Science.gov

Sample records for regenerated particulate trap

  1. Microwave regenerated particulate trap

    SciTech Connect

    McDonald, A.C. Jr.; Yonushonis, T.M.; Haberkamp, W.C.; Mako, F.; Len, L.K,; Silberglitt, R.; Ahmed, I.

    1997-12-31

    It has been demonstrated that a fibrous particulate filter can extract particulate matter from the diesel exhaust. However, additional engineering efforts remains to achieve the design target of 90%. It has also be shown that with minor modifications magnetrons produced for home ovens can endure a simulated diesel operating environment. Much work remains to develop a robust product ready to complete extensive engine testing and evaluation. These efforts include: (1) additional environmental testing of magnetrons; (2) vibration testing of the filter in the housing; (3) evaluating alternative methods/designs to seal the center bore; and (4) determining the optimum coating thickness that provides sufficient structural integrity while maintaining rapid heating rates.

  2. Regeneration process of ceramic foam diesel-particulate traps

    SciTech Connect

    Takama, K.; Kobashi, K.; Oishi, K.; Inoue, T.; Kogiso, T.

    1984-01-01

    Periodic regeneration of the diesel particulate trap is essential to maintain the collection efficiency and exhaust gas back pressure at acceptable levels. The objectives of this study are to describe the phenomenology of ceramic foam filter regeneration process and to present its mathematical model. Further simulation study is carried out to estimate the effects of various factors including fuel additive on the ignition and the filter bed temperature and to investigate conditions of excessive temperature which could result in filter destruction. The model is based on the assumption that the regeneration process is composed of two steps. The first step is the additional heat supply from the external energy source, and the second step is the spontaneous combustion propagation. The results from the analytical model agreed very well with the experimental results. Additional energy is required above normal engine operating conditions to initiate the incineration under lower exhaust gas temperature. Regeneration must be carried out within a narrow range of particulate loading to avoid the melting of the filter material. The effects of fuel additives have been estimated by using the mathematical simulation.

  3. Regeneration process of ceramic foam diesel-particulate traps

    SciTech Connect

    Takama, K.; Inove, T.; Kobashi, K.; Kogiso, T.; Oishi, K.

    1984-10-01

    Periodic regeneration of the diesel particulate trap is essential to maintain the collection efficiency and exhaust gas back pressure at acceptable levels. The objectives of this study are to describe the phenomenology of ceramic foam filter regeneration process and to present its mathematical model. Further simulation study is carried out to estimate the effects of various factors including fuel additive on the ignition and the filter bed temperature and to investigate conditions of excessive temperature which could result in filter destruction. The model is based on the assumption that the regeneration process is composed of two steps. The first step is the additional heat supply from the external energy source, and the second step is the spontaneous combustion propagation. The results from the analytical model agreed very well with the experimental results. Additional energy is required above normal engine operating conditions to initiate the incineration under lower exhaust gas temperature. Regeneration must be carried out within a narrow range of particulate loading to avoid the melting of the filter material. The effects of fuel additives have been estimated by using the mathematical simulation.

  4. Direct-energy-regenerated particulate trap technology. Final report

    SciTech Connect

    Stinton, D.P.; Janney, M.A.; Yonushonis, T.M.; McDonald, A.C.; Wiczynski, P.D.; Haberkamp, W.C.

    1996-12-01

    The objective of this CRADA between Lockheed Martin and Cummins Engine Company was to develop fiber-reinforced silicon carbide (SiC) composite materials for use as diesel engine particulate traps. Chemical vapor deposition techniques were used to partially densify and rigidize a thin fibrous substrate and produce the porous SiC- based filter. Microwave energy was used to directly couple to the deposited SiC to uniformly heat the filter and oxidize the collected carbon particulates. For commercial usage particulate traps must: (1) filter carbon particulates from a high temperature diesel exhaust at an acceptably low backpressure, (2) survive thousands of thermal transients due to regeneration or cleaning of the filter by oxidizing the collected carbon, (3) be durable and reliable over the expected life of the filter (300,000 miles or 10,000 hours), and (4) provide a low overall operating cost which is competitive with other filtering techniques. The development efforts performed as part of this CRADA have resulted in a very promising new technology for Cummins Engine Company. Ceramic fiber based filter papers were developed at Fleetguard, Inc., (a Cummins Subsidiary) and used to produce the spiral wound, corrugated filter cartridges. Optimized SiC coatings were developed at Lockheed Martin which couple with 2.45 GHz microwaves. Prototype particulate filter cartridges fabricated at Fleetguard and rigidized at Lockheed Martin performed well in single cylinder engine tests at Cummins. These prototype filters obtained filtering efficiencies greater than 80% at acceptably low backpressures and could be successfully headed and regenerated using a conventional in-home microwave oven.

  5. Particulate trap system for engine exhaust using electrically powered regeneration

    SciTech Connect

    Rao, V.D.N.; Wade, W.R.; Aimone, M.G.

    1986-01-07

    This patent describes an apparatus for removing oxidizable particulates from an automotive engine having a driven output part, and consists of: a) a particulate filter trap disposed in such stream; b) electrically heated elements proximate to the filter to promote oxidation of particulates collected in the filter; c) an alternator for converting the motion of the engine driven output part to a supply of electrical energy which can be connected to the elements and effective to heat the elements to at least the incineration temperature of the particulates while the engine is at least at an idle condition; d) electrically actuated means for diverting the stream of exhaust gases away from at least a portion of the filter trap and for delayedly admitting a flow of a fluid medium effective to transfer heat between the elements and collected particulates and to supply oxygen for supporting oxidation of the particulates.

  6. Plasma regenerated particulate trap and NO.sub.x reduction system

    DOEpatents

    Penetrante, Bernardino M.; Vogtlin, George E.; Merritt, Bernard T.; Brusasco, Raymond M.

    2000-01-01

    A non-catalytic two-stage process for removal of NO.sub.x and particulates from engine exhaust comprises a first stage that plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, and a second stage, which preferably occurs simultaneously with the first stage, that converts NO.sub.2 and carbon soot particles to respective environmentally benign gases that include N.sub.2 and CO.sub.2. By preconverting NO to NO.sub.2 in the first stage, the efficiency of the second stage for NO.sub.x reduction is enhanced while carbon soot from trapped particulates is simultaneously converted to CO.sub.2 when reacting with the NO.sub.2 (that converts to N.sub.2). For example, an internal combustion engine exhaust is connected by a pipe to a chamber where carbon-containing particulates are electrostatically trapped or filtered and a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. Volatile hydrocarbons (C.sub.x H.sub.y) from the trapped particulates are oxidized in the plasma and the remaining soot from the particulates reacts with the NO.sub.2 to convert NO.sub.2 to N.sub.2, and the soot to CO.sub.2. The nitrogen exhaust components remain in the gas phase throughout the process, with no accompanying adsorption.

  7. Hydrocarbon-enhanced particulate filter regeneration via microwave ignition

    DOEpatents

    Gonze, Eugene V.; Brown, David B.

    2010-02-02

    A regeneration method for a particulate filter includes estimating a quantity of particulate matter trapped within the particulate filter, comparing the quantity of particulate matter to a predetermined quantity, heating at least a portion of the particulate filter to a combustion temperature of the particulate matter, and introducing hydrocarbon fuel to the particulate filter. The hydrocarbon fuel facilitates combustion of the particulate matter to regenerate the particulate filter.

  8. Diesel particulate trap mounting system

    SciTech Connect

    Miller, P.R.

    1992-01-21

    This patent describes a particulate trap assembly. It comprises an outer housing having a gas inlet and a gas outlet and a passageway interconnecting the gas inlet and the gas outlet; a particulate trapping means located within the passageway of the housing for trapping particles entrained in gas passing through the passageway, the passageway and the particulate trapping means having circumferential extents which fall within relatively large predetermined manufacturing tolerances respectively; tourniquet means surrounding the particulate trapping means for applying a predetermined radial pressure to the trapping means which is substantially independent of the circumferential extents of the passageway and the including an encircling element having a selectably adjustable circumferential extent for permitting the tourniquet means to conform to the circumferential extent of the particulate trapping means when mounted in compressive relationship about the particulate trapping means, and mounting means for retaining the particulate trapping means radially and axially within the passageway in a manner which imposes no further substantial radial compressive force to the particulate trapping means.

  9. Regenerable particulate filter

    DOEpatents

    Stuecker, John N.; Cesarano, III, Joseph; Miller, James E.

    2009-05-05

    A method of making a three-dimensional lattice structure, such as a filter used to remove particulates from a gas stream, where the physical lattice structure is designed utilizing software simulation from pre-defined mass transfer and flow characteristics and the designed lattice structure is fabricated using a free-form fabrication manufacturing technique, where the periodic lattice structure is comprised of individual geometric elements.

  10. Impacts of continuously regenerating trap and particle oxidation catalyst on the NO2 and particulate matter emissions emitted from diesel engine.

    PubMed

    Liu, Zhihua; Ge, Yunshan; Tan, Jianwei; He, Chao; Shah, Asad Naeem; Ding, Yan; Yu, Linxiao; Zhao, Wei

    2012-01-01

    Two continuously regenerating diesel particulate filter (CRDPF) with different configurations and one particles oxidation catalyst (POC) were employed to perform experiments in a controlled laboratory setting to evaluate their effects on NO2, smoke and particle number emissions. The results showed that the application of the after-treatments increased the emission ratios of NO2/NOx significantly. The results of smoke emissions and particle number (PN) emissions indicated that both CRDPFs had sufficient capacity to remove more than 90% of total particulate matter (PM) and more than 97% of solid particles. However, the POC was able to remove the organic components of total PM, and only partially to remove the carbonaceous particles with size less than 30 nm. The negligible effects of POC on larger particles were observed due to its honeycomb structure leads to an inadequate residence time to oxidize the solid particles or trap them. The particles removal efficiencies of CRDPFs had high degree of correlations with the emission ratio of NO2/NOx. The PN emission results from two CRDPFs indicated that more NO2 generating in diesel oxidation catalyst section could obtain the higher removal efficiency of solid particles. However this also increased the risk of NO2 exposure in atmosphere. PMID:22894096

  11. Analysis of characteristic of microwave regeneration for diesel particulate filter

    SciTech Connect

    Ning Zhi; Zhang Guanglong; Lu Yong; Liu Junmin; Gao Xiyan; Liang Iunhui; Chen Jiahua

    1995-12-31

    The mathematical model for the microwave regeneration of diesel particulate filter is proposed according to the characteristic of microwave regeneration process. The model is used to calculate the temperature field, distribution of particulate and density field of oxygen in the filter during the process of regeneration with typical ceramic foam particulate filter data. The parametric study demonstrates how some of the main parameters, such as microwave attenuation constant of the filter, filter particulate loading, the power and distribution of microwave energy and so on, affect the efficiency of regeneration, the maximum filter temperature and regeneration duration. The results show that it is possible to regenerate the diesel particulate filters in certain conditions by using microwave energy. This paper can give one a whole understanding to several main factors that have effects on the process of microwave regeneration and provide a theoretical basis for the optimal design of the microwave regeneration system.

  12. Microwave-Regenerated Diesel Exhaust Particulate Filter

    SciTech Connect

    Nixdorf, Richard D.; Green, Johney Boyd; Story, John M.; Wagner, Robert M.

    2001-03-05

    Development of a microwave-regenerated particulate filter system has evolved from bench scale work to actual diesel engine experimentation. The filter system was initially evaluated on a stationary mounted 1.2-L diesel engine and was able to remove a significant amount of carbon particles from the exhaust. The ability of the microwave energy to regenerate or clean the filter was also demonstrated on this engine under idle conditions. Based on the 1.2-L experiments, improvements to the filter design and materials were implemented and the system was re-evaluated on a vehicle equipped with a 7.3-L diesel engine. The 7.3-L engine was selected to achieve heavy filter loading in a relatively short period of time. The purpose of these experiments was to evaluate filter-loading capacity, power requirements for regeneration, and filter regeneration efficiency. A more detailed evaluation of the filter was performed on a stationary mounted 1.9-L diesel engine. The effect of exhaust flow rate, loading, transients, and regeneration on filter efficiency was evaluated with this setup. In addition, gaseous exhaust emissions were investigated with and without an oxidation catalyst on the filter cartridge during loading and regeneration. (SAE Paper SAE-2001-01-0903 © 2001 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  13. Electrical diesel particulate filter (DPF) regeneration

    DOEpatents

    Gonze, Eugene V; Ament, Frank

    2013-12-31

    An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

  14. Revolutionary systems for catalytic combustion and diesel catalytic particulate traps.

    SciTech Connect

    Stuecker, John Nicholas; Witze, Peter O.; Ferrizz, Robert Matthew; Cesarano, Joseph, III; Miller, James Edward

    2004-12-01

    This report is a summary of an LDRD project completed for the development of materials and structures conducive to advancing the state of the art for catalyst supports and diesel particulate traps. An ancillary development for bio-medical bone scaffolding was also realized. Traditionally, a low-pressure drop catalyst support, such as a ceramic honeycomb monolith, is used for catalytic reactions that require high flow rates of gases at high-temperatures. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. ''Robocasting'' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low-pressure drops. These alternative 3-dimensional geometries may also provide a foundation for the development of self-regenerating supports capable of trapping and combusting soot particles from a diesel engine exhaust stream. This report describes the structures developed and characterizes the improved catalytic performance that can result. The results show that, relative to honeycomb monolith supports, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application. Practical applications include the combustion of natural gas for power generation, production of syngas, and hydrogen reforming reactions. The robocast lattice structures also show practicality for diesel particulate trapping. Preliminary results for trapping efficiency are reported as well as the development of electrically resistive lattices that can regenerate the structure by combusting the

  15. Microwave mode shifting antenna system for regenerating particulate filters

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA; Gregoire, Daniel J [Thousand Oaks, CA

    2011-04-26

    A regeneration system comprises a particulate matter (PM) filter including a microwave energy absorbing surface, and an antenna system comprising N antennas and an antenna driver module that sequentially drives the antenna system in a plurality of transverse modes of the antenna system to heat selected portions of the microwave absorbing surface to regenerate the PM filter, where N is an integer greater than one. The transverse modes may include transverse electric (TE) and/or transverse magnetic (TM) modes.

  16. Development of A Microwave Assisted Particulate Filter Regeneration System

    SciTech Connect

    Popuri, Sriram

    2001-08-05

    The need for active regeneration of diesel particulate filters and the advantages of microwave assisted regeneration are discussed. The current study has multiple objectives, which include developing a microwave assisted particulate filter regeneration system for future generation light-duty diesel applications, including PNGV type applications. A variable power 2.0 kW microwave system and a tuned waveguide were employed. Cavity geometry is being optimized with the aid of computational modeling and temperature measurements during microwave heating. A wall-flow ceramic-fiber filter with superior thermal shock resistance, high filtration efficiency, and high soot capacity was used. The microwave assisted particulate filter regeneration system has operated for more than 100 hours in an engine test-cell with a 5.9-liter diesel engine with automated split exhaust flow and by-pass flow capabilities. Filter regeneration was demonstrated using soot loads up to 10 g/liter and engine exhaust at idling flow rates as the oxygen source. A parametric study to determine the optimal combination of soot loading, oxidant flow rate, microwave power and heating time is underway. Preliminary experimental results are reported.

  17. Electrically heated particulate filter regeneration methods and systems for hybrid vehicles

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2010-10-12

    A control system for controlling regeneration of a particulate filter for a hybrid vehicle is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate regeneration. An engine control module controls operation of an engine of the hybrid vehicle based on the control of the current to the particulate filter.

  18. Diesel particulate abatement via wall-flow traps based on perovskite catalysts.

    PubMed

    Fino, Debora; Russo, Nunzio; Saracco, Guido; Specchia, Vito

    2003-01-01

    It is probably redundant to stress how extensive are nowadays the attempts to reduce the diesel particulate emissions from automotive and stationary sources. The present paper looks into a technology relied on a catalytic trap based on a SiC wall-flow monolith lined with suitable catalysts for the sake of promoting a more complete and faster regeneration after particulate capture. All the major steps of the catalytic filter preparation are dealt with, including: the synthesis and choice of the proper catalyst and trap materials, the development of an in situ catalyst deposition technique, the bench testing of the derived catalytic wall-flow. The best catalyst selected was the perovskite La0.9K0.1Cr0.9O3-delta. The filtration efficiency and the pressure drop of the catalytic and non-catalytic monoliths were evaluated on a diesel engine bench under various operating conditions. PMID:14672365

  19. Diesel engine exhaust trap particulate distribution and incineration balancing system

    SciTech Connect

    Mann, G. S.; Parker, W. J.; Tendulkar, D. V.

    1981-09-22

    A diesel particulate trapping and incineration system is disclosed that includes a porous wall monolithic ceramic filter element having dual openended inlet passages separated from adjacent exhaust passages by particulate filtering porous walls. A balancing system for the distribution and incineration of particulates is provided including dual inlet ducts feeding exhaust gases to both ends of the inlet passages and valve means for controlling the amount of inlet gas flow entering the open opposite ends of the inlet ducts. In this way control is obtained of distribution of particulates over the length of the inlet duct walls as well as of the incineration of particulates upon heating of the exhaust gases to incineration temperature.

  20. Grooved impactor and inertial trap for sampling inhalable particulate matter

    DOEpatents

    Loo, Billy W.

    1984-01-01

    An inertial trap and grooved impactor for providing a sharp cutoff for particles over 15 microns from entering an inhalable particulate sampler. The impactor head has a tapered surface and is provided with V-shaped grooves. The tapered surface functions for reducing particle blow-off or reentrainment while the grooves prevent particle bounce. Water droplets and any resuspended material over the 15 micron size are collected by the inertial trap and deposited in a reservoir associated with the impactor.

  1. Control of diesel soot and NOx emissions with a particulate trap and EGR.

    PubMed

    Liu, Rui-xiang; Gao, Xi-yan; Yang, De-sheng; Xu, Xiao-guang

    2005-01-01

    The exhaust gas recirculation (EGR), coupled with a high-collection efficiency particulate trap to simultaneously control smoke and NOx emissions from diesel engines were studied. This ceramic trap developed previously provided the soot cleaning efficiency of 99%, the regeneration efficiency reaches 80% and the ratio of success reaches 97%, which make EGR used in diesel possible. At the presence of EGR, opening of the regeneration control valve of the trap was over again optimized to compensate for the decrease of the oxygen concentration in the exhaust gas resulted from EGR. The results indicated the cleaning efficiency and regeneration performance of the trap were maintained at the same level except that the back pressure increased faster. A new EGR system was developed, which is based on a wide range oxygen (UEGO) sensor. Experiments were carried out under steady state conditions while maintaining the engine speed at 1600 r/min, setting the engine loads at 0%, 25%, 50%, 75% and 100% respectively. Throughout each test the EGR rate was kept at nine different settings and data were taken with the gas analyzer and UEGO sensor. Then, the EGR rate and engine load maps, which showed the tendencies of NOx, CO and HC emissions from diesel engine, were made using the measured data. Using the maps, the author set up the EGR regulation, the relationship between the optimal amounts of EGR flow and the equivalence ratio, sigma, where sigma = 14.5/AFR. PMID:16295898

  2. Emission abatement system utilizing particulate traps

    DOEpatents

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander

    2004-04-13

    Emission abatement system. The system includes a source of emissions and a catalyst for receiving the emissions. Suitable catalysts are absorber catalysts and selective catalytic reduction catalysts. A plasma fuel converter generates a reducing gas from a fuel source and is connected to deliver the reducing gas into contact with the absorber catalyst for regenerating the catalyst. A preferred reducing gas is a hydrogen rich gas and a preferred plasma fuel converter is a plasmatron. It is also preferred that the absorber catalyst be adapted for absorbing NO.sub.x.

  3. In-use performance of Daimler-Benz light-duty diesel particulate-trap oxidizers. Technical report

    SciTech Connect

    Baines, T.M.; Carlson, P.N.

    1988-02-01

    Ten in-use 1985 Mercedes-Benz light-duty diesel vehicles equiped with particulate trap oxidizer systems and with mileages between 30,000 and 50,000 miles were tested for particulate (PM) and gaseous exhaust (HC,CO, CO/sub 2/, and NOx) emissions. Seven out of ten vehicles had a first-test particulate emission level lower than a predetermined cutoff point of 0.35 g/mi. (The California PM certification standard for 1985 light-duty diesel vehicles is 0.4 g/mi.) Attempts were made to regenerate the particulate-trap oxidizers on the three vehicles that exceeded the 0.35 g/mi PM level and the vehicles were retested. Two of three retested vehicles passed the PM cutoff level.

  4. The effect of a ceramic trap on diesel particulate fractions

    SciTech Connect

    Wiczynski, P.D.; Johnson, J.H.

    1986-01-01

    A study of the Corning ceramic diesel particulate trap was conducted to investigate the trap's overall effect on diesel particulate fractions (soluble organic fraction, SOF; solid fraction, SOL; and sulfate fraction, SO/sub 4/) under four different engine loads at 1680 rpm. The trap was found to filter the SOL fraction most efficiently with the SOF and SO/sub 4/ fraction following in respective order. The filter efficiency of all fractions increased with increasing engine load. Graphs illustrating filter efficiency versus engine load indicate the slope of the SOF filter efficiency was smaller in magnitude than the TPM and SOL and SO/sub 4/ fractions, which had similar slopes. The different slope of the SOF filter efficiency indicates other influences may be involved with the reduction in the SOF through the trap. Particle size distribution measurements in diluted exhaust revealed particle formation downstream of the trap. The degree of particle formation was found to be dependent on both the dilute bulk stream SOL fraction and the hydrocarbon concentrations.

  5. Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration

    SciTech Connect

    Choi, Jae-Soon; Prikhodko, Vitaly Y; Partridge Jr, William P; Parks, II, James E; Norman, Kevin M; Huff, Shean P; Chambon, Paul H; Thomas, John F

    2010-01-01

    Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H2, CO, NH3, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.

  6. Studies on regeneration of diesel exhaust particulate filters by microwave energy

    SciTech Connect

    Zhang, C.; Min, J.; Chen, J.; Liang, L.; Liu, J.; Li, C.

    1994-09-01

    It is a new idea and beneficial attempt that the microwave heating technology is applied to regenerate the Diesel Exhaust Particulate Filters (DEPF). In this paper, the microwave regenerating mechanism of DEPF is studied and some laws in the process of microwave regeneration are found by experimental and theoretical analyses. Some basic measurements and calculations of microwave characteristic factors of three kinds of selected DEPF and the pure particulate are presented. A Microwave Regenerating Test System (MRTS) is set and the microwave regeneration of DEPF is tested. A mathematical model of two dimensional axi-symmetrical non-steady temperature field is set up which is suitable for microwave regenerating process of ceramic foam filters. The numerical calculation and practical analyses are stated. It is proved by these studies that the particulate in DEPF is selectively heated by microwave energy and moreover the microwave energy is less absorbed by the pure ceramic filters. The microwave regeneration of DEPF is feasible from the point of economic effects, social benefit and technology. The power of MRTS which makes DEPF safely and effectively regenerated can be controlled under 1000W, even around 600W. 5 refs., 12 figs., 5 tabs.

  7. Shielded regeneration heating element for a particulate filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-01-04

    An exhaust system includes a particulate filter (PF) that is disposed downstream from an engine. The PF filters particulates within an exhaust from the engine. A heating element heats particulate matter in the PF. A catalyst substrate or a flow converter is disposed upstream from said heating element. The catalyst substrate oxidizes the exhaust prior to reception by the heating element. The flow converter converts turbulent exhaust flow to laminar exhaust flow prior to reception by the heating element.

  8. Diesel particulate filter regeneration via resistive surface heating

    DOEpatents

    Gonze, Eugene V; Ament, Frank

    2013-10-08

    An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine; and a grid of electrically resistive material that is applied to an exterior upstream surface of the PF and that selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  9. Electrically heated particulate filter regeneration using hydrocarbon adsorbents

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2011-02-01

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material selectively heats exhaust passing through the upstream end to initiate combustion of particulates within the PF. A hydrocarbon adsorbent coating applied to the PF releases hydrocarbons into the exhaust to increase a temperature of the combustion of the particulates within the PF.

  10. Zone heated inlet ignited diesel particulate filter regeneration

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2012-06-26

    An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that is disposed downstream of the engine and that filters particulates from the exhaust; and a grid that includes electrically resistive material that is segmented by non-conductive material into a plurality of zones and wherein the grid is applied to an exterior upstream surface of the PF.

  11. Inductively heated particulate matter filter regeneration control system

    DOEpatents

    Gonze, Eugene V; Paratore Jr., Michael J; Kirby, Kevin W; Phelps, Amanda; Gregoire, Daniel J

    2012-10-23

    A system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas, a downstream end and zones. The system also includes a heating element. A control module selectively activates the heating element to inductively heat one of the zones.

  12. An Analysis of Field-Aged Diesel Particulate Filter Performance: Particle Emissions Before, During and After Regeneration

    SciTech Connect

    Barone, Teresa L; Storey, John Morse; Domingo, Norberto

    2010-01-01

    A field-aged, passive diesel particulate filter (DPF) employed in a school bus retrofit program was evaluated for emissions of particle mass and number concentration before, during and after regeneration. For the particle mass measurements, filter samples were collected for gravimetric analysis with a partial flow sampling system, which sampled proportionally to the exhaust flow. Total number concentration and number-size distributions were measured by a condensation particle counter and scanning mobility particle sizer, respectively. The results of the evaluation show that the number concentration emissions decreased as the DPF became loaded with soot. However after soot removal by regeneration, the number concentration emissions were approximately 20 times greater, which suggests the importance of the soot layer in helping to trap particles. Contrary to the number concentration results, particle mass emissions decreased from 6 1 mg/hp-hr before regeneration to 3 2 mg/hp-hr after regeneration. This indicates that nanoparticles with diameter less than 50 nm may have been emitted after regeneration since these particles contribute little to the total mass. Overall, average particle emission reductions of 95% by mass and 10,000-fold by number concentration after four years of use provided evidence of the durability of a field-aged DPF. In contrast to previous reports for new DPFs in which elevated number concentrations occurred during the first 200 seconds of a transient cycle, the number concentration emissions were elevated during the second half of the heavy-duty federal test procedure when high speed was sustained. This information is relevant for the analysis of mechanisms by which particles are emitted from field-aged DPFs.

