Science.gov

Sample records for regeneration facility safety

  1. Receiving Basin for Offsite Fuels and the Resin Regeneration Facility Safety Analysis Report, Executive Summary

    SciTech Connect

    Shedrow, C.B.

    1999-11-29

    The Safety Analysis Report documents the safety authorization basis for the Receiving Basin for Offsite Fuels (RBOF) and the Resin Regeneration Facility (RRF) at the Savannah River Site (SRS). The present mission of the RBOF and RRF is to continue in providing a facility for the safe receipt, storage, handling, and shipping of spent nuclear fuel assemblies from power and research reactors in the United States, fuel from SRS and other Department of Energy (DOE) reactors, and foreign research reactors fuel, in support of the nonproliferation policy. The RBOF and RRF provide the capability to handle, separate, and transfer wastes generated from nuclear fuel element storage. The DOE and Westinghouse Savannah River Company, the prime operating contractor, are committed to managing these activities in such a manner that the health and safety of the offsite general public, the site worker, the facility worker, and the environment are protected.

  2. Facility safety study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The safety of NASA's in house microelectronics facility is addressed. Industrial health standards, facility emission control requirements, operation and safety checklists, and the disposal of epitaxial vent gas are considered.

  3. Calibration facility safety plan

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.

    1971-01-01

    A set of requirements is presented to insure the highest practical standard of safety for the Apollo 17 Calibration Facility in terms of identifying all critical or catastrophic type hazard areas. Plans for either counteracting or eliminating these areas are presented. All functional operations in calibrating the ultraviolet spectrometer and the testing of its components are described.

  4. 340 waste handling facility interim safety basis

    SciTech Connect

    VAIL, T.S.

    1999-04-01

    This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people.

  5. 340 Waste handling facility interim safety basis

    SciTech Connect

    Stordeur, R.T.

    1996-10-04

    This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people.

  6. AGING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect

    C.E. Sanders

    2004-09-10

    The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the criticality safety results to support the preliminary design of the Aging

  7. 340 Waste Handling Facility interim safety basis

    SciTech Connect

    Bendixsen, R.B.

    1995-04-03

    This document establishes the interim safety basis (ISB) for the 340 Waste Handling Facility (340 Facility). An ISB is a documented safety basis that provides a justification for the continued operation of the facility until an upgraded final safety analysis report is prepared that complies with US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports. The ISB for the 340 Facility documents the current design and operation of the facility. The 340 Facility ISB (ISB-003) is based on a facility walkdown and review of the design and operation of the facility, as described in the existing safety documentation. The safety documents reviewed, to develop ISB-003, include the following: OSD-SW-153-0001, Operating Specification Document for the 340 Waste Handling Facility (WHC 1990); OSR-SW-152-00003, Operating Limits for the 340 Waste Handling Facility (WHC 1989); SD-RE-SAP-013, Safety Analysis Report for Packaging, Railroad Liquid Waste Tank Cars (Mercado 1993); SD-WM-TM-001, Safety Assessment Document for the 340 Waste Handling Facility (Berneski 1994a); SD-WM-SEL-016, 340 Facility Safety Equipment List (Berneski 1992); and 340 Complex Fire Hazard Analysis, Draft (Hughes Assoc. Inc. 1994).

  8. Organizational culture, safety culture, and safety performance at research facilities

    SciTech Connect

    Brown, William S.

    2000-07-30

    Organizational culture surveys of research facilities conducted several years ago and archival occupational injury reports were used to determine whether differences in safety performance are related to general organizational factors or to ''safety culture'' as reflected in specific safety-related dimensions. From among the organizations surveyed, a pair of facilities was chosen that were similar in size and scientific mission while differing on indices of work-related injuries. There were reliable differences in organizational style between the facilities, especially among workers in environment, safety, and health functions; differences between the facilities (and among job categories) on the safety scale were more modest and less regular.

  9. Hot Cell Facility (HCF) Safety Analysis Report

    SciTech Connect

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

    2000-11-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

  10. Construction Safety for the National Ignition Facility

    SciTech Connect

    Predmore, R

    2000-09-01

    This Construction Safety Program (CSP) for the National Ignition Facility (NIF) presents safety protocols and guidelines that management and workers shall follow to assure a safe and healthful work environment. Appendix A, a separate companion document, includes further applicable environmental, safety, and health requirements for the NIF Project. Specifically this document: {sm_bullet} Defines the fundamental site safety philosophy, {sm_bullet} Identifies management roles and responsibilities, {sm_bullet} Defines core safety management processes, {sm_bullet} Identifies LLNL institutional requirements, and {sm_bullet} Defines the functional areas and facilities accrued by the program and the process for transition of facilities, functional areas, and/or systems from construction to activation. Anyone willfully or thoughtlessly disregarding standards will be subject to immediate removal from the site. Thorough job planning will help ensure that these standards are met.

  11. Occupational Safety Review of High Technology Facilities

    SciTech Connect

    Lee Cadwallader

    2005-01-31

    This report contains reviews of operating experiences, selected accident events, and industrial safety performance indicators that document the performance of the major US DOE magnetic fusion experiments and particle accelerators. These data are useful to form a basis for the occupational safety level at matured research facilities with known sets of safety rules and regulations. Some of the issues discussed are radiation safety, electromagnetic energy exposure events, and some of the more widespread issues of working at height, equipment fires, confined space work, electrical work, and other industrial hazards. Nuclear power plant industrial safety data are also included for comparison.

  12. Fire Safety in Nursing Facilities: Participant's Coursebook.

    ERIC Educational Resources Information Center

    Walker (Bonnie) and Associates, Inc., Crofton, MD.

    Fewer people die in nursing facility fires than in fires occurring in other places where older people live. Fire remains, however, a significant threat in nursing facilities. This book is centered around six "modules" that present a fire safety training program for managers and staff in nursing homes. These modules present the following…

  13. Radiation safety training for accelerator facilities

    SciTech Connect

    Trinoskey, P.A.

    1997-02-01

    In November 1992, a working group was formed within the U.S. Department of Energy`s (DOE`s) accelerator facilities to develop a generic safety training program to meet the basic requirements for individuals working in accelerator facilities. This training, by necessity, includes sections for inserting facility-specific information. The resulting course materials were issued by DOE as a handbook under its technical standards in 1996. Because experimenters may be at a facility for only a short time and often at odd times during the day, the working group felt that computer-based training would be useful. To that end, Lawrence Livermore National Laboratory (LLNL) and Argonne National Laboratory (ANL) together have developed a computer-based safety training program for accelerator facilities. This interactive course not only enables trainees to receive facility- specific information, but time the training to their schedule and tailor it to their level of expertise.

  14. Safety of magnetic fusion facilities: Guidance

    SciTech Connect

    1996-05-01

    This document provides guidance for the implementation of the requirements identified in DOE-STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While the requirements in DOE-STD-6002-96 are generally applicable to a wide range of fusion facilities, this Standard, DOE-STD-6003-96, is concerned mainly with the implementation of those requirements in large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This Standard is oriented toward regulation in the Department of Energy (DOE) environment as opposed to regulation by other regulatory agencies. As the need for guidance involving other types of fusion facilities or other regulatory environments emerges, additional guidance volumes should be prepared. The concepts, processes, and recommendations set forth here are for guidance only. They will contribute to safety at magnetic fusion facilities.

  15. Safety of Decommissioning of Nuclear Facilities

    SciTech Connect

    Batandjieva, B.; Warnecke, E.; Coates, R.

    2008-01-15

    Full text of publication follows: ensuring safety during all stages of facility life cycle is a widely recognised responsibility of the operators, implemented under the supervision of the regulatory body and other competent authorities. As the majority of the facilities worldwide are still in operation or shutdown, there is no substantial experience in decommissioning and evaluation of safety during decommissioning in majority of Member States. The need for cooperation and exchange of experience and good practices on ensuring and evaluating safety of decommissioning was one of the outcomes of the Berlin conference in 2002. On this basis during the last three years IAEA initiated a number of international projects that can assist countries, in particular small countries with limited resources. The main IAEA international projects addressing safety during decommissioning are: (i) DeSa Project on Evaluation and Demonstration of Safety during Decommissioning; (ii) R{sup 2}D{sup 2}P project on Research Reactors Decommissioning Demonstration Project; and (iii) Project on Evaluation and Decommissioning of Former Facilities that used Radioactive Material in Iraq. This paper focuses on the DeSa Project activities on (i) development of a harmonised methodology for safety assessment for decommissioning; (ii) development of a procedure for review of safety assessments; (iii) development of recommendations on application of the graded approach to the performance and review of safety assessments; and (iv) application of the methodology and procedure to the selected real facilities with different complexities and hazard potentials (a nuclear power plant, a research reactor and a nuclear laboratory). The paper also outlines the DeSa Project outcomes and planned follow-up activities. It also summarises the main objectives and activities of the Iraq Project and introduces the R{sup 2}D{sup 2} Project, which is a subject of a complementary paper.

  16. Enhancing the safety of tailings management facilities

    SciTech Connect

    Meggyes, T.; Niederleithinger, E.; Witt, K.J.; Csovari, M.; Kreft-Burman, K.; Engels, J.; McDonald, C.; Roehl, K.E.

    2008-07-01

    Unsafe tailings management facilities (TMFs) have caused serious accidents in Europe threatening human health/life and the environment. While advanced design, construction and management procedures are available, their implementation requires greater emphasis. An integrated research project funded by the European Union was carried out between 2002 and 2005 with the overall goal of improving the safety of TMFs (Sustainable Improvement in Safety of Tailings Facilities - TAILSAFE, http://www.tailsafe.com/). The objective of TAILSAFE was to develop and apply methods of parameter evaluation and measurement for the assessment and improvement of the safety state of tailings facilities, with particular attention to the stability of tailings dams and slurries, the special risks inherent when such materials include toxic or hazardous wastes, and authorization and management procedures for tailings facilities. Aspects of tailings facilities design, water management and slurry transport, non-destructive and minimally intrusive testing methods, monitoring and the application of sensors, intervention and remediation options were considered in TAILSAFE. A risk reduction framework (the TAILSAFE Parameter Framework) was established to contribute to the avoidance of catastrophic accidents and hazards from tailings facilities. Tailings from the mining and primary processing of metals, minerals and coal were included within the scope of TAILSAFE. The project focused on the avoidance of hazards by developing procedures and methods for investigating and improving the stability of tailings dams and tailings bodies.

  17. Mechanistic facility safety and source term analysis

    SciTech Connect

    PLYS, M.G.

    1999-06-09

    A PC-based computer program was created for facility safety and source term analysis at Hanford The program has been successfully applied to mechanistic prediction of source terms from chemical reactions in underground storage tanks, hydrogen combustion in double contained receiver tanks, and proccss evaluation including the potential for runaway reactions in spent nuclear fuel processing. Model features include user-defined facility room, flow path geometry, and heat conductors, user-defined non-ideal vapor and aerosol species, pressure- and density-driven gas flows, aerosol transport and deposition, and structure to accommodate facility-specific source terms. Example applications are presented here.

  18. National Ignition Facility Project Site Safety Program

    SciTech Connect

    Dun, C

    2003-09-30

    This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during activities performed on the NIF Project site. The NIF Project Site Safety Program (NPSSP) requires that activities at the NIF Project site be performed in accordance with the ''LLNL ES&H Manual'' and the augmented set of controls and processes described in this NIF Project Site Safety Program. Specifically, this document: (1) Defines the fundamental NIF site safety philosophy. (2) Defines the areas covered by this safety program (see Appendix B). (3) Identifies management roles and responsibilities. (4) Defines core safety management processes. (5) Identifies NIF site-specific safety requirements. This NPSSP sets forth the responsibilities, requirements, rules, policies, and regulations for workers involved in work activities performed on the NIF Project site. Workers are required to implement measures to create a universal awareness that promotes safe practice at the work site and will achieve NIF management objectives in preventing accidents and illnesses. ES&H requirements are consistent with the ''LLNL ES&H Manual''. This NPSSP and implementing procedures (e.g., Management Walkabout, special work procedures, etc.,) are a comprehensive safety program that applies to NIF workers on the NIF Project site. The NIF Project site includes the B581/B681 site and support areas shown in Appendix B.

  19. 33 CFR 160.109 - Waterfront facility safety.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) PORTS AND WATERWAYS SAFETY PORTS AND WATERWAYS SAFETY-GENERAL Control of Vessel and Facility Operations § 160.109 Waterfront facility safety. (a) To prevent damage to, or the destruction of, any bridge... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Waterfront facility safety....

  20. 33 CFR 160.109 - Waterfront facility safety.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) PORTS AND WATERWAYS SAFETY PORTS AND WATERWAYS SAFETY-GENERAL Control of Vessel and Facility Operations § 160.109 Waterfront facility safety. (a) To prevent damage to, or the destruction of, any bridge... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Waterfront facility safety....

  1. 33 CFR 160.109 - Waterfront facility safety.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) PORTS AND WATERWAYS SAFETY PORTS AND WATERWAYS SAFETY-GENERAL Control of Vessel and Facility Operations § 160.109 Waterfront facility safety. (a) To prevent damage to, or the destruction of, any bridge... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Waterfront facility safety....

  2. 33 CFR 160.109 - Waterfront facility safety.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) PORTS AND WATERWAYS SAFETY PORTS AND WATERWAYS SAFETY-GENERAL Control of Vessel and Facility Operations § 160.109 Waterfront facility safety. (a) To prevent damage to, or the destruction of, any bridge... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Waterfront facility safety....

  3. CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect

    C.E. Sanders

    2005-04-07

    This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility

  4. Radiation Safety Systems for Accelerator Facilities

    SciTech Connect

    Liu, James C

    2001-10-17

    The Radiation Safety System (RSS) of an accelerator facility is used to protect people from prompt radiation hazards associated with accelerator operation. The RSS is a fully interlocked, engineered system with a combination of passive and active elements that are reliable, redundant, and fail-safe. The RSS consists of the Access Control System (ACS) and the Radiation Containment System (RCS). The ACS is to keep people away from the dangerous radiation inside the shielding enclosure. The RCS limits and contains the beam/radiation conditions to protect people from the prompt radiation hazards outside the shielding enclosure in both normal and abnormal operations. The complexity of a RSS depends on the accelerator and its operation, as well as associated hazard conditions. The approaches of RSS among different facilities can be different. This report gives a review of the RSS for accelerator facilities.

  5. Radiation Safety Systems for Accelerator Facilities

    SciTech Connect

    James C. Liu; Jeffrey S. Bull; John Drozdoff; Robert May; Vaclav Vylet

    2001-10-01

    The Radiation Safety System (RSS) of an accelerator facility is used to protect people from prompt radiation hazards associated with accelerator operation. The RSS is a fully interlocked, engineered system with a combination of passive and active elements that are reliable, redundant, and fail-safe. The RSS consists of the Access Control System (ACS) and the Radiation Containment System (RCS). The ACS is to keep people away from the dangerous radiation inside the shielding enclosure. The RCS limits and contains the beam/radiation conditions to protect people from the prompt radiation hazards outside the shielding enclosure in both normal and abnormal operations. The complexity of a RSS depends on the accelerator and its operation, as well as associated hazard conditions. The approaches of RSS among different facilities can be different. This report gives a review of the RSS for accelerator facilities.

  6. 33 CFR 160.109 - Waterfront facility safety.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Waterfront facility safety. 160.109 Section 160.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY PORTS AND WATERWAYS SAFETY-GENERAL Control of Vessel and Facility Operations § 160.109 Waterfront facility...

  7. DEVELOPMENT AND UTILIZATION OF TEST FACILITY FOR THE STUDY OF CANDLE FILTER SURFACE REGENERATION

    SciTech Connect

    Bruce S. Kang; Eric K. Johnson

    2003-07-14

    Hot gas particulate filtration is a basic component in advanced power generation systems such as Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC). These systems require effective particulate removal to protect the downstream gas turbine and also to meet environmental emission requirements. The ceramic barrier filter is one of the options for hot gas filtration. Hot gases flow through ceramic candle filters leaving ash deposited on the outer surface of the filter. A process known as surface regeneration removes the deposited ash periodically by using a high pressure pulse of gas to back flush the filter. After this cleaning process has been completed there may be some residual ash on the filter surface. This residual ash may grow and this may then lead to mechanical failure of the filter. A Room Temperature Test Facility (RTTF) and a High Temperature Test Facility (HTTF) were built to investigate the ash characteristics during surface regeneration at room and selected high temperatures. The RTTF system was used to gain experience with the selected instrumentation and develop an operating procedure to be used later at elevated temperatures. The HTTF system is capable of conducting surface regeneration tests of a single candle filter at temperatures up to 1500 F. In order to obtain sequential digital images of ash particle distribution during the surface regeneration process, a high resolution, high speed image acquisition system was integrated into the HTTF system. The regeneration pressure and the transient pressure difference between the inside of the candle filter and the chamber during regeneration were measured using a high speed PC data acquisition system. The control variables for the high temperature regeneration tests were (1) face velocity, (2) pressure of the back pulse, and (3) cyclic ash built-up time. Coal ash sample obtained from the Power System Development Facility (PSDF) at Wilsonville, AL was used at the

  8. A graded approach to safety documentation at processing facilities

    SciTech Connect

    Cowen, M.L.

    1992-09-01

    Westinghouse Savannah River Company (WSRC) has over 40 major Safety Analysis Reports (SARs) in preparation for non-reactor facilities. These facilities include nuclear material production facilities, waste management facilities, support laboratories and environmental remediation facilities. The SARs for these various projects encompass hazard levels from High to Low, and mission times from startup, through operation, to shutdown. All of these efforts are competing for scarce resources, and therefore some mechanism is required for balancing the documentation requirements. Three of the key variables useful for the decision making process are Depth of Safety Analysis, Urgency of Safety Analysis, and Resource Availability. This report discusses safety documentation at processing facilities.

  9. Compressed Gas Safety for Experimental Fusion Facilities

    SciTech Connect

    Lee C. Cadwallader

    2004-09-01

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  10. Compressed Gas Safety for Experimental Fusion Facilities

    SciTech Connect

    Cadwallader, L.C.

    2005-05-15

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard associated with compressed gas cylinders and methods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  11. Safety Culture and Best Practices at Japan's Fusion Research Facilities

    SciTech Connect

    Rule, Keith

    2014-05-01

    The Safety Monitor Joint Working Group (JWG) is one of the magnetic fusion research collaborations between the US Department of Energy and the government of Japan. Visits by occupational safety personnel are made to participating institutions on a biennial basis. In the 2013 JWG visit of US representatives to Japan, the JWG members noted a number of good safety practices in the safety walkthroughs. These good practices and safety culture topics are discussed in this paper. The JWG hopes that these practices for worker safety can be adopted at other facilities. It is a well-known, but unquantified, safety principle that well run, safe facilities are more productive and efficient than other facilities (Rule, 2009). Worker safety, worker productivity, and high quality in facility operation all complement each other (Mottel, 1995).

  12. Safety Culture And Best Practices At Japan's Fusion Research Facilities

    SciTech Connect

    Rule, K.; King, M.; Takase, Y.; Oshima, Y.; Nishimura, K.; Sukegawa, A.

    2014-04-01

    The Safety Monitor Joint Working Group (JWG) is one of the magnetic fusion research collaborations between the US Department of Energy and the government of Japan. Visits by occupational safety personnel are made to participating institutions on a biennial basis. In the 2013 JWG visit of US representatives to Japan, the JWG members noted a number of good safety practices in the safety walkthroughs. These good practices and safety culture topics are discussed in this paper. The JWG hopes that these practices for worker safety can be adopted at other facilities. It is a well-known, but unquantified, safety principle that well run, safe facilities are more productive and efficient than other facilities (Rule, 2009). Worker safety, worker productivity, and high quality in facility operation all complement each other (Mottel, 1995).

  13. Fuel Supply Shutdown Facility Interim Operational Safety Requirements

    SciTech Connect

    BENECKE, M.W.

    2000-09-06

    The Interim Operational Safety Requirements for the Fuel Supply Shutdown (FSS) Facility define acceptable conditions, safe boundaries, bases thereof, and management of administrative controls to ensure safe operation of the facility.

  14. A HIGH TEMPERATURE TEST FACILITY FOR STUDYING ASH PARTICLE CHARACTERISTICS OF CANDLE FILTER DURING SURFACE REGENERATION

    SciTech Connect

    Kang, B.S-J.; Johnson, E.K.; Rincon, J.

    2002-09-19

    Hot gas particulate filtration is a basic component in advanced power generation systems such as Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC). These systems require effective particulate removal to protect the downstream gas turbine and also to meet environmental emission requirements. The ceramic barrier filter is one of the options for hot gas filtration. Hot gases flow through ceramic candle filters leaving ash deposited on the outer surface of the filter. A process known as surface regeneration removes the deposited ash periodically by using a high pressure back pulse cleaning jet. After this cleaning process has been done there may be some residual ash on the filter surface. This residual ash may grow and this may lead to mechanical failure of the filter. A High Temperature Test Facility (HTTF) was built to investigate the ash characteristics during surface regeneration at high temperatures. The system is capable of conducting surface regeneration tests of a single candle filter at temperatures up to 1500 F. Details of the HTTF apparatus as well as some preliminary test results are presented in this paper. In order to obtain sequential digital images of ash particle distribution during the surface regeneration process, a high resolution, high speed image acquisition system was integrated into the HTTF system. The regeneration pressure and the transient pressure difference between the inside of the candle filter and the chamber during regeneration were measured using a high speed PC data acquisition system. The control variables for the high temperature regeneration tests were (1) face velocity, (2) pressure of the back pulse, and (3) cyclic ash built-up time.

  15. 78 FR 48029 - Improving Chemical Facility Safety and Security

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    .... [FR Doc. 2013-19220 Filed 8-6-13; 8:45 am] Billing code 3295-F3 ... Documents#0;#0; ] Executive Order 13650 of August 1, 2013 Improving Chemical Facility Safety and Security By... departments and agencies (agencies) with regulatory authority to further improve chemical facility safety...

  16. FUEL HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect

    C.E. Sanders

    2005-06-30

    The purpose of this design calculation is to perform a criticality evaluation of the Fuel Handling Facility (FHF) and the operations and processes performed therein. The current intent of the FHF is to receive transportation casks whose contents will be unloaded and transferred to waste packages (WP) or MGR Specific Casks (MSC) in the fuel transfer bays. Further, the WPs will also be prepared in the FHF for transfer to the sub-surface facility (for disposal). The MSCs will be transferred to the Aging Facility for storage. The criticality evaluation of the FHF features the following: (I) Consider the types of waste to be received in the FHF as specified below: (1) Uncanistered commercial spent nuclear fuel (CSNF); (2) Canistered CSNF (with the exception of horizontal dual-purpose canister (DPC) and/or multi-purpose canisters (MPCs)); (3) Navy canistered SNF (long and short); (4) Department of Energy (DOE) canistered high-level waste (HLW); and (5) DOE canistered SNF (with the exception of MCOs). (II) Evaluate the criticality analyses previously performed for the existing Nuclear Regulatory Commission (NRC)-certified transportation casks (under 10 CFR 71) to be received in the FHF to ensure that these analyses address all FHF conditions including normal operations, and Category 1 and 2 event sequences. (III) Evaluate FHF criticality conditions resulting from various Category 1 and 2 event sequences. Note that there are currently no Category 1 and 2 event sequences identified for FHF. Consequently, potential hazards from a criticality point of view will be considered as identified in the ''Internal Hazards Analysis for License Application'' document (BSC 2004c, Section 6.6.4). (IV) Assess effects of potential moderator intrusion into the fuel transfer bay for defense in depth. The SNF/HLW waste transfer activity (i.e., assembly and canister transfer) that is being carried out in the FHF has been classified as safety category in the ''Q-list'' (BSC 2003, p. A-6

  17. Safety analysis report for the Waste Storage Facility. Revision 2

    SciTech Connect

    Bengston, S.J.

    1994-05-01

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  18. Developing operational safety requirements for non-nuclear facilities

    SciTech Connect

    Mahn, J.A.

    1997-11-01

    Little guidance has been provided by the DOE for developing appropriate Operational Safety Requirements (OSR) for non-nuclear facility safety documents. For a period of time, Chapter 2 of DOE/AL Supplemental Order 5481.lB provided format guidance for non-reactor nuclear facility OSRs when this supplemental order applied to both nuclear and non-nuclear facilities. Thus, DOE Albuquerque Operations Office personnel still want to see non-nuclear facility OSRs in accordance with the supplemental order (i.e., in terms of Safety Limits, Limiting Conditions for Operation, and Administrative Controls). Furthermore, they want to see a clear correlation between the OSRs and the results of a facility safety analysis. This paper demonstrates how OSRs can be rather simply derived from the results of a risk assessment performed using the ``binning`` methodology of SAND95-0320.

  19. Criticality Safety Evaluation of Hanford Tank Farms Facility

    SciTech Connect

    WEISS, E.V.

    2000-12-15

    Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste.

  20. Operational Safety Requirements Neutron Multiplier Facility in 329 Building

    SciTech Connect

    EA. Lepel

    1992-10-01

    The operational safety requirements (OSRs) presented in this report define the conditions, safe boundaries and management control needed for safely operating the Neutron Multiplier Facility in the 329 Building Annex.

  1. Criticality safety considerations for low-level-waste facilities

    SciTech Connect

    Hopper, C.M.

    1995-04-01

    The nuclear criticality safety for handling and burial of certain special nuclear materials (SNM) at low-level-waste (LLW) facilities is licensed by the US Nuclear Regulatory Commission (NRC). Recently, Oak Ridge National Laboratory (ORNL) staff assisted the NRC Office of Nuclear Material Safety and Safeguards, Low-Level-Waste and Decommissioning Projects Branch, in developing technical specifications for the nuclear criticality safety of {sup 235}U and {sup 235}Pu in LLW facilities. This assistance resulted in a set of nuclear criticality safety criteria that can be uniformly applied to the review of LLW package burial facility license applications. These criteria were developed through the coupling of the historic surface-density criterion with current computational technique to establish safety criteria considering SNM material form and reflector influences. This paper presents a summary of the approach used to establish and to apply the criteria to the licensing review process.

  2. Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities

    SciTech Connect

    Batandjieva, B.; Torres-Vidal, C.

    2002-02-26

    The International Atomic Energy Agency (IAEA) Coordinated research program ''Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities'' (ISAM) has developed improved safety assessment methodology for near surface disposal facilities. The program has been underway for three years and has included around 75 active participants from 40 countries. It has also provided examples for application to three safety cases--vault, Radon type and borehole radioactive waste disposal facilities. The program has served as an excellent forum for exchange of information and good practices on safety assessment approaches and methodologies used worldwide. It also provided an opportunity for reaching broad consensus on the safety assessment methodologies to be applied to near surface low and intermediate level waste repositories. The methodology has found widespread acceptance and the need for its application on real waste disposal facilities has been clearly identified. The ISAM was finalized by the end of 2000, working material documents are available and an IAEA report will be published in 2002 summarizing the work performed during the three years of the program. The outcome of the ISAM program provides a sound basis for moving forward to a new IAEA program, which will focus on practical application of the safety assessment methodologies to different purposes, such as licensing radioactive waste repositories, development of design concepts, upgrading existing facilities, reassessment of operating repositories, etc. The new program will also provide an opportunity for development of guidance on application of the methodology that will be of assistance to both safety assessors and regulators.

  3. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    SciTech Connect

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment.

  4. Transuranic storage and assay facility interim safety basis

    SciTech Connect

    Porten, D.R., Fluor Daniel Hanford

    1997-02-12

    The Transuranic Waste Storage and Assay Facility (TRUSAF) Interim Safety Basis document provides the authorization basis for the interim operation and restriction on interim operations for the TRUSAF. The TRUSAF ISB demonstrates that the TRUSAF can be operated safely, protecting the workers, the public, and the environment. The previous safety analysis document TRUSAF Hazards Identification and Evaluation (WHC 1987) is superseded by this document.

  5. Safety of magnetic fusion facilities: Volume 2, Guidance

    SciTech Connect

    1995-07-01

    This document provides guidance for the implementation of the requirements identified in Vol. 1 of this Standard. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While Vol. 1 is generally applicable in that requirements there apply to a wide range of fusion facilities, this volume is concerned mainly with large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This volume is oriented toward regulation in the Department of Energy (DOE) environment.

  6. Safety analysis reports for multiple hazard category facilities

    SciTech Connect

    Geeting, M.W.; Gerrard, P.B.

    1995-12-31

    The Savannah River Site contains many nuclear facilities for which safety analysis reports (SARs) are required. The current requirements with which the SARs must comply are given in U.S. Department of Energy (DOE) Order 5480.23. This order requires use of the graded approach. The graded approach demands a more thoroughly documented assessment of complex, higher hazard facilities than simple, lower hazard facilities because grading is a function of both hazard potential and complexity. The treatment of different hazard category facilities in the development of the SAR for the Central Laboratory Facility at the Savannah River Site is described here.

  7. Radiation safety at accelerator facilities NCRP activities

    NASA Astrophysics Data System (ADS)

    Kase, Kenneth R.

    1997-02-01

    The National Council on Radiation Protection and Measurements (NCRP) has issued 13 reports, dating back to 1949, giving guidance and recommendations for radiation protection at accelerator facilities. There are six current reports on the topics of neutron radiation; facility and shielding design; alarms and access control systems; and equipment design, performance, and use. Scientific Committee 46 (SC 46) is currently overseeing the development of two reports that will provide up-to-date guidance for the design of medical accelerator facilities and shielding. SC 46 has also proposed that a report be written to provide guidance for the design and shielding of industrial accelerator and large irradiator facilities. This paper describes the status and contents of these reports.

  8. Waste Encapsulation and Storage Facility interim operational safety requirements

    SciTech Connect

    COVEY, L.I.

    2000-11-28

    The Interim Operational Safety Requirements (IOSRs) for the Waste Encapsulation and Storage Facility (WESF) define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt and inspection of cesium and strontium capsules from private irradiators; decontamination of the capsules and equipment; surveillance of the stored capsules; and maintenance activities. Controls required for public safety, significant defense-in-depth, significant worker safety, and for maintaining radiological consequences below risk evaluation guidelines (EGs) are included.

  9. CP-50 calibration facility radiological safety assessment document

    SciTech Connect

    Chilton, M.W.; Hill, R.L.; Eubank, B.F.

    1980-03-01

    The CP-50 Calibration Facility Radiological Safety Assessment document, prepared at the request of the Nevada Operations Office of the US Department of Energy to satisfy provisions of ERDA Manual Chapter 0531, presents design features, systems controls, and procedures used in the operation of the calibration facility. Site and facility characteristics and routine and non-routine operations, including hypothetical incidents or accidents are discussed and design factors, source control systems, and radiation monitoring considerations are described.

  10. Complementary safety assessments of the French nuclear facilities

    NASA Astrophysics Data System (ADS)

    Pouget-Abadie, Xavier

    2012-05-01

    EDF has conducted, after the Fukushima event, complementary safety assessments of its nuclear facilities. The aim of this in-depth review was to assess the resilience of each plant to extreme external hazards, situations that could lead to severe accident conditions. These analyses demonstrate a good level of safety for all of EDF's nuclear facilities. Supplementary measures post-Fukushima have been put forward to the ASN with the aim of continuing to improve the level of safety at the plants. Once the ASN position is issued, EDF will develop an action plan over several years, covering both supplementary studies and modifications that have been identified.

  11. Technical Safety Requirements for the Waste Storage Facilities May 2014

    SciTech Connect

    Laycak, D. T.

    2014-04-16

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  12. Maintaining safety in the dialysis facility.

    PubMed

    Kliger, Alan S

    2015-04-01

    Errors in dialysis care can cause harm and death. While dialysis machines are rarely a major cause of morbidity, human factors at the machine interface and suboptimal communication among caregivers are common sources of error. Major causes of potentially reversible adverse outcomes include medication errors, infections, hyperkalemia, access-related errors, and patient falls. Root cause analysis of adverse events and "near misses" can illuminate care processes and show system changes to improve safety. Human factors engineering and simulation exercises have strong potential to define common clinical team purpose, and improve processes of care. Patient observations and their participation in error reduction increase the effectiveness of patient safety efforts. PMID:25376767

  13. Maintaining Safety in the Dialysis Facility

    PubMed Central

    2015-01-01

    Errors in dialysis care can cause harm and death. While dialysis machines are rarely a major cause of morbidity, human factors at the machine interface and suboptimal communication among caregivers are common sources of error. Major causes of potentially reversible adverse outcomes include medication errors, infections, hyperkalemia, access-related errors, and patient falls. Root cause analysis of adverse events and "near misses" can illuminate care processes and show system changes to improve safety. Human factors engineering and simulation exercises have strong potential to define common clinical team purpose, and improve processes of care. Patient observations and their participation in error reduction increase the effectiveness of patient safety efforts. PMID:25376767

  14. Fire Safety. Managing School Facilities, Guide 6.

    ERIC Educational Resources Information Center

    Department for Education and Employment, London (England). Architects and Building Branch.

    This booklet discusses how United Kingdom schools can manage fire safety and minimize the risk of fire. The guide examines what legislation school buildings must comply with and covers the major risks. It also describes training and evacuation procedures and provides guidance on fire precautions, alarm systems, fire fighting equipment, and escape…

  15. Facility Safety Plan B360 Complex CMLS-411r0

    SciTech Connect

    Cooper, G

    2007-01-08

    Lawrence Livermore National Laboratory's (LLNL) Environmental, Safety and Health (ES&H) policy is that all operations must be planned and performed safely for the protection of workers, the public, the environment, and limit possible loss to property, facilities and equipment assigned to this directorate. In addition to observing LLNL policies contained in the ''Environment, Safety, and Health (ES&H) Manual'', LLNL workers will comply with applicable federal, state, and local regulations when conducting any activity that the Chemistry, Materials and Life Sciences (CMLS) Directorate has managerial control or oversight. Management has determined that the safety controls specified within this Facility Safety Plan (FSP) must also be followed to ensure that the operation is successfully performed efficiently and safely within this facility. Any operations conducted in this Complex that involve activities not commonly performed by the public require an Integration Work Sheet (IWS) or IWS/Safety Plan (IWS/SP) that specifically assesses the responsibilities, hazards and controls to conduct the operation safely. Everyone who enters this area (including students, workers, visitors, and consultants) must follow the applicable requirements in this FSP. Each person is expected to protect himself/herself and others from injury or illness. Regular facility occupants are expected to guide and govern visitors and assist new or temporary occupants in understanding and following this plan. When there are any doubts regarding the safety of any phase of work, workers and others will check with the facility manager. Changes to this FSP will be approved by the Facility Associate Director (AD). This will undergo triennial review to establish, at a minimum, that its contents are appropriate and adequate for current operations. The Hazards Control ES&H Team assists management in instituting and maintaining a minimum-risk and environmentally sound work environment. Any Laboratory worker has

  16. Preliminary safety evaluation (PSE) for Sodium Storage Facility at the Fast Flux Test Facility

    SciTech Connect

    Bowman, B.R.

    1994-09-30

    This evaluation was performed for the Sodium Storage Facility (SSF) which will be constructed at the Fast Flux Test Facility (FFTF) in the area adjacent to the South and West Dump Heat Exchanger (DHX) pits. The purpose of the facility is to allow unloading the sodium from the FFTF plant tanks and piping. The significant conclusion of this Preliminary Safety Evaluation (PSE) is that the only Safety Class 2 components are the four sodium storage tanks and their foundations. The building, because of its imminent risk to the tanks under an earthquake or high winds, will be Safety Class 3/2, which means the building has a Safety Class 3 function with the Safety Class 2 loads of seismic and wind factored into the design.

  17. Safety analysis of the existing 851 Firing Facility

    SciTech Connect

    Odell, B.N.

    1986-06-05

    A safety analysis was performed to determine if normal operations and/or potential accidents at the 851 Firing Facility at Site 300 could present undue hazards to the general public, personnel at Site 300, or have an adverse effect on the environment. The normal operations and credible accidents that might have an effect on these facilities or have off-site consequences were considered. It was determined by this analysis that all but two of the hazards were either low or of the type or magnitude routinely encountered and/or accepted by the public. The exceptions were the linear accelerator and explosives, which were classified as moderate hazards per the requirements given in DOE Order 5481.1A. This safety analysis concluded that the operation at this facility will present no undue risk to the health and safety of LLNL employees or the public.

  18. Safety analysis of the existing 850 Firing Facility

    SciTech Connect

    Odell, B.N.

    1986-06-05

    A safety analysis was performed to determine if normal operations and/or potential accidents at the 850 Firing Facility at Site 300 could present undue hazards to the general public, personnel at Site 300, or have an adverse effect on the environment. The normal operations and credible accidents that might have an effect on these facilities or have off-site consequences were considered. It was determined by this analysis that all but one of the hazards were either low or of the type or magnitude routinely encountered and/or accepted by the public. The exception was explosives, which was classified as a moderate hazard per the requirements given in DOE Order 5481.1A. This safety analysis concluded that the operation at this facility will present no undue risk to the health and safety of LLNL employees or the public.

  19. Fuel Storage Facility Final Safety Analysis Report. Revision 1

    SciTech Connect

    Linderoth, C.E.

    1984-03-01

    The Fuel Storage Facility (FSF) is an integral part of the Fast Flux Test Facility. Its purpose is to provide long-term storage (20-year design life) for spent fuel core elements used to provide the fast flux environment in FFTF, and for test fuel pins, components and subassemblies that have been irradiated in the fast flux environment. This Final Safety Analysis Report (FSAR) and its supporting documentation provides a complete description and safety evaluation of the site, the plant design, operations, and potential accidents.

  20. Safety systems and access control in the National Ignition Facility.

    PubMed

    Reed, Robert K; Bell, Jayce C

    2013-06-01

    The National Ignition Facility (NIF) is the world's largest and most energetic laser system. The facility has the potential to generate ionizing radiation due to the interaction between the laser beams and target material, with neutrons and gamma rays being produced during deuterium-tritium fusion reactions. To perform these experiments, several types of hazards must be mitigated and controlled to ensure personnel safety. NIF uses a real-time safety system to monitor and mitigate the hazards presented by the facility. The NIF facility Safety Interlock System (SIS) monitors for oxygen deficiency and controls access to the facility preventing exposure to laser light and radiation from the Radiation Generating Devices. It also interfaces to radiation monitoring and other radiological monitoring and alarm systems. The SIS controls permissives to the hazard-generating equipment and annunciates hazard levels in the facility. To do this reliably and safely, the SIS has been designed as a fail-safe system with a proven performance record now spanning over 10 y. This paper discusses the SIS, its design, implementation, operator interfaces, validation/verification, and the hazard mitigation approaches employed in the NIF. A brief discussion of the Failure Modes and Effect Analysis supporting the SIS will also be presented. The paper ends with a general discussion of SIS do's and don'ts and common design flaws that should be avoided in SIS design. PMID:23629061

  1. Safety in Elevators and Grain Handling Facilities. Module SH-27. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on safety in elevators and grain handling facilities is one of 50 modules concerned with job safety and health. Following the introduction, 15 objectives (each keyed to a page in the text) the student is expected to accomplish are listed (e.g., Explain how explosion suppression works). Then each objective is taught in detail,…

  2. Cold Vacuum Drying (CVD) Facility Technical Safety Requirements

    SciTech Connect

    KRAHN, D.E.

    2000-08-08

    The Technical Safety Requirements (TSRs) for the Cold Vacuum Drying Facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt of multi-canister overpacks (MCOs) containing spent nuclear fuel. removal of free water from the MCOs using the cold vacuum drying process, and inerting and testing of the MCOs before transport to the Canister Storage Building. Controls required for public safety, significant defense in depth, significant worker safety, and for maintaining radiological and toxicological consequences below risk evaluation guidelines are included.

  3. Management concepts and safety applications for nuclear fuel facilities

    SciTech Connect

    Eisner, H.; Scotti, R.S.; Delicate, W.S.

    1995-05-01

    This report presents an overview of effectiveness of management control of safety. It reviews several modern management control theories as well as the general functions of management and relates them to safety issues at the corporate and at the process safety management (PSM) program level. Following these discussions, structured technique for assessing management of the safety function is suggested. Seven modern management control theories are summarized, including business process reengineering, the learning organization, capability maturity, total quality management, quality assurance and control, reliability centered maintenance, and industrial process safety. Each of these theories is examined for-its principal characteristics and implications for safety management. The five general management functions of planning, organizing, directing, monitoring, and integrating, which together provide control over all company operations, are discussed. Under the broad categories of Safety Culture, Leadership and Commitment, and Operating Excellence, key corporate safety elements and their subelements are examined. The three categories under which PSM program-level safety issues are described are Technology, Personnel, and Facilities.

  4. Fuel supply shutdown facility interim operational safety requirements

    SciTech Connect

    Besser, R.L.; Brehm, J.R.; Benecke, M.W.; Remaize, J.A.

    1995-05-23

    These Interim Operational Safety Requirements (IOSR) for the Fuel Supply Shutdown (FSS) facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls to ensure safe operation. The IOSRs apply to the fuel material storage buildings in various modes (operation, storage, surveillance).

  5. NIF conventional facilities construction health and safety plan

    SciTech Connect

    Benjamin, D W

    1998-05-14

    The purpose of this Plan is to outline the minimum health and safety requirements to which all participating Lawrence Livermore National Laboratory (LLNL) and non-LLNL employees (excluding National Ignition Facility [NIF] specific contractors and subcontractors covered under the construction subcontract packages (e.g., CSP-9)-see Construction Safety Program for the National Ignition Facility [CSP] Section I.B. ''NIF Construction Contractors and Subcontractors'' for specifics) shall adhere to for preventing job-related injuries and illnesses during Conventional Facilities construction activities at the NIF Project. For the purpose of this Plan, the term ''LLNL and non-LLNL employees'' includes LLNL employees, LLNL Plant Operations staff and their contractors, supplemental labor, contract labor, labor-only contractors, vendors, DOE representatives, personnel matrixed/assigned from other National Laboratories, participating guests, and others such as visitors, students, consultants etc., performing on-site work or services in support of the NIF Project. Based upon an activity level determination explained in Section 1.2.18, in this document, these organizations or individuals may be required by site management to prepare their own NIF site-specific safety plan. LLNL employees will normally not be expected to prepare a site-specific safety plan. This Plan also outlines job-specific exposures and construction site safety activities with which LLNL and non-LLNL employees shall comply.

  6. Technical Safety Requirements for the Waste Storage Facilities

    SciTech Connect

    Larson, H L

    2007-09-07

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  7. Defense in depth: laser safety and the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    King, Jamie J.

    2011-03-01

    The National Ignition Facility (NIF) is the largest and most energetic laser in the world contained in a complex the size of a football stadium. From the initial laser pulse, provided by telecommunication style infrared nanoJoule pulsed lasers, to the final 192 laser beams (1.8 Mega Joules total energy in the ultraviolet) converging on a target the size of a pencil eraser, laser safety is of paramount concern. In addition to this, there are numerous high-powered (Class 3B and 4) diagnostic lasers in use that can potentially send their laser radiation travelling throughout the facility. With individual beam paths of up to 1500 meters and a workforce of more than one thousand, the potential for exposure is significant. Simple laser safety practices utilized in typical laser labs just don't apply. To mitigate these hazards, NIF incorporates a multi layered approach to laser safety or "Defense in Depth."

  8. Safety issues related to synthetic-fuels facilities

    NASA Astrophysics Data System (ADS)

    The design, siting, construction, operation, and decommissioning of coal gasification, coal liquefaction, and oil shale facilities could present safety risks both to synfuels workers and to the environmental system unless careful controls are exercised. Many of these hazards are expected to be similar to those associated with conventional mining, mineral processing, coking operations, and refining of petroleum. However, because of the chemical and physical properties of coal and shale and their products, the types of technologies to be employed, and the scales of their operations, it has been suggested that unconventional hazards may occur. Issues which summarize the deliverations and work of the Committee on Synthetic Fuels Facilities Safety in evaluating the various technologies and their potentials for unconventional safety hazards are described in Chapters 2 and 3 of the report.

  9. The Safety and Tritium Applied Research (STAR) Facility: Status-2004

    SciTech Connect

    Anderl, R.A.; Longhurst, G.R.; Pawelko, R.J.; Sharpe, J.P.; Schuetz, S.T.; Petti, D.A.

    2005-07-15

    The Safety and Tritium Applied Research (STAR) Facility, a US DOE National User Facility at the Idaho National Engineering and Environmental Laboratory (INEEL), comprises capabilities and infrastructure to support both tritium and non-tritium research activities important to the development of safe and environmentally friendly fusion energy. Research thrusts include (1) interactions of tritium and deuterium with plasma-facing-component (PFC) materials, (2) fusion safety issues [PFC material chemical reactivity and dust/debris generation, activation product mobilization, tritium behavior in fusion systems], and (3) molten salts and fusion liquids for tritium breeder and coolant applications. This paper updates the status of STAR and the capabilities for ongoing research activities, with an emphasis on the development, testing and integration of the infrastructure to support tritium research activities. Key elements of this infrastructure include a tritium storage and assay system, a tritium cleanup system to process glovebox and experiment tritiated effluent gases, and facility tritium monitoring systems.

  10. Documented Safety Analysis for the Waste Storage Facilities

    SciTech Connect

    Laycak, D

    2008-06-16

    This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  11. Documented Safety Analysis for the Waste Storage Facilities March 2010

    SciTech Connect

    Laycak, D T

    2010-03-05

    This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  12. A User's Guide for the Spacecraft Fire Safety Facility

    NASA Technical Reports Server (NTRS)

    Goldmeer, Jeffrey S.

    2000-01-01

    The Spacecraft Fire Safety Facility (SFSF) is a test facility that can be flown on NASA's reduced gravity aircraft to perform various types of combustion experiments under a variety of experimental conditions. To date, this facility has flown numerous times on the aircraft and has been used to perform experiments ranging from an examination of the effects transient depressurization on combustion, to ignition and flame spread. A list of pubfications/presentations based on experiments performed in the SFSF is included in the reference section. This facility consists of five main subsystems: combustion chamber, sample holders, gas flow system, imaging system, and the data acquisition/control system. Each of these subsystems will be reviewed in more detail. These subsystems provide the experiment operator with the ability to monitor and/or control numerous experimental parameters.

  13. Technical Safety Requirements for the Waste Storage Facilities

    SciTech Connect

    Laycak, D T

    2010-03-05

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting

  14. Technical Safety Requirements for the Waste Storage Facilities

    SciTech Connect

    Laycak, D T

    2008-06-16

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas

  15. Explosive safety criteria at a Department of Energy contractor facility

    NASA Astrophysics Data System (ADS)

    Krach, F.

    1984-08-01

    Monsanto Research Corporation (MRC) operates the Mound facility in Miamisburg, Ohio, for the Department of Energy. Small explosive components are manufactured at MRC, and stringent explosive safety criteria have been developed for their manufacturing. The goals of these standards are to reduce employee injuries and eliminate fenceline impacts resulting from accidental detonations. The manner in which these criteria were developed and what DOD standards were incorporated into MRC's own design criteria are described. These design requirements are applicable to all new construction at MRC. An example of the development of the design of a Component Test Facility is presented to illustrate the application of the criteria.

  16. SRTC criticality technical review: Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility`s Waste Handling Facility

    SciTech Connect

    Rathbun, R.

    1993-10-01

    Separate review of NMP-NCS-930058, {open_quotes}Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility`s Waste Handling Facility (U), August 17, 1993,{close_quotes} was requested of SRTC Applied Physics Group. The NCSE is a criticality assessment to determine waste container uranium limits in the Uranium Solidification Facility`s Waste Handling Facility. The NCSE under review concludes that the NDA room remains in a critically safe configuration for all normal and single credible abnormal conditions. The ability to make this conclusion is highly dependent on array limitation and inclusion of physical barriers between 2{times}2{times}1 arrays of boxes containing materials contaminated with uranium. After a thorough review of the NCSE and independent calculations, this reviewer agrees with that conclusion.

  17. Safety analysis of the existing 804 and 845 firing facilities

    SciTech Connect

    Odell, B.N.

    1986-06-05

    A safety analysis was performed to determine if normal operations and/or potential accidents at the 804 and 845 Firing Facilities at Site 300 could present undue hazards to the general public, peronnel at Site 300, or have an adverse effect on the environment. The normal operation and credible accident that might have an effect on these facilities or have off-site consequence were considered. It was determined by this analysis that all but one of the hazards were either low or of the type or magnitude routinely encountered and/or accepted by the public. The exception was explosives. Since this hazard has the potential for causing significant on-site and minimum off-site consequences, Bunkers 804 and 845 have been classified as moderate hazard facilties per DOE Order 5481.1A. This safety analysis concluded that the operation at these facilities will present no undue risk to the health and safety of LLNL employees or the public.

  18. Construction safety program for the National Ignition Facility Appendix A: Safety Requirements

    SciTech Connect

    Cerruti, S.J.

    1997-01-14

    These rules apply to all LLNL employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other National Laboratories, participating guests, visitors and students) and construction contractors/subcontractors. The General Safety and Health rules shall be used by management to promote accident prevention through indoctrination, safety and health training and on-the-job application. As a condition for contracts award, all contractors and subcontractors and their employees must certify on Form S & H A-1 that they have read and understand, or have been briefed and understand, the National Ignition Facility OCIP Project General Safety Rules.

  19. Pre-operational safety appraisal Tritiated Scrap Recovery Facility, Mound facility

    SciTech Connect

    Dauby, J.J.; Flanagan, T.M.; Metcalf, L.W.; Rhinehammer, T.B.

    1996-07-01

    The purpose of this report is to identify, assess, and document the hazards which are associated with the proposed operation of the Tritiated Scrap Recovery Facility at Mound Facility. A Pre-operational Safety Appraisal is a requirement as stated in Department of Energy Order 5481.1, Safety Analysis and Review System. The operations to be conducted in the new Tritiated Scrap Waste Recovery Facility are not new, but a continuation of a prime mission of Mound`s i.e. recovery of tritium from waste produced throughout the DOE complex. The new facility is a replacement of an existing process started in the early 1960`s and incorporates numerous design changes to enhance personnel and environmental safety. This report also documents the safety of a one time operation involving the recovery of tritium from material obtained by the Department of Energy from the State of Arizona. This project will involve the processing of 240,000 curies of tritium contained in glass ampoules that were to be used in items such as luminous dial watches. These were manufactured by the now defunct American Atomics Corporation, Tucson, Arizona.

  20. National Ignition Facility Project Site Safety Program Appendix A

    SciTech Connect

    Moses, E

    2001-09-30

    These rules apply to all National Ignition Facility (NIF) workers (workers), which include Lawrence Livermore National Laboratory (LLNL) employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other national laboratories, participating guests, visitors and students) and contractors/subcontractors. The General Rules and NIF Code of Safe Practices shall be used by management to promote the prevention of incidents through indoctrination, safety and health training, and on-the-job application. As a condition for contract award, all employers shall conduct an orientation for all newly hired and rehired employees before those workers will be permitted to start work in this facility. This orientation shall include a discussion of the following information. The General Rules and NIF Code of Safe Practices must be posted at a conspicuous location at the job site office or be provided to each supervisory worker who shall have it readily available. Copies of the General Rules and NIF Code of Safe Practices can also be included in employee safety pamphlets. The Environmental, Safety, and Health (ES&H) rules at the NIF Project site are based upon compliance with the most stringent of Department of Energy (DOE), LLNL, Federal Occupational Safety and Health Administration (OSHA), California (Cal)/OSHA, and federal and state environmental requirements.

  1. 75 FR 9196 - Letter From Secretary of Energy Accepting Defense Nuclear Facilities Safety Board (Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... regarding seismic safety at the Los Alamos National Laboratory Plutonium Facility. ADDRESSES: U.S... Laboratory Plutonium Facility Seismic Safety, issued on October 26, 2009, and I accept the recommendation. In... new Documented Safety Analysis (DSA) for the Plutonium Facility at Los Alamos National...

  2. 76 FR 16758 - DOE Response to Recommendation 2010-1 of the Defense Nuclear Facilities Safety Board, Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... Response to Recommendation 2010-1 of the Defense Nuclear Facilities Safety Board, Safety Analysis... Safety Analysis Requirements for Defining Adequate Protection for the Public and the Workers was...) Recommendation 2010-1, Safety Analysis Requirements for Defining Adequate Protection for the Public and...

  3. Antiadhesive effect and safety of oxidized regenerated cellulose after thyroidectomy: a prospective, randomized controlled study

    PubMed Central

    Park, Kyoung Sik; Lee, Kyu Eun; Ku, Do Hoon; Kim, Su-Jin; Park, Won Seo; Kim, Hoon Yub; Kwon, Mi Ra

    2013-01-01

    Purpose To evaluate the antiadhesive effects and safety of an oxidized regenerated cellulose (Interceed) after thyroidectomy. Methods Seventy-six thyroidectomized patients were prospectively randomized into two groups with regard to the use of Interceed. We evaluated each group for their adhesive symptoms using four subjective and four objective items at the 2nd week, 3rd and 6th month after thyroidectomy. All patients were examined for vocal cord motility by indirect laryngoscope at each period. Results Total adhesion scores at each postoperative follow-up period decreased with time, but were not significantly different in each group. The median score for swallowing discomfort for liquid was significantly lower in the Interceed group than in the control group 2 weeks after surgery. In addition, the severity of skin adhesion to the trachea was reduced in the Interceed group compared with the control group 6 months after surgery. During the study, there were no adverse effects or significant differences in postoperative complications between the groups. Conclusion Interceed appeared to be safe and effective in improving neck discomfort at early postoperative periods and preventing skin adhesion to the trachea 6 months after thyroidectomy. PMID:23741689

  4. 3S (Safeguards, Security, Safety) based pyroprocessing facility safety evaluation plan

    SciTech Connect

    Ku, J.H.; Choung, W.M.; You, G.S.; Moon, S.I.; Park, S.H.; Kim, H.D.

    2013-07-01

    The big advantage of pyroprocessing for the management of spent fuels against the conventional reprocessing technologies lies in its proliferation resistance since the pure plutonium cannot be separated from the spent fuel. The extracted materials can be directly used as metal fuel in a fast reactor, and pyroprocessing reduces drastically the volume and heat load of the spent fuel. KAERI has implemented the SBD (Safeguards-By-Design) concept in nuclear fuel cycle facilities. The goal of SBD is to integrate international safeguards into the entire facility design process since the very beginning of the design phase. This paper presents a safety evaluation plan using a conceptual design of a reference pyroprocessing facility, in which 3S (Safeguards, Security, Safety)-By-Design (3SBD) concept is integrated from early conceptual design phase. The purpose of this paper is to establish an advanced pyroprocessing hot cell facility design concept based on 3SBD for the successful realization of pyroprocessing technology with enhanced safety and proliferation resistance.

  5. [RADIATION SAFETY DURING REMEDIATION OF THE "SEVRAO" FACILITIES].

    PubMed

    Shandala, N K; Kiselev, S M; Titov, A V; Simakov, A V; Seregin, V A; Kryuchkov, V P; Bogdanova, L S; Grachev, M I

    2015-01-01

    Within a framework of national program on elimination of nuclear legacy, State Corporation "Rosatom" is working on rehabilitation at the temporary waste storage facility at Andreeva Bay (Northwest Center for radioactive waste "SEVRAO"--the branch of "RosRAO"), located in the North-West of Russia. In the article there is presented an analysis of the current state of supervision for radiation safety of personnel and population in the context of readiness of the regulator to the implementation of an effective oversight of radiation safety in the process of radiation-hazardous work. Presented in the article results of radiation-hygienic monitoring are an informative indicator of the effectiveness of realized rehabilitation measures and characterize the radiation environment in the surveillance zone as a normal, without the tendency to its deterioration. PMID:26625607

  6. NASA to begin construction of aviation-safety test facility

    NASA Astrophysics Data System (ADS)

    Construction of a $7.5-million facility to research aviation safety will begin in April at NASA's Ames Research Center in Mountain View, California. Scheduled for completion in 1983, the facility will give scientists their first opportunity to identify and study psychological factors involved in the relationship between pilots, crew members, and modern aircraft.The center will have two simulators. One will be a replica of a current transport airplane cockpit, complete with flight engineer's station, flight display, and control systems. The second will represent transport aircraft of the future. With advanced technology flight controls, displays, and other flight deck systems to accommodate a flight crew and observer, the advanced simulator will be designed to test human responses to the newest aviation technologies.

  7. Fire safety design of a mobile quarantine facility

    NASA Technical Reports Server (NTRS)

    Bass, R. S.; Hirasaki, J. K.

    1971-01-01

    During the design phase of the Mobile Quarantine Facility (MQF), a primary consideration was fire safety. Therefore, appropriate criteria and ground rules were used in the design and construction of the facility. The fire codes and fire-requirement listings that are used by commerical airlines were supplied to the Manned Spacecraft Center (MSC) by the Federal Aviation Agency (FAA). After these codes were reviewed, a basic ground rule was adopted that flame protection for all combustible materials should be at least equivalent to or better than the standards for commercial aircraft. Because the MQF was designed to operate with an interior atmosphere of air rather than with an oxygen-enriched atmosphere such as that of the Apollo spacecraft cabin, the requirements for MQF material were not as stringent as those for the spacecraft.

  8. Fast Flux Test Facility final safety analysis report. Amendment 73

    SciTech Connect

    Gantt, D.A.

    1993-08-01

    This report provides Final Safety Analysis Report (FSAR) Amendment 73 for incorporation into the Fast Flux Test Facility (FFTR) FSAR set. This page change incorporates Engineering Change Notices (ECNs) issued subsequent to Amendment 72 and approved for incorparoration before May 6, 1993. These changes include: Chapter 3, design criteria structures, equipment, and systems; chapter 5B, reactor coolant system; chapter 7, instrumentation and control systems; chapter 9, auxiliary systems; chapter 11, reactor refueling system; chapter 12, radiation protection and waste management; chapter 13, conduct of operations; chapter 17, technical specifications; chapter 20, FFTF criticality specifications; appendix C, local fuel failure events; and appendix Fl, operation at 680{degrees}F inlet temperature.

  9. Advanced Test Reactor (ATR) Facility 10CFR830 Safety Basis Related to Facility Experiments

    SciTech Connect

    Tomberlin, Terry Alan

    2002-06-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Test Reactor (ATR), a DOE Category A reactor, was designed to provide an irradiation test environment for conducting a variety of experiments. The ATR Safety Analysis Report, determined by DOE to meet the requirements of 10 CFR 830, Subpart B, provides versatility in types of experiments that may be conducted. This paper addresses two general types of experiments in the ATR facility and how safety analyses for experiments are related to the ATR safety basis. One type of experiment is more routine and generally represents greater risks; therefore this type of experiment is addressed with more detail in the safety basis. This allows individual safety analyses for these experiments to be more routine and repetitive. The second type of experiment is less defined and is permitted under more general controls. Therefore, individual safety analyses for the second type of experiment tend to be more unique from experiment to experiment. Experiments are also discussed relative to "major modifications" and DOE-STD-1027-92. Application of the USQ process to ATR experiments is also discussed.

  10. Advanced Test Reactor (ATR) Facility 10CFR830 Safety Basis Related to Facility Experiments

    SciTech Connect

    Tomberlin, T.A.

    2002-06-19

    The Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Test Reactor (ATR), a DOE Category A reactor, was designed to provide an irradiation test environment for conducting a variety of experiments. The ATR Safety Analysis Report, determined by DOE to meet the requirements of 10 CFR 830, Subpart B, provides versatility in types of experiments that may be conducted. This paper addresses two general types of experiments in the ATR facility and how safety analyses for experiments are related to the ATR safety basis. One type of experiment is more routine and generally represents greater risks; therefore this type of experiment is addressed with more detail in the safety basis. This allows individual safety analyses for these experiments to be more routine and repetitive. The second type of experiment is less defined and is permitted under more general controls. Therefore, individual safety analyses for the second type of experiment tend to be more unique from experiment to experiment. Experiments are also discussed relative to ''major modifications'' and DOE-STD-1027-92. Application of the USQ process to ATR experiments is also discussed.

  11. Development of Safety Assessment Code for Decommissioning of Nuclear Facilities

    NASA Astrophysics Data System (ADS)

    Shimada, Taro; Ohshima, Soichiro; Sukegawa, Takenori

    A safety assessment code, DecDose, for decommissioning of nuclear facilities has been developed, based on the experiences of the decommissioning project of Japan Power Demonstration Reactor (JPDR) at Japan Atomic Energy Research Institute (currently JAEA). DecDose evaluates the annual exposure dose of the public and workers according to the progress of decommissioning, and also evaluates the public dose at accidental situations including fire and explosion. As for the public, both the internal and the external doses are calculated by considering inhalation, ingestion, direct radiation from radioactive aerosols and radioactive depositions, and skyshine radiation from waste containers. For external dose for workers, the dose rate from contaminated components and structures to be dismantled is calculated. Internal dose for workers is calculated by considering dismantling conditions, e.g. cutting speed, cutting length of the components and exhaust velocity. Estimation models for dose rate and staying time were verified by comparison with the actual external dose of workers which were acquired during JPDR decommissioning project. DecDose code is expected to contribute the safety assessment for decommissioning of nuclear facilities.

  12. Safety analysis of the 700-horsepower combustion test facility

    SciTech Connect

    Berkey, B.D.

    1981-05-01

    The objective of the program reported herein was to provide a Safety Analysis of the 700 h.p. Combustion Test Facility located in Building 93 at the Pittsburgh Energy Technology Center. Extensive safety related measures have been incorporated into the design, construction, and operation of the Combustion Test Facility. These include: nitrogen addition to the coal storage bin, slurry hopper, roller mill and pulverizer baghouse, use of low oxygen content combustion gas for coal conveying, an oxygen analyzer for the combustion gas, insulation on hot surfaces, proper classification of electrical equipment, process monitoring instrumentation and a planned remote television monitoring system. Analysis of the system considering these factors has resulted in the determination of overall probabilities of occurrence of hazards as shown in Table I. Implementation of the recommendations in this report will reduce these probabilities as indicated. The identified hazards include coal dust ignition by hot ductwork and equipment, loss of inerting within the coal conveying system leading to a coal dust fire, and ignition of hydrocarbon vapors or spilled oil, or slurry. The possibility of self-heating of coal was investigated. Implementation of the recommendations in this report will reduce the ignition probability to no more than 1 x 10/sup -6/ per event. In addition to fire and explosion hazards, there are potential exposures to materials which have been identified as hazardous to personal health, such as carbon monoxide, coal dust, hydrocarbon vapors, and oxygen deficient atmosphere, but past monitoring experience has not revealed any problem areas. The major environmental hazard is an oil spill. The facility has a comprehensive spill control plan.

  13. Commissioning of the cryogenic safety test facility PICARD

    NASA Astrophysics Data System (ADS)

    Heidt, C.; Schön, H.; Stamm, M.; Grohmann, S.

    2015-12-01

    The sizing of cryogenic safety relief devices requires detailed knowledge on the evolution of the pressure increase in cryostats following hazardous incidents such as the venting of the insulating vacuum with atmospheric air. Based on typical design and operating conditions in liquid helium cryostats, the new test facility PICARD, which stands for Pressure Increase in Cryostats and Analysis of Relief Devices, has been constructed. The vacuum-insulated test stand has a cryogenic liquid volume of 100 liters and a nominal design pressure of 16 bar(g). This allows a broad range of experimental conditions with cryogenic fluids. In case of helium, mass flow rates through safety valves and rupture disks up to about 4kg/s can be measured. Beside flow rate measurements under various conditions (venting diameter, insulation, working fluid, liquid level, set pressure), the test stand will be used for studies on the impact of two-phase flow and for the measurement of flow coefficients of safety devices at low temperature. This paper describes the operating range, layout and instrumentation of the test stand and presents the status of the commissioning phase.

  14. 3 CFR 13650 - Executive Order 13650 of August 1, 2013. Improving Chemical Facility Safety and Security

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Chemical Facility Safety and Security 13650 Order 13650 Presidential Documents Executive Orders Executive Order 13650 of August 1, 2013 EO 13650 Improving Chemical Facility Safety and Security By the authority... and implemented numerous programs aimed at reducing the safety risks and security risks...

  15. 78 FR 21197 - Advisory Committee on Structural Safety of Department of Veterans Affairs Facilities, Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... AFFAIRS Advisory Committee on Structural Safety of Department of Veterans Affairs Facilities, Notice of....S.C. App. 2) that a meeting of the Advisory Committee on Structural Safety of Department of Veterans... on matters of structural safety in the construction and remodeling of VA facilities and to...

  16. 33 CFR 147.815 - ExxonMobil Hoover Floating OCS Facility safety zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false ExxonMobil Hoover Floating OCS Facility safety zone. 147.815 Section 147.815 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Floating OCS Facility safety zone. (a) Description. The ExxonMobil Hoover Floating OCS Facility,...

  17. 33 CFR 147.815 - ExxonMobil Hoover Floating OCS Facility safety zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false ExxonMobil Hoover Floating OCS Facility safety zone. 147.815 Section 147.815 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Floating OCS Facility safety zone. (a) Description. The ExxonMobil Hoover Floating OCS Facility,...

  18. The Safety and Tritium Applied Research (STAR) Facility: Status-2004*

    SciTech Connect

    R. A. Anderl; G. R. Longhurst; R. J. Pawelko; J. P. Sharpe; S. T. Schuetz; D. A. Petti

    2004-09-01

    The purpose of this paper is to present the current status of the development of the Safety and Tritium Applied Research (STAR) Facility at the Idaho National Engineering and Environmental Laboratory (INEEL). Designated a National User Facility by the US DOE, the primary mission of STAR is to provide laboratory infrastructure to study tritium science and technology issues associated with the development of safe and environmentally friendly fusion energy. Both tritium and non-tritium fusion safety research is pursued along three key thrust areas: (1) plasma-material interactions of plasma-facing component (PFC) materials exposed to energetic tritium and deuterium ions, (2) fusion safety concerns related to PFC material chemical reactivity and dust/debris generation, activation product mobilization, and tritium behavior in fusion systems, and (3) molten salts and fusion liquids for tritium breeder and coolant applications. STAR comprises a multi-room complex with operations segregated to permit both tritium and non-tritium activities in separately ventilated rooms. Tritium inventory in STAR is limited to 15,000 Ci to maintain its classification as a Radiological Facility. Experiments with tritium are typically conducted in glovebox environments. Key components of the tritium infrastructure have been installed and tested. This includes the following subsystems: (1) a tritium Storage and Assay System (SAS) that uses two 50-g depleted uranium beds for tritium storage and PVT/beta-scintillation analyses for tritium accountability measurements, (2) a Tritium Cleanup System (TCS) that uses catalytic oxidation and molecular sieve water absorption to remove tritiated species from glovebox atmosphere gases and gaseous effluents from experiment and process systems, and (3) tritium monitoring instrumentation for room air, glovebox atmosphere and stack effluent tritium concentration measurements. Integration of the tritium infrastructure subsystems with the experimental and

  19. Environment, safety, and health considerations for a new accelerator facility

    SciTech Connect

    J. Donald Cossairt

    2001-04-23

    A study of siting considerations for possible future accelerators at Fermilab is underway. Each candidate presents important challenges in environment, safety, and health (ES&H) that are reviewed generically in this paper. Some of these considerations are similar to those that have been encountered and solved during the construction and operation of other accelerator facilities. Others have not been encountered previously on the same scale. The novel issues will require particular attention coincident with project design efforts to assure their timely cost-effective resolution. It is concluded that with adequate planning, the issues can be addressed in a manner that merits the support of the Laboratory, the US Department of Energy (DOE), and the public.

  20. Mixed Waste Management Facility Preliminary Safety Analysis Report. Chapters 1 to 20

    SciTech Connect

    Not Available

    1994-09-01

    This document provides information on waste management practices, occupational safety, and a site characterization of the Lawrence Livermore National Laboratory. A facility description, safety engineering analysis, mixed waste processing techniques, and auxiliary support systems are included.

  1. Results of Safety Inspections of College Laboratory and Chemical Storage Facilities.

    ERIC Educational Resources Information Center

    Renfrew, Malcolm M., Ed.

    1982-01-01

    Results of on-site inspections of 11 New York colleges, laboratories and storage facilities are summarized according to: (1) chemical storage and disposal; (2) safety equipment; (3) ventilation; (4) general housekeeping; and (5) safety education. (Author/SK)

  2. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Underground diesel fuel storage facilities and areas; construction and safety precautions. 75.1903 Section 75.1903 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment...

  3. Proceedings of the 1984 DOE nuclear reactor and facility safety conference. Volume II

    SciTech Connect

    Not Available

    1984-01-01

    This report is a collection of papers on reactor safety. The report takes the form of proceedings from the 1984 DOE Nuclear Reactor and Facility Safety Conference, Volume II of two. These proceedings cover Safety, Accidents, Training, Task/Job Analysis, Robotics and the Engineering Aspects of Man/Safety interfaces.

  4. Nuclear space power safety and facility guidelines study

    SciTech Connect

    Mehlman, W.F.

    1995-09-11

    This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an {open_quotes}Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missions{close_quotes}. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system is planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system.

  5. Climate change in safety assessment of a surface disposal facility

    NASA Astrophysics Data System (ADS)

    Leterme, B.

    2012-04-01

    The Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS) aims to develop a surface disposal facility for LILW-SL in Dessel (North-East of Belgium). Given the time scale of interest for the safety assessment (several millennia), a number of parameters in the modelling chain near field - geosphere - biosphere may be influenced by climate change. The present study discusses how potential climate change impact was accounted for the following quantities: (i) near field infiltration through the repository earth cover, (ii) partial pressure of CO2 in the water infiltrating the cover and draining the concrete, and (iii) groundwater recharge in the vicinity of the site. For these three parameters, the impact of climate change is assessed using climatic analogue stations, i.e. stations presently under climatic conditions corresponding to a given climate state. Results indicate that : (i) Using Gijon (Spain) as representative analogue station for the next millennia, infiltration at the bottom of the soil layer towards the modules of the facility is expected to increase (from 346 to 413 mm/y) under a subtropical climate. Although no colder climate is foreseen in the next 10 000 years, the approach was also tested with analogue stations for a colder climate state. Using Sisimiut (Greenland) as representative analogue station, infiltration is expected to decrease (109 mm/y). (ii) Due to changes of the partial pressure of CO2 in the soil water, cement degradation is estimated to occur more rapidly under a warmer climate. (iii) A decrease of long-term annual average groundwater recharge by 12% was simulated using Gijon representative analogue (from 314 to 276 mm), although total rainfall was higher (947 mm) in the warmer climate compared to the current temperate climate (899 mm). For a colder climate state, groundwater recharge simulated for the representative analogue Sisimiut showed a decrease by 69% compared to current climate conditions. The

  6. 48 CFR 246.270 - Safety of facilities, infrastructure, and equipment for military operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Safety of facilities, infrastructure, and equipment for military operations. 246.270 Section 246.270 Federal Acquisition Regulations... ASSURANCE Contract Quality Requirements 246.270 Safety of facilities, infrastructure, and equipment...

  7. 48 CFR 246.270 - Safety of facilities, infrastructure, and equipment for military operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Safety of facilities, infrastructure, and equipment for military operations. 246.270 Section 246.270 Federal Acquisition Regulations... ASSURANCE Contract Quality Requirements 246.270 Safety of facilities, infrastructure, and equipment...

  8. 48 CFR 246.270 - Safety of facilities, infrastructure, and equipment for military operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Safety of facilities, infrastructure, and equipment for military operations. 246.270 Section 246.270 Federal Acquisition Regulations... ASSURANCE Contract Quality Requirements 246.270 Safety of facilities, infrastructure, and equipment...

  9. 48 CFR 246.270 - Safety of facilities, infrastructure, and equipment for military operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Safety of facilities, infrastructure, and equipment for military operations. 246.270 Section 246.270 Federal Acquisition Regulations... ASSURANCE Contract Quality Requirements 246.270 Safety of facilities, infrastructure, and equipment...

  10. Development of an auditable safety analysis in support of a radiological facility classification

    SciTech Connect

    Kinney, M.D.; Young, B.

    1995-03-01

    In recent years, U.S. Department of Energy (DOE) facilities commonly have been classified as reactor, non-reactor nuclear, or nuclear facilities. Safety analysis documentation was prepared for these facilities, with few exceptions, using the requirements in either DOE Order 5481.1B, Safety Analysis and Review System; or DOE Order 5480.23, Nuclear Safety Analysis Reports. Traditionally, this has been accomplished by development of an extensive Safety Analysis Report (SAR), which identifies hazards, assesses risks of facility operation, describes and analyzes adequacy of measures taken to control hazards, and evaluates potential accidents and their associated risks. This process is complicated by analysis of secondary hazards and adequacy of backup (redundant) systems. The traditional SAR process is advantageous for DOE facilities with appreciable hazards or operational risks. SAR preparation for a low-risk facility or process can be cost-prohibitive and quite challenging because conventional safety analysis protocols may not readily be applied to a low-risk facility. The DOE Office of Environmental Restoration and Waste Management recognized this potential disadvantage and issued an EM limited technical standard, No. 5502-94, Hazard Baseline Documentation. This standard can be used for developing documentation for a facility classified as radiological, including preparation of an auditable (defensible) safety analysis. In support of the radiological facility classification process, the Uranium Mill Tailings Remedial Action (UMTRA) Project has developed an auditable safety analysis document based upon the postulation criteria and hazards analysis techniques defined in DOE Order 5480.23.

  11. Medicare and Medicaid Programs; Fire Safety Requirements for Certain Health Care Facilities. Final rule.

    PubMed

    2016-05-01

    This final rule will amend the fire safety standards for Medicare and Medicaid participating hospitals, critical access hospitals (CAHs), long-term care facilities, intermediate care facilities for individuals with intellectual disabilities (ICF-IID), ambulatory surgery centers (ASCs), hospices which provide inpatient services, religious non-medical health care institutions (RNHCIs), and programs of all-inclusive care for the elderly (PACE) facilities. Further, this final rule will adopt the 2012 edition of the Life Safety Code (LSC) and eliminate references in our regulations to all earlier editions of the Life Safety Code. It will also adopt the 2012 edition of the Health Care Facilities Code, with some exceptions. PMID:27192728

  12. Guidance for Safety Analysis of Other Than Nuclear Facilities/Activities at the INEEL

    SciTech Connect

    Swanson, Douglas Sidney; Perry, Scott William

    2002-06-01

    The U.S. Department of Energy Idaho Operations Office (DOE-ID) provided guidance per DOE-ID Orders 420.C, "Safety Basis Review and Approval Process," and 420.D, "Requirements and Guidance for Safety Analysis," for conducting safety analysis for facilities and activities that do not meet either the nuclear facility criteria or the criteria for not requiring additional safety analysis (NRASA). These facilities and activities are thus designated as "other than nuclear" (OTN), and hazard analyses are performed using a graded approach. This graded approach is done in accordance with DOE-ID Order 420.D. DOE-ID guidance is used to format these OTN facilities and activities into 3-chapter documents, rather than the 17-chapter format specified in DOE-STD-3009-94, "Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports."

  13. Style, content and format guide for writing safety analysis documents. Volume 1, Safety analysis reports for DOE nuclear facilities

    SciTech Connect

    Not Available

    1994-06-01

    The purpose of Volume 1 of this 4-volume style guide is to furnish guidelines on writing and publishing Safety Analysis Reports (SARs) for DOE nuclear facilities at Sandia National Laboratories. The scope of Volume 1 encompasses not only the general guidelines for writing and publishing, but also the prescribed topics/appendices contents along with examples from typical SARs for DOE nuclear facilities.

  14. Fast Flux Test Facility final safety analysis report. Amendment 72

    SciTech Connect

    Gantt, D. A.

    1992-08-01

    This document provides the Final Safety Analysis Report (FSAR) Amendment 72 for incorporation into the Fast Flux Test Facility (FFTF) FSAR set. This amendment change incorporates Engineering Change Notices issued subsequent to Amendment 71 and approved for incorporation before June 24, 1992. These include changes in: Chapter 2, Site Characteristics; Chapter 3, Design Criteria Structures, Equipment, and Systems; Chapter 5B, Reactor Coolant System; Chapter 7, Instrumentation and Control Systems; Chapter 8, Electrical Systems - The description of the Class 1E, 125 Vdc systems is updated for the higher capacity of the newly installed, replacement batteries; Chapter 9, Auxiliary Systems - The description of the inert cell NASA systems is corrected to list the correct number of spare sample points; Chapter 11, Reactor Refueling System; Chapter 12, Radiation Protection and Waste Management; Chapter 13, Conduct of Operations; Chapter 16, Quality Assurance; Chapter 17, Technical Specifications; Chapter 19, FFTF Fire Specifications for Fire Detection, Alarm, and Protection Systems; Chapter 20, FFTF Criticality Specifications; and Appendix B, Primary Piping Integrity Evaluation.

  15. Health, safety and environmental criteria for siting of laboratory facilities.

    PubMed

    Lees, P S; Corn, M

    1983-04-01

    The development of applicable criteria for assessing the suitability of a site for construction of full and partial containment laboratories for the analysis of unknown and highly toxic chemicals is described. The criteria, based on considerations of health, safety and environmental factors, are used to define critical considerations in site selection to minimize the risk to non-laboratory personnel and the surrounding environment. Criteria are synthesized from several sources using the assumption of a worst-case chemical release. Mechanical failures, human failures, critical events and social/legal limitations are investigated, as are the characteristics of a site which may limit construction of such a facility. A detailed description is made of the various types of laboratories and the types of samples analyzed in them. The final recommendations are summarized for five typical laboratory settings; they are based primarily on the potential impacts on people, property and natural resources. A single occupancy building in a rural setting is recommended as the most suitable site for a full containment laboratory. A single occupancy building in an industrial park setting is acceptable, while multiple occupancy buildings and sites which are more highly developed are unacceptable. Similar recommendations are made for partial containment and conventional laboratories. PMID:6858856

  16. Improving the regulation of safety at DOE nuclear facilities. Final report: Appendices

    SciTech Connect

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

  17. Improving the regulation of safety at DOE nuclear facilities. Final report

    SciTech Connect

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by DOE itself. The three major recommendations are: under any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

  18. Limited-scope probabilistic safety analysis for the Los Alamos Meson Physics Facility (LAMPF)

    SciTech Connect

    Sharirli, M.; Rand, J.L.; Sasser, M.K.; Gallegos, F.R.

    1992-01-01

    The reliability of instrumentation and safety systems is a major issue in the operation of accelerator facilities. A probabilistic safety analysis was performed or the key safety and instrumentation systems at the Los Alamos Meson Physics Facility (LAMPF). in Phase I of this unique study, the Personnel Safety System (PSS) and the Current Limiters (XLs) were analyzed through the use of the fault tree analyses, failure modes and effects analysis, and criticality analysis. Phase II of the program was done to update and reevaluate the safety systems after the Phase I recommendations were implemented. This paper provides a brief review of the studies involved in Phases I and II of the program.

  19. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    SciTech Connect

    Not Available

    1993-11-01

    This document contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE non-reactor nuclear facilities. Adherence to these guidelines will provide consistency and uniformity in criticality safety evaluations (CSEs) across the complex and will document compliance with the requirements of DOE Order 5480.24.

  20. 75 FR 66683 - Defense Federal Acquisition Regulation Supplement; Safety of Facilities, Infrastructure, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... military operations, should be inspected for safety and habitability prior to use, and that such facilities..., infrastructure, and equipment for use by DoD military or civilian should be inspected for safety and habitability... equipment shall be inspected prior to use for compliance with UFC 1-200-01 to ensure safety and...

  1. 75 FR 52996 - Areva Enrichment Services, LLC (Eagle Rock Enrichment Facility); Notice of Atomic Safety and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... COMMISSION Areva Enrichment Services, LLC (Eagle Rock Enrichment Facility); Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR 2.313(c) and 2.321(b), the Atomic Safety and Licensing... 2010. E. Roy Hawkens, Chief Administrative Judge, Atomic Safety and Licensing Board Panel. BILLING...

  2. Radiological safety evaluation for a Savannah River Site Waste Transfer Facility. Revision 1

    SciTech Connect

    Ades, M.J.

    1994-01-01

    This paper describes a radiological safety evaluation performed in support of operation of a typical Waste Transfer Facility (WTF) located at the Savannah River Site (SRS). This facility transfers liquid radioactive waste from and to various waste processing, storage, and treatment facilities.

  3. A study on the necessity of medical facilities safety design adoption.

    PubMed

    Park, Bora; Yang, Yeongae; Yang, Dongjoo; Shin, Joong-Il; Park, Sujong; Park, Soohee; Park, Yunhee

    2013-07-01

    [Purpose] The purpose of this study was to investigate the requirements of the introduction of a safety design and certification system for medical facilities. [Subjects] A survey was carried out of one hundred nurses, physical therapists, occupational therapists, speech and language therapists from May to August in 2012. [Methods] The survey was conducted after giving subjects some information about safety design. [Results] The participants were aware of the need for establishing a safety design certification system. Total responses to services, facilities and space were analyzed in order to evaluate the priorities of safety, user characteristics, functionality, convenience and aesthetics. Regarding the application of a safety design certification system to services, items were prioritized in the order of children's items, household supplies and hospital supplies. For facilities, the priorities were, living space, social welfare and medical facilities; space, they were public and transportation-related places. The requirements for operating a safety design system were in order development of: highly skilled manpower, the legal system, educational promotion and qualifying facilities. [Conclusion] In conclusion, in order to implement safety design in medical facilities, a safety design certification system should be introduced first, and to do this a systematic and comprehensive study is needed. PMID:24259877

  4. Preparation guide for US Department of Energy nonreactor nuclear facility safety analysis reports

    SciTech Connect

    Not Available

    1994-07-01

    This standard describes a SAR preparation method, acceptable to DOE, which was developed to assist Hazard Category 2 and 3 facilities in preparing SARs that will satisfy requirements of DOE 5480.23. (Hazard Category 1 facilities are typically Category A reactors for which extensive precedents for SARs already exist.) The methodology in this standard focuses more on facility safety (back-end approach) with or without design information than on facility design (front-end approach).

  5. Integrated Framework for Patient Safety and Energy Efficiency in Healthcare Facilities Retrofit Projects.

    PubMed

    Mohammadpour, Atefeh; Anumba, Chimay J; Messner, John I

    2016-07-01

    There is a growing focus on enhancing energy efficiency in healthcare facilities, many of which are decades old. Since replacement of all aging healthcare facilities is not economically feasible, the retrofitting of these facilities is an appropriate path, which also provides an opportunity to incorporate energy efficiency measures. In undertaking energy efficiency retrofits, it is vital that the safety of the patients in these facilities is maintained or enhanced. However, the interactions between patient safety and energy efficiency have not been adequately addressed to realize the full benefits of retrofitting healthcare facilities. To address this, an innovative integrated framework, the Patient Safety and Energy Efficiency (PATSiE) framework, was developed to simultaneously enhance patient safety and energy efficiency. The framework includes a step -: by -: step procedure for enhancing both patient safety and energy efficiency. It provides a structured overview of the different stages involved in retrofitting healthcare facilities and improves understanding of the intricacies associated with integrating patient safety improvements with energy efficiency enhancements. Evaluation of the PATSiE framework was conducted through focus groups with the key stakeholders in two case study healthcare facilities. The feedback from these stakeholders was generally positive, as they considered the framework useful and applicable to retrofit projects in the healthcare industry. PMID:27492415

  6. Construction safety program for the National Ignition Facility, Appendix A

    SciTech Connect

    Cerruti, S.J.

    1997-06-26

    Topics covered in this appendix include: General Rules-Code of Safe Practices; 2. Personal Protective Equipment; Hazardous Material Control; Traffic Control; Fire Prevention; Sanitation and First Aid; Confined Space Safety Requirements; Ladders and Stairways; Scaffolding and Lift Safety; Machinery, Vehicles, and Heavy Equipment; Welding and Cutting-General; Arc Welding; Oxygen/Acetylene Welding and Cutting; Excavation, Trenching, and Shoring; Fall Protection; Steel Erection; Working With Asbestos; Radiation Safety; Hand Tools; Electrical Safety; Nonelectrical Work Performed Near Exposed High-Voltage Power-Distribution Equipment; Lockout/Tagout Requirements; Rigging; A-Cranes; Housekeeping; Material Handling and Storage; Lead; Concrete and Masonry Construction.

  7. Interim Safety Basis for Fuel Supply Shutdown Facility

    SciTech Connect

    BENECKE, M.W.

    2000-09-07

    This ISB, in conjunction with the IOSR, provides the required basis for interim operation or restrictions on interim operations and administrative controls for the facility until a SAR is prepared in accordance with the new requirements or the facility is shut down. It is concluded that the risks associated with tha current and anticipated mode of the facility, uranium disposition, clean up, and transition activities required for permanent closure, are within risk guidelines.

  8. Health and Safety Management for Small-scale Methane Fermentation Facilities

    NASA Astrophysics Data System (ADS)

    Yamaoka, Masaru; Yuyama, Yoshito; Nakamura, Masato; Oritate, Fumiko

    In this study, we considered health and safety management for small-scale methane fermentation facilities that treat 2-5 ton of biomass daily based on several years operation experience with an approximate capacity of 5 t·d-1. We also took account of existing knowledge, related laws and regulations. There are no qualifications or licenses required for management and operation of small-scale methane fermentation facilities, even though rural sewerage facilities with a relative similar function are required to obtain a legitimate license. Therefore, there are wide variations in health and safety consciousness of the operators of small-scale methane fermentation facilities. The industrial safety and health laws are not applied to the operation of small-scale methane fermentation facilities. However, in order to safely operate a small-scale methane fermentation facility, the occupational safety and health management system that the law recommends should be applied. The aims of this paper are to clarify the risk factors in small-scale methane fermentation facilities and encourage planning, design and operation of facilities based on health and safety management.

  9. Interim safety basis for fuel supply shutdown facility

    SciTech Connect

    Brehm, J.R.; Deobald, T.L.; Benecke, M.W.; Remaize, J.A.

    1995-05-23

    This ISB in conjunction with the new TSRs, will provide the required basis for interim operation or restrictions on interim operations and administrative controls for the Facility until a SAR is prepared in accordance with the new requirements. It is concluded that the risk associated with the current operational mode of the Facility, uranium closure, clean up, and transition activities required for permanent closure, are within Risk Acceptance Guidelines. The Facility is classified as a Moderate Hazard Facility because of the potential for an unmitigated fire associated with the uranium storage buildings.

  10. Safety Analysis Report: X17B2 beamline Synchrotron Medical Research Facility

    SciTech Connect

    Gmuer, N.F.; Thomlinson, W.

    1990-02-01

    This report contains a safety analysis for the X17B2 beamline synchrotron medical research facility. Health hazards, risk assessment and building systems are discussed. Reference is made to transvenous coronary angiography. (LSP)

  11. 76 FR 5354 - Public Availability of Defense Nuclear Facilities Safety Board FY 2010 Service Contract Inventory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... Inventory AGENCY: Defense Nuclear Facilities Safety Board (Board). ACTION: Notice of public availability of... show how contracted resources are distributed throughout the agency. The inventory has been developed... From the Federal Register Online via the Government Publishing Office DEFENSE NUCLEAR...

  12. Construction safety program for the National Ignition Facility, Appendix B

    SciTech Connect

    Cerruti, S.J.

    1997-06-26

    This Appendix contains material from the LLNL Health and Safety Manual as listed below. For sections not included in this list, please refer to the Manual itself. The areas covered are: asbestos, lead, fire prevention, lockout, and tag program confined space traffic safety.

  13. Facility Safety Plan B360 Complex Biohazardous Operations CMLS-412r0

    SciTech Connect

    Cooper, G

    2007-01-08

    This Addendum to the Facility Safety Plan (FSP) 360 Complex describes the safety requirements for the safe conduct of all biohazardous research operations in all buildings within the 360 complex program areas. These requirements include all the responsibilities and authorities of building personnel, operational hazards, and environmental concerns and their controls. In addition, this Addendum prescribes facility-specific training requirements and emergency controls, as well as maintenance and quality assurance requirements for ES&H-related building systems.

  14. Cold Vacuum Drying (CVD) Facility Safety Class Instrumentation & Control System Design Description

    SciTech Connect

    WHITEHURST, R.

    1999-12-01

    This document describes the Cold Vacuum Drying Facility (CVDF) Safety Class Instrumentation and Control system (SCIC). The SCIC provides safety functions and features to protect the environment, off-site and on-site personnel and equipment. The function of the SCIC is to provide automatic trip features, valve interlocks, alarms, indication and control for the cold vacuum drying process.

  15. 77 FR 74781 - Safety Zones; Columbia Grain and United Grain Corporation Facilities; Columbia and Willamette Rivers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-18

    ... Acronyms DHS Department of Homeland Security FR Federal Register NPRM Notice of Proposed Rulemaking A... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zones; Columbia Grain and United Grain.... SUMMARY: The Coast Guard is establishing temporary safety zones around the Columbia Grain facility on...

  16. 75 FR 17644 - Update to NFPA 101, Life Safety Code, for State Home Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... AFFAIRS 38 CFR Part 51 RIN 2900-AN59 Update to NFPA 101, Life Safety Code, for State Home Facilities... Affairs (VA) proposes to update one of its regulations so that State home facilities that receive a per diem for providing nursing home care to eligible Veterans will be required to meet certain...

  17. 76 FR 387 - Atomic Safety and Licensing Board; AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... Contention Preparation; In the Matter of ( ), 74 FR 38052, 38054 (July 30, 2009) (CLI-09-15, 70 NRC 1, 7-8... COMMISSION Atomic Safety and Licensing Board; AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility... Eagle Rock Enrichment Facility (EREF)--in Bonneville County, Idaho; and (2) the receipt, possession,...

  18. Safety and environmental process for the design and construction of the National Ignition Facility

    SciTech Connect

    Brereton, S.J., LLNL

    1998-05-27

    The National Ignition Facility (NIF) is a U.S. Department of Energy (DOE) laser fusion experimental facility currently under construction at the Lawrence Livermore National Laboratory (LLNL). This paper describes the safety and environmental processes followed by NIF during the design and construction activities.

  19. Industrial Sanitation and Personal Facilities. Module SH-13. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on industrial sanitation and personal facilities is one of 50 modules concerned with job safety and health. This module deals wth many facets of industrial sanitation and the facilities industries should provide so that proper health procedures may be followed. Following the introduction, 14 objectives (each keyed to a page in…

  20. 78 FR 41991 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ... July 29, 1993 (ADB-93-03), and the most recent Advisory Bulletin (ADB-11-04) on July 27, 2011, 76 FR... Facilities Caused by Flooding AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT... pipeline facilities caused by severe flooding. This advisory includes actions that operators...

  1. 76 FR 44985 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... Facilities Caused by Flooding AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT... pipeline facilities caused by severe flooding. This advisory includes actions that operators should consider taking to ensure the integrity of pipelines in case of flooding. ADDRESSES: This document can...

  2. Construction safety program for the National Ignition Facility

    SciTech Connect

    Cerruti, S.J.

    1997-01-01

    The Construction Safety Program (CSP) for NIF sets forth the responsibilities, guidelines, rules, policies and regulations for all workers involved in the construction, special equipment installation, acceptance testing, and initial activation and operation of NIF at LLNL during the construction period of NIF. During this period, all workers are required to implement measures to create a universal awareness which promotes safe practice at the work site, and which will achieve NIF`s management objectives in preventing accidents and illnesses. Construction safety for NIF is predicated on everyone performing their jobs in a manner which prevents job-related disabling injuries and illnesses. The CSP outlines the minimum environment, safety, and health (ES&H) standards, LLNL policies and the Construction Industry Institute (CII) Zero Injury Techniques requirements that all workers at the NIF construction site shall adhere to during the construction period of NIF. It identifies the safety requirements which the NIF organizational Elements, construction contractors and construction subcontractors must include in their safety plans for the construction period of NIF, and presents safety protocols and guidelines which workers shall follow to assure a safe and healthful work environment. The CSP also identifies the ES&H responsibilities of LLNL employees, non-LLNL employees, construction contractors, construction subcontractors, and various levels of management within the NIF Program at LLNL. In addition, the CSP contains the responsibilities and functions of ES&H support organizations and administrative groups, and describes their interactions with the NIF Program.

  3. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    SciTech Connect

    1998-09-01

    This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs.

  4. Spent Nuclear Fuel Project path forward: nuclear safety equivalency to comparable NRC-licensed facilities

    SciTech Connect

    Garvin, L.J.

    1995-11-01

    This document includes the Technical requirements which meet the nuclear safety objectives of the NRC regulations for fuel treatment and storage facilities. These include requirements regarding radiation exposure limits, safety analysis, design and construction. This document also includes administrative requirements which meet the objectives of the major elements of the NRC licensing process. These include formally documented design and safety analysis, independent technical review, and oppportunity for public involvement.

  5. Safety Software Guide Perspectives for the Design of New Nuclear Facilities (U)

    SciTech Connect

    VINCENT, Andrew

    2005-07-14

    In June of this year, the Department of Energy (DOE) issued directives DOE O 414.1C and DOE G 414.1-4 to improve quality assurance programs, processes, and procedures among its safety contractors. Specifically, guidance entitled, ''Safety Software Guide for use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance, DOE G 414.1-4'', provides information and acceptable methods to comply with safety software quality assurance (SQA) requirements. The guidance provides a roadmap for meeting DOE O 414.1C, ''Quality Assurance'', and the quality assurance program (QAP) requirements of Title 10 Code of Federal Regulations (CFR) 830, Subpart A, Quality Assurance, for DOE nuclear facilities and software application activities. [1, 2] The order and guide are part of a comprehensive implementation plan that addresses issues and concerns documented in Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2002-1. [3] Safety SQA requirements for DOE as well as National Nuclear Security Administration contractors are necessary to implement effective quality assurance (QA) processes and achieve safe nuclear facility operations. DOE G 414.1-4 was developed to provide guidance on establishing and implementing effective QA processes tied specifically to nuclear facility safety software applications. The Guide includes software application practices covered by appropriate national and international consensus standards and various processes currently in use at DOE facilities. While the safety software guidance is considered to be of sufficient rigor and depth to ensure acceptable reliability of safety software at all DOE nuclear facilities, new nuclear facilities are well suited to take advantage of the guide to ensure compliant programs and processes are implemented. Attributes such as the facility life-cycle stage and the hazardous nature of each facility operations are considered, along with the category and level of importance of the

  6. Patient safety in maternal healthcare at secondary and tertiary level facilities in Delhi, India

    PubMed Central

    Lahariya, Chandrakant; Choure, Ankita; Singh, Baljit

    2015-01-01

    Background: There is insufficient information on causes of unsafe care at facility levels in India. This study was conducted to understand the challenges in government hospitals in ensuring patient safety and to propose solutions to improve patient care. Materials and Methods: Desk review, in-depth interviews, and focused group discussions were conducted between January and March 2014. Healthcare providers and nodal persons for patient safety in Gynecology and Obstetrics Departments of government health facilities from Delhi state of India were included. Data were analyzed using qualitative research methods and presented adopting the “health system approach.” Results: The patient safety was a major concern among healthcare providers. The key challenges identified were scarcity of resources, overcrowding at health facilities, poor communications, patient handovers, delay in referrals, and the limited continuity of care. Systematic attention on the training of care providers involved in service delivery, prescription audits, peer reviews, facility level capacity building plan, additional financial resources, leadership by institutional heads and policy makers were suggested as possible solutions. Conclusions: There is increasing awareness and understanding about challenges in patient safety. The available local information could be used for selection, designing, and implementation of measures to improve patient safety at facility levels. A systematic and sustained approach with attention on all functions of health systems could be beneficial. Patient safety could be used as an entry point to improve the quality of health care services in India. PMID:26985411

  7. Reactor Accident Analysis Methodology for the Advanced Test Reactor Critical Facility Documented Safety Analysis Upgrade

    SciTech Connect

    Gregg L. Sharp; R. T. McCracken

    2003-06-01

    The regulatory requirement to develop an upgraded safety basis for a DOE nuclear facility was realized in January 2001 by issuance of a revision to Title 10 of the Code of Federal Regulations Section 830 (10 CFR 830).1 Subpart B of 10 CFR 830, “Safety Basis Requirements,” requires a contractor responsible for a DOE Hazard Category 1, 2, or 3 nuclear facility to either submit by April 9, 2001 the existing safety basis which already meets the requirements of Subpart B, or to submit by April 10, 2003 an upgraded facility safety basis that meets the revised requirements.1 10 CFR 830 identifies Nuclear Regulatory Commission (NRC) Regulatory Guide 1.70, “Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants”2 as a safe harbor methodology for preparation of a DOE reactor documented safety analysis (DSA). The regulation also allows for use of a graded approach. This report presents the methodology that was developed for preparing the reactor accident analysis portion of the Advanced Test Reactor Critical Facility (ATRC) upgraded DSA. The methodology was approved by DOE for developing the ATRC safety basis as an appropriate application of a graded approach to the requirements of 10 CFR 830.

  8. Reactor Accident Analysis Methodology for the Advanced Test Reactor Critical Facility Documented Safety Analysis Upgrade

    SciTech Connect

    Sharp, G.L.; McCracken, R.T.

    2003-05-13

    The regulatory requirement to develop an upgraded safety basis for a DOE Nuclear Facility was realized in January 2001 by issuance of a revision to Title 10 of the Code of Federal Regulations Section 830 (10 CFR 830). Subpart B of 10 CFR 830, ''Safety Basis Requirements,'' requires a contractor responsible for a DOE Hazard Category 1, 2, or 3 nuclear facility to either submit by April 9, 2001 the existing safety basis which already meets the requirements of Subpart B, or to submit by April 10, 2003 an upgraded facility safety basis that meets the revised requirements. 10 CFR 830 identifies Nuclear Regulatory Commission (NRC) Regulatory Guide 1.70, ''Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants'' as a safe harbor methodology for preparation of a DOE reactor documented safety analysis (DSA). The regulation also allows for use of a graded approach. This report presents the methodology that was developed for preparing the reactor accident analysis portion of the Advanced Test Reactor Critical Facility (ATRC) upgraded DSA. The methodology was approved by DOE for developing the ATRC safety basis as an appropriate application of a graded approach to the requirements of 10 CFR 830.

  9. Safety team assessments at NRC (Nuclear Regulatory Commission)-licensed fuel facilities

    SciTech Connect

    Sjoblom, G.L.

    1988-01-01

    Following the hydraulic rupture of a UF cylinder at the Sequoyah Fuels Facility on January 4, 1986, the US Nuclear Regulatory Commission's (NRC's) executive director for operations (EDO) established an augmented inspection team to investigate the accident. The investigation is reported in NUREG-1179. The EDO then formed a lessons-learned group to report on the action NRC might reasonably take to prevent similar accidents. The group's recommendations are reported in NUREG-1198. In addition, the EDO formed an independent materials safety regulation review study group (MSRRSG) to review the licensing and inspection program for NRC-licensed fuel cycle and materials facilities. During the same period of time that the MSRRSG report was being prepared and evaluated, the staff undertook an independent action to assess operational safety at each of the 12 major fuel facilities licensed by the NRC. The facilities included the 2 facilities producing uranium hexafluoride, the 7 facilities producing commercial nuclear reactor fuel, and the 3 facilities producing naval reactor fuel. The most important safety issues identified as needing attention by licensees were in the areas of fire protection, chemical hazards identification and mitigation, management controls or quality assurance, safety-related instrumentation and maintenance, and emergency preparedness.

  10. Construction safety program for the National Ignition Facility

    SciTech Connect

    Cerruti, S.J.

    1997-06-26

    The Construction Safety Program (CSP) for NIF sets forth the responsibilities, guidelines, rules, policies and regulations for all workers involved in the construction, special equipment installation, acceptance testing, and initial activation and operation of NIF at LLNL during the construction period of NIF.

  11. Safety Factors in Educational Facilities. An Annotated Reference List.

    ERIC Educational Resources Information Center

    Wakefield, Howard E.

    Abstracts and descriptor terms are presented for 26 selected references with safety orientation. Included in addition to several general planning handbooks are topics related to--(1) stairways, (2) air structures, (3) site planning, (4) lighting, (5) bidding practice, (6) physically handicapped, (7) laboratory design, (8) mobile classrooms, (9)…

  12. Application of total uncertainty theory in radioactive waste disposal facilities safety assessment

    SciTech Connect

    Lemos, Francisco Luiz de; Ross, Timothy; Sullivan, Terry

    2007-07-01

    Safety assessment requires the interaction of a large number of disciplines to model the environmental phenomena necessary to evaluate the safety of the disposal system. In this complex process, the identification and quantification of both types of uncertainties, random and epistemic, plays a very important role for confidence building. In this work an application of the concept of total uncertainty to radioactive waste disposal facilities safety assessment is proposed. By combining both types of uncertainty, aleatory and epistemic, in the same framework, this approach ultimately aims to assess the confidence one can pose in the safety-assessment decisions. (authors)

  13. Radiological safety at Argonne national laboratory's heavy ion research facility

    NASA Astrophysics Data System (ADS)

    Cooke, R. H.; Wynveen, R. A.

    1985-05-01

    This paper discusses the radiological safety system to be employed at the Argonne tandem—linac accelerator system (ATLAS). The design parameters of ATLAS that affect safety have remained unchanged since ATLAS construction began in 1982. The specialized radiological safety considerations of ATLAS were discussed in 1982 [1]. This paper will present the details of the hardware, the administrative controls, and the radiation monitoring that will be in effect when beam is produced in April 1985. The experimental hall utilizing the maximum energy beam ( ˜ 27 MeV per nucleon) from the completed ATLAS has been partitioned with shielding blocks into its final configuration. Because scientists want access to some of the partitioned-off areas while beam is present in other areas, an interlock and logic system allowing such occupancy has been designed. The rationale and hardware of the system will be discussed. Since one of the potential radiation hazards is high-energy forward-directed neutrons from any location where the beam impinges (such as collimators, bending and focussing systems, experimental targets, and beam stops), radiation surveys and hazard assessments are necessary for the administrative controls that allow occupancy of various areas. Because of the various uses of ATLAS, neutrons (the dominant beam hazard) will be non-existent in some experiments and will be of energies ≳ 10 MeV for a few experiments. These conditions may exist at specific locations during beam preparation but may change rapidly when beam is finally delivered to an experimental area. Monitoring and assessing such time varying and geographically changing hazards will be a challenge since little data will be available on source terms until various beams are produced of sufficient intensity and energy to make measurements. How the operating division for ATLAS and the Argonne safety division are addressing this aspect through administrative controls will also be discussed.

  14. Los Alamos National Laboratory corregated metal pipe saw facility preliminary safety analysis report. Volume I

    SciTech Connect

    1990-09-19

    This Preliminary Safety Analysis Report addresses site assessment, facility design and construction, and design operation of the processing systems in the Corrugated Metal Pipe Saw Facility with respect to normal and abnormal conditions. Potential hazards are identified, credible accidents relative to the operation of the facility and the process systems are analyzed, and the consequences of postulated accidents are presented. The risk associated with normal operations, abnormal operations, and natural phenomena are analyzed. The accident analysis presented shows that the impact of the facility will be acceptable for all foreseeable normal and abnormal conditions of operation. Specifically, under normal conditions the facility will have impacts within the limits posted by applicable DOE guidelines, and in accident conditions the facility will similarly meet or exceed the requirements of all applicable standards. 16 figs., 6 tabs.

  15. Ion-exchange resin for removing hexavalent chromium from ground water at treatment facility C: Data on removal capacity, regeneration efficiency, and operation

    SciTech Connect

    Bahowick, S.; Dobie, D.; Kumamoto, G.

    1996-12-31

    Lawrence Livermore National Laboratory (LLNL) is operated for the Department of Energy by the University of California. In July 1987, LLNL was placed on the National Priorities List based on the presence of volatile organic compounds (VOCs) in ground water. The July 1992 Record of Decision stipulates air stripping for treatment of VOCs and ion-exchange to treat chromium in the ground water for Treatment Facility C (TFC). TFC, which was activated in October 1993, was designed to treat influent ground water at 60 gpm with concentrations of hexavalent chromium averaging 30 ppb. The ion exchange system removes the hexavalent chromium to below its limit of detection (2 ppb). The resin used is a strongly basic Type I quaternary ammonium anion exchange resin with a styrene-divinylbenzene copolymer gel matrix. The total hexavalent chromium removed from the ground water as of October 8, 1995 was 660 grams. An initial operating capacity was achieved of 6.4 grams CrO{sub 4}{sup 2{minus}} removal per ft{sup 3} of resin, but this was observed to vary over the next two years. Variation was observed in the rate of breakthrough. The regeneration process was optimized to minimize waste produced and maximize regeneration of the resin. Elevated levels of chloride, sulfate, nitrate, potassium 40 and uranium have been observed in the regeneration waste. Because of the potassium and uranium content, the regenerated waste had to be disposed of as mixed waste.

  16. Running to Safety: Analysis of Disaster Susceptibility of Neighborhoods and Proximity of Safety Facilities in Silay City, Philippines

    NASA Astrophysics Data System (ADS)

    Patiño, C. L.; Saripada, N. A.; Olavides, R. D.; Sinogaya, J.

    2016-06-01

    Going on foot is the most viable option when emergency responders fail to show up in disaster zones at the quickest and most reasonable time. In the Philippines, the efficacy of disaster management offices is hampered by factors such as, but not limited to, lack of equipment and personnel, distance, and/or poor road networks and traffic systems. In several instances, emergency response times exceed acceptable norms. This study explores the hazard susceptibility, particularly to fire, flood, and landslides, of neighborhoods vis-à-vis their proximity to safety facilities in Silay City, Philippines. Imbang River exposes communities in the city to flooding while the mountainous terrain makes the city landslide prone. Building extraction was done to get the possible human settlements in the city. The building structures were extracted through image processing using a ruleset-based approach in the process of segmentation and classification of LiDAR derivatives and ortho-photos. Neighborhoods were then identified whether they have low to high susceptibility to disaster risks in terms of floods and landslides based on the hazards maps obtained from the Philippines' Mines and Geosciences Bureau (MGB). Service area analyses were performed to determine the safety facilities available to different neighborhoods at varying running times. Locations which are inaccessible or are difficult to run to because of distance and corresponding hazards were determined. Recommendations are given in the form of infrastructure installation, relocation of facilities, safety equipment and vehicle procurement, and policy changes for specific areas in Silay City.

  17. 36 CFR 1234.12 - What are the fire safety requirements that apply to records storage facilities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true What are the fire safety requirements that apply to records storage facilities? 1234.12 Section 1234.12 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT FACILITY STANDARDS FOR RECORDS STORAGE FACILITIES Facility Standards...

  18. Laser programs facility management plan for environment, safety, and health

    SciTech Connect

    Cruz, G.E.

    1996-01-01

    The Lawrence Livermore National Laboratory`s (LLNL) Laser Programs ES&H policy is established by the Associate Director for Laser Programs. This FMP is one component of that policy. Laser Programs personnel design, construct and operate research and development equipment located in various Livermore and Site 300 buildings. The Programs include a variety of activities, primarily laser research and development, inertial confinement fusion, isotope separation, and an increasing emphasis on materials processing, imaging systems, and signal analysis. This FMP is a formal statement of responsibilities and controls to assure operational activities are conducted without harm to employees, the general public, or the environment. This plan identifies the hazards associated with operating a large research and development facility and is a vehicle to control and mitigate those hazards. Hazards include, but are not limited to: laser beams, hazardous and radioactive materials, criticality, ionizing radiation or x rays, high-voltage electrical equipment, chemicals, and powered machinery.

  19. Spent nuclear fuel project cold vacuum drying facility safety equipment list

    SciTech Connect

    IRWIN, J.J.

    1999-02-24

    This document provides the safety equipment list (SEL) for the Cold Vacuum Drying Facility (CVDF). The SEL was prepared in accordance with the procedure for safety structures, systems, and components (SSCs) in HNF-PRO-516, ''Safety Structures, Systems, and Components,'' Revision 0 and HNF-PRO-097, Engineering Design and Evaluation, Revision 0. The SEL was developed in conjunction with HNF-SO-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998). The SEL identifies the SSCs and their safety functions, the design basis accidents for which they are required to perform, the design criteria, codes and standards, and quality assurance requirements that are required for establishing the safety design basis of the SSCs. This SEL has been developed for the CVDF Phase 2 Safety Analysis Report (SAR) and shall be updated, expanded, and revised in accordance with future phases of the CVDF SAR until the CVDF final SAR is approved.

  20. An overview of safety and environmental considerations in the selection of materials for fusion facilities

    NASA Astrophysics Data System (ADS)

    Petti, D. A.; McCarthy, K. A.; Gulden, W.; Piet, S. J.; Seki, Y.; Kolbasov, B.

    1996-10-01

    Safety and environmental considerations can play a large role in the selection of fusion materials. In this paper, we review the attributes of different structural, plasma facing, and breeding materials from a safety perspective and discuss some generic waste management issues as they relate to fusion materials in general. Specific safety concerns exist for each material that must be dealt with in fusion facility design. Low activation materials offer inherent safety benefits compared with conventional materials, but more work is needed before these materials have the requisite certified databases. In the interim, the International Thermonuclear Experimental Reactor (ITER) has selected more conventional materials and is showing that the safety concerns with these materials can be addressed by proper attention to design. In the area of waste management disposal criteria differ by country. However, the criteria are all very strict making disposal of fusion components difficult. As a result, recycling has gained increasing attention.

  1. Evaluation of natural phenomena hazards as part of safety assessments for nuclear facilities

    SciTech Connect

    Kot, C.A.; Hsieh, B.J.; Srinivasan, M.G.; Shin, Y.W.

    1995-02-01

    The continued operation of existing US Department of Energy (DOE) nuclear facilities and laboratories requires a safety reassessment based on current criteria and guidelines. This also includes evaluations for the effects of Natural Phenomena Hazards (NPH), for which these facilities may not have been designed. The NPH evaluations follow the requirements of DOE Order 5480.28, Natural Phenomena Hazards Mitigation (1993) which establishes NPH Performance Categories (PCs) for DOE facilities and associated target probabilistic performance goals. These goals are expressed as the mean annual probability of exceedance of acceptable behavior for structures, systems and components (SSCs) subjected to NPH effects. The assignment of an NPH Performance Category is based on the overall hazard categorization (low, moderate, high) of a facility and on the function of an SSC under evaluation (DOE-STD-1021, 1992). Detailed guidance for the NPH analysis and evaluation criteria are also provided (DOE-STD-1020, 1994). These analyses can be very resource intensive, and may not be necessary for the evaluation of all SSCs in existing facilities, in particular for low hazard category facilities. An approach relying heavily on screening inspections, engineering judgment and use of NPH experience data (S. J. Eder et al., 1993), can minimize the analytical effort, give reasonable estimates of the NPH susceptibilities, and yield adequate information for an overall safety evaluation of the facility. In the following sections this approach is described in more detail and is illustrated by an application to a nuclear laboratory complex.

  2. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  3. Extreme Storm Event Assessments for Nuclear Facilities and Dam Safety

    NASA Astrophysics Data System (ADS)

    England, J. F.; Nicholson, T. J.; Prasad, R.

    2008-12-01

    Extreme storm events over the last 35 years are being assessed to evaluate flood estimates for safety assessments of dams, nuclear power plants, and other high-hazard structures in the U.S. The current storm rainfall design standard for evaluating the flood potential at dams and non-coastal nuclear power plants is the Probable Maximum Precipitation (PMP). PMP methods and estimates are published in the National Weather Service generalized hydrometeorological reports (HMRs). A new Federal Interagency cooperative effort is reviewing hydrometeorologic data from large storms which have occurred in the last 20 to 40 years and were not included in the database used in the development of many of the HMRs. Extreme storm data, such as the January 1996 storm in Pennsylvania, June 2008 Iowa storms, and Hurricanes Andrew (1992), Floyd (1999), Isabel (2003), Katrina (2005), need to be systematically assembled and analyzed for use in these regional extreme storm studies. Storm maximization, transposition, envelopment, and depth-area duration procedures will incorporate recent advances in hydrometeorology, including radar precipitation data and stochastic storm techniques. We describe new cooperative efforts to develop a database of extreme storms and to examine the potential impacts of recent extreme storms on PMP estimates. These efforts will be coordinated with Federal agencies, universities, and the private sector through an Extreme Storm Events Work Group under the Federal Subcommittee on Hydrology. This work group is chartered to coordinate studies and develop databases for reviewing and improving methodologies and data collection techniques used to estimate design precipitation up to and including the PMP. The initial effort focuses on collecting and reviewing extreme storm event data in the Southeastern U.S. that have occurred since Tropical Storm Agnes (1972). Uncertainties and exceedance probability estimates of PMP are being explored. Potential effects of climate

  4. 48 CFR 252.246-7004 - Safety of Facilities, Infrastructure, and Equipment for Military Operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Safety of Facilities... Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CLAUSES AND FORMS... the requirements of the applicable inspection clause in this contract, that the...

  5. 78 FR 12042 - Public Availability of Defense Nuclear Facilities Safety Board FY 2011 Service Contract Inventory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... Inventory Analysis/FY 2012 Service Contract Inventory AGENCY: Defense Nuclear Facilities Safety Board (DNFSB... throughout the agency. The inventory has been developed in accordance with guidance issued on December 19... From the Federal Register Online via the Government Publishing Office DEFENSE NUCLEAR...

  6. 77 FR 7139 - Public Availability of Defense Nuclear Facilities Safety Board; FY 2010 Service Contract...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... Inventory Analysis/FY 2011 Service Contract Inventory AGENCY: Defense Nuclear Facilities Safety Board (DNFSB... to show how contracted resources are distributed throughout the agency. DNFSB has posted its FY 2010... From the Federal Register Online via the Government Publishing Office DEFENSE NUCLEAR...

  7. 43 CFR 3275.12 - What environmental and safety requirements apply to facility operations?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What environmental and safety requirements apply to facility operations? 3275.12 Section 3275.12 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING...

  8. Techniques employed by the NASA White Sands Test Facility to ensure oxygen system component safety

    NASA Technical Reports Server (NTRS)

    Stradling, J. S.; Pippen, D. L.; Frye, G. W.

    1983-01-01

    Methods of ascertaining the safety and suitability of a variety of oxygen system components are discussed. Additionally, qualification and batch control requirements for soft goods in oxygen systems are presented. Current oxygen system component qualification test activities in progress at White Sands Test Facility are described.

  9. 33 CFR 165.837 - Safety Zone; Invista Inc Facility Docks, Victoria Barge Canal, Victoria, Texas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... regulations in 33 CFR part 165.23, no person or vessel may enter or remain in the zone described in paragraph... Docks, Victoria Barge Canal, Victoria, Texas. 165.837 Section 165.837 Navigation and Navigable Waters... Guard District § 165.837 Safety Zone; Invista Inc Facility Docks, Victoria Barge Canal, Victoria,...

  10. 33 CFR 165.837 - Safety Zone; Invista Inc Facility Docks, Victoria Barge Canal, Victoria, Texas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... regulations in 33 CFR part 165.23, no person or vessel may enter or remain in the zone described in paragraph... Docks, Victoria Barge Canal, Victoria, Texas. 165.837 Section 165.837 Navigation and Navigable Waters... Guard District § 165.837 Safety Zone; Invista Inc Facility Docks, Victoria Barge Canal, Victoria,...

  11. 33 CFR 165.837 - Safety Zone; Invista Inc Facility Docks, Victoria Barge Canal, Victoria, Texas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... regulations in 33 CFR part 165.23, no person or vessel may enter or remain in the zone described in paragraph... Docks, Victoria Barge Canal, Victoria, Texas. 165.837 Section 165.837 Navigation and Navigable Waters... Guard District § 165.837 Safety Zone; Invista Inc Facility Docks, Victoria Barge Canal, Victoria,...

  12. 33 CFR 165.837 - Safety Zone; Invista Inc Facility Docks, Victoria Barge Canal, Victoria, Texas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... regulations in 33 CFR part 165.23, no person or vessel may enter or remain in the zone described in paragraph... Docks, Victoria Barge Canal, Victoria, Texas. 165.837 Section 165.837 Navigation and Navigable Waters... Guard District § 165.837 Safety Zone; Invista Inc Facility Docks, Victoria Barge Canal, Victoria,...

  13. 33 CFR 165.837 - Safety Zone; Invista Inc Facility Docks, Victoria Barge Canal, Victoria, Texas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... regulations in 33 CFR part 165.23, no person or vessel may enter or remain in the zone described in paragraph... Docks, Victoria Barge Canal, Victoria, Texas. 165.837 Section 165.837 Navigation and Navigable Waters... Guard District § 165.837 Safety Zone; Invista Inc Facility Docks, Victoria Barge Canal, Victoria,...

  14. 48 CFR 252.246-7004 - Safety of Facilities, Infrastructure, and Equipment for Military Operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., Infrastructure, and Equipment for Military Operations. 252.246-7004 Section 252.246-7004 Federal Acquisition..., Infrastructure, and Equipment for Military Operations. As prescribed in 246.270-4, use the following clause: Safety of Facilities, Infrastructure, and Equipment for Military Operations (OCT 2010) (a)...

  15. 48 CFR 252.246-7004 - Safety of Facilities, Infrastructure, and Equipment for Military Operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., Infrastructure, and Equipment for Military Operations. 252.246-7004 Section 252.246-7004 Federal Acquisition..., Infrastructure, and Equipment for Military Operations. As prescribed in 246.270-4, use the following clause: Safety of Facilities, Infrastructure, and Equipment for Military Operations (OCT 2010) (a)...

  16. 34 CFR 75.683 - Health or safety standards for facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 1 2013-07-01 2013-07-01 false Health or safety standards for facilities. 75.683 Section 75.683 Education Office of the Secretary, Department of Education DIRECT GRANT PROGRAMS What Conditions Must Be Met by a Grantee? Other Requirements for Certain Projects § 75.683 Health or...

  17. 34 CFR 75.683 - Health or safety standards for facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 1 2012-07-01 2012-07-01 false Health or safety standards for facilities. 75.683 Section 75.683 Education Office of the Secretary, Department of Education DIRECT GRANT PROGRAMS What Conditions Must Be Met by a Grantee? Other Requirements for Certain Projects § 75.683 Health or...

  18. 34 CFR 75.683 - Health or safety standards for facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 1 2014-07-01 2014-07-01 false Health or safety standards for facilities. 75.683 Section 75.683 Education Office of the Secretary, Department of Education DIRECT GRANT PROGRAMS What Conditions Must Be Met by a Grantee? Other Requirements for Certain Projects § 75.683 Health or...

  19. 34 CFR 75.683 - Health or safety standards for facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 1 2011-07-01 2011-07-01 false Health or safety standards for facilities. 75.683 Section 75.683 Education Office of the Secretary, Department of Education DIRECT GRANT PROGRAMS What Conditions Must Be Met by a Grantee? Other Requirements for Certain Projects § 75.683 Health or...

  20. 34 CFR 75.683 - Health or safety standards for facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Health or safety standards for facilities. 75.683 Section 75.683 Education Office of the Secretary, Department of Education DIRECT GRANT PROGRAMS What Conditions Must Be Met by a Grantee? Other Requirements for Certain Projects § 75.683 Health or...

  1. 48 CFR 252.246-7004 - Safety of Facilities, Infrastructure, and Equipment for Military Operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., Infrastructure, and Equipment for Military Operations. 252.246-7004 Section 252.246-7004 Federal Acquisition..., Infrastructure, and Equipment for Military Operations. As prescribed in 246.270-4, use the following clause: SAFETY OF FACILITIES, INFRASTRUCTURE, AND EQUIPMENT FOR MILITARY OPERATIONS (OCT 2010) (a)...

  2. Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.

    PubMed

    Hill, R N; Nutt, W M; Laidler, J J

    2011-01-01

    The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. PMID:21399407

  3. Criticality safety criteria for license review of low-level waste facilities

    SciTech Connect

    Hopper, C.M.; Odegaarden, R.H.; Parks, C.V.; Fox, P.B.

    1995-03-01

    The handling and burial of specified quantities of special nuclear material (SNM) at low-level-waste (LLW) facilities require a license from the Nuclear Regulatory Commission (NRC). With assistance from Oak Ridge National Laboratory (ORNL) staff, the NRC Office of Nuclear Material Safety and Safeguards, Low-Level-Waste and Decommissioning Projects Branch, has developed technical specifications for the nuclear criticality safety of {sup 235}U and {sup 239}Pu in LLW facilities. The objective of the development of these technical specifications was to establish a set of review criteria that are rigorously defensible that can be applied uniformly to all license applications, and that conservatively ensures that buried SNM will not pose a criticality safety concern.

  4. Preparation of Phased and Merged Safety Analysis Reports for New DOE Nuclear Facilities

    SciTech Connect

    BISHOP, G.E.

    2000-04-04

    The Spent Nuclear Fuels Project (SNFP) is charged with moving to storage 2,100 metric tons of spent nuclear fuel elements left over from plutonium production at DOE'S Hanford site in Washington state. Two new facilities, the Cold Vacuum Drying Facility (CVDF) and the Canister Storage Building (CSB) are in final construction. In order to meet aggressive schedule commitments, the SNFP chose to prepare the safety analysis reports (SAR's) in phases that covered only specific portions of each facility's design as it was built. Each SAR also merged the preliminary and final safety analysis reports into a single SAR, thereby covering all aspects of design, construction, and operation for that portion (phase) of the facility. A policy of ''NRC equivalency'' was also implemented in parallel with this effort, with the goal of achieving a rigor of safety analysis equivalent to that of NRC-licensed fuel processing facilities. DOE Order 5480.23. ''Nuclear Safety Analysis Reports'' allows preparation of both a phased and a merged SAR to accelerate construction schedules. However, project managers must be aware that such acceleration is not guaranteed. Managers considering this approach for their project should be cognizant of numerous obstacles that will be encountered. Merging and phasing SAR's will create new, unique, and unanticipated difficulties which may actually slow construction unless expeditiously and correctly managed. Pitfalls to be avoided and good practices to be implemented in preparing phased and merged SAR's are presented. The value of applying NRC requirements to the DOE safety analysis process is also discussed. As of December, 1999, the SNFP has completed and approved a SAR for the CVDF. Approval of the SAR for the CSB is pending.

  5. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 1: Technical standard

    SciTech Connect

    1998-05-01

    This Department of Energy (DOE) technical standard (referred to as the Standard) provides guidance for integrating and enhancing worker, public, and environmental protection during facility disposition activities. It provides environment, safety, and health (ES and H) guidance to supplement the project management requirements and associated guidelines contained within DOE O 430.1A, Life-Cycle Asset Management (LCAM), and amplified within the corresponding implementation guides. In addition, the Standard is designed to support an Integrated Safety Management System (ISMS), consistent with the guiding principles and core functions contained in DOE P 450.4, Safety Management System Policy, and discussed in DOE G 450.4-1, Integrated Safety Management System Guide. The ISMS guiding principles represent the fundamental policies that guide the safe accomplishment of work and include: (1) line management responsibility for safety; (2) clear roles and responsibilities; (3) competence commensurate with responsibilities; (4) balanced priorities; (5) identification of safety standards and requirements; (6) hazard controls tailored to work being performed; and (7) operations authorization. This Standard specifically addresses the implementation of the above ISMS principles four through seven, as applied to facility disposition activities.

  6. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Boyd D. Christensen

    2010-05-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  7. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Boyd D. Christensen

    2010-02-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  8. IMPLEMENTATION OF DEFENSE NUCLEAR FACILITY SAFETY BOARD RECOMMENDATION 2000-2 AT WIPP

    SciTech Connect

    Jackson, K.; Wu, C.

    2002-02-26

    The Defense Nuclear Safeties Board (DNFSB) issued Recommendation 2000-2 on March 8, 2000, concerning the degrading conditions of vital safety systems, or systems important to nuclear safety, at DOE sites across the nation. The Board recommended that the DOE take action to assess the condition of its nuclear systems to ensure continued operational readiness of vital safety systems that are important for safely accomplishing the DOE's mission. To verify the readiness of vital safety systems, a two-phased approach was established. Phase I consisted of a qualitative assessment to approved criteria of the defined vital safety systems by operating contractor personnel, overseen by Federal field office personnel. Based on Phase I Assessment results, vital safety systems with significant deficiencies would be further assessed in Phase II, a more extensive quantitative assessment, by a contractor and Federal team, using a second set of criteria. In addition, Defense Nuclear Facility Safety Board Recommendation 2000-2 concluded that the degradation of confinement ventilation systems was of major concern, and issued a separate set of criteria to perform a Phase II Assessment on confinement ventilation systems.

  9. Annual Report To Congress. Department of Energy Activities Relating to the Defense Nuclear Facilities Safety Board, Calendar Year 2003

    SciTech Connect

    None, None

    2004-02-28

    The Department of Energy (Department) submits an Annual Report to Congress each year detailing the Department’s activities relating to the Defense Nuclear Facilities Safety Board (Board), which provides advice and recommendations to the Secretary of Energy (Secretary) regarding public health and safety issues at the Department’s defense nuclear facilities. In 2003, the Department continued ongoing activities to resolve issues identified by the Board in formal recommendations and correspondence, staff issue reports pertaining to Department facilities, and public meetings and briefings. Additionally, the Department is implementing several key safety initiatives to address and prevent safety issues: safety culture and review of the Columbia accident investigation; risk reduction through stabilization of excess nuclear materials; the Facility Representative Program; independent oversight and performance assurance; the Federal Technical Capability Program (FTCP); executive safety initiatives; and quality assurance activities. The following summarizes the key activities addressed in this Annual Report.

  10. An empirical investigation of the influence of safety climate on organizational citizenship behavior in Taiwan's facilities.

    PubMed

    Lee, Tzai-Zang; Wu, Chien-Hsing; Hong, Chih-Wei

    2007-01-01

    Although the social exchange relationships between employers and employees are increasingly important to the performance of safety management systems, the psychological effects of work attitudes on this relationship have been less studied. Using a sample of first-line operators and their supervisors from 188 facilities in Taiwan which had Occupational Health and Safety Assessment Series 18000 (OHSAS 18000) certification, the current research conducted an empirical investigation of the influence of safety climate on organizational citizenship behavior (OCB). Work attitude was used to disclose the psychological effect. Research results indicated that (a) safety climate was a significant predicator of OCB, (b) the psychological effect significantly influenced social exchange relationships, and (c) job satisfaction showed a stronger mediating influence than organizational commitment due to the frequent top management turnover. Discussions and implications are also addressed. PMID:17888235

  11. Management of radioactive material safety programs at medical facilities. Final report

    SciTech Connect

    Camper, L.W.; Schlueter, J.; Woods, S.

    1997-05-01

    A Task Force, comprising eight US Nuclear Regulatory Commission and two Agreement State program staff members, developed the guidance contained in this report. This report describes a systematic approach for effectively managing radiation safety programs at medical facilities. This is accomplished by defining and emphasizing the roles of an institution`s executive management, radiation safety committee, and radiation safety officer. Various aspects of program management are discussed and guidance is offered on selecting the radiation safety officer, determining adequate resources for the program, using such contractual services as consultants and service companies, conducting audits, and establishing the roles of authorized users and supervised individuals; NRC`s reporting and notification requirements are discussed, and a general description is given of how NRC`s licensing, inspection and enforcement programs work.

  12. SRTC criticality safety technical review: Nuclear criticality safety evaluation 94-02, uranium solidification facility pencil tank module spacing

    SciTech Connect

    Rathbun, R.

    1994-04-26

    Review of NMP-NCS-94-0087, ``Nuclear Criticality Safety Evaluation 94-02: Uranium Solidification Facility Pencil Tank Module Spacing (U), April 18, 1994,`` was requested of the SRTC Applied Physics Group. The NCSE is a criticality assessment to show that the USF process module spacing, as given in Non-Conformance Report SHM-0045, remains safe for operation. The NCSE under review concludes that the module spacing as given in Non-Conformance Report SHM-0045 remains in a critically safe configuration for all normal and single credible abnormal conditions. After a thorough review of the NCSE, this reviewer agrees with that conclusion.

  13. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... governing safety zones contained in 33 CFR 165.23 apply. ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Safety Zone: Pacific Missile... Areas Fourteenth Coast Guard District § 165.1406 Safety Zone: Pacific Missile Range Facility...

  14. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... governing safety zones contained in 33 CFR 165.23 apply. ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety Zone: Pacific Missile... Areas Fourteenth Coast Guard District § 165.1406 Safety Zone: Pacific Missile Range Facility...

  15. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... governing safety zones contained in 33 CFR 165.23 apply. ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone: Pacific Missile... Areas Fourteenth Coast Guard District § 165.1406 Safety Zone: Pacific Missile Range Facility...

  16. 77 FR 70193 - Shaw Areva MOX Services (Mixed Oxide Fuel Fabrication Facility); Notice of Atomic Safety and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... COMMISSION Shaw Areva MOX Services (Mixed Oxide Fuel Fabrication Facility); Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR 2.313(c) and 2.321(b), the Atomic Safety and Licensing... Administrative Judge, Atomic Safety and Licensing Board Panel. BILLING CODE 7590-01-P...

  17. National Ignition Facility start-up/operations engineering and special equipment construction health and safety plan

    SciTech Connect

    Huddleston, P C

    1998-05-08

    This document sets forth the responsibilities, interfaces, guidelines, rules, policy, and regulations for all workers involved in the S/O and SE construction, installation, and acceptance testing. This document is enforced from the first day that S/O and SE workers set foot on the NIF construction site until the end of the Project at Critical Decision 4. This document is applicable only to site activities, which are defined as those that occur within the perimeter of the fenced-off NIF construction zone and the Target Chamber Assembly Area (Helipad). The associated Special Equipment laydown and construction support areas listed in Appendix B are not under this plan; their safety provisions are discussed in the Appendix. Prototype and other support activities, such as the Amplifier Laboratory and Frame Assembly Unit assembly area, are not included in this plan. After completion of the Operational Readiness Review, the Facility Safety Procedure, Operational Safety Requirements, and Operational Safety Procedures are the governing safety documents for the operating facility. The S/O and SE project elements are required to implement measures that create a universal awareness of and promote safe job practices at the site. This includes all Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester, supplement labor organization, and subcontractor employees; visitors; and guests serving the S/O and SE effort.

  18. CSCS certification and school enrollment impacts upon high school strength facilities, equipment, and safety.

    PubMed

    Judge, Lawrence W; Petersen, Jeffrey C; Bellar, David M; Craig, Bruce W; Gilreath, Erin L

    2013-09-01

    The rapid growth and expanding use of high school strength and conditioning facilities (SCFs) creates a need to research and better understand these vital facilities. This study was designed to examine SCFs at the high school level including facility size, equipment, leadership/staffing, and safety. A 70-item online survey instrument, developed with expert input from certified strength professionals, was used to collect data regarding the SCFs in high schools throughout a midwestern state, and was distributed via email to a total of 390 high school athletic directors. Survey respondents (n = 108) all reported the presence of SCFs with 95.4% indicating a dedicated SCF space. A strong positive correlation (r = 0.610, p ≤ 0.001) was determined between the variables of SCF size in square feet and school size measured by total enrollment. Analysis of variance and χ² analyses revealed significant differences in equipment, facility size, and safety factors based on the categorical variables of school size and the presence of certified strength and conditioning specialist (CSCS) leadership. It appears the CSCS's application of their scientific knowledge goes beyond training athletes for the goal of improving athletic performance to actually influence the SCF itself. Athletic administrators at the high school level need to recognize the impact CSCS program leadership can have on the overall quality of the strength and conditioning program and facility. PMID:22505129

  19. Safety Analysis (SA) of the decontamination facility, Building 419, at the Lawrence Livermore National Laboratory

    SciTech Connect

    Odell, B.N.

    1980-06-17

    This safety analysis was performed for the Manager, Plant Services at LLNL and fulfills the requirements of DOE Order 5481.1. The analysis was based on field inspections, document review, computer calculations, and extensive input from Waste Management personnel. It was concluded that the maximum quantities of radioactive materials that safety procedures allow to be handled in this building do not pose undue risks on- or off-site even in postulated severe accidents. Risk from the various hazards at this facility vary from low to moderate as specified in DOE Order 5481.1. Recommendations are made for improvements that will reduce risks even further.

  20. DESIGN SAFETY FEATURES OF THE BNL HIGH-TEMPERATURE COMBUSTION FACILITY

    SciTech Connect

    GINSBERG,T.; CICCARELLI,G.; BOCCIO,J.

    2000-06-11

    The Brookhaven National Laboratory (BNL) High-Temperature Combustion Facility (HTCF) was used to perform hydrogen deflagration and detonation experiments at temperatures to 650 K. Safety features that were designed to ensure safe and reliable operation of the experimental program are described. Deflagration and detonation experiments have been conducted using mixtures of hydrogen, air, and steam. Detonation cell size measurements were made as a function of mixture composition and thermodynamic gas conditions. Deflagration-to-detonation transition experiments were also conducted. Results of the experimental program are presented, and implications with respect to hydrogen safety are discussed.

  1. The dual axis radiographic hydrodynamic test (DARHT) facility personnel safety system (PSS) control system

    SciTech Connect

    Jacquez, Edward B

    2008-01-01

    The mission of the Dual Axis Radiograph Hydrodynamic Test (DARHT) Facility is to conduct experiments on dynamic events of extremely dense materials. The PSS control system is designed specifically to prevent personnel from becoming exposed to radiation and explosive hazards during machine operations and/or the firing site operation. This paper will outline the Radiation Safety System (RSS) and the High Explosive Safety System (HESS) which are computer-controlled sets of positive interlocks, warning devices, and other exclusion mechanisms that together form the PSS.

  2. Prevention by Design: Construction and Renovation of Health Care Facilities for Patient Safety and Infection Prevention.

    PubMed

    Olmsted, Russell N

    2016-09-01

    The built environment supports the safe care of patients in health care facilities. Infection preventionists and health care epidemiologists have expertise in prevention and control of health care-associated infections (HAIs) and assist with designing and constructing facilities to prevent HAIs. However, design elements are often missing from initial concepts. In addition, there is a large body of evidence that implicates construction and renovation as being associated with clusters of HAIs, many of which are life threatening for select patient populations. This article summarizes known risks and prevention strategies within a framework for patient safety. PMID:27515144

  3. Criticality Safety and Sensitivity Analyses of PWR Spent Nuclear Fuel Repository Facilities

    SciTech Connect

    Maucec, Marko; Glumac, Bogdan

    2005-01-15

    Monte Carlo criticality safety and sensitivity calculations of pressurized water reactor (PWR) spent nuclear fuel repository facilities for the Slovenian nuclear power plant Krsko are presented. The MCNP4C code was deployed to model and assess the neutron multiplication parameters of pool-based storage and dry transport containers under various loading patterns and moderating conditions. To comply with standard safety requirements, fresh 4.25% enriched nuclear fuel was assumed. The impact of potential optimum moderation due to water steam or foam formation as well as of different interpretations, of neutron multiplication through varying the system boundary conditions was elaborated. The simulations indicate that in the case of compact (all rack locations filled with fresh fuel) single or 'double tiering' loading, the supercriticality can occur under the conditions of enhanced neutron moderation, due to accidentally reduced density of cooling water. Under standard operational conditions the effective multiplication factor (k{sub eff}) of pool-based storage facility remains below the specified safety limit of 0.95. The nuclear safety requirements are fulfilled even when the fuel elements are arranged at a minimal distance, which can be initiated, for example, by an earthquake. The dry container in its recommended loading scheme with 26 fuel elements represents a safe alternative for the repository of fresh fuel. Even in the case of complete water flooding, the k{sub eff} remains below the specified safety level of 0.98. The criticality safety limit may however be exceeded with larger amounts of loaded fuel assemblies (i.e., 32). Additional Monte Carlo criticality safety analyses are scheduled to consider the 'burnup credit' of PWR spent nuclear fuel, based on the ongoing calculation of typical burnup activities.

  4. W-1 Sodium Loop Safety Facility experiment centerline fuel thermocouple performance. [LMFBR

    SciTech Connect

    Meyers, S.C.; Henderson, J.M.

    1980-05-01

    The W-1 Sodium Loop Safety Facility (SLSF) experiment is the fifth in a series of experiments sponsored by the Department of Energy (DOE) as part of the National Fast Breeder Reactor (FBR) Safety Assurance Program. The experiments are being conducted under the direction of Argonne National Laboratory (ANL) and Hanford Engineering Development Laboratory (HEDL). The irradiation phase of the W-1 SLSF experiment was conducted between May 27 and July 20, 1979, and terminated with incipient fuel pin cladding failure during the final boiling transient. Experimental hardware and facility performed as designed, allowing completion of all planned tests and test objectives. This paper focuses on high temperature in-fuel thermocouples and discusses their development, fabrication, and performance in the W-1 experiment.

  5. Preclosure radiological safety analysis for the exploratory shaft facilities; Yucca Mountain Site Characterization Project

    SciTech Connect

    Ma, C.W.; Miller, D.D.; Jardine, L.J.

    1992-06-01

    This study assesses which structures, systems, and components of the exploratory shaft facility (ESF) are important to safety when the ESF is converted to become part of the operating waste repository. The assessment follows the methodology required by DOE Procedure AP-6.10Q. Failures of the converted ESF during the preclosure period have been evaluated, along with other underground accidents, to determine the potential offsite radiation doses and associated probabilities. The assessment indicates that failures of the ESF will not result in radiation doses greater than 0.5 rem at the nearest unrestricted area boundary. Furthermore, credible accidents in other underground facilities will not result in radiation doses larger than 0.5 rem, even if any structure, system, or component of the converted ESF fails at the same time. Therefore, no structure, system, or component of the converted ESF is important to safety.

  6. Site inspection health and safety plan. Bennett Army National Guard Facility Bennett, Colorado. Final report

    SciTech Connect

    1995-01-26

    This Health and Safety Plan (HSP) is based on the Remedial Investigation/Feasibility Study (RI/FS) HSP originally developed by R.L. Stollar Associates, Inc. in 1991 for use at the Bennett Army National Guard Facility (BANGF). Subsequent to the initial preparation of the plan, funding to perform the RI/FS at BANGF was not provided. The original RI/FS HSP has been modified to address the potential health and safety hazards associated with conducting a Site Inspection (SI) of this facility. The HSP meets the requirements of Title 29 of the Code of Federal Regulations, Section 1910.120 (29 CFR 1910.120) and 29 CFR 1910.134. Compliance with this HSP for BANGF is required of all field personnel, including subcontractors conducting investigations and waste management identified in the BANGF SI Sampling and Analysis Plan.

  7. Investigation of criticality safety control infraction data at a nuclear facility

    SciTech Connect

    Cournoyer, Michael E.; Merhege, James F.; Costa, David A.; Art, Blair M.; Gubernatis, David C.

    2014-10-27

    Chemical and metallurgical operations involving plutonium and other nuclear materials account for most activities performed at the LANL's Plutonium Facility (PF-4). The presence of large quantities of fissile materials in numerous forms at PF-4 makes it necessary to maintain an active criticality safety program. The LANL Nuclear Criticality Safety (NCS) Program provides guidance to enable efficient operations while ensuring prevention of criticality accidents in the handling, storing, processing and transportation of fissionable material at PF-4. In order to achieve and sustain lower criticality safety control infraction (CSCI) rates, PF-4 operations are continuously improved, through the use of Lean Manufacturing and Six Sigma (LSS) business practices. Employing LSS, statistically significant variations (trends) can be identified in PF-4 CSCI reports. In this study, trends have been identified in the NCS Program using the NCS Database. An output metric has been developed that measures ADPSM Management progress toward meeting its NCS objectives and goals. Using a Pareto Chart, the primary CSCI attributes have been determined in order of those requiring the most management support. Data generated from analysis of CSCI data help identify and reduce number of corresponding attributes. In-field monitoring of CSCI's contribute to an organization's scientific and technological excellence by providing information that can be used to improve criticality safety operation safety. This increases technical knowledge and augments operational safety.

  8. Investigation of criticality safety control infraction data at a nuclear facility

    DOE PAGESBeta

    Cournoyer, Michael E.; Merhege, James F.; Costa, David A.; Art, Blair M.; Gubernatis, David C.

    2014-10-27

    Chemical and metallurgical operations involving plutonium and other nuclear materials account for most activities performed at the LANL's Plutonium Facility (PF-4). The presence of large quantities of fissile materials in numerous forms at PF-4 makes it necessary to maintain an active criticality safety program. The LANL Nuclear Criticality Safety (NCS) Program provides guidance to enable efficient operations while ensuring prevention of criticality accidents in the handling, storing, processing and transportation of fissionable material at PF-4. In order to achieve and sustain lower criticality safety control infraction (CSCI) rates, PF-4 operations are continuously improved, through the use of Lean Manufacturing andmore » Six Sigma (LSS) business practices. Employing LSS, statistically significant variations (trends) can be identified in PF-4 CSCI reports. In this study, trends have been identified in the NCS Program using the NCS Database. An output metric has been developed that measures ADPSM Management progress toward meeting its NCS objectives and goals. Using a Pareto Chart, the primary CSCI attributes have been determined in order of those requiring the most management support. Data generated from analysis of CSCI data help identify and reduce number of corresponding attributes. In-field monitoring of CSCI's contribute to an organization's scientific and technological excellence by providing information that can be used to improve criticality safety operation safety. This increases technical knowledge and augments operational safety.« less

  9. Health Facilities Safety in Natural Disasters: Experiences and Challenges from South East Europe

    PubMed Central

    Radovic, Vesela; Vitale, Ksenija; Tchounwou, Paul B.

    2012-01-01

    The United Nations named 2010 as a year of natural disasters, and launched a worldwide campaign to improve the safety of schools and hospitals from natural disasters. In the region of South East Europe, Croatia and Serbia have suffered the greatest impacts of natural disasters on their communities and health facilities. In this paper the disaster management approaches of the two countries are compared, with a special emphasis on the existing technological and legislative systems for safety and protection of health facilities and people. Strategic measures that should be taken in future to provide better safety for health facilities and populations, based on the best practices and positive experiences in other countries are recommended. Due to the expected consequences of global climate change in the region and the increased different environmental risks both countries need to refine their disaster preparedness strategies. Also, in the South East Europe, the effects of a natural disaster are amplified in the health sector due to its critical medical infrastructure. Therefore, the principles of environmental security should be implemented in public health policies in the described region, along with principles of disaster management through regional collaborations. PMID:22754465

  10. Needs and opportunities for improving the health, safety, and productivity of medical research facilities.

    PubMed Central

    Hodgson, M; Brodt, W; Henderson, D; Loftness, V; Rosenfeld, A; Woods, J; Wright, R

    2000-01-01

    Medical research facilities, indeed all the nation's constructed facilities, must be designed, operated, and maintained in a manner that supports the health, safety, and productivity of the occupants. The National Construction Goals, established by the National Science and Technology Council, envision substantial improvements in occupant health and worker productivity. The existing research and best practices case studies support this conclusion, but too frequently building industry professionals lack the knowledge to design, construct, operate, and maintain facilities at these optimum levels. There is a need for more research and more collaborative efforts between medical and facilities engineering researchers and practitioners in order to attain the National Construction Goals. Such collaborative efforts will simultaneously support attainment of the National Health Goals. This article is the summary report of the Healthy Buildings Committee for the Leadership Conference: Biomedical Facilities and the Environment sponsored by the National Institutes of Health, the National Association of Physicians for the Environment, and the Association of Higher Education Facilities Officers on 1--2 November 1999 in Bethesda, Maryland, USA. PMID:11124125

  11. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 2: Appendices

    SciTech Connect

    1998-05-01

    This volume contains the appendices that provide additional environment, safety, and health (ES and H) information to complement Volume 1 of this Standard. Appendix A provides a set of candidate DOE ES and H directives and external regulations, organized by hazard types that may be used to identify potentially applicable directives to a specific facility disposition activity. Appendix B offers examples and lessons learned that illustrate implementation of ES and H approaches discussed in Section 3 of Volume 1. Appendix C contains ISMS performance expectations to guide a project team in developing and implementing an effective ISMS and in developing specific performance criteria for use in facility disposition. Appendix D provides guidance for identifying potential Applicable or Relevant and Appropriate Requirements (ARARs) when decommissioning facilities fall under the Comprehensive Environmental Response, Compensation, Liability Act (CERCLA) process. Appendix E discusses ES and H considerations for dispositioning facilities by privatization. Appendix F is an overview of the WSS process. Appendix G provides a copy of two DOE Office of Nuclear Safety Policy and Standards memoranda that form the bases for some of the guidance discussed within the Standard. Appendix H gives information on available hazard analysis techniques and references. Appendix I provides a supplemental discussion to Sections 3.3.4, Hazard Baseline Documentation, and 3.3.6, Environmental Permits. Appendix J presents a sample readiness evaluation checklist.

  12. Documented Safety Analysis Addendum for the Neutron Radiography Reactor Facility Core Conversion

    SciTech Connect

    Boyd D. Christensen

    2009-05-01

    The Neutron Radiography Reactor Facility (NRAD) is a Training, Research, Isotope Production, General Atomics (TRIGA) reactor which was installed in the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) in the mid 1970s. The facility provides researchers the capability to examine both irradiated and non-irradiated materials in support of reactor fuel and components programs through non-destructive neutron radiography examination. The facility has been used in the past as one facet of a suite of reactor fuels and component examination facilities available to researchers at the INL and throughout the DOE complex. The facility has also served various commercial research activities in addition to the DOE research and development support. The reactor was initially constructed using Fuel Lifetime Improvement Program (FLIP)- type highly enriched uranium (HEU) fuel obtained from the dismantled Puerto Rico Nuclear Center (PRNC) reactor. In accordance with international non-proliferation agreements, the NRAD core will be converted to a low enriched uranium (LEU) fuel and will continue to utilize the PRNC control rods, control rod drives, startup source, and instrument console as was previously used with the HEU core. The existing NRAD Safety Analysis Report (SAR) was created and maintained in the preferred format of the day, combining sections of both DOE-STD-3009 and Nuclear Regulatory Commission Regulatory Guide 1.70. An addendum was developed to cover the refueling and reactor operation with the LEU core. This addendum follows the existing SAR format combining required formats from both the DOE and NRC. This paper discusses the project to successfully write a compliant and approved addendum to the existing safety basis documents.

  13. Development of an Environmental Safety Case for a Geological Disposal Facility in the UK

    NASA Astrophysics Data System (ADS)

    Bailey, L.; Clark, H.; Wellstead, M.

    2012-04-01

    Geological disposal is the UK policy for the long-term management of higher activity radioactive waste. The Radioactive Waste Management Directorate (RWMD) of the Nuclear Decommissioning Authority (NDA) has been given the responsibility for implementing geological disposal. The implementation process is founded on the principles of voluntarism and partnership and the UK Government has set in place a process that encourages communities to participate in the siting process. Developing an environmental safety case (ESC) that gives confidence that a geological disposal facility (GDF) for higher activity radioactive wastes will remain passively safe for hundreds of thousands of years after the facility has been closed, and is no longer actively maintained, is an important and challenging part of the programme to implement geological disposal. Our approach for building confidence in long-term safety is to use multiple barriers to isolate and contain the wastes and to explain our confidence in the performance of these barriers by developing a multi-factor safety case. We will develop a safety case based on varied and different lines of reasoning, including both quantitative aspects and qualitative arguments. We will use a range of safety arguments to support the ESC, drawing on underpinning science and engineering. We have published a generic ESC (that is not specific to any site or disposal facility design) that considers the long-term safety of illustrative generic disposal facility design examples in stylised geological environments. This generic ESC explains how engineered and natural barriers can work together to isolate and contain the radioactivity in the wastes. The safety arguments in the generic ESC are supported by calculations using a simple model that is illustrative of a broad range of disposal facility designs and geological environments. The generic ESC provides a benchmark enabling us to undertake disposability assessments for waste packages, without

  14. Radiological safety evaluation for a Waste Transfer Facility at Savannah River Site

    SciTech Connect

    Ades, M.J.

    1993-10-01

    This paper provides a review of the radiological safety evaluation performed for a Waste Transfer Facility (WTF) located at the Savannah River Site (SRS). This facility transfers liquid radioactive waste between various waste processing facilities and waste storage facilities. The WTF includes functional components such as the diversion box and the pump pits, waste transfer lines, and the outside yard service piping and electrical services. The WSRC methodology is used to evaluate the consequences of postulated accidents that result in the release of radioactive material. Such accidents include transfer line breaks, underground liquid pathway release, fire in pump tank cells and HEPA filters, accidents due to natural phenomena, and externally induced events. Chemical hazards accidents are not considered. The analysis results indicate that the calculated mean onsite and offsite radiological consequences are bounded by the corresponding WSRC dose limits for each accident considered. Moreover, the results show that the maximum onsite and offsite doses calculated for the WTF are lower than the maximum doses determined for the whole radioactive waste facility where the WTF is located.

  15. Control of Listeria species food safety at a poultry food production facility.

    PubMed

    Fox, Edward M; Wall, Patrick G; Fanning, Séamus

    2015-10-01

    Surveillance and control of food-borne human pathogens, such as Listeria monocytogenes, is a critical aspect of modern food safety programs at food production facilities. This study evaluated contamination patterns of Listeria species at a poultry food production facility, and evaluated the efficacy of procedures to control the contamination and transfer of the bacteria throughout the plant. The presence of Listeria species was studied along the production chain, including raw ingredients, food-contact, non-food-contact surfaces, and finished product. All isolates were sub-typed by pulsed-field gel electrophoresis (PFGE) to identify possible entry points for Listeria species into the production chain, as well as identifying possible transfer routes through the facility. The efficacy of selected in-house sanitizers against a sub-set of the isolates was evaluated. Of the 77 different PFGE-types identified, 10 were found among two or more of the five categories/areas (ingredients, food preparation, cooking and packing, bulk packing, and product), indicating potential transfer routes at the facility. One of the six sanitizers used was identified as unsuitable for control of Listeria species. Combining PFGE data, together with information on isolate location and timeframe, facilitated identification of a persistent Listeria species contamination that had colonized the facility, along with others that were transient. PMID:26187831

  16. Maintenance of reactor safety and control computers at a large government facility

    SciTech Connect

    Brady, H G

    1985-01-01

    In 1950 the US Government contracted the Du Pont Company to design, build, and operate the Savannah River Plant (SRP). At the time, it was the largest construction project ever undertaken by man. It is still the largest of the Department of Energy facilities. In the nearly 35 years that have elapsed, Du Pont has met its commitments to the US Government and set world safety records in the construction and operation of nuclear facilities. Contributing factors in achieving production goals and setting the safety records are a staff of highly qualified personnel, a well maintained plant, and sound maintenance programs. There have been many ''first ever'' achievements at SRP. These ''firsts'' include: (1) computer control of a nuclear rector, and (2) use of computer systems as safety circuits. This presentation discusses the maintenance program provided for these computer systems and all digital systems at SRP. An in-house computer maintenance program that was started in 1966 with five persons has grown to a staff of 40 with investments in computer hardware increasing from $4 million in 1970 to more than $60 million in this decade. 4 figs.

  17. Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect

    OSCAR,DEBBY S.; WALKER,SHARON ANN; HUNTER,REGINA LEE; WALKER,CHERYL A.

    1999-12-01

    The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2.

  18. Preliminary Authorization Basis Documentation for the Proposed Bio Safety Level 3 (BSl-3) Facility

    SciTech Connect

    Altenbach, T J; Nguyen, S N

    2003-09-20

    Lawrence Livermore National Laboratory (LLNL) is proposing to construct a biosafety level (BSL-3) facility at Site 200 in Livermore, California. Biosafety level 3 (BSL-3) is a designation assigned by the Centers for Disease Control and Prevention (CDC) and National Institutes Health (NIH) for handling infectious organisms based on the specific microorganisms and associated operations. Biosafety levels range from BSL-1 (lowest hazard) to BSL-4 (highest hazard). Details about the BSL-3 criteria are described in the Center of Disease Control and Prevention (CDC)/National Institutes of Health (NIH)'s publication ''Biosafety Microbiological and Biomedical Laboratories'' (BMBL), 4th edition (CDC 1999): The BSL-3 facility will be built in accordance with the required BMBL guidelines. This Preliminary Authorization Basis Documentation (PABD) for the proposed BSL-3 facility has been prepared in accordance with the current contractual requirements at LLNL. This includes the LLNL Environment, Safety, and Health Manual (ES&H Manual) and applicable Work Smart Standards, including the biosafety standards, such as the aforementioned BMBL and the NIH Guidelines for Research Involving Recombinant DNA Molecules: The proposed BSL-3 facility is a 1,100 ft{sup 2}, one-story permanent prefabricated facility, which will have three individual BSL-3 laboratory rooms (one of which is an animal biosafety level-3 [ABSL-3] laboratory to handle rodents), a mechanical room, clothes-change and shower rooms, and small storage space (Figure 3.1). The BSL-3 facility will be designed and operated accordance with guidelines for BSL-3 laboratories established by the CDC and the NIH. No radiological, high explosives, fissile, or propellant material will be used or stored in the proposed BSL-3 facility. The BSL-3 facility will be used to develop scientific tools to identify and understand the pathogens of medical, environmental, and forensic importance. Microorganisms that are to be handled in this

  19. "Defense-in-Depth" Laser Safety and the National Ignition Facility

    SciTech Connect

    King, J J

    2010-12-02

    The National Ignition Facility (NIF) is the largest and most energetic laser in the world contained in a complex the size of a football stadium. From the initial laser pulse, provided by telecommunication style infrared nanoJoule pulsed lasers, to the final 192 laser beams (1.8 Mega Joules total energy in the ultraviolet) converging on a target the size of a pencil eraser, laser safety is of paramount concern. In addition to this, there are numerous high-powered (Class 3B and 4) diagnostic lasers in use that can potentially send their laser radiation travelling throughout the facility. With individual beam paths of up to 1500 meters and a workforce of more than one thousand, the potential for exposure is significant. Simple laser safety practices utilized in typical laser labs just don't apply. To mitigate these hazards, NIF incorporates a multi layered approach to laser safety or 'Defense in Depth.' Most typical high-powered laser operations are contained and controlled within a single room using relatively simplistic controls to protect both the worker and the public. Laser workers are trained, use a standard operating procedure, and are required to wear Personal Protective Equipment (PPE) such as Laser Protective Eyewear (LPE) if the system is not fully enclosed. Non-workers are protected by means of posting the room with a warning sign and a flashing light. In the best of cases, a Safety Interlock System (SIS) will be employed which will 'safe' the laser in the case of unauthorized access. This type of laser operation is relatively easy to employ and manage. As the operation becomes more complex, higher levels of control are required to ensure personnel safety. Examples requiring enhanced controls are outdoor and multi-room laser operations. At the NIF there are 192 beam lines and numerous other Class 4 diagnostic lasers that can potentially deliver their hazardous energy to locations far from the laser source. This presents a serious and complex potential

  20. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... governing safety zones contained in 33 CFR 165.23 apply. ... Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and...), Barking Sands, Island of Kauai, Hawaii. (a) Location. The following area is established as a safety...

  1. 33 CFR 165.1406 - Safety Zone: Pacific Missile Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... governing safety zones contained in 33 CFR 165.23 apply. ... Range Facility (PMRF), Barking Sands, Island of Kauai, Hawaii. 165.1406 Section 165.1406 Navigation and...), Barking Sands, Island of Kauai, Hawaii. (a) Location. The following area is established as a safety...

  2. Cold Vacuum Drying (CVD) Facility Safety Class Instrumentation and Control System Design Description SYS 93-2

    SciTech Connect

    WHITEHURST, R.

    1999-07-02

    This document describes the Cold Vacuum Drying Facility (CVDF) Safety Class Instrumentation and Control system (SCIC). The SCIC provides safety functions and features to protect the environment, off-site and on-site personnel and equipment. The function of the SCIC is to provide automatic trip features, valve interlocks, alarms, indication and control for the cold vacuum drying process.

  3. 77 FR 43583 - DOE Response to Recommendation 2012-1 of the Defense Nuclear Facilities Safety Board, Savannah...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ...On May 8, 2012, the Defense Nuclear Facilities Safety Board submitted Recommendation 2012-1, concerning Savannah River Site Building 235-F Safety, to the Department of Energy. In accordance with section 315(b) of the Atomic Energy Act of 1954, as amended, 42 U.S.C. 2286d(b), the following represents the Secretary of Energy's response to the...

  4. 78 FR 4404 - DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ...On September 28, 2012 the Defense Nuclear Facilities Safety Board submitted Recommendation 2012-2, concerning Hanford Tank Farms Flammable Gas Safety Strategy, to the Department of Energy. In accordance with section 315(b) of the Atomic Energy Act of 1954, as amended, 42 U.S.C. 2286d(b), the following represents the Secretary of Energy's response to the...

  5. Health and safety plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-08-01

    This HASP describes the process for identifying the requirements, written safety documentation, and procedures for protecting personnel involved in the Isotopes Facilities Deactivation Project. Objective of this project is to place 19 former isotope production facilities at ORNL in a safe condition in anticipation of an extended period of minimum surveillance and maintenance.

  6. 76 FR 54531 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by the Passage of Hurricanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... Facilities Caused by the Passage of Hurricanes AGENCY: Pipeline and Hazardous Materials Safety Administration... to pipeline facilities caused by the passage of Hurricanes. ADDRESSES: This document can be viewed on...-related issues that can result from the passage of hurricanes. That includes the potential for damage...

  7. Securing Operating Data From Passive Safety Tests at the Fast Flux Test Facility

    SciTech Connect

    Wootan, David W.; Omberg, Ronald P.; Makenas, Bruce J.; Nielsen, Deborah L.; Nelson, Joseph V.; Polzin, David L.

    2011-06-01

    The Fast Flux Test Facility (FFTF) is the most recent Liquid Metal Reactor (LMR) to operate in the United States, from 1982 to 1992. The technologies employed in designing and constructing this reactor, along with information obtained from tests conducted during its operation, are currently being secured and archived by the Department of Energy’s Office of Nuclear Energy Fuel Cycle Research and Development Program. This report is one in a series documenting the overall project efforts to retrieve and preserve critical information related to advanced reactors. A previous report summarized the initial efforts to review, retrieve and preserve the most salient documents related to Passive Safety Testing (PST) in the FFTF. Efforts continue to locate, secure, and retrieve record copies of original plant data tapes for the series of passive safety tests conducted between 1986 and 1991.

  8. Securing Operating Data From Passive Safety Tests at the Fast Flux Test Facility

    SciTech Connect

    Wootan, David W.; Omberg, Ronald P.; Makenas, Bruce J.; Nielsen, Deborah L.; Nelson, Joseph V.; Polzin, David L.

    2011-06-01

    The Fast Flux Test Facility (FFTF) is the most recent Liquid Metal Reactor (LMR) to operate in the United States, from 1982 to 1992. The technologies employed in designing and constructing this reactor, along with information obtained from tests conducted during its operation, are currently being secured and archived by the Department of Energy's Office of Nuclear Energy Fuel Cycle Research and Development Program. This report is one in a series documenting the overall project efforts to retrieve and preserve critical information related to advanced reactors. A previous report summarized the initial efforts to review, retrieve and preserve the most salient documents related to Passive Safety Testing (PST) in the FFTF. Efforts continue to locate, secure, and retrieve record copies of original plant data tapes for the series of passive safety tests conducted between 1986 and 1991.

  9. Risk-Informing Safety Reviews for Non-Reactor Nuclear Facilities

    SciTech Connect

    Mubayi, V.; Azarm, A.; Yue, M.; Mukaddam, W.; Good, G.; Gonzalez, F.; Bari, R.A.

    2011-03-13

    This paper describes a methodology used to model potential accidents in fuel cycle facilities that employ chemical processes to separate and purify nuclear materials. The methodology is illustrated with an example that uses event and fault trees to estimate the frequency of a specific energetic reaction that can occur in nuclear material processing facilities. The methodology used probabilistic risk assessment (PRA)-related tools as well as information about the chemical reaction characteristics, information on plant design and operational features, and generic data about component failure rates and human error rates. The accident frequency estimates for the specific reaction help to risk-inform the safety review process and assess compliance with regulatory requirements.

  10. FAST FLUX TEST FACILITY (FFTF) A HISTORY OF SAFETY & OPERATIONAL EXCELLENCE

    SciTech Connect

    NIELSEN, D L

    2004-02-26

    The Fast Flux Test Facility (FFTF) is a 400-megawatt (thermal) sodium-cooled, high temperature, fast neutron flux, loop-type test reactor. The facility was constructed to support development and testing of fuels, materials and equipment for the Liquid Metal Fast Breeder Reactor program. FFTF began operation in 1980 and over the next 10 years demonstrated its versatility to perform experiments and missions far beyond the original intent of its designers. The reactor had several distinctive features including its size, flux, core design, extensive instrumentation, and test features that enabled it to simultaneously carry out a significant array of missions while demonstrating its features that contributed to a high level of plant safety and availability. FFTF is currently being deactivated for final closure.

  11. Medicare and Medicaid programs; fire safety requirements for certain health care facilities; amendment. Final rule.

    PubMed

    2006-09-22

    This final rule adopts the substance of the April 15, 2004 tentative interim amendment (TIA) 00-1 (101), Alcohol Based Hand Rub Solutions, an amendment to the 2000 edition of the Life Safety Code, published by the National Fire Protection Association (NFPA). This amendment allows certain health care facilities to place alcohol-based hand rub dispensers in egress corridors under specified conditions. This final rule also requires that nursing facilities at least install battery-operated single station smoke alarms in resident rooms and common areas if they are not fully sprinklered or they do not have system-based smoke detectors in those areas. Finally, this final rule confirms as final the provisions of the March 25, 2005 interim final rule with changes and responds to public comments on that rule. PMID:17017467

  12. Criticality safety evaluation report for spent nuclear fuelprocessing and storage facilities

    SciTech Connect

    Schwinkendorf, K.N., Fluor Daniel Hanford

    1997-03-24

    This criticality evaluation is for Spent N Reactor fuel unloaded from the existing canisters in both KE and KW Basins, and loaded into multiple canister overpack (MCO) containers with specially- built baskets containing either 54 Mark IV or 48 Mark IA fuel assemblies. The criticality evaluations include loading baskets into the MCO/Cask, operations at the Cold Vacuum Drying Facility (CVDF), and storage in the Canister Storage Building (CSB). Many conservatisms have been built into this analysis, the primary one being the selection of the k{sub eff} @ 0.95 criticality safety limit.

  13. Inventory- or Consequence-Based Evaluation of Hazardous Chemicals: Recommendations for DOE Facility Safety Analysis

    SciTech Connect

    Blanchard, A.

    1999-06-09

    Two different methods are in use for establishing the safety of facilities, processes, or operations involving hazardous chemicals. One sets inventory limits using Occupational Safety and Health Administration (OSHA) threshold quantity (TQ), Environmental Protection Agency (EPA) Clean Air Act Amendment threshold quantity (CAA-TQ), threshold planning quantity (TPQ) or reportable quantity (RQ), values published in the Federal Register. The second method uses toxicological consequence estimates at different receptor points (e.g., facility boundary, 100 m, site boundary) of concentration limits established for this purpose. These include such parameters as EPA acute exposure guidance level (AEGL), emergency response planning guideline (ERPG), and immediately dangerous to life or health (IDLH) values. Estimating the potential downwind concentrations of all chemicals on the OSHA Process Safety Management regulation TQ list compared these two methods. EPA CAA-TQ, TPQ, and RQ, values were extracted for these chemicals. Only 61 of the 128 unique chemicals with TQs also have CAA-TQs, 60 have TPQs, and 78 have RQs. Only 8 of 60 TQs are less than TPQ values for that chemical. Conservative release fractions (at 25 degrees C), and dispersion conditions were used to calculate potential airborne concentrations at 100 m downwind of the assumed release of TQ quantities of each chemical. These calculations were repeated for all chemicals on the TQ list that also had CAA-TQs, TPQs or RQs. These concentrations were compared with ERPG values wherever possible. Every TPQ to ERPG ratio was greater than unity. For RQs, none of 24 RQ to ERPG-1, 6 of 33 RQ to ERPG-2, and 11 of 33 RQ to ERPG-3, ratios were less than ten and only one was less than unity. In other words, severe health consequences could result from potential releases of many of these chemicals. These results demonstrate the undesirability of using regulatory quantities established for different purposes to include these

  14. Environmental Management Waste Management Facility (EMWMF) Site-Specific Health and Safety Plan, Oak Ridge, Tennessee

    SciTech Connect

    Flynn, N.C. Bechtel Jacobs

    2008-04-21

    The Bechtel Jacobs Company LLC (BJC) policy is to provide a safe and healthy workplace for all employees and subcontractors. The implementation of this policy requires that operations of the Environmental Management Waste Management Facility (EMWMF), located one-half mile west of the U.S. Department of Energy (DOE) Y-12 National Security Complex, be guided by an overall plan and consistent proactive approach to environment, safety and health (ES&H) issues. The BJC governing document for worker safety and health, BJC/OR-1745, 'Worker Safety and Health Program', describes the key elements of the BJC Safety and Industrial Hygiene (IH) programs, which includes the requirement for development and implementation of a site-specific Health and Safety Plan (HASP) where required by regulation (refer also to BJC-EH-1012, 'Development and Approval of Safety and Health Plans'). BJC/OR-1745, 'Worker Safety and Health Program', implements the requirements for worker protection contained in Title 10 Code of Federal Regulations (CFR) Part 851. The EMWMF site-specific HASP requirements identifies safe operating procedures, work controls, personal protective equipment, roles and responsibilities, potential site hazards and control measures, site access requirements, frequency and types of monitoring, site work areas, decontamination procedures, and outlines emergency response actions. This HASP will be available on site for use by all workers, management and supervisors, oversight personnel and visitors. All EMWMF assigned personnel will be briefed on the contents of this HASP and will be required to follow the procedures and protocols as specified. The policies and procedures referenced in this HASP apply to all EMWMF operations activities. In addition the HASP establishes ES&H criteria for the day-to-day activities to prevent or minimize any adverse effect on the environment and personnel safety and health and to meet standards that define acceptable waste management practices. The

  15. Safety and licensing issues that are being addressed by the Power Burst Facility test programs. [PWR; BWR

    SciTech Connect

    McCardell, R.K.; MacDonald, P.E.

    1980-01-01

    This paper presents an overview of the results of the experimental program being conducted in the Power Burst Facility and the relationship of these results to certain safety and licensing issues. The safety issues that were addressed by the Power-Cooling-Mismatch, Reactivity Initiated Accident, and Loss of Coolant Accident tests, which comprised the original test program in the Power Burst Facility, are discussed. The resolution of these safety issues based on the results of the thirty-six tests performed to date, is presented. The future resolution of safety issues identified in the new Power Burst Facility test program which consists of tests which simulate BWR and PWR operational transients, anticipated transients without scram, and severe fuel damage accidents, is described.

  16. Seismic Safety Analysis of Heavy Element Facility at Lawrence Livermore National Laboratory

    SciTech Connect

    O'Connell, W J; Hildum J S

    2001-06-06

    The Heavy Element Facility is a cold war legacy facility at Livermore National Laboratory. The facility's mission has varied over its lifetime, but operations included the preparation of radioactive heavy element tracers used in underground nuclear weapons testing and the conduct of a heavy element research program. It is a one story concrete masonry structure constructed in several phases between 1955 and 1981. In 1993, a seismic re-evaluation of the facility determined that portions of the building did not meet the PC-2 requirements applicable to it. A seismic upgrade evaluation determined it was not practical to upgrade the facility to support continued programmatic operations. It is now maintained in a storage mode awaiting Department of Energy disposition. In this mode the operations are limited to (1) storage of radioactive material from previous operations, (2) clean-up and decontamination of facility work areas and equipment, (3) removal of contaminated systems and enclosures, (4) facility maintenance, (5) removal of radioactive materials from the facility, (6) characterization of the waste generated by these activities, (7) surveillance activities and (8) security. An important part of the facility's storage function is provided by underground storage vaults. These are embedded in a massive reinforced concrete block whose top is at the building interior's floor level. The inventory in these vaults is limited to solid forms of transuranic isotopes and other radioactive isotopes stored with double or triple containment. The vaults may be accessed infrequently for surveillance or on occasion for removal of inventory to other facilities. As part of maintaining this storage function until final disposition, the safety of the underground storage system was reevaluated using guidance in DOE standard DOE-STD-1027-92. An overview is presented here to highlight important considerations in the evaluation of an older safety system. Special effort is directed to

  17. Style, content and format guide for writing safety analysis documents: Volume 2, Safety assessment reports for DOE non-nuclear facilities

    SciTech Connect

    Mahn, J.A.; Silver, R.C.; Balas, Y.; Gilmore, W.

    1995-07-01

    The purpose of Volume 2 of this 4-volume style guide is to furnish guidelines on writing and publishing Safety Assessment Reports (SAs) for DOE non-nuclear facilities at Sandia National Laboratories. The scope of Volume 2 encompasses not only the general guidelines for writing and publishing, but also the prescribed topics/appendices contents along with examples from typical SAs for DOE non-nuclear facilities.

  18. Engineered and Administrative Safety Systems for the Control of Prompt Radiation Hazards at Accelerator Facilities

    SciTech Connect

    Liu, James C.; Vylet, Vashek; Walker, Lawrence S.; /SLAC

    2007-12-17

    The ANSI N43.1 Standard, currently in revision (ANSI 2007), sets forth the requirements for accelerator facilities to provide adequate protection for the workers, the public and the environment from the hazards of ionizing radiation produced during and from accelerator operations. The Standard also recommends good practices that, when followed, provide a level of radiation protection consistent with those established for the accelerator communities. The N43.1 Standard is suitable for all accelerator facilities (using electron, positron, proton, or ion particle beams) capable of producing radiation, subject to federal or state regulations. The requirements (see word 'shall') and recommended practices (see word 'should') are prescribed in a graded approach that are commensurate with the complexity and hazard levels of the accelerator facility. Chapters 4, 5 and 6 of the N43.1 Standard address specially the Radiation Safety System (RSS), both engineered and administrative systems, to mitigate and control the prompt radiation hazards from accelerator operations. The RSS includes the Access Control System (ACS) and Radiation Control System (RCS). The main requirements and recommendations of the N43.1 Standard regarding the management, technical and operational aspects of the RSS are described and condensed in this report. Clearly some aspects of the RSS policies and practices at different facilities may differ in order to meet the practical needs for field implementation. A previous report (Liu et al. 2001a), which reviews and summarizes the RSS at five North American high-energy accelerator facilities, as well as the RSS references for the 5 labs (Drozdoff 2001; Gallegos 1996; Ipe and Liu 1992; Liu 1999; Liu 2001b; Rokni 1996; TJNAF 1994; Yotam et al. 1991), can be consulted for the actual RSS implementation at various laboratories. A comprehensive report describing the RSS at the Stanford Linear Accelerator Center (SLAC 2006) can also serve as a reference.

  19. Safety Basis Requirements for Nonnuclear Facilities at Lawrence Livermore National Laboratory Site-Specific Work Smart Standards Revision 1

    SciTech Connect

    Beach, R; Brereton, S; Failor, R; Hildum, S; Spagnolo, S; Van Warmerdam, C

    2003-02-24

    This standard establishes requirements that, when coupled with Lawrence Livermore National Laboratory's (LLNL's) Integrated Safety Management System (ISMS) methods and other Work Smart Standards for assuring worker safety, assure that the impacts of nonnuclear operations authorized in LLNL facilities are well understood and controlled in a manner that protects the health of workers, the public, and the environment. All LLNL facilities shall be classified based on potential for adverse impact of operations to the health of co-located (i.e., nearby) workers and the public in accordance with this standard, Title 10 Code of Federal Regulations (10 CFR) 830, Subpart B, and Department of Energy Order (DOE O) 420.2A. This standard provides information on: Objectives; Applicability; Safety analysis requirements; Control selection and maintenance; Documentation requirements; Safety basis review, approval, and renewal; and Safety basis implementation.

  20. Regeneration inducers in limb regeneration.

    PubMed

    Satoh, Akira; Mitogawa, Kazumasa; Makanae, Aki

    2015-08-01

    Limb regeneration ability, which can be observed in amphibians, has been investigated as a representative phenomenon of organ regeneration. Recently, an alternative experimental system called the accessory limb model was developed to investigate early regulation of amphibian limb regeneration. The accessory limb model contributed to identification of limb regeneration inducers in urodele amphibians. Furthermore, the accessory limb model may be applied to other species to explore universality of regeneration mechanisms. This review aims to connect the insights recently gained to emboss universality of regeneration mechanisms among species. The defined molecules (BMP7 (or2) + FGF2 + FGF8) can transform skin wound healing to organ (limb) regeneration responses. The same molecules can initiate regeneration responses in some species. PMID:26100345

  1. Designing for explosive safety'': The Explosive Components Facility at Sandia National Laboratories

    SciTech Connect

    Couch, W.A.

    1990-12-01

    The Explosive Components Facility (ECF) is to be a new major facility in the Sandia National Laboratories (SNL) Weapons Program. The ECF is a self-contained, secure site on SNL property and is surrounded by Kirtland Air Force Base which is located 6-1/2 miles east of downtown Albuquerque, New Mexico. The ECF will be dedicated to research, development, and testing of detonators, neutron generators, batteries, explosives, and other weapon components. It will have capabilities for conducting explosive test fires, gas gun testing, physical analyses, chemical analyses, electrical testing and ancillary explosive storage in magazines. The ECF complex is composed of a building covering an area of approximately 91,000 square feet, six exterior explosive service magazines and a remote test cell. Approximately 50% of the building space will be devoted to highly specialized laboratory and test areas, the other 50% of the building is considered nonhazardous. Critical to the laboratory and test areas are the blast-structural design consideration and operational considerations, particularly those concerning personnel access control, safety and environmental protection. This area will be decoupled from the rest of the building to the extent that routine tests will not be heard or felt in the administrative area of the building. While the ECF is designed in accordance with the DOE Explosives Safety Manual to mitigate any off-site blast effects, potential injuries or death to the ECF staff may result from an accidental detonation of explosive material within the facility. Therefore, reducing the risk of exposing operation personnel to hazardous and energetic material is paramount in the design of the ECF.

  2. Preclosure radiological safety evaluation: Exploratory Studies Facility; Yucca Mountain Site Characterization Project

    SciTech Connect

    Schelling, F.J.; Smith, J.D.

    1993-07-01

    A radiological safety evaluation is performed to determine the impacts of Exploratory Studies Facility (ESF) design changes on the preclosure public radiological safety for a potential nuclear waste repository at Yucca Mountain, Nevada. Although the ESF design has undergone significant modification, incorporation of the modified design requires only modest changes to the conceptual repository configuration. To the extent feasible, the results of earlier safety evaluations presented in SAND84-2641, SAND88-7061, and SAND89-7024, which were based on the original ESF configuration, are compared with the results for the modified configuration. This comparison provides an estimate of the range of analysis uncertainty. This preliminary analysis indicates that there are no Q-scenarios, which are defined as those scenarios with a net occurrence probability of greater than 10{sup {minus}6}/yr and produce a radiological dose at the 5-km controlled area boundary of greater than 0.5 rem. The analysis yielded estimates for an underground accident of a probability of 3.8 {times} 10{sup {minus}15}/yr and a dose of 1.5 rem. For a surface-initiated accident, a probability of 1.5 {times} 10{sup {minus}12}/yr and a dose of 0.6 rem was estimated.

  3. Safety Assessment for the Kozloduy National Disposal Facility in Bulgaria - 13507

    SciTech Connect

    Biurrun, E.; Haverkamp, B.; Lazaro, A.; Miralles, A.; Stefanova, I.

    2013-07-01

    Due to the early decommissioning of four Water-Water Energy Reactors (WWER) 440-V230 reactors at the Nuclear Power Plant (NPP) near the city of Kozloduy in Bulgaria, large amounts of low and intermediate radioactive waste will arise much earlier than initially scheduled. In or-der to manage the radioactive waste from the early decommissioning, Bulgaria has intensified its efforts to provide a near surface disposal facility at Radiana with the required capacity. To this end, a project was launched and assigned in international competition to a German-Spanish consortium to provide the complete technical planning including the preparation of the Intermediate Safety Assessment Report. Preliminary results of operational and long-term safety show compliance with the Bulgarian regulatory requirements. The long-term calculations carried out for the Radiana site are also a good example of how analysis of safety assessment results can be used for iterative improvements of the assessment by pointing out uncertainties and areas of future investigations to reduce such uncertainties in regard to the potential radiological impact. The computer model used to estimate the long-term evolution of the future repository at Radiana predicted a maximum total annual dose for members of the critical group, which is carried to approximately 80 % by C-14 for a specific ingestion pathway. Based on this result and the outcome of the sensitivity analysis, existing uncertainties were evaluated and areas for reasonable future investigations to reduce these uncertainties were identified. (authors)

  4. Electrical Potential Transfer Through Grounding and the Concern for Facility and Worker Safety

    SciTech Connect

    Konkel, Herbert

    1998-09-13

    Electrical grounding is probably the most over-looke~ ignored, and misunderstood part of electrical energy source circuits. A faulty ground circuit am have lethal potential to the worker, can damage electrical equipment" or components, and can lead to higher consequences. For example, if the green-wire ground return circuit (in a three-wire power circuit) is fhulty or is open (someone cut the prong, etc.) a person can receive an electrical shock by touching the conductive enclosure, and the result can be lethal. If high explosives are involved m the process, sneak electrical energy paths may cause electrical threats that lead to ignition, which results to higher damage consequences. Proper electrical grounding is essential to mitigate the electrical hazard and improve work place safety. A designer must ask the question, "What grounding is proper?" continuously through a process design and in its application. This question must be readdressed with any process change, including tiom layout, equipment, or procedure changes. Electrical grounding varies ilom local work area grounding to the multi-point grounding found in large industrial areas. These grounding methods become more complex when the designer adds bonding to the grounding schemes to mitigate electrostatic discharge (ESD) and surfkce potentials resulting from lightning currents flowing through the facility structure. Figure 1 shows a typical facility power distribution circuit and the current flow paths resulting ffom a lightning discharge to a facility. This paper discusses electrical grounding methods and their characteristics and identifies potential sneak paths into a process for hazardous electrical energy.

  5. Sodium Loop Safety Facility W-2 experiment fuel pin rupture detection system. [LMFBR

    SciTech Connect

    Hoffman, M.A.; Kirchner, T.L.; Meyers, S.C.

    1980-05-01

    The objective of the Sodium Loop Safety Facility (SLSF) W-2 experiment is to characterize the combined effects of a preconditioned full-length fuel column and slow transient overpower (TOP) conditions on breeder reactor (BR) fuel pin cladding failures. The W-2 experiment will meet this objective by providing data in two technological areas: (1) time and location of cladding failure, and (2) early post-failure test fuel behavior. The test involves a seven pin, prototypic full-length fast test reactor (FTR) fuel pin bundle which will be subjected to a simulated unprotected 5 cents/s reactivity transient overpower event. The outer six pins will provide the necessary prototypic thermal-hydraulic environment for the center pin.

  6. Research of Pedestrian Crossing Safety Facilities Based on the Video Detection

    NASA Astrophysics Data System (ADS)

    Li, Sheng-Zhen; Xie, Quan-Long; Zang, Xiao-Dong; Tang, Guo-Jun

    Since that the pedestrian crossing facilities at present is not perfect, pedestrian crossing is in chaos and pedestrians from opposite direction conflict and congest with each other, which severely affects the pedestrian traffic efficiency, obstructs the vehicle and bringing about some potential security problems. To solve these problems, based on video identification, a pedestrian crossing guidance system was researched and designed. It uses the camera to monitor the pedestrians in real time and sums up the number of pedestrians through video detection program, and a group of pedestrian's induction lamp array is installed at the interval of crosswalk, which adjusts color display according to the proportion of pedestrians from both sides to guide pedestrians from both opposite directions processing separately. The emulation analysis result from cellular automaton shows that the system reduces the pedestrian crossing conflict, shortens the time of pedestrian crossing and improves the safety of pedestrians crossing.

  7. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    SciTech Connect

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG&G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  8. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    SciTech Connect

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  9. Technical Safety Requirements for the B695 Segment of the Decontamination and Waste Treatment Facility

    SciTech Connect

    Larson, H L

    2007-09-07

    This document contains Technical Safety Requirements (TSRs) for the Radioactive and Hazardous Waste Management (RHWM) Division's B695 Segment of the Decontamination and Waste Treatment Facility (DWTF) at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the B695 Segment of the DWTF. The TSRs are derived from the Documented Safety Analysis (DSA) for the B695 Segment of the DWTF (LLNL 2004). The analysis presented there determined that the B695 Segment of the DWTF is a low-chemical hazard, Hazard Category 3, nonreactor nuclear facility. The TSRs consist primarily of inventory limits as well as controls to preserve the underlying assumptions in the hazard analyses. Furthermore, appropriate commitments to safety programs are presented in the administrative controls section of the TSRs. The B695 Segment of the DWTF (B695 and the west portion of B696) is a waste treatment and storage facility located in the northeast quadrant of the LLNL main site. The approximate area and boundary of the B695 Segment of the DWTF are shown in the B695 Segment of the DWTF DSA. Activities typically conducted in the B695 Segment of the DWTF include container storage, lab-packing, repacking, overpacking, bulking, sampling, waste transfer, and waste treatment. B695 is used to store and treat radioactive, mixed, and hazardous waste, and it also contains equipment used in conjunction with waste processing operations to treat various liquid and solid wastes. The portion of the building called Building 696 Solid Waste Processing Area (SWPA), also referred to as B696S in this report, is used primarily to manage solid radioactive waste. Operations specific to the SWPA include sorting and segregating low-level waste (LLW) and transuranic (TRU) waste, lab-packing, sampling, and crushing empty drums that previously contained LLW. A permit modification for B696S was submitted to DTSC in January 2004 to store and treat hazardous and mixed

  10. [Drug supply and patient safety in long-term care facilities for the elderly].

    PubMed

    Uhrhan, T; Schaefer, M

    2010-05-01

    Nursing home residents are a continuously growing population with a need for intense pharmacotherapy due to numerous comorbid conditions. Polypharmacy and the frequent use of psychotropic medication increase the risk of adverse drug events, which may result in risk of increased morbidity and mortality in frail, elderly patients. The requirement to solve individual therapeutic problems has to be supported by not only an adequate and need-based pharmaceutical supply but also by suitable organizational and logistic solutions. In the nursing home environment, ineffective communication between the various professional groups involved in medical treatment may lead to inappropriate or unintentional medication use. In the present survey, data and research results that are relevant to assess the medical treatment situation in long-term care facilities particularly with regard to the safety of pharmacotherapy are presented. The two problem areas of patient-customized therapy and the handling of pharmaceuticals in the context of institutional care are addressed separately. PMID:20376418

  11. Qualification of safety-related electrical equipment in France. Methods, approach and test facilities

    SciTech Connect

    Raimondo, E.; Capman, J.L.; Herovard, M.

    1985-05-01

    Requirements for qualification of electrical equipment used in French-built nuclear power plants are stated in a national code, the RCC-E, or Regles de Construction et de Conception des Materiels Electriques. Under the RCC-E, safety related equipment is assigned to one of three different categories, according to location in the plant and anticipated normal, accident and post-accident behavior. Qualification tests differ for each category and procedures range in scope from the standard seismic test to the highly stringent VISA program, which specifies a predetermined sequence of aging, radiation, seismic and simulated accident testing. A network of official French test facilities was developed specifically to meet RCC-E requirements.

  12. Characterizing W-2 SLSF experiment temperature oscillations using computer graphics. [Sodium Loop Safety Facility

    SciTech Connect

    Smith, D.E.

    1983-06-23

    The W-2 SLSF (Sodium Loop Safety Facility) experiment was an instrumented in-reactor test performed to characterize the failure response of full-length, preconditioned LMFBR prototypic fuel pins to slow transient overpower (TOP) conditions. Although the test results were expected to confirm analytical predictions of upper level failure and fuel expulsion, an axial midplane failure was experienced. Extensive post-test analyses were conducted to understand all of the unexpected behavior in the experiment. (1) The initial post-test effort focused on the temperature oscillations recorded by the 54 thermocouples used in the experiment. In order to synthesize the extensive data records and identify patterns of behavior in the data records, a computer-generated film was used to present the temperature data recorded during the experiment.

  13. Building a World-Class Safety Culture: The National Ignition Facility and the Control of Human and Organizational Error

    SciTech Connect

    Bennett, C T; Stalnaker, G

    2002-12-06

    Accidents in complex systems send us signals. They may be harbingers of a catastrophe. Some even argue that a ''normal'' consequence of operations in a complex organization may not only be the goods it produces, but also accidents and--inevitably--catastrophes. We would like to tell you the story of a large, complex organization, whose history questions the argument ''that accidents just happen.'' Starting from a less than enviable safety record, the National Ignition Facility (NIF) has accumulated over 2.5 million safe hours. The story of NIF is still unfolding. The facility is still being constructed and commissioned. But the steps NIF has taken in achieving its safety record provide a principled blueprint that may be of value to others. Describing that principled blueprint is the purpose of this paper. The first part of this paper is a case study of NIF and its effort to achieve a world-class safety record. This case study will include a description of (1) NIF's complex systems, (2) NIF's early safety history, (3) factors that may have initiated its safety culture change, and (4) the evolution of its safety blueprint. In the last part of the paper, we will compare NIF's safety culture to what safety industry experts, psychologists, and sociologists say about how to shape a culture and control organizational error.

  14. Safety evaluation report related to the renewal of the facility license for the research reactor at the Dow Chemical Company

    SciTech Connect

    Not Available

    1989-04-01

    This safety evaluation report for the application filed by the Dow Chemical Company for renewal of facility Operating License R-108 to continue to operate its research reactor at an increased operating power level has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located on the grounds of the Michigan Division of the Dow Chemical Company in Midland, Michigan. The staff concludes that the Dow Chemical Company can continue to operate its reactor without endangering the health and safety of the public.

  15. Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 1998

    SciTech Connect

    1999-02-01

    This is the ninth Annual Report to the Congress describing Department of Energy (Department) activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of energy regarding public health and safety issues at the Department`s defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department`s defense nuclear facilities. The locations of the major Department facilities are provided. During 1998, Departmental activities resulted in the proposed closure of one Board recommendation. In addition, the Department has completed all implementation plan milestones associated with four other Board recommendations. Two new Board recommendations were received and accepted by the Department in 1998, and two new implementation plans are being developed to address these recommendations. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, a renewed effort to increase the technical capabilities of the federal workforce, and a revised plan for stabilizing excess nuclear materials to achieve significant risk reduction.

  16. Quarterly report on Defense Nuclear Facilities Safety Board Recommendation 90-7 for the period ending December 31, 1992

    SciTech Connect

    Cash, R.J.; Dukelow, G.T.; Forbes, C.J.

    1993-03-01

    This is the seventh quarterly report on the progress of activities addressing safety issues associated with Hanford Site high-level radioactive waste tanks that contain ferrocyanide compounds. In the presence of oxidizing materials, such as nitrates or nitrites, ferrocyanide can be made to explode in the laboratory by heating it to high temperatures [above 285{degrees}C (545{degrees}F)]. In the mid 1950s approximately 140 metric tons of ferrocyanide were added to 24 underground high-level radioactive waste tanks. An implementation plan (Cash 1991) responding to the Defense Nuclear Facilities Safety Board Recommendation 90-7 (FR 1990) was issued in March 1991 describing the activities that were planned and underway to address each of the six parts of Recommendation 90-7. A revision to the original plan was transmitted to US Department of Energy by Westinghouse Hanford Company in December 1992. Milestones completed this quarter are described in this report. Contents of this report include: Introduction; Defense Nuclear Facilities Safety Board Implementation Plan Task Activities (Defense Nuclear Facilities Safety Board Recommendation for enhanced temperature measurement, Recommendation for continuous temperature monitoring, Recommendation for cover gas monitoring, Recommendation for ferrocyanide waste characterization, Recommendation for chemical reaction studies, and Recommendation for emergency response planning); Schedules; and References. All actions recommended by the Defense Nuclear Facilities Safety Board for emergency planning by Hanford Site emergency preparedness organizations have been completed.

  17. Construction safety program for the National Ignition Facility, July 30, 1999 (NIF-0001374-OC)

    SciTech Connect

    Benjamin, D W

    1999-07-30

    These rules apply to all LLNL employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other National Laboratories, participating guests, visitors and students) and contractors/subcontractors. The General Rules-Code of Safe Practices shall be used by management to promote accident prevention through indoctrination, safety and health training and on-the-job application. As a condition for contracts award, all contractors and subcontractors and their employees must certify on Form S and H A-l that they have read and understand, or have been briefed and understand, the National Ignition Facility OCIP Project General Rules-Code of Safe Practices. (An interpreter must brief those employees who do not speak or read English fluently.) In addition, all contractors and subcontractors shall adopt a written General Rules-Code of Safe Practices that relates to their operations. The General Rules-Code of Safe Practices must be posted at a conspicuous location at the job site office or be provided to each supervisory employee who shall have it readily available. Copies of the General Rules-Code of Safe Practices can also be included in employee safety pamphlets.

  18. Application of FEPs analysis to identify research priorities relevant to the safety case for an Australian radioactive waste facility

    SciTech Connect

    Payne, T.E.; McGlinn, P.J.

    2007-07-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has established a project to undertake research relevant to the safety case for the proposed Australian radioactive waste facility. This facility will comprise a store for intermediate level radioactive waste, and either a store or a near-surface repository for low-level waste. In order to identify the research priorities for this project, a structured analysis of the features, events and processes (FEPs) relevant to the performance of the facility was undertaken. This analysis was based on the list of 137 FEPs developed by the IAEA project on 'Safety Assessment Methodologies for Near Surface Disposal Facilities' (ISAM). A number of key research issues were identified, and some factors which differ in significance for the store, compared to the repository concept, were highlighted. For example, FEPs related to long-term groundwater transport of radionuclides are considered to be of less significance for a store than a repository. On the other hand, structural damage from severe weather, accident or human interference is more likely for a store. The FEPs analysis has enabled the scientific research skills required for the inter-disciplinary project team to be specified. The outcomes of the research will eventually be utilised in developing the design, and assessing the performance, of the future facility. It is anticipated that a more detailed application of the FEPs methodology will be undertaken to develop the safety case for the proposed radioactive waste management facility. (authors)

  19. [A questionnaire about radiation safety management of the draining-water system at nuclear medicine facilities].

    PubMed

    Shizukuishi, Kazuya; Watanabe, Hiroshi; Narita, Hiroto; Kanaya, Shinichi; Kobayashi, Kazumi; Yamamoto, Tetsuo; Tsukada, Masaru; Iwanaga, Tetsuo; Ikebuchi, Shuji; Kusama, Keiji; Tanaka, Mamoru; Namiki, Norio; Fuiimura, Youko; Horikoshi, Akiko; Inoue, Tomio; Kusakabe, Kiyoko

    2004-05-01

    We conducted a questionnaire survey about radiation-safety management condition in Japanese nuclear medicine facilities to make materials of proposition for more reasonable management of medical radioactive waste. We distributed a questionnaire to institutions equipped with Nuclear Medicine facilities. Of 1,125 institutions, 642 institutes (52.8%) returned effective answers. The questionnaire covered the following areas: 1) scale of an institution, 2) presence of enforcement of radiotherapy, 3) system of a tank, 4) size and number of each tank, 5) a form of draining-water system, 6) a displacement in a radioactive rays management area, 7) a measurement method of the concentration of medical radioactive waste in draining water system, 8) planned and used quantity of radioisotopes for medical examination and treatment, 9) an average displacement of hospital for one month. In most institutions, a ratio of dose limitation of radioisotope in draining-water system was less than 1.0, defined as an upper limitation in ordinance. In 499 hospitals without facilities of hospitalization for unsealed radioisotope therapy, 473 hospitals reported that sum of ratios of dose limits in a draining-water system was less than 1.0. It was calculated by used dose of radioisotope and monthly displacement from hospital, on the premise that all used radioisotope entered in the general draining-water system. When a drainage including radioactivity from a controlled area join with that from other area before it flows out of a institution, it may be diluted and its radioactive concentration should be less than its upper limitation defined in the rule. Especially, in all institutions with a monthly displacement of more than 25,000 m3, the sum of ratio of the concentration of each radionuclide to the concentration limit dose calculated by used dose of radioisotope, indicated less than 1.0. PMID:15354724

  20. 33 CFR 146.103 - Safety and Security notice of arrival for U.S. floating facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... under 30 CFR 250.154 for identification, where the owner or operator of the floating facility plans to... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety and Security notice of..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES OPERATIONS Manned...

  1. Boiling eXperiment Facility (BXF) Fluid Toxicity Technical Interchange Meeting (TIM) with the Payload Safety Review Panel (PSRP)

    NASA Technical Reports Server (NTRS)

    Sheredy, William A.

    2012-01-01

    A Technical Interchange meeting was held between the payload developers for the Boiling eXperiment Facility (BXF) and the NASA Safety Review Panel concerning operational anomaly that resulted in overheating one of the fluid heaters, shorted a 24VDC power supply and generated Perfluoroisobutylene (PFiB) from Perfluorohexane.

  2. Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, Calendar Year 1999

    SciTech Connect

    2000-02-01

    This is the tenth Annual Report to the Congress describing Department of Energy activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of Energy regarding public health and safety issues at the Department's defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department's defense nuclear facilities. During 1999, Departmental activities resulted in the closure of nine Board recommendations. In addition, the Department has completed all implementation plan milestones associated with three Board recommendations. One new Board recommendation was received and accepted by the Department in 1999, and a new implementation plan is being developed to address this recommendation. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, opening of a repository for long-term storage of transuranic wastes, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

  3. Quarterly report on Defense Nuclear Facilities Safety Board recommendation 90-7 for the period ending September 30, 1993

    SciTech Connect

    Meacham, J.E.; Cash, R.J.; Dukelow, G.T.

    1993-12-01

    This is the tenth quarterly repose on the progress of activities addressing safety issues associated with Hanford Site high-level radioactive waste tanks that contain ferrocyanide compounds. In the Presence of oxidizing materials, such as nitrates or nitrites, ferrocyanide can be made to explode in the laboratory by hearing it to high temperatures [above 285{degree} C (545{degree} F)]. In the mid 1950s, approximately 140 metric tons of ferrocyanide were added to waste now stored in underground high-level radioactive waste tanks. An implementation plan responding to the Defense Nuclear Facilities Safety Board Recommendation 90-7 (FR 1990){sup 2} was issued in March 1991 describing the activities that were planned and underway to address each of the six parts of Recommendation 90-7. A revision to the original plan was transmitted to the US Department of Energy by Westinghouse Hanford in December 1992, and subsequently to the Defense Nuclear Facilities Safety Board in 1993.

  4. 76 FR 42686 - DOE Response to Recommendation 2011-1 of the Defense Nuclear Facilities Safety Board, Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... accordance with section 315(b) of the Atomic Energy Act of 1954, as amended, 42 U.S.C. 2286d(b), The... structure and scope of follow-on safety culture improvement initiatives and actions. We look forward...

  5. Annual report to Congress. Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 2000

    SciTech Connect

    2001-03-01

    This Annual Report to the Congress describes the Department of Energy's activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board. During 2000, the Department completed its implementation and proposed closure of one Board recommendation and completed all implementation plan milestones associated with two additional Board recommendations. Also in 2000, the Department formally accepted two new Board recommendations and developed implementation plans in response to those recommendations. The Department also made significant progress with a number of broad-based safety initiatives. These include initial implementation of integrated safety management at field sites and within headquarters program offices, issuance of a nuclear safety rule, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

  6. Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1

    SciTech Connect

    Not Available

    1993-01-01

    The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice.

  7. NHEXAS PHASE I REGION 5 STUDY--STANDARD OPERATING PROCEDURES FOR PERSONNEL SAFETY IN THE ACS INORGANIC CLEAN LAB FACILITY (NHX/SOP-300-002)

    EPA Science Inventory

    This procedure provides guidelines to ensure the safety of the laboratory working staff and the clean room facility. The clean room facility was designed to provide a particle-free clean room environment for trace and ultra-trace level metal analyses. As a result, the facility wa...

  8. Transparent tools for uncertainty analysis in high level waste disposal facilities safety

    SciTech Connect

    Lemos, Francisco Luiz de; Helmuth, Karl-Heinz; Sullivan, Terry

    2007-07-01

    In this paper some results of a further development of a technical cooperation project, initiated in 2004, between the CDTN/CNEN, The Brazilian National Nuclear Energy Commission, and the STUK, The Finnish Radiation and Nuclear Safety Authority, are presented. The objective of this project is to study applications of fuzzy logic, and artificial intelligence methods, on uncertainty analysis of high level waste disposal facilities safety assessment. Uncertainty analysis is an essential part of the study of the complex interactions of the features, events and processes, which will affect the performance of the HLW disposal system over the thousands of years in the future. Very often the development of conceptual and computational models requires simplifications and selection of over conservative parameters that can lead to unrealistic results. These results can mask the existing uncertainties which, consequently, can be an obstacle to a better understanding of the natural processes. A correct evaluation of uncertainties and their rule on data interpretation is an important step for the improvement of the confidence in the calculations and public acceptance. This study focuses on dissolution (source), solubility and sorption (sink) as key processes for determination of release and migration of radionuclides. These factors are affected by a number of parameters that characterize the near and far fields such as pH; temperature; redox conditions; and other groundwater properties. On the other hand, these parameters are also consequence of other processes and conditions such as water rock interaction; pH and redox buffering. Fuzzy logic tools have been proved to be suited for dealing with interpretation of complex, and some times conflicting, data. For example, although some parameters, such as pH and carbonate, are treated as independent, they have influence in each other and on the solubility. It is used the technique of fuzzy cognitive mapping is used for analysis of

  9. An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility

    NASA Astrophysics Data System (ADS)

    Calderoni, P.; Sharpe, J.; Shimada, M.; Denny, B.; Pawelko, B.; Schuetz, S.; Longhurst, G.; Hatano, Y.; Hara, M.; Oya, Y.; Otsuka, T.; Katayama, K.; Konishi, S.; Noborio, K.; Yamamoto, Y.

    2011-10-01

    The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

  10. An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility

    SciTech Connect

    P. Calderoni; P. Sharpe; M. Shimada

    2009-09-01

    The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

  11. State Regulatory Authority (SRA) Coordination of Safety, Security, and Safeguards of Nuclear Facilities: A Framework for Analysis

    SciTech Connect

    Mladineo, Stephen V.; Frazar, Sarah L.; Kurzrok, Andrew J.; Martikka, Elina; Hack, Tapani; Wiander, Timo

    2013-05-30

    This paper will explore the development of a framework for conducting an assessment of safety-security-safeguards integration within a State. The goal is to examine State regulatory structures to identify conflicts and gaps that hinder management of the three disciplines at nuclear facilities. Such an analysis could be performed by a State Regulatory Authority (SRA) to provide a self-assessment or as part of technical cooperation with either a newcomer State, or to a State with a fully developed SRA.

  12. Emergency preparedness source term development for the Office of Nuclear Material Safety and Safeguards-Licensed Facilities

    SciTech Connect

    Sutter, S.L.; Mishima, J.; Ballinger, M.Y.; Lindsey, C.G.

    1984-08-01

    In order to establish requirements for emergency preparedness plans at facilities licensed by the Office of Nuclear Materials Safety and Safeguards, the Nuclear Regulatory Commission (NRC) needs to develop source terms (the amount of material made airborne) in accidents. These source terms are used to estimate the potential public doses from the events, which, in turn, will be used to judge whether emergency preparedness plans are needed for a particular type of facility. Pacific Northwest Laboratory is providing the NRC with source terms by developing several accident scenarios for eleven types of fuel cycle and by-product operations. Several scenarios are developed for each operation, leading to the identification of the maximum release considered for emergency preparedness planning (MREPP) scenario. The MREPP scenarios postulated were of three types: fire, tornado, and criticality. Fire was significant at oxide fuel fabrication, UF/sub 6/ production, radiopharmaceutical manufacturing, radiopharmacy, sealed source manufacturing, waste warehousing, and university research and development facilities. Tornadoes were MREPP events for uranium mills and plutonium contaminated facilities, and criticalities were significant at nonoxide fuel fabrication and nuclear research and development facilities. Techniques for adjusting the MREPP release to different facilities are also described.

  13. Features, events, processes, and safety factor analysis applied to a near-surface low-level radioactive waste disposal facility

    SciTech Connect

    Stephens, M.E.; Dolinar, G.M.; Lange, B.A.

    1995-12-31

    An analysis of features, events, processes (FEPs) and other safety factors was applied to AECL`s proposed IRUS (Intrusion Resistant Underground Structure) near-surface LLRW disposal facility. The FEP analysis process which had been developed for and applied to high-level and transuranic disposal concepts was adapted for application to a low-level facility for which significant efforts in developing a safety case had already been made. The starting point for this process was a series of meetings of the project team to identify and briefly describe FEPs or safety factors which they thought should be considered. At this early stage participants were specifically asked not to screen ideas. This initial list was supplemented by selecting FEPs documented in other programs and comments received from an initial regulatory review. The entire list was then sorted by topic and common issues were grouped, and issues were classified in three priority categories and assigned to individuals for resolution. In this paper, the issue identification and resolution process will be described, from the initial description of an issue to its resolution and inclusion in the various levels of the safety case documentation.

  14. Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities

    SciTech Connect

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

  15. Liver Regeneration

    PubMed Central

    Michalopoulos, George K.

    2009-01-01

    Liver regeneration after partial hepatectomy is a very complex and well-orchestrated phenomenon. It is carried out by the participation of all mature liver cell types. The process is associated with signaling cascades involving growth factors, cytokines, matrix remodeling, and several feedbacks of stimulation and inhibition of growth related signals. Liver manages to restore any lost mass and adjust its size to that of the organism, while at the same time providing full support for body homeostasis during the entire regenerative process. In situations when hepatocytes or biliary cells are blocked from regeneration, these cell types can function as facultative stem cells for each other. PMID:17559071

  16. Health and safety plan for characterization sampling of ETR and MTR facilities

    SciTech Connect

    Baxter, D.E.

    1994-10-01

    This health and safety plan establishes the procedures and requirements that will be used to minimize health and safety risks to persons performing Engineering Test Reactor and Materials Test Reactor characterization sampling activities, as required by the Occupational Safety and Health Administration standard, 29 CFR 1910.120. It contains information about the hazards involved in performing the tasks, and the specific actions and equipment that will be used to protect persons working at the site.

  17. Effect of Community Engagement Interventions on Patient Safety and Risk Reduction Efforts in Primary Health Facilities: Evidence from Ghana

    PubMed Central

    Alhassan, Robert Kaba; Nketiah-Amponsah, Edward; Spieker, Nicole; Arhinful, Daniel Kojo; Ogink, Alice; van Ostenberg, Paul; Rinke de Wit, Tobias F.

    2015-01-01

    Background Patient safety and quality care remain major challenges to Ghana’s healthcare system. Like many health systems in Africa, this is largely because demand for healthcare is outstripping available human and material resource capacity of healthcare facilities and new investment is insufficient. In the light of these demand and supply constraints, systematic community engagement (SCE) in healthcare quality assessment can be a feasible and cost effective option to augment existing quality improvement interventions. SCE entails structured use of existing community groups to assess healthcare quality in health facilities. Identified quality gaps are discussed with healthcare providers, improvements identified and rewards provided if the quality gaps are closed. Purpose This paper evaluates whether or not SCE, through the assessment of health service quality, improves patient safety and risk reduction efforts by staff in healthcare facilities. Methods A randomized control trail was conducted in 64 primary healthcare facilities in the Greater Accra and Western regions of Ghana. Patient risk assessments were conducted in 32 randomly assigned intervention and control facilities. Multivariate multiple regression test was used to determine effect of the SCE interventions on staff efforts towards reducing patient risk. Spearman correlation test was used to ascertain associations between types of community groups engaged and risk assessment scores of healthcare facilities. Findings Clinic staff efforts towards increasing patient safety and reducing risk improved significantly in intervention facilities especially in the areas of leadership/accountability (Coef. = 10.4, p<0.05) and staff competencies (Coef. = 7.1, p<0.05). Improvement in service utilization and health resources could not be attributed to the interventions because these were outside the control of the study and might have been influenced by institutional or national level developments between the

  18. NRC confirmatory AP600 safety system phase I testing in the ROSA/AP600 test facility

    SciTech Connect

    Rhee, G.S.; Kukita, Yutaka; Schultz, R.R.

    1996-03-01

    The NRC confirmatory phase I testing for the AP600 safety systems has been completed in the modified ROSA (Rig of Safety Assessment) test facility located at the Japan Atomic Energy Research Institute (JAERI) campus in Tokai, Japan. The test matrix included a variety of accident scenarios covering both design and beyond-design basis accidents. The test results indicate the AP600 safety systems as reflected in ROSA appear to perform as designed and there is no danger of core heatup for the accident scenarios investigated. In addition, no detrimental system interactions nor adverse effects of non-safety systems on the safety system functions were identified. However, three phenomena of interest have been identified for further examination to determine whether they are relevant to the AP600 plant. Those three phenomena are: (1) a potential for water hammer caused by rapid condensation which may occur following the actuation of the automatic depressurization system (ADS), (2) a large thermal gradient in the cold leg pipe where cooled water returns from the passive residual heat removal system and forms a thermally stratified layer, and (3) system-wide oscillations initiating following the ADS stage 4 actuation and persisting until the liquid in the pressurizer drains and steam generation in the core becomes insignificant.

  19. Cartilage Regeneration

    PubMed Central

    Tuan, Rocky S.; Chen, Antonia F.; Klatt, Brian A.

    2016-01-01

    Cartilage damaged by trauma has a limited capacity to regenerate. Current methods for treating small chondral defects include palliative treatment with arthroscopic debridement and lavage, reparative treatment with marrow stimulation techniques (e.g. microfracture), and restorative treatment, including osteochondral grafting and autologous chondrocyte implantation. Larger defects are treated by osteochondral allografting or total joint replacements. However, the future of treating cartilage defects lies in providing biologic solutions through cartilage regeneration. Laboratory and clinical studies have examined the treatment of larger lesions using tissue engineered cartilage. Regenerated cartilage can be derived from various cell types, including chondrocytes, mesenchymal stem cells, and pluripotent stem cells. Common scaffolding materials include proteins, carbohydrates, synthetic materials, and composite polymers. Scaffolds may be woven, spun into nanofibers, or configured as hydrogels. Chondrogenesis may be enhanced with the application of chondroinductive growth factors. Finally, bioreactors are being developed to enhance nutrient delivery and provide mechanical stimulation to tissue-engineered cartilage ex vivo. The multi-disciplinary approaches currently being developed to produce cartilage promise to bring the dream of cartilage regeneration in clinical use to reality. PMID:23637149

  20. 76 FR 61350 - DOE Response to Defense Nuclear Facilities Safety Board's Request for Clarification on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... perceptions of that controversy--regardless of the merits of the underlying case-- may have on a community. We also agree with the Board that such perceptions can have a material effect on the safety culture at a... therefore will continue to work to establish a strong safety culture that takes the power of...

  1. Technical safety requirements (TSR) for waste receiving and processing (WRAP) facility

    SciTech Connect

    Weidert, J.R.

    1997-11-18

    The scope of this TSR document is based on the WRAP Final Safety Analysis Report (HNF-SD-W026-SAR-002) and supporting documents. The administrative controls set forth in this TSR document are derived from the WRAP Final Safety Analysis Report.

  2. The safety climate of a Department of Energy nuclear facility: A sociotechnical analysis

    SciTech Connect

    Johnson, A.E.; Harbour, J.L.

    1993-06-01

    Government- and public-sponsored groups are increasingly demanding greater accountability by the Department of Energy`s weapons complex. Many of these demands have focused on the development of a positive safety climate, one that not only protects workers onsite, but also the surrounding populace and environment as well. These demands are, in part, a response to findings which demonstrate a close linkage between actual organizational safety performance and the organization`s safety climate, i.e., the collective attitudes employees hold concerning the level of safety in their organization. This paper describes the approach taken in the systematic assessment of the safety climate at EG&G Rocky Flats Plant (RFP).

  3. 78 FR 263 - Safety Zones; TEMCO Grain Facilities; Columbia and Willamette Rivers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-03

    ... Acronyms DHS Department of Homeland Security ] FR Federal Register NPRM Notice of Proposed Rulemaking A... Willamette Rivers, respectively, approximately between the navigable channel and the facility described... with this rulemaking. You may also visit the Docket Management Facility in Room W12-140 on the...

  4. The Pain in Storage: Work Safety in a High-Density Shelving Facility

    ERIC Educational Resources Information Center

    Atkins, Stephanie A.

    2005-01-01

    An increasing number of academic and research libraries have built high-density shelving facilities to address overcrowding conditions in their regular stacks. However, the work performed in these facilities is physically strenuous and highly repetitive in nature and may require the use of potentially dangerous equipment. This article will examine…

  5. 76 FR 11523 - Atomic Safety and Licensing Board; AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ..., ID, 76 FR 9054 (Feb. 16, 2011). In accord with Atomic Energy Act (AEA) section 274l, 42 U.S.C. Sec... Rock Enrichment Facility), 74 FR 38,052, 38,055 (Jul. 30, 2009) (CLI-09- 15, 70 NRC 1, 10-11 (2009... of Enrichment Facility Licensing Proceeding), 75 FR 63,213 (Oct. 14, 2010), which was the subject...

  6. Guidance for the design and management of a maintenance plan to assure safety and improve the predictability of a DOE nuclear irradiation facility. Final report

    SciTech Connect

    Booth, R.S.; Kryter, R.C.; Shepard, R.L.; Smith, O.L.; Upadhyaya, B.R.; Rowan, W.J.

    1994-10-01

    A program is recommended for planning the maintenance of DOE nuclear facilities that will help safety and enhance availability throughout a facility`s life cycle. While investigating the requirements for maintenance activities, a major difference was identified between the strategy suitable for a conventional power reactor and one for a research reactor facility: the latter should provide a high degree of predicted availability (referred to hereafter as ``predictability``) to its users, whereas the former should maximize total energy production. These differing operating goals necessitate different maintenance strategies. A strategy for scheduling research reactor facility operation and shutdown for maintenance must balance safety, reliability,and predicted availability. The approach developed here is based on three major elements: (1) a probabilistic risk analysis of the balance between assured reliability and predictability (presented in Appendix C), (2) an assessment of the safety and operational impact of maintenance activities applied to various components of the facility, and (3) a data base of historical and operational information on the performance and requirements for maintenance of various components. These factors are integrated into a set of guidelines for designing a new highly maintainable facility, for preparing flexible schedules for improved maintenance of existing facilities, and for anticipating the maintenance required to extend the life of an aging facility. Although tailored to research reactor facilities, the methodology has broader applicability and may therefore be used to improved the maintenance of power reactors, particularly in anticipation of peak load demands.

  7. National Ignition Facility sub-system design requirements integrated safety systems SSDR 1.5.4

    SciTech Connect

    Reed, R.; VanArsdall, P.; Bliss, E.

    1996-09-01

    This System Design Requirement document establishes the performance, design, development, and test requirements for the Integrated Safety System, which is part of the NIF Integrated Computer Control System (ICCS).

  8. Preclosure radiological safety analysis for accident conditions of the potential Yucca Mountain Repository: Underground facilities; Yucca Mountain Site Characterization Project

    SciTech Connect

    Ma, C.W.; Sit, R.C.; Zavoshy, S.J.; Jardine, L.J.; Laub, T.W.

    1992-06-01

    This preliminary preclosure radiological safety analysis assesses the scenarios, probabilities, and potential radiological consequences associated with postulated accidents in the underground facility of the potential Yucca Mountain repository. The analysis follows a probabilistic-risk-assessment approach. Twenty-one event trees resulting in 129 accident scenarios are developed. Most of the scenarios have estimated annual probabilities ranging from 10{sup {minus}11}/yr to 10{sup {minus}5}/yr. The study identifies 33 scenarios that could result in offsite doses over 50 mrem and that have annual probabilities greater than 10{sup {minus}9}/yr. The largest offsite dose is calculated to be 220 mrem, which is less than the 500 mrem value used to define items important to safety in 10 CFR 60. The study does not address an estimate of uncertainties, therefore conclusions or decisions made as a result of this report should be made with caution.

  9. Quarterly report on Defense Nuclear Facilities Safety Board Recommendation 90-7 for the period ending March 31, 1993

    SciTech Connect

    Cash, R.J.; Dukelow, G.T.; Forbes, C.J.; Meacham, J.E.

    1993-06-01

    This is the eighth quarterly report on the progress of activities addressing safety issues associated with Hanford Site high-level radioactive waste tanks that contain ferrocyanide compounds. In the presence of oxidizing materials, such as nitrates or nitrites, ferrocyanide can be made to explode in the laboratory by heating it to high temperatures [above 285{degree}C (545{degree}F)]. In the mid 1950s, approximately 140 metric tons of ferrocyanide were added to 24 underground high-level radioactive waste tanks. An implementation plan (Cash 1991) responding to the Defense Nuclear Facilities Safety Board Recommendation 90-7 (FR 1990) was issued in March 1991 describing the activities that were planned and underway to address each of the six parts of Recommendation 90-7. A revision to the original plan was transmitted to the US Department of Energy by Westinghouse Hanford Company in December 1992.

  10. Criticality safety evaluation report for the cold vacuum drying facility's process water handling system

    SciTech Connect

    NELSON, J.V.

    1999-05-12

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

  11. Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facilities Process Water Handling System

    SciTech Connect

    KESSLER, S.F.

    2000-08-10

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

  12. Fuel-cycle facilities: preliminary safety and environmental information document. Volume VII

    SciTech Connect

    Not Available

    1980-01-01

    Information is presented concerning the mining and milling of uranium and thorium; uranium hexafluoride conversion; enrichment; fuel fabrication; reprocessing; storage options; waste disposal options; transportation; heavy-water-production facilities; and international fuel service centers.

  13. Approach to developing a ground-motion design basis for facilities important to safety at Yucca Mountain

    SciTech Connect

    King, J.L.

    1990-04-01

    The Department of Energy has proposed a methodology for developing a ground-motion design basis for prospective facilities at Yucca Mountain that are important to safety. The methodology utilizes a quasi-deterministic construct that is designed to provide a conservative, robust, and reproducible estimate of ground motion that has a one-in-ten chance of occurring during the preclosure period. This estimate is intended to define a ground-motion level for which the seismic design would ensure minimal disruption to operations; engineering analyses to ensure safe performance in the unlikely event that the design basis is exceeded are a part of the proposed methodology. 8 refs.

  14. Sandia National Laboratories/New Mexico Facilities and Safety Information Document [NOTE: Volume I, Chapter 1

    SciTech Connect

    March, F.; Guerrero, J.V.; Johns, W.H.; Schetnan, R.; Bayliss, L.S.; Kuzio, K.A.; White, B.B.

    1999-09-01

    Sandia National Laboratories (SNL) began in 1945 as the ''Z'' Division of what was then Los Alamos Scientific Laboratory on Oxnard Field, which was owned by the Air Technical Service Command, as a base of operations to store materials and house personnel. Oxnard Field was transferred to the U.S. Engineers, Manhattan District, on July 21, 1945, who converted several wood frame structures to serve functions that were transferred from Los Alamos. Development of the SNL/New Mexico (SNL/NM) site began in 1946 and 1947 with construction of the first four buildings in what is now Tech Area I. Construction of another 14 permanent buildings in Tech Area I began in 1948. SNL constructed a high-explosive assembly area in Tech Area II, a half mile south of Tech Area I, and started plans for several outdoor testing facilities for Tech Area III, about seven miles to the south of Tech Area I, in 1952. By 1953, SNL completed and put into operation the first group of Tech Area III facilities, which included a rocket sled track, a large centrifuge, a vibration facility, and an instrument control center. Tech Area IV and Tech Area V were developed later to provide facilities for pulsed power and high-energy experiments. As the need developed for outdoor testing facilities remote from the public and other work areas, SNL added many facilities on U.S. Air Force and other federal property in the area known as Coyote Test Field (Sandia National Laboratories, 1997b). Most recently, DOE leased U.S. Air Force facilities in the Manzano Area for SNL to use for storage of low-level radioactive waste, mixed waste (a combination of radioactive and hazardous waste), and transuranic waste (Sandia National Laboratories, 1997a).

  15. Construction safety program for the National Ignition Facility, July 30, 1999

    SciTech Connect

    Benjamin, D W

    1999-07-30

    The Construction Safety Program (CSP) for NIF sets forth the responsibilities, guidelines, rules, policies and regulations for all workers involved in the construction, special equipment installation, acceptance testing, and start-up of NIF at LLNL during the construction period of NIF. During this period, all workers are required to implement measures to create a universal awareness which promotes safe practice at the work site, and which will achieve NIF's management objectives in preventing accidents and illnesses. Construction safety for NIF is predicated on everyone performing their jobs in a manner that prevents job-related disabling injuries and illnesses. Integrated Safety Management (ISM) is practiced in the execution of all activities associated with the NIF Project. The seven Principles of ISM are: (1) Line management is responsible for safety. (2) Clear roles and responsibilities are established and maintained. (3) Personnel possess competence commensurate with responsibilities. (4) Resource allocations are balanced, making ES and H a priority in project planning and execution. (5) Safety requirements are identified and implemented. (6) Hazard controls are tailored to the project work. (7) Operations are authorized before work begins.

  16. Evaluation of a Radiation Worker Safety Training Program at a nuclear facility

    SciTech Connect

    Lindsey, J.E.

    1993-05-01

    A radiation safety course was evaluated using the Kirkpatrick criteria of training evaluation as a guide. Thirty-nine employees were given the two-day training course and were compared with 15 employees in a control group who did not receive the training. Cognitive results show an immediate gain in knowledge, and substantial retention at 6 months. Implications of the results are discussed in terms of applications to current radiation safety training was well as follow-on training research and development requirements.

  17. Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)

    SciTech Connect

    TOMASZEWSKI, T.A.

    2000-04-25

    The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management.

  18. 78 FR 7665 - Safety Zones; Pacific Northwest Grain Handlers Association Facilities; Columbia and Willamette...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ...) 366-9826. SUPPLEMENTARY INFORMATION: Table of Acronyms DHS Department of Homeland Security FR Federal... the January 17, 2008, issue of the Federal Register (73 FR 3316). 4. Public Meeting We do not now plan... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zones; Pacific Northwest Grain...

  19. San Jose Unified School District Health & Safety Guide for Facilities and Construction.

    ERIC Educational Resources Information Center

    2001

    This guide from the San Jose Unified School District describes recommended procedures to promote and maintain a healthy and safe school environment during maintenance, modernization, or construction. Guidelines are presented in the following areas: (1) construction safety; (2) communication; (3) material selection; (4) heating, ventilation, and…

  20. Barriers and solutions in implementing occupational health and safety services at a large nuclear weapons facility.

    PubMed

    Takaro, T K; Ertell, K; Salazar, M K; Beaudet, N; Stover, B; Hagopian, A; Omenn, G; Barnhart, S

    2000-01-01

    The Hanford Nuclear Reservation is one of the U.S. Department of Energy's largest nuclear weapons sites. The enormous changes experienced by Hanford over the last several years, as its mission has shifted from weapons production to cleanup, has profoundly affected its occupational health and safety services. Innovative programs and new initiatives hold promise for a safer workplace for the thousands of workers at Hanford and other DOE sites. However, occupational health and safety professionals continue to face multiple organizational, economic, and cultural challenges. A major problem identified during this review was the lack of coordination of onsite services. Because each health and safety program operates independently (albeit with the guidance of the Richland field operations office), many services are duplicative and the health and safety system is fragmented. The fragmentation is compounded by the lack of centralized data repositories for demographic and exposure data. Innovative measures such as a questionnaire-driven Employee Job Task Analysis linked to medical examinations has allowed the site to move from the inefficient and potentially dangerous administrative medical monitoring assignment to defensible risk-based assignments and could serve as a framework for improving centralized data management and service delivery. PMID:11186038

  1. 33 CFR 146.104 - Safety and Security notice of arrival for foreign floating facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... number, assigned under 30 CFR 250.154 for identification, where the owner or operator of the foreign... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety and Security notice of... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES OPERATIONS...

  2. 78 FR 46966 - Food Safety Modernization Act Domestic and Foreign Facility Reinspection, Recall, and Importer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... small businesses (76 FR 45818, August 1, 2011). The comment period for this request ended November 30... Safety and Applied Nutrition (CFSAN) and the Center for Veterinary Medicine (CVM). Thus, as the starting... FR 45639). Utilizing the method set forth in section 736(c)(1) of the FD&C Act, FDA has calculated...

  3. 76 FR 45820 - Food Safety Modernization Act Domestic and Foreign Facility Reinspections, Recall, and Importer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ... activities on behalf of FDA's product centers, including the Center for Food Safety and Applied Nutrition (CFSAN) and the Center for Veterinary Medicine (CVM), which have FSMA implementation responsibilities... inspection trips related to FDA's food and veterinary medicine programs, which averaged a total of...

  4. 76 FR 20588 - FDA Food Safety Modernization Act: Focus on Preventive Controls for Facilities; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... examine and update current good manufacturing practice requirements and to develop an animal feed safety... methods in manufacturing, processing, packing, and holding food and feed. FDA is interested in making... three of the following five break-out sessions: Preventive Controls Guidance, On- Farm Manufacturing...

  5. Safety.

    ERIC Educational Resources Information Center

    Education in Science, 1996

    1996-01-01

    Discusses safety issues in science, including: allergic reactions to peanuts used in experiments; explosions in lead/acid batteries; and inspection of pressure vessels, such as pressure cookers or model steam engines. (MKR)

  6. 78 FR 47567 - Safety Zones; Pacific Northwest Grain Handlers Association Facilities; Columbia and Willamette...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... FR Federal Register ] NPRM Notice of Proposed Rulemaking A. Public Participation and Request for... the January 17, 2008, issue of the Federal Register (73 FR 3316). 4. Public Meeting We do not now plan... Handlers Association Facilities; Columbia and Willamette Rivers'' in the Federal Register (78 FR 7665)....

  7. 78 FR 70858 - Safety Zones; Pacific Northwest Grain Handlers Association Facilities; Columbia and Willamette...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... Department of Homeland Security FR Federal Register NPRM Notice of Proposed Rulemaking TFR Temporary Final... Facilities; Columbia and Willamette Rivers'' in the Federal Register (78 FR 47567). In that temporary interim... August 6, 2013 (78 FR 47567) as no substantive changes have been deemed necessary. One...

  8. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with at least 240 pounds of rock dust and provided with two portable multipurpose dry chemical type... laboratory and have a 10A:60B:C or higher rating. Both fire extinguishers must be easily accessible to... of the facility, in intake air; or (2) Provided with three portable multipurpose dry chemical...

  9. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with at least 240 pounds of rock dust and provided with two portable multipurpose dry chemical type... laboratory and have a 10A:60B:C or higher rating. Both fire extinguishers must be easily accessible to... of the facility, in intake air; or (2) Provided with three portable multipurpose dry chemical...

  10. 77 FR 45636 - Food Safety Modernization Act Domestic and Foreign Facility Reinspection, Recall, and Importer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... the fees authorized by section 743 of the FD&C Act on small businesses (76 FR 45818, Aug. 1, 2011.... These indirect ] and supporting FTEs function in budget, facility, human resource, information... Federal Register of August 1, 2011 (see 76 FR 45831). Utilizing the method set forth in section...

  11. DESIGN OF A LIMITED-ACCESS FACILITY AND SAFETY PROGRAM FOR A GENETIC TOXICOLOGY LABORATORY

    EPA Science Inventory

    A new limited access facility located in the Environmental Research Center was conceived as a result of the need for laboratories for testing hazardous materials found in the environment. The Genetic Toxicology Division (GTD) research personnel had the expertise and proven test p...

  12. Radiation safety during remediation of the SevRAO facilities: 10 years of regulatory experience.

    PubMed

    Sneve, M K; Shandala, N; Kiselev, S; Simakov, A; Titov, A; Seregin, V; Kryuchkov, V; Shcheblanov, V; Bogdanova, L; Grachev, M; Smith, G M

    2015-09-01

    In compliance with the fundamentals of the government's policy in the field of nuclear and radiation safety approved by the President of the Russian Federation, Russia has developed a national program for decommissioning of its nuclear legacy. Under this program, the State Atomic Energy Corporation 'Rosatom' is carrying out remediation of a Site for Temporary Storage of spent nuclear fuel (SNF) and radioactive waste (RW) at Andreeva Bay located in Northwest Russia. The short term plan includes implementation of the most critical stage of remediation, which involves the recovery of SNF from what have historically been poorly maintained storage facilities. SNF and RW are stored in non-standard conditions in tanks designed in some cases for other purposes. It is planned to transport recovered SNF to PA 'Mayak' in the southern Urals. This article analyses the current state of the radiation safety supervision of workers and the public in terms of the regulatory preparedness to implement effective supervision of radiation safety during radiation-hazardous operations. It presents the results of long-term radiation monitoring, which serve as informative indicators of the effectiveness of the site remediation and describes the evolving radiation situation. The state of radiation protection and health care service support for emergency preparedness is characterized by the need to further study the issues of the regulator-operator interactions to prevent and mitigate consequences of a radiological accident at the facility. Having in mind the continuing intensification of practical management activities related to SNF and RW in the whole of northwest Russia, it is reasonable to coordinate the activities of the supervision bodies within a strategic master plan. Arrangements for this master plan are discussed, including a proposed programme of actions to enhance the regulatory supervision in order to support accelerated mitigation of threats related to the nuclear legacy in the

  13. Regenerator seal

    NASA Technical Reports Server (NTRS)

    Davis, Leonard C. (Inventor); Pacala, Theodore (Inventor); Sippel, George R. (Inventor)

    1981-01-01

    A method for manufacturing a hot side regenerator cross arm seal assembly having a thermally stablilized wear coating with a substantially flat wear surface thereon to seal between low pressure and high pressure passages to and from the hot inboard side of a rotary regenerator matrix includes the steps of forming a flat cross arm substrate member of high nickel alloy steel; fixedly securing the side edges of the substrate member to a holding fixture with a concave surface thereacross to maintain the substrate member to a slightly bent configuration on the fixture surface between the opposite ends of the substrate member to produce prestress therein; applying coating layers on the substrate member including a wear coating of plasma sprayed nickel oxide/calcium flouride material to define a wear surface of slightly concave form across the restrained substrate member between the free ends thereon; and thereafter subjecting the substrate member and the coating thereon to a heat treatment of 1600.degree. F. for sixteen hours to produce heat stabilizing growth in the coating layers on the substrate member and to produce a thermally induced growth stress in the wear surface that substantially equalizes the prestress in the substrate whereby when the cross arm is removed from the fixture surface following the heat treatment step a wear face is formed on the cross arm assembly that will be substantially flat between the ends.

  14. Safety aspects related to the operation of the Cabril L/ILW disposal facility

    SciTech Connect

    Ruiz, M.C.; Alonso, J.A.

    1993-12-31

    In October 1992 the Spanish Ministry of Industry granted the operating permit to the Centro de Almacenamiento de El Cabril (C.A. El Cabril). The Annex 1 to this permit contains the limits and conditions related to safety and to radiological health protection, set by nuclear regulatory authority, the Consejo de Seguridad Nuclear (CSN). The main aspects of the operation regulated in the permit as well as their technical basis and practical meaning are discussed in this paper.

  15. WTEC monograph on instrumentation, control and safety systems of Canadian nuclear facilities

    NASA Technical Reports Server (NTRS)

    Uhrig, Robert E.; Carter, Richard J.

    1993-01-01

    This report updates a 1989-90 survey of advanced instrumentation and controls (I&C) technologies and associated human factors issues in the U.S. and Canadian nuclear industries carried out by a team from Oak Ridge National Laboratory (Carter and Uhrig 1990). The authors found that the most advanced I&C systems are in the Canadian CANDU plants, where the newest plant (Darlington) has digital systems in almost 100 percent of its control systems and in over 70 percent of its plant protection system. Increased emphasis on human factors and cognitive science in modern control rooms has resulted in a reduced workload for the operators and the elimination of many human errors. Automation implemented through digital instrumentation and control is effectively changing the role of the operator to that of a systems manager. The hypothesis that properly introducing digital systems increases safety is supported by the Canadian experience. The performance of these digital systems has been achieved using appropriate quality assurance programs for both hardware and software development. Recent regulatory authority review of the development of safety-critical software has resulted in the creation of isolated software modules with well defined interfaces and more formal structure in the software generation. The ability of digital systems to detect impending failures and initiate a fail-safe action is a significant safety issue that should be of special interest to nuclear utilities and regulatory authorities around the world.

  16. Overall risk estimation for nonreactor nuclear facilities and implementation of safety goals

    SciTech Connect

    Kim, K.S.; Bradley, R.F.

    1993-06-01

    A typical safety analysis report (SAR) contains estimated frequencies.and consequences of various design basis accidents (DBA). However, the results are organized and presented in such a way that they are not conducive for summing up with mathematical rigor to express total or overall risk. This paper describes a mathematical formalism for deriving total risk indicators. The mathematical formalism is based on the complementary cumulative distribution function (CCDF) or exceedance probability of radioactivity release fraction and individual radiation dose. A simple protocol is presented for establishing exceedance probabilities from the results of DBA analyses typically available from an SAR. The exceedance probability of release fraction can be a useful indicator for gaining insights into the capability of confinement barriers, characteristics of source terms, and scope of the SAR. Fatality risks comparable to the DOE Safety Goals can be derived from the exceedance probability of individual doses. Example case analyses are presented to illustrate the use of the proposed protocol and mathematical formalism. The methodology is finally applied to proposed risk guidelines for individual accident events to show that these guidelines would be within the DOE Safety Goals.

  17. Sandia National Laboratories/New Mexico Facilities and Safety Information Document [NOTE: Volume II, Chapter 12

    SciTech Connect

    March, F.; Guerrero, J.V.; Johns, W.H.; Schetnan, R.; Bayliss, L.S.; Kuzio, K.A.

    1999-08-01

    Operations in Tech Area IV commenced in 1980 with the construction of Buildings 980 and 981 and the Electron Beam Fusion Accelerator, which at the time was a major facility in SNL's Inertial Confinement Fusion Program. The Electron Beam Fusion Accelerator was a third-generation fusion accelerator that followed Proto I and Proto II, which were operated in Tech Area V. Another accelerator, the Particle Beam Fusion Accelerator I, was constructed in Tech Area IV because there was not enough room in Tech Area V, a highly restricted area that contains SNL's reactor facilities. In the early 1980s, more fusion-related facilities were constructed in Tech Area IV. Building 983 was built to house a fourth-generation fusion accelerator, the Particle Beam Fusion Accelerator II, now called Z Machine, and Buildings 960 and 961 were built to house office space, electrical and mechanical laboratories, and highbay space for pulsed power research and development. In the mid 1980s, Building 970 was constructed to house the Simulation Technology Laboratory. The main facility in the Simulation Technology Laboratory is the High-Energy Radiation Megavolt Electron Source (HERMES) III, a third-generation gamma ray accelerator that is used primarily for the simulation of gamma rays produced by nuclear weapons. The previous generations, HERMES I and HERMES II, had been located in Tech Area V. In the late 1980s, Proto II was moved from Tech Area V to the Simulation Technology Laboratory and modified to function as an x-ray simulation accelerator, and construction of Buildings 962 and 963 began. These buildings comprised the Strategic Defense Facility, which was initially intended to support the nation's Strategic Defense Initiative or ''Star Wars'' program. It was to house a variety of pulsed power-related facilities to conduct research in such areas as directed-energy weapons (electron beams, lasers, and microwaves) and an earth-to-orbit launcher. With the reduction of the Strategic Defense

  18. Heart regeneration.

    PubMed

    Breckwoldt, Kaja; Weinberger, Florian; Eschenhagen, Thomas

    2016-07-01

    Regenerating an injured heart holds great promise for millions of patients suffering from heart diseases. Since the human heart has very limited regenerative capacity, this is a challenging task. Numerous strategies aiming to improve heart function have been developed. In this review we focus on approaches intending to replace damaged heart muscle by new cardiomyocytes. Different strategies for the production of cardiomyocytes from human embryonic stem cells or human induced pluripotent stem cells, by direct reprogramming and induction of cardiomyocyte proliferation are discussed regarding their therapeutic potential and respective advantages and disadvantages. Furthermore, different methods for the transplantation of pluripotent stem cell-derived cardiomyocytes are described and their clinical perspectives are discussed. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. PMID:26597703

  19. Technology, safety and costs of decommissioning reference nuclear fuel cycle facilities

    SciTech Connect

    Elder, H.K.

    1986-05-01

    The radioactive wastes expected to result from decommissioning nuclear fuel cycle facilities are reviewed and classified in accordance with 10 CFR 61. Most of the wastes from the MOX plant (exclusive of the lagoon wastes) will require interim storage (11% Class A 49 m/sup 3/; 89% interim storage, 383 m/sup 3/). The MOX plant lagoon wastes are Class A waste (2930 m/sup 3/). All of the wastes from the U-Fab and UF/sub 6/ plants are designated as Class A waste (U-Fab 1090 m/sup 3/, UF/sub 6/ 1259 m/sup 3/).

  20. Assessment of nuclear safety and nuclear criticality potential in the Defense Waste Processing Facility. Revision 1

    SciTech Connect

    Ha, B.C.

    1993-07-20

    The S-Area Defense Waste Processing Facility (DWPF) will initially process Batch 1 sludge in the sludge-only processing mode, with simulated non-radioactive Precipitate Hydrolysis, Aqueous (PHA) product, without the risk of nuclear criticality. The dilute concentration of fissile material in the sludge combined with excess of neutron absorbers during normal operations make criticality throughout the whole process incredible. Subsequent batches of the DWPF involving radioactive precipitate slurry and PHA will require additional analysis. Any abnormal or upset process operations, which are not considered in this report and could potentially separate fissile material, must be individually evaluated. Scheduled maintenance operation procedures are not considered to be abnormal.

  1. Preliminary scoping safety analyses of the limiting design basis protected accidents for the Fast Flux Test Facility tritium production core

    SciTech Connect

    Heard, F.J.

    1997-11-19

    The SAS4A/SASSYS-l computer code is used to perform a series of analyses for the limiting protected design basis transient events given a representative tritium and medical isotope production core design proposed for the Fast Flux Test Facility. The FFTF tritium and isotope production mission will require a different core loading which features higher enrichment fuel, tritium targets, and medical isotope production assemblies. Changes in several key core parameters, such as the Doppler coefficient and delayed neutron fraction will affect the transient response of the reactor. Both reactivity insertion and reduction of heat removal events were analyzed. The analysis methods and modeling assumptions are described. Results of the analyses and comparison against fuel pin performance criteria are presented to provide quantification that the plant protection system is adequate to maintain the necessary safety margins and assure cladding integrity.

  2. Linkage Between Post-Closure Safety Case Review and the Authorization Process for Radioactive Waste Disposal Facilities

    SciTech Connect

    Streatfield, I. J.; Duerden, S. L.; Yearsley, R. A.; Bennett, D. G.

    2003-02-27

    The Environment Agency (the Agency) has responsibilities under the Radioactive Substances Act of 1993 for regulating the disposal and storage of radioactive wastes in England and Wales, including regulation of the disposal site for UK solid low-level waste (LLW) at Drigg in Cumbria, NW England. To help inform the next review of the Drigg disposal authorization, the Agency has required the operator, British Nuclear Fuels plc to submit a Post-Closure Safety Case which will assess the potential long-term impacts from the site. With the aim of using best practice to determine authorization conditions, the Agency contracted Galson Sciences, Ltd to undertake an international survey of authorization procedures for comparable facilities in other countries. This paper provides an overview of the findings from the international survey.

  3. How do the work environment and work safety differ between the dry and wet kitchen foodservice facilities?

    PubMed Central

    Kim, Jeong-Won; Ju, Se-Young; Go, Eun-Sun

    2012-01-01

    In order to create a worker-friendly environment for institutional foodservice, facilities operating with a dry kitchen system have been recommended. This study was designed to compare the work safety and work environment of foodservice between wet and dry kitchen systems. Data were obtained using questionnaires with a target group of 303 staff at 57 foodservice operations. Dry kitchen facilities were constructed after 2006, which had a higher construction cost and more finishing floors with anti-slip tiles, and in which employees more wore non-slip footwear than wet kitchen (76.7%). The kitchen temperature and muscular pain were the most frequently reported employees' discomfort factors in the two systems, and, in the wet kitchen, "noise of kitchen" was also frequently reported as a discomfort. Dietitian and employees rated the less slippery and slip related incidents in dry kitchens than those of wet kitchen. Fryer area, ware-washing area, and plate waste table were the slippery areas and the causes were different between the functional areas. The risk for current leakage was rated significantly higher in wet kitchens by dietitians. In addition, the ware-washing area was found to be where employees felt the highest risk of electrical shock. Muscular pain (72.2%), arthritis (39.1%), hard-of-hearing (46.6%) and psychological stress (47.0%) were experienced by employees more than once a month, particularly in the wet kitchen. In conclusion, the dry kitchen system was found to be more efficient for food and work safety because of its superior design and well managed practices. PMID:22977692

  4. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  5. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents

    SciTech Connect

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  6. Environment, safety, health at DOE Facilities. Annual report, Fiscal Year 1980

    SciTech Connect

    Not Available

    1981-07-01

    The Department of Energy's occupational safety and property protection performance in fiscal year 1980 was excellent in all reported categories with loss rates generally less than one-third of comparable industry figures. The Department of Energy's fiscal year 1980 incidence rate per 200,000 work hours was 1.1 lost workday cases and 18.2 lost workdays compared to 1.1 lost workday cases and 17.2 lost workdays during fiscal year 1979. The recorded occupational illness rate, based on only 70 cases, was 0.05 cases per 200,000 work hours compared to 0.06 cases per 200,000 work hours for fiscal year 1979. Ten fatalities involving Federal or contractor employees occurred in fiscal year 1980 compared to nine for fiscal year 1979. Four of those in fiscal year 1980 resulted from two aircraft accidents. Total reported property loss during fiscal year 1980 was $7.1 million with $3.5 million attributable to earthquake damage sustained by the Lawrence Livermore and Sandia National Laboratories on January 24, 1980. A total of 131 million vehicle miles of official vehicular travel during fiscal year 1980 resulted in 768 accidents and $535,145 in property damages. The 104,986 monitored Department of Energy and Department of Energy contractor employees received a total dose of 9040 REM in calendar year 1979. Both the total dose and the 1748 employees receiving radiation exposures greater than 1 REM in 1979 represent a continuing downward trend from the calendar year 1978 total dose of 9380 REM and the 1826 employees who received radiation exposures greater than 1 REM. The fifty-nine appraisals conducted indicate that generally adequate plans have been developed and effective organizational structures have been established to carry out the Department of Energy's Environmental Protection, Safety, and Health Protection (ES and H) Program.

  7. Calculational framework for safety analyses of non-reactor nuclear facilities

    SciTech Connect

    Coleman, J.R.

    1994-06-01

    A calculational framework for the consequences analysis of non-reactor nuclear facilities is presented. The analysis framework starts with accident scenarios which are developed through a traditional hazard analysis and continues with a probabilistic framework for the consequences analysis. The framework encourages the use of response continua derived from engineering judgment and traditional deterministic engineering analyses. The general approach consists of dividing the overall problem into a series of interrelated analysis cells and then devising Markov chain like probability transition matrices for each of the cells. An advantage of this division of the problem is that intermediate output (as probability state vectors) are generated at each calculational interface. The series of analyses when combined yield risk analysis output. The analysis approach is illustrated through application to two non-reactor nuclear analyses: the Ulysses Space Mission, and a hydrogen burn in the Hanford waste storage tanks.

  8. Cost-effective facility disposition planning with safety and health lessons learned and good practices from the Oak Ridge Decontamination and Decommissioning Program

    SciTech Connect

    1998-05-01

    An emphasis on transition and safe disposition of DOE excess facilities has brought about significant challenges to managing worker, public, and environmental risks. The transition and disposition activities involve a diverse range of hazardous facilities that are old, poorly maintained, and contain radioactive and hazardous substances, the extent of which may be unknown. In addition, many excess facilities do not have historical facility documents such as operating records, plant and instrumentation diagrams, and incident records. The purpose of this report is to present an overview of the Oak Ridge Decontamination and Decommissioning (D and D) Program, its safety performance, and associated safety and health lessons learned and good practices. Illustrative examples of these lessons learned and good practices are also provided. The primary focus of this report is on the safety and health activities and implications associated with the planning phase of Oak Ridge facility disposition projects. Section 1.0 of this report provides the background and purpose of the report. Section 2.0 presents an overview of the facility disposition activities from which the lessons learned and good practices discussed in Section 3.0 were derived.

  9. ORNL necessary and sufficient standards for environment, safety, and health. Final report of the Identification Team for other industrial, radiological, and non-radiological hazard facilities

    SciTech Connect

    1998-07-01

    This Necessary and Sufficient (N and S) set of standards is for Other Industrial, Radiological, and Non-Radiological Hazard Facilities at Oak Ridge National Laboratory (ORNL). These facility classifications are based on a laboratory-wide approach to classify facilities by hazard category. An analysis of the hazards associated with the facilities at ORNL was conducted in 1993. To identify standards appropriate for these Other Industrial, Radiological, and Non-Radiological Hazard Facilities, the activities conducted in these facilities were assessed, and the hazards associated with the activities were identified. A preliminary hazards list was distributed to all ORNL organizations. The hazards identified in prior hazard analyses are contained in the list, and a category of other was provided in each general hazard area. A workshop to assist organizations in properly completing the list was held. Completed hazard screening lists were compiled for each ORNL division, and a master list was compiled for all Other Industrial, Radiological Hazard, and Non-Radiological facilities and activities. The master list was compared against the results of prior hazard analyses by research and development and environment, safety, and health personnel to ensure completeness. This list, which served as a basis for identifying applicable environment, safety, and health standards, appears in Appendix A.

  10. Axial compression behavior and partial composite action of SC walls in safety-related nuclear facilities

    NASA Astrophysics Data System (ADS)

    Zhang, Kai

    Steel-plate reinforced concrete (SC) composite walls typically consist of thick concrete walls with two exterior steel faceplates. The concrete core is sandwiched between the two steel faceplates, and the faceplates are attached to the concrete core using shear connectors, for example, ASTM A108 steel headed shear studs. The shear connectors and the concrete infill enhance the stability of the steel faceplates, and the faceplates serve as permanent formwork for concrete placement. SC composite walls were first introduced in the 1980's in Japan for nuclear power plant (NPP) structures. They are used in the new generation of nuclear power plants (GIII+) and being considered for small modular reactors (SMR) due to their structural efficiency, economy, safety, and construction speed. Steel faceplates can potentially undergo local buckling at certain locations of NPP structures where compressive forces are significant. The steel faceplates are usually thin (0.25 to 1.50 inches in Customary units, or 6.5 to 38 mm in SI units) to maintain economical and constructional efficiency, the geometric imperfections and locked-in stresses induced during construction make them more vulnerable to local buckling. Accidental thermal loading may also reduce the compressive strength and exacerbate the local buckling potential of SC composite walls. This dissertation presents the results from experimental and numerical investigations of the compressive behavior of SC composite walls at ambient and elevated temperatures. The results are used to establish a slenderness limit to prevent local buckling before yielding of the steel faceplates and to develop a design approach for calculating the compressive strength of SC composite walls with non-slender and slender steel faceplates at ambient and elevated temperatures. Composite action in SC walls is achieved by the embedment of shear connectors into the concrete core. The strength and stiffness of shear connectors govern the level of

  11. Active magnetic regenerator

    DOEpatents

    Barclay, John A.; Steyert, William A.

    1982-01-01

    The disclosure is directed to an active magnetic regenerator apparatus and method. Brayton, Stirling, Ericsson, and Carnot cycles and the like may be utilized in an active magnetic regenerator to provide efficient refrigeration over relatively large temperature ranges.

  12. Use of Historical Personnel Exposure in Facility Safety Analyses, Program Planning, and Minimizing of Personnel Exposure in Assembly and Testing of Radioisotope Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Johnson, Ernest W.

    1994-07-01

    The minimization of personnel exposure when assembling plutonium-238-fueled heat sources/radioisotope thermoelectric generators (RTGs) is a Department of Energy (DOE) requirement per DOE Order 5480.11. In addition, DOE Orders 5480.23 and 5481.1B regarding facility safety requisites define that radiological effects on operating staff be quantitatively identified from a probabilistic standpoint. In the assembly of General Purpose Heat Source (GPHS) RTGs at the Mound Facility to support the Galileo and Ulysses Missions, personnel radiation exposure data were used to support the Building 50 Final Safety Analysis Report (FSAR) and identified facility and procedural modifications for the future Cassini Mission GPHS RTG manufacture to reduce this exposure. Similar studies were made on personnel radiological exposure data in the heat source assembly and terrestrial RTG assembly facilities in Building 38. No major procedure and facility modifications were suggested. The Building 38 FSAR was enhanced as to exposure exceedance probabilities; these were in the 10-6 per year operating person regime.

  13. Hanford Site waste tank farm facilities design reconstitution program plan

    SciTech Connect

    Vollert, F.R.

    1994-09-06

    Throughout the commercial nuclear industry the lack of design reconstitution programs prior to the mid 1980`s has resulted in inadequate documentation to support operating facilities configuration changes or safety evaluations. As a result, many utilities have completed or have ongoing design reconstitution programs and have discovered that without sufficient pre-planning their program can be potentially very expensive and may result in end-products inconsistent with the facility needs or expectations. A design reconstitution program plan is developed here for the Hanford waste tank farms facility as a consequence of the DOE Standard on operational configuration management. This design reconstitution plan provides for the recovery or regeneration of design requirements and basis, the compilation of Design Information Summaries, and a methodology to disposition items open for regeneration that were discovered during the development of Design Information Summaries. Implementation of this plan will culminate in an end-product of about 30 Design Information Summary documents. These documents will be developed to identify tank farms facility design requirements and design bases and thereby capture the technical baselines of the facility. This plan identifies the methodology necessary to systematically recover documents that are sources of design input information, and to evaluate and disposition open items or regeneration items discovered during the development of the Design Information Summaries or during the verification and validation processes. These development activities will be governed and implemented by three procedures and a guide that are to be developed as an outgrowth of this plan.

  14. Unreviewed Safety Question Determination for TOPAZ II uranium fuel pellet production at the Plutonium Handling Facility (PF-4), Technical Area 55, Los Alamos National Laboratory

    SciTech Connect

    Gordon, D.J.P.

    1993-09-29

    Enriched uranium oxide, nitride, and carbide fuel pellets have been produced at PF-4 since the facility became operational in the late 1970s. The TOPAZ II reactors require fuel enriched to 97% uranium-235. Approximately 75 kilograms (kgs) of uranium will be processed per year in support of this program. The amount of fuel processed per year at PF-4 will not be increased for these programs, but the batch size will be increased to approximately 3 kgs of uranium. The current DOE-approved Final Safety Analysis Report (FSAR) calls for batches containing 45 grams (gms) of plutonium-239 and 172 gms of uranium-235. The impact of increasing the uranium batch size on the facility authorization basis is analyzed in the attached Safety Evaluation Worksheet. In addition, the structural modification for the transformer and vacuum pump installation, required to support the operation, is evaluated. Based on the attached Safety Evaluation, it has been determined that the change in uranium batch size does not constitute an Unreviewed Safety Question (USQ), the increase in uranium batch size does not increase the probability or consequences of any accidents previously analyzed and does not create the possibility for a new type of accident or reduce the margin of safety in the Operational Safety Requirements (OSRs). Similarly, the structural modifications required for the transformer and vacuum pump installation do not increase the probability or consequence of any accident previously analyzed and do not create the possibility for a new type of accident or reduce any margin of safety in the OSRS.

  15. Safety Basis Requirements for Nonnuclear Facilities at Lawrence Livermore National Laboratory Site-Specific Work Smart Standard Revision 3 December 2006

    SciTech Connect

    Beach, D; Brereton, S; Failor, R; Hildum, J; Ingram, C; Spagnolo, S; van Warmerdam, C

    2007-06-07

    This standard establishes requirements that, when coupled with Lawrence Livermore National Laboratory's (LLNL's) Integrated Safety Management System (ISMS) methods and other Work Smart Standards for assuring worker safety, assure that the impacts of nonnuclear operations authorized in LLNL facilities are well understood and controlled in a manner that protects the health of workers, the public, and the environment. All LLNL facilities shall be classified based on potential for adverse impact of operations to the health of co-located (i.e., nearby) workers and the public in accordance with this standard, Title 10 Code of Federal Regulations (10 CFR) 830, Subpart B, and Department of Energy Order (DOE O) 420.2A.

  16. 41 CFR 102-80.45 - What are Federal agencies' responsibilities concerning seismic safety in Federal facilities?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT Safety and Environmental Management Seismic Safety § 102-80.45 What are Federal agencies' responsibilities concerning... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What are...

  17. 76 FR 37799 - DOE Final Decision in Response to Recommendation 2010-1 of the Defense Nuclear Facilities Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ..., Safety Analysis Requirements for Defining Adequate Protection for the Public and the Workers AGENCY... reaffirmed their Recommendation 2010-1, Safety Analysis Requirements for Defining Adequate Protection for the... Board (Board) Recommendation 2010-1, Safety Analysis Requirements for Defining Adequate Protection...

  18. 41 CFR 102-80.45 - What are Federal agencies' responsibilities concerning seismic safety in Federal facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT Safety and Environmental Management Seismic Safety § 102-80.45 What are Federal agencies' responsibilities concerning... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What are...

  19. Additional guidance for including nuclear safety equivalency in the Canister Storage Building and Cold Vacuum Drying Facility final safety analysis report

    SciTech Connect

    Garvin, L.J.

    1997-05-20

    This document provides guidance for the production of safety analysis reports that must meet both DOE Order 5480.23 and STD 3009, and be in compliance with the DOE regulatory policy that imposes certain NRC requirements.

  20. Can urban regeneration programmes assist coping and recovery for people with mental illness? Suggestions from a qualitative case study.

    PubMed

    Whitley, Rob; Prince, Martin

    2006-03-01

    Researchers and policy-makers are increasingly recognizing that urban socio-environmental conditions can affect the development and course of numerous health problems. The aim of this paper is to investigate the impact an urban regeneration programme can have on everyday functioning, coping and recovery for people with a mental illness. We were also interested in discerning which component parts of the regeneration are the most important in positively affecting people with mental illness. These questions were explored through an in-depth qualitative case study of the Gospel Oak neighbourhood in London, which recently underwent an intensive urban regeneration programme. Interviews and focus groups were conducted with residents living with a mental illness (n = 16). Relevant participant observation was also conducted. Participants reported that interventions that improved community safety were by far the most important in affecting everyday coping and functioning. Interventions that improved the quantity and quality of shared community facilities had a positive, but milder effect on mental health. Component parts that appeared to have little effect included environmental landscaping and greater community involvement in decision-making processes. Most participants reported that their mental illness was a consequence of severe insults over the life-span, for example childhood neglect or family breakdown. Thus, the regeneration was seen as something that could assist coping, but not something that could significantly contribute to complete recovery. Our results thus suggest that urban regeneration can have a mild impact on people with mental illness, but this appears to be outweighed by life-span experience of severe individual-level risk factors. That said, some of our findings converge with other studies indicating that community safety and community facilities can play a role in positively affecting mental health. Further ethnographic and epidemiological research is

  1. Safety analysis report for the National Low-Temperature Neutron Irradiation Facility (NLTNIF) at the ORNL Bulk Shielding Reactor (BSR)

    SciTech Connect

    Coltman, R.R. Jr.; Kerchner, H.R.; Klabunde, C.E.; Richardson, S.A.

    1986-06-01

    This report provides information concerning: the experiment facility; experiment assembly; instrumentation and controls; materials; radioactivity; shielding; thermodynamics; estimated or measured reactivity effects; procedures; hazards; and quality assurance. (JDB)

  2. Desulfurization sorbent regeneration

    DOEpatents

    Jalan, V.M.; Frost, D.G.

    1982-07-07

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

  3. Regeneration Heat Exchange

    SciTech Connect

    J. Lin

    2003-07-30

    The original project goals were to establish the viability of the proposed gas turbine regenerator concept by performing the following tasks: (1) Perform detailed design of a working model of the regenerator concept. (2) Construct a ''bench-top'' model of the regenerator concept based upon the detail design. (3) Test the bench-top model and gather data to support the concept's viability. The project funding was used to acquire the tools and material to perform the aforementioned tasks.

  4. New Applications of Gamma Spectroscopy: Characterization Tools for D&D Process Development, Inventory Reduction Planning & Shipping, Safety Analysis & Facility Management During the Heavy Element Facility Risk Reduction Program

    SciTech Connect

    Mitchell, M; Anderson, B; Gray, L; Vellinger, R; West, M; Gaylord, R; Larson, J; Jones, G; Shingleton, J; Harris, L; Harward, N

    2006-01-23

    Novel applications of gamma ray spectroscopy for D&D process development, inventory reduction, safety analysis and facility management are discussed in this paper. These applications of gamma spectroscopy were developed and implemented during the Risk Reduction Program (RPP) to successfully downgrade the Heavy Element Facility (B251) at Lawrence Livermore National Laboratory (LLNL) from a Category II Nuclear Facility to a Radiological Facility. Non-destructive assay in general, gamma spectroscopy in particular, were found to be important tools in project management, work planning, and work control (''Expect the unexpected and confirm the expected''), minimizing worker dose, and resulted in significant safety improvements and operational efficiencies. Inventory reduction activities utilized gamma spectroscopy to identify and confirm isotopics of legacy inventory, ingrowth of daughter products and the presence of process impurities; quantify inventory; prioritize work activities for project management; and to supply information to satisfy shipper/receiver documentation requirements. D&D activities utilize in-situ gamma spectroscopy to identify and confirm isotopics of legacy contamination; quantify contamination levels and monitor the progress of decontamination efforts; and determine the point of diminishing returns in decontaminating enclosures and glove boxes containing high specific activity isotopes such as {sup 244}Cm and {sup 238}Pu. In-situ gamma spectroscopy provided quantitative comparisons of several decontamination techniques (e.g. TLC-free Stripcoat{trademark}, Radiac{trademark} wash, acid wash, scrubbing) and was used as a part of an iterative process to determine the appropriate level of decontamination and optimal cost to benefit ratio. Facility management followed a formal, rigorous process utilizing an independent, state certified, peer-reviewed gamma spectroscopy program, in conjunction with other characterization techniques, process knowledge, and

  5. National School Science Safety Indexing Project: A Beginning; Developing a National Indexing System to Evaluate Secondary School Facilities and Safety Practices

    ERIC Educational Resources Information Center

    Gerlovich, Jack A.; McElroy, Dennis; Parsa, Rahul; Wazlaw, Brian

    2005-01-01

    Past studies reveal that science safety in the nation's schools needs significant attention (Gerlovich and Parsa 2002; Gerlovich et al. 2002; Gerlovich, Wilson, and Parsa 1998; and Young 1972). These studies have focused on individual states and the issues and hazards specific to those states. A comprehensive study is needed to identify and…

  6. General Electric hot gas cleanup and regeneration

    SciTech Connect

    Gal, E.; Furman, A.H.; Ayala, R.

    1993-06-01

    GE Environmental Services, Inc. (GEESI) and its major subcontractors GE Corporate Research and Development (GE-CRD) and GE Power Generation (GEPG) have completed significant further pilot plant scale test operation of an integrated fixed bed gasification, hot gas cleanup and gas turbine simulation facility located at GE-CRD in Schenectady, NY. Progress during the past year has included first desulfurization and regeneration testing with zinc titanate, significant regeneration hardware and process modifications, continued test exposure of a full scale gas turbine fuel control valve, first long term integrated operation of the MS6000 based gas turbine simulator and off-line operation of a subscale, staged combustor system designed to minimize NO{sub x} production from fuel bound nitrogen. Long Duration Tests 3, 3AR1, 3AR2 and 3A were conducted with zinc titanate sorbent and demonstrated the continued ability of the absorber to reduce inlet H{sub 2}S levels of 3500 ppmv to less than 30 ppmv provided properly regenerated sorbent was returned to the absorber. Tests 3AR1 and 3AR2 were limited duration, off line regeneration tests, utilizing residual sulfided material from Test 3, to evaluate continuing regeneration hardware, instrumentation and process modification. Test 3A was a fully integrated 100 hour test incorporating final regenerator modifications and resulted in first fully controlled regeneration. Anthracite coal was utilized for Test 3A as a means of partial elimination of halogens in the fuel gas prior to inclusion of a specific halogen removal process step envisioned for Long Duration Test 4. Further test operation will revert to use of Illinois bituminous coal with up to 3.4 percent sulfur and 0.1 to 0.28 percent chloride content in order to fully evaluate high sulfur regeneration operation as well as halogen removal.

  7. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  8. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    SciTech Connect

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  9. The Environmental Agency's Assessment of the Post-Closure Safety Case for the BNFL DRIGG Low Level Radioactive Waste Disposal Facility

    SciTech Connect

    Streatfield, I. J.; Duerden, S. L.; Yearsley, R. A.

    2002-02-26

    The Environment Agency is responsible, in England and Wales, for authorization of radioactive waste disposal under the Radioactive Substances Act 1993. British Nuclear Fuels plc (BNFL) is currently authorized by the Environment Agency to dispose of solid low level radioactive waste at its site at Drigg, near Sellafield, NW England. As part of a planned review of this authorization, the Environment Agency is currently undertaking an assessment of BNFL's Post-Closure Safety Case Development Programme for the Drigg disposal facility. This paper presents an outline of the review methodology developed and implemented by the Environment Agency specifically for the planned review of BNFL's Post-Closure Safety Case. The paper also provides an overview of the Environment Agency's progress in its on-going assessment programme.

  10. Ceramic regenerator program

    NASA Technical Reports Server (NTRS)

    Franklin, Jerrold E.

    1991-01-01

    The feasibility of fabricating an Air Turbo Ramjet (ATR) regenerator containing intricate hydraulic passages from a ceramic material in order to allow operation with high temperature combustion gas and to reduce weight as compared with metallic materials was demonstrated. Platelet technology, ceramic tape casting, and multilayer ceramic packaging techniques were used in this fabrication of subscale silicon nitride components. Proof-of-concept demonstrations were performed to simulate a methane cooled regenerator for an ATR engine. The regenerator vane was designed to operate at realistic service conditions, i.e., 600 psi in a 3500 R (3040 F), 500 fps combustion gas environment. A total of six regenerators were fabricated and tested. The regenerators were shown to be able to withstand internal pressurization to 1575 psi. They were subjected to testing in 500 fps, 3560 R (3100 F) air/propane combustion products and were operated satisfactorily for an excess of 100 hr and 40 thermal cycles which exceeded 2460 R (2000 F).

  11. Specialized progenitors and regeneration

    PubMed Central

    Reddien, Peter W.

    2013-01-01

    Planarians are flatworms capable of regenerating all body parts. Planarian regeneration requires neoblasts, a population of dividing cells that has been studied for over a century. Neoblast progeny generate new cells of blastemas, which are the regenerative outgrowths at wounds. If the neoblasts comprise a uniform population of cells during regeneration (e.g. they are all uncommitted and pluripotent), then specialization of new cell types should occur in multipotent, non-dividing neoblast progeny cells. By contrast, recent data indicate that some neoblasts express lineage-specific transcription factors during regeneration and in uninjured animals. These observations raise the possibility that an important early step in planarian regeneration is the specialization of neoblasts to produce specified rather than naïve blastema cells. PMID:23404104

  12. Launch Services Safety Overview

    NASA Technical Reports Server (NTRS)

    Loftin, Charles E.

    2008-01-01

    NASA/KSC Launch Services Division Safety (SA-D) services include: (1) Assessing the safety of the launch vehicle (2) Assessing the safety of NASA ELV spacecraft (S/C) / launch vehicle (LV) interfaces (3) Assessing the safety of spacecraft processing to ensure resource protection of: - KSC facilities - KSC VAFB facilities - KSC controlled property - Other NASA assets (4) NASA personnel safety (5) Interfacing with payload organizations to review spacecraft for adequate safety implementation and compliance for integrated activities (6) Assisting in the integration of safety activities between the payload, launch vehicle, and processing facilities

  13. Generic safety documentation model

    SciTech Connect

    Mahn, J.A.

    1994-04-01

    This document is intended to be a resource for preparers of safety documentation for Sandia National Laboratories, New Mexico facilities. It provides standardized discussions of some topics that are generic to most, if not all, Sandia/NM facilities safety documents. The material provides a ``core`` upon which to develop facility-specific safety documentation. The use of the information in this document will reduce the cost of safety document preparation and improve consistency of information.

  14. Pre-title I safety evaluation for the retrieval operations of transuranic waste drums in the Solid Waste Disposal Facility. Revision 2

    SciTech Connect

    Rabin, M.S.

    1992-08-01

    Phase I of the Transuranic (TRU) Waste Facility Line Item Project includes the retrieval and safe storage of the pad drums that are stored on TRU pads 2-6 in the Solid Waste Disposal Facility (SWDF). Drums containing TRU waste were placed on these pads as early as 1974. The pads, once filled, were mounded with soil. The retrieval activities will include the excavation of the soil, retrieval of the pad drums, placing the drums in overpacks (if necessary) and venting and purging the retrieved drums. Once the drums have been vented and purged, they will be transported to other pads within the SWDF or in a designated area until they are eventually treated as necessary for ultimate shipment to the Waste Isolation Pilot Plant in Carlsbad, New Mexico. This safety evaluation provides a bounding assessment of the radiological risk involved with the drum retrieval activities to the maximally exposed offsite individual and the co-located worker. The results of the analysis indicate that the risk to the maximally exposed offsite individual and the co-located worker using maximum frequencies and maximum consequences are within the acceptance criteria defined in WSRC Procedural Manual 9Q. The purpose of this evaluation is to demonstrate the incremental risk from the SWDF due to the retrieval activities for use as design input only. As design information becomes available, this evaluation can be revised to satisfy the safety analysis requirements of DOE Orders 4700 and 5480.23.

  15. 75 FR 36773 - Pipeline Safety: Updating Facility Response Plans in Light of the Deepwater Horizon Oil Spill

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... Act of 1990, 33 U.S.C. 1321, and Executive Order 12777, 56 FR 54757, Oct. 18, 1991, PHMSA has issued... Light of the Deepwater Horizon Oil Spill AGENCY: Pipeline and Hazardous Materials Safety Administration... response plan under 49 CFR part 194. In light of the Deepwater Horizon oil spill in the Gulf of...

  16. Study of Occupational Safety and Health Audit on Facilities at Ungku Omar College, Universiti Kebangsaan Malaysia (UKM): A Preliminary Analysis

    ERIC Educational Resources Information Center

    Ariffin, Kadir; Ahmad, Shaharuddin; Aiyub, Kadaruddin; Awang, Azhan; Aziz, Azmi; Mohamad, Lukman Z.; Mamat, Samsu Adabi

    2010-01-01

    Occupational safety and health (OSH) in Universiti Kebangsaan Malaysia (UKM) is being considered as an important program to measure employee and student welfare and well-being. During academic session, apart from attending lectures, laboratory works, tutorial and library search, majority of students spend most of their time in residential…

  17. 76 FR 37798 - DOE Response to Recommendation 2010-2 of the Defense Nuclear Facilities Safety Board, Pulse Jet...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Waste Treatment and Immobilization Plant AGENCY: Department of Energy. ACTION: Notice. SUMMARY: On May..., concerning Pulse Jet Mixing at the Waste Treatment and Immobilization Plant, to the Department of Energy. In... Safety Board (Board) Recommendation 2010-2, Pulse Jet Mixing (PJM) at the Waste Treatment...

  18. Sandia National Laboratories/New Mexico Facilities and Safety Information Document [NOTE: Volume I, Chapters 2 through 5

    SciTech Connect

    March, F.; Guerrero, J.V.; Johns, W.H.; Schetnan, R.; Bayliss, L.S.; Kuzio, K.A.; White, B.B.

    1999-09-01

    The Facilities Business Unit, which includes the Operations and Engineering Center (7800) and the Facilities Management Center (7900), coordinates decisions about the management of facilities, infrastructure, and sites. These decisions include the following: New construction, including siting; Rehabilitation, and renovation; Relocation; Mothballing; Decontamination and decommissioning; and Demolition. Decisions on these matters flow from a corporate decision process in which SNL directors and vice presidents identify the facility and infrastructure requirements for carrying out work for DOE and other customers. DOE and any non-DOE owners of real estate that is leased or permitted to DOE for SNL/NM use must concur with this identification of requirements. Decision-making follows procedures required by DOE and requirements defined by SNL/NM program executives. See Sandia National Laboratories (1997e), Part II, ''Desired Future State and Strategy,'' and appendices to Sandia National Laboratories (1997e) for more information about planning and decision processes. Decisions on siting take surrounding land uses into account and draw on environmental baseline information maintained at SNL/NM. For environmental baseline and land use information, see Sandia National Laboratories (1999).

  19. 36 CFR 1234.12 - What are the fire safety requirements that apply to records storage facilities?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... records storage facilities? (a) The fire detection and protection systems must be designed or reviewed by... engineer that describes the design intent of the fire detection and suppression system, detailing the... are provided in the areas to be protected with these large drop sprinkler heads. (l) Open flame...

  20. 36 CFR 1234.12 - What are the fire safety requirements that apply to records storage facilities?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... records storage facilities? (a) The fire detection and protection systems must be designed or reviewed by... engineer that describes the design intent of the fire detection and suppression system, detailing the... are provided in the areas to be protected with these large drop sprinkler heads. (l) Open flame...

  1. 36 CFR 1234.12 - What are the fire safety requirements that apply to records storage facilities?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... records storage facilities? (a) The fire detection and protection systems must be designed or reviewed by... engineer that describes the design intent of the fire detection and suppression system, detailing the... are provided in the areas to be protected with these large drop sprinkler heads. (l) Open flame...

  2. 36 CFR 1234.12 - What are the fire safety requirements that apply to records storage facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... records storage facilities? (a) The fire detection and protection systems must be designed or reviewed by... engineer that describes the design intent of the fire detection and suppression system, detailing the... are provided in the areas to be protected with these large drop sprinkler heads. (l) Open flame...

  3. Nanomaterials and bone regeneration

    PubMed Central

    Gong, Tao; Xie, Jing; Liao, Jinfeng; Zhang, Tao; Lin, Shiyu; Lin, Yunfeng

    2015-01-01

    The worldwide incidence of bone disorders and conditions has been increasing. Bone is a nanomaterials composed of organic (mainly collagen) and inorganic (mainly nano-hydroxyapatite) components, with a hierarchical structure ranging from nanoscale to macroscale. In consideration of the serious limitation in traditional therapies, nanomaterials provide some new strategy in bone regeneration. Nanostructured scaffolds provide a closer structural support approximation to native bone architecture for the cells and regulate cell proliferation, differentiation, and migration, which results in the formation of functional tissues. In this article, we focused on reviewing the classification and design of nanostructured materials and nanocarrier materials for bone regeneration, their cell interaction properties, and their application in bone tissue engineering and regeneration. Furthermore, some new challenges about the future research on the application of nanomaterials for bone regeneration are described in the conclusion and perspectives part. PMID:26558141

  4. Walkdown procedure: Seismic adequacy review of safety class 3 & 4 commodities in 2736-Z & ZB buildings at PFP facility

    SciTech Connect

    Ocoma, E.C.

    1995-03-29

    Seismic evaluation of existing safety class (SC) 3 and non-SC 4 commodities at the Plutonium Finishing Plant (PFP) is integrated into an area walkdown program. Field walkdowns of potential PFP seismic deficiencies associated with structural failure and falling will be performed using the DOE SQUG/EPRI methodology. Potential proximity interactions are also addressed. Objective of the walkdown is to qualify as much of the equipment as practical and to identify candidates for further evaluation.

  5. Tackling Communication Barriers Between Long-Term Care Facility and Emergency Department Transfers to Improve Medication Safety in Older Adults.

    PubMed

    Callinan, Stephanie M; Brandt, Nicole J

    2015-07-01

    In 2013, the American College of Emergency Physicians, American Geriatrics Society, Emergency Nurses Association, and Society for Academic Emergency Medicine created geriatric emergency department guidelines, making recommendations for staffing/administration, follow up and transitions of care, education, quality improvement, equipment/supplies, and other policies, procedures, and protocols to be implemented. Awareness of these guidelines, as well as communication barriers, can help improve the delivery of care for older adults during transitions in care, particularly regarding medication safety. PMID:26126025

  6. RTF glovebox stripper regeneration development

    SciTech Connect

    Birchenall, A.K.

    1992-10-31

    Currently, the Replacement Tritium Facility (RTF) glovebox stripper system consists of a catalytic oxidation front end where trace tritium which may escape from the primary tritium process into the glovebox nitrogen system is oxidized to tritiated water. The tritiated water, along with normal water which may leak into the glovebox from the surrounding atmosphere, is then captured on a zeolite bed. Eventually, the zeolite bed becomes saturated with water and must be regenerated to remain effective as a stripper. This is accomplished by heating the zeolite and evolving the trapped water which is then passed over an elevated temperature uranium bed. A waste minimization program was instituted to address this issue. The program has two parallel paths. One path investigates replacing the entire glovebox stripper system with a system of getters to scavenge trace tritium. This report concentrates on the second path, retaining the catalytic oxidation front end but replacing the uranium bed water cracking with alternative technologies.

  7. Criticality Safety Evaluation Report CSER-96-019 for Spent Nuclear Fuel (SNF) Processing and Storage Facilities Multi Canister Overpack (MCO)

    SciTech Connect

    KESSLER, S.F.

    1999-10-20

    This criticality evaluation is for Spent N Reactor fuel unloaded from the existing canisters in both KE and KW Basins, and loaded into multiple canister overpack (MCO) containers with specially built baskets containing a maximum of either 54 Mark IV or 48 Mark IA fuel assemblies. The criticality evaluations include loading baskets into the cask-MCO, operation at the Cold Vacuum Drying Facility,a nd storage in the Canister Storage Building. Many conservatisms have been built into this analysis, the primary one being the selection of the K{sub eff} = 0.95 criticality safety limit. This revision incorporates the analyses for the sampling/weld station in the Canister Storage Building and additional analysis of the MCO during the draining at CVDF. Additional discussion of the scrap basket model was added to show why the addition of copper divider plates was not included in the models.

  8. Environmental, Health and Safety Assessment: ATS 7H Program (Phase 3R) Test Activities at the GE Power Systems Gas Turbine Manufacturing Facility, Greenville, SC

    SciTech Connect

    1998-11-17

    International Technology Corporation (IT) was contracted by General Electric Company (GE) to assist in the preparation of an Environmental, Health and Safety (HI&3) assessment of the implementation of Phase 3R of the Advanced Turbine System (ATS) 7H program at the GE Gas Turbines facility located in Greenville, South Carolina. The assessment was prepared in accordance with GE's contractual agreement with the U.S. Department of Energy (GE/DOE Cooperative Agreement DE-FC21-95MC3 1176) and supports compliance with the requirements of the National Environmental Policy Act of 1970. This report provides a summary of the EH&S review and includes the following: General description of current site operations and EH&S status, Description of proposed ATS 7H-related activities and discussion of the resulting environmental, health, safety and other impacts to the site and surrounding area. Listing of permits and/or licenses required to comply with federal, state and local regulations for proposed 7H-related activities. Assessment of adequacy of current and required permits, licenses, programs and/or plans.

  9. Atlas Regeneration, Inc.

    PubMed

    Makarev, Eugene; Isayev, Olexandr; Atala, Anthony

    2016-03-01

    Atlas Regeneration is dedicated to the development of novel data-driven solutions for regenerative medicine, adapting proven technologies, and analysis strategies to take a multiomics-wide view of stem cell quality and cell fate design. Our core offering is a global comprehensive map of stem cell differentiation, Universal Signalome Atlas for Regenerative Medicine, reflecting the pathway activation states across all characterized stem cells and their differentiated products. Key applications of Universal Signalome Atlas for Regenerative Medicine will include quality assurance for engineered cell products, and directed regeneration pharmacology, where we will screen and identify compounds that can efficiently convert pluripotent cells into desired subtypes. Another marketable piece of IP is development of specialized signaling pathway analysis systems Regeneration Intelligence which supposed to target the unmet needs of determination and prediction of stem cell signaling pathway activation to govern cell differentiation in specific directions. PMID:26925598

  10. Nanostructured Biomaterials for Regeneration**

    PubMed Central

    Wei, Guobao; Ma, Peter X.

    2009-01-01

    Biomaterials play a pivotal role in regenerative medicine, which aims to regenerate and replace lost/dysfunctional tissues or organs. Biomaterials (scaffolds) serve as temporary 3D substrates to guide neo tissue formation and organization. It is often beneficial for a scaffolding material to mimic the characteristics of extracellular matrix (ECM) at the nanometer scale and to induce certain natural developmental or/and wound healing processes for tissue regeneration applications. This article reviews the fabrication and modification technologies for nanofibrous, nanocomposite, and nanostructured drug-delivering scaffolds. ECM-mimicking nanostructured biomaterials have been shown to actively regulate cellular responses including attachment, proliferation, differentiation and matrix deposition. Nano-scaled drug delivery systems can be successfully incorporated into a porous 3D scaffold to enhance the tissue regeneration capacity. In conclusion, nano-structured biomateials are a very exciting and rapidly expanding research area, and are providing new enabling technologies for regenerative medicine. PMID:19946357

  11. Quarterly report on Defense Nuclear Facilities Safety Board Recommendation 90-7 for the period ending June 30, 1993

    SciTech Connect

    Cash, R.J.; Dukelow, G.T.; Forbes, C.J.; Meacham, J.E.

    1993-10-01

    This is the ninth quarterly report on the progress of activities that address safety issues associated with Hanford Site high-level radioactive waste tanks containing ferrocyanide compounds. Milestones completed this quarter include (1) a report on the credibility of hot spots and a recommendation on infrared scans; (2) a document discussing the strength and limitations of proposed moisture monitoring technologies; (3) limited calibration of the neutron probe in simulant-filled drums; (4) a report interpreting data from auger surface samples of ferrocyanide tank 241-BY-104; (5) a document on the effect of possible catalyst, initiator, and diluents on ferrocyanide reactivity; (6) a report on small scale sensitivity tests of ferrocyanide flowsheet simulants; and (7) preparation and shipment of T Plant simulants for calorimetric and dryout tests.

  12. Development of site-specific synthetic accelerations for safety assessment of DOE facilities at Oak Ridge, Tennessee

    SciTech Connect

    Aramayo, G.A.; Carley, T.G.; Jones, W.D.

    1991-01-01

    Seismic analysis of US Department of Energy (DOE) facilities at Oak Ridge, TN, requires seismic accelerograms that have response spectra that are compatible with the site-specific design response spectra. The development of these accelerograms is accomplished by the application of the Fourier transform to compute the response spectrum of a beginning accelerogram and map it into the frequency domain. The Fourier spectrum is modified according to the difference between the computed spectra and the target spectra. The response spectrum is recomputed and compared again to the target. The modification is repeated until acceptable agreement is achieved. The modified Fourier spectrum is transformed to the time domain and filtered yielding the desired seismic time history. 7 refs., 5 figs.

  13. Gene therapy approaches to regenerating bone

    PubMed Central

    Bleich, Nadav Kimelman; Kallai, Ilan; Lieberman, Jay R.; Schwarz, Edward M.; Pelled, Gadi; Gazit, Dan

    2013-01-01

    Bone formation and regeneration therapies continue to require optimization and improvement because many skeletal disorders remain undertreated. Clinical solutions to nonunion fractures and osteoporotic vertebral compression fractures, for example, remain suboptimal and better therapeutic approaches must be created. The widespread use of recombinant human bone morphogenetic proteins (rhBMPs) for spine fusion was recently questioned by a series of reports in a special issue of The Spine Journal, which elucidated the side effects and complications of direct rhBMP treatments. Gene therapy—both direct (in vivo) and cell-mediated (ex vivo)—has long been studied extensively to provide much needed improvements in bone regeneration. In this article, we review recent advances in gene therapy research whose aims are in vivo or ex vivo bone regeneration or formation. We examine appropriate vectors, safety issues, and rates of bone formation. The use of animal models and their relevance for translation of research results to the clinical setting are also discussed in order to provide the reader with a critical view. Finally, we elucidate the main challenges and hurdles faced by gene therapy aimed at bone regeneration as well as expected future trends in this field. PMID:22429662

  14. Safety and the Human Factor.

    ERIC Educational Resources Information Center

    Smith, Ann

    1982-01-01

    Discusses four elements of safety programs: (1) safety training; (2) safety inspections; (3) accident investigations; and (4) protective safety equipment. Also discusses safety considerations in water/wastewater treatment facilities focusing on falls, drowning hazards, trickling filters, confined space entry, collection/distribution system safety,…

  15. Electrochemically regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.; Heppner, D. B.

    1979-01-01

    Preliminary designs were generated for two electrochemically regenerable carbon dioxide absorber concepts. Initially, an electrochemically regenerable absorption bed concept was designed. This concept incorporated the required electrochemical regeneration components in the absorber design, permitting the absorbent to be regenerated within the absorption bed. This hardware was identified as the electrochemical absorber hardware. The second hardware concept separated the functional components of the regeneration and absorption process. This design approach minimized the extravehicular activity component volume by eliminating regeneration hardware components within the absorber. The electrochemical absorber hardware was extensively characterized for major operating parameters such as inlet carbon dioxide partial pressure, process air flow rate, operational pressure, inlet relative humidity, regeneration current density and absorption/regeneration cycle endurance testing.

  16. Supercritical fluid regeneration of adsorbents

    NASA Astrophysics Data System (ADS)

    Defilippi, R. P.; Robey, R. J.

    1983-05-01

    The results of a program to perform studies supercritical (fluid) carbon dioxide (SCF CO2) regeneration of adsorbents, using samples of industrial wastewaters from manufacturing pesticides and synthetic solution, and to estimate the economics of the specific wastewater treatment regenerations, based on test data are given. Processing costs for regenerating granular activated carbon GAC) for treating industrial wastewaters depend on stream properties and regeneration throughput.

  17. The cell biology of regeneration

    PubMed Central

    King, Ryan S.

    2012-01-01

    Regeneration of complex structures after injury requires dramatic changes in cellular behavior. Regenerating tissues initiate a program that includes diverse processes such as wound healing, cell death, dedifferentiation, and stem (or progenitor) cell proliferation; furthermore, newly regenerated tissues must integrate polarity and positional identity cues with preexisting body structures. Gene knockdown approaches and transgenesis-based lineage and functional analyses have been instrumental in deciphering various aspects of regenerative processes in diverse animal models for studying regeneration. PMID:22391035

  18. Regeneration: rewarding, but potentially risky.

    PubMed

    Egger, Bernhard

    2008-12-01

    Some bilaterally symmetric animals, such as flatworms, annelids, and nemerteans, are renowned for their outstanding regeneration capacity-even a fraction of the body can give rise to a complete new animal. However, not all species of these taxa can regenerate equally well-some cannot regenerate at all. If regeneration was purely beneficial, why cannot all of members of the flat, round, and ribbon worms regenerate? At that, why cannot all other bilaterians, including humans, regenerate as well? Regeneration capacity is an obvious advantage in accidental, predatory, and parasitic loss of body parts and is also closely intertwined with asexual reproduction strategies. Regeneration is suspected to play a role in life span extension or even rejuvenation. An answer for reduced or missing regeneration capacity in many species may be found in limitations of the body plan, high costs, and inherent dangers of regeneration. Defects in adults and juveniles are shown, and similarities between development and regeneration are pointed out. With a focus on some worms, but also highlighting comparisons with other animal taxa, putative reasons for a limited and an advanced regeneration capacity are discussed in this article. PMID:19067421

  19. Regenerator seal design

    DOEpatents

    Eckart, Francis H.

    1982-01-01

    A rotary regenerator disc matrix has a face seal with a cross arm and arcuate rim segments joined by prestress clamps to prestrain the arcuate rim seals so as to compensate seal rim twisting or coning and resultant disc face seal leakage as produced by operating thermal gradients across the seal.

  20. Regenerated Fe is tasty!

    NASA Astrophysics Data System (ADS)

    Nuester, J.; Twining, B. S.

    2012-12-01

    Bioavailability of nutrients is an essential factor controlling primary productivity in the ocean. In addition to macronutrients such as nitrogen and phosphorous, availability of the trace element iron unequivocally affects growth rates and community structure of phytoplankton and thereby primary productivity in many ocean regions. External sources of iron such as Aeolian dust, upwelling of Fe-rich waters, and hydrothermal are reduced in high-nutrient low-chlorophyll regions, and most Fe used by phytoplankton has been regenerated by zooplankton. While zooplankton regeneration of Fe was first shown two decades ago, major factors controlling this process such as chemical composition of prey and grazer taxonomy are not well constrained. As pH varies significantly in digestive systems between protozoa and mesozooplankton, we hypothesize that the extent and the bioavailability of regenerated Fe is a function of the digestive physiology. Furthermore, major element components such as silica for diatoms and calcium carbonate for cocolithophores may be able to buffer the pH of digestive systems of different grazer taxa. Such effects may further influence the magnitude and bioavailability of regenerated Fe. In order to constrain the effect of grazer taxonomy and chemical composition of prey on Fe bioavailability, 55Fe-labeled phytoplankton were fed to different grazers and unlabeled phytoplankton were subsequently inoculated to the filtrate of the grazing experiment in the regrowth phase of the experiment, and the uptake of 55Fe into the phytoplankton biomass was monitored over time. A parallel uptake experiment using inorganic 55Fe was used to compare the bioavailability of regenerated and inorganic Fe to the same phytoplankton species. Furthermore, some samples of the inorganic and the regenerated uptake experiments were treated with an oxalate rinse to remove any adsorbed Fe. This allowed us to estimate the adsorption of 55Fe from either source to the cell walls of

  1. Neighbourhood inequalities in physical inactivity: the role of neighbourhood attractiveness, proximity to local facilities and safety in the Netherlands.

    PubMed

    van Lenthe, F J; Brug, J; Mackenbach, J P

    2005-02-01

    We investigated the association between the neighbourhood socioeconomic environment and physical inactivity, and explored the contribution of neighbourhood characteristics to this association. Data were analysed of 20-69 years old participants of the Dutch GLOBE study who lived in 78 neighbourhoods of Eindhoven (n = 8.767). The neighbourhood socioeconomic environment was assessed from aggregated self-reported information of participants' education and occupation level, and employment status. Aspects of physical inactivity investigated were based on the time spent on (a) walking and cycling to shops or work, (b) walking, cycling and gardening in leisure time, and (c) participation in sports activities. Characteristics of neighbourhoods included the proximity to food shops, general physical design of neighbourhoods, quality of green facilities, noise pollution from traffic and required police attention as evaluated by municipal services (professionals) responsible for these characteristics. Compared to those living in the most advantaged neighbourhoods, residents living in the quartile of socio-economically most disadvantaged neighbourhoods were more likely to walk or cycle to shops or work, but less likely to walk, cycle or garden in leisure time and less likely to participate in sports activities (adjusted for age, sex and individual educational level). Neighbourhood inequalities in walking or cycling to shops or work were not mediated by specific neighbourhood characteristics included in our analyses. The increased probability of almost never walking, cycling and gardening in leisure time in the most disadvantaged neighbourhoods was partly mediated by a poorer general physical design in these neighbourhoods. Similarly, the increased probability of almost never participating in sports activities in the most disadvantaged neighbourhoods was partly mediated by larger amounts of required police attention. The direction of neighbourhood inequalities differs for aspects

  2. Characterization of advanced oxidation regenerated GACs

    SciTech Connect

    Singh, J.; Cannon, F.S.

    1995-11-01

    Industrial and manufacturing processes that employ organic solvents, such as pharmaceutical production, spray booth coating applications, and petrochemical processing, constitute a major source of airborne volatile organic contaminants (VOCs) and hazardous air pollutants (HAPs). VOCs released into the atmosphere react with sunlight to create photochemical smog, oxidants and other pollutants, all of which are considered harmful to animal and plant life. There is thus a need for effective air pollution remediation technologies for such facilities. This paper explores the effects of regeneration by means of advanced oxidation involving UV and ozone, on several properties of granular activated carbons (GACs). The effects of reduction in surface areas and pore volumes, and surface oxidation due to this process of regeneration, on adsorption capacities of some model VOCs is investigated.

  3. LAB STUDY ON REGENERATION OF SPENT DOWEX 21K 16-20 MESH ION EXCHANGE RESIN

    SciTech Connect

    DUNCAN, J.B.

    2007-01-24

    Currently the effort to remove chromate from groundwater in the 100K and 100H Areas uses DOWEX 21K 16-20. This report addresses the procedure and results of a laboratory study for regeneration of the spent resin by sodium hydroxide, sulfuric acid, or sodium sulfate to determine if onsite regeneration by the Effluent Treatment Facility is a feasible option.

  4. Tissue regeneration with photobiomodulation

    NASA Astrophysics Data System (ADS)

    Tang, Elieza G.; Arany, Praveen R.

    2013-03-01

    Low level light therapy (LLLT) has been widely reported to reduce pain and inflammation and enhance wound healing and tissue regeneration in various settings. LLLT has been noted to have both stimulatory and inhibitory biological effects and these effects have been termed Photobiomodulation (PBM). Several elegant studies have shown the key role of Cytochrome C oxidase and ROS in initiating this process. The downstream biological responses remain to be clearly elucidated. Our work has demonstrated activation of an endogenous latent growth factor complex, TGF-β1, as one of the major biological events in PBM. TGF-β1 has critical roles in various biological processes especially in inflammation, immune responses, wound healing and stem cell biology. This paper overviews some of the studies demonstrating the efficacy of PBM in promoting tissue regeneration.

  5. MHD seed recovery/regeneration. Phase 2, Technical progress report, quarter ending May 1993

    SciTech Connect

    Not Available

    1993-11-01

    The following tasks are reported: Design, refurbish, operation potassium formate (``backend``) system (Seed Regeneration Proof-of- Concept Facility); design, construct, operate calcium formate production POC (``frontend``) unit; project management and control; and Western seed studies.

  6. Reprogramming for cardiac regeneration

    PubMed Central

    Raynaud, Christophe Michel; Ahmad, Faizzan Syed; Allouba, Mona; Abou-Saleh, Haissam; Lui, Kathy O.; Yacoub, Magdi

    2014-01-01

    Treatment of cardiovascular diseases remains challenging considering the limited regeneration capacity of the heart muscle. Developments of reprogramming strategies to create in vitro and in vivo cardiomyocytes have been the focus point of a considerable amount of research in the past decades. The choice of cells to employ, the state-of-the-art methods for different reprogramming strategies, and their promises and future challenges before clinical entry, are all discussed here. PMID:25763379

  7. Regenerable adsorption system

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Subir (Inventor); Perry, Jay (Inventor); Walsh, Dennis (Inventor)

    2006-01-01

    A method for regenerable adsorption includes providing a substrate that defines at least one layer of ultra short channel length mesh capable of conducting an electrical current therethrough, coating at least a portion of the substrate with a desired sorbent for trace contaminant control or CO.sub.2 sorption, resistively heating the substrate, and passing a flowstream through the substrate and in contact with the sorbent.

  8. MHD seed recovery/regeneration

    NASA Astrophysics Data System (ADS)

    Task 1 calls for the design, procurement, construction, and installation of the Seed Regeneration Proof-of-Concept Facility (SRPF) that will produce tonnage quantities of recyclable potassium formate seed at a design rate of 250 lb/hr for testing in the channel at the CDIF while collecting data that will be used to upgrade the design of a 300 MW(sub t) system. Approximately 12 tons of KCOOH (dry basis) as 70-75 wt percent solution were produced. The front end of the plant (potassium sulfate reaction and solids separation/washing units) was operated for five days in March. Most of the operations were conducted at a spent seed feed rate of 250 pounds/hour. A total of 8,500 gallons of dilute KCOOH solution was generated containing approximately 2.6 tons of potassium formate (dry basis). The average KCOOH content of this solution was 7 wt percent. The design KCOOH solution concentration for the front end of the plant is 8.5 wt percent. The evaporation unit was operated for a total of six days during March. Approximately 2.5 tons of potassium formate (dry basis) were processed through the evaporator and concentrated to greater then 7 wt percent.

  9. Regenerating Water-Sterilizing Resins

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.

    1982-01-01

    Iodine-dispensing resin can be regenerated after iodine content has been depleted, without being removed from water system. Resin is used to make water potable by killing bacteria, fungi, and viruses. Regeneration technique may be come basis of water purifier for very long space missions. Enough crystalline iodine for multiple regenerations during mission can be stored in one small cartridge. Cartridge could be inserted in waterline as necessary on signal from iodine monitor or timer.

  10. Intrinsic Control of Axon Regeneration.

    PubMed

    He, Zhigang; Jin, Yishi

    2016-05-01

    A determinant of axon regeneration is the intrinsic growth ability of injured neurons, which dictates a battery of injury responses in axons and cell bodies. While some of these regulatory mechanisms are evolutionarily conserved, others are unique to the mammalian central nervous system (CNS) where spontaneous regeneration usually does not occur. Here we examine our current understanding of these mechanisms at cellular and molecular terms and discuss their potential implications for promoting axon regeneration and functional recovery after nerve injury. PMID:27151637

  11. Synthetic Phage for Tissue Regeneration

    PubMed Central

    Merzlyak, Anna; Lee, Seung-Wuk

    2014-01-01

    Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy. PMID:24991085

  12. Understanding Urban Regeneration in Turkey

    NASA Astrophysics Data System (ADS)

    Candas, E.; Flacke, J.; Yomralioglu, T.

    2016-06-01

    In Turkey, rapid population growth, informal settlements, and buildings and infrastructures vulnerable to natural hazards are seen as the most important problems of cities. Particularly disaster risk cannot be disregarded, as large parts of various cities are facing risks from earthquakes, floods and landslides and have experienced loss of lives in the recent past. Urban regeneration is an important planning tool implemented by local and central governments in order to reduce to disaster risk and to design livable environments for the citizens. The Law on the Regeneration of Areas under Disaster Risk, commonly known as the Urban Regeneration Law, was enacted in 2012 (Law No.6306, May 2012). The regulation on Implementation of Law No. 6306 explains the fundamental steps of the urban regeneration process. The relevant institutions furnished with various authorities such as expropriation, confiscation and changing the type and place of your property which makes urban regeneration projects very important in terms of property rights. Therefore, urban regeneration projects have to be transparent, comprehensible and acceptable for all actors in the projects. In order to understand the urban regeneration process, the legislation and projects of different municipalities in Istanbul have been analyzed. While some steps of it are spatial data demanding, others relate to land values. In this paper an overview of the urban regeneration history and activities in Turkey is given. Fundamental steps of the urban regeneration process are defined, and particularly spatial-data demanding steps are identified.

  13. Safety after cardiac catheterization.

    PubMed

    Huber, Charlotte

    2009-08-01

    The Pennsylvania Patient Safety Authority's reporting system is a confidential, statewide Internet reporting system to which all Pennsylvania hospitals, outpatient-surgery facilities, and birthing centers, as well as some abortion facilities, must file information on medical errors. Safety Monitor is a column from the authority that informs nurses on issues that can affect patient safety and presents strategies they can easily integrate into practice. For more information on the authority, visit www.patientsafetyauthority.org. For the original article discussed in this column or for other articles on patient safety, click on "Patient Safety Advisories" and then "Advisory Library" in the left-hand navigation menu. PMID:19641415

  14. Closed end regeneration method

    DOEpatents

    Yang, Arthur Jing-Min; Zhang, Yuehua

    2006-06-27

    A nanoporous reactive adsorbent incorporates a relatively small number of relatively larger reactant, e.g. metal, enzyme, etc. particles (10) forming a discontinuous or continuous phase interspersed among and surrounded by a continuous phase of smaller adsorbent particles (12) and connected interstitial pores (14) therebetween. The reactive adsorbent can effectively remove inorganic or organic impurities in a liquid by causing the liquid to flow through the adsorbent. For example, silver ions may be adsorbed by the adsorbent particles (12) and reduced to metallic silver by reducing metal, such as irons, as the reactant particles (10). The column can be regenerated by backwashing with the liquid effluent containing, for example, acetic acid.

  15. Regenerable solid imine sorbents

    DOEpatents

    Gray, McMahan; Champagne, Kenneth J.; Fauth, Daniel; Beckman, Eric

    2013-09-10

    Two new classes of amine-based sorbents are disclosed. The first class comprises new polymer-immobilized tertiary amine sorbents; the second class new polymer-bound amine sorbents. Both classes are tailored to facilitate removal of acid anhydrides, especially carbon dioxide (CO.sub.2), from effluent gases. The amines adsorb acid anhydrides in a 1:1 molar ratio. Both classes of amine sorbents adsorb in the temperature range from about 20.degree. C. upwards to 90.degree. C. and can be regenerated by heating upwards to 100.degree. C.

  16. 77 FR 44174 - Procedures for Safety Investigations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-27

    ... facility which the Board determines has adversely affected, or may adversely affect, public health and... safety investigation. (b) Each contractor operating a Department of Energy defense nuclear facility...

  17. FLUOR HANFORD SAFETY MANAGEMENT PROGRAMS

    SciTech Connect

    GARVIN, L. J.; JENSEN, M. A.

    2004-04-13

    This document summarizes safety management programs used within the scope of the ''Project Hanford Management Contract''. The document has been developed to meet the format and content requirements of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''. This document provides summary descriptions of Fluor Hanford safety management programs, which Fluor Hanford nuclear facilities may reference and incorporate into their safety basis when producing facility- or activity-specific documented safety analyses (DSA). Facility- or activity-specific DSAs will identify any variances to the safety management programs described in this document and any specific attributes of these safety management programs that are important for controlling potentially hazardous conditions. In addition, facility- or activity-specific DSAs may identify unique additions to the safety management programs that are needed to control potentially hazardous conditions.

  18. Novel ebullated bed catalyst regeneration technology improves regenerated catalyst quality

    SciTech Connect

    Neuman, D.J.

    1995-09-01

    Regeneration of spent hydroprocessing catalysts has long been practiced by the refining industry. With increased pressures on refiners to reduce catalyst expenditures and waste generation, refiners are more frequently reusing spent hydroprocessing catalysts after ex-situ regeneration to restore catalytic activity. By reusing regenerated catalyst for at least two cycles, the refiner reduces catalyst waste by at least one-half. As environmental laws become more restrictive, spent hydroprocessing catalyst is more likely to be classified as hazardous waste. Disposal of spent catalyst, which was previously accomplished by landfilling, now requires more expensive reclamation techniques. TRICAT has introduced the TRICAT Regeneration Process (TRP), a novel ebullated bed regeneration plant, to improve the catalyst regeneration process. The ebullated bed design allows for better control of heat release during the regeneration process. As a result, the regeneration can be accomplished in a single-pass, with improved catalyst activity retention. Catalyst losses are also minimized due to reduced catalyst handling. Commercial results from the TRP have demonstrated successful scale-up of the technology from pilot scale. The plant has achieved complete recovery of the available catalyst activity with little or no losses in catalyst yield or extrudate length. The flexibility of the TRP to process a variety of catalysts is also discussed.

  19. Regeneration of desiccants with solar energy

    SciTech Connect

    Ghate, S.R.; Butts, C.L.; Lown, J.B.

    1985-01-01

    Saturated silica gel was regenerated with solar energy. This paper describes the experimental set-up for silica gel regeneration and data collection. The regenerated silica gel can be used to dry high moisture in-shell pecans.

  20. 30 CFR 56.20008 - Toilet facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Toilet facilities. 56.20008 Section 56.20008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Miscellaneous § 56.20008 Toilet facilities. (a) Toilet facilities...

  1. 30 CFR 56.20008 - Toilet facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Toilet facilities. 56.20008 Section 56.20008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Miscellaneous § 56.20008 Toilet facilities. (a) Toilet facilities...

  2. Regenerable Iodine Water-Disinfection System

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Colombo, Gerald V.; Jolly, Clifford D.

    1994-01-01

    Iodinated resin bed for disinfecting water regenerated to extend useful life. Water flows through regeneration bed of crystalline iodine during regeneration. At other times, flow diverted around regeneration bed. Although regeneration cycle manually controlled readily automated to start and stop according to signals from concentration sensors. Further benefit of regeneration is bed provides highly concentrated biocide source when needed. Concentrated biocide used to superiodinate system after contamination from routine maintenance or unexpected introduction of large concentration of microbes.

  3. Safe design of healthcare facilities

    PubMed Central

    Reiling, J

    2006-01-01

    The physical environment has a significant impact on health and safety; however, hospitals have not been designed with the explicit goal of enhancing patient safety through facility design. In April 2002, St Joseph's Community Hospital of West Bend, a member of SynergyHealth, brought together leaders in healthcare and systems engineering to develop a set of safety‐driven facility design recommendations and principles that would guide the design of a new hospital facility focused on patient safety. By introducing safety‐driven innovations into the facility design process, environmental designers and healthcare leaders will be able to make significant contributions to patient safety. PMID:17142606

  4. Hand Safety

    MedlinePlus

    ... en gatillo See More... Hand Anatomy Hand Safety Fireworks Safety Lawnmower Safety Snowblower safety Pumpkin Carving Gardening ... en gatillo See More... Hand Anatomy Hand Safety Fireworks Safety Lawnmower Safety Snowblower safety Pumpkin Carving Gardening ...

  5. Hand Safety

    MedlinePlus

    ... Fireworks Safety Lawnmower Safety Snowblower safety Pumpkin Carving Gardening Safety Turkey Carving Removing a Ring Español Artritis ... Fireworks Safety Lawnmower Safety Snowblower safety Pumpkin Carving Gardening Safety Turkey Carving Removing a Ring Español Artritis ...

  6. Electrical safety guidelines

    SciTech Connect

    Not Available

    1993-09-01

    The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  7. Safety analysts training

    SciTech Connect

    Bolton, P.

    2000-10-01

    The purpose of this task was to support ESH-3 in providing Airborne Release Fraction and Respirable Fraction training to safety analysts at LANL who perform accident analysis, hazard analysis, safety analysis, and/or risk assessments at nuclear facilities. The task included preparation of materials for and the conduct of two 3-day training courses covering the following topics: safety analysis process; calculation model; aerosol physic concepts for safety analysis; and overview of empirically derived airborne release fractions and respirable fractions.

  8. DOE handbook electrical safety

    SciTech Connect

    1998-01-01

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  9. Special Feature: Facilities.

    ERIC Educational Resources Information Center

    Storm, George; And Others

    1993-01-01

    Includes "Planning Laboratory Design" (Storm); "Perkins Money for Automotive Programs" (Cash); "Stretching a Budget" (Warren); "Video Teleconferencing--Powerful Communication for Occupational Educators" (Major); "Danger: Hazardous Materials" (Brown); and "Keeping Facilities Safe--Electrical Safety and Maintenance" (Kirk). (JOW)

  10. Nanocomposites and bone regeneration

    NASA Astrophysics Data System (ADS)

    James, Roshan; Deng, Meng; Laurencin, Cato T.; Kumbar, Sangamesh G.

    2011-12-01

    This manuscript focuses on bone repair/regeneration using tissue engineering strategies, and highlights nanobiotechnology developments leading to novel nanocomposite systems. About 6.5 million fractures occur annually in USA, and about 550,000 of these individual cases required the application of a bone graft. Autogenous and allogenous bone have been most widely used for bone graft based therapies; however, there are significant problems such as donor shortage and risk of infection. Alternatives using synthetic and natural biomaterials have been developed, and some are commercially available for clinical applications requiring bone grafts. However, it remains a great challenge to design an ideal synthetic graft that very closely mimics the bone tissue structurally, and can modulate the desired function in osteoblast and progenitor cell populations. Nanobiomaterials, specifically nanocomposites composed of hydroxyapatite (HA) and/or collagen are extremely promising graft substitutes. The biocomposites can be fabricated to mimic the material composition of native bone tissue, and additionally, when using nano-HA (reduced grain size), one mimics the structural arrangement of native bone. A good understanding of bone biology and structure is critical to development of bone mimicking graft substitutes. HA and collagen exhibit excellent osteoconductive properties which can further modulate the regenerative/healing process following fracture injury. Combining with other polymeric biomaterials will reinforce the mechanical properties thus making the novel nano-HA based composites comparable to human bone. We report on recent studies using nanocomposites that have been fabricated as particles and nanofibers for regeneration of segmental bone defects. The research in nanocomposites, highlight a pivotal role in the future development of an ideal orthopaedic implant device, however further significant advancements are necessary to achieve clinical use.

  11. Myocardial regeneration potential of adipose tissue-derived stem cells

    SciTech Connect

    Bai, Xiaowen; Alt, Eckhard

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  12. Biomaterial Selection for Tooth Regeneration

    PubMed Central

    Yuan, Zhenglin; Nie, Hemin; Wang, Shuang; Lee, Chang Hun; Li, Ang; Fu, Susan Y.; Zhou, Hong

    2011-01-01

    Biomaterials are native or synthetic polymers that act as carriers for drug delivery or scaffolds for tissue regeneration. When implanted in vivo, biomaterials should be nontoxic and exert intended functions. For tooth regeneration, biomaterials have primarily served as a scaffold for (1) transplanted stem cells and/or (2) recruitment of endogenous stem cells. This article critically synthesizes our knowledge of biomaterial use in tooth regeneration, including the selection of native and/or synthetic polymers, three-dimensional scaffold fabrication, stem cell transplantation, and stem cell homing. A tooth is a complex biological organ. Tooth loss represents the most common organ failure. Tooth regeneration encompasses not only regrowth of an entire tooth as an organ, but also biological restoration of individual components of the tooth including enamel, dentin, cementum, or dental pulp. Regeneration of tooth root represents perhaps more near-term opportunities than the regeneration of the whole tooth. In the adult, a tooth owes its biological vitality, arguably more, to the root than the crown. Biomaterials are indispensible for the regeneration of tooth root, tooth crown, dental pulp, or an entire tooth. PMID:21699433

  13. Cardiac Regeneration and Stem Cells.

    PubMed

    Zhang, Yiqiang; Mignone, John; MacLellan, W Robb

    2015-10-01

    After decades of believing the heart loses the ability to regenerate soon after birth, numerous studies are now reporting that the adult heart may indeed be capable of regeneration, although the magnitude of new cardiac myocyte formation varies greatly. While this debate has energized the field of cardiac regeneration and led to a dramatic increase in our understanding of cardiac growth and repair, it has left much confusion in the field as to the prospects of regenerating the heart. Studies applying modern techniques of genetic lineage tracing and carbon-14 dating have begun to establish limits on the amount of endogenous regeneration after cardiac injury, but the underlying cellular mechanisms of this regeneration remained unclear. These same studies have also revealed an astonishing capacity for cardiac repair early in life that is largely lost with adult differentiation and maturation. Regardless, this renewed focus on cardiac regeneration as a therapeutic goal holds great promise as a novel strategy to address the leading cause of death in the developed world. PMID:26269526

  14. Evaluation of advanced regenerator systems

    NASA Technical Reports Server (NTRS)

    Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.

    1978-01-01

    The major considerations are discussed which will affect the selection of a ceramic regenerative heat exchanger for an improved 100 HP automotive gas turbine engine. The regenerator considered for this application is about 36cm in diameter. Regenerator comparisons are made on the basis of material, method of fabrication, cost, and performance. A regenerator inlet temperature of 1000 C is assumed for performance comparisons, and laboratory test results are discussed for material comparisons at 1100 and 1200 C. Engine test results using the Ford 707 industrial gas turbine engine are also discussed.

  15. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Andreas Weber; Raghubir P. Gupta

    2006-01-01

    This report describes research conducted between October 1, 2005, and December 31, 2005, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from flue gas from coal combustion. A field test was conducted to examine the extent to which RTI's supported sorbent can be regenerated in a heated, hollow screw conveyor. This field test was conducted at the facilities of a screw conveyor manufacturer. The sorbent was essentially completely regenerated during this test, as confirmed by thermal desorption and mass spectroscopy analysis of the regenerated sorbent. Little or no sorbent attrition was observed during 24 passes through the heated screw conveyor system. Three downflow contactor absorption tests were conducted using calcined sodium bicarbonate as the absorbent. Maximum carbon dioxide removals of 57 and 91% from simulated flue gas were observed at near ambient temperatures with water-saturated gas. These tests demonstrated that calcined sodium carbonate is not as effective at removing CO{sub 2} as are supported sorbents containing 10 to 15% sodium carbonate. Delivery of the hollow screw conveyor for the laboratory-scale sorbent regeneration system was delayed; however, construction of other components of this system continued during the quarter.

  16. Seismic Safety Guide

    SciTech Connect

    Eagling, D.G.

    1983-09-01

    This guide provides managers with practical guidelines for administering a comprehensive earthquake safety program. The Guide is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, evaluation and rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, special considerations related to shielding blocks, non-structural elements, lifelines, fire protection and emergency facilities. Management of risk and liabilities is also covered. Nuclear facilities per se are not dealt with specifically. The principles covered also apply generally to nuclear facilities but the design and construction of such structures are subject to special regulations and legal controls.

  17. Science Facilities Bibliography.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    A bibliographic collection on science buildings and facilities is cited with many different reference sources for those concerned with the design, planning, and layout of science facilities. References are given covering a broad scope of information on--(1) physical plant planning, (2) management and safety, (3) building type studies, (4) design…

  18. TWRS safety program plan

    SciTech Connect

    Calderon, L.M., Westinghouse Hanford

    1996-08-01

    Management of Nuclear Safety, Industrial Safety, Industrial Hygiene, and Fire Protection programs, functions, and field support resources for Tank Waste Remediation Systems (TWRS) has, until recently, been centralized in TWRS Safety, under the Emergency, Safety, and Quality organization. Industrial hygiene technician services were also provided to support operational needs related to safety basis compliance. Due to WHC decentralization of safety and reengineering efforts in West Tank Farms, staffing and safety responsibilities have been transferred to the facilities. Under the new structure, safety personnel for TWRS are assigned directly to East Tank Farms, West Tank Farms, and a core Safety Group in TWRS Engineering. The Characterization Project Operations (CPO) safety organization will remain in tact as it currently exists. Personnel assigned to East Tank Farms, West Tank Farms, and CPO will perform facility-specific or project-specific duties and provide field implementation of programs. Those assigned to the core group will focus on activities having a TWRS-wide or programmatic focus. Hanford-wide activities will be the responsibility of the Safety Center of Expertise. In order to ensure an effective and consistent safety program for TWRS under the new organization program functions, goals, organizational structure, roles, responsibilities, and path forward must be clearly established. The purpose of the TWRS Safety Program Plan is to define the overall safety program, responsibilities, relationships, and communication linkages for safety personnel under the new structure. In addition, issues associated with reorganization transition are addressed, including training, project ownership, records management, and dissemination of equipment. For the purpose of this document ``TWRS Safety`` refers to all safety professionals and technicians (Industrial Safety, Industrial Hygiene, Fire Protection, and Nuclear Safety) within the TWRS organization, regardless of their

  19. Regenerable Iodine Water-Disinfection System

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Colombo, Gerald V.; Jolly, Clifford D.

    1994-01-01

    Iodinated resin bed for disinfecting water regenerated to extend its useful life. Water flows through regeneration bed of crystalline iodine during regeneration. At other times, flow diverted around regeneration bed. Although regeneration cycle was manually controlled in demonstration, readily automated to start and stop according to signals and stop according to signals from concentration sensors. Further benefit of regeneration is that regeneration bed provides highly concentrated biocide source (200 mg/L) when needed. Concentrated biocide used to superiodinate system after contamination from routine maintenance or unexpected introduction of large concentration of microbes.

  20. Endogenous Mechanisms of Cardiac Regeneration.

    PubMed

    Xiang, M S W; Kikuchi, K

    2016-01-01

    Zebrafish possess a remarkable capacity for cardiac regeneration throughout their lifetime, providing a model for investigating endogenous cellular and molecular mechanisms regulating myocardial regeneration. By contrast, adult mammals have an extremely limited capacity for cardiac regeneration, contributing to mortality and morbidity from cardiac diseases such as myocardial infarction and heart failure. However, the viewpoint of the mammalian heart as a postmitotic organ was recently revised based on findings that the mammalian heart contains multiple undifferentiated cell types with cardiogenic potential as well as a robust regenerative capacity during a short period early in life. Although it occurs at an extremely low level, continuous cardiomyocyte turnover has been detected in adult mouse and human hearts, which could potentially be enhanced to restore lost myocardium in damaged human hearts. This review summarizes and discusses recent advances in the understanding of endogenous mechanisms of cardiac regeneration. PMID:27572127

  1. Gene Transfer Strategies to Promote Chondrogenesis and Cartilage Regeneration.

    PubMed

    Im, Gun-Il

    2016-04-01

    Gene transfer has been used experimentally to promote chondrogenesis and cartilage regeneration. While it is controversial to apply gene therapy for nonlethal conditions such as cartilage defect, there is a possibility that the transfer of therapeutic transgenes may dramatically increase the effectiveness of cell therapy and reduce the quantity of cells that are needed to regenerate cartilage. Single or combination of growth factors and transcription factors has been transferred to mesenchymal stem cells or articular chondrocytes using both nonviral and viral approaches. The current challenge for the clinical applications of genetically modified cells is ensuring the safety of gene therapy while guaranteeing effectiveness. Viral gene delivery methods have been mainstays currently with enhanced safety features being recently refined. On the other hand, efficiency has been greatly improved in nonviral delivery. This review summarizes the history and recent update on the gene transfer to enhance chondrogenesis from stem cells or articular chondrocytes. PMID:26414246

  2. Periodontal Tissue Regeneration Using Fibroblast Growth Factor -2: Randomized Controlled Phase II Clinical Trial

    PubMed Central

    Kitamura, Masahiro; Nakashima, Keisuke; Kowashi, Yusuke; Fujii, Takeo; Shimauchi, Hidetoshi; Sasano, Takashi; Furuuchi, Toshi; Fukuda, Mitsuo; Noguchi, Toshihide; Shibutani, Toshiaki; Iwayama, Yukio; Takashiba, Shogo; Kurihara, Hidemi; Ninomiya, Masami; Kido, Jun-ichi; Nagata, Toshihiko; Hamachi, Takafumi; Maeda, Katsumasa; Hara, Yoshitaka; Izumi, Yuichi; Hirofuji, Takao; Imai, Enyu; Omae, Masatoshi; Watanuki, Mitsuru; Murakami, Shinya

    2008-01-01

    Background The options for medical use of signaling molecules as stimulators of tissue regeneration are currently limited. Preclinical evidence suggests that fibroblast growth factor (FGF)-2 can promote periodontal regeneration. This study aimed to clarify the activity of FGF-2 in stimulating regeneration of periodontal tissue lost by periodontitis and to evaluate the safety of such stimulation. Methodology/Principal Findings We used recombinant human FGF-2 with 3% hydroxypropylcellulose (HPC) as vehicle and conducted a randomized double-blinded controlled trial involving 13 facilities. Subjects comprised 74 patients displaying a 2- or 3-walled vertical bone defect as measured ≥3 mm apical to the bone crest. Patients were randomly assigned to 4 groups: Group P, given HPC with no FGF-2; Group L, given HPC containing 0.03% FGF-2; Group M, given HPC containing 0.1% FGF-2; and Group H, given HPC containing 0.3% FGF-2. Each patient underwent flap operation during which we administered 200 µL of the appropriate investigational drug to the bone defect. Before and for 36 weeks following administration, patients underwent periodontal tissue inspections and standardized radiography of the region under investigation. As a result, a significant difference (p = 0.021) in rate of increase in alveolar bone height was identified between Group P (23.92%) and Group H (58.62%) at 36 weeks. The linear increase in alveolar bone height at 36 weeks in Group P and H was 0.95 mm and 1.85 mm, respectively (p = 0.132). No serious adverse events attributable to the investigational drug were identified. Conclusions Although no statistically significant differences were noted for gains in clinical attachment level and alveolar bone gain for FGF-2 groups versus Group P, the significant difference in rate of increase in alveolar bone height (p = 0.021) between Groups P and H at 36 weeks suggests that some efficacy could be expected from FGF-2 in stimulating regeneration of

  3. Hairpin Vortex Regeneration Threshold

    NASA Astrophysics Data System (ADS)

    Sabatino, Daniel; Maharjan, Rijan

    2015-11-01

    A free surface water channel is used to study hairpin vortex formation created by fluid injection through a narrow slot into a laminar boundary layer. Particle image velocimetry is used to calculate the circulation of the primary hairpin vortex head which is found to monotonically decrease in strength with downstream distance. When a secondary hairpin vortex is formed upstream of the primary vortex, the circulation strength of the head is comparable to the strength of the primary head at the time of regeneration. However, the legs of the primary vortex strengthen up to the moment the secondary hairpin is generated. Although the peak circulation in the legs is not directly correlated to the strength of the original elongated ring vortex, when the circulation is scaled with the injection momentum ratio it is linearly related to scaled injection time. It is proposed that the injection momentum ratio and nondimensionalized injection time based on the wall normal penetration time can be used to identify threshold conditions which produce a secondary vortex. Supported by the National Science Foundation under Grant CBET- 1040236.

  4. Biomaterials for periodontal regeneration

    PubMed Central

    Shue, Li; Yufeng, Zhang; Mony, Ullas

    2012-01-01

    Periodontal disease is characterized by the destruction of periodontal tissues. Various methods of regenerative periodontal therapy, including the use of barrier membranes, bone replacement grafts, growth factors and the combination of these procedures have been investigated. The development of biomaterials for tissue engineering has considerably improved the available treatment options above. They fall into two broad classes: ceramics and polymers. The available ceramic-based materials include calcium phosphate (eg, tricalcium phosphate and hydroxyapatite), calcium sulfate and bioactive glass. The bioactive glass bonds to the bone with the formation of a layer of carbonated hydroxyapatite in situ. The natural polymers include modified polysaccharides (eg, chitosan,) and polypeptides (collagen and gelatin). Synthetic polymers [eg, poly(glycolic acid), poly(L-lactic acid)] provide a platform for exhibiting the biomechanical properties of scaffolds in tissue engineering. The materials usually work as osteogenic, osteoconductive and osteoinductive scaffolds. Polymers are more widely used as a barrier material in guided tissue regeneration (GTR). They are shown to exclude epithelial downgrowth and allow periodontal ligament and alveolar bone cells to repopulate the defect. An attempt to overcome the problems related to a collapse of the barrier membrane in GTR or epithelial downgrowth is the use of a combination of barrier membranes and grafting materials. This article reviews various biomaterials including scaffolds and membranes used for periodontal treatment and their impacts on the experimental or clinical management of periodontal defect. PMID:23507891

  5. Regenerable biocide delivery unit

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L. (Inventor); Colombo, Gerald V. (Inventor); Jolly, Clifford D. (Inventor)

    1993-01-01

    A method and apparatus are disclosed for maintaining continuous, long-term microbial control in the water supply for potable, hygiene, and experimental water for space activities, as well as treatment of water supplies on Earth. The water purification is accomplished by introduction of molecular iodine into the water supply to impart a desired iodine residual. The water is passed through an iodinated anion exchange resin bed. The iodine is bound as I-(sub n) at the anion exchange sites and releases I(sub 2) into the water stream flowing through the bed. The concentration of I(sub 2) in the flowing water gradually decreases and, in the prior art, the ion-exchange bed has had to be replaced. In a preferred embodiment, a bed of iodine crystals is provided with connections for flowing water therethrough to produce a concentrated (substantially saturated) aqueous iodine solution which is passed through the iodinated resin bed to recharge the bed with bound iodine. The bed of iodine crystals is connected in parallel with the iodinated resin bed and is activated periodically (e.g., by timer, by measured flow of water, or by iodine residual level) to recharge the bed. Novelty resides in the capability of inexpensively and repeatedly regenerating the ion-exchange bed in situ.

  6. Enhancement of skeletal muscle regeneration.

    PubMed

    Bischoff, R; Heintz, C

    1994-09-01

    We have studied the effect of adding extra satellite cells or soluble factors from crushed muscle on regeneration of minced fragments from rat tibialis muscle. The muscle mince was wrapped in an artificial epimysium to prevent adhesions and cell immigration from adjacent muscles. Regeneration was quantitatively assessed by electrophoretic determination of the muscle-specific form of creatine kinase. Control minces exhibited three periods of change in creatine kinase activity during a 7-week regeneration period. Activity fell rapidly during the first week, then rose gradually from 1-3 weeks and increased more rapidly from 3-7 weeks. To augment the original complement of myogenic cells, satellite cells were isolated from the contralateral muscle, purified by density gradient centrifugation, and expanded in culture for 3 days before adding to the muscle mince. The added cells resulted in a 3-fold enhancement of creatine kinase activity throughout the regeneration period. Soluble muscle extract incorporated into a collagen matrix also stimulated regeneration when added to muscle mince. The extract accelerated the rate of creatine kinase increase during the 1-3 week period beyond that observed in the control or cell augmented mince, suggesting that factors in the extract may facilitate revascularization or reinnervation. The specific activity of creatine kinase was increased in regenerates augmented with both cells and extract, indicating that the effects enhance primarily myogenic processes. PMID:7803846

  7. Chemistry Laboratory Safety Check

    ERIC Educational Resources Information Center

    Patnoe, Richard L.

    1976-01-01

    An accident prevention/safety check list for chemistry laboratories is printed. Included are checks of equipment, facilities, storage and handling of chemicals, laboratory procedures, instruction procedures, and items to be excluded from chemical laboratories. (SL)

  8. Chemical Safety Programs.

    ERIC Educational Resources Information Center

    Shaw, Richard

    2000-01-01

    Discusses the need to enhance understanding of chemical safety in educational facilities that includes adequate staff training and drilling requirements. The question of what is considered proper training is addressed. (GR)

  9. Safety study application guide. Safety Analysis Report Update Program

    SciTech Connect

    Not Available

    1993-07-01

    Martin Marietta Energy Systems, Inc., (Energy Systems) is committed to performing and documenting safety analyses for facilities it manages for the Department of Energy (DOE). Included are analyses of existing facilities done under the aegis of the Safety Analysis Report Upgrade Program, and analyses of new and modified facilities. A graded approach is used wherein the level of analysis and documentation for each facility is commensurate with the magnitude of the hazard(s), the complexity of the facility and the stage of the facility life cycle. Safety analysis reports (SARs) for hazard Category 1 and 2 facilities are usually detailed and extensive because these categories are associated with public health and safety risk. SARs for Category 3 are normally much less extensive because the risk to public health and safety is slight. At Energy Systems, safety studies are the name given to SARs for Category 3 (formerly {open_quotes}low{close_quotes}) facilities. Safety studies are the appropriate instrument when on-site risks are limited to irreversible consequences to a few people, and off-site consequences are limited to reversible consequences to a few people. This application guide provides detailed instructions for performing safety studies that meet the requirements of DOE Orders 5480.22, {open_quotes}Technical Safety Requirements,{close_quotes} and 5480.23, {open_quotes}Nuclear Safety Analysis Reports.{close_quotes} A seven-chapter format has been adopted for safety studies. This format allows for discussion of all the items required by DOE Order 5480.23 and for the discussions to be readily traceable to the listing in the order. The chapter titles are: (1) Introduction and Summary, (2) Site, (3) Facility Description, (4) Safety Basis, (5) Hazardous Material Management, (6) Management, Organization, and Institutional Safety Provisions, and (7) Accident Analysis.

  10. Elemental sulfur from regenerable FGD processes

    SciTech Connect

    Little, R.C.; Nelson, S.G.

    1995-12-31

    Sorbent Technologies Corporation (Sorbtech) engineers recently discovered a new catalyst that effectively reduces sulfur dioxide (SO{sub 2}) in concentrated SO{sub 2} streams directly to elemental sulfur as a one-step process. The discovery was made during Sorbtech`s development work with the Magsorbent Process, a new regenerable Flue Gas Desulfurization (FGD) process. In laboratory studies, the catalyst demonstrated good SO{sub 2}-to-elemental sulfur yields. Yields of 95% or more were observed. The process, which is carried out at atmospheric pressure, employs reformed methane and the catalyst, which is heated, to reduce SO{sub 2} to elemental sulfur. The new catalyst process should be of interest to anyone who currently has an SO{sub 2} stream containing high concentrations of SO{sub 2}, and wishes to convert it into a useful product. The process is expected to be a low-cost alternative to a modified Claus plant. This paper describes laboratory tests that were conducted to examine the effects of gas composition, sulfur dioxide concentration, and long-term use on the performance of the catalyst. It also describes the scale up of the new technology to a size suitable for treating the total SO{sub 2}-rich regenerator off-gas stream at DOE`s new Copper Oxide Process flue-gas desulfurization pilot facility, located at the Pittsburgh Energy Technology Center.

  11. Cell replacement and regeneration therapy for diabetes.

    PubMed

    Jun, Hee-Sook

    2010-04-01

    Reduction of beta cell function and a beta cell mass is observed in both type 1 and type 2 diabetes. Therefore, restoration of this deficiency might be a therapeutic option for treatment of diabetes. Islet transplantation has benefits, such as reduced incidence of hypoglycemia and achievement of insulin independence. However, the major drawback is an insufficient supply of islet donors. Transplantation of cells differentiated in vitro or in vivo regeneration of insulin-producing cells are possible approaches for beta cell/islet regenerative therapy. Embryonic and adult stem cells, pancreatic ductal progenitor cells, acinar cells, and other endocrine cells have been shown to differentiate into pancreatic beta cells. Formation of fully functional beta cells and the safety of these cells are critical issues for successful clinical application. PMID:20548838

  12. Investigations and Recommendations on the Use of Existing Experiments in Criticality Safety Analysis of Nuclear Fuel Cycle Facilities for Weapons-Grade Plutonium

    SciTech Connect

    Rearden, B.T.

    2002-05-29

    report is given in Sect. 2. This report pertains to two of the five AOAs identified by the licensee [Duke, Cogema, Stone and Webster (DCS)] for the validation of criticality codes in the design of the Mixed-Oxide Fuel Fabrication Facility (MFFF). The five AOAs are as follows: (1) Pu-nitrate aqueous solutions (homogeneous systems), (2) Mixed-oxide (MOX) pellets, fuel rods and fuel assemblies (heterogeneous systems), (3) PuO{sub 2} powders, (4) MOX powders, and (5) Aqueous solutions of Pu compounds (Pu-oxalate solutions). This report addresses a S/U analysis pertaining to AOA 3, PuO{sub 2} powders, and AOA 4, MOX powders. AOA 3 and AOA 4 are the subject of this report since the other AOAs (solutions and heterogeneous systems) appear to be well represented in the documented benchmark experiments used in the criticality safety community. Prior to this work, DCS used traditional criticality validation techniques to identify numerous experimental benchmarks that are applicable to AOAs 3 and 4. Traditional techniques for selection of applicable benchmark experiments essentially consist of evaluating the area of applicability for important design parameters (e.g., Pu content or average neutron energy) and ensuring experiments have similar characteristics that bound or nearly bound the range of conditions requiring design analysis. DCS provided ORNL with compositions and dimensions for critical systems used to establish preliminary mass limits for facility powder and fuel pellet handling areas corresponding to AOAs 3 and 4. ORNL has reviewed existing critical experiments to identify those, which, in addition to those provided by DCS, may be applicable to the criticality code validation for AOAs 3 and 4. A S/U analysis was then performed to calculate the integral parameters used to determine the similarity of each critical experiment to each design system provided by DCS. This report contains a review of the S/U theory, a description of the design systems, a brief description of

  13. Pulp-dentin Regeneration: Current State and Future Prospects.

    PubMed

    Cao, Y; Song, M; Kim, E; Shon, W; Chugal, N; Bogen, G; Lin, L; Kim, R H; Park, N-H; Kang, M K

    2015-11-01

    The goal of regenerative endodontics is to reinstate normal pulp function in necrotic and infected teeth that would result in reestablishment of protective functions, including innate pulp immunity, pulp repair through mineralization, and pulp sensibility. In the unique microenvironment of the dental pulp, the triad of tissue engineering would require infection control, biomaterials, and stem cells. Although revascularization is successful in resolving apical periodontitis, multiple studies suggest that it alone does not support pulp-dentin regeneration. More recently, cell-based approaches in endodontic regeneration based on pulpal mesenchymal stem cells (MSCs) have demonstrated promising results in terms of pulp-dentin regeneration in vivo through autologous transplantation. Although pulpal regeneration requires the cell-based approach, several challenges in clinical translation must be overcome-including aging-associated phenotypic changes in pulpal MSCs, availability of tissue sources, and safety and regulation involved with expansion of MSCs in laboratories. Allotransplantation of MSCs may alleviate some of these obstacles, although the long-term stability of MSCs and efficacy in pulp-dentin regeneration demand further investigation. For an alternative source of MSCs, our laboratory developed induced MSCs (iMSCs) from primary human keratinocytes through epithelial-mesenchymal transition by modulating the epithelial plasticity genes. Initially, we showed that overexpression of ΔNp63α, a major isoform of the p63 gene, led to epithelial-mesenchymal transition and acquisition of stem characteristics. More recently, iMSCs were generated by transient knockdown of all p63 isoforms through siRNA, further simplifying the protocol and resolving the potential safety issues of viral vectors. These cells may be useful for patients who lack tissue sources for endogenous MSCs. Further research will elucidate the level of potency of these iMSCs and assess their

  14. Improving Student Safety.

    ERIC Educational Resources Information Center

    Dorn, Michael; Trump, Kenneth S.; Nichols, R. Leslie

    2001-01-01

    Presents the latest information on how schools can keep their students safe. Safety oriented actions discussed cover incident reporting and tracking, tactical site surveys, school safety and emergency operations planning, staff development efforts, and facility design. Explains the need to review and test specific prevention concepts and emergency…

  15. School Safety and Security.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    This document offers additional guidelines for school facilities in California in the areas of safety and security, lighting, and cleanliness. It also offers a description of technology resources available on the World Wide Web. On the topic of safety and security, the document offers guidelines in the areas of entrances, doors, and controlled…

  16. HSE's safety assessment principles for criticality safety.

    PubMed

    Simister, D N; Finnerty, M D; Warburton, S J; Thomas, E A; Macphail, M R

    2008-06-01

    The Health and Safety Executive (HSE) published its revised Safety Assessment Principles for Nuclear Facilities (SAPs) in December 2006. The SAPs are primarily intended for use by HSE's inspectors when judging the adequacy of safety cases for nuclear facilities. The revised SAPs relate to all aspects of safety in nuclear facilities including the technical discipline of criticality safety. The purpose of this paper is to set out for the benefit of a wider audience some of the thinking behind the final published words and to provide an insight into the development of UK regulatory guidance. The paper notes that it is HSE's intention that the Safety Assessment Principles should be viewed as a reflection of good practice in the context of interpreting primary legislation such as the requirements under site licence conditions for arrangements for producing an adequate safety case and for producing a suitable and sufficient risk assessment under the Ionising Radiations Regulations 1999 (SI1999/3232 www.opsi.gov.uk/si/si1999/uksi_19993232_en.pdf). PMID:18495990

  17. Cell Therapy for Cardiovascular Regeneration

    PubMed Central

    2013-01-01

    A great numbers of cardiovascular disease patients all over the world are suffering in the poor outcomes. Under this situation, cardiac regeneration therapy to reorganize the postnatal heart that is defined as a terminal differentiated-organ is a very important theme and mission for human beings. However, the temporary success of several clinical trials using usual cell types with uncertain cell numbers has provided the transient effect of cell therapy to these patients. We therefore should redevelop the evidence of cell-based cardiovascular regeneration therapy, focusing on targets (disease, patient’s status, cardiac function), materials (cells, cytokines, genes), and methodology (transplantation route, implantation technology, tissue engineering). Meanwhile, establishment of the induced pluripotent stem (iPS) cells is an extremely innovative technology which should be proposed as embryonic stem (ES) cellularization of post natal somatic cells, and this application have also showed the milestones of the direct conversion to reconstruct cardiomyocyte from the various somatic cells, which does not need the acquisition of the re-pluripotency. This review discusses the new advance in cardiovascular regeneration therapy from cardiac regeneration to cardiac re-organization, which is involved in recent progress of on-going clinical trials, basic research in cardiovascular regeneration, and the possibility of tissue engineering technology. PMID:23825492

  18. Hindlimb suspension reduces muscle regeneration

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Truong, Q.; Macius, A.; Schultz, E.

    1998-01-01

    Exposure of juvenile skeletal muscle to a weightless environment reduces growth and satellite cell mitotic activity. However, the effect of a weightless environment on the satellite cell population during muscle repair remains unknown. Muscle injury was induced in rat soleus muscles using the myotoxic snake venom, notexin. Rats were placed into hindlimb-suspended or weightbearing groups for 10 days following injury. Cellular proliferation during regeneration was evaluated using 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry and image analysis. Hindlimb suspension reduced (P < 0.05) regenerated muscle mass, regenerated myofiber diameter, uninjured muscle mass, and uninjured myofiber diameter compared to weightbearing rats. Hindlimb suspension reduced (P < 0.05) BrdU labeling in uninjured soleus muscles compared to weight-bearing muscles. However, hindlimb suspension did not abolish muscle regeneration because myofibers formed in the injured soleus muscles of hindlimb-suspended rats, and BrdU labeling was equivalent (P > 0.10) on myofiber segments isolated from the soleus muscles of hindlimb-suspended and weightbearing rats following injury. Thus, hindlimb suspension (weightlessness) does not suppress satellite cell mitotic activity in regenerating muscles before myofiber formation, but reduces growth of the newly formed myofibers.

  19. PRELIMINARY ENVIRONMENTAL, HEALTH AND SAFETY RISK ASSESSMENT ON THE INTEGRATION OF A PROCESS UTILIZING LOW-ENERGY SOLVENTS FOR CARBON DIOXIDE CAPTURE ENABLED BY A COMBINATION OF ENZYMES AND VACUUM REGENERATION WITH A SUBCRITICAL PC POWER PLANT

    SciTech Connect

    Fitzgerald, David; Vidal, Rafael; Russell, Tania; Babcock, Doosan; Freeman, Charles; Bearden, Mark; Whyatt, Greg; Liu, Kun; Frimpong, Reynolds; Lu, Kunlei; Salmon, Sonja; House, Alan; Yarborough, Erin

    2014-12-31

    The results of the preliminary environmental, health and safety (EH&S) risk assessment for an enzyme-activated potassium carbonate (K2CO3) solution post-combustion CO2 capture (PCC) plant, integrated with a subcritical pulverized coal (PC) power plant, are presented. The expected emissions during normal steady-state operation have been estimated utilizing models of the PCC plant developed in AspenTech’s AspenPlus® software, bench scale test results from the University of Kentucky, and industrial experience of emission results from a slipstream PCC plant utilizing amine based solvents. A review of all potential emission species and their sources was undertaken that identified two credible emission sources, the absorber off-gas that is vented to atmosphere via a stack and the waste removed from the PCC plant in the centrifuge used to reclaim enzyme and solvent. The conditions and compositions of the emissions were calculated and the potential EH&S effects were considered as well as legislative compliance requirements. Potential mitigation methods for emissions during normal operation have been proposed and solutions to mitigate uncontrolled releases of species have been considered. The potential emissions were found to pose no significant EH&S concerns and were compliant with the Federal legislation reviewed. The limitations in predicting full scale plant performance from bench scale tests have been noted and further work on a larger scale test unit is recommended to reduce the level of uncertainty.

  20. Review of the Tritium Extraction Facility Design

    SciTech Connect

    Ronald W. Barton; Farid Bamdad; Joel Blackman

    2000-06-04

    The Defense Nuclear Facilities Safety Board (DNFSB) is an independent executive branch agency responsible for technical safety oversight of the U.S. Department of Energy's (DOE's) defense nuclear facilities. One of DNFSB's responsibilities is the review of design and construction projects for DOE's defense nuclear facilities to ensure that adequate health and safety requirements are identified and implemented. These reviews are performed with the expectation that facility designs are being developed within the framework of a site's Integrated Safety Management (ISM) program. This paper describes the application of ISM principles in DNFSB's ongoing review of the Tritium Extraction Facility (TEF) design/construction project.

  1. Nuclear safety

    NASA Technical Reports Server (NTRS)

    Buden, D.

    1991-01-01

    Topics dealing with nuclear safety are addressed which include the following: general safety requirements; safety design requirements; terrestrial safety; SP-100 Flight System key safety requirements; potential mission accidents and hazards; key safety features; ground operations; launch operations; flight operations; disposal; safety concerns; licensing; the nuclear engine for rocket vehicle application (NERVA) design philosophy; the NERVA flight safety program; and the NERVA safety plan.

  2. 10 CFR 830.202 - Safety basis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Safety basis. 830.202 Section 830.202 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.202 Safety basis. (a) The contractor responsible for a hazard category 1, 2, or 3 DOE nuclear facility must establish and maintain the safety...

  3. Safety in Academic Chemistry Laboratories. Fourth Edition.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    This booklet provides guidelines for safety in the chemical laboratory. Part I, "Guides for Instructors and Administrators," includes safety rules, safety practices and facilities, preparation for emergencies, safety committees, accident reporting, fire insurance, and listings of some hazardous chemicals. Part II, "Student Guide to Safety,"…

  4. MIST facility densitometer comparisons

    SciTech Connect

    Childerson, M.T.

    1987-01-01

    Photon attenuation techniques were used in the Multi-Loop Integral Systems Test (MIST) facility to make void fraction and fluid density measurements. The MIST facility was a scaled physical model of a Babcock and Wilcox lowered loop, nuclear steam supply system. The facility was tested at typical pressurized water reactor fluid conditions. The MIST facility was designed for observing integral system response during a small-break loss-of-coolant accident. The data from the MIST tests are used for improving confidence in safety codes. Dual-beam gamma densitometers provided an indication of the void fraction or mixture density of the fluid at the hot- and cold-leg nozzles.

  5. 30 CFR 57.20008 - Toilet facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Toilet facilities. 57.20008 Section 57.20008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Miscellaneous § 57.20008 Toilet facilities. (a) Toilet...

  6. 30 CFR 57.20008 - Toilet facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Toilet facilities. 57.20008 Section 57.20008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Miscellaneous § 57.20008 Toilet facilities. (a) Toilet...

  7. Molecular Sieve Regeneration System (MSRS)

    SciTech Connect

    Nasise, J.E.; Anderson, J.L. ); Naruse, Y. )

    1992-01-01

    A Molecular Sieve Regeneration System (MSRS) was added to the existing Tritium Waste Treatment system (TWT) within the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. The Department of Energy (DOE) no longer allows inventory by difference'' for radioactive wastes that are to be buried. The MSRS was designed and built to comply with this requirement. Within the TWT, water is generated by the catalytic conversion of hydrogen isotopes and removed by molecular sieve trapping prior to release to the environment. Molecular sieve regeneration is required to remove the trapped water and to rejuvenate the beds. The MSRS permits the collection and direct tritium assay of regenerated tritiated water from molecular sieve beds. This paper describes the MSRS in detail and how it is interfaced with the TWT.

  8. Molecular Sieve Regeneration System (MSRS)

    SciTech Connect

    Nasise, J.E.; Anderson, J.L.; Naruse, Y.

    1992-03-01

    A Molecular Sieve Regeneration System (MSRS) was added to the existing Tritium Waste Treatment system (TWT) within the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. The Department of Energy (DOE) no longer allows ``inventory by difference`` for radioactive wastes that are to be buried. The MSRS was designed and built to comply with this requirement. Within the TWT, water is generated by the catalytic conversion of hydrogen isotopes and removed by molecular sieve trapping prior to release to the environment. Molecular sieve regeneration is required to remove the trapped water and to rejuvenate the beds. The MSRS permits the collection and direct tritium assay of regenerated tritiated water from molecular sieve beds. This paper describes the MSRS in detail and how it is interfaced with the TWT.

  9. Regenerator cross arm seal assembly

    DOEpatents

    Jackman, Anthony V.

    1988-01-01

    A seal assembly for disposition between a cross arm on a gas turbine engine block and a regenerator disc, the seal assembly including a platform coextensive with the cross arm, a seal and wear layer sealingly and slidingly engaging the regenerator disc, a porous and compliant support layer between the platform and the seal and wear layer porous enough to permit flow of cooling air therethrough and compliant to accommodate relative thermal growth and distortion, a dike between the seal and wear layer and the platform for preventing cross flow through the support layer between engine exhaust and pressurized air passages, and air diversion passages for directing unregenerated pressurized air through the support layer to cool the seal and wear layer and then back into the flow of regenerated pressurized air.

  10. Self-regenerating column chromatography

    SciTech Connect

    Park, Woo K.

    1994-12-31

    The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternation ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multifunction column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multifunction ion exchange process is the self-regeneration of the resins. Applications are to separation of nitrogen and sulfur isotopes.

  11. Ceramic regenerator systems development program

    NASA Technical Reports Server (NTRS)

    Fucinari, C. A.; Rahnke, C. J.; Rao, V. D. N.; Vallance, J. K.

    1980-01-01

    The DOE/NASA Ceramic Regenerator Design and Reliability Program aims to develop ceramic regenerator cores that can be used in passenger car and industrial/truck gas turbine engines. The major cause of failure of early gas turbine regenerators was found to be chemical attack of the ceramic material. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines late in 1974. Results of 53,065 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, show promise. Five aluminum silicate cores attained the durability objective of 10,000 hours at 800 C (1472 F). Another aluminum silicate core shows minimal evidence of chemical attack after 8071 hours at 982 C (1800 F). Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are included.

  12. Self-regenerating column chromatography

    DOEpatents

    Park, W.K.

    1995-05-30

    The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.

  13. Cardiac regeneration: epicardial mediated repair

    PubMed Central

    2015-01-01

    The hearts of lower vertebrates such as fish and salamanders display scarless regeneration following injury, although this feature is lost in adult mammals. The remarkable capacity of the neonatal mammalian heart to regenerate suggests that the underlying machinery required for the regenerative process is evolutionarily retained. Recent studies highlight the epicardial covering of the heart as an important source of the signalling factors required for the repair process. The developing epicardium is also a major source of cardiac fibroblasts, smooth muscle, endothelial cells and stem cells. Here, we examine animal models that are capable of scarless regeneration, the role of the epicardium as a source of cells, signalling mechanisms implicated in the regenerative process and how these mechanisms influence cardiomyocyte proliferation. We also discuss recent advances in cardiac stem cell research and potential therapeutic targets arising from these studies. PMID:26702046

  14. Molecular and Phenotypic Characterization of Listeria monocytogenes from U.S. Department of Agriculture Food Safety Inspection Service Surveillance of Ready-to-Eat Foods and Processing Facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A panel of 501 Listeria monocytogenes obtained from Food Safety and Inspection Service monitoring of ready-to-eat (RTE) foods were subtyped by multilocus genotyping (MLGT) and by sequencing the virulence gene inlA. MLGT analyses confirmed that clonal lineages associated with previous epidemic outbr...

  15. Ceramic regenerator systems development program

    NASA Technical Reports Server (NTRS)

    Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.; Rao, V. D.

    1978-01-01

    Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability tests/in industrial gas turbine engines. A regenerator core made from aluminum silicate shows minimal evidence of chemical attack damage after 7804 hours of engine test at 800 C and another showed little distress after 4983 hours at 982 C. The results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included.

  16. A model regenerator for a Stirling cycle

    NASA Astrophysics Data System (ADS)

    Carolan, James

    2001-05-01

    An essential feature of the engine patented by Robert Stirling in 1817 was the careful description of the idea of regeneration. In the standard thermodynamic cycle representation of the engine, regeneration is the storing and the reusing of the thermal energy released in the constant volume cooling part of the cycle. Due to the difficulty in treating regeneration quantitatively, introductory physics texts generally either ignore the concept or assume the regeneration to be perfect. As a result students obtain little or no understanding of regeneration. In addition there seem to be differing views in various texts about the efficiency of Stirling engines. In this work a simple finite element model regenerator is presented with which one can do simple calculations. The model does not accurately represent actual regeneration in a practical engine. But the model might help students gain better insight into Stirling engine efficiency and the idea of regeneration.

  17. Regulation of crustacean molting and regeneration

    SciTech Connect

    Skinner, D.M.; Graham, D.E.; Holland, C.A.; Soumoff, C.; Mykles, D.L.

    1981-01-01

    The regulation of molting and regeneration by two antagonistic hormones is discussed. The time course of ecdysteroid titers in crustacean tissues has been followed during molt and regeneration cycles. (ACR)

  18. A STUDY ON ASH PARTICLE DISTRIBUTION CHARACTERISITICS OF CANDLE FILTER SURFACE REGENERATION AT ROOM TEMPERATURE

    SciTech Connect

    Vasudevan, V.; Kang, B.S-J.; Johnson, E.K.

    2002-09-19

    Ceramic barrier filtration is a leading technology employed in hot gas filtration. Hot gases loaded with ash particle flow through the ceramic candle filters and deposit ash on their outer surface. The deposited ash is periodically removed using back pulse cleaning jet, known as surface regeneration. The cleaning done by this technique still leaves some residual ash on the filter surface, which over a period of time sinters, forms a solid cake and leads to mechanical failure of the candle filter. A room temperature testing facility (RTTF) was built to gain more insight into the surface regeneration process before testing commenced at high temperature. RTTF was instrumented to obtain pressure histories during the surface regeneration process and a high-resolution high-speed imaging system was integrated in order to obtain pictures of the surface regeneration process. The objective of this research has been to utilize the RTTF to study the surface regeneration process at the convenience of room temperature conditions. The face velocity of the fluidized gas, the regeneration pressure of the back pulse and the time to build up ash on the surface of the candle filter were identified as the important parameters to be studied. Two types of ceramic candle filters were used in the study. Each candle filter was subjected to several cycles of ash build-up followed by a thorough study of the surface regeneration process at different parametric conditions. The pressure histories in the chamber and filter system during build-up and regeneration were then analyzed. The size distribution and movement of the ash particles during the surface regeneration process was studied. Effect of each of the parameters on the performance of the regeneration process is presented. A comparative study between the two candle filters with different characteristics is presented.

  19. Cryogenic regenerator including sarancarbon heat conduction matrix

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Petrick, S. Walter (Inventor); Britcliffe, Michael J. (Inventor)

    1989-01-01

    A saran carbon matrix is employed to conduct heat through the heat storing volume of a cryogenic regenerator. When helium is adsorbed into the saran carbon matrix, the combination exhibits a volumetric specific heat much higher than previously used lead balls. A helium adsorbed saran regenerator should allow much lower refrigerator temperatures than those practically obtainable with lead based regenerators for regenerator type refrigeration systems.

  20. Patterned substrates and methods for nerve regeneration

    DOEpatents

    Mallapragada, Surya K.; Heath, Carole; Shanks, Howard; Miller, Cheryl A.; Jeftinija, Srdija

    2004-01-13

    Micropatterned substrates and methods for fabrication of artificial nerve regeneration conduits and methods for regenerating nerves are provided. Guidance compounds or cells are seeded in grooves formed on the patterned substrate. The substrates may also be provided with electrodes to provide electrical guidance cues to the regenerating nerve. The micropatterned substrates give physical, chemical, cellular and/or electrical guidance cues to promote nerve regeneration at the cellular level.

  1. Safety in the Science Classroom.

    ERIC Educational Resources Information Center

    Science Teacher, 1997

    1997-01-01

    Presents a checklist as a guide for preparing a set of safety rules that has been adapted from the U.S. Consumer Products Safety Commission's publication titled "School Science Laboratories: A Guide to Some Hazardous Substances". Addresses work habits; safety wear; facilities and equipment; purchasing, use, and disposal of chemicals; and…

  2. Regeneration: New Neurons Wire Up.

    PubMed

    Raymond, Pamela A

    2016-09-12

    Functional repair of damage in the nervous system requires re-establishment of precise patterns of synaptic connectivity. A new study shows that after selective ablation, zebrafish retinal neurons regenerate and reconstruct some, although not all, of their stereotypic wiring. PMID:27623258

  3. Increasing FCC regenerator catalyst level

    SciTech Connect

    Wong, R.F. )

    1993-11-01

    A Peruvian FCC unit's operations were improved by increasing the regenerator's catalyst level. This increase resulted in lower stack losses, an improved temperature profile, increased catalyst activity and a lower catalyst consumption rate. A more stable operation saved this Peruvian refiner over $131,000 per year in catalyst alone. These concepts and data may be suitable for your FCC unit as well.

  4. Cytoskeletal regulation of dermal regeneration.

    PubMed

    Strudwick, Xanthe L; Cowin, Allison J

    2012-01-01

    Wound healing results in the repair of injured tissues however fibrosis and scar formation are, more often than not the unfortunate consequence of this process. The ability of lower order vertebrates and invertebrates to regenerate limbs and tissues has been all but lost in mammals; however, there are some instances where glimpses of mammalian regenerative capacity do exist. Here we describe the unlocked potential that exists in mammals that may help us understand the process of regeneration post-injury and highlight the potential role of the actin cytoskeleton in this process. The precise function and regulation of the cytoskeleton is critical to the success of the healing process and its manipulation may therefore facilitate regenerative healing. The gelsolin family of actin remodelling proteins in particular has been shown to have important functions in wound healing and family member Flightless I (Flii) is involved in both regeneration and repair. Understanding the interactions between different cytoskeletal proteins and their dynamic control of processes including cellular adhesion, contraction and motility may assist the development of therapeutics that will stimulate regeneration rather than repair. PMID:24710556

  5. Cryopump regeneration method and apparatus

    SciTech Connect

    Andeen, B.R.; Pandorf, R.C.

    1988-01-12

    A vacuum system is described comprising: a cryopump for evacuating a chamber; an ejector pump in direct communication with the cryopump through a valve for removing gas from the cryopump during regeneration; and a source of pressurized, substantially inert gas in a communication with the ejector pump for use as the actuating fluid in the ejector pump.

  6. Cytoskeletal Regulation of Dermal Regeneration

    PubMed Central

    Strudwick, Xanthe L.; Cowin, Allison J.

    2012-01-01

    Wound healing results in the repair of injured tissues however fibrosis and scar formation are, more often than not the unfortunate consequence of this process. The ability of lower order vertebrates and invertebrates to regenerate limbs and tissues has been all but lost in mammals; however, there are some instances where glimpses of mammalian regenerative capacity do exist. Here we describe the unlocked potential that exists in mammals that may help us understand the process of regeneration post-injury and highlight the potential role of the actin cytoskeleton in this process. The precise function and regulation of the cytoskeleton is critical to the success of the healing process and its manipulation may therefore facilitate regenerative healing. The gelsolin family of actin remodelling proteins in particular has been shown to have important functions in wound healing and family member Flightless I (Flii) is involved in both regeneration and repair. Understanding the interactions between different cytoskeletal proteins and their dynamic control of processes including cellular adhesion, contraction and motility may assist the development of therapeutics that will stimulate regeneration rather than repair. PMID:24710556

  7. 33 CFR 154.735 - Safety requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety requirements. 154.735 Section 154.735 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Facility Operations § 154.735 Safety requirements. Each operator of a facility...

  8. Facility effluent monitoring plan for the fast flux test facility

    SciTech Connect

    Nickels, J M; Dahl, N R

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in US Department of Energy Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A Facility Effluent Monitoring Plan determination was performed during calendar year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

  9. Method And Apparatus For Regenerating Nox Adsorbers

    DOEpatents

    Driscoll, J. Joshua; Endicott, Dennis L.; Faulkner, Stephen A.; Verkiel, Maarten

    2006-03-28

    Methods and apparatuses for regenerating a NOx adsorber coupled with an exhaust of an engine. An actuator drives a throttle valve to a first position when regeneration of the NOx adsorber is desired. The first position is a position that causes the regeneration of the NOx adsorber. An actuator drives the throttle valve to a second position while regeneration of the NOx adsorber is still desired. The second position being a position that is more open than the first position and operable to regenerate a NOx adsorber.

  10. Safety Problems of Electric and Magnetic Fields and Experimental Magnetic Fusion Facilities 4.Biolosical Effects of High-Frequency Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Fujiwara, Osamu

    With the expanding use of portable telephones, public concerns regarding potential health hazards due to the absorption of electromagnetic energy have been growing. In this article, electromagnetic waves and their resultant biological effects are reviewed. The thermal effects due to RF (radio-frequency) electromagnetic fields and basic proposals for safety standards are described in conjunction with whole-body / localized average SARs (specific absorption rates) being used as bioeffect evaluation measures. Our computed dosimetries of the human head for portable telephones are also shown.

  11. Cold vacuum drying facility design requirements

    SciTech Connect

    IRWIN, J.J.

    1999-07-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  12. Regeneration: Thomas Hunt Morgan's window into development.

    PubMed

    Sunderland, Mary Evelyn

    2010-01-01

    Early in his career Thomas Hunt Morgan was interested in embryology and dedicated his research to studying organisms that could regenerate. Widely regarded as a regeneration expert, Morgan was invited to deliver a series of lectures on the topic that he developed into a book, Regeneration (1901). In addition to presenting experimental work that he had conducted and supervised, Morgan also synthesized and critiqued a great deal of work by his peers and predecessors. This essay probes into the history of regeneration studies by looking in depth at Regeneration and evaluating Morgan's contribution. Although famous for his work with fruit fly genetics, studying Regeneration illuminates Morgan's earlier scientific approach which emphasized the importance of studying a diversity of organisms. Surveying a broad range of regenerative phenomena allowed Morgan to institute a standard scientific terminology that continues to inform regeneration studies today. Most importantly, Morgan argued that regeneration was a fundamental aspect of the growth process and therefore should be accounted for within developmental theory. Establishing important similarities between regeneration and development allowed Morgan to make the case that regeneration could act as a model of development. The nature of the relationship between embryogenesis and regeneration remains an active area of research. PMID:20665231

  13. 30 CFR 75.1712-1 - Availability of surface bathing facilities; change rooms; and sanitary facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; change rooms; and sanitary facilities. 75.1712-1 Section 75.1712-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-1 Availability of surface bathing facilities; change rooms;...

  14. 30 CFR 75.1712-1 - Availability of surface bathing facilities; change rooms; and sanitary facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; change rooms; and sanitary facilities. 75.1712-1 Section 75.1712-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-1 Availability of surface bathing facilities; change rooms;...

  15. An outbreak of Trixacarus caviae infestation in guinea pigs at an animal petting facility and an evaluation of the safety and suitable dose of selamectin treatment.

    PubMed

    Honda, M; Namikawa, K; Hirata, H; Neo, S; Maruo, T; Lynch, J; Chida, A; Morita, T

    2011-08-01

    In June 2009, 27 guinea pigs kept at an animal petting facility at a zoo in Kanagawa Prefecture, Japan, were observed to scratch intensely, weaken, and develop lesions. Three sarcoptiform mites were found in skin scrapings taken from affected areas of 2 guinea pigs, and they were identified as Trixacarus caviae by morphological examination. This result confirmed the presence of T. caviae in Japan. For treatment, doses of 13.6-18.75 mg/head of selamectin were administered in a topical preparation applied to a single spot on the skin on the back of the neck, and no side effects were observed. In April 2010, a second outbreak of mange occurred at the zoo, and, following investigation, 2 mite eggs were observed. It was, therefore, thought probable that the mites had survived during the winter within nonclinical carriers. Accordingly, doses of 5.0-7.5 mg/head of selamectin were applied on days 0 and 28, after which clinical symptoms disappeared and general condition improved. This dose of selamectin was thus shown to be a suitable and economical treatment for guinea pigs infested with the mites. Because the mite is not always easily observed in infested guinea pigs and the potential for human infestation exists, clinicians should not hesitate to treat when the clinical presentation suggests infestation, particularly in a setting such as an animal petting facility, where large numbers of children and adults have direct contact with the animals. PMID:21506831

  16. The regeneration capacity of the flatworm Macrostomum lignano—on repeated regeneration, rejuvenation, and the minimal size needed for regeneration

    PubMed Central

    Ladurner, P.; Nimeth, K.; Gschwentner, R.; Rieger, R.

    2006-01-01

    The lion’s share of studies on regeneration in Plathelminthes (flatworms) has been so far carried out on a derived taxon of rhabditophorans, the freshwater planarians (Tricladida), and has shown this group’s outstanding regeneration capabilities in detail. Sharing a likely totipotent stem cell system, many other flatworm taxa are capable of regeneration as well. In this paper, we present the regeneration capacity of Macrostomum lignano, a representative of the Macrostomorpha, the basal-most taxon of rhabditophoran flatworms and one of the most basal extant bilaterian protostomes. Amputated or incised transversally, obliquely, and longitudinally at various cutting levels, M. lignano is able to regenerate the anterior-most body part (the rostrum) and any part posterior of the pharynx, but cannot regenerate a head. Repeated regeneration was observed for 29 successive amputations over a period of almost 12 months. Besides adults, also first-day hatchlings and older juveniles were shown to regenerate after transversal cutting. The minimum number of cells required for regeneration in adults (with a total of 25,000 cells) is 4,000, including 160 neoblasts. In hatchlings only 1,500 cells, including 50 neoblasts, are needed for regeneration. The life span of untreated M. lignano was determined to be about 10 months. PMID:16604349

  17. Islet cell plasticity and regeneration.

    PubMed

    Migliorini, Adriana; Bader, Erik; Lickert, Heiko

    2014-06-01

    Insulin-dependent diabetes is a complex multifactorial disorder characterized by loss or dysfunction of β-cells resulting in failure of metabolic control. Even though type 1 and 2 diabetes differ in their pathogenesis, restoring β-cell function is the overarching goal for improved therapy of both diseases. This could be achieved either by cell-replacement therapy or by triggering intrinsic regenerative mechanisms of the pancreas. For type 1 diabetes, a combination of β-cell replacement and immunosuppressive therapy could be a curative treatment, whereas for type 2 diabetes enhancing endogenous mechanisms of β-cell regeneration might optimize blood glucose control. This review will briefly summarize recent efforts to allow β-cell regeneration where the most promising approaches are currently (1) increasing β-cell self-replication or neogenesis from ductal progenitors and (2) conversion of α-cells into β-cells. PMID:24749056

  18. Diverse routes to liver regeneration.

    PubMed

    Alison, Malcolm R; Lin, Wey-Ran

    2016-02-01

    The liver's ability to regenerate is indisputable; for example, after a two-thirds partial hepatectomy in rats all residual hepatocytes can divide, questioning the need for a specific stem cell population. On the other hand, there is a potential stem cell compartment in the canals of Hering, giving rise to ductular reactions composed of hepatic progenitor cells (HPCs) when the liver's ability to regenerate is hindered by replicative senescence, but the functional relevance of this response has been questioned. Several papers have now clarified regenerative mechanisms operative in the mouse liver, suggesting that the liver is possibly unrivalled in its versatility to replace lost tissue. Under homeostatic conditions a perivenous population of clonogenic hepatocytes operates, whereas during chronic damage a minor population of periportal clonogenic hepatocytes come to the fore, while the ability of HPCs to completely replace the liver parenchyma has now been shown. PMID:26510495

  19. Fenton-Driven Chemical Regeneration of MTBE-Spent Granular Activated Carbon -- A Pilot Study

    EPA Science Inventory

    MTBE-spent granular activated carbon (GAC) underwent 3 adsorption/oxidation cycles. Pilot-scale columns were intermittently placed on-line at a ground water pump and treat facility, saturated with MTBE, and regenerated with H2O2 under different chemical, physical, and operational...

  20. Cell migration during heart regeneration in zebrafish.

    PubMed

    Tahara, Naoyuki; Brush, Michael; Kawakami, Yasuhiko

    2016-07-01

    Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, pre-existing cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. Developmental Dynamics 245:774-787, 2016. © 2016 Wiley Periodicals, Inc. PMID:27085002

  1. Overview of Energy Systems` safety analysis report programs. Safety Analysis Report Update Program

    SciTech Connect

    Not Available

    1992-03-01

    The primary purpose of an Safety Analysis Report (SAR) is to provide a basis for judging the adequacy of a facility`s safety. The SAR documents the safety analyses that systematically identify the hazards posed by the facility, analyze the consequences and risk of potential accidents, and describe hazard control measures that protect the health and safety of the public and employees. In addition, some SARs document, as Technical Safety Requirements (TSRs, which include Technical Specifications and Operational Safety Requirements), technical and administrative requirements that ensure the facility is operated within prescribed safety limits. SARs also provide conveniently summarized information that may be used to support procedure development, training, inspections, and other activities necessary to facility operation. This ``Overview of Energy Systems Safety Analysis Report Programs`` Provides an introduction to the programs and processes used in the development and maintenance of the SARs. It also summarizes some of the uses of the SARs within Energy Systems and DOE.

  2. [Investigation of radiation safety management of nuclear medicine facilities in Japan; contamination of radioactivity in the draining-water system. A Working Group of Japanese Society of Nuclear Medicine for the Guidelines of Nuclear Medicine Therapy].

    PubMed

    Endo, K; Koizumi, M; Kinoshita, F; Nakazawa, K

    1999-12-01

    Radiation safety management condition in Japanese nuclear medicine facilities were investigated by the questionnaire method. The first questionnaire was asked in all Japanese 1,401 Nuclear Medicine facilities. Answers from 624 institutes (44.5%) were received and analyzed. The radiation-safety management in nuclear medicine institutes was considered to be very well performed everyday. Opinion for the present legal control of nuclear medicine institutes was that the regulation in Japan was too strict for the clinical use of radionuclides. The current regulation is based on the assumption that 1% of all radioactivity used in nuclear medicine institutes contaminates into the draining-water system. The second questionnaire detailing the contamination of radioactivity in the draining-water system was sent to 128 institutes, and 64 answers were received. Of them, 42 institutes were considered to be enough to evaluate the contamination of radioactivity in the draining-water system. There was no difference between 624 institutes answered to the first questionnaire and 42 institutes, where the radioactivity in the draining-water system was measured, in the distribution of the institute size, draining-water system equipment and the radioactivity measuring method, and these 42 institutes seemed to be representative of Japanese nuclear medicine institutes. Contamination rate of radioactivity into the draining system was calculated by the value of radioactivity in the collecting tank divided by the amount of radionuclides used daily in each institute. The institutes were divided into two categories on the basis of nuclear medicine practice pattern; type A: in-vivo use only and type B: both in-vivo and in-vitro use. The contamination rate in 27 type A institutes did not exceed 0.01%, whereas in 15 type B institutes the contamination rate distributed widely from undetectable to above 1%. These results indicated that the present regulation for the draining-water system, which

  3. 48 CFR 923.7001 - Nuclear safety.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Nuclear safety. 923.7001... Efficiency, Renewable Energy Technologies, and Occupational Safety Programs 923.7001 Nuclear safety. The DOE regulates the nuclear safety of its major facilities under its own statutory authority derived from...

  4. 49 CFR 193.2511 - Personnel safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Personnel safety. 193.2511 Section 193.2511 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Operations...

  5. 49 CFR 193.2511 - Personnel safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Personnel safety. 193.2511 Section 193.2511 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Operations...

  6. Aid for Facilities

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2009-01-01

    Even before the state fire marshal ordered the Somersworth (N.H.) School District in 2007 to abandon the top two floors of Hilltop Elementary School because of safety concerns, folks in the city of 12,000 had been debating whether the aging facility should be replaced--and how to pay for it. Finally, in February 2009, the city council approved…

  7. Administering the Preschool Facility.

    ERIC Educational Resources Information Center

    Coonrod, Debbie

    Securing the right environment for a preschool program requires planning and research. Administrators or searching parties are advised to study zoning codes to become acquainted with state sanitation and safety regulations and laws, to involve teachers in cooperative planning, to design facilities which discourage vandalism, facilitate…

  8. 49 CFR 193.2511 - Personnel safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES... building or yard, where they could be harmed by thermal radiation from a burning pool of impounded...

  9. 49 CFR 193.2511 - Personnel safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES... building or yard, where they could be harmed by thermal radiation from a burning pool of impounded...

  10. SSC Safety Review Document

    SciTech Connect

    Toohig, T.E.

    1988-11-01

    The safety strategy of the Superconducting Super Collider (SSC) Central Design Group (CDG) is to mitigate potential hazards to personnel, as far as possible, through appropriate measures in the design and engineering of the facility. The Safety Review Document identifies, on the basis of the Conceptual Design Report (CDR) and related studies, potential hazards inherent in the SSC project independent of its site. Mitigative measures in the design of facilities and in the structuring of laboratory operations are described for each of the hazards identified.

  11. Criticality safety training

    SciTech Connect

    Woodruff, S.K.

    1997-06-01

    Criticality safety training is an important element of the Plutonium Facility safety program at Los Alamos National Laboratory. Training consists of student self-study handbooks and hands-on performance-based training in a mock-up laboratory containing gloveboxes, trolley conveyor system, and self-monitoring instruments. A 10-minute video tape and lecture was presented to describe how training in this area is conducted.

  12. Axonal PPARγ promotes neuronal regeneration after injury.

    PubMed

    Lezana, Juan Pablo; Dagan, Shachar Y; Robinson, Ari; Goldstein, Ronald S; Fainzilber, Mike; Bronfman, Francisca C; Bronfman, Miguel

    2016-06-01

    PPARγ is a ligand-activated nuclear receptor best known for its involvement in adipogenesis and glucose homeostasis. PPARγ activity has also been associated with neuroprotection in different neurological disorders, but the mechanisms involved in PPARγ effects in the nervous system are still unknown. Here we describe a new functional role for PPARγ in neuronal responses to injury. We found both PPAR transcripts and protein within sensory axons and observed an increase in PPARγ protein levels after sciatic nerve crush. This was correlated with increased retrograde transport of PPARγ after injury, increased association of PPARγ with the molecular motor dynein, and increased nuclear accumulation of PPARγ in cell bodies of sensory neurons. Furthermore, PPARγ antagonists attenuated the response of sensory neurons to sciatic nerve injury, and inhibited axonal growth of both sensory and cortical neurons in culture. Thus, axonal PPARγ is involved in neuronal injury responses required for axonal regeneration. Since PPARγ is a major molecular target of the thiazolidinedione (TZD) class of drugs used in the treatment of type II diabetes, several pharmaceutical agents with acceptable safety profiles in humans are available. Our findings provide motivation and rationale for the evaluation of such agents for efficacy in central and peripheral nerve injuries. PMID:26446277

  13. Safety analysis report for the gunite and associated tanks project remediation of the South Tank Farm, facility 3507, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Platfoot, J.H.

    1998-02-01

    The South Tank Farm (STF) is a series of six, 170,000-gal underground, domed storage tanks, which were placed into service in 1943. The tanks were constructed of a concrete mixture known as gunite. They were used as a portion of the Liquid Low-Level Waste System for the collection, neutralization, storage, and transfer of the aqueous portion of the radioactive and/or hazardous chemical wastes produced as part of normal facility operations at Oak Ridge National Laboratory (ORNL). The last of the tanks was taken out of service in 1986, but the tanks have been shown by structural analysis to continue to be structurally sound. An attempt was made in 1983 to empty the tanks; however, removal of all the sludge from the tanks was not possible with the equipment and schedule available. Since removal of the liquid waste in 1983, liquid continues to accumulate within the tanks. The in-leakage is believed to be the result of groundwater dripping into the tanks around penetrations in the domes. The tanks are currently being maintained under a Surveillance and Maintenance Program that includes activities such as level monitoring, vegetation control, High Efficiency Particulate Air (HEPA) filter leakage requirement testing/replacement, sign erection/repair, pump-out of excessive liquids, and instrument calibration/maintenance. These activities are addressed in ORNL/ER-275.

  14. Molecular and genetic advances in the regeneration of the intervertebral disc

    PubMed Central

    Maerz, Tristan; Herkowitz, Harry; Baker, Kevin

    2013-01-01

    Background: Owing to the debilitating nature of degenerative disc disease (DDD) and other spine pathologies, significant research has been performed with the goal of healing or regenerating the intervertebral disc (IVD). Structural complexity, coupled with low vascularity and cellularity, make IVD regeneration an extremely challenging task. Methods: Tissue engineering-based strategies utilize three components to enhance tissue regeneration; scaffold materials to guide cell growth, biomolecules to enhance cell migration and differentiation, and cells (autologous, or allogeneic) to initiate the process of tissue formation. Significant advances in IVD regeneration have been made utilizing these tissue engineering strategies. Results: The current literature demonstrates that members of the transforming growth factor beta (TGF-β) superfamily are efficacious in the regeneration of an anabolic response in the IVD and to facilitate chondrogenic differentiation. Gene therapy, though thwarted by safety concerns and the risk of ectopic transfection, has significant potential for a targeted and sustained regenerative response. Stem cells in combination with injectable, biocompatible, and biodegradable scaffolds in the form of hydrogels can differentiate into de novo IVD tissue and facilitate regeneration of the existing matrix. Therapies that address both anabolism and the inherent catabolic state of the IVD using either direct inhibitors or broad-spectrum inhibitors show extensive promise. Conclusion: This review article summarizes the genetic and molecular advances that promise to play an integral role in the development of new strategies to combat DDD and promote healing of injured discs. PMID:23646279

  15. Accreditation for Indoor Climbing Facilities.

    ERIC Educational Resources Information Center

    Mayfield, Peter

    To ensure that the rapidly growing climbing gym industry maintains the excellent safety record established so far, the Climbing Gym Association (CGA) has developed the Peer Review and Accreditation Program, a process of review between qualified and experienced CGA reviewers and a climbing facility operator to assess the facility's risk management…

  16. Development of an ACP facility

    SciTech Connect

    Gil-Sung You; Won-Myung Choung; Jeong-Hoe Ku; il-Je Cho; Dong-Hak Kook; Kie-Chan Kwon; Eun-Pyo Lee; Ji-Sup Yoon; Seong-Won Park; Won-Kyung Lee

    2007-07-01

    KAERI has been developing an advanced spent fuel conditioning process (ACP). The ACP facility for a process demonstration consists of two air-sealed type hot cells. The safety analysis results showed that the facility was designed safely. The relevant integrated performance tests were also carried out successfully. (authors)

  17. A quantitative metabolomics peek into planarian regeneration.

    PubMed

    Natarajan, Nivedita; Ramakrishnan, Padma; Lakshmanan, Vairavan; Palakodeti, Dasaradhi; Rangiah, Kannan

    2015-05-21

    The fresh water planarian species Schmidtea mediterranea is an emerging stem cell model because of its capability to regenerate a whole animal from a small piece of tissue. It is one of the best model systems to address the basic mechanisms essential for regeneration. Here, we are interested in studying the roles of various amines, thiols and nucleotides in planarian regeneration, stem cell function and growth. We developed mass spectrometry based quantitative methods and validated the differential enrichment of 35 amines, 7 thiol metabolites and 4 nucleotides from both intact and regenerating planarians. Among the amines, alanine in sexual and asparagine in asexual are the highest (>1000 ng/mg) in the intact planarians. The levels of thiols such as cysteine and GSH are 651 and 1107 ng mg(-1) in planarians. Among the nucleotides, the level of cGMP is the lowest (0.03 ng mg(-1)) and the level of AMP is the highest (187 ng mg(-1)) in both of the planarian strains. We also noticed increasing levels of amines in both anterior and posterior regenerating planarians. The blastema from day 3 regenerating planarians also showed higher amounts of many amines. Interestingly, the thiol (cysteine and GSH) levels are well maintained during planarian regeneration. This suggests an inherent and effective mechanism to control induced oxidative stress because of the robust regeneration and stem cell proliferation. Like in intact planarians, the level of cGMP is also very low in regenerating planarians. Surprisingly, the levels of amines and thiols in head regenerating blastemas are ∼3 times higher compared to those for tail regenerating blastemas. Thus our results strongly indicate the potential roles of amines, thiols and nucleotides in planarian regeneration. PMID:25815385

  18. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement. Final report

    SciTech Connect

    Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

    1994-02-01

    The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ``Pneumatic Excavator`` which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions.

  19. Assembly Methods for Etched Foil Regenerators

    NASA Astrophysics Data System (ADS)

    Mitchell, Matthew P.

    2004-06-01

    Etched foil appears to offer substantial advantages over other regenerator materials, especially for annular regenerators. However, assembly of etched foil regenerators has been difficult because etching regenerator patterns in foil is most satisfactorily accomplished using pieces too small for a complete, spiral-wrapped regenerator. Two techniques have been developed to deal with that problem: For spiral-wrapped regenerators, a new technique for joining pieces of foil using tabs has been successfully employed. The joints are no thicker than the parent material. The tabs substantially fill the holes into which they are locked, virtually eliminating any undesired leak path through the regenerator. The holes constitute breaks in the conductive path through the regenerator. A patent is pending. An alternate method is to insert pieces of foil in a cylindrical housing one at a time. An inflatable bladder presses each newly-inserted piece of foil against the previous layer until both edges slip past each other and contact the previously-installed piece. When the bladder is deflated, the natural springiness of the foil causes the cut edges to seek the wall and meet each other in a butt joint. A patent on the method has been issued; a patent on the resulting regenerator is pending.

  20. Unraveling tissue regeneration pathways using chemical genetics.

    PubMed

    Mathew, Lijoy K; Sengupta, Sumitra; Kawakami, Atsushi; Andreasen, Eric A; Löhr, Christiane V; Loynes, Catherine A; Renshaw, Stephen A; Peterson, Randall T; Tanguay, Robert L

    2007-11-30

    Identifying the molecular pathways that are required for regeneration remains one of the great challenges of regenerative medicine. Although genetic mutations have been useful for identifying some molecular pathways, small molecule probes of regenerative pathways might offer some advantages, including the ability to disrupt pathway function with precise temporal control. However, a vertebrate regeneration model amenable to rapid throughput small molecule screening is not currently available. We report here the development of a zebrafish early life stage fin regeneration model and its use in screening for small molecules that modulate tissue regeneration. By screening 2000 biologically active small molecules, we identified 17 that specifically inhibited regeneration. These compounds include a cluster of glucocorticoids, and we demonstrate that transient activation of the glucocorticoid receptor is sufficient to block regeneration, but only if activation occurs during wound healing/blastema formation. In addition, knockdown of the glucocorticoid receptor restores regenerative capability to nonregenerative, glucocorticoid-exposed zebrafish. To test whether the classical anti-inflammatory action of glucocorticoids is responsible for blocking regeneration, we prevented acute inflammation following amputation by antisense repression of the Pu.1 gene. Although loss of Pu.1 prevents the inflammatory response, regeneration is not affected. Collectively, these results indicate that signaling from exogenous glucocorticoids impairs blastema formation and limits regenerative capacity through an acute inflammation-independent mechanism. These studies also demonstrate the feasibility of exploiting chemical genetics to define the pathways that govern vertebrate regeneration. PMID:17848559