi

    1992-12-01

    Nanometer-width refractory metal lines are generated on Si substrates with high resolution by focused ion beam (FIB) exposure to MoO3 and WO3 inorganic resists, development and subsequent reduction in dry H2 gas. On the basis of some experiments for optimizing the process parameters, the electrical properties of fabricated fine Mo and W lines are evaluated in terms of the sheet resistance and its temperature dependence. A 40-nm-wide line did not show any signs of electromigration after the electrical measurements at current densities of 105 A/cm2 for several tens of minutes.

  1. Removal of refractory organics in nanofiltration concentrates of municipal solid waste leachate treatment plants by combined Fenton oxidative-coagulation with photo--Fenton processes.

    PubMed

    Li, Jiuyi; Zhao, Lei; Qin, Lele; Tian, Xiujun; Wang, Aimin; Zhou, Yanmei; Meng, Liao; Chen, Yong

    2016-03-01

    Removal of the refractory organic matters in leachate brines generated from nanofiltration unit in two full-scale municipal solid waste landfill leachate treatment plants was investigated by Fenton oxidative-coagulation and ultraviolet photo - Fenton processes in this study. Fenton oxidative-coagulation was performed under the condition of an initial pH of 5.0 and low H2O2/Fe(2+) ratios. After precipitate separation, the remaining organic constituents were further oxidized by photo - Fenton process. For both leachate brines with varying pollution strength, more than 90% COD and TOC reductions were achieved at H2O2/Fe(2+) dosages of 35 mM/8 mM and 90 mM/10 mM, respectively. The effluent COD ranged 120-160 mg/L under the optimal operating conditions, and the biodegradability was increased significantly. Fenton oxidative-coagulation was demonstrated to contribute nearly 70% overall removal of organic matters. In the combined processes, the efficiency of hydrogen peroxide varied from 216 to 228%, which may significantly reduce the operating cost of conventional Fenton method. Six phthalic acid esters and thirteen polycyclic aromatic hydrocarbons were found in leachate brines, and, on the average, around 80% phthalic acid esters and 90% polycyclic aromatic hydrocarbons were removed by the combined treatments. PMID:26741550

  2. Thermal fatigue of beryllium

    SciTech Connect

    Deksnis, E.; Ciric, D.; Falter, H.

    1995-09-01

    Thermal fatigue life of S65c beryllium castellated to a geometry 6 x 6 x (8-10)mm deep has been tested for steady heat fluxes of 3 MW/m{sup 2} to 5 MW/m{sup 2} and under pulsed heat fluxes (10-20 MW/m{sup 2}) for which the time averaged heat flux is 5 MW/m{sup 2}. These tests were carried out in the JET neutral beam test facility A test sequence with peak surface temperatures {le} 600{degrees}C produced no visible fatigue cracks. In the second series of tests, with T{sub max} {le} 750{degrees}C evidence for fatigue appeared after a minimum of 1350 stress cycles. These fatigue data are discussed in view of the observed lack of thermal fatigue in JET plasma operations with beryllium PFC. JET experience with S65b and S65c is reviewed; recent operations with {Phi} = 25 MW/m{sup 2} and sustained melting/resolidification are also presented. The need for a failure criterion for finite element analyses of Be PFC lifetimes is discussed.

  3. Measurement of Beryllium in Biological Samples by Accelerator Mass Spectrometry: Applications for Studying Chronic Beryllium Disease

    SciTech Connect

    Chiarappa-Zucca, M L; Finkel, R C; Martinelli, R E; McAninch, J E; Nelson, D O; Turtletaub, K W

    2004-04-15

    A method using accelerator mass spectrometry (AMS) has been developed for quantifying attomoles of beryllium (Be) in biological samples. This method provides the sensitivity to trace Be in biological samples at very low doses with the purpose of identifying the molecular targets involved in chronic beryllium disease. Proof of the method was tested by administering 0.001, 0.05, 0.5 and 5.0 {micro}g {sup 9}Be and {sup 10}Be by intraperitoneal injection to male mice and removing spleen, liver, femurs, blood, lung, and kidneys after 24 h exposure. These samples were prepared for AMS analysis by tissue digestion in nitric acid, followed by further organic oxidation with hydrogen peroxide and ammonium persulfate and lastly, precipitation of Be with ammonium hydroxide, and conversion to beryllium oxide at 800 C. The {sup 10}Be/{sup 9}Be ratio of the extracted beryllium oxide was measured by AMS and Be in the original sample was calculated. Results indicate that Be levels were dose-dependent in all tissues and the highest levels were measured in the spleen and liver. The measured {sup 10}Be/{sup 9}Be ratios spanned 4 orders of magnitude, from 10{sup -10} to 10{sup -14}, with a detection limit of 3.0 x 10{sup -14}, which is equivalent to 0.8 attomoles of {sup 10}Be. These results show that routine quantification of nanogram levels of Be in tissues is possible and that AMS is a sensitive method that can be used in biological studies to understand the molecular dosimetry of Be and mechanisms of toxicity.

  4. The INEL beryllium multiplication experiment

    SciTech Connect

    Smith, J.R.; King, J.J.

    1991-03-01

    The experiment to measure the multiplication of 14-MeV neutrons in bulk beryllium has been completed. The experiment consists of determining the ratio of {sup 56}Mn activities induced in a large manganese bath by a central 14-MeV neutron source, with and without a beryllium sample surrounding the source. In the manganese bath method a neutron source is placed at the center of a totally-absorbing aqueous solution of MnSo{sub 4}. The capture of neutrons by Mn produces a {sup 56}Mn activity proportional to the emission rate of the source. As applied to the measurement of the multiplication of 14- MeV neutrons in bulk beryllium, the neutron source is a tritium target placed at the end of the drift tube of a small deuteron accelerator. Surrounding the source is a sample chamber. When the sample chamber is empty, the neutrons go directly to the surrounding MnSO{sub 4} solution, and produce a {sup 56}Mn activity proportional to the neutron emission rate. When the chamber contains a beryllium sample, the neutrons first enter the beryllium and multiply through the (n,2n) process. Neutrons escaping from the beryllium enter the bath and produce a {sup 56}Mn activity proportional to the neutron emission rate multiplied by the effective value of the multiplication in bulk beryllium. The ratio of the activities with and without the sample present is proportional to the multiplication value. Detailed calculations of the multiplication and all the systematic effects were made with the Monte Carlo program MCNP, utilizing both the Young and Stewart and the ENDF/B-VI evaluations for beryllium. Both data sets produce multiplication values that are in excellent agreement with the measurements for both raw and corrected values of the multiplication. We conclude that there is not real discrepancy between experimental and calculated values for the multiplication of neutrons in bulk beryllium. 12 figs., 11 tabs., 18 refs.

  5. Lessons learned in recent beryllium mirror fabrication

    NASA Astrophysics Data System (ADS)

    Wells, J. A.; Lombard, C. M.; Sloan, G. B.; Moore, W. W.; Martin, C. E.

    1991-09-01

    The lessons learned in recent fabrication of beryllium mirrors could have a significant impact on how beryllium optics of the future are produced. This paper provides an overview of the latest techniques for beryllium optics fabrication and a comparison of the results achieved. Specific technical ureas discussed include: new beryllium powders, results of consolidation, beryllium material property improvements, modified machining procedures, thermal stabilization, single point turning, burnishing techniques, replica faceplates, support structure bonding, mirror superpolishing, and new optical testing techniques.

  6. Refractory liner materials used in slagging gasifiers

    SciTech Connect

    Bennett, James P.

    2004-09-01

    Refractory liners are used on the working face of entrained flow slagging gasifiers that react coal, petroleum coke, or other carbon feedstock with oxygen and water. The refractory liners protect the gasifier shell from elevated temperatures, corrosive slags, and thermal cycling during gasification. Refractory failure is primarily by two means, corrosive dissolution and spalling. High chrome oxide refractory materials have evolved as the material of choice to line the hot face of gasifiers, yet the performance of these materials does not meet the service requirements of industry. A review of gasifier liner materials, their evolution, issues impacting their performance, and future research direction are discussed.

  7. The solar abundance of beryllium

    NASA Technical Reports Server (NTRS)

    Ross, J. E.; Aller, L. H.

    1974-01-01

    The solar abundance of beryllium is deduced from high-resolution Kitt Peak observations of the 3130.43- and 3131.08-A lines of Be II interpreted by the method of spectrum synthesis. The results are in good agreement with those previously obtained by Grevesse (1968) and by Hauge and Engvold (1968) and indicate that in the photospheric layers, beryllium is depleted below the chondritic value by a factor of about two. It is found that the beryllium abundance is equal to logN(Be)/N(H) + 12 = 1.08 plus or minus 0.05.

  8. The natural history of beryllium sensitization and chronic beryllium disease

    SciTech Connect

    Newman, L.S. |; Lloyd, J.; Daniloff, E.

    1996-10-01

    With the advent of in vitro immunologic testing, we can now detect exposed individuals who are sensitized to beryllium and those who have chronic beryllium disease (CBD) with lung pathology and impairment. Earlier detection and more accurate diagnostic tools raise new questions about the natural history of sensitization and granulomatous disease. Preliminary data suggest that early detection identifies people who are sensitized to beryllium and that these individuals are at risk for progressing into clinical disease. This article discusses the historical, recent, and ongoing studies germane to our understanding of CBD natural history, including the immunologic and inflammatory basis of the disease, the environmental and host risk factors for disease progression, biological markers of disease severity and activity that may help predict outcome, and the implications for broad-based workplace screening to identify patients at the earliest stages of beryllium sensitization and disease. 29 refs., 2 figs.

  9. The natural history of beryllium sensitization and chronic beryllium disease.

    PubMed Central

    Newman, L S; Lloyd, J; Daniloff, E

    1996-01-01

    With the advent of in vitro immunologic testing, we can now detect exposed individuals who are sensitized to beryllium and those who have chronic beryllium disease (CBD) with lung pathology and impairment. Earlier detection and more accurate diagnostic tools raise new questions about the natural history of sensitization and granulomatous disease. Preliminary data suggest that early detection identifies people who are sensitized to beryllium and that these individuals are at risk for progressing into clinical disease. This article discusses the historical, recent, and ongoing studies germane to our understanding of CBD natural history, including the immunologic and inflammatory basis of the disease, the environmental and host risk factors for disease progression, biological markers of disease severity and activity that may help predict outcome, and the implications for broad-based workplace screening to identify patients at the earliest stages of beryllium sensitization and disease. Images Figure 1. A Figure 1. B Figure 1. C Figure 1. D PMID:8933038

  10. Characterization of shocked beryllium

    NASA Astrophysics Data System (ADS)

    Brown, E. N.; Cady, C. M.; Gray, G. T., III; Hull, L. M.; Cooley, J. H.; Bronkhorst, C. A.; Addessio, F. L.

    2014-05-01

    Explosively driven arrested beryllium experiments were performed with post mortem characterization to evaluate the failure behaviors. The test samples were encapsulated in an aluminum assembly that was large relative to the sample, and the assembly features both axial and radial momentum traps. The sample carrier was inserted from the explosively-loaded end and has features to lock the carrier to the surrounding cylinder using the induced plastic flow. Calculations with Lagrangian codes showed that the tensile stresses experienced by the Be sample were below the spall stress. Metallographic characterization of the arrested Be showed radial cracks present in the samples may have been caused by bending moments. Fractography showed the fractures propagated from the side of the sample closest to the explosives, the side with the highest tensile stress. There was evidence that the fractures may have propagated from the circumferential crack outward and downward radially.

  11. [Refractory hypoxia].

    PubMed

    Cuchard, P; Guillemin, P

    2011-04-27

    We report a case of refractory hypoxia in an 85 years old smoker patient, who is known for cardiac and pulmonary comorbidities. The whole clinical picture at the time of his admission to hospital was pointing to a cardiac failure or a pneumonia that were causing the respiratory insufficiency. Despite an optimal treatment which stabilised these conditions, the patient remained severely hypoxic, but with relatively few symptoms. The non response to the oxygen and the worsening of the oxygen saturation when changing from the lying to the sitting (or supine) position finally evoke the syndrome of platypnea-orthodeoxia caused by a cardiac right to left shunt; that diagnosis was confirmed by a cardiac ultrasound with contrast which revealed an important inter-auricular shunt. The patient didn't wish to undertake the curative treatment (shunt closure). PMID:21526473

  12. Beryllium Interactions in Molten Salts

    SciTech Connect

    G. S. Smolik; M. F. Simpson; P. J. Pinhero; M. Hara; Y. Hatano; R. A. Anderl; J. P. Sharpe; T. Terai; S. Tanaka; D. A. Petti; D.-K. Sze

    2006-01-01

    Molten flibe (2LiF·BeF2) is a candidate as a cooling and tritium breeding media for future fusion power plants. Neutron interactions with the salt will produce tritium and release excess free fluorine ions. Beryllium metal has been demonstrated as an effective redox control agent to prevent free fluorine, or HF species, from reacting with structural metal components. The extent and rate of beryllium solubility in a pot design experiments to suppress continuously supplied hydrogen fluoride gas has been measured and modeled[ ]. This paper presents evidence of beryllium loss from specimens, a dependence of the loss upon bi-metal coupling, i.e., galvanic effect, and the partitioning of the beryllium to the salt and container materials. Various posttest investigative methods, viz., scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS) were used to explore this behavior.

  13. Structure and mechanical properties of foils made of nanocrystalline beryllium

    NASA Astrophysics Data System (ADS)

    Zhigalina, O. M.; Semenov, A. A.; Zabrodin, A. V.; Khmelenin, D. N.; Brylev, D. A.; Lizunov, A. V.; Nebera, A. L.; Morozov, I. A.; Anikin, A. S.; Orekhov, A. S.; Kuskova, A. N.; Mishin, V. V.; Seryogin, A. V.

    2016-07-01

    The phase composition and structural features of (45-90)-μm-thick foils obtained from nanocrystalline beryllium during multistep thermomechanical treatment have been established using electron microscopy, electron diffraction, electron backscattering diffraction, and energy-dispersive analysis. This treatment is shown to lead to the formation of a structure with micrometer- and submicrometer-sized grains. The minimum average size of beryllium grains is 352 nm. The inclusions of beryllium oxide (BeO) of different modifications with tetragonal (sp. gr. P42/ mnm) and hexagonal (sp. gr. P63/ mmc) lattices are partly ground during deformation to a size smaller than 100 nm and are located along beryllium grain boundaries in their volume, significantly hindering migration during treatment. The revealed structural features of foils with submicrometer-sized crystallites provide the thermal stability of their structural state. Beryllium with this structure is a promising material for X-ray instrument engineering and for the production of ultrathin (less than 10 μm) vacuum-dense foils with very high physicomechanical characteristics.

  14. Release of beryllium from mineral ores in artificial lung and skin surface fluids.

    PubMed

    Duling, Matthew G; Stefaniak, Aleksandr B; Lawrence, Robert B; Chipera, Steve J; Virji, M Abbas

    2012-06-01

    Exposure to some manufactured beryllium compounds via skin contact or inhalation can cause sensitization. A portion of sensitized persons who inhale beryllium may develop chronic beryllium disease (CBD). Little is understood about exposures to naturally occurring beryllium minerals. The purpose of this study was to assess the bioaccessibility of beryllium from bertrandite ore. Dissolution of bertrandite from two mine pits (Monitor and Blue Chalk) was evaluated for both the dermal and inhalation exposure pathways by determining bioaccessibility in artificial sweat (pH 5.3 and pH 6.5), airway lining fluid (SUF, pH 7.3), and alveolar macrophage phagolysosomal fluid (PSF, pH 4.5). Significantly more beryllium was released from Monitor pit ore than Blue Chalk pit ore in artificial sweat buffered to pH 5.3 (0.88 ± 0.01% vs. 0.36 ± 0.00%) and pH 6.5 (0.09 ± 0.00% vs. 0.03 ± 0.01%). Rates of beryllium released from the ores in artificial sweat were faster than previously measured for manufactured forms of beryllium (e.g., beryllium oxide), known to induce sensitization in mice. In SUF, levels of beryllium were below the analytical limit of detection. In PSF, beryllium dissolution was biphasic (initial rapid diffusion followed by latter slower surface reactions). During the latter phase, dissolution half-times were 1,400 to 2,000 days, and rate constants were ~7 × 10(-10) g/(cm(2)·day), indicating that bertrandite is persistent in the lung. These data indicate that it is prudent to control skin and inhalation exposures to bertrandite dusts. PMID:21866318

  15. Determination of nitric oxide metabolites, nitrate and nitrite, in Anopheles culicifacies mosquito midgut and haemolymph by anion exchange high-performance liquid chromatography: plausible mechanism of refractoriness

    PubMed Central

    Sharma, Arun; Raghavendra, Kamaraju; Adak, Tridibesh; Dash, Aditya P

    2008-01-01

    Background The diverse physiological and pathological role of nitric oxide in innate immune defenses against many intra and extracellular pathogens, have led to the development of various methods for determining nitric oxide (NO) synthesis. NO metabolites, nitrite (NO2-) and nitrate (NO3-) are produced by the action of an inducible Anopheles culicifacies NO synthase (AcNOS) in mosquito mid-guts and may be central to anti-parasitic arsenal of these mosquitoes. Method While exploring a plausible mechanism of refractoriness based on nitric oxide synthase physiology among the sibling species of An. culicifacies, a sensitive, specific and cost effective high performance liquid chromatography (HPLC) method was developed, which is not influenced by the presence of biogenic amines, for the determination of NO2- and NO3- from mosquito mid-guts and haemolymph. Results This method is based on extraction, efficiency, assay reproducibility and contaminant minimization. It entails de-proteinization by centrifugal ultra filtration through ultracel 3 K filter and analysis by high performance anion exchange liquid chromatography (Sphereclone, 5 μ SAX column) with UV detection at 214 nm. The lower detection limit of the assay procedure is 50 pmoles in all midgut and haemolymph samples. Retention times for NO2- and NO3- in standards and in mid-gut samples were 3.42 and 4.53 min. respectively. Assay linearity for standards ranged between 50 nM and 1 mM. Recoveries of NO2- and NO3- from spiked samples (1–100 μM) and from the extracted standards (1–100 μM) were calculated to be 100%. Intra-assay and inter assay variations and relative standard deviations (RSDs) for NO2- and NO3- in spiked and un-spiked midgut samples were 5.7% or less. Increased levels NO2- and NO3- in midguts and haemolymph of An. culicifacies sibling species B in comparison to species A reflect towards a mechanism of refractoriness based on AcNOS physiology. Conclusion HPLC is a sensitive and accurate technique

  16. Beryllium technology workshop, Clearwater Beach, Florida, November 20, 1991

    SciTech Connect

    Longhurst, G.R.

    1991-12-01

    This report discusses the following topics: beryllium in the ITER blanket; mechanical testing of irradiated beryllium; tritium release measurements on irradiated beryllium; beryllium needs for plasma-facing components; thermal conductivity of plasma sprayed beryllium; beryllium research at the INEL; Japanese beryllium research activities for in-pile mockup tests on ITER; a study of beryllium bonding of copper alloy; new production technologies; thermophysical properties of a new ingot metallurgy beryllium product line; implications of beryllium:steam interactions in fusion reactors; and a test program for irradiation embrittlement of beryllium at JET.

  17. Beryllium Related Matter

    SciTech Connect

    Gaylord, R F

    2008-12-23

    In recent months, LLNL has identified, commenced, and implemented a series of interim controls, compensatory measures, and initiatives to ensure worker safety, and improve safety processes with regards to potential worker exposure to beryllium. Many of these actions have been undertaken in response to the NNSA Independent Review (COR-TS-5/15/2008-8550) received by LLNL in November of 2008. Others are the result of recent discoveries, events or incidents, and lessons learned, or were scheduled corrective actions from earlier commitments. Many of these actions are very recent in nature, or are still in progress, and vary in the formality of implementation. Actions are being reviewed for effectiveness as they progress. The documentation of implementation, and review of effectiveness, when appropriate, of these actions will be addressed as part of the formal Corrective Action Plan addressing the Independent Review. The mitigating actions taken fall into the following categories: (1) Responses to specific events/concerns; (2) Development of interim controls; (3) Review of ongoing activities; and (4) Performance improvement measures.

  18. Cross-resistance of Leishmania infantum isolates to nitric oxide from patients refractory to antimony treatment, and greater tolerance to antileishmanial responses by macrophages.

    PubMed

    de Moura, Tatiana R; Santos, Micheli Luize Barbosa; Braz, Juciene M; Santos, Luis Felipe V C; Aragão, Matheus T; de Oliveira, Fabricia A; Santos, Priscila L; da Silva, Ângela Maria; de Jesus, Amélia Ribeiro; de Almeida, Roque P

    2016-02-01

    Visceral leishmaniasis is a life-threatening disease characterized by intense parasitism of the spleen, liver, and bone marrow. Antimonials have served as front-line antileishmanial therapeutics for decades, but the increasing failure rates under antimonial treatment have challenged the continued use of these drugs. Pentavalent antimonials are known to reinforce the killing mechanisms of macrophages, although the associated mechanism remains unclear. Here, for the first time, we determined whether Leishmania infantum strains isolated from patients refractory to antimony treatment (relapse cases) were cross-resistant to antimonials, liposomal amphotericin B, and/or nitric oxide, and also whether these strains modulate macrophage infection. We selected four clinical isolates from relapse cases and two clinical isolates from antimony-responsive patients (control group) for the present study. The L. infantum promastigotes from all four relapse cases were resistant to trivalent antimonial treatment and nitric oxide, while only one isolate was resistant to liposomal amphotericin B. We evaluated whether the resistant strains from relapse cases showed enhanced infectivity and amastigote survival in macrophages, or macrophage-killing mechanisms in macrophages activated by lipopolysaccharide plus interferon gamma. Infection indexes calculated using macrophages infected with isolates from relapse were higher than those observed with control strains that were stimulated independently. Macrophage infection was higher with L. infantum isolates from relapse cases and correlated with enhanced interleukin 1-β production but showed similar nitrite production. Our results demonstrate that L. infantum field isolates from relapse cases were resistant to antimonials and nitric oxide and that these parasites stimulated inflammatory cytokines and were resistant to macrophage-killing mechanisms, factors that may contribute to disease severity. PMID:26481489

  19. Research and development of radiation resistant beryllium grades for nuclear fusion applications

    NASA Astrophysics Data System (ADS)

    Kupriyanov, I. B.; Gorokhov, V. A.; Nikolaev, G. N.; Burmistrov, V. N.

    1996-10-01

    Research and development results on beryllium with high radiation resistance obtained recently are described in this report. Data are presented on nine different grades of isotropic beryllium manufactured by VNIINM which differ both by initial powder characteristics and properties of billets made from these powders. The average grain size of the investigated beryllium grades varied from 8 to 26 μm, the content of oxide in the beryllium varied from 0.9 to 3.9 wt%, the dispersity of the beryllium oxide particles was 0.04 to 0.5 μm, and the tensile strength varied from 250 to 650 MPa. All materials were irradiated in the SM-2 reactor over the temperature range 550-780°C. The results of the investigation showed, that HIP beryllium grades are less susceptible to swelling at higher temperatures in comparison with hot pressed and extruded grades. Beryllium samples having the smallest grain size demonstrated minimal swelling, which was less than 0.8% at 750°C and a fluence FS = 3.7 · 10 21 cm -2 ( E≫ 0.1 MeV). The mechanical properties, creep and microstructure parameters, measured before and after irradiation, are presented.

  20. Development of radiation resistant grades of beryllium for nuclear and fusion facilities

    SciTech Connect

    Kupriyanov, I.B.; Gorokhov, V.A.; Nikolaev, G.N.

    1995-09-01

    R&D results on beryllium with high radiation resistance obtained recently are described in this report. The data are presented on nine different grades of isotropic beryllium manufactured by VNIINM and distinguished by both initial powder characteristics and properties of billets, made of these powders. The average grain size of the investigated beryllium grades varied from 8 to 26 {mu}m, the content of beryllium oxide was 0.9 - 3.9 wt.%, the dispersity of beryllium oxide - 0.04 - 0.5 {mu}m, tensile strength -- 250 - 650 MPa. All materials were irradiated in SM - 2 reactor over the temperature range 550 - 780{degrees}C. The results of the investigation showed, that HIP beryllium grades are less susceptible to swelling at higher temperatures in comparison with hot pressed and extruded grades. Beryllium samples, having the smallest grain size, demonstrated minimal swelling, which was less than 0.8 % at 750{degrees}C and Fs = 3.7 {center_dot}10{sup 21} cm{sup -2} (E>0.1 MeV). The mechanical properties, creep and microstructure parameters, measured before and after irradiation, are presented.

  1. Biological Exposure Metrics of Beryllium-Exposed Dental Technicians

    PubMed Central

    Stark, Moshe; Lerman, Yehuda; Kapel, Arik; Pardo, Asher; Schwarz, Yehuda; Newman, Lee; Maier, Lisa; Fireman, Elizabeth

    2015-01-01

    Beryllium is commonly used in the dental industry. This study investigates the association between particle size and shape in induced sputum (IS) with beryllium exposure and oxidative stress in 83 dental technicians. Particle size and shape were defined by laser and video, whereas beryllium exposure data came from self-reports and beryllium lymphocyte proliferation test (BeLPT) results. Heme oxygenase-1 (HO1) gene expression in IS was evaluated by quantitative polymerase chain reaction. A high content of particles (92%) in IS > 5 µ in size is correlated to a positive BeLPT risk (odds ratio [OR] = 3.4, 95% confidence interval [CI]: 0.9–13). Use of masks, hoods, and type of exposure yielded differences in the transparency of IS particles (gray level) and modulate HO1 levels. These results indicate that parameters of size and shape of particles in IS are sensitive to workplace hygiene, affect the level of oxidative stress, and may be potential markers for monitoring hazardous dust exposures. PMID:24205960

  2. Biological exposure metrics of beryllium-exposed dental technicians.

    PubMed

    Stark, Moshe; Lerman, Yehuda; Kapel, Arik; Pardo, Asher; Schwarz, Yehuda; Newman, Lee; Maier, Lisa; Fireman, Elizabeth

    2014-01-01

    Beryllium is commonly used in the dental industry. This study investigates the association between particle size and shape in induced sputum (IS) with beryllium exposure and oxidative stress in 83 dental technicians. Particle size and shape were defined by laser and video, whereas beryllium exposure data came from self-reports and beryllium lymphocyte proliferation test (BeLPT) results. Heme oxygenase-1 (HO1) gene expression in IS was evaluated by quantitative polymerase chain reaction. A high content of particles (92%) in IS >5 μ in size is correlated to a positive BeLPT risk (odds ratio [OR] = 3.4, 95% confidence interval [CI]: 0.9-13). Use of masks, hoods, and type of exposure yielded differences in the transparency of IS particles (gray level) and modulate HO1 levels. These results indicate that parameters of size and shape of particles in IS are sensitive to workplace hygiene, affect the level of oxidative stress, and may be potential markers for monitoring hazardous dust exposures. PMID:24205960

  3. Machining of low percentage beryllium copper alloys

    NASA Technical Reports Server (NTRS)

    Habermeyer, J. G.

    1969-01-01

    Airborne beryllium sampling during machining of low percentage beryllium-copper alloys shows that normal dry machining creates 45.2 microgram/cu m of airborne beryllium in the casting operators breathing zone and 2.3 microgram/cu m in an adjacent machine working area. A small vacuum system placed over the tool effectively removes airborne beryllium in the breathing zone sample to 0.2 microgram/cu m.

  4. Mineral resource of the month: beryllium

    USGS Publications Warehouse

    U.S. Geological Survey

    2013-01-01

    The article discusses information about Beryllium. It notes that Beryllium is a light metal that has a gray color. The metal is used in the production of parts and devices including bearings, computer-chip heat sinks, and output windows of X-ray tubes. The article mentions Beryllium's discovery in 1798 by French chemist, Louis-Nicolas Vanquelin. It cites that bertrandite and beryl are the principal mineral components for the commercial production of beryllium.

  5. 10 CFR 850.33 - Beryllium emergencies.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Beryllium emergencies. (a) The responsible employer must comply with 29 CFR 1910.120(l) for handling beryllium emergencies related to decontamination and decommissioning operations. (b) The responsible employer must comply with 29 CFR 1910.120(q) for handling beryllium emergencies related to all...

  6. 10 CFR 850.33 - Beryllium emergencies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Beryllium emergencies. (a) The responsible employer must comply with 29 CFR 1910.120(l) for handling beryllium emergencies related to decontamination and decommissioning operations. (b) The responsible employer must comply with 29 CFR 1910.120(q) for handling beryllium emergencies related to all...

  7. 10 CFR 850.33 - Beryllium emergencies.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Beryllium emergencies. (a) The responsible employer must comply with 29 CFR 1910.120(l) for handling beryllium emergencies related to decontamination and decommissioning operations. (b) The responsible employer must comply with 29 CFR 1910.120(q) for handling beryllium emergencies related to all...

  8. 10 CFR 850.33 - Beryllium emergencies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Beryllium emergencies. (a) The responsible employer must comply with 29 CFR 1910.120(l) for handling beryllium emergencies related to decontamination and decommissioning operations. (b) The responsible employer must comply with 29 CFR 1910.120(q) for handling beryllium emergencies related to all...

  9. 10 CFR 850.33 - Beryllium emergencies.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Beryllium emergencies. (a) The responsible employer must comply with 29 CFR 1910.120(l) for handling beryllium emergencies related to decontamination and decommissioning operations. (b) The responsible employer must comply with 29 CFR 1910.120(q) for handling beryllium emergencies related to all...

  10. Recent advances and developments in refractory alloys

    SciTech Connect

    Nieh, T.G.; Wadsworth, J.

    1993-11-01

    Refractory metal alloys based on Mo, W, Re, Ta, and Nb (Cb) find applications in a wide range of aerospace applications because of their high melting points and high-temperature strength. This paper, presents recent progress in understanding and applications of these alloys. Recent studies to improve the oxidation and mechanical behavior of refractory metal alloys, and particularly Nb alloys, are also discussed. Some Re structures, for extremely high temperature applications (> 2000C), made by CVD and P/M processes, are also illustrated. Interesting work on the development of new W alloys (W-HfC-X) and the characterization of some commercial refractory metals, e.g., K-doped W, TZM, and Nb-1%Zr, continues. Finally, recent developments in high temperature composites reinforced with refractory metal filaments, and refractory metal-based intermetallics, e.g., Nb{sub 3}Al, Nb{sub 2}Be{sub 17}, and MoSi{sub 2}, are briefly described.

  11. Neutron irradiation of beryllium pebbles

    SciTech Connect

    Gelles, D.S.; Ermi, R.M.; Tsai, H.

    1998-03-01

    Seven subcapsules from the FFTF/MOTA 2B irradiation experiment containing 97 or 100% dense sintered beryllium cylindrical specimens in depleted lithium have been opened and the specimens retrieved for postirradiation examination. Irradiation conditions included 370 C to 1.6 {times} 10{sup 22} n/cm{sup 2}, 425 C to 4.8 {times} 10{sup 22} n/cm{sup 2}, and 550 C to 5.0 {times} 10{sup 22} n/cm{sup 2}. TEM specimens contained in these capsules were also retrieved, but many were broken. Density measurements of the cylindrical specimens showed as much as 1.59% swelling following irradiation at 500 C in 100% dense beryllium. Beryllium at 97% density generally gave slightly lower swelling values.

  12. Cryogenic Properties of Aluminum-Beryllium and Beryllium Materials

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Ultimate tensile strength, yield strength, and elongation were obtained for the aluminum- beryllium alloy, AlBeMetl62 (38%Al-62%Be), at cryogenic (-195.5 C (-32O F) and (- 252.8 C) (-423 F)) temperatures, and for an optical grade beryllium, O-30H (99%Be), at -252.8 C. AlBeMet162 material was purchased to the requirements of SAE- AMs7912, "Aluminum-Beryllium Alloy, Extrusions". O-30H material was purchased to the requirements of Brush Wellman Inc. specification O-30H Optical Grade Beryllium. The ultimate tensile and yield strengths for extruded AlBeMet162 material increased with decreasing temperature, and the percent elongation decreased with decreasing temperature. Design properties for the ultimate tensile strength, yield strength, and percent elongation for extruded AlBeMetl62 were generated. It was not possible to distinguish a difference in the room and cryogenic ultimate strength for the hot isostatically pressed (HIP'ed) O-30H material. The O-30H elongation decreased with decreasing temperature.

  13. Cryogenic Properties of Aluminum Beryllium and Beryllium Materials

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Ultimate tensile strength, yield strength, and elongation were obtained for the aluminum-beryllium alloy, AlBeMetl62 (38%Al-62%Be), at cryogenic (-195.5 C (-320 F) and (-252.8 C) (-423 F)) temperatures, and for an optical grade beryllium, O-30H (99%Be), at -252.8 C. AlBeMetl62 material was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions." O-30H material was purchased to the requirements of Brush Wellman Inc. specification O-30H Optical Grade Beryllium. The ultimate tensile and yield strengths for extruded AlBeMetl62 material increased with decreasing temperature, and the percent elongation decreased with decreasing temperature. Design properties for the ultimate tensile strength, yield strength, and percent elongation for extruded AlBeMetl62 were generated. It was not possible to distinguish a difference in the room and cryogenic ultimate strength for the hot isostatically pressed (HIP'ed) O-30H material. The O30H elongation decreased with decreasing temperature.

  14. Method for recovery of actinides from refractory oxides thereof using O.sub. F.sub.2

    DOEpatents

    Asprey, Larned B.; Eller, Phillip G.

    1988-01-01

    Method for recovery of actinides from nuclear waste material containing sintered and other oxides thereof using O.sub.2 F.sub.2 to generate the hexafluorides of the actinides present therein. The fluorinating agent, O.sub.2 F.sub.2, has been observed to perform the above-described tasks at sufficiently low temperatures that there is virtually no damage to the containment vessels. Moreover, the resulting actinide hexafluorides are not destroyed by high temperature reactions with the walls of the reaction vessel. Dioxygen difluoride is readily prepared, stored and transferred to the place of reaction.

  15. Beryllium Technology Research in the United States

    SciTech Connect

    Glen R. Longhurst; Robert A. Anderl; M. Kay Adleer-Flitton; Gretchen E. Matthern; Troy J. Tranter; Kendall J. Hollis

    2005-02-01

    While most active research involving beryllium in the United States remains tied strongly to biological effects, there are several areas of technology development in the last two years that should be mentioned. (1) Beryllium disposed of in soil vaults at the Idaho National Laboratory (INL) Radioactive Waste Management Complex (RWMC) has been encapsulated in-situ by high-temperature and pressure injection of a proprietary wax based material to inhibit corrosion. (2) A research program to develop a process for removing heavy metals and cobalt from irradiated beryllium using solvent extraction techniques has been initiated to remove components that prevent the beryllium from being disposed of as ordinary radioactive waste. (3) The JUPITER-II program at the INL Safety and Tritium Applied Research (STAR) facility has addressed the REDOX reaction of beryllium in molten Flibe (a mixture of LiF and BeF2) to control tritium, particularly in the form of HF, bred in the Flibe by reactions involving both beryllium and lithium. (4) Work has been performed at Los Alamos National Laboratory to produce beryllium high heat flux components by plasma spray deposition on macro-roughened substrates. Finally, (5) corrosion studies on buried beryllium samples at the RWMC have shown that the physical form of some of the corroded beryllium is very filamentary and asbestos-like. This form of beryllium may exacerbate the contraction of chronic beryllium disease.

  16. Effects of Vitamin E on seizure frequency, electroencephalogram findings, and oxidative stress status of refractory epileptic patients

    PubMed Central

    Mehvari, Jafar; Motlagh, Fataneh Gholami; Najafi, Mohamad; Ghazvini, Mohammad Reza Aghaye; Naeini, Amirmansour Alavi; Zare, Mohamad

    2016-01-01

    Background: Oxidative stress has been a frequent finding in epileptic patients receiving antiepileptic drugs (AEDs). In this study, the influence of Vitamin E on the antiseizure activity and redox state of patients treated with carbamazepine, sodium valproate, and levetiracetam has been investigated. Materials and Methods: This double-blind, placebo-controlled trial was carried out on 65 epileptic patients with chronic antiepileptic intake. The subjects received 400 IU/day of Vitamin E or placebo for 6 months. Seizure frequency, electroencephalogram (EEG), and redox state markers were measured monthly through the study. Results: Total antioxidant capacity, catalase and glutathione were significantly higher in Vitamin E received group compared with controls (P < 0.05) whereas malodialdehyde levels did not differ between two groups (P < 0.07). Vitamin E administration also caused a significant decrease in the frequency of seizures (P < 0.001) and improved EEG findings (P = 0.001). Of 32 patients in case group, the positive EEG decreased in 16 patients (50%) whereas among 33 patients in control group only 4 patients (12.1%) showed decreased positive EEG. Conclusion: The results of this preliminary study indicate that coadministration of antioxidant Vitamin E with AEDs improves seizure control and reduces oxidative stress. PMID:27099849

  17. Reactivity test between beryllium and copper

    SciTech Connect

    Kawamura, H.; Kato, M.

    1995-09-01

    Beryllium has been expected for using as plasma facing material on ITER. And, copper alloy has been proposed as heat sink material behind plasma facing components. Therefore, both materials must be joined. However, the elementary process of reaction between beryllium and copper alloy does not clear in detail. For example, other authors reported that beryllium reacted with copper at high temperature, but it was not obvious about the generation of reaction products and increasing of the reaction layer. In the present work, from this point, for clarifying the elementary process of reaction between beryllium and copper, the out-of-pile compatibility tests were conducted with diffusion couples of beryllium and copper which were inserted in the capsule filled with high purity helium gas (6N). Annealing temperatures were 300, 400, 500, 600 and 700{degrees}C, and annealing periods were 100, 300 and 1000h. Beryllium specimens were hot pressed beryllium, and copper specimens were OFC (Oxygen Free Copper).

  18. Notes on UHV beryllium windows

    SciTech Connect

    Hartman, P.L.

    1986-10-01

    Techniques are described for making large ultrahigh vacuum beryllium windows for use in synchrotron radiation installations. Procedures are given for affecting both hard brazed seals and demountable seals involving either lead or copper gaskets. Brazed seals can be made to either stainless steel or copper. Possible alternative methods are suggested.

  19. Worker Environment Beryllium Characterization Study

    SciTech Connect

    NSTec Environment, Safety, Health & Quality

    2009-12-28

    This report summarizes the conclusion of regular monitoring of occupied buildings at the Nevada Test Site and North Las Vegas facility to determine the extent of beryllium (Be) contamination in accordance with Judgment of Needs 6 of the August 14, 2003, “Minnema Report.”

  20. Immobilisation of beryllium in solid waste (red-mud) by fixation and vitrification.

    PubMed

    Bhat, P N; Ghosh, D K; Desai, M V M

    2002-01-01

    The objective of this study was to obtain information on the immobilization of beryllium (Be) in solid waste generated in the extraction process of beryllium from its ore, Beryl. This solid waste, termed red-mud, contains oxides of iron, aluminium, calcium, magnesium and beryllium. The red-mud waste contains beryllium at levels above the permissible limit, which prevents its disposal as solid waste. The total beryllium content in the red-mud analysed showed value ranging from 0.39 to 0.59% Be The studies showed that 50% of the total beryllium in red-mud can be extracted by water by repeated leaching over a period of 45 days. The cement mix, casting into cement blocks, was subjected to leachability studies over a period of 105 days and immobilization factor (IF factor) was determined. These IF values, of the order of 102, were compared with those obtained by performing leachability study on vitrified red-mud masses produced at different temperature conditions. Direct heating of the red-mud gave the gray coloured, non-transparent vitreous mass (as 'bad glass') showed effective immobilisation factor for beryllium in red-mud of the order of 10(4). PMID:12092765

  1. Beryllium deposits of the western Seward Peninsula, Alaska

    USGS Publications Warehouse

    Sainsbury, C.L.

    1963-01-01

    Deposits of beryllium ore in the Lost River area of the western Seward Peninsula, Alaska, consist of replacement veins, pipes, and stringer lodes is limestone in a zone about 7 miles long and 2 to 3 miles wide which is faulted and intruded by dikes and stocks. The ores are remarkably alike and typically consist of the following minerals, in percent: fluorite, 45-65; diaspore, 5-10; tourmaline, 0-10; chrysoberyl, 3-10; white mica, 0-5; small amounts of hematite, sulfide minerals, manganese oxide, other beryllium minerals; and traces of minerals not yet identified. The ores generally are cut by late veinlets which are of the same mineralogy as the groundmass ore, or which consist of fluorite, white mica, and euclase. The ores are fine grained, and many of the individual mineral grains, except fluorite, are less than 1 mm in size. The beryllium content of bulk samples of ore ranges from 0.11 to 0.54 percent (0.31 to 1.50 percent BeO). High-grade nodules, composed principally of chrysoberyl, diaspore, fluorite, and mica, contain as much as 6 percent BeO. Geochemical reconnaissance has disclosed other areas of anomalous beryllium in stream sediments elsewhere on the Seward Peninsula, generally around biotite granites that have them associated with tin deposits; additional exploration probably will disclose other deposits.

  2. Method of making a composite refractory material

    DOEpatents

    Morrow, M.S.; Holcombe, C.E.

    1995-09-26

    A composite refractory material is prepared by combining boron carbide with furan resin to form a mixture containing about 8 wt. % furan resin. The mixture is formed into a pellet which is placed into a grit pack comprising an oxide of an element such as yttrium to form a sinterable body. The sinterable body is sintered under vacuum with microwave energy at a temperature no greater than 2000 C to form a composite refractory material.

  3. Method of making a composite refractory material

    DOEpatents

    Morrow, Marvin S.; Holcombe, Cressie E.

    1995-01-01

    A composite refractory material is prepared by combining boron carbide with furan resin to form a mixture containing about 8 wt. % furan resin. The mixture is formed into a pellet which is placed into a grit pack comprising an oxide of an element such as yttrium to form a sinterable body. The sinterable body is sintered under vacuum with microwave energy at a temperature no greater than 2000.degree. C. to form a composite refractory material.

  4. REFRACTORY DIE FOR EXTRUDING URANIUM

    DOEpatents

    Creutz, E.C.

