Sample records for regenerative medicine opportunities

  1. China's landscape in regenerative medicine.

    PubMed

    Tang, Xin; Qin, Hua; Gu, Xiaosong; Fu, Xiaobing

    2017-04-01

    Regenerative medicine is a burgeoning interdisciplinary research field that can impact healthcare by offering new therapeutic strategies to replace or regenerate human cells, tissues, or organs with the ultimate goal of restoring or establishing normal human functions. The past decade has seen significant progress of regenerative medicine in China, the world's most populous developing country. With government backing, the progress in regenerative medicine is driven by increasing medical demands of people, accompanied by the economic growth, population aging, and lifestyle change in China. Although regenerative medicine encompasses many components, tissue engineering and stem cell technology are generally considered the two key players. In this review article, we outline the representative achievements in the research and application of tissue engineering, stem cell technology, and other regenerative medical strategies attained by various research groups in China, and highlight the major contributions and features of several outstanding studies made by leading Chinese researchers. Where possible, we discuss the unique opportunities and challenges for advancement of regenerative medicine in China. It is our hope that this review will stimulate new research directions for regenerative medicine in general, and encourage strategic collaborations between the east and the west in particular, so that the clinical translation of regenerative medicine can be accelerated to benefit mankind. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The Pharmacology of Regenerative Medicine

    PubMed Central

    Saul, Justin M.; Furth, Mark E.; Andersson, Karl-Erik

    2013-01-01

    Regenerative medicine is a rapidly evolving multidisciplinary, translational research enterprise whose explicit purpose is to advance technologies for the repair and replacement of damaged cells, tissues, and organs. Scientific progress in the field has been steady and expectations for its robust clinical application continue to rise. The major thesis of this review is that the pharmacological sciences will contribute critically to the accelerated translational progress and clinical utility of regenerative medicine technologies. In 2007, we coined the phrase “regenerative pharmacology” to describe the enormous possibilities that could occur at the interface between pharmacology, regenerative medicine, and tissue engineering. The operational definition of regenerative pharmacology is “the application of pharmacological sciences to accelerate, optimize, and characterize (either in vitro or in vivo) the development, maturation, and function of bioengineered and regenerating tissues.” As such, regenerative pharmacology seeks to cure disease through restoration of tissue/organ function. This strategy is distinct from standard pharmacotherapy, which is often limited to the amelioration of symptoms. Our goal here is to get pharmacologists more involved in this field of research by exposing them to the tools, opportunities, challenges, and interdisciplinary expertise that will be required to ensure awareness and galvanize involvement. To this end, we illustrate ways in which the pharmacological sciences can drive future innovations in regenerative medicine and tissue engineering and thus help to revolutionize the discovery of curative therapeutics. Hopefully, the broad foundational knowledge provided herein will spark sustained conversations among experts in diverse fields of scientific research to the benefit of all. PMID:23818131

  3. Regenerative Medicine Build-Out.

    PubMed

    Terzic, Andre; Pfenning, Michael A; Gores, Gregory J; Harper, C Michel

    2015-12-01

    Regenerative technologies strive to boost innate repair processes and restitute normative impact. Deployment of regenerative principles into practice is poised to usher in a new era in health care, driving radical innovation in patient management to address the needs of an aging population challenged by escalating chronic diseases. There is urgency to design, execute, and validate viable paradigms for translating and implementing the science of regenerative medicine into tangible health benefits that provide value to stakeholders. A regenerative medicine model of care would entail scalable production and standardized application of clinical grade biotherapies supported by comprehensive supply chain capabilities that integrate sourcing and manufacturing with care delivery. Mayo Clinic has rolled out a blueprint for discovery, translation, and application of regenerative medicine therapies for accelerated adoption into the standard of care. To establish regenerative medical and surgical service lines, the Mayo Clinic model incorporates patient access, enabling platforms and delivery. Access is coordinated through a designated portal, the Regenerative Medicine Consult Service, serving to facilitate patient/provider education, procurement of biomaterials, referral to specialty services, and/or regenerative interventions, often in clinical trials. Platforms include the Regenerative Medicine Biotrust and Good Manufacturing Practice facilities for manufacture of clinical grade products for cell-based, acellular, and/or biomaterial applications. Care delivery leverages dedicated interventional suites for provision of regenerative services. Performance is tracked using a scorecard system to inform decision making. The Mayo Clinic roadmap exemplifies an integrated organization in the discovery, development, and delivery of regenerative medicine within a growing community of practice at the core of modern health care. Regenerative medicine is at the vanguard of health care

  4. Regenerative Medicine Build-Out

    PubMed Central

    Pfenning, Michael A.; Gores, Gregory J.; Harper, C. Michel

    2015-01-01

    Summary Regenerative technologies strive to boost innate repair processes and restitute normative impact. Deployment of regenerative principles into practice is poised to usher in a new era in health care, driving radical innovation in patient management to address the needs of an aging population challenged by escalating chronic diseases. There is urgency to design, execute, and validate viable paradigms for translating and implementing the science of regenerative medicine into tangible health benefits that provide value to stakeholders. A regenerative medicine model of care would entail scalable production and standardized application of clinical grade biotherapies supported by comprehensive supply chain capabilities that integrate sourcing and manufacturing with care delivery. Mayo Clinic has rolled out a blueprint for discovery, translation, and application of regenerative medicine therapies for accelerated adoption into the standard of care. To establish regenerative medical and surgical service lines, the Mayo Clinic model incorporates patient access, enabling platforms and delivery. Access is coordinated through a designated portal, the Regenerative Medicine Consult Service, serving to facilitate patient/provider education, procurement of biomaterials, referral to specialty services, and/or regenerative interventions, often in clinical trials. Platforms include the Regenerative Medicine Biotrust and Good Manufacturing Practice facilities for manufacture of clinical grade products for cell-based, acellular, and/or biomaterial applications. Care delivery leverages dedicated interventional suites for provision of regenerative services. Performance is tracked using a scorecard system to inform decision making. The Mayo Clinic roadmap exemplifies an integrated organization in the discovery, development, and delivery of regenerative medicine within a growing community of practice at the core of modern health care. Significance Regenerative medicine is at the

  5. Regenerative medicine blueprint.

    PubMed

    Terzic, Andre; Harper, C Michel; Gores, Gregory J; Pfenning, Michael A

    2013-12-01

    Regenerative medicine, a paragon of future healthcare, holds unprecedented potential in extending the reach of treatment modalities for individuals across diseases and lifespan. Emerging regenerative technologies, focused on structural repair and functional restoration, signal a radical transformation in medical and surgical practice. Regenerative medicine is poised to provide innovative solutions in addressing major unmet needs for patients, ranging from congenital disease and trauma to degenerative conditions. Realization of the regenerative model of care predicates a stringent interdisciplinary paradigm that will drive validated science into standardized clinical options. Designed as a catalyst in advancing rigorous new knowledge on disease causes and cures into informed delivery of quality care, the Mayo Clinic regenerative medicine blueprint offers a patient-centered, team-based strategy that optimizes the discovery-translation-application roadmap for the express purpose of science-supported practice advancement.

  6. Stem cell research and regenerative medicine in 2014: first year of regenerative medicine in Japan.

    PubMed

    Okano, Hideyuki

    2014-09-15

    It is my great pleasure to announce that we were able to publish the Japan Issue in Stem Cells and Development, especially in this year 2014. This year, 2014, is said to be the First Year of Regenerative Medicine in Japan. This movement is likely to be based on the establishment of a new law system regarding regenerative medicine (an Act for Ensuring the Safety of Regenerative Medicine or the so-called Regenerative Medicine Law) and the partial revision of the Pharmaceutical Affairs Law (PAL). Both laws will come into effect in 2014 in this country. These new law systems are expected to have a great impact on the facilitation of R&D related to regenerative medicine and stem cell biology. In the present Japan Issue, some excellent stem cell research in this country will be introduced to celebrate the First Year of Regenerative Medicine in Japan.

  7. Designing biomaterials with immunomodulatory properties for tissue engineering and regenerative medicine

    PubMed Central

    Andorko, James I.

    2017-01-01

    Abstract Recent research in the vaccine and immunotherapy fields has revealed that biomaterials have the ability to activate immune pathways, even in the absence of other immune‐stimulating signals. Intriguingly, new studies reveal these responses are influenced by the physicochemical properties of the material. Nearly all of this work has been done in the vaccine and immunotherapy fields, but there is tremendous opportunity to apply this same knowledge to tissue engineering and regenerative medicine. This review discusses recent findings that reveal how material properties—size, shape, chemical functionality—impact immune response, and links these changes to emerging opportunities in tissue engineering and regenerative medicine. We begin by discussing what has been learned from studies conducted in the contexts of vaccines and immunotherapies. Next, research is highlighted that elucidates the properties of materials that polarize innate immune cells, including macrophages and dendritic cells, toward either inflammatory or wound healing phenotypes. We also discuss recent studies demonstrating that scaffolds used in tissue engineering applications can influence cells of the adaptive immune system—B and T cell lymphocytes—to promote regenerative tissue microenvironments. Through greater study of the intrinsic immunogenic features of implantable materials and scaffolds, new translational opportunities will arise to better control tissue engineering and regenerative medicine applications. PMID:28932817

  8. Accelerating regenerative medicine: the Japanese experiment in ethics and regulation.

    PubMed

    Lysaght, Tamra

    2017-09-01

    In 2014, the Japanese National Diet introduced new laws aimed at promoting the clinical translation of stem cells and regenerative medicine. The basic action of these laws is to allow the early introduction of regenerative medicine products into the Japanese market through an accelerated approval process, while providing patients with access to certain types of stem cell and cell-based therapies in the context of private clinical practice. While this framework appears to offer enormous opportunities for the translation of stem cell science, it raises ethical challenges that have not yet been fully explored. This paper critically analyzes this framework with respect to the prioritization of safety over clinical benefit, distributive justice and public trust in science and medicine. It is argued that the framework unfairly burdens patients and strained healthcare systems without any clear benefits, and may undermine the credibility of the regenerative medicine field as it emerges.

  9. 25th anniversary article: supramolecular materials for regenerative medicine.

    PubMed

    Boekhoven, Job; Stupp, Samuel I

    2014-03-19

    In supramolecular materials, molecular building blocks are designed to interact with one another via non-covalent interactions in order to create function. This offers the opportunity to create structures similar to those found in living systems that combine order and dynamics through the reversibility of intermolecular bonds. For regenerative medicine there is a great need to develop materials that signal cells effectively, deliver or bind bioactive agents in vivo at controlled rates, have highly tunable mechanical properties, but at the same time, can biodegrade safely and rapidly after fulfilling their function. These requirements make supramolecular materials a great platform to develop regenerative therapies. This review illustrates the emerging science of these materials and their use in a number of applications for regenerative medicine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Researches on regenerative medicine-current state and prospect.

    PubMed

    Wang, Zheng-Guo; Xiao, Kai

    2012-01-01

    Since 1980s, the rapid development of tissue engineering and stem cell research has pushed regenerative medicine to a new fastigium, and regenerative medicine has become a noticeable research field in the international biology and medicine. In China, about 100 million patients need repair and regeneration treatment every year, while the number is much larger in the world. Regenerative medicine could provide effective salvation for these patients. Both Chinese Academy of Sciences and Chinese Academy of Engineering have made roadmaps of 2010-2050 and 2011-2030 for regenerative medicine. The final goal of the two roadmaps is to make China go up to leading position in most research aspects of regenerative medicine. In accord with this strategy, the government and some enterprises have invested 3-5 billion RMB (0.5-0.8 billion USD) for the research on regenerative medicine. In order to push the translation of regenerative medicine forward-from bench to bedside, a strategic alliance has been established, and it includes 27 top-level research institutes, medical institutes, colleges, universities and enterprises in the field of stem cell and regeneration medicine. Recently the journal, Science, has published a special issue-Regenerative Medicine in China, consisting of 35 papers dealing with stem cell and regeneration, tissue engineering and regeneration, trauma and regeneration and bases for tissue repair and regenerative medicine. It is predicated that a greater breakthrough in theory and practice of regenerative medicine will be achieved in the near future (20 to 30 years).

  11. Phage Display Technology in Biomaterials Engineering: Progress and Opportunities for Applications in Regenerative Medicine.

    PubMed

    Martins, Ivone M; Reis, Rui L; Azevedo, Helena S

    2016-11-18

    The field of regenerative medicine has been gaining momentum steadily over the past few years. The emphasis in regenerative medicine is to use various in vitro and in vivo approaches that leverage the intrinsic healing mechanisms of the body to treat patients with disabling injuries and chronic diseases such as diabetes, osteoarthritis, and degenerative disorders of the cardiovascular and central nervous system. Phage display has been successfully employed to identify peptide ligands for a wide variety of targets, ranging from relatively small molecules (enzymes, cell receptors) to inorganic, organic, and biological (tissues) materials. Over the past two decades, phage display technology has advanced tremendously and has become a powerful tool in the most varied fields of research, including biotechnology, materials science, cell biology, pharmacology, and diagnostics. The growing interest in and success of phage display libraries is largely due to its incredible versatility and practical use. This review discusses the potential of phage display technology in biomaterials engineering for applications in regenerative medicine.

  12. Cultivating regenerative medicine innovation in China.

    PubMed

    McMahon, Dominique S; Thorsteinsdóttir, Halla; Singer, Peter A; Daar, Abdallah S

    2010-01-01

    While China has become a significant contributor and prolific publisher in regenerative medicine, its role in the field is not well understood. We analyze how capacity in regenerative medicine was built in China to identify some of its main strengths and challenges. This case study of regenerative medicine in China is primarily based on interviews with experts in China, including researchers, policy makers, clinicians, representatives of firms and regulators. Our analysis shows that diverse groups are active in this field in China. Leading research groups are contributing extensively to international peer-reviewed journals. Strong governmental support and recruitment of highly trained Chinese scientists from abroad has made it possible for China to rapidly build up capacity in regenerative medicine. However, some hospitals in China are offering stem cell therapies with limited scientific evidence supporting their efficacy/safety, and international skepticism of medical research in China presents a challenge to the development of the field. China has been able to catapult itself into the forefront of regenerative medicine but needs to address current regulatory challenges in order to secure its position in this emerging field.

  13. Regenerative medicine primer.

    PubMed

    Terzic, Andre; Nelson, Timothy J

    2013-07-01

    The pandemic of chronic diseases, compounded by the scarcity of usable donor organs, mandates radical innovation to address the growing unmet needs of individuals and populations. Beyond life-extending measures that are often the last available option, regenerative strategies offer transformative solutions in treating degenerative conditions. By leveraging newfound knowledge of the intimate processes fundamental to organogenesis and healing, the emerging regenerative armamentarium aims to boost the aptitude of human tissues for self-renewal. Regenerative technologies strive to promote, augment, and reestablish native repair processes, restituting organ structure and function. Multimodal regenerative approaches incorporate transplant of healthy tissues into damaged environments, prompt the body to enact a regenerative response in damaged tissues, and use tissue engineering to manufacture new tissue. Stem cells and their products have a unique aptitude to form specialized tissues and promote repair signaling, providing active ingredients of regenerative regimens. Concomitantly, advances in materials science and biotechnology have unlocked additional prospects for growing tissue grafts and engineering organs. Translation of regenerative principles into practice is feasible and safe in the clinical setting. Regenerative medicine and surgery are, thus, poised to transit from proof-of-principle studies toward clinical validation and, ultimately, standardization, paving the way for next-generation individualized management algorithms. Copyright © 2013 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  14. Three-dimensional bioprinting of stem-cell derived tissues for human regenerative medicine.

    PubMed

    Skeldon, Gregor; Lucendo-Villarin, Baltasar; Shu, Wenmiao

    2018-07-05

    Stem cell technology in regenerative medicine has the potential to provide an unlimited supply of cells for drug testing, medical transplantation and academic research. In order to engineer a realistic tissue model using stem cells as an alternative to human tissue, it is essential to create artificial stem cell microenvironment or niches. Three-dimensional (3D) bioprinting is a promising tissue engineering field that offers new opportunities to precisely place stem cells within their niches layer-by-layer. This review covers bioprinting technologies, the current development of 'bio-inks' and how bioprinting has already been applied to stem-cell culture, as well as their applications for human regenerative medicine. The key considerations for bioink properties such as stiffness, stability and biodegradation, biocompatibility and printability are highlighted. Bioprinting of both adult and pluriopotent stem cells for various types of artificial tissues from liver to brain has been reviewed. 3D bioprinting of stem-cell derived tissues for human regenerative medicine is an exciting emerging area that represents opportunities for new research, industries and products as well as future challenges in clinical translation.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'. © 2018 The Author(s).

  15. Stem cells and regenerative medicine in domestic and companion animals: a multispecies perspective.

    PubMed

    Gonçalves, N N; Ambrósio, C E; Piedrahita, J A

    2014-10-01

    Since their original isolation, the majority of the work on embryonic stem cells (ESC) has been carried out in mice. While the mouse is an outstanding model for basic research, it also has considerable limitations for translational work, especially in the area of regenerative medicine. This is due to a combination of factors that include physiological and size differences when compared to humans. In contrast, domestic animal species, such as swine, and companion animal species, such as dogs, provide unique opportunities to develop regenerative medicine protocols that can then be utilized in humans. Unfortunately, at present, the state of knowledge related to, and availability of, ESC from domestic animals vary among species such as pig, horse, dog and cat, and without exception lags significantly behind the mouse and human. It is clear that much still needs to be discovered. The 'stem cell-like' cell lines being reported are still not satisfactorily used in regenerative medicine, due to reasons such as heterogeneity and chromosomal instability. As a result, investigators have searched for alternate source of cells that can be used for regenerative medicine. This approach has uncovered a range of adult stem cells and adult progenitor cells that have utility in both human and veterinary medicine. Here, we review a range of stem cells, from ESC to induced pluripotent stem cells, and discuss their potential application in the field of regenerative medicine. © 2014 Blackwell Verlag GmbH.

