Science.gov

Sample records for refuse derived fuel

  1. Refuse-derived fuels

    NASA Astrophysics Data System (ADS)

    Krause, H. H.

    1980-09-01

    The rationale for energy recovery from municipal refuse is discussed, and planning for future installations for this purpose is cited. The composition and energy content of bulk waste, shredded refuse, and pelletized material are compared. Potential problems encountered with refuse combustion in the areas of slagging, corrosion, and stack emissions are outlined.

  2. Refuse-derived fuels

    SciTech Connect

    Krause, H.H.

    1980-10-01

    The rationale for energy recovery from municipal refuse is discussed, and planning for future installations for this purpose is cited. The composition and energy content of bulk waste, shredded refuse, and pelletized material are compared. Potential problems encountered with refuse combustion in the areas of slagging, corrosion, and stack emissions are outlined.

  3. Binder enhanced refuse derived fuel

    DOEpatents

    Daugherty, Kenneth E.; Venables, Barney J.; Ohlsson, Oscar O.

    1996-01-01

    A refuse derived fuel (RDF) pellet having about 11% or more particulate calcium hydroxide which is utilized in a combustionable mixture. The pellets are used in a particulate fuel bring a mixture of 10% or more, on a heat equivalent basis, of the RDF pellet which contains calcium hydroxide as a binder, with 50% or more, on a heat equivalent basis, of a sulphur containing coal. Combustion of the mixture is effective to produce an effluent gas from the combustion zone having a reduced SO.sub.2 and polycyclic aromatic hydrocarbon content of effluent gas from similar combustion materials not containing the calcium hydroxide.

  4. Refuse-derived fuels still a long-term goal

    SciTech Connect

    Singh, R.

    1981-11-17

    A report on the Institution of Civil Engineers' two-day international symposium held in London in November, titled ''The practical implications of the reuse of solid wastes''. Topics dealt with included: systems for mechanical separation, reclamation and re- use of secondary materials; refuse-derived fuels; use of raw refuse in land reclamation; methane recovery from landfills and direct landfill as a major disposal option.

  5. Utilization of refuse derived fuels by the United States Navy

    SciTech Connect

    Lehr, D.L.

    1983-07-01

    The Resource Conservation and Recovery Act and the Safe Drinking Water Act are forcing those in charge of landfills to adhere to more stringent operating standards. This, along with the growing scarcity of landfill availability, makes the use of landfills less desirable for solid waste disposal. As such, new disposal methods that are environmentally safe and economically practical must be found. One alternative, that is not really new but which has gained renewed interest, is incineration. The Resource Conservation and Recovery Act also requires that government agencies should direct their installations to recover as many resources as possible. Therefore if incineration is to be implemented, heat recovery should be incorporated into the system. There are several processes available to convert raw refuse into a fuel for use in a heat recovery system. Refuse derived fuels (RDF) can be in the form of raw refuse, densified refuse, powdered refuse, gas, or pyrolytic oil. The only form of RDF that is economically feasible for systems designed to process less than 200 TPD (tons per day) is raw refuse. Most Navy bases generate far less than 200 TPD of solid waste and therefore the Navy has focused most of its attention on modular heat recovery incinerator (HRI) systems that utilize raw refuse as fuel.

  6. FUNDAMENTAL CONSIDERATIONS FOR PREPARING DENSIFIED REFUSE DERIVED FUEL

    EPA Science Inventory

    A series of pilot-scale tests were conducted to determine the effects of various parameters on the densification of refuse derived fuel (RDF). The experiments included a series of bench-scale experiments involving a single die arrangement, as well as larger-scale studies in which...

  7. Refuse derived fuels: New technologies for successful operations

    SciTech Connect

    Ohlsson, O.O.

    1988-01-01

    The rising cost of refuse disposal, coupled with the decreasing availability of land suitable for the siting of new landfills have greatly accelerated the use of refuse-derived fuel (RDF) processing systems as a viable technology of the disposal of our municipal solid waste. The energy products produces by an RDF processing facility-electricity and/or steam, as well as the recovery of other valuable materials from the waste stream, coupled with the inherent flexibility of the RDF technology to be used in varying forms, over a wide range of combustion technologies, makes it an extremely desirable waste-to-energy system. Use of an RDF prepared fuel product can also provide a potentially beneficial reduction of air emissions, and trace metals in the ash when compared to the burning of unprocessed solid waste. This paper discusses the problems which have been encountered in the past with RDF systems; the current status of these facilities including institutional considerations and system economics; and the future potential of RDF processing systems. 6 refs., 5 figs.

  8. Production, quality and quality assurance of Refuse Derived Fuels (RDFs).

    PubMed

    Sarc, R; Lorber, K E

    2013-09-01

    This contribution describes characterization, classification, production, application and quality assurance of Refuse Derived Fuels (RDFs) that are increasingly used in a wide range of co-incineration plants. It is shown in this paper, that the fuel-parameter, i.e. net calorific value [MJ/kg(OS)], particle size d(90) or d(95) [mm], impurities [w%], chlorine content [w%], sulfur content [w%], fluorine content [w%], ash content [w%], moisture [w%] and heavy metals content [mg/kg(DM)], can be preferentially used for the classification of different types of RDF applied for co-incineration and substitution of fossil-fuel in different industial sectors. Describing the external production of RDF by processing and confectioning of wastes as well as internal processing of waste at the incineration plant, a case study is reported on the application of RDF made out of different household waste fractions in a 120,000t/yr Waste to Energy (WtE) circulating fluidized bed (CFB) incinerator. For that purpose, delivered wastes, as well as incinerator feedstock material (i.e. after internal waste processing) are extensively investigated. Starting with elaboration of sampling plan in accordance with the relevant guidelines and standards, waste from different suppliers was sampled. Moreover, manual sorting analyses and chemical analyses were carried out. Finally, results of investigations are presented and discussed in the paper. PMID:23746983

  9. DEMONSTRATION TEST OF REFUSE-DERIVED FUEL AS A SUPPLEMENTAL FUEL IN CEMENT KILNS

    EPA Science Inventory

    Fluff refuse-derived fuel (RDF) from Baltimore County, Maryland, residential solid waste was successfully tested as a supplementary fuel with pulverized coal in a large rotary cement kiln. RDF was produced at the Baltimore County Resource Recovery Facility, a joint project of Bal...

  10. Microwave plasma assisted pyrolysis of refuse derived fuels

    NASA Astrophysics Data System (ADS)

    Khongkrapan, Parin; Thanompongchart, Patipat; Tippayawong, Nakorn; Kiatsiriroat, Tanongkiat

    2014-03-01

    This work combined plasma reactivity and pyrolysis for conversion of solid wastes. Decomposition of refuse derived fuel (RDF) and its combustible components (paper, biomass, and plastic) in an 800 W microwave plasma reactor was investigated at varying argon flow rates of 0.50 to 1.25 lpm for 3 minutes. The characteristic bright light emission of plasma was observed with calculated maximum power density of about 35 W/cm3. The RDF and its components were successfully converted into char and combustible gas. The average char yield was found to be 12-21% of the original mass, with a gross calorific value of around 39 MJ/kg. The yield of the product gas was in the range 1.0-1.7 m3/kg. The combustible gas generated from the pyrolysis of the RDF contained about 14% H2, 66% CO, and 4% CH4 of the detected gas mass, with a heating value of 11 MJ/m3. These products are potentially marketable forms of clean energy.

  11. An approach to determining the economic feasibility of refuse-derived fuels and materials recovery processing

    SciTech Connect

    Gershman, H.W.

    1980-06-01

    An approach for determining the economic feasibility of refuse-derived fuel production and the recovery of various materials is demonstrated, using data developed for the metropolitan Washington, D.C., area as input. The processing facility, designed to handle 650 tpd of refuse, is described. Since materials revenues can be predicted with a higher degree of certainty than refuse fuel revenues, it is necessary to determine what revenues the sale of solid waste fuel will have to generate for projected economics to be the same as an alternative disposal practice. (1 diagram, 8 references, 6 tables)

  12. ASSESSMENT OF ORGANIC CONTAMINANTS IN EMISSIONS FROM REFUSE-DERIVED FUEL COMBUSTION

    EPA Science Inventory

    Organic contaminants in emissions from refuse-derived fuel combustion were investigated in a 20-inch-diameter atmospheric fluidized-bed combustor. Combinations of coal/EcoFuel/MSW/toluene were burned inthe combustor with temperatures ranging from 1250 to 1550 degrees F. A Source ...

  13. COAL/D-RDF (DENSIFIED REFUSE DERIVED FUEL) CO-FIRING PROJECT, MILWAUKEE COUNTY, WISCONSIN

    EPA Science Inventory

    A Research and Development Project was carried out to mix a densified refuse derived fuel with coal at the fuel receiving point and to co-fire the mixture in a spreader-stoker fired boiler. Two basic series of test runs were conducted. For the first series, coal was fired to esta...

  14. New techniques for the characterization of refuse-derived fuels and solid recovered fuels.

    PubMed

    Rotter, Vera Susanne; Lehmann, Annekatrin; Marzi, Thomas; Möhle, Edda; Schingnitz, Daniel; Hoffmann, Gaston

    2011-02-01

    Solid recovered fuel (SRF) today refers to a waste-derived fuel meeting defined quality specifications, in terms of both origin (produced from non-hazardous waste) and levels of certain fuel properties. Refuse-derived fuel (RDF) nowadays is more used for unspecified waste after a basic processing to increase the calorific value and therefore this term usually refers to the segregated, high calorific fraction of municipal solid waste (MSW), commercial or industrial wastes. In comparison with conventional fuels, both types of secondary fuel show waste of inherently varying quality and an increased level of waste-specific contaminants.The transition from RDF to SRF in the emerging national and European market requires a quality assurance system with defined quality parameters and analytical methods to ensure reliable fuel characterization. However, due to the quality requirements for RDF and SRF, the current standardized analysis methods often do not meet these practical demands. Fast test methods, which minimize personnel, financial and time efforts and which are applicable for producers as well as users can be an important supporting tool for RDF- and SRF-characterization. Currently, a fast test system based on incineration and correlation analyses which enable the determination of relevant fuel parameters is under development. Fast test methods are not aimed at replacing current standardized test methods, but have to be considered as practical supporting tools for the characterization of RDF and SRF. PMID:20392788

  15. CONTROL OF PCDD/PCDF EMISSIONS FROM REFUSE-DERIVED FUEL COMBUSTORS

    EPA Science Inventory

    This paper presents preliminary results of performance tests conducted at the Mid-Connecticut Refuse-Derived Fuel Facility in February 1989. The objectives of these performance tests were to evaluate the effects of combustion and flue gas cleaning process conditions on air pollut...

  16. Initial operating results of coal-fired steam generators converted to 100% refuse-derived fuel

    SciTech Connect

    Barsin, J.A. ); Graika, P.K. ); Gonyeau, J.A. ); Bloomer, T.M. )

    1988-01-01

    The conversion of Northern States Power Company's (NSP) Red Wing and Wilmarth steam generators to fire refuse-derived fuel (RDF) is discussed. The use of the existing plant with the necessary modifications to the boilers has allowed NSP to effectively incinerate the fuel as required by Washington and Ramsey Counties. This paper covers the six-month start-up of Red Wing No. 1, commencing in May 1987, and the operating results since the plant went commercial in July 1987.

  17. Performance analysis of cofiring densified refuse derived fuel in a military boiler

    NASA Astrophysics Data System (ADS)

    1981-12-01

    This report provides an overview of existing densified refuse-derived fuel (dRDF) receiving, storage, handling and combustion equipment at Wright-Patterson Air Foce Base. DRDF is being burned as part of a long term alternative fuel evaluation program to develop design and procurement criteria for multiple fuel boilers. Recommendations are offered for specific equipment, procedural changes, and studies to improve the efficacy of the present configurations of dRDF as a fuel. A discussion of the fuel use criteria is presented. The options for continuing the present dRDF supply arrangement vs. the feasibility of local production of dRDF are presented. Research needs are summarized. A preemptive, integrated local synthetic solid fuel production facility and boiler performance test is recommended as a continuation of the program.

  18. Results of emissions testing while burning densified refuse derived fuel, Dordt College, Sioux Center, Iowa

    SciTech Connect

    Not Available

    1989-10-01

    Pacific Environmental Services, Inc. provided engineering and source testing services to the Council of Great Lake Governors to support their efforts in promoting the development and utilization of densified refuse derived fuels (d-RDF) and pelletized wastepaper fuels in small steam generating facilities. The emissions monitoring program was designed to provide a complete air emissions profile while burning various refuse derived fuels. The specific goal of this test program was to conduct air emissions tests at Dordt College located in Sioux Center, Iowa and to identify a relationship between fuel types and emission characteristics. The sampling protocol was carried out June 12 through June 20, 1989 on boiler {number sign}4. This unit had been previously modified to burn d-RDF. The boiler was not equipped with any type of air pollution control device so the emissions samples were collected from the boiler exhaust stack on the roof of the boilerhouse. The emissions that were sampled included: particulates; PM{sub 10} particulates; hydrochloric acid; dioxins; furans; polychlorinated biphenyls (PCB); metals and continuous monitors for CO, CO{sub 2}O{sub 2}SO{sub x}NO{sub x} and total hydrocarbons. Grab samples of the fuels were collected, composited and analyzed for heating value, moisture content, proximate and ultimate analysis, ash fusion temperature, bulk density and elemental ash analysis. Grab samples of the boiler ash were also collected and analyzed for total hydrocarbons total dioxins, total furans, total PCBs and heavy metals. 77 figs., 20 tabs.

  19. Hydrogen gas generation from refuse-derived fuel (RDF) under wet conditions.

    PubMed

    Sakka, Makiko; Kimura, Tetsuya; Sakka, Kazuo; Ohmiya, Kunio

    2004-02-01

    An explosion has recently occurred at a silo containing refuse-derived fuels (RDF) in Japan. There is a possibility that microorganisms are involved in generation of combustible gas from RDF and this study was aimed at showing the presence of bacteria that can ferment RDF pellets. All RDF samples tested contained a relatively high number of viable bacterial cells, 1.4x10(5) to 3.2x10(6) viable cells/g. These bacteria in the RDF samples fermented them to generate heat and hydrogen gas. PMID:14981319

  20. Characteristics of mechanically sorted municipal wastes and their suitability for production of refuse derived fuel

    NASA Astrophysics Data System (ADS)

    Arina, Dace; Orupe, Ausma

    2012-11-01

    The article presents the results of experimental work in the first waste mechanical Pre-treatment Centre in Latvia Daibe. The goal - to detect the main parameters for sorted waste parts and to compare them with parameters stated for refuse derived fuel (RDF) in a cement plant in Latvia (Cemex). Samples were taken in four fractions - coarse, medium, fine, metal. The parameters - upper, lower heating values, moisture, ash content, S, Cl, metals were determined. Results - coarse fraction has greater potential of the production of the RDF, but reduction of its content of Cl would be necessary.

  1. Steam gasification of tyre waste, poplar, and refuse-derived fuel: a comparative analysis.

    PubMed

    Galvagno, S; Casciaro, G; Casu, S; Martino, M; Mingazzini, C; Russo, A; Portofino, S

    2009-02-01

    In the field of waste management, thermal disposal is a treatment option able to recover resources from "end of life" products. Pyrolysis and gasification are emerging thermal treatments that work under less drastic conditions in comparison with classic direct combustion, providing for reduced gaseous emissions of heavy metals. Moreover, they allow better recovery efficiency since the process by-products can be used as fuels (gas, oils), for both conventional (classic engines and heaters) and high efficiency apparatus (gas turbines and fuel cells), or alternatively as chemical sources or as raw materials for other processes. This paper presents a comparative study of a steam gasification process applied to three different waste types (refuse-derived fuel, poplar wood and scrap tyres), with the aim of comparing the corresponding yields and product compositions and exploring the most valuable uses of the by-products. PMID:18657408

  2. Steam gasification of tyre waste, poplar, and refuse-derived fuel: A comparative analysis

    SciTech Connect

    Galvagno, S. Casciaro, G.; Casu, S.; Martino, M.; Mingazzini, C.; Russo, A.; Portofino, S.

    2009-02-15

    In the field of waste management, thermal disposal is a treatment option able to recover resources from 'end of life' products. Pyrolysis and gasification are emerging thermal treatments that work under less drastic conditions in comparison with classic direct combustion, providing for reduced gaseous emissions of heavy metals. Moreover, they allow better recovery efficiency since the process by-products can be used as fuels (gas, oils), for both conventional (classic engines and heaters) and high efficiency apparatus (gas turbines and fuel cells), or alternatively as chemical sources or as raw materials for other processes. This paper presents a comparative study of a steam gasification process applied to three different waste types (refuse-derived fuel, poplar wood and scrap tyres), with the aim of comparing the corresponding yields and product compositions and exploring the most valuable uses of the by-products.

  3. An approach to determining the economic feasibility of refuse-derived fuel and materials recovery processing

    NASA Astrophysics Data System (ADS)

    Gershman, H. W.

    1980-06-01

    An approach for determining the economic feasibility of refuse-derived fuel production and the recovery of materials is presented. This information is based on data developed for the metropolitan Washington, D.C. area as input for the consideration of a regional resource recovery program which would eventually encompass 4000 t/day of municipal solid waste; it is designed to recover refuse-derived fuel (RDF), ferrous and nonferrous metals, flint and color-mixed glass cullet, color-mixed glass fines, and waste newspapers. The planning process requires estimates of recovery product revenues and of process feasibility; since materials revenues can be predicted with a greater degree of certainty than RDF revenues, it becomes necessary to determine what revenues will be required from the sale of RDF so that predicted economics can be the same as the alternative disposal practice. A technique is described which will assist the decisionmaker in evaluating the economic feasibility of the proposed project by determining the RDF 'Indifference Value'.

  4. Sample preparation for thermo-gravimetric determination and thermo-gravimetric characterization of refuse derived fuel.

    PubMed

    Robinson, T; Bronson, B; Gogolek, P; Mehrani, P

    2016-02-01

    Thermo-gravimetric analysis (TGA) is a useful method for characterizing fuels. In the past it has been applied to the study of refuse derived fuel (RDF) and related materials. However, the heterogeneity of RDF makes the preparation of small representative samples very difficult and this difficulty has limited the effectiveness of TGA for characterization of RDF. A TGA method was applied to a variety of materials prepared from a commercially available RDF using a variety of procedures. Applicability of TGA method to the determination of the renewable content of RDF was considered. Cryogenic ball milling was found to be an effective means of preparing RDF samples for TGA. When combined with an effective sample preparation, TGA could be used as an alternative method for assessing the renewable content of RDF. PMID:26611398

  5. Risks involved in commercialization of multiple hearth furnaces for sludge disposal using refuse derived fuel

    SciTech Connect

    Not Available

    1981-11-01

    This report presents the results of an analysis of the risks involved in attempts to implement a new application of the sludge disposal concept that uses multiple hearth furnaces and refuse-derived fuel as a primary fuel source. In order to perform this risk analysis a case study examination has been made of a codisposal and energy recovery project proposed by the City of Memphis. General problems which have been experienced in the past have been briefly described above and are presented in more detail in Appendix A. The framework for the analysis of risks associated with the Memphis project is presented in Chapter II. The risk analysis itself is presented in Chapter III. The effects of these risks are described in Chapter IV.

  6. Development and evaluation of lime enhanced refuse-derived fuel (RDF) pellets

    SciTech Connect

    Ohlsson, O.O.

    1996-12-31

    The disposal of municipal solid waste (MSW) is of increasing concern for municipalities and state governments throughout the US. There are two technologies currently in use for the combustion of MSW: (1) mass burning in which unprocessed MSW is burned in a heat recovery furnace, and (2) a refuse-derived fuel (RDF) product, which consists of the organic (combustible) fraction of MSW which has been processed to produce a more homogeneous fuel product than raw MSW. The RDF is either marketed to outside users or combusted on-site in a dedicated or existing furnace. In an attempt to alleviate the problems encountered with RDF as a feedstock, Argonne National Laboratory (ANL) and the University of North Texas (UNT) under the sponsorship of the US Department of Energy (DOE) began a multi-phase research study to investigate the development of a low-cost binder that would improve the quality of RDF pellets.

  7. Feasibility of burning refuse derived fuel in institutional size oil-fired boilers. Final report

    SciTech Connect

    1980-10-01

    This study investigates the feasibility of retrofitting existing oil-fired boilers of institutional size, approximately 3.63 to 36.3 Mg steam/h (8000 to 80,000 lbs steam/h) for co-firing with refuse-derived fuel (RDF). Relevant quantities describing mixtures of oil and RDF and combustion products for various levels of excess air are computed. Savings to be realized from the use of RDF are derived under several assumptions and allowable costs for a retrofit are estimated. An extensive survey of manufacturers of burners, boilers, and combustion systems showed that no hardware or proven design is yet available for such retrofit. Approaches with significant promises are outlined: the slagging burner, and a dry ash double vortex burner for low heat input from RDF. These two systems, and an evaluation of a small separate RDF dedicated combustor in support of the oil-fired boiler, are recommended as topics for future study.

  8. Comparison of microbial consortia in refuse-derived fuel (RDF) preparations between Japan and Germany.

    PubMed

    Sakka, Makiko; Kimura, Tetsuya; Sakka, Kazuo

    2006-12-01

    Refuse-derived fuels (RDF) pellets manufactured in Japan have been reported to contain a relatively high number of viable bacterial cells, and these bacteria generated a large amount of hydrogen gas during fermentation under wet conditions. In this study, we compared hydrogen gas generation from RDF pellets manufactured in Japan and in Germany and found that a large amount of hydrogen gas was generated from the Japanese RDF pellets but not from the German ones. This difference can be explained by the absence and presence of a biodegradation process before molding of raw garbage into RDF pellets. That is, the German process includes a biodegradation (or biological drying) process with forced aeration for a week, and this appears to reduce BOD in the garbage. Denaturing gradient gel electrophoresis analysis of 16S rRNA gene followed by DNA sequencing indicated that microbiotas of the RDF pellets manufactured in Japan and in Germany were very different. PMID:17151477

  9. Detection of hydrogen gas-producing anaerobes in refuse-derived fuel (RDF) pellets.

    PubMed

    Sakka, Makiko; Kimura, Tetsuya; Ohmiya, Kunio; Sakka, Kazuo

    2005-11-01

    Recently, we reported that refuse-derived fuel (RDF) pellets contain a relatively high number of viable bacterial cells and that these bacteria generate heat and hydrogen gas during fermentation under wet conditions. In this study we analyzed bacterial cell numbers of RDF samples manufactured with different concentrations of calcium hydroxide, which is usually added to waste materials for the prevention of rotting of food wastes and the acceleration of drying of solid wastes, and determined the amount of hydrogen gas produced by them under wet conditions. Furthermore, we analyzed microflora of the RDF samples before and during fermentation by denaturing gradient gel electrophoresis of 16S rDNA followed by sequencing. We found that the RDF samples contained various kinds of clostridia capable of producing hydrogen gas. PMID:16306688

  10. Pyrolysis of biomass and refuse-derived fuel performance in laboratory scale batch reactor

    NASA Astrophysics Data System (ADS)

    Kluska, Jacek; Klein, Marek; Kazimierski, Paweł; Kardaś, Dariusz

    2014-03-01

    The results of pyrolysis of pine chips and refuse derived fuel fractions are presented. The experiments were carried out in a pilot pyrolysis reactor. The feedstock was analyzed by an elemental analyzer and the X-ray fluorescence spectrometer to determine the elemental composition. To find out optimum conditions for pyrolysis and mass loss as a function of temperature the thermogravimetric analysis was applied. Gases from the thermogravimetric analysis were directed to the infrared spectrometer using gas-flow cuvette to online analysis of gas composition. Chemical composition of the produced gas was measured using gas chromatography with a thermal conductivity detector and a flame ionization detector. The product analysis also took into account the mass balance of individual products.

  11. Process to convert biomass and refuse derived fuel to ethers and/or alcohols

    DOEpatents

    Diebold, J.P.; Scahill, J.W.; Chum, H.L.; Evans, R.J.; Rejai, B.; Bain, R.L.; Overend, R.P.

    1996-04-02

    A process is described for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols. 35 figs.

  12. Process to convert biomass and refuse derived fuel to ethers and/or alcohols

    DOEpatents

    Diebold, James P.; Scahill, John W.; Chum, Helena L.; Evans, Robert J.; Rejai, Bahman; Bain, Richard L.; Overend, Ralph P.

    1996-01-01

    A process for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols.

  13. Co-firing high sulfur coal with refuse derived fuels. Quarterly report, October - December 1996

    SciTech Connect

    Pan, W.-P.; Riley, J.T.; Lloyd, W.G.

    1996-12-01

    The objectives of this quarter of study on the co-firing of high sulfur coal with refuse derived fuels project were two-fold. First, the effect of S0{sub 2} on the formation of chlorine during combustion processes was examined. To simulate the conditions used in the AFBC system, experiments were conducted in a quartz tube in an electrically heated furnace. The principle analytical technique used for identification of the products from this study was GC/MS. The evolved gas was trapped by an absorbent and analyzed with a GC/MS system. The preliminary results indicate an inhibiting effect of S0{sub 2} on the Deacon Reaction. Secondly, information on the evolution of chlorine, sulfur and organic compounds from coals 95031 and 95011 were studied with the AFBC system. 2 figs., 1 tab.

  14. Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidised bed reactor

    SciTech Connect

    Wagland, S.T.; Kilgallon, P.; Coveney, R.; Garg, A.; Smith, R.; Longhurst, P.J.; Pollard, S.J.T.; Simms, N.

    2011-06-15

    An experimental study was undertaken to compare the differences between municipal solid waste (MSW) derived solid recovered fuel (SRF) (complying with CEN standards) and refuse derived fuel (RDF). Both fuels were co-combusted with coal in a 50 kW fluidised bed combustor and the metal emissions were compared. Synthetic SRF was prepared in the laboratory by grinding major constituents of MSW such as paper, plastic, textile and wood. RDF was obtained from a local mechanical treatment plant. Heavy metal emissions in flue gas and ash samples from the (coal + 10% SRF) fuel mixture were found to be within the acceptable range and were generally lower than that obtained for coal + 10% RDF fuel mixture. The relative distribution of heavy metals in ash components and the flue gas stream shows the presence of a large fraction (up to 98%) of most of the metals in the ash (except Hg and As). Thermo-gravimetric (TG) analysis of SRF constituents was performed to understand the behaviour of fuel mixtures in the absence and presence of air. The results obtained from the experimental study will enhance the confidence of fuel users towards using MSW-derived SRF as an alternative fuel.