    1959-08-11

    A die is presented for the extrusion of metals, said die being formed of a refractory complex oxide having the composition M/sub n/O/sub m/R/sub x/O/sub y/ where M is magnesium, zinc, manganese, or iron, R is aluminum, chromic chromium, ferric iron, or manganic manganese, and m, n, x, and y are whole numbers. Specific examples are spinel, magnesium aluminate, magnetite, magnesioferrite, chromite, and franklinite.

  5. Refractory concretes

    DOEpatents

    Holcombe, Jr., Cressie E.

    1979-01-01

    Novel concrete compositions comprise particles of aggregate material embedded in a cement matrix, said cement matrix produced by contacting an oxide selected from the group of Y.sub.2 O.sub.3, La.sub.2 O.sub.3, Nd.sub.2 O.sub.3, Sm.sub.2 O.sub.3, Eu.sub.2 O.sub.3 and Gd.sub.2 O.sub.3 with an aqueous solution of a salt selected from the group of NH.sub.4 NO.sub.3, NH.sub.4 Cl, YCl.sub.3 and Mg(NO.sub.3).sub.2 to form a fluid mixture; and allowing the fluid mixture to harden.

  6. Fibrous refractory composite insulation. [shielding reusable spacecraft

    NASA Technical Reports Server (NTRS)

    Leiser, D. B.; Goldstein, H. E.; Smith, M. (Inventor)

    1979-01-01

    A refractory composite insulating material was prepared from silica fibers and aluminosilicate fibers in a weight ratio ranging from 1:19 to 19:1, and about 0.5 to 30% boron oxide, based on the total fiber weight. The aluminosilicate fiber and boron oxide requirements may be satisfied by using aluminoborosilicate fibers and, in such instances, additional free boron oxide may be incorporated in the mix up to the 30% limit. Small quantities of refractory opacifiers, such as silicon carbide, may be also added. The composites just described are characterized by the absence of a nonfibrous matrix.

  7. Cleaning and activation of beryllium-copper electron multiplier dynodes.

    NASA Technical Reports Server (NTRS)

    Pongratz, M. B.

    1972-01-01

    Description of a cleaning and activation procedure followed in preparing beryllium-copper dynodes for electron multipliers used in sounding-rocket experiments to detect auroral electrons. The initial degreasing step involved a 5-min bath in trichloroethylene in an ultrasonic cleaner. This was followed by an ultrasonic rinse in methanol and by a two-step acid pickling treatment to remove the oxides. Additional rinsing in water and methanol was followed by activation in a stainless-steel RF induction oven.

  8. Wet air oxidation of resorcinol as a model treatment for refractory organics in wastewaters from the wood processing industry.

    PubMed

    Weber, Bernd; Chavez, Alma; Morales-Mejia, Julio; Eichenauer, Sabrina; Stadlbauer, Ernst A; Almanza, Rafael

    2015-09-15

    Wastewater treatment systems are important tools to enhance sustainability in terms of reducing environmental impact and complying with sanitary requirements. This work addresses the wet air oxidation (WAO) process for pre-treatment of phenolic wastewater effluents. The aim was to increase biodegradability prior to a subsequent anaerobic stage. In WAO laboratory experiments using a micro-autoclave, the model compound resorcinol was degraded under different oxygen availability regims within the temperature range 150 °C-270 °C. The activation energy was determined to be 51.5 kJ/mol. Analysis of the products revealed that after 3 h of reaction at 230 °C, 97.5% degradation of resorcinol was achieved. At 250 °C and the same reaction time complete removal of resorcinol was observed. In this case the total organic carbon content was reduced down to 29%, from 118.0 mg/L down to 34.4 mg/L. Under these process conditions, the pollutant was only partially mineralized and the ratio of the biological oxygen demand relative to the chemical oxygen demand, which is 0.07 for resorcinol, was increased to a value exceeding 0.5. The main by-product acetic acid, which is a preferred compound for methanogenic bacteria, was found to account for 33% of the total organic carbon. PMID:26164636

  9. Physicochemical characteristics of aerosol particles generated during the milling of beryllium silicate ores: implications for risk assessment.

    PubMed

    Stefaniak, Aleksandr B; Chipera, Steve J; Day, Gregory A; Sabey, Phil; Dickerson, Robert M; Sbarra, Deborah C; Duling, Mathew G; Lawrence, Robert B; Stanton, Marcia L; Scripsick, Ronald C

    2008-01-01

    Inhalation of beryllium dusts generated during milling of ores and cutting of beryl-containing gemstones is associated with development of beryllium sensitization and low prevalence of chronic beryllium disease (CBD). Inhalation of beryllium aerosols generated during primary beryllium production and machining of the metal, alloys, and ceramics are associated with sensitization and high rates of CBD, despite similar airborne beryllium mass concentrations among these industries. Understanding the physicochemical properties of exposure aerosols may help to understand the differential immunopathologic mechanisms of sensitization and CBD and lead to more biologically relevant exposure standards. Properties of aerosols generated during the industrial milling of bertrandite and beryl ores were evaluated. Airborne beryllium mass concentrations among work areas ranged from 0.001 microg/m(3) (beryl ore grinding) to 2.1 microg/m(3) (beryl ore crushing). Respirable mass fractions of airborne beryllium-containing particles were < 20% in low-energy input operation areas (ore crushing, hydroxide product drumming) and > 80% in high-energy input areas (beryl melting, beryl grinding). Particle specific surface area decreased with processing from feedstock ores to drumming final product beryllium hydroxide. Among work areas, beryllium was identified in three crystalline forms: beryl, poorly crystalline beryllium oxide, and beryllium hydroxide. In comparison to aerosols generated by high-CBD risk primary production processes, aerosol particles encountered during milling had similar mass concentrations, generally lower number concentrations and surface area, and contained no identifiable highly crystalline beryllium oxide. One possible explanation for the apparent low prevalence of CBD among workers exposed to beryllium mineral dusts may be that characteristics of the exposure material do not contribute to the development of lung burdens sufficient for progression from sensitization to

  10. Refractory metal particles in refractory inclusions in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Fuchs, L. H.; Blander, M.

    1980-01-01

    SEM and X-ray analysis were used to study refractory metal particles in five calcium-aluminum-rich inclusions in the Allende meteorite, and a complex variety of compositions and large departures from equilibrium were found. It is suggested that these particles could have been primordial condensates which were isolated from the nebula and from each other at different times by cocondensing oxides. Selective diffusion and/or oxidation of the more oxidizable metals (Mo, W, Fe, and Ni), phase segregations into different alloy phases (fcc, bcc, hcp, and, possibly, ordered phases), and the formation of metastable condensates could have been involved in the genesis of these materials

  11. Beryllium sensitization and chronic beryllium disease at a former nuclear weapons facility.

    PubMed

    Stange, A W; Hilmas, D E; Furman, F J; Gatliffe, T R

    2001-03-01

    The prevalence of beryllium sensitization and chronic beryllium disease by job category was examined among individuals tested in the Rocky Flats Beryllium Health Surveillance Program. The program offered ongoing beryllium health surveillance for any current or former employee who believed they may have been exposed to beryllium at the Rocky Flats Environmental Technology Site. Of the 18,589 living individuals contacted, 7,573 requested participation and 6,614 (87.3%) eventually participated. Of this group, 78.2 percent were found to have verifiable job and building histories. The beryllium lymphocyte proliferation test was used to identify beryllium-sensitized individuals. Sensitization and chronic beryllium disease rates were analyzed with respect to gender, building work location(s), and length of employment at Rocky Flats. Several job categories and buildings were strongly associated with the 81 cases of chronic beryllium disease and the additional 154 cases of beryllium sensitization in this population. Beryllium sensitization was highest among beryllium machinists, 11.4 percent (odds ratio = 3.04, compared to the remainder of those tested, 95 % confidence interval = 1.48, 3.97) and health physics technicians, 11.9 percent (odds ratio = 2.87, 95% confidence interval = 1.12, 7.36). However, odds ratios were also increased among custodial employees, 5.64 percent (odds ratio = 1.30, 95% confidence interval = 0.92, 1.85) and other job titles that were thought to have only minimal potential for exposure to beryllium. PMID:11297055

  12. Characterizing coal-gasifier slag-refractory interactions

    SciTech Connect

    Rawers, J.; Kwong, J.; Bennett, J.

    1999-07-01

    To characterize refractory degradation and loss on commercial coal-gasifier combined cycle powder generating facilities, cup-type tests were conducted on high chromium-alumina, sinter-bonded refractories under laboratory conditions designed to simulate commercial operations of temperature, atmosphere, and slag interactions. These tests provided qualitative results from which the slag-refractory interactions can be characterized. These high chromium refractories were generally inert with respect to the coal slag components. However, this study did show (1) iron (oxide) in the slag reacted with chrome sesquioxide to produce a Cr-Fe spinel at the slag-refractory interface, and (2) chrome was soluble in the molten slag. Comparison of cup-type test results with data from operating commercial plants suggests that the principal loss of refractory material in a coal-gasifier combustion chamber is chrome dissolution into the slag. Tests are currently underway to determine if minor modifications to the combustion process might increase refractory life.

  13. Separating Metallic Beryllium from Plutonium by Selective Dissolution with Ammonium Fluoride

    SciTech Connect

    Torres, R A

    2006-11-29

    Plutonium metal is stabilized for long-term storage by calcining to produce PuO{sub 2}. However, if beryllium is present, the calcined product may have a high neutron dose rate because of the {sup 9}Be({alpha},n){sup 12}C reaction in the finely divided oxide mixture. (At LLNL, inadvertent calcining of a mixture of {approx}500 g Pu/50 g Be produced a neutron source of {approx}5 R/hr.) Therefore, for health physics reasons, we would like a convenient procedure to remove beryllium from plutonium with high selectivity. Two reagents, sodium hydroxide and ammonium fluoride, were considered for aqueous processing. Each reagent selectively dissolves beryllium, which can be separated from the insoluble plutonium by decanting/filtering operations followed by water washes to remove the excess reagent. The washed plutonium is calcined for storage; the beryllium and wash fractions are solidified for disposal.

  14. Advances in Identifying Beryllium Sensitization and Disease

    PubMed Central

    Middleton, Dan; Kowalski, Peter

    2010-01-01

    Beryllium is a lightweight metal with unique qualities related to stiffness, corrosion resistance, and conductivity. While there are many useful applications, researchers in the 1930s and l940s linked beryllium exposure to a progressive occupational lung disease. Acute beryllium disease is a pulmonary irritant response to high exposure levels, whereas chronic beryllium disease (CBD) typically results from a hypersensitivity response to lower exposure levels. A blood test, the beryllium lymphocyte proliferation test (BeLPT), was an important advance in identifying individuals who are sensitized to beryllium (BeS) and thus at risk for developing CBD. While there is no true “gold standard” for BeS, basic epidemiologic concepts have been used to advance our understanding of the different screening algorithms. PMID:20195436

  15. Refractory of Furnaces to Reduce Environmental Impact

    NASA Astrophysics Data System (ADS)

    Hanzawa, Shigeru

    2011-10-01

    The energy load of furnaces used in the manufacturing process of ceramics is quite large. Most of the environmental impact of ceramics manufacturing is due to the CO2 produced from this high energy load. To improve this situation, R&D has focused on furnace systems and techniques of control in order to reduce energy load. Since furnaces are comprised of refractory, consideration of their mechanical and thermal characteristics is important. Herein are described several refractory types which were chosen through comparison of the characteristics which contribute to heat capacity reduction, heat insulating reinforcement and high emissivity, thereby improving thermal radiation heat transfer efficiency to the ceramic articles. One selected refractory material which will reduce the environmental impact of a furnace, chosen considering low heat capacity and high emissivity characteristics, is SiC. In this study, thermal radiation heat transfer efficiency improvement and its effect on ceramic articles in the furnace and oxidation behaviour were investigated at 1700K. A high density SiC refractory, built into the furnace at construction, has relatively high oxidation durability and has the ability to reduce environmental impact-CO2 by 10 percent by decreasing the furnace's energy load. However, new oxidation prevention techniques for SiC will be necessary for long-term use in industrial furnaces, because passive to active oxidation transition behaviour of commercial SiC refractory is coming to close ideal.

  16. The cosmochemical behavior of beryllium and boron

    NASA Astrophysics Data System (ADS)

    Lauretta, Dante S.; Lodders, Katharina

    1997-01-01

    The chemistry of Be and B in the solar nebula is reinvestigated using thermodynamic equilibrium calculations. The dominant Be gases are monatomic Be at high temperatures and the hydroxides BeOH and Be(OH)2 at lower temperatures. Beryllium condenses as gugiaite (Ca2BeSi2O7) in solid solution with melilite with a 50% condensation temperature of 1490 K. If an ideal solid solution of chrysoberyl (BeAl2O4) into spinel is assumed, most of the Be condenses into spinel, yielding a 50% condensation temperature of 1501 K. However, the difference in the crystal structures of spinel and chrysoberyl indicates that their solid solution may be non-ideal. At high temperatures the dominant B gases are BO, HBO, and HBO2, while NaBO2, KBO2, and LiBO2 are dominant at lower temperatures. Boron is less refractory than Be and is calculated to condense into solid solution with feldspar. The majority of B condenses as danburite (CaB2Si2O8) in solid solution with anorthite. At lower temperatures, when the feldspar composition is more albitic, the remaining B condenses as reedmergnerite (NaBSi3O8). The 50% condensation temperature of B is 964 K. The 50% condensation temperature of B is similar to that of Na and much higher than that of S. Therefore, normalized B abundances in chondrites are expected to correlate with Na abundances. Be is predicted to be concentrated in melilite, a conclusion which is consistent with the few measurements of Be concentrations in calcium aluminum-rich inclusions (CAIs). Boron is predicted to be concentrated in feldspar, but no analytical data are available to test this prediction.

  17. MEASUREMENTS OF THE PROPERTIES OF BERYLLIUM FOIL

    SciTech Connect

    ZHAO,Y.; WANG,H.

    2000-03-31

    The electrical conductivity of beryllium at radio frequency (800 MHz) and liquid nitrogen temperature were investigated and measured. This summary addresses a collection of beryllium properties in the literature, an analysis of the anomalous skin effect, the test model, the experimental setup and improvements, MAFIA simulations, the measurement results and data analyses. The final results show that the conductivity of beryllium is not as good as indicated by the handbook, yet very close to copper at liquid nitrogen temperature.

  18. Brazing of beryllium for structural applications

    NASA Technical Reports Server (NTRS)

    Vogan, J. W.

    1972-01-01

    Progress made in fabricating a beryllium compression tube structure and a stiffened beryllium panel. The compression tube was 7.6cm in diameter and 30.5cm long with titanium end fittings. The panel was 203cm long and stiffened with longitudinal stringers. Both units were assembled by brazing with BAg-18 braze alloy. The detail parts were fabricated by hot forming 0.305cm beryllium sheet and the brazing parameters established.

  19. Inhibited solid propellant composition containing beryllium hydride

    NASA Technical Reports Server (NTRS)

    Thompson, W. W. (Inventor)

    1978-01-01

    An object of this invention is to provide a composition of beryllium hydride and carboxy-terminated polybutadiene which is stable. Another object of this invention is to provide a method for inhibiting the reactivity of beryllium hydride toward carboxy-terminated polybutadiene. It was found that a small amount of lecithin inhibits the reaction of beryllium hydride with the acid groups in carboxy terminated polybutadiene.

  20. Vacuum brazing beryllium to Monel

    SciTech Connect

    Glenn, T.G.; Grotsky, V.K.; Keller, D.L.

    1982-10-01

    The tensile strength of beryllium to Monel vacuum furnace brazed joints was studied. The filler used was the 72% Ag-28%Cu(BAg-8) alloy. The strength of these joints, which require the use of a titanium hydride powder or physical vapor deposited titanium wetting agent on the beryllium, was found to approach the yield strength of the base metals. Strength was found to be reduced by the interaction of increased titanium hydride quantity and brazing time. Metallographic and scanning electron microscope (SEM) studies correlated these effects with microstructure. The formation of the brittle copper-beryllium delta phase was found to require conditions of high brazing temperature and the presence of a reservoir of the copper-containing filler such as found in fillet areas. Two other filler metals: pure silver, and a 60% Ag-30% Cu-10%Sn (BAg-17) alloy were shown to be acceptable alternatives to the BAg-8 alloy in cases where the filler metal can be preplaced between the base metal surfaces.

  1. The beryllium "double standard" standard.

    PubMed

    Egilman, David S; Bagley, Sarah; Biklen, Molly; Golub, Alison Stern; Bohme, Susanna Rankin

    2003-01-01

    Brush Wellman, the world's leading producer and supplier of beryllium products, has systematically hidden cases of beryllium disease that occurred below the threshold limit value (TLV) and lied about the efficacy of the TLV in published papers, lectures, reports to government agencies, and instructional materials prepared for customers and workers. Hypocritically, Brush Wellman instituted a zero exposure standard for corporate executives while workers and customers were told the 2 microgram standard was "safe." Brush intentionally used its workers as "canaries for the plant," and referred to them as such. Internal documents and corporate depositions indicate that these actions were intentional and that the motive was money. Despite knowledge of the inadequacy of the TLV, Brush has successfully used it as a defense against lawsuits brought by injured workers and as a sales device to provide reassurance to customers. Brush's policy has reaped an untold number of victims and resulted in mass distribution of beryllium in consumer products. Such corporate malfeasance is perpetuated by the current market system, which is controlled by an organized oligopoly that creates an incentive for the neglect of worker health and safety in favor of externalizing costs to victimized workers, their families, and society at large. PMID:14758859

  2. L{sub g} = 100 nm In{sub 0.7}Ga{sub 0.3}As quantum well metal-oxide semiconductor field-effect transistors with atomic layer deposited beryllium oxide as interfacial layer

    SciTech Connect

    Koh, D. E-mail: Taewoo.Kim@sematech.org; Kwon, H. M.; Kim, T.-W. E-mail: Taewoo.Kim@sematech.org; Veksler, D.; Gilmer, D.; Kirsch, P. D.; Kim, D.-H.; Hudnall, Todd W.; Bielawski, Christopher W.; Maszara, W.; Banerjee, S. K.

    2014-04-21

    In this study, we have fabricated nanometer-scale channel length quantum-well (QW) metal-oxide-semiconductor field effect transistors (MOSFETs) incorporating beryllium oxide (BeO) as an interfacial layer. BeO has high thermal stability, excellent electrical insulating characteristics, and a large band-gap, which make it an attractive candidate for use as a gate dielectric in making MOSFETs. BeO can also act as a good diffusion barrier to oxygen owing to its small atomic bonding length. In this work, we have fabricated In{sub 0.53}Ga{sub 0.47}As MOS capacitors with BeO and Al{sub 2}O{sub 3} and compared their electrical characteristics. As interface passivation layer, BeO/HfO{sub 2} bilayer gate stack presented effective oxide thickness less 1 nm. Furthermore, we have demonstrated In{sub 0.7}Ga{sub 0.3}As QW MOSFETs with a BeO/HfO{sub 2} dielectric, showing a sub-threshold slope of 100 mV/dec, and a transconductance (g{sub m,max}) of 1.1 mS/μm, while displaying low values of gate leakage current. These results highlight the potential of atomic layer deposited BeO for use as a gate dielectric or interface passivation layer for III–V MOSFETs at the 7 nm technology node and/or beyond.

  3. MANAGING BERYLLIUM IN NUCLEAR FACILITY APPLICATIONS

    SciTech Connect

    R. Rohe; T. N. Tranter

    2011-12-01

    Beryllium plays important roles in nuclear facilities. Its neutron multiplication capability and low atomic weight make it very useful as a reflector in fission reactors. Its low atomic number and high chemical affinity for oxygen have led to its consideration as a plasma-facing material in fusion reactors. In both applications, the beryllium and the impurities in it become activated by neutrons, transmuting them to radionuclides, some of which are long-lived and difficult to dispose of. Also, gas production, notably helium and tritium, results in swelling, embrittlement, and cracking, which means that the beryllium must be replaced periodically, especially in fission reactors where dimensional tolerances must be maintained. It has long been known that neutron activation of inherent iron and cobalt in the beryllium results in significant {sup 60}Co activity. In 2001, it was discovered that activation of naturally occurring contaminants in the beryllium creates sufficient {sup 14}C and {sup 94}Nb to render the irradiated beryllium 'Greater-Than-Class-C' for disposal in U.S. radioactive waste facilities. It was further found that there was sufficient uranium impurity in beryllium that had been used in fission reactors up to that time that the irradiated beryllium had become transuranic in character, making it even more difficult to dispose of. In this paper we review the extent of the disposal issue, processes that have been investigated or considered for improving the disposability of irradiated beryllium, and approaches for recycling.

  4. Recommended design correlations for S-65 beryllium

    SciTech Connect

    Billone, M.C.

    1995-12-31

    The properties of tritium and helium behavior in irradiated beryllium are reviewed, along with the thermal-mechanical properties needed for ITER design analysis. Correlations are developed to describe the performance of beryllium in a fusion reactor environment. While this paper focuses on the use of beryllium as a plasma-facing component (PFC) material, the correlations presented here can also be used to describe the performance of beryllium as a neutron multiplier for a tritium breeding blanket. The performance properties for beryllium are subdivided into two categories: properties which do not change with irradiation damage to the bulk of the material; and properties which are degraded by neutron irradiation. The approach taken in developing properties correlations is to describe the behavior of dense, pressed S-65 beryllium as a function of temperature. As there are essentially no data on the performance of porous and/or irradiated S-65 beryllium, the degradation of properties with as-fabricated porosity and irradiation are determined form the broad data base on S-200F, as well as other types and grades, and applied to S-65 beryllium by scaling factors. The resulting correlations can be used for Be produced by vacuum hot pressing (VHP) and cold-pressing (CP)/sintering(S)/hot-isostatic-pressing(HIP). The performance of plasma-sprayed beryllium is discussed but not quantified.

  5. Beryllium Use in the Advanced Test Reactor

    SciTech Connect

    Glen R. Longhurst

    2007-12-01

    The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) began operation in 1967. It makes use of a unique serpentine fuel core design and a beryllium reflector. Reactor control is achieved with rotating beryllium cylinders to which have been fastened plates of hafnium. Over time, the beryllium develops rather high helium content because of nuclear transmutations and begins to swell. The beryllium must be replaced at nominally 10-year intervals. Determination of when the replacement is made is by visual observation using a periscope to examine the beryllium surface for cracking and swelling. Disposition of the irradiated beryllium was once accomplished in the INL’s Radioactive Waste Management Complex, but that is no longer possible. Among contributing reasons are high levels of specific radioactive contaminants including transuranics. The INL is presently considering disposition pathways for this irradiated beryllium, but presently is storing it in the canal adjacent to the reactor. Numerous issues are associated with this situation including (1) Is there a need for ultra-low uranium material? (2) Is there a need to recover tritium from irradiated beryllium either because this is a strategic material resource or in preparation for disposal? (3) Is there a need to remove activation and fission products from irradiated beryllium? (4) Will there be enough material available to meet requirements for research reactors (fission and fusion)? In this paper will be discussed the present status of considerations on these issues.

  6. Method of coating graphite tubes with refractory metal carbides

    DOEpatents

    Wohlberg, C.

    1973-12-11

    A method of coating graphite tubes with a refractory metal carbide is described. An alkali halide is reacted with a metallic oxide, the metallic portion being selected from the IVth or Vth group of the Periodic Table, the resulting salt reacting in turn with the carbon to give the desired refractory metal carbide coating. (Official Gazette)

  7. Synthesis of refractory materials

    DOEpatents

    Holt, J.B.

    Refractory metal nitrides are synthesized during a combustion process utilizing a solid source of nitrogen. For this purpose, a metal azide is employed. The azide is combusted with a transition metal of the IIIB, IVB group, or a rare earth metal, and ignited to produce the refractory material.

  8. Synthesis of refractory materials

    DOEpatents

    Holt, Joseph B.

    1984-01-01

    Refractory metal nitrides are synthesized during a combustion process utilizing a solid source of nitrogen. For this purpose, a metal azide is employed. The azide is combusted with a transition metal of the IIIB, IVB group, or a rare earth metal, and ignited to produce the refractory material.

  9. Process for synthesis of beryllium chloride dietherate

    DOEpatents

    Bergeron, Charles; Bullard, John E.; Morgan, Evan

    1991-01-01

    A low temperature method of producing beryllium chloride dietherate through the addition of hydrogen chloride gas to a mixture of beryllium metal in ether in a reaction vessel is described. A reflux condenser provides an exit for hydrogen produced form the reaction. A distillation condenser later replaces the reflux condenser for purifying the resultant product.

  10. Fracture toughness of hot-pressed beryllium

    NASA Technical Reports Server (NTRS)

    Lemon, D. D.; Brown, W. F., Jr.

    1985-01-01

    This paper presents the results of an investigation into the fracture toughness, sustained-load flaw growth, and fatigue-crack propagation resistance of S200E hot-pressed beryllium at room temperature. It also reviews the literature pertaining to the influence of various factors on the fracture toughness of hot-pressed beryllium determined using fatigue-cracked specimens.

  11. Development of improved refractories

    SciTech Connect

    Wereszczak, A.A.; Ferber, M.K.; Liu, K.C.; Moore, R.E.

    1997-04-01

    The goal of the proposed project is to provide expertise and facilities for the high temperature mechanical properties characterization of refractory materials which are of interest to the US DOE`s Office of Industrial Technologies Advanced Industrial Materials Project. Initially the project would establish dedicated refractory testing facilities which would be capable of generating representative engineering creep and high temperature modulus of elasticity (MOE) data to a temperature of 3300{degrees}F (1815{degrees}C) in ambient air. The generated engineering creep and MOE data would serve R&D requirements of refractories-manufacturers and its glass-manufacturer end-users and designers. The relevance of this effort to the refractory and glass-making industries would be ensured by coordinating the research activities through a membership with Alfred University`s Center for Glass Research (CGR) Satellite Center at the University of Missouri-Rolla (UMR), an NSF Center. Valid engineering creep and high temperature MOE data currently do not exist for almost all commercial refractories. Refractory end-users such as glass-manufacturers require such data for efficient and economical design of their various glass-melting furnace superstructures (e.g., furnace crowns). Refractories in glass production furnaces may be subjected to extreme temperatures as high as 3200{degrees}F (1760{degrees}C). With the simultaneous imposition of mechanical and thermal stresses, creep deformation of the refractory material will assuredly occur as a consequence. Designers must ensure that the structural integrity is maintained, so these high temperature deformations must be considered for successful glass furnace superstructure design. These criteria can only be satisfied with the utilization of representative engineering creep and high temperature MOE data for the refractory materials that are chosen for the design of the refractory superstructures.

  12. Beryllium for fusion application - recent results

    NASA Astrophysics Data System (ADS)

    Khomutov, A.; Barabash, V.; Chakin, V.; Chernov, V.; Davydov, D.; Gorokhov, V.; Kawamura, H.; Kolbasov, B.; Kupriyanov, I.; Longhurst, G.; Scaffidi-Argentina, F.; Shestakov, V.

    2002-12-01

    The main issues for the application of beryllium in fusion reactors are analyzed taking into account the latest results since the ICFRM-9 (Colorado, USA, October 1999) and presented at 5th IEA Be Workshop (10-12 October 2001, Moscow Russia). Considerable progress has been made recently in understanding the problems connected with the selection of the beryllium grades for different applications, characterization of the beryllium at relevant operational conditions (irradiation effects, thermal fatigue, etc.), and development of required manufacturing technologies. The key remaining problems related to the application of beryllium as an armour in near-term fusion reactors (e.g. ITER) are discussed. The features of the application of beryllium and beryllides as a neutron multiplier in the breeder blanket for power reactors (e.g. DEMO) in pebble-bed form are described.

  13. Beryllium in sediments of Nagoya harbor estuaries

    SciTech Connect

    Itoh, K.

    1986-06-01

    Beryllium occurs naturally in minerals and oils. Other than the natural sources, considerable quantity of beryllium has been discharged from its smelting industry. Soil pollutants caused by beryllium in the circumference of its smelting industry on the banks of Nagoya harbor estuaries have been reported. Several methods for the spectroscopic determination of beryllium can not eliminate the interference caused by fluoride ion which remains in the digestion solution when hydrofluoric acid is used to degradate the silicate lattice. Accordingly, the authors attempted to improve the pretreatment in order to eliminate the effect of fluoride ion, and to make the procedure simpler and faster with high precision. A simple and sensitive method is presented for the determination of beryllium in sediments by atomic absorption spectroscopy using methylisobutylketone extraction with acetylacetone. They have carried out an extensive investigation on the pollution of sea water and sediments of Nagoya harbor estuaries, which is located in one of the most active industrial areas in Japan.

  14. Development of beryllium mirror turning technology

    SciTech Connect

    Arnold, J.B.

    1991-04-01

    Because of the unique properties of beryllium (Be) and the advantages of single point turning, a development program has been instituted to single point turn beryllium as a means to produce optics. Initial effort to diamond turn beryllium resulted in less than desirable results and development efforts were directed at finding a more suitable tool material. Both single and polycrystalline tool materials were evaluated and cubic boron nitride (CBN) was found to produce the better results. Tool wear has been the primary limitation in precision machining beryllium and advances have allowed a two order-of-magnitude reduction in this problem. After considerable efforts, results with CBN appear to be approaching a limit, and diamond, as tool material, was re-evaluated with promising results. A development program is now under way to determine if diamond may be used to machine larger and more complex beryllium parts.

  15. Postirradiation examination of beryllium pebbles

    SciTech Connect

    Gelles, D.S.

    1998-03-01

    Postirradiation examinations of COBRA-1A beryllium pebbles irradiated in the EBR-II fast reactor at neutron fluences which generated 2700--3700 appm helium have been performed. Measurements included density change, optical microscopy, scanning electron microscopy, and transmission electron microscopy. The major change in microstructure is development of unusually shaped helium bubbles forming as highly non-equiaxed thin platelet-like cavities on the basal plane. Measurement of the swelling due to cavity formation was in good agreement with density change measurements.

  16. Behaviour of neutron irradiated beryllium during temperature excursions up to and beyond its melting temperature

    NASA Astrophysics Data System (ADS)

    Pajuste, Elina; Kizane, Gunta; Avotiņa, Līga; Zariņš, Artūrs

    2015-10-01

    Beryllium pebble behaviour has been studied regarding the accidental operation conditions of tritium breeding blanket of fusion reactors. Structure evolution, oxidation and thermal properties have been compared for nonirradiated and neutron irradiated beryllium pebbles during thermal treatment in a temperature range from ambient temperature to 1600 K. For neutron irradiated pebbles tritium release process was studied. Methods of temperature programmed tritium desorption (TPD) in combination with thermogravimetry (TG) and temperature differential analysis (TDA), scanning electron microscopy (SEM) in combination with Energy Dispersive X-ray analysis (EDX) have been used. It was found that there are strong relation between tritium desorption spectra and structural evolution of neutron irradiated beryllium. The oxidation rate is also accelerated by the structure damages caused by neutrons.

  17. 40 CFR 421.150 - Applicability: Description of the primary beryllium subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary beryllium subcategory. 421.150 Section 421.150 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Beryllium Subcategory § 421.150 Applicability: Description of the primary beryllium... beryllium by primary beryllium facilities processing beryllium ore concentrates or beryllium hydroxide...

  18. 40 CFR 421.150 - Applicability: Description of the primary beryllium subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary beryllium subcategory. 421.150 Section 421.150 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Beryllium Subcategory § 421.150 Applicability: Description of the primary beryllium... beryllium by primary beryllium facilities processing beryllium ore concentrates or beryllium hydroxide...

  19. 40 CFR 421.150 - Applicability: Description of the primary beryllium subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary beryllium subcategory. 421.150 Section 421.150 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Beryllium Subcategory § 421.150 Applicability: Description of the primary beryllium... beryllium by primary beryllium facilities processing beryllium ore concentrates or beryllium hydroxide...

  20. Technical issues for beryllium use in fusion blanket applications

    SciTech Connect

    McCarville, T.J.; Berwald, D.H.; Wolfer, W.; Fulton, F.J.; Lee, J.D.; Maninger, R.C.; Moir, R.W.; Beeston, J.M.; Miller, L.G.

    1985-01-01

    Beryllium is an excellent non-fissioning neutron multiplier for fusion breeder and fusion electric blanket applications. This report is a compilation of information related to the use of beryllium with primary emphasis on the fusion breeder application. Beryllium resources, production, fabrication, properties, radiation damage and activation are discussed. A new theoretical model for beryllium swelling is presented.

  1. Beryllium recycling in the United States in 2000

    USGS Publications Warehouse

    Cunningham, Larry D.

    2004-01-01

    This report describes the flow of beryllium in the United States in 2000 with emphasis on the extent to which beryllium was either recycled or reused. Beryllium was recycled mostly from new scrap that was generated during the manufacture of beryllium-related components. In 2000, about 35 metric tons of beryllium was either recycled or reused, about 14 percent of which was derived from old scrap. The beryllium recycling rate was calculated to be about 10 percent, and beryllium scrap recycling efficiency, about 7 percent.

  2. Beryllium Recycling in the United States in 2000

    USGS Publications Warehouse

    Cunningham, Larry D.

    2003-01-01

    This report describes the flow of beryllium in the United States in 2000 with emphasis on the extent to which beryllium was either recycled or reused. Beryllium was recycled mostly from new scrap that was generated during the manufacture of beryllium-related components. In 2000, about 35 metric tons of beryllium was either recycled or reused, about 14 percent of which was derived from old scrap. The beryllium recycling rate was calculated to be about 10 percent, and beryllium scrap recycling efficiency, about 7 percent.

  3. Refractory precursor components of Semarkona chondrules and the fractionation of refractory elements among chondrites

    NASA Astrophysics Data System (ADS)

    Grossman, J. N.; Wasson, J. T.

    1983-04-01

    Instrumental neutron activation analysis has been used to measure about 20 of the lithophile elements in 30 chondrules from the Semarkona chondrite. The amounts of oxidized iron were calculated from other compositional parameters, and Si concentrations are estimated from mass-balance considerations. It is suggested that the refractory component probably forms from fine grained materials that were able to equilibrate down to lower nebular temperatures. The chondrite matrix may have had an origin similar to that of the nonrefractory material. The low abundance of refractories and Mg in ordinary and enstatite chondrites was produced by the loss of materials having a higher refractory element/Mg ratio than that of the refractory element of the chondrules.

  4. Nonaqueous composition for slip casting or cold forming refractory material into solid shapes

    SciTech Connect

    Montgomery, L.C.

    1993-08-24

    A composition is described for slip casting or cold forming non-oxide refractory material(s) into solid shape comprising finely divided solid refractory materials selected from the group consisting of metal boride, refractory carbide, nitride, silicide and a refractory metal of tungsten, molybdenum, tantalum and chromium suspended in a nonaqueous liquid slip composition consisting essentially of a deflocculent composed of a vinyl chloride-vinyl acetate resin dissolved in an organic solvent.

  5. Recommended design correlations for S-65 beryllium

    SciTech Connect

    Billone, M.C.

    1995-09-01

    The properties of tritium and helium behavior in irradiated beryllium are reviewed, along with the thermal-mechanical properties needed for ITER design analysis. Correlations are developed to describe the performance of beryllium in a fusion reactor environment. While this paper focuses on the use of beryllium as a plasma-facing component (PFC) material, the correlations presented here can also be used to describe the performance of beryllium as a neutron multiplier for a tritium breeding blanket. The performance properties for beryllium are subdivided into two categories: properties which do not change with irradiation damage to the bulk of the material; and properties which are degraded by neutron irradiation. The irradiation-independent properties described within are: thermal conductivity, specific heat capacity, thermal expansion, and elastic constants. Irradiation-dependent properties include: yield strength, ultimate tensile strength, plastic tangent modulus, uniform and total tensile elongation, thermal and irradiation-induced creep strength, He-induced swelling and tritium retention/release. The approach taken in developing properties correlations is to describe the behavior of dense, pressed S-65 beryllium -- the material chosen for ITER PFC application -- as a function of temperature. As there are essentially no data on the performance of porous and/or irradiated S-65 beryllium, the degradation of properties with as-fabricated porosity and irradiation are determined from the broad data base on S-200F, as well as other types and grades, and applied to S-65 beryllium by scaling factors. The resulting correlations can be used for Be produced by vacuum hot pressing (VHP) and cold-pressing (CP)/sintering(S)/hot-isostatic-pressing (HIP). The performance of plasma-sprayed beryllium is discussed but not quantified.

  6. Study of beryllium and beryllium-lithium complexes in single-crystal silicon.

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.; Robertson, J. B.; Gilmer, T. E., Jr.

    1972-01-01

    When beryllium is thermally diffused into silicon, it gives rise to acceptor levels 191 and 145 meV above the valence band. Quenching and annealing studies indicate that the 145-meV level is due to a more complex beryllium configuration than the 191-meV level. When lithium is thermally diffused into a beryllium-doped silicon sample, it produces two new acceptor levels at 106 and 81 meV. Quenching and annealing studies indicate that these new levels are due to lithium forming a complex with the defects responsible for the 191- and 145-meV beryllium levels, respectively. Electrical measurements imply that the lithium impurity ions are physically close to the beryllium impurity atoms. The ground state of the 106-meV beryllium-lithium level is split into two levels, presumably by internal strains. Tentative models are proposed to explain these results.

  7. A study of beryllium and beryllium-lithium complexes in single crystal silicon

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.; Robertson, J. B.; Gilmer, T. E., Jr.

    1972-01-01

    When beryllium is thermally diffused into silicon, it gives rise to acceptor levels 191 MeV and 145 meV above the valence band. Quenching and annealing studies indicate that the 145-MeV level is due to a more complex beryllium configuration than the 191-MeV level. When lithium is thermally diffused into a beryllium-doped silicon sample, it produces two acceptor levels at 106 MeV and 81 MeV. Quenching and annealing studies indicate that these levels are due to lithium forming a complex with the defects responsible for the 191-MeV and 145-MeV beryllium levels, respectively. Electrical measurements imply that the lithium impurity ions are physically close to the beryllium impurity atoms. The ground state of the 106-MeV beryllium level is split into two levels, presumably by internal strains. Tentative models are proposed.

  8. METHOD OF MAKING A REFRACTORY MATERIAL

    DOEpatents

    Miller, H.I.

    1958-01-01

    This patent relates to a composition containing beryllia and the oxide of a fissile element such as uranium. The oxides are first ground and mixed, paraffin is added to the mixed powders, and the composition is then compacted and sintered to drive off the paraffin and produce a stuctually stable compact. The result is a coherent refractory arrangement of fissile nuclei dispersed among moderating nuclei. The composition, size, shape, etc., of the brick may be varied according to its intended use.

  9. HIGH TEMPERATURE REFRACTORY COATING FOR GRAPHITE MOLDS

    DOEpatents

    Stoddard, S.D.

    1958-10-21

    An improved foundry mold coating for use with graphite molds used in the casting of uranium is presented. The refractory mold coating serves to keep the molten uranium from contact with graphite of the mold and thus prevents carbon pickup by the molten metal. The refractory coating is made by dry mixing certain specific amounts of aluminum oxide, bentonite, Tennessee ball clay, and a soluble silicate salt. Water is then added to the mixture and the suspension thus formed is applied by spraying onto the mold.

  10. THE IDAHO NATIONAL LABORATORY BERYLLIUM TECHNOLOGY UPDATE

    SciTech Connect

    Glen R. Longhurst

    2007-12-01

    A Beryllium Technology Update meeting was held at the Idaho National Laboratory on July 18, 2007. Participants came from the U.S., Japan, and Russia. There were two main objectives of this meeting. One was a discussion of current technologies for beryllium in fission reactors, particularly the Advanced Test Reactor and the Japan Materials Test Reactor, and prospects for material availability in the coming years. The second objective of the meeting was a discussion of a project of the International Science and Technology Center regarding treatment of irradiated beryllium for disposal. This paper highlights discussions held during that meeting and major conclusions reached

  11. Immune mechanisms in beryllium lung disease

    SciTech Connect

    Deodhar, S.D.; Barna, B.P. )

    1991-03-01

    The role of the immune system in the pathogenesis of beryllium lung disease has been suspected for years. The observation of cutaneous hypersensitivity to beryllium led to the development of the lymphocyte blast transformation test; the test clearly distinguishes between healthy subjects, who show little or no blast transformation response, and patients with beryllium lung disease, who demonstrate significant responses. The degree of blast transformation also correlates with the severity of the clinical disease. Animal studies have demonstrated the importance of histocompatibility antigens in development of the disease, and support the participation of cellular immune mechanisms.22 references.

  12. Chronic beryllium disease: computed tomographic findings.

    PubMed

    Sharma, Nidhi; Patel, Jeet; Mohammed, Tan-Lucien H

    2010-01-01

    Chronic beryllium disease is a rare multisystem granulomatous disease predominantly involving the lungs and resulting from an immunologic response to long-term occupational exposure. Computed tomography of the chest reveals important lung parenchymal and mediastinal findings and plays an important role in the diagnosis and follow-up assessment of patients with chronic beryllium disease. Its significance lies in the exact localization and evaluation of the extent of lesions. We present an overview of the subject and a pictorial review of the spectrum of computed tomographic features of beryllium disease. PMID:21084914

  13. Carbon monoxide adsorption on beryllium surfaces

    NASA Astrophysics Data System (ADS)

    Allouche, A.

    2013-02-01

    Density functional calculations are here carried out to study the carbon monoxide molecule adsorption on pristine, hydrogenated and hydroxylated beryllium Be (0001) surfaces. The adsorption energies and structures, the activation barriers to molecular adsorption and dissociation are calculated. These reactions are described in terms of potential energy surfaces and electronic density of states. The quantum results are discussed along two directions: the beryllium surface reactivity in the domain of nuclear fusion devices and the possible usage of beryllium as a catalyst of Fischer-Tropsch-type synthesis.

  14. Beryllium at Argonne East, past and present

    SciTech Connect

    Woodring, J.L.; Davis, J.T.

    1998-07-01

    The focus of this presentation is the present activities at Argonne related to the control of beryllium exposure. However, since present activities involve some of the past uses of beryllium, the authors will review briefly the history as they have been able to resurrect it from records, memory and interviews with some of the people involved. The goal of the program is to identify past contaminated areas for remedial action, identify employees with past and current exposure who may benefit from additional medical monitoring and provide guidance and support so that any ongoing activities involving beryllium can be conducted safely.

  15. Crystallization of Beryllium-Boron Metallic Glasses

    SciTech Connect

    Jankowski, A F; Wall, M A; Nieh, T G

    2002-02-14

    Prior studies of evaporation and sputter deposition show that the grain size of pure beryllium can be dramatically refined through the incorporation of metal impurities. Recently, the addition of boron at a concentration greater than 11% is shown to serve as a glassy phase former in sputter deposited beryllium. Presently, thermally induced crystallization of the beryllium-boron metallic glass is reported. The samples are characterized during an in-situ anneal treatment with bright field imaging and electron diffraction using transmission electron microscopy. A nanocrystalline structure evolves from the annealed amorphous phase and the crystallization temperature is affected by the boron concentration.

  16. Improved refractories for slagging gasifiers in IGCC power systems

    SciTech Connect

    Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.; Chinn, Richard E.

    2004-01-01

    removed from slagging commercial gasifiers and of laboratory produced refractory materials has indicated that slag corrosion and structural spalling are the primary causes of refractory failure. Historically, refractory materials with chrome oxide content as high as 90 pct have been found necessary to achieve the best refractory service life. To meet project goals, an improved high chrome oxide refractory material containing phosphate additions was developed at ARC, produced commercially, and is undergoing gasifier plant trials. Early laboratory tests on the high chrome oxide material suggested that phosphate additions could double the service life of currently available high chromium oxide refractories, translating into a potential savings of millions of dollars in annual gasifier operating costs, as well a significant increase in gasifier on-line availability. The ARC is also researching the potential of no-chrome/low-chrome oxide refractory materials for use in gasifiers. Some of the driving forces for no-chrome/low-chrome oxide refractories include the high cost and manufacturing difficulties of chrome oxide refractories and the fact that they have not met the performance requirements of commercial gasifiers. Development of no/low chrome oxide refractories is taking place through an examination of historical research, through the evaluation of thermodynamics, and through the evaluation of phase diagram information. This work has been followed by cup tests in the laboratory to evaluate slag/refractory interactions. Preliminary results of plant trials and the results of ARC efforts to develop no-chrome/low chrome refractory materials will be presented.

  17. REFRACTORY ARTICLE AND PROCESS OF MANUFACTURING SAME

    DOEpatents

    Hamilton, N.E.

    1957-12-10

    A method is described for fabricating improved uranium oxide crucibles. In the past, such crucibles have lacked mechanical strength due to the poor cohesion of the uranium oxide particles. This difficulty has now been overcome by admixing with the uranium oxide a quantity of a refractory oxide binder, and dry pressing and sintering the resulting mixture into the desired shape. Suitable as binders are BeO, CaO, Al/sub 2/C/sub 3/, and ThO/sub 2/ among others.

  18. Chemical Analysis Of Beryllium Shells

    SciTech Connect

    Gunther, J; Cook, R

    2005-11-17

    There is a need to understand the level of high-Z impurities in Beryllium shells prepared by sputter coating. The Ignition Point Design Requirements state the following: ''Except for allowed ingredients, as listed in the ablator composition entries, the ablator material in all layers shall contain sufficiently low impurity levels that the sum over all impurities of atom fraction*Z{sup 2} shall be less than or equal to 0.2''. This is a tight specification that requires careful materials analysis. Early in the first quarter of FY06, we undertook a study of Be shell impurities via ICP-MS{sup 2} and determined that the impurity levels in the sputtered shells are very close to the specification.

  19. High temperature barrier coatings for refractory metals

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Walech, T.

    1995-01-01

    Improvements in high temperature oxidation resistant metal coating technology will allow NASA and commercial entities to develop competitive civil space transport and communication systems. The success of investigations completed in this program will have a positive impact on broadening the technology base for high temperature materials. The work reported herein describes processes and procedures for successfully depositing coherent oxidation barrier coatings on refractory metals to prevent degradation under very severe operating environments. Application of the new technology developed is now being utilized in numerous Phase 3 applications through several prominent aerospace firms. Major achievements have included: (1) development of means to deposit thick platinum and rhodium coatings with lower stress and fewer microcracks than could be previously achieved; (2) development of processes to deposit thick adherent coatings of platinum group metals on refractory substrates that remain bonded through high temperature excursions and without need for intermediate coatings (bonding processes unique to specific refractory metals and alloys have been defined; (3) demonstration that useful alloys of refractory and platinum coatings can be made through thermal diffusion means; (4) demonstration that selected barrier coatings on refractory substrates can withstand severe oxidizing environments in the range of 1260 deg and 1760 deg C for long time periods essential to the life requirements of the hardware; and (5) successful application of the processes and procedures to prototype hardware. The results of these studies have been instrumental in improved thermal oxidation barrier coatings for the NASP propulsion system. Other Phase 3 applications currently being exploited include small uncooled thrusters for spacecraft and microsatellite maneuvering systems.

  20. Nitrogen reactivity toward beryllium: surface reactions.

    PubMed

    Allouche, A

    2013-06-01

    Recent experiments with nitrogen as a seeding gas in fusion plasma devices together with the option of using beryllium as an armor material in the future ITER tokamak (International Thermonuclear Experimental Reactor) have raised new interest in the interactions of beryllium surfaces with nitrogen (atomic or molecular). The strong reactivity of nitrogen implies the formation of beryllium nitrite and, in conjunction with oxygen and other possible impurities, experimentalists have to consider the probability of generating various complex moieties such as imine, amine or oxyamine, and amide radicals. This chemistry would obviously dramatically perturb the plasma, and quantum investigations can be of great predictive help. Nitrogen adsorption on beryllium basal surfaces is investigated through quantum density functional theory. Different situations are examined: molecular or atomic nitrogen reactions; nitride radical adsorption or formation on surfaces; hydrogen retention on surfaces; combined nitrogen/oxygen reactivity and hydrogen retention. A tentative comparison with experiment is also proposed. PMID:23594802

  1. Chronic Beryllium Disease Prevention Program Report

    SciTech Connect

    Lee, S

    2012-03-29

    This document describes how Lawrence Livermore National Laboratory (LLNL) meets the requirements and management practices of federal regulation 10 CFR 850, 'Chronic Beryllium Disease Prevention Program (CBDPP).' This revision of the LLNL CBDPP incorporates clarification and editorial changes based on lessons learned from employee discussions, observations and reviews of Department of Energy (DOE) Complex and commercial industry beryllium (Be) safety programs. The information is used to strengthen beryllium safety practices at LLNL, particularly in the areas of: (1) Management of small parts and components; and (2) Communication of program status to employees. Future changes to LLNL beryllium activities and on-going operating experience will be incorporated into the program as described in Section S, 'Performance Feedback.'

  2. Clinical approach to chronic beryllium disease and other nonpneumoconiotic interstitial lung diseases.

    PubMed

    Maier, Lisa A

    2002-10-01

    Exposures in the workplace result in a diverse set of diseases ranging from the pneumoconiosis to other interstitial lung diseases to acute lung injury. Physician awareness of the potential disease manifestations associated with specific exposures is important in defining these diseases and in preventing additional disease. Most occupational diseases mimic other forms of lung disease, including pulmonary fibrosis, sarcoidosis, adult respiratory distress syndrome (ARDS), and bronchiolitis. A "sarcoidosis"-like syndrome, usually limited to the lungs, may result from exposure to bioaerosols and a number of metals. Exposure to beryllium in the workplace produces a granulomatous lung disease clinically indistinguishable from sarcoidosis, chronic beryllium disease (CBD). Beryllium's ability to produce a beryllium-specific immune response is used in the beryllium lymphocyte proliferation tests to confirm a diagnosis of CBD and exclude sarcoidosis. Exposure to other metals must also be considered in the differential diagnosis of sarcoidosis. When an individual presents acutely with ARDS or acute lung injury, an acute inhalational exposure must be considered. Exposure to a number of irritant substances at high levels may cause a "chemical pneumonitis" or acute lung injury, depending on the solubility and physicochemical properties of the substance. Some of the most notable agents include nitrogen and sulfur oxides, phosgene, and smoke breakdown products. Ingestion of paraquat may also result in an ARDS syndrome, with pulmonary fibrosis eventually resulting. Bronchiolitis is a rare manifestation of inhalational exposures but must also be considered in the clinical evaluation of inhalational exposure. PMID:12362066

  3. Solid state bonding of beryllium-copper for an ITER first wall application

    SciTech Connect

    Odegard, B.C. Jr.; Cadden, C.H.

    1998-02-01

    Several different joint assemblies were evaluated in support of a manufacturing technology for diffusion bonding a beryllium armor tile to a copper alloy heat sink for fusion reactor applications. Because beryllium reacts with all but a few elements to form intermetallic compounds, this study considered several different surface treatments as a means of both inhibiting these reactions and promoting a good diffusion bond between the two substrates. A diffusion bonded assemblies used aluminum or an aluminum-beryllium composite (AlBeMet-150) as the interfacial material in contact with beryllium. In most cases, explosive bonding was utilized as a technique for joining the copper alloy heat sink to an aluminum or AlBeMet-150 substrate, which was subsequently diffusion bonded to an aluminum coated beryllium tile. In this approach, a 250 {micro}m thick titanium foil was used as a diffusion barrier between the copper and aluminum to prevent the formation of Cu-Al intermetallic phases. In all cases, a hot isostatic pressing (HIP) furnace was used in conjunction with canned assemblies in order to minimize oxidation and apply sufficient pressure on the assembly for excellent metal-to-metal contact and subsequent bonding. Several different processing schedules were evaluated during the course of this study; bonded assemblies were produced that failed outside the bond area indicating a 100% joint efficiency.

  4. Separation of Transmutation - and Fission-Produced Radioisotopes from Irradiated Beryllium

    SciTech Connect

    Troy J. Tranter; RIchard D. Tillotson; Nick R. Mann; Glen R. Longhurst

    2011-11-01

    The primary objective of this study was to test the effectiveness of a two-step solvent extraction-precipitation process for separating transmutation and fission products from irradiated beryllium. Beryllium metal was dissolved in nitric and fluoroboric acids. Isotopes of 241Am, 239Pu, 85Sr, 60Co, and 137Cs were then added to make a surrogate beryllium waste solution. A series of batch contacts was performed with the spiked simulant using chlorinated cobalt dicarbollide and polyethylene glycol diluted with sulfone to extract the isotopes of Cs and Sr. Another series of batch contacts was performed using a combination of octyl (phenyl)-N,Ndiisobutylcarbamoylmethylphosphine oxide in tributyl phosphate diluted with dodecane for extracting the isotopes of Pu and Am. The 60Co was separated by first forming a cobalt complex and then selectively precipitating the beryllium as a hydroxide. The results indicate that greater than 99.9% removal can be achieved for each radionuclide. Transuranic isotope contamination levels are reduced to less than 100 nCi/g, and sources of high beta-gamma radiation (60Co, 137Cs, and 90Sr) are reduced to levels that will allow the beryllium to be contact handled. The separation process may be applicable to a recycle or waste disposition scenario.

  5. Drinking-water criteria document for beryllium. Draft report (Final)

    SciTech Connect

    Olsen, J.

    1990-01-01

    Beryllium (Be) is a hard grayish-white metal of the alkaline earth family. The major route of exposure by which beryllium enters the body is inhalation. Beryllium also occurs naturally in various tobaccos and may be inhaled during smoking. The greatest potential for beryllium exposure occurs in the work place and in the vicinity of the industries that process beryllium ore or compounds. Although evidence exists that beryllium is a carcinogen by the inhalation route, no definitive evidence exists that correlates the ingestion of beryllium with tumor appearance since it has not been tested orally at the MTD. However, since beryllium is carcinogenic by inhalation and parenteral routes, and also induces chromosomal abnormalities, it is possible that beryllium in water could pose a carcinogenic risk to man.

  6. Transgenic Mouse Model of Chronic Beryllium Disease

    SciTech Connect

    Gordon, Terry

    2009-05-26

    Animal models provide powerful tools for dissecting dose-response relationships and pathogenic mechanisms and for testing new treatment paradigms. Mechanistic research on beryllium exposure-disease relationships is severely limited by a general inability to develop a sufficient chronic beryllium disease animal model. Discovery of the Human Leukocyte Antigen (HLA) - DPB1Glu69 genetic susceptibility component of chronic beryllium disease permitted the addition of this human beryllium antigen presentation molecule to an animal genome which may permit development of a better animal model for chronic beryllium disease. Using FVB/N inbred mice, Drs. Rubin and Zhu, successfully produced three strains of HLA-DPB1 Glu 69 transgenic mice. Each mouse strain contains a haplotype of the HLA-DPB1 Glu 69 gene that confers a different magnitude of odds ratio (OR) of risk for chronic beryllium disease: HLA-DPB1*0401 (OR = 0.2), HLA-DPB1*0201 (OR = 15), HLA-DPB1*1701 (OR = 240). In addition, Drs. Rubin and Zhu developed transgenic mice with the human CD4 gene to permit better transmission of signals between T cells and antigen presenting cells. This project has maintained the colonies of these transgenic mice and tested the functionality of the human transgenes.

  7. Notched strength of beryllium powder and ingot sheets.

    NASA Technical Reports Server (NTRS)

    Moss, R. G.

    1972-01-01

    The effects of notches in thin beryllium sheets were studied as functions of material variables and notch severity. Double edge notched samples having stress concentration factors of 1.0 to 15.4 were prepared by milling to size, etching, and electrical discharge machining the notches. Strength was not reduced greatly by sharp notches, and duller notches were more deleterious than sharp notches. The trend was for reduced strength for dull notches, increased strength for sharper notches, and reduced strength for very sharp notches. Differences in material purity or source of the sheet had little affect on notch sensitivity. The most important factors appear to be oxide content and directionality of the sheet microstructure; high oxide content and highly directional microstructure tend to give more notch sensitivity than low oxide content, and more bidirectional microstructure. Postulated causes of the change in notched/unnotched strength are given.

  8. [Treatment of refractory ascites].

    PubMed

    Martínez, Javier; Albillos, Agustín

    2014-07-01

    Ascites is a common complication of hepatic cirrhosis and portal hypertension. Patients present systemic and splanchnic circulation disorders, which cause central hypovolemia and arterial hypotension, with the subsequent activation of vasoconstrictor systems and increased renal reabsorption of sodium and water. Approximately 5%-10% of patients present refractory ascites. Refractory ascites is considered when it is not controllable with standard dietary (sodium restriction) and diuretic (furosemide up to 160 mg a day and spironolactone up to 400mg a day) treatment or when patients present adverse effects due to diuretics that impede their administration at optimum dosages. The current therapeutic options for these patients are repeated evacuative paracentesis and the percutaneous intrahepatic portosystemic shunt. Despite these treatments, refractory ascites has a poor prognosis; patients should therefore be assessed for liver transplantation. PMID:25087715

  9. Refractory Glass Seals for SOFC

    SciTech Connect

    Chou, Y. S.; Stevenson, Jeffry W.

    2011-07-01

    One of the critical challenges facing planar solid oxide fuel cell (SOFC) technology is the need for reliable sealing technology. Seals must exhibit long-term stability and mechanical integrity in the high temperature SOFC environment during normal and transient operation. Several different approaches for sealing SOFC stacks are under development, including glass or glass-ceramic seals, metallic brazes, and compressive seals. Among glass seals, rigid glass-ceramics, self-healing glass, and composite glass approaches have been investigated under the SECA Core Technology Program. The U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) has developed the refractory glass approach in light of the fact that higher sealing temperatures (e.g., 930-1000 degrees C) may enhance the ultimate in-service bulk strength and electrical conductivity of contact materials, as well as the bonding strength between contact materials and adjacent SOFC components, such as interconnect coatings and electrodes. This report summarizes the thermal, chemical, mechanical, and electrical properties of the refractory sealing glass.

  10. Migration of Beryllium via Multiple Exposure Pathways among Work Processes in Four Different Facilities.

    PubMed

    Armstrong, Jenna L; Day, Gregory A; Park, Ji Young; Stefaniak, Aleksandr B; Stanton, Marcia L; Deubner, David C; Kent, Michael S; Schuler, Christine R; Virji, M Abbas

    2014-01-01

    Inhalation of beryllium is associated with the development of sensitization; however, dermal exposure may also be important. The primary aim of this study was to elucidate relationships among exposure pathways in four different manufacturing and finishing facilities. Secondary aims were to identify jobs with increased levels of beryllium in air, on skin, and on surfaces; identify potential discrepancies in exposure pathways, and determine if these are related to jobs with previously identified risk. Beryllium was measured in air, on cotton gloves, and on work surfaces. Summary statistics were calculated and correlations among all three measurement types were examined at the facility and job level. Exposure ranking strategies were used to identify jobs with higher exposures. The highest air, glove, and surface measurements were observed in beryllium metal production and beryllium oxide ceramics manufacturing jobs that involved hot processes and handling powders. Two finishing and distribution facilities that handle solid alloy products had lower exposures than the primary production facilities, and there were differences observed among jobs. For all facilities combined, strong correlations were found between air-surface (rp ≥ 0.77), glove-surface (rp ≥ 0.76), and air-glove measurements (rp ≥ 0.69). In jobs where higher risk of beryllium sensitization or disease has been reported, exposure levels for all three measurement types were higher than in jobs with lower risk, though they were not the highest. Some jobs with low air concentrations had higher levels of beryllium on glove and surface wipe samples, suggesting a need to further evaluate the causes of the discrepant levels. Although such correlations provide insight on where beryllium is located throughout the workplace, they cannot identify the direction of the pathways between air, surface, or skin. Ranking strategies helped to identify jobs with the highest combined air, glove, and/or surface exposures

  11. Refractory failure in IGCC fossil fuel power systems

    SciTech Connect

    Dogan, Cynthia P.; Kwong, Kyei-Sing; Bennett, James P.; Chinn, Richard E.

    2001-01-01

    Current generation refractory materials used in slagging gasifiers employed in Integrated Gasification Combined Cycle (IGCC) fossil fuel power systems have unacceptably short service lives, limiting the reliability and cost effectiveness of gasification as a means to generate power. The short service life of the refractory lining results from exposure to the extreme environment inside the operating gasifier, where the materials challenges include temperatures to 1650 C, thermal cycling, alternating reducing and oxidizing conditions, and the presence of corrosive slags and gases. Compounding these challenges is the current push within the industry for fuel flexibility, which results in slag chemistries and operating conditions that can vary widely as the feedstock for the gasifier is supplemented with alternative sources of carbon, such as petroleum coke and biomass. As a step toward our goal of developing improved refractory materials for this application, we have characterized refractory-slag interactions, under a variety of simulated gasifier conditions, utilizing laboratory exposure tests such as the static cup test and a gravimetric test. Combining this information with that gained from the post-mortem analyses of spent refractories removed from working gasifiers, we have developed a better understanding of refractory failure in gasifier environments. In this paper, we discuss refractory failures in slagging gasifiers and possible strategies to reduce them. Emphasis focuses on the refractories employed in gasifier systems which utilize coal as the primary feedstock.

  12. Efficacy of surface sampling methods for different types of beryllium compounds.

    PubMed

    Dufresne, A; Mocanu, T; Viau, S; Perrault, G; Dion, C

    2011-01-01

    The objective of the research work was to evaluate the efficiency of three different sampling methods (Ghost Wipe™, micro-vacuum, and ChemTest®) in the recovery of Be dust by assessing: (1) four Be compounds (beryllium acetate, beryllium chloride, beryllium oxide and beryllium aluminium), (2) three different surfaces (polystyrene, glass and aluminium) and (3) inter-operator variation. The three sampling methods were also tested on site in a laboratory of a dental school for validation purposes. The Ghost Wipe™ method showed recovery ranging from 43.3% to 85.8% for all four Be compounds and for all three quantities of Be spiked on Petri dishes, while recovery with the micro-vacuum method ranged from 0.1% to 12.4%. On polystyrene dishes with 0.4 µg Be, the recovery ranged from 48.3% to 81.7%, with an average recovery of 59.4% for Operator 1 and 68.4% for Operator 2. The ChemTest® wipe method with beryllium acetate, beryllium chloride, and AlBeMet® showed analogous results that are in line with the manufacturer's manual, but collection of beryllium oxide was negative. In the dental laboratory, Ghost Wipe™ samplings showed better recovery than the micro-vacuum method. The ratios between the recovered quantities of Be in each location where the Ghost Wipe™ was tested differed substantially, ranging from 1.45 to 64. In the dental laboratory, a faint blue color indicating the presence of Be was observed on the ChemTest® wipes used in two locations out of six. In summary, the Ghost Wipe™ method was more efficient than micro-vacuuming in collecting the Be dust from smooth, non-porous surfaces such as Petri dishes by a factor of approximately 18. The results obtained on site in a dental laboratory also showed better recovery with Ghost Wipes™. However, the ratio of Be recovered by Ghost Wipes™ versus micro-vacuuming was much lower for surfaces where a large amount of dust was present. Wet wiping is preferred over micro-vacuuming for beryllium forms, but

  13. Improved adhesion of sputtered refractory carbides to metal substrates

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Brainard, W. A.

    1980-01-01

    Sputtered coatings of the refractory metal carbides are of great interest for applications where hard wear-resistant materials are desired. The usefulness of sputtered refractory carbides is often limited in practice by spalling or interfacial separation. In this work improvements in the adherence of refractory carbides on iron, nickel and titanium base alloys were obtained by using oxidation, reactive sputtering or sputtered interlayers to alter the coating-substrate interfacial region. X-ray photoelectron spectroscopy and argon ion etching were used to characterize the interfacial regions, and an attempt was made to correlate adherence as measured in wear tests with the chemical nature of the interface.

  14. Dynamic Testing of Gasifier Refractory

    SciTech Connect

    Michael D. Mann; Wayne S. Seames; Devdutt Shukla; Xi Hong; John P. Hurley

    2005-12-01

    The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by refractory materials under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) was utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. High-alumina and high-chromia refractory bricks were tested using slags obtained from two solid fuel gasifiers. Testing was performed at 1475 C in a reducing atmosphere (2% H{sub 2} in N{sub 2}) The CADCAF tests show that high-chrome refractories have greater corrosion resistance than high-aluminum refractories; coal slag readily diffuses into the refractory through its grain boundaries; the refractory grains are more stable than the matrix in the tests, and the grains are the first line of defense against corrosion; calcium and alkali in the slag are more corrosive than iron; and silicon and calcium penetrate the deepest into the refractory. The results obtained from this study are preliminary and should be combined with result from other research programs. In particular, the refractory corrosion results from this study should be compared with refractories removed from commercial gasifiers.

  15. Chronic beryllium disease: Diagnosis and management

    SciTech Connect

    Rossman, M.D.

    1996-10-01

    Chronic beryllium disease is predominantly a pulmonary granulomatosis that was originally described in 1946. Symptoms usually include dyspnea and cough. Fever, anorexia, and weight loss are common. Skin lesions are the most common extrathoracic manifestation. Granulomatous hepatitis, hypercalcemia, and kidney stones can also occur. Radiographic and physiologic abnormalities are similar to those in sarcoidosis. While traditionally the pathologic changes included granulomas and cellular interstitial changes, the hallmark of the disease today is the well-formed granuloma. Immunologic studies have demonstrated a cell-mediated response to beryllium that is due to an accumulation of CD4{sup +} T cells at the site of disease activity. Diagnosis depends on the demonstration of pathologic changes (i.e., granuloma) and evidence that the granuloma was caused by a hypersensitivity to beryllium (i.e., positive lung proliferative response to beryllium). Using these criteria, the diagnosis of chronic beryllium disease can now be made before the onset of clinical symptoms. Whether, with early diagnosis, the natural course of this condition will be the same as when it was traditionally diagnosed is not known. Currently, corticosteroids are used to treat patients with significant symptoms or evidence of progressive disease. 21 refs.

  16. Refractory ceramic fibers

    Integrated Risk Information System (IRIS)

    Refractory ceramic fibers ; CASRN Not found Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcino

  17. Molecular Sidebands of Refractory Elements for ISOL

    SciTech Connect

    Kronenberg, Andreas; Spejewski, Eugene H.; Carter, H Kennon; Mervin, Brenden T.; Jost, Cara; Stracener, Daniel W; Lapi, Suzanne; Bray, T. H.

    2008-01-01

    The formation of molecular sidebands of refractory elements, such as V, Re, Zr, Mo, Tc, is discussed. The focus is on in situ sideband formation and its advantage for the release process. An atomic 48V beam has been produced in a two step process, forming the oxide in situ, transporting it through the target-ion source as a chloride and destroying the chlorine sideband in the ion source. The sideband formation of Re, Zr, Mo, Tc is discussed.

  18. Effect of grain size on the hardness and reactivity of plasma-sintered beryllium

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hwan; Nakamichi, Masaru

    2014-10-01

    Beryllium and its intermetallic compounds have attracted great attention as promising neutron multipliers in fusion reactors. In this study, mechanical and chemical properties of fabricated plasma-sintered beryllium (PS-Be) with different grain-sizes are investigated. Density and hardness analysis results of the fabricated PS-Be samples infer that a smaller grain size in the sintered Be indicates higher porosity and hardness. Sintered Be with a large grain size exhibits better resistance toward oxidation at 1273 K in dry air and at 1073 K in Ar/1% H2O, since oxidation at the grain boundaries of the determines the rate. In contrast, at 1273 K in Ar/1% H2O, a catastrophic oxidation is indicated by the increase of weight of the samples and the generation of H2 from the bulk Be.

  19. REVIEWS OF THE ENVIRONMENTAL EFFECTS OF POLLUTANTS: VI. BERYLLIUM

    EPA Science Inventory

    The report is a review of the scientific literature on the biological and environmental effects of beryllium. Included in the review are a general summary and a comprehensive discussion of the following topics as related to beryllium and specific beryllium compounds: physical and...

  20. 10 CFR 850.20 - Baseline beryllium inventory.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Baseline beryllium inventory. 850.20 Section 850.20 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.20 Baseline beryllium inventory. (a) The responsible employer must develop a baseline inventory of...

  1. 10 CFR 850.20 - Baseline beryllium inventory.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Baseline beryllium inventory. 850.20 Section 850.20 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.20 Baseline beryllium inventory. (a) The responsible employer must develop a baseline inventory of...

  2. 10 CFR 850.20 - Baseline beryllium inventory.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Baseline beryllium inventory. 850.20 Section 850.20 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.20 Baseline beryllium inventory. (a) The responsible employer must develop a baseline inventory of...

  3. 10 CFR 850.20 - Baseline beryllium inventory.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Baseline beryllium inventory. 850.20 Section 850.20 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.20 Baseline beryllium inventory. (a) The responsible employer must develop a baseline inventory of...

  4. 20 CFR 30.508 - What is beryllium sensitivity monitoring?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true What is beryllium sensitivity monitoring? 30... sensitivity monitoring? Beryllium sensitivity monitoring shall consist of medical examinations to confirm and monitor the extent and nature of a covered Part B employee's beryllium sensitivity. Monitoring shall...

  5. 20 CFR 30.508 - What is beryllium sensitivity monitoring?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true What is beryllium sensitivity monitoring? 30... sensitivity monitoring? Beryllium sensitivity monitoring shall consist of medical examinations to confirm and monitor the extent and nature of a covered Part B employee's beryllium sensitivity. Monitoring shall...

  6. 20 CFR 30.508 - What is beryllium sensitivity monitoring?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false What is beryllium sensitivity monitoring? 30... sensitivity monitoring? Beryllium sensitivity monitoring shall consist of medical examinations to confirm and monitor the extent and nature of a covered Part B employee's beryllium sensitivity. Monitoring shall...

  7. 20 CFR 30.508 - What is beryllium sensitivity monitoring?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false What is beryllium sensitivity monitoring? 30... sensitivity monitoring? Beryllium sensitivity monitoring shall consist of medical examinations to confirm and monitor the extent and nature of a covered Part B employee's beryllium sensitivity. Monitoring shall...

  8. 20 CFR 30.508 - What is beryllium sensitivity monitoring?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false What is beryllium sensitivity monitoring? 30... sensitivity monitoring? Beryllium sensitivity monitoring shall consist of medical examinations to confirm and monitor the extent and nature of a covered Part B employee's beryllium sensitivity. Monitoring shall...

  9. Barrier Coatings for Refractory Metals and Superalloys

    SciTech Connect

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-02-23

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life.

  10. Evaluation of beryllium for space shuttle components

    NASA Technical Reports Server (NTRS)

    Trapp, A. E.

    1972-01-01

    Application of beryllium to specific full-scale space shuttle structural components and assemblies was studied. Material evaluations were conducted to check the mechanical properties of as-received material to gain design information on characteristics needed for the material in the space shuttle environment, and to obtain data needed for evaluating component and panel tests. Four beryllium structural assemblies were analyzed and designed. Selected components of these assemblies, representing areas of critical loading or design/process uncertainty, were designed and tested, and two panel assemblies were fabricated. Trends in cost and weight factors were determined by progressive estimation at key points of preliminary design, final design, and fabrication to aid in a cost/weight evaluation of the use of beryllium.

  11. Mineral resource of the month: beryllium

    USGS Publications Warehouse

    Shedd, Kim B.

    2006-01-01

    Beryllium metal is lighter than aluminum and stiffer than steel. These and other properties, including its strength, dimensional stability, thermal properties and reflectivity, make it useful for aerospace and defense applications, such as satellite and space-vehicle structural components. Beryllium’s nuclear properties, combined with its low density, make it useful as a neutron reflector and moderator in nuclear reactors. Because it is transparent to most X rays, beryllium is used as X-ray windows in medical, industrial and analytical equipment.

  12. Migration of Beryllium via Multiple Exposure Pathways among Work Processes in Four Different Facilities

    PubMed Central

    Armstrong, Jenna L.; Day, Gregory A.; Park, Ji Young; Stefaniak, Aleksandr B.; Stanton, Marcia L.; Deubner, David C.; Kent, Michael S.; Schuler, Christine R.; Virji, M. Abbas

    2016-01-01

    Inhalation of beryllium is associated with the development of sensitization; however, dermal exposure may also be important. The primary aim of this study was to elucidate relationships among exposure pathways in four different manufacturing and finishing facilities. Secondary aims were to identify jobs with increased levels of beryllium in air, on skin, and on surfaces; identify potential discrepancies in exposure pathways, and determine if these are related to jobs with previously identified risk. Beryllium was measured in air, on cotton gloves, and on work surfaces. Summary statistics were calculated and correlations among all three measurement types were examined at the facility and job level. Exposure ranking strategies were used to identify jobs with higher exposures. The highest air, glove, and surface measurements were observed in beryllium metal production and beryllium oxide ceramics manufacturing jobs that involved hot processes and handling powders. Two finishing and distribution facilities that handle solid alloy products had lower exposures than the primary production facilities, and there were differences observed among jobs. For all facilities combined, strong correlations were found between air-surface (rp ≥ 0.77), glove-surface (rp ≥ 0.76), and air-glove measurements (rp ≥ 0.69). In jobs where higher risk of beryllium sensitization or disease has been reported, exposure levels for all three measurement types were higher than in jobs with lower risk, though they were not the highest. Some jobs with low air concentrations had higher levels of beryllium on glove and surface wipe samples, suggesting a need to further evaluate the causes of the discrepant levels. Although such correlations provide insight on where beryllium is located throughout the workplace, they cannot identify the direction of the pathways between air, surface, or skin. Ranking strategies helped to identify jobs with the highest combined air, glove, and/or surface exposures

  13. Preliminary results for explosion bonding of beryllium to copper

    SciTech Connect

    Butler, D.J.; Dombrowski, D.E.

    1995-09-01

    This program was undertaken to determine if explosive bonding is a viable technique for joining beryllium to copper substrates. The effort was a cursory attempt at trying to solve some of the problems associated with explosive bonding beryllium and should not be considered a comprehensive research effort. There are two issues that this program addressed. Can beryllium be explosive bonded to copper substrates and can the bonding take place without shattering the beryllium? Thirteen different explosive bonding iterations were completed using various thicknesses of beryllium that were manufactured with three different techniques.

  14. Catalytic, hollow, refractory spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1987-01-01

    Improved, heterogeneous, refractory catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitable formed of a shell (12) of refractory such as alumina having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be itself catalytic or a catalytically active material coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  15. Refractory plasmonics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Guler, Urcan; Boltasseva, Alexandra; Shalaev, Vladimir M.

    2016-04-01

    The use of plasmonic effects over a broad range of electromagnetic spectrum has been a challenge over the first few decades of research due to limited number of available materials. Recently, the efforts in the area has been concentrated on identifying and examining new material classes as the building blocks for optical technologies over a broader electromagnetic spectrum. Transition metal nitrides attract attention as plasmonic materials in the visible and infrared spectral regions with optical properties resembling gold. As refractory materials, nitrides can withstand heat induced physical phenomena as well as aggressive chemical environment. Adjustable dielectric permittivity of plasmonic nitrides allow fine tuning of optical properties for selected applications. In addition to favorable optical, physical and chemical properties; transition metal nitrides provide CMOS- and bio-compatibility. In this talk, novel designs and concepts based on refractory plasmonic materials for infrared applications will be presented. Additionally, light confinement at the nanoscale with refractory plasmonic antennas, spectral engineering of absorption and emission with metamaterials, and the use of colloidal solutions for a variety of applications will be discussed.

  16. Characterizing coal-gasifier slag-refractory interactions

    SciTech Connect

    Rawers, James C.; Kwong, Kyei-Sing; Bennett, James P.

    1999-01-01

    To characterize refractory degradation and loss in commercial coal-gasifier combined cycle power systems, cup-type tests were conducted on high chromium-alumina, sinter-bonded refractories under laboratory conditions designed to simulate commercial operations of temperature, atmosphere, and slag interactions. These tests provided qualitative results from which the slag?refractory interactions can be characterized. These high chromium refractories were generally inert with respect to the coal slag components. However, in this study preliminary findings did show (1) iron ( oxide) in the slag reacted with chrome sesquioxide to produce a Cr?Fe spinel at the slag?refractory interface, and (2) chrome was soluble in the molten slag. Comparison of cup-type test results with data from operating commercial plants suggests that the principal loss of refractory material in a coal-gasifier combustion chamber is chrome dissolution into the slag. Tests are currently underway to determine if minor modifications to the combustion process might increase refractory life.

  17. Characterizing coal-gasifier slag-refractory interactions

    SciTech Connect

    Rawers, James C.; Bennett, James P.; Kwong, Kyei-Sing

    1999-01-01

    To characterize refractory degradation and loss in commercial coal-gasifier combined cycle power systems, cup-type tests were conducted on high chromium-alumina, sinter-bonded refractories under laboratory conditions designed to simulate commercial operations of temperature, atmosphere, and slag interactions. These tests provided qualitative results from which the slag–refractory interactions can be characterized. These high chromium refractories were generally inert with respect to the coal slag components. However, in this study preliminary findings did show (1) iron ( oxide) in the slag reacted with chrome sesquioxide to produce a Cr–Fe spinel at the slag–refractory interface, and (2) chrome was soluble in the molten slag. Comparison of cup-type test results with data from operating commercial plants suggests that the principal loss of refractory material in a coal-gasifier combustion chamber is chrome dissolution into the slag. Tests are currently underway to determine if minor modifications to the combustion process might increase refractory life.

  18. Status of beryllium development for fusion applications

    SciTech Connect

    Billone, M.C.; Donne, M.D.; Macaulay-Newcombe, R.G.

    1994-05-01

    Beryllium is a leading candidate material for the neutron multiplier of tritium breeding blankets and the plasma facing component of first wall and divertor systems. Depending on the application, the fabrication methods proposed include hot-pressing, hot-isostatic-pressing, cold isostatic pressing/sintering, rotary electrode processing and plasma spraying. Product forms include blocks, tubes, pebbles, tiles and coatings. While, in general, beryllium is not a leading structural material candidate, its mechanical performance, as well its performance with regard to sputtering, heat transport, tritium retention/release, helium-induced swelling and chemical compatibility, is an important consideration in first-wall/blanket design. Differential expansion within the beryllium causes internal stresses which may result in cracking, thereby affecting the heat transport and barrier performance of the material. Overall deformation can result in loading of neighboring structural material. Thus, in assessing the performance of beryllium for fusion applications, it is important to have a good database in all of these performance areas, as well as a set of properties correlations and models for the purpose of interpolation/extrapolation.

  19. Potential exposures and risks from beryllium-containing products.

    PubMed

    Willis, Henry H; Florig, H Keith

    2002-10-01

    Beryllium is the strongest of the lightweight metals. Used primarily in military applications prior to the end of the Cold War, beryllium is finding new applications in many commercial products, including computers, telecommunication equipment, and consumer and automotive electronics. The use of beryllium in nondefense consumer applications is of concern because beryllium is toxic. Inhalation of beryllium dust or vapor causes a chronic lung disease in some individuals at concentrations as low as 0.01 microg/m3 in air. As beryllium enters wider commerce, it is prudent to ask what risks this might present to the general public and to workers downstream of the beryllium materials industry. We address this question by evaluating the potential for beryllium exposure from the manufacturing, use, recycle, and disposal of beryllium-containing products. Combining a market study with a qualitative exposure analysis, we determine which beryllium applications and life cycle phases have the largest exposure potential. Our analysis suggests that use and maintenance of the most common types of beryllium-containing products do not result in any obvious exposures of concern, and that maintenance activities result in greater exposures than product use. Product disposal has potential to present significant individual risks, but uncertainties concerning current and future routes of product disposal make it difficult to be definitive. Overall, additional exposure and dose-response data are needed to evaluate both the health significance of many exposure scenarios, and the adequacy of existing regulations to protect workers and the public. Although public exposures to beryllium and public awareness and concern regarding beryllium risks are currently low, beryllium risks have psychometric qualities that may lead to rapidly heightened public concern. PMID:12442995

  20. In situ generation of hydroxyl radical by cobalt oxide supported porous carbon enhance removal of refractory organics in tannery dyeing wastewater.

    PubMed

    Karthikeyan, S; Boopathy, R; Sekaran, G

    2015-06-15

    In this study, cobalt oxide doped nanoporous activated carbon (Co-NPAC) was synthesized and used as a heterogeneous catalyst for the Fenton oxidation of organic dye chemicals used in tannery process. The nanoporous activated carbon (NPAC) was prepared from rice husk by precarbonization followed by chemical activation at elevated temperature (600 °C). The cobalt oxide was impregnated onto NPAC and characterized for UV-visible, Fluorescence spectroscopy, FT-IR, HR-TEM, XRD, BET surface area and XPS analyses. The hydroxyl radical generation potential of Co-NPAC from hydrogen peroxide decomposition was identified (λ(exi), 320 nm; λ(emi), 450 nm) by Excitation Emission Spectra (EES) analysis. The conditions for the degradation of tannery dyeing wastewater such as, Co-NPAC dose, concentration of H2O2, and temperature were optimized in heterogeneous Fenton oxidation process and the maximum percentage of COD removal was found to be 77%. The treatment of dyes in wastewater was confirmed through UV-Visible spectra, EES and FT-IR spectra analyses. PMID:25733392

  1. Method of nitriding refractory metal articles

    DOEpatents

    Tiegs, Terry N.; Holcombe, Cressie E.; Dykes, Norman L.; Omatete, Ogbemi O.; Young, Albert C.

    1994-01-01

    A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  2. Method of nitriding refractory metal articles

    DOEpatents

    Tiegs, T.N.; Holcombe, C.E.; Dykes, N.L.; Omatete, O.O.; Young, A.C.

    1994-03-15

    A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  3. Refractories Keep Silicon Crystals Pure

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.

    1982-01-01

    Formation of carbon monoxide gas is prevented by a linear of refractory material free of elemental carbon. For pressures above about 4 torr, silicon carbide can be used as refractory liner. The problem of carbide contamination can arise in crystal growth of any material that forms a carbide more stable than carbon monoxide. Prevention in such cases is possible by using noncarbon refractories in place of graphite.

  4. Optical properties and structure of beryllium lead silicate glasses

    SciTech Connect

    Zhidkov, I. S.; Zatsepin, A. F.; Cholakh, S. O.; Kuznetsova, Yu. A.

    2014-10-21

    Luminescence and optical properties and structural features of (BeO){sub x}(PbO⋅SiO{sub 2}){sub 1−x} glasses (x = 0 ÷ 0.3) are investigated by means of optical absorption and photoluminescence spectroscopy and X-ray diffraction. The regularities of the formation of the optical absorption edge and static disorder are studied. It is shown that the optical absorption and luminescence are determined by transitions between localized states of lead ions. The impact of beryllium oxide on optical and luminescence properties and electronic structure of bands tails is discussed. The presence of two different concentration ranges with various short-range order structure and band tails nature has been established.

  5. The geochemical behavior of refractory noble metals and lithophile trace elements in refractory inclusions in carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Fegley, B.; Kornacki, A. S.

    1984-05-01

    Recent models of Ca, Al-rich (CAI) inclusion petrogenesis, and the recent availability of thermodynamic data have led to the reexamination of the geochemical behavior of the refractory noble metals (RNM) and several lithophile refractory trace elements in CAI's in the context of distillation models. Here, pertinent chemical and mineralogical properties of the various classes of refractory inclusions are reviewed, and calculations of the stability of LRTE-RNM alloys and several LRTE oxides under nebular conditions are presented. The calculations, observations and experimental results are applied to a new model of the origin of refractory metal nuggets, and a specific mechanism is identified for producing Group II chemical patterns in a cold star nebula by fractionating interstellar dust at low temperature on the basis of physical differences between different populations of pre-solar grains.

  6. The geochemical behavior of refractory noble metals and lithophile trace elements in refractory inclusions in carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Fegley, B., Jr.; Kornacki, A. S.

    1984-01-01

    Recent models of Ca, Al-rich (CAI) inclusion petrogenesis, and the recent availability of thermodynamic data have led to the reexamination of the geochemical behavior of the refractory noble metals (RNM) and several lithophile refractory trace elements in CAI's in the context of distillation models. Here, pertinent chemical and mineralogical properties of the various classes of refractory inclusions are reviewed, and calculations of the stability of LRTE-RNM alloys and several LRTE oxides under nebular conditions are presented. The calculations, observations and experimental results are applied to a new model of the origin of refractory metal nuggets, and a specific mechanism is identified for producing Group II chemical patterns in a cold star nebula by fractionating interstellar dust at low temperature on the basis of physical differences between different populations of pre-solar grains.

  7. Primordial refractory metal particles in the Allende meteorite

    NASA Astrophysics Data System (ADS)

    Blander, M.; Fuchs, L. H.; Horowitz, C.; Land, R.

    1980-02-01

    Refractory metal particles containing Os, Re, W, Mo, Ir, and Ru were observed in a Ca-Al-rich inclusion in the Allende meteorite. These particles are the closest to unaltered primordial metal condensates from a nebula yet reported, and appear to have been isolated from the nebula before the condensation of refractories was complete. Computer calculations of condensation indicate that the temperature of isolation appears to be close to the calculated temperature of first formation of oxides (about 1620 K at 0.0001 atm) indicating that isolation may have been effected by coating of the particles by oxides.

  8. Refractory for Black Liquor Gasifiers

    SciTech Connect

    William L. Headrick; Musa Karakus; Alireza Rezaie

    2004-03-30

    -situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesium aluminate and barium aluminate for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO2 and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  9. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang

    2005-07-01

    -situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesium aluminate and barium aluminate for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO{sub 2} and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  10. Refractory for Black Liquor Gasifiers

    SciTech Connect

    Robert E. Moore; William L. Headrick; Alireza Rezaie

    2003-03-31

    -situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesia aluminate and baria aluminate spinels for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  11. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect

    William L. Headrick Jr.; Alireza Rezaie

    2003-12-01

    -situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesia aluminate and baria aluminate spinels for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  12. Refractory for Black Liquor Gasifiers

    SciTech Connect

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang

    2005-10-01

    were functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development were divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesium aluminate and barium aluminate for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO{sub 2} and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  13. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Jun Wei

    2005-01-01

    -situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesium aluminate and barium aluminate for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO{sub 2} and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  14. Refractory for Black Liquor Gasifiers

    SciTech Connect

    William L. Headrick Jr; Alireza Rezaie

    2003-12-01

    -situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesia aluminate and baria aluminate spinels for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  15. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Jun Wei

    2005-04-01

    -situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesium aluminate and barium aluminate for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO{sub 2} and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  16. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Alireza Rezaie

    2004-10-01

    -situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesium aluminate and barium aluminate for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO{sub 2} and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  17. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Alireza Rezaie

    2004-07-01

    -situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesium aluminate and barium aluminate for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO{sub 2} and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  18. Refractory for Black Liquor Gasifiers

    SciTech Connect

    William L. Headrick Jr; Alireza Rezaie

    2003-08-01

    -situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesia aluminate and baria aluminate spinels for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  19. Refractory for Black Liquor Gasifiers

    SciTech Connect

    William L. Headrick Jr; Alireza Rezaie; Xiaoting Liang; Musa Karakus; Jun Wei

    2005-12-01

    were functionally-graded to give the best combination of thermal, mechanical and physical properties and chemical stability; and are relatively inexpensive, reliable repair materials. Material development was divided into 2 tasks: Task 1 was development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesium aluminate and barium aluminate for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO2 and SiC. Task 2 was finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  20. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect

    William L. Headrick Jr.; Alireza Rezaie

    2004-04-01

    -situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesium aluminate and barium aluminate spinels for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO{sub 2} and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  1. Beryllium surface levels in a military ammunition plant.

    PubMed

    Sanderson, Wayne T; Leonard, Stephanie; Ott, Darrin; Fuortes, Laurence; Field, William

    2008-07-01

    This study evaluated the presence of beryllium surface contamination in a U.S. conventional munitions plant as an indicator of possible past beryllium airborne and skin exposure and used these measurements to classify job categories by potential level of exposure. Surface samples were collected from production and nonproduction areas of the plant and at regional industrial reference sites with no known history of beryllium use. Surface samples of premoistened wiping material were analyzed for beryllium mass content using inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and results expressed as micrograms of beryllium per 100 square centimeters (micro g/100 cm(2)). Beryllium was detected in 87% of samples collected at the munitions plant and in 72% of the samples collected at regional reference sites. Two munitions plant samples from areas near sanders and grinders were above 3.0 micro g/100 cm(2) (U.S. Department of Energy surface contamination limit). The highest surface level found at the reference sites was 0.44 micro g/100 cm(2). Workers in areas where beryllium-containing alloy tools were sanded or ground, but not other work areas, may have been exposed to airborne beryllium concentrations above levels encountered in other industries where metal work is conducted. Surface sampling provided information useful for categorizing munitions plant jobs by level of past beryllium airborne and skin exposure and, subsequently, for identifying employees within exposure strata to be screened for beryllium sensitization. PMID:18569510

  2. Beryllium contamination inside vehicles of machine shop workers

    SciTech Connect

    Sanderson, W.T.; Henneberger, P.K.; Martyny, J.; Ellis, K.; Mroz, M.M.; Newman, L.S. |

    1999-04-01

    Inhalation of beryllium particles causes a chronic, debilitating lung disease--chronic beryllium disease (CBD)--in immunologically sensitized workers. Evidence that very low concentrations of beryllium may initiate this chronic disease is provided by incidences of the illness in family members exposed to beryllium dust from workers` clothes and residents in neighborhoods surrounding beryllium refineries. This article describes the results of a cross-sectional survey to evaluate potential take-home beryllium exposures by measuring surface concentrations on the hands and in vehicles of workers at a precision machine shop where cases of CBD had recently been diagnosed. Many workers did not change out of their work clothes and shoes at the end of their shift, increasing the risk of taking beryllium home to their families. Wipe samples collected from workers` hands and vehicle surfaces were analyzed for beryllium content by inductively coupled argon plasma-atomic emission spectroscopy (ICP-AES). The results ranged widely, from nondetectable to 40 {micro}g/ft{sup 2} on workers` hands and up to 714 {micro}g/fg{sup 2} inside their vehicles, demonstrating that many workers carried residual beryllium on their hands and contaminated the inside of their vehicles when leaving work. The highest beryllium concentrations inside the workers` vehicles were found on the drivers` floor (GM = 19 {micro}g/ft{sup 2}, GSD = 4.9), indicating that workers were carrying beryllium on their shoes into their vehicles. A safe level of beryllium contamination on surfaces is not known, but it is prudent to reduce the potential for workers to carry beryllium away from the work site.

  3. Control of beryllium powder at a DOE facility

    SciTech Connect

    Langner, G.C.; Creek, K.L.; Castro, R.G.

    1997-12-31

    Beryllium is contained in a number of domestic and national defense items. Although many items might contain beryllium in some manner, few people need worry about the adverse effects caused by exposure to beryllium because it is the inhalable form of beryllium that is most toxic. Chronic beryllium disease (CBD), a granulomas and fibrotic lung disease with long latency, can be developed after inhalation exposures to beryllium. It is a progressive, debilitating lung disease. Its occurrence in those exposed to beryllium has been difficult to predict because some people seem to react to low concentration exposures whereas others do not react to high concentration exposures. Onset of the disease frequently occurs between 15 to 20 years after exposure begins. Some people develop the disease after many years of low concentration exposures but others do not develop CBD even though beryllium is shown to be present in lungs and urine. Conclusions based on these experiences are that their is some immunological dependence of developing CBD in about 3--4% of the exposed population, but the exact mechanism involved has not yet been identified. Acute beryllium disease can occur after a single exposure to a concentration of greater than 0.100 mg/m3 (inhalation exposure); it is characterized by the development of chemical pneumoconiosis, a respiratory disease. The acute effect of skin contact is a dermatitis characterized by itching and reddened, elevated, or fluid-accumulated lesions which appear particularly on the exposed surfaces of the body, especially the face, neck, arms, and hands. Small particles of beryllium that enter breaks in the skin can lead to the development of granulomas and/or open sores that do not heal until the beryllium has been removed. Our interest is only airborne beryllium, which is found in areas that machine or produce beryllium.

  4. [The refractory glaucomas].

    PubMed

    Valtot, F

    2003-10-01

    Refractory types of glaucoma continue to present a therapeutic challenge to ophthalmologists. Approaches toward the management of these difficult glaucomas are addressed in this paper. The first part devotes special attention to understand the cause(s) of the failure of previous filtering surgery(ies). The next part emphasizes filtration surgery with intraoperative application of antimetabolites: 5-fluorouracil or mitomycin C and the surgical and pharmacological management of failing filtration. In case of failure of multiple filtering surgery with application of antimetabolites, surgeons have to consider cyclodestructive procedures (transscleral diode laser or endoscopic cyclophotocoagulation) to reduce aqueous production, or fistulizing procedures with tube implants or other drainage devices (valves). PMID:14646834

  5. Survey made of refractory metals

    NASA Technical Reports Server (NTRS)

    Ault, G. M.

    1968-01-01

    Survey reviews the structural applications of refractory metals and the special problems they present in manufacture, evaluation, and application. The unique facilities required for their processing and evaluation, a summary of accomplishments in achieving commercial products, and the present status of the most advanced refractory materials are presented.

  6. REFRACTORY COATING FOR GRAPHITE MOLDS

    DOEpatents

    Stoddard, S.D.

    1958-06-24

    Refractory coating for graphite molds used in the casting of uranium is described. The coating is an alumino-silicate refractory composition which may be used as a mold surface in solid form or as a coating applied to the graphite mold. The composition consists of a mixture of ball clay, kaolin, alumina cement, alumina, water, sodium silicate, and sodium carbonate.

  7. [Topical aspects of occupational hygiene in the manufacture of novel types of periclase carbon refractory bricks].

    PubMed

    Roslyĭ, O F; Kurmanova, O G; Slyshkina, T V; Zykova, V A; Simonova, O V; Bakuleva, T V; Varovina, A S

    2007-01-01

    Comprehensive hygienic studies conducted at the Pervouralsk plant of refractory materials at the section of spinel periclasocarbonated refractory materials in the workshops for preparing and pressing refractory mass have shown that silicon-containing dust that is a mixture of various chemicals entering the air of a working area. In the refractory mass preparation workshop, the concentrations of a number of substances, such as magnesium oxide, phenol, formaldehyde, exceed their maximum allowable levels. In the pressing workshop, the workers are exposed to high noise levels. The working process in the study workshops is considered to be rough labor. PMID:17663058

  8. Plasma cleaning of beryllium coated mirrors

    NASA Astrophysics Data System (ADS)

    Moser, L.; Marot, L.; Steiner, R.; Newman, M.; Widdowson, A.; Ivanova, D.; Likonen, J.; Petersson, P.; Pintsuk, G.; Rubel, M.; Meyer, E.; Contributors, JET

    2016-02-01

    Cleaning systems of metallic first mirrors are needed in more than 20 optical diagnostic systems from ITER to avoid reflectivity losses. Currently, plasma sputtering is considered as one of the most promising techniques to remove deposits coming from the main wall (mainly beryllium and tungsten). This work presents the results of plasma cleaning of rhodium and molybdenum mirrors exposed in JET-ILW and contaminated with typical tokamak elements (including beryllium and tungsten). Using radio frequency (13.56 MHz) argon or helium plasma, the removal of mixed layers was demonstrated and mirror reflectivity improved towards initial values. The cleaning was evaluated by performing reflectivity measurements, scanning electron microscopy, x-ray photoelectron spectroscopy and ion beam analysis.

  9. Carcinogenicity of beryllium hydroxide and alloys

    SciTech Connect

    Groth, D.H.; Kommineni, C.; Mackay, G.R.

    1980-02-01

    Animal experiments are presented which show that Be metal, BeAl alloy, passivated Be metal, and beryllium hydroxide are pulmonary carcinogens in rats. These findings are supported by successful transplantation experiments. In addition, other alloys of Be, VBe/sub 12/, TiBe/sub 12/, TaBe/sub 12/, NbBe/sub 12/, Be/sub 2/B, and Be/sub 4/B were found to produce pulmonary metaplasia, frequently a preneoplastic lesion in rats. Old rats are shown to be more susceptible to the induction of pulmonary metaplasia than young adult rats. These results indicate that a lower dose of Be would be required to produce cancer in old animals compared to young adult animals. A discussion on the lung cancer incidence in beryllium production workers is presented.

  10. Beryllium window for an APS diagnostics beamline

    SciTech Connect

    Sheng, I.C.; Yang, B.X.; Sharma, Y.S.

    1997-09-01

    A beryllium (Be) window for an Advanced Photon Source (APS) diagnostics beamline has been designed and built. The window, which has a double concave axisymmetrical profile with a thickness of 0.5 mm at the center, receives 160 W/mm{sup 2} (7 GeV/100 mA stored beam) from an undulator beam. The window design as well as thermal and thermomechanical analyses, including thermal buckling of the Be window, are presented.

  11. Neutron counter based on beryllium activation

    SciTech Connect

    Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.; Paducha, M.; Scholz, M.; Igielski, A.; Karpinski, L.; Pytel, K.

    2014-08-21

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, α){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting β{sup −} particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β{sup −} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  12. Dynamic Behavior of Beryllium as a Function of Texture

    SciTech Connect

    Blumenthal, W.R.; Abeln, S.P.; Mataya, M.C.; Gray, G.T. III; Cannon, D.D.

    1999-01-05

    The high-strain-rate stress-strain responses of commercial hot-pressed beryllium and rolled-sheet beryllium were studied as a function of orientation in compression and room temperature. Hot-pressed beryllium exhibits isotropic mechanical properties; whereas 16:1 rolled sheet was highly anisotropic. Rolled sheet displayed a factor of two difference in strength between the thickness and in-plane (lowest) directions. Twinning is a key deformation mechanism at high rates.

  13. Prevalence of beryllium sensitization among aluminium smelter workers

    PubMed Central

    Slade, M. D.; Cantley, L. F.; Kirsche, S. R.; Wesdock, J. C.; Cullen, M. R.

    2010-01-01

    Background Beryllium exposure occurs in aluminium smelters from natural contamination of bauxite, the principal source of aluminium. Aims To characterize beryllium exposure in aluminium smelters and determine the prevalence rate of beryllium sensitization (BeS) among aluminium smelter workers. Methods A population of 3185 workers from nine aluminium smelters owned by four different aluminium-producing companies were determined to have significant beryllium exposure. Of these, 1932 workers participated in medical surveillance programmes that included the serum beryllium lymphocyte proliferation test (BeLPT), confirmation of sensitization by at least two abnormal BeLPT test results and further evaluation for chronic beryllium disease in workers with BeS. Results Personal beryllium samples obtained from the nine aluminium smelters showed a range of <0.01–13.00 μg/m3 time-weighted average with an arithmetic mean of 0.25 μg/m3 and geometric mean of 0.06 μg/m3. Nine workers were diagnosed with BeS (prevalence rate of 0.47%, 95% confidence interval = 0.21–0.88%). Conclusions BeS can occur in aluminium smelter workers through natural beryllium contamination of the bauxite and further concentration during the refining and smelting processes. Exposure levels to beryllium observed in aluminium smelters are similar to those seen in other industries that utilize beryllium. However, compared with beryllium-exposed workers in other industries, the rate of BeS among aluminium smelter workers appears lower. This lower observed rate may be related to a more soluble form of beryllium found in the aluminium smelting work environment as well as the consistent use of respiratory protection. PMID:20610489

  14. Analysis of DC magnetron sputtered beryllium films

    SciTech Connect

    Price, C.W.; Hsieh, E.J.; Lindsey, E.F.; Pierce, E.L.; Norberg, J.C.

    1988-10-01

    We are evaluating techniques that alter the columnar grain structure in sputtered beryllium films on fused silica substrates. The films are formed by DC magnetron sputtering, and the columnar structure, which is characteristic of this and most other deposition techniques, is highly detrimental to the tensile strength of the films. Attempts to modify the columnar structure by using RF-biased sputtering combined with nitrogen pulsing have been successful, and this paper describes the analyses of these films. Sputtered beryllium films are quite brittle, and the columnar structure in particular tends to form a distinct intergranular fracture; therefore, the grain structure was analyzed in fractured specimens using the high-resolution capability of a scanning electron microscope (SEM) equipped with a field emission gun (FESEM). Ion microanalysis using secondary-ion mass spectroscopy (SIMS) was conducted on some specimens to determining relative contamination levels introduced by nitrogen pulsing. The capability to perform quantitative SIMS analyses using ion-implanted specimens as standards also is being developed. This work confirms that the structure of DC magnetron sputtered beryllium can be improved significantly with combined nitrogen pulsing and RF-biased sputtering. 8 refs.

  15. Epidemiology of beryllium sensitization and disease in nuclear workers

    SciTech Connect

    Kreiss, K.; Mroz, M.M.; Zhen, B.; Martyny, J.W.; Newman, L.S. )

    1993-10-01

    We examined the epidemiology of chronic beryllium disease among a stratified, random sample (n = 895) of nuclear weapons workers using the blood beryllium lymphocyte transformation (BeLT) test and chest radiograph for case identification. Of 18 new cases of beryllium sensitization, 12 had beryllium disease, and three more developed pulmonary granulomas on lung biopsy over the succeeding 2 yr. Beryllium-sensitized cases did not differ from noncases in age, gender, race, ethnicity, smoking, most respiratory symptoms, spirometric or radiographic abnormalities, or job tenure. The six sensitized cases without initial disease differed from beryllium disease cases in having greater pack-years of smoking. Sensitization occurred among workers with inadvertent or bystander exposure, such as a secretary and security guard. However, beryllium sensitization risk was higher for machinists (4.7%) and for persons reporting measured overexposure (7.4%, odds ratio 5.1); exposure beginning before 1970 (3.6%, odds ratio 2.7); consistent beryllium exposure (3.4%); and sawing (4.7%) or band sawing (6.0%) of beryllium metal. We conclude that both individual susceptibility to sensitization and exposure circumstances are important in developing disease.

  16. The Rocky Flats Environmental Technology Site beryllium characterization project

    SciTech Connect

    Morrell, D.M.; Miller, J.R.; Allen, D.F.

    1999-06-01

    A site beryllium characterization project was completed at the Rocky Flats Environmental Technology Site (RFETS) in 1997. Information from historical reviews, previous sampling surveys, and a new sampling survey were used to establish a more comprehensive understanding of the locations and levels of beryllium contamination in 35 buildings. A feature of the sampling strategy was to test if process knowledge was a good predictor of where beryllium contamination could be found. Results revealed that this technique was effective at identifying where surface contamination levels might exceed the RFETS smear control level but that it was not effective in identifying where low concentrations of beryllium might be found.

  17. Possible health risks from low level exposure to beryllium.

    PubMed

    Stange, A W; Hilmas, D E; Furman, F J

    1996-07-17

    The first case of chronic beryllium disease (CBD) at the Rocky Flats Environmental Technology Site (Rocky Flats) was diagnosed in a machinist in 1984. Rocky Flats, located 16 miles northwest of Denver, Colorado, is part of the United States Department of Energy (DOE) nuclear weapons complex. Research and development operations using beryllium began at Rocky Flats in 1953, and beryllium production operations began in 1957. Exposures could have occurred during foundry operations, casting, shearing, rolling, cutting, welding, machining, sanding, polishing, assembly, and chemical analysis operations. The Beryllium Health Surveillance Program (BHSP) was established in June 1991 at Rocky Flats to provide health surveillance for beryllium exposed employees using the Lymphocyte Proliferation Test (LPT) to identify sensitized individuals. Of the 29 cases of CBD and 76 cases of beryllium sensitization identified since 1991, several cases appear to have had only minimal opportunistic exposures to beryllium, since they were employed in administrative functions rather than primary beryllium operations. In conjunction with other health surveillance programs, a questionnaire and interview are administered to obtain detailed work and health histories. These histories, along with other data, are utilized to estimate the extent of an individual's exposure. Additional surveillance is in progress to attempt to characterize the possible risks from intermittent or brief exposures to beryllium in the workplace. PMID:8711738

  18. Beryllium-10 in Australasian tektites - Evidence for a sedimentary precursor

    NASA Technical Reports Server (NTRS)

    Pal, D. K.; Moniot, R. K.; Kruse, T. H.; Herzog, G. F.; Tuniz, C.

    1982-01-01

    Each of seven Australasian tektites contains about 100 micron atoms of beryllium-10 (half-life, 1.53 million years) per gram. Cosmic-ray bombardment of the australites cannot have produced the measured amounts of beryllium-10 either at the earth's surface or in space. The beryllium-10 contents of these australites are consistent with a sedimentary precursor that adsorbed from precipitation beryllium-10 produced in the atmosphere. The sediments must have spent several thousand years at the earth's surface within a few million years of the tektite-producing event.

  19. Beryllium-10 in australasian tektites: evidence for a sedimentary precursor.

    PubMed

    Pal, D K; Tuniz, C; Moniot, R K; Kruse, T H; Herzog, G F

    1982-11-19

    Each of seven Australasian tektites contains about 1 x l0(8) atoms of beryllium-10 (half-life, 1.53 x 10(6) years) per gram. Cosmic-ray bombardment of the australites cannot have produced the measured amounts of beryllium-10 either at the earth's surface or in space. The beryllium-10 contents of these australites are consistent with a sedimentary precursor that adsorbed from precipitation beryllium-10 produced in the atmosphere. The sediments must have spent several thousand years at the earth's surface within a few million years of the tektite-producing event. PMID:17771035

  20. Beryllium-10 in Australasian tektites: evidence for a sedimentary precursor

    SciTech Connect

    Pal, D.K.; Tuniz, C.; Moniot, R.K.; Kruse, T.H.; Herzog, G.F.

    1982-11-19

    Each of seven Australasian tektites contains about 1 x 10/sup 8/ atoms of beryllium-10 (half-life, 1.53 x 10/sup 6/ years) per gram. Cosmic-ray bombardment of the australites cannot have produced the measured amounts of beryllium-10 either at the earth's surface or in space. The beryllium-10 contents of these australites are consistent with a sedimentary precursor that adsorbed from precipitation beryllium-10 produced in the atmosphere. The sediments must have spent several thousand years at the earth's surface within a few million years of the tektite-producing event.

  1. Piezoresistance and hole transport in beryllium-doped silicon.

    NASA Technical Reports Server (NTRS)

    Littlejohn, M. A.; Robertson, J. B.

    1972-01-01

    The resistivity and piezoresistance of p-type silicon doped with beryllium have been studied as a function of temperature, crystal orientation, and beryllium doping concentration. It is shown that the temperature coefficient of resistance can be varied and reduced to zero near room temperature by varying the beryllium doping level. Similarly, the magnitude of the piezoresistance gauge factor for beryllium-doped silicon is slightly larger than for silicon doped with a shallow acceptor impurity such as boron, while the temperature coefficient of piezoresistance is about the same for material containing these two dopants. These results are discussed in terms of a model for the piezoresistance of compensated p-type silicon.

  2. The bioinorganic chemistry and associated immunology of chronic beryllium disease†

    PubMed Central

    McCleskey, T. Mark; Chaudhary, Anu; Hong-Geller, Elizabeth; Gnanakaran, S.

    2013-01-01

    Chronic beryllium disease (CBD) is a debilitating, incurable, and often fatal disease that is caused by the inhalation of beryllium particulates. The growing use of beryllium in the modern world, in products ranging from computers to dental prosthetics (390 tons of beryllium in the US in the year 2000) necessitates a molecular based understanding of the disease in order to prevent and cure CBD. We have investigated the molecular basis of CBD at Los Alamos National Laboratory during the past six years, employing a multidisciplinary approach of bioinorganic chemistry and immunology. The results of this work, including speciation, inhalation and dissolution, and immunology will be discussed. PMID:18566702

  3. Quantitative method of determining beryllium or a compound thereof in a sample

    DOEpatents

    McCleskey, T. Mark; Ehler, Deborah S.; John, Kevin D.; Burrell, Anthony K.; Collis, Gavin E.; Minogue, Edel M.; Warner, Benjamin P.

    2006-10-31

    A method of determining beryllium or a beryllium compound thereof in a sample, includes providing a sample suspected of comprising beryllium or a compound thereof, extracting beryllium or a compound thereof from the sample by dissolving in a solution, adding a fluorescent indicator to the solution to thereby bind any beryllium or a compound thereof to the fluorescent indicator, and determining the presence or amount of any beryllium or a compound thereof in the sample by measuring fluorescence.

  4. Quantitative method of determining beryllium or a compound thereof in a sample

    DOEpatents

    McCleskey, T. Mark; Ehler, Deborah S.; John, Kevin D.; Burrell, Anthony K.; Collis, Gavin E.; Minogue, Edel M.; Warner, Benjamin P.

    2010-08-24

    A method of determining beryllium or a beryllium compound thereof in a sample, includes providing a sample suspected of comprising beryllium or a compound thereof, extracting beryllium or a compound thereof from the sample by dissolving in a solution, adding a fluorescent indicator to the solution to thereby bind any beryllium or a compound thereof to the fluorescent indicator, and determining the presence or amount of any beryllium or a compound thereof in the sample by measuring fluorescence.

  5. Determination of Natural Beryllium (Be) in Soil and Swipe Samples Utilizing Yttrium/Beryllium Ratio

    SciTech Connect

    2010-09-30

    1. Objective: A method to determine whether beryllium (Be) components in surface swipe samples are from a natural source is needed. 2. Methods: Soil samples and surface swipes from area facilities were analyzed for marker elements to identify source pathways for beryllium (Be). To be useful, the natural marker element must be present at reasonably consistent levels across the site, must correlate with the Be concentration, and not have the potential to be present from non-natural sources. 3. Results: The research on marker elements used to identify source pathways for beryllium (Be) concentrations demonstrates a clear correlation between Be and yttrium (Y) in natural soils on the Nevada National Security Site. The Y/Be ratio is proposed as a method to characterize the source of Be in soil and surface swipe samples and to aid in recommendations for follow up actions. Swipe samples are analyzed using an ICP/MS method and compared with results from soil samples. Natural soil constituent levels and the Y/Be Ratio range is determined for the occupied and historical facilities and surrounding areas. Y/Be ratios within the statistical range established indicate the Be is from a natural source. Y/Be ratios lower than this range indicate the presence of another Be source, and may then be correlated to alloy, ceramic, or other operational sources by the ratios of copper, nickel, cobalt, uranium, and/or niobium. Example case studies of evaluations of buildings with historical operational beryllium usage, current ongoing technical processes, and heavy equipment used in large building demolitions are included demonstrating the value of the ratio approach. 4. Conclusions: This differentiation is valuable as there is no known correlation between natural beryllium in soil and beryllium disease.

  6. Management of refractory hypoxemia

    PubMed Central

    Mehta, Chitra; Mehta, Yatin

    2016-01-01

    Mechanical ventilation remains the cornerstone in the management of severe acute respiratory failure. Acute respiratory distress syndrome (ARDS) is the most common cause of respiratory failure. It is associated with substantial mortality, and unmanageable refractory hypoxemia remains the most feared clinical possibility. If hypoxemia persists despite application of lung protective ventilation, additional therapies including inhaled vasodilators, prone positioning, recruitment maneuvers, high-frequency oscillatory ventilation, neuromuscular blockade (NMB), and extracorporeal membrane oxygenation may be needed. NMB and prone ventilation are modalities that have been clearly linked to reduced mortality in ARDS. Rescue therapies pose a clinical challenge requiring a precarious balance of risks and benefits, as well as, in-depth knowledge of therapeutic limitations. PMID:26750680

  7. Refractory gastroesophageal reflux disease

    PubMed Central

    Subramanian, Charumathi Raghu; Triadafilopoulos, George

    2015-01-01

    Gastroesophageal reflux disease (GERD) is a condition that develops when the reflux of stomach contents into the esophagus causes troublesome symptoms, esophageal injury, and/or complications. Use of proton pump inhibitors (PPI) remains the standard therapy for GERD and is effective in most patients. Those whose symptoms are refractory to PPIs should be evaluated further and other treatment options should be considered, according to individual patient characteristics. Response to PPIs could be total (no symptoms), partial (residual breakthrough symptoms), or absent (no change in symptoms). Patients experiencing complete response do not usually need further management. Patients with partial response can be treated surgically or by using emerging endoscopic therapies. Patients who exhibit no response to PPI need further evaluation to rule out other causes. PMID:25274499

  8. Functionally Graded Nanophase Beryllium/Carbon Composites

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2003-01-01

    Beryllium, beryllium alloys, beryllium carbide, and carbon are the ingredients of a class of nanophase Be/Be2C/C composite materials that can be formulated and functionally graded to suit a variety of applications. In a typical case, such a composite consists of a first layer of either pure beryllium or a beryllium alloy, a second layer of B2C, and a third layer of nanophase sintered carbon derived from fullerenes and nanotubes. The three layers are interconnected through interpenetrating spongelike structures. These Be/Be2C/C composite materials are similar to Co/WC/diamond functionally graded composite materials, except that (1) W and Co are replaced by Be and alloys thereof and (2) diamond is replaced by sintered carbon derived from fullerenes and nanotubes. (Optionally, one could form a Be/Be2C/diamond composite.) Because Be is lighter than W and Co, the present Be/Be2C/C composites weigh less than do the corresponding Co/WC/diamond composites. The nanophase carbon is almost as hard as diamond. WC/Co is the toughest material. It is widely used for drilling, digging, and machining. However, the fact that W is a heavy element (that is, has high atomic mass and mass density) makes W unattractive for applications in which weight is a severe disadvantage. Be is the lightest tough element, but its toughness is less than that of WC/Co alloy. Be strengthened by nanophase carbon is much tougher than pure or alloy Be. The nanophase carbon has an unsurpassed strength-to-weight ratio. The Be/Be2C/C composite materials are especially attractive for terrestrial and aerospace applications in which there are requirements for light weight along with the high strength and toughness of the denser Co/WC/diamond materials. These materials could be incorporated into diverse components, including cutting tools, bearings, rocket nozzles, and shields. Moreover, because Be and C are effective as neutron moderators, Be/Be2C/C composites could be attractive for some nuclear applications.

  9. Multilayer refractory nozzles produced by plasma-spray process

    NASA Technical Reports Server (NTRS)

    Bliton, J. L.; Rausch, J. L.

    1966-01-01

    Multilayer rocket nozzles formed by plasma spraying have good thermal shock resistance and can be reheated in an oxidizing environment without loss of coating adherence. Suggested application of this process are for the production of refractory components, which can be formed as surfaces of revolution.

  10. Beryllium Metal II. A Review of the Available Toxicity Data

    PubMed Central

    Strupp, Christian

    2011-01-01

    Beryllium metal was classified in Europe collectively with beryllium compounds, e.g. soluble salts. Toxicological equivalence was assumed despite greatly differing physicochemical properties. Following introduction of the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) regulation, beryllium metal was classified as individual substance and more investigational efforts to appropriately characterize beryllium metal as a specific substance apart from soluble beryllium compounds was required. A literature search on toxicity of beryllium metal was conducted, and the resulting literature compiled together with the results of a recently performed study package into a comprehensive data set. Testing performed under Organisation for Economic Co-Operation and Development guidelines and Good Laboratory Practice concluded that beryllium metal was neither a skin irritant, an eye irritant, a skin sensitizer nor evoked any clinical signs of acute oral toxicity; discrepancies between the current legal classification of beryllium metal in the European Union (EU) and the experimental results were identified. Furthermore, genotoxicity and carcinogenicity were discussed in the context of the literature data and the new experimental data. It was concluded that beryllium metal is unlikely to be a classical nonthreshold mutagen. Effects on DNA repair and morphological cell transformation were observed but need further investigation to evaluate their relevance in vivo. Animal carcinogenicity studies deliver evidence of carcinogenicity in the rat; however, lung overload may be a species-specific confounding factor in the existing studies, and studies in other species do not give convincing evidence of carcinogenicity. Epidemiology has been intensively discussed over the last years and has the problem that the studies base on the same US beryllium production population and do not distinguish between metal and soluble compounds. It is noted that the correlation

  11. Pharmacological approaches of refractory angina.

    PubMed

    Giannopoulos, Andreas A; Giannoglou, George D; Chatzizisis, Yiannis S

    2016-07-01

    Refractory angina refers to a group of patients with stable coronary atherosclerotic disease and angina symptoms, unresponsive to traditional medical management, while considered to be suboptimal candidates for revascularization procedures. Up to 15% of angina patients are considered to have refractory angina and, taking into account the aging population and the improvements in the treatment of stable coronary artery disease, the incidence of this entity is expected to increase. This review describes traditional and novel pharmacotherapies for symptoms relief and for long-term management of refractory angina. Mechanisms of action and relevant clinical trials are discussed and current recommendations from major European and US cardiovascular societies are reported. PMID:27013345

  12. Chronic beryllium disease and beryllium sensitization at Rocky Flats: a case-control study.

    PubMed

    Viet, S M; Torma-Krajewski, J; Rogers, J

    2000-01-01

    A case-control study was conducted to evaluate the risk of chronic beryllium disease (CBD) and beryllium sensitization (SENS) associated with various levels of historical beryllium exposure at the Rocky Flats nuclear weapons facility. Fifty CBD and 74 SENS cases were matched to controls of the same age group, race, gender, and smoking status. A job exposure matrix was developed from job history data and fixed airhead (FAH) exposure data available from 1960 to 1988. Job titles and building areas were assigned factors based on exposure relative to a machinist in the Building 444 Beryllium Shop. Concurrence on these factors was obtained from past and present Rocky Flats industrial hygienists. Using the matrix, long-term mean and cumulative exposures were estimated for each subject. Both exposure estimates (p < 0.0001) and years of employment (p = 0.010) were found to be significantly higher for CBD cases as compared with their controls, but not so for the SENS cases as compared with their controls. Logistic regression analyses showed statistically significant relationships between both cumulative and mean exposure and CBD, but not for SENS. These findings suggest that reduced worker exposures might lower the future incidence of CBD, but may not necessarily lower the incidence of SENS. PMID:10782196

  13. Evaluation of refractory materials for a nuclear waste incinerator

    SciTech Connect

    Grotzky, V. K.; Kneale, P. A.; Teter, A. R.

    1980-07-21

    An experiment to find a suitable refractory lining for a nuclear waste incinerator has been completed. Eleven brick and six castable products were analyzed by optical and scanning microscopy. All the materials were fashioned into cup shapes and subjected to temperatures ranging from 800 to 1200/sup 0/C for as long as six weeks. Some of the cups were charged weekly with pellets made from ash materials that would contact an incinerator liner. Refractory products containing a high percentage of aluminum oxide had the greatest resistance to cracking and slag buildup. 35 figures.

  14. Stabilized chromium oxide film

    DOEpatents

    Nyaiesh, A.R.; Garwin, E.L.

    1986-08-04

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  15. Stabilized chromium oxide film

    DOEpatents

    Garwin, Edward L.; Nyaiesh, Ali R.

    1988-01-01

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  16. 2. VIEW IN ROOM 111, ATOMIC ABSORPTION BERYLLIUM ANALYSIS LABORATORY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW IN ROOM 111, ATOMIC ABSORPTION BERYLLIUM ANALYSIS LABORATORY. AIR FILTERS AND SWIPES ARE DISSOLVED WITH ACIDS AND THE REMAINING RESIDUES ARE SUSPENDED IN NITRIC ACID SOLUTION. THE SOLUTION IS PROCESSED THROUGH THE ATOMIC ABSORPTION SPECTROPHOTOMETER TO DETECT THE PRESENCE AND LEVELS OF BERYLLIUM. - Rocky Flats Plant, Health Physics Laboratory, On Central Avenue between Third & Fourth Streets, Golden, Jefferson County, CO

  17. Modeling Airborne Beryllium Concentrations From Open Air Dynamic Testing

    NASA Astrophysics Data System (ADS)

    Becker, N. M.

    2003-12-01

    A heightened awareness of airborne beryllium contamination from industrial activities was reestablished during the late 1980's and early 1990's when it became recognized that Chronic Beryllium Disease (CBD) had not been eradicated, and that the Occupational Health and Safety Administration standards for occupational air exposure to beryllium may not be sufficiently protective. This was in response to the observed CBD increase in multiple industrial settings where beryllium was manufactured and/or machined, thus producing beryllium particulates which are then available for redistribution by airborne transport. Sampling and modeling design activities were expanded at Los Alamos National Laboratory in New Mexico to evaluate potential airborne beryllium exposure to workers who might be exposed during dynamic testing activities associated with nuclear weapons Stockpile Stewardship. Herein is presented the results of multiple types of collected air measurements that were designed to characterize the production and dispersion of beryllium used in components whose performance is evaluated during high explosive detonation at open air firing sites. Data from fallout, high volume air, medium volume air, adhesive film, particle size impactor, and fine-particulate counting techniques will be presented, integrated, and applied in dispersion modeling to assess potential onsite and offsite personal exposures resulting from dynamic testing activities involving beryllium.

  18. 10 CFR 850.20 - Baseline beryllium inventory.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Baseline beryllium inventory. 850.20 Section 850.20 Energy... Baseline beryllium inventory. (a) The responsible employer must develop a baseline inventory of the... inventory, the responsible employer must: (1) Review current and historical records; (2) Interview...

  19. Electron topological transitions of 3½ kind in beryllium

    NASA Astrophysics Data System (ADS)

    Mikitik, G. P.; Sharlai, Yu. V.

    2015-12-01

    An analysis of known experimental literature data on the temperature dependence of magnetic susceptibility of beryllium. It is shown that this dependence can be explained if we take into account that beryllium has an electron topological transition of 3½ kind near the Fermi level.

  20. IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR BERYLLIUM AND COMPOUNDS

    EPA Science Inventory

    EPA's assessment of the noncancer health effects and carcinogenic potential of Beryllium was added to the IRIS database in 1998. The IRIS program is updating the IRIS assessment for Beryllium. This update will incorporate health effects information published since the last assess...

  1. Failure analysis of beryllium tile assembles following high heat flux testing for the ITER program

    SciTech Connect

    B. C. Odegard, Jr.; C. H. Cadden; N. Y. C. Yang

    2000-05-01

    The following document describes the processing, testing and post-test analysis of two Be-Cu assemblies that have successfully met the heat load requirements for the first wall and dome sections for the ITER (International Thermonuclear Experimental Reactor) fusion reactor. Several different joint assemblies were evaluated in support of a manufacturing technology investigation aimed at diffusion bonding or brazing a beryllium armor tile to a copper alloy heat sink for fusion reactor applications. Judicious selection of materials and coatings for these assemblies was essential to eliminate or minimize interactions with the highly reactive beryllium armor material. A thin titanium layer was used as a diffusion barrier to isolate the copper heat sink from the beryllium armor. To reduce residual stresses produced by differences in the expansion coefficients between the beryllium and copper, a compliant layer of aluminum or aluminum-beryllium (AlBeMet-150) was used. Aluminum was chosen because it does not chemically react with, and exhibits limited volubility in, beryllium. Two bonding processes were used to produce the assemblies. The primary process was a diffusion bonding technique. In this case, undesirable metallurgical reactions were minimized by keeping the materials in a solid state throughout the fabrication cycle. The other process employed an aluminum-silicon layer as a brazing filler material. In both cases, a hot isostatic press (HIP) furnace was used in conjunction with vacuum-canned assemblies in order to minimize oxidation and provide sufficient pressure on the assemblies for full metal-to-metal contact and subsequent bonding. The two final assemblies were subjected to a suite of tests including: tensile tests and electron and optical metallography. Finally, high heat flux testing was conducted at the electron beam testing system (EBTS) at Sandia National Laboratories, New Mexico. Here, test mockups were fabricated and subjected to normal heat loads to

  2. Destruction of Refractory Carbon in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Anderson, Dana; Bergin, Edwin A.; Blake, Geoffrey A.; Ciesla, Fred; Visser, Ruud; Lee, Jeong-Eun

    2016-01-01

    Rocky bodies in the inner solar system contain significantly less carbon than the dust of interstellar origin that seeded their formation. Even primitive meteorites exhibit carbon deficiencies, suggesting at least one process active prior to the formation of planetesimals. Selective erosion of carbonaceous materials by free oxygen atoms present in the photoactive surface layers of the protoplanetary disk provides one such mechanism for destroying refractory carbon while leaving silicate materials intact. We model this process with a large chemical network in a disk surrounding a T-Tauri star. We find that given sufficient turbulence to loft small grains into the oxidative surface regions of the disk, carbon grains are rapidly converted into CO. These oxidative regions can deplete carbon present in polycyclic aromatic hydrocarbons and small grains (˜0.02-20 μm) by at least two orders of magnitude, enough to explain the deficiencies in meteorites compared to interstellar dust, and extend out to ˜15-20 AU from the central star at the disk surface in our static model. When turbulence is considered, the effects may reach the midplane causing depletion out to ˜1 AU. However, the amount of the total carbon reservoir at these radii that is affected by this mechanism depends on several unconstrained parameters concerning the nature of the disk and refractory carbon sources.

  3. Hydrodynamic instabilities in beryllium targets for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Yi, S. A.; Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Kline, J. L.; Clark, D. S.; Hammel, B. A.; Milovich, J. L.; Salmonson, J. D.; Kozioziemski, B. J.; Batha, S. H.

    2014-09-01

    Beryllium ablators offer higher ablation velocity, rate, and pressure than their carbon-based counterparts, with the potential to increase the probability of achieving ignition at the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We present here a detailed hydrodynamic stability analysis of low (NIF Revision 6.1) and high adiabat NIF beryllium target designs. Our targets are optimized to fully utilize the advantages of beryllium in order to suppress the growth of hydrodynamic instabilities. This results in an implosion that resists breakup of the capsule, and simultaneously minimizes the amount of ablator material mixed into the fuel. We quantify the improvement in stability of beryllium targets relative to plastic ones, and show that a low adiabat beryllium capsule can be at least as stable at the ablation front as a high adiabat plastic target.

  4. Spectrofluorimetric Determination of Beryllium by Mean Centering of Ratio Spectra.

    PubMed

    Chamsaz, Mahmoud; Samghani, Kobra; Arbab-Zavar, Mohammad Hossein; Heidari, Tahereh

    2016-07-01

    Trace amounts of beryllium has been determined by spectrofluorimetric method that used morin as fluorimetric reagent. Beryllium gives a highly fluorescent complex with morin. The excitation wavelength of morin and Be-morin complex were 410 and 430. The fluorescence spectra of morin and Be-morin complex were overlaped in excitation wavelength of 430 nm. A method based on mean centering of ratio spectra has been performed to remove the interference caused by morin as it overlaps with the Be-morin spectra. The linear range of beryllium concentration is in 0.2-200 ppb range. The parameters of detection limit and RSD were 0.18 ppb and 4.6 % respectively. This method was used for determination of beryllium in copper-beryllium alloy as a real sample. In determination of Be(II), the interference by Cu(II) was very serious, which was eliminated by adding triethanolamine. PMID:27265354

  5. Method for fabricating beryllium-based multilayer structures

    DOEpatents

    Skulina, Kenneth M.; Bionta, Richard M.; Makowiecki, Daniel M.; Alford, Craig S.

    2003-02-18

    Beryllium-based multilayer structures and a process for fabricating beryllium-based multilayer mirrors, useful in the wavelength region greater than the beryllium K-edge (111 .ANG. or 11.1 nm). The process includes alternating sputter deposition of beryllium and a metal, typically from the fifth row of the periodic table, such as niobium (Nb), molybdenum (Mo), ruthenium (Ru), and rhodium (Rh). The process includes not only the method of sputtering the materials, but the industrial hygiene controls for safe handling of beryllium. The mirrors made in accordance with the process may be utilized in soft x-ray and extreme-ultraviolet projection lithography, which requires mirrors of high reflectivity (>60%) for x-rays in the range of 60-140 .ANG. (60-14.0 nm).

  6. Hydrodynamic instabilities in beryllium targets for the National Ignition Facility

    SciTech Connect

    Yi, S. A. Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Kline, J. L.; Batha, S. H.; Clark, D. S.; Hammel, B. A.; Milovich, J. L.; Salmonson, J. D.; Kozioziemski, B. J.

    2014-09-15

    Beryllium ablators offer higher ablation velocity, rate, and pressure than their carbon-based counterparts, with the potential to increase the probability of achieving ignition at the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We present here a detailed hydrodynamic stability analysis of low (NIF Revision 6.1) and high adiabat NIF beryllium target designs. Our targets are optimized to fully utilize the advantages of beryllium in order to suppress the growth of hydrodynamic instabilities. This results in an implosion that resists breakup of the capsule, and simultaneously minimizes the amount of ablator material mixed into the fuel. We quantify the improvement in stability of beryllium targets relative to plastic ones, and show that a low adiabat beryllium capsule can be at least as stable at the ablation front as a high adiabat plastic target.

  7. New decade of shaped beryllium blanks

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Don H.; Heberling, Jody; Campbell, Jeffrey; Morales, Amanda; Sayer, Aaron

    2015-09-01

    Near-net-shape powder consolidation technology has been developing over the past 30+ years. One relatively recent example is production of hexagonal shaped beryllium mirror blanks made for the James Webb Space Telescope. More cost saving examples, specifically from the past decade, utilizing growing experience and lesson's learned whether from a mirror substrate or structure will be discussed to show the latitude of production technology. Powder consolidation techniques include Hot Isostatic Pressing (HIP) for either round or shaped blanks and Vacuum Hot Pressing (VHP) consolidation for round blanks. The range of sizes will be presented to further illustrate the latitude of current production capability.

  8. Double Photoionization of excited Lithium and Beryllium

    SciTech Connect

    Yip, Frank L.; McCurdy, C. William; Rescigno, Thomas N.

    2010-05-20

    We present total, energy-sharing and triple differential cross sections for one-photon, double ionization of lithium and beryllium starting from aligned, excited P states. We employ a recently developed hybrid atomic orbital/ numerical grid method based on the finite-element discrete-variable representation and exterior complex scaling. Comparisons with calculated results for the ground-state atoms, as well as analogous results for ground-state and excited helium, serve to highlight important selection rules and show some interesting effects that relate to differences between inter- and intra-shell electron correlation.

  9. Control of molten salt corrosion of fusion structural materials by metallic beryllium

    NASA Astrophysics Data System (ADS)

    Calderoni, P.; Sharpe, P.; Nishimura, H.; Terai, T.

    2009-04-01

    A series of tests have been performed between 2001 and 2006 at the Safety and Tritium Applied Research facility of the Idaho National Laboratory to demonstrate chemical compatibility between the molten salt flibe (2LiF + BeF 2 in moles) and fusion structural materials once suitable fluoride potential control methods are established. The tests adopted metallic beryllium contact as main fluoride potential control, and the results have been published in recent years. A further step was to expose two specimens of low activation ferritic/martensitic steel 9Cr-2W to static corrosion tests that include an active corrosion agent (hydrofluoric gas) in controlled conditions at 530 °C, and the results of the tests are presented in this paper. The results confirmed the expected correlation of the HF recovery with the concentration of metallic impurities dissolved in the salt because of specimen corrosion. The metals concentration dropped to levels close to the detectable limit when the beryllium rod was inserted and increased once the content of excess beryllium in the system had been consumed by HF reduction and specimen corrosion progressed. Metallographic analysis of the samples after 500 h exposure in reactive conditions showed evidence of the formation of unstable chromium oxide layers on the specimen's surface.

  10. Abemaciclib in Children With DIPG or Recurrent/Refractory Solid Tumors

    ClinicalTrials.gov

    2016-04-12

    Diffuse Intrinsic Pontine Glioma; Brain Tumor, Recurrent; Solid Tumor, Recurrent; Neuroblastoma, Recurrent, Refractory; Ewing Sarcoma, Recurrent, Refractory; Rhabdomyosarcoma, Recurrent, Refractory; Osteosarcoma, Recurrent, Refractory; Rhabdoid Tumor, Recurrent, Refractory

  11. High Precision Spectroscopy of Neutral Beryllium-9

    NASA Astrophysics Data System (ADS)

    Lau, Chui Yu; Williams, Will

    2015-05-01

    We report on the progress of high precision spectroscopy of the 2s2p singlet and triplet states in beryllium-9. Our goal is to improve the experimental precision on the energy levels of the 2s2p triplet J = 0, 1, and 2 states by a factor of 500, 100, and 500 respectively in order to delineate various theoretical predictions. The goal for the 2s2p singlet (J = 1) state is to improve the experimental precision on the energy level by a factor of 600 as a test of quantum electrodynamics. Our experimental setup consists of an oven capable of 1400 C that produces a collimated beam of neutral beryllium-9. The triplet states are probed with a 455 nm ECDL stabilized to a tellurium-210 line. The singlet state is probed with 235nm light from a frequency quadrupled titanium sapphire laser, where the frequency doubled light at 470 nm is stabilized to another tellurium-210 line. We also present our progress on improving the absolute accuracy of our frequency reference by using an ultrastable/low drift fiber coupled cavity.

  12. Thick beryllium coatings by magnetron sputtering

    SciTech Connect

    Wu, H; Nikroo, A; Youngblood, K; Moreno, K; Wu, D; Fuller, T; Alford, C; Hayes, J; Detor, A; Wong, M; Hamza, A; van Buuren, T; Chason, E

    2011-04-14

    Thick (>150 {micro}m) beryllium coatings are studied as an ablator material of interest for fusion fuel capsules for the National Ignition Facility (NIF). As an added complication, the coatings are deposited on mm-scale spherical substrates, as opposed to flats. DC magnetron sputtering is used because of the relative controllability of the processing temperature and energy of the deposits. We used ultra small angle x-ray spectroscopy (USAXS) to characterize the void fraction and distribution along the spherical surface. We investigated the void structure using a combination focused ion beam (FIB) and scanning electron microscope (SEM), along with transmission electron microscopy (TEM). Our results show a few volume percent of voids and a typical void diameter of less than two hundred nanometers. Understanding how the stresses in the deposited material develop with thickness is important so that we can minimize film cracking and delamination. To that end, an in-situ multiple optical beam stress sensor (MOSS) was used to measure the stress behavior of thick Beryllium coatings on flat substrates as the material was being deposited. We will show how the film stress saturates with thickness and changes with pressure.

  13. Dynamic Testing of Gasifier Refractory

    SciTech Connect

    Michael D. Mann; John P. Hurley

    2002-09-27

    As DOE continues to advance new power systems, materials issues are often pivotal in determining the ultimate efficiency that can be reached in the system. Refractory performance in slagging gasification represents one of these issues. The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to thoroughly examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by a variety of refractory materials during both normal operation and thermal cycling under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The focus of the proposed work is to test the corrosion resistance of commercially available refractories to flowing coal slag, and propose the mechanisms of corrosion for the conditions studied. Corrosion is the degradation of material surfaces or grain boundaries by chemical reactions with melts, liquids, or gases, causing loss of material and consequently a decrease in strength of the structure. In order to develop methods of reducing corrosion, the microstructure that is attacked must be identified along with the mechanism and rates of attack. Once these are identified, methods for reducing corrosion rates can be developed. The work will take advantage of equipment and experimental techniques developed at the EERC under funding from several DOE programs. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) will be utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. To date, efforts have focused on final shakedown of the CADCAF and obtaining representative samples of slag and refractory for testing.

  14. Refractory Oxidative-Resistant Ceramic Carbon Insulation

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    2001-01-01

    High-temperature, lightweight, ceramic carbon insulation is prepared by coating or impregnating a porous carbon substrate with a siloxane gel derived from the reaction of an organodialkoxy silane and an organotrialkoxy silane in an acid or base medium in the presence of the carbon substrate. The siloxane gel is subsequently dried on the carbon substrate to form a ceramic carbon precursor. The carbon precursor is pyrolyzed, in an inert atmosphere, to form the ceramic insulation containing carbon, silicon, and oxygen. The carbon insulation is characterized as a porous, fibrous, carbon ceramic tile which is particularly useful as lightweight tiles for spacecraft.

  15. Sarcoidosis and chronic beryllium disease: similarities and differences.

    PubMed

    Mayer, Annyce S; Hamzeh, Nabeel; Maier, Lisa A

    2014-06-01

    Chronic beryllium disease (CBD) is a granulomatous lung disease that may be pathologically and clinically indistinguishable from pulmonary sarcoidosis, except through use of immunologic testing, such as the beryllium lymphocyte proliferation test (BeLPT). Similar to sarcoidosis, the pulmonary manifestations of CBD are variable and overlap with other respiratory diseases. Definitive diagnosis of CBD is established by evidence of immune sensitization to beryllium and diagnostic bronchoscopy with bronchoalveolar lavage and transbronchial biopsy. However, the diagnosis of CBD can also be established on a medically probable basis in beryllium-exposed patients with consistent radiographic imaging and clinical course. Beryllium workers exposed too much higher levels of beryllium in the past demonstrated a much more fulminant disease than is usually seen today. Some extrapulmonary manifestations similar to sarcoidosis were noted in these historic cohorts, although with a narrower spectrum. Extrapulmonary manifestations of CBD are rare today. Since lung-predominant sarcoidosis can very closely resemble CBD, CBD is still misdiagnosed as sarcoidosis when current or past exposure to beryllium is not recognized and no BeLPT is obtained. This article describes the similarities and differences between CBD and sarcoidosis, including clinical and diagnostic features that can help physicians consider CBD in patients with apparent lung-predominant sarcoidosis. PMID:25007084

  16. Dynamic Testing of Gasifier Refractory

    SciTech Connect

    Michael D. Mann; Devdutt Shukla; John P. Hurley

    2003-09-27

    The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to thoroughly examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by a variety of refractory materials during both normal operation and thermal cycling under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) is being utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. Shakedown testing of the CADCAF is in progress. Samples of slag and refractory from the Tampa Electric Polk Power Station have been obtained for testing in the CADCAF. The slag has been dried and sieved to the size needed for our flowing slag corrosion tests. Testing is expected to begin in October.

  17. Refractory failure in slagging gasifiers

    SciTech Connect

    Bennett, James P.; Kwong, Kyei-Sing

    2004-08-01

    Slagging gasifiers are used to produce chemicals and/or electricity from feedstocks such as coal and/or petroleum coke. A gasifier environment includes pressures from 400 to 1000 psi, temperatures from 1250-1550 C, are cyclic, reducing gases of CO and H2, and molten ash that interacts with the refractory liner materials. The high Cr2O3 refractory liners of gasifiers fail within 3 to 24 months due to slag attack at elevated temperatures. Gasifier users seek materials with increased reliability and service life. The causes of refractory failure and efforts to increase refractory service life are discussed. Mechanisms involving corrosion and slag infiltration/spalling are the main causes of refractory wear. The reduction of slag penetration can reduce hot face lining wear. The performance of high Cr2O3-Al2O3 materials with phosphate additions were evaluated. Phosphate additions were found to have comparable wear and physical properties to materials with no additions, and to have good slag penetration resistance. Field trials in a gasifier are needed to clarify the potential of the materials.

  18. Testing Requirements for Refractory Materials

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark R.; Sampson, Jeffrey W,; Montgomery, Eliza M.

    2012-01-01

    Launch Pads 39A and 39B currently use refractory material (Fondu Fyre) in the flame trenches. This material was initially approved for the Saturn program. This material had a lifetime of 10years according to the manufacturer, and it has been used for over 40 years. As a consequence, the Fondu Fyre at Launch Complex 39 requires repair subsequent to almost every launch. A review of the literature indicates that the gunned Fondu Fyre refractory product (WA-1 G) was never tested prior to use. With the recent severe damage to the flame trenches, a new refractory material is sought to replace Fondu Fyre. In order to replace Fondu Fyre, a methodology to test and evaluate refractory products was developed. This paper outlines this methodology and discusses current testing requirements, as well as the laboratory testing that might be required. Furthermore, this report points out the necessity for subscale testing, the locations where this testing can be performed, and the parameters that will be necessary to qualify a product. The goal is to identify a more durable refractory material that has physical, chemical, and thermal properties suitable to withstand the harsh environment of the launch pads at KSC.

  19. Testing Requirements for Refractory Materials

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark R.; Sampson, Jeffrey W.; Montgomery, Eliza M.

    2011-01-01

    Launch Pads 39A and 39B currently use refractory material (Fondu Fyre) in the flame trenches. This material was initially approved for the Saturn program. This material had a lifetime of 10 years according to the manufacturer, and it has been used for over 40 years. As a consequence, the Fondu Fyre at Launch Complex 39 requires repair subsequent to almost every launch. A review of the literature indicates that the gunned Fondu Fyre refractory product (WA-1G) was never tested prior to use. With the recent severe damage to the flame trenches, a new refractory material is sought to replace Fondu Fyre. In order to replace Fondu Fyre, a methodology to test and evaluate refractory products was developed. This paper outlines this methodology and discusses current testing requirements, as well as the laboratory testing that might be required. Furthermore, this report points out the necessity for subscale testing, the locations where this testing can be performed, and the parameters that will be necessary to qualify a product. The goal is to identify a more durable refractory material that has physical, chemical, and thermal properties suitable to withstand the harsh environment of the launch pads at KSC.

  20. Testing Requirements for Refractory Materials

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark R.; Sampson, Jeffrey W.; Montgomery, Eliza M.

    2010-01-01

    Launch Pads 39A and 39B currently use refractory material (Fondu Fyre) in the flame trenches. This material was initially approved for the Saturn program. This material had a lifetime of 10 years according to the manufacturer, and it has been used for over 40 years. As a consequence, the Fondu Fyre at Launch Complex 39 requires repair subsequent to almost every launch. A review of the literature indicates that the gunned Fondu Fyre refractory product (WA-1G) was never tested prior to use. With the recent severe damage to the flame trenches, a new refractory material is sought to replace Fondu Fyre. In order to replace Fondu Fyre, a methodology to test and evaluate refractory products was developed. This paper outlines this methodology and discusses current testing requirements, as well as the laboratory testing that might be required. Furthermore, this report points out the necessity for subscale testing, the locations where this testing can be performed, and the parameters that will be necessary to qualify a product. The goal is to identify a more durable refractory material that has physical, chemical, and thermal properties suitable to withstand the harsh environment of the launch pads at KSC.

  1. Dynamic Testing of Gasifier Refractory

    SciTech Connect

    Michael D. Mann; Devdutt Shukla; Xi Hong; John P. Hurley

    2004-09-27

    The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to thoroughly examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by a variety of refractory materials during both normal operation and thermal cycling under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) is being utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. Shakedown testing of the CADCAF has been completed. Samples of slag and refractory from the Tampa Electric Polk Power Station have been obtained for testing in the CADCAF. The slag has been dried and sieved to the size needed for our flowing slag corrosion tests. Screening tests are in currently in progress. Detailed analysis of corrosion rates from the first tests is in progress.

  2. Regulatory T cells modulate granulomatous inflammation in an HLA-DP2 transgenic murine model of beryllium-induced disease.

    PubMed

    Mack, Douglas G; Falta, Michael T; McKee, Amy S; Martin, Allison K; Simonian, Philip L; Crawford, Frances; Gordon, Terry; Mercer, Robert R; Hoover, Mark D; Marrack, Philippa; Kappler, John W; Tuder, Rubin M; Fontenot, Andrew P

    2014-06-10

    Susceptibility to chronic beryllium disease (CBD) is linked to certain HLA-DP molecules, including HLA-DP2. To elucidate the molecular basis of this association, we exposed mice transgenic (Tg) for HLA-DP2 to beryllium oxide (BeO) via oropharyngeal aspiration. As opposed to WT mice, BeO-exposed HLA-DP2 Tg mice developed mononuclear infiltrates in a peribronchovascular distribution that were composed of CD4(+) T cells and included regulatory T (Treg) cells. Beryllium-responsive, HLA-DP2-restricted CD4(+) T cells expressing IFN-γ and IL-2 were present in BeO-exposed HLA-DP2 Tg mice and not in WT mice. Using Be-loaded HLA-DP2-peptide tetramers, we identified Be-specific CD4(+) T cells in the mouse lung that recognize identical ligands as CD4(+) T cells derived from the human lung. Importantly, a subset of HLA-DP2 tetramer-binding CD4(+) T cells expressed forkhead box P3, consistent with the expansion of antigen-specific Treg cells. Depletion of Treg cells in BeO-exposed HLA-DP2 Tg mice exacerbated lung inflammation and enhanced granuloma formation. These findings document, for the first time to our knowledge, the development of a Be-specific adaptive immune response in mice expressing HLA-DP2 and the ability of Treg cells to modulate the beryllium-induced granulomatous immune response. PMID:24912188

  3. An overview of recycling refractory materials

    SciTech Connect

    Bennett, James P.; Kwong, Kyei-Sing

    2004-09-01

    Refractory materials must be disposed of or recycled when removed from service. Off-specification or reject material has been reused by the refractory industry for a number of years, with small percentages of these materials added as a part of refractory formulations. Historically, limed reuse of spent refractory materials in other applications has occurred. Environmental legislation, stewardship programs, and other forces encouraged some businesses to recycle spent refractories. Reuse of spent refractory material varies considerably among different industries and with the location of the industrial user. Efforts to recycle, the driving forces for recycling, and issues and steps to be taken into account initiating a recycling program will be discussed.

  4. A Novel Biomarker for Beryllium Sensitization in Humans - Final Report

    SciTech Connect

    Albertini, R. J.

    2001-04-16

    This research project will determine the T-cell receptor (TCR) gene usages of beryllium reactive T-lymphocytes isolated directly from the peripheral blood of individuals exposed at a U.S. Department of Energy site. The objective is to develop a sensitive and novel biomarker for identifying early human sensitization to environmental beryllium. This is a collaborative project involving the Genetics Laboratory of the University of Vermont and both the Center for Epidemiological Research and the scientific staff of the Cytogenetics Program at the Oak Ridge Institute for Science and Education (ORISE). The > 2000 beryllium exposed workers who have been contacted for participation in the ORISE study ''Follow-up of Beryllium Workers at the Y-12 Plant/Efficacy of the Peripheral Blood Lymphocyte Proliferation (LPT) and other Non-Invasive Procedures for Diagnosis of Chronic Beryllium Disease'' will provide the pool of potential participants for the proposed study. Beryllium reactive T-lymphocytes will be directly isolated from peripheral blood using a novel antigen-independent method of surrogate selection for in vivo arising hprt mutants as representatives of clones that are undergoing chronic proliferation. The T-cells undergoing chronic proliferation in beryllium sensitized individuals will be enriched for beryllium reactive cells. The TCR gene usage of these T-cell isolates will be determined and their junctional (CDR3) regions sequenced. Beryllium reactive T-cell clones will also be recovered following in vitro beryllium stimulation of peripheral blood lymphocytes from these same individuals and the TCR gene CDR3 region sequences similarly determined. The TCR genes used by the beryllium reactive isolates and their CRD3 region sequences will be compared within (in vivo vs. in vitro derived) and among individuals with attention to kinds and durations of beryllium exposure and HPA DPB Glu 69 status. A method for quantitating total body loads of these antigen reactive T

  5. Historical perspectives on the uses and health risks of beryllium

    SciTech Connect

    Preuss, O.P.

    1985-07-01

    Unawareness of the health risks of beryllium resulted in a decade of unmitigated exposure of several thousand workers and numerous cases of beryllium disease in employees and nearby residents. Subsequent adoption of exposure limits and their implementation with effective technical controls reduced the occurrence of new cases, which were mainly due to accidental exposures, to a minimum. The fact that continuously growing production and consumption did not alter this trend demonstrates the effectiveness of the present threshold limit value. It shows that the potential health hazard can be well contained and that beryllium can be produced and fabricated without undue risk to employees or the general public.

  6. Beryllium Health and Safety Committee Data Reporting Task Force

    SciTech Connect

    MacQueen, D H

    2007-02-21

    On December 8, 1999, the Department of Energy (DOE) published Title 10 CFR 850 (hereafter referred to as the Rule) to establish a chronic beryllium disease prevention program (CBDPP) to: {sm_bullet} reduce the number of workers currently exposed to beryllium in the course of their work at DOE facilities managed by DOE or its contractors, {sm_bullet} minimize the levels of, and potential for, expos exposure to beryllium, and {sm_bullet} establish medical surveillance requirements to ensure early detection of the disease.

  7. Radiation effects in beryllium used for plasma protection

    SciTech Connect

    Gelles, D.S.; Dalle Donne, M.; Sernyaev, G.A.; Kawamura, H.

    1993-09-01

    Beryllium is presently a leading candidate material for fusion reactor first wall coating and divertor applications. This paper reviews the literature on beryllium, emphasizing the effects of irradiation on essential properties. Swelling and embrittlement experiments as a function of irradiation temperature and dose, and as a function of neutron spectrum are described, and the results are quantified, where possible. Effects of impurity content are also reported, from which optimum composition specifications can be defined. Microstructural information has also been obtained to elucidate the processes controlling the property changes. The available information indicates that beryllium divertors can be expected to embrittle quickly and may need frequent replacement.

  8. Ab initio study of hydrogen on beryllium surfaces

    NASA Astrophysics Data System (ADS)

    Bachurin, D. V.; Vladimirov, P. V.

    2015-11-01

    Static ab initio calculations were performed for five principal hexagonal close-packed beryllium surfaces: basal, prismatic (type I and II) and pyramidal (type I and II). The basal plane was found to be the most energetically favorable, while the energies of the prismatic (type I) and pyramidal (type I) planes were slightly higher followed by the type II planes. Beryllium is known to show extreme interlayer distance relaxation near the surface. Up to five outermost atomic layers were involved in surface relaxation. The presence of hydrogen on the beryllium surfaces led to a noticeable reduction of the surface energy.

  9. Cosmis Lithium-Beryllium-Boron Story

    NASA Astrophysics Data System (ADS)

    Vangioni-Flam, E.; Cassé, M.

    Light element nucleosynthesis is an important chapter of nuclear astrophysics. Specifically, the rare and fragile light nuclei Lithium, Beryllium and Boron (LiBeB) are not generated in the normal course of stellar nucleosynthesis (except Lithium-7) and are, in fact, destroyed in stellar interiors. This characteristic is reflected in the low abundance of these simple species. Up to recently, the most plausible interpretation was that galactic cosmic rays (GCR) interact with interstellar CNO to form LiBeB. Other origins have been also identified, primordial and stellar (Lithium-7) and supernova neutrino spallation (Lithium-7 and Boron-11). In contrast, Beryllium-9, Boron-10 and Lithium-6 are pure spallative products. This last isotope presents a special interest since the Lithium-7/Lithium-6 ratio has been measured in a few halo stars offering a new constraint on the early galactic evolution. However, in the nineties, new observations prompted astrophysicists to reassess the question. Optical measurements of the beryllium and boron abundances in halo stars have been achieved by the 10 meters KECK telescope and the Hubble Space Telescope. These observations indicate a quasi linear correlation between Be and B vs Fe, at least at low metallicity, unexpected on the basis of GCR scenario, predicting a quadratic relationship. As a consequence, the origin and the evolution of the LiBeB nuclei has been revisited. This linearity implies the acceleration of C and O nuclei freshly synthesized and their fragmentation on the the interstellar Hydrogen and Helium. Wolf-Rayet stars and supernovae via the shock waves induced, are the best candidates to the acceleration of their own material enriched into C and O; so LiBeB is produced independently of the Interstellar Medium chemical composition. Moreover, neutrinos emitted by the newly born neutron stars interacting with the C layer of the supernova could produce specifically Lithium-7 and Boron-11. This process is supported by the

  10. Progression from Beryllium Exposure to Chronic Beryllium Disease: An Analytic Model

    PubMed Central

    Harber, Philip; Bansal, Siddharth; Balmes, John

    2009-01-01

    Background Understanding the progression from beryllium exposure (BeE) to chronic beryllium disease (CBD) is essential for optimizing screening and early intervention to prevent CBD. Methods We developed an analytic Markov model of progression to CBD that assigns annual probabilities for progression through three states: from BeE to beryllium sensitization and then to CBD. We used calculations of the number in each state over time to assess which of several alternative progression models are most consistent with the limited available empirical data on prevalence and incidence. We estimated cost-effectiveness of screening considering both incremental (cost/case) and cumulative program costs. Results No combination of parameters for a simple model in which risk of progression remains constant over time can meet the empirical constraints of relatively frequent early cases and continuing development of new cases with long latencies. Modeling shows that the risk of progression is initially high and then declines over time. Also, it is likely that there are at least two populations that differ significantly in risk. The cost-effectiveness of repetitive screening declines over time, although new cases will still be found with long latencies. However, screening will be particularly cost-effective when applied to persons with long latencies who have not been previously screened. Conclusions To optimize use of resources, the intensity of screening should decrease over time. Estimation of lifetime cumulative CBD risk should consider the declining risk of progression over time. PMID:19590692

  11. Treatment-refractory Tourette Syndrome.

    PubMed

    Kious, Brent M; Jimenez-Shahed, Joohi; Shprecher, David R

    2016-10-01

    Tourette Syndrome (TS) is a complex neurodevelopmental condition marked by tics and frequently associated with psychiatric comorbidities. While most cases are mild and improve with age, some are treatment-refractory. Here, we review strategies for the management of this population. We begin by examining the diagnosis of TS and routine management strategies. We then consider emerging treatments for refractory cases, including deep brain stimulation (DBS), electroconvulsive therapy (ECT), repetitive transcranial magnetic stimulation (rTMS), and novel pharmacological approaches such as new vesicular monoamine transporter type 2 inhibitors, cannabinoids, and anti-glutamatergic drugs. PMID:26875502

  12. Simulations of threshold displacement in beryllium

    NASA Astrophysics Data System (ADS)

    Jackson, Matthew L.; Fossati, Paul C. M.; Grimes, Robin W.

    2016-07-01

    Atomic scale molecular dynamics simulations of radiation damage have been performed on beryllium. Direct threshold displacement simulations along a geodesic projection of directions were used to investigate the directional dependence with a high spatial resolution. It was found that the directionally averaged probability of displacement increases from 0 at 35 eV, with the energy at which there is a 50% chance of a displacement occurring is 70 eV and asymptotically approaching 1 for higher energies. This is, however, strongly directionally dependent with a 50% probability of displacement varying from 35 to 120 eV, with low energy directions corresponding to the nearest neighbour directions. A new kinetic energy dependent expression for the average maximum displacement of an atom as a function of energy is derived which closely matches the simulated data.

  13. Advances in beryllium powder consolidation simulation

    SciTech Connect

    Reardon, B.J.

    1998-12-01

    A fuzzy logic based multiobjective genetic algorithm (GA) is introduced and the algorithm is used to optimize micromechanical densification modeling parameters for warm isopressed beryllium powder, HIPed copper powder and CIPed/sintered and HIPed tantalum powder. In addition to optimizing the main model parameters using the experimental data points as objective functions, the GA provides a quantitative measure of the sensitivity of the model to each parameter, estimates the mean particle size of the powder, and determines the smoothing factors for the transition between stage 1 and stage 2 densification. While the GA does not provide a sensitivity analysis in the strictest sense, and is highly stochastic in nature, this method is reliable and reproducible in optimizing parameters given any size data set and determining the impact on the model of slight variations in each parameter.

  14. Large-area beryllium metal foils

    NASA Astrophysics Data System (ADS)

    Stoner, J. O., Jr.

    1997-02-01

    To manufacture beryllium filters having diameters up to 82 mm and thicknesses in the range 0.1-1 μm, it was necessary to construct apparatus in which the metal could safely be evaporated, and then to find an acceptable substrate and evaporation procedure. The metal was evaporated resistively from a tantalum dimple boat mounted in a baffled enclosure that could be placed in a conventional vacuum bell jar, obviating the need for a dedicated complete vacuum system. Substrates were 102 mm × 127 mm × 0.05 mm cleaved mica sheets, coated with 0.1 μm of NaCl, then with approximately 50 μg/cm 2 of cellulose nitrate. These were mounted on poly(methyl methacrylate) sheets 3 mm thick that were in turn clamped to a massive aluminum block for thermal stability. Details of the processes for evaporation, float off, and mounting are given, and the resulting foils described.

  15. Toxicological profile for beryllium. Final report

    SciTech Connect

    Not Available

    1988-12-01

    The ATSDR Toxicological Profile for Beryllium is intended to characterize succinctly the toxicological and health-effects information for the substance. It identifies and reviews the key literature. More comprehensive sources of specialty information are referenced. The profile begins with a public-health statement, which describes in nontechnical language the substance's relevant toxicological properties. Following the statement is material that presents levels of significant human exposure and, where known, significant health effects. The adequacy of information to determine the substance's health effects is described. Research gaps in toxicologic and health effects information are described. Research gaps that are of significance to the protection of public health will be identified in a separate effort. The focus of the document is on health and toxicological information.

  16. Investigation of the ion beryllium surface interaction

    SciTech Connect

    Guseva, M.I.; Birukov, A.Yu.; Gureev, V.M.

    1995-09-01

    The self -sputtering yield of the Be was measured. The energy dependence of the Be self-sputtering yield agrees well with that calculated by W. Eckstein et. al. Below 770 K the self-sputtering yield is temperature independent; at T{sub irr}.> 870 K it increases sharply. Hot-pressed samples at 370 K were implanted with monoenergetic 5 keV hydrogen ions and with a stationary plasma (flux power {approximately} 5 MW/m{sup 2}). The investigation of hydrogen behavior in beryllium shows that at low doses hydrogen is solved, but at doses {ge} 5x10{sup 22} m{sup -2} the bubbles and channels are formed. It results in hydrogen profile shift to the surface and decrease of its concentration. The sputtering results in further concentration decrease at doses > 10{sup 25}m{sup -2}.

  17. Preparation of selenium coatings onto beryllium foils

    SciTech Connect

    Erikson, E.D.; Tassano, P.L.; Reiss, R.H.; Griggs, G.E.

    1984-09-01

    A technique for preparing selenium films onto 50.8 microns thick beryllium foils is described. The selenium was deposited in vacuum from a resistance heated evaporation source. Profilometry measurements of the coatings indicate deposit thicknesses of 5.5, 12.9, 37.5, 49.8 and 74.5 microns. The control of deposition rate and of coating thickness was facilitated using a commercially available closed-loop programmable thin film controller. The x-ray transmission of the coated substrates was measured using a tritiated zirconium source. The transmissivities of the film/substrate combination are presented for the range of energies from 4 to 20 keV. 15 references, 3 figures.

  18. Primordial beryllium as a big bang calorimeter.

    PubMed

    Pospelov, Maxim; Pradler, Josef

    2011-03-25

    Many models of new physics including variants of supersymmetry predict metastable long-lived particles that can decay during or after primordial nucleosynthesis, releasing significant amounts of nonthermal energy. The hadronic energy injection in these decays leads to the formation of ⁹Be via the chain of nonequilibrium transformations: Energy(h)→T, ³He→⁶He, ⁶Li→⁹Be. We calculate the efficiency of this transformation and show that if the injection happens at cosmic times of a few hours the release of O(10 MeV) per baryon can be sufficient for obtaining a sizable ⁹Be abundance. The absence of a plateau structure in the ⁹Be/H abundance down to a O(10⁻¹⁴) level allows one to use beryllium as a robust constraint on new physics models with decaying or annihilating particles. PMID:21517297

  19. Polarizabilities of the beryllium clock transition

    SciTech Connect

    Mitroy, J.

    2010-11-15

    The polarizabilities of the three lowest states of the beryllium atom are determined from a large basis configuration interaction calculation. The polarizabilities of the 2s{sup 2} {sup 1}S{sup e} ground state (37.73a{sub 0}{sup 3}) and the 2s2p {sup 3}P{sub 0}{sup o} metastable state (39.04a{sub 0}{sup 3}) are found to be very similar in size and magnitude. This leads to an anomalously small blackbody radiation shift at 300 K of -0.018(4) Hz for the 2s{sup 2} {sup 1}S{sup e}-2s2p {sup 3}P{sub 0}{sup o} clock transition. Magic wavelengths for simultaneous trapping of the ground and metastable states are also computed.

  20. Beryllium isotope geochemistry in tropical river basins

    SciTech Connect

    Brown, E.T.; Edmond, J.M. ); Raisbeck, G.M.; Bourles, D.L.; Yiou, F. ); Measures, C.I. )

    1992-04-01

    The distributions of beryllium-9 and beryllium-10 in rivers within the Orinoco and Amazon basins have been examined to extend the understanding of their geochemical cycles and to develop their use both in geochronometry, and in studying erosional processes. Analyses of {sup 9}Be in dissolved and suspended material from rivers with a wide range of chemical compositions indicate that its geochemistry is primarily controlled by two major factors: (1) its abundance in the rocks of the watershed and (2) the extent of its adsorption onto particle surfaces. The relative importance of these parameters in individual rivers is determined by the extent of interaction with flood-plain sediments and the riverine pH. This understanding of {sup 9}Be geochemistry forms a basis for examination of the geochemical cycling of {sup 10}Be. In rivers which are dominated by interaction with sediments, the riverine concentration of dissolved {sup 10}Be is far lower than that in the incoming rainwater, indicating that a substantial proportion of it is retained within the soils of the basin or is adsorbed onto riverine particles. However, in acidic rivers in which the stable dissolved Be concentration is determined by the Be level in the rocks of the drainage basin, dissolved {sup 10}Be has essentially the same concentration as in precipitation. These observations imply that the soil column in such regions must be saturated with respect to {sup 10}Be, and that the ratio of the inventory to the flux does not represent an age, as may be the case in temperate latitudes, but rather a residence time.

  1. High-temperature annealing of proton irradiated beryllium - A dilatometry-based study

    NASA Astrophysics Data System (ADS)

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Ghose, Sanjit; Savkliyildiz, Ilyas

    2016-08-01

    Ssbnd 200 F grade beryllium has been irradiated with 160 MeV protons up to 1.2 1020 cm-2 peak fluence and irradiation temperatures in the range of 100-200 °C. To address the effect of proton irradiation on dimensional stability, an important parameter in its consideration in fusion reactor applications, and to simulate high temperature irradiation conditions, multi-stage annealing using high precision dilatometry to temperatures up to 740 °C were conducted in air. X-ray diffraction studies were also performed to compliment the macroscopic thermal study and offer a microscopic view of the irradiation effects on the crystal lattice. The primary objective was to qualify the competing dimensional change processes occurring at elevated temperatures namely manufacturing defect annealing, lattice parameter recovery, transmutation 4He and 3H diffusion and swelling and oxidation kinetics. Further, quantification of the effect of irradiation dose and annealing temperature and duration on dimensional changes is sought. The study revealed the presence of manufacturing porosity in the beryllium grade, the oxidation acceleration effect of irradiation including the discontinuous character of oxidation advancement, the effect of annealing duration on the recovery of lattice parameters recovery and the triggering temperature for transmutation gas diffusion leading to swelling.

  2. Effects of Temperature, Oxygen Partial Pressure, and Materials Selection on Slag Infiltration into Porous Refractories for Entrained-Flow Gasifiers

    NASA Astrophysics Data System (ADS)

    Kaneko, Tetsuya Kenneth

    The penetration rate of molten mineral contents (slag) from spent carbonaceous feedstock into porous ceramic-oxide refractory linings is a critical parameter in determining the lifecycle of integrated gasification combined cycle energy production plants. Refractory linings that withstand longer operation without interruption are desirable because they can mitigate consumable and maintenance costs. Although refractory degradation has been extensively studied for many other high-temperature industrial processes, this work focuses on the mechanisms that are unique to entrained-flow gasification systems. The use of unique feedstock mixtures, temperatures from 1450 °C to 1600 °C, and oxygen partial pressures from 10-7 atm to 10-9 atm pose engineering challenges in designing an optimal refractory material. Experimentation, characterization, and modeling show that gasifier slag infiltration into porous refractory is determined by interactions between the slag and the refractory that either form a physical barrier that impedes fluid flow or induce an increased fluid viscosity that decelerates the velocity of the fluid body. The viscosity of the slag is modified by the thermal profile of the refractory along the penetration direction as well as reactions between the slag and refractory that alter the chemistry, and thereby the thermo-physical properties of the fluid. Infiltration experiments reveal that the temperature gradient inherently present along the refractory lining limits penetration. A refractory in near-isothermal conditions demonstrates deeper slag penetration as compared to one that experiences a steeper thermal profile. The decrease in the local temperatures of the slag as it travels deeper into the refractory increases the viscosity of the fluid, which in turn slows the infiltration velocity of fluid body into the pores of the refractory microstructure. With feedstock mixtures that exhibit high iron-oxide concentrations, a transition-metal-oxide, the oxygen

  3. A robust and cost-effective integrated process for nitrogen and bio-refractory organics removal from landfill leachate via short-cut nitrification, anaerobic ammonium oxidation in tandem with electrochemical oxidation.

    PubMed

    Wu, Li-Na; Liang, Da-Wei; Xu, Ying-Ying; Liu, Ting; Peng, Yong-Zhen; Zhang, Jie

    2016-07-01

    A cost-effective process, consisting of a denitrifying upflow anaerobic sludge blanket (UASB), an oxygen-limited anoxic/aerobic (A/O) process for short-cut nitrification, and an anaerobic reactor (ANR) for anaerobic ammonia oxidation (anammox), followed by an electrochemical oxidation process with a Ti-based SnO2-Sb2O5 anode, was developed to remove organics and nitrogen in a sewage diluted leachate. The final chemical oxygen demand (COD), ammonia nitrogen (NH4(+)-N) and total nitrogen (TN) of 70, 11.3 and 39 (all in mg/L), respectively, were obtained. TN removal in UASB, A/O and ANR were 24.6%, 49.6% and 16.1%, respectively. According to the water quality and molecular biology analysis, a high degree of anammox besides short-cut nitrification and denitrification occurred in A/O. Counting for 16.1% of TN removal in ANR, at least 43.2-49% of TN was removed via anammox. The anammox bacteria in A/O and ANR, were in respective titers of (2.5-5.9)×10(9) and 2.01×10(10)copy numbers/(gSS). PMID:27115616

  4. On chemical bonding and helium distribution in hcp beryllium

    NASA Astrophysics Data System (ADS)

    Bakai, A. S.; Timoshevskii, A. N.; Yanchitsky, B. Z.

    2011-10-01

    The electron densities of states and spatial distribution of electron density in the system hcp beryllium-helium were investigated by means of ab-initio methods of simulation. It was found that contrary to predictions of the "jelly" model, the energetically more favorable configuration is that where a helium atom is located at the most restricted position, on a triangular face of two adjacent tetrahedrons, and where the charge density of electrons is maximal. It is established that this occurs due to hybridization of electron states of helium and nearest beryllium atom. The helium binding energy is about 5.6 eV. The spatial distribution of the charge density is investigated in details. Calculation of solution energy of helium in hcp beryllium was performed. The helium location at lattice sites in different interstitial positions and in divacancy complexes were considered. It is found that helium implemented into hcp beryllium favors formation of divacancies.

  5. The mechanical behavior of cross-rolled beryllium sheet

    NASA Technical Reports Server (NTRS)

    Henkener, J. A.; Spiker, I. K.; Castner, W. L.

    1992-01-01

    In response to the failure of a conical section of the Insat C satellite during certification testing, the use of beryllium for payload structures, particularly in sheet product form, is being reevaluated. A test program was initiated to study the tensile, shear, and out-of-plane failure modes of beryllium cross-rolled sheet and to apply data to the development of an appropriate failure criterion. Tensile test results indicated that sanding the surface of beryllium sheet has no significant effect on yield strength but can produce a profound reduction in ultimate strength and results obtained by finite element analysis. Critical examination of these test results may contribute to the modification of a JSC policy for the use of beryllium in orbiter and payload structures.

  6. Plans and status of the Beryllium ablator campaign on NIF

    NASA Astrophysics Data System (ADS)

    Kline, J. L.; Yi, S. A.; Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Krasheninnikova, N. S.; Kyrala, G. A.; Perry, T. S.; Batha, S. H.; Dewald, E. L.; Edwards, M. J.; MacKinnon, A. J.; Meezan, N. B.

    2014-10-01

    Beryllium has long been known to have excellent properties for indirectly driven ICF implosions including enhanced ablation pressure, implosion velocity, and mass ablation rate. The high ablation velocity leads to stabilization of ablative hydrodynamic instabilities and higher ablation pressures. Recent ``high foot'' experiments have shown ablative Rayleigh-Taylor to be a leading cause of degraded performance for ICF implosions. While Beryllium ablators have these advantages, there are also risks associated with Beryllium target designs. A campaign is underway to design and to test these advantages for comparison with other ablator options and determine which provides the best path forward for ICF. Experiments using Beryllium ablators are expected to start in the late summer of 2014. This presentation will discuss the status of the experiments and layout the plans/goals for the campaign. This work is supported by the US DOE.

  7. Beryllium based multilayers for normal incidence extreme ultraviolet reflectance

    SciTech Connect

    Skulina, K.; Alford, C.; Bionta, R.; Makowiecki, D.; Gullikson, E.; Soufli, R.; Kortright, J.; Underwood, J.

    1994-11-01

    We report the experimental results of beryllium based multilayer mirrors for use in the 11.4 nm region. Mirrors using molybdenum as the high-Z material have demonstrated 68.7% peak reflectance at 11.3 nm.

  8. New facility for post irradiation examination of neutron irradiated beryllium

    SciTech Connect

    Ishitsuka, Etsuo; Kawamura, Hiroshi

    1995-09-01

    Beryllium is expected as a neutron multiplier and plasma facing materials in the fusion reactor, and the neutron irradiation data on properties of beryllium up to 800{degrees}C need for the engineering design. The acquisition of data on the tritium behavior, swelling, thermal and mechanical properties are first priority in ITER design. Facility for the post irradiation examination of neutron irradiated beryllium was constructed in the hot laboratory of Japan Materials Testing Reactor to get the engineering design data mentioned above. This facility consist of the four glove boxes, dry air supplier, tritium monitoring and removal system, storage box of neutron irradiated samples. Beryllium handling are restricted by the amount of tritium;7.4 GBq/day and {sup 60}Co;7.4 MBq/day.

  9. Mortality study of beryllium industry workers' occupational lung cancer

    SciTech Connect

    Mancuso, T.F.

    1980-02-01

    A cohort of 3685 white males employed during 1937 to 1948 in two major industries manufacturing beryllium was followed to the end of 1976 to evaluate lung cancer mortality experience. Lung cancer mortality among beryllium-exposed workers was contrasted with that of workers employed in the viscose rayon industry. Study results demonstrated that lung cancer mortality among berylliumm-exposed workers was significantly greater than that expected on the basis of lung cancer mortality experience of workers in the viscose rayon industry having similar employment patterns. The results of the present study are consistent with earlier animal bioassay studies and recent epidemiologic studies indicating that beryllium is carcinogenic. The results of the present study are not consistent with speculation attributing the excessive lung cancer mortality among beryllium-exposed workers to personal characteristics of individuals having unstable employment patterns.

  10. Development of Biomarkers for Chronic Beryllium Disease in Mice

    SciTech Connect

    Gordon, Terry

    2013-01-25

    Beryllium is a strategic metal, indispensable for national defense programs in aerospace, telecommunications, electronics, and weaponry. Exposure to beryllium is an extensively documented occupational hazard that causes irreversible, debilitating granulomatous lung disease in as much as 3 - 5% of exposed workers. Mechanistic research on beryllium exposure-disease relationships has been severely limited by a general lack of a sufficient CBD animal model. We have now developed and tested an animal model which can be used for dissecting dose-response relationships and pathogenic mechanisms and for testing new diagnostic and treatment paradigms. We have created 3 strains of transgenic mice in which the human antigen-presenting moiety, HLA-DP, was inserted into the mouse genome. Each mouse strain contains HLA-DPB1 alleles that confer different magnitude of risk for chronic beryllium disease (CBD): HLA-DPB1*0401 (odds ratio = 0.2), HLA-DPB1*0201 (odds ratio = 15), HLA-DPB1*1701 (odds ratio = 240). Our preliminary work has demonstrated that the *1701 allele, as predicted by human studies, results in the greatest degree of sensitization in a mouse ear swelling test. We have also completed dose-response experiments examining beryllium-induced lung granulomas and identified susceptible and resistant inbred strains of mice (without the human transgenes) as well as quantitative trait loci that may contain gene(s) that modify the immune response to beryllium. In this grant application, we propose to use the transgenic and normal inbred strains of mice to identify biomarkers for the progression of beryllium sensitization and CBD. To achieve this goal, we propose to compare the sensitivity and accuracy of the lymphocyte proliferation test (blood and bronchoalveolar lavage fluid) with the ELISPOT test in the three HLA-DP transgenic mice strains throughout a 6 month treatment with beryllium particles. Because of the availability of high-throughput proteomics, we will also identify

  11. Effects of Beryllium on Human Serum Immunoglobulin and Lymphocyte Subpopulation

    PubMed Central

    Kim, DaeSeong; Won, Yong Lim; Kang, Seong-Kyu

    2013-01-01

    To investigate the effects of short-term exposure of beryllium on the human immune system, the proportion of T-lymphocytes such as CD3+, CD4+, CD8+, CD95, and NK cells, andthe proportion of B cells and TNFα level in peripheral blood and immunoglobulins in the serum of 43 exposed workers and 34 healthy control subjects were studied. External exposure to beryllium was measured by atomic absorption spectrometer as recommended by the NIOSH analytical method 7300. T lymphocyte subpopulation analysis was carried out with flow cytometer. The working duration of exposed workers was less than 3 months and the mean ambient beryllium level was 3.4 μg/m3, 112.3 μg/m3, and 2.3 μg/m3 in molding (furnace), deforming (grinding), and sorting processes, respectively (cited from Kim et al., 2008). However, ambient beryllium level after process change was non-detectable (< 0.1 μg/m3). The number of T lymphocytes and the amount of immunoglobulins in the beryllium-exposed workers and control subjects were not significantly different, except for the total number of lymphocytes and CD95 (APO1/FAS). The total number of lymphocytes was higher in the beryllium-exposed individuals than in the healthy control subjects. Multiple logistic regression analysis showed lymphocytes to be affected by beryllium exposure (odd ratio = 7.293; p < 0.001). These results show that short-term exposure to beryllium does not induce immune dysfunction but is probably associated with lymphocytes proliferation. PMID:24278637

  12. METHOD OF ALLOYING REACTIVE METALS WITH ALUMINUM OR BERYLLIUM

    DOEpatents

    Runnalls, O.J.C.

    1957-10-15

    A halide of one or more of the reactive metals, neptunium, cerium and americium, is mixed with aluminum or beryllium. The mass is heated at 700 to 1200 deg C, while maintaining a substantial vacuum of above 10/sup -3/ mm of mercury or better, until the halide of the reactive metal is reduced and the metal itself alloys with the reducing metal. The reaction proceeds efficiently due to the volatilization of the halides of the reducing metal, aluminum or beryllium.

  13. Actinide/beryllium neutron sources with reduced dispersion characteristics

    DOEpatents

    Schulte, Louis D.

    2012-08-14

    Neutron source comprising a composite, said composite comprising crystals comprising BeO and AmBe.sub.13, and an excess of beryllium, wherein the crystals have an average size of less than 2 microns; the size distribution of the crystals is less than 2 microns; and the beryllium is present in a 7-fold to a 75-fold excess by weight of the amount of AmBe.sub.13; and methods of making thereof.

  14. Ancient asteroids enriched in refractory inclusions.

    PubMed

    Sunshine, J M; Connolly, H C; McCoy, T J; Bus, S J; La Croix, L M

    2008-04-25

    Calcium- and aluminum-rich inclusions (CAIs) occur in all classes of chondritic meteorites and contain refractory minerals predicted to be the first condensates from the solar nebula. Near-infrared spectra of CAIs have strong 2-micrometer absorptions, attributed to iron oxide-bearing aluminous spinel. Similar absorptions are present in the telescopic spectra of several asteroids; modeling indicates that these contain approximately 30 +/- 10% CAIs (two to three times that of any meteorite). Survival of these undifferentiated, large (50- to 100-kilometer diameter) CAI-rich bodies suggests that they may have formed before the injection of radiogenic 26Al into the solar system. They have also experienced only modest post-accretionary alteration. Thus, these asteroids have higher concentrations of CAI material, appear less altered, and are more ancient than any known sample in our meteorite collection, making them prime candidates for sample return. PMID:18356491

  15. Removing tritium and other impurities during industrial recycling of beryllium from a fusion reactor

    SciTech Connect

    Dylst, K.; Seghers, J.; Druyts, F.; Braet, J.

    2008-07-15

    Recycling beryllium used in a fusion reactor might be a good way to overcome problems related to the disposal of neutron irradiated beryllium. The critical issues for the recycling of used first wall beryllium are the presence of tritium and (transuranic) impurities. High temperature annealing seems to be the most promising technique for detritiation. Purification of the de-tritiated beryllium can be achieved by chlorination of the irradiated beryllium and the subsequent reduction of beryllium chloride to highly pure metallic beryllium. After that, the beryllium can be re-fabricated into first wall tiles via powder metallurgy which is already a mature industrial practice. This paper outlines the path to define the experimental needs for beryllium recycling and tackles problems related to the detritiation and the purification via the chlorine route. (authors)

  16. Continuous Production Of Refractory Microballoons

    NASA Technical Reports Server (NTRS)

    Schilling, Christopher H.; Lee, Mark C.; Wang, Taylor G.

    1988-01-01

    Continuous process has economic and quality advantages over batch processes. Expected to produce high-quality microballoons at relatively low cost. Continuous hollow-jet process produces microballoons of refractory metal. Microballoon products made by continuous process includes inertial-confinement fusion targets, thermal insulators, lightweight composites, impact absorbers, and containers for hazardous materials.

  17. Management of chronic refractory cough.

    PubMed

    Gibson, Peter G; Vertigan, Anne E

    2015-01-01

    Chronic refractory cough (CRC) is defined as a cough that persists despite guideline based treatment. It is seen in 20-46% of patients presenting to specialist cough clinics and it has a substantial impact on quality of life and healthcare utilization. Several terms have been used to describe this condition, including the recently introduced term cough hypersensitivity syndrome. Key symptoms include a dry irritated cough localized around the laryngeal region. Symptoms are not restricted to cough and can include globus, dyspnea, and dysphonia. Chronic refractory cough has factors in common with laryngeal hypersensitivity syndromes and chronic pain syndromes, and these similarities help to shed light on the pathophysiology of the condition. Its pathophysiology is complex and includes cough reflex sensitivity, central sensitization, peripheral sensitization, and paradoxical vocal fold movement. Chronic refractory cough often occurs after a viral infection. The diagnosis is made once the main diseases that cause chronic cough have been excluded (or treated) and cough remains refractory to medical treatment. Several treatments have been developed over the past decade. These include speech pathology interventions using techniques adapted from the treatment of hyperfunctional voice disorders, as well as the use of centrally acting neuromodulators such as gabapentin and pregabalin. Potential new treatments in development also show promise. PMID:26666537

  18. Preparing oxidizer coated metal fuel particles

    NASA Technical Reports Server (NTRS)

    Shafer, J. I.; Simmons, G. M. (Inventor)

    1974-01-01

    A solid propellant composition of improved efficiency is described which includes an oxidizer containing ammonium perchlorate, and a powered metal fuel, preferably aluminum or beryllium, in the form of a composite. The metal fuel is contained in the crystalline lattice framework of the oxidizer, as well as within the oxidizer particles, and is disposed in the interstices between the oxidizer particles of the composition. The propellant composition is produced by a process comprising the crystallization of ammonium perchlorate in water, in the presence of finely divided aluminum or beryllium. A suitable binder is incorporated in the propellant composition to bind the individual particles of metal with the particles of oxidizer containing occluded metal.

  19. Significance of the blood beryllium lymphocyte proliferation test

    SciTech Connect

    Newman, L.S.

    1996-10-01

    The blood beryllium lymphocyte proliferation test (BeLPT) is an in vitro measure of the beryllium antigen-specific cell-mediated immune response. This response to beryllium is now understood to play a central role in the immunopathogenesis of chronic beryllium disease (CBD). Although there remain some unresolved methodologic issues with testing, the blood BeLPT has already undergone sufficient development and field assessment to lead to a number of important conclusions: (a) The BeLPT identifies beryllium sensitization and CBD earlier and better than any other clinical test presently available. (b) The CBD cases identified with the blood test are clinically significant. (c) A subset of the people identified by the BeLPT who do not yet have clinical disease will progress and require treatment with corticosteroids for impairing illness. (d) The BeLPT can be used to improve clinical diagnostic accuracy and to correct mistaken diagnoses. (e) The blood test can be used in screening large numbers of exposed workers because it is sensitive and specific and has high positive and negative predictive value for CBD. (f) In every workforce studied to date, the BeLPT has identified beryllium sensitization and CBD that had been missed by conventional screening efforts. (g) Worker populations that have been characterized using the BeLPT can help to elucidate the role of exposure genetics and dysregulated inflammation in the genesis of occupational lung disease. 28 refs., 1 tab.

  20. Beryllium pressure vessels for creep tests in magnetic fusion energy

    SciTech Connect

    Neef, W.S.

    1990-07-20

    Beryllium has interesting applications in magnetic fusion experimental machines and future power-producing fusion reactors. Chief among the properties of beryllium that make these applications possible is its ability to act as a neutron multiplier, thereby increasing the tritium breeding ability of energy conversion blankets. Another property, the behavior of beryllium in a 14-MeV neutron environment, has not been fully investigated, nor has the creep behavior of beryllium been studied in an energetic neutron flux at thermodynamically interesting temperatures. This small beryllium pressure vessel could be charged with gas to test pressures around 3, 000 psi to produce stress in the metal of 15,000 to 20,000 psi. Such stress levels are typical of those that might be reached in fusion blanket applications of beryllium. After contacting R. Powell at HEDL about including some of the pressure vessels in future test programs, we sent one sample pressure vessel with a pressurizing tube attached (Fig. 1) for burst tests so the quality of the diffusion bond joints could be evaluated. The gas used was helium. Unfortunately, budget restrictions did not permit us to proceed in the creep test program. The purpose of this engineering note is to document the lessons learned to date, including photographs of the test pressure vessel that show the tooling necessary to satisfactorily produce the diffusion bonds. This document can serve as a starting point for those engineers who resume this task when funds become available.

  1. Significance of the blood beryllium lymphocyte proliferation test.

    PubMed Central

    Newman, L S

    1996-01-01

    The blood beryllium lymphocyte proliferation test (BeLPT) is an in vitro measure of the beryllium antigen-specific cell-mediated immune response. This response to beryllium is now understood to play a central role in the immunopathogenesis of chronic beryllium disease (CBD). Although there remain some unresolved methodologic issues with testing, the blood BeLPT has already undergone sufficient development and field assessment to lead to a number of important conclusions: a) The BeLPT identifies beryllium sensitization and CBD earlier and better than any other clinical test presently available. b) The CBD cases identified with the blood test are clinically significant. c) A subset of the people identified by the BeLPT who do not yet have clinical disease will progress and require treatment with corticosteroids for impairing illness. d) The BeLPT can be used to improve clinical diagnostic accuracy and to correct mistaken diagnoses. e) The blood test can be used in screening large numbers of exposed workers because it is sensitive and specific and has high positive and negative predictive value for CBD. f) In every workforce studied to date, the BeLPT has identified beryllium sensitization and CBD that had been missed by conventional screening efforts. g) Worker populations that have been characterized using the BeLPT can help to elucidate the role of exposure genetics and dysregulated inflammation in the genesis of occupational lung disease. PMID:8933041

  2. Impurities effect on the swelling of neutron irradiated beryllium

    SciTech Connect

    Donne, M.D.; Scaffidi-Argentina, F.

    1995-09-01

    An important factor controlling the swelling behaviour of fast neutron irradiated beryllium is the impurity content which can strongly affect both the surface tension and the creep strength of this material. Being the volume swelling of the old beryllium (early sixties) systematically higher than that of the more modem one (end of the seventies), a sensitivity analysis with the aid of the computer code ANFIBE (ANalysis of Fusion Irradiated BEryllium) to investigate the effect of these material properties on the swelling behaviour of neutron irradiated beryllium has been performed. Two sets of experimental data have been selected: the first one named Western refers to quite recently produced Western beryllium, whilst the second one, named Russian refers to relatively old (early sixties) Russian beryllium containing a higher impurity rate than the Western one. The results obtained with the ANFIBE Code were assessed by comparison with experimental data and the used material properties were compared with the data available in the literature. Good agreement between calculated and measured values has been found.

  3. Pulmonary function in beryllium workers: assessment of exposure.

    PubMed Central

    Kriebel, D; Sprince, N L; Eisen, E A; Greaves, I A

    1988-01-01

    The inhalation of beryllium causes a serious lung disease characterised by pronounced radiographic and functional impairments and occurs in workers engaged in the extraction and manufacture of the metal. This paper describes the beryllium exposure levels and refining processes in a large beryllium factory operating since the 1930s. Lifetime beryllium exposure histories were estimated for the 309 workers present at a health survey conducted in 1977. Beryllium exposure levels in the plant were high for many years, with some estimated exposure levels in excess of 100 micrograms/m3. As late as 1975, there were exposures to beryllium above 10 micrograms/m3 in some jobs. After about 1977, the plant was in compliance with the permissible exposure limit of 2.0 micrograms/m3. The median cumulative exposure in this cohort was 65 micrograms/m3-years and the median duration of exposure was 17 years. From these data a series of exposure parameters, functions of the exposure histories that characterise biologically important dimensions of exposure were calculated for each worker. PMID:3342199

  4. Chronopotentiometry of refractory metals, actinides and oxyanions in molten salts: A review

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1992-01-01

    The applications of chronopotentiometry to the study of electrochemical behavior of three technologically important areas of refractory metals, actinides, and oxyanions in molten salts are critically reviewed. Chronopotentiometry is a very versatile diagnostic tool to understand the reaction mechanism of the electrode processes for the electrochemical reduction/oxidation of these electroactive species in molten salt solutions. Well adherent, compact, and uniformly thick coatings of refractory metals may be electrodeposited from their solutions in molten salts.

  5. New developments in gasifier refractories

    SciTech Connect

    Dogan, Cynthia P.; Kwong, Kyei-Sing; Bennet, James P.; Chinn, Richard E.; Dahlin, Cheryl L.

    2002-01-01

    For Integrated Gasification Combined Cycle (IGCC) systems, operational reliability depends in part upon the ability of the materials of construction to tolerate harsh, high-temperature environments for extended periods of time. The harshest conditions within an IGCC system occur inside the gasifier itself, where for slagging systems the environment includes elevated temperature and pressure, as well as the presence of corrosive slags and gases. Attempts to enhance gasifier performance by operating at higher temperatures, with higher throughputs, and/or with variable feedstocks, put additional stress on the materials exposed to the operating environment, often resulting in a corresponding decrease in their useful service life. Current generation refractory materials commonly used at the hot face of commercial slagging systems will typically last from four to 18 months, depending on the operating conditions of the specific gasifier. However, as gasification technology matures, the need for new and improved materials will increase as the time between required maintenance shutdowns, and hence the economics and reliability of operation, are defined more and more by the service life of the materials from which the system is built. To address this need for materials development, the U.S. Department of Energy's Office of Fossil Energy and the Albany Research Center are exploring ways to extend the service life of the refractory liner that contains the gasification reaction in slagging gasifiers. In this paper, we examine how refractory materials fail in the gasifier environment, and introduce a new refractory designed specifically to resist such failures. Based on laboratory exposure tests, this new refractory is predicted to significantly enhance gasifier reliability and availability through increased service life.

  6. Exposure and genetics increase risk of beryllium sensitisation and chronic beryllium disease in the nuclear weapons industry

    SciTech Connect

    Van Dyke, M. V.; Martyny, John W.; Mroz, M. M.; Silveira, L. J.; Strand, M.; Cragle, D. L.; Tankersley, W. G.; Wells, S. M.; Newman, L. S.; Maier, L. A.

    2011-04-02

    Beryllium sensitisation (BeS) and chronic beryllium disease (CBD) are caused by exposure to beryllium with susceptibility affected by at least one well-studied genetic host factor, a glutamic acid residue at position 69 (E69) of the HLA-DPb chain (DPbE69). However, the nature of the relationship between exposure and carriage of the DPbE69 genotype has not been well studied. The goal of this study was to determine the relationship between DP{beta}E69 and exposure in BeS and CBD. Current and former workers (n=181) from a US nuclear weapons production facility, the Y-12 National Security Complex (Oak Ridge, Tennessee, USA), were enrolled in a case-control study including 35 individuals with BeS and 19 with CBD. HLA-DPB1 genotypes were determined by PCR-SSP. Beryllium exposures were assessed through worker interviews and industrial hygiene assessment of work tasks. After removing the confounding effect of potential beryllium exposure at another facility, multivariate models showed a sixfold (OR 6.06, 95% CI 1.96 to 18.7) increased odds for BeS and CBD combined among DP{beta}E69 carriers and a fourfold (OR 3.98, 95% CI 1.43 to 11.0) increased odds for those exposed over an assigned lifetime-weighted average exposure of 0.1 {micro}g/m{sup 3}. Those with both risk factors had higher increased odds (OR 24.1, 95% CI 4.77 to 122). DP{beta}E69 carriage and high exposure to beryllium appear to contribute individually to the development of BeS and CBD. Among workers at a beryllium-using facility, the magnitude of risk associated with either elevated beryllium exposure or carriage of DP{beta}E69 alone appears to be similar.

  7. METHOD OF MAKING ALLOYS OF BERYLLIUM WITH PLUTONIUM AND THE LIKE

    DOEpatents

    Runnals, O.J.C.

    1959-02-24

    The production of alloys of beryllium with one or more of the metals uranium, plutonium, actinium, americium, curium, thorium, and cerium are described. A halide salt of the metal to be alloyed with the beryllium is heated at 1300 deg C in the presence of beryllium to reduce the halide to metal and cause the latter to alloy directly with the beryllium. Although the heavy metal halides are more stable, thermodynamically, than the beryllium halides, the reducing reaction proceeds to completion if the beryllium halide product is continuously removed by vacuum distillation.

  8. Method of making alloys of beryllium with plutonium and the like

    DOEpatents

    Runnals, O J.C.

    1959-02-24

    The production or alloys of beryllium with one or more of the metals uranium, plutonium, actinium, americium, curium, thorium, and cerium is described. A halide salt or the metal to be alloyed with the beryllium is heated at l3O0 deg C in the presence of beryllium to reduce the halide to metal and cause the latter to alloy directly with the beryllium. Although the heavy metal halides are more stable, thermodynamically, than the beryllium halides, the reducing reaction proceeds to completion if the beryllium halide product is continuously removed by vacuum distillation.

  9. Functional design of refractories for slagging gasifiers

    SciTech Connect

    Kwong, Kyei-Sing; Dogan, Cynthia P.; Bennett, James P.; Chinn, Richard E.; Dahlin, Cheryl L.

    2002-09-01

    Refractories are used in coal slagging gasifiers to protect the outer steel shell from coal slag attack and to insulate it from heat. Corrosion by the aggressive coal slags and unexpected temperature shock severely shorten the service life of these refractories. Currently, the best refractories available for the slagging coal gasifiers last from 6 to 18 months. The down time for the installation of new refractory lining reduces on-line availability of the gasifier. Researchers at the Albany Research Center (ARC) have found that structural spalling by slag penetration into the refractory is responsible for the early failure of refractories in some gasifiers. The low melting point of coal slags, the low thermal gradient in the refractory, and the improper design of refractory microstructure contribute to promote slag penetration. Work at ARC has demonstrated that refractories with an improved functional design are more resistant to slag penetration. Cooperation with commercial refractory companies and gasifier designers/operators is underway to produce and test improved refractories.

  10. Floating zone process for drawing small diameter fibers of refractory materials

    NASA Technical Reports Server (NTRS)

    Westfall, L. J.; Haggerty, J.; Menashi, W. P.; Wenckus, J. F.

    1972-01-01

    New process produces controlled purity, very high strength, single crystal fibers of materials with melting points to 4000 C. Process has been used to make single crystal fibers of highly refractory ceramics such as aluminum oxide, titanium carbide and yttrium oxide.

  11. Modulating the strength of tetrel bonding through beryllium bonding.

    PubMed

    Liu, Mingxiu; Yang, Li; Li, Qingzhong; Li, Wenzuo; Cheng, Jianbo; Xiao, Bo; Yu, Xuefang

    2016-08-01

    Quantum chemical calculations were performed to investigate the stability of the ternary complexes BeH2···XMH3···NH3 (X = F, Cl, and Br; M = C, Si, and Ge) and the corresponding binary complexes at the atomic level. Our results reveal that the stability of the XMH3···BeH2 complexes is mainly due to both a strong beryllium bond and a weak tetrel-hydride interaction, while the XMH3···NH3 complexes are stabilized by a tetrel bond. The beryllium bond with a halogen atom as the electron donor has many features in common with a beryllium bond with an O or N atom as the electron donor, although they do exhibit some different characteristics. The stability of the XMH3···NH3 complex is dominated by the electrostatic interaction, while the orbital interaction also makes an important contribution. Interestingly, as the identities of the X and M atoms are varied, the strength of the tetrel bond fluctuates in an irregular manner, which can explained by changes in electrostatic potentials and orbital interactions. In the ternary systems, both the beryllium bond and the tetrel bond are enhanced, which is mainly ascribed to increased electrostatic potentials on the corresponding atoms and charge transfer. In particular, when compared to the strengths of the tetrel and beryllium bonds in the binary systems, in the ternary systems the tetrel bond is enhanced to a greater degree than the beryllium bond. Graphical Abstract A tetrel bond can be strengthened greatly by a beryllium bond. PMID:27464738

  12. Effects of nitrogen pulsing on sputter-deposited beryllium films

    SciTech Connect

    Hsieh, E.J.; Price, C.W.; Pierce, E.L.; Wirtenson, R.G. )

    1990-05-01

    Beryllium films have been used as a heat sink'' layer between the reflective coating of a mirror and its glass substrate to improve the mirror's radiation resistance to prompt deposition of x rays. Under x-ray irradiation, the beryllium heat sink layer is subjected to tensile stresses caused by differences in thermal expansion coefficients. Test results indicated that the predominant failure mode was the film's crazing under tensile stress. The inherent columnar structure of the beryllium films deposited under normal conditions is detrimental to the tensile strength of the films and may be responsible for this type of failure. We successfully suppressed the inherent columnar growth in beryllium films by incorporating periodic N{sub 2} pulses during sputter deposition. The traditional substrate biasing approach did not seem to be as effective in modifying the grain structure. The results showed that higher N{sub 2} pulse rates during deposition were more effective in suppressing the columnar growth. However, we noticed that films deposited with nitrogen pulsing show higher secondary-electron emission in SEM micrographs, which indicates a significant incorporation of contaminants into the beryllium films. Quantitative analyses were conducted for nitrogen and oxygen contamination in the beryllium films using standards prepared by ion implantation. Secondary ion mass spectroscopy (SIMS) depth profiles were obtained for oxygen and nitrogen using mass isotopes {sup 16}O and 23({sup 9}Be+{sup 14}N). More than 2% of contaminants was observed in beryllium films at the higher pulse rates that were used. Thus, a minimum pulsing frequency and duration should be selected that provides grain refinement with a minimum amount of contamination.

  13. Low-Chrome/Chrome Free Refractories for Slagging Gasifiers

    SciTech Connect

    Bennett, J.P.; Kwong, K.-S.; Powell, C.P.; Thomas, H.; Petty, A.V., Jr.

    2007-01-01

    Gasifiers are containment vessels used to react carbon-containing materials with oxygen and water, producing syngas (CO and H2) that is used in chemical and power production. It is also a potential source of H2 in a future hydrogen economy. Air cooled slagging gasifiers are one type of gasifier, operating at temperatures from 1275-1575º C and at pressures of 400 psi or higher. They typically use coal or petroleum coke as the carbon source, materials which contain ash impurities that liquefy at the gasification temperatures, producing liquid slag in quantities of 100 or more tons/day, depending on the carbon fed rate and the percent ash present in the feedstock. The molten slag is corrosive to refractory linings, causing chemical dissolution and spalling. The refractory lining is composed of chrome oxide, alumina, and zirconia; and is replaced every 3-24 months. Gasifier users would like greater on-line availability and reliability of gasifier liners, something that has impacted gasifier acceptance by industry. Research is underway at NETL to improve refractory service life and to develop a no-chrome or low-chrome oxide alternative refractory liner. Over 250 samples of no- or low-chrome oxide compositions have been evaluated for slag interactions by cup testing; with potential candidates for further studies including those with ZrO2, Al2O3, and MgO materials. The development of improved liner materials is necessary if technologies such as IGCC and DOE’s Near Zero Emissions Advanced Fossil Fuel Power Plant are to be successful and move forward in the marketplace.

  14. Photodesorption from copper, beryllium and thin films

    SciTech Connect

    Foerster, C.L.; Halama, H.J.; Korn, G.

    1991-01-01

    Ever increasing circulating currents in electron-positron colliders and light sources demand lower and lower photodesportion (PSD) from the surfaces of their vacuum chambers and their photon absorbers. This is particularly important in compact electron storage rings and B meson factories where photon power of several kw cm{sup {minus}1} is deposited on the surfaces. Given the above factors we have measured PSD from 1m long bars of (1) solid copper and solid beryllium, and (2), TiN, Au and C thin films deposited on solid copper bars. Each sample was exposed to about 10{sup 23} photons/m with a critical energy of 500 eV at the VUV ring of the NSLS. PSD was recorded for two conditions: after a 200{degrees}C bake-out and after an Ar glow discharge cleaning. In addition, we also measured reflected photons, photoelectrons and desorption as functions of normal, 75 mrad, 100 mrad, and 125 mrad incident photons. 15 refs., 8 figs., 1 tab.

  15. Photodesorption from copper, beryllium and thin films

    SciTech Connect

    Foerster, C.L.; Halama, H.J.; Korn, G.

    1991-12-31

    Ever increasing circulating currents in electron-positron colliders and light sources demand lower and lower photodesportion (PSD) from the surfaces of their vacuum chambers and their photon absorbers. This is particularly important in compact electron storage rings and B meson factories where photon power of several kw cm{sup {minus}1} is deposited on the surfaces. Given the above factors we have measured PSD from 1m long bars of (1) solid copper and solid beryllium, and (2), TiN, Au and C thin films deposited on solid copper bars. Each sample was exposed to about 10{sup 23} photons/m with a critical energy of 500 eV at the VUV ring of the NSLS. PSD was recorded for two conditions: after a 200{degrees}C bake-out and after an Ar glow discharge cleaning. In addition, we also measured reflected photons, photoelectrons and desorption as functions of normal, 75 mrad, 100 mrad, and 125 mrad incident photons. 15 refs., 8 figs., 1 tab.

  16. The unusual properties of beryllium surfaces

    SciTech Connect

    Stumpf, R. ||; Hannon, J.B. |; Plummer, E.W. |

    1994-12-31

    Be is a ``marginal metal.`` The stable phase, hcp-Be, has a low Fermi-level density of states and very anisotropic structural and elastic properties, similar to a semiconductor`s. At the Be(0001) surface, surface states drastically increase the Fermi-level density of states. The different nature of bonding in bulk-Be and at the Be(0001) surface explains the large outward relaxation. The presence of surface states causes large surface core-level shifts by inducing a higher electrostatic potential in the surface layers and by improving the screening at the surface. The authors experimental and theoretical investigations of atomic vibrations at the Be(0001) surface demonstrate clearly that Be screening of atomic motion by the surface states makes the surface phonon dispersion fundamentally different from that of the bulk. Properties of Be(0001) are so different from those of the bulk that the surface can be considered a new ``phase`` of beryllium with unique electronic and structural characteristics. For comparison they also study Be(11{bar 2}0), a very open surface without important surface states. Be(11{bar 2}0) is the only clean s-p metal surface known to reconstruct (1 {times} 3 missing row reconstruction).

  17. Refractory neural nets and vision

    NASA Astrophysics Data System (ADS)

    Fall, Thomas C.

    2014-02-01

    Biological understandings have served as the basis for new computational approaches. A prime example is artificial neural nets which are based on the biological understanding of the trainability of neural synapses. In this paper, we will investigate features of the biological vision system to see if they can also be exploited. These features are 1) the neuron's refractory period - the period of time after the neuron fires before it can fire again and 2) the ocular microtremor which moves the retinal neural array relative to the image. The short term memory due to the refractory period allows the before and after movement views to be compared. This paper will discuss the investigation of the implications of these two features.

  18. The refractory painful arc syndrome.

    PubMed

    Watson, M

    1978-11-01

    Twenty-three patients with a severe refractory painful arc syndrome have been treated by excision of the outer end of the clavicle and division of the coracoacromial ligament through a deltoid-splitting approach. After a follow-up of more than six months all patients have been relieved of night pain. Six still have slight pain on movement, but the rest are symptom-free. PMID:711806

  19. Understanding and treating refractory constipation.

    PubMed

    Bassotti, Gabrio; Blandizzi, Corrado

    2014-05-01

    Chronic constipation is a frequently encountered disorder in clinical practice. Most constipated patients benefit from standard medical approaches. However, current therapies may fail in a proportion of patients. These patients deserve better evaluation and thorough investigations before their labeling as refractory to treatment. Indeed, several cases of apparent refractoriness are actually due to misconceptions about constipation, poor basal evaluation (inability to recognize secondary causes of constipation, use of constipating drugs) or inadequate therapeutic regimens. After a careful re-evaluation that takes into account the above factors, a certain percentage of patients can be defined as being actually resistant to first-line medical treatments. These subjects should firstly undergo specific diagnostic examination to ascertain the subtype of constipation. The subsequent therapeutic approach should be then tailored according to their underlying dysfunction. Slow transit patients could benefit from a more robust medical treatment, based on stimulant laxatives (or their combination with osmotic laxatives, particularly over the short-term), enterokinetics (such as prucalopride) or secretagogues (such as lubiprostone or linaclotide). Patients complaining of obstructed defecation are less likely to show a response to medical treatment and might benefit from biofeedback, when available. When all medical treatments prove to be unsatisfactory, other approaches may be attempted in selected patients (sacral neuromodulation, local injection of botulinum toxin, anterograde continence enemas), although with largely unpredictable outcomes. A further although irreversible step is surgery (subtotal colectomy with ileorectal anastomosis or stapled transanal rectal resection), which may confer some benefit to a few patients with refractoriness to medical treatments. PMID:24868488

  20. Refractory materials from lunar resources

    NASA Technical Reports Server (NTRS)

    Fabes, B. D.; Poisl, W. H.

    1991-01-01

    Refractories - materials which are able to withstand extremely high temperatures - are sure to be an important part of any processing facility or human outpost which is built on Mars. Containers for processing lunar oxygen will need high temperature components. Fabrication of structural material from lunar resources need both containment vessels to hold high temperature melts and molds in which to form the final shapes. Certainly, it would be desirable to fabricate such vessels and molds on the Moon, rather than carrying them up from the Earth. At first glance, this might appear to be a trivial task, since the Moon's surface consists of a variety of refractory compositions. To turn the regolith into a useful fire brick or mold, however, will require water or other binders and additives which are likely to be in extremely short supply on the Moon. The steps needed to make fire bricks and molds for lunar-derived structural materials are examined, pointing out the critical steps and resources which will be needed. While these processes and applications may seem somewhat mundane, it is emphasized that it is precisely these rudimentary processes which must be mastered before discussing making aerobrakes, and other fancier refractories from lunar resources.

  1. Identification of beryllium-dependent peptides recognized by CD4+ T cells in chronic beryllium disease

    PubMed Central

    Falta, Michael T.; Mack, Douglas G.; Tinega, Alex N.; Crawford, Frances; Giulianotti, Marc; Santos, Radleigh; Clayton, Gina M.; Wang, Yuxiao; Zhang, Xuewu; Maier, Lisa A.; Marrack, Philippa; Kappler, John W.

    2013-01-01

    Chronic beryllium disease (CBD) is a granulomatous disorder characterized by an influx of beryllium (Be)-specific CD4+ T cells into the lung. The vast majority of these T cells recognize Be in an HLA-DP–restricted manner, and peptide is required for T cell recognition. However, the peptides that stimulate Be-specific T cells are unknown. Using positional scanning libraries and fibroblasts expressing HLA-DP2, the most prevalent HLA-DP molecule linked to disease, we identified mimotopes and endogenous self-peptides that bind to MHCII and Be, forming a complex recognized by pathogenic CD4+ T cells in CBD. These peptides possess aspartic and glutamic acid residues at p4 and p7, respectively, that surround the putative Be-binding site and cooperate with HLA-DP2 in Be coordination. Endogenous plexin A peptides and proteins, which share the core motif and are expressed in lung, also stimulate these TCRs. Be-loaded HLA-DP2–mimotope and HLA-DP2–plexin A4 tetramers detected high frequencies of CD4+ T cells specific for these ligands in all HLA-DP2+ CBD patients tested. Thus, our findings identify the first ligand for a CD4+ T cell involved in metal-induced hypersensitivity and suggest a unique role of these peptides in metal ion coordination and the generation of a common antigen specificity in CBD. PMID:23797096

  2. Identification of beryllium-dependent peptides recognized by CD4+ T cells in chronic beryllium disease.

    PubMed

    Falta, Michael T; Pinilla, Clemencia; Mack, Douglas G; Tinega, Alex N; Crawford, Frances; Giulianotti, Marc; Santos, Radleigh; Clayton, Gina M; Wang, Yuxiao; Zhang, Xuewu; Maier, Lisa A; Marrack, Philippa; Kappler, John W; Fontenot, Andrew P

    2013-07-01

    Chronic beryllium disease (CBD) is a granulomatous disorder characterized by an influx of beryllium (Be)-specific CD4⁺ T cells into the lung. The vast majority of these T cells recognize Be in an HLA-DP–restricted manner, and peptide is required for T cell recognition. However, the peptides that stimulate Be-specific T cells are unknown. Using positional scanning libraries and fibroblasts expressing HLA-DP2, the most prevalent HLA-DP molecule linked to disease, we identified mimotopes and endogenous self-peptides that bind to MHCII and Be, forming a complex recognized by pathogenic CD4⁺ T cells in CBD. These peptides possess aspartic and glutamic acid residues at p4 and p7, respectively, that surround the putative Be-binding site and cooperate with HLA-DP2 in Be coordination. Endogenous plexin A peptides and proteins, which share the core motif and are expressed in lung, also stimulate these TCRs. Be-loaded HLA-DP2–mimotope and HLA-DP2–plexin A4 tetramers detected high frequencies of CD4⁺ T cells specific for these ligands in all HLADP2+ CBD patients tested. Thus, our findings identify the first ligand for a CD4⁺ T cell involved in metal-induced hypersensitivity and suggest a unique role of these peptides in metal ion coordination and the generation of a common antigen specificity in CBD. PMID:23797096

  3. Validation of cleaning method for various parts fabricated at a Beryllium facility

    SciTech Connect

    Davis, Cynthia M.

    2015-12-15

    This study evaluated and documented a cleaning process that is used to clean parts that are fabricated at a beryllium facility at Los Alamos National Laboratory. The purpose of evaluating this cleaning process was to validate and approve it for future use to assure beryllium surface levels are below the Department of Energy’s release limits without the need to sample all parts leaving the facility. Inhaling or coming in contact with beryllium can cause an immune response that can result in an individual becoming sensitized to beryllium, which can then lead to a disease of the lungs called chronic beryllium disease, and possibly lung cancer. Thirty aluminum and thirty stainless steel parts were fabricated on a lathe in the beryllium facility, as well as thirty-two beryllium parts, for the purpose of testing a parts cleaning method that involved the use of ultrasonic cleaners. A cleaning method was created, documented, validated, and approved, to reduce beryllium contamination.

  4. Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project

    SciTech Connect

    Reynolds, T. D.; Easterling, S. D.

    2010-10-01

    This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

  5. Beryllium processing technology review for applications in plasma-facing components

    SciTech Connect

    Castro, R.G.; Jacobson, L.A.; Stanek, P.W.

    1993-07-01

    Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itself and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included.

  6. 40 CFR 421.150 - Applicability: Description of the primary beryllium subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary beryllium subcategory. 421.150 Section 421.150 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Beryllium Subcategory § 421.150 Applicability: Description of the primary...

  7. 40 CFR 421.150 - Applicability: Description of the primary beryllium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary beryllium subcategory. 421.150 Section 421.150 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Beryllium Subcategory § 421.150 Applicability: Description of the primary...

  8. Erosion of beryllium under ITER - Relevant transient plasma loads

    NASA Astrophysics Data System (ADS)

    Kupriyanov, I. B.; Nikolaev, G. N.; Kurbatova, L. A.; Porezanov, N. P.; Podkovyrov, V. L.; Muzichenko, A. D.; Zhitlukhin, A. M.; Gervash, A. A.; Safronov, V. M.

    2015-08-01

    Beryllium will be used as a armor material for the ITER first wall. It is expected that erosion of beryllium under transient plasma loads such as the edge-localized modes (ELMs) and disruptions will mainly determine a lifetime of the ITER first wall. This paper presents the results of recent experiments with the Russian beryllium of TGP-56FW ITER grade on QSPA-Be plasma gun facility. The Be/CuCrZr mock-ups were exposed to up to 100 shots by deuterium plasma streams (5 cm in diameter) with pulse duration of 0.5 ms and heat loads range of 0.2-0.5 MJ/m2 at different temperature of beryllium tiles. The temperature of Be tiles has been maintained about 250 and 500 °C during the experiments. After 10, 40 and 100 shots, the beryllium mass loss/gain under erosion process were investigated as well as evolution of surface microstructure and cracks morphology.

  9. Effects of nitrogen pulsing on sputter-deposited beryllium films

    SciTech Connect

    Hsieh, E.J.; Price, C.W.; Pierce, E.L.; Wirtenson, G.R.

    1989-08-09

    Beryllium films have been used as a heat sink'' layer between the reflective coating of a mirror and its glass substrate to improve the mirror's radiation resistance to prompt deposition of x-rays. Under x-ray irradiation, the beryllium heat sink'' layer is subjected to tensile stresses caused by differences in thermal expansion coefficients. Test results indicated that the predominant failure mode was the film's crazing under tensile stress. The inherent columnar structure of the beryllium films deposited under normal conditions in detrimental to the tensile strength of the films and may be responsible for this type of failure. We successfully suppressed the inherent columnar growth in beryllium films by incorporating periodic N{sub 2} pulses during sputter deposition. Quantitative analyses were conducted for nitrogen and oxygen contamination in the beryllium films using standards prepared by ion implantation. Secondary ion mass spectroscopy (SIMS) depth profiles were obtained for oxygen and nitrogen using mass isotopes {sup 16}O and 23({sup 9}Be + {sup 14}N).

  10. Report of a technical evaluation panel on the use of beryllium for ITER plasma facing material and blanket breeder material

    SciTech Connect

    Ulrickson, M.A.; Manly, W.D.; Dombrowski, D.E.

    1995-08-01

    Beryllium because of its low atomic number and high thermal conductivity, is a candidate for both ITER first wall and divertor surfaces. This study addresses the following: why beryllium; design requirements for the ITER divertor; beryllium supply and unirradiated physical/mechanical property database; effects of irradiation on beryllium properties; tritium issues; beryllium health and safety; beryllium-coolant interactions and safety; thermal and mechanical tests; plasma erosion of beryllium; recommended beryllium grades for ITER plasma facing components; proposed manufacturing methods to produce beryllium parts for ITER; emerging beryllium materials; proposed inspection and maintenance techniques for beryllium components and coatings; time table and costs; and the importance of integrating materials and manufacturing personnel with designers.

  11. Helium-cooled, FLiBe-breeder, beryllium-multiplier blanket for MINIMARS

    SciTech Connect

    Moir, R.W.; Lee, J.D.

    1986-06-01

    We adapted the helium-cooled, FLiBe-breeder blanket to the commercial tandem-mirror fusion-reactor design, MINIMARS. Vanadium was used to achieve high performance from the high-energy-release neutron-capture reactions and from the high-temperature operation permitted by the refractory property of the material, which increases the conversion efficiency and decreases the helium-pumping power. Although this blanket had the highest performance among the MINIMARS blankets designs, measured by Mn/sub th/ (blanket energy multiplication times thermal conversion efficiency), it had a cost of electricity (COE) 18% higher than the University of Wisconsin (UW) blanket design (42.5 vs 35.9 mills/kW.h). This increased cost was due to using higher-cost blanket materials (beryllium and vanadium) and a thicker blanket, which resulted in higher-cost central-cell magnets and the need for more blanket materials. Apparently, the high efficiency does not substantially affect the COE. Therefore, in the future, we recommend lowering the helium temperature so that ferritic steel can be used. This will result in a lower-cost blanket, which may compensate for the lower performance resulting from lower efficiency.

  12. 40 CFR 468.20 - Applicability; description of the beryllium copper forming subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... beryllium copper forming subcategory. 468.20 Section 468.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) COPPER FORMING POINT SOURCE CATEGORY Beryllium Copper Forming Subcategory § 468.20 Applicability; description of the beryllium...

  13. 40 CFR 468.20 - Applicability; description of the beryllium copper forming subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... beryllium copper forming subcategory. 468.20 Section 468.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS COPPER FORMING POINT SOURCE CATEGORY Beryllium Copper Forming Subcategory § 468.20 Applicability; description of the beryllium copper...

  14. 40 CFR 468.20 - Applicability; description of the beryllium copper forming subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... beryllium copper forming subcategory. 468.20 Section 468.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS COPPER FORMING POINT SOURCE CATEGORY Beryllium Copper Forming Subcategory § 468.20 Applicability; description of the beryllium copper...

  15. 40 CFR 468.20 - Applicability; description of the beryllium copper forming subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... beryllium copper forming subcategory. 468.20 Section 468.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) COPPER FORMING POINT SOURCE CATEGORY Beryllium Copper Forming Subcategory § 468.20 Applicability; description of the beryllium...

  16. 40 CFR 468.20 - Applicability; description of the beryllium copper forming subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... beryllium copper forming subcategory. 468.20 Section 468.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) COPPER FORMING POINT SOURCE CATEGORY Beryllium Copper Forming Subcategory § 468.20 Applicability; description of the beryllium...

  17. Skin as a route of exposure and sensitization in chronic beryllium disease.

    PubMed Central

    Tinkle, Sally S; Antonini, James M; Rich, Brenda A; Roberts, Jenny R; Salmen, Rebecca; DePree, Karyn; Adkins, Eric J

    2003-01-01

    Chronic beryllium disease is an occupational lung disease that begins as a cell-mediated immune response to beryllium. Although respiratory and engineering controls have significantly decreased occupational beryllium exposures over the last decade, the rate of beryllium sensitization has not declined. We hypothesized that skin exposure to beryllium particles would provide an alternative route for sensitization to this metal. We employed optical scanning laser confocal microscopy and size-selected fluorospheres to demonstrate that 0.5- and 1.0- micro m particles, in conjunction with motion, as at the wrist, penetrate the stratum corneum of human skin and reach the epidermis and, occasionally, the dermis. The cutaneous immune response to chemical sensitizers is initiated in the skin, matures in the local lymph node (LN), and releases hapten-specific T cells into the peripheral blood. Topical application of beryllium to C3H mice generated beryllium-specific sensitization that was documented by peripheral blood and LN beryllium lymphocyte proliferation tests (BeLPT) and by changes in LN T-cell activation markers, increased expression of CD44, and decreased CD62L. In a sensitization-challenge treatment paradigm, epicutaneous beryllium increased murine ear thickness following chemical challenge. These data are consistent with development of a hapten-specific, cell-mediated immune response following topical application of beryllium and suggest a mechanistic link between the persistent rate of beryllium worker sensitization and skin exposure to fine and ultrafine beryllium particles. PMID:12842774

  18. 10 CFR Appendix A to Part 850 - Chronic Beryllium Disease Prevention Program Informed Consent Form

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Chronic Beryllium Disease Prevention Program Informed Consent Form A Appendix A to Part 850 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Pt. 850, App. A Appendix A to Part 850—Chronic Beryllium Disease Prevention Program Informed Consent Form I, _______ have carefully read...

  19. Risk-based approach for controlling beryllium exposure in a manufacturing environment

    SciTech Connect

    Gilmore, W. E.; Clawson, C. D.; Ellis, K. K.

    2003-01-01

    There are many diverse uses for beryllium in both military and industrial applications. Unfortunately, there are certain worker health risks associated with the manufacture and production of beryllium products. Respiratory illnesses due to prolonged contact with beryllium particulate are of paramount concern. However, these health risks can be controlled provided that the appropriate protective measures to prevent worker exposure from beryllium are in place. But it is no1 always a straightforward process to identify exactly what the beryllium protective measures should be in order to realize a true risk savings. Without prudent attention to a systematic inquiry and suitable evaluative criteria, a program for controlling beryllium health risks can be lacking in completeness and overall effectiveness. One approach that took into account the necessary ingredients for risk-based determination of beryllium protective measures was developed for a beryllium operation at a Department of Energy (DOE) facility. The methodological framework that was applied at this facility, as well as a discussion of the final beryllium protective measures that were determined by this approach will be presented. Regulatory aspects for working with beryllium, as well as a risk-assessment strategy for ranking beryllium-handling activities with respect to exposure potential will also be discussed. The presentation will conclude with a synopsis of lessons-learned as gleaned from this case study, as well as providing the participants with a constructive blueprint that can be adapted to other processes involving beryllium.

  20. Refractory electrodes for joule heating and methods of using same

    DOEpatents

    Lamar, David A.; Chapman, Chris C.; Elliott, Michael L.

    1998-01-01

    A certain group of electrically conductive refractory materials presently known for use in high temperature applications as throat constructions, melter sidewalls, forehearth, stacks, port sills, hot face lining for slagging coal gasifiers, slag runners, and linings for nuclear waste encapsulation furnaces may be used as electrodes permitting joule heating at temperatures in excess of 1200 C. in excess of about 4400 hours even in the presence of transition group element(s). More specifically, the invention is an electrode for melting earthen materials, wherein the electrode is made from an electrically conductive refractory material, specifically at least one metal oxide wherein the metal is selected from the group consisting of chrome, ruthenium, rhodium, tin and combinations thereof.

  1. Refractory electrodes for joule heating and methods of using same

    DOEpatents

    Lamar, D.A.; Chapman, C.C.; Elliott, M.L.

    1998-05-12

    A certain group of electrically conductive refractory materials presently known for use in high temperature applications as throat constructions, melter sidewalls, forehearth, stacks, port sills, hot face lining for slagging coal gasifiers, slag runners, and linings for nuclear waste encapsulation furnaces may be used as electrodes permitting joule heating at temperatures in excess of 1,200 C in excess of about 4400 hours even in the presence of transition group element(s). More specifically, the invention is an electrode for melting earthen materials, wherein the electrode is made from an electrically conductive refractory material, specifically at least one metal oxide wherein the metal is selected from the group consisting of chrome, ruthenium, rhodium, tin and combinations thereof. 2 figs.

  2. RCRA designation of discarded americium/beryllium sealed sources

    SciTech Connect

    Kirner, N.P.

    1994-09-01

    Many sealed sources containing americium and beryllium are used throughout construction, industry, and research, and will eventually require disposal. For planning purposes it is necessary to determine whether these sources, when disposed, constitute a mixed waste, i.e., a waste containing hazardous constituents regulated under the Resource Conservation and Recovery Act and radioactive constituents regulated under the Atomic Energy Act. Waste designation criteria contained in 40 CFR 261 are evaluated in detail in this report. It is determined that discarded americium/beryllium sealed sources do not contain any wastes listed in Subpart D of 40 CFR 261, nor do the discarded sources exhibit any hazardous characteristics. Therefore, it is concluded that discarded americium/beryllium sealed sources are not a mixed waste under regulations established by the US Environmental Protection Agency. Hazardous waste regulatory programs delegated to States, however, may have regulations that differ from those of the Federal government.

  3. Photochemical Behavior of Beryllium Complexes with Subporphyrazines and Subphthalocyanines.

    PubMed

    Montero-Campillo, M Merced; Lamsabhi, Al Mokhtar; Mó, Otilia; Yáñez, Manuel

    2016-07-14

    Structures of beryllium subphthalocyanines and beryllium subporphyrazines complexes with different substituents are explored for the first time. Their photochemical properties are studied using time-dependent density functional theory calculations and compared to boron-related compounds for which their photochemical activity is already known. These beryllium compounds were found to be thermodynamically stable in a vacuum and present features similar to those of boron-containing analogues, although the nature of bonding between the cation and the macrocycle presents subtle differences. Most important contributions to the main peak in the Q-band region arise from HOMO to LUMO transitions in the case of subphthalocyanines and alkyl subporphyrazine complexes, whereas a mixture of that contribution and a HOMO-2 to LUMO contribution are present in the case of thioalkyl subporphyrazines. The absorption in the visible region could make these candidates suitable for photochemical devices if combined with appropriate donor groups. PMID:26812068

  4. Estimation of beryllium ground state energy by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Kabir, K. M. Ariful; Halder, Amal

    2015-05-01

    Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data.

  5. Estimation of beryllium ground state energy by Monte Carlo simulation

    SciTech Connect

    Kabir, K. M. Ariful; Halder, Amal

    2015-05-15

    Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data.

  6. Ab Initio Simulation Beryllium in Solid Molecular Hydrogen: Elastic Constant

    NASA Astrophysics Data System (ADS)

    Guerrero, Carlo L.; Perlado, Jose M.

    2016-03-01

    In systems of inertial confinement fusion targets Deuterium-Tritium are manufactured with a solid layer, it must have specific properties to increase the efficiency of ignition. Currently there have been some proposals to model the phases of hydrogen isotopes and hence their high pressure, but these works do not allow explaining some of the structures present at the solid phase change effect of increased pressure. By means of simulation with first principles methods and Quantum Molecular Dynamics, we compare the structural difference of solid molecular hydrogen pure and solid molecular hydrogen with beryllium, watching beryllium inclusion in solid hydrogen matrix, we obtain several differences in mechanical properties, in particular elastic constants. For C11 the difference between hydrogen and hydrogen with beryllium is 37.56%. This may produce a non-uniform initial compression and decreased efficiency of ignition.

  7. Surface binding energies of beryllium/tungsten alloys

    NASA Astrophysics Data System (ADS)

    Gyoeroek, Michael; Kaiser, Alexander; Sukuba, Ivan; Urban, Jan; Hermansson, Kersti; Probst, Michael

    2016-04-01

    Binding energies of beryllium and tungsten atoms on surfaces of the alloys Be2W and Be12W were obtained from density functional theory calculations. Values of 4.08-5.63 eV for beryllium and 6.81-10.04 eV for tungsten were obtained. An analytical force field agrees for beryllium, but its tungsten surface atoms are too strongly bound. The surface binding energies of Be and W on Be12W surfaces is slightly smaller than on the pure Be and W surfaces, respectively. For higher tungsten content, i.e. for Be2W, the situation is more complicated. For some surfaces of this alloy the surface binding energies are enhanced while for others they are diminished, compared to the pure metal surfaces. The dependency of the cohesive energy on the mole fraction follows a linear relationship.

  8. Crack toughness evaluation of hot pressed and forged beryllium

    NASA Technical Reports Server (NTRS)

    Jones, M. H.; Bubsey, R. T.; Brown, W. F., Jr.

    1971-01-01

    Beryllium fracture toughness test specimens were fatigue cracked using reversed cycling with a compression load two to three times the tension load. In worked beryllium, textures may be produced which result in fatigue cracks that are out of plane with the starter notch. Specimens of hot pressed stock exhibited load displacement records which were nonlinear throughout their course. Fracture specimens of both hot pressed and forged stock showed essentially no reduction of thickness and the fracture surfaces were flat and normal to the load axis. However, the stress intensity factor at maximum load increased with decreasing thickness. Load-displacement and electric potential records for the hot pressed beryllium specimens exhibited several anomalies such as negative residual crack mouth displacements and a decrease in electrical potential with increasing load.

  9. Force-field parameters for beryllium complexes in amorphous layers.

    PubMed

    Emelyanova, Svetlana; Chashchikhin, Vladimir; Bagaturyants, Alexander

    2016-09-01

    Unknown force-field parameters for metal organic beryllium complexes used in emitting and electron transporting layers of OLED structures are determined. These parameters can be used for the predictive atomistic simulations of the structure and properties of amorphous organic layers containing beryllium complexes. The parameters are found for the AMBER force field using a relaxed scan procedure and quantum-mechanical DFT calculations of potential energy curves for specific internal (angular) coordinates in a series of three Be complexes (Bebq2; Be(4-mpp)2; Bepp2). The obtained parameters are verified in calculations of some molecular and crystal structures available from either quantum-mechanical DFT calculations or experimental data. Graphical Abstract Beryllium complexes in amorphous layersᅟ. PMID:27550375

  10. Beryllium Abundances in Solar Mass Stars

    NASA Astrophysics Data System (ADS)

    Krugler, J. A.; Boesgaard, A. M.

    2008-08-01

    Light element abundance analysis allows for a deeper understanding of the chemical composition of a star beneath its surface. Beryllium provides a probe down to 3.5×106 K, where it fuses with protons. In this study, Be abundances were determined for 52 F and G dwarfs selected from a sample of local thin disc stars. These stars were selected by mass to range from 0.9 to 1.1 M⊙. They have effective temperatures from 5600 to 6400 K, and their metallicities [Fe/H]=-0.65 to +0.11. The data were taken with the Keck HIRES instrument and the Gecko spectrograph on the Canada France Hawaii Telescope. The abundances were calculated via spectral synthesis and were analyzed to investigate the Be abundance as a function of age, temperature, metallicity, and its relation to the lithium abundance for this narrow mass range. Be is found to decrease linearly with metallicity down to [Fe/H]˜-4.0 with slope 0.86 ± 0.02. The relation of the Be abundance to effective temperature is dependent upon metallicity, but when metallicity effects are taken into account, there is a spread ˜1.2 dex. We find a 1.5 dex spread in A(Be) when plotted against age, with the largest spread occurring from 6-8 Gyr. The relation with Li is found to be linear with slope 0.36 ± 0.06 for the temperature regime of 5900-6300 K.

  11. Beryllium Abundances in Solar Mass Stars

    NASA Astrophysics Data System (ADS)

    Krugler, Julie A.; Boesgaard, A. M.

    2007-12-01

    Light element abundance analysis allows for a deeper understanding of the chemical composition of a star beneath its surface. Beryllium provides a probe down to 3.5x106 K, where it fuses with protons. In this study, Be abundances were determined for 52 F and G dwarfs selected from a sample of local thin disc stars. These stars were selected by their mass to be in a mass range of 0.9 to 1.1 solar masses as determined by Lambert & Reddy (2004). They have effective temperatures from 5600 to 6400 K, and their metallicities [Fe/H] -0.65 to +0.11. The data were taken over several nights, with forty-six spectra taken with the Keck HIRES instrument and six spectra on the Canada France Hawaii Telescope (CFHT) using the Gecko spectrograph. The abundances were calculated via spectral synthesis, fitting a 4Å region around the resonance lines of Be II. The data were then analyzed to investigate the Be abundance as a function of age, temperature, and metallicity and its relation to the lithium abundance for this narrow mass range. Be is found to increase with metallicity and the linear relationship evident when extended to metallicities down to -4.0 dex with slope 0.86 ± 0.02. The relation of the Be abundance to effective temperature is dependent upon metallicity, but when metallicity effects are taken into account, there is a spread 1.2 dex. We find a 1.5 dex spread in A(Be) when plotted against age, with the largest spread occurring from 6-8 Gyr. The relation with Li is found to be linear with slope 0.36 ± 0.06 for the temperature regime of 5900-6300 K. This research was conducted through the Research Experiences for Undergraduate (REU) program at the University of Hawaii's Institute for Astronomy and was funded by the NSF.

  12. Tailoring material properties of sputtered beryllium

    SciTech Connect

    McEachern, R.M.

    1999-03-01

    Doped beryllium is a material of considerable interest to both the ICF and the weapons communities, as well as finding application in specialized industrial settings (e.g., x-ray windows and mirrors). Some of these uses require conformal coating of thin films on (possibly) irregularly-shaped surfaces. Physical vapor deposition (PVD) is often used to accomplish this, and sputtering is often the technique of choice. Among its advantages are that the depositing atoms are relatively energetic, leading to more compact films. Moreover, by simply applying a voltage bias to the substrate, ambient noble gas ions will bombard the growing film, which can cause further densification and other modifications to the microstructure. Sputtering is also well suited to the introduction of dopants, even those that are insoluble. Most applications of these novel materials will require fundamental knowledge of their properties. Because so many can be devised, such information is generally unavailable. The objective of the effort has been to systematically study the properties of films produced under different conditions, with an emphasis on surface finish and permeability. They have made extensive use of atomic force microscopy (AFM) and electron microscopy to determine the microstructure of the films, along with composition probes (mainly x-ray fluorescence) to quantify the chemical structure. The studies can be roughly divided into three categories. First, there are those in which the properties of pure or Cu-doped Be films have been investigated, especially on randomly-agitated spherical capsules. Included are studies of the effects of a constant substrate bias ranging from 0 to 120 v and application of an intermittent bias during deposition. Second, there are experiments in which the structure of the depositing films has been modified via the incorporation of dopants, primarily boron. Finally, there have been numerous attempts to characterize the permeability of Be coatings at

  13. The improvement of slagging gasifier refractories

    SciTech Connect

    Kwong, K.-S.; Bennett, J.P.; Powell, C.A.; Krabbe, R.A.

    2006-03-01

    Refractories play a vital role in slagging gasifier on-line availability and profitability for the next clean power generation system. A recent survey of gasifier users by USDOE indicated that a longer service life of refractories is the highest need among gasifier operators. Currently, Cr2O3 based refractories, the best of commercially available materials for use in slagging gasifiers, last between 3 and 24 months. Researchers at Albany Research Center (ARC) have identified structural spalling, caused by slag penetration, as one of the major failure mechanisms of Cr2O3 refractories through postmortem analysis. New Cr2O3 refractories with phosphate additives have been developed by ARC to decrease slag penetration and thus structural spalling. Laboratory physical property tests indicated that ARC developed refractories are superior to other commercial bricks. One of the ARC developed phosphate containing refractories has been installed in a slagging gasifier. Preliminary results of the performance of this refractory in the gasifier will be reported along with research to develop non-chromia refractories.

  14. METHOD OF PREPARING COATED REFRACTORY WARE

    DOEpatents

    Perlman, M.L.; Lipkin, D.; Weissman, S.I.

    1959-07-21

    A method is presented for preparing a dense, refractory coating on a vessel adapted to the handling of molten metals such as uranium and plutonium. According to the invention, the inner surface of a heat stable container formed of a refractory metal of either niobium, molybdenum, tantalum, or tungsten is coated with molten thorium within 10 minutes so as to present alloying with the refractory metal and then exposed to a reactive atmosphere of nitrogen at a temperature of about 1750 deg for 30 minutes to form a refractory thorium nitride coating.

  15. CHAPTER 7. BERYLLIUM ANALYSIS BY NON-PLASMA BASED METHODS

    SciTech Connect

    Ekechukwu, A

    2009-04-20

    The most common method of analysis for beryllium is inductively coupled plasma atomic emission spectrometry (ICP-AES). This method, along with inductively coupled plasma mass spectrometry (ICP-MS), is discussed in Chapter 6. However, other methods exist and have been used for different applications. These methods include spectroscopic, chromatographic, colorimetric, and electrochemical. This chapter provides an overview of beryllium analysis methods other than plasma spectrometry (inductively coupled plasma atomic emission spectrometry or mass spectrometry). The basic methods, detection limits and interferences are described. Specific applications from the literature are also presented.

  16. Elemental composition in sealed plutonium-beryllium neutron sources.

    PubMed

    Xu, N; Kuhn, K; Gallimore, D; Martinez, A; Schappert, M; Montoya, D; Lujan, E; Garduno, K; Tandon, L

    2014-10-22

    Five sealed plutonium-beryllium (PuBe) neutron sources from various manufacturers were disassembled. Destructive chemical analyses for recovered PuBe materials were conducted for disposition purposes. A dissolution method for PuBe alloys was developed for quantitative plutonium (Pu) and beryllium (Be) assay. Quantitation of Be and trace elements was performed using plasma based spectroscopic instruments, namely inductively coupled plasma mass spectrometry (ICP-MS) and atomic emission spectrometry (ICP-AES). Pu assay was accomplished by an electrochemical method. Variations in trace elemental contents among the five PuBe sources are discussed. PMID:25464182

  17. Comparison of Cleaning Methods for Analysis of Underground Beryllium Corrosion

    SciTech Connect

    M. K. Adler Flitton; T. S. Yoder

    2006-03-01

    The subsurface radioactive disposal site located at the Idaho National Laboratory contains neutronactivated beryllium metals from non-fuel nuclear-reactor-core components. A long-term underground corrosion test is being conducted to obtain site-specific corrosion rates of the disposed beryllium to support efforts to more accurately estimate the transfer of activated elements in the surrounding arid vadose zone environment. During the corrosion analysis, two cleaning methods were used. This paper describes the cleaning methods and presents a comparison of the results.

  18. Fluorometric study of the beryllium-morin system

    USGS Publications Warehouse

    Fletcher, M.H.

    1965-01-01

    Three principal beryllium-morin complexes, a (1 + 1) monomer, a (1 + 1) dimer, and a (1 + 2) complex are found and conditional equilibrium constants for their formation are evaluated. Approximate ionization constants, absorption spectra, and the relative fluorescence intensities for five ionic species of morin are also determined in a spectrophotometric and fluorometric study of morin. The following interrelationships are discussed: pH, ionization of morin, absorption spectra of the various ionic species of morin and of the berylliummorin complexes, equilibria for the reactions between beryllium and morin, the period of time between preparation of the solution and measurement of the fluorescence, and fluorescence intensity.

  19. Failure prediction of thin beryllium sheets used in spacecraft structures

    NASA Technical Reports Server (NTRS)

    Roschke, Paul N.; Papados, Photios; Mascorro, Edward

    1991-01-01

    In an attempt to predict failure for cross-rolled beryllium sheet structures, high order macroscopic failure criteria are used. These require the knowledge of in-plane uniaxial and shear strengths. Test results are included for in-plane biaxial tension, uniaxial compression for two different material orientations, and shear. All beryllium specimens have the same chemical composition. In addition, all experimental work was performed in a controlled laboratory environment. Numerical simulation complements these tests. A brief bibliography supplements references listed in a previous report.

  20. Method for removal of beryllium contamination from an article

    DOEpatents

    Simandl, Ronald F.; Hollenbeck, Scott M.

    2012-12-25

    A method of removal of beryllium contamination from an article is disclosed. The method typically involves dissolving polyisobutylene in a solvent such as hexane to form a tackifier solution, soaking the substrate in the tackifier to produce a preform, and then drying the preform to produce the cleaning medium. The cleaning media are typically used dry, without any liquid cleaning agent to rub the surface of the article and remove the beryllium contamination below a non-detect level. In some embodiments no detectible residue is transferred from the cleaning wipe to the article as a result of the cleaning process.

  1. Iron refractory iron deficiency anemia

    PubMed Central

    De Falco, Luigia; Sanchez, Mayka; Silvestri, Laura; Kannengiesser, Caroline; Muckenthaler, Martina U.; Iolascon, Achille; Gouya, Laurent; Camaschella, Clara; Beaumont, Carole

    2013-01-01

    Iron refractory iron deficiency anemia is a hereditary recessive anemia due to a defect in the TMPRSS6 gene encoding Matriptase-2. This protein is a transmembrane serine protease that plays an essential role in down-regulating hepcidin, the key regulator of iron homeostasis. Hallmarks of this disease are microcytic hypochromic anemia, low transferrin saturation and normal/high serum hepcidin values. The anemia appears in the post-natal period, although in some cases it is only diagnosed in adulthood. The disease is refractory to oral iron treatment but shows a slow response to intravenous iron injections and partial correction of the anemia. To date, 40 different Matriptase-2 mutations have been reported, affecting all the functional domains of the large ectodomain of the protein. In vitro experiments on transfected cells suggest that Matriptase-2 cleaves Hemojuvelin, a major regulator of hepcidin expression and that this function is altered in this genetic form of anemia. In contrast to the low/undetectable hepcidin levels observed in acquired iron deficiency, in patients with Matriptase-2 deficiency, serum hepcidin is inappropriately high for the low iron status and accounts for the absent/delayed response to oral iron treatment. A challenge for the clinicians and pediatricians is the recognition of the disorder among iron deficiency and other microcytic anemias commonly found in pediatric patients. The current treatment of iron refractory iron deficiency anemia is based on parenteral iron administration; in the future, manipulation of the hepcidin pathway with the aim of suppressing it might become an alternative therapeutic approach. PMID:23729726

  2. Refractory bipolar disorder and neuroprogression.

    PubMed

    da Costa, Sabrina C; Passos, Ives C; Lowri, Caroline; Soares, Jair C; Kapczinski, Flavio

    2016-10-01

    Immune activation and failure of physiologic compensatory mechanisms over time have been implicated in the pathophysiology of illness progression in bipolar disorder. Recent evidence suggests that such changes are important contributors to neuroprogression and may mediate the cross-sensitization of episode recurrence, trauma exposure and substance use. The present review aims to discuss the potential factors related to bipolar disorder refractoriness and neuroprogression. In addition, we will discuss the possible impacts of early therapeutic interventions as well as the alternative approaches in late stages of the disorder. PMID:26368941

  3. 20 CFR 30.207 - How does a claimant prove a diagnosis of a beryllium disease covered under Part B?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Beryllium sensitivity or sensitization is established with an abnormal LPT performed on either blood or lung... or after January 1, 1993, beryllium sensitivity (as established in accordance with paragraph (b) of... respiratory disorder. (E) Immunologic tests showing beryllium sensitivity (skin patch test or beryllium...

  4. 20 CFR 30.207 - How does a claimant prove a diagnosis of a beryllium disease covered under Part B?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Beryllium sensitivity or sensitization is established with an abnormal LPT performed on either blood or lung... or after January 1, 1993, beryllium sensitivity (as established in accordance with paragraph (b) of... respiratory disorder. (E) Immunologic tests showing beryllium sensitivity (skin patch test or beryllium...

  5. 20 CFR 30.207 - How does a claimant prove a diagnosis of a beryllium disease covered under Part B?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Beryllium sensitivity or sensitization is established with an abnormal LPT performed on either blood or lung... or after January 1, 1993, beryllium sensitivity (as established in accordance with paragraph (b) of... respiratory disorder. (E) Immunologic tests showing beryllium sensitivity (skin patch test or beryllium...

  6. 20 CFR 30.207 - How does a claimant prove a diagnosis of a beryllium disease covered under Part B?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Beryllium sensitivity or sensitization is established with an abnormal LPT performed on either blood or lung... or after January 1, 1993, beryllium sensitivity (as established in accordance with paragraph (b) of... respiratory disorder. (E) Immunologic tests showing beryllium sensitivity (skin patch test or beryllium...

  7. 20 CFR 30.207 - How does a claimant prove a diagnosis of a beryllium disease covered under Part B?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Beryllium sensitivity or sensitization is established with an abnormal LPT performed on either blood or lung... or after January 1, 1993, beryllium sensitivity (as established in accordance with paragraph (b) of... respiratory disorder. (E) Immunologic tests showing beryllium sensitivity (skin patch test or beryllium...

  8. Genetics Home Reference: iron-refractory iron deficiency anemia

    MedlinePlus

    ... refractory iron deficiency anemia iron-refractory iron deficiency anemia Enable Javascript to view the expand/collapse boxes. ... All Close All Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  9. Beryllium and titanium cost-adjustment report

    NASA Astrophysics Data System (ADS)

    Owen, John; Ulph, Eric, Sr.

    1991-09-01

    This report summarizes cost adjustment factors for beryllium (Be, S200) and titanium (Ti, 6Al-4V) that were derived relative to aluminum (Al, 7075-T6). Aluminum is traditionally the material upon which many of the Cost Analysis Office, Missile Division cost estimating relationships (CERs) are based. The adjustment factors address both research and development and production (Q > 100) quantities. In addition, the factors derived include optical elements, normal structure, and structure with special requirements for minimal microcreep, such as sensor assembly parts and supporting components. Since booster cost per payload pound is an even larger factor in total missile launch costs than was initially presumed, the primary cost driver for all materials compared was the missiles' booster cost per payload pound for both R&D and production quantities. Al and Ti are 1.5 and 2.4 times more dense, respectively, than Be, and the cost to lift the heavier materials results in greater booster expense. In addition, Al and Ti must be 2.1 and 2.8, respectively, times the weight of a Be component to provide equivalent stiffness, based on the example component addressed in the report. These factors also increase booster costs. After review of the relative factors cited above, especially the lower costs for Be when stiffness and booster costs are taken into consideration, affordability becomes an important issue. When this study was initiated, both government and contractor engineers said that Be was the material to be used as a last resort because of its prohibitive cost and extreme toxicity. Although the initial price of Be may lead one to believe that any Be product would be extremely expensive, the total cost of Be used for space applications is actually competitive with or less costly than either Al or Ti. Also, the Be toxicity problem has turned out to be a non-issue for purchasers of finished Be components since no machining or grinding operations are required on the finished

  10. Research and development study for optimization of beryllium production operations. Task II report. Volume 1. Recommendations for subscale demonstration models

    SciTech Connect

    Zuehlke, J.R.

    1983-04-01

    The eleven evaluation reports in this Task II, Volume 1 report, are the results of a comprehensive literature search and study of new concepts or alternatives for beryllium metal production, currently available in industry today. Modifications to the current beryllium metal production process were also studied. Three processes were selected for in-depth evaluation and comparison to the current process with proposed improvements: sodium reduction of beryllium chloride to produce metallic beryllium; modified Hall process for beryllium flake; and electrowinning of beryllium chloride to produce metallic beryllium.

  11. The effect of processing parameters on plasma sprayed beryllium for fusion applications

    SciTech Connect

    Castro, R.G.; Stanek, P.W.; Jacobson, L.A.; Cowgill, D.F.; Snead, L.L.

    1993-10-01

    Plasma spraying is being investigated as a potential coating technique for applying thin (0.1--5mm) layers of beryllium on plasma facing surfaces of blanket modules in ITER and also as an in-situ repair technique for repairing eroded beryllium surfaces in high heat flux divertor regions. High density spray deposits (>98% of theoretical density) of beryllium will be required in order to maximize the thermal conductivity of the beryllium coatings. A preliminary investigation was done to determine the effect of various processing parameters (particle size, particle morphology, secondary gas additions and reduced chamber pressure) on the as-deposited density of beryllium. The deposits were made using spherical beryllium feedstock powder which was produced by centrifugal atomization at Los Alamos National Laboratory (LANL). Improvements in the as-deposited densities and deposit efficiencies of the beryllium spray deposits will be discussed along with the corresponding thermal conductivity and outgassing behavior of these deposits.

  12. The uses and adverse effects of beryllium on health

    PubMed Central

    Cooper, Ross G.; Harrison, Adrian P.

    2009-01-01

    Context: This review describes the health effects of beryllium exposure in the workplace and the environment. Aim: To collate information on the consequences of occupational and environmental exposure to beryllium on physiological function and well being. Materials and Methods: The criteria used in the current review for selecting articles were adopted from proposed criteria in The International Classification of Functioning, Disability, and Health. Articles were classified based on acute and chronic exposure and toxicity of beryllium. Results: The proportions of utilized and nonutilized articles were tabulated. Years 2001–10 gave the greatest match (45.9%) for methodological parameters, followed by 27.71% for 1991–2000. Years 1971–80 and 1981–90 were not significantly different in the information published and available whereas years 1951–1960 showed a lack of suitable articles. Some articles were published in sources unobtainable through requests at the British Library, and some had no impact factor and were excluded. Conclusion: Beryllium has some useful but undoubtedly harmful effects on health and well-being. Measures need to be taken to prevent hazardous exposure to this element, making its biological monitoring in the workplace essential. PMID:20386622

  13. Beryllium Wipe Sampling (differing methods - differing exposure potentials)

    SciTech Connect

    Kerr, Kent

    2005-03-09

    This research compared three wipe sampling techniques currently used to test for beryllium contamination on room and equipment surfaces in Department of Energy facilities. Efficiencies of removal of beryllium contamination from typical painted surfaces were tested by wipe sampling without a wetting agent, with water-moistened wipe materials, and by methanol-moistened wipes. Analysis indicated that methanol-moistened wipe sampling removed about twice as much beryllium/oil-film surface contamination as water-moistened wipes, which removed about twice as much residue as dry wipes. Criteria at 10 CFR 850.30 and .31 were established on unspecified wipe sampling method(s). The results of this study reveal a need to identify criteria-setting method and equivalency factors. As facilities change wipe sampling methods among the three compared in this study, these results may be useful for approximate correlations. Accurate decontamination decision-making depends on the selection of appropriate wetting agents for the types of residues and surfaces. Evidence for beryllium sensitization via skin exposure argues in favor of wipe sampling with wetting agents that provide enhanced removal efficiency such as methanol when surface contamination includes oil mist residue.

  14. REACTOR CORE SURROUNDED BY BERYLLIUM MODERATOR. CAMERA LOOKS DOWN AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    REACTOR CORE SURROUNDED BY BERYLLIUM MODERATOR. CAMERA LOOKS DOWN AND TOWARD NORTH INTO LOWER GRID CASTING. HOLES OF VARIOUS SIZES ACCOMMODATE COOLANT WATER AND EXPERIMENTAL POSITIONS. INL NEGATIVE NO. 4197. Unknown Photographer, 2/11/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  15. Be-Cu-Si (Beryllium-Copper-Silicon)

    NASA Astrophysics Data System (ADS)

    Materials Science International Team MSIT

    This document is part of Subvolume C2 'Non-Ferrous Metal Systems. Part 2: Selected Copper Systems' of Volume 11 'Ternary Alloy Systems - Phase Diagrams, Crystallographic and Thermodynamic Data critically evaluated by MSIT®' of Landolt-Börnstein - Group IV 'Physical Chemistry'. It provides data of the ternary system Beryllium-Copper-Silicon.

  16. Temporal variability of beryllium-7 fallout in southwest UK.

    PubMed

    Taylor, A; Keith-Roach, M J; Iurian, A R; Mabit, L; Blake, W H

    2016-08-01

    Cosmogenic beryllium-7 has been widely employed as a sediment tracing tool and continued development of its use as a soil erosion tracer requires knowledge of fallout temporal dynamics. Data regarding beryllium-7 fallout in the UK are scarce and here the authors provide a record of beryllium-7 fallout in southwest England spanning a two-year period. A monthly fallout record was developed for Plymouth, UK using regular rainfall sampling to determine beryllium-7 rainfall activity concentration (Bq L(-1)) and deposition flux (Bq m(-2)). Data showed a general tendency for higher activity during the spring/summer months and lower activity in the autumn/winter months. Comparison with data for other UK sites (Chilton and Aberporth) for the same period found significant differences in (7)Be activity in rainwater and lower variability in Plymouth than Chilton and Aberporth. Total deposition was largely controlled by rainfall in Plymouth although regression coefficients suggested greater importance of other atmospheric controls at the Chilton and Aberporth sites. Use of a deposition proportion to rainfall proportion ratio identified periods when deposition was influenced by varying (7)Be activity in rainfall. Broad ranges in ratios were found for Chilton and Aberporth and this has implications for sediment tracer studies requiring estimates of (7)Be deposition flux across months or seasons. PMID:27155526

  17. The acute toxicity of inhaled beryllium metal in rats

    SciTech Connect

    Haley, P.J.; Finch, G.L.; Hoover, M.D.; Cuddihy, R.G. )

    1990-01-01

    The authors exposed rats once by nose only for 50 min to a mean concentration of 800 [mu]g/m[sup 3] of beryllium metal to characterize the acute toxic effects within the lung. Histological changes within the lung and enzyme changes within bronchoalveolar lavage (BAL) fluid were evaluated at 3, 7, 10, 14, 31, 59, 115, and 171 days postexposure (dpe). Beryllium metal-exposed rats developed acute, necrotizing, hemorrhagic, exudative pneumonitis and intraalveolar fibrosis that peaked at 14 dpe. By 31 dpe, inflammatory lesions were replaced by minimal interstitial and intraalveolar fibrosis. Necrotizing inflammation was observed again at 59 dpe which progressed to chronic-active inflammation by 115 dpe. Low numbers of diffusely distributed lymphocytes were also present but they were not associated with granulomas as is observed in beryllium-induced disease in man. Lymphocytes were not elevated in BAL samples collected from beryllium-exposed rats at any time after exposure. Lactate dehydrogenase (LDH), [beta]-glucuronidase, and protein levels were elevated in BAL fluid from 3 through 14 dpe but returned to near normal levels by 31 dpe. LDH increased once again at 59 dpe and remained elevated at 171 dpe. [beta]-Glucuronidase and protein levels were slightly, but not significantly, elevated from 31 through 171 dpe.

  18. THORIUM-BERYLLIUM ALLOYS AND METHOD OF PRODUCING SAME

    DOEpatents

    Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.

    1959-09-01

    >The preparation is described of thorium-berylium alloys from halides of the metals by stmultaneously reducing thorium fluoride and beryllium fluoride with calcium at approximately 650 deg C and maintaining the temperature until the thorium-beryhltum alloy separates from the slag.

  19. 9. VIEW OF FOUNDRY FURNACE, DEPLETED URANIUM INGOTS, BERYLLIUM INGOTS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF FOUNDRY FURNACE, DEPLETED URANIUM INGOTS, BERYLLIUM INGOTS, AND ALUMINUM SHAPES WERE PRODUCED IN THE FOUNDRY. (10/30/56) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  20. TEM study of impurity segregations in beryllium pebbles

    NASA Astrophysics Data System (ADS)

    Klimenkov, M.; Chakin, V.; Moeslang, A.; Rolli, R.

    2014-12-01

    Beryllium is planned to be used as a neutron multiplier in the Helium-cooled Pebble Bed European concept of a breeding blanket of demonstration power reactor DEMO. In order to evaluate the irradiation performance, individual pebbles and constrained pebble beds were neutron-irradiated at temperatures typical of fusion blankets. Beryllium pebbles 1 mm in diameter produced by the rotating electrode method were subjected to a TEM study before and after irradiation at High Flux Reactor, Petten, Netherlands at 861 K. The grain size varied in a wide range from sub-micron size up to several tens of micrometers, which indicated formation bimodal grain size distribution. Based on the application of combined electron energy loss spectroscopy and energy dispersive X-ray spectroscopy methods, we suggest that impurity precipitates play an important role in controlling the mechanical properties of beryllium. The impurity elements were present in beryllium at a sub-percent concentration form beryllide particles of a complex (Fe/Al/Mn/Cr)B composition. These particles are often ordered along dislocations lines, forming several micron-long chains. It can be suggested that fracture surfaces often extended along these chains in irradiated material.

  1. 75 FR 80734 - Chronic Beryllium Disease Prevention Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... Beryllium Disease Prevention Program (CBDPP) (63 FR 66940). After considering the comments received, DOE published its final rule establishing CBDPP on December 8, 1999 (64 FR 68854). At that time, DOE sought to... establish both surface level and aggressive air sampling criteria (modeled after the U.S....

  2. Anisotropic swelling behavior of hot-extruded beryllium

    NASA Astrophysics Data System (ADS)

    Kang, Suk Hoon; Jang, Jinsung; Kim, Tae Kyu; Jung, Myung Hwan; Lee, Jae Sang

    2016-04-01

    The lifetime of beryllium reflector assemblies is usually determined by neutron irradiation induced swelling, which results in mechanical interferences or fractures of the beryllium elements. Therefore, the dimensional stability and microstructure variations of beryllium during irradiation are important issues to study. In this paper, the microstructure characteristics of S-200-F and EHP-56 beryllium blocks, which were manufactured by using vacuum hot pressing (VHP) and hot extrusion (HE), respectively, were investigated. BeO distributions, grain shapes, and preferred orientations were investigated by using SEM-EPMA and SEM-EBSD systems. Dissimilarly to S-200-F, a strong fiber texture developed in the EHP-56 during the HE process; the basal planes in the majority of grains were arranged along the extrusion direction. To emulate the microstructure evolution during neutron irradiation, we irradiated the electro-polished surface of EHP-56 with protons at room temperature, where the acceleration voltage and the number of protons were 120 keV and 2.0 × 1018 ions/cm2, respectively. Irradiation-induced cavities were observed to be considerably longer along the basal plane in the EHP-56 specimen. Correspondingly, the amount of dimensional change was smaller along the direction parallel to the basal plane.

  3. PREPARATION OF COMPACTS MADE FROM URANIUM AND BERYLLIUM BY SINTERING

    DOEpatents

    Angier, R.P.

    1961-04-11

    A powder metallurgical method for making high-density compacts of uranium and beryllium is reported. Powdered UBe/sub 9/ and powdered Be are blended, compacted, and then sintered by rapidly heating to a temperature of approximately 1220 to 1280 deg C in an inert atmosphere.

  4. 18. VIEW OF ENGINEERING CONTROLS USED IN THE BERYLLIUM SHOP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF ENGINEERING CONTROLS USED IN THE BERYLLIUM SHOP TO REDUCE EMPLOYEE EXPOSURE. THE LATHE IS COVERED BY A HOOD WITH A SEPARATE AIR-HANDLING SYSTEM. PRECISION EQUIPMENT IS CONTROLLED DIGITALLY. (11/13/89) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  5. Subscale Beryllium Mirrors Demonstrator (SBMD) Program Summary and Ball Modeling

    NASA Technical Reports Server (NTRS)

    Kendrick, Stephen; Brown, Robert; Stahl, Philip (Technical Monitor)

    2001-01-01

    The SBMD Program was to design, fabricate, and test a 0.5-m beryllium lightweighted mirror applicable to space deployable systems with demanding optical and areal density requirements. This presentation summarizes the program's objectives and the mirror's tested technical performance along with lessons learned. In addition, test results are compared to modeling predictions. The SBMD Program was funded by NASA MSFC.

  6. A NOVEL BIOMARKER FOR BERYLLIUM SENSITIZATION IN HUMANS

    EPA Science Inventory

    This research project will determine the T-cell receptor (TCR) gene usages of beryllium reactive T-lymphocytes isolated directly from the peripheral blood of individuals exposed at a U.S. Department of Energy site. The objective is to develop a sensitive and novel biomarker for i...

  7. Slag-Refractory Interaction in Coal Gasifiers

    SciTech Connect

    Sundaram, S. K.; Johnson, Kenneth I.; Williford, Ralph E.; Pilli, Siva Prasad; Matyas, Josef; Fluegel, Alexander; Cooley, Scott K.; Crum, Jarrod V.; Edmondson, Autumn B.

    2007-10-13

    Pacific Northwest National Laboratory (PNNL) has taken an integrated approach to address major technical issues in conversion of coal into clean-burning liquid fuel. The approach includes: 1) modeling of gasifier and slag flow, 2) experimental characterization of slag viscoelastic behavior as a function of temperature for representative slags and refractory-slag interactions, and 3) interplay of the modeling and experimental measurements to identify critical conditions beyond which refractory corrosion tends to increase sharply. Basic heat and mass balances were considered in the gasifier and flow models. Two new refractory spalling models were developed. An experimental design that encompassed the broad range of slag chemistries that were of interest to coal gasification was developed and implemented. Selected gasifier refractories were tested in a simulated gasifier environment in our laboratory to identify refractory degradation mechanisms. Preliminary results of the effort are summarized.

  8. Synthesis of Refractory Materials by Skull Melting Technique

    NASA Astrophysics Data System (ADS)

    Osiko, Vyacheslav V.; Borik, Mikhail A.; Lomonova, Elena E.

    This chapter discusses methods of growing refractory oxide single crystals and synthesis of refractory glasses by skull melting technique in a cold crucible. It shows the advantages of radiofrequency (RF) heating of dielectric materials in a cold crucible and points out some specific problems regarding the process of growing crystals by directional crystallization from the melt and by pulling on a seed from the melt. The distinctive features of the method of directional crystallization from the melt are discussed in detail on the example of technology of materials based on zirconia, i.e., cubic single crystals and partly stabilized single crystals. It is shown that the size and quality of crystals are functions of the process conditions, such as thermal conditions under crystallization, growth rate, and chemical composition. We provide an overview of research on the structure, phase composition, and physicochemical properties of crystals based on zirconia. The optical, mechanical, and electric properties of these crystals make them suitable for a number of technical and industrial applications in optics, electronics, materials processing, and medicine. In this chapter, we also consider some problems regarding the synthesis of refractory glasses by skull melting technique. The physicochemical and optical properties of glasses are given and their practical applications in technology are discussed. We note that one of the better developed and most promising applications of skull melting technique is the immobilization of liquid and solid waste (also radioactive waste) into solid-state materials by vitrification.

  9. Corrosion assessment of refractory materials for high temperature waste vitrification

    SciTech Connect

    Marra, J.C.; Congdon, J.W.; Kielpinski, A.L.

    1995-11-01

    A variety of vitrification technologies are being evaluated to immobilize radioactive and hazardous wastes following years of nuclear materials production throughout the Department of Energy (DOE) complex. The compositions and physical forms of these wastes are diverse ranging from inorganic sludges to organic liquids to heterogeneous debris. Melt and off-gas products can be very corrosive at the high temperatures required to melt many of these waste streams. Ensuring material durability is required to develop viable treatment processes. Corrosion testing of materials in some of the anticipated severe environments is an important aspect of the materials identification and selection process. Corrosion coupon tests on typical materials used in Joule heated melters were completed using glass compositions with high salt contents. The presence of chloride in the melts caused the most severe attack. In the metal alloys, oxidation was the predominant corrosion mechanism, while in the tested refractory material enhanced dissolution of the refractory into the glass was observed. Corrosion testing of numerous different refractory materials was performed in a plasma vitrification system using a surrogate heterogeneous debris waste. Extensive corrosion was observed in all tested materials.

  10. Methods and apparatus for reducing corrosion in refractory linings

    DOEpatents

    Poeppel, Roger B.; Greenberg, Sherman; Diercks, Dwight R.

    1987-01-01

    Methods and apparatus are provided for reducing corrosion in a refractory lining of a liquid-containing vessel used in direct steelmaking processes. The vessel operates at between about 1600.degree. C. and about 1800.degree. C. and an oxygen partial pressure of about 10.sup.-12 atmospheres, creating slag which is rich in FeO. The refractory lining includes a significant level of chromium oxide (Cr.sub.2 O.sub.3), and has small interconnected pores which may be filled with a gas mixture having a higher total pressure and oxygen partial pressure than the total pressure and oxygen partial pressure associted with the liquid against the lining of the vessel. The gas mixture is forced through the pores of the lining so that the pores are continuously filled with the mixture. In this manner, the gas mixture creates a blanket which increases the oxygen partial pressure at the lining enough to maintain the chromium in the lining in a selected valence state in which the chromium has decreased solubility in the FeO slag, thereby reducing corrosion by the FeO and increasing the useful life of the refractory lining.

  11. Hanford Site Beryllium Program: Past, Present, and Future - 12428

    SciTech Connect

    Fisher, Mark; Garcia, Pete; Goeckner, Julie; Millikin, Emily; Stoner, Mike

    2012-07-01

    The U.S. Department of Energy (DOE) has a long history of beryllium use because of the element's broad application to many nuclear operations and processes. At the Hanford Site beryllium alloy was used to fabricate parts for reactors, including fuel rods for the N-Reactor during plutonium production. Because of continued confirmed cases of chronic beryllium disease (CBD), and data suggesting CBD occurs at exposures to low-level concentrations, the DOE decided to issue a rule to further protect federal and contractor workers from hazards associated with exposure to beryllium. When the beryllium rule was issued in 1999, each of the Hanford Site contractors developed a Chronic Beryllium Disease Prevention Program (CBDPP) and initial site wide beryllium inventories. A new site-wide CBDPP, applicable to all Hanford contractors, was issued in May, 2009. In the spring of 2010 the DOE Headquarters Office of Health, Safety, and Security (HSS) conducted an independent inspection to evaluate the status of implementation of the Hanford Site Chronic Beryllium Disease Prevention Program (CBDPP). The report identified four Findings and 12 cross-cutting Opportunities for Improvement (OFIs). A corrective action plan (CAP) was developed to address the Findings and crosscutting OFIs. The DOE directed affected site contractors to identify dedicated resources to participate in development of the CAP, along with involving stakeholders. The CAP included general and contractor-specific recommendations. Following initiation of actions to implement the approved CAP, it became apparent that additional definition of product deliverables was necessary to assure that expectations were adequately addressed and CAP actions could be closed. Consequently, a supplement to the original CAP was prepared and transmitted to DOE-HQ for approval. Development of the supplemental CAP was an eight month effort. From the onset a core group of CAP development members were identified to develop a mechanism for

  12. Unsuspected exposure to beryllium: potential implications for sarcoidosis diagnoses.

    PubMed

    Laczniak, Andrew N; Gross, Nathan A; Fuortes, Laurence J; Field, R William

    2014-01-01

    Exposure to Beryllium (Be) can cause sensitization (BeS) and chronic beryllium disease (CBD) in some individuals.  Even relatively low exposures may be sufficient to generate an asymptomatic, or in some cases a symptomatic, immune response. Since the clinical presentation of CBD is similar to that of sarcoidosis, it is helpful to have information on exposure to beryllium in order to reduce misdiagnosis. The purpose of this pilot study is to explore the occurrence of Be surface deposits at worksites with little or no previous reported use of commercially available Be products.  The workplaces chosen for this study represent a convenience sample of businesses in eastern Iowa. One hundred thirty-six surface dust samples were collected from 27 businesses for analysis of Be. The results were then divided into categories by the amount of detected Be according to U.S. Department of Energy guidelines as described in 10 CFR 850.30 and 10 CFR 850.31. Overall, at least one of the samples at 78% of the work sites tested contained deposited Be above the analytical limit of quantitation (0.035 µg beryllium per sample).  Beryllium was detected in 46% of the samples collected. Twelve percent of the samples exceeded 0.2 µg/100 cm² and 4% of the samples exceeded a Be concentration of 3 µg/100 cm². The findings from this study suggest that there may be a wider range and greater number of work environments that have the potential for Be exposure than has been documented previously.  These findings could have implications for the accurate diagnosis of sarcoidosis. PMID:25078645

  13. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect

    William L. Headrick Jr; Musa Karakus; Jun Wei

    2005-03-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  14. Refractory for Black Liquor Gasifiers

    SciTech Connect

    William L. Headrick Jr; Musa Karakus; Xiaoting Laing

    2005-10-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  15. Field Trial Results of an Improved Refractory Material for Slagging Gasifiers

    SciTech Connect

    Bennett, J.P.; Kwong, K.-S.; Powell, C.P.; Petty, A.V., Jr.; Thomas, H.; Prior, H.D.; Schnake, M.

    2006-09-01

    Gasifiers are used commercially to react a carbon feedstock with water and oxygen under reducing conditions; producing chemicals used as feedstock for other processes, fuel for power plants, and/or steam used in other processes. A gasifier acts as a high temperature, high pressure reaction chamber, typically operating between 1250-1575°C, and with pressures between 300-1000 psi. Ash that originates from mineral impurities in the carbon feedstock becomes a by-product of gasification. In a slagging gasifier it melts, forming a liquid which flows down the gasifier sidewall; penetrating and wearing away the refractory liner by corrosive dissolution, abrasive wear, or by other processes such as spalling. The refractory liner must withstand the severe service environment, protecting the steel shell against corrosive gases, temperature, and material wear. Users have identified refractory service life as the most important limitation to sustained on-line availability of gasifiers, limiting gasifier acceptance and use by industry. The National Energy Technology Laboratory in Albany, OR, has developed and patented (US Patent # 6,815,386) a phosphate containing high chrome oxide refractory for use in slagging gasifiers. In cooperation with ANH Refractories Company, this refractory material has been commercially produced and is undergoing field tests in commercial gasifiers. An analysis of data from these field tests indicates that the phosphate containing refractory results in an improved service life over other refractory materials currently used as gasifier liners. Results from the post-mortem analysis of the field trial in relation to the failure mechanisms in a slagging gasifier will be presented.

  16. [Periodic bioleaching of refractory gold-bearing pyrite ore].

    PubMed

    Vardanian, N S; Nagdalian, S Z

    2009-01-01

    The main characteristics of a periodic bioleaching of the refractory gold-bearing pyrite ore from the Tandzut deposit (Armenia) with the help of moderate thermophilic bacterium Sulfobacillus thermosulfidooxi-dans subsp. asporogenes and original thermotolerant strains Leptospirillum spp. were studied. The optimal pH for oxidizing the ore by S. thermosulfidooxidans subsp. asporogenes was 1.8; the pulp density providing maximal iron leaching rate was 10%. The intensity of oxidation processes decreased at higher ore concentrations. When using S. thermosulfidooxidans subsp. asporogenes, the largest amount of iron passed into the solution at the initial oxidant (Fe3+) concentration of 1.3 g/l. Cocultivation of S. thermosulfidooxidans subsp. asporogenes and Leptospirillum spp. increased the degree of pyrite ore leaching to 98.4% vs. 34.1% in the case of the former bacterium alone. PMID:19764614

  17. 'Domestic' origin of opaque assemblages in refractory inclusions in meteorites

    NASA Technical Reports Server (NTRS)

    Blum, Joel D.; Wasserburg, G. J.; Hutcheon, Ian D.; Beckett, John R.; Stolper, Edward M.

    1988-01-01

    Experimental studies indicate that opaque assemblages rich in refractory siderophile elements were formed within host calcium- and aluminum-rich inclusions (CAIs) by exsolution, oxidation and sulphidization of homogeneous alloys, rather than by aggregation of materials in the solar nebula before the formation of CAIs. These opaque assemblages are thus not the oldest known solid materials, as was once thought, and they do not constrain processes in the early solar nebula before CAI formation. Instead, the assemblages record the changing oxygen fugacity experienced by CAIs during slow cooling in nebular and/or planetary environments.

  18. 'Domestic' origin of opaque assemblages in refractory inclusions in meteorites

    NASA Astrophysics Data System (ADS)

    Blum, J. D.; Wasserburg, G. J.; Hutcheon, I. D.; Beckett, J. R.; Stolper, E. M.

    1988-02-01

    Experimental studies indicate that opaque assemblages rich in refractory siderophile elements were formed within host calcium- and aluminium-rich inclusions (CAIs) by exsolution, oxidation and sulphidization of homogeneous alloys, rather than by aggregation of materials in the solar nebula before the formation of CAIs. These opaque assemblages are thus not the oldest known solid materials, as was once thought, and they do not constrain processes in the early solar nebula before CAI formation. Instead, the assemblages record the changing oxygen fugacity experienced by CAIs during slow cooling in nebular and/or planetary environments.

  19. [Refractory ceramic fibers, kinds, health effects after exposure, TLVs].

    PubMed

    Woźniak, H; Wiecek, E

    1996-01-01

    Ceramic fibres are amorphous or crystalline synthetic mineral fibres which are characterised by refractory properties (i.c. stability in temperature above 1000 degrees C). In general, ceramic fibres are produced from aluminium oxide, silicon oxide and other metal oxides and less frequently from non-oxide materials such as silicon carbide, silicon nitride and boron nitride. In Poland, the production of ceramic fibres was begun in the Refractory Materials Plant, Skawina, during mid-eighties. The production capacity accounts for about 600 tons annually. It is estimated that approximately 3000 persons are exposed to the effect of ceramic fibres in Poland. During the production of ceramic fibres, concentrations of respiral fibres in the air at work places range from 0.07 to 0.27 f/cm3; during the manufacture of ceramic fibre products from 0.23 to 0.71 f/cm3 and during the application of ceramic fibre products from 0.07 to 1.67 f/cm3. As published data depict, fibres longer than 5 microns are most common in the work environment, and the proportion of fibres with diameters below 1 micron accounts for 40-50%. Bearing in mind the present situation in Poland, namely combined exposure to asbestos (during removal of worn out heat-insulating materials) and ceramic fibres (during installation of new insulation), as well as in view of own investigations and literature data which evidence a strong carcinogenic effect of certain fibres, the following MAC values have been adopted: Dusts of refractory ceramic fibres: total dust-2 mg/m3; respirable fibres-1 f/cm3 (L > 5 microns; D < 3 microns; L: D < 3:1) Dusts of reflactory ceramic fibres mixed with asbestos: total dust-1 mg/m3; respirable fibres-1 f/m3. Dusts of refractory ceramic fibres mixed with other man-made mineral fibres (MMMF): total dust-2 mg/m3; respirable fibres-1 f/m3. According to the IARC, ceramic fibres have been included into group 2B-suspected human carcinogen. PMID:8847986

  20. NASA research on refractory compounds.

    NASA Technical Reports Server (NTRS)

    Gangler, J. J.

    1971-01-01

    The behavior and properties of the refractory carbides, nitrides, and borides are being investigated by NASA as part of its research aimed at developing superior heat resistant materials for aerospace applications. Fundamental studies on the electronic and defect structures of the carbides indicate that there is promise for improving the strength and ductility of these materials. Studies of the zirconium-carbon-oxygen system show that zirconium oxycarbides of different compositions and lattice parameters can be formed between 1500 and 1900 C and are stable below 1500 C. More applied studies show that hot working generally improves the microstructure and therefore the strength of TiC and NbC. Sintering studies on UN indicate that very high densities can be achieved. Hot pressing of cermets of HfN and HfC produces good mechanical properties for high temperature bearing applications.

  1. NASA research on refractory compounds.

    NASA Technical Reports Server (NTRS)

    Gangler, J. J.

    1971-01-01

    The behavior and properties of the refractory carbides, nitrides, and borides are being investigated by NASA as part of its research aimed at developing superior heat resistant materials for aerospace applications. Studies of the zirconium-carbon-oxygen system show that zirconium oxycarbides of different compositions and lattice parameters can be formed between 1500 C and 1900 C and are stable below 1500 C. More applied studies show that hot working generally improves the microstructure and therefore the strength of TiC and NbC. Sintering studies on UN indicate that very high densities can be achieved. Hot pressing of cermets of HfN and HfC produces good mechanical properties for high temperature bearing applications. Attempts to improve the impact resistance of boride composites by the addition of a nickel or carbon yarn were not overly successful.

  2. Primordial Compositions of Refractory Inclusions

    SciTech Connect

    Grossman, L; Simon, S B; Rai, V K; Thiemens, M H; Hutcheon, I D; Williams, R W; Galy, A; Ding, T; Fedkin, A V; Clayton, R N; Mayeda, T K

    2008-02-20

    Bulk chemical and oxygen, magnesium and silicon isotopic compositions were measured for each of 17 Types A and B refractory inclusions from CV3 chondrites. After bulk chemical compositions were corrected for non-representative sampling in the laboratory, the Mg and Si isotopic compositions of each inclusion were used to calculate its original chemical composition assuming that the heavy-isotope enrichments of these elements are due to Rayleigh fractionation that accompanied their evaporation from CMAS liquids. The resulting pre-evaporation chemical compositions are consistent with those predicted by equilibrium thermodynamic calculations for high-temperature nebular condensates but only if different inclusions condensed from nebular regions that ranged in total pressure from 10{sup -6} to 10{sup -1} bar, regardless of whether they formed in a system of solar composition or in one enriched in OC dust relative to gas by a factor of ten relative to solar composition. This is similar to the range of total pressures predicted by dynamic models of the solar nebula for regions whose temperatures are in the range of silicate condensation temperatures. Alternatively, if departure from equilibrium condensation and/or non-representative sampling of condensates in the nebula occurred, the inferred range of total pressure could be smaller. Simple kinetic modeling of evaporation successfully reproduces observed chemical compositions of most inclusions from their inferred pre-evaporation compositions, suggesting that closed-system isotopic exchange processes did not have a significant effect on their isotopic compositions. Comparison of pre-evaporation compositions with observed ones indicates that 80% of the enrichment in refractory CaO + Al{sub 2}O{sub 3} relative to more volatile MgO + SiO{sub 2} is due to initial condensation and 20% due to subsequent evaporation for both Type A and Type B inclusions.

  3. Preliminary results from field testing an improved refractory material for slagging coal gasifiers

    SciTech Connect

    Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.

    2004-01-01

    Slag attack of refractory materials used to line the hot face of slagging gasifiers limits their service life to between 3 and 24 months. These gasifiers use coal, petroleum coke, or combinations of them as raw materials to produce chemicals, liquid fuel, and/or electricity; with future consideration being given to the use of other abundant, low cost feedstock such as biomass. The ash from these materials generate liquid slags during gasification at temperature between 1300 - 1575 C and pressures up to 1000 psi, leading to severe slag attack of a vessel lining and causing unacceptable gasifier reliability and on-line availability. To maximize refractory life and provide protection of the gasifier metal shell, the best liners have contained a minimum of 60-70 pct chromia in combination with alumina, alumina/zirconia, or magnesia. The Albany Research Center of DOE has developed a phosphate containing high chrome oxide refractory liner that indicates potential for increased service life over currently used materials. This new liner has been produced commercially by a refractory company and installed in a gasifier for performance evaluation. Refractory issues in slagging gasifiers, the development and properties of the phosphate containing high chrome oxide material, and the preliminary results from the plant trial of this material will be presented.

  4. Evaluation of historical beryllium abundance in soils, airborne particulates and facilities at Lawrence Livermore National Laboratory.

    PubMed

    Sutton, Mark; Bibby, Richard K; Eppich, Gary R; Lee, Steven; Lindvall, Rachel E; Wilson, Kent; Esser, Bradley K

    2012-10-15

    Beryllium has been historically machined, handled and stored in facilities at Lawrence Livermore National Laboratory (LLNL) since the 1950s. Additionally, outdoor testing of beryllium-containing components has been performed at LLNL's Site 300 facility. Beryllium levels in local soils and atmospheric particulates have been measured over three decades and are comparable to those found elsewhere in the natural environment. While localized areas of beryllium contamination have been identified, laboratory operations do not appear to have increased the concentration of beryllium in local air or water. Variation in airborne beryllium correlates to local weather patterns, PM10 levels, normal sources (such as resuspension of soil and emissions from coal power stations) but not to LLNL activities. Regional and national atmospheric beryllium levels have decreased since the implementation of the EPA's 1990 Clean-Air-Act. Multi-element analysis of local soil and air samples allowed for the determination of comparative ratios for beryllium with over 50 other metals to distinguish between natural beryllium and process-induced contamination. Ten comparative elemental markers (Al, Cs, Eu, Gd, La, Nd, Pr, Sm, Th and Tl) that were selected to ensure background variations in other metals did not collectively interfere with the determination of beryllium sources in work-place samples at LLNL. Multi-element analysis and comparative evaluation are recommended for all workplace and environmental samples suspected of beryllium contamination. The multi-element analyses of soils and surface dusts were helpful in differentiating between beryllium of environmental origin and beryllium from laboratory operations. Some surfaces can act as "sinks" for particulate matter, including carpet, which retains entrained insoluble material even after liquid based cleaning. At LLNL, most facility carpets had beryllium concentrations at or below the upper tolerance limit determined by sampling facilities

  5. Chronic beryllium disease and cancer risk estimates with uncertainty for beryllium released to the air from the Rocky Flats Plant.

    PubMed Central

    McGavran, P D; Rood, A S; Till, J E

    1999-01-01

    Beryllium was released into the air from routine operations and three accidental fires at the Rocky Flats Plant (RFP) in Colorado from 1958 to 1989. We evaluated environmental monitoring data and developed estimates of airborne concentrations and their uncertainties and calculated lifetime cancer risks and risks of chronic beryllium disease to hypothetical receptors. This article discusses exposure-response relationships for lung cancer and chronic beryllium disease. We assigned a distribution to cancer slope factor values based on the relative risk estimates from an occupational epidemiologic study used by the U.S. Environmental Protection Agency (EPA) to determine the slope factors. We used the regional atmospheric transport code for Hanford emission tracking atmospheric transport model for exposure calculations because it is particularly well suited for long-term annual-average dispersion estimates and it incorporates spatially varying meteorologic and environmental parameters. We accounted for model prediction uncertainty by using several multiplicative stochastic correction factors that accounted for uncertainty in the dispersion estimate, the meteorology, deposition, and plume depletion. We used Monte Carlo techniques to propagate model prediction uncertainty through to the final risk calculations. We developed nine exposure scenarios of hypothetical but typical residents of the RFP area to consider the lifestyle, time spent outdoors, location, age, and sex of people who may have been exposed. We determined geometric mean incremental lifetime cancer incidence risk estimates for beryllium inhalation for each scenario. The risk estimates were < 10(-6). Predicted air concentrations were well below the current reference concentration derived by the EPA for beryllium sensitization. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:10464074

  6. Chronic beryllium disease and cancer risk estimates with uncertainty for beryllium released to the air from the Rocky Flats Plant.

    PubMed

    McGavran, P D; Rood, A S; Till, J E

    1999-09-01

    Beryllium was released into the air from routine operations and three accidental fires at the Rocky Flats Plant (RFP) in Colorado from 1958 to 1989. We evaluated environmental monitoring data and developed estimates of airborne concentrations and their uncertainties and calculated lifetime cancer risks and risks of chronic beryllium disease to hypothetical receptors. This article discusses exposure-response relationships for lung cancer and chronic beryllium disease. We assigned a distribution to cancer slope factor values based on the relative risk estimates from an occupational epidemiologic study used by the U.S. Environmental Protection Agency (EPA) to determine the slope factors. We used the regional atmospheric transport code for Hanford emission tracking atmospheric transport model for exposure calculations because it is particularly well suited for long-term annual-average dispersion estimates and it incorporates spatially varying meteorologic and environmental parameters. We accounted for model prediction uncertainty by using several multiplicative stochastic correction factors that accounted for uncertainty in the dispersion estimate, the meteorology, deposition, and plume depletion. We used Monte Carlo techniques to propagate model prediction uncertainty through to the final risk calculations. We developed nine exposure scenarios of hypothetical but typical residents of the RFP area to consider the lifestyle, time spent outdoors, location, age, and sex of people who may have been exposed. We determined geometric mean incremental lifetime cancer incidence risk estimates for beryllium inhalation for each scenario. The risk estimates were < 10(-6). Predicted air concentrations were well below the current reference concentration derived by the EPA for beryllium sensitization. PMID:10464074

  7. Beryllium Alters Lipopolysaccharide-Mediated Intracellular Phosphorylation and Cytokine Release in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Silva, Shannon; Ganguly, Kumkum; Fresquez, Theresa M.; Gupta, Goutam; McCleskey, T. Mark; Chaudhary, Anu

    2013-01-01

    Beryllium exposure in susceptible individuals leads to the development of chronic beryllium disease, a lung disorder marked by release of inflammatory cytokine and granuloma formation. We have previously reported that beryllium induces an immune response even in blood mononuclear cells from healthy individuals. In this study, we investigate the effects of beryllium on lipopolysaccharide - mediated cytokine release in blood mononuclear and dendritic cells from healthy individuals. We find that in vitro treatment of beryllium sulfate inhibits the secretion of lipopolysaccharide-mediated interleukin 10, while the release of interleukin 1β is enhanced. Additionally, not all lipopolysaccharide - mediated responses are altered, as interleukin 6 release in unaffected upon beryllium treatment. Beryllium sulfate treated cells show altered phosphotyrosine levels upon lipopolysaccharide stimulation. Significantly, beryllium inhibits the phosphorylation of signal transducer and activator of transducer 3, induced by lipopolysaccharide. Finally, inhibitors of phosphoinositide-3 kinase mimic the effects of beryllium in inhibition of interleukin 10 release, while they have no effect on interleukin 1β secretion. This study strongly suggests that prior exposures to beryllium could alter host immune responses to bacterial infections in healthy individuals, by altering intracellular signaling. PMID:19894180

  8. Fallout beryllium-7 as a soil and sediment tracer in river basins: current status and needs

    NASA Astrophysics Data System (ADS)

    Taylor, Alex; Blake, Will H.; Smith, Hugh G.; Mabit, Lionel; Keith-Roach, Miranda J.

    2013-04-01

    Beryllium-7 is a cosmogenic radionuclide formed in the upper atmosphere by cosmic ray spallation of nitrogen and oxygen. Its constant natural production and fallout via precipitation coupled with its ability to bind to soil particles have underpinned its application as a sediment tracer. The short half-life of beryllium-7 (53.3 days) lends itself to tracing sediment dynamics over short time periods, thus, enabling assessment of the effect of land use change upon soil redistribution. Although beryllium-7 has been widely applied as a tracer to date, there remain crucial gaps in understanding relating to the assumptions for its use. To further support the application of beryllium-7 as a tracer across a range of environments requires consideration of both the current strengths and shortcomings of the technique to direct research needs. Here we review research surrounding the assumptions underpinning beryllium-7 use as a tracer and identify key knowledge gaps relating to i) the effects of rain shadowing and vegetation interception upon beryllium-7 fallout uniformity at the hillslope-scale; ii) the effect of preferential flow pathways upon beryllium-7 depth distribution in soil and overland flow upon beryllium-7 inventory uniformity and iii) the potential for beryllium-7 desorption in saline and reducing environments. To provide continued support for the use of beryllium-7 as a hillslope and catchment-scale tracer, there is an urgent need to undertake further research to quantify the effect of these factors upon tracer estimates.

  9. Application of beryllium antibodies in risk assessment and health surveillance: two case studies.

    PubMed

    Clarke, S M; Thurlow, S M; Hilmas, D E

    1995-01-01

    This paper demonstrates that current standards used by the Occupational Safety and Health Administration (OSHA) to establish an area free from potential beryllium contamination may be inadequate. Using the Beryllium Antibody Assay, it was shown that workers exposed to former beryllium work areas, thought to be sanitized and to meet OSHA standards, experienced statistically significant rises in blood beryllium antibody titers. This finding raises the question of whether the equipment currently required to protect workers in beryllium-laden environments is sufficient. The project mission of decommissioning/decontaminating the former nuclear weapons plant at Rocky Flats Environmental Technology Site (RFETS), instituted in 1992, has necessitated development of new technology directed toward safe and responsible cleanup. Challenges have been posed not only by the need to dispose of radioactive and chemical waste, but also by the problem of cleaning up hazardous metals such as the element beryllium. Beryllium was used extensively in research and the manufacture of nuclear weapons components at Rocky Flats for over 40 years. Since inhalation of this element can induce chronic beryllium disease (Eisenbud and Lisson, 1983), an antibody assay was developed to screen workers for internal exposure to beryllium. Exposure is indicated by a titer of antibodies greater than two standard deviations above a normal population control (defined as the mean titer of pooled samples from 51 individuals with no known exposure to beryllium) and a p-value of < 0.05. This paper describes two new applications for the assay: risk assessment and health surveillance. Case study 1 involves a team of three workers who cleaned a beryllium plenum and whose beryllium antibody titers provided a quantitative assessment of their exposure. Case study 2 describes the use of the antibody assay to determine the probable manner in which one worker was exposed to beryllium while performing his duties as an

  10. A mortality study of workers at seven beryllium processing plants

    SciTech Connect

    Ward, E.; Okun, A.; Ruder, A.; Fingerhut, M.; Steenland, K. )

    1992-01-01

    The International Agency for Research on Cancer (IARC) has found that the evidence for the carcinogenicity of beryllium is sufficient based on animal data but limited based on human data. This analysis reports on a retrospective cohort mortality study among 9,225 male workers employed at seven beryllium processing facilities for at least 2 days between January 1, 1940, and December 31, 1969. Vital status was ascertained through December 31, 1988. The standardized mortality ratio (SMR) for lung cancer in the total cohort was 1.26 (95% confidence interval [CI] = 1.12-1.42); significant SMRs for lung cancer were observed for two of the oldest plants located in Lorain, Ohio (SMR = 1.69; 95% CI = 1.28-2.19) and Reading, Pennsylvania (SMR = 1.24; 95% CI = 1.03-1.48). For the overall cohort, significantly elevated SMRs were found for all deaths (SMR = 1.05; 95% CI = 1.01-1.08), ischemic heart disease (SMR = 1.08; 95% CI = 1.01-1.14), pneumoconiosis and other respiratory diseases (SMR = 1.48; 95% CI = 1.21-1.80), and chronic and unspecified nephritis, renal failure, and other renal sclerosis (SMR = 1.49; 95% CI = 1.00-2.12). Lung cancer SMRs did not increase with longer duration of employment, but did increase with longer latency (time since first exposure). Lung cancer was particularly elevated (SMR = 3.33; 95% CI = 1.66-5.95) among workers at the Lorain plant with a history of (primarily) acute beryllium disease, which is associated with very high beryllium exposure. The lung cancer excess was not restricted to plants operating in the 1940s, when beryllium exposures were known to be extraordinarily high. Elevated lung cancer SMRs were also observed for four of the five plants operating in the 1950s for workers hired during that decade. Neither smoking nor geographic location fully explains the increased lung cancer risk. Occupational exposure to beryllium compounds is the most plausible explanation for the increased risk of lung cancer observed in this study.

  11. Refractories for Industrial Processing. Opportunities for Improved Energy Efficiency

    SciTech Connect

    Hemrick, James G.; Hayden, H. Wayne; Angelini, Peter; Moore, Robert E.; Headrick, William L.

    2005-01-01

    Refractories are a class of materials of critical importance to manufacturing industries with high-temperature unit processes. This study describes industrial refractory applications and identifies refractory performance barriers to energy efficiency for processing. The report provides recommendations for R&D pathways leading to improved refractories for energy-efficient manufacturing and processing.

  12. Beryllium and Boron Evolution in the Galaxy

    NASA Astrophysics Data System (ADS)

    Casuso, E.; Beckman, J. E.

    1997-01-01

    We present a model for the evolution of the light-nuclide abundances in the Galaxy, aimed especially at interpreting the observed beryllium and boron abundances as a function of that of iron. We present two models, one for the Galactic halo and the other for the Galactic disk. The main characteristics of the halo model are (1) the relatively rapid change in the physical conditions, on a timescale of less than 2 Gyr, because of the exponentially increasing flow of gas from the halo to form the Galactic bulge--after this period, less than 30% of the initial gas remains in the halo, and star formation there is brought to a halt; (2) the low inferior mass limit for the initial mass function (ml = 0.01), implying that ~60% of the mass that condenses into massive bodies takes the form of substellar objects (masses <=0.1 M⊙). With these assumptions, we can explain the abrupt increase in the observed metallicity distribution of halo stars near [Fe/H] = -1.7, the evolution of [O/Fe], 4He/H, [N/Fe], and 12C/13C versus [Fe/H], and that of [C/O] versus [O/H], and give an account of [Fe/H] as a function of time, during the halo phase. The main characteristics of the disk model are (1) a timescale of order 15 Gyr and (2) an exponentially increasing infall of gas with very low metallicity. With these assumptions, we can explain the prominent peak in the observed metallicity distribution of disk stars near [Fe/H] = -0.4, the evolution of [O/Fe], 4He/H, [N/Fe], and 12C/13C versus [Fe/H], and that of [C/O] versus [O/H] and also give a good fit to observed [Fe/H] as a function of time. The production of light elements (D, 3He, 6Li, 7Li, 9Be, 10B, and 11B) occurs principally via Galactic cosmic ray (GCR) reactions for all nuclides except deuterium and 3He. Differences between the halo and the disk are (1) a flatter GCR energy flux spectrum and (2) more GCR flux at early epochs (halo) than more recently (disk), as a result of better GCR confinement, both conditions first suggested by

  13. High temperature oxidation resistant cermet compositions

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1976-01-01

    Cermet compositions are designed to provide high temperature resistant refractory coatings on stainless steel or molybdenum substrates. A ceramic mixture of chromium oxide and aluminum oxide form a coating of chromium oxide as an oxidation barrier around the metal particles, to provide oxidation resistance for the metal particles.

  14. An update on the development of an improved performance refractory material for slagging coal gasifiers

    SciTech Connect

    Powell, Cynthia A.; Kwong, Kyei-Sing; Bennett, James P.; Chinn, Richard E.

    2004-01-01

    Severe slag attack of high temperature materials that line coal gasifiers used in the production of chemicals, liquid fuels, and/or electricity result in their unacceptably short lifetimes, lasting anywhere from 3 months to 24 months. Lengthening of this short service life to increase gasifier reliability and increase on-line availability of a gasifier is viewed as critical for greater technology acceptance and utilization. A phosphate containing high chrome oxide refractory has been developed by the Albany Research Center of DOE and scaled up by an industrial producer of refractories for plant trials. An update of this material and its properties will be presented.

  15. Use of methylene blue for catecholamine-refractory vasoplegia from protamine and aprotinin.

    PubMed

    Del Duca, Danny; Sheth, Shashank S; Clarke, Ann E; Lachapelle, Kevin J; Ergina, Patrick L

    2009-02-01

    We present two cases of catecholamine-refractory and vasopressin-refractory vasoplegic syndrome associated with intraoperative anaphylaxis during cardiac surgery. One case was related to the administration of protamine and the other case to the administration of aprotinin. Both cases were successfully managed using intravenous methylene blue. The use of methylene blue blocks accumulation of cyclic guanosine monophosphate by competitively inhibiting the enzyme guanylate cyclase. This results in reduced responsiveness of the vasculature to cyclic guanosine monophosphate-mediated vasodilators, such as nitric oxide. This report provides a description of severe anaphylaxis induced by different agents, in which the use of methylene blue was associated with a significant clinical response. PMID:19161806

  16. Epidemiological aspects of beryllium-induced nonmalignant lung disease: a 30-year update

    SciTech Connect

    Eisenbud, M.; Lisson, J.

    1983-03-01

    The unusual epidemiology of beryllium disease observed in the early studies of beryllium disease led in 1951 to the hypothesis that the chronic form of the disease is the result of an acquired sensitization to beryllium or its compounds. After 30 years, the role of sensitization has been confirmed in a number of laboratory and clinical studies. The unusual epidemiological features first summarized by Sterner and Eisenbud continue to be evident. The early studies also led to formulation of standards that have resulted in effective control of both the acute and chronic pulmonary forms of beryllium disease. No case of acute chemical pneumonitis has been reported among beryllium workers in about 15 years, and the number of chronic cases has diminished greatly despite a marked increase in the use of beryllium.

  17. A novel enzyme-linked immunosorbent assay (ELISA) for the detection of beryllium antibodies.

    PubMed

    Clarke, S M

    1991-03-01

    A novel immunological method has been developed for detecting antibodies (IgG molecules) specific to beryllium, a light metal used in industry and capable of causing chronic beryllium disease. Beryllium metal was vacuum deposited onto commercially available immunological microsticks, which were then exposed to test plasma containing the putative antibodies. Antigen-antibody complexes were located using a biotin-avidin amplification method. One employee diagnosed with chronic beryllium disease and one diagnosed as "sensitized" (lymphocyte transformation positive) exhibited antibody titers graphically and statistically different and higher than a pooled baseline control population. Plasma from these two employees (former beryllium workers) was used in four different approaches to validate the presence of beryllium antibodies. The assay proved to be reproducible. PMID:2010619

  18. Development of materials and fabrication of porous and pebble bed beryllium multipliers

    NASA Astrophysics Data System (ADS)

    Davydov, D. A.; Solonin, M. I.; Markushkin, Yu. E.; Gorokhov, V. A.; Gorlevsky, V. V.; Nikolaev, G. N.

    2000-12-01

    Beryllium is considered to be a neutron multiplier material for the reference ITER breeding blanket. The main requirements for the porous beryllium multiplier for the breeding blanket are: (1) inherently open porosity within 20 ± 2% for easy removal of radioactive gases; (2) high thermal conductivity; (3) close contact with a stainless steel (SS) shell to provide high heat transfer. A beryllium multiplier can be fabricated by two different techniques: by manufacturing porous or pebble bed beryllium. The method designed (patent 2106931 RU) in SSC RF-VNIINM (Russia) provides for the production of porous beryllium conforming to the requirements mentioned above. For comparative fission tests and the optimization of breeding zone functional capabilities, porous (21.9%) and binary pebble bed (density=78%) beryllium multipliers were fabricated. DEMO breeding blanket models and a mock-up of fission (IVV-2M reactor) tests have been manufactured at SSC RF-VNIINM.

  19. Removal of beryllium from drinking water by chemical coagulation and lime softening

    SciTech Connect

    Lytle, D.A.; Summers, R.S.; Sorg, T.J.

    1992-01-01

    The effectiveness of conventional drinking water treatment and lime softening was evaluated for beryllium removal from two drinking water sources. Jar test studies were conducted to determine how common coagulants (aluminum sulfate and ferric chloride) and lime softening performed in removing beryllium from spiked waters. Centrifugation was used to simulate filtration. The two source waters used were raw Ohio River water and groundwater from the Great Miami Aquifer. The impact of initial beryllium concentration, coagulant dose, turbidity and pH on beryllium removal was examined and optimum treatment conditions were determined. Jar tests using alum and ferric chloride coagulants were able to achieve 95% and 85% removal of beryllium respectively from surface water. Removal efficiency increased as the pH was increased. Based on the data collected in the study, coprecipitation and precipitation are the two likely mechanisms responsible for beryllium removal.

  20. Risk of Chronic Beryllium Disease by HLA-DPB1 E69 Genotype and Beryllium Exposure in Nuclear Workers

    PubMed Central

    Van Dyke, Mike V.; Martyny, John W.; Mroz, Margaret M.; Silveira, Lori J.; Strand, Matt; Fingerlin, Tasha E.; Sato, Hiroe; Newman, Lee S.; Maier, Lisa A.

    2011-01-01

    Rationale: Beryllium sensitization (BeS) and chronic beryllium disease (CBD) are determined by at least one genetic factor, a glutamic acid at position 69 (E69) of the HLA-DPB1 gene, and by exposure to beryllium. The relationship between exposure and the E69 genotype has not been well characterized. Objectives: The study goal was to define the relationship between beryllium exposure and E69 for CBD and BeS. Methods: Workers (n = 386) from a U.S. nuclear weapons facility were enrolled into a case–control study (70 BeS, 61 CBD, and 255 control subjects). HLA-DPB1 genotypes were determined by sequence-specific primer-polymerase chain reaction. Beryllium exposures were reconstructed on the basis of worker interviews and historical exposure measurements. Measurements and Main Results: Any E69 carriage increased odds for CBD (odds ratio [OR], 7.61; 95% confidence interval [CI], 3.66–15.84) and each unit increase in lifetime weighted average exposure increased the odds for CBD (OR, 2.27; 95% CI, 1.26–4.09). Compared with E69-negative genotypes, a single E69-positive *02 allele increased the odds for BeS (OR, 12.01; 95% CI, 4.28–33.71) and CBD (OR, 3.46; 95% CI, 1.42–8.43). A single non-*02 E69 allele further increased the odds for BeS (OR, 29.54; 95% CI, 10.33–84.53) and CBD (OR, 11.97; 95% CI, 5.12–28.00) and two E69 allele copies conferred the highest odds for BeS (OR, 55.68; 95% CI, 14.80–209.40) and CBD (OR, 22.54; 95% CI, 7.00–72.62). Conclusions: E69 and beryllium exposure both contribute to the odds of CBD. The increased odds for CBD and BeS due to E69 appear to be differentially distributed by genotype, with non-*02 E69 carriers and E69 homozygotes at higher odds than those with *02 genotypes. PMID:21471109