  16. Implantable Sensors for Regenerative Medicine

    PubMed Central

    Klosterhoff, Brett S.; Tsang, Melissa; She, Didi; Ong, Keat Ghee; Allen, Mark G.; Willett, Nick J.; Guldberg, Robert E.

    2017-01-01

    The translation of many tissue engineering/regenerative medicine (TE/RM) therapies that demonstrate promise in vitro are delayed or abandoned due to reduced and inconsistent efficacy when implemented in more complex and clinically relevant preclinical in vivo models. Determining mechanistic reasons for impaired treatment efficacy is challenging after a regenerative therapy is implanted due to technical limitations in longitudinally measuring the progression of key environmental cues in vivo. The ability to acquire real-time measurements of environmental parameters of interest including strain, pressure, pH, temperature, oxygen tension, and specific biomarkers within the regenerative niche in situ would significantly enhance the information available to tissue engineers to monitor and evaluate mechanisms of functional healing or lack thereof. Continued advancements in material and fabrication technologies utilized by microelectromechanical systems (MEMSs) and the unique physical characteristics of passive magnetoelastic sensor platforms have created an opportunity to implant small, flexible, low-power sensors into preclinical in vivo models, and quantitatively measure environmental cues throughout healing. In this perspective article, we discuss the need for longitudinal measurements in TE/RM research, technical progress in MEMS and magnetoelastic approaches to implantable sensors, the potential application of implantable sensors to benefit preclinical TE/RM research, and the future directions of collaborative efforts at the intersection of these two important fields. PMID:27987300

  17. Rethinking Regenerative Medicine: A Macrophage-Centered Approach

    PubMed Central

    Brown, Bryan N.; Sicari, Brian M.; Badylak, Stephen F.

    2014-01-01

    Regenerative medicine, a multi-disciplinary approach that seeks to restore form and function to damaged or diseased tissues and organs, has evolved significantly during the past decade. By adapting and integrating fundamental knowledge from cell biology, polymer science, and engineering, coupled with an increasing understanding of the mechanisms which underlie the pathogenesis of specific diseases, regenerative medicine has the potential for innovative and transformative therapies for heretofore unmet medical needs. However, the translation of novel technologies from the benchtop to animal models and clinical settings is non-trivial and requires an understanding of the mechanisms by which the host will respond to these novel therapeutic approaches. The role of the innate immune system, especially the role of macrophages, in the host response to regenerative medicine based strategies has recently received considerable attention. Macrophage phenotype and function have been suggested as critical and determinant factors in downstream outcomes. The constructive and regulatory, and in fact essential, role of macrophages in positive outcomes represents a significant departure from the classical paradigms of host–biomaterial interactions, which typically consider activation of the host immune system as a detrimental event. It appears desirable that emerging regenerative medicine approaches should not only accommodate but also promote the involvement of the immune system to facilitate positive outcomes. Herein, we describe the current understanding of macrophage phenotype as it pertains to regenerative medicine and suggest that improvement of our understanding of context-dependent macrophage polarization will lead to concurrent improvement in outcomes. PMID:25408693

  18. Stem Cell Banking for Regenerative and Personalized Medicine

    PubMed Central

    Harris, David T.

    2014-01-01

    Regenerative medicine, tissue engineering and gene therapy offer the opportunity to treat and cure many of today’s intractable afflictions. These approaches to personalized medicine often utilize stem cells to accomplish these goals. However, stem cells can be negatively affected by donor variables such as age and health status at the time of collection, compromising their efficacy. Stem cell banking offers the opportunity to cryogenically preserve stem cells at their most potent state for later use in these applications. Practical stem cell sources include bone marrow, umbilical cord blood and tissue, and adipose tissue. Each of these sources contains stem cells that can be obtained from most individuals, without too much difficulty and in an economical fashion. This review will discuss the advantages and disadvantages of each stem cell source, factors to be considered when contemplating banking each stem cell source, the methodology required to bank each stem cell source, and finally, current and future clinical uses of each stem cell source. PMID:28548060

  19. Stem Cells Applications in Regenerative Medicine and Disease Therapeutics

    PubMed Central

    2016-01-01

    Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of tissues or organs for the patient suffering from severe injuries or chronic disease. The spectacular progress in the field of stem cell research has laid the foundation for cell based therapies of disease which cannot be cured by conventional medicines. The indefinite self-renewal and potential to differentiate into other types of cells represent stem cells as frontiers of regenerative medicine. The transdifferentiating potential of stem cells varies with source and according to that regenerative applications also change. Advancements in gene editing and tissue engineering technology have endorsed the ex vivo remodelling of stem cells grown into 3D organoids and tissue structures for personalized applications. This review outlines the most recent advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally, this review also discusses stem cells regenerative application in wildlife conservation. PMID:27516776

  20. Plastic Surgery Challenges in War Wounded II: Regenerative Medicine

    PubMed Central

    Valerio, Ian L.; Sabino, Jennifer M.; Dearth, Christopher L.

    2016-01-01

    Background: A large volume of service members have sustained complex injuries during Operations Iraqi Freedom (OIF) and Enduring Freedom (OEF). These injuries are complicated by contamination with particulate and foreign materials, have high rates of bacterial and/or fungal infections, are often composite-type defects with massive soft tissue wounds, and usually have multisystem involvement. While traditional treatment modalities remain a mainstay for optimal wound care, traditional reconstruction approaches alone may be inadequate to fully address the scope and magnitude of such massive complex wounds. As a result of these difficult clinical problems, the use of regenerative medicine therapies, such as autologous adipose tissue grafting, stem cell therapies, nerve allografts, and dermal regenerate templates/extracellular matrix scaffolds, is increased as adjuncts to traditional reconstructive measures. Basic and Clinical Science Advances: The beneficial applications of regenerative medicine therapies have been well characterized in both in vitro studies and in vivo animal studies. The use of these regenerative medicine techniques in the treatment of combat casualty injuries has been increasing throughout the recent war conflicts. Clinical Care Relevance: Military medicine has shown positive results when utilizing certain regenerative medicine modalities in treating complex war wounds. As a result, multi-institution clinical trials are underway to further evaluate these observations and reconstruction measures. Conclusion: Successful combat casualty wound care often requires a combination of traditional aspects of the reconstructive ladder/elevator with adoption of various regenerative medicine therapies. Due to the recent OIF/OEF conflicts, a high volume of combat casualties have benefited from adoption of regenerative medicine therapies and increased access to innovative clinical trials. Furthermore, many of these patients have had long-term follow-up to report

  1. Advancing pig cloning technologies towards application in regenerative medicine.

    PubMed

    Nagashima, H; Matsunari, H; Nakano, K; Watanabe, M; Umeyama, K; Nagaya, M

    2012-08-01

    Regenerative medicine is expected to make a significant contribution by development of novel therapeutic treatments for intractable diseases and for improving the quality of life of patients. Many advances in regenerative medicine, including basic and translational research, have been developed and tested in experimental animals; pigs have played an important role in various aspects of this work. The value of pigs as a model species is being enhanced by the generation of specially designed animals through cloning and genetic modifications, enabling more sophisticated research to be performed and thus accelerating the clinical application of regenerative medicine. This article reviews the significant aspects of the creation and application of cloned and genetically modified pigs in regenerative medicine research and considers the possible future directions of the technology. We also discuss the importance of reproductive biology as an interface between basic science and clinical medicine. © 2012 Blackwell Verlag GmbH.

  2. New glossary of terms used in regenerative medicine: standardization continues to emerge as regenerative medicine matures.

    PubMed

    Sheridan, Ben; Harris, Neil

    2009-07-01

    Regenerative medicine is an evolving, cross-disciplinary, international field that, as a result, uses terms that are either not widely understood, or may have a number of different meanings. Many stakeholders have identified this lack of clarity as a potential barrier to effective communication within the field. To address this, BSI British Standards, supported by the UK Department for Innovation, Universities and Skills (DIUS), was commissioned to develop guidance on the definitions of terms used within regenerative medicine. The resulting document aims to provide clear consensus terminology to improve communication and facilitate a common understanding for a broad range of potential users.

  3. Stem cells: intellectual property issues in regenerative medicine.

    PubMed

    Zachariades, Nicholas A

    2013-12-01

    The topic of stem cells for use in regenerative medicine, especially embryonic stem cells, inspires much debate, discussion, and outrage as it slices through the very core moral values of society. These social and moral issues have, in turn, resulted in government policies that have influenced the study of stem cells in regenerative medicine.

  4. Overcoming immunological barriers in regenerative medicine.

    PubMed

    Zakrzewski, Johannes L; van den Brink, Marcel R M; Hubbell, Jeffrey A

    2014-08-01

    Regenerative therapies that use allogeneic cells are likely to encounter immunological barriers similar to those that occur with transplantation of solid organs and allogeneic hematopoietic stem cells (HSCs). Decades of experience in clinical transplantation hold valuable lessons for regenerative medicine, offering approaches for developing tolerance-induction treatments relevant to cell therapies. Outside the field of solid-organ and allogeneic HSC transplantation, new strategies are emerging for controlling the immune response, such as methods based on biomaterials or mimicry of antigen-specific peripheral tolerance. Novel biomaterials can alter the behavior of cells in tissue-engineered constructs and can blunt host immune responses to cells and biomaterial scaffolds. Approaches to suppress autoreactive immune cells may also be useful in regenerative medicine. The most innovative solutions will be developed through closer collaboration among stem cell biologists, transplantation immunologists and materials scientists.

  5. State of the art: stem cells in equine regenerative medicine.

    PubMed

    Lopez, M J; Jarazo, J

    2015-03-01

    According to Greek mythology, Prometheus' liver grew back nightly after it was removed each day by an eagle as punishment for giving mankind fire. Hence, contrary to popular belief, the concept of tissue and organ regeneration is not new. In the early 20th century, cell culture and ex vivo organ preservation studies by Alexis Carrel, some with famed aviator Charles Lindbergh, established a foundation for much of modern regenerative medicine. While early beliefs and discoveries foreshadowed significant accomplishments in regenerative medicine, advances in knowledge within numerous scientific disciplines, as well as nano- and micromolecular level imaging and detection technologies, have contributed to explosive advances over the last 20 years. Virtually limitless preparations, combinations and applications of the 3 major components of regenerative medicine, namely cells, biomaterials and bioactive molecules, have created a new paradigm of future therapeutic options for most species. It is increasingly clear, however, that despite significant parallels among and within species, there is no 'one-size-fits-all' regenerative therapy. Likewise, a panacea has yet to be discovered that completely reverses the consequences of time, trauma and disease. Nonetheless, there is no question that the promise and potential of regenerative medicine have forever altered medical practices. The horse is a relative newcomer to regenerative medicine applications, yet there is already a large body of work to incorporate novel regenerative therapies into standard care. This review focuses on the current state and potential future of stem cells in equine regenerative medicine. © 2014 EVJ Ltd.

  6. Manufacturing Road Map for Tissue Engineering and Regenerative Medicine Technologies

    PubMed Central

    Hunsberger, Joshua; Harrysson, Ola; Shirwaiker, Rohan; Starly, Binil; Wysk, Richard; Cohen, Paul; Allickson, Julie; Yoo, James

    2015-01-01

    Summary The Regenerative Medicine Foundation Annual Conference held on May 6 and 7, 2014, had a vision of assisting with translating tissue engineering and regenerative medicine (TERM)-based technologies closer to the clinic. This vision was achieved by assembling leaders in the field to cover critical areas. Some of these critical areas included regulatory pathways for regenerative medicine therapies, strategic partnerships, coordination of resources, developing standards for the field, government support, priorities for industry, biobanking, and new technologies. The final day of this conference featured focused sessions on manufacturing, during which expert speakers were invited from industry, government, and academia. The speakers identified and accessed roadblocks plaguing the field where improvements in advanced manufacturing offered many solutions. The manufacturing sessions included (a) product development toward commercialization in regenerative medicine, (b) process challenges to scale up manufacturing in regenerative medicine, and (c) infrastructure needs for manufacturing in regenerative medicine. Subsequent to this, industry was invited to participate in a survey to further elucidate the challenges to translation and scale-up. This perspective article will cover the lessons learned from these manufacturing sessions and early results from the survey. We also outline a road map for developing the manufacturing infrastructure, resources, standards, capabilities, education, training, and workforce development to realize the promise of TERM. PMID:25575525

  7. Synthetic organs for regenerative medicine.

    PubMed

    Pedersen, Roger A; Mascetti, Victoria; Mendjan, Sasha

    2012-06-14

    Differentiating tissue stem cells can self-assemble into structures that strikingly resemble functional organ subunits. Translating this insight to regenerative medicine presents several challenges. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. The continued promise of stem cell therapy in regenerative medicine.

    PubMed

    Eve, David J

    2011-12-01

    The use of stem cells is galvanizing regenerative medicine research. An analysis of recent trends as typified by articles published between 2009 and 2010 in the journals Cell Transplantation--The Regenerative Medicine Journal and Medical Science Monitor demonstrate the increasing importance of stem cell research as being on the cutting edge of regenerative medicine research. The analysis revealed an even split between transplantation and non-transplantation studies, showing that both the applicability and general research is being pursued. New methods and tissue engineering are also highly important components of regenerative medicine as demonstrated by a number of the stem cell studies being involved with either ex vivo manipulation, or cotransplantation with other cells or biomaterials. This suggests that the best results may be achieved with adjuvant therapies. The non-transplantation studies were more focused on manipulation of transplantable agents including cells and scaffold systems, as well as the use of medicines and dietary supplements. The further elucidation of disease mechanisms was a major contribution. This analysis suggests that regenerative medicine is proceeding at a rapid pace and the next few years should be of considerable interest with the initial results of pioneering stem cell therapies being announced.

  9. Science and Ethics: Bridge to the Future for Regenerative Medicine

    PubMed Central

    Patricio, Ventura-Juncá

    2011-01-01

    The objective of this article is to reflect on the relationship between regenerative medicine and ethics, using as references the Aristotelian concept of what is ethical and that of Raessler Van Potter about bioethics. To do this, I will briefly describe the advances in regenerative medicine with stem cells, the strategies for producing pluripotential cells without destroying human embryos, and the great potential of stem cells to improve life for Humanity, noting that for this to be possible, it is necessary to locate the role of regenerative medicine in the context of human values and well being. In this way, this article has a real perspective of the role that regenerative medicine can play in benefitting human beings and engendering respect for human and natural environments. PMID:24298338

  10. Regenerative Medicine: Creating the Future for Military Medicine

    DTIC Science & Technology

    2009-08-01

    research institutes, and/or small/large businesses by identifying and facilitating appropriate partnerships as well as recommending more targeted...cells without the need for prolonged culture periods to expand the cell populations. In addition, the researchers have found a method that will induce...Regenerative Medicine CREATING THE FUTURE FOR MILITARY MEDICINE U.S. ARMY MEDICAL RESEARCH & MATERIEL COMMAND (USAMRMC) TELEMEDICINE & ADVANCED

  11. Regenerative Medicine: A Vehicle to Infuse Laboratory-Bench Modules into an Exercise Physiology Curriculum

    ERIC Educational Resources Information Center

    Brown, Jason M.; Guy, Breonte S.; Henderson, Dawn X.; Ebert, C. Edward; Harp, Jill; Markert, Chad D.

    2018-01-01

    Regenerative medicine is a novel discipline that both excites undergraduates and may be used as a vehicle to expose students to scientific concepts and opportunities. The goal of this article is to describe the implementation of a National Science Foundation-funded Targeted Infusion Project in which underrepresented minority undergraduates are…

  12. Stem cell bioprinting for applications in regenerative medicine.

    PubMed

    Tricomi, Brad J; Dias, Andrew D; Corr, David T

    2016-11-01

    Many regenerative medicine applications seek to harness the biologic power of stem cells in architecturally complex scaffolds or microenvironments. Traditional tissue engineering methods cannot create such intricate structures, nor can they precisely control cellular position or spatial distribution. These limitations have spurred advances in the field of bioprinting, aimed to satisfy these structural and compositional demands. Bioprinting can be defined as the programmed deposition of cells or other biologics, often with accompanying biomaterials. In this concise review, we focus on recent advances in stem cell bioprinting, including performance, utility, and applications in regenerative medicine. More specifically, this review explores the capability of bioprinting to direct stem cell fate, engineer tissue(s), and create functional vascular networks. Furthermore, the unique challenges and concerns related to bioprinting living stem cells, such as viability and maintaining multi- or pluripotency, are discussed. The regenerative capacity of stem cells, when combined with the structural/compositional control afforded by bioprinting, provides a unique and powerful tool to address the complex demands of tissue engineering and regenerative medicine applications. © 2016 New York Academy of Sciences.

  13. Gene delivery in tissue engineering and regenerative medicine.

    PubMed

    Fang, Y L; Chen, X G; W T, Godbey

    2015-11-01

    As a promising strategy to aid or replace tissue/organ transplantation, gene delivery has been used for regenerative medicine applications to create or restore normal function at the cell and tissue levels. Gene delivery has been successfully performed ex vivo and in vivo in these applications. Excellent proliferation capabilities and differentiation potentials render certain cells as excellent candidates for ex vivo gene delivery for regenerative medicine applications, which is why multipotent and pluripotent cells have been intensely studied in this vein. In this review, gene delivery is discussed in detail, along with its applications to tissue engineering and regenerative medicine. A definition of a stem cell is compared to a definition of a stem property, and both provide the foundation for an in-depth look at gene delivery investigations from a germ lineage angle. © 2014 Wiley Periodicals, Inc.