  15. Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidized bed reactor.

    PubMed

    Wagland, S T; Kilgallon, P; Coveney, R; Garg, A; Smith, R; Longhurst, P J; Pollard, S J T; Simms, N

    2011-06-01

    An experimental study was undertaken to compare the differences between municipal solid waste (MSW) derived solid recovered fuel (SRF) (complying with CEN standards) and refuse derived fuel (RDF). Both fuels were co-combusted with coal in a 50 kW fluidized bed combustor and the metal emissions were compared. Synthetic SRF was prepared in the laboratory by grinding major constituents of MSW such as paper, plastic, textile and wood. RDF was obtained from a local mechanical treatment plant. Heavy metal emissions in flue gas and ash samples from the (coal+10% SRF) fuel mixture were found to be within the acceptable range and were generally lower than that obtained for coal+10% RDF fuel mixture. The relative distribution of heavy metals in ash components and the flue gas stream shows the presence of a large fraction (up to 98%) of most of the metals in the ash (except Hg and As). Thermo-gravimetric (TG) analysis of SRF constituents was performed to understand the behaviour of fuel mixtures in the absence and presence of air. The results obtained from the experimental study will enhance the confidence of fuel users towards using MSW-derived SRF as an alternative fuel. PMID:21288710

  16. Separation of harmful impurities from refuse derived fuels (RDF) by a fluidized bed.

    PubMed

    Krüger, B; Mrotzek, A; Wirtz, S

    2014-02-01

    In firing systems of cement production plants and coal-fired power plants, regular fossil fuels are increasingly substituted by alternative fuels. Rising energy prices and ambitious CO2-reduction goals promote the use of alternative fuels as a significant contribution to efficient energy recovery. One possibility to protect energy resources are refuse-derived fuels (RDF), which are produced during the treatment of municipal solid, commercial and industrial waste. The waste fractions suitable for RDF have a high calorific value and are often not suitable for material recycling. With current treatment processes, RDF still contains components which impede the utilization in firing systems or limit the degree of substitution. The content of these undesired components may amount to 4 wt%. These, in most cases incombustible particles which consist of mineral, ceramic and metallic materials can cause damages in the conveying systems (e. g. rotary feeder) or result in contaminations of the products (e. g. cement, chalk). Up-to-date separation processes (sieve machine, magnet separator or air classifier) have individual weaknesses that could hamper a secure separation of these particles. This article describes a new technology for the separation of impurities from refuse derived fuels based on a rotating fluidized bed. In this concept a rotating motion of the particle bed is obtained by the tangential injection of the fluidization gas in a static geometry. The RDF-particles experience a centrifugal force which fluidized the bed radially. The technical principle allows tearing up of particle clusters to single particles. Radially inwards the vertical velocity is much lower thus particles of every description can fall down there. For the subsequent separation of the particles by form and density an additionally cone shaped plate was installed in the centre. Impurities have a higher density and a compact form compared to combustible particles and can be separated with a high

  17. MUNICIPAL WASTE COMBUSTION, MULTIPOLLUTANT STUDY, EMISSION TEST REPORT, MAINE ENERGY RECOVERY COMPANY REFUSE DERIVED FUEL FACILITY, BIDDEFORD, MAINE - VOLUME I

    EPA Science Inventory

    The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. ontrol efficiency of the SD/FF emission control system wa...

  18. Single particle refuse-derived fuel devolatilization: Experimental measurements of reaction products

    SciTech Connect

    Lai, Weichuan; Krieger-Brockett, B. . Dept. of Chemical Engineering)

    1993-11-01

    The authors present experimentally measured devolatilization product yields from single particles of refuse-derived fuel (RDF), a more uniform, transportable municipal solid waste. Disposal costs and environmental concerns have stimulated interest in thermochemical conversion of this material to chemicals and fuels. The composition, reaction conditions, and particle properties were systematically varied over the range found in practice to develop quantitative measures that rank the process controllables' influence on altering the product slate. Specialized regression methods and experimental designs enhanced the accuracy in view of the feed heterogeneity and offer a general method to extract real effects from experimental and sample noise''. The results have been verified successfully using actual commercial RDF and fabricated compositions that surpass those normally found in municipal waste to anticipate the influence of trends in recycling. The results show that the reaction conditions have a greater influence on altering fuel utilization and the relative yields of char, condensibles, and gases than does the composition over the range found in MSW and RDF.

  19. A preliminary evaluation of a combined tire- and refuse-derived fuel (TDF-RDF)

    SciTech Connect

    Stessel, R.I.; Amari, T.; Themelis, N.J.; Wearnick, I.K.

    1999-07-01

    In dense urban areas of the US, it is now becoming clear that waste management is far from economically-optimum. Even with the popularity of inexpensive land disposal, hauling and recycling costs are driving up the average waste bill. An historic option has been refuse-derived fuel, or RDF. Difficulties included low energy content and difficulty obtaining uniformity. Today, many resource-recovery technologies used in RDF are finding their way into materials recovery facilities (MRFs), some of which are reviving the automated processing of waste. Any MRF, automated or not, will have residue streams. Currently, one of the most significant problems is waste tires. Local options are difficult to locate in dense urban areas. As fuels, tires typically have energy contents considerably above those for which most solid-fuel combustors are designed, leading to thermal imbalances and various forms of failure. This paper suggests a new fuel that can be either co-fired with coal, or used in its own right in a combustor primarily designed for coal: TDF-RDF. A preliminary examination is undertaken of thermal and emissions characteristics, and possible costs for a few applications of the fuel. Immediately, TDF is already cleaner-burning than many coals, even in sulfur emissions. RDF has been widely-regarded as being similarly cleanly. Posited MRF residue streams should be still cleaner, and more consistent, than RDF. Overall, there is quite a potential for developing a fuel that would allow old coal powerplants in historic urban centers to be better neighbors, while helping with a few problems in municipal waste management.

  20. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 6, January--March 1996

    SciTech Connect

    Pan, W.P.; Riley, J.T.; Lloyd, W.G.

    1996-02-29

    The objectives for this quarter of study on the co-firing of high sulfur coals with refuse derived fuels were two-fold. First, the effects of different experimental parameters such as temperature, flow rates and reaction times on the formation of chlorinated organic compounds were studied using the tubular furnace as a reactor followed by GC/MS analysis. Secondly, the effect of fuel/air ratio on the flue gas composition and combustion efficiency were studied with the AFBC system.

  1. Two stages catalytic pyrolysis of refuse derived fuel: production of biofuel via syncrude.

    PubMed

    Miskolczi, N; Buyong, F; Angyal, A; Williams, P T; Bartha, L

    2010-11-01

    Thermo-catalytic pyrolysis of refuse derived fuels with different catalysts had been conducted in a two stages process due to its important potential value as fuel. The first stage was a pure thermal pyrolysis in a horizontal tubular reactor with feed rate of 0.5kg hourly. The second stage was a semi-batch process in the presence of catalysts. Results showed that the tested catalysts significantly have affected the quantity of products. E.g. gas yield could be increased with 350% related to the catalyst free case using ZSM-5, while that of pyrolytic oil was 115% over Y-zeolite. Gases consisted of mainly CO and CO(2) obtained from the tubular reactor, while dominantly hydrocarbons from the second stage. Ni-Mo-catalyst and Co-Mo-catalyst had shown activity in pyrolytic oil upgrading via in-situ hydrogenation-dehydrogenation reactions. Sulphur, nitrogen and chlorine level in pyrolytic oils could be significantly declined by using of catalysts. PMID:20663664

  2. Co-Combustion of Refuse Derived Fuel with Anthracites in a CFB Boiler

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Won; Lee, Jong-Min; Kim, Jae-Sung

    Combustion of Refuse derived fuel (RDF) is considered as a priority solution to energy recovery from municipal solid waste (MSW). The co-combustion characteristics of anthracite coals with RDF were determined in the commercial scale Tonghae CFB Power Plant. As the feeding ratio of the RDF to the anthracites increased to 5%, temperature and pressure were not changed in comparison with firing only anthracites. The amount of the required air was reduced due to high O2 content in RDF relative to the anthracites. The emissions of NOx, SOx, HCl and Dioxin were also measured. According to higher mixing ratio of the RDF to the anthracites, SOx, NOx emissions slightly decreased and HCl emissions increased, because RDF has relatively smaller S, N and higher CI than the anthracites. Heavy metals of the fly ash and bottom ash and the dioxin emissions were far below Korean maximum permissible concentration level at incinerator. The results showed that it is of great use and technically possible to co-combustion of RDF with the anthracites by 5% in the form of fuel recovery and energy production in commercial scale CFB boiler.

  3. Activated carbons prepared from refuse derived fuel and their gold adsorption characteristics.

    PubMed

    Buah, William K; Williams, Paul T

    2010-02-01

    Activated carbons produced from refuse derived fuel (RDF), which had been prepared from municipal solid waste have been characterized and evaluated for their potential for gold adsorption from gold chloride solution. Pyrolysis of the RDF produced a char, which was then activated via steam gasification to produce activated carbons. Steam gasification of the char at 900 degrees C for 3 h yielded 73 wt% activated carbon. The derived activated carbon had a surface area of 500 m2 g(-1) and a total pore volume of 0.19 cm3 g(-1). The gold adsorption capacity of the activated carbon was 32.1 mg Au g(-1) of carbon when contacted with an acidified gold chloride solution. The gold adsorption capacity was comparable to that of a commercial activated carbon tested under the same conditions and was well in the range of values of activated carbons used in the gold industry. Demineralization of the RDF activated carbon in a 5 M HCl solution resulted in enhancement of its textural properties but a reduction in the gold adsorption rate, indicating that the metal content of the RDF activated carbon influenced its gold adsorption rate. PMID:20391797

  4. Gasification of refuse derived fuel in a fixed bed reactor for syngas production

    SciTech Connect

    Dalai, Ajay K. Batta, Nishant; Eswaramoorthi, I.; Schoenau, Greg J.

    2009-01-15

    Steam gasification of two different refuse derived fuels (RDFs), differing slightly in composition as well as thermal stability, was carried out in a fixed-bed reactor at atmospheric pressure. The proximate and ultimate analyses reveal that carbon and hydrogen are the major components in RDFs. The thermal analysis indicates the presence of cellulose and plastic based materials in RDFs. H{sub 2} and CO are found to be the major products, along with CO{sub 2} and hydrocarbons resulting from gasification of RDFs. The effect of gasification temperature on H{sub 2} and CO selectivities was studied, and the optimum temperature for better H{sub 2} and CO selectivity was determined to be 725 deg. C. The calorific value of product gas produced at lower gasification temperature is significantly higher than that of gas produced at higher process temperature. Also, the composition of RDF plays an important role in distribution of products gas. The RDF with more C and H content is found to produce more amounts of CO and H{sub 2} under similar experimental conditions. The steam/waste ratio showed a notable effect on the selectivity of syngas as well as calorific value of the resulting product gas. The flow rate of carrier gas did not show any significant effect on products yield or their distribution.

  5. Gasification of refuse derived fuel in a fixed bed reactor for syngas production.

    PubMed

    Dalai, Ajay K; Batta, Nishant; Eswaramoorthi, I; Schoenau, Greg J

    2009-01-01

    Steam gasification of two different refuse derived fuels (RDFs), differing slightly in composition as well as thermal stability, was carried out in a fixed-bed reactor at atmospheric pressure. The proximate and ultimate analyses reveal that carbon and hydrogen are the major components in RDFs. The thermal analysis indicates the presence of cellulose and plastic based materials in RDFs. H2 and CO are found to be the major products, along with CO2 and hydrocarbons resulting from gasification of RDFs. The effect of gasification temperature on H2 and CO selectivities was studied, and the optimum temperature for better H2 and CO selectivity was determined to be 725 degrees C. The calorific value of product gas produced at lower gasification temperature is significantly higher than that of gas produced at higher process temperature. Also, the composition of RDF plays an important role in distribution of products gas. The RDF with more C and H content is found to produce more amounts of CO and H2 under similar experimental conditions. The steam/waste ratio showed a notable effect on the selectivity of syngas as well as calorific value of the resulting product gas. The flow rate of carrier gas did not show any significant effect on products yield or their distribution. PMID:18434127

  6. Thermal-behavior study of chlorine released from composite refuse derived fuel.

    PubMed

    Song, Zhi-Wei; Lv, Yi-Bo; Tong, Long-Yan

    2009-08-01

    In order to reduce secondary pollution during the incineration of composite refuse derived fuel (CRDF), the combustion features and the emission behavior of chlorine in CRDF containing coal were analyzed. The former was analyzed using thermo-gravimetric and the latter by gas chromatography-mass spectrometry. The release rate of inorganic chlorine during combustion reached 90 mass% at temperature between 773.15 and 873.15K. On the other hand, approximately 84 mass% release rates was resulting from pyrolysis at 723.15K. When temperature reached above 1073.15K, it was noticed that higher concentration of organic chlorine in different organic compounds were produced in the processing of pyrolysis compared with those released from the combustion processing. From the thermo-gravimetric analysis using a self-designed system, three distinct phases were detected in the thermal process of CRDF. The first phase occurred at temperature between 473 and 573K and its mass loss was about 38.50%. The second phase between temperature regions of 673-773K with a mass loss of 20.35%. The third phase was observed at the temperature between 873 and 1073K with 22.25% mass loss. PMID:19342213

  7. Control of PCDD/PCDF emissions from refuse-derived-fuel combustors

    SciTech Connect

    Kilgroe, J.D.; Brna, T.G.; Finkelstein, A.; Klicius, R.

    1990-01-01

    The paper presents preliminary results of performance tests conducted at the Mid-Connecticut Refuse-derived Fuel Facility in February 1989. Objectives of these tests were to evaluate the effects of combustion and flue gas cleaning process conditions on air pollution emissions and residue properties. A cursory analysis of test results support the following tentative conclusions: (1) Combustor emissions of CO and PCDD/PCDF as measured at the SDA inlet were sensitive to the amount and distribution of OFA. Combustion air distributions which result in poor mixing and low excess air margins are believed to be the primary causes of increased CO emissions. (2) PCDD/PCDF stack emissions of < 0.40 nanogram/standard cubic meter were achieved at the Mid-Connecticut Facility when good operating conditions were maintained on both the combustion and FGC processes. (3) FF outlet concentrations of PCDD/PCDF depend on SDA/FF operating conditions. The lowest emissions were associated with medium to low gas temperatures at the SDA outlet, while the SDA lime slurry flow rate was set to provide medium to low SO{sub 2} concentrations at the FF outlet.

  8. Design considerations and operating experience in firing refuse derived fuel in a circulating fluidized bed combustor

    SciTech Connect

    Piekos, S.J.; Matuny, M.

    1997-12-31

    The worldwide demand for cleaner, more efficient methods to dispose of municipal solid waste has stimulated interest in processing solid waste to produce refuse derived fuel (RDF) for use in circulating fluidized bed (CFB) boilers. The combination of waste processing and materials recovery systems and CFB boiler technology provides the greatest recovery of useful resources from trash and uses the cleanest combustion technology available today to generate power. Foster Wheeler Power Systems along with Foster Wheeler Energy Corporation and several other Foster Wheeler sister companies designed, built, and now operates a 1600 tons per day (TPD) (1450 metric tons) municipal waste-to-energy project located in Robbins, Illinois, a suburb of Chicago. This project incorporates waste processing systems to recover recyclable materials and produce RDF. It is the first project in the United States to use CFB boiler technology to combust RDF. This paper will provide an overview of the Robbins, Illinois waste-to-energy project and will examine the technical and environmental reasons for selecting RDF waste processing and CFB combustion technology. Additionally, this paper will present experience with handling and combusting RDF and review the special design features incorporated into the CFB boiler and waste processing system that make it work.

  9. Investigation on the spontaneous combustion of refuse-derived fuels during storage using a chemiluminescence technique.

    PubMed

    Matunaga, Atsushi; Yasuhara, Akio; Shimizu, Yoshitada; Wakakura, Masahide; Shibamoto, Takayuki

    2008-12-01

    Refuse-derived fuel (RDF), a high-caloric material, is used by various combustion processes, such as power plants, as alternative fuel. Several explosion accidents, however, possibly initiated by the spontaneous combustion of stored RDF, have been reported in Japan. Therefore the spontaneous combustion of RDF prepared from domestic garbage was investigated using chemiluminescence. RDF samples were heated either under air or under nitrogen for 1, 2, or 4 h at 120 or 140 degrees C and then cooled by an air or nitrogen stream. All RDF samples exhibited chemiluminescence. In air-treated RDF samples (heated and cooled by air), chemiluminescence after ageing was shown to be slightly lower than before ageing, whereas in nitrogen-treated samples (both heated and cooled by nitrogen) chemiluminescence decreased significantly after ageing. When nitrogen was replaced with air during aging, however, a sudden increase of chemiluminescence was observed. On the other hand, when cooling was done with air, chemiluminescence increased. Higher chemiluminescence was also observed during high-temperature treatment. Further experiments on cellulose, one of the major components of domestic garbage, exhibited similar chemiluminescence patterns to those of RDF when treated by the same methods as those used for RDF ageing. Chemiluminescence from cellulose increased significantly when the atmospheric gas was changed from nitrogen to air, suggesting that oxygen in the air promoted the formation of hydroperoxide from cellulose. Therefore, it is hypothesized that cellulose plays an important role in the formation of chemiluminescence from RDF. The formation of chemiluminescence indicated that radicals are formed from RDF by oxidation or thermal degradation at room or atmospheric temperatures and may subsequently lead to spontaneous combustion. PMID:19039070

  10. Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents.

    PubMed

    Agon, N; Hrabovský, M; Chumak, O; Hlína, M; Kopecký, V; Masláni, A; Bosmans, A; Helsen, L; Skoblja, S; Van Oost, G; Vierendeels, J

    2016-01-01

    The renewable evolution in the energy industry and the depletion of natural resources are putting pressure on the waste industry to shift towards flexible treatment technologies with efficient materials and/or energy recovery. In this context, a thermochemical conversion method of recent interest is plasma gasification, which is capable of producing syngas from a wide variety of waste streams. The produced syngas can be valorized for both energetic (heat and/or electricity) and chemical (ammonia, hydrogen or liquid hydrocarbons) end-purposes. This paper evaluates the performance of experiments on a single-stage plasma gasification system for the treatment of refuse-derived fuel (RDF) from excavated waste. A comparative analysis of the syngas characteristics and process yields was done for seven cases with different types of gasifying agents (CO2+O2, H2O, CO2+H2O and O2+H2O). The syngas compositions were compared to the thermodynamic equilibrium compositions and the performance of the single-stage plasma gasification of RDF was compared to that of similar experiments with biomass and to the performance of a two-stage plasma gasification process with RDF. The temperature range of the experiment was from 1400 to 1600 K and for all cases, a medium calorific value syngas was produced with lower heating values up to 10.9 MJ/Nm(3), low levels of tar, high levels of CO and H2 and which composition was in good agreement to the equilibrium composition. The carbon conversion efficiency ranged from 80% to 100% and maximum cold gas efficiency and mechanical gasification efficiency of respectively 56% and 95%, were registered. Overall, the treatment of RDF proved to be less performant than that of biomass in the same system. Compared to a two-stage plasma gasification system, the produced syngas from the single-stage reactor showed more favourable characteristics, while the recovery of the solid residue as a vitrified slag is an advantage of the two-stage set-up. PMID:26210232

  11. Coal-firing sulfur coal with refuse derived fuels. Technical progress report {number_sign}7, [April--June 1996

    SciTech Connect

    Pan, Wei-Ping, Riley, J.T.; Lloyd, W.G.

    1996-05-31

    The objectives for this quarter of study on the co-firing of high sulfur coal with refuse derived fuels project were two-fold. First, the organic compounds tentatively identified as combustion products in the previous report were confirmed by comparing retention times with pure samples. Secondly, a reduced amount of unburned carbon in the fly ash and an oxygen concentration at about 3--6% in the flue gases were achieved by the addition of removable heat exchange tubes in the AFBC system.

  12. Study of organic compounds evolved during the co-firing of coal and refuse derived fuel using TG/MS

    SciTech Connect

    Puroshothama, Shobha; Lu, R.; Yang, Xiaodong

    1996-10-01

    The evolution of organic compounds during the combustion of carbonaceous fuel coupled with solid waste disposal and limited landfill space has been a cause for concern. Co-firing high sulfur coal with refuse derived fuel seems an attractive alternative technique to tackle the dual problem of controlling SO{sub x} emissions as well as those of the chlorinated organic toxins. The TG serves to emulate the conditions of the fluidized bed combustor and the MS serves as the detector for evolved gases. This versatile combination is used to study the decomposition pathway as well as predict the conditions at which various compounds are formed and may serve as a means of reducing the formation of these chlorinated organic compounds.

  13. Resource recovery of organic sludge as refuse derived fuel by fry-drying process.

    PubMed

    Chang, Fang-Chih; Ko, Chun-Han; Wu, Jun-Yi; Wang, H Paul; Chen, Wei-Sheng

    2013-08-01

    The organic sludge and waste oil were collected from the industries of thin film transistor liquid crystal display and the recycled cooking oil. The mixing ratio of waste cooking oil and organic sludge, fry-drying temperatures, fry-drying time, and the characteristics of the organic sludge pellet grain were investigated. After the fry-drying process, the moisture content of the organic sludge pellet grain was lower than 5% within 25 min and waste cooking oil was absorbed on the dry solid. The fry-drying organic sludge pellet grain was easy to handle and odor free. Additionally, it had a higher calorific value than the derived fuel standards and could be processed into organic sludge derived fuels. Thus, the granulation and fry-drying processes of organic sludge with waste cooking oil not only improves the calorific value of organic sludge and becomes more valuable for energy recovery, but also achieves waste material disposal and cost reduction. PMID:23623433

  14. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 8, July 1996--August 1996

    SciTech Connect

    Pan, Wei-Ping; Riley, J.T.; Lloyd, W.G.

    1996-08-31

    The objective of this study was to examine the possible formation of chlorinated organic compounds during the combustion of blends of refuse derived fuels (RDF) and coal under conditions similar to those of an atmospheric fluidized bed combustion (AFBC) system. A series of experiments were conducted using a TGA interfaced to FTIR. Additional experiments using a tube furnace preheated to AFBC operating temperatures were also conducted. The combustion products were cryogenically trapped and analyzed with a GC/MS system. The chlorination of phenols and the condensation reactions of chlorophenols were investigated in this study. A possible mechanism for the formation of chlorinated organic compounds such as dibenzodioxins and dibenzofurans, by chlorination and condensation reactions involving phenols, was proposed.

  15. Guidelines for cofiring refuse-derived fuel in electric utility boilers: Volume 1, Executive summary: Final report

    SciTech Connect

    Fiscus, D.E.; Wolfs, K.E.; Ege, H.D.; Kimber, A.; Joensen, A.W.; Savage, G.M.

    1988-06-01

    The quidelines address the procedures for evaluting proposed RDF (refuse-derived fuel) cofiring projects, RDF specifications and preparation, impact of RDF cofiring on power plant performance and operation, design criteria for RDF handling and other equipment, environmental control systems, capital and O and M cost estimates, economic analysis, and the breakeven RDF value to the utility. The economic analysis examples suggest that the value of RDF to the utility is only a fraction of the value of the fuel being replaced. This is because the incremental fuel savings derived from RDF cofiring are at least partially offset by the incremental capital and O and M costs. In order to maximize RDF value, it is important to select units for RDF cofiring that have at least 15 years of remaining life, operate at high capacity factor, are of sufficient size to consume the available RDF stream, and do not exihibit boiler slagging and fouling, electricstatic precipitator, or unit derating problems while burning coal or oil. 1 ref., 18 figs., 4 tabs.

  16. Investigation of the self-heating and spontaneous ignition of refuse-derived fuel (RDF) during storage.

    PubMed

    Yasuhara, Akio; Amano, Yuko; Shibamoto, Takayuki

    2010-07-01

    Refuse-derived fuel (RDF)-RDF-5 according to ASTM guidelines-derived from municipal solid waste and other waste materials, has been prepared as a fuel source for power plants in Japan. RDF has been known as a stable and safe solid-fuel. However, some spontaneous ignition incidents occurred during storage of RDF in certain facilities. In the present study, the storage conditions, which might induce the spontaneous ignition in RDF samples, was investigated to understand and prevent this phenomenon. When the initial temperature of RDF sample was consistent, higher water content and shorter induction times was observed (e.g., the induction times of select RDF samples with 5.8% and 16.7% water content, was 446 and 270 min, respectively). Also, the induction time was affected by the size of a RDF sample. No relationship between bacterial fermentation and spontaneous ignition was observed. The linear relationship between the induction time and the inverse of the initial temperature of the RDF sample was obtained in the Arrhenius equation. PMID:19963363

  17. COAL: DRDF (DENSIFIED REFUSE DERIVED FUEL) DEMONSTRATION TEST IN AN INDUSTRIAL SPREADER STOKER BOILER. USE OF COAL: DRDF BLENDS IN STOKER-FIRED BOILERS. VOLUME I

    EPA Science Inventory

    This study program has the overall objective of evaluating boiler performance and environmental feasibility when combusting densified forms of refuse derived fuels (dRDF) blended with coal and fired in a modern industrial spreader stoker-fired boiler. The results reported herein ...

  18. MUNICIPAL WASTE COMSUTION, MULTIPOLLUTANT STUDY, EMISSION TEST REPORT, MAINE ENERGY RECOVERY COMPANY REFUSE DERIVED FUEL FACILITY, BIDDEFORD, MAINE - VOLUME II: APPENDICES A-F

    EPA Science Inventory

    The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. ontrol efficiency of the SD/FF emission control system wa...

  19. MUNICIPAL WASTE COMBUSTION, MULTIPOLLUTANT STUDY, EMISSION TEST REPORT, MAINE ENERGY RECOVERY COMPANY REFUSE DERIVED FUEL FACILITY, BIDDEFORD, MAINE - VOLUME III: APENDICES G-N

    EPA Science Inventory

    The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. ontrol efficiency of the SD/FF emission control system wa...

  20. MUNICIPAL WASTE COMBUSTION MULTIPOLLUTANT STUDY EMISSION TEST REPORT, MAINE ENERGY RECOVERY COMPANY, REFUSE DERIVED FUEL FACILITY, BIDDEFORD, MAINE - VOLUME II: APPENDICES A-F

    EPA Science Inventory

    The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. Control efficiency of the SD/FF emission control system ...

  1. MUNICIPAL WASTE COMBUSTION MULTIPOLLUTANT STUDY EMISSION TEST REPORT, MAINE ENERGY RECOVERY COMPANY, REFUSE DERIVED FUEL FACILITY, BIDDEFORD, MAINE - VOLUME III: APPENDICES G-N

    EPA Science Inventory

    The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. Control efficiency of the SD/FF emission control system ...

  2. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 5, [October--December 1995

    SciTech Connect

    Pan, Wei-Ping; Riley, J.T.; Lloyd, W.G.

    1995-11-30

    Studies involving the tubular furnace are in the process of identifying the ideal experimental coal-to-refuse derived fuel(RDF) ratio for use in the AFBC system. A series of experiments with this furnace has been performed to determine the possible chemical pathway for formation of chlorinated organic compounds during the combustion of various RDF sources. Phenol and chlorine appear to be likely reactants necessary for the formation of these compounds. The main goal of these experiment is to determine the exact experimental conditions for the formation of chlorinated organic compounds, as well as methods to inhibit their development. Work on the fluidized bed combustor has involved five combustion runs, in which a combustion efficiency of greater than 96% and with a consistent CO{sub 2} concentration of approximately 13% was obtained. Modifications responsible for these improvements include the addition of the underbed fuel feed system and revision of the flue gas sampling system. New methods of determining combustion efficiency and percentage of SO{sub 2} capture using TG techniques to analyze combustion products are being developed. The current outlook using this TGA/FTIR method is very promising, since previously obscured reactions are being studied. the analysis of combustion products is revealing a more complete picture of the combustion process within the AFBC system.

  3. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect

    Not Available

    1993-11-01

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  4. Recovery of plastic wastes from dumpsite as refuse-derived fuel and its utilization in small gasification system.

    PubMed

    Chiemchaisri, Chart; Charnnok, Boonya; Visvanathan, Chettiyappan

    2010-03-01

    An effort to utilize solid wastes at dumpsite as refuse-derived fuel (RDF) was carried out. The produced RDF briquette was then utilized in the gasification system. These wastes were initially examined for their physical composition and chemical characteristics. The wastes contained high plastic content of 24.6-44.8%, majority in polyethylene plastic bag form. The plastic wastes were purified by separating them from other components through manual separation and trommel screen after which their content increased to 82.9-89.7%. Subsequently, they were mixed with binding agent (cassava root) and transformed into RDF briquette. Maximum plastic content in RDF briquette was limit to 55% to maintain physical strength and maximum chlorine content. The RDF briquette was tested in a down-draft gasifier. The produced gas contained average energy content of 1.76 MJ/m(3), yielding cold gas efficiency of 66%. The energy production cost from this RDF process was estimated as USD0.05 perkWh. PMID:19758801

  5. The effects of calcium hydroxide on hydrogen chloride emission characteristics during a simulated densified refuse-derived fuel combustion process.

    PubMed

    Chiang, Kung-Yuh; Jih, Jer-Chyuan; Lin, Kae-Long

    2008-08-30

    This study investigated the effects of different calcium hydroxide (Ca(OH)(2)) addition methods on the potential for hydrogen chloride (HCl) formation in a simulated densified refuse-derived fuel (RDF-5) with single metal combustion system. These experiments were conducted at 850 degrees C with the Ca(OH)(2) spiked in the RDF-5 production or injection in the flue gas treatment system. The results indicated that the potential for HCl formation was decreased significantly by Ca(OH)(2) spiked in the RDF-5 production or injection in the flue gas treatment system. However, the Ca(OH)(2) injection method in the flue gas for HCl emission reduction was better than other method. According to the relationship between the HCl emission and amount of Ca(OH)(2) injected or spiked, it is interesting to find that when the Ca(OH)(2) injected or spiked ranged from 0% to 5%, the potential for HCl formation in the single metal combustion system decreases significantly with increasing Ca(OH)(2) injected or spiked ratio. A corresponding increase in the amount of CaCl(2) partitioned to the fly ash was observed. However, with the ratio of Ca(OH)(2) higher than 5%, the amount of HCl formation showed that no further significant variation occurred with increasing Ca(OH)(2) spiked ratio. PMID:18272287

  6. Health-hazard evaluation report HETA 85-041-1709, City of Columbus Refuse-derived Fuel Power Plant, Columbus, Ohio

    SciTech Connect

    Ahrenholz, S.H.

    1986-07-01

    Potential for heat stress along with exposure to chemical contaminants and airborne microbial pollutants was investigated at the City refuse-derived-fuel powerplant. Health hazards existed to lead and silica exposures for workers involved in handling ash. Low levels of exposure to chromium, chromium-VI, cadmium, and nickel were noted. Excessive heat stress occurred during the maintenance activities in hot areas of the facility. Airborne microbial contamination levels in the refuse-handling areas indicate that exposure hazards exist by both the inhalation and ingestion routes. Human pathogens may be present in the microbial pollutants. The author recommends that employee exposure to lead be reduced through the use of engineering controls. Eating, drinking, and carrying or use of tobacco products or cosmetics in the power plant and refuse handling areas should be prohibited. Recommended methods for controlling heat stress were given.

  7. Co-firing high sulfur coal with refuse derived fuels. Final report

    SciTech Connect

    Pan, W.P.; Riley, J.T.; Lloyd, W.G.

    1997-11-30

    This project was designed to evaluate the combustion performance of and emissions from a fluidized bed combustor during the combustion of mixtures of high sulfur and/or high chlorine coals and municipal solid waste (MSW). The project included four major tasks, which were as follows: (1) Selection, acquisition, and characterization of raw materials for fuels and the determination of combustion profiles of combination fuels using thermal analytical techniques; (2) Studies of the mechanisms for the formation of chlorinated organics during the combustion of MSW using a tube furnace; (3) Investigation of the effect of sulfur species on the formation of chlorinated organics; and (4) Examination of the combustion performance of combination fuels in a laboratory scale fluidized bed combustor. Several kinds of coals and the major combustible components of the MSW, including PVC, newspaper, and cellulose were tested in this project. Coals with a wide range of sulfur and chlorine contents were used. TGA/MS/FTIR analyses were performed on the raw materials and their blends. The possible mechanism for the formation of chlorinated organics during combustion was investigated by conducting a series of experiments in a tube furnace. The effect of sulfur dioxide on the formation of molecular chlorine during combustion processes was examined in this study.

  8. Studies of the combustion of coal/refuse derived fuels using thermogravimetric-Fourier transform infrared-mass spectrometry

    SciTech Connect

    Lu, Huagang; Li, Jigui; Lloyd, W.G.

    1995-11-01

    According to a report of the Environmental Protection Agency (EPA), `Characterization of Municipal Solid Waste (MSW) in the United States`, the total MSW produced in the U.S. increased from 179 million tons in 1988 to 195 million tons in 1990. The EPA predicted that the country would produce about 216 million tons of garbage in the year 2000. The amount of waste generated and the rapidly declining availability of sanitary landfills has forced most municipalities to evaluate alternative waste management technologies for reducing the volume of waste sent to landfills. The fraction of MSW that is processed by such technologies as separation and recycling, composting, and waste-to-energy was forecast to increase from a few percent today to 30-40% by the year 2000. Waste-to-energy conversion of MSW can appear to be attractive because of the energy recovered, the economic value of recycled materials, and the cost savings derived from reduced landfill usage. However, extra care needs to be taken in burning MSW or refuse-derived fuel (RDF) to optimize the operating conditions of a combustor so that the combustion takes place in an environmentally acceptable manner. For instance, polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) have been found in the precipitator fly ash and flue gas of some incinerator facilities in the United States and Europe. The amount of PCDDs and PCDFs occurs only in the parts-per-billion to parts-per-trillion range, but these chlorinated organics exhibit very high toxicity (LD{sub 50} < 10 {mu}g/Kg). The compound 2,3,7,8-tetrachlorodibenzodioxin has been found to be acnegenic, carcinogenic, and teratogenic. This has slowed or even stopped the construction and operation of waste-to-energy plants.

  9. Co-firing high sulfur coal with refuse derived fuels. Technical report {number_sign}4

    SciTech Connect

    Pan, W.P.; Riley, J.T.; Lloyd, W.G.

    1995-08-03

    In order to study combustion performance under conditions similar to that in the AFBC system, the authors conducted a series of experiments at a heating rate of 100 C/min using the TGA/FTIR/MS system. Results indicate that more hydrocarbons are evolved at the faster heating rate, owing to incomplete combustion of the fuel. Chlorinated organic compounds can be formed at high heating rates. Certain oxidation products such as organic acids and alcohols are obtained at the slow heating rate. To simulate the conditions used in the atmospheric fluidized bed combustor (AFBC) at Western Kentucky University, studies were also conducted using a quartz tube in a tube furnace. The temperature conditions were kept identical to those of the combustor. The products evolved from the combustion of coal, PVC, and mixtures of the two were trapped in suitable solvents at different temperatures, and analyzed using the Shimadzu GC/MS system. The detection limits and the GC/MS analytical parameters were also established. The experiments were conducted keeping in mind the broader perspective; that of studying conditions conducive to the formation of chlorinated organic compounds from the combustion of coal/MSW blends. 32 figs., 16 tabs.

  10. Analysis of total copper, cadmium and lead in refuse-derived fuels (RDF): study on analytical errors using synthetic samples.

    PubMed

    Skutan, Stefan; Aschenbrenner, Philipp

    2012-12-01

    Components with extraordinarily high analyte contents, for example copper metal from wires or plastics stabilized with heavy metal compounds, are presumed to be a crucial source of errors in refuse-derived fuel (RDF) analysis. In order to study the error generation of those 'analyte carrier components', synthetic samples spiked with defined amounts of carrier materials were mixed, milled in a high speed rotor mill to particle sizes <1 mm, <0.5 mm and <0.2 mm, respectively, and analyzed repeatedly. Copper (Cu) metal and brass were used as Cu carriers, three kinds of polyvinylchloride (PVC) materials as lead (Pb) and cadmium (Cd) carriers, and paper and polyethylene as bulk components. In most cases, samples <0.2 mm delivered good recovery rates (rec), and low or moderate relative standard deviations (rsd), i.e. metallic Cu 87-91% rec, 14-35% rsd, Cd from flexible PVC yellow 90-92% rec, 8-10% rsd and Pb from rigid PVC 92-96% rec, 3-4% rsd. Cu from brass was overestimated (138-150% rec, 13-42% rsd), Cd from flexible PVC grey underestimated (72-75% rec, 4-7% rsd) in <0.2 mm samples. Samples <0.5 mm and <1 mm spiked with Cu or brass produced errors of up to 220% rsd (<0.5 mm) and 370% rsd (<1 mm). In the case of Pb from rigid PVC, poor recoveries (54-75%) were observed in spite of moderate variations (rsd 11-29%). In conclusion, time-consuming milling to <0.2 mm can reduce variation to acceptable levels, even given the presence of analyte carrier materials. Yet, the sources of systematic errors observed (likely segregation effects) remain uncertain. PMID:23027034

  11. Performance of a baghouse utilizing expanded PTFE membrane filter media at a refuse-derived fuel power plant

    SciTech Connect

    Fritsky, K.J.; Hurley, J.E.

    1999-07-01

    Great River Energy (GRE), formerly United Power Association, operates a 1,000 TPD refuse-derived fuel (RDF) fired waste-to energy facility in Elk River, Minnesota. The plant produces approximately 32 MW (gross) from three boiler units with traveling stoker grates. Flue gas from the boilers enter a dry lime scrubber prior to an eight module, reverse air baghouse. This paper presents emissions, pressure drop, and cleaning energy data before and after installation of the expanded PTFE (ePTFE) membrane filter bags. After 24 months of operation, the average concentration of total particulate matter (dry + organic wet catch) with the original conventional fiberglass filter bags was 0.007 gr/dscf {at} 7% O{sub 2}. The average concentration of total particulate matter (dry + organic wet catch) with ePTFE membrane filter bags was reduced to 0.004 gr/dscf {at} 7% O{sub 2}. To keep from exceeding 10--12 inches w.g. of pressure drop across the baghouse at full load after 24 months of service, two reverse air fans and sonic horns in each module were used to clean the original fiberglass bags. The frequency of cleaning was continuous with 100 cleaning cycles per 24 hours. With the ePTFE membrane filter bags, a baghouse pressure drop of 7 inches w.g. was maintained after 24 months of operation at full load. In order to clean the new bags, sonic horns were used. However, one of the two reverse air fans was turned off. The cleaning frequency was reduced to 15 cycles per 24 hours. Other benefits are also discussed including energy cost savings due to reduced power consumption and increased power generation capacity.

  12. Refuse derived fuel (RDF)

    SciTech Connect

    Murphy, M.L.

    1994-12-31

    It was a historical moment for Fayetteville, North Carolina, USA, when, after successful project development conducted by VEDCO Energy Corp., BCH Energy signed the construction contract for a waste-to-energy plant. BCH Energy (named after three counties Bladen, Cumberland and Hoke, supplying waste to the plant) was formed as the owner and operator of the plant. When the plant commences operation in the beginning of 1995 it will be the most modern waste recovery facility in the world, providing clean and inexpensive energy as well as recyling of valuable materials. Radically reduced air emissions and a solution to state requirements of recycling the amount of waste now going to landfills are among the greatest benefits to the citizens of the three counties. For one of Fayetteville`s major industries, DuPont, the new plant will also result in a reliable, cost effective source of power and process steam supply.

  13. Refuse derived fuel (RDF) plasma torch gasification as a feasible route to produce low environmental impact syngas for the cement industry.

    PubMed

    López-Sabirón, Ana M; Fleiger, Kristina; Schäfer, Stefan; Antoñanzas, Javier; Irazustabarrena, Ane; Aranda-Usón, Alfonso; Ferreira, Germán A

    2015-08-01

    Plasma torch gasification (PTG) is currently researched as a technology for solid waste recovery. However, scientific studies based on evaluating its environmental implications considering the life cycle assessment (LCA) methodology are lacking. Therefore, this work is focused on comparing the environmental effect of the emissions of syngas combustion produced by refuse derived fuel (RDF) and PTG as alternative fuels, with that related to fossil fuel combustion in the cement industry. To obtain real data, a semi-industrial scale pilot plant was used to perform experimental trials on RDF-PTG.The results highlight that PTG for waste to energy recovery in the cement industry is environmentally feasible considering its current state of development. A reduction in every impact category was found when a total or partial substitution of alternative fuel for conventional fuel in the calciner firing (60 % of total thermal energy input) was performed. Furthermore, the results revealed that electrical energy consumption in PTG is also an important parameter from the LCA approach. PMID:26081643

  14. COAL: DRDF (DENSIFIED REFUSE DERIVED FUEL) DEMONSTRATION TEST IN AN INDUSTRIAL SPREADER STOKER BOILER. USE OF COAL: DRDF BLENDS IN STOKER-FIRED BOILERS, APPENDICES A, B, C, AND D. VOLUME II

    EPA Science Inventory

    This study program has the overall objective of evaluating boiler performance and environmental feasibility when combusting densified forms of refuse derived fuels (dRDF) blended with coal and fired in a modern industrial spreader stoker-fired boiler. The results reported herein ...

  15. NATIONAL INCINERATOR TESTING AND EVALUATION PROGRAM: THE ENVIRONMENTAL CHARACTERIZATION OF REFUSE-DERIVED FUEL (RDF) COMBUSTION TECHNOLOGY - MID-CONNECTICUT FACILITY,

    EPA Science Inventory

    The report gives results of an environmental characterization of refuse-derived, semi-suspension burning technology at a facility in Hartford, CT, that represents state-of-the-art technology, including a spray dryer/fabric filter flue gas cleaning (FGC) system for each unit. The ...

  16. Polychlorinated dibenzo-p-dioxins and dibenzofurans: Removal from flue gas and distribution in ash/residue of a refuse-derived fuel combustor

    SciTech Connect

    Brna, T.G.; Kilgroe, J.D.

    1992-01-01

    The paper gives results of an early-1989 investigation of the effect of changing combustion and flue gas cleaning (FGC) system variables on the performance of these systems. Using information from earlier characterization tests at the same site (Mid-Connecticut facility in Hartford), performance data on a refuse-derived fuel (RDF) combustor and its lime spray dryer absorber/fabric filter (FGC) system were obtained under good, intermediate, and poor combustor operation and high, normal, and low sulfur dioxide (SO2) control by the FGC system. The independent combustion system variables included steam load, air supply rate, and its distribution. For the FGC system, the outlet gas temperature from the spray dryer absorber served as an easily measurable surrogate for the approach to saturation temperature, while SO2 concentration in the flue gas at the fabric filter outlet continuously represented the lime stoichiometry. Test data included acid gas, trace organic, trace metal, and particulate concentrations, as well as material collection for the determination of ash/residue composition and production rates. In addition, process data and RDF feed and ash/residue generation rates were obtained. Correlations between combustion conditions and furnace emission of organic pollutants are presented.

  17. Health and environmental effects of refuse derived fuel (RDF) production and RDF/coal co-firing technologies

    SciTech Connect

    O'Toole, J.J.; Wessels, T.E.; Lynch, J.F.; Fassel, V.A.; Lembke, L.L.; Kniseley, R.N.; Norton, G.A.; Junk, G.A.; Richard, J.J.; Dekalb, E.L.; Dobosy, R.J.

    1981-10-01

    Six facilities, representing the scope of different co-firing techniques with their associated RDF production systems were reviewed in detail for combustion equipment, firing modes, emission control systems, residue handling/disposal, and effluent wastewater treatment. These facilities encompass all currently operational or soon to be operational co-firing plants and associated RDF production systems. Occupational health and safety risks for these plants were evaluated on the basis of fatal and nonfatal accidents and disease arising from the respective fuel cycles, coal and RDF. Occupational risks include exposure to pathogenic organisms in the workplace. Unusual events that are life threatening in the RDF processing industry (e.g., explosions) are also discussed and remedial and safety measures reviewed. 80 refs., 4 figs., 30 tabs.

  18. Characterization of ashes from co-combustion of refuse-derived fuel with coal, wood and bark in a fluidized bed

    SciTech Connect

    Zevenhoven, R.; Skrifvars, B.J.; Hupa, M.

    1998-12-31

    The technical and environmental feasibility of co-combustion of a recovered fuel (RF) prepared from combustible waste fractions (separated at the source), together with coal, peat, wood or wood-waste in thermal power/electricity generation has been studied in several R and D projects within Finland. The current work focuses on eventual changes in ash characteristics during co-combustion of RF with coal, wood or bark, which could lead to bed agglomeration, slagging, fouling and even corrosion in the boiler. Ashes were produced in a 15 kW bubbling fluidized bed (BFB) combustion reactor, the fly ash captured by the cyclone was further analyzed by XRF. The sintering tendency behavior of these ashes was investigated using a test procedure developed at Aabo Akademi University. Earlier, a screening program involved ashes from RF (from a waste separation scheme in Finland) co-combustion with peat, wood and bark, in which ash pellets were thermally treated in air. This showed significant sintering below 600 C as well as above 800 C for RF/wood and RF/bark, but not for RF/peat. This seemed to correlate with alkali chloride and sulfate concentrations in the ashes. The current work addresses a Danish refuse-derived fuel (RDF), co-combusted with bark, coal, bark+coal, wood, and wood+coal (eight tests). Ash pellets were thermally treated in nitrogen in order to avoid residual carbon combustion. The results obtained show no sintering tendencies below 600 C, significant changes in sintering are seen with pellets treated at 1,000 C. Ash from 100% RDF combustion does not sinter, 25% RDF co-combustion with wood and peat, respectively, gives an insignificant effect. The most severe sintering occurs during co-combustion of RDF with bark. Furthermore, it appears that the presence of a 25% coal fraction (on energy basis) seems to have a negative effect on all fuel blends. Analysis of the sintering results versus ash chemical composition shows that, in general, an increased level of

  19. Co-combustion of refuse derived fuel and coal in a cyclone furnace at the Baltimore Gas and Electric Company, C. P. Crane Station

    SciTech Connect

    Not Available

    1982-03-01

    A co-combustion demonstration burn of coal and fluff refuse-derived fuel (RDF) was conducted by Teledyne National and Baltimore Gas and Electric Company. This utility has two B and W cyclone furnaces capable of generating 400 MW. The facility is under a prohibition order to convert from No. 6 oil to coal; as a result, it was desirable to demonstrate that RDF, which has a low sulfur content, can be burned in combination with coals containing up to 2% sulfur, thus reducing overall sulfur emissions without deleterious effects. Each furnace consists of four cyclones capable of generating 1,360,000 pounds per hour steam. The tertiary air inlet of one of the cyclones was modified with an adapter to permit fluff RDF to be pneumatically blown into the cyclone. At the same time, coal was fed into the cyclone furnace through the normal coal feeding duct, where it entered the burning chamber tangentially and mixed with the RDF during the burning process. Secondary shredded fluff RDF was prepared by the Baltimore County Resource Recovery Facility. The RDF was discharged into a receiving station consisting of a belt conveyor discharging into a lump breaker, which in turn, fed the RDF into a pneumatic line through an air-lock feeder. A total of 2316 tons were burned at an average rate of 5.6 tons per hour. The average heat replacement by RDF for the cyclone was 25%, based on Btu input for a period of forty days. The range of RDF burned was from 3 to 10 tons per hour, or 7 to 63% heat replacement. The average analysis of the RDF (39 samples) for moisture, ash, heat (HHV) and sulfur content were 18.9%, 13.4%, 6296 Btu/lb and 0.26% respectively. RDF used in the test was secondary shredded through 1-1/2 inch grates producing the particle size distribution of from 2 inches to .187 inches. Findings to date after inspection of the boiler and superheater indicate satisfactory results with no deleterious effects from the RDF.

  20. Destruction and formation of PCDD/Fs in a fluidised bed combustor co-incinerating automotive shredder residue with refuse derived fuel and wastewater treatment sludge.

    PubMed

    Van Caneghem, J; Vermeulen, I; Block, C; Van Brecht, A; Van Royen, P; Jaspers, M; Wauters, G; Vandecasteele, C

    2012-03-15

    During an eight day trial automotive shredder residue (ASR) was added to the usual waste feed of a Fluidized Bed Combustor (FBC) for waste-to-energy conversion; the input waste mix consisted of 25% ASR, 25% refuse-derived fuel (RDF) and 50% wastewater treatment (WWT) sludge. All inputs and outputs were sampled and the concentration of the 17 PCDD/Fs with TEF-values was determined in order to obtain "PCDD/F fingerprints". The ASR contained approximately 9000 ng PCDD/Fs/kg(DW), six times more than the RDF and 10 times more than the WWT sludge. The fingerprint of ASR and RDF was dominated by HpCDD and OCDD, which accounted for 90% of the total PDDD/F content, whereas the WWT sludge contained relatively more HpCDFs and OCDF (together 70%). The flue gas cleaning residue (FGCR) and fly and boiler ash contained approximately 30,000 and 2500 ng PCDD/Fs/kg(DW), respectively. The fingerprints of these outputs were also dominated by HpCDFs and OCDF. The bottom ash contained only OCDD and OCDF, in total 8 ng PCDD/Fs/kg (DW). From the comparison of the bottom ash fingerprints with the fingerprints of the other output fractions and of the inputs, it could be concluded that the PCDD/Fs in the waste were destroyed and new PCDD/Fs were formed in the post combustion process by de novo synthesis. During the ASR-co-incineration, the PCDD/F congener concentrations in the fly and boiler ash, FGCR and flue gas were 1.25-10 times higher compared to the same output fractions generated during incineration of the usual waste mix (70% RDF and 30% WWT sludge). The concentration of the higher chlorinated PCDD/Fs increased most. As these congeners have the lowest TEF-factors, the total PCDD/F output, expressed in kg TEQ/year, of the FBC did not increase significantly when ASR was co-incinerated. Due to the relatively high copper levels in the ASR, the copper concentrations in the FBCs outputs increased. As copper catalysis the de novo syntheses, this could explain the increase in PCDD

  1. Proposed draft document for GSA office waste removal and procurement of densified refuse derived fuel for use as a supplemental fuel in GAS operated boilers

    NASA Astrophysics Data System (ADS)

    Campbell, J. A.

    1981-09-01

    A contract specifying waste collection and disposal from buildings managed by Government Services Administration (GSA) in the Washington, D. C. area and the production and delivery of pelletized fuel for burning with coal in one or two GSA steam generating plants is given.

  2. Co-firing a pressurized fluidized-bed combustion system with coal and refuse derived fuels and/or sludges. Task 16

    SciTech Connect

    DeLallo, M.; Zaharchuk, R.

    1994-01-01

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal waste. Leading this approach, the atmospheric fluidized-bed combustor (AFBC) has demonstrated its commercial acceptance in the utility market as a reliable source of power burning a variety of waste and alternative fuels. The fluidized bed, with its stability of combustion, reduces the amount of thermochemical transients and provides for easier process control. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Wastes considered for co-firing include municipal solid waste (MSW), tire-derived fuel (TDF), sewage sludge, and industrial de-inking sludge. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

  3. Recovery of useful materials from refuse fuel ash

    SciTech Connect

    Galgana, R.J.; Sutin, G.L.; Mc Nerney, M.; Mahoney, P.F.

    1987-06-02

    A method is described for treating the bottom ash residue resulting from burning a processed refuse fuel to recover metallic and other useful constituent materials from the ash residue. The method comprises: feeding a stream of the ash residue from a stock source thereof to a magnetic separation operation to remove at least the major part of any ferrous materials therein, the separated ferrous materials being delivered to a ferrous metals collection point; the remaining ash residue being passed through a particle size separation operation to separate same into oversize, midsize and undersize fractions; and delivering the oversize fraction to a tramp collection operation, the undersize fraction to an aggregate collection and the midsize fraction to a milling operation of a type wherein brittle non-ductile material is fragmented to provide further size reduction thereof and any ductile material is deformed without any consequential size reduction thereto beyond a certain measure.

  4. Refuse recycling and recovery

    SciTech Connect

    Holmes, J.R.

    1981-01-01

    Sanitary landfill of domestic, commercial, and industrial wastes is the predominant method of waste disposal in the United Kingdom. Although there was various waste disposal processes at various stages of design and test, landfill and incineration are still the only reliable methods of waste processing. Methods of recovery and use of refuse are examined in this book together with various separation processes, waste derived fuels, refuse composting, and glass and metal recovery. (Refs. 39).

  5. Alternative fuel trucks case studies: Running refuse haulers on compressed natural gas

    SciTech Connect

    Norton, P.; Kelly, K.

    1996-07-01

    This document details the experience of New York City`s compressed natural gas refuse haulers. These 35 ton vehicles have engines that displace 10 liters and provide 240 horsepower. Fuel economy, range, cost, maintenance, repair issues, and emissions are discussed. Photographs and figures illustrate the attributes of these alternative fuel vehicles.

  6. Unconventional fuel: Tire derived fuel

    SciTech Connect

    Hope, M.W.

    1995-09-01

    Material recovery of scrap tires for their fuel value has moved from a pioneering concept in the early 1980`s to a proven and continuous use in the United States` pulp and paper, utility, industrial, and cement industry. Pulp and paper`s use of tire derived fuel (TDF) is currently consuming tires at the rate of 35 million passenger tire equivalents (PTEs) per year. Twenty mills are known to be burning TDF on a continuous basis. The utility industry is currently consuming tires at the rate of 48 million PTEs per year. Thirteen utilities are known to be burning TDF on a continuous basis. The cement industry is currently consuming tires at the rate of 28 million PTEs per year. Twenty two cement plants are known to be burning TDF on a continuous basis. Other industrial boilers are currently consuming tires at the rate of 6.5 million PTEs per year. Four industrial boilers are known to be burning TDF on a continuous basis. In total, 59 facilities are currently burning over 117 million PTEs per year. Although 93% of these facilities were not engineered to burn TDF, it has become clear that TDF has found acceptance as a supplemental fuel when blending with conventional fuels in existing combustion devices designed for normal operating conditions. The issues of TDF as a supplemental fuel and its proper specifications are critical to the successful development of this fuel alternative. This paper will focus primarily on TDF`s use in a boiler type unit.

  7. An investigation on the fuel savings potential of hybrid hydraulic refuse collection vehicles

    SciTech Connect

    Bender, Frank A. Bosse, Thomas; Sawodny, Oliver

    2014-09-15

    Highlights: • Driving cycle acquisition in a refuse collection vehicle. • Vehicle modeling and validation for numerical simulations based on the measured driving cycle. • Fuel consumption analysis for a conventional diesel vehicle and a hybrid hydraulic vehicle. - Abstract: Refuse trucks play an important role in the waste collection process. Due to their typical driving cycle, these vehicles are characterized by large fuel consumption, which strongly affects the overall waste disposal costs. Hybrid hydraulic refuse vehicles offer an interesting alternative to conventional diesel trucks, because they are able to recuperate, store and reuse braking energy. However, the expected fuel savings can vary strongly depending on the driving cycle and the operational mode. Therefore, in order to assess the possible fuel savings, a typical driving cycle was measured in a conventional vehicle run by the waste authority of the City of Stuttgart, and a dynamical model of the considered vehicle was built up. Based on the measured driving cycle and the vehicle model including the hybrid powertrain components, simulations for both the conventional and the hybrid vehicle were performed. Fuel consumption results that indicate savings of about 20% are presented and analyzed in order to evaluate the benefit of hybrid hydraulic vehicles used for refuse collection.

  8. Real-world activity, fuel use, and emissions of diesel side-loader refuse trucks

    NASA Astrophysics Data System (ADS)

    Sandhu, Gurdas S.; Frey, H. Christopher; Bartelt-Hunt, Shannon; Jones, Elizabeth

    2016-03-01

    Diesel refuse trucks have the worst fuel economy of onroad highway vehicles. The real-world effectiveness of recently introduced emission controls during low speed and low engine load driving has not been verified for these vehicles. A portable emission measurement system (PEMS) was used to measure rates of fuel use and emissions on six side-loader refuse trucks. The objectives were to: (1) characterize activity, fuel use, and emissions; (2) evaluate variability between cycles and trucks; and (3) compare results with the MOVES emission factor model. Quality assured data cover 210,000 s and 550 miles of operation during which the trucks collected 4200 cans and 50 tons of waste material. The average fuel economy was 2.6 mpg. Trash collection contributed 70%-80% of total fuel use and emissions. The daily activity Operating Mode (OpMode) distribution and cycle average fuel use and emissions is different from previously used cycles such as Central Business District (CBD), New York Garbage Truck (NYGT), and William H. Martin (WHM). NOx emission rates for trucks with selective catalytic reduction were over 90% lower than those for trucks without. Similarly, trucks with diesel particulate filters had over 90% lower particulate matter (PM) emissions than trucks without. Compared to unloaded trucks, loaded truck averaged 18% lower fuel economy while NOx and PM emissions were higher by 65% and 16%, respectively. MOVES predicted values are highly correlated to empirical data; however, MOVES estimates are 37% lower for NOx and 300% higher for PM emission rates. The data presented here can be used to develop more representative cycles and improve emission factors for side-loader refuse trucks, which in turn can improve the accuracy of refuse truck emission inventories.

  9. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity

    SciTech Connect

    Sortino, Orazio; Dipasquale, Mauro; Montoneri, Enzo; Tomasso, Lorenzo; Perrone, Daniele G.; Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Municipal bio-wastes are a sustainable source of bio-based products. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics promote chlorophyll synthesis. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. Black-Right-Pointing-Pointer Sustainable chemistry exploiting urban refuse allows sustainable development. Black-Right-Pointing-Pointer Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.

  10. An investigation on the fuel savings potential of hybrid hydraulic refuse collection vehicles.

    PubMed

    Bender, Frank A; Bosse, Thomas; Sawodny, Oliver

    2014-09-01

    Refuse trucks play an important role in the waste collection process. Due to their typical driving cycle, these vehicles are characterized by large fuel consumption, which strongly affects the overall waste disposal costs. Hybrid hydraulic refuse vehicles offer an interesting alternative to conventional diesel trucks, because they are able to recuperate, store and reuse braking energy. However, the expected fuel savings can vary strongly depending on the driving cycle and the operational mode. Therefore, in order to assess the possible fuel savings, a typical driving cycle was measured in a conventional vehicle run by the waste authority of the City of Stuttgart, and a dynamical model of the considered vehicle was built up. Based on the measured driving cycle and the vehicle model including the hybrid powertrain components, simulations for both the conventional and the hybrid vehicle were performed. Fuel consumption results that indicate savings of about 20% are presented and analyzed in order to evaluate the benefit of hybrid hydraulic vehicles used for refuse collection. PMID:24953314

  11. The characteristics of organic sludge/sawdust derived fuel.

    PubMed

    Chen, Wei-Sheng; Chang, Fang-Chih; Shen, Yun-Hwei; Tsai, Min-Shing

    2011-05-01

    A fundamental study of the characteristics of a sludge refuse-derived fuel (RDF) and the combustion behaviors were done. The test data demonstrate good results for the development of energy recovery technology of organic sludge or waste. The ash deposit formation propensity has been based on pretreatment, temperature and the ratio of organic sludge to sawdust. The usage of organic sludge and waste as an alternative fuel is cost effective and has environmental benefits. PMID:21129953

  12. EMISSION ASSESSMENT OF REFUSE-DERIVED FUEL COMBUSTION: SUSPENSION FIRING

    EPA Science Inventory

    The suspension burning investigation was conducted in a horizontal laboratory boiler firing at a nominal heat input of 440 kw. The boiler had been modified to simulate large utility boilers and was further modified to investigate co-firing and tri-firing of coal, RDF, and hazardo...

  13. Potential environmental impacts of using refuse derived material for landfill capping.

    PubMed

    van Praagh, Martin; Persson, Kenneth M; Karlsson, Patrik

    2009-08-01

    In this study, the potential impacts on leachate emissions of applying a pretreated refuse-derived material as a capping layer on top of a municipal solid waste landfill were researched. Leachate emissions and stability against degradation were investigated with reference to the untreated material. Results from percolation leaching tests were analysed by multivariate data analysis and chemical speciation modelling. During 6 month aerobic pretreatment in composting windrows with forced aeration, the waste was stabilized against aerobic degradation measured as respiration activity down to 15% of the original value. Initial percolation leachate concentrations were reduced by 40% for As, by 50% for Co, by 60% for Ni, Pb, and total sulfur, by 40% for sulfate-sulfur, by 96% for ammonium nitrate, and by 62% for dissolved organic carbon. An increase was observed by a factor of 4 for Cd, by a factor of 150 for Cu, by a factor of 3 for Zn. Principle Component Analysis revealed that the leaching characteristics of the pretreated material developed towards those of a top soil used as reference material. Increasing the flow rate in column percolation experiments led to lower leachate concentrations at liquid to solid ratios of 10. Constructing a capping layer from the pretreated material is likely to have impacts on the leachate treatment system. PMID:19487315

  14. Designing the microturbine engine for waste-derived fuels.

    PubMed

    Seljak, Tine; Katrašnik, Tomaž

    2016-01-01

    Presented paper deals with adaptation procedure of a microturbine (MGT) for exploitation of refuse derived fuels (RDF). RDF often possess significantly different properties than conventional fuels and usually require at least some adaptations of internal combustion systems to obtain full functionality. With the methodology, developed in the paper it is possible to evaluate the extent of required adaptations by performing a thorough analysis of fuel combustion properties in a dedicated experimental rig suitable for testing of wide-variety of waste and biomass derived fuels. In the first part key turbine components are analyzed followed by cause and effect analysis of interaction between different fuel properties and design parameters of the components. The data are then used to build a dedicated test system where two fuels with diametric physical and chemical properties are tested - liquefied biomass waste (LW) and waste tire pyrolysis oil (TPO). The analysis suggests that exploitation of LW requires higher complexity of target MGT system as stable combustion can be achieved only with regenerative thermodynamic cycle, high fuel preheat temperatures and optimized fuel injection nozzle. Contrary, TPO requires less complex MGT design and sufficient operational stability is achieved already with simple cycle MGT and conventional fuel system. The presented approach of testing can significantly reduce the extent and cost of required adaptations of commercial system as pre-selection procedure of suitable MGT is done in developed test system. The obtained data can at the same time serve as an input for fine-tuning the processes for RDF production. PMID:26116004

  15. Corrosion of boiler tube alloys in refuse firing: Shredded vs bulk refuse

    SciTech Connect

    Krause, H.H. ); Daniel, P.L.; Blue, J.D. )

    1994-08-01

    Results of corrosion probe exposures at two mass burning incinerators were compared with those conducted in a unit burning refuse-derived fuel. Tests were conducted with carbon steel, low-alloy steels, stainless steels, and high nickel-chromium alloys. Corrosion rates at similar metal and gas temperatures were essentially the same for both types of fuel. Boiler tube performance in the waterwalls of other incinerators confirmed these results. Boiler design and operating conditions appear to be more important factors in tube wastage than the extent of refuse processing.

  16. Fuel and fuel blending components from biomass derived pyrolysis oil

    DOEpatents

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  17. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity.

    PubMed

    Sortino, Orazio; Dipasquale, Mauro; Montoneri, Enzo; Tomasso, Lorenzo; Perrone, Daniele G; Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe

    2012-10-01

    Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance. PMID:22658869

  18. Production of liquid fuels out of plant biomass and refuse: Methods, cost, potential

    SciTech Connect

    Woick, B.; Friedrich, R.

    1981-09-01

    Different ways of producing biomass and its conversion into high grade fuel for vehicles are reviewed with particular reference to physical and geographical factors, pertaining in the Federal Republic of Germany (FRG). Even with the potentially small amount of biomass in the FRG, the fueling of diesel engines with rape oil or modified ethanol, which can be obtained from any cellulosic feedstock, seems to pose the fewest difficulties and promises greatest efficiency. However, the amount of fuel produced from biomass can probably only meet a very small percentage of the total amount required.

  19. Benzophenone derivatives as fuel additives

    SciTech Connect

    Andress, H.J.

    1988-05-17

    This patent describes a composition comprising a major amount of a liquid hydrocarbon fuel having an initial boiling point of at least about 75/sup 0/F and an end boiling point of about 750/sup 0/F, and a minor amount sufficient to improve the fuel detergency thereof the reaction product of an ester of a benzophenone tetracarboxylic dianhydride or mixtures of such esters and an amine wherein the benzophenone tetracarboxylic dianhydride ester or mixtures of such esters are reacted with the amine in a mole ratio of from about 3:1 to about 1:3 at a temperature of from about 100/sup 0/ - 300/sup 0/C at atmospheric pressure from about three to about 10 hours.

  20. Scrap tire derived fuel: Markets and issues

    SciTech Connect

    Serumgard, J.

    1997-12-01

    More than 250 million scrap tires are generated annually in the United States and their proper management continues to be a solid waste management concern. Sound markets for scrap tires are growing and are consuming an ever increasing percentage of annual generation, with market capacity reaching more than 75% of annual generation in 1996. Of the three major markets - fuel, civil engineering applications, and ground rubber markets - the use of tires as a fuel is by far the largest market. The major fuel users include cement kilns, pulp and paper mills, electrical generation facilities, and some industrial facilities. Current issues that may impact the tire fuel market include continued public concern over the use of tires as fuels, the new EPA PM 2.5 standard, possible additional Clean Air emissions standards, access to adequate supplies of scrap tires, quality of processed tire derived fuel, and the possibility of creating a commodity market through the development of ASTM TDF standards.

  1. Geiselbullach refuse incineration plant

    SciTech Connect

    Not Available

    1990-03-01

    The vast diversity of wastes, heightened awareness of environmental problems, and unabating demand for power and raw materials, are making it imperative to minimize waste-dumping. Refuse incineration power plants present an ecologically and economically sound answer to this problem, since they also enable communities and large industrial facilities to convert their wastes into electricity and energy for district heating. The refuse produced each year by 1,000,000 people represents a resource equivalent to $30 million of fuel oil. This plant is now converting into energy the waste produced by a population of 280,000. The conversion and expansion were completed without any significant interruption to plant operation. The modernized plant complies fully with today's stringent legal requirements for obtaining an operating license in West Germany. Because landfill sites are becoming increasingly scarce everywhere, thermal processes that dispose of refuse and simultaneously generate electrical power and heat are creating a great deal of interest.

  2. MUNICIPAL WASTE COMBUSTION MULTIPOLLUTANT STUDY EMISSION TEST REPORT, MAINE ENERGY RECOVERY COMPANY, RE- FUSE DERIVED FUEL FACILITY, BIDDEFORD, MAINE - VOLUME I: SUMMARY OF RESULTS

    EPA Science Inventory

    The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. ontrol efficiency of the SD/FF emission control system wa...

  3. School Refusal

    ERIC Educational Resources Information Center

    Wimmer, Mary

    2008-01-01

    School attendance is an ongoing concern for administrators, particularly in middle level and high school. Frequent absences affect student learning, test scores, and social development. Absenteeism is often the result of emotional disorders, such as anxiety or depression. Administrators who understand the causes of school refusal behavior and are…

  4. E-Alerts: Energy (fuels). E-mail newsletter

    SciTech Connect

    1999-04-01

    Production, performance, properties, storage, prices, and transportation of all types of solid, liquid, and gaseous fuels; chemical composition of fuels; fuel compatibility; hydrogen production; refuse derived fuels; fuel desulfurization; oil shale retorting; petroleum refining; fuel additives; growing plants for fuels; bioconversion and biomass plantations.

  5. MUNICIPAL WASTE COMBUSTION ASSESSMENT: FOSSIL FUEL CO-FIRING

    EPA Science Inventory

    The report identifies refuse derived fuel (RDF) processing operations and various RDF types; describes such fossil fuel co-firing techniques as coal fired spreader stokers, pulverized coal wall fired boilers, pulverized coal tangentially fired boilers, and cyclone fired boilers; ...

  6. Pyrolysis capillary chromatography of refuse-derived fuel and aquatic fulvic acids

    SciTech Connect

    Haj-Mahmoud, Q.M.

    1989-01-01

    Pyrolysis-capillary gas chromatography combined with FID, ECD and MS detection were used. Pyrolysis temperatures of 700-800{degree}C produced the strongest signal for organics present in RDF and fulvic acid. Cellulose and fatty acids pyrolyzates were identifiable by GC-MS following preparative pyrolysis fractionation. At organic chloride content of 0.023%, only three halogenated compounds were detected in the GCMS of the fractions. None of the priority pollutants were detected at lower detection limit of 0.72 to 24 mg/kg RDF. Selective solvent extraction improves the reproducibilities of the technique and allows the detection of polymeric structures. Pyrograms of polyvinyl chloride and regular typing paper showed some common peaks that are present in the RDF pyrogram. The organic chloride content of the RDF was evaluated by ion chromatography of the trapped pyrolyzates in 2% NaOH trap and it was found to be 221 mg Cl/kg dry RDF. Pyrolysis conditions and temperature programs for FA were systematically evaluated. Samples included purified FA, methylated Fa and HPLC separated fractions. Profiles of benzene, toluene, phenol, m-cresol and biphenyl from FA were evaluated. The production of phenol was the largest at 800{degree}C, at concentration of 1.61 mg per gram of FA pyrolyzed. The profiles of benzene and toluene followed the same pathways. HPLC fractions of FA showed some regular retention patterns characteristic of polymeric material. DL-proline, seriene and vanillic acid pyrograms showed some peaks with the same retention times as those in FA pyvrogram under the same conditions. A reproducibility of 6% relative standard deviation was achieved in the pyrolysis of RDF and 0.91% in the case of FA.

  7. GASEOUS HC1 AND CHLORINATED ORGANIC COMPOUND EMISSIONS FROM REFUSE FIRED WASTE-TO-ENERGY SYSTEMS

    EPA Science Inventory

    The emissions from a water wall mass fired municipal waste incinerator and a refuse derived fuel (RDF) fired incinerator were sampled for chlorinated organic compounds and hydrochloric acid (HCl). The sampling was performed to evaluate the extractive sampling methods used to meas...

  8. Progress on coal-derived fuels for aviation systems

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1978-01-01

    Synthetic aviation kerosene (Syn. Jet-A), liquid methane (LCH4), and liquid hydrogen (LH2) appear to be the most promising coal-derived fuels. Liquid hydrogen aircraft configurations, their fuel systems, and their ground requirements at the airport are identified. These aircraft appear viable, particularly for long haul use, where aircraft fueled with coal derived LH2 would consume 9 percent less coal resources than would aircraft fueled with coal derived Syn. Jet-A. Distribution of hydrogen from the point of manufacture to airports may pose problems. Synthetic JET-A would appear to cause fewer concerns to the air transportation industry. Of the three candidate fuels, LCH4 is the most energy efficient to produce, and an aircraft fueled with coal derived LCH4 may provide both the most efficient utilization of coal resources and the least expensive ticket as well.

  9. Interactions of Jet Fuels with Nitrile O-Rings: Petroleum-Derived versus Synthetic Fuels

    SciTech Connect

    Gormley, Robert J.; Link, Dirk D.; Baltrus, John P.; Zandhuis, Paul H.

    2009-01-01

    A transition from petroleum-derived jet fuels to blends with Fischer-Tropsch (F-T) fuels, and ultimately fully synthetic hydro-isomerized F-T fuels has raised concern about the fate of plasticizers in nitrile-butadiene rubber a-rings that are contacted by the fuels as this transition occurs. The partitioning of plasticizers and fuel molecules between nitrile a-rings and petroleum-derived, synthetic, and additized-synthetic jet fuels has been measured. Thermal desorption of o-rings soaked in the various jet fuels followed by gas chromatographic analysis with a mass spectrometric detector showed many of the plasticizer and stabilizer compounds were removed from the o-rings regardless of the contact fuel. Fuel molecules were observed to migrate into the o-rings for the petroleum-derived fuel as did both the fuel and additive for a synthetic F-T jet fuel additized with benzyl alcohol, but less for the unadditized synthetic fuel. The specific compounds or classes of compounds involved in the partitioning were identified and a semiquantitative comparison of relative partitioning of the compounds of interest was made. The results provide another step forward in improving the confidence level of using additized, fully synthetic jet fuel in the place of petroleum-derived fuel.

  10. Interactions of Jet Fuels with Nitrile O-Rings: Petroleum-Derived versus Synthetic Fuels

    SciTech Connect

    Gormley, R.J.; Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

    2008-01-01

    A transition from petroleum-derived jet fuels to blends with Fischer-Tropsch (F-T) fuels, and ultimately fully synthetic hydro-isomerized F-T fuels has raised concern about the fate of plasticizers in nitrile-butadiene rubber o-rings that are contacted by the fuels as this transition occurs. The partitioning of plasticizers and fuel molecules between nitrile o-rings and petroleum-derived, synthetic, and additized-synthetic jet fuels has been measured. Thermal desorption of o-rings soaked in the various jet fuels followed by gas chromatographic analysis with a mass spectrometric detector showed many of the plasticizer and stabilizer compounds were removed from the o-rings regardless of the contact fuel. Fuel molecules were observed to migrate into the o-rings for the petroleum-derived fuel as did both the fuel and additive for a synthetic F-T jet fuel additized with benzyl alcohol, but less for the unadditized synthetic fuel. The specific compounds or classes of compounds involved in the partitioning were identified and a semiquantitative comparison of relative partitioning of the compounds of interest was made. The results provide another step forward in improving the confidence level of using additized, fuIly synthetic jet fuel in the place of petroleum-derived fueL

  11. Progress on coal-derived fuels for aviation systems

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1978-01-01

    The results of engineering studies of coal-derived aviation fuels and their potential application to the air transportation system are presented. Synthetic aviation kerosene (SYN. JET-A), liquid methane (LCH4) and liquid hydrogen (LH2) appear to be the most promising coal-derived fuels. Aircraft configurations fueled with LH2, their fuel systems, and their ground requirements at the airport are identified. Energy efficiency, transportation hazards, and costs are among the factors considered. It is indicated that LCH4 is the most energy efficient to produce, and provides the most efficient utilization of coal resources and the least expensive ticket as well.

  12. Tire-derived fuel cofiring test in a pulverized coal utility boiler. Final report

    SciTech Connect

    Joensen, A.W.

    1994-12-01

    In recent years, several states have enacted legislation that outlaws the landfilling of whole tires and forces the implementation of various integrated waste management alternatives to dispose of passenger car and truck tires. Alternate disposal options include source reduction, recycling, composting, incineration, and, as a last resort, landfilling of only shredded tires in conventional landfills or in lined monofills, as required by several states. The high energy content of scrap tires, 13,000-16,000 Btu/lb, has resulted in the use of processed tires as tire-derived fuel (TDF). Previous TDF applications include cement kilns, fluidized bed combustion, stoker, and cyclone-fired boilers. Up to now, no data have been reported for cofiring TDF with coal in pulverized coal boilers. This report presents the results of a Phase I feasibility test program conducted in a 65-MW Babcock and Wilcox pulverized coal steam generator at the City of Ames, Iowa, Municipal Power Plant. This unit currently cofires western coal with refuse-derived fuel (RDF) and utilizes a bottom dump grate to ensure the complete combustion of RDF in the furnace.

  13. Will biodiesel fuels derived from algae perform?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The issue of sufficient supply and availability of feedstock is one of the major non-technical issues affecting the widespread commercialization of biodiesel. Another aspect is the food vs. fuel issue that biofuels should not be produced from edible feedstocks. In these connections, lipid-producin...

  14. Fuel compositions containing terpene derivatives of

    SciTech Connect

    Karol, T.J.

    1989-01-03

    A diesel fuel composition is described characterized by improved wear properties and comprising a major portion of middle distillates boiling in the range of about 163/sup 0/C to 400/sup 0/C and a minor wear improving amount of a reaction product of a terpene and 2,5-dimercapto-1,3,4-thiadiazole.

  15. Development of alternative fuels from coal-derived syngas

    SciTech Connect

    Not Available

    1991-03-22

    The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels development Unit (AFDU). The program will initially involve a continuation of the work performed under the Liquid Phase Methanol Program but will later draw upon information and technologies generated in current and future DOE-funded contracts, as well as test commercially available catalysts. 1 fig., 3 tabs.

  16. Burning coal refuse in fluid beds

    SciTech Connect

    Kleinau, J.H.; Sneyd, R.J.; Lombardi, C.E.

    1985-01-01

    This paper deals with the application of fluid bed combustion technology to the burning of coal-mining waste. The designs of two stage fluid bed combustors/dryers are demonstrated as useful in the drying of coal, slag and coke, using coal and coal refuse (gob) as fuel. Anthracite mining refuse (culm) is more than abundant in Northeastern Pennsylvania. After demonstration at Shamokin, Pennsylvania, a full commercial-sized fluid bed boiler using culm is used for district heating in Wilkes-Barre, Pennsylvania. Limited research work has shown the utility of using fine coal as filter aid in sludge incineration. With the rising avenues of the suitability of coal as auxiliary fuel in fluid bed sludge incineration, an expansion of these concepts combines the use of coal or coal refuse as filter aid and auxiliary fuel. Limestone addition controls SO/sub 2/ emission.

  17. Vertical combustor for particulate refuse

    NASA Astrophysics Data System (ADS)

    Chung, P. M.; Carlson, L.

    1981-03-01

    A one-dimensional model is constructed of a vertical combustor for refuse particle combustion in order to analyze it for waste energy recovery. The three components of the model, fuel particles, inert solid particles and the gaseous mixture are described by momentum, energy, and mass conservation equations, resulting in three different flow velocities and temperatures for the medium. The gaseous component is further divided into six chemical species that evolve in combustion at temperatures below about 1367 K. A detailed description is given of the fuel particle combustion through heating, devolatilization, and combustion of the volatile gas in the boundary layer, return of the flame sheet to the fuel surface, and char combustion. The solutions show the combustor to be viable for U.S. refuse which consists of combustibles that can be volatilized up to 85 to 95% below 1366 K. Char combustion, however, is found to be too slow to be attempted in the combustor, where the fuel residence time is of the order of 2 s.

  18. Clean Cities Niche Market Overview: Refuse Haulers (Brochure)

    SciTech Connect

    Shea, S.

    2011-09-01

    Refuse haulers are ideal for the adoption of alternative fuels and advanced vehicle technologies. By using fuels like natural gas, propane, or biodiesel, and technologies like hybrid electric and hydraulic hybrid systems, the refuse-hauling sector could substantially decrease its petroleum use and greenhouse gas emissions. Fleet managers should explore the benefits of the fuels and technologies available, as well as the individual fleet needs, before adoption.

  19. THERMOCHEMICAL CONVERSION OF FERMENTATION-DERIVED OXYGENATES TO FUELS

    SciTech Connect

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-06-01

    At present ethanol generated from renewable resources through fermentation process is the dominant biofuel. But ethanol suffers from undesirable fuel properties such as low energy density and high water solubility. The production capacity of fermentation derived oxygenates are projected to rise in near future beyond the current needs. The conversion of oxygenates to hydrocarbon compounds that are similar to gasoline, diesel and jet fuel is considered as one of the viable option. In this chapter the thermo catalytic conversion of oxygenates generated through fermentation to fuel range hydrocarbons will be discussed.

  20. The determination of water in biomass-derived liquid fuels

    SciTech Connect

    Roy, C.; De Caumia, B.

    1986-01-01

    The Dean and Stark distillation is an appropriate method for the determination of water in coal tar, bitumen and petroleum-like products. This article shows, however, that a direct application of the Dean and Stark method for the determination of water in biomass-derived liquid fuels results in incorrect estimates. Inaccuracies are due to the presence of soluble organics in the aqueous phase, which apparently form azeotropic mixtures with water and xylene and which condense and are trapped as distillate in the graduated cylinder. Instead, a Karl Fischer determination of water is recommended in the case of biomass-derived liquid fuels.

  1. School Refusal Behavior.

    PubMed

    Lingenfelter, Nannette; Hartung, Sheila

    2015-09-01

    School refusal behaviors go beyond a child's dislike or disinterest in school. This article investigates the underlying anxiety, depression, and social phobias that often accompany these behaviors and the importance of early recognition and treatment. Successful treatment and resolution of school refusal behaviors need to be a multidisciplinary approach. Teachers, administrators, guidance counselors, school nurses, and parents need to be involved in the diagnostic, treatment, and readmission processes. School nurses are in a unique position to be able to help identify and provide support for students exhibiting school refusal behaviors. PMID:25816422

  2. Conversion of Pentose-Derived Furans into Hydrocarbon Fuels

    SciTech Connect

    Moens, L.; Johnson, D. K.

    2012-01-01

    We are interested in the conversion of biomass-derived hemicellulose into hydrocarbon molecules that can be used in the formulation of 'drop-in' fuels such as gasoline (C5-12), diesel (C10-20) and jet fuel (C9-16). Our focus lies on the use of furfuryl alcohol as a starting material since that is already produced commercially from hemicellulose-derived pentoses. The steps required to convert the latter into hydrocarbons are 1) oligomerization of furfuryl alcohol to form dimers (C10) and trimers (C15), and 2) hydrotreatment of the dimers and trimers to produce a mixture of linear hydrocarbons with carbon chain lengths in the range of diesel and jet fuels. However, furfuryl alcohol readily polymerizes to form resins in the presence of an acid catalyst, and the exothermic oligomerization must be carried out under reaction control. This presentation will discuss our progress in the development of this sugar-to-hydrocarbon pathway.

  3. Production of jet fuels from coal-derived liquids

    SciTech Connect

    Knudson, C.L.

    1990-06-01

    Samples of jet fuel (JP-4, JP-8, JP-8X) produced from the liquid by-products of the gasification of lignite coal from the Great Plains Gasification Plant were analyzed to determine the quantity and type of organo-oxygen compounds present. Results were compared to similar fuel samples produced from petroleum. Large quantities of oxygen compounds were found in the coal-derived liquids and were removed in the refining process. Trace quantities of organo-oxygenate compounds were suspected to be present in the refined fuels. Compounds were identified and quantified as part of an effort to determine the effect of these compounds in fuel instability. Results of the analysis showed trace levels of phenols, naphthols, benzofurans, hexanol, and hydrogenated naphthols were present in levels below 100 ppM. 9 figs., 3 tabs.

  4. Conversion of Biomass-Derived Furans into Hydrocarbon Fuels

    SciTech Connect

    Moens, L.; Johnson, D. K.

    2013-01-01

    One of the most studied chemical transformations of carbohydrates is their thermocatalytic dehydration to form furans. Cellulose-derived glucose is thereby converted into 5-hydroxymethylfurfuraldehyde (5-HMF), while the hemicellulose-derived pentoses (e.g., xylose, arabinose) form furfuraldehyde. Our objective is to identify new pathways to convert furfuryl alcohol into a mixture of aliphatic hydrocarbons that can be used as drop-in fuels for diesel (C10-20) and jet fuel (C9-16) blends. Furfuryl alcohol is produced commercially through hydrogenation of furfuraldehyde that is derived from hemicellulose-derived pentoses via acid-catalyzed dehydration. The steps that we are currently pursuing to convert furfuryl alcohol into hydrocarbons are 1) oligomerization of furfuryl alcohol to form dimers (C10) and trimers (C15), and 2) hydrotreatment of the dimers and trimers to produce a mixture of linear hydrocarbons with carbon chain lengths in the range of diesel and jet fuels. This presentation will discuss our progress in the development of this pathway.

  5. Microbial production of fatty acid-derived fuels and chemicals

    PubMed Central

    Lennen, Rebecca M; Pfleger, Brian F

    2013-01-01

    Fatty acid metabolism is an attractive route to produce liquid transportation fuels and commodity oleochemicals from renewable feedstocks. Recently, genes and enzymes, which comprise metabolic pathways for producing fatty acid-derived compounds (e.g. esters, alkanes, olefins, ketones, alcohols, polyesters) have been elucidated and used in engineered microbial hosts. The resulting strains often generate products at low percentages of maximum theoretical yields, leaving significant room for metabolic engineering. Economically viable processes will require strains to approach theoretical yields, particularly for replacement of petroleum-derived fuels. This review will describe recent progress toward this goal, highlighting the scientific discoveries of each pathway, ongoing biochemical studies to understand each enzyme, and metabolic engineering strategies that are being used to improve strain performance. PMID:23541503

  6. Development of alternative fuels from coal-derived syngas

    SciTech Connect

    Brown, D.M.

    1992-05-19

    The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers; and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). BASF continues to have difficulties in scaling-up the new isobutanol synthesis catalyst developed in Air Products' laboratories. Investigations are proceeding, but the proposed operation at LaPorte in April is now postponed. DOE has accepted a proposal to demonstrate Liquid Phase Shift (LPS) chemistry at LaPorte as an alternative to isobutanol. There are two principal reasons for carrying out this run. First, following the extensive modifications at the site, operation on a relatively benign'' system is needed before we start on Fischer-Tropsch technology in July. Second, use of shift catalyst in a slurry reactor will enable DOE's program on coal-based Fischer-Tropsch to encompass commercially available cobalt catalysts-up to now they have been limited to iron-based catalysts which have varying degrees of shift activity. In addition, DOE is supportive of continued fuel testing of LaPorte methanol-tests of MIOO at Detroit Diesel have been going particularly well. LPS offers the opportunity to produce methanol as the catalyst, in the absence of steam, is active for methanol synthesis.

  7. ASSESSMENT OF BACTERIA AND VIRUS EMISSIONS AT A REFUSE DERIVED FUEL PLANT AND OTHER WASTE HANDLING FACILITIES

    EPA Science Inventory

    The report is an executive summary of results of a program to compare relative levels of selected airborne bacteria and viruses within and around various waste handling facilities. Facilities included were an incinerator, a waste transfer station, a wastewater treatment plant, a ...

  8. Co-firing high sulfur coal with refuse derived fuels. Progress report No. 3, [April--June 1995

    SciTech Connect

    Pan, Wei-Ping; Riley, J.T.; Lloyd, W.G.

    1995-05-31

    The Thermogravimetric Analyzer-Fourier Transform Infrared Spectrometer-Mass Spectrometer (TG-FTIR-MS) system was used to identify molecular chlorine, along with HCl, CO, CO{sub 2}, H{sub 2}O, and various hydrocarbons in the gaseous products of the combustion of PVC resin in air. This is a significant finding that will lead us to examine this combustion step further to look for the formation of chlorinated organic compounds. The combination of TG-FTIR and TG-MS offers complementary techniques for the detection and identification of combustion products from coals PVC, cellulose, shredded newspaper, and various blends of these materials. The pilot atmospheric fluidized bed combustor (AFBC) at Western Kentucky University has been tested. The main purpose of these preliminary AFBC runs were to determine the compatibility of coal and pelletized wood in blends and to explore the effects of flue/air ratio. Our objective is to conduct AFBC burns with 90 percent sulfur capture and more then 96% combustion efficiency.

  9. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 10, January 1997--March 1997

    SciTech Connect

    Pan, Wei-Ping; Riley, J.T.; Lloyd, W.G.

    1997-02-28

    In previous progress reports, we reported our study on the proposed mechanism for the formation of chlorinated organics during combustion, in which molecular chlorine is thought to be the key starting material. The objective of this quarter of study was to quantitatively test the inhibiting effect of SO{sub 2} on the formation of Cl{sub 2} during the combustion of MSW. The experiments were conducted under conditions close to those employed in the AFBC system. The principle analytical technique used for identification of the products from these experiments was GC/MS system. The results indicate that the production of Cl{sub 2} decreases when the concentration of SO{sub 2} in the gaseous mixture increases.

  10. Feasibility of implementing a municipal waste-to-energy system to supply Youngstown thermal with a solid fuel or steam system

    SciTech Connect

    Not Available

    1984-01-01

    The municipal solid waste and economics of disposal are discussed. Youngstown Thermal's existing system and its economics are described. The technical feasibilities of refuse-derived fuels and refuse mass-burning are explored. Economic evaluations and institutional considerations are included. (MHR)

  11. Product evaluation of Fischer-Tropsch derived fuels

    SciTech Connect

    Marano, J.J.; Rogers, S.; Choi, G.N.; Kramer, S.J.

    1994-12-31

    The Clean Air Act Amendments (CAAA) of 1990 have placed stringent requirements on the quality of transportation fuels. Most petroleum refiners are scrambling to meet provisions of the Amendments to be implemented between 1995 and 2000. These requirements will also have significant implications for the production of alternative fuels. These have been examined for Fischer-Tropsch (F-T) derived fuels. This analysis was conducted in conjunction with the U.S. Department of Energy (DOE) sponsored project, Baseline Design/Economics for Advanced Fischer-Tropsch Technology, conducted by Bechtel and Amoco. The goal of this study was to develop a baseline design for indirect liquefaction of Illinois No. 6 coal using gasification, syngas conversion in slurry reactors with iron catalysts, and conventional refinery upgrading of the F-T derived hydrocarbon liquids. One alternative case using ZSM-5 upgrading technology was also considered. This study included complete capital and operating cost estimates for the processes. To perform economic analyses for the different design cases, the products from the liquefaction plant had to be valued relative to conventional transportation fuels. This task was accomplished by developing a Linear Programming (LP) model for a typical midwest refinery, and then feeding the F-T liquids to the refinery. In this way, the breakeven value determined for these materials is indicative of the price they could command if available in the marketplace. Inputs to the LP model include: refinery size, configuration, feedstocks, products, specifications, prices, and operating and capital recovery costs. The model was set up to be representative of conditions anticipated for the turn of the century. This required inclusion of fuel specifications from the CAAA of 1990 which have or will come into force by the year 2000.

  12. Method of extracting coal from a coal refuse pile

    DOEpatents

    Yavorsky, Paul M.

    1991-01-01

    A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

  13. A fresh look at coal-derived liquid fuels

    SciTech Connect

    Paul, A.D.

    2009-01-15

    35% of the world's energy comes from oil, and 96% of that oil is used for transportation. The current number of vehicles globally is estimated to be 700 million; that number is expected to double overall by 2030, and to triple in developing countries. Now consider that the US has 27% of the world's supply of coal yet only 2% of the oil. Coal-to-liquids technologies could bridge the gap between US fuel supply and demand. The advantages of coal-derived liquid fuels are discussed in this article compared to the challenges of alternative feedstocks of oil sands, oil shale and renewable sources. It is argued that pollutant emissions from coal-to-liquid facilities could be minimal because sulfur compounds will be removed, contaminants need to be removed for the FT process, and technologies are available for removing solid wastes and nitrogen oxides. If CO{sub 2} emissions for coal-derived liquid plants are captured and sequestered, overall emissions of CO{sub 2} would be equal or less than those from petroleum. Although coal liquefaction requires large volumes of water, most water used can be recycled. Converting coal to liquid fuels could, at least in the near term, bring a higher level of stability to world oil prices and the global economy and could serve as insurance for the US against price hikes from oil-producing countries. 7 figs.

  14. Combustion Of Poultry-Derived Fuel in a CFBC

    NASA Astrophysics Data System (ADS)

    Jia, Lufei; Anthony, Edward J.

    Poultry farming generates large quantities of waste. Current disposal practice is to spread the poultry wastes onto farmland as fertilizer. However, as the factory farms for poultry grow both in numbers and size, the amount of poultry wastes generated has increased significandy in recent years. In consequence, excessive application of poultry wastes on farmland is resulting in more and more contaminants entering the surface water. One of the options being considered is the use of poultry waste as power plant fuel. Since poultry-derived fuel (PDF) is biomass, its co-firing will have the added advantage of reducing greenhouse gas emissions from power generation. To evaluate the combustion characteristics of co-firing PDF with coal, combustion tests of mixtures of coal and PDF were conducted in CanmetENERGY's pilot-scale CFBC. The goal of the tests was to verify that PDF can be co-fired with coal and, more importantly, that emissions from the combustion process are not adversely affected by the presence of PDF in the fuel feed. The test results were very promising and support the view that co-firing in an existing coal-fired CFBC is an effective method of utilizing this potential fuel, both resolving a potential waste disposal problem and reducing the amount of CO2 released by the boiler.

  15. School Refusal in Young Children.

    ERIC Educational Resources Information Center

    Nesselroad, Joanna Strosnider

    This study identifies factors that affect school refusal among preschool children in public schools of an Appalachian state. School refusal is defined as behavior through which children refuse school by active protest, inactive protest, or denial. A random sample of 198 preschool teachers representing 6,309 children provided the data for the…

  16. Pathways for Biomass-Derived Lignin to Hydrocarbon Fuels

    SciTech Connect

    Laskar, Dhrubojyoti; Yang, Bin; Wang, Huamin; Lee, Guo-Shuh J.

    2013-09-01

    Production of hydrocarbon fuel from biomass-derived lignin sources with current version of biorefinery infrastructure would significantly improve the total carbon use in biomass and make biomass conversion more economically viable. Thus, developing specialty and commodity products from biomass derived-lignin has been an important industrial and scientific endeavor for several decades. However, deconstruction of lignin’s complex polymeric framework into low molecular weight reactive moieties amenable for deoxygenation and subsequent processing into hydrocarbons has been proven challenging. This review offers a comprehensive outlook on the existing body of work that has been devoted to catalytic processing of lignin derivatives into hydrocarbon fuels, focusing on: (1) The intrinsic complexity and characteristic structural features of biomass-derived lignin; (2) Existing processing technologies for the isolation and depolymerization of bulk lignin (including detailed mechanistic considerations); (3) Approaches aimed at significantly improving the yields of depolymerized lignin species amenable to catalytic upgrading, and; (4) Catalytic upgrading, using aqueous phase processes for transforming depolymerized lignin to hydrocarbon derivatives. Technical barriers and challenges to the valorization of lignin are highlighted throughout. The central goal of this review is to present an array of strategies that have been reported to obtain lignin, deconstruct it to reactive intermediates, and reduce its substantial oxygen content to yield hydrocarbon liquids. In this regard, reaction networks with reference to studies of lignin model compounds are exclusively surveyed. Special attention is paid to catalytic hydrodeoxygenation, hydrogenolyis and hydrogenation. Finally, this review addresses important features of lignin that are vital to economic success of hydrocarbon production.

  17. Gas turbine materials evaluation program utilizing coal derived gaseous fuel

    NASA Astrophysics Data System (ADS)

    Williams, M. L.; Yates, C. C.; Manning, G. B.; Peterson, R. R.

    1981-03-01

    A gas turbine materials evaluation test facility under the sponsorship of the U.S. Department of Energy is described. The objective of the mobile test facility is to obtain dynamic and static test data on the erosion/corrosion characteristics of materials exposed to the hot products of the combustion of coal-derived fuels. The engine being utilized for the tests is the WR 24-7 aircraft turbojet unit reconfigurated to burn coke oven gas. Approximately 100 hours of engine operating time have been logged to date.

  18. Improving low temperature properties of synthetic diesel fuels derived from oil shale. Alternative fuels utilization program

    SciTech Connect

    Frankenfeld, J.W.; Taylor, W.F.

    1980-11-01

    The ability of additives to improve the cold flow properties of shale oil derived fuels boiling in the diesel fuel range was evaluated. Because a commercial shale oil industry did not exist to provide actual samples of finished fuels, a representative range of hydroprocessed shale oil fractions was prepared for use in the additive testing work. Crude oil shale from Occidental Shale Company was fractionated to give three liquids in the diesel fuel boiling range. The initial boiling point in each case was 325/sup 0/F (163/sup 0/C). The final boiling points were 640/sup 0/F (338/sup 0/C), 670/sup 0/F (354/sup 0/C) and 700/sup 0/F (371/sup 0/F). Each fraction was hydrotreated to three different severities (800, 1200 and 1500 psi total pressure) over a Shell 324 nickel molybdate on alumina catalyst at 710 to 750/sup 0/F to afford 9 different model fuels. A variety of commercial and experimental additives were evaluated as cold flow improvers in the model fuels at treat levels of 0.04 to 0.4 wt %. Both the standard pour point test (ASTM D97) and a more severe low temperature flow test (LTFT) were employed. Reductions in pour points of up to 70/sup 0/F and improvements in LTFT temperatures up to 16/sup 0/F were achieved. It is concluded that flow improver additives can play an important role in improving the cold flow properties of future synthetic fuels of the diesel type derived from oil shale.

  19. Multifunctional fuel additives derived from aminodiols to improve the low-temperature properties of distillate fuels

    SciTech Connect

    Baillargeon, D.J.; Cardis, A.B.; Heck, D.B.

    1991-03-19

    This patent describes a liquid hydrocarbyl fuel composition comprising a major amount of a combustible liquid hydrocarbon fuel and a minor low-temperature properties improving amount of from about 0.001% to about 10 wt % based on the total weight of the composition of an additive comprising a product of reaction made by reacting comonomers. It comprises: an aminodiol or combination or mixture of aminodiols with a reactive acid/anhydride product alone or in combination with other monomers derived from the reaction of benzophenone tetracarboxylic dianhydride or its acid equivalent.

  20. Production of jet fuel from coal-derived liquids

    SciTech Connect

    Furlong, M.W.; Fox, J.D.; Masin, J.G.; Soderberg, D.J.

    1987-01-01

    Amoco and Lummus Crest are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Analytical characterizations of these three by-products indicate the range of products that can be manufactured from each, and potential problems which could be encountered during refining. These characterizations, along with limited experimental data and Amoco's proprietary process models, were used to design conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high density (JP-8X) jet fuels from the by-product liquids. In addition to the maximum jet fuel schemes, conceptual designs have also been formulated for maximizing profits from refining of the Great Plains by-products. Conceptual processing schemes for profitable production of JP-4, JP-8, and JP-8X have been developed, as has a maximum profit'' case. All four of these additional cases have now been transferred to Lummus for design and integration studies. Development of these schemes required the use of linear programming technology. This technology includes not only conventional refining processes which have been adapted for use with coal-derived liquids (e.g. hydrotreating, hydrocracking), but also processes which may be uniquely suited to the Great Plains by-products such as cresylic acid extraction, hydordealkylation, and needle coking. 6 figs., 3 tabs.

  1. Refusal to medical interventions.

    PubMed

    Palacios, G; Herreros, B; Pacho, E

    2014-10-01

    Refusal to medical interventions is the not acceptance, voluntary and free, of an indicated medical intervention. What the physician should do in case of refusal? It is understandable that the rejection of a validated medical intervention is difficult to accept by the responsible physician when raises the conflict protection of life versus freedom of choice. Therefore it is important to follow some steps to incorporate the most relevant aspects of the conflict. These steps include: 1) Give complete information to patients, informing on possible alternatives, 2) determine whether the patient can decide (age, competency and level of capacity), 3) to ascertain whether the decision is free, 4) analyze the decision with the patient, 5) to persuade, 6) if the patient kept in the rejection decision, consider conscientious objection, 7) take the decision based on the named criteria, 8) finally, if the rejection is accepted, offer available alternatives. PMID:24880186

  2. Fluidized bed gasification of waste-derived fuels

    SciTech Connect

    Arena, Umberto; Zaccariello, Lucio; Mastellone, Maria Laura

    2010-07-15

    Five alternative waste-derived fuels obtained from municipal solid waste and different post-consumer packaging were fed in a pilot-scale bubbling fluidized bed gasifier, having a maximum feeding capacity of 100 kg/h. The experimental runs utilized beds of natural olivine, quartz sand or dolomite, fluidized by air, and were carried out under various values of equivalence ratio. The process resulted technically feasible with all the materials tested. The olivine, a neo-silicate of Fe and Mg with an olive-green colour, has proven to be a good candidate to act as a bed catalyst for tar removal during gasification of polyolefin plastic wastes. Thanks to its catalytic activity it is possible to obtain very high fractions of hydrogen in the syngas (between 20% and 30%), even using air as the gasifying agent, i.e. in the most favourable economical conditions and with the simplest plant and reactor configuration. The catalytic activity of olivine was instead reduced or completely inhibited when waste-derived fuels from municipal solid wastes and aggregates of different post-consumer plastic packagings were fed. Anyhow, these materials have given acceptable performance, yielding a syngas of sufficient quality for energy applications after an adequate downstream cleaning.

  3. Children with pervasive refusal.

    PubMed Central

    Lask, B; Britten, C; Kroll, L; Magagna, J; Tranter, M

    1991-01-01

    Four children are described with a potentially life threatening condition manifested by profound and pervasive refusal to eat, drink, walk, talk, or care for themselves in any way over a period of several months. The multiplicity and severity of the symptoms in these children do not fit comfortably into any existing diagnostic category. Long term and highly skilled nursing and psychiatric care is required to help these children to recover. The possible causes of this syndrome are discussed. PMID:1863102

  4. Fossil fuel derivatives with reduced carbon. Phase I final report

    SciTech Connect

    Kennel, E.B.; Zondlo, J.W.; Cessna, T.J.

    1999-06-30

    This project involves the simultaneous production of clean fossil fuel derivatives with reduced carbon and sulfur, along with value-added carbon nanofibers. This can be accomplished because the nanofiber production process removes carbon via a catalyzed pyrolysis reaction, which also has the effect of removing 99.9% of the sulfur, which is trapped in the nanofibers. The reaction is mildly endothermic, meaning that net energy production with real reductions in greenhouse emissions are possible. In Phase I research, the feasibility of generating clean fossil fuel derivatives with reduced carbon was demonstrated by the successful design, construction and operation of a facility capable of utilizing coal as well as natural gas as an inlet feedstock. In the case of coal, for example, reductions in CO{sub 2} emissions can be as much as 70% (normalized according to kilowatts produced), with the majority of carbon safely sequestered in the form of carbon nanofibers or coke. Both of these products are value-added commodities, indicating that low-emission coal fuel can be done at a profit rather than a loss as is the case with most clean-up schemes. The main results of this project were as follows: (1) It was shown that the nanofiber production process produces hydrogen as a byproduct. (2) The hydrogen, or hydrogen-rich hydrocarbon mixture can be consumed with net release of enthalpy. (3) The greenhouse gas emissions from both coal and natural gas are significantly reduced. Because coal consumption also creates coke, the carbon emission can be reduced by 75% per kilowatt-hour of power produced.

  5. Pervasive refusal syndrome.

    PubMed

    Wright, Barry; Beverley, David

    2012-04-01

    We report here on a case of severe pervasive refusal syndrome. This is of interest for three reasons. Firstly, most reported cases are adolescent girls; our case is regarding an adolescent boy. Secondly, he was successfully treated at home and thirdly, the serology showed an apparent infective pre-cursor to the illness with evidence of possible autoimmune serology. A 14-year old boy deteriorated from a picture where diagnosed CFS/ME developed into Pervasive Refusal Syndrome. This included the inability to move or speak, with closed eyes, multiple tics, facial grimacing, heightened sensitivity to noise (hyperacusis) and touch (hyperaesthesia), and inability or unwillingness to eat anything except small amounts of sloppy food. Successful rehabilitation is reported. Finally the issue of nomenclature is discussed, raising the question whether Pervasive Refusal Syndrome would be better renamed in a way that does not imply that the condition is always volitional and oppositional, as this can distract focus away from an alliance between family and clinicians. PMID:21733931

  6. Impact study on the use of biomass-derived fuels in gas turbines for power generation

    SciTech Connect

    Moses, C A; Bernstein, H

    1994-01-01

    This report evaluates the properties of fuels derived from biomass, both gaseous and liquid, against the fuel requirements of gas turbine systems for gernating electrical power. The report attempts to be quantitative rather than merely qualitative to establish the significant variations in the properties of biomass fuels from those of conventional fuels. Three general categories are covered: performance, durability, and storage and handling.

  7. Dermal carcinogenic activity of petroleum-derived middle distillate fuels.

    PubMed

    Biles, R W; McKee, R H; Lewis, S C; Scala, R A; DePass, L R

    1988-12-30

    In general, the carcinogenic potential of petroleum-derived materials is related to the polycyclic aromatic hydrocarbon (PAH) content. Thus it has been assumed that liquids which boil below the PAH distillation range (i.e., below approx. 370 degrees C (700 degrees F) would not be carcinogenic. Several early studies supported this conclusion but were of relatively short duration. Several recent and more rigorous studies have shown that repeated application of certain petroleum-derived materials boiling between approximately 177-370 degrees C (350-700 degrees F) (i.e., middle distillate fuels) can produce tumors in mouse skin. The current studies assessed the tumorigenic potential of a series of middle distillates which varied with respect to boiling range, composition, and source of blending stocks. All of the samples produced evidence of weak tumorigenic activity which was characterized by low tumor yields and long median latencies. However, the majority of the tumor yields were significantly different from the control. There were no apparent differences in response among the samples. Thus the various parameters examined did not substantially influence tumor outcome. In particular, there was no association of tumorigenic activity with aromatic carbon content; this finding, coupled with evidence that PAH levels were low, suggested that the tumorigenic responses were not PAH-dependent. In addition to the tumors, there was evidence of non-neoplastic dermal changes including hyperplasia. These may have contributed to the tumorigenic responses; however, the actual mechanism of tumor induction is unknown. PMID:3212789

  8. Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels

    SciTech Connect

    2010-07-01

    The University of Alabama will develop fuel-flexible, low-emissions burner technology for the metal processing industry that is capable of using biomass-derived liquid fuels, such as glycerin or fatty acids, as a substitute for natural gas. By replacing a fossil fuel with biomass fuels, this new burner will enable a reduction in energy consumption and greenhouse gas emissions and an increase in fuel flexibility.

  9. Economics of biomass-derived alcohol application in fuel cells

    SciTech Connect

    Kothari, S.P.; Patel, P.S.

    1982-12-01

    Unlike conventional internal combustion engines, the fuel cell can offer high thermal efficiencies even with low-proof ethanol. Manufacture of low-proof ethanol results in a considerable savings in operating cost and hence a cheaper fuel. The ethanol-fueled fuel cell used in transportation as well as cogeneration is an important option for conservation of fossil fuels and for decreasing our dependence on foreign energy. 6 figures, 4 tables.

  10. Evaluation of castor and lesquerella oil derivatives as additives in biodiesel and ultralow sulfur diesel fuels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of petroleum-derived additives is ubiquitous in fuels production, including biodiesel (BD) and ultra-low sulfur diesel (ULSD) fuels. Development and employment of domestically derived, biodegradable, renewable, and non-toxic additives is an attractive goal. As such, estolides (1, 2) and 2-...

  11. Disposal of municipal refuse and RDF in Japan by a two-bed pyrolysis system

    SciTech Connect

    Ishii, N.; Ishi, Y.; Ito, K. Hirayama, Y.

    1985-01-01

    This system efficiently and effectively produces high-quality, high-heating-value fuel gas from municipal refuse and RDF. In 1978, the commercial demonstration plant was constructed in Yokohama and since 1979 it has operated with municipal solid waste, RDF, and industrial refuse. The technology is now ready for commercialization.

  12. An environmentally benign soybean derived fuel as a blending stock or replacement for home heating oil.

    PubMed

    Mushrush, G; Beal, E J; Spencer, G; Wynne, J H; Lloyd, C L; Hughes, J M; Walls, C L; Hardy, D R

    2001-05-01

    The use of bio-derived materials both as fuels and/or as blending stocks becomes more attractive as the price of middle distillate fuels, especially home heating oil, continues to rise. Historically, many biomass and agricultural derived materials have been suggested. One of the most difficult problems encountered with home heating oil is that of storage stability. High maintenance costs associated with home heating oil are, in large part, because of this stability problem. In the present research, Soygold, a soybean derived fuel, was added in concentrations of 10%-20% to both a stable middle distillate fuel and an unstable home heating oil. Fuel instability in this article will be further related to the organo-nitrogen compounds present. The soy-fuel mixtures proved stable, and the addition of the soy liquid enhanced both the combustion properties, and dramatically improved the stability of the unstable home heating oil. PMID:11460320

  13. Recent Perspectives Concerning School Refusal Behavior

    ERIC Educational Resources Information Center

    Witts, Benjamin; Houlihan, Daniel

    2007-01-01

    A review of the literature regarding school refusal was conducted. It was found that the term School Refusal Behavior has gone through many changes. These changes encompass nomenclature, etiology, and treatment. The names used to describe the behavior of school refusal have ranged from truancy in the 1930s to School Refusal Behavior in the 1990s.…

  14. Commentary: Looking beyond Treatment Refusal.

    PubMed

    Shashidhara, Shilpa

    2016-04-01

    This case illustrates the dilemma that occurs when a patient refuses treatment. When a patient refuses recommended interventions, it can cause much distress among the medical team and family. On the surface, the ethical issue appears to be in regard to treatment refusal. However, when we look deeper, it becomes evident that the question is truly about whether the patient has the ability to make this treatment decision, given her worsening dementia, recent hemorrhage, and depression. In this case, an essential component of an ethics consultation would be to assess this patient's decisionmaking capacity to determine if her refusals are informed. This case has another level of complexity. If the patient does not have decisionmaking capacity, then who would be willing to serve in the role of surrogate decisionmaker? The case raises several ethical questions and thus makes directing a patient's care and decisionmaking challenging. PMID:26957459

  15. [School phobia or school refusal?].

    PubMed

    Le Heuzey, Marie-France

    2008-04-15

    The scope of the concept of school phobia, associated with anxiety disorders, is now broadened to include other underlying disorders such depression, conduct disorders and behaviors such as school truancy. The term "school refusal" is now preferred in the literature. This article reviews the main clinical and terapeutical dimensions of school refusal. Its aim is to increase practionners' awareness of this disorder and to describe a treatment plan centred on school attendance. PMID:18546645

  16. Biodiesel: The use of vegetable oils and their derivatives as alternative diesel fuels

    SciTech Connect

    Knothe, G.; Bagby, M.O.

    1996-10-01

    Vegetable oils and their derivatives (especially methyl esters), commonly referred to as {open_quotes}biodiesel{close_quotes}, are prominent candidates as alternative diesel fuels. They have advanced from being purely experimental fuels to initial stages of commercialization. They are technically competitive with or offer technical advantages compared to conventional diesel fuel. Besides being a renewable resource, biodiesel reduces most emissions while engine performance and fuel economy are nearly identical compared to conventional fuels. Several problems, however, remain, which include economics, combustion, some emissions, lube oil contamination, and low-temperature properties. An overview on all the mentioned aspects of biodiesel will be presented.

  17. Production of jet fuel from coal-derived liquids

    SciTech Connect

    Furlong, M.W.; Fox, J.D.; Masin, J.G.; Soderberg, D.J.

    1988-01-01

    Amoco and Lummus Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Task 1 of the work, in which processes to produce each of the three jet fuels, JP-4, JP-8, and JP-8X, were designed, has been completed. The formal Task 1 report should issue next quarter. Task 2 work was initiated this quarter. In Task 2, process conditions for producing jet fuel from the Great Plains tar oil stream will be verified and samples of each of the three jet fuels will be produced. Experimental work shows that the hydrotreating conditions specified in Task 1 will not convert sufficient aromatics in the tar oil to produce jet fuel. Alternative schemes have been proposed and are being tested in the laboratories at Amoco Research Center. The simplest of these schemes, in which the heavy ends from the hydrotreater are recycled to extinction, was tested and proved infeasible. A second stage, fixed bed hydrotreater will be added to the process along with the expanded bed, first-stage hydrotreater and the hydrocracker specified in the Task 1 design. Future work will include additional experiments to specify the best process configuration and production of samples of each of the three grades of jet fuel. 6 figs., 7 tabs.

  18. Production of jet fuel from coal-derived liquids

    SciTech Connect

    Furlong, M.W.; Fox, J.D.; Masin, J.G.; Soderberg, D.J.

    1990-01-01

    Amoco and Lummus Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high-density (JP-8X) jet fuels, for maximizing profits, and for profitable production of each of the three jet fuels from the by-product liquids have been developed. Economic analyses of the designs show that jet fuel can be produced from the by-products, but not economically. However, jet fuel production could be subsidized profitably by processing the phenolic and naphtha streams to cresols, phenols, BTX, and other valuable chemical by-products. Uncertainties in the studies are marketability of the chemical by-products, replacement fuel costs, and viable schemes to process the phenol stream, among others. 8 figs., 2 tabs.

  19. Production of jet fuels from coal derived liquids

    SciTech Connect

    Furlong, M.; Fox, J.; Masin, J.

    1989-06-01

    Amoco Oil Company has conducted bench- and pilot plant-scale experiments to produce jet fuels from the tar oil from the Great Plains Coal Gasification Plant in Beulah, North Dakota. Experiments show that the hydroprocessing conditions recommended in Task 1 are not severe enough to saturate the aromatics in the tar oil to meet jet fuel specifications. Alternatives were investigated. Jet fuel specifications can be achieved when the tar oil is: hydrotreated in an expanded-bed hydrotreater to lower aromatics and heteroatom content; the effluent is then hydrotreated in a second, fixed bed hydrotreater; and, finally, the 550{degree}F boiling fraction from the two hydrotreaters is hydrocracked to extinction. The process was verified by pilot-plant production of 2 barrels of JP-8 turbine fuel, which met all but the flash point specification for JP-8. In addition, small samples of JP-4, JP-8, and high-density fuel were produced as a part of Task 2. 13 figs., 21 tabs.

  20. Applications study of advanced power generation systems utilizing coal-derived fuels, volume 2

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1981-01-01

    Technology readiness and development trends are discussed for three advanced power generation systems: combined cycle gas turbine, fuel cells, and magnetohydrodynamics. Power plants using these technologies are described and their performance either utilizing a medium-Btu coal derived fuel supplied by pipeline from a large central coal gasification facility or integrated with a gasification facility for supplying medium-Btu fuel gas is assessed.

  1. Will biodiesel derived from algal oils live up to its promise? A fuel property assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Algae have been attracting considerable attention as a source of biodiesel recently. This attention is largely due to the claimed high production potential of algal oils while circumventing the food vs. fuel issue. However, the properties of biodiesel fuels derived from algal oils have been only spa...

  2. EVALUATION OF TIRE-DERIVED FUEL FOR USE IN NITROGEN OXIDE REDUCTION BY REBURNING

    EPA Science Inventory

    Tire-derived fuel (TDF) was tested in a small-scale (44 kW or 150,000 Btu/hr) combustor to determine its feasibility as a fuel for use in reburning for control of nitrogen oxide (NO). TDF was gravity-fed into upward flowing combustion gases from a primary natural gas flame doped ...

  3. Production of jet fuels from coal derived liquids

    SciTech Connect

    Fleming, B.A.; Fox, J.D.; Furlong, M.W.; Masin, J.G.; Sault, L.P.; Tatterson, D.F. . Research and Development Dept.); Fornoff, L.L.; Link, M.A.; Stahlnecker, E.; Torster, K. )

    1988-09-01

    Amoco and Lummus Crest have developed seven cases for upgrading by-product liquids from the Great Plains Coal Gasification Plant to jet fuels, and in several of the cases, saleable chemicals in addition to jet fuels. The analysis shows that the various grades of jet fuel can be produced from the Great Plains tar oil, but not economically. However, the phenolic and naphtha streams do have the potential to significantly increase (on the order of $10--15 million/year) the net revenues at Great Plains by producing chemicals, especially cresylic acid, cresol, and xylenol. The amount of these chemicals, which can be marketed, is a concern, but profits can be generated even when oxygenated chemical sales are limited to 10 percent of the US market. Another concern is that while commercial processes exist to extract phenolic mixtures, these processes have not been demonstrated with the Great Plains phenolic stream. 9 refs., 24 figs., 14 tabs.

  4. Airfoil cooling hole plugging by combustion gas impurities of the type found in coal derived fuels

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1979-01-01

    The plugging of airfoil cooling holes by typical coal-derived fuel impurities was evaluated using doped combustion gases in an atmospheric pressure burner rig. Very high specific cooling air mass flow rates reduced or eliminated plugging. The amount of flow needed was a function of the composition of the deposit. It appears that plugging of film-cooled holes may be a problem for gas turbines burning coal-derived fuels.

  5. Recapturing NERVA-Derived Fuels for Nuclear Thermal Propulsion

    SciTech Connect

    Qualls, A L; Hancock, Emily F

    2011-01-01

    The Department of Energy is working with NASA to examine fuel options for Nuclear Thermal Propulsion applications. Extensive development and testing was performed on graphite-based fuels during the Nuclear Engineer Rocket Vehicle Application (NERVA) and Rover programs through the early 1970s. This paper explores the possibility of recapturing the technology and the issues associated with using it for the next generation of nuclear thermal rockets. The issues discussed include a comparison of today's testing capabilities, analysis techniques and methods, and knowledge to that of previous development programs and presents a plan to recapture the technology for a flight program.

  6. Conversion system overview assessment. Volume III. Solar thermal/coal or biomass derived fuels

    SciTech Connect

    Copeland, R. J.

    1980-02-01

    The three volumes of this report cover three distinct areas of solar energy research: solar thermoelectrics, solar-wind hybrid systems, and synthetic fuels derived with solar thermal energy. Volume III deals with the conversion of synthetic fuels with solar thermal heat. The method is a hybrid combination of solar energy with either coal or biomass. A preliminary assessment of this technology is made by calculating the cost of fuel produced as a function of the cost of coal and biomass. It is shown that within the projected ranges of coal, biomass, and solar thermal costs, there are conditions when solar synthetic fuels with solar thermal heat will become cost-competitive.

  7. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect

    Paul A. Erickson

    2006-01-01

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the ninth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1, 2005-December 31, 2005. This quarter saw progress in four areas. These areas are: (1) reformate purification, (2) heat transfer enhancement, (3) autothermal reforming coal-derived methanol degradation test; and (4) model development for fuel cell system integration. The project is on schedule and is now shifting towards the design of an integrated PEM fuel cell system capable of using the coal-derived product. This system includes a membrane clean up unit and a commercially available PEM fuel cell.

  8. Production of jet fuel from coal-derived liquids

    SciTech Connect

    Furlong, M.W.; Fox, J.D.; Masin, J.G.

    1988-01-01

    Amoco and Lummus-Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Analytical characterizations of these three by-products indicate the range of products that can be manufactured from each and potential problems which could be encountered during refining. These characterizations, along with limited experimental data and Amoco's proprietary process models, were used to design conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high-density (JP-8X) jet fuels from the by-product liquids. Conceptual designs have been completed and a case for profitable production of JP-8 has been selected for experimental testing and preliminary design in the later phases of the contract. Samples of JP-4, JP-8, and JP-8X aviation turbine fuels have been manufactured from the Great Plains tar oil. Larger samples of JP-8 are nearly completed. Specification of a design basis for profitable production of JP-8 is under way. 5 figs., 4 tabs.

  9. Production of jet fuel from coal-derived liquids

    SciTech Connect

    Furlong, M.W.; Fox, J.D.; Masin, J.G.

    1989-01-01

    Amoco and Lummus-Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Analytical characterizations of these three by-products indicate the range of products that can be manufactured from each and potential problems which could be encountered during refining. These characterizations, along with limited experimental data and Amoco's proprietary process models, were used to design conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high-density (JP-8X) jet fuels from the by-product liquids. Conceptual designs have been completed and a case for profitable production of JP-8 has been selected for experimental testing and preliminary design. Samples of JP-4, JP-8, and JP-8X aviation turbine fuels have been manufactured from the Great Plains tar oil. Larger samples of JP-8 have also been produced and shipped to the US Air Force for further testing. Lummus-Crest Inc. is now completing a preliminary process design for the profitable production of JP-8 and has made recommendations for a production run to produce larger quantities of JP-8. 2 figs., 3 tabs.

  10. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies.

    PubMed

    Li, Xue; Mupondwa, Edmund

    2014-05-15

    This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO2 equivalent and 3.06 to 31.01 kg CO2/MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from -0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive. PMID:24572928

  11. Catalytic Ammonia Decomposition for Coal-Derived Fuel Gases

    SciTech Connect

    Gangwal, S.K.; Gupta, R.P.; Portzer, J.W.; Turk, B.S.; Krishnan, G.N.; Hung, S.L.; Ayala, R.E.

    1996-12-31

    The objective of this study is to develop and demonstrate catalytic approaches for decomposing a significant percentage (up to 90 percent) of the NH{sub 3} present in fuel gas to N{sub 2} and H{sub 2} at elevated temperatures (550 to 900{degrees}C). The NH{sub 3} concentration considered in this study was {similar_to}1,800 to 2,000 ppmv, which is typical of oxygen-blown, entrained-flow gasifiers such as the Texaco coal gasifier being employed at the TECO Clean Coal Technology Demonstration plant. Catalysts containing Ni, Co, Mo, and W were candidates for the study. Before undertaking any experiments, a detailed thermodynamic evaluation was conducted to determine the concentration of NH{sub 3} in equilibrium with the Texaco gasifier coal gas. Thermodynamic evaluations were also performed to evaluate the stability of the catalytic phases (for the various catalysts under consideration) under NH3 decomposition conditions to be used in this study. Two catalytic approaches for decomposing NH{sub 3} have been experimentally evaluated. The first approach evaluated during the early phases of this project involved the screening of catalysts that could be combined with the hot-gas desulfurization sorbents (e.g., zinc titanate) for simultaneous NH{sub 3} and H{sub 2}S removal. In a commercial system, this approach would reduce capital costs by eliminating a process step. The second approach evaluated was high-temperature catalytic decomposition at 800 to 900{degrees} C. In a commercial hot-gas cleanup system this could be carried out after radiative cooling of the gas to 800 to 900{degrees}C but up stream of the convective cooler, the hot particulate filter, and the hot-gas desulfurization reactor. Both approaches were tested in the presence of up to 7,500 ppmv H{sub 2}S in simulated fuel gas or actual fuel gas from a coal gasifier.

  12. 33 CFR 401.89 - Transit refused.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Transit refused. 401.89 Section... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations General § 401.89 Transit refused. (a) An officer may refuse to allow a vessel to transit when, (1) The vessel is not equipped in accordance with §§ 401.5...

  13. 33 CFR 401.89 - Transit refused.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Transit refused. 401.89 Section... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations General § 401.89 Transit refused. (a) An officer may refuse to allow a vessel to transit when, (1) The vessel is not equipped in accordance with §§ 401.5...

  14. 33 CFR 401.89 - Transit refused.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Transit refused. 401.89 Section... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations General § 401.89 Transit refused. (a) An officer may refuse to allow a vessel to transit when, (1) The vessel is not equipped in accordance with §§ 401.5...

  15. Production of jet fuel from coal-derived liquids

    SciTech Connect

    Furlong, M.W.; Fox, J.D.; Masin, J.G.

    1988-01-01

    Amoco and Lummus Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Analytical characterizations of these three by-products indicate the range of products that can be manufactured from each, and potential problems which could be encountered during refining. These characterizations, along with limited experimental data and Amoco's proprietary process models, were used to design conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high-density (JP-8X) jet fuels from the by-product liquids. Conceptual designs have been completed and a case for profitable production of JP-8 has been selected for experimental testing and preliminary design in the later phases of the contract. Experimental work to date has shown that the tar oil stream requires substantially more severe processing than the preliminary design estimates indicated. A new design basis is now being tested and samples of JP-4, JP-8, and JP-8X are in production, based on that new, more severe processing scheme. Six barrels of tar oil have been hydrotreated according to the first step of the processing scheme and will be used to produce barrel quantities of JP-8. 2 refs., 2 figs.

  16. Production of jet fuels from coal-derived liquids

    SciTech Connect

    Furlong, M.; Fox, J.; Masin, J. . Research and Development Dept.); Stahlnecker, E.; Schreiber, G.; Klein, R. )

    1989-12-01

    A preliminary design for the production of JP-8 jet fuel and other salable products from the Great Plains by-products is given. The design incorporates experimental results from Tasks 2 and 3 with the scoping design from Task 1. The experimental results demonstrated the need for more severe hydrotreating conditions to convert the tar oil to jet fuel than was estimated in Task 1. As a result, capital costs for the revised design are significantly higher and the plant is less profitable than estimated in the Task 1 work. The increase in capital costs is offset somewhat by a higher phenol value in the current market. Refined estimates for the cost of an aromatics recovery unit preclude its economical construction in the new estimate, consequently the revised product slate includes no BTX. Recommendations are given for a 10,000 barrel production run. No commercial domestic facility exists which can provide suitable expanded-bed hydrotreating facilities for a production run of this size. However, an alternative approach using hot filtration and dilute fixed-bed hydrocracking followed by product fractionation and extinctive hydrotreating of the heavy products is recommended. Commercial domestic facilities which might reasonably accommodate this scheme are listed. 6 refs., 8 figs., 11 tabs.

  17. Highly selective condensation of biomass-derived methyl ketones as a source of aviation fuel.

    PubMed

    Sacia, Eric R; Balakrishnan, Madhesan; Deaner, Matthew H; Goulas, Konstantinos A; Toste, F Dean; Bell, Alexis T

    2015-05-22

    Aviation fuel (i.e., jet fuel) requires a mixture of C9 -C16 hydrocarbons having both a high energy density and a low freezing point. While jet fuel is currently produced from petroleum, increasing concern with the release of CO2 into the atmosphere from the combustion of petroleum-based fuels has led to policy changes mandating the inclusion of biomass-based fuels into the fuel pool. Here we report a novel way to produce a mixture of branched cyclohexane derivatives in very high yield (>94 %) that match or exceed many required properties of jet fuel. As starting materials, we use a mixture of n-alkyl methyl ketones and their derivatives obtained from biomass. These synthons are condensed into trimers via base-catalyzed aldol condensation and Michael addition. Hydrodeoxygenation of these products yields mixtures of C12 -C21 branched, cyclic alkanes. Using models for predicting the carbon number distribution obtained from a mixture of n-alkyl methyl ketones and for predicting the boiling point distribution of the final mixture of cyclic alkanes, we show that it is possible to define the mixture of synthons that will closely reproduce the distillation curve of traditional jet fuel. PMID:25891778

  18. Life cycle assessment of fuel ethanol derived from corn grain via dry milling.

    PubMed

    Kim, Seungdo; Dale, Bruce E

    2008-08-01

    Life cycle analysis enables to investigate environmental performance of fuel ethanol used in an E10 fueled compact passenger vehicle. Ethanol is derived from corn grain via dry milling. This type of analysis is an important component for identifying practices that will help to ensure that a renewable fuel, such as ethanol, may be produced in a sustainable manner. Based on data from eight counties in seven Corn Belt states as corn farming sites, we show ethanol derived from corn grain as E10 fuel would reduce nonrenewable energy and greenhouse gas emissions, but would increase acidification, eutrophication and photochemical smog, compared to using gasoline as liquid fuel. The ethanol fuel systems considered in this study offer economic benefits, namely more money returned to society than the investment for producing ethanol. The environmental performance of ethanol fuel system varies significantly with corn farming sites because of different crop management practices, soil properties, and climatic conditions. The dominant factor determining most environmental impacts considered here (i.e., greenhouse gas emissions, acidification, eutrophication, and photochemical smog formation) is soil related nitrogen losses (e.g., N2O, NOx, and NO3-). The sources of soil nitrogen include nitrogen fertilizer, crop residues, and air deposition. Nitrogen fertilizer is probably the primary source. Simulations using an agro-ecosystem model predict that planting winter cover crops would reduce soil nitrogen losses and increase soil organic carbon levels, thereby greatly improving the environmental performance of the ethanol fuel system. PMID:17964144

  19. 36 CFR 1002.14 - Sanitation and refuse.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Sanitation and refuse. 1002.14... RECREATION § 1002.14 Sanitation and refuse. (a) The following are prohibited: (1) Disposing of refuse in other than refuse receptacles. (2) Using government refuse receptacles or other refuse facilities...

  20. Coal/biomass fuels and the gas turbine: Utilization of solid fuels and their derivatives

    SciTech Connect

    DeCorso, M.; Newby, R.; Anson, D.; Wenglarz, R.; Wright, I.

    1996-06-01

    This paper discusses key design and development issues in utilizing coal and other solid fuels in gas turbines. These fuels may be burned in raw form or processed to produce liquids or gases in more or less refined forms. The use of such fuels in gas turbines requires resolution of technology issues which are of little or no consequence for conventional natural gas and refined oil fuels. For coal, these issues are primarily related to the solid form in which coal is naturally found and its high ash and contaminant levels. Biomass presents another set of issues similar to those of coal. Among the key areas discussed are effects of ash and contaminant level on deposition, corrosion, and erosion of turbine hot parts, with particular emphasis on deposition effects.

  1. Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels.

    PubMed

    De, Sudipta; Saha, Basudeb; Luque, Rafael

    2015-02-01

    Lignocellulosic biomass provides an attractive source of renewable carbon that can be sustainably converted into chemicals and fuels. Hydrodeoxygenation (HDO) processes have recently received considerable attention to upgrade biomass-derived feedstocks into liquid transportation fuels. The selection and design of HDO catalysts plays an important role to determine the success of the process. This review has been aimed to emphasize recent developments on HDO catalysts in effective transformations of biomass-derived platform molecules into hydrocarbon fuels with reduced oxygen content and improved H/C ratios. Liquid hydrocarbon fuels can be obtained by combining oxygen removal processes (e.g. dehydration, hydrogenation, hydrogenolysis, decarbonylation etc.) as well as by increasing the molecular weight via C-C coupling reactions (e.g. aldol condensation, ketonization, oligomerization, hydroxyalkylation etc.). Fundamentals and mechanistic aspects of the use of HDO catalysts in deoxygenation reactions will also be discussed. PMID:25443804

  2. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    DOEpatents

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2016-07-05

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  3. Feeding therapy for children with food refusal.

    PubMed

    Tamura, Fumiyo; Kikutani, Takeshi; Machida, Reiko; Takahashi, Noriaki; Nishiwaki, Keiko; Yaegaki, Ken

    2011-11-01

    Disabled children suffer not only from their primary disease, but also from other complications, including food refusal. The purpose of this study was to elucidate the relationship between these conditions and food refusal in disabled children. The effectiveness of feeding therapy in treating food refusal was also examined. The study subjects were 67 disabled children (35 boys and 32 girls; mean age at initial examination: 6.5 years, SD: 6.0 years) who attended the Nippon Dental University Hospital between April 2004 and August 2008. Of them, the 13 subjects who were diagnosed as those who refused food received feeding therapy combined with desensitization therapy for hypersensitivity. Approximately 20% of the subjects showed food refusal symptoms. Primary disease, respiratory impairment and gastroesophageal reflux were not causes of food refusal in this population. There was a significant relationship between food refusal and hypersensitivity (p = 0.021). After receiving feeding therapy, six of the seven subjects with hypersensitivity but without dysphagia at initial examination recovered from food refusal. Food refusal did not significantly correlate with tube feeding. Hypersensitivity and/or tube feeding may induce food refusal. For subjects with these conditions, feeding therapy combined with desensitization therapy is effective in achieving recovery from food refusal. PMID:22774703

  4. USAF toxicology research on petroleum and shale-derived aviation gas turbine fuels

    SciTech Connect

    Martone, J.A.

    1986-04-01

    As one of the nation's largest users of aircraft turbine fuels, the USAF has interest in assuring the safe use of these hydrocarbons by its military and civilian workers. This concern stimulated research to define potential adverse health effects and develop criteria for safe exposure limts for military aviation fuels. The first inhalation exposure to JP-4, the primary fuel used in USAF aircraft, was conducted in 1973. Since this initial subchronic study, the USAF has conducted numerous subchronic and one-year oncogenic inhalation studies to establish health criteria for aviation fuels. This paper summarizes the status of studies to define the toxicity of petroleum and shale-derived aircraft turbine engine fuels and discusses the preliminary findings of toxic nephropathy and primary renal tumors observed in male Fischer 344 rats.

  5. Chemically authentic surrogate mixture model for the thermophysical properties of a coal-derived liquid fuel

    SciTech Connect

    M.L. Huber; E.W. Lemmon; V. Diky; B.L. Smith; T.J. Bruno

    2008-09-15

    We developed a surrogate mixture model to represent the physical properties of a coal-derived liquid fuel using only information obtained from a gas chromatography-mass spectrometry analysis of the fuel and a recently developed 'advanced distillation curve'. We then predicted the density, speed of sound, and viscosity of the fuel and compared them to limited experimental data. The surrogate contains five components (n-propylcyclohexane, trans-decalin, {alpha}-methyldecalin, bicyclohexane, and n-hexadecane), yet comparisons to limited experimental data demonstrate that the model is able to represent the density, sound speed, and viscosity to within 1, 4, and 5%, respectively. 102 refs., 2 figs., 5 tabs.

  6. Effects of coal-derived trace species on performance of molten carbonate fuel cells

    SciTech Connect

    Not Available

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  7. Effects of coal-derived trace species on performance of molten carbonate fuel cells. Final report

    SciTech Connect

    Not Available

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  8. Potential hazards associated with combustion of bio-derived versus petroleum-derived diesel fuel

    PubMed Central

    Bünger, Jürgen; Krahl, Jürgen; Schröder, Olaf; Schmidt, Lasse; Westphal, Götz A.

    2012-01-01

    Fuels from renewable resources have gained worldwide interest due to limited fossil oil sources and the possible reduction of atmospheric greenhouse gas. One of these fuels is so called biodiesel produced from vegetable oil by transesterification into fatty acid methyl esters (FAME). To get a first insight into changes of health hazards from diesel engine emissions (DEE) by use of biodiesel scientific studies were reviewed which compared the combustion of FAME with common diesel fuel (DF) for legally regulated and non-regulated emissions as well as for toxic effects. A total number of 62 publications on chemical analyses of DEE and 18 toxicological in vitro studies were identified meeting the criteria. In addition, a very small number of human studies and animal experiments were available. In most studies, combustion of biodiesel reduces legally regulated emissions of carbon monoxide, hydrocarbons, and particulate matter. Nitrogen oxides are regularly increased. Among the non-regulated emissions aldehydes are increased, while polycyclic aromatic hydrocarbons are lowered. Most biological in vitro assays show a stronger cytotoxicity of biodiesel exhaust and the animal experiments reveal stronger irritant effects. Both findings are possibly caused by the higher content of nitrogen oxides and aldehydes in biodiesel exhaust. The lower content of PAH is reflected by a weaker mutagenicity compared to DF exhaust. However, recent studies show a very low mutagenicity of DF exhaust as well, probably caused by elimination of sulfur in present DF qualities and the use of new technology diesel engines. Combustion of vegetable oil (VO) in common diesel engines causes a strongly enhanced mutagenicity of the exhaust despite nearly unchanged regulated emissions. The newly developed fuel “hydrotreated vegetable oil” (HVO) seems to be promising. HVO has physical and chemical advantages compared to FAME. Preliminary results show lower regulated and non-regulated emissions and a

  9. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    SciTech Connect

    E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; John Hemmings

    2005-05-01

    This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and in International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.

  10. Bioconversion of coal derived synthesis gas to liquid fuels

    NASA Astrophysics Data System (ADS)

    Jain, M. K.; Worden, R. M.; Grethlein, A.

    1994-07-01

    The overall objective of the project is to develop an integrated two-stage fermentation process for conversion of coal-derived synthesis gas to a mixture of alcohols. This is achieved in two steps. In the first step, Butyribacterium methylotrophicum converts carbon monoxide (CO) to butyric and acetic acids. Subsequent fermentation of the acids by Clostridium acetobutylicum leads to the production of butanol and ethanol. The tasks for this quarter were: development/isolation of superior strains for fermentation of syngas; evaluation of bioreactor configuration for improved mass transfer of syngas; recovery of carbon and electrons from H2-CO2; initiation of pervaporation for recovery of solvents; and selection of solid support material for trickle-bed fermentation. Technical progress included the following: butyrate production was enhanced during H2/CO2 (50/50) batch fermentation; isolation of CO-utilizing anaerobic strains is in progress; pressure (15 psig) fermentation was evaluated as a means of increasing CO availability; polyurethane foam packing material was selected for trickle bed solid support; cell recycle fermentation on syngas operated for 3 months. Acetate was the primary product at pH 6.8; trickle bed and gas lift fermentor designs were modified after initial water testing; and pervaporation system was constructed (No alcohol selectivity was shown with the existing membranes during initial start-up).

  11. Heterogeneous catalysts for the transformation of fatty acid triglycerides and their derivatives to fuel hydrocarbons

    NASA Astrophysics Data System (ADS)

    Yakovlev, Vadim A.; Khromova, Sofia A.; Bukhtiyarov, Valerii I.

    2011-10-01

    The results of studies devoted to the catalysts for transformation of fatty acid triglycerides and their derivatives to fuel hydrocarbons are presented and described systematically. Various approaches to the use of heterogeneous catalysts for the production of biofuel from these raw materials are considered. The bibliography includes 134 references.

  12. QUANTIFYING HAZARDOUS SPECIES IN PARTICULATE MATTER DERIVED FROM FOSSIL-FUEL COMBUSTION

    EPA Science Inventory

    An analysis protocol that combines X-ray absorption near-edge structure spectroscopy with selective leaching has been developed to examine hazardous species in size- segregated particulate matter (PM) samples derived from the combustion of fossil fuels. The protocol has been used...

  13. Organic derivatives of hydrazine and hydroxylamine in future technology of spent nuclear fuel reprocessing

    SciTech Connect

    Koltunov, V.S.; Baranov, S.M.

    1993-12-31

    An important issue in nuclear fuel reprocessing is the reduction of salts. It is seen that this can be accomplished utilizing organic derivatives of hydrazine and hydroxylamine as reductants of Np(VI) and Pu(IV). The chemistry of this process is described.

  14. Towards Safer Rocket Fuels: Hypergolic Imidazolylidene-Borane Compounds as Replacements for Hydrazine Derivatives.

    PubMed

    Huang, Shi; Qi, Xiujuan; Liu, Tianlin; Wang, Kangcai; Zhang, Wenquan; Li, Jianlin; Zhang, Qinghua

    2016-07-11

    Currently, toxic and volatile hydrazine derivatives are still the main fuel choices for liquid bipropellants, especially in some traditional rocket propulsion systems. Therefore, the search for safer hypergolic fuels as replacements for hydrazine derivatives has been one of the most challenging tasks. In this study, six imidazolylidene-borane compounds with zwitterionic structure have been synthesized and characterized, and their hypergolic reactivity has been studied. As expected, these compounds exhibited fast spontaneous combustion upon contact with white fuming nitric acid (WFNA). Among them, compound 5 showed excellent integrated properties including wide liquid operating range (-70-160 °C), superior loading density (0.99 g cm(-3) ), ultrafast ignition delay times with WFNA (15 ms), and high specific impulse (303.5 s), suggesting promising application potential as safer hypergolic fuels in liquid bipropellant formulations. PMID:27270594

  15. POLYCHLORINATED DIBENZO-P-DIOXINS AND DIBENZOFURANS: REMOVAL FROM FLUE GAS AND DISTRIBUTION IN ASH/RESIDUE OF A REFUSE-DERIVED FUEL COMBUSTOR

    EPA Science Inventory

    The paper gives results of an early-1989 investigation of the effect of changing combustion and flue gas cleaning (FGC) system variables on the performance of these systems. Using information from earlier characterization tests at the same site (Mid-Connecticut facility in Hartfo...

  16. The Pediatrician's Dilemma: Refusing the Refusers of Infant Vaccines.

    PubMed

    Block, Stan L

    2015-01-01

    Dealing with the continuously increasing rates of families wanting to either significantly delay or completely postpone their infant's vaccines has created an alarmingly untenable dilemma for the general pediatricians dealing with these families on a daily basis. Pediatricians must decide whether to continue to provide substandard care by foregoing many or most of the infant's highly recommended protective vaccines, or whether to dismiss from the practice the family who refuses vaccines. Much has been written about why they should retain these families, but this paper will discuss some reasonable rationales as to why nearly 40% of pediatricians choose dismissal of these families. PMID:26479573

  17. The Space Station integrated refuse management system

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The University of Central Florida's design of an Integrated Refuse Management System for the proposed International Space Station is addressed. Four integratable subsystems capable of handling an estimated Orbiter shortfall of nearly 40,000 lbs of refuse produced annually are discussed. The subsystems investigated were: (1) collection and transfer; (2) recycle and reuse; (3) advanced disposal; and (4) propulsion assist in disposal. Emphasis is placed on the recycling or reuse of those materials ultimately providing a source of Space Station refuse. Special consideration is given to various disposal methods capable of completely removing refuse from close proximity of the Space Station. There is evidence that pyrolysis is the optimal solution for disposal of refuse through employment of a Rocket Jettison Vehicle. Additionally, design considerations and specifications of the Refuse Management System are discussed. Optimal and alternate design solutions for each of the four subsystems are summarized. Finally, the system configuration is described and reviewed.

  18. Dewatering refuse brings profits to Dorchester Coal

    SciTech Connect

    Morgan, M.; Erickson, L.

    1984-09-01

    A belt filter press is discussed which allowed Dorchester Coal's 150 tph preparation plant to meet certain objectives. The minus 28 mesh refuse had to be dewatered further for trucking and spreading in a landfill because it did not conform to regulatory requirements. The press allowed the plant to operate with a closed water circuit, brought the landfill into compliance, and reduced refuse handling problems. Moreover, the belt press system reduced refuse disposal costs.

  19. NREL Evaluates Performance of Hydraulic Hybrid Refuse Vehicles

    SciTech Connect

    2015-09-01

    This highlight describes NREL's evaluation of the in-service performance of 10 next-generation hydraulic hybrid refuse vehicles (HHVs), 8 previous-generation (model year 2013) HHVs, and 8 comparable conventional diesel vehicles operated by Miami-Dade County's Public Works and Waste Management Department in southern Florida. Launched in March 2015, the on-road portion of this 12-month evaluation focuses on collecting and analyzing vehicle performance data - fuel economy, maintenance costs, and drive cycles - from the HHVs and the conventional diesel vehicles. The fuel economy of heavy-duty vehicles, such as refuse trucks, is largely dependent on the load carried and the drive cycles on which they operate. In the right applications, HHVs offer a potential fuel-cost advantage over their conventional counterparts. This advantage is contingent, however, on driving behavior and drive cycles with high kinetic intensity that take advantage of regenerative braking. NREL's evaluation will assess the performance of this technology in commercial operation and help Miami-Dade County determine the ideal routes for maximizing the fuel-saving potential of its HHVs. Based on the field data, NREL will develop a validated vehicle model using the Future Automotive Systems Technology Simulator, also known as FASTSim, to study the impacts of route selection and other vehicle parameters. NREL is also analyzing fueling and maintenance data to support total-cost-of-ownership estimations and forecasts. The study aims to improve understanding of the overall usage and effectiveness of HHVs in refuse operation compared to similar conventional vehicles and to provide unbiased technical information to interested stakeholders.

  20. Incompetence, treatment refusal, and hospitalization.

    PubMed

    Beck, J C; Parry, J W

    1992-01-01

    Psychiatrists have proposed broadened commitment statues based on need for care and treatment, and under which judges have no role in deciding cases of treatment refusal. The mental health bar has consistently opposed these proposals on constitutional and common law grounds. The authors propose new commitment criteria based on incompetency to decide about hospitalization, and inability to live safely in freedom. The proposed standards would meet the Constitutional requirements, and would permit hospitalization and/or treatment for many persons who are in need but who now go without. The authors recognize that new commitment law without adequate clinical resources will not greatly improve patient care. PMID:1421557

  1. Air emission from the co-combustion of alternative derived fuels within cement plants: Gaseous pollutants.

    PubMed

    Richards, Glen; Agranovski, Igor E

    2015-02-01

    Cement manufacturing is a resource- and energy-intensive industry, utilizing 9% of global industrial energy use while releasing more than 5% of global carbon dioxide (CO₂) emissions. With an increasing demand of production set to double by 2050, so too will be its carbon footprint. However, Australian cement plants have great potential for energy savings and emission reductions through the substitution of combustion fuels with a proportion of alternative derived fuels (ADFs), namely, fuels derived from wastes. This paper presents the environmental emissions monitoring of 10 cement batching plants while under baseline and ADF operating conditions, and an assessment of parameters influencing combustion. The experiential runs included the varied substitution rates of seven waste streams and the monitoring of seven target pollutants. The co-combustion tests of waste oil, wood chips, wood chips and plastic, waste solvents, and shredded tires were shown to have the minimal influence when compared to baseline runs, or had significantly reduced the unit mass emission factor of pollutants. With an increasing ADF% substitution, monitoring identified there to be no subsequent emission effects and that key process parameters contributing to contaminant suppression include (1) precalciner and kiln fuel firing rate and residence time; (2) preheater and precalciner gas and material temperature; (3) rotary kiln flame temperature; (4) fuel-air ratio and percentage of excess oxygen; and (5) the rate of meal feed and rate of clinker produced. PMID:25947054

  2. 36 CFR 2.14 - Sanitation and refuse.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Sanitation and refuse. 2.14... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.14 Sanitation and refuse. (a) The following are prohibited: (1) Disposing of refuse in other than refuse receptacles. (2) Using government refuse...

  3. 36 CFR 1002.14 - Sanitation and refuse.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Sanitation and refuse. 1002... AND RECREATION § 1002.14 Sanitation and refuse. (a) The following are prohibited: (1) Disposing of refuse in other than refuse receptacles. (2) Using government refuse receptacles or other...

  4. 36 CFR 2.14 - Sanitation and refuse.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Sanitation and refuse. 2.14... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.14 Sanitation and refuse. (a) The following are prohibited: (1) Disposing of refuse in other than refuse receptacles. (2) Using government refuse...

  5. 36 CFR 2.14 - Sanitation and refuse.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Sanitation and refuse. 2.14... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.14 Sanitation and refuse. (a) The following are prohibited: (1) Disposing of refuse in other than refuse receptacles. (2) Using government refuse...

  6. 36 CFR 2.14 - Sanitation and refuse.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Sanitation and refuse. 2.14... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.14 Sanitation and refuse. (a) The following are prohibited: (1) Disposing of refuse in other than refuse receptacles. (2) Using government refuse...

  7. 36 CFR 2.14 - Sanitation and refuse.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Sanitation and refuse. 2.14... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.14 Sanitation and refuse. (a) The following are prohibited: (1) Disposing of refuse in other than refuse receptacles. (2) Using government refuse...

  8. Project Startup: Evaluating the Performance of Hydraulic Hybrid Refuse Vehicles

    SciTech Connect

    2015-09-01

    The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory (NREL) is evaluating the in-service performance of 10 next-generation hydraulic hybrid refuse vehicles (HHVs), 8 previous-generation HHVs, and 8 comparable conventional diesel vehicles operated by Miami-Dade County's Public Works and Waste Management Department in southern Florida. The HHVs under study - Autocar E3 refuse trucks equipped with Parker Hannifin's RunWise Advanced Series Hybrid Drive systems - can recover as much as 70 percent of the energy typically lost during braking and reuse it to power the vehicle. NREL's evaluation will assess the performance of this technology in commercial operation and help Miami-Dade County determine the ideal routes for maximizing the fuel-saving potential of its HHVs.

  9. Thermal stability of some aircraft turbine fuels derived from oil shale and coal

    NASA Technical Reports Server (NTRS)

    Reynolds, T. W.

    1977-01-01

    Thermal stability breakpoint temperatures are shown for 32 jet fuels prepared from oil shale and coal syncrudes by various degrees of hydrogenation. Low severity hydrotreated shale oils, with nitrogen contents of 0.1 to 0.24 weight percent, had breakpoint temperatures in the 477 to 505 K (400 to 450 F) range. Higher severity treatment, lowering nitrogen levels to 0.008 to 0.017 weight percent, resulted in breakpoint temperatures in the 505 to 533 K (450 to 500 F) range. Coal derived fuels showed generally increasing breakpoint temperatures with increasing weight percent hydrogen, fuels below 13 weight percent hydrogen having breakpoints below 533 K (500 F). Comparisons are shown with similar literature data.

  10. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper

    NASA Astrophysics Data System (ADS)

    Li, Christina W.; Ciston, Jim; Kanan, Matthew W.

    2014-04-01

    The electrochemical conversion of CO2 and H2O into liquid fuel is ideal for high-density renewable energy storage and could provide an incentive for CO2 capture. However, efficient electrocatalysts for reducing CO2 and its derivatives into a desirable fuel are not available at present. Although many catalysts can reduce CO2 to carbon monoxide (CO), liquid fuel synthesis requires that CO is reduced further, using H2O as a H+ source. Copper (Cu) is the only known material with an appreciable CO electroreduction activity, but in bulk form its efficiency and selectivity for liquid fuel are far too low for practical use. In particular, H2O reduction to H2 outcompetes CO reduction on Cu electrodes unless extreme overpotentials are applied, at which point gaseous hydrocarbons are the major CO reduction products. Here we show that nanocrystalline Cu prepared from Cu2O (`oxide-derived Cu') produces multi-carbon oxygenates (ethanol, acetate and n-propanol) with up to 57% Faraday efficiency at modest potentials (-0.25 volts to -0.5 volts versus the reversible hydrogen electrode) in CO-saturated alkaline H2O. By comparison, when prepared by traditional vapour condensation, Cu nanoparticles with an average crystallite size similar to that of oxide-derived copper produce nearly exclusive H2 (96% Faraday efficiency) under identical conditions. Our results demonstrate the ability to change the intrinsic catalytic properties of Cu for this notoriously difficult reaction by growing interconnected nanocrystallites from the constrained environment of an oxide lattice. The selectivity for oxygenates, with ethanol as the major product, demonstrates the feasibility of a two-step conversion of CO2 to liquid fuel that could be powered by renewable electricity.

  11. Lumbar puncture refusal in febrile convulsion.

    PubMed

    Ling, S G; Boey, C C

    2000-10-01

    A descriptive study was carried out on patients admitted for febrile convulsion over a two-year period to determine rate of lumbar puncture (LP) refusal, factors associated with LP refusal and outcome of such patients. From 77 patients indicated and requested for LP, 19 (25%) patients refused the procedure. Refusal of LP was significantly more common among the Malay ethnic group (p = 0.01) but not significantly associated with age,gender or whether the patient was admitted for a first or recurrent febrile convulsion. Half of the patients who refused LP had to be started empirically on antibiotics for meningitis. Patients who refused LP were also 8.5 times more likely to discharge themselves "at own risk" (AOR), compared to other patients with febrile convulsion (p = 0.004). In conclusion, LP refusal is a common problem in the local setting and is a hindrance to the proper management of patients with fever and seizure. Appropriate measures must be carried out to educate the public, particularly those from the Malay ethnic group on the safety and usefulness of the procedure. Reasons for patients discharging AOR following LP refusal also need to be addressed and problems rectified. PMID:11281439

  12. The Functional Assessment of School Refusal Behavior

    ERIC Educational Resources Information Center

    Kearney, Christopher A.; Lemos, Amie; Silverman, Jenna

    2004-01-01

    School refusal behavior refers to child-motivated refusal to attend school and/or difficulty attending classes for an entire day (Kearney & Silverman, 1996). As such, the term represents an umbrella construct for many historical ones that have been used to describe youths with problematic absenteeism, including truancy, psychoneurotic truancy,…

  13. [Systematic family therapy in school refusal behavior].

    PubMed

    Schweitzer, Jochen; Ochs, Matthias

    2003-01-01

    The article deals with systemic-family therapeutic implications of differential diagnostics of school refusal behavior. Systemic therapy elements, that are useful in treatment of school phobia/school anxiety, and family interaction types, in which school refusal behavior occurs, are introduced. Finally two case studies of systemic family therapy are presented. PMID:12951914

  14. Refuse pile design considerations. [Coal preparation plant

    SciTech Connect

    Sawarynski, T.J.

    1981-12-01

    This paper discusses current trends of coarse and fine coal refuse disposal techniques. Emphasis is on site-specific engineering to tailor safe, cost effective, and environmentally sound refuse disposal systems to the needs of a particular mine. Geotechnical design considerations are discussed in relation to system performance, regulatory acceptance, and industry use. 2 refs.

  15. Effective Intervention for School Refusal Behaviour

    ERIC Educational Resources Information Center

    Nuttall, Clare; Woods, Kevin

    2013-01-01

    Evaluation of successful professional intervention for two case studies of female adolescents' school refusal behaviour is presented. Data gathered from the young person, professionals, and parents in each case are synthesised to propose a multi-level, ecologically situated model of intervention for school refusal behaviour. The proposed…

  16. The space station integrated refuse management system

    NASA Technical Reports Server (NTRS)

    Anderson, Loren A.

    1988-01-01

    The design and development of an Integrated Refuse Management System for the proposed International Space Station was performed. The primary goal was to make use of any existing potential energy or material properties that refuse may possess. The secondary goal was based on the complete removal or disposal of those products that could not, in any way, benefit astronauts' needs aboard the Space Station. The design of a continuous living and experimental habitat in space has spawned the need for a highly efficient and effective refuse management system capable of managing nearly forty-thousand pounds of refuse annually. To satisfy this need, the following four integrable systems were researched and developed: collection and transfer; recycle and reuse; advance disposal; and propulsion assist in disposal. The design of a Space Station subsystem capable of collecting and transporting refuse from its generation site to its disposal and/or recycling site was accomplished. Several methods of recycling or reusing refuse in the space environment were researched. The optimal solution was determined to be the method of pyrolysis. The objective of removing refuse from the Space Station environment, subsequent to recycling, was fulfilled with the design of a jettison vehicle. A number of jettison vehicle launch scenarios were analyzed. Selection of a proper disposal site and the development of a system to propel the vehicle to that site were completed. Reentry into the earth atmosphere for the purpose of refuse incineration was determined to be the most attractive solution.

  17. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect

    Paul A. Erickson

    2006-04-01

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the tenth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2006. This quarter saw progress in six areas. These areas are: (1) The effect of catalyst dimension on steam reforming, (2) Transient characteristics of autothermal reforming, (3) Rich and lean autothermal reformation startup, (4) Autothermal reformation degradation with coal derived methanol, (5) Reformate purification system, and (6) Fuel cell system integration. All of the projects are proceeding on or slightly ahead of schedule.

  18. Caregivers Who Refuse Preventive Care for Their Children: The Relationship Between Immunization and Topical Fluoride Refusal

    PubMed Central

    2014-01-01

    Objectives. The aim of this study was to examine caregivers’ refusal of preventive medical and dental care for children. Methods. Prevalence rates of topical fluoride refusal based on dental records and caregiver self-reports were estimated for children treated in 3 dental clinics in Washington State. A 60-item survey was administered to 1024 caregivers to evaluate the association between immunization and topical fluoride refusal. Modified Poisson regression models were used to estimate prevalence rate ratios (PRRs). Results. The prevalence of topical fluoride refusal was 4.9% according to dental records and 12.7% according to caregiver self-reports. The rate of immunization refusal was 27.4%. In the regression models, immunization refusal was significantly associated with topical fluoride refusal (dental record PRR = 1.61; 95% confidence interval [CI] = 1.32, 1.96; P < .001; caregiver self-report PRR = 6.20; 95% CI = 3.21, 11.98; P < .001). Caregivers younger than 35 years were significantly more likely than older caregivers to refuse both immunizations and topical fluoride (P < .05). Conclusions. Caregiver refusal of immunizations is associated with topical fluoride refusal. Future research should identify the behavioral and social factors related to caregiver refusal of preventive care with the goal of developing multidisciplinary strategies to help caregivers make optimal preventive care decisions for children. PMID:24832428

  19. A preliminary assessment of the feasibility of deriving liquid and gaseous fuels from grown and waste organics

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Reynolds, T. W.; Hsu, Y. Y.

    1976-01-01

    The anticipated depletion of our resources of natural gas and petroleum in a few decades has caused a search for renewable sources of fuel. Among the possibilities is the chemical conversion of waste and grown organic matter into gaseous or liquid fuels. The overall feasibility of such a system is considered from the technical, economic, and social viewpoints. Although there are a number of difficult problems to overcome, this preliminary study indicates that this option could provide between 4 and 10 percent of the U.S. energy needs. Estimated costs of fuels derived from grown organic material are appreciably higher than today's market price for fossil fuel. The cost of fuel derived from waste organics is competitive with fossil fuel prices. Economic and social reasons will prohibit the allocation of good food producing land to fuel crop production.

  20. Combustion-derived nanoparticle exposure and household solid fuel use in Xuanwei and Fuyuan, China

    PubMed Central

    Hosgood, H. Dean; Lan, Qing; Vermeulen, Roel; Wei, Hu; Reiss, Boris; Coble, Joseph; Wei, Fusheng; Jun, Xu; Wu, Guoping; Rothman, Nat

    2014-01-01

    Combustion-derived nanoparticles (CDNPs) have not been readably measurable until recently. We conducted a pilot study to determine CDNP levels during solid fuel burning. The aggregate surface area of CDNP (μm2/cm3) was monitored continuously in 15 Chinese homes using varying fuel types (i.e. bituminous coal, anthracite coal, wood) and stove types (i.e. portable stoves, stoves with chimneys, firepits). Information on fuel burning activities was collected and PM2.5 levels were measured. Substantial exposure differences were observed during solid fuel burning (mean: 228.1 μm2/cm3) compared to times without combustion (mean: 14.0 μm2/cm3). The observed levels during burning were reduced by about four-fold in homes with a chimney (mean: 92.1 μm2/cm3; n = 9), and effects were present for all fuel types. Each home’s CDNP measurement was only moderately correlated with the respective PM2.5 measurements (r2 = 0.43; p = 0.11). Our results indicate that household coal and wood burning contributes to indoor nanoparticle levels, which are not fully reflected in PM2.5 measurements. PMID:22639822

  1. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases

    SciTech Connect

    Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

    2001-11-06

    The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

  2. Legal briefing: conscience clauses and conscientious refusal.

    PubMed

    Pope, Thaddeus Mason

    2010-01-01

    This issue's "Legal Briefing" column covers legal developments pertaining to conscience clauses and conscientious refusal. Not only has this topic been the subject of recent articles in this journal, but it has also been the subject of numerous public and professional discussions. Over the past several months, conscientious refusal disputes have had an unusually high profile not only in courthouses, but also in legislative and regulatory halls across the United States. Healthcare providers' own moral beliefs have been obstructing and are expected to increasingly obstruct patients' access to medical services. For example, some providers, on ethical or moral grounds, have denied: (1) sterilization procedures to pregnant patients, (2) pain medications in end-of-life situations, and (3) information about emergency contraception to rape victims. On the other hand, many healthcare providers have been forced to provide medical treatment that is inconsistent with their moral beliefs. There are two fundamental types of conscientious objection laws. First, there are laws that permit healthcare workers to refuse providing - on ethical, moral, or religious grounds healthcare services that they might otherwise have a legal or employer-mandated obligation to provide. Second, there are laws directed at forcing healthcare workers to provide services to which they might have ethical, moral, or religious objections. Both types of laws are rarely comprehensive, but instead target: (1) certain types of healthcare providers, (2) specific categories of healthcare services, (3) specific patient circumstances, and (4) certain conditions under which a right or obligation is triggered. For the sake of clarity, I have grouped recent legal developments concerning conscientious refusal into eight categories: 1. Abortion: right to refuse 2. Abortion: duty to provide 3. Contraception: right to refuse 4. Contraception: duty to provide 5. Sterilization: right to refuse 6. Fertility, HIV, vaccines

  3. Biomass-derived Syngas Utilization for Fuels and Chemicals - Final Report

    SciTech Connect

    Dayton, David C

    2010-03-24

    Executive Summary The growing gap between petroleum production and demand, mounting environmental concerns, and increasing fuel prices have stimulated intense interest in research and development (R&D) of alternative fuels, both synthetic and bio-derived. Currently, the most technically defined thermochemical route for producing alternative fuels from lignocellulosic biomass involves gasification/reforming of biomass to produce syngas (carbon monoxide [CO] + hydrogen [H2]), followed by syngas cleaning, Fischer-Tropsch synthesis (FTS) or mixed alcohol synthesis, and some product upgrading via hydroprocessing or separation. A detailed techno-economic analysis of this type of process has recently been published [1] and it highlights the need for technical breakthroughs and technology demonstration for gas cleanup and fuel synthesis. The latter two technical barrier areas contribute 40% of the total thermochemical ethanol cost and 70% of the production cost, if feedstock costs are factored out. Developing and validating technologies that reduce the capital and operating costs of these unit operations will greatly reduce the risk for commercializing integrated biomass gasification/fuel synthesis processes for biofuel production. The objective of this project is to develop and demonstrate new catalysts and catalytic processes that can efficiently convert biomass-derived syngas into diesel fuel and C2-C4 alcohols. The goal is to improve the economics of the processes by improving the catalytic activity and product selectivity, which could lead to commercialization. The project was divided into 4 tasks: Task 1: Reactor Systems: Construction of three reactor systems was a project milestone. Construction of a fixed-bed microreactor (FBR), a continuous stirred tank reactor (CSTR), and a slurry bubble column reactor (SBCR) were completed to meet this milestone. Task 2: Iron Fischer-Tropsch (FT) Catalyst: An attrition resistant iron FT catalyst will be developed and tested

  4. Combustion of waste fuels in a fluidized-bed boiler

    SciTech Connect

    Zylkowski, J.; Ehrlich, S.

    1983-01-01

    This paper reports on a project whose objectives are to determine the impact of the waste fuels on Atmospheric Fluidized Bed Combustion (AFBC) operating procedures, boiler performance, and emissions and to assess the potential for fuel-specific operating problems. The low-grade waste fuels investigated are hogged railroad ties, shredded rubber tires, peat, refuse-derived fuel, and one or more agricultiral wastes. The Northern States Power (NSP) Company converted their French Island Unit No. 2 stoker-fired boiler to a fluidized-bed combustor designed to burn wood waste. NSP and EPRI are investigating cofiring other waste fuels with wood waste. Topics considered include fluidized-bed boiler conversion, fuel resources, economic justification, environmental considerations, the wood-handling system, an auxiliary fuel system, the air quality control system, ash handling and disposal, and the alternate fuels test program.

  5. Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels

    SciTech Connect

    Steven Markovich

    2010-06-30

    This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

  6. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass.

    PubMed

    Steen, Eric J; Kang, Yisheng; Bokinsky, Gregory; Hu, Zhihao; Schirmer, Andreas; McClure, Amy; Del Cardayre, Stephen B; Keasling, Jay D

    2010-01-28

    Increasing energy costs and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. Major efforts to this end are focused on the microbial production of high-energy fuels by cost-effective 'consolidated bioprocesses'. Fatty acids are composed of long alkyl chains and represent nature's 'petroleum', being a primary metabolite used by cells for both chemical and energy storage functions. These energy-rich molecules are today isolated from plant and animal oils for a diverse set of products ranging from fuels to oleochemicals. A more scalable, controllable and economic route to this important class of chemicals would be through the microbial conversion of renewable feedstocks, such as biomass-derived carbohydrates. Here we demonstrate the engineering of Escherichia coli to produce structurally tailored fatty esters (biodiesel), fatty alcohols, and waxes directly from simple sugars. Furthermore, we show engineering of the biodiesel-producing cells to express hemicellulases, a step towards producing these compounds directly from hemicellulose, a major component of plant-derived biomass. PMID:20111002

  7. Pervasive refusal syndrome - A clinical challenge.

    PubMed

    Kaku, Sowmyashree Mayur; Kommu, John Vijay Sagar; Seshadri, Shekhar; Girimaji, Satish Chandra; Srinath, Shoba

    2015-10-01

    Pervasive refusal syndrome is described as a condition comprising varying degrees of refusal across several domains; social withdrawal; resistance to treatment and is potentially life threatening with no detectable organic cause. Female predominance, refusal to eat with low weight, body image distortion, depressive features, premorbid personality issues similar to eating disorders have been noted, with 67% cases having complete recovery. In this paper, we describe what is probably the first case reported from India, of a child, who presented with neuropsychiatric symptoms, and treated with electroconvulsive therapy along with medications, but, sadly had a fatal outcome. PMID:26275914

  8. Performance effects of coal-derived contaminants on the carbonate fuel cell

    SciTech Connect

    Pigeaud, A. ); Wilemski, G. )

    1993-01-01

    Coal-derived contaminant studies have been pursued at ERC since the early 1980's when the pace of carbonate fuel cell development began to markedly increase. Initial work was concerned with performance effects on laboratory and bench-scale carbonate fuel cells primarily due to sulfur compounds. Results have now also been obtained with respect to nine additional coal-gas contaminants, including volatile trace metal species. Thermochemical calculations, out-of-cell experiments, and cell performance as well as endurance testshave recently been conducted which have involved the following species: NH[sub 3], H[sub 2]S [COS], HCl, AsH[sub 3][As[sub 2](v)], Zn(v), Pb(v), Cd(v), H[sub 2] Se, Hg(v), Sn(v). Employing thermochemically calculated results, thermogravimetric (TGA) and pre-, and post-test analytical data as well as fuel cell performance observations, it has been shown that there are four main mechanisms of contaminant interaction with the carbonate fuel cell. These have been formulated into performance models for six significant contaminant species, thus providing long-term endurance estimations.

  9. Performance effects of coal-derived contaminants on the carbonate fuel cell

    SciTech Connect

    Pigeaud, A.; Wilemski, G.

    1993-05-01

    Coal-derived contaminant studies have been pursued at ERC since the early 1980`s when the pace of carbonate fuel cell development began to markedly increase. Initial work was concerned with performance effects on laboratory and bench-scale carbonate fuel cells primarily due to sulfur compounds. Results have now also been obtained with respect to nine additional coal-gas contaminants, including volatile trace metal species. Thermochemical calculations, out-of-cell experiments, and cell performance as well as endurance testshave recently been conducted which have involved the following species: NH{sub 3}, H{sub 2}S [COS], HCl, AsH{sub 3}[As{sub 2}(v)], Zn(v), Pb(v), Cd(v), H{sub 2} Se, Hg(v), Sn(v). Employing thermochemically calculated results, thermogravimetric (TGA) and pre-, and post-test analytical data as well as fuel cell performance observations, it has been shown that there are four main mechanisms of contaminant interaction with the carbonate fuel cell. These have been formulated into performance models for six significant contaminant species, thus providing long-term endurance estimations.

  10. Characteristic changes in algal organic matter derived from Microcystis aeruginosa in microbial fuel cells.

    PubMed

    Wang, Huan; Lu, Lu; Liu, Dongmei; Cui, Fuyi; Wang, Peng

    2015-11-01

    The objective of this study was to investigate behavior of algal organic matter (AOM) during bioelectrochemical oxidation in microbial fuel cell in terms of compositions and structures. Study revealed that the AOM derived from blue-green algae Microcystis aeruginosa could be degraded more completely (82% COD removal) in microbial fuel cells (MFCs) than by anaerobic fermentation (24% COD removal) in a control reactor without closed-circuit electrode and electricity was produced simultaneously. A variety of techniques were used to characterize the changes in AOM compositions and structures during bioelectrochemical oxidation. The presence of syntrophic interactions between electrochemical active bacteria and fermentative bacteria to degrade large molecular organics into small molecular substances, which could be oxidized by electrode but not by fermentation. The dominant tryptophan protein-like substances, humic acid-like substances and Chlorophyll a in AOM were highly degraded during MFC treatment. PMID:26081162

  11. Performance and economics of advanced energy conversion systems for coal and coal-derived fuels

    NASA Technical Reports Server (NTRS)

    Corman, J. C.; Fox, G. R.

    1978-01-01

    The desire to establish an efficient Energy Conversion System to utilize the fossil fuel of the future - coal - has produced many candidate systems. A comparative technical/economic evaluation was performed on the seven most attractive advanced energy conversion systems. The evaluation maintains a cycle-to-cycle consistency in both performance and economic projections. The technical information base can be employed to make program decisions regarding the most attractive concept. A reference steam power plant was analyzed to the same detail and, under the same ground rules, was used as a comparison base. The power plants were all designed to utilize coal or coal-derived fuels and were targeted to meet an environmental standard. The systems evaluated were two advanced steam systems, a potassium topping cycle, a closed cycle helium system, two open cycle gas turbine combined cycles, and an open cycle MHD system.

  12. Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Catal, Tunc; Fan, Yanzhen; Li, Kaichang; Bermek, Hakan; Liu, Hong

    Lignocellulosic biomass is an attractive fuel source for MFCs due to its renewable nature and ready availability. Furan derivatives and phenolic compounds could be potentially formed during the pre-treatment process of lignocellulosic biomass. In this study, voltage generation from these compounds and the effects of these compounds on voltage generation from glucose in air-cathode microbial fuel cells (MFCs) were examined. Except for 5-hydroxymethyl furfural (5-HMF), all the other compounds tested were unable to be utilized directly for electricity production in MFCs in the absence of other electron donors. One furan derivate, 5-HMF and two phenolic compounds, trans-cinnamic acid and 3,5-dimethoxy-4-hydroxy-cinnamic acid did not affect electricity generation from glucose at a concentration up to 10 mM. Four phenolic compounds, including syringaldeyhde, vanillin, trans-4-hydroxy-3-methoxy, and 4-hydroxy cinnamic acids inhibited electricity generation at concentrations above 5 mM. Other compounds, including 2-furaldehyde, benzyl alcohol and acetophenone, inhibited the electricity generation even at concentrations less than 0.2 mM. This study suggests that effective electricity generation from the hydrolysates of lignocellulosic biomass in MFCs may require the employment of the hydrolysis methods with low furan derivatives and phenolic compounds production, or the removal of some strong inhibitors prior to the MFC operation, or the improvement of bacterial tolerance against these compounds through the enrichment of new bacterial cultures or genetic modification of the bacterial strains.

  13. Food Refusal in Children: A Review of the Literature

    ERIC Educational Resources Information Center

    Williams, Keith E.; Field, Douglas G.; Seiverling, Laura

    2010-01-01

    Food refusal is a severe feeding problem in which children refuse to eat all or most foods presented and exhibit problems with growth. This review discusses the definition, etiology, and interventions pertaining to food refusal. The interventions utilized for food refusal typically consist of several treatment components. These treatment…

  14. 20 CFR 654.414 - Garbage and other refuse.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... made for collection of refuse at least twice a week, or more often if necessary. The disposal of refuse... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Garbage and other refuse. 654.414 Section 654... Garbage and other refuse. (a) Durable, fly-tight, clean containers in good condition of a minimum...

  15. 20 CFR 654.414 - Garbage and other refuse.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... made for collection of refuse at least twice a week, or more often if necessary. The disposal of refuse... 20 Employees' Benefits 3 2014-04-01 2014-04-01 false Garbage and other refuse. 654.414 Section 654... Garbage and other refuse. (a) Durable, fly-tight, clean containers in good condition of a minimum...

  16. 20 CFR 654.414 - Garbage and other refuse.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... made for collection of refuse at least twice a week, or more often if necessary. The disposal of refuse... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Garbage and other refuse. 654.414 Section 654... Garbage and other refuse. (a) Durable, fly-tight, clean containers in good condition of a minimum...

  17. 20 CFR 654.414 - Garbage and other refuse.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... made for collection of refuse at least twice a week, or more often if necessary. The disposal of refuse... 20 Employees' Benefits 3 2013-04-01 2013-04-01 false Garbage and other refuse. 654.414 Section 654... Garbage and other refuse. (a) Durable, fly-tight, clean containers in good condition of a minimum...

  18. 36 CFR 1002.14 - Sanitation and refuse.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Sanitation and refuse. 1002.14 Section 1002.14 Parks, Forests, and Public Property PRESIDIO TRUST RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 1002.14 Sanitation and refuse. (a) The following are prohibited: (1) Disposing of refuse in other than refuse receptacles. (2)...

  19. 36 CFR 1002.14 - Sanitation and refuse.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Sanitation and refuse. 1002.14 Section 1002.14 Parks, Forests, and Public Property PRESIDIO TRUST RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 1002.14 Sanitation and refuse. (a) The following are prohibited: (1) Disposing of refuse in other than refuse receptacles. (2)...

  20. 36 CFR 1002.14 - Sanitation and refuse.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Sanitation and refuse. 1002.14 Section 1002.14 Parks, Forests, and Public Property PRESIDIO TRUST RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 1002.14 Sanitation and refuse. (a) The following are prohibited: (1) Disposing of refuse in other than refuse receptacles. (2)...

  1. ST. LOUIS DEMONSTRATION: REFUSE PROCESSING PLANT EQUIPMENT, FACILITIES, AND ENVIRONMENTAL EVALUATIONS

    EPA Science Inventory

    This report presents the results of processing plant evaluations of the St. Louis-Union Electric Refuse Fuel Project, including equipment and facilities as well as assessment of environmental emissions at both the processing and power plants. Data on plant material flows and oper...

  2. Using a Nonaversive Procedure to Decrease Refusals.

    ERIC Educational Resources Information Center

    Spooner, Fred; And Others

    1990-01-01

    A nonaversive technique was used to teach a severely handicapped woman to decrease her refusals. The technique employed precision teaching via precise daily measurement strategies, environmental analysis, and a focus on building appropriate behavior. (JDD)

  3. Method for removing HCL and HF from coal derived fuel gas

    SciTech Connect

    Cook, C.; Gal, E.

    1992-06-02

    This patent describes a process stream for removing sulfur compounds from a hot coal derived fuel gas stream containing H{sub 2}S, COS, HCl and HF upstream of a power plant. This patent describes improvement in introducing a sorbent material at a location and in an amount effective to break down at least the HCl and HF constituents into solid salts and gaseous CO{sub 2} and H{sub 2}O at least partially concurrently with the removal of the sulfur compounds; and removing the solid salts from the stream.

  4. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2007-03-17

    hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. Emission testing indicates that the coal derived material has more trace metals related to coal than petroleum, as seen in previous runs. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. The co-coking of the runs with the new coal have begun, with the coke yield similar to previous runs, but the gas yield is lower and the liquid yield is higher. Characterization of the products continues. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking.

  5. Synthesis of high density aviation fuel with cyclopentanol derived from lignocellulose

    NASA Astrophysics Data System (ADS)

    Sheng, Xueru; Li, Ning; Li, Guangyi; Wang, Wentao; Yang, Jinfan; Cong, Yu; Wang, Aiqin; Wang, Xiaodong; Zhang, Tao

    2015-03-01

    For the first time, renewable high density aviation fuels were synthesized at high overall yield (95.6%) by the Guerbet reaction of cyclopentanol which can be derived from lignocellulose, followed by the hydrodeoxygenation (HDO). The solvent-free Guerbet reaction of cyclopentanol was carried out under the co-catalysis of solid bases and Raney metals. Among the investigated catalyst systems, the combinations of magnesium-aluminium hydrotalcite (MgAl-HT) and Raney Ni (or Raney Co) exhibited the best performances. Over them, high carbon yield (96.7%) of C10 and C15 oxygenates was achieved. The Guerbet reaction products were further hydrodeoxygenated to bi(cyclopentane) and tri(cyclopentane) over a series of Ni catalysts. These alkanes have high densities (0.86 g mL-1 and 0.91 g mL-1) and can be used as high density aviation fuels or additives to bio-jet fuel. Among the investigated HDO catalysts, the 35 wt.% Ni-SiO2-DP prepared by deposition-precipitation method exhibited the highest activity.

  6. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect

    Paul A. Erickson

    2004-04-01

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the first such report that will be submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1--December 31, 2003. This quarter saw progress in three areas. These areas are: (1) Evaluations of coal based methanol and the fuel cell grade baseline fuel, (2) Design and set up of the autothermal reactor, as well as (3) Set up and data collection of baseline performance using the steam reformer. All of the projects are proceeding on schedule. During this quarter one conference paper was written that will be presented at the ASME Power 2004 conference in March 2004, which outlines the research direction and basis for looking at the coal to hydrogen pathway.

  7. Carbon Nanohorn-Derived Graphene Nanotubes as a Platinum-Free Fuel Cell Cathode.

    PubMed

    Unni, Sreekuttan M; Illathvalappil, Rajith; Bhange, Siddheshwar N; Puthenpediakkal, Hasna; Kurungot, Sreekumar

    2015-11-01

    Current low-temperature fuel cell research mainly focuses on the development of efficient nonprecious electrocatalysts for the reduction of dioxygen molecule due to the reasons like exorbitant cost and scarcity of the current state-of-the-art Pt-based catalysts. As a potential alternative to such costly electrocatalysts, we report here the preparation of an efficient graphene nanotube based oxygen reduction electrocatalyst which has been derived from single walled nanohorns, comprising a thin layer of graphene nanotubes and encapsulated iron oxide nanoparticles (FeGNT). FeGNT shows a surface area of 750 m(2)/g, which is the highest ever reported among the metal encapsulated nanotubes. Moreover, the graphene protected iron oxide nanoparticles assist the system to attain efficient distribution of Fe-Nx and quaternary nitrogen based active reaction centers, which provides better activity and stability toward the oxygen reduction reaction (ORR) in acidic as well as alkaline conditions. Single cell performance of a proton exchange membrane fuel cell by using FeGNT as the cathode catalyst delivered a maximum power density of 200 mW cm(-2) with Nafion as the proton exchange membrane at 60 °C. The facile synthesis strategy with iron oxide encapsulated graphitic carbon morphology opens up a new horizon of hope toward developing Pt-free fuel cells and metal-air batteries along with its applicability in other energy conversion and storage devices. PMID:26458554

  8. Evaluating the manufacturability and combustion behaviors of sludge-derived fuel briquettes.

    PubMed

    Chiou, Ing-Jia; Wu, I-Tsung

    2014-10-01

    Based on the physical and chemical properties as well as calorific values of pulp sludge and textile sludge, this study investigates the differences between manufacturability, relationship between extrusion pressure and formability, as well as stability and combustion behaviors of extruded sludge-derived fuel briquettes (ESBB) and cemented sludge-derived fuel blocks (CSBB). The optimum proportion and relevant usage ESBB policies are proposed as well. Experimental results indicate that a large amount of water can be saved during the ESBB manufacturing process. Additionally, energy consumption decreases during the drying process. ESBB also has a more compact structure than that of CSBB, and its mean penetration loading is approximately 18.7 times higher as well. Moreover, the flame temperature of ESBB (624-968°C) is significantly higher than that of CSBB (393-517°C). Also, the dry bulk density and moisture regain of ESBB is significantly related to the penetration loading. Furthermore, the optimum mix proportion of ESBB is co-determined by the formability of pulp sludge and the calorific values of textile sludge. While considering the specific conditions (including formability, stability and calorific values), the recommended mix proportion for ESBB is PS50TS50. PMID:24913348

  9. Fuel derived pollutants and boating activity patterns in the Sea of Galilee.

    PubMed

    Dinerman, Efrat; Dubowski, Yael; Friedler, Eran

    2011-11-01

    MTBE (Methyl tert-Butyl Ether) is a fuel additive that replaced lead as an antiknock compound in internal combustion motors. Few years after its introduction, detectable levels of MTBE were found in various water bodies. MTBE has a very low taste and odor threshold and is a potential carcinogen. Another group of fuel derived toxic compounds that has been detected in water bodies is BTEX (Benzene, Toluene, Ethylbenzene and Xylene). Boating activity and allochthonous contributions from watersheds are the major sources of fuel derived pollutants in lakes. Their concentrations in lakes thus vary as a function of boating activity intensity, lake surface area and depth, weather and wind regime, land-use in the watershed, etc. The Sea of Galilee (Lake Kinneret) is the only recreational lake in Israel and an important freshwater source. In the current study, a sampling campaign was conducted in order to quantify MTBE and BTEX concentrations in Lake Kinneret, its marinas and its main contributing streams. In addition, a boating-use survey was performed in order to estimate MTBE and BTEX contribution of recreational boating. The sampling campaign revealed that, as expected, MTBE concentrations were higher than BTEX, and that near shore (i.e., marina) concentrations were higher than in-lake concentrations. Despite the clear contribution from boating, high MTBE concentrations were found following a major inflow event in winter, indicating the importance of the allochthonous contribution. The contribution from boating during summer, as measured indirectly by in-lake concentrations, is likely underestimated due to enhanced MTBE volatilization due to strong winds and high temperatures. May-September was found to be the main recreational boating season, with continued boating year round. On average, a single boat is active 23 d/y, with 84% of the watercrafts being active only during weekends and holidays. The survey further indicated that boats stay in the lake for 4.5 h on

  10. Life cycle assessment of switchgrass- and corn stover-derived ethanol-fueled automobiles.

    PubMed

    Spatari, Sabrina; Zhang, Yimin; MacLean, Heather L

    2005-12-15

    Utilizing domestically produced cellulose-derived ethanol for the light-duty vehicle fleet can potentially improve the environmental performance and sustainability of the transport and energy sectors of the economy. A life cycle assessment model was developed to examine environmental implications of the production and use of ethanol in automobiles in Ontario, Canada. The results were compared to those of low-sulfur reformulated gasoline (RFG) in a functionally equivalent automobile. Two time frames were evaluated, one near-term (2010), which examines converting a dedicated energy crop (switchgrass) and an agricultural residue (corn stover) to ethanol; and one midterm (2020), which assumes technological improvements in the switchgrass-derived ethanol life cycle. Near-term results show that, compared to a RFG automobile, life cycle greenhouse gas (GHG) emissions are 57% lower for an E85-fueled automobile derived from switchgrass and 65% lower for ethanol from corn stover, on a grams of CO2 equivalent per kilometer basis. Corn stover ethanol exhibits slightly lower life cycle GHG emissions, primarily due to sharing emissions with grain production. Through projected improvements in crop and ethanol yields, results for the mid-term scenario show that GHG emissions could be 25-35% lower than those in 2010 and that, even with anticipated improvements in RFG automobiles, E85 automobiles could still achieve up to 70% lower GHG emissions across the life cycle. PMID:16475363