  13. Enhancement in secondary particulate matter production due to mountain trapping

    NASA Astrophysics Data System (ADS)

    Yao, Teng; Fung, J. C. H.; Ma, H.; Lau, A. K. H.; Chan, P. W.; Yu, J. Z.; Xue, J.

    2014-10-01

    As China's largest economic development zone, the Pearl River Delta (PRD) is subject to particulate matter (PM) and visibility deterioration problems. Due to high PM concentration, haze days impacting ambient visibility have occurred frequently in this region. Besides visibility impairment, PM pollution also causes a negative impact on public health. These negative impacts have heightened the need to improve our understanding of the PM pollution of the PRD region. One major cause of the PRD pollution problem is cold front passages in the winter; however, the mechanism of pollution formation stays unclear. In this study, the Comprehensive Air Quality Model (CAMx) is utilized to investigate the detailed PM production and transport mechanisms in the PRD. Simulated concentrations of PM2.5 species, which have a good correlation with observation, show that sulfate and nitrate are the dominant pollutants among different PM2.5 species. Before the cold front passage a large amount of gas-phase and particle-phase pollutants are transported to the mountainous regions in the north of the PRD, and become trapped by the terrain. Over the mountain regions, cloud driven by upwelling flow promotes aqueous-phase reactions including oxidations of PM precursors such as SO2 and NO2. By this process, production of secondary PM is enhanced. When the cold front continues to advance further south, PM is transported to the PRD cities, and suppressed into a thin layer near the ground by a low planetary boundary layer (PBL). Thus high PM concentration episodes take place in the PRD cities. After examining production and transportation pathways, this study presents that the complex terrain configuration would block pollutant dispersion, provide cloudy environment, and advance secondary PM production. Previous studies have pointed out that pollution emitted from outside this region largely influences the air quality in the PRD; however, this study shows that pollutants from the outside could be

  14. Development of Metal Substrate for Denox Catalysts and Particulate Trap

    SciTech Connect

    Pollard, Michael; Habeger, Craig; Frary, Megan; Haines, Scott; Fluharty, Amy; Dakhoul, Youssef; Carr, Michael; Park, Paul; Stefanick, Matthew; DaCosta, Herbert; Balmer-Millar, M Lou; Readey, Michael; McCluskey, Philip

    2005-12-31

    The objective of this project was to develop advanced metallic catalyst substrate materials and designs for use in off-highway applications. The new materials and designs will be used as catalyst substrates and diesel particulate traps. They will increase durability, reduce flow resistance, decrease time to light-off, and reduce cost relative to cordierite substrates. Metallic catalyst substrates are used extensively for diesel oxidation catalysts and have the potential to be used in other catalytic systems for diesel engines. Metallic substrates have many advantages over ceramic materials including improved durability and resistance to thermal shock and vibration. However, the cost is generally higher than cordierite. The most common foil material used for metallic substrates is FeCr Alloy, which is expensive and has temperature capabilities beyond what is necessary for diesel applications. The first task in the project was Identification and Testing of New Materials. In this task, several materials were analyzed to determine if a low cost substitute for FeCr Alloy was available or could be developed. Two materials were identified as having lower cost while showing no decrease in mechanical properties or oxidation resistance at the application temperatures. Also, the ability to fabricate these materials into a finished substrate was not compromised, and the ability to washcoat these materials was satisfactory. Therefore, both candidate materials were recommended for cost savings depending on which would be less expensive in production quantities. The second task dealt with the use of novel flow designs to improve the converter efficiency while possibly decreasing the size of the converter to reduce cost even more. A non-linear flow path was simulated to determine if there would be an increase in efficiency. From there, small samples were produced for bench testing. Bench tests showed that the use of non-linear channels significantly reduced the light

  15. Wireless zoned particulate matter filter regeneration control system

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA

    2011-10-04

    An assembly includes a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and multiple zones. An absorbing layer absorbs microwave energy in one of N frequency ranges and is arranged with the upstream end. N is an integer. A frequency selective filter has M frequency selective segments and receives microwave energy in the N frequency ranges. M is an integer. One of the M frequency selective segments permits passage of the microwave energy in one of the N frequency ranges and does not permit passage of microwave energy in the other of the N frequency ranges.

  16. Integrated exhaust and electrically heated particulate filter regeneration systems

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2013-01-08

    A system includes a particulate matter (PM) filter that includes multiple zones. An electrical heater includes heater segments that are associated with respective ones of the zones. The electrical heater is arranged upstream from and proximate with the PM filter. A post-fuel injection system injects fuel into at least one of a cylinder of an engine and an exhaust system. A control module is configured to operate in a first mode that includes activating the electrical heater to heat exhaust of the engine. The control module is also configured to operate in a second mode that includes activating the post-injection system to heat the exhaust. The control module selectively operates in at least one of the first mode and the second mode.

  17. Characterization of particle- and vapor-phase organic fraction emissions from a heavy-duty diesel engine equipped with a particle trap and regeneration controls

    SciTech Connect

    Bagley, S.T.; Gratz, L.D.; Leddy, D.G.; Johnson, J.H. )

    1993-07-01

    The effects of a ceramic particle trap on the chemical and biological character of the exhaust from a heavy-duty diesel engine have been studied during steady-state operation and during periods of trap regeneration. Phase I of this project involved developing and refining the methods using a Caterpillar 3208 engine, and Phase II involved more detailed experiments with a Cummins LTA10-300 engine, which met Federal 1988 particulate matter standards, and a ceramic particle trap with built-in regeneration controls. During the Phase I experiments, samples wee collected at the Environmental Protection Agency (EPA)* steady-state mode 4 (50% load at intermediate speed). Varying the dilution ratio to obtain a constant filter-face temperature resulted in less variability in total particulate matter (TPM), particle-associated soluble organic fraction (SOF), solids (SOL), and polynuclear aromatic hydrocarbon (PAH) levels than sampling with a constant dilution ratio and allowing filter-face temperature to vary. A modified microsuspension Ames assay detected mutagenicity in the SOF samples, and in the semivolatile organic fraction extracted from XAD-2 resin (XAD-2 resin organic component, XOC) with at least 10 times less sample mass than the standard plate incorporation assay. Measurement techniques for PAH and nitro-PAH in the SOF and XOC also were developed during this portion of the project. For the Phase II work, two EPA steady-state rated speed modes were selected: mode 11 (25% load) and mode 9 (75% load). With or without the trap, filter-face temperatures were kept at 45 degrees +/- 2 degrees C, nitrogen dioxide (NO2) levels less than 5 parts per million (ppm), and sampling times less than 60 minutes. Particle sizes were determined using an electrical aerosol analyzer. Similar sampling methods were used when the trap was regenerated, except that a separate dilution tunnel and sampling system was designed and built to collect all of the regeneration emissions.

  18. Progression of soot cake layer properties during the systematic regeneration of diesel particulate filters measured with neutron tomography

    SciTech Connect

    Toops, Todd J.; Pihl, Josh A.; Finney, Charles E. A.; Gregor, Jens; Bilheux, Hassina

    2015-01-16

    Although particulate filters (PFs) have been a key component of the emission control system for modern diesel engines, there remain significant questions about the basic regeneration behavior of the filters and how it changes with accumulation of increasing soot layers. This effort describes a systematic deposition and regeneration of particulate matter in 25-mm diameter × 76-mm long wall-flow PFs composed of silicon carbide (SiC) material. The initial soot distributions were analyzed for soot cake thickness using a nondestructive neutron imaging technique. With the PFs intact, it was then possible to sequentially regenerate the samples and reanalyze them, which was performed after nominal 20, 50, and 70 % regenerations. The loaded samples show a relatively uniform distribution of particulate with an increasing soot cake thickness and nearly identical initial density of 70 mg/cm3. Throughout regeneration, the soot cake thickness initially decreases significantly while the density increases to 80–90 mg/cm3. After ~50 % regeneration, the soot cake thickness stays relatively constant, but instead, the density decreases as pores open up in the layer (~35 mg/cm3 at 70 % regeneration). Here, complete regeneration initially occurs at the rear of the PF channels. With this information, a conceptual model of the regeneration is proposed.

  19. Progression of soot cake layer properties during the systematic regeneration of diesel particulate filters measured with neutron tomography

    DOE PAGESBeta

    Toops, Todd J.; Pihl, Josh A.; Finney, Charles E. A.; Gregor, Jens; Bilheux, Hassina

    2015-01-16

    Although particulate filters (PFs) have been a key component of the emission control system for modern diesel engines, there remain significant questions about the basic regeneration behavior of the filters and how it changes with accumulation of increasing soot layers. This effort describes a systematic deposition and regeneration of particulate matter in 25-mm diameter × 76-mm long wall-flow PFs composed of silicon carbide (SiC) material. The initial soot distributions were analyzed for soot cake thickness using a nondestructive neutron imaging technique. With the PFs intact, it was then possible to sequentially regenerate the samples and reanalyze them, which was performedmore » after nominal 20, 50, and 70 % regenerations. The loaded samples show a relatively uniform distribution of particulate with an increasing soot cake thickness and nearly identical initial density of 70 mg/cm3. Throughout regeneration, the soot cake thickness initially decreases significantly while the density increases to 80–90 mg/cm3. After ~50 % regeneration, the soot cake thickness stays relatively constant, but instead, the density decreases as pores open up in the layer (~35 mg/cm3 at 70 % regeneration). Here, complete regeneration initially occurs at the rear of the PF channels. With this information, a conceptual model of the regeneration is proposed.« less

  20. Influence of particulate trap oxidizers on emission of mutagenic compounds by diesel automobiles.

    PubMed

    Rasmussen, R E; Devillez, G; Smith, L R

    1989-06-01

    Diesel exhaust particles are known to contain mutagenic and carcinogenic chemicals. The aim of this study was to determine whether, and to what extent, catalytic particulate trap oxidizers on light-duty diesel engines may reduce the emission of particle-associated mutagenic chemicals into the environment. Exhaust particles were collected from Mercedes Benz and Volkswagen diesel automobiles, equipped with or without the manufacturer's exhaust traps, while running on a chassis dynamometer under specified load conditions. Exhaust particles were collected from a dilution tunnel onto 20" X 20" Teflon-coated fiberglass filters. Mutagenesis tests of dichloromethane (DCM) extracts of the particles were conducted using the Ames Salmonella bacterial test system. The mutation rate was calculated in terms of histidine revertants per mile of travel during a set of standard test cycles. With both vehicles the traps produced an 87-92% reduction in the total amount of particulate material collected by the filters. There was no significant change in the specific mutagenic activity (revertants per microgram of DCM particle extract) with or without the traps. These studies support the notion that installation of exhaust traps which reduce particulate emission on diesel-powered vehicles will also reduce the emission of particle-associated mutagenic and carcinogenic materials into the environment. PMID:2473105

  1. Electron microscopic time-lapse visualization of surface pore filtration on particulate matter trapping process.

    PubMed

    Sanui, Ryoko; Hanamura, Katsunori

    2016-09-01

    A scanning electron microscope (SEM) was used to dynamically visualize the particulate matter (PM) trapping process on diesel particulate filter (DPF) walls at a micro scale as 'time-lapse' images corresponding to the increase in pressure drop simultaneously measured through the DPF. This visualization and pressure drop measurement led to the conclusion that the PM trapping in surface pores was driven by PM bridging and stacking at constricted areas in porous channels. This caused a drastic increase in the pressure drop during PM accumulation at the beginning of the PM trapping process. The relationship between the porous structure of the DPF and the depth of the surface pore was investigated in terms of the porosity distribution and PM penetration depth near the wall surface with respect to depth. The pressure drop calculated with an assumed surface pore depth showed a good correspondence to the measured pressure drop. PMID:26923765

  2. Variable power distribution for zoned regeneration of an electrically heated particulate filter

    DOEpatents

    Bhatia, Garima [Bangalore, IN; Gonze, Eugene V [Pinckney, MI

    2012-04-03

    A system includes a particulate matter (PM) filter with multiple zones, an electric heater and a control module. The electrical heater includes heater segments, which each correspond with a respective one of the zones. The electrical heater is arranged upstream from and is proximate with the PM filter. The control module selectively applies a first energy level to a first one of the zones via a first one of the heater segments to initiate regeneration in the first zone. The control module also selectively applies a second energy level that is less than the first energy level to a second one of the zones via a second one of the heater segments to initiate regeneration in the second zone.

  3. Electrically resistive coating for remediation (regeneration) of a diesel particulate filter and method

    DOEpatents

    Phelps, Amanda C.; Kirby, Kevin K.; Gregoire, Daniel J.

    2012-02-14

    A resistively heated diesel particulate filter (DPF). The resistively heated DPF includes a DPF having an inlet surface and at least one resistive coating on the inlet surface. The at least one resistive coating is configured to substantially maintain its resistance in an operating range of the DPF. The at least one resistive coating has a first terminal and a second terminal for applying electrical power to resistively heat up the at least one resistive coating in order to increase the temperature of the DPF to a regeneration temperature. The at least one resistive coating includes metal and semiconductor constituents.

  4. Effect of fuel formulation on soot properties and regeneration of diesel particulate filters

    NASA Astrophysics Data System (ADS)

    Song, Juhun

    A critical requirement for implementation of particulate filters on diesel applications is having a low "break even temperature" (BET), defined as the exhaust temperature at which particulate removal occurs at roughly the same rate as particulate deposition. This needs to occur at sufficiently low temperatures either to fit within the exhaust temperature range of the typical duty cycle for a diesel vehicle or to require a minimum of active regeneration. Since catalytic coating on the diesel particulate filter was used in this study, one important factor in lowering the BET is catalyst activity for NO conversion to NO2, which can be adversely affected by sulfur content in the fuel, because the sulfur dioxide generated during diesel combustion can poison catalyst activity. However, a second important factor that significantly affects DPF regeneration behavior is particulate reactivity, which is related to the chemical and physical properties of diesel particulates. Differences in diesel combustion characteristics and fuel formulation can be a source of variation in these soot properties. The first phase of this work considered low sulfur diesel fuel (325 ppm sulfur), ultra low sulfur fuel (15 ppm sulfur) and 20 wt.% biodiesel blends. The lowest break even temperature was observed for the 325 ppm sulfur fuel blended with 20 wt.% biodiesel, due in part to increased engine-out NOx emissions with the B20 blend, which shows that engine-out exhaust composition can be as or more important than sulfur content. Furthermore, examination of the soot generated with these fuels shows a variation in the nanostructure and the oxidative reactivity for soots derived from the different fuels. The second phase of work has been performed by adding neat alternative fuels such as Biodiesel (B100) and Fisch-Tropsch (FT) fuel. B100 soot displays a similar initial soot structure as soot from three other fuels, ultra low sulfur diesel, B20 (a 20 wt.% blend of biodiesel and ultra low sulfur

  5. Experimental study on filtration and continuous regeneration of a particulate filter system for heavy-duty diesel engines.

    PubMed

    Tang, Tao; Zhang, Jun; Cao, Dongxiao; Shuai, Shijin; Zhao, Yanguang

    2014-12-01

    This study investigated the filtration and continuous regeneration of a particulate filter system on an engine test bench, consisting of a diesel oxidation catalyst (DOC) and a catalyzed diesel particulate filter (CDPF). Both the DOC and the CDPF led to a high conversion of NO to NO2 for continuous regeneration. The filtration efficiency on solid particle number (SPN) was close to 100%. The post-CDPF particles were mainly in accumulation mode. The downstream SPN was sensitively influenced by the variation of the soot loading. This phenomenon provides a method for determining the balance point temperature by measuring the trend of SPN concentration. PMID:25499491

  6. Flight prototype regenerative particulate filter system development

    NASA Technical Reports Server (NTRS)

    Green, D. C.; Garber, P. J.

    1974-01-01

    The effort to design, fabricate, and test a flight prototype Filter Regeneration Unit used to regenerate (clean) fluid particulate filter elements is reported. The design of the filter regeneration unit and the results of tests performed in both one-gravity and zero-gravity are discussed. The filter regeneration unit uses a backflush/jet impingement method of regenerating fluid filter elements that is highly efficient. A vortex particle separator and particle trap were designed for zero-gravity use, and the zero-gravity test results are discussed. The filter regeneration unit was designed for both inflight maintenance and ground refurbishment use on space shuttle and future space missions.

  7. Collection method for chemical particulates on surfaces with detection using thermal desorption-ion trap mass spectrometry.

    PubMed

    Ewing, K J; Gibson, D; Sanghera, J; Miklos, F

    2013-05-01

    Successful analysis of particulate/low vapor pressure analytes such as explosives and toxic chemicals, and commercial pesticides require new sampling tools that enable detection of these analytes using current vapor phase detection instruments. We describe a sampling approach that uses stainless steel screens coated with a sticky polydimethyl siloxane (PDMS) coating to capture particulates from surfaces. Preliminary results for the collection of dimethyl methylphosphonate (DMMP) sorbed onto silica gel (SG) particulates (DMMP/SG) from a surface with subsequent analysis by thermal desorption-cylindrical ion trap mass spectrometry (TD-CITMS) are reported. PMID:23601282

  8. Diesel particulate filter (DPF) regeneration by electrical heating of resistive coatings

    DOEpatents

    Williamson, Weldon S.; Gonze, Eugene V.

    2008-12-30

    An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is integrally formed in an upstream end of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

  9. Effect of Ceria on the Storage and Regeneration Behavior of a Model Lean NOx Trap Catalyst

    SciTech Connect

    Ji, Yaying; Toops, Todd J; Crocker, Dr. Mark

    2007-01-01

    In this study the effect of ceria addition on the performance of a model Ba-based lean NO{sub x} trap (LNT) catalyst was examined. The presence of ceria improved NO{sub x} storage capacity in the temperature range 200-400 C under both continuous lean and lean-rich cycling conditions. Temperature-programmed experiments showed that NO{sub x} stored in the ceria-containing catalyst was thermally less stable and more reactive to reduction with both H{sub 2} and CO as reductants, albeit at the expense of additional reductant consumed by reduction of the ceria. These findings demonstrate that the incorporation of ceria in LNTs not only improves NO{sub x} storage efficiency but also positively impacts LNT regeneration behavior.

  10. An approach towards risk assessment for the use of a synergistic metallic diesel particulate filter (DPF) regeneration additive

    NASA Astrophysics Data System (ADS)

    Cook, S. L.; Richards, P. J.

    The motivations for legislation to set diesel emissions limits requiring the use of diesel particulate filters (DPF) are summarised. If the DPF is to be used, demonstration of regeneration (combustion of collected carbonaceous material) without additional emission problems is important. Potential metal emissions resulting from use of a synergistic Fe/Sr fuel-borne DPF regeneration catalyst are evaluated. Measurements over legislated drive cycle estimate the metals to comprise 1-2% of the solid material emitted, and the DPF to collect >99% of such material. Diesel particulate matter is used as a marker, and from existing air quality and emission inventory measurements, maximum conceivable increases of <1 ng m -3 and <250 pg m -3 for iron and strontium, respectively, are calculated. From environmental assessment levels, derived from occupational exposure limits, these are not significant. For humans, daily ingress of airborne Sr is estimated at 3.5 ng. This is small compared to the known Sr contents of lungs, blood and the daily diet. In the context of reductions of other metals, particulate matter and pollutant emissions, the overall assessment is that the use of these metals to enable use of a DPF allows significant net environmental benefit to be obtained.

  11. Short-term changes in particulate fluxes measured by drifting sediment traps during end summer oligotrophic regime in the NW Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Marty, J. C.; Goutx, M.; Guigue, C.; Leblond, N.; Raimbault, P.

    2009-01-01

    Short-term changes in the flux of particulate matter were determined in the central north western Mediterranean Sea (near DYFAMED site) using drifting sediment traps at 200 m depth in the course of the DYNAPROC 2 cruise (14 September-17 October, 2004). In this period of marked water column stratification, POC fluxes varied by an order of magnitude, in the range of 0.03-0.29 mg C m-2 h-1 over the month and showed very rapid and high variations. Particulate carbon export represented less than 5% of integrated primary production, suggesting that phytoplankton production was essentially sustained by internal recycling of organic matter and retained within the photic zone. While PON and POP fluxes paralleled one another, the elemental ratios POC/PON and POC/POP, varied widely over short-term periods. Values were always higher than the conventional Redfield ratio indicating that the settling material was in part degraded. This was confirmed by the very low chlorophyll-a flux recorded in the traps (mean 0.017 μg m-2 h-1), the high phaeopigment and free lipid concentrations of the settling material, which all together indicated that the organic matter reaching 200 m depth was reworked (by grazing, fecal pellets production, degradation, . . .) and that algal sinking made a small contribution to the downward flux. Over time, the relative abundance of individual lipid classes in organic matter (OM) changed from glycolipids-dominated to neutral (wax esters, triglycerides) and phospholipids-dominated, suggesting ecosystem maturation as well as rapid and continual exchanges between dissolved, suspended and sinking pools. Our most striking result was documenting the rapid change in fluxes of the various measured parameters. In the situation encountered here, with dominant regenerated production, the effect of wind events was a decrease of fluxes (probably through reduction of grazing). But fluxes increased as soon as calm conditions settle.

  12. Analysis of particulate matter collected by sediment traps and from sediment Cores

    NASA Astrophysics Data System (ADS)

    Collier, Bob; Dymond, Jack; Conard, Roberta; Robbins, Jim

    These contributions are primarily directed at elemental analyses for major and trace cations and silicon on particles collected by sediment traps and sediment cores; samples typically having at least several hundred milligrams available. The techniques outlined below and other wet chemical methods are reviewed in more detail in an OSU technical report by Robbins et al. [1984]. Typically, our group filters water samples for trace metal analyses immediately upon their arrival at the surface. The primary emphasis of these techniques focuses on the dissolved material. Since we have not had a full clean-lab available, we subsample the Niskins immediately using a semi-closed connection to large mouth bottles (LPE) which minimizes atmospheric exposure to contamination. The samples are then vacuum filtered within a portable laminar-flow hood (HEPA filtered) using plastic filtration "chimneys" (Millipore or Nuclepore) placed over a plastic vacuum chamber which contains the filtrate sample bottle. Filtration is carried out with 1 N HCl acid-leached Nuclepore or Poretics filters (0.4 μm) and the filtrate is collected directly into the final sample bottle. Both filtered and unfiltered subsamples are acidified to a pH<2 with 2 mL 6 N HCl L-1 sample using subboiling-distilled HCl, and the difference in concentration between the filtered and unfiltered sample is taken to represent an acid-labile particulate fraction.

  13. Analysis of carotenoids and chlorophylls in suspended particulate matter, sediment trap samples, and surface sediments

    NASA Astrophysics Data System (ADS)

    Repeta, Daniel J.

    For shipboard analysis of suspended particulate matter, 0.5-1 L of seawater is filtered through a pre-extracted or pre-combusted (450°C) 47 mm Whatman GFsol;F glass fiber filter under low vacuum. The filter is immediately placed in a glass grinding tube at 0°C, 2 mL of acetone and 0.1 mL of the internal standard (Zn pyrophaeobutyn-a or canthaxanthin in acetone) added, and the sample ground at high speed for 2 min. The sample can be stored at 0°C for a short period of time (<4 hr) at this stage without measurable degradation of the pigments. After centrifugation, the sample is ready for analysis by high pressure liquid chromatography (HPLC). Sediment trap samples can likewise be filtered and handled in the same manner. If the sample is to be stored for future analysis, the filter is folded and placed inside a heat sealed plastic bag and rapidly frozen to -20°C. Storage above -20°C, or slow freezing of filtered algal samples results in considerable pigment degradation.

  14. Resistive heater geometry and regeneration method for a diesel particulate filter

    DOEpatents

    Phelps, Amanda; Kirby, Kevin W.; Gregoir, Daniel J.

    2011-10-25

    One embodiment of the invention includes a diesel particulate filter comprising a first face and a second face; a bottom electrode layer formed over the first face of the diesel particulate filter; a middle resistive layer formed over a portion of the bottom electrode layer; and a top electrode layer formed over a portion of the middle resistive layer.

  15. Amino acids and amino sugars of surface particulate and sediment trap material from waters of the Scotia sea

    NASA Astrophysics Data System (ADS)

    Müller, Peter J.; Suess, Erwin; AndréUngerer, C.

    1986-06-01

    Two coarse suspended matter size classes (75-150 μm, >150 μm), from subantarctic and Antarctic surface waters in the Scotia Sea, and sediment trap material from the Drake Passage were analyzed for their elemental, amino acid and amino sugar compositions. Different proportions of biogenic silica and organic matter in the particulates of both regions reflect a zonation of primary producers, with diatoms predominating in the waters south of the Polar Front. High SiO 2:C org ratios, elevated proportions of hydroxyl amino acids, and essentially identical amino acid compositions for both size classes indicate that diatoms account for a major portion of the particulate proteinaceous material from Antarctic surface waters. Of the two amino sugars, glucosamine and galactosamine, only the former was detected in significant amounts in the surface particulates. The total amino acid : glucosamine ratio was lowest in surface particulates of subantarctic waters and increased with increasing latitude in Antarctic waters, reaching the highest values in the region of the Bransfield Strait. Moreover, amino acid : glucosamine ratios suggest day-night differences in particulate matter resulting from primary productivity in conjunction with the feeding behavior of vertical migrators. Significantly different amino acid and amino sugar compositions of the surface particulate matter >75 μm in size and the sediment trap material reflect fractionation processes at shallow depths. Remineralization and digestion of organic matter appear to result in a relative enrichment of structural components (diatom cell walls, chitinaceous matter) in fecal pellets and other large aggregates. The preferential preservation of diatom cell wall material is indicated by a strong relative enrichment of glycine and hydroxyl amino acids in the sediment trap material in conjunction with high biogenic silica:organic carbon ratios. Similarly, low amino acid:glucosamine ratios in the sediment trap material from

  16. Characterization of Lean NOx Trap Catalysts with In-Cylinder Regeneration Strategies

    SciTech Connect

    Parks, II, James E; Huff, Shean P; Swartz, Matthew M; West, Brian H

    2008-01-01

    Lean NOx trap (LNT) catalysts with different formulations have been characterized on a light-duty diesel engine platform. Two in-cylinder regeneration strategies were used during the study. The reductant chemistry differed for both strategies with one strategy having high levels of CO and H2 and the other strategy having a higher hydrocarbon component. The matrix of LNT catalysts that were characterized included LNTs with various sorbate loads and varying ceria content; the sorbate was Ba. Intra-catalyst measurements of exhaust gas composition were obtained at one quarter, one half, and three quarters of the length of the catalysts to better understand the affect of formulation on performance. Exhaust analysis with FTIR allowed measurement of NH3 and thereby, a measurement of N2 selectivity for the catalysts. Although overall NOx conversion increased with increasing sorbate load, the formation of NH3 increased as well. Interestingly, the presence of ceria in the LNT allowed NH3 to be oxidized to N2 in the downstream half of the LNT, thereby greatly reducing the tailpipe NH3 level. Despite different capacities for NOx sorption, a similar pattern for NOx adsorption as a function of the length of the catalyst was observed for catalysts with 8% and 20% Ba load. Results from these engine based experiments will be discussed relative to the body of literature concerning fundamental and model LNT studies.

  17. Loading and Regeneration Analysis of a Diesel Particulate Filter with a Radio Frequency-Based Sensor

    SciTech Connect

    Sappok, Alex; Prikhodko, Vitaly Y; Parks, II, James E

    2010-01-01

    Accurate knowledge of diesel particulate filter (DPF) loading is critical for robust and efficient operation of the combined engine-exhaust aftertreatment system. Furthermore, upcoming on-board diagnostics regulations require on-board technologies to evaluate the status of the DPF. This work describes the application of radio frequency (RF) based sensing techniques to accurately measure DPF soot levels and the spatial distribution of the accumulated material. A 1.9L GM turbo diesel engine and a DPF with an RF-sensor were studied. Direct comparisons between the RF measurement and conventional pressure-based methods were made. Further analysis of the particulate matter loading rates was obtained with a mass-based soot emission measurement instrument (TEOM). Comparison with pressure drop measurements show the RF technique is unaffected by exhaust flow variations and exhibits a high degree of sensitivity to DPF soot loading and good dynamic response. Additional computational and experimental work further illustrates the spatial resolution of the RF measurements. Based on the experimental results, the RF technique shows significant promise for improving DPF control enabling optimization of the combined engine-aftertreatment system for improved fuel economy and extended DPF service life.

  18. Method and apparatus for regenerating cold traps within liquid-metal systems

    DOEpatents

    McKee, Jr., John M.

    1976-01-01

    Oxide and hydride impurities of a liquid metal such as sodium are removed from a cold trap by heating to a temperature at which the metal hydroxide is stable in a molten state. The partial pressure of hydrogen within the system is measured to determine if excess hydride or oxide is present. Excess hydride is removed by venting hydrogen gas while excess oxide can be converted to molten hydroxide through the addition of hydrogen. The resulting, molten hydroxide is drained from the trap which is then returned to service at cold trap temperatures within the liquid-metal system.

  19. Weekly resolution particulate flux from a sediment trap in the northern Gulf of Mexico, 2008-2012

    USGS Publications Warehouse

    Richey, Julie N.; Reynolds, Caitlin E.; Tappa, Eric; Thunell, Robert

    2014-01-01

    The U.S. Geological Survey anchored a sediment trap in the northern Gulf of Mexico to collect time-series data on sediment flux from 2008 to 2012. There are continuous measurements of total mass flux and organic carbon flux (ogC) at 7–14 day resolution from 2008 to 2012. The flux of calcium carbonate (CaCO3), particulate nitrogen (nitro), and biogenic silica (Opal) were also measured from January-December, 2008. The mass flux ranged from 0.01 g m-2day-1 (grams per square meter per day) to 2.50 g m-2day-1, with a mean mass flux of 0.20 g m -2day-1 over the 5-year study period.

  20. Multifunctional Antioxidants: Regenerable Radical-Trapping and Hydroperoxide-Decomposing Ebselenols.

    PubMed

    Kumar, Shailesh; Yan, Jiajie; Poon, Jia-Fei; Singh, Vijay P; Lu, Xi; Karlsson Ott, Marjam; Engman, Lars; Kumar, Sangit

    2016-03-01

    Regenerable, multifunctional ebselenol antioxidants were prepared that could quench peroxyl radicals more efficiently than α-tocopherol. These compounds act as better mimics of the glutathione peroxidase enzymes than ebselen. Production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in human mononuclear cells was considerably decreased upon exposure to the organoselenium compounds. At a concentration of 25 μm, the ebselenol derivatives showed minimal toxicity in pre-osteoblast MC3T3 cells. PMID:26879742

  1. Electrically heated particulate filter restart strategy

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-07-12

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a propagation module that estimates a propagation status of combustion of particulate matter in the particulate filter. A regeneration module controls current to the particulate filter to re-initiate regeneration based on the propagation status.

  2. Characterization of particle and vapor-phase organic fraction emissions from a heavy-duty diesel engine equipped with a particle trap and regeneration controls. Research report, July 1987-April 1991

    SciTech Connect

    Bagley, S.T.; Gratz, L.D.; Leddy, D.G.; Johnson, J.H.

    1993-07-01

    The effect of a particle trap on the emissions from a heavy-duty diesel engine was examined. The total particles (TPM), the particle-associated soluble organic fraction (SOF), the semivolatile organic fraction (XOC), and the sulfate-containing solid fraction (SOL) from the exhaust were collected during: (1) operation under 25% and 75% load, and (2) during trap regeneration. Particle sizes were determined and bacterial mutagenicity and 12 biologically active polynuclear aromatic hydrocarbons (PAH) and their nitrated derivatives (nitro-PAH) were measured in the SOF and XOC. The trap reduced the TPM, SOF, and SOL by approximately 90%. Although total particle volume was decreased, trap use increased the number of smaller particles. Mutagenicity in the TPM and SOF also was diminished by about 90%, reflecting a decrease in the PAH and nitro-PAH. NOx, was not changed at any load, but hydrocarbon, XOC, and sulfate were reduced by 45-80% only at 75% load. PAH and nitro-PAH in the XOC were generally not affected by trap use. However, the trap reduced XOC-associated mutagenicity to undetectable levels. There was difficulty in measuring emissions from trap regeneration tests because it was difficult to determine when the regeneration was completed. The short regeneration period produced higher concentrations of TPM and SOF, but these were small relative to average emission concentrations over the entire trap loading and regeneration period.

  3. Effect of Aging on the NOx Storage and Regeneration Characteristics of Fully Formulated Lean NOx Trap Catalysts

    SciTech Connect

    Ji, Yaying; Easterling, Vencon; Graham, Uschi; Fisk, Courtney; Crocker, Mark; Choi, Jae-Soon

    2011-01-01

    In order to elucidate the effect of washcoat composition on lean NO{sub x} trap (LNT) aging characteristics, fully formulated monolithic LNT catalysts containing varying amounts of Pt, Rh and BaO were subjected to accelerated aging on a bench reactor. Subsequent catalyst evaluation revealed that in all cases aging resulted in deterioration of the NO{sub x} conversion as a consequence of impaired NO{sub x} storage and NO{sub x} reduction functions, while increased selectivity to NH{sub 3} was observed in the temperature range 250--450 C. Elemental analysis, H{sub 2} chemisorption and TEM data revealed two main changes which account for the degradation in LNT performance. First, residual sulfur in the catalysts, associated with the Ba phase, decreased catalyst NO{sub x} storage capacity. Second, sintering of the precious metals in the washcoat occurred, resulting in decreased contact between the Pt and Ba, and hence in less efficient NO{sub x} spillover from Pt to Ba during NO{sub x} adsorption, as well as decreased rates of reductant spillover from Pt to Ba and reverse NO{sub x} spillover during catalyst regeneration. For the aged catalysts, halving the Pt loading from 100 to 50 g/ft{sup 3} was found to result in a significant decrease in overall NO{sub x} conversion, while for catalysts with the same 100 g/ft{sup 3} Pt loading, increasing the relative amount of Pt on the NO{sub x} storage components (BaO and La-stabilized CeO{sub 2}), as opposed to an Al{sub 2}O{sub 3} support material (where it was co-located with Rh), was found to be beneficial. The effect of Rh loading on aged catalyst performance was found to be marginal within the range studied (10--20 g/ft{sup 3}), as was the effect of BaO loading in the range 30--45 g/L.

  4. Development of a filter regeneration system for advanced spacecraft fluid systems

    NASA Technical Reports Server (NTRS)

    Behrend, A. F., Jr.; Descamp, V. A.

    1974-01-01

    The development of a filter regeneration system for efficiently cleaning fluid particulate filters is presented. Based on a backflush/jet impingement technique, the regeneration system demonstrated a cleaning efficiency of 98.7 to 100%. The operating principles and design features are discussed with emphasis on the primary system components that include a regenerable filter, vortex particle separator, and zero-g particle trap. Techniques and equipment used for ground and zero-g performance tests are described. Test results and conclusions, as well as possible areas for commercial application, are included.

  5. Mutagenic effect of extracts from particulate matter collected with sediment traps in the archipelago of Stockholm and the open northern Baltic

    SciTech Connect

    Broman, D.; Naef, C.; Rannug, U. )

    1994-11-01

    The load of various hydrophobic organic compounds (HOCs) on the Baltic Sea aquatic environment is considerable. This investigation samples the water area around Stockholm, of special concern since it is one of the most densely populated urban areas in the Baltic region. Stockholm also houses several power plants, municipal waste incinerators, waste water treatment plants, ports and oil terminals. The runoff from a large lake also passes through the estuarine-like archipelago of Stockholm. Due to the high particulate-water partition coefficients (K[sub p]) of most ecotoxicologically relevant HOCs, particulate matter (PM) becomes very important for occurrence and distribution in the aquatic environment. This PM is the basic food source for important organisms in the benthic, pelagic and littoral parts of the aquatic ecosystem. The load of various HOCs such as petrogenic hydrocarbons (PHCs), various polynuclear aromatic compounds (PACs), and chlorinated hydrocarbons such as polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in association with PM in the aquatic environment of the Stockholm area is well documented. However, the ecotoxicological relevance of organic extracts of PM, including the above identified compounds and various unidentified HOCs, is not fully evaluated. To evaluate the genotoxic potential of extracts of PM, collected with sediment traps in the Stockholm water area and in the open northern Baltic, we used the Ames test on Salmonella typhimurium strain TA100, with and without a metabolizing system. After extraction and before the mutagenicity tests all PM samples were fractionated on an HPLC-system into three fractions containing aliphatic/monoaromatic-, diaromatic, (containing, e.g., PCDD/Fs and PCBs) and polyaromatic compounds (containing various PACs). The relative mutagenic potential of these fractions at the different sediment trap sampling stations are discussed and evaluated. 13 refs., 1 tab.

  6. Using natural radionuclides 210Po and 210Pb in GEOTRACES data from the North Atlantic to estimate particulate and biologically reactive trace element scavenging and regeneration

    NASA Astrophysics Data System (ADS)

    Rigaud, Sylvain; Church, Thomas

    2016-04-01

    Central to understanding the coupling of oceanic carbon and nutrient cycles are trace elements that can limit ocean production and ultimately climate change. These include elements that are both lithogenic (particle reactive) and biogenic (biologically reactive) central to particle scavenging, exchange and bioavailability. The natural 210Po and 210Pb radionuclide (granddaughter/parent) pair provides the radiometric means to model particle scavenging and exchange in the ocean on monthly to annual time scales. Data on dissolved (<0.2 μm) and particulate (>0.2 μm, >53μm) 210Po (t1/2= 138.4 d) and 210Pb (T1/2 = 22.3 y) are available from seven complete water profiles during two U.S. GEOTRACES cruises that transited the North Atlantic during fall 2010 and 2011. The transects correspond to a wide range of marine environments: coastal slopes at the western and eutrophic up-welling at the eastern margins, Saharan dust sources from the east, hydro-thermal vents in the TAG plume on the Mid-Atlantic Ridge, and oligotrophic gyres in both the western and eastern basins. Steady state box modeling at each depth interval was employed to estimate radionuclide exchange rates at the fine-large particle and fine particulate-dissolved interface, in terms of biological uptake, and net of radioactive support or decay. By proxy, the results should predict the rates of biological (210Po) and particle reactive (210Pb) trace element adsorption and resorption, vertical particulate and carbon export, and respective residence times. The model results show the contrasting chemical behaviour of the two nuclides over the large range of oceanic conditions encountered in the North Atlantic. In the surface ocean, 210Po scavenging is linearly correlated with the concentration of particulate organic carbon (POC) in large particles, supporting the role of biogenic particles in 210Po bioaccumulation and export. At depth, 210Po exhibits significant widespread deficit with respect to 210Pb, which could

  7. Electrically heated particulate filter preparation methods and systems

    SciTech Connect

    Gonze, Eugene V

    2012-01-31

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a fuel control module that controls injection of fuel into exhaust that passes through the particulate filter. A regeneration module controls current to the particulate filter to initiate regeneration after the fuel has been injected into the exhaust.

  8. Kinetic and Performance Studies of the Regeneration Phase of Model Pt/Ba/Rh NOx Traps for Design and Optimization

    SciTech Connect

    Michael Harold; Vemuri Balakotaiah

    2010-05-31

    In this project a combined experimental and theoretical approach was taken to advance our understanding of lean NOx trap (LNT) technology. Fundamental kinetics studies were carried out of model LNT catalysts containing variable loadings of precious metals (Pt, Rh), and storage components (BaO, CeO{sub 2}). The Temporal Analysis of Products (TAP) reactor provided transient data under well-characterized conditions for both powder and monolith catalysts, enabling the identification of key reaction pathways and estimation of the corresponding kinetic parameters. The performance of model NOx storage and reduction (NSR) monolith catalysts were evaluated in a bench scale NOx trap using synthetic exhaust, with attention placed on the effect of the pulse timing and composition on the instantaneous and cycle-averaged product distributions. From these experiments we formulated a global model that predicts the main spatio-temporal features of the LNT and a mechanistic-based microkinetic models that incorporates a detailed understanding of the chemistry and predicts more detailed selectivity features of the LNT. The NOx trap models were used to determine its ability to simulate bench-scale data and ultimately to evaluate alternative LNT designs and operating strategies. The four-year project led to the training of several doctoral students and the dissemination of the findings as 47 presentations in conferences, catalysis societies, and academic departments as well 23 manuscripts in peer-reviewed journals. A condensed review of NOx storage and reduction was published in an encyclopedia of technology.

  9. Electrically heated particulate filter propagation support methods and systems

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-06-07

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate combustion of particulate matter in the particulate filter. A propagation module estimates a propagation status of the combustion of the particulate matter based on a combustion temperature. A temperature adjustment module controls the combustion temperature by selectively increasing a temperature of exhaust that passes through the particulate filter.

  10. Dynamics of N2 and N2O peaks during and after the regeneration of lean NOx trap

    DOE PAGESBeta

    Mráček, David; Koci, Petr; Marek, Milos; Choi, Jae-Soon; Pihl, Josh A.; Partridge, Jr., William P.

    2014-12-04

    We study the dynamics and selectivity of N2 and N2O formation during and after the regeneration of a commercial NOx storage catalyst containing Pt, Pd, Rh, Ba on Ce/Zr, Mg/Al and Al oxides was studied with high-speed FTIR and SpaciMS analyzers. The lean/rich cycling experiments (60 s/5 s and 60 s/3 s) were performed in the temperature range 200–400°C, using H2, CO, and C3H6 individually for the reduction of adsorbed NOx. Isotopically labeled 15NO was employed in combination with Ar carrier gas in order to quantify the N2 product by mass spectrometry. N2 and N2O products were formed concurrently. Themore » primary peaks appeared immediately after the rich-phase inception, and tailed off with breakthrough of the reductant front (accompanied by NH3 product). Secondary N2 and N2O peaks appeared at the rich-to-lean transition as a result of reactions between surface-deposited reductants/intermediates (CO, HC, NH3, -NCO) and residual stored NOx. At 200–300 °C, up to 30% of N2 and 50% of N2O products originated from the secondary peaks. The N2O/N2 selectivity ratio as well as the magnitude of secondary peaks decreased with temperature and duration of the rich phase. Among the three reductants, propene generated secondary N2 peak up to the highest temperature. Lastly the primary N2 peak exhibited a broadened shoulder aligned with movement of reduction front from the zone where both NOx and oxygen were stored to the NOx-free zone where only oxygen storage capacity was saturated. N2 formed in the NOx-free zone originated from reaction of NH3 with stored oxygen, while N2O formation in this zone was very low.« less

  11. Sorption vacuum trap

    NASA Technical Reports Server (NTRS)

    Barrington, A. E.; Caruso, A. J.

    1970-01-01

    Modified sorption trap for use in high vacuum systems contains provisions for online regeneration of sorbent material. Trap is so constructed that it has a number of encapsulated resistance heaters and a valving and pumping device for removing gases from heated sorbing material. Excessive downtime is eliminated with this trap.

  12. Simultaneous reduction of particulate matter and NO(x) emissions using 4-way catalyzed filtration systems.

    PubMed

    Swanson, Jacob J; Watts, Winthrop F; Newman, Robert A; Ziebarth, Robin R; Kittelson, David B

    2013-05-01

    The next generation of diesel emission control devices includes 4-way catalyzed filtration systems (4WCFS) consisting of both NOx and diesel particulate matter (DPM) control. A methodology was developed to simultaneously evaluate the NOx and DPM control performance of miniature 4WCFS made from acicular mullite, an advanced ceramic material (ACM), that were challenged with diesel exhaust. The impact of catalyst loading and substrate porosity on catalytic performance of the NOx trap was evaluated. Simultaneously with NOx measurements, the real-time solid particle filtration performance of catalyst-coated standard and high porosity filters was determined for steady-state and regenerative conditions. The use of high porosity ACM 4-way catalyzed filtration systems reduced NOx by 99% and solid and total particulate matter by 95% when averaged over 10 regeneration cycles. A "regeneration cycle" refers to an oxidizing ("lean") exhaust condition followed by a reducing ("rich") exhaust condition resulting in NOx storage and NOx reduction (i.e., trap "regeneration"), respectively. Standard porosity ACM 4-way catalyzed filtration systems reduced NOx by 60-75% and exhibited 99.9% filtration efficiency. The rich/lean cycling used to regenerate the filter had almost no impact on solid particle filtration efficiency but impacted NOx control. Cycling resulted in the formation of very low concentrations of semivolatile nucleation mode particles for some 4WCFS formulations. Overall, 4WCFS show promise for significantly reducing diesel emissions into the atmosphere in a single control device. PMID:23550802

  13. Characterization of Carbon Particulates in the Exit Flow of a Plasma Pyrolysis Assembly (PPA) Reactor

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Meyer, Marit E.; Agui, Juan H.; Berger, Gordon M.; Vijayakumar, R.; Abney, Morgan B.; Greenwood, Zachary

    2015-01-01

    The ISS presently recovers oxygen from crew respiration via a Carbon Dioxide Reduction Assembly (CRA) that utilizes the Sabatier chemical process to reduce captured carbon dioxide to methane (CH4) and water. In order to recover more of the hydrogen from the methane and increase oxygen recovery, NASA Marshall Space Flight Center (MSFC) is investigating a technology, plasma pyrolysis, to convert the methane to acetylene. The Plasma Pyrolysis Assembly (or PPA), achieves 90% or greater conversion efficiency, but a small amount of solid carbon particulates are generated as a side product and must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. In this work, we present the experimental results of an initial characterization of the carbon particulates in the PPA exit gas stream. We also present several potential options to remove these carbon particulates via carbon traps and filters to minimize resupply mass and required downtime for regeneration.

  14. Diesel NO{sub x} reduction by plasma-regenerated absorbent beds

    DOEpatents

    Wallman, P.H.; Vogtlin, G.E.

    1998-02-10

    Reduction of NO{sub x} from diesel engine exhaust by use of plasma-regenerated absorbent beds is described. This involves a process for the reduction of NO{sub x} and particulates from diesel engines by first absorbing NO{sub x} onto a solid absorbent bed that simultaneously acts as a physical trap for the particulate matter, and second regenerating said solid absorbent by pulsed plasma decomposition of absorbed NO{sub x} followed by air oxidation of trapped particulate matter. The absorbent bed may utilize all metal oxides, but the capacity and the kinetics of absorption and desorption vary between different materials, and thus the composition of the absorbent bed is preferably a material which enables the combination of NO{sub x} absorption capability with catalytic activity for oxidation of hydrocarbons. Thus, naturally occurring or synthetically prepared materials may be utilized, particularly those having NO{sub x} absorption properties up to temperatures around 400 C which is in the area of diesel engine exhaust temperatures. 1 fig.

  15. Diesel NO.sub.x reduction by plasma-regenerated absorbend beds

    DOEpatents

    Wallman, P. Henrik; Vogtlin, George E.

    1998-01-01

    Reduction of NO.sub.x from diesel engine exhaust by use of plasma-regenerated absorbent beds. This involves a process for the reduction of NO.sub.x and particulates from diesel engines by first absorbing NO.sub.x onto a solid absorbent bed that simultaneously acts as a physical trap for the particulate matter, and second regenerating said solid absorbent by pulsed plasma decomposition of absorbed NO.sub.x followed by air oxidation of trapped particulate matter. The absorbent bed may utilize all metal oxides, but the capacity and the kinetics of absorption and desorption vary between different materials, and thus the composition of the absorbent bed is preferably a material which enables the combination of NO.sub.x absorption capability with catalytic activity for oxidation of hydrocarbons. Thus, naturally occurring or synthetically prepared materials may be utilized, particularly those having NO.sub.x absorption properties up to temperatures around 400.degree. C. which is in the area of diesel engine exhaust temperatures.

  16. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    1999-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  17. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    2001-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  18. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, B.S.; Gupta, R.P.

    1999-06-22

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  19. Particulate Matter

    MedlinePlus

    ... Technology Laws & Regulations About EPA Contact Us Particulate Matter (PM) You are here: EPA Home Air & Radiation Six Common Pollutants Particulate Matter Announcements March 13, 2013 - An updated “Strategies ...

  20. Regeneration inducers in limb regeneration.

    PubMed

    Satoh, Akira; Mitogawa, Kazumasa; Makanae, Aki

    2015-08-01

    Limb regeneration ability, which can be observed in amphibians, has been investigated as a representative phenomenon of organ regeneration. Recently, an alternative experimental system called the accessory limb model was developed to investigate early regulation of amphibian limb regeneration. The accessory limb model contributed to identification of limb regeneration inducers in urodele amphibians. Furthermore, the accessory limb model may be applied to other species to explore universality of regeneration mechanisms. This review aims to connect the insights recently gained to emboss universality of regeneration mechanisms among species. The defined molecules (BMP7 (or2) + FGF2 + FGF8) can transform skin wound healing to organ (limb) regeneration responses. The same molecules can initiate regeneration responses in some species. PMID:26100345

  1. Diesel particulate emissions

    SciTech Connect

    Williams, P.T.; Abbass, M.K.; Andrews, G.E.; Bartle, K.D.

    1989-01-01

    The relationship between diesel fuel composition and that of the solvent organic fraction of diesel particulates was investigated for an old DI Petter engine and a modern DI Perkins engine. Polycyclic aromatic compounds (PAC) were identified using high-resolution capillary column chromatography with a parallel triple detector system for polycyclic aromatic hydrocarbons (PAH), nitrogen-containing PAH, and sulphur-containing PAH. Identification of the PAC using retention indexes was confirmed using an ion trap detector, which was also used to quantify the low-concentration (<1 ppm) benzo(a)pyrene. It was conclusively shown for both engines that the bulk of the particulate solvent organic fraction, including the PAH fraction, was unburned fuel. However, there was some evidence that high molecular weight five-ring PAH may have an in-cylinder formation contribution, and it is postulated that this could be due to pyrolysis of lower molecular weight unburned fuel PAH. The contribution of lubricating oil to the particulate PAC is discussed, and evidence is presented that shows the unburned fuel PAC accumulates in the lubricating oil and thus contributes to the particulate PAC via the large lubricating oil component of the particulate PAC.

  2. Implications of Low Particulate Matter Emissions on System Fuel Efficiency for High Efficiency Clean Combustion

    SciTech Connect

    Parks, II, James E; Prikhodko, Vitaly Y

    2009-01-01

    Advanced diesel combustion regimes such as High Efficiency Clean Combustion (HECC) offer the benefits of reduced engine out NOX and particulate matter (PM) emissions. Lower PM emissions during advanced combustion reduce the demand on diesel particulate filters (DPFs) and can, thereby, reduce the fuel penalty associated with DPF regeneration. In this study, a SiC DPF was loaded and regenerated on a 1.7-liter 4-cylinder diesel engine operated in conventional and advanced combustion modes at different speed and load conditions. A diesel oxidation catalyst (DOC) and a lean NOX trap (LNT) were also installed in the exhaust stream. Five steady-state speed and load conditions were weighted to estimate Federal Test Procedure (FTP) fuel efficiency. The DPF was loaded using lean-rich cycling with frequencies that resulted in similar levels of NOX emissions downstream of the LNT. The pressure drop across the DPF was measured at a standard point (1500 rpm, 5.0 bar) before and after loading, and a P rise rate was determined for comparison between conventional and advanced combustion modes. Higher PM emissions in conventional combustion resulted in a higher rate of backpressure rise across the DPF at all of the load points leading to more frequent DPF regenerations and higher fuel penalty. The fuel penalty during conventional combustion was 4.2% compared with 3.1% for a mixture of conventional and advanced modes.

  3. Molecular Sieve Regeneration System (MSRS)

    SciTech Connect

    Nasise, J.E.; Anderson, J.L. ); Naruse, Y. )

    1992-01-01

    A Molecular Sieve Regeneration System (MSRS) was added to the existing Tritium Waste Treatment system (TWT) within the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. The Department of Energy (DOE) no longer allows inventory by difference'' for radioactive wastes that are to be buried. The MSRS was designed and built to comply with this requirement. Within the TWT, water is generated by the catalytic conversion of hydrogen isotopes and removed by molecular sieve trapping prior to release to the environment. Molecular sieve regeneration is required to remove the trapped water and to rejuvenate the beds. The MSRS permits the collection and direct tritium assay of regenerated tritiated water from molecular sieve beds. This paper describes the MSRS in detail and how it is interfaced with the TWT.

  4. Molecular Sieve Regeneration System (MSRS)

    SciTech Connect

    Nasise, J.E.; Anderson, J.L.; Naruse, Y.

    1992-03-01

    A Molecular Sieve Regeneration System (MSRS) was added to the existing Tritium Waste Treatment system (TWT) within the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. The Department of Energy (DOE) no longer allows ``inventory by difference`` for radioactive wastes that are to be buried. The MSRS was designed and built to comply with this requirement. Within the TWT, water is generated by the catalytic conversion of hydrogen isotopes and removed by molecular sieve trapping prior to release to the environment. Molecular sieve regeneration is required to remove the trapped water and to rejuvenate the beds. The MSRS permits the collection and direct tritium assay of regenerated tritiated water from molecular sieve beds. This paper describes the MSRS in detail and how it is interfaced with the TWT.

  5. Method and means for diesel exhaust particulate emission control

    SciTech Connect

    Ludecke, O.A.

    1983-04-19

    A method and means for controlling diesel particulate emissions involves providing an exhaust trap filter to collect exhaust particulates at a point near the engine exhaust ports and providing means to periodically vent burning combustion chamber gases to the exhaust filter to initiate combustion and incineration of the collected particulates. Various means for conducting burning mixture to ignite the particulates in the filter are disclosed.

  6. Filter vapor trap

    DOEpatents

    Guon, Jerold

    1976-04-13

    A sintered filter trap is adapted for insertion in a gas stream of sodium vapor to condense and deposit sodium thereon. The filter is heated and operated above the melting temperature of sodium, resulting in a more efficient means to remove sodium particulates from the effluent inert gas emanating from the surface of a liquid sodium pool. Preferably the filter leaves are precoated with a natrophobic coating such as tetracosane.

  7. Straight-Pore Microfilter with Efficient Regeneration

    NASA Technical Reports Server (NTRS)

    Liu, Han; LaConti, Anthony B.; McCallum. Thomas J.; Schmitt, Edwin W.

    2010-01-01

    A novel, high-efficiency gas particulate filter has precise particle size screening, low pressure drop, and a simple and fast regeneration process. The regeneration process, which requires minimal material and energy consumption, can be completely automated, and the filtration performance can be restored within a very short period of time. This filter is of a novel material composite that contains the support structure and a novel coating.

  8. Monolith diesel exhaust filter with self-regeneration

    SciTech Connect

    Bly, K.B.; Gutwald, M.J.; Ludecke, O.A.

    1981-06-30

    A self-regenerating diesel engine exhaust particulate filter is disclosed that is comprised of, in a preferred embodiment, porous ceramic walls defining filter surfaces between adjacent inlet and outlet passages and having electric heating wires in the inlet passages to periodically initiate incineration of collected particulates therein. A movable shield is preferably provided to restrict gas flow through the various passages during their respective periods of incineration so as to provide periodic regeneration with a minimum expenditure of external energy.

  9. 40 CFR 60.102 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.102... Refineries § 60.102 Standard for particulate matter. Each owner or operator of any fluid catalytic cracking... regenerator: (1) Particulate matter in excess of 1.0 kg/Mg (2.0 lb/ton) of coke burn-off in the...

  10. 40 CFR 60.102 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.102... Refineries § 60.102 Standard for particulate matter. Each owner or operator of any fluid catalytic cracking... regenerator: (1) Particulate matter in excess of 1.0 kg/Mg (2.0 lb/ton) of coke burn-off in the...

  11. 40 CFR 60.102 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.102... Refineries § 60.102 Standard for particulate matter. Each owner or operator of any fluid catalytic cracking... regenerator: (1) Particulate matter in excess of 1.0 kg/Mg (2.0 lb/ton) of coke burn-off in the...

  12. 40 CFR 60.102 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.102... Refineries § 60.102 Standard for particulate matter. Each owner or operator of any fluid catalytic cracking... regenerator: (1) Particulate matter in excess of 1.0 kg/Mg (2.0 lb/ton) of coke burn-off in the...

  13. Mechanisms of Guided Bone Regeneration: A Review

    PubMed Central

    Liu, Jie; Kerns, David G

    2014-01-01

    Post-extraction crestal bone resorption is common and unavoidable which can lead to significant ridge dimensional changes. To regenerate enough bone for successful implant placement, Guided Bone Regeneration (GBR) is often required. GBR is a surgical procedure that uses barrier membranes with or without particulate bone grafts or/and bone substitutes. There are two approaches of GBR in implant therapy: GBR at implant placement (simultaneous approach) and GBR before implant placement to increase the alveolar ridge or improve ridge morphology (staged approach). Angiogenesis and ample blood supply play a critical role in promoting bone regeneration. PMID:24894890

  14. Liver Regeneration

    PubMed Central

    Michalopoulos, George K.

    2009-01-01

    Liver regeneration after partial hepatectomy is a very complex and well-orchestrated phenomenon. It is carried out by the participation of all mature liver cell types. The process is associated with signaling cascades involving growth factors, cytokines, matrix remodeling, and several feedbacks of stimulation and inhibition of growth related signals. Liver manages to restore any lost mass and adjust its size to that of the organism, while at the same time providing full support for body homeostasis during the entire regenerative process. In situations when hepatocytes or biliary cells are blocked from regeneration, these cell types can function as facultative stem cells for each other. PMID:17559071

  15. Trapped Surfaces

    NASA Astrophysics Data System (ADS)

    Senovilla, José M. M.

    I review the definition and types of (closed) trapped surfaces. Surprising global properties are shown, such as their "clairvoyance" and the possibility that they enter into flat portions of the spacetime. Several results on the interplay of trapped surfaces with vector fields and with spatial hypersurfaces are presented. Applications to the quasi-local definition of Black Holes are discussed, with particular emphasis set onto marginally trapped tubes, trapping horizons and the boundary of the region with closed trapped surfaces. Finally, the core of a trapped region is introduced, and its importance discussed.

  16. Trapped Surfaces

    NASA Astrophysics Data System (ADS)

    Senovilla, José M. M.

    2013-03-01

    I review the definition and types of (closed) trapped surfaces. Surprising global properties are pointed out, such as their "clairvoyance" and the possibility that they enter into flat portions of the spacetime. Several results on the interplay of trapped surfaces with vector fields and with spatial hypersurfaces are presented. Applications to the quasi-local definition of Black Holes are analyzed, with particular emphasis set onto marginally trapped tubes, trapping horizons and the boundary of the region with closed trapped surfaces. Finally, the core of a trapped region is introduced, and its importance briefly discussed.

  17. Nanocarpets for Trapping Microscopic Particles

    NASA Technical Reports Server (NTRS)

    Noca, Flavio; Chen, Fei; Hunt, Brian; Bronikowski, Michael; Hoenk, Michael; Kowalczyk, Robert; Choi, Daniel

    2004-01-01

    Nanocarpets that is, carpets of carbon nanotubes are undergoing development as means of trapping microscopic particles for scientific analysis. Examples of such particles include inorganic particles, pollen, bacteria, and spores. Nanocarpets can be characterized as scaled-down versions of ordinary macroscopic floor carpets, which trap dust and other particulate matter, albeit not purposefully. Nanocarpets can also be characterized as mimicking both the structure and the particle-trapping behavior of ciliated lung epithelia, the carbon nanotubes being analogous to cilia. Carbon nanotubes can easily be chemically functionalized for selective trapping of specific particles of interest. One could, alternatively, use such other three-dimensionally-structured materials as aerogels and activated carbon for the purposeful trapping of microscopic particles. However, nanocarpets offer important advantages over these alternative materials: (1) Nanocarpets are amenable to nonintrusive probing by optical means; and (2) Nanocarpets offer greater surface-to-volume ratios.

  18. Cartilage Regeneration

    PubMed Central

    Tuan, Rocky S.; Chen, Antonia F.; Klatt, Brian A.

    2016-01-01

    Cartilage damaged by trauma has a limited capacity to regenerate. Current methods for treating small chondral defects include palliative treatment with arthroscopic debridement and lavage, reparative treatment with marrow stimulation techniques (e.g. microfracture), and restorative treatment, including osteochondral grafting and autologous chondrocyte implantation. Larger defects are treated by osteochondral allografting or total joint replacements. However, the future of treating cartilage defects lies in providing biologic solutions through cartilage regeneration. Laboratory and clinical studies have examined the treatment of larger lesions using tissue engineered cartilage. Regenerated cartilage can be derived from various cell types, including chondrocytes, mesenchymal stem cells, and pluripotent stem cells. Common scaffolding materials include proteins, carbohydrates, synthetic materials, and composite polymers. Scaffolds may be woven, spun into nanofibers, or configured as hydrogels. Chondrogenesis may be enhanced with the application of chondroinductive growth factors. Finally, bioreactors are being developed to enhance nutrient delivery and provide mechanical stimulation to tissue-engineered cartilage ex vivo. The multi-disciplinary approaches currently being developed to produce cartilage promise to bring the dream of cartilage regeneration in clinical use to reality. PMID:23637149

  19. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    findings and APICD Gen II subsystems for automated collection, deposition and detection of ambient particulate matter. Key findings from the APTA Program include: Ambient biological PM taxonomy; Demonstration of key subsystems needed for autonomous bioaerosol detection; System design; Efficient electrostatic collection; Automated bioagent recognition; Raman analysis performance validating Td<9 sec; Efficient collection surface regeneration; and Development of a quantitative bioaerosol defection model. The objective of the APTA program was to advance the state of our knowledge of ambient background PM composition. Operation of an automated aerosol detection system was enhanced by a more accurate assessment of background variability, especially for sensitive and specific sensing strategies like Raman detection that are background-limited in performance. Based on this improved knowledge of background, the overall threat detection performance of Raman sensors was improved.

  20. STUDIES OF PARTICULATE REMOVAL FROM DIESEL EXHAUST

    EPA Science Inventory

    The report gives results of a characterization of the collection of particulate emissions from diesel exhaust by several different methods, using 5.7 liter GM diesel engines (as sources) and such controls as fiber and gravel bed filters, trap/cyclones, and ESPs. Overall and fract...

  1. Optical trapping

    PubMed Central

    Neuman, Keir C.; Block, Steven M.

    2006-01-01

    Since their invention just over 20 years ago, optical traps have emerged as a powerful tool with broad-reaching applications in biology and physics. Capabilities have evolved from simple manipulation to the application of calibrated forces on—and the measurement of nanometer-level displacements of—optically trapped objects. We review progress in the development of optical trapping apparatus, including instrument design considerations, position detection schemes and calibration techniques, with an emphasis on recent advances. We conclude with a brief summary of innovative optical trapping configurations and applications. PMID:16878180

  2. COLD TRAPS

    DOEpatents

    Thompson, W.I.

    1958-09-30

    A cold trap is presented for removing a condensable component from a gas mixture by cooling. It consists of a shell, the exterior surface of which is chilled by a refrigerant, and conductive fins welded inside the shell to condense the gas, and distribute the condensate evenly throughout the length of the trap, so that the trap may function until it becomes completely filled with the condensed solid. The contents may then be removed as either a gas or as a liquid by heating the trap. This device has particuinr use as a means for removing uranium hexafluoride from the gaseous diffusion separation process during equipment breakdown and repair periods.

  3. Regenerator seal

    NASA Technical Reports Server (NTRS)

    Davis, Leonard C. (Inventor); Pacala, Theodore (Inventor); Sippel, George R. (Inventor)

    1981-01-01

    A method for manufacturing a hot side regenerator cross arm seal assembly having a thermally stablilized wear coating with a substantially flat wear surface thereon to seal between low pressure and high pressure passages to and from the hot inboard side of a rotary regenerator matrix includes the steps of forming a flat cross arm substrate member of high nickel alloy steel; fixedly securing the side edges of the substrate member to a holding fixture with a concave surface thereacross to maintain the substrate member to a slightly bent configuration on the fixture surface between the opposite ends of the substrate member to produce prestress therein; applying coating layers on the substrate member including a wear coating of plasma sprayed nickel oxide/calcium flouride material to define a wear surface of slightly concave form across the restrained substrate member between the free ends thereon; and thereafter subjecting the substrate member and the coating thereon to a heat treatment of 1600.degree. F. for sixteen hours to produce heat stabilizing growth in the coating layers on the substrate member and to produce a thermally induced growth stress in the wear surface that substantially equalizes the prestress in the substrate whereby when the cross arm is removed from the fixture surface following the heat treatment step a wear face is formed on the cross arm assembly that will be substantially flat between the ends.

  4. Self-Cleaning Particulate Prefilter Media

    NASA Technical Reports Server (NTRS)

    Weber, Olivia; Lalwani, San-jiv; Sharma, Anjal

    2012-01-01

    A long-term space mission requires efficient air revitalization performance to sustain the crew. Prefilter and particulate air filter media are susceptible to rapid fouling that adversely affects their performance and can lead to catastrophic failure of the air revitalization system, which may result in mission failure. For a long-term voyage, it is impractical to carry replacement particulate prefilter and filter modules due to the usual limitations in size, volume, and weight. The only solution to this problem is to reagentlessly regenerate prefilter and filter media in place. A method was developed to modify the particulate prefilter media to allow them to regenerate reagentlessly, and in place, by the application of modest thermocycled transverse or reversed airflows. The innovation may allow NASA to close the breathing air loop more efficiently, thereby sustaining the vision for manned space exploration missions of the future. A novel, self-cleaning coatings technology was developed for air filter media surfaces that allows reagentless in-place regeneration of the surface. The technology grafts thermoresponsive and nonspecific adhesion minimizing polymer nanolayer brush coatings from the prefilter media. These polymer nanolayer brush architectures can be triggered to contract and expand to generate a "pushing-off" force by the simple application of modestly thermocycled (i.e. cycling from ambient cabin temperature to 40 C) air streams. The nonspecific adhesion-minimizing properties of the coatings do not allow the particulate foulants to adhere strongly to the filter media, and thermocycled air streams applied to the media allow easy detachment and in-place regeneration of the media with minimal impact in system downtime or astronaut involvement in overseeing the process.

  5. Generator powered electrically heated diesel particulate filter

    DOEpatents

    Gonze, Eugene V; Paratore, Jr., Michael J

    2014-03-18

    A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

  6. Electrically heated particulate matter filter soot control system

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2016-03-15

    A regeneration system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas and a downstream end. A control module determines a current soot loading level of the PM filter and compares the current soot loading level to a predetermined soot loading level. The control module permits regeneration of the PM filter when the current soot loading level is less than the predetermined soot loading level.

  7. Heart regeneration.

    PubMed

    Breckwoldt, Kaja; Weinberger, Florian; Eschenhagen, Thomas

    2016-07-01

    Regenerating an injured heart holds great promise for millions of patients suffering from heart diseases. Since the human heart has very limited regenerative capacity, this is a challenging task. Numerous strategies aiming to improve heart function have been developed. In this review we focus on approaches intending to replace damaged heart muscle by new cardiomyocytes. Different strategies for the production of cardiomyocytes from human embryonic stem cells or human induced pluripotent stem cells, by direct reprogramming and induction of cardiomyocyte proliferation are discussed regarding their therapeutic potential and respective advantages and disadvantages. Furthermore, different methods for the transplantation of pluripotent stem cell-derived cardiomyocytes are described and their clinical perspectives are discussed. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. PMID:26597703

  8. Carbon fiber composite molecular sieve electrically regenerable air filter media

    DOEpatents

    Wilson, Kirk A.; Burchell, Timothy D.; Judkins, Roddie R.

    1998-01-01

    An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply airstream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium.

  9. Carbon fiber composite molecular sieve electrically regenerable air filter media

    DOEpatents

    Wilson, K.A.; Burchell, T.D.; Judkins, R.R.

    1998-10-27

    An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply air stream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium. 3 figs.

  10. HWVP Iodine Trap Evaluation

    SciTech Connect

    Burger, Leland L.; Scheele, Randall D.

    2004-09-24

    This report details our assessment of the chemistry of the planned Hanford Waste Vitrification Plant (HWVP) off-gas system and its impact on the applicability of known iodine removal and control methods. To predict the gaseous species in the off-gas system, we completed thermodynamic calculations to determine theoretical equilibrium concentrations of the various potential chemical species. In addition, we found that HWVP pilot-plant experiments were generally consistent with the known chemistry of the individual elements present in the off gas. Of the known trapping techniques for radioiodine, caustic scrubbing and silver-containing sorbents are, in our opinion, the most attractive methods to reduce the iodine concentration in the HWVP melter off gas (MOG) after it has passed through the high-efficiency particulate air (HEPA) filter. These two methods were selected because they (1) have demonstrated retention factors (RFs), ratio of amount in and amount out, of 10 to 1000, which would be sufficient to reduce the iodine concentration in the MOG to below regulatory limits; (2) are simple to apply; (3) are resistant to oxidizing gases such as NOx; (4) do not employ highly hazardous or highly corrosive agents; (5) require containment vessels constructed or common materials; (6) have received extensive laboratory development; (7) and the radioactive wastes produced should be easy to handle. On the basis of iodine trapping efficiency, simplicity of operation, and waste management, silver sorbents are superior to caustic scrubbing, and, or these sorbents, we prefer the silver zeolites. No method has been fully demonstrated, from laboratory-scale through pilot-plant testing, to be an effective iodine trap at the low iodine concentration (2 x 10-11 mol I/L) expected in the MOG of the HWVP in the presence of the other gaseous off gas components. In terms of compatibility of the trapping technology with the components in the MOG, there is some question about the resistance of

  11. South African Particulates

    Atmospheric Science Data Center

    2013-04-16

    ... title:  Airborne Particulates over Southern Africa     View Larger Image ... of airborne particulates, or aerosols, over Southern Africa during the period August 14 - September 29, 2000. Low particle ...

  12. Electrically heated particulate filter diagnostic systems and methods

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2009-09-29

    A system that diagnoses regeneration of an electrically heated particulate filter is provided. The system generally includes a grid module that diagnoses a fault of the grid based on at least one of a current signal and a voltage signal. A diagnostic module at least one of sets a fault status and generates a warning signal based on the fault of the grid.

  13. Radiant zone heated particulate filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2011-12-27

    A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

  14. Active magnetic regenerator

    DOEpatents

    Barclay, John A.; Steyert, William A.

    1982-01-01

    The disclosure is directed to an active magnetic regenerator apparatus and method. Brayton, Stirling, Ericsson, and Carnot cycles and the like may be utilized in an active magnetic regenerator to provide efficient refrigeration over relatively large temperature ranges.

  15. Ripple Trap

    NASA Technical Reports Server (NTRS)

    2006-01-01

    3 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the margin of a lava flow on a cratered plain in the Athabasca Vallis region of Mars. Remarkably, the cratered plain in this scene is essentially free of bright, windblown ripples. Conversely, the lava flow apparently acted as a trap for windblown materials, illustrated by the presence of the light-toned, wave-like texture over much of the flow. That the lava flow surface trapped windblown sand and granules better than the cratered plain indicates that the flow surface has a rougher texture at a scale too small to resolve in this image.

    Location near: 10.7oN, 204.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Winter

  16. Electrostatic particle trap for ion beam sputter deposition

    DOEpatents

    Vernon, Stephen P.; Burkhart, Scott C.

    2002-01-01

    A method and apparatus for the interception and trapping of or reflection of charged particulate matter generated in ion beam sputter deposition. The apparatus involves an electrostatic particle trap which generates electrostatic fields in the vicinity of the substrate on which target material is being deposited. The electrostatic particle trap consists of an array of electrode surfaces, each maintained at an electrostatic potential, and with their surfaces parallel or perpendicular to the surface of the substrate. The method involves interception and trapping of or reflection of charged particles achieved by generating electrostatic fields in the vicinity of the substrate, and configuring the fields to force the charged particulate material away from the substrate. The electrostatic charged particle trap enables prevention of charged particles from being deposited on the substrate thereby enabling the deposition of extremely low defect density films, such as required for reflective masks of an extreme ultraviolet lithography (EUVL) system.

  17. Electrically heated particulate filter with reduced stress

    DOEpatents

    Gonze, Eugene V.

    2013-03-05

    A system comprises a particulate matter (PM) filter comprising an inlet for receiving exhaust gas. A zoned heater is arranged in the inlet and comprises a resistive heater comprising N zones, where N is an integer greater than one. Each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates others of the N zones.

  18. Diesel particulate control

    SciTech Connect

    Bertelsen, F.I. )

    1988-01-01

    Diesel particulates, because of their chemical composition and extremely small size, have raised health and welfare issues. Health experts have expressed concern that they contribute to or aggravate chronic lung diseases such as asthma, bronchitis and emphysema, and there is the lingering issue about the potential cancer risk from exposure to diesel particulate. Diesel particulates impair visibility, soil buildings, contribute to structural damage through corrosion and give off a pungent odor. Diesel trucks, buses and cars together are such a significant and growing source of particulate emissions. Such vehicles emit 30 to 70 times more particulate matter than gasoline vehicles equipped with catalytic converters. Diesel engines currently power the majority of larger trucks and buses. EPA predicted that, if left uncontrolled, diesel particulate from motor vehicles would increase significantly. Diesel particulate emissions from motor vehicles are particularly troublesome because they frequently are emitted directly into the breathing zone where we work and recreate. The U.S. Congress recognized the risks posed by diesel particulate and as part of the 1977 Clean Air Act Amendments established specific, technology-forcing requirements for controlling these emissions. The U.S. Environmental Protection Agency (EPA) in 1980 established particulate standards for automobiles and light trucks and in 1985, heavy trucks and buses. California, concerned that EPA standards would not adequately protect its citizens, adopted its own set of standards for passenger cars and light trucks. This paper discusses emerging technologies proposed to address the problem.

  19. Trapped antihydrogen.

    PubMed

    Andresen, G B; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jonsell, S; Jørgensen, L V; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; el Nasr, S Seif; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2010-12-01

    Antimatter was first predicted in 1931, by Dirac. Work with high-energy antiparticles is now commonplace, and anti-electrons are used regularly in the medical technique of positron emission tomography scanning. Antihydrogen, the bound state of an antiproton and a positron, has been produced at low energies at CERN (the European Organization for Nuclear Research) since 2002. Antihydrogen is of interest for use in a precision test of nature's fundamental symmetries. The charge conjugation/parity/time reversal (CPT) theorem, a crucial part of the foundation of the standard model of elementary particles and interactions, demands that hydrogen and antihydrogen have the same spectrum. Given the current experimental precision of measurements on the hydrogen atom (about two parts in 10(14) for the frequency of the 1s-to-2s transition), subjecting antihydrogen to rigorous spectroscopic examination would constitute a compelling, model-independent test of CPT. Antihydrogen could also be used to study the gravitational behaviour of antimatter. However, so far experiments have produced antihydrogen that is not confined, precluding detailed study of its structure. Here we demonstrate trapping of antihydrogen atoms. From the interaction of about 10(7) antiprotons and 7 × 10(8) positrons, we observed 38 annihilation events consistent with the controlled release of trapped antihydrogen from our magnetic trap; the measured background is 1.4 ± 1.4 events. This result opens the door to precision measurements on anti-atoms, which can soon be subjected to the same techniques as developed for hydrogen. PMID:21085118

  20. Dynamics of N2 and N2O peaks during and after the regeneration of lean NOx trap

    SciTech Connect

    Mráček, David; Koci, Petr; Marek, Milos; Choi, Jae-Soon; Pihl, Josh A.; Partridge, Jr., William P.

    2014-12-04

    We study the dynamics and selectivity of N2 and N2O formation during and after the regeneration of a commercial NOx storage catalyst containing Pt, Pd, Rh, Ba on Ce/Zr, Mg/Al and Al oxides was studied with high-speed FTIR and SpaciMS analyzers. The lean/rich cycling experiments (60 s/5 s and 60 s/3 s) were performed in the temperature range 200–400°C, using H2, CO, and C3H6 individually for the reduction of adsorbed NOx. Isotopically labeled 15NO was employed in combination with Ar carrier gas in order to quantify the N2 product by mass spectrometry. N2 and N2O products were formed concurrently. The primary peaks appeared immediately after the rich-phase inception, and tailed off with breakthrough of the reductant front (accompanied by NH3 product). Secondary N2 and N2O peaks appeared at the rich-to-lean transition as a result of reactions between surface-deposited reductants/intermediates (CO, HC, NH3, -NCO) and residual stored NOx. At 200–300 °C, up to 30% of N2 and 50% of N2O products originated from the secondary peaks. The N2O/N2 selectivity ratio as well as the magnitude of secondary peaks decreased with temperature and duration of the rich phase. Among the three reductants, propene generated secondary N2 peak up to the highest temperature. Lastly the primary N2 peak exhibited a broadened shoulder aligned with movement of reduction front from the zone where both NOx and oxygen were stored to the NOx-free zone where only oxygen storage capacity was saturated. N2 formed in the NOx-free zone originated from reaction of NH3 with stored oxygen, while N2O formation in this zone was very low.

  1. QUANTITATION, DETECTION AND MEASUREMENT PRECISION OF ORGANIC MOLECULAR MARKERS IN URBAN PARTICULATE MATTER FROM PHILADELPHIA, PA

    EPA Science Inventory

    This work focuses on analysis of organic molecular markers in airborne particulate matter (PM) by Gas Chromatography/Ion Trap Mass Spectrometry (GC/IT MS). The particulate samples used in the method development were collected as PM10 in metropolitan Philadelphia during...

  2. COLD TRAP

    DOEpatents

    Milleron, N.

    1963-03-12

    An improved linear-flow cold trap is designed for highvacuum applications such as mitigating back migration of diffusion pump oil moiecules. A central pot of liquid nitrogen is nested within and supported by a surrounding, vertical, helical coil of metai sheet, all enveloped by a larger, upright, cylindrical, vacuum vessel. The vertical interstices between successive turns of the coil afford lineal, axial, high-vacuum passages between open mouths at top and bottom of said vessel, while the coil, being cold by virtue of thermal contact of its innermost turn with the nitrogen pot, affords expansive proximate condensation surfaces. (AEC)

  3. VACUUM TRAP

    DOEpatents

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  4. Primary production export flux in Marguerite Bay (Antarctic Peninsula): Linking upper water-column production to sediment trap flux

    NASA Astrophysics Data System (ADS)

    Weston, Keith; Jickells, Timothy D.; Carson, Damien S.; Clarke, Andrew; Meredith, Michael P.; Brandon, Mark A.; Wallace, Margaret I.; Ussher, Simon J.; Hendry, Katharine R.

    2013-05-01

    A study was carried out to assess primary production and associated export flux in the coastal waters of the western Antarctic Peninsula at an oceanographic time-series site. New, i.e., exportable, primary production in the upper water-column was estimated in two ways; by nutrient deficit measurements, and by primary production rate measurements using separate 14C-labelled radioisotope and 15N-labelled stable isotope uptake incubations. The resulting average annual exportable primary production estimates at the time-series site from nutrient deficit and primary production rates were 13 and 16 mol C m-2, respectively. Regenerated primary production was measured using 15N-labelled ammonium and urea uptake, and was low throughout the sampling period. The exportable primary production measurements were compared with sediment trap flux measurements from 2 locations; the time-series site and at a site 40 km away in deeper water. Results showed ˜1% of the upper mixed layer exportable primary production was exported to traps at 200 m depth at the time-series site (total water column depth 520 m). The maximum particle flux rate to sediment traps at the deeper offshore site (total water column depth 820 m) was lower than the flux at the coastal time-series site. Flux of particulate organic carbon was similar throughout the spring-summer high flux period for both sites. Remineralisation of particulate organic matter predominantly occurred in the upper water-column (<200 m depth), with minimal remineralisation below 200 m, at both sites. This highly productive region on the Western Antarctic Peninsula is therefore best characterised as 'high recycling, low export'.

  5. RTF glovebox stripper regeneration development

    SciTech Connect

    Birchenall, A.K.

    1992-10-31

    Currently, the Replacement Tritium Facility (RTF) glovebox stripper system consists of a catalytic oxidation front end where trace tritium which may escape from the primary tritium process into the glovebox nitrogen system is oxidized to tritiated water. The tritiated water, along with normal water which may leak into the glovebox from the surrounding atmosphere, is then captured on a zeolite bed. Eventually, the zeolite bed becomes saturated with water and must be regenerated to remain effective as a stripper. This is accomplished by heating the zeolite and evolving the trapped water which is then passed over an elevated temperature uranium bed. A waste minimization program was instituted to address this issue. The program has two parallel paths. One path investigates replacing the entire glovebox stripper system with a system of getters to scavenge trace tritium. This report concentrates on the second path, retaining the catalytic oxidation front end but replacing the uranium bed water cracking with alternative technologies.

  6. Desulfurization sorbent regeneration

    DOEpatents

    Jalan, V.M.; Frost, D.G.

    1982-07-07

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

  7. Regeneration Heat Exchange

    SciTech Connect

    J. Lin

    2003-07-30

    The original project goals were to establish the viability of the proposed gas turbine regenerator concept by performing the following tasks: (1) Perform detailed design of a working model of the regenerator concept. (2) Construct a ''bench-top'' model of the regenerator concept based upon the detail design. (3) Test the bench-top model and gather data to support the concept's viability. The project funding was used to acquire the tools and material to perform the aforementioned tasks.

  8. Particulate Air Pollution: The Particulars

    ERIC Educational Resources Information Center

    Murphy, James E.

    1973-01-01

    Describes some of the causes and consequences of particulate air pollution. Outlines the experimental procedures for measuring the amount of particulate materials that settles from the air and for observing the nature of particulate air pollution. (JR)

  9. Pitch based foam with particulate

    DOEpatents

    Klett, James W.

    2001-01-01

    A thermally conductive, pitch based foam composite having a particulate content. The particulate alters the mechanical characteristics of the foam without severely degrading the foam thermal conductivity. The composite is formed by mixing the particulate with pitch prior to foaming.

  10. CONTROLLING EMISSIONS OF PARTICULATES

    EPA Science Inventory

    The report gives a semi-technical overview of the contribution of particulate matter to the overall U.S. air pollution problem. It also discusses contributions of the Particulate Technology Branch of EPA's Industrial Environmental Research Laboratory at Research Triangle Park, N....

  11. Airborne particulate discriminator

    DOEpatents

    Creek, Kathryn Louise; Castro, Alonso; Gray, Perry Clayton

    2009-08-11

    A method and apparatus for rapid and accurate detection and discrimination of biological, radiological, and chemical particles in air. A suspect aerosol of the target particulates is treated with a taggant aerosol of ultrafine particulates. Coagulation of the taggant and target particles causes a change in fluorescent properties of the cloud, providing an indication of the presence of the target.

  12. Low exhaust temperature electrically heated particulate matter filter system

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2012-02-14

    A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

  13. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  14. Device for removing particulates in exhaust gas

    SciTech Connect

    Shinsei, K.; Takada, H.

    1986-11-18

    A device is described for removing particulates from a flow of exhaust has exhausted from a diesel engine before the flow of exhaust gas is exhausted to the outside atmosphere, comprising: a particulate filter having a filter inlet; a regenerative burner for producing combustion gas, having a burner outlet, the regenerating burner including a housing having a first closed end and a second open end and defining a combustion chamber therein. An injection nozzle is disposed at the closed end to inject a fuel and air mixture into the combustion chamber, and an ignition plug is disposed at the closed end to be adjacent to the injection nozzle; and means, including only one exhaust gas conduit connected to the filter inlet for directing the flow of exhaust gas thereto, for concurrently directing the flow of exhaust gas, and all of the combustion gas produced by the regenerating burner from the burner outlet into the filter through the exhaust gas conduit and the filter inlet.

  15. Specialized progenitors and regeneration

    PubMed Central

    Reddien, Peter W.

    2013-01-01

    Planarians are flatworms capable of regenerating all body parts. Planarian regeneration requires neoblasts, a population of dividing cells that has been studied for over a century. Neoblast progeny generate new cells of blastemas, which are the regenerative outgrowths at wounds. If the neoblasts comprise a uniform population of cells during regeneration (e.g. they are all uncommitted and pluripotent), then specialization of new cell types should occur in multipotent, non-dividing neoblast progeny cells. By contrast, recent data indicate that some neoblasts express lineage-specific transcription factors during regeneration and in uninjured animals. These observations raise the possibility that an important early step in planarian regeneration is the specialization of neoblasts to produce specified rather than naïve blastema cells. PMID:23404104

  16. Ceramic regenerator program

    NASA Technical Reports Server (NTRS)

    Franklin, Jerrold E.

    1991-01-01

    The feasibility of fabricating an Air Turbo Ramjet (ATR) regenerator containing intricate hydraulic passages from a ceramic material in order to allow operation with high temperature combustion gas and to reduce weight as compared with metallic materials was demonstrated. Platelet technology, ceramic tape casting, and multilayer ceramic packaging techniques were used in this fabrication of subscale silicon nitride components. Proof-of-concept demonstrations were performed to simulate a methane cooled regenerator for an ATR engine. The regenerator vane was designed to operate at realistic service conditions, i.e., 600 psi in a 3500 R (3040 F), 500 fps combustion gas environment. A total of six regenerators were fabricated and tested. The regenerators were shown to be able to withstand internal pressurization to 1575 psi. They were subjected to testing in 500 fps, 3560 R (3100 F) air/propane combustion products and were operated satisfactorily for an excess of 100 hr and 40 thermal cycles which exceeded 2460 R (2000 F).

  17. Fluidizing device for solid particulates

    DOEpatents

    Diebold, J.P.; Scahill, J.W.

    A flexible whip suspended in a hopper is caused to impact against fibrous and irregularly shaped particulates in the hopper to fluidize the particulates and facilitate the flow of the particulates through the hopper. The invention provides for the flow of particulates at a substantially constant mass flow rate and uses a minimum of energy.

  18. Molecular Sieve Regeneration System for assaying HTO from detritiation systems

    SciTech Connect

    Nasise, J.E.; Anderson, J.L.; Naruse, Y.

    1992-07-01

    A Molecular Sieve Regeneration System (MSRS) is being added to the existing Tritium Waste Treatment system (TWT) within the Tritium Systems Test Assembly (TSTA) at the Los Alamos National Laboratory. This system is an upgrade to the TWT to provide accurate measurements of the liquid waste generated from this system. Within the TWT, hydrogen isotopes are removed from the effluent gas stream by the catalytic conversion to water and the subsequent removal of water by molecular sieve trapping prior to the release to the environment. Within the TWT and similar systems, molecular sieve regeneration is required to rejuvenate the beds. The major difference of the MSRS and other regeneration systems is the capability of direct assay of long-term storage waste containers. This is accomplished with loop-flow regeneration, water collection, and tritiated water assay by scintillation and calorimetric techniques. This paper describes the MSRS in detail and how it is interfaced with the Tritium Waste Treatment system.

  19. Molecular Sieve Regeneration System for assaying HTO from detritiation systems

    SciTech Connect

    Nasise, J.E.; Anderson, J.L. ); Naruse, Y. )

    1992-01-01

    A Molecular Sieve Regeneration System (MSRS) is being added to the existing Tritium Waste Treatment system (TWT) within the Tritium Systems Test Assembly (TSTA) at the Los Alamos National Laboratory. This system is an upgrade to the TWT to provide accurate measurements of the liquid waste generated from this system. Within the TWT, hydrogen isotopes are removed from the effluent gas stream by the catalytic conversion to water and the subsequent removal of water by molecular sieve trapping prior to the release to the environment. Within the TWT and similar systems, molecular sieve regeneration is required to rejuvenate the beds. The major difference of the MSRS and other regeneration systems is the capability of direct assay of long-term storage waste containers. This is accomplished with loop-flow regeneration, water collection, and tritiated water assay by scintillation and calorimetric techniques. This paper describes the MSRS in detail and how it is interfaced with the Tritium Waste Treatment system.

  20. Development and Use of Fluorescent Antibody and qPCR Protocols for the Electrostatic Spore Trap

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fluorescent antibody (FA) and qPCR protocols were evaluated for the newly developed aerobiological sampler (Ionic Spore Trap), which depends upon electrostatic deposition of particulates onto a 25 mm aluminum disk (stub). This device was originally designed for assessment of captured particulates by...

  1. Further theoretical studies of modified cyclone separator as a diesel soot particulate emission arrester.

    PubMed

    Mukhopadhyay, N; Bose, P K

    2009-10-01

    Soot particulate emission reduction from diesel engine is one of the most emerging problems associated with the exhaust pollution. Diesel particulate filters (DPF) hold out the prospects of substantially reducing regulated particulate emissions but the question of the reliable regeneration of filters still remains a difficult hurdle to overcome. Many of the solutions proposed to date suffer from design complexity, cost, regeneration problem and energy demands. This study presents a computer aided theoretical analysis for controlling diesel soot particulate emission by cyclone separator--a non contact type particulate removal system considering outer vortex flow, inner vortex flow and packed ceramic fiber filter at the end of vortex finder tube. Cyclone separator with low initial cost, simple construction produces low back pressure and reasonably high collection efficiencies with reduced regeneration problems. Cyclone separator is modified by placing a continuous ceramic packed fiber filter placed at the end of the vortex finder tube. In this work, the grade efficiency model of diesel soot particulate emission is proposed considering outer vortex, inner vortex and the continuous ceramic packed fiber filter. Pressure drop model is also proposed considering the effect of the ceramic fiber filter. Proposed model gives reasonably good collection efficiency with permissible pressure drop limit of diesel engine operation. Theoretical approach is predicted for calculating the cut size diameter considering the effect of Cunningham molecular slip correction factor. The result shows good agreements with existing cyclone and DPF flow characteristics. PMID:21117422

  2. Tilt-induced biases in sediment trap functioning

    NASA Astrophysics Data System (ADS)

    Chiswell, Stephen M.; Nodder, Scott D.

    2015-12-01

    We present data from two sediment traps moored 5 km apart ˜150 km off the east coast of New Zealand. Both traps were at 1500 m in 3100 m of water. One trap was attached to a 3038 m tall mooring and exhibited tilts measured by a tilt sensor ranging from 5° to 20°, the other trap was attached to a 1659 m tall mooring and exhibited tilts ranging from 2° to 4°. The computed relative trapping efficiency depends on which flux constituent (mass, particulate organic carbon, biogenic silica, etc.) is used to compute it. We suggest that this physically unrealistic result arises because of relatively high noise in the measurements due to patchiness, sampling and/or measurement errors. On average, the trap exhibiting most tilt collected 30-50% less material than the trap exhibiting least tilt. For the total mass flux, efficiencies appear to be lower at higher trap tilt. However, with only 5 months of data, we do not have enough samples to accurately model the relationship between trap tilt and efficiency, except to show that with even moderate tilt, the sediment trap trapping efficiency can be reduced by a factor of nearly two.

  3. Biodiesel Fuel Property Effects on Particulate Matter Reactivity

    SciTech Connect

    Williams, A.; Black, S.; McCormick, R. L.

    2010-06-01

    Controlling diesel particulate emissions to meet the 2007 U.S. standard requires the use of a diesel particulate filter (DPF). The reactivity of soot, or the carbon fraction of particulate matter, in the DPF and the kinetics of soot oxidation are important in achieving better control of aftertreatment devices. Studies showed that biodiesel in the fuel can increase soot reactivity. This study therefore investigated which biodiesel fuel properties impact reactivity. Three fuel properties of interest included fuel oxygen content and functionality, fuel aromatic content, and the presence of alkali metals. To determine fuel effects on soot reactivity, the performance of a catalyzed DPF was measured with different test fuels through engine testing and thermo-gravimetric analysis. Results showed no dependence on the aromatic content or the presence of alkali metals in the fuel. The presence and form of fuel oxygen was the dominant contributor to faster DPF regeneration times and soot reactivity.

  4. Nanomaterials and bone regeneration

    PubMed Central

    Gong, Tao; Xie, Jing; Liao, Jinfeng; Zhang, Tao; Lin, Shiyu; Lin, Yunfeng

    2015-01-01

    The worldwide incidence of bone disorders and conditions has been increasing. Bone is a nanomaterials composed of organic (mainly collagen) and inorganic (mainly nano-hydroxyapatite) components, with a hierarchical structure ranging from nanoscale to macroscale. In consideration of the serious limitation in traditional therapies, nanomaterials provide some new strategy in bone regeneration. Nanostructured scaffolds provide a closer structural support approximation to native bone architecture for the cells and regulate cell proliferation, differentiation, and migration, which results in the formation of functional tissues. In this article, we focused on reviewing the classification and design of nanostructured materials and nanocarrier materials for bone regeneration, their cell interaction properties, and their application in bone tissue engineering and regeneration. Furthermore, some new challenges about the future research on the application of nanomaterials for bone regeneration are described in the conclusion and perspectives part. PMID:26558141

  5. Ion Trap Mass Spectrometry

    SciTech Connect

    Eiden, Greg C.

    2005-09-01

    This chapter describes research conducted in a few research groups in the 1990s in which RF quadrupole ion trap mass spectrometers were coupled to a powerful atomic ion source, the inductively coupled plasma used in conventional ICP-MS instruments. Major section titles for this chapter are: RF Quadrupole Ion Traps Features of RF Quadrupole Ion Trap Mass Spectrometers Selective Ion Trapping methods Inductively Coupled Plasma Source Ion Trap Mass Spectrometers

  6. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Stanley Miller; Rich Gebert; William Swanson

    1999-11-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a manner that has not been done before. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and collection of dust in conventional baghouses. The AHPC is currently being tested at the 2.7-MW scale at the Big Stone power station.

  7. Void/particulate detector

    DOEpatents

    Claytor, Thomas N.; Karplus, Henry B.

    1985-01-01

    Voids and particulates are detected in a flowing stream of fluid contained in a pipe by a detector which includes three transducers spaced about the pipe. A first transducer at a first location on the pipe transmits an ultrasonic signal into the stream. A second transducer detects the through-transmission of the signal at a second location and a third transducer at a third location upstream from the first location detects the back-scattering of the signal from any voids or particulates. To differentiate between voids and particulates a fourth transducer is positioned at a fourth location which is also upstream from the first location. The back-scattered signals are normalized with the through-transmission signal to minimize temperature fluctuations.

  8. MTCI acoustic agglomeration particulate control

    SciTech Connect

    Chandran, R.R.; Mansour, M.N.; Scaroni, A.W.; Koopmann, G.H.; Loth, J.L.

    1994-10-01

    The overall objective of this project is to demonstrate pulse combination induced acoustic enhancement of coal ash agglomeration and sulfur capture at conditions typical of direct coal-fired turbines and PFBC hot gas cleanup. MTCI has developed an advanced compact pulse combustor island for direct coal-firing in combustion gas turbines. This combustor island comprises a coal-fired pulse combustor, a combined ash agglomeration and sulfur capture chamber (CAASCC), and a hot cyclone. In the MTCI proprietary approach, the pulse combustion-induced high intensity sound waves improve sulfur capture efficiency and ash agglomeration. The resulting agglomerates allow the use of commercial cyclones and achieve very high particulate collection efficiency. In the MTCI proprietary approach, sorbent particles are injected into a gas stream subjected to an intense acoustic field. The acoustic field serves to improve sulfur capture efficiency by enhancing both gas film and intra-particle mass transfer rates. In addition, the sorbent particles act as dynamic filter foci, providing a high density of stagnant agglomerating centers for trapping the finer entrained (in the oscillating flow field) fly ash fractions. A team has been formed with MTCI as the prime contractor and Penn State University and West Virginia University as subcontractors to MTCI. MTCI is focusing on hardware development and system demonstration, PSU is investigating and modeling acoustic agglomeration and sulfur capture, and WVU is studying aerovalve fluid dynamics. Results are presented from all three studies.

  9. Regenerative particulate filter development

    NASA Technical Reports Server (NTRS)

    Descamp, V. A.; Boex, M. W.; Hussey, M. W.; Larson, T. P.

    1972-01-01

    Development, design, and fabrication of a prototype filter regeneration unit for regenerating clean fluid particle filter elements by using a backflush/jet impingement technique are reported. Development tests were also conducted on a vortex particle separator designed for use in zero gravity environment. A maintainable filter was designed, fabricated and tested that allows filter element replacement without any leakage or spillage of system fluid. Also described are spacecraft fluid system design and filter maintenance techniques with respect to inflight maintenance for the space shuttle and space station.

  10. Characterization of exhaust emissions from trap-equipped light-duty diesels. Final report

    SciTech Connect

    Smith, L.R.

    1989-01-01

    The objective of the project was to thoroughly characterize and quantify the criteria and toxic-pollutant emissions from two different types of trap-equipped light-duty diesel vehicles. These vehicles included a 1986 Mercedes-Benz 300 SDL, which utilizes a catalyzed trap system, and a prototype Volkswagen, which utilizes an additive trap system (organometallic iron additive). Exhaust emissions from the two vehicles were evaluated as to driving cycle, presence of traps, engine condition, trap condition and fuel aromatic content. In addition to the currently regulated emissions (HC, CO, NOx and particulate matter), a number of unregulated emissions were measured, including aldehydes, benzene, PAHs, metals and trace elements, and 1,3-butadiene. Particulate samples were also analyzed for mutagenic activity using the Ames test. In general, the vehicles produced lower hydrocarbon emissions, higher carbon monoxide emissions, and lower fuel economy when the traps were installed in the vehicles.

  11. THE EFFECT OF SULFUR ON METHANE PARTIAL OXIDATION AND REFORMING PROCESSES FOR LEAN NOX TRAP CATALYSIS

    SciTech Connect

    Parks, II, James E; Ponnusamy, Senthil

    2006-01-01

    Lean NOx trap catalysis has demonstrated the ability to reduce NOx emissions from lean natural gas reciprocating engines by >90%. The technology operates in a cyclic fashion where NOx is trapped on the catalyst during lean operation and released and reduced to N2 under rich exhaust conditions; the rich cleansing operation of the cycle is referred to as "regeneration" since the catalyst is reactivated for more NOx trapping after NOx purge. Creating the rich exhaust conditions for regeneration can be accomplished by catalytic partial oxidation of methane in the exhaust system. Furthermore, catalytic reforming of partial oxidation exhaust can enable increased quantities of H2 which is an excellent reductant for lean NOx trap regeneration. It is critical to maintain clean and efficient partial oxidation and reforming processes to keep the lean NOx trap functioning properly and to reduce extra fuel consumption from the regeneration process. Although most exhaust constituents do not impede partial oxidation and reforming, some exhaust constituents may negatively affect the catalysts and result in loss of catalytic efficiency. Of particular concern are common catalyst poisons sulfur, zinc, and phosphorous. These poisons form in the exhaust through combustion of fuel and oil, and although they are present at low concentrations, they can accumulate to significant levels over the life of an engine system. In the work presented here, the effects of sulfur on the partial oxidation and reforming catalytic processes were studied to determine any durability limitations on the production of reductants for lean NOx trap catalyst regeneration.

  12. Overlap zoned electrically heated particulate filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Chapman, Mark R [Brighton, MI

    2011-07-19

    A system includes a particulate matter (PM) filter that includes an upstream end for receiving exhaust gas and a downstream end. A zoned heater is arranged spaced from the upstream end and comprises N zones, where N is an integer greater than one, wherein each of the N zones comprises M sub-zones, where M is an integer greater than or equal to one, and wherein the N zones and the M sub-zones are arranged in P layers, where P is an integer greater than one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates non-selected ones of the N zones.

  13. Fluidizing device for solid particulates

    DOEpatents

    Diebold, J.P.; Scahill, J.W.

    1984-06-27

    A flexible whip or a system of whips with novel attachments is suspended in a hopper and is caused to impact against fibrous and irregularly shaped particulates in the hopper to fluidize the particulates and facilitate the flow of the particulates through the hopper. The invention provides for the flow of particulates at a substantially constant mass flow rate and uses a minimum of energy.

  14. Fluidizing device for solid particulates

    DOEpatents

    Diebold, James P.; Scahill, John W.

    1986-01-01

    A flexible whip or a system of whips with novel attachments is suspended in a hopper and is caused to impact against fibrous and irregularly shaped particulates in the hopper to fluidize the particulates and facilitate the flow of the particulates through the hopper. The invention provides for the flow of particulates at a substantially constant mass flow rate and uses a minimum of energy.

  15. PARTICULATE EMISSION CONTROL

    EPA Science Inventory

    Particle or particulate matter is defined as any finely divided solid or liquid material, other than uncombined water, emitted to the ambient air as measured by applicable reference methods, or an equivalent or alternative method, or by a test method specified in 40CFR50.

  16. Ceramic filters for removal of particulates from hot gas streams

    SciTech Connect

    Goldsmith, R.L.

    1992-11-01

    The primary goal is to demonstrate the performance of a new ceramic filter in removing particulate matter from hot gas streams produced in advanced coal conversion processes. The specific objectives are threefold: (1) Development of full size ceramic filters suitable for hot gas filtration; (2) Demonstration of ceramic filters in long term (ca. 1000 hrs) field trials; and (3) Development of full-scale hot gas filter system designs and costs. To date, field tests of the ceramic filter for particulate removal have been conducted at seven sites on a variety of gas streams and under a variety of test conditions. In general, the following performance characteristics have been observed: 1. Filtration face velocity (equivalent to an ``air to cloth ratio``) for flue gas tests is comparable to that for pulse jet bags operating at the same pressure drop. In hot gas tests, flow-pressure drop characteristics have been observed to be comparable to those for other ceramic filters. 2. Complete regeneration by a simple backpulse technique is achieved; i.e., no increase in clean filter resistance over repetitive cycles is observed. 3. No plugging of the filter passageways by badly caking particulates is observed. 4. Essentially complete particulate removal, including submicron particulate matter, is achieved.

  17. Ceramic filters for removal of particulates from hot gas streams

    SciTech Connect

    Goldsmith, R.L.

    1992-01-01

    The primary goal is to demonstrate the performance of a new ceramic filter in removing particulate matter from hot gas streams produced in advanced coal conversion processes. The specific objectives are threefold: (1) Development of full size ceramic filters suitable for hot gas filtration; (2) Demonstration of ceramic filters in long term (ca. 1000 hrs) field trials; and (3) Development of full-scale hot gas filter system designs and costs. To date, field tests of the ceramic filter for particulate removal have been conducted at seven sites on a variety of gas streams and under a variety of test conditions. In general, the following performance characteristics have been observed: 1. Filtration face velocity (equivalent to an air to cloth ratio'') for flue gas tests is comparable to that for pulse jet bags operating at the same pressure drop. In hot gas tests, flow-pressure drop characteristics have been observed to be comparable to those for other ceramic filters. 2. Complete regeneration by a simple backpulse technique is achieved; i.e., no increase in clean filter resistance over repetitive cycles is observed. 3. No plugging of the filter passageways by badly caking particulates is observed. 4. Essentially complete particulate removal, including submicron particulate matter, is achieved.

  18. Nanostructured Biomaterials for Regeneration**

    PubMed Central

    Wei, Guobao; Ma, Peter X.

    2009-01-01

    Biomaterials play a pivotal role in regenerative medicine, which aims to regenerate and replace lost/dysfunctional tissues or organs. Biomaterials (scaffolds) serve as temporary 3D substrates to guide neo tissue formation and organization. It is often beneficial for a scaffolding material to mimic the characteristics of extracellular matrix (ECM) at the nanometer scale and to induce certain natural developmental or/and wound healing processes for tissue regeneration applications. This article reviews the fabrication and modification technologies for nanofibrous, nanocomposite, and nanostructured drug-delivering scaffolds. ECM-mimicking nanostructured biomaterials have been shown to actively regulate cellular responses including attachment, proliferation, differentiation and matrix deposition. Nano-scaled drug delivery systems can be successfully incorporated into a porous 3D scaffold to enhance the tissue regeneration capacity. In conclusion, nano-structured biomateials are a very exciting and rapidly expanding research area, and are providing new enabling technologies for regenerative medicine. PMID:19946357

  19. Atlas Regeneration, Inc.

    PubMed

    Makarev, Eugene; Isayev, Olexandr; Atala, Anthony

    2016-03-01

    Atlas Regeneration is dedicated to the development of novel data-driven solutions for regenerative medicine, adapting proven technologies, and analysis strategies to take a multiomics-wide view of stem cell quality and cell fate design. Our core offering is a global comprehensive map of stem cell differentiation, Universal Signalome Atlas for Regenerative Medicine, reflecting the pathway activation states across all characterized stem cells and their differentiated products. Key applications of Universal Signalome Atlas for Regenerative Medicine will include quality assurance for engineered cell products, and directed regeneration pharmacology, where we will screen and identify compounds that can efficiently convert pluripotent cells into desired subtypes. Another marketable piece of IP is development of specialized signaling pathway analysis systems Regeneration Intelligence which supposed to target the unmet needs of determination and prediction of stem cell signaling pathway activation to govern cell differentiation in specific directions. PMID:26925598

  20. Electrochemically regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.; Heppner, D. B.

    1979-01-01

    Preliminary designs were generated for two electrochemically regenerable carbon dioxide absorber concepts. Initially, an electrochemically regenerable absorption bed concept was designed. This concept incorporated the required electrochemical regeneration components in the absorber design, permitting the absorbent to be regenerated within the absorption bed. This hardware was identified as the electrochemical absorber hardware. The second hardware concept separated the functional components of the regeneration and absorption process. This design approach minimized the extravehicular activity component volume by eliminating regeneration hardware components within the absorber. The electrochemical absorber hardware was extensively characterized for major operating parameters such as inlet carbon dioxide partial pressure, process air flow rate, operational pressure, inlet relative humidity, regeneration current density and absorption/regeneration cycle endurance testing.

  1. Ion trap simulation tools.

    SciTech Connect

    Hamlet, Benjamin Roger

    2009-02-01

    Ion traps present a potential architecture for future quantum computers. These computers are of interest due to their increased power over classical computers stemming from the superposition of states and the resulting capability to simultaneously perform many computations. This paper describes a software application used to prepare and visualize simulations of trapping and maneuvering ions in ion traps.

  2. Supercritical fluid regeneration of adsorbents

    NASA Astrophysics Data System (ADS)

    Defilippi, R. P.; Robey, R. J.

    1983-05-01

    The results of a program to perform studies supercritical (fluid) carbon dioxide (SCF CO2) regeneration of adsorbents, using samples of industrial wastewaters from manufacturing pesticides and synthetic solution, and to estimate the economics of the specific wastewater treatment regenerations, based on test data are given. Processing costs for regenerating granular activated carbon GAC) for treating industrial wastewaters depend on stream properties and regeneration throughput.

  3. The cell biology of regeneration

    PubMed Central

    King, Ryan S.

    2012-01-01

    Regeneration of complex structures after injury requires dramatic changes in cellular behavior. Regenerating tissues initiate a program that includes diverse processes such as wound healing, cell death, dedifferentiation, and stem (or progenitor) cell proliferation; furthermore, newly regenerated tissues must integrate polarity and positional identity cues with preexisting body structures. Gene knockdown approaches and transgenesis-based lineage and functional analyses have been instrumental in deciphering various aspects of regenerative processes in diverse animal models for studying regeneration. PMID:22391035

  4. Regeneration: rewarding, but potentially risky.

    PubMed

    Egger, Bernhard

    2008-12-01

    Some bilaterally symmetric animals, such as flatworms, annelids, and nemerteans, are renowned for their outstanding regeneration capacity-even a fraction of the body can give rise to a complete new animal. However, not all species of these taxa can regenerate equally well-some cannot regenerate at all. If regeneration was purely beneficial, why cannot all of members of the flat, round, and ribbon worms regenerate? At that, why cannot all other bilaterians, including humans, regenerate as well? Regeneration capacity is an obvious advantage in accidental, predatory, and parasitic loss of body parts and is also closely intertwined with asexual reproduction strategies. Regeneration is suspected to play a role in life span extension or even rejuvenation. An answer for reduced or missing regeneration capacity in many species may be found in limitations of the body plan, high costs, and inherent dangers of regeneration. Defects in adults and juveniles are shown, and similarities between development and regeneration are pointed out. With a focus on some worms, but also highlighting comparisons with other animal taxa, putative reasons for a limited and an advanced regeneration capacity are discussed in this article. PMID:19067421

  5. Regenerator seal design

    DOEpatents

    Eckart, Francis H.

    1982-01-01

    A rotary regenerator disc matrix has a face seal with a cross arm and arcuate rim segments joined by prestress clamps to prestrain the arcuate rim seals so as to compensate seal rim twisting or coning and resultant disc face seal leakage as produced by operating thermal gradients across the seal.

  6. Regenerated Fe is tasty!

    NASA Astrophysics Data System (ADS)

    Nuester, J.; Twining, B. S.

    2012-12-01

    Bioavailability of nutrients is an essential factor controlling primary productivity in the ocean. In addition to macronutrients such as nitrogen and phosphorous, availability of the trace element iron unequivocally affects growth rates and community structure of phytoplankton and thereby primary productivity in many ocean regions. External sources of iron such as Aeolian dust, upwelling of Fe-rich waters, and hydrothermal are reduced in high-nutrient low-chlorophyll regions, and most Fe used by phytoplankton has been regenerated by zooplankton. While zooplankton regeneration of Fe was first shown two decades ago, major factors controlling this process such as chemical composition of prey and grazer taxonomy are not well constrained. As pH varies significantly in digestive systems between protozoa and mesozooplankton, we hypothesize that the extent and the bioavailability of regenerated Fe is a function of the digestive physiology. Furthermore, major element components such as silica for diatoms and calcium carbonate for cocolithophores may be able to buffer the pH of digestive systems of different grazer taxa. Such effects may further influence the magnitude and bioavailability of regenerated Fe. In order to constrain the effect of grazer taxonomy and chemical composition of prey on Fe bioavailability, 55Fe-labeled phytoplankton were fed to different grazers and unlabeled phytoplankton were subsequently inoculated to the filtrate of the grazing experiment in the regrowth phase of the experiment, and the uptake of 55Fe into the phytoplankton biomass was monitored over time. A parallel uptake experiment using inorganic 55Fe was used to compare the bioavailability of regenerated and inorganic Fe to the same phytoplankton species. Furthermore, some samples of the inorganic and the regenerated uptake experiments were treated with an oxalate rinse to remove any adsorbed Fe. This allowed us to estimate the adsorption of 55Fe from either source to the cell walls of

  7. Rigid particulate matter sensor

    DOEpatents

    Hall, Matthew

    2011-02-22

    A sensor to detect particulate matter. The sensor includes a first rigid tube, a second rigid tube, a detection surface electrode, and a bias surface electrode. The second rigid tube is mounted substantially parallel to the first rigid tube. The detection surface electrode is disposed on an outer surface of the first rigid tube. The detection surface electrode is disposed to face the second rigid tube. The bias surface electrode is disposed on an outer surface of the second rigid tube. The bias surface electrode is disposed to face the detection surface electrode on the first rigid tube. An air gap exists between the detection surface electrode and the bias surface electrode to allow particulate matter within an exhaust stream to flow between the detection and bias surface electrodes.

  8. Void/particulate detector

    DOEpatents

    Claytor, T.N.; Karplus, H.B.

    1983-09-26

    Apparatus for detecting voids and particulates in a flowing stream of fluid contained in a pipe may comprise: (a) a transducer for transmitting an ultrasonic signal into the stream, coupled to the pipe at a first location; (b) a second transducer for detecting the through-transmission of said signal, coupled to the pipe at a second location; (c) a third transducer for detecting the back-scattering of said signal, coupled to the pipe at a third location, said third location being upstream from said first location; (d) circuit means for normalizing the back-scattered signal from said third transducer to the through-transmitted signal from said second transducer; which normalized signal provides a measure of the voids and particulates flowing past said first location.

  9. Eighth particulate control symposium

    SciTech Connect

    Not Available

    1990-11-01

    The Eighth Symposium on the Transfer and Utilization of Particulate Control Technology was held in San Diego, California, March 20 through 23, 1990. The symposium proceedings contain 80 papers presented by representatives of utility companies, equipment and process suppliers, university representatives, research and development companies, EPA and other federal and state agency representatives, and EPRI staff members. Electrostatic precipitators and fabric filters were the major topics discussed during the symposium. Papers from this conference are organized by session in two volumes. This Volume (2) contains papers presented in the sessions on: low ratio baghouse O M experience, pulse-jet baghouse experience, particulate control for AFBCs, particulate control for dry SO2 control processes, baghouse design and performance, fundamental baghouse studies, high temperature filtration, and control of emissions from RDF incinerators. Both fabric filters and ESPs are discussed in the AFBC and dry SO2 control papers. The high temperature filtration papers deal with ceramic barrier and granular bed filters. The rest of the papers in Volume 2 are concerned with fabric filters on pulverized-coal-fired boilers. Individual projects are processed separately for the data bases.

  10. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Stanley J. Miller; Grant L. Schelkoph; Grant E. Dunham

    2000-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and recollection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hour parametric tests and 100-hour proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency.

  11. Diesel particulate emissions

    SciTech Connect

    Abbass, M.K.; Andrews, G.E.; Williams, P.T.; Bartle, K.D.; Davies, I.L.; Tanui, L.K.

    1988-01-01

    The objective was to investigate combustion generated PAH in Diesel engine particulate emissions using a pure single component fuel, hexadecane, in a Perkins 4-236 engine in a single cylinder format. The results were compared with those using a conventional Diesel fuel and with the particulates collected by motoring the engine. To minimise any influence of contamination from the PAH in used lubricating oil, all the tests were carried out with fresh PAH free lubricating oil. The hexadecane particulates were found to contain 6-25% of the PAH and 5-9% of the n-alkanes for Diesel and the motoring tests were found to give 10% of the PAH and 50-200% of the n-alkane for hexadecane. It was concluded that there was an internal source of n-alkane and PAH in the engine and exhaust system, probably absorbed in engine deposits. It was therefore not possible to conclude that the PAH with hexadecane was pyrosynthesised.

  12. Tissue regeneration with photobiomodulation

    NASA Astrophysics Data System (ADS)

    Tang, Elieza G.; Arany, Praveen R.

    2013-03-01

    Low level light therapy (LLLT) has been widely reported to reduce pain and inflammation and enhance wound healing and tissue regeneration in various settings. LLLT has been noted to have both stimulatory and inhibitory biological effects and these effects have been termed Photobiomodulation (PBM). Several elegant studies have shown the key role of Cytochrome C oxidase and ROS in initiating this process. The downstream biological responses remain to be clearly elucidated. Our work has demonstrated activation of an endogenous latent growth factor complex, TGF-β1, as one of the major biological events in PBM. TGF-β1 has critical roles in various biological processes especially in inflammation, immune responses, wound healing and stem cell biology. This paper overviews some of the studies demonstrating the efficacy of PBM in promoting tissue regeneration.

  13. High exhaust temperature, zoned, electrically-heated particulate matter filter

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2015-09-22

    A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.

  14. Trap style influences wild pig behavior and trapping success

    USGS Publications Warehouse

    Williams, B.L.; Holtfreter, R.W.; Ditchkoff, S.S.; Grand, J.B.

    2011-01-01

    Despite the efforts of many natural resource professionals, wild pig (Sus scrofa) populations are expanding in many areas of the world. Although many creative techniques for controlling pig populations are being explored, trapping has been and still is themost commonly usedmethod of population control formany public and private land managers. We conducted an observational study to examine the efficiency of 2 frequently used trap styles: a small, portable box-style trap and a larger, semi-permanent, corral-style trap.We used game cameras to examine patterns of trap entry by wild pigs around each style of trap, and we conducted a trapping session to compare trapping success between trap styles. Adult female and juvenile wild pigs entered both styles of trap more readily than did adult males, and adult males seemed particularly averse to entering box traps. Less than 10% of adult male visits to box traps resulted in entries, easily the least percentage of any class at any style of trap. Adult females entered corral traps approximately 2.2 times more often per visit than box traps and re-entered corral traps >2 times more frequently. Juveniles entered and reentered both box and corral traps at similar rates. Overall (all-class) entry-per-visit rates at corral traps (0.71) were nearly double that of box traps (0.37). Subsequent trapping data supported these preliminary entry data; the capture rate for corral traps was >4 times that of box traps. Our data suggest that corral traps are temporally and economically superior to box traps with respect to efficiency; that is, corral traps effectively trap more pigs per trap night at a lower cost per pig than do box traps. ?? 2011 The Wildlife Society.

  15. Reprogramming for cardiac regeneration

    PubMed Central

    Raynaud, Christophe Michel; Ahmad, Faizzan Syed; Allouba, Mona; Abou-Saleh, Haissam; Lui, Kathy O.; Yacoub, Magdi

    2014-01-01

    Treatment of cardiovascular diseases remains challenging considering the limited regeneration capacity of the heart muscle. Developments of reprogramming strategies to create in vitro and in vivo cardiomyocytes have been the focus point of a considerable amount of research in the past decades. The choice of cells to employ, the state-of-the-art methods for different reprogramming strategies, and their promises and future challenges before clinical entry, are all discussed here. PMID:25763379

  16. Regenerable adsorption system

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Subir (Inventor); Perry, Jay (Inventor); Walsh, Dennis (Inventor)

    2006-01-01

    A method for regenerable adsorption includes providing a substrate that defines at least one layer of ultra short channel length mesh capable of conducting an electrical current therethrough, coating at least a portion of the substrate with a desired sorbent for trace contaminant control or CO.sub.2 sorption, resistively heating the substrate, and passing a flowstream through the substrate and in contact with the sorbent.

  17. Ecological and evolutionary traps

    USGS Publications Warehouse

    Schlaepfer, Martin A.; Runge, M.C.; Sherman, P.W.

    2002-01-01

    Organisms often rely on environmental cues to make behavioral and life-history decisions. However, in environments that have been altered suddenly by humans, formerly reliable cues might no longer be associated with adaptive outcomes. In such cases, organisms can become 'trapped' by their evolutionary responses to the cues and experience reduced survival or reproduction. Ecological traps occur when organisms make poor habitat choices based on cues that correlated formerly with habitat quality. Ecological traps are part of a broader phenomenon, evolutionary traps, involving a dissociation between cues that organisms use to make any behavioral or life-history decision and outcomes normally associated with that decision. A trap can lead to extinction if a population falls below a critical size threshold before adaptation to the novel environment occurs. Conservation and management protocols must be designed in light of, rather than in spite of, the behavioral mechanisms and evolutionary history of populations and species to avoid 'trapping' them.

  18. Microfabricated ion trap array

    DOEpatents

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  19. Zoned electrical heater arranged in spaced relationship from particulate filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2011-11-15

    A system comprises a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas and a downstream end. A zoned heater is arranged spaced from the upstream end and comprises N zones, where N is an integer greater than one, wherein each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates non-selected ones of the N zones.

  20. Electrically heated particulate filter with zoned exhaust flow control

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2012-06-26

    A system includes a particulate matter (PM) filter that includes X zones. An electrical heater includes Y heater segments that are associated with respective ones of the X zones. The electrical heater is arranged upstream from and proximate with the PM filter. A valve assembly includes Z sections that are associated with respective ones of the X zones. A control module adjusts flow through each of the Z sections during regeneration of the PM filter via control of the valve assembly. X, Y and Z are integers.

  1. Effect of extended aeration on the fate of particulate components in sludge stabilization.

    PubMed

    Özdemir, S; Çokgör, E U; İnsel, G; Orhon, D

    2014-12-01

    The study investigated the effect of extended aeration on the fate of particulate components of biological sludge in aerobic stabilization. Biological sludge was generated in a fill and draw reactor fed with domestic sewage and sustained at steady state, at a sludge age of 20 days. Particulate fractions of sludge were determined by model evaluation of the corresponding oxygen uptake rate profile. Extended aeration could not produce a mineralized biomass. External aerobic stabilization of the thickened sludge achieved a volatile suspended solids reduction of 68% after 60 days. High reduction could be attributed to the relatively higher rate for the hydrolysis of accumulated particulate metabolic products, compared to conventional activated sludge. Model evaluation based on death-regeneration mechanism indicated a gradually decreasing decay rate for solids; the first phase could be associated with the inactivation/death of the viable biomass and the second controlled by the slower breakdown of particulate metabolic products. PMID:25463786

  2. Neutral atom traps.

    SciTech Connect

    Pack, Michael Vern

    2008-12-01

    This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

  3. Particulate contamination in ampoules.

    PubMed

    Alexander, D M; Veltman, A M

    1985-01-01

    The particulate contamination in 19 formulations of solutions in ampoules supplied by eight South African manufacturers, thirty-three batches in all, was analysed using a HIAC PC 320 light blockage particle analyser linked to a CMB 60 sensor. Results showed that the level of contamination was generally low and that, where comparisons could be made, manufacturers both of the ampoules and the solutions maintained similarly high standards. Problems in this field appeared to be related to the formulation or the quality of the raw material. PMID:2858528

  4. Expression of osteoblastic and osteoclastic genes during spontaneous regeneration and autotransplantation of goldfish scale: a new tool to study intramembranous bone regeneration.

    PubMed

    Thamamongood, Thiparpa Aime; Furuya, Ryo; Fukuba, Shunsuke; Nakamura, Masahisa; Suzuki, Nobuo; Hattori, Atsuhiko

    2012-06-01

    Complementary DNA of osteoblast-specific genes (dlx5, runx2a, runx2b, osterix, RANKL, type I collagen, ALP, and osteocalcin) was cloned from goldfish (Carassius auratus) scale. Messenger RNA expressions were analyzed during spontaneous scale regeneration. Dlx5 had an early peak of expression on day 7, whereas osterix was constantly expressed during days 7-21. Runx2, a major osteoblastic transcription factor in mammalian bone, did not show any significant expression. The expressions of two functional genes, type I collagen and ALP, continually increased after day 7, while that of osteocalcin increased on day 14. As for osteoclastic markers, in addition to the cloning of two functional genes, TRAP and cathepsin K, in our previous study, we here cloned the transcription factor NFATc1 to use as an early osteoclastic marker. Using these bone markers, we investigate the signal key that controls the onset of scale resorption and regeneration by performing intra-scale-pocket autotransplantation of five groups of modified scales, namely, 1) methanol-fixed scale, 2) proteinase K-treated cell-free scale, 3) polarity reversal (upside-down) scale, 4) U-shape trimmed scale, and 5) circular-hole perforated scale. In this autotransplantation, each ontogenic scale was pulled out, modified, and then re-inserted into the same scale pocket. At post-transplant, inside the pockets of all modified transplant groups, new regenerating scales formed, attaching to the ongoing resorbed transplants. Autotransplantation of methanol-fixed scale, proteinase K-treated cell-free scale, and polarity reversal (upside-down) scale triggered scale resorption and scale regeneration. These two processes of scale resorption and regeneration occurred in accordance with osteoclastic and osteoblastic marker gene expressions. These results were microscopically confirmed using TRAP and ALP staining. Regarding the autotransplantation of U-shape trimmed and circular-hole perforated scales, new scales regenerated

  5. Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion

    DOEpatents

    Shen, Ming-Shing; Yang, Ralph T.

    1980-01-01

    Lime utilization for sulfurous oxides absorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. It is found that iron oxide present in the spent limestone acts as a catalyst to regenerate the spent limestone in a reducing environment. With only small quantities of iron oxide the calcium can be recycled at a significantly increased rate.

  6. Regenerating Water-Sterilizing Resins

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.

    1982-01-01

    Iodine-dispensing resin can be regenerated after iodine content has been depleted, without being removed from water system. Resin is used to make water potable by killing bacteria, fungi, and viruses. Regeneration technique may be come basis of water purifier for very long space missions. Enough crystalline iodine for multiple regenerations during mission can be stored in one small cartridge. Cartridge could be inserted in waterline as necessary on signal from iodine monitor or timer.

  7. Intrinsic Control of Axon Regeneration.

    PubMed

    He, Zhigang; Jin, Yishi

    2016-05-01

    A determinant of axon regeneration is the intrinsic growth ability of injured neurons, which dictates a battery of injury responses in axons and cell bodies. While some of these regulatory mechanisms are evolutionarily conserved, others are unique to the mammalian central nervous system (CNS) where spontaneous regeneration usually does not occur. Here we examine our current understanding of these mechanisms at cellular and molecular terms and discuss their potential implications for promoting axon regeneration and functional recovery after nerve injury. PMID:27151637

  8. Particulate emissions from diesel engines: correlation between engine technology and emissions

    PubMed Central

    2014-01-01

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted. Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions. Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the

  9. Particulate emissions from diesel engines: correlation between engine technology and emissions.

    PubMed

    Fiebig, Michael; Wiartalla, Andreas; Holderbaum, Bastian; Kiesow, Sebastian

    2014-01-01

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted.Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions.Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the

  10. Understanding Urban Regeneration in Turkey

    NASA Astrophysics Data System (ADS)

    Candas, E.; Flacke, J.; Yomralioglu, T.

    2016-06-01

    In Turkey, rapid population growth, informal settlements, and buildings and infrastructures vulnerable to natural hazards are seen as the most important problems of cities. Particularly disaster risk cannot be disregarded, as large parts of various cities are facing risks from earthquakes, floods and landslides and have experienced loss of lives in the recent past. Urban regeneration is an important planning tool implemented by local and central governments in order to reduce to disaster risk and to design livable environments for the citizens. The Law on the Regeneration of Areas under Disaster Risk, commonly known as the Urban Regeneration Law, was enacted in 2012 (Law No.6306, May 2012). The regulation on Implementation of Law No. 6306 explains the fundamental steps of the urban regeneration process. The relevant institutions furnished with various authorities such as expropriation, confiscation and changing the type and place of your property which makes urban regeneration projects very important in terms of property rights. Therefore, urban regeneration projects have to be transparent, comprehensible and acceptable for all actors in the projects. In order to understand the urban regeneration process, the legislation and projects of different municipalities in Istanbul have been analyzed. While some steps of it are spatial data demanding, others relate to land values. In this paper an overview of the urban regeneration history and activities in Turkey is given. Fundamental steps of the urban regeneration process are defined, and particularly spatial-data demanding steps are identified.

  11. Synthetic Phage for Tissue Regeneration

    PubMed Central

    Merzlyak, Anna; Lee, Seung-Wuk

    2014-01-01

    Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy. PMID:24991085

  12. Liquid metal cold trap

    DOEpatents

    Hundal, Rolv

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal being provided with a hole between the incoming impure liquid metal and purified outgoing liquid metal which acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly.

  13. Apparatus for particulate matter analysis

    DOEpatents

    Gundel, Lara A.; Apte, Michael G.; Hansen, Anthony D.; Black, Douglas R.

    2007-01-30

    The apparatus described herein is a miniaturized system for particle exposure assessment (MSPEA) for the quantitative measurement and qualitative identification of particulate content in gases. The present invention utilizes a quartz crystal microbalance (QCM) or other mass-sensitive temperature compensated acoustic wave resonator for mass measurement. Detectors and probes and light sources are used in combination for the qualitative determination of particulate matter.

  14. PARTICULATE CONTROL FOR FUGITIVE DUST

    EPA Science Inventory

    The report gives results of a study of particulate control for fugitive dust. Study results indicate that many Air Quality Control Regions (AQCRs) do not meet ambient air standards for particulates. In a majority of these ACQRs, the emissions from fugitive dust sources are higher...

  15. Optical trapping of nanoparticles.

    PubMed

    Bergeron, Jarrah; Zehtabi-Oskuie, Ana; Ghaffari, Saeedeh; Pang, Yuanjie; Gordon, Reuven

    2013-01-01

    Optical trapping is a technique for immobilizing and manipulating small objects in a gentle way using light, and it has been widely applied in trapping and manipulating small biological particles. Ashkin and co-workers first demonstrated optical tweezers using a single focused beam. The single beam trap can be described accurately using the perturbative gradient force formulation in the case of small Rayleigh regime particles. In the perturbative regime, the optical power required for trapping a particle scales as the inverse fourth power of the particle size. High optical powers can damage dielectric particles and cause heating. For instance, trapped latex spheres of 109 nm in diameter were destroyed by a 15 mW beam in 25 sec, which has serious implications for biological matter. A self-induced back-action (SIBA) optical trapping was proposed to trap 50 nm polystyrene spheres in the non-perturbative regime. In a non-perturbative regime, even a small particle with little permittivity contrast to the background can influence significantly the ambient electromagnetic field and induce a large optical force. As a particle enters an illuminated aperture, light transmission increases dramatically because of dielectric loading. If the particle attempts to leave the aperture, decreased transmission causes a change in momentum outwards from the hole and, by Newton's Third Law, results in a force on the particle inwards into the hole, trapping the particle. The light transmission can be monitored; hence, the trap can become a sensor. The SIBA trapping technique can be further improved by using a double-nanohole structure. The double-nanohole structure has been shown to give a strong local field enhancement. Between the two sharp tips of the double-nanohole, a small particle can cause a large change in optical transmission, thereby inducing a large optical force. As a result, smaller nanoparticles can be trapped, such as 12 nm silicate spheres and 3.4 nm hydrodynamic radius

  16. Deuterium trapping in tungsten

    NASA Astrophysics Data System (ADS)

    Poon, Michael

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  17. Optical Trapping of Nanoparticles

    PubMed Central

    Bergeron, Jarrah; Zehtabi-Oskuie, Ana; Ghaffari, Saeedeh; Pang, Yuanjie; Gordon, Reuven

    2013-01-01

    Optical trapping is a technique for immobilizing and manipulating small objects in a gentle way using light, and it has been widely applied in trapping and manipulating small biological particles. Ashkin and co-workers first demonstrated optical tweezers using a single focused beam1. The single beam trap can be described accurately using the perturbative gradient force formulation in the case of small Rayleigh regime particles1. In the perturbative regime, the optical power required for trapping a particle scales as the inverse fourth power of the particle size. High optical powers can damage dielectric particles and cause heating. For instance, trapped latex spheres of 109 nm in diameter were destroyed by a 15 mW beam in 25 sec1, which has serious implications for biological matter2,3. A self-induced back-action (SIBA) optical trapping was proposed to trap 50 nm polystyrene spheres in the non-perturbative regime4. In a non-perturbative regime, even a small particle with little permittivity contrast to the background can influence significantly the ambient electromagnetic field and induce a large optical force. As a particle enters an illuminated aperture, light transmission increases dramatically because of dielectric loading. If the particle attempts to leave the aperture, decreased transmission causes a change in momentum outwards from the hole and, by Newton's Third Law, results in a force on the particle inwards into the hole, trapping the particle. The light transmission can be monitored; hence, the trap can become a sensor. The SIBA trapping technique can be further improved by using a double-nanohole structure. The double-nanohole structure has been shown to give a strong local field enhancement5,6. Between the two sharp tips of the double-nanohole, a small particle can cause a large change in optical transmission, thereby inducing a large optical force. As a result, smaller nanoparticles can be trapped, such as 12 nm silicate spheres7 and 3.4 nm

  18. Vertical and lateral transport of particulate radiocesium off Fukushima.

    PubMed

    Otosaka, Shigeyoshi; Nakanishi, Takahiro; Suzuki, Takashi; Satoh, Yuhi; Narita, Hisashi

    2014-11-01

    Transport processes of particulate radiocesium were investigated using a sediment trap deployed at about 100 km east of the Fukushima Daiichi Nuclear Power Plant. A sediment trap was installed at 873 m depth of the station (119 m above the bottom), and time-series sampling of sinking particles was carried out from August, 2011 to June, 2013. The accident-derived radiocesium was detected from sinking particles over two years after the accident. Observed 137Cs flux was highest in September 2011 (98 mBq m(-2) day(-1): decay-corrected to March 11, 2011), and decreased over time with seasonal fluctuations. Particulate fluxes of radiocesium were mainly affected by two principal processes. One was the rapid sinking of radiocesium-bound particles (moderate mode). This mode was dominant especially in the early postaccident stage, and was presumed to establish the distribution of radiocesium in the offshore seabed. Another mode was observed in winter, and secondary transport of particles attributed to turbulence near the seabed increased fluxes of particulate radiocesium (turbulence mode). Although the latter process would not drastically change the distribution of sedimentary radiocesium in the short term, attention should be paid as this key process redistributing the accident-derived radiocesium may cumulatively affect the long-term distribution. PMID:25310600

  19. Optical trapping and binding

    NASA Astrophysics Data System (ADS)

    Bowman, Richard W.; Padgett, Miles J.

    2013-02-01

    The phenomenon of light's momentum was first observed in the laboratory at the beginning of the twentieth century, and its potential for manipulating microscopic particles was demonstrated by Ashkin some 70 years later. Since that initial demonstration, and the seminal 1986 paper where a single-beam gradient-force trap was realized, optical trapping has been exploited as both a rich example of physical phenomena and a powerful tool for sensitive measurement. This review outlines the underlying theory of optical traps, and explores many of the physical observations that have been made in such systems. These phenomena include ‘optical binding’, where trapped objects interact with one another through the trapping light field. We also discuss a number of the applications of ‘optical tweezers’ across the physical and life sciences, as well as covering some of the issues involved in constructing and using such a tool.

  20. Nonlinear integrable ion traps

    SciTech Connect

    Nagaitsev, S.; Danilov, V.; /SNS Project, Oak Ridge

    2011-10-01

    Quadrupole ion traps can be transformed into nonlinear traps with integrable motion by adding special electrostatic potentials. This can be done with both stationary potentials (electrostatic plus a uniform magnetic field) and with time-dependent electric potentials. These potentials are chosen such that the single particle Hamilton-Jacobi equations of motion are separable in some coordinate systems. The electrostatic potentials have several free adjustable parameters allowing for a quadrupole trap to be transformed into, for example, a double-well or a toroidal-well system. The particle motion remains regular, non-chaotic, integrable in quadratures, and stable for a wide range of parameters. We present two examples of how to realize such a system in case of a time-independent (the Penning trap) as well as a time-dependent (the Paul trap) configuration.

  1. Optically programmable excitonic traps

    PubMed Central

    Alloing, Mathieu; Lemaître, Aristide; Galopin, Elisabeth; Dubin, François

    2013-01-01

    With atomic systems, optically programmed trapping potentials have led to remarkable progress in quantum optics and quantum information science. Programmable trapping potentials could have a similar impact on studies of semiconductor quasi-particles, particularly excitons. However, engineering such potentials inside a semiconductor heterostructure remains an outstanding challenge and optical techniques have not yet achieved a high degree of control. Here, we synthesize optically programmable trapping potentials for indirect excitons of bilayer heterostructures. Our approach relies on the injection and spatial patterning of charges trapped in a field-effect device. We thereby imprint in-situ and on-demand electrostatic traps into which we optically inject cold and dense ensembles of excitons. This technique creates new opportunities to improve state-of-the-art technologies for the study of collective quantum behavior of excitons and also for the functionalisation of emerging exciton-based opto-electronic circuits. PMID:23546532

  2. Closed end regeneration method

    DOEpatents

    Yang, Arthur Jing-Min; Zhang, Yuehua

    2006-06-27

    A nanoporous reactive adsorbent incorporates a relatively small number of relatively larger reactant, e.g. metal, enzyme, etc. particles (10) forming a discontinuous or continuous phase interspersed among and surrounded by a continuous phase of smaller adsorbent particles (12) and connected interstitial pores (14) therebetween. The reactive adsorbent can effectively remove inorganic or organic impurities in a liquid by causing the liquid to flow through the adsorbent. For example, silver ions may be adsorbed by the adsorbent particles (12) and reduced to metallic silver by reducing metal, such as irons, as the reactant particles (10). The column can be regenerated by backwashing with the liquid effluent containing, for example, acetic acid.

  3. Regenerable solid imine sorbents

    DOEpatents

    Gray, McMahan; Champagne, Kenneth J.; Fauth, Daniel; Beckman, Eric

    2013-09-10

    Two new classes of amine-based sorbents are disclosed. The first class comprises new polymer-immobilized tertiary amine sorbents; the second class new polymer-bound amine sorbents. Both classes are tailored to facilitate removal of acid anhydrides, especially carbon dioxide (CO.sub.2), from effluent gases. The amines adsorb acid anhydrides in a 1:1 molar ratio. Both classes of amine sorbents adsorb in the temperature range from about 20.degree. C. upwards to 90.degree. C. and can be regenerated by heating upwards to 100.degree. C.

  4. Novel ebullated bed catalyst regeneration technology improves regenerated catalyst quality

    SciTech Connect

    Neuman, D.J.

    1995-09-01

    Regeneration of spent hydroprocessing catalysts has long been practiced by the refining industry. With increased pressures on refiners to reduce catalyst expenditures and waste generation, refiners are more frequently reusing spent hydroprocessing catalysts after ex-situ regeneration to restore catalytic activity. By reusing regenerated catalyst for at least two cycles, the refiner reduces catalyst waste by at least one-half. As environmental laws become more restrictive, spent hydroprocessing catalyst is more likely to be classified as hazardous waste. Disposal of spent catalyst, which was previously accomplished by landfilling, now requires more expensive reclamation techniques. TRICAT has introduced the TRICAT Regeneration Process (TRP), a novel ebullated bed regeneration plant, to improve the catalyst regeneration process. The ebullated bed design allows for better control of heat release during the regeneration process. As a result, the regeneration can be accomplished in a single-pass, with improved catalyst activity retention. Catalyst losses are also minimized due to reduced catalyst handling. Commercial results from the TRP have demonstrated successful scale-up of the technology from pilot scale. The plant has achieved complete recovery of the available catalyst activity with little or no losses in catalyst yield or extrudate length. The flexibility of the TRP to process a variety of catalysts is also discussed.

  5. Lateral supply and downward export of particulate matter from upper waters to the seafloor in the deep eastern Fram Strait

    NASA Astrophysics Data System (ADS)

    Lalande, Catherine; Nöthig, Eva-Maria; Bauerfeind, Eduard; Hardge, Kristin; Beszczynska-Möller, Agnieszka; Fahl, Kirsten

    2016-08-01

    Time-series sediment traps were deployed at 4 depths in the eastern Fram Strait from July 2007 to June 2008 to investigate variations in the magnitude and composition of the sinking particulate matter from upper waters to the seafloor. Sediment traps were deployed at 196 m in the Atlantic Water layer, at 1296 and 2364 m in the intermediate and deep waters, and at 2430 m on a benthic lander in the near-bottom layer. Fluxes of total particulate matter, particulate organic carbon, particulate organic nitrogen, biogenic matter, lithogenic matter, biogenic particulate silica, calcium carbonate, dominant phytoplankton cells, and zooplankton fecal pellets increased with depth, indicating the importance of lateral advection on fluxes in the deep Fram Strait. The lateral supply of particulate matter was further supported by the constant fluxes of biomarkers such as brassicasterol, alkenones, campesterol, β-sitosterol, and IP25 at all depths sampled. However, enhanced fluxes of diatoms and appendicularian fecal pellets from the upper waters to the seafloor in the presence of ice during spring indicated the rapid export (15-35 days) of locally-produced large particles that likely contributed most of the food supply to the benthic communities. These results show that lateral supply and downward fluxes are both important processes influencing the transport of particulate matter to the seafloor in the deep eastern Fram Strait, and that particulate matter size dictates the prevailing sinking process.

  6. DEVELOPMENT AND UTILIZATION OF TEST FACILITY FOR THE STUDY OF CANDLE FILTER SURFACE REGENERATION

    SciTech Connect

    Bruce S. Kang; Eric K. Johnson

    2003-07-14

    Hot gas particulate filtration is a basic component in advanced power generation systems such as Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC). These systems require effective particulate removal to protect the downstream gas turbine and also to meet environmental emission requirements. The ceramic barrier filter is one of the options for hot gas filtration. Hot gases flow through ceramic candle filters leaving ash deposited on the outer surface of the filter. A process known as surface regeneration removes the deposited ash periodically by using a high pressure pulse of gas to back flush the filter. After this cleaning process has been completed there may be some residual ash on the filter surface. This residual ash may grow and this may then lead to mechanical failure of the filter. A Room Temperature Test Facility (RTTF) and a High Temperature Test Facility (HTTF) were built to investigate the ash characteristics during surface regeneration at room and selected high temperatures. The RTTF system was used to gain experience with the selected instrumentation and develop an operating procedure to be used later at elevated temperatures. The HTTF system is capable of conducting surface regeneration tests of a single candle filter at temperatures up to 1500 F. In order to obtain sequential digital images of ash particle distribution during the surface regeneration process, a high resolution, high speed image acquisition system was integrated into the HTTF system. The regeneration pressure and the transient pressure difference between the inside of the candle filter and the chamber during regeneration were measured using a high speed PC data acquisition system. The control variables for the high temperature regeneration tests were (1) face velocity, (2) pressure of the back pulse, and (3) cyclic ash built-up time. Coal ash sample obtained from the Power System Development Facility (PSDF) at Wilsonville, AL was used at the

  7. Particulate erosion mechanisms

    NASA Technical Reports Server (NTRS)

    Veerabhadrarao, P.; Buckley, D. H.

    1983-01-01

    Particulate damage and erosion of ductile metals are today plaguing design and field engineers in diverse fields of engineering and technology. It was found that too many models and theories were proposed leading to much speculation from debris analysis and failure mechanism postulations. Most theories of solid particle erosion are based on material removal models which do not fully represent the actual physical processes of material removal. The various mechanisms proposed thus far are: melting, low-cycle fatigue, extrusion, delamination, shear localization, adhesive material transfer, etc. The experimental data on different materials highlighting the observed failure modes of the deformation and cutting wear processes using optical and scanning electron microscopy are presented. The most important mechanisms proved from the experimental observations of the specimens exposed to both spherical and angular particles are addressed, and the validity of the earlier theories discussed. Both the initial stages of damage and advanced stages of erosion were studied to gain a fundamental understanding of the process.

  8. Spacecraft particulate sizing spectrometer

    NASA Technical Reports Server (NTRS)

    Miranda, Henry A., Jr.

    1992-01-01

    An evaluation prototype device is described, together with conclusions and several recommendations for follow-on flight hardware. The device detects individual particles crossing an external sensing zone, and produces a histogram displaying the size distribution of particles sensed, over the nominal range of 5 to 50 microns. The output is totally independent of the particle refractive index, and is also largely unaffected by particle shape. The reported diameters are in terms of the equivalent sphere, as judged by the scattered light intercepted by the receiving channels, which develop signals whenever a particle crosses the beam of illumination in the sensing zone. Supporting evidence for the latter assertion is discussed on the basis of experimental test data for non-spherical particulates. Also included is a technical appendix which presents theoretical arguments that provide a firm foundation for this assertion.

  9. Regeneration of desiccants with solar energy

    SciTech Connect

    Ghate, S.R.; Butts, C.L.; Lown, J.B.

    1985-01-01

    Saturated silica gel was regenerated with solar energy. This paper describes the experimental set-up for silica gel regeneration and data collection. The regenerated silica gel can be used to dry high moisture in-shell pecans.

  10. Minimally Invasive Surgical Technique in Periodontal Regeneration: A Randomized Controlled Clinical Trial Pilot Study.

    PubMed

    Ghezzi, Carlo; Ferrantino, Luca; Bernardini, Luigi; Lencioni, Margherita; Masiero, Silvia

    2016-01-01

    The purpose of this study was to compare two minimally invasive surgical techniques (MISTs) for the treatment of periodontal defects: (1) guided tissue regeneration (GTR) using resorbable minimembrane and particulate xenograft (DBBM); and (2) inductive periodontal regeneration (IPR) using enamel matrix derivatives and DBBM. A sample of 20 infrabony periodontal defects in 20 patients were randomly assigned to either the GTR or the IPR group. A follow-up was performed at 12 months postoperative. Significant improvement in clinical parameters was observed in both groups, although no intergroup differences were found. MIST with GTR or IPR demonstrated very good outcomes 1 year after surgery, with no differences between treatment groups. PMID:27333004

  11. Regenerable Iodine Water-Disinfection System

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Colombo, Gerald V.; Jolly, Clifford D.

    1994-01-01

    Iodinated resin bed for disinfecting water regenerated to extend useful life. Water flows through regeneration bed of crystalline iodine during regeneration. At other times, flow diverted around regeneration bed. Although regeneration cycle manually controlled readily automated to start and stop according to signals from concentration sensors. Further benefit of regeneration is bed provides highly concentrated biocide source when needed. Concentrated biocide used to superiodinate system after contamination from routine maintenance or unexpected introduction of large concentration of microbes.

  12. Stratigraphic traps 2

    SciTech Connect

    Not Available

    1991-01-01

    This volume contains studies of fields with traps that are mainly stratigraphic in nature. Structure plays a role in the traps of several fields, but overall, it is clear that the main trapping features with the group of fields in this volume are stratigraphic. The first six fields in this volume, Alabama Ferry, Rospo Mare, Walker Creek, Bindley, Lexington, and Newburg/South Westhope, have carbonate reservoirs. The latter two of these, Lexington and Newburg/South Westhope, also have sandstone reservoirs. The remaining fields, East Texas, East Clinton, Stockholm Southwest, Sorrento, Port Acres, and Lagoa Parda, have only sandstone reservoirs.

  13. Trapping deuterium atoms

    SciTech Connect

    Wiederkehr, A. W.; Hogan, S. D.; Lambillotte, B.; Andrist, M.; Schmutz, H.; Agner, J.; Salathe, Y.; Merkt, F.

    2010-02-15

    Cold deuterium atoms in a supersonic beam have been decelerated from an initial velocity of 475 m/s to zero velocity in the laboratory frame using a 24-stage Zeeman decelerator. The atoms have been loaded in a magnetic quadrupole trap at a temperature of {approx}100 mK and an initial density of {approx}10{sup 6} cm{sup -3}. Efficient deceleration was achieved by pulsing the magnetic fields in the decelerator solenoids using irregular sequences of phase angles. Trap loading was optimized by monitoring and suppressing the observed reflection of the atoms by the field gradient of the back solenoid of the trap.

  14. The nature of the TRAP-Anti-TRAP complex.

    PubMed

    Watanabe, Masahiro; Heddle, Jonathan G; Kikuchi, Kenichi; Unzai, Satoru; Akashi, Satoko; Park, Sam-Yong; Tame, Jeremy R H

    2009-02-17

    Tryptophan biosynthesis is subject to exquisite control in species of Bacillus and has become one of the best-studied model systems in gene regulation. The protein TRAP (trp RNA-binding attenuation protein) predominantly forms a ring-shaped 11-mer, which binds cognate RNA in the presence of tryptophan to suppress expression of the trp operon. TRAP is itself regulated by the protein Anti-TRAP, which binds to TRAP and prevents RNA binding. To date, the nature of this interaction has proved elusive. Here, we describe mass spectrometry and analytical centrifugation studies of the complex, and 2 crystal structures of the TRAP-Anti-TRAP complex. These crystal structures, both refined to 3.2-A resolution, show that Anti-TRAP binds to TRAP as a trimer, sterically blocking RNA binding. Mass spectrometry shows that 11-mer TRAP may bind up to 5 AT trimers, and an artificial 12-mer TRAP may bind 6. Both forms of TRAP make the same interactions with Anti-TRAP. Crystallization of wild-type TRAP with Anti-TRAP selectively pulls the 12-mer TRAP form out of solution, so the crystal structure of wild-type TRAP-Anti-TRAP complex reflects a minor species from a mixed population. PMID:19164760

  15. Sinking velocity of particulate radiocesium in the northwestern North Pacific

    NASA Astrophysics Data System (ADS)

    Honda, Makio C.; Kawakami, Hajime

    2014-06-01

    Sinking particles (SP) were collected by time series sediment traps at two depths in the northwestern Pacific before and after the Fukushima Daiichi Nuclear Power Plant accident, and accident-derived particulate radiocesium was measured. Radiocesium (137Cs) was first detected at 500 m (4810 m) about 2 weeks (1 month) after the accident. 137Cs of SP collected over 1 year revealed that the time lag between two depths was larger than that for the first 137Cs detection (about 2 weeks). We estimated the transient sinking velocity (SV) from the cumulative temporal 137Cs flux and the time lags at the two depths. Although the SV of SP collected in very early period was large, the estimated SV of most particulate 137Cs (about 80%) was about 50 m d-1. Based on comparison of 137Cs concentration in total SP with that in SP without organic materials, we suspect that most of the 137Cs was likely incorporated into aluminosilicates.

  16. Micromechanics for particulate reinforced composites

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Goldberg, Robert K.; Mital, Subodh K.

    1996-01-01

    A set of micromechanics equations for the analysis of particulate reinforced composites is developed using the mechanics of materials approach. Simplified equations are used to compute homogenized or equivalent thermal and mechanical properties of particulate reinforced composites in terms of the properties of the constituent materials. The microstress equations are also presented here to decompose the applied stresses on the overall composite to the microstresses in the constituent materials. The properties of a 'generic' particulate composite as well as those of a particle reinforced metal matrix composite are predicted and compared with other theories as well as some experimental data. The micromechanics predictions are in excellent agreement with the measured values.

  17. Variability of particulate flux over the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Abell, Richard E.; Brand, Tim; Dale, Andrew C.; Tilstone, Gavin H.; Beveridge, Christine

    2013-12-01

    The magnitude and composition of the sinking-particle flux were studied over the northern Mid-Atlantic Ridge (MAR) from June 2007 to July 2010. Four moorings equipped with dual sediment traps, 100 m and 1000 m above the sea floor, sampled regions north and south of the Charlie Gibbs Fracture Zone (between 49°N and 54°N) and east and west of the MAR. Biogenic data were coupled with satellite estimates of primary production and modelled particle source to assess the variability in export flux. Large variations were found in the seasonality, chemical composition, magnitude and source of sinking particulate material between mooring sites. The northern moorings recorded both greater mean primary production and greater particle mass flux than the southern moorings, although, the large inter-annual variability within the sites exceeded inter-site differences. While estimates of primary production and organic carbon fluxes are comparable to other investigations of this type, they are notably lower than previous estimates for the abyssal plain of the North Atlantic. The deeper traps consistently recorded a higher mass flux compared to the shallower traps. However, we suggest that the overall flux recorded by the shallower traps was reduced by trapping inefficiency, which in the light of the low current velocities, may largely be due to the physical nature of the sinking material. Although deep-trap flux estimates may be more susceptible to errors due to re-suspended and advected material from nearby topography, mass flux and current velocity are not linked. In addition, the relatively low aluminium concentration of the deep-trap material indicates that this contribution is relatively small. The organic carbon flux to the NE, NW, SE and SW station was 0.8, 1.2, 1.1 and 1.1 g m-2 y-1 respectively, corresponding to an export flux of 0.6% over this region of the MAR.

  18. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  19. Optically trapped fluorescent nanodiamonds

    NASA Astrophysics Data System (ADS)

    Horowitz, Viva R.; Alemán, Benjamin J.; Christle, David; Cleland, Andrew N.; Awschalom, David D.

    2012-02-01

    The electronic spin state of the nitrogen-vacancy (NV) center in diamond has gained considerable interest because it can be optically initialized, coherently manipulated, and optically read out at room temperature. In addition, nanoparticle diamonds containing NV centers can be integrated with biological and microfluidic systems. We have constructed and characterized an optical tweezers apparatus to trap fluorescent nanodiamonds in a fluid and measure their fluorescence. Particles are held and moved in three dimensions using an infrared trapping laser. Fluorescent detection of these optically trapped nanodiamonds enables us to observe nanoparticle dynamics and to measure electron spin resonance of NV centers. We will discuss applications using the electron spin resonance of trapped NV centers in nanodiamonds for magnetic field imaging in fluidic environments.

  20. Steam trap monitor

    DOEpatents

    Ryan, M.J.

    1987-05-04

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (a hot finger) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellow in providing an indication of total energy (steam + condensate) of the system. Processing means coupled to and responsive to outputs from the hot and cold fingers subtracts the former from the latter to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning. 2 figs.

  1. Trapping and Probing Antihydrogen

    SciTech Connect

    Wurtele, Jonathan

    2013-03-27

    Precision spectroscopy of antihydrogen is a promising path to sensitive tests of CPT symmetry. The most direct route to achieve this goal is to create and probe antihydrogen in a magnetic minimum trap. Antihydrogen has been synthesized and trapped for 1000s at CERN by the ALPHA Collaboration. Some of the challenges associated with achieving these milestones will be discussed, including mixing cryogenic positron and antiproton plasmas to synthesize antihydrogen with kinetic energy less than the trap potential of .5K. Recent experiments in which hyperfine transitions were resonantly induced with microwaves will be presented. The opportunity for gravitational measurements in traps based on detailed studies of antihydrogen dynamics will be described. The talk will conclude with a discussion future antihydrogen research that will use a new experimental apparatus, ALPHA-I.

  2. Measurement of swimming force generation during flagella regeneration in Chlamydomonas reinhardtii

    NASA Astrophysics Data System (ADS)

    Yukich, John N.; Shaban, Mona; Clodfelter, Catherine; Bernd, Karen

    2007-11-01

    The green alga Chlamydomonas reinhardtii has been at the forefront of many studies investigating the establishment and function of flagella in facilitating cellular motility. Previously we reported an intriguing pattern during flagella regeneration in which increases in force do not always correspond with increase in flagella length. That work made direct measurement of maximum flagellar swimming force by measuring the cell's ability to escape from an optical trap (optical tweezers). Here, we report on optimization and automation of the force measurement using power spectral density calibration of the trap and distance of periodic displacement from the trap center. This process yields an average value for the swimming force. The intriguing pattern described for maximum swimming force is also evident in the average swimming force data, suggesting that the phenomenon reflects a change in flagella functionality during regeneration.

  3. Structural traps 5

    SciTech Connect

    Foster, N.H.; Beaumont, E.A.

    1991-01-01

    This book contains studies of oil and gas fields that are mainly structural in nature. Stratigraphy controls the extend of the reservoir in the traps of several fields, but overall, the main trapping features within the group of fields in this volume are structural. Fields covered in this volume include: Endicott Field, Point Arguello Field, West Puerto Chiquito Field, Dukhan Field, Sendji Field, Ruston Field, Raudhatain Field, Hassi Messaoud Field, Snapper Field, Tirrawarra Field, and Sacha Field.

  4. A HIGH TEMPERATURE TEST FACILITY FOR STUDYING ASH PARTICLE CHARACTERISTICS OF CANDLE FILTER DURING SURFACE REGENERATION

    SciTech Connect

    Kang, B.S-J.; Johnson, E.K.; Rincon, J.

    2002-09-19

    Hot gas particulate filtration is a basic component in advanced power generation systems such as Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC). These systems require effective particulate removal to protect the downstream gas turbine and also to meet environmental emission requirements. The ceramic barrier filter is one of the options for hot gas filtration. Hot gases flow through ceramic candle filters leaving ash deposited on the outer surface of the filter. A process known as surface regeneration removes the deposited ash periodically by using a high pressure back pulse cleaning jet. After this cleaning process has been done there may be some residual ash on the filter surface. This residual ash may grow and this may lead to mechanical failure of the filter. A High Temperature Test Facility (HTTF) was built to investigate the ash characteristics during surface regeneration at high temperatures. The system is capable of conducting surface regeneration tests of a single candle filter at temperatures up to 1500 F. Details of the HTTF apparatus as well as some preliminary test results are presented in this paper. In order to obtain sequential digital images of ash particle distribution during the surface regeneration process, a high resolution, high speed image acquisition system was integrated into the HTTF system. The regeneration pressure and the transient pressure difference between the inside of the candle filter and the chamber during regeneration were measured using a high speed PC data acquisition system. The control variables for the high temperature regeneration tests were (1) face velocity, (2) pressure of the back pulse, and (3) cyclic ash built-up time.

  5. Nanocomposites and bone regeneration

    NASA Astrophysics Data System (ADS)

    James, Roshan; Deng, Meng; Laurencin, Cato T.; Kumbar, Sangamesh G.

    2011-12-01

    This manuscript focuses on bone repair/regeneration using tissue engineering strategies, and highlights nanobiotechnology developments leading to novel nanocomposite systems. About 6.5 million fractures occur annually in USA, and about 550,000 of these individual cases required the application of a bone graft. Autogenous and allogenous bone have been most widely used for bone graft based therapies; however, there are significant problems such as donor shortage and risk of infection. Alternatives using synthetic and natural biomaterials have been developed, and some are commercially available for clinical applications requiring bone grafts. However, it remains a great challenge to design an ideal synthetic graft that very closely mimics the bone tissue structurally, and can modulate the desired function in osteoblast and progenitor cell populations. Nanobiomaterials, specifically nanocomposites composed of hydroxyapatite (HA) and/or collagen are extremely promising graft substitutes. The biocomposites can be fabricated to mimic the material composition of native bone tissue, and additionally, when using nano-HA (reduced grain size), one mimics the structural arrangement of native bone. A good understanding of bone biology and structure is critical to development of bone mimicking graft substitutes. HA and collagen exhibit excellent osteoconductive properties which can further modulate the regenerative/healing process following fracture injury. Combining with other polymeric biomaterials will reinforce the mechanical properties thus making the novel nano-HA based composites comparable to human bone. We report on recent studies using nanocomposites that have been fabricated as particles and nanofibers for regeneration of segmental bone defects. The research in nanocomposites, highlight a pivotal role in the future development of an ideal orthopaedic implant device, however further significant advancements are necessary to achieve clinical use.

  6. Optical trapping of nanoshells

    NASA Astrophysics Data System (ADS)

    Hester, Brooke C.; Crawford, Alice; Kishore, Rani B.; Helmerson, Kristian; Halas, Naomi J.; Levin, Carly

    2007-09-01

    We investigate near-resonant trapping of Rayleigh particles in optical tweezers. Although optical forces due to a near-resonant laser beam have been extensively studied for atoms, the situation for larger particles is that the laser wavelength is far from any absorption resonance. Theory predicts, however, that the trapping force exerted on a Rayleigh particle is enhanced, and may be three to fifty times larger for frequencies near resonance than for frequencies far off resonance. The ability to selectively trap only particles with a given absorption peak may have many practical applications. In order to investigate near-resonant trapping we are using nanoshells, particles with a dielectric core and metallic coating that can exhibit plasmon resonances. The resonances of the nanoshells can be tuned by adjusting the ratio of the radius of the dielectric core, r I, to the overall radius, r II, which includes the thickness of the metallic coating. Our nanoshells, fabricated at Rice University, consist of a silica core with a gold coating. Using back focal plane detection, we measure the trap stiffness of a single focus optical trap (optical tweezers), from a diode laser at 853 nm for nanoshells with several different r I/r II ratios.

  7. Microfabricated cylindrical ion trap

    DOEpatents

    Blain, Matthew G.

    2005-03-22

    A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.

  8. Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx

    SciTech Connect

    Gao, Zhiming; Daw, C Stuart; Wagner, Robert M; Edwards, Kevin Dean; Smith, David E

    2013-01-01

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

  9. Magnitude and composition of sinking particulate phosphorus fluxes in Santa Barbara Basin, California

    NASA Astrophysics Data System (ADS)

    Sekula-Wood, Emily; Benitez-Nelson, Claudia R.; Bennett, Melissa A.; Thunell, Robert

    2012-06-01

    The composition and bioavailability of particulate P influence marine biological community production on both modern and geologic time-scales, and continental margins play a critical role in the supply, modification, and storage of particulate P. This study examined particulate P cycling in the Santa Barbara Basin (SBB) off the coast of southern California using a ˜520 m deep-moored sediment trap deployed from 1993-2006 and a sediment core collected in 2005 directly beneath the sediment trap at 590 m. Total particulate P (TPP), particulate inorganic P (PIP), and particulate organic P (POP) were quantified using a 5-step sequential extraction method (SEDEX) that chemically separates PIP into loosely bound, oxide-bound, authigenic, and detrital P phases. POP fluxes, while similar in magnitude to other coastal regions (22 ± 10 μmol m-2 d-1) were a small component of the TPP pool (15%). Seasonal trends revealed significant increases in POP fluxes during upwelling due to increased biological production in surface waters by organisms that increased mineral ballast. High particulate organic carbon (POC) to POP ratios (337 ± 18) further indicated rapid and efficient remineralization of POP relative to POC as particles sank through the oxic water column; however, further reduction of POP ceased in the deeper anoxic waters. Loosely bound, oxide-bound, and authigenic P, dominated the TPP pool, with PIP fluxes substantially higher than those measured in other coastal settings. Strong correlations between oxide-associated, authigenic, and detrital P fluxes with lithogenic material indicated a terrestrial source associated with riverine discharge. Furthermore, more than 30% of the loosely bound and oxide-bound P was remineralized prior to burial, with the magnitude of dissolution far exceeding that of POP. These results highlight the dynamic nature of the particulate P pool in coastal ecosystems and how changes in P source can alter the composition and lability of P that

  10. A Course in Particulate Processes.

    ERIC Educational Resources Information Center

    Randolph, Alan D.

    1989-01-01

    Provides an overview of a graduate course on particulate processes, especially on crystal size distribution (CSD). Describes the course and includes a list of course topics. Discusses the CSD simulation and manipulation. (YP)

  11. Measurement of vehicle particulate emissions.

    PubMed Central

    Beltzer, M

    1975-01-01

    A constant volume sampler (CVS) compatible auto exhaust particulate sampling system has been built which samples exhaust isokinetically at constant temperature. This system yields internally consistent results and is capable of frequent and convenient operation. PMID:50931

  12. Design Advances in Particulate Systems for Biomedical Applications.

    PubMed

    Lima, Ana Catarina; Alvarez-Lorenzo, Carmen; Mano, João F

    2016-07-01

    The search for more efficient therapeutic strategies and diagnosis tools is a continuous challenge. Advances in understanding the biological mechanisms behind diseases and tissues regeneration have widened the field of applications of particulate systems. Particles are no more just protective systems for the encapsulated drugs, but they play an active role in the success of the therapy. Moreover, particles have been explored for innovative purposes as templates for cells growth and as diagnostic tools. Until few years ago the most relevant parameters in particles formulation were the chemistry and the size. Currently, it is known that other physical characteristics can remarkably affect the performance of particulate systems. Particles with non-conventional shapes exhibit advantages due to the increasing circulation time in blood stream, less clearance by the immune system and more efficient cell internalization and trafficking. Creation of compartments has been found useful to control drug release, to tune the transport of substances across biological barriers, to supply the target with more than one bioactive agent or even to act as theranostic systems. It is expected that such complex shaped and compartmentalized systems improve the therapeutic outcomes and also the patient's compliance, acting as advanced devices that serve for simultaneous diagnosis and treatment of the disease, combining agents of very different features, at the same time. In this review, we overview and analyse the most recent advances in particle shape and compartmentalization and applications of newly designed particulate systems in the biomedical field. PMID:27332041

  13. Cardiac Regeneration and Stem Cells.

    PubMed

    Zhang, Yiqiang; Mignone, John; MacLellan, W Robb

    2015-10-01

    After decades of believing the heart loses the ability to regenerate soon after birth, numerous studies are now reporting that the adult heart may indeed be capable of regeneration, although the magnitude of new cardiac myocyte formation varies greatly. While this debate has energized the field of cardiac regeneration and led to a dramatic increase in our understanding of cardiac growth and repair, it has left much confusion in the field as to the prospects of regenerating the heart. Studies applying modern techniques of genetic lineage tracing and carbon-14 dating have begun to establish limits on the amount of endogenous regeneration after cardiac injury, but the underlying cellular mechanisms of this regeneration remained unclear. These same studies have also revealed an astonishing capacity for cardiac repair early in life that is largely lost with adult differentiation and maturation. Regardless, this renewed focus on cardiac regeneration as a therapeutic goal holds great promise as a novel strategy to address the leading cause of death in the developed world. PMID:26269526

  14. Biomaterial Selection for Tooth Regeneration

    PubMed Central

    Yuan, Zhenglin; Nie, Hemin; Wang, Shuang; Lee, Chang Hun; Li, Ang; Fu, Susan Y.; Zhou, Hong

    2011-01-01

    Biomaterials are native or synthetic polymers that act as carriers for drug delivery or scaffolds for tissue regeneration. When implanted in vivo, biomaterials should be nontoxic and exert intended functions. For tooth regeneration, biomaterials have primarily served as a scaffold for (1) transplanted stem cells and/or (2) recruitment of endogenous stem cells. This article critically synthesizes our knowledge of biomaterial use in tooth regeneration, including the selection of native and/or synthetic polymers, three-dimensional scaffold fabrication, stem cell transplantation, and stem cell homing. A tooth is a complex biological organ. Tooth loss represents the most common organ failure. Tooth regeneration encompasses not only regrowth of an entire tooth as an organ, but also biological restoration of individual components of the tooth including enamel, dentin, cementum, or dental pulp. Regeneration of tooth root represents perhaps more near-term opportunities than the regeneration of the whole tooth. In the adult, a tooth owes its biological vitality, arguably more, to the root than the crown. Biomaterials are indispensible for the regeneration of tooth root, tooth crown, dental pulp, or an entire tooth. PMID:21699433

  15. Elemental Mercury in Natural Waters: Occurrence and Determination of Particulate Hg(0).

    PubMed

    Wang, Yongmin; Li, Yanbin; Liu, Guangliang; Wang, Dingyong; Jiang, Guibin; Cai, Yong

    2015-08-18

    Elemental mercury, Hg(0), is ubiquitous in water and involved in key Hg biogeochemical processes. It is extensively studied as a purgeable dissolved species, termed dissolved gaseous mercury (DGM). Little information is available regarding nonpurgeable particulate Hg(0) in water, Hg(0) bound to suspended particulate matter (SPM), which is presumably present due to high affinity of Hg(0) adsorption on solids. By employing stable isotope tracer and isotope dilution (ID) techniques, we investigated the occurrence and quantification of particulate Hg(0) after Hg(0) being spiked into natural waters, aiming to provide firsthand information on particulate Hg(0) in water. A considerable fraction of (201)Hg(0) spiked in water (about 70% after 4 h equilibration) was bound to SPM and nonpurgeable, suggesting the occurrence of particulate Hg(0) in natural waters. A scheme, involving isotope dilution, purge and trap, and inductively coupled plasma mass spectrometry detection, was proposed to quantify particulate Hg(0) by the difference between DGM and total Hg(0), determined immediately and at equilibration after spiking ID Hg isotope, respectively. The application of this newly established method revealed the presence of particulate Hg(0) in Florida Everglades water, as the determined DGM levels (0.14 to 0.22 ng L(-1)) were remarkably lower than total Hg(0) (0.41 to 0.75 ng L(-1)). PMID:26196077

  16. Evaluation of advanced regenerator systems

    NASA Technical Reports Server (NTRS)

    Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.

    1978-01-01

    The major considerations are discussed which will affect the selection of a ceramic regenerative heat exchanger for an improved 100 HP automotive gas turbine engine. The regenerator considered for this application is about 36cm in diameter. Regenerator comparisons are made on the basis of material, method of fabrication, cost, and performance. A regenerator inlet temperature of 1000 C is assumed for performance comparisons, and laboratory test results are discussed for material comparisons at 1100 and 1200 C. Engine test results using the Ford 707 industrial gas turbine engine are also discussed.

  17. Benthic phosphorus regeneration in the Potomac River Estuary

    USGS Publications Warehouse

    Callender, E.

    1982-01-01

    The flux of dissolved reactive phosphate from Potomac riverine and estuarine sediments is controlled by processes occurring at the water-sediment interface and within surficial sediment. In situ benthic fluxes (0.1 to 2.0 mmoles m-2 day-1) are generally five to ten times higher than calculated diffusive fluxes (0.020 to 0.30 mmoles m-2 day-1). The discrepancy between the two flux estimates is greatest in the transition zone (river mile 50 to 70) and is attributd to macrofaunal irrigation. Both in situ and diffusive fluxes of dissolved reactive phosphate from Potomac tidal river sediments are low while those from anoxic lower estuarine sediments are high. The net accumulation rate of phosphorus in benthic sediment exhibits an inverse pattern. Thus a large fraction of phosphorus is retained by Potomac tidal river sediments, which contain a surficial oxidized layer and oligochaete worms tolerant of low oxygen conditions, and a large fraction of phosphorus is released from anoxic lower estuary sediments. Tidal river sediment pore waters are in equilibrium with amorphous Fe (OH)3 while lower estuary pore waters are significantly undersaturated with respect to this phase. Benthic regeneration of dissolved reactive phosphorus is sufficient to supply all the phosphorus requirements for net primary production in the lower tidal river and transition-zone waters of the Potomac River Estuary. Benthic regeneration supplies approximately 25% as much phosphorus as inputs from sewage treatment plants and 10% of all phosphorus inputs to the tidal Potomac River. When all available point source phosphorus data are put into a steady-state conservation of mass model and reasonable coefficients for uptake of dissolved phosphorus, remineralization of particulate phosphorus, and sedimentation of particulate phosphorus are used in the model, a reasonably accurate simulation of dissolved and particulate phosphorus in the water column is obtained for the summer of 1980. ?? 1982 Dr W. Junk

  18. Flagellar force production during regeneration in Chlamydomonas reinhardtii

    NASA Astrophysics Data System (ADS)

    Yukich, John N.; Clodfelter, Catherine; Bernd, Karen K.

    2009-11-01

    Several respiratory, digestive, and reproductive disorders originate with motional dysfunction of cilia and flagella. The usefulness of cilia and flagella is understood, but the internal mechanism for creating their breast stroke-like motion is not. This study reports on standardization of calibration, trapping and cell movement recording methods. Our techniques permit us to measure the flagellar swimming force of Chlamydomonas during flagella regeneration. We find that as flagella length increases, the flagellar force is maximized after 50% of full length is achieved except for a significant dip at 75% of full length. These results raise many questions regarding the flagella infrastructure.

  19. Modeling the fate of particulate components in aerobic sludge stabilization--performance limitations.

    PubMed

    Özdemir, S; Çokgör, E U; Orhon, D

    2014-07-01

    The study investigated the effect of sludge composition on the limitations of aerobic stabilization. It was designed with the foresight that the stabilization mechanism could only be elucidated if the observed volatile suspended solids reduction were correlated with the fate of particulate components in sludge. Biomass sustained at sludge ages of 2 and 10 days were used in the stabilization reactors. Particulate components were determined by model evaluation of corresponding oxygen uptake rate profiles. Interpretation of the experimental data by modeling, based on death-regeneration mechanism without external substrate, could simulate the fate and evolution of major components in sludge during stabilization. It showed that both microbial decay and hydrolysis of non viable cellular material proceeded at much slower rates as compared with biological systems sustained with substrate feeding. Modeling also indicated that particulate metabolic products generated by sludge acclimated to high sludge age undergo slow biodegradation under prolonged stabilization. PMID:24865324

  20. Switching Oxide Traps

    NASA Technical Reports Server (NTRS)

    Oldham, Timothy R.

    2003-01-01

    We consider radiation-induced charge trapping in SiO2 dielectric layers, primarily from the point of view of CMOS devices. However, SiO2 insulators are used in many other ways, and the same defects occur in other contexts. The key studies, which determined the nature of the oxide charge traps, were done primarily on gate oxides in CMOS devices, because that was the main radiation problem in CMOS at one time. There are two major reviews of radiation-induced oxide charge trapping already in the literature, which discuss the subject in far greater detail than is possible here. The first of these was by McLean et al. in 1989, and the second, ten years later, was intended as an update, because of additional, new work that had been reported. Basically, the picture that has emerged is that ionizing radiation creates electron-hole pairs in the oxide, and the electrons have much higher mobility than the holes. Therefore, the electrons are swept out of the oxide very rapidly by any field that is present, leaving behind any holes that escape the initial recombination process. These holes then undergo a polaron hopping transport toward the Si/SiO2 interface (under positive bias). Near the interface, some fraction of them fall into deep, relatively stable, long-lived hole traps. The nature and annealing behavior of these hole traps is the main focus of this paper.

  1. Regenerable Iodine Water-Disinfection System

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Colombo, Gerald V.; Jolly, Clifford D.

    1994-01-01

    Iodinated resin bed for disinfecting water regenerated to extend its useful life. Water flows through regeneration bed of crystalline iodine during regeneration. At other times, flow diverted around regeneration bed. Although regeneration cycle was manually controlled in demonstration, readily automated to start and stop according to signals and stop according to signals from concentration sensors. Further benefit of regeneration is that regeneration bed provides highly concentrated biocide source (200 mg/L) when needed. Concentrated biocide used to superiodinate system after contamination from routine maintenance or unexpected introduction of large concentration of microbes.

  2. Switchable cell trapping using superparamagnetic beads

    SciTech Connect

    Bryan, M. T.; Smith, K. H.; Real, M. E.; Bashir, M. A.; Fry, P. W.; Fischer, P.; Im, M.-Y.; Schrefl, T.; Allwood, D. A.; Haycock, J. W.

    2010-04-30

    Ni{sub 81}Fe{sub 19} microwires are investigated as the basis of a switchable template for positioning magnetically-labeled neural Schwann cells. Magnetic transmission X-ray microscopy and micromagnetic modeling show that magnetic domain walls can be created or removed in zigzagged structures by an applied magnetic field. Schwann cells containing superparamagnetic beads are trapped by the field emanating from the domain walls. The design allows Schwann cells to be organized on a surface to form a connected network and then released from the surface if required. As aligned Schwann cells can guide nerve regeneration, this technique is of value for developing glial-neuronal co-culture models in the future treatment of peripheral nerve injuries.

  3. Endogenous Mechanisms of Cardiac Regeneration.

    PubMed

    Xiang, M S W; Kikuchi, K

    2016-01-01

    Zebrafish possess a remarkable capacity for cardiac regeneration throughout their lifetime, providing a model for investigating endogenous cellular and molecular mechanisms regulating myocardial regeneration. By contrast, adult mammals have an extremely limited capacity for cardiac regeneration, contributing to mortality and morbidity from cardiac diseases such as myocardial infarction and heart failure. However, the viewpoint of the mammalian heart as a postmitotic organ was recently revised based on findings that the mammalian heart contains multiple undifferentiated cell types with cardiogenic potential as well as a robust regenerative capacity during a short period early in life. Although it occurs at an extremely low level, continuous cardiomyocyte turnover has been detected in adult mouse and human hearts, which could potentially be enhanced to restore lost myocardium in damaged human hearts. This review summarizes and discusses recent advances in the understanding of endogenous mechanisms of cardiac regeneration. PMID:27572127

  4. Hairpin Vortex Regeneration Threshold

    NASA Astrophysics Data System (ADS)

    Sabatino, Daniel; Maharjan, Rijan

    2015-11-01

    A free surface water channel is used to study hairpin vortex formation created by fluid injection through a narrow slot into a laminar boundary layer. Particle image velocimetry is used to calculate the circulation of the primary hairpin vortex head which is found to monotonically decrease in strength with downstream distance. When a secondary hairpin vortex is formed upstream of the primary vortex, the circulation strength of the head is comparable to the strength of the primary head at the time of regeneration. However, the legs of the primary vortex strengthen up to the moment the secondary hairpin is generated. Although the peak circulation in the legs is not directly correlated to the strength of the original elongated ring vortex, when the circulation is scaled with the injection momentum ratio it is linearly related to scaled injection time. It is proposed that the injection momentum ratio and nondimensionalized injection time based on the wall normal penetration time can be used to identify threshold conditions which produce a secondary vortex. Supported by the National Science Foundation under Grant CBET- 1040236.

  5. Regenerable biocide delivery unit

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L. (Inventor); Colombo, Gerald V. (Inventor); Jolly, Clifford D. (Inventor)

    1993-01-01

    A method and apparatus are disclosed for maintaining continuous, long-term microbial control in the water supply for potable, hygiene, and experimental water for space activities, as well as treatment of water supplies on Earth. The water purification is accomplished by introduction of molecular iodine into the water supply to impart a desired iodine residual. The water is passed through an iodinated anion exchange resin bed. The iodine is bound as I-(sub n) at the anion exchange sites and releases I(sub 2) into the water stream flowing through the bed. The concentration of I(sub 2) in the flowing water gradually decreases and, in the prior art, the ion-exchange bed has had to be replaced. In a preferred embodiment, a bed of iodine crystals is provided with connections for flowing water therethrough to produce a concentrated (substantially saturated) aqueous iodine solution which is passed through the iodinated resin bed to recharge the bed with bound iodine. The bed of iodine crystals is connected in parallel with the iodinated resin bed and is activated periodically (e.g., by timer, by measured flow of water, or by iodine residual level) to recharge the bed. Novelty resides in the capability of inexpensively and repeatedly regenerating the ion-exchange bed in situ.

  6. Biomaterials for periodontal regeneration

    PubMed Central

    Shue, Li; Yufeng, Zhang; Mony, Ullas

    2012-01-01

    Periodontal disease is characterized by the destruction of periodontal tissues. Various methods of regenerative periodontal therapy, including the use of barrier membranes, bone replacement grafts, growth factors and the combination of these procedures have been investigated. The development of biomaterials for tissue engineering has considerably improved the available treatment options above. They fall into two broad classes: ceramics and polymers. The available ceramic-based materials include calcium phosphate (eg, tricalcium phosphate and hydroxyapatite), calcium sulfate and bioactive glass. The bioactive glass bonds to the bone with the formation of a layer of carbonated hydroxyapatite in situ. The natural polymers include modified polysaccharides (eg, chitosan,) and polypeptides (collagen and gelatin). Synthetic polymers [eg, poly(glycolic acid), poly(L-lactic acid)] provide a platform for exhibiting the biomechanical properties of scaffolds in tissue engineering. The materials usually work as osteogenic, osteoconductive and osteoinductive scaffolds. Polymers are more widely used as a barrier material in guided tissue regeneration (GTR). They are shown to exclude epithelial downgrowth and allow periodontal ligament and alveolar bone cells to repopulate the defect. An attempt to overcome the problems related to a collapse of the barrier membrane in GTR or epithelial downgrowth is the use of a combination of barrier membranes and grafting materials. This article reviews various biomaterials including scaffolds and membranes used for periodontal treatment and their impacts on the experimental or clinical management of periodontal defect. PMID:23507891

  7. The early diagenesis of aliphatic hydrocarbons and organic matter in sedimentary particulates from Dabob Bay, Washington

    NASA Astrophysics Data System (ADS)

    Prahl, Fredrick G.; Bennett, Joseph T.; Carpenter, Roy

    1980-12-01

    Aliphatic hydrocarbon compositions were quantitatively characterized in plankton, sediment trap-collected particulate materials and sediments from Dabob Bay using high resolution glass capillary gas chromatography. The average net accumulation of individual hydrocarbons measured in a 1-yr series of sediment traps was compared with the net accumulation of corresponding compounds measured in three depth intervals of 210Pb-dated bottom sediments. Systematic and rapid decreases in the net accumulation of individual hydrocarbons were observed from the sediment traps to the sediments. Most pronounced decreases were measured for planktonically derived hydrocarbon constituents (e.g. pristane and two unsaturated compounds) which are rapidly remineralized at or near the sediment-water interface. Consequently, the amount of each compound measured in deposited sediments is not necessarily a quantitative indication of its initial flux to the sediments. The n-alkanes (C 25,27,29,31). characteristic of terrestrial plant waxes, are the predominant hydrocarbons measured by 4-6 cm depth in these sediments and show reasonably constant net accumulation below this interval. Significant diagenetic alteration of the bulk organic matter contained in the average sediment trap particulate material is also noted through comparison with bottom sediments on the basis of organic C/N and δ 13C measurements. Organic matter elementally similar to marine plankton is preferentially remineralized upon deposition of the sedimentary particulates. The residual organic matter remaining and buried in the bottom sediments closely resembles terrestrial organic matter.

  8. Thermoelectrically cooled water trap

    DOEpatents

    Micheels, Ronald H.

    2006-02-21

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  9. Enhancement of skeletal muscle regeneration.

    PubMed

    Bischoff, R; Heintz, C

    1994-09-01

    We have studied the effect of adding extra satellite cells or soluble factors from crushed muscle on regeneration of minced fragments from rat tibialis muscle. The muscle mince was wrapped in an artificial epimysium to prevent adhesions and cell immigration from adjacent muscles. Regeneration was quantitatively assessed by electrophoretic determination of the muscle-specific form of creatine kinase. Control minces exhibited three periods of change in creatine kinase activity during a 7-week regeneration period. Activity fell rapidly during the first week, then rose gradually from 1-3 weeks and increased more rapidly from 3-7 weeks. To augment the original complement of myogenic cells, satellite cells were isolated from the contralateral muscle, purified by density gradient centrifugation, and expanded in culture for 3 days before adding to the muscle mince. The added cells resulted in a 3-fold enhancement of creatine kinase activity throughout the regeneration period. Soluble muscle extract incorporated into a collagen matrix also stimulated regeneration when added to muscle mince. The extract accelerated the rate of creatine kinase increase during the 1-3 week period beyond that observed in the control or cell augmented mince, suggesting that factors in the extract may facilitate revascularization or reinnervation. The specific activity of creatine kinase was increased in regenerates augmented with both cells and extract, indicating that the effects enhance primarily myogenic processes. PMID:7803846

  10. Periodontal regeneration of transplanted rat molars after cryopreservation.

    PubMed

    Kawasaki, Naoko; Hamamoto, Yoshioki; Nakajima, Tamio; Irie, Kazuharu; Ozawa, Hidehiro

    2004-01-01

    The effects of cryopreservation on periodontal regeneration of transplanted rat molars were investigated histologically and histochemically in rats. Bilateral first and second maxillary molars of 4-week-old Wistar rats were gently extracted and transplanted into the abdominal subcutaneous connective tissue immediately or after cryopreservation in liquid nitrogen overnight. Donor teeth were slowly frozen by a rate-controlling freezer (program freezer) using 5% dimethylsulfoxide (DMSO) and 6% hydroxyethyl starch (HES) as cryoprotectants. One-four weeks after transplantation, they were carefully excised with the surrounding tissues. Regeneration of acellular cementum, periodontal ligament, and alveolar bone were observed 2 weeks after immediate transplantation. The pulp was repaired by the ingrowth of granulation tissue from the root apex followed by the formation of calcified tissue. The regenerated periodontal ligament was positive for alkaline phosphatase (ALP). Small or mononuclear tartrate resistant acid phosphatase (TRAP) positive cells were scattered on the newly formed alveolar bone and on the hard tissue in the pulp, but there was no external or internal progressive root resorption at 4 weeks. Cryopreserved teeth had acellular cementum with a rough surface at 1 week, but with the increase of cementoblasts and the appearance of periodontal ligament and alveolar bone, the surface became smooth at 3 weeks. Epithelial rests of Malassez (ERM) also revived. After regeneration of the periodontal tissues at 4 weeks, there was no evidence of root resorption. Although the process proceeded slowly, the cryopreserved teeth showed the periodontal regeneration substantially similar to that of the immediately transplanted teeth without progressive root resorption, indicating that they could be applicable for clinical use. PMID:14693198