  14. Emerging trends and new developments in regenerative medicine: a scientometric update (2000 - 2014).

    PubMed

    Chen, Chaomei; Dubin, Rachael; Kim, Meen Chul

    2014-09-01

    Our previous scientometric review of regenerative medicine provides a snapshot of the fast-growing field up to the end of 2011. The new review identifies emerging trends and new developments appearing in the literature of regenerative medicine based on relevant articles and reviews published between 2000 and the first month of 2014. Multiple datasets of publications relevant to regenerative medicine are constructed through topic search and citation expansion to ensure adequate coverage of the field. Networks of co-cited references representing the literature of regenerative medicine are constructed and visualized based on a combined dataset of 71,393 articles published between 2000 and 2014. Structural and temporal dynamics are identified in terms of most active topical areas and cited references. New developments are identified in terms of newly emerged clusters and research areas. Disciplinary-level patterns are visualized in dual-map overlays. While research in induced pluripotent stem cells remains the most prominent area in the field of regenerative medicine, research related to clinical and therapeutic applications in regenerative medicine has experienced a considerable growth. In addition, clinical and therapeutic developments in regenerative medicine have demonstrated profound connections with the induced pluripotent stem cell research and stem cell research in general. A rapid adaptation of graphene-based nanomaterials in regenerative medicine is evident. Both basic research represented by stem cell research and application-oriented research typically found in tissue engineering are now increasingly integrated in the scientometric landscape of regenerative medicine. Tissue engineering is an interdisciplinary field in its own right. Advances in multiple disciplines such as stem cell research and graphene research have strengthened the connections between tissue engineering and regenerative medicine.

  15. Therapeutic potential of nanoceria in regenerative medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Soumen; Chigurupati, Srinivasulu; Dowding, Janet

    Tissue engineering and regenerative medicine aim to achieve functional restoration of tissue or cells damaged through disease, aging or trauma. Advancement of tissue engineering requires innovation in the field of 3D scaffolding, and functionalization with bioactive molecules. Nanotechnology offers advanced materials with patterned nano-morphologies for cell growth and different molecular substrates which can support cell survival and functions. Cerium oxide nanoparticles (nanoceria) can control intracellular as well as extracellular reactive oxygen and nitrogen species. Recent findings suggest that nanoceria can enhance long-term cell survival, enable cell migration and proliferation, and promote stem cell differentiation. Moreover, the self-regenerative property of nanoceriamore » permits a small dose to remain catalytically active for extended time. This review summarizes the possibilities and applications of nanoceria in the field of tissue engineering and regenerative medicine.« less

  16. Stem cells in drug discovery, tissue engineering, and regenerative medicine: emerging opportunities and challenges.

    PubMed

    Nirmalanandhan, Victor Sanjit; Sittampalam, G Sitta

    2009-08-01

    Stem cells, irrespective of their origin, have emerged as valuable reagents or tools in human health in the past 2 decades. Initially, a research tool to study fundamental aspects of developmental biology is now the central focus of generating transgenic animals, drug discovery, and regenerative medicine to address degenerative diseases of multiple organ systems. This is because stem cells are pluripotent or multipotent cells that can recapitulate developmental paths to repair damaged tissues. However, it is becoming clear that stem cell therapy alone may not be adequate to reverse tissue and organ damage in degenerative diseases. Existing small-molecule drugs and biologicals may be needed as "molecular adjuvants" or enhancers of stem cells administered in therapy or adult stem cells in the diseased tissues. Hence, a combination of stem cell-based, high-throughput screening and 3D tissue engineering approaches is necessary to advance the next wave of tools in preclinical drug discovery. In this review, the authors have attempted to provide a basic account of various stem cells types, as well as their biology and signaling, in the context of research in regenerative medicine. An attempt is made to link stem cells as reagents, pharmacology, and tissue engineering as converging fields of research for the next decade.

  17. Functionalized Nanostructures with Application in Regenerative Medicine

    PubMed Central

    Perán, Macarena; García, María A.; López-Ruiz, Elena; Bustamante, Milán; Jiménez, Gema; Madeddu, Roberto; Marchal, Juan A.

    2012-01-01

    In the last decade, both regenerative medicine and nanotechnology have been broadly developed leading important advances in biomedical research as well as in clinical practice. The manipulation on the molecular level and the use of several functionalized nanoscaled materials has application in various fields of regenerative medicine including tissue engineering, cell therapy, diagnosis and drug and gene delivery. The themes covered in this review include nanoparticle systems for tracking transplanted stem cells, self-assembling peptides, nanoparticles for gene delivery into stem cells and biomimetic scaffolds useful for 2D and 3D tissue cell cultures, transplantation and clinical application. PMID:22489186

  18. Induced pluripotent stem cells for regenerative medicine.

    PubMed

    Hirschi, Karen K; Li, Song; Roy, Krishnendu

    2014-07-11

    With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies offer novel tools for the reprogramming, expansion, isolation, and differentiation of iPS cells. In this article, we review these bioengineering approaches for the derivation and manipulation of iPS cells and focus on their relevance to regenerative medicine.

  19. Quo Vadis medycyno regeneracyjna?: Quo Vadis Regenerative Medicine?

    PubMed

    Ratajczak, Mariusz Z; Suszyńska, Malwina

    2013-07-01

    There are presented the most important sources of pluripotent stem cells for potential application in the regenerative medicine. This review summarizes also advantages and disadvantages for potential application of these cells in clinical medicine.

  20. Stem cells have the potential to rejuvenate regenerative medicine research.

    PubMed

    Eve, David J; Fillmore, Randolph; Borlongan, Cesar V; Sanberg, Paul R

    2010-10-01

    The increasing number of publications featuring the use of stem cells in regenerative processes supports the idea that they are revolutionizing regenerative medicine research. In an analysis of the articles published in the journal Cell Transplantation - The Regenerative Medicine Journal between 2008 and 2009, which reveals the topics and categories that are on the cutting edge of regenerative medicine research, stem cells are becoming increasingly relevant as the "runner-up" category to "neuroscience" related articles. The high volume of stem cell research casts a bright light on the hope for stem cells and their role in regenerative medicine as a number of reports deal with research using stem cells entering, or seeking approval for, clinical trials. The "methods and new technologies" and "tissue engineering" sections were almost equally as popular, and in part, reflect attempts to maximize the potential of stem cells and other treatments for the repair of damaged tissue. Transplantation studies were again more popular than non-transplantation, and the contribution of stem cell-related transplants was greater than other types of transplants. The non-transplantation articles were predominantly related to new methods for the preparation, isolation and manipulation of materials for transplant by specific culture media, gene therapy, medicines, dietary supplements, and co-culturing with other cells and further elucidation of disease mechanisms. A sizeable proportion of the transplantation articles reported on how previously new methods may have aided the ability of the cells or tissue to exert beneficial effects following transplantation.

  1. Personalized Regenerative Medicine.

    PubMed

    Arjmand, Babak; Goodarzi, Parisa; Mohamadi-Jahani, Fereshteh; Falahzadeh, Khadijeh; Larijani, Bagher

    2017-03-01

    Personalized medicine as a novel field of medicine refers to the prescription of specific therapeutics procedure for an individual. This approach has established based on pharmacogenetic and pharmacogenomic information and data. The terms precision and personalized medicines are sometimes applied interchangeably. However, there has been a shift from "personalized medicine" towards "precision medicine". Although personalized medicine emerged from pharmacogenetics, nowadays it covers many fields of healthcare. Accordingly, regenerative medicine and cellular therapy as the new fields of medicine use cell-based products in order to develop personalized treatments. Different sources of stem cells including mesenchymal stem cells, embryonic stem cells and induced pluripotent stem cells (iPSCs) have been considered in targeted therapies which could give many advantages. iPSCs as the novel and individual pluripotent stem cells have been introduced as the appropriate candidates for personalized cell therapies. Cellular therapies can provide a personalized approach. Because of person-to-person and population differences in the result of stem cell therapy, individualized cellular therapy must be adjusted according to the patient specific profile, in order to achieve best therapeutic results and outcomes. Several factors should be considered to achieve personalized stem cells therapy such as, recipient factors, donor factors, and the overall body environment in which the stem cells could be active and functional. In addition to these factors, the source of stem cells must be carefully chosen based on functional and physical criteria that lead to optimal outcomes.

  2. Prospective regenerative medicine therapies for obstetric trauma-induced fecal incontinence.

    PubMed

    Parmar, Nina; Kumar, Lalit; Emmanuel, Anton; Day, Richard M

    2014-01-01

    Fecal incontinence is a major public health issue that has yet to be adequately addressed. Obstetric trauma and injury to the anal sphincter muscles are the most common cause of fecal incontinence. New therapies are emerging aimed at repair or regeneration of sphincter muscle and restoration of continence. While regenerative medicine offers an attractive option for fecal incontinence there are currently no validated techniques using this approach. Although many challenges are yet to be resolved, the advent of regenerative medicine is likely to offer disruptive technologies to treat and possibly prevent the onset of this devastating condition. This article provides a review on regenerative medicine approaches for treating fecal incontinence and a critique of the current landscape in this area.

  3. Immunosuppression-free transplantation reconsidered from a regenerative medicine perspective.

    PubMed

    Orlando, Giuseppe

    2012-02-01

    Recent groundbreaking progress in regenerative medicine has shown its potential to meet the two major needs of solid organ transplantation, namely the achievement of an immunosuppression-free state (IFS) and the identification of a new, potentially inexhaustible source of organs. This review illustrates how regenerative medicine technology may contribute to the achievement of IFS. There are three possible strategies: organ bioengineering, immuno-isolation and thymus bioengineering. The goal of organ bioengineering is to manufacture organs ex vivo from autologous cells. Immuno-isolation technology implements strategies aiming to prevent recognition of nonself antigens by the host immune system. Thymus organoids have been bioengineered with scaffold-seeding methods to allow deletion of T-cell clones responsible for allograft rejection. Despite the several hurdles that must be overcome, regenerative medicine technologies offer alternative strategies aimed at establishing immediate, stable and durable IFS in solid organ graft recipients.

  4. Application of regenerative medicine for kidney diseases.

    PubMed

    Yokoo, Takashi; Fukui, Akira; Kobayashi, Eiji

    2007-01-01

    Following recent advancements of stem cell research, the potential for organ regeneration using somatic stem cells as an ultimate therapy for organ failure has increased. However, anatomically complicated organs such as the kidney and liver have proven more refractory to stem cell-based regenerative techniques. At present, kidney regeneration is considered to require one of two approaches depending on the type of renal failure, namely acute renal failure (ARF) and chronic renal failure (CRF).The kidney has the potential to regenerate itself provided that the damage is not too severe and the kidney's structure remains intact. Regenerative medicine for ARF should therefore aim to activate or support this potent. In cases of the irreversible damage to the kidney, which is most likely in patients with CRF undergoing long-term dialysis, self-renewal is totally lost. Thus, regenerative medicine for CRF will likely involve the establishment of a functional whole kidney de novo. This article reviews the challenges and recent advances in both approaches and discusses the potential approach of these novel strategies for clinical application.

  5. Periosteum mechanobiology and mechanistic insights for regenerative medicine

    PubMed Central

    Knothe Tate, Melissa L; Yu, Nicole Y C; Jalilian, Iman; Pereira, André F; Knothe, Ulf R

    2016-01-01

    Periosteum is a smart mechanobiological material that serves as a habitat and delivery vehicle for stem cells as well as biological factors that modulate tissue genesis and healing. Periosteum's remarkable regenerative capacity has been harnessed clinically for over two hundred years. Scientific studies over the past decade have begun to decipher the mechanobiology of periosteum, which has a significant role in its regenerative capacity. This integrative review outlines recent mechanobiological insights that are key to modulating and translating periosteum and its resident stem cells in a regenerative medicine context. PMID:27974968

  6. Nanotechnology for regenerative medicine.

    PubMed

    Khang, Dongwoo; Carpenter, Joseph; Chun, Young Wook; Pareta, Rajesh; Webster, Thomas J

    2010-08-01

    Future biomaterials must simultaneously enhance tissue regeneration while minimizing immune responses and inhibiting infection. While the field of tissue engineering has promised to develop materials that can promote tissue regeneration for the entire body, such promises have not become reality. However, tissue engineering has experienced great progress due to the recent emergence of nanotechnology. Specifically, it has now been well established that increased tissue regeneration can be achieved on almost any surface by employing novel nano-textured surface features. Numerous studies have reported that nanotechnology accelerates various regenerative therapies, such as those for the bone, vascular, heart, cartilage, bladder and brain tissue. Various nano-structured polymers and metals (alloys) have been investigated for their bio (and cyto) compatibility properties. This review paper discusses several of the latest nanotechnology findings in regenerative medicine (also now called nanomedicine) as well as their relative levels of success.

  7. [Progress in stem cells and regenerative medicine].

    PubMed

    Wang, Libin; Zhu, He; Hao, Jie; Zhou, Qi

    2015-06-01

    Stem cells have the ability to differentiate into all types of cells in the body and therefore have great application potential in regenerative medicine, in vitro disease modelling and drug screening. In recent years, stem cell technology has made great progress, and induced pluripotent stem cell technology revolutionizes the whole stem cell field. At the same time, stem cell research in our country has also achieved great progress and becomes an indispensable power in the worldwide stem cell research field. This review mainly focuses on the research progress in stem cells and regenerative medicine in our country since the advent of induced pluripotent stem cell technology, including induced pluripotent stem cells, transdifferentiation, haploid stem cells, and new gene editing tools.

  8. Liver regenerative medicine: advances and challenges.

    PubMed

    Chistiakov, Dimitry A

    2012-01-01

    Liver transplantation is the standard care for many end-stage liver diseases. However, donor organs are scarce and some people succumb to liver failure before a donor is found. Liver regenerative medicine is a special interdisciplinary field of medicine focused on the development of new therapies incorporating stem cells, gene therapy and engineered tissues in order to repair or replace the damaged organ. In this review we consider the emerging progress achieved in the hepatic regenerative medicine within the last decade. The review starts with the characterization of liver organogenesis, fetal and adult stem/progenitor cells. Then, applications of primary hepatocytes, embryonic and adult (mesenchymal, hematopoietic and induced pluripotent) stem cells in cell therapy of liver diseases are considered. Current advances and challenges in producing mature hepatocytes from stem/progenitor cells are discussed. A section about hepatic tissue engineering includes consideration of synthetic and natural biomaterials in engineering scaffolds, strategies and achievements in the development of 3D bioactive matrices and 3D hepatocyte cultures, liver microengineering, generating bioartificial liver and prospects for fabrication of the bioengineered liver. Copyright © 2012 S. Karger AG, Basel.

  9. Electrospun Silk Biomaterial Scaffolds for Regenerative Medicine

    PubMed Central

    Zhang, Xiaohui; Reagan, Michaela R; Kaplan, David L.

    2009-01-01

    Electrospinning is a versatile technique that enables the development of nanofiber-based biomaterial scaffolds. Scaffolds can be generated that are useful for tissue engineering and regenerative medicine since they mimic the nanoscale properties of certain fibrous components of the native extracellular matrix in tissues. Silk is a natural protein with excellent biocompatibility, remarkable mechanical properties as well as tailorable degradability. Integrating these protein polymer advantages with electrospinning results in scaffolds with combined biochemical, topographical and mechanical cues with versatility for a range of biomaterial, cell and tissue studies and applications. This review covers research related to electrospinning of silk, including process parameters, post treatment of the spun fibers, functionalization of nanofibers, and the potential applications for these material systems in regenerative medicine. Research challenges and future trends are also discussed. PMID:19643154

  10. Turning Regenerative Medicine Breakthrough Ideas and Innovations into Commercial Products.

    PubMed

    Bayon, Yves; Vertès, Alain A; Ronfard, Vincent; Culme-Seymour, Emily; Mason, Chris; Stroemer, Paul; Najimi, Mustapha; Sokal, Etienne; Wilson, Clayton; Barone, Joe; Aras, Rahul; Chiesi, Andrea

    2015-12-01

    The TERMIS-Europe (EU) Industry committee intended to address the two main critical issues in the clinical/commercial translation of Advanced Therapeutic Medicine Products (ATMP): (1) entrepreneurial exploitation of breakthrough ideas and innovations, and (2) regulatory market approval. Since January 2012, more than 12,000 publications related to regenerative medicine and tissue engineering have been accepted for publications, reflecting the intense academic research activity in this field. The TERMIS-EU 2014 Industry Symposium provided a reflection on the management of innovation and technological breakthroughs in biotechnology first proposed to contextualize the key development milestones and constraints of allocation of financial resources, in the development life-cycle of radical innovation projects. This was illustrated with the biofuels story, sharing similarities with regenerative medicine. The transition was then ensured by an overview of the key identified challenges facing the commercialization of cell therapy products as ATMP examples. Real cases and testimonies were then provided by a palette of medical technologies and regenerative medicine companies from their commercial development of cell and gene therapy products. Although the commercial development of ATMP is still at the proof-of-concept stage due to technology risks, changing policies, changing markets, and management changes, the sector is highly dynamic with a number of explored therapeutic approaches, developed by using a large diversity of business models, both proposed by the experience, pitfalls, and successes of regenerative medicine pioneers, and adapted to the constraint resource allocation and environment in radical innovation projects.

  11. Innovative regenerative medicines in the EU: a better future in evidence?

    PubMed

    Corbett, Mark S; Webster, Andrew; Hawkins, Robert; Woolacott, Nerys

    2017-03-08

    Despite a steady stream of headlines suggesting they will transform the future of healthcare, high-tech regenerative medicines have, to date, been quite inaccessible to patients, with only eight having been granted an EU marketing licence in the last 7 years. Here, we outline some of the historical reasons for this paucity of licensed innovative regenerative medicines. We discuss the challenges to be overcome to expedite the development of this complex and rapidly changing area of medicine, together with possible reasons to be more optimistic for the future. Several factors have contributed to the scarcity of cutting-edge regenerative medicines in clinical practice. These include the great expense and difficulties involved in planning how individual therapies will be developed, manufactured to commercial levels and ultimately successfully delivered to patients. Specific challenges also exist when evaluating the safety, efficacy and cost-effectiveness of these therapies. Furthermore, many treatments are used without a licence from the European Medicines Agency, under "Hospital Exemption" from the EC legislation. For products which are licensed, alternative financing approaches by healthcare providers may be needed, since many therapies will have significant up-front costs but uncertain benefits and harms in the long-term. However, increasing political interest and more flexible mechanisms for licensing and financing of therapies are now evident; these could be key to the future growth and development of regenerative medicine in clinical practice. Recent developments in regulatory processes, coupled with increasing political interest, may offer some hope for improvements to the long and often difficult routes from laboratory to marketplace for leading-edge cell or tissue therapies. Collaboration between publicly-funded researchers and the pharmaceutical industry could be key to the future development of regenerative medicine in clinical practice; such collaborations

  12. Adipose-derived mesenchymal stem cells and regenerative medicine.

    PubMed

    Konno, Masamitsu; Hamabe, Atsushi; Hasegawa, Shinichiro; Ogawa, Hisataka; Fukusumi, Takahito; Nishikawa, Shimpei; Ohta, Katsuya; Kano, Yoshihiro; Ozaki, Miyuki; Noguchi, Yuko; Sakai, Daisuke; Kudoh, Toshihiro; Kawamoto, Koichi; Eguchi, Hidetoshi; Satoh, Taroh; Tanemura, Masahiro; Nagano, Hiroaki; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2013-04-01

    Adipose tissue-derived mesenchymal stem cells (ADSCs) are multipotent and can differentiate into various cell types, including osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Compared with the extraction of other stem cells such as bone marrow-derived mesenchymal stem cells (BMSCs), that of ADSCs requires minimally invasive techniques. In the field of regenerative medicine, the use of autologous cells is preferable to embryonic stem cells or induced pluripotent stem cells. Therefore, ADSCs are a useful resource for drug screening and regenerative medicine. Here we present the methods and mechanisms underlying the induction of multilineage cells from ADSCs. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  13. Industry perceptions of barriers to commercialization of regenerative medicine products in the UK.

    PubMed

    Plagnol, Anke C; Rowley, Emma; Martin, Paul; Livesey, Finbarr

    2009-07-01

    Regenerative medicine is an emerging field with the potential to provide widespread improvement in healthcare and patient wellbeing via the delivery of therapies that can restore, regenerate or repair damaged tissue. As an industry, it could significantly contribute to economic growth if products are successfully commercialized. However, to date, relatively few products have reached the market owing to a variety of barriers, including a lack of funding and regulatory hurdles. The present study analyzes industry perceptions of the barriers to commercialization that currently impede the success of the regenerative medicine industry in the UK. The analysis is based on 20 interviews with leading industrialists in the field. The study revealed that scientific research in regenerative medicine is thriving in the UK. Unfortunately, lack of access to capital, regulatory hurdles, lack of clinical evidence leading to problems with reimbursement, as well as the culture of the NHS do not provide a good environment for the commercialization of regenerative medicine products. Policy interventions, including increased translational government funding, a change in NHS and NICE organization and policies, and regulatory clarity, would likely improve the general outcomes for the regenerative medicine industry in the UK.

  14. The applications of regenerative medicine in sinus lift procedures: A systematic review.

    PubMed

    Correia, Francisco; Pozza, Daniel Humberto; Gouveia, Sónia; Felino, António; Faria E Almeida, Ricardo

    2018-04-01

    Findings in regenerative medicine applied to the sinus lift procedures. Evaluate the effectiveness of regenerative medicine in sinus lift. An extensive search for manuscripts were performed by using different combinations of keywords and MeSH terms (Pub-med; Embase; Scopus; Web of Science Core Collection; Medline; Current Contents Connect; Derwent Innovations Index; Scielo Citation Index; Cochrane library). The full text selected articles are written in English, Portuguese, Spanish, Italian, German, or French, and published until 28 of November 2016. Inclusion criteria were: implant osteointegration, radiographic, histologic, and/or histomorphometric analysis, clinical studies in humans using of regenerative medicine. This systematic review was performed by selecting only randomized controlled clinical trials and controlled clinical trials. Eighteen published studies (11 CT and 7 RCT) were considered eligible for inclusion in the present systematic review. These studies demonstrated considerable variation of biomaterial and cell technics used, study design, sinus lift technic, outcomes, follow-up, and results. Only few studies have demonstrated potential of regenerative medicine in sinus lift; further randomized clinical trials are needed to achieve more accurate results. © 2017 Wiley Periodicals, Inc.

  15. Regenerative medicine in Europe: global competition and innovation governance.

    PubMed

    Hogarth, Stuart; Salter, Brian

    2010-11-01

    Leading European nations with strong biotech sectors, such as the UK and Germany, are investing heavily in regenerative medicine, seeking competitive advantage in this emerging sector. However, in the broader biopharmaceutical sector, the EU is outperformed by the USA on all metrics, reflecting longstanding problems: limited venture capital finance, a fragmented patent system, and relatively weak relations between academia and industry. The current global downturn has exacerbated these difficulties. The crisis comes at a time when the EU is reframing its approach to the governance of innovation and renewing its commitment to the goal of making Europe the leading player in the global knowledge economy. If the EU is to gain a competitive advantage in the regenerative medicine sector then it must coordinate a complex multilevel governance framework that encompasses the EU, member states and regional authorities. This article takes stock of Europe's current competitive position within the global bioeconomy, drawing on a variety of metrics in the three intersecting spheres of innovation governance: science, market and society. These data then provide a platform for reviewing the problems of innovation governance faced by the EU and the strategic choices that have to be confronted in the regenerative medicine sector.

  16. Artificial organs versus regenerative medicine: is it true?

    PubMed

    Nosé, Yukihiko; Okubo, Hisashi

    2003-09-01

    Individuals engaged in the fields of artificial kidney and artificial heart have often mistakenly stated that "the era of artificial organs is over; regenerative medicine is the future." Contrarily, we do not believe artificial organs and regenerative medicine are different medical technologies. As a matter of fact, artificial organs developed during the last 50 years have been used as a bridge to regeneration. The only difference between regenerative medicine and artificial organs is that artificial organs for the bridge to regeneration promote tissue regeneration in situ, instead of outside the body (for example, vascular prostheses, neuroprostheses, bladder substitutes, skin prostheses, bone prostheses, cartilage prostheses, ligament prostheses, etc.). All of these artificial organs are successful because tissue regeneration over a man-made prosthesis is established inside the patient's body (artificial organs to support regeneration). Another usage of the group of artificial organs for the bridge to regeneration is to sustain the functions of the patient's diseased organs during the regeneration process of the body's healthy tissues and/or organs. This particular group includes artificial kidney, hepatic assist, respiratory assist, and circulatory assist. Proof of regeneration of these healthy tissues and/or organs is demonstrated in the short-term recovery of end-stage organ failure patients (artificial organs for bridge to regeneration). A third group of artificial organs for the bridge to regeneration accelerates the regenerating process of the patient's healthy tissues and organs. This group includes neurostimulators, artificial blood (red cells) blood oxygenators, and plasmapheresis devices, including hemodiafiltrators. So-called "therapeutic artificial organs" fall into this category (artificial organs to accelerate regeneration). Thus, almost all of today's artificial organs are useful in the bridge to regeneration of healthy natural tissues and organs

  17. Proceedings: Regenerative Medicine for Lung Diseases: A CIRM Workshop Report.

    PubMed

    Kadyk, Lisa C; DeWitt, Natalie D; Gomperts, Brigitte

    2017-10-01

    The mission of the California Institute of Regenerative Medicine (CIRM) is to accelerate treatments to patients with unmet medical needs. In September 2016, CIRM sponsored a workshop held at the University of California, Los Angeles, to discuss regenerative medicine approaches for treatment of lung diseases and to identify the challenges remaining for advancing such treatments to the clinic and market approval. Workshop participants discussed current preclinical and clinical approaches to regenerative medicine in the lung, as well as the biology of lung stem cells and the role of stem cells in the etiology of various lung diseases. The outcome of this effort was the recognition that whereas transient cell delivery approaches are leading the way in the clinic, recent advances in the understanding of lung stem cell biology, in vitro and in vivo disease modeling, gene editing and replacement methods, and cell engraftment approaches raise the prospect of developing cures for some lung diseases in the foreseeable future. In addition, advances in in vitro modeling using lung organoids and "lung on a chip" technology are setting the stage for high quality small molecule drug screening to develop treatments for lung diseases with complex biology. Stem Cells Translational Medicine 2017;6:1823-1828. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  18. [Ethical aspects of regenerative medicine, with special reference to embryonic stem cells and therapeutic cloning].

    PubMed

    Imura, Hiroo

    2003-03-01

    Regenerative medicine is expected to be new therapeutic means for treating incurable diseases but requires serious bioethical consideration. Embryonic stem(ES) cells, that are pleuripotent cells suitable to regenerative medicine, can be used in Japan for investigative use under a strict control by guide-lines. On the other hand, use of embryo produced by nuclear transfer has not been allowed in Japan and further serious consideration is required. Some other ethical aspects of regenerative medicine are also discussed.

  19. The international translational regenerative medicine center.

    PubMed

    Alexis, Mardi de Veuve; Grinnemo, Karl-Henrik; Jove, Richard

    2012-11-01

    The International Translational Regenerative Medicine Center, an organizing sponsor of the World Stem Cell Summit 2012, is a global initiative established in 2011 by founding partners Karolinska Institutet (Stockholm, Sweden) and Beckman Research Institute at City of Hope (CA, USA) with a mission to facilitate the acceleration of translational research and medicine on a global scale. Karolinska Institutet, home of the Nobel Prize in Medicine or Physiology, is one of the most prestigious medical research institutions in the world. The Beckman Research Institute/City of Hope is ranked among the leading NIH-designated comprehensive cancer research and treatment institutions in the USA, has the largest academic GMP facility and advanced drug discovery capability, and is a pioneer in diabetes research and treatment.

  20. Bioengineering Hematopoietic Stem Cell Niche toward Regenerative Medicine.

    PubMed

    Sugimura, Ryohichi

    2016-04-01

    The scope of this chapter is to introduce the current consensus of hematopoietic stem cell (HSC) niche biology to bioengineering field so that can apply to regenerative medicine. A decade of research has been addressing "what is HSC niche", then next step is "how it advances medicine". The demand to improve HSC transplantation has advanced the methodology to expand HSC in vitro. Still precise modeling of bone marrow (BM) is demanded by bioengineering HSC niche in vitro. Better understanding of HSC niche is essential toward this progress. Now it would be the time to apply the knowledge of HSC niche field to the venue of bioengineering, so that a promising new approach to regenerative medicine might appear. This chapter describes the current consensus of niche that endothelial cell and perivascular mesenchymal stromal cell maintain HSC, expansion of cord blood HSC by small molecules, bioengineering efforts to model HSC niche by microfluidics chip, organoids, and breakthroughs to induce HSC from heterologous types of cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Engineering growth factors for regenerative medicine applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Aaron C.; Briquez, Priscilla S.; Hubbell, Jeffrey A.

    Growth factors are important morphogenetic proteins that instruct cell behavior and guide tissue repair and renewal. Although their therapeutic potential holds great promise in regenerative medicine applications, translation of growth factors into clinical treatments has been hindered by limitations including poor protein stability, low recombinant expression yield, and suboptimal efficacy. This review highlights current tools, technologies, and approaches to design integrated and effective growth factor-based therapies for regenerative medicine applications. The first section describes rational and combinatorial protein engineering approaches that have been utilized to improve growth factor stability, expression yield, biodistribution, and serum half-life, or alter their cell traffickingmore » behavior or receptor binding affinity. The second section highlights elegant biomaterial-based systems, inspired by the natural extracellular matrix milieu, that have been developed for effective spatial and temporal delivery of growth factors to cell surface receptors. Although appearing distinct, these two approaches are highly complementary and involve principles of molecular design and engineering to be considered in parallel when developing optimal materials for clinical applications.« less

  2. [Clinical and organizational way of innovative development of regenerative medicine in security agencies].

    PubMed

    Ryzhman, N N; Maksimov, A G; Tyrenko, V V; Karamullin, M A; Yurkin, A K; Golota, A S; Lisovets, D G; Sarana, A M; Barsevich, O V

    2015-03-01

    The article covers organizational aspects of development of innovative technologies in the field of regenerative medicine. It is shown that for the effective design and implementation into medical practice of regenerative medicine requires a united complex of military health care, military medical research and education. The main goal is to formate a biological insurance of personnel to treat different consequences of radiological incidents, burn disease, identification of the remains of the victims; the maximum returning to action after disturbed as a result of health services. Proposes the creation of "Interdepartmental Clinical Research and Education Center for Regenerative Medicine", combining research, clinical, industrial and educational potential of the leading institutions of various departments that will enhance the national security of the Russian Federation.

  3. Physiological regeneration of skin appendages and implications for regenerative medicine

    PubMed Central

    Chuong, Cheng-Ming; Randall, Valerie A; Widelitz, Randall B.; Wu, Ping; Jiang, Ting-Xin

    2013-01-01

    The concept of regenerative medicine is relatively new, but animals are well known to remake their hair and feathers regularly by normal regenerative physiological processes. Here we focus on 1) how extra-follicular environments can regulate hair and feather stem cell activities and 2) how different configurations of stem cells can shape organ forms in different body regions to fulfil changing physiological needs. PMID:22505663

  4. Cell/tissue processing information system for regenerative medicine.

    PubMed

    Iwayama, Daisuke; Yamato, Masayuki; Tsubokura, Tetsuya; Takahashi, Minoru; Okano, Teruo

    2016-11-01

    When conducting clinical studies of regenerative medicine, compliance to good manufacturing practice (GMP) is mandatory, and thus much time is needed for manufacturing and quality management. It is therefore desired to introduce the manufacturing execution system (MES), which is being adopted by factories manufacturing pharmaceutical products. Meanwhile, in manufacturing human cell/tissue processing autologous products, it is necessary to protect patients' personal information, prevent patients from being identified and obtain information for cell/tissue identification. We therefore considered it difficult to adopt conventional MES to regenerative medicine-related clinical trials, and so developed novel software for production/quality management to be used in cell-processing centres (CPCs), conforming to GMP. Since this system satisfies the requirements of regulations in Japan and the USA for electronic records and electronic signatures (ER/ES), the use of ER/ES has been allowed, and the risk of contamination resulting from the use of recording paper has been eliminated, thanks to paperless operations within the CPC. Moreover, to reduce the risk of mix-up and cross-contamination due to contact during production, we developed a touchless input device with built-in radio frequency identification (RFID) reader-writer devices and optical sensors. The use of this system reduced the time to prepare and issue manufacturing instructions by 50% or more, compared to the conventional handwritten system. The system contributes to producing more large-scale production and to reducing production costs for cell and tissue products in regenerative medicine. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Tissue Engineering and Regenerative Medicine 2017: A Year in Review.

    PubMed

    Park, Kyung Min; Shin, Young Min; Kim, Kyobum; Shin, Heungsoo

    2018-04-26

    In 2017, a new paradigm change caused by artificial intelligence and big data analysis resulted in innovation in each field of science and technology, and also significantly influenced progress in tissue engineering and regenerative medicine (TERM). TERM has continued to make technological advances based on interdisciplinary approaches and has contributed to the overall field of biomedical technology, including cancer biology, personalized medicine, development biology, and cell-based therapeutics. While researchers are aware that there is still a long way to go until TERM reaches the ultimate goal of patient treatment through clinical translation, the rapid progress in convergence studies led by technological improvements in TERM has been encouraging. In this review, we highlighted the significant advances made in TERM in 2017 (with an overlap of 5 months in 2016). We identified major progress in TERM in a manner similar to previous reviews published in the last few years. In addition, we carefully considered all four previous reviews during the selection process and chose main themes that minimize the duplication of the topics. Therefore, we have identified three areas that have been the focus of most journal publications in the TERM community in 2017: (i) advanced biomaterials and three-dimensional (3D) cell printing, (ii) exosomes as bioactive agents for regenerative medicine, and (iii) 3D culture in regenerative medicine.

  6. Molecularly Engineered Polymer-Based Systems in Drug Delivery and Regenerative Medicine.

    PubMed

    Piluso, Susanna; Soultan, Al Halifa; Patterson, Jennifer

    2017-01-01

    Polymer-based systems are attractive in drug delivery and regenerative medicine due to the possibility of tailoring their properties and functions to a specific application. The present review provides several examples of molecularly engineered polymer systems, including stimuli responsive polymers and supramolecular polymers. The advent of controlled polymerization techniques has enabled the preparation of polymers with controlled molecular weight and well-defined architecture. By using these techniques coupled to orthogonal chemical modification reactions, polymers can be molecularly engineered to incorporate functional groups able to respond to small changes in the local environment or to a specific biological signal. This review highlights the properties and applications of stimuli-responsive systems and polymer therapeutics, such as polymer-drug conjugates, polymer-protein conjugates, polymersomes, and hyperbranched systems. The applications of polymeric membranes in regenerative medicine are also discussed. The examples presented in this review suggest that the combination of membranes with polymers that are molecularly engineered to respond to specific biological functions could be relevant in the field of regenerative medicine. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Recent Advances in Biohybrid Materials for Tissue Engineering and Regenerative Medicine

    NASA Astrophysics Data System (ADS)

    Wan, Ying; Li, Xing; Wang, Shenqi

    2016-07-01

    Biohybrid materials play an important role in tissue engineering, artificial organs and regenerative medicine due to their regulation of cell function through specific cell-matrix interactions involving integrins, mostly those of fibroblasts and myofibroblasts, and ligands on the matrix surface, which have become current research focus. In this paper, recent progress of biohybrid materials, mainly including main types of biohybrid materials, rapid prototype (RP) technique for construction of 3D biohybrid materials, was reviewed in detail; moreover, their applications in tissue engineering, artificial organs and regenerative medicine were also reviewed in detail. At last, we address the challenges biohybrid materials may face.

  8. Adipose tissue stem cells in regenerative medicine

    PubMed Central

    Miana, Vanesa Verónica; González, Elio A Prieto

    2018-01-01

    Adipose tissue-derived stem cells (ADSCs) are mesenchymal cells with the capacity for self-renewal and multipotential differentiation. This multipotentiality allows them to become adipocytes, chondrocytes, myocytes, osteoblasts and neurocytes among other cell lineages. Stem cells and, in particular, adipose tissue-derived cells, play a key role in reconstructive or tissue engineering medicine as they have already proven effective in developing new treatments. The purpose of this work is to review the applications of ADSCs in various areas of regenerative medicine, as well as some of the risks associated with treatment with ADSCs in neoplastic disease. PMID:29662535

  9. Tissue engineering and regenerative medicine: concepts for clinical application.

    PubMed

    Atala, Anthony

    2004-01-01

    Patients suffering from diseased and injured organs may be treated with transplanted organs. However, there is a severe shortage of donor organs that is worsening yearly given the aging population. Scientists in the field of regenerative medicine and tissue engineering apply the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Therapeutic cloning, where the nucleus from a donor cell is transferred into an enucleated oocyte in order to extract pluripotent embryonic stem cells, offers a potentially limitless source of cells for tissue engineering applications. The stem cell field is also advancing rapidly, opening new options for therapy. This paper reviews recent advances that have occurred in regenerative medicine and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure.

  10. Repairing quite swimmingly: advances in regenerative medicine using zebrafish.

    PubMed

    Goessling, Wolfram; North, Trista E

    2014-07-01

    Regenerative medicine has the promise to alleviate morbidity and mortality caused by organ dysfunction, longstanding injury and trauma. Although regenerative approaches for a few diseases have been highly successful, some organs either do not regenerate well or have no current treatment approach to harness their intrinsic regenerative potential. In this Review, we describe the modeling of human disease and tissue repair in zebrafish, through the discovery of disease-causing genes using classical forward-genetic screens and by modulating clinically relevant phenotypes through chemical genetic screening approaches. Furthermore, we present an overview of those organ systems that regenerate well in zebrafish in contrast to mammalian tissue, as well as those organs in which the regenerative potential is conserved from fish to mammals, enabling drug discovery in preclinical disease-relevant models. We provide two examples from our own work in which the clinical translation of zebrafish findings is either imminent or has already proven successful. The promising results in multiple organs suggest that further insight into regenerative mechanisms and novel clinically relevant therapeutic approaches will emerge from zebrafish research in the future. © 2014. Published by The Company of Biologists Ltd.

  11. Introduction to regenerative medicine and tissue engineering.

    PubMed

    Stoltz, J-F; Decot, V; Huseltein, C; He, X; Zhang, L; Magdalou, J; Li, Y P; Menu, P; Li, N; Wang, Y Y; de Isla, N; Bensoussan, D

    2012-01-01

    Human tissues don't regenerate spontaneously, explaining why regenerative medicine and cell therapy represent a promising alternative treatment (autologous cells or stem cells of different origins). The principle is simple: cells are collected, expanded and introduced with or without modification into injured tissues or organs. Among middle-term therapeutic applications, cartilage defects, bone repair, cardiac insufficiency, burns, liver or bladder, neurodegenerative disorders could be considered.

  12. Stem cell sources for regenerative medicine.

    PubMed

    Riazi, Ali M; Kwon, Sarah Y; Stanford, William L

    2009-01-01

    Tissue-resident stem cells or primitive progenitors play an integral role in homeostasis of most organ systems. Recent developments in methodologies to isolate and culture embryonic and somatic stem cells have many new applications poised for clinical and preclinical trials, which will enable the potential of regenerative medicine to be realized. Here, we overview the current progress in therapeutic applications of various stem cells and discuss technical and social hurdles that must be overcome for their potential to be realized.

  13. Two sides of the same coin: stem cells in cancer and regenerative medicine.

    PubMed

    Ilmer, Matthias; Vykoukal, Jody; Recio Boiles, Alejandro; Coleman, Michael; Alt, Eckhard

    2014-07-01

    Multipotent stromal cells (MSCs) derived from bone marrow, adipose tissue, cord blood, and other origins have recently received much attention as potential therapeutic agents with beneficial immunomodulatory and regenerative properties. In their native tissue environment, however, such cells also appear to have essential functions in building and supporting tumor microenvironments, providing metastatic niches, and maintaining cancer hallmarks. Here, we consider the varied roles of these tissue-resident stroma-associated cells, synthesize recent and emerging discoveries, and discuss the role, potential, and clinical applications of MSCs in cancer and regenerative medicine.-Ilmer, M., Vykoukal, J., Recio Boiles, A., Coleman, M., Alt, E. Two sides of the same coin: stem cells in cancer and regenerative medicine. © FASEB.

  14. Design, clinical translation and immunological response of biomaterials in regenerative medicine

    NASA Astrophysics Data System (ADS)

    Sadtler, Kaitlyn; Singh, Anirudha; Wolf, Matthew T.; Wang, Xiaokun; Pardoll, Drew M.; Elisseeff, Jennifer H.

    2016-07-01

    The field of regenerative medicine aims to replace tissues lost as a consequence of disease, trauma or congenital abnormalities. Biomaterials serve as scaffolds for regenerative medicine to deliver cells, provide biological signals and physical support, and mobilize endogenous cells to repair tissues. Sophisticated chemistries are used to synthesize materials that mimic and modulate native tissue microenvironments, to replace form and to elucidate structure-function relationships of cell-material interactions. The therapeutic relevance of these biomaterial properties can only be studied after clinical translation, whereby key parameters for efficacy can be defined and then used for future design. In this Review, we present the development and translation of biomaterials for two tissue engineering targets, cartilage and cornea, both of which lack the ability to self-repair. Finally, looking to the future, we discuss the role of the immune system in regeneration and the potential for biomaterial scaffolds to modulate immune signalling to create a pro-regenerative environment.

  15. Multifunctional nanodiamonds in regenerative medicine: Recent advances and future directions.

    PubMed

    Whitlow, Jonathan; Pacelli, Settimio; Paul, Arghya

    2017-09-10

    With recent advances in the field of nanomedicine, many new strategies have emerged for diagnosing and treating diseases. At the forefront of this multidisciplinary research, carbon nanomaterials have demonstrated unprecedented potential for a variety of regenerative medicine applications including novel drug delivery platforms that facilitate the localized and sustained release of therapeutics. Nanodiamonds (NDs) are a unique class of carbon nanoparticles that are gaining increasing attention for their biocompatibility, highly functional surfaces, optical properties, and robust physical properties. Their remarkable features have established NDs as an invaluable regenerative medicine platform, with a broad range of clinically relevant applications ranging from targeted delivery systems for insoluble drugs, bioactive substrates for stem cells, and fluorescent probes for long-term tracking of cells and biomolecules in vitro and in vivo. This review introduces the synthesis techniques and the various routes of surface functionalization that allow for precise control over the properties of NDs. It also provides an in-depth overview of the current progress made toward the use of NDs in the fields of drug delivery, tissue engineering, and bioimaging. Their future outlook in regenerative medicine including the current clinical significance of NDs, as well as the challenges that must be overcome to successfully translate the reviewed technologies from research platforms to clinical therapies will also be discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Opportunities for Regenerative Rehabilitation and Advanced Technologies in Physical Therapy: Perspective From Academia.

    PubMed

    Norland, Ryan; Muchnick, Matthew; Harmon, Zachary; Chin, Tiffany; Kakar, Rumit Singh

    2016-04-01

    As rehabilitation specialists, physical therapists must continue to stay current with advances in technologies to provide appropriate rehabilitation protocols, improve patient outcomes, and be the preferred clinician of choice. To accomplish this vision, the physical therapy profession must begin to develop a culture of lifelong learning at the early stages of education and clinical training in order to embrace cutting-edge advancements such as stem cell therapies, tissue engineering, and robotics, to name a few. The purposes of this article are: (1) to provide a current perspective on faculty and graduate student awareness of regenerative rehabilitation concepts and (2) to advocate for increased integration of these emerging technologies within the doctor of physical therapy (DPT) curriculum. An online survey was designed to gauge awareness of principles in regenerative rehabilitation and to determine whether the topic was included and assessed in doctoral curricula. The survey yielded 1,006 responses from 82 DPT programs nationwide and indicated a disconnect in familiarity with the term "regenerative rehabilitation" and awareness of the inclusion of this material in the curriculum. To resolve this disconnect, the framework of the curriculum can be used to integrate new material via guest lecturers, interdisciplinary partnerships, and research opportunities. Successfully mentoring a generation of clinicians and rehabilitation scientists who incorporate new medical knowledge and technology into their own clinical and research practice depends greatly on sharing the responsibility among graduate students, professors, the American Physical Therapy Association (APTA), and DPT programs. Creating an interdisciplinary culture and integrating regenerative medicine and rehabilitation concepts into the curriculum will cultivate individuals who will be advocates for interprofessional behaviors and will ensure that the profession meets the goals stated in APTA Vision 2020.

  17. Therapeutic modulation of growth factors and cytokines in regenerative medicine.

    PubMed

    Ioannidou, Effie

    2006-01-01

    Regeneration that takes place in the human body is limited throughout life. Therefore, when organs are irreparably damaged, they are usually replaced with an artificial device or donor organ. The term "regenerative medicine" covers the restoration or replacement of cells, tissues, and organs. Stem cells play a major role in regenerative medicine by providing the way to repopulate organs damaged by disease. Stem cells have the ability to self renew and to regenerate cells of diverse lineages within the tissue in which they reside. Stem cells could originate from embryos or adult tissues. Growth factors are proteins that may act locally or systemically to affect the growth of cells in several ways. Various cell activities, including division, are influenced by growth factors. Cytokines are a family of low-molecular-weight proteins that are produced by numerous cell types and are responsible for regulating the immune response, inflammation, tissue remodeling and cellular differentiation. Target cells of growth factors and cytokines are mesenchymal, epithelial and endothelial cells. These molecules frequently have overlapping activities and can act in an autocrine or paracrine fashion. A complex network of growth factors and cytokines guides cellular differentiation and regeneration in all organs and tissues. The aim of this paper is to review the role of growth factors and cytokines in different organs or systems and explore their therapeutic application in regenerative medicine. The role of stem cells combined with growth factors and cytokines in the regeneration of vascular and hematopoietic, neural, skeletal, pancreatic, periodontal, and mucosal tissue is reviewed. There is evidence that supports the use of growth factors and cytokines in the treatment of neurological diseases, diabetes, cardiovascular disease, periodontal disease, cancer and its complication, oral mucositis. After solving the ethical issues and establishing clear and reasonable regulations

  18. FDA and NIST collaboration on standards development activities supporting innovation and translation of regenerative medicine products.

    PubMed

    Arcidiacono, Judith A; Bauer, Steven R; Kaplan, David S; Allocca, Clare M; Sarkar, Sumona; Lin-Gibson, Sheng

    2018-06-01

    The development of standards for the field of regenerative medicine has been noted as a high priority by several road-mapping activities. Additionally, the U.S. Congress recognizes the importance of standards in the 21st Century Cure Act. Standards will help to accelerate and streamline cell and gene therapy product development, ensure the quality and consistency of processes and products, and facilitate their regulatory approval. Although there is general agreement for the need of additional standards for regenerative medicine products, a shared understanding of standards is required for real progress toward the development of standards to advance regenerative medicine. Here, we describe the roles of standards in regenerative medicine as well as the process for standards development and the interactions of different entities in the standards development process. Highlighted are recent coordinated efforts between the U.S. Food and Drug Administration and the National Institute of Standards and Technology to facilitate standards development and foster science that underpins standards development. Published by Elsevier Inc.

  19. Early evaluation and value-based pricing of regenerative medicine technologies.

    PubMed

    Koerber, Florian; Rolauffs, Bernd; Rogowski, Wolf

    2013-11-01

    Since the first pioneering scientists explored the potential of using human cells for therapeutic purposes the branch of regenerative medicine has evolved to become a mature industry. The focus has switched from 'what can be done' to 'what can be commercialized'. Timely health economic evaluation supports successful marketing by establishing the value of a product from a healthcare system perspective. This article reports results from a research project on early health economic evaluation in collaboration with developers, clinicians and manufacturers. We present an approach to determine an early value-based price for a new treatment of cartilage defects of the knee from the area of regenerative medicine. Examples of using evaluation results for the purpose of business planning, market entry, preparing the coverage decision and managed entry are discussed.

  20. Mesenchymal Stem/Stromal Cells in Regenerative Medicine: Can Preconditioning Strategies Improve Therapeutic Efficacy?

    PubMed

    Schäfer, Richard; Spohn, Gabriele; Baer, Patrick C

    2016-07-01

    Mesenchymal stem/stromal cells (MSCs) are becoming increasingly important for the development of cell therapeutics in regenerative medicine. Featuring immunomodulatory potential as well as secreting a variety of trophic factors, MSCs showed remarkable therapeutic effects in numerous preclinical disease models. However, sustainable translation of MSC therapies to the clinic is hampered by heterogeneity of MSCs and non-standardized in vitro culture technologies. Moreover, potent MSC therapeutics require MSCs with maximum regenerative capacity. There is growing evidence that in vitro preconditioning strategies of MSCs can optimize their therapeutic potential. In the following we will discuss achievements and challenges of the development of MSC therapies in regenerative medicine highlighting specific in vitro preconditioning strategies prior to cell transplantation to increase their therapeutic efficacy.

  1. Mesenchymal Stem/Stromal Cells in Regenerative Medicine: Can Preconditioning Strategies Improve Therapeutic Efficacy?

    PubMed Central

    Schäfer, Richard; Spohn, Gabriele; Baer, Patrick C.

    2016-01-01

    Mesenchymal stem/stromal cells (MSCs) are becoming increasingly important for the development of cell therapeutics in regenerative medicine. Featuring immunomodulatory potential as well as secreting a variety of trophic factors, MSCs showed remarkable therapeutic effects in numerous preclinical disease models. However, sustainable translation of MSC therapies to the clinic is hampered by heterogeneity of MSCs and non-standardized in vitro culture technologies. Moreover, potent MSC therapeutics require MSCs with maximum regenerative capacity. There is growing evidence that in vitro preconditioning strategies of MSCs can optimize their therapeutic potential. In the following we will discuss achievements and challenges of the development of MSC therapies in regenerative medicine highlighting specific in vitro preconditioning strategies prior to cell transplantation to increase their therapeutic efficacy. PMID:27721701

  2. Preclinical imaging methods for assessing the safety and efficacy of regenerative medicine therapies

    NASA Astrophysics Data System (ADS)

    Scarfe, Lauren; Brillant, Nathalie; Kumar, J. Dinesh; Ali, Noura; Alrumayh, Ahmed; Amali, Mohammed; Barbellion, Stephane; Jones, Vendula; Niemeijer, Marije; Potdevin, Sophie; Roussignol, Gautier; Vaganov, Anatoly; Barbaric, Ivana; Barrow, Michael; Burton, Neal C.; Connell, John; Dazzi, Francesco; Edsbagge, Josefina; French, Neil S.; Holder, Julie; Hutchinson, Claire; Jones, David R.; Kalber, Tammy; Lovatt, Cerys; Lythgoe, Mark F.; Patel, Sara; Patrick, P. Stephen; Piner, Jacqueline; Reinhardt, Jens; Ricci, Emanuelle; Sidaway, James; Stacey, Glyn N.; Starkey Lewis, Philip J.; Sullivan, Gareth; Taylor, Arthur; Wilm, Bettina; Poptani, Harish; Murray, Patricia; Goldring, Chris E. P.; Park, B. Kevin

    2017-10-01

    Regenerative medicine therapies hold enormous potential for a variety of currently incurable conditions with high unmet clinical need. Most progress in this field to date has been achieved with cell-based regenerative medicine therapies, with over a thousand clinical trials performed up to 2015. However, lack of adequate safety and efficacy data is currently limiting wider uptake of these therapies. To facilitate clinical translation, non-invasive in vivo imaging technologies that enable careful evaluation and characterisation of the administered cells and their effects on host tissues are critically required to evaluate their safety and efficacy in relevant preclinical models. This article reviews the most common imaging technologies available and how they can be applied to regenerative medicine research. We cover details of how each technology works, which cell labels are most appropriate for different applications, and the value of multi-modal imaging approaches to gain a comprehensive understanding of the responses to cell therapy in vivo.

  3. Nano-regenerative medicine towards clinical outcome of stem cell and tissue engineering in humans

    PubMed Central

    Arora, Pooja; Sindhu, Annu; Dilbaghi, Neeraj; Chaudhury, Ashok; Rajakumar, Govindasamy; Rahuman, Abdul Abdul

    2012-01-01

    Nanotechnology is a fast growing area of research that aims to create nanomaterials or nanostructures development in stem cell and tissue-based therapies. Concepts and discoveries from the fields of bio nano research provide exciting opportunities of using stem cells for regeneration of tissues and organs. The application of nanotechnology to stem-cell biology would be able to address the challenges of disease therapeutics. This review covers the potential of nanotechnology approaches towards regenerative medicine. Furthermore, it focuses on current aspects of stem- and tissue-cell engineering. The magnetic nanoparticles-based applications in stem-cell research open new frontiers in cell and tissue engineering. PMID:22260258

  4. Bioprinting is changing regenerative medicine forever.

    PubMed

    Collins, Scott Forrest

    2014-12-01

    3D printing, or solid freeform fabrication, applied to regenerative medicine brings technologies from several industries together to help solve unique challenges in both basic science and tissue engineering. By more finely organizing cells and supporting structures precisely in 3D space, we will gain critical knowledge of cell-cell communications and cell-environment interactions. As we increase the scale, we will move toward complex tissue and organ structures where several cell phenotypes will functionally and structurally interact, thus recapitulating the form and function of native tissues and organs.

  5. Phosphorous-Containing Polymers for Regenerative Medicine

    PubMed Central

    Watson, Brendan M.; Kasper, F. Kurtis; Mikos, Antonios G.

    2014-01-01

    Disease and injury have resulted in a large, unmet need for functional tissue replacements. Polymeric scaffolds can be used to deliver cells and bioactive signals to address this need for regenerating damaged tissue. Phosphorous-containing polymers have been implemented to improve and accelerate the formation of native tissue both by mimicking the native role of phosphorous groups in the body and by attachment of other bioactive molecules. This manuscript reviews the synthesis, properties, and performance of phosphorous-containing polymers that can be useful in regenerative medicine applications. PMID:24565855

  6. Concise Review: The U.S. Food and Drug Administration and Regenerative Medicine.

    PubMed

    Witten, Celia M; McFarland, Richard D; Simek, Stephanie L

    2015-12-01

    Regenerative medicine (RM) is a popular term for a field of scientific and medical research. There is not one universally accepted definition of RM, but it is generally taken to mean the translation of multidisciplinary biology and engineering science into therapeutic approaches to regenerate, replace, or repair tissues and organs. RM products have the potential to provide treatments for a number of unmet needs but have substantial scientific and regulatory challenges that need to be addressed for this potential to be fully realized. FDA has established formal regulatory definitions for biologics, medical devices, and combination products, as well as human cells and tissues. Regenerative medicine products regulated by FDA are classified on the basis of these definitions, and the classification forms the basis for determining the regulatory requirements to each specific product. FDA regulations are generally written to allow the agency flexibility to accommodate new scientific questions raised by novel and evolving technologies. FDA efforts to facilitate product development in this novel and promising area include working with individual sponsors, interacting with the scientific and industry communities, participating in standards development, and developing policy and guidance. Regenerative medicine is generally taken to mean the translation of multidisciplinary biology and engineering science into therapeutic approaches to regenerate, replace, or repair tissues and organs. This article provides an overview of the efforts of the U.S. Food and Drug Administration (FDA) to facilitate product development in the field commonly known was regenerative medicine. It provides an introduction to the processes by which FDA works with individual sponsors, interacts with the scientific and industry communities, participates in standards development, and develops formal FDA policy and guidance. ©AlphaMed Press.

  7. Regenerative medicine in India: trends and challenges in innovation and regulation.

    PubMed

    Tiwari, Shashank S; Raman, Sujatha; Martin, Paul

    2017-10-01

    The government of India has heavily promoted research and development in regenerative medicine together with domestic innovation and business development initiatives. Together, these promise a revolution in healthcare and public empowerment in India. Several national and transnational linkages have emerged to develop innovative capacity, most prominently in stem cell and cord blood banking, as well as in gene therapy, tissue engineering, biomaterials and 3D printing. However, challenges remain of achieving regulatory oversight, viable outputs and equitable impacts. Governance of private cord blood banking, nanomaterials and 3D bioprinting requires more attention. A robust social contract is also needed in healthcare more generally, so that participation in research and innovation in regenerative medicine is backed up by treatments widely accessible to all.

  8. Regenerative Medicine and Rehabilitation for Tendinous and Ligamentous Injuries in Sport Horses.

    PubMed

    Ortved, Kyla F

    2018-05-23

    Tendon and ligament injuries are a common source of lameness in the athletic horse. Although tendons and ligaments have the ability to spontaneously heal, lesions tend to fill with biomechanically inferior fibrous tissue such that the horse is prone to reinjury. Regenerative medicine is used to improve quality of repair tissue and prevent reinjury. Platelet-rich plasma, stem cells, and autologous conditioned serum are the most commonly used orthobiologics in the horse. A tailored rehabilitation program is key to returning horses to athleticism following injury. The specifics of regenerative medicine and rehabilitation for tendonitis and desmitis in the horse are discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Promissory identities: Sociotechnical representations & innovation in regenerative medicine.

    PubMed

    Gardner, John; Higham, Ruchi; Faulkner, Alex; Webster, Andrew

    2017-02-01

    The field of regenerative medicine (RM) is championed as a potential source of curative treatments and economic wealth, and initiatives have been launched in several countries to facilitate innovation within the field. As a way of examining the social dimensions of innovation within regenerative medicine, this paper explores the sociotechnical representations of RM technologies in the UK, and the tensions, affordances and complexities these representations present for actors within the field. Specifically, the paper uses the Science and Technology Studies-inspired notions of 'technology identity' and 'development space' to examine how particular technologies are framed and positioned by actors, and how these positionings subsequently shape innovation pathways. Four developing RM technologies are used as case studies: bioengineered tracheas; autologous chondrocyte implantation; T-cell therapies; and a 'point-of-care' cell preparation device. Using these case studies we argue that there are particular identity aspects that have powerful performative effects and provide momentum to innovation projects, and we argue that there are particular stakeholders in the UK RM landscape who appear to have considerable power in shaping these technology identities and thus innovation pathways. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Tissue engineering and regenerative medicine: manufacturing challenges.

    PubMed

    Williams, D J; Sebastine, I M

    2005-12-01

    Tissue engineering and regenerative medicine are interdisciplinary fields that apply principles of engineering and life sciences to develop biological substitutes, typically composed of biological and synthetic components, that restore, maintain or improve tissue function. Many tissue engineering technologies are still at a laboratory or pre-commercial scale. The short review paper describes the most significant manufacturing and bio-process challenges inherent in the commercialisation and exploitation of the exciting results emerging from the biological and clinical laboratories exploring tissue engineering and regenerative medicine. A three-generation road map of the industry has been used to structure a view of these challenges and to define where the manufacturing community can contribute to the commercial success of the products from these emerging fields. The first-generation industry is characterised by its demonstrated clinical applications and products in the marketplace, the second is characterised by emerging clinical applications, and the third generation is characterised by aspirational clinical applications. The paper focuses on the cost reduction requirement of the first generation of the industry to allow more market penetration and consequent patient impact. It indicates the technological requirements, for instance the creation of three-dimensional tissue structures, and value chain issues in the second generation of the industry. The third-generation industry challenges lie in fundamental biological and clinical science. The paper sets out a road map of these generations to identify areas for research.

  11. Human dental pulp stem cells: Applications in future regenerative medicine

    PubMed Central

    Potdar, Pravin D; Jethmalani, Yogita D

    2015-01-01

    Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells (MSCs) from various human tissues, peripheral blood and body fluids. These cells are then characterized by cellular and molecular markers to understand their specific phenotypes. Dental pulp stem cells (DPSCs) are having a MSCs phenotype and they are differentiated into neuron, cardiomyocytes, chondrocytes, osteoblasts, liver cells and β cells of islet of pancreas. Thus, DPSCs have shown great potentiality to use in regenerative medicine for treatment of various human diseases including dental related problems. These cells can also be developed into induced pluripotent stem cells by incorporation of pluripotency markers and use for regenerative therapies of various diseases. The DPSCs are derived from various dental tissues such as human exfoliated deciduous teeth, apical papilla, periodontal ligament and dental follicle tissue. This review will overview the information about isolation, cellular and molecular characterization and differentiation of DPSCs into various types of human cells and thus these cells have important applications in regenerative therapies for various diseases. This review will be most useful for postgraduate dental students as well as scientists working in the field of oral pathology and oral medicine. PMID:26131314

  12. Stem cells and regenerative medicine on the Asian horizon: an economic, industry and social perspective.

    PubMed

    Sipp, Douglas

    2009-11-01

    For the past decade, forays into stem cell research and regenerative medicine by institutes and companies based in the Asia-Pacific region have attracted global attention at levels unprecedented in the life sciences. The unique combination of economic pressures, competitiveness and opportunism, laissez-faire regulation, burgeoning investment in the life sciences and rapidly growing markets, coupled with its great diversity, have propelled the region to surge forward in some areas, but to stumble in others. This article provides a historical and scientific context to the state of stem cell research and clinical applications in the region, and highlights trends and new possibilities to watch for on the Asian horizon.

  13. The Hematopoietic System in the Context of Regenerative Medicine

    PubMed Central

    Porada, Christopher D.; Atala, Anthony J.; Almeida-Porada, Graça

    2015-01-01

    Hematopoietic stem cells (HSC) represent the prototype stem cell within the body. Since their discovery, HSC have been the focus of intensive research, and have proven invaluable clinically to restore hematopoiesis following inadvertent radiation exposure and following radio/chemotherapy to eliminate hematologic tumors. While they were originally discovered in the bone marrow, HSC can also be isolated from umbilical cord blood and can be “mobilized” peripheral blood, making them readily available in relatively large quantities. While their ability to repopulate the entire hematopoietic system would already guarantee HSC a valuable place in regenerative medicine, the finding that hematopoietic chimerism can induce immunological tolerance to solid organs and correct autoimmune diseases has dramatically broadened their clinical utility. The demonstration that these cells, through a variety of mechanisms, can also promote repair/regeneration of non-hematopoietic tissues as diverse as liver, heart, and brain has further increased their clinical value. The goal of this review is to provide the reader with a brief glimpse into the remarkable potential HSC possess, and to highlight their tremendous value as therapeutics in regenerative medicine. PMID:26319943

  14. Emerging Roles for Extracellular Vesicles in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Lamichhane, Tek N.; Sokic, Sonja; Schardt, John S.; Raiker, Rahul S.; Lin, Jennifer W.

    2015-01-01

    Extracellular vesicles (EVs)—comprising a heterogeneous population of cell-derived lipid vesicles including exosomes, microvesicles, and others—have recently emerged as both mediators of intercellular information transfer in numerous biological systems and vehicles for drug delivery. In both roles, EVs have immense potential to impact tissue engineering and regenerative medicine applications. For example, the therapeutic effects of several progenitor and stem cell-based therapies have been attributed primarily to EVs secreted by these cells, and EVs have been recently reported to play direct roles in injury-induced tissue regeneration processes in multiple physiological systems. In addition, EVs have been utilized for targeted drug delivery in regenerative applications and possess unique potential to be harnessed as patient-derived drug delivery vehicles for personalized medicine. This review discusses EVs in the context of tissue repair and regeneration, including their utilization as drug carriers and their crucial role in cell-based therapies. Furthermore, the article highlights the growing need for bioengineers to understand, consider, and ultimately design and specifically control the activity of EVs to maximize the efficacy of tissue engineering and regenerative therapies. PMID:24957510

  15. Stem Cell Therapy: Repurposing Cell-Based Regenerative Medicine Beyond Cell Replacement.

    PubMed

    Napoli, Eleonora; Lippert, Trenton; Borlongan, Cesar V

    2018-02-27

    Stem cells exhibit simple and naive cellular features, yet their exact purpose for regenerative medicine continues to elude even the most elegantly designed research paradigms from developmental biology to clinical therapeutics. Based on their capacity to divide indefinitely and their dynamic differentiation into any type of tissue, the advent of transplantable stem cells has offered a potential treatment for aging-related and injury-mediated diseases. Recent laboratory evidence has demonstrated that transplanted human neural stem cells facilitate endogenous reparative mechanisms by initiating multiple regenerative processes in the brain neurogenic areas. Within these highly proliferative niches reside a myriad of potent regenerative molecules, including anti-inflammatory cytokines, proteomes, and neurotrophic factors, altogether representing a biochemical cocktail vital for restoring brain function in the aging and diseased brain. Here, we advance the concept of therapeutically repurposing stem cells not towards cell replacement per se, but rather exploiting the cells' intrinsic properties to serve as the host brain regenerative catalysts.

  16. Cell- and Gene-Based Therapeutic Strategies for Periodontal Regenerative Medicine

    PubMed Central

    Rios, Hector F.; Lin, Zhao; Oh, BiNa; Park, Chan Ho; Giannobile, William V.

    2012-01-01

    Inflammatory periodontal diseases are a leading cause of tooth loss and are linked to multiple systemic conditions, such as cardiovascular disease and stroke. Reconstruction of the support and function of affected tooth-supporting tissues represents an important therapeutic endpoint for periodontal regenerative medicine. An improved understanding of periodontal biology coupled with current advances in scaffolding matrices has introduced novel treatments that use cell and gene therapy to enhance periodontal tissue reconstruction and its biomechanical integration. Cell and gene delivery technologies have the potential to overcome limitations associated with existing periodontal therapies, and may provide a new direction in sustainable inflammation control and more predictable tissue regeneration of supporting alveolar bone, periodontal ligament, and cementum. This review provides clinicians with the current status of these early-stage and emerging cell- and gene-based therapeutics in periodontal regenerative medicine, and introduces their future application in clinical periodontal treatment. The paper concludes with prospects on the application of cell and gene tissue engineering technologies for reconstructive periodontology. PMID:21284553

  17. The pluralization of the international: Resistance and alter-standardization in regenerative stem cell medicine

    PubMed Central

    Rosemann, Achim; Chaisinthop, Nattaka

    2016-01-01

    The article explores the formation of an international politics of resistance and ‘alter-standardization’ in regenerative stem cell medicine. The absence of internationally harmonized regulatory frameworks in the clinical stem cell field and the presence of lucrative business opportunities have resulted in the formation of transnational networks adopting alternative research standards and practices. These oppose, as a universal global standard, strict evidence-based medicine clinical research protocols as defined by scientists and regulatory agencies in highly developed countries. The emergence of transnational spaces of alter-standardization is closely linked to scientific advances in rapidly developing countries such as China and India, but calls for more flexible regulatory frameworks, and the legitimization of experimental for-profit applications outside of evidence-based medical care, are emerging increasingly also within more stringently regulated countries, such as the United States and countries in the European Union. We can observe, then, a trend toward the pluralization of the standards, practices, and concepts in the stem cell field. PMID:26983174

  18. An overview of the therapeutic potential of regenerative medicine in cutaneous wound healing.

    PubMed

    Pang, Calver; Ibrahim, Amel; Bulstrode, Neil W; Ferretti, Patrizia

    2017-06-01

    The global burden of disease associated with wounds is an increasingly significant public health concern. Current treatments are often expensive, time-consuming and limited in their efficacy in chronic wounds. The challenge of overcoming current barriers associated with wound care requires innovative management techniques. Regenerative medicine is an emerging field of research that focuses on the repair, replacement or regeneration of cells, tissues or organs to restore impaired function. This article provides an overview of the pathophysiology of wound healing and reviews the latest evidence on the application of the principal components of regenerative medicine (growth factors, stem cell transplantation, biomaterials and tissue engineering) as therapeutic targets. Improved knowledge and understanding of the pathophysiology of wound healing has pointed to new therapeutic targets. Regenerative medicine has the potential to underpin the design of specific target therapies in acute and chronic wound healing. This personalised approach could eventually reduce the burden of disease associated with wound healing. Further evidence is required in the form of large animal studies and clinical trials to assess long-term efficacy and safety of these new treatments. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  19. Peroxisome Proliferator-Activated Receptor (PPAR) in Regenerative Medicine: Molecular Mechanism for PPAR in Stem Cells' Adipocyte Differentiation.

    PubMed

    Xie, Qiang; Tian, Taoran; Chen, Zhaozhao; Deng, Shuwen; Sun, Ke; Xie, Jing; Cai, Xiaoxiao

    2016-01-01

    Regenerative medicine plays an indispensable role in modern medicine and many trials and researches have therefore been developed to fit our medical needs. Tissue engineering has proven that adipose tissue can widely be used and brings advantages to regenerative medicine. Moreover, a trait of adipose stem cells being isolated and grown in vitro is a cornerstone to various applications. Since the adipose tissue has been widely used in regenerative medicine, numerous studies have been conducted to seek methods for gaining more adipocytes. To investigate molecular mechanism for adipocyte differentiation, peroxisome proliferator-activated receptor (PPAR) has been widely studied to find out its functional mechanism, as a key factor for adipocyte differentiation. However, the precise molecular mechanism is still unknown. This review thus summarizes recent progress on the study of molecular mechanism and role of PPAR in adipocyte differentiation.

  20. [Translational/regulatory science researches of NIHS for regenerative medicine and cellular therapy products].

    PubMed

    Sato, Yoji

    2014-01-01

    In 2013, the Japanese Diet passed the Regenerative Medicine Promotion Act and the revisions to the Pharmaceutical Affairs Act, which was also renamed as the Therapeutic Products Act (TPA). One of the aims of the new/revised Acts is to promote the development and translation of and access to regenerative/cellular therapies. In the TPA, a product derived from processing cells is categorized as a subgroup of "regenerative medicine, cellular therapy and gene therapy products" (RCGPs), products distinct from pharmaceuticals and medical devices, allowing RCGPs to obtain a conditional and time- limited marketing authorization much earlier than that under the conventional system. To foster not only RCGPs, but also innovative pharmaceuticals and medical devices, the Ministry of Health, Labour and Welfare recently launched Translational Research Program for Innovative Pharmaceuticals, Medical Devices and RCGPs. This mini-review introduces contributions of the National Institute of Health Sciences (NIHS) to research projects on RCGPs in the Program.

  1. Concise Review: Fetal Membranes in Regenerative Medicine: New Tricks from an Old Dog?

    PubMed Central

    2017-01-01

    Abstract The clinical application of the fetal membranes dates back to nearly a century. Their use has ranged from superficial skin dressings to surgical wound closure. The applications of the fetal membranes are constantly evolving, and key to this is the uncovering of multiple populations of stem and stem‐like cells, each with unique properties that can be exploited for regenerative medicine. In addition to pro‐angiogenic and immunomodulatory properties of the stem and stem‐like cells arising from the fetal membranes, the dehydrated and/or decellularized forms of the fetal membranes have been used to support the growth and function of other cells and tissues, including adipose‐derived mesenchymal stem cells. This concise review explores the biological origin of the fetal membranes, a history of their use in medicine, and recent developments in the use of fetal membranes and their derived stem and stem‐like cells in regenerative medicine. Stem Cells Translational Medicine 2017;6:1767–1776 PMID:28834402

  2. Smart biomaterials design for tissue engineering and regenerative medicine.

    PubMed

    Furth, Mark E; Atala, Anthony; Van Dyke, Mark E

    2007-12-01

    As a prominent tool in regenerative medicine, tissue engineering (TE) has been an active field of scientific research for nearly three decades. Clinical application of TE technologies has been relatively restricted, however, owing in part to the limited number of biomaterials that are approved for human use. While many excellent biomaterials have been developed in recent years, their translation into clinical practice has been slow. As a consequence, many investigators still employ biodegradable polymers that were first approved for use in humans over 30 years ago. During normal development tissue morphogenesis is heavily influenced by the interaction of cells with the extracellular matrix (ECM). Yet simple polymers, while providing architectural support for neo-tissue development, do not adequately mimic the complex interactions between adult stem and progenitor cells and the ECM that promote functional tissue regeneration. Future advances in TE and regenerative medicine will depend on the development of "smart" biomaterials that actively participate in the formation of functional tissue. Clinical translation of these new classes of biomaterials will be supported by many of the same evaluation tools as those developed and described by Professor David F. Williams and colleagues over the past 30 years.

  3. Materials science tools for regenerative medicine

    NASA Astrophysics Data System (ADS)

    Richardson, Wade Nicholas

    Regenerative therapies originating from recent technological advances in biology could revolutionize medicine in the coming years. In particular, the advent of human pluripotent stem cells (hPSCs), with their ability to become any cell in the adult body, has opened the door to an entirely new way of treating disease. However, currently these medical breakthroughs remain only a promise. To make them a reality, new tools must be developed to surmount the new technical hurdles that have arisen from dramatic departure from convention that this field represents. The collected work presented in this dissertation covers several projects that seek to apply the skills and knowledge of materials science to this tool synthesizing effort. The work is divided into three chapters. The first deals with our work to apply Raman spectroscopy, a tool widely used for materials characterization, to degeneration in cartilage. We have shown that Raman can effectively distinguish the matrix material of healthy and diseased tissue. The second area of work covered is the development of a new confocal image analysis for studying hPSC colonies that are chemical confined to uniform growth regions. This tool has important application in understanding the heterogeneity that may slow the development of hPSC -based treatment, as well as the use of such confinement in the eventually large-scale manufacture of hPSCs for therapeutic use. Third, the use of structural templating in tissue engineering scaffolds is detailed. We have utilized templating to tailor scaffold structures for engineering of constructs mimicking two tissues: cartilage and lung. The work described here represents several important early steps towards large goals in regenerative medicine. These tools show a great deal of potential for accelerating progress in this field that seems on the cusp of helping a great many people with otherwise incurable disease.

  4. Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine.

    PubMed

    Chen, Shixuan; Li, Ruiquan; Li, Xiaoran; Xie, Jingwei

    2018-05-02

    Electrospinning provides an enabling nanotechnology platform for generating a rich variety of novel structured materials in many biomedical applications including drug delivery, biosensing, tissue engineering, and regenerative medicine. In this review article, we begin with a thorough discussion on the method of producing 1D, 2D, and 3D electrospun nanofiber materials. In particular, we emphasize on how the 3D printing technology can contribute to the improvement of traditional electrospinning technology for the fabrication of 3D electrospun nanofiber materials as drug delivery devices/implants, scaffolds or living tissue constructs. We then highlight several notable examples of electrospun nanofiber materials in specific biomedical applications including cancer therapy, guiding cellular responses, engineering in vitro 3D tissue models, and tissue regeneration. Finally, we finish with conclusions and future perspectives of electrospun nanofiber materials for drug delivery and regenerative medicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Regenerative Medicine Strategies for Esophageal Repair

    PubMed Central

    Londono, Ricardo

    2015-01-01

    Pathologies that involve the structure and/or function of the esophagus can be life-threatening. The esophagus is a complex organ comprising nonredundant tissue that does not have the ability to regenerate. Currently available interventions for esophageal pathology have limited success and are typically associated with significant morbidity. Hence, there is currently an unmet clinical need for effective methods of esophageal repair. The present article presents a review of esophageal disease along with the anatomic and functional consequences of each pathologic process, the shortcomings associated with currently available therapies, and the latest advancements in the field of regenerative medicine with respect to strategies for esophageal repair from benchtop to bedside. PMID:25813694

  6. Microfabricated Modular Scale-Down Device for Regenerative Medicine Process Development

    PubMed Central

    Reichen, Marcel; Macown, Rhys J.; Jaccard, Nicolas; Super, Alexandre; Ruban, Ludmila; Griffin, Lewis D.; Veraitch, Farlan S.; Szita, Nicolas

    2012-01-01

    The capacity of milli and micro litre bioreactors to accelerate process development has been successfully demonstrated in traditional biotechnology. However, for regenerative medicine present smaller scale culture methods cannot cope with the wide range of processing variables that need to be evaluated. Existing microfabricated culture devices, which could test different culture variables with a minimum amount of resources (e.g. expensive culture medium), are typically not designed with process development in mind. We present a novel, autoclavable, and microfabricated scale-down device designed for regenerative medicine process development. The microfabricated device contains a re-sealable culture chamber that facilitates use of standard culture protocols, creating a link with traditional small-scale culture devices for validation and scale-up studies. Further, the modular design can easily accommodate investigation of different culture substrate/extra-cellular matrix combinations. Inactivated mouse embryonic fibroblasts (iMEF) and human embryonic stem cell (hESC) colonies were successfully seeded on gelatine-coated tissue culture polystyrene (TC-PS) using standard static seeding protocols. The microfluidic chip included in the device offers precise and accurate control over the culture medium flow rate and resulting shear stresses in the device. Cells were cultured for two days with media perfused at 300 µl.h−1 resulting in a modelled shear stress of 1.1×10−4 Pa. Following perfusion, hESC colonies stained positively for different pluripotency markers and retained an undifferentiated morphology. An image processing algorithm was developed which permits quantification of co-cultured colony-forming cells from phase contrast microscope images. hESC colony sizes were quantified against the background of the feeder cells (iMEF) in less than 45 seconds for high-resolution images, which will permit real-time monitoring of culture progress in future experiments. The

  7. Translating cell-based regenerative medicines from research to successful products: challenges and solutions.

    PubMed

    Bayon, Yves; Vertès, Alain A; Ronfard, Vincent; Egloff, Matthieu; Snykers, Sarah; Salinas, Gabriella Franco; Thomas, Robert; Girling, Alan; Lilford, Richard; Clermont, Gaelle; Kemp, Paul

    2014-08-01

    The Tissue Engineering & Regenerative Medicine International Society-Europe (TERMIS-EU) Industry Committee as well as its TERMIS-Americas (AM) counterpart intend to address the specific challenges and needs facing the industry in translating academic research into commercial products. Over the last 3 years, the TERMIS-EU Industry Committee has worked with commercial bodies to deliver programs that encourage academics to liaise with industry in proactive collaborations. The TERMIS-EU 2013 Industry Symposium aimed to build on this commercial agenda by focusing on two topics: Operations Management (How to move a process into the good manufacturing practice [GMP] environment) and Clinical Translation (Moving a GMP process into robust trials). These topics were introduced by providing the synergistic business perspective of partnering between the multiple regenerative medicine stakeholders, throughout the life cycle of product development. Seven industry leaders were invited to share their experience, expertise, and strategies. Due to the complex nature of regenerative medicine products, partnering for their successful commercial development seems inevitable to overcome all obstacles by sharing experiences and expertise of all stakeholders. When ideally implemented, the "innovation quotient" of a virtual team resulting from the combination of internal and external project teams can be maximized through maximizing the three main dimensions: core competences, technology portfolio, and alliance management.

  8. CIRM Alpha Stem Cell Clinics: Collaboratively Addressing Regenerative Medicine Challenges.

    PubMed

    Jamieson, Catriona H M; Millan, Maria T; Creasey, Abla A; Lomax, Geoff; Donohoe, Mary E; Walters, Mark C; Abedi, Mehrdad; Bota, Daniela A; Zaia, John A; Adams, John S

    2018-06-01

    The California Institute for Regenerative Medicine (CIRM) Alpha Stem Cell Clinic (ASCC) Network was launched in 2015 to address a compelling unmet medical need for rigorous, FDA-regulated, stem cell-related clinical trials for patients with challenging, incurable diseases. Here, we describe our multi-center experiences addressing current and future challenges. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Stem Cell and Regenerative Medicine Global Conference (SCRGC) 2016 (August 23-24, 2016 - Gyeonggi-do, Korea).

    PubMed

    Vertès, A

    2016-10-01

    In its third edition, the Stem Cell and Regenerative Medicine Global Conference (SCRGC) organized by the Global Stem Cell & Regenerative Medicine Acceleration Center (GSRAC) was focused on breaking barriers to accelerate the pace of innovation and development of the regenerative medicine industry. GSRAC is both a think tank and a global network of key opinion leaders from the public and the private sectors. GSRAC was commissioned in 2011 by the Ministry of Health and Welfare (MOHW) of Korea. GSRAC's primary mission is to enable and accelerate the delivery of innovative technologies to patients who are affected by currently untreatable diseases. This goal is notably achieved by resolving hurdles in the field of regenerative medicine. With a total of 30 speakers and panelists from 8 different countries and more than 400 attendees from an array of institutions including hospitals, clinics, biotechnology companies, pharmaceutical companies, scientists, as well as policy makers, the 2-day SCRGC highlighted critical challenges and paths to resolving them in policy and regulatory, and industrial-scale manufacturing of gene-based and cell-based therapies, comprising plenary lectures and sessions covering strategic policy, regulatory, reimbursement and business development, and business of manufacturing, and production technologies. Several of these presentations are summarized in this report. Copyright 2016 Prous Science, S.A.U. or its licensors. All rights reserved.

  10. Stem cells as delivery vehicles for regenerative medicine-challenges and perspectives

    PubMed Central

    Labusca, Luminita; Herea, Dumitru Daniel; Mashayekhi, Kaveh

    2018-01-01

    The use of stem cells as carriers for therapeutic agents is an appealing modality for targeting tissues or organs of interest. Combined delivery of cells together with various information molecules as therapeutic agents has the potential to enhance, modulate or even initiate local or systemic repair processes, increasing stem cell efficiency for regenerative medicine applications. Stem-cell-mediated delivery of genes, proteins or small molecules takes advantage of the innate capability of stem cells to migrate and home to injury sites. As the native migratory properties are affected by in vitro expansion, the existent methods for enhancing stem cell targeting capabilities (modified culture methods, genetic modification, cell surface engineering) are described. The role of various nanoparticles in equipping stem cells with therapeutic small molecules is revised together with their class-specific advantages and shortcomings. Modalities to circumvent common challenges when designing a stem-cell-mediated targeted delivery system are described as well as future prospects in using this approach for regenerative medicine applications. PMID:29849930

  11. Aging and Adipose Tissue: Potential Interventions for Diabetes and Regenerative Medicine

    PubMed Central

    Palmer, Allyson K.; Kirkland, James L.

    2016-01-01

    Adipose tissue dysfunction occurs with aging and has systemic effects, including peripheral insulin resistance, ectopic lipid deposition, and inflammation. Fundamental aging mechanisms, including cellular senescence and progenitor cell dysfunction, occur in adipose tissue with aging and may serve as potential therapeutic targets in age-related disease. In this review, we examine the role of adipose tissue in healthy individuals and explore how aging leads to adipose tissue dysfunction, redistribution, and changes in gene regulation. Adipose tissue plays a central role in longevity, and interventions restricted to adipose tissue may impact lifespan. Conversely, obesity may represent a state of accelerated aging. We discuss the potential therapeutic potential of targeting basic aging mechanisms, including cellular senescence, in adipose tissue, using type II diabetes and regenerative medicine as examples. We make the case that aging should not be neglected in the study of adipose-derived stem cells for regenerative medicine strategies, as elderly patients make up a large portion of individuals in need of such therapies. PMID:26924669

  12. Are agricultural and natural sources of bio-products important for modern regenerative medicine? A review.

    PubMed

    Nowacki, Maciej; Nowacka, Katarzyna; Kloskowski, Tomasz; Pokrywczyńska, Marta; Tyloch, Dominik; Rasmus, Marta; Warda, Karolina; Drewa, Tomasz

    2017-05-11

    [b] Abstract Introduction and objectives[/b]. As tissue engineering and regenerative medicine have continued to evolve within the field of biomedicine, the fundamental importance of bio-products has become increasingly apparent. This true not only in cases where they are derived directly from the natural environment, but also when animals and plants are specially bred and cultivated for their production. [b]Objective.[/b] The study aims to present and assess the global influence and importance of selected bio-products in current regenerative medicine via a broad review of the existing literature. In particular, attention is paid to the matrices, substances and grafts created from plants and animals which could potentially be used in experimental and clinical regeneration, or in reconstructive procedures. [b]Summary.[/b] Evolving trends in agriculture are likely to play a key role in the future development of a number of systemic and local medical procedures within tissue engineering and regenerative medicine. This is in addition to the use of bio-products derived from the natural environment which are found to deliver positive results in the treatment of prospective patients.

  13. Regenerative and rehabilitative medicine: A necessary synergy for functional recovery from volumetric muscle loss injury

    PubMed Central

    Greising, Sarah M.; Dearth, Christopher L.; Corona, Benjamin T.

    2017-01-01

    Volumetric muscle loss (VML) is a complex and heterogeneous problem due to significant traumatic or surgical loss of skeletal muscle tissue. The consequences of VML are substantial functional deficits in joint range of motion and skeletal muscle strength, resulting in life long dysfunction and disability. Traditional physical medicine and rehabilitation paradigms do not address the magnitude of force loss due to VML and related musculoskeletal co-morbidities. Recent advancements in regenerative medicine have set forth encouraging and emerging therapeutic options for VML injuries. There is significant potential that combined rehabilitative and regenerative therapies can restore limb and muscle function following VML injury in a synergistic manner. This review presents the current state of the VML field, spanning clinical and preclinical literature, with particular focus on rehabilitation and regenerative medicine in addition to their synergy. Moving forward, multidisciplinary collaboration between clinical and research fields is encouraged in order to continue to improve the treatment of VML injuries and specifically address the encompassing physiology, pathology, and specific needs of this patient population. PMID:27825146

  14. Three-dimensional bioprinting in tissue engineering and regenerative medicine.

    PubMed

    Gao, Guifang; Cui, Xiaofeng

    2016-02-01

    With the advances of stem cell research, development of intelligent biomaterials and three-dimensional biofabrication strategies, highly mimicked tissue or organs can be engineered. Among all the biofabrication approaches, bioprinting based on inkjet printing technology has the promises to deliver and create biomimicked tissue with high throughput, digital control, and the capacity of single cell manipulation. Therefore, this enabling technology has great potential in regenerative medicine and translational applications. The most current advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review, including vasculature, muscle, cartilage, and bone. In addition, the benign side effect of bioprinting to the printed mammalian cells can be utilized for gene or drug delivery, which can be achieved conveniently during precise cell placement for tissue construction. With layer-by-layer assembly, three-dimensional tissues with complex structures can be printed using converted medical images. Therefore, bioprinting based on thermal inkjet is so far the most optimal solution to engineer vascular system to the thick and complex tissues. Collectively, bioprinting has great potential and broad applications in tissue engineering and regenerative medicine. The future advances of bioprinting include the integration of different printing mechanisms to engineer biphasic or triphasic tissues with optimized scaffolds and further understanding of stem cell biology.

  15. On the Genealogy of Tissue Engineering and Regenerative Medicine

    PubMed Central

    2015-01-01

    In this article, we identify and discuss a timeline of historical events and scientific breakthroughs that shaped the principles of tissue engineering and regenerative medicine (TERM). We explore the origins of TERM concepts in myths, their application in the ancient era, their resurgence during Enlightenment, and, finally, their systematic codification into an emerging scientific and technological framework in recent past. The development of computational/mathematical approaches in TERM is also briefly discussed. PMID:25343302

  16. On the genealogy of tissue engineering and regenerative medicine.

    PubMed

    Kaul, Himanshu; Ventikos, Yiannis

    2015-04-01

    In this article, we identify and discuss a timeline of historical events and scientific breakthroughs that shaped the principles of tissue engineering and regenerative medicine (TERM). We explore the origins of TERM concepts in myths, their application in the ancient era, their resurgence during Enlightenment, and, finally, their systematic codification into an emerging scientific and technological framework in recent past. The development of computational/mathematical approaches in TERM is also briefly discussed.

  17. Regenerative Medicine for Periodontal and Peri-implant Diseases

    PubMed Central

    Larsson, L.; Decker, A.M.; Nibali, L.; Pilipchuk, S.P.; Berglundh, T.; Giannobile, W.V.

    2015-01-01

    The balance between bone resorption and bone formation is vital for maintenance and regeneration of alveolar bone and supporting structures around teeth and dental implants. Tissue regeneration in the oral cavity is regulated by multiple cell types, signaling mechanisms, and matrix interactions. A goal for periodontal tissue engineering/regenerative medicine is to restore oral soft and hard tissues through cell, scaffold, and/or signaling approaches to functional and aesthetic oral tissues. Bony defects in the oral cavity can vary significantly, ranging from smaller intrabony lesions resulting from periodontal or peri-implant diseases to large osseous defects that extend through the jaws as a result of trauma, tumor resection, or congenital defects. The disparity in size and location of these alveolar defects is compounded further by patient-specific and environmental factors that contribute to the challenges in periodontal regeneration, peri-implant tissue regeneration, and alveolar ridge reconstruction. Efforts have been made over the last few decades to produce reliable and predictable methods to stimulate bone regeneration in alveolar bone defects. Tissue engineering/regenerative medicine provide new avenues to enhance tissue regeneration by introducing bioactive models or constructing patient-specific substitutes. This review presents an overview of therapies (e.g., protein, gene, and cell based) and biomaterials (e.g., resorbable, nonresorbable, and 3-dimensionally printed) used for alveolar bone engineering around teeth and implants and for implant site development, with emphasis on most recent findings and future directions. PMID:26608580

  18. Regenerative Medicine for Periodontal and Peri-implant Diseases.

    PubMed

    Larsson, L; Decker, A M; Nibali, L; Pilipchuk, S P; Berglundh, T; Giannobile, W V

    2016-03-01

    The balance between bone resorption and bone formation is vital for maintenance and regeneration of alveolar bone and supporting structures around teeth and dental implants. Tissue regeneration in the oral cavity is regulated by multiple cell types, signaling mechanisms, and matrix interactions. A goal for periodontal tissue engineering/regenerative medicine is to restore oral soft and hard tissues through cell, scaffold, and/or signaling approaches to functional and aesthetic oral tissues. Bony defects in the oral cavity can vary significantly, ranging from smaller intrabony lesions resulting from periodontal or peri-implant diseases to large osseous defects that extend through the jaws as a result of trauma, tumor resection, or congenital defects. The disparity in size and location of these alveolar defects is compounded further by patient-specific and environmental factors that contribute to the challenges in periodontal regeneration, peri-implant tissue regeneration, and alveolar ridge reconstruction. Efforts have been made over the last few decades to produce reliable and predictable methods to stimulate bone regeneration in alveolar bone defects. Tissue engineering/regenerative medicine provide new avenues to enhance tissue regeneration by introducing bioactive models or constructing patient-specific substitutes. This review presents an overview of therapies (e.g., protein, gene, and cell based) and biomaterials (e.g., resorbable, nonresorbable, and 3-dimensionally printed) used for alveolar bone engineering around teeth and implants and for implant site development, with emphasis on most recent findings and future directions. © International & American Associations for Dental Research 2015.

  19. Precision manufacturing for clinical-quality regenerative medicines.

    PubMed

    Williams, David J; Thomas, Robert J; Hourd, Paul C; Chandra, Amit; Ratcliffe, Elizabeth; Liu, Yang; Rayment, Erin A; Archer, J Richard

    2012-08-28

    Innovations in engineering applied to healthcare make a significant difference to people's lives. Market growth is guaranteed by demographics. Regulation and requirements for good manufacturing practice-extreme levels of repeatability and reliability-demand high-precision process and measurement solutions. Emerging technologies using living biological materials add complexity. This paper presents some results of work demonstrating the precision automated manufacture of living materials, particularly the expansion of populations of human stem cells for therapeutic use as regenerative medicines. The paper also describes quality engineering techniques for precision process design and improvement, and identifies the requirements for manufacturing technology and measurement systems evolution for such therapies.

  20. Tissue engineering and regenerative medicine: recent innovations and the transition to translation.

    PubMed

    Fisher, Matthew B; Mauck, Robert L

    2013-02-01

    The field of tissue engineering and regenerative medicine (TERM) has exploded in the last decade. In this Year (or so) in Review, we highlight some of the high impact advances within the field over the past several years. Using the past as our guide and starting with an objective premise, we attempt so to identify recent "hot topics" and transformative publications within the field. Through this process, several key themes emerged: (1) tissue engineering: grafts and materials, (2) regenerative medicine: scaffolds and factors that control endogenous tissue formation, (3) clinical trials, and (4) novel cell sources: induced pluripotent stem cells. Within these focus areas, we summarize the highly impactful articles that emerged from our objective analysis and review additional recent publications to augment and expand upon these key themes. Finally, we discuss where the TERM field may be headed and how to monitor such a broad-based and ever-expanding community.

  1. Tissue engineering and microRNAs: future perspectives in regenerative medicine.

    PubMed

    Gori, Manuele; Trombetta, Marcella; Santini, Daniele; Rainer, Alberto

    2015-01-01

    Tissue engineering is a growing area of biomedical research, holding great promise for a broad range of potential applications in the field of regenerative medicine. In recent decades, multiple tissue engineering strategies have been adopted to mimic and improve specific biological functions of tissues and organs, including biomimetic materials, drug-releasing scaffolds, stem cells, and dynamic culture systems. MicroRNAs (miRNAs), noncoding small RNAs that negatively regulate the expression of downstream target mRNAs, are considered a novel class of molecular targets and therapeutics that may play an important role in tissue engineering. Herein, we highlight the latest achievements in regenerative medicine, focusing on the role of miRNAs as key modulators of gene expression, stem cell self-renewal, proliferation and differentiation, and eventually in driving cell fate decisions. Finally, we will discuss the contribution of miRNAs in regulating the rearrangement of the tissue microenvironment and angiogenesis, and the range of strategies for miRNA delivery into target cells and tissues. Manipulation of miRNAs is an alternative approach and an attractive strategy for controlling several aspects of tissue engineering, although some issues concerning their in vivo effects and optimal delivery methods still remain uncovered.

  2. Biofabrication strategies for 3D in vitro models and regenerative medicine

    NASA Astrophysics Data System (ADS)

    Moroni, Lorenzo; Burdick, Jason A.; Highley, Christopher; Lee, Sang Jin; Morimoto, Yuya; Takeuchi, Shoji; Yoo, James J.

    2018-05-01

    Organs are complex systems composed of different cells, proteins and signalling molecules that are arranged in a highly ordered structure to orchestrate a myriad of functions in our body. Biofabrication strategies can be applied to engineer 3D tissue models in vitro by mimicking the structure and function of native tissue through the precise deposition and assembly of materials and cells. This approach allows the spatiotemporal control over cell-cell and cell-extracellular matrix communication and thus the recreation of tissue-like structures. In this Review, we examine biofabrication strategies for the construction of functional tissue replacements and organ models, focusing on the development of biomaterials, such as supramolecular and photosensitive materials, that can be processed using biofabrication techniques. We highlight bioprinted and bioassembled tissue models and survey biofabrication techniques for their potential to recreate complex tissue properties, such as shape, vasculature and specific functionalities. Finally, we discuss challenges, such as scalability and the foreign body response, and opportunities in the field and provide an outlook to the future of biofabrication in regenerative medicine.

  3. Shen-Jing as a Chinese medicine concept might be a counterpart of stem cells in regenerative medicine.

    PubMed

    Ren, Yan-Bo; Huang, Jian-Hua; Cai, Wai-Jiao; Shen, Zi-Yin

    2015-07-04

    As the epitome of the modern regenerative medicine, stem cells were proposed in the basic sense no more than 200 years ago. However, the concept of "stem cells" existed long before the modern medical description. The hypothesis that all things, including our sentient body, were generated from a small origin was shared between Western and Chinese people. The ancient Chinese philosophers considered Jing (also known as essence) as the origin of life. In Chinese medicine (CM), Jing is mainly stored in Kidney (Shen) and the so-called Shen-Jing (Kidney essence). Here, we propose that Shen-Jing is the CM term used to express the meaning of "origin and regeneration". This theoretical discovery has at least two applications. First, the actions underlying causing Shen-Jing deficiency, such as excess sexual intercourse, chronic diseases, and aging, might damage the function of stem cells. Second, a large number of Chinese herbs with Shen-Jing-nourishing efficacy had been proven to affect stem cell proliferation and differentiation. Therefore, if Shen-Jing in CM is equivalent with stem cells in regenerative medicine, higher effective modulators for regulating stem-cell behaviors from Kidney-tonifying herbs would be expected.

  4. Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine.

    PubMed

    Samsonraj, Rebekah M; Raghunath, Michael; Nurcombe, Victor; Hui, James H; van Wijnen, Andre J; Cool, Simon M

    2017-12-01

    Mesenchymal stem cells (MSC) hold great potential for regenerative medicine because of their ability for self-renewal and differentiation into tissue-specific cells such as osteoblasts, chondrocytes, and adipocytes. MSCs orchestrate tissue development, maintenance and repair, and are useful for musculoskeletal regenerative therapies to treat age-related orthopedic degenerative diseases and other clinical conditions. Importantly, MSCs produce secretory factors that play critical roles in tissue repair that support both engraftment and trophic functions (autocrine and paracrine). The development of uniform protocols for both preparation and characterization of MSCs, including standardized functional assays for evaluation of their biological potential, are critical factors contributing to their clinical utility. Quality control and release criteria for MSCs should include cell surface markers, differentiation potential, and other essential cell parameters. For example, cell surface marker profiles (surfactome), bone-forming capacities in ectopic and orthotopic models, as well as cell size and granularity, telomere length, senescence status, trophic factor secretion (secretome), and immunomodulation, should be thoroughly assessed to predict MSC utility for regenerative medicine. We propose that these and other functionalities of MSCs should be characterized prior to use in clinical applications as part of comprehensive and uniform guidelines and release criteria for their clinical-grade production to achieve predictably favorable treatment outcomes for stem cell therapy. Stem Cells Translational Medicine 2017;6:2173-2185. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  5. Clinical imaging in regenerative medicine

    PubMed Central

    Naumova, Anna V; Modo, Michel; Moore, Anna; Murry, Charles E; Frank, Joseph A

    2014-01-01

    In regenerative medicine, clinical imaging is indispensable for characterizing damaged tissue and for measuring the safety and efficacy of therapy. However, the ability to track the fate and function of transplanted cells with current technologies is limited. Exogenous contrast labels such as nanoparticles give a strong signal in the short term but are unreliable long term. Genetically encoded labels are good both short- and long-term in animals, but in the human setting they raise regulatory issues related to the safety of genomic integration and potential immunogenicity of reporter proteins. Imaging studies in brain, heart and islets share a common set of challenges, including developing novel labeling approaches to improve detection thresholds and early delineation of toxicity and function. Key areas for future research include addressing safety concerns associated with genetic labels and developing methods to follow cell survival, differentiation and integration with host tissue. Imaging may bridge the gap between cell therapies and health outcomes by elucidating mechanisms of action through longitudinal monitoring. PMID:25093889

  6. Regenerative and Rehabilitative Medicine: A Necessary Synergy for Functional Recovery from Volumetric Muscle Loss Injury.

    PubMed

    Greising, Sarah M; Dearth, Christopher L; Corona, Benjamin T

    2016-01-01

    Volumetric muscle loss (VML) is a complex and heterogeneous problem due to significant traumatic or surgical loss of skeletal muscle tissue. The consequences of VML are substantial functional deficits in joint range of motion and skeletal muscle strength, resulting in life-long dysfunction and disability. Traditional physical medicine and rehabilitation paradigms do not address the magnitude of force loss due to VML and related musculoskeletal comorbidities. Recent advancements in regenerative medicine have set forth encouraging and emerging therapeutic options for VML injuries. There is significant potential that combined rehabilitative and regenerative therapies can restore limb and muscle function following VML injury in a synergistic manner. This review presents the current state of the VML field, spanning clinical and preclinical literature, with particular focus on rehabilitation and regenerative medicine in addition to their synergy. Moving forward, multidisciplinary collaboration between clinical and research fields is encouraged in order to continue to improve the treatment of VML injuries and specifically address the encompassing physiology, pathology, and specific needs of this patient population. This is a work of the US Government and is not subject to copyright protection in the USA. Foreign copyrights may apply. Published by S. Karger AG, Basel.

  7. Aging and adipose tissue: potential interventions for diabetes and regenerative medicine.

    PubMed

    Palmer, Allyson K; Kirkland, James L

    2016-12-15

    Adipose tissue dysfunction occurs with aging and has systemic effects, including peripheral insulin resistance, ectopic lipid deposition, and inflammation. Fundamental aging mechanisms, including cellular senescence and progenitor cell dysfunction, occur in adipose tissue with aging and may serve as potential therapeutic targets in age-related disease. In this review, we examine the role of adipose tissue in healthy individuals and explore how aging leads to adipose tissue dysfunction, redistribution, and changes in gene regulation. Adipose tissue plays a central role in longevity, and interventions restricted to adipose tissue may impact lifespan. Conversely, obesity may represent a state of accelerated aging. We discuss the potential therapeutic potential of targeting basic aging mechanisms, including cellular senescence, in adipose tissue, using type II diabetes and regenerative medicine as examples. We make the case that aging should not be neglected in the study of adipose-derived stem cells for regenerative medicine strategies, as elderly patients make up a large portion of individuals in need of such therapies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Not Missing the Future: A Call to Action for Investigating the Role of Regenerative Medicine Therapies in Pediatric/Adolescent Sports Injuries.

    PubMed

    Best, Thomas M; Caplan, Arnold; Coleman, Michael; Goodrich, Laurie; Hurd, Jason; Kaplan, Lee D; Noonan, Ben; Schoettle, Philip; Scott, Christopher; Stiene, Henry; Huard, Johnny

    In August 2016, a group including sport medicine clinicians, researchers, and a bioethicist met in Vail, Colorado to discuss regenerative medicine and its potential role in youth sports injuries. There was consensus that a call to action is urgently needed to understand the current evidence base, the risks and rewards, and future directions of research and clinical practice for regenerative medicine therapies in youth sports. We present here a summary of our meeting, which was supported by the National Youth Sports Health and Safety Institute (NYSHSI), a partnership between the American College of Sports Medicine (ACSM) and Sanford Health. The group's goal is to educate practitioners and the public, and to pioneer a means of accumulating meaningful clinical data on regenerative medicine therapies in pediatric and adolescent athletes.

  9. Mesenchymal stem cell and regenerative medicine: regeneration versus immunomodulatory challenges

    PubMed Central

    Law, Sujata; Chaudhuri, Samaresh

    2013-01-01

    Mesenchymal Stem cells (MSC) are now presented with the opportunities of multifunctional therapeutic approaches. Several reports are in support of their self-renewal, capacity for multipotent differentiation, and immunomodulatory properties. They are unique to contribute to the regeneration of mesenchymal tissues such as bone, cartilage, muscle, ligament, tendon, and adipose. In addition to promising trials in regenerative medicine, such as in the treatment of major bone defects and myocardial infarction, MSC has shown a therapeutic effect other than direct hematopoiesis support in hematopoietic reconstruction. MSCs are identified by the expression of many molecules including CD105 (SH2) and CD73(SH3/4) and are negative for the hematopoietic markers CD34, CD45, and CD14. Manufacturing of MSC for clinical trials is also an important aspect as their differentiation, homing and Immunomodulatory properties may differ. Their suppressive effects on immune cells, including T cells, B cells, NK cells and DC cells, suggest MSCs as a novel therapy for GVHD and other autoimmune disorders. Since the cells by themselves are non-immunogenic, tissue matching between MSC donor and recipient is not essential and, MSC may be the first cell type able to be used as an “off-the-shelf” therapeutic product. Following a successful transplantation, the migration of MSC to the site of injury refers to the involvement of chemokines and chemokine receptors of respective specificity. It has been demonstrated that cultured MSCs have the ability to engraft into healthy as well as injured tissue and can differentiate into several cell types in vivo, which facilitates MSC to be an ideal tool for regenerative therapy in different disease types. However, some observations have raised questions about the limitations for proper use of MSC considering some critical factors that warn regular clinical use. PMID:23671814

  10. Cell delivery in regenerative medicine: the cell sheet engineering approach.

    PubMed

    Yang, Joseph; Yamato, Masayuki; Nishida, Kohji; Ohki, Takeshi; Kanzaki, Masato; Sekine, Hidekazu; Shimizu, Tatsuya; Okano, Teruo

    2006-11-28

    Recently, cell-based therapies have developed as a foundation for regenerative medicine. General approaches for cell delivery have thus far involved the use of direct injection of single cell suspensions into the target tissues. Additionally, tissue engineering with the general paradigm of seeding cells into biodegradable scaffolds has also evolved as a method for the reconstruction of various tissues and organs. With success in clinical trials, regenerative therapies using these approaches have therefore garnered significant interest and attention. As a novel alternative, we have developed cell sheet engineering using temperature-responsive culture dishes, which allows for the non-invasive harvest of cultured cells as intact sheets along with their deposited extracellular matrix. Using this approach, cell sheets can be directly transplanted to host tissues without the use of scaffolding or carrier materials, or used to create in vitro tissue constructs via the layering of individual cell sheets. In addition to simple transplantation, cell sheet engineered constructs have also been applied for alternative therapies such as endoscopic transplantation, combinatorial tissue reconstruction, and polysurgery to overcome limitations of regenerative therapies and cell delivery using conventional approaches.

  11. Regenerative Medicine for the Heart: Perspectives on Stem-Cell Therapy

    PubMed Central

    Cho, Gun-Sik; Fernandez, Laviel

    2014-01-01

    Abstract Significance: Despite decades of progress in cardiovascular biology and medicine, heart disease remains the leading cause of death, and there is no cure for the failing heart. Since heart failure is mostly caused by loss or dysfunction of cardiomyocytes (CMs), replacing dead or damaged CMs with new CMs might be an ideal way to reverse the disease. However, the adult heart is composed mainly of terminally differentiated CMs that have no significant self-regeneration capacity. Recent Advances: Stem cells have tremendous regenerative potential and, thus, current cardiac regenerative research has focused on developing stem cell sources to repair damaged myocardium. Critical Issues: In this review, we examine the potential sources of cells that could be used for heart therapies, including embryonic stem cells and induced pluripotent stem cells, as well as alternative methods for activating the endogenous regenerative mechanisms of the heart via transdifferentiation and cell reprogramming. We also discuss the current state of knowledge of cell purification, delivery, and retention. Future Directions: Efforts are underway to improve the current stem cell strategies and methodologies, which will accelerate the development of innovative stem-cell therapies for heart regeneration. Antioxid. Redox Signal. 21, 2018–2031. PMID:25133793

  12. Hepatic progenitor cells in canine and feline medicine: potential for regenerative strategies

    PubMed Central

    2014-01-01

    New curative therapies for severe liver disease are urgently needed in both the human and veterinary clinic. It is important to find new treatment modalities which aim to compensate for the loss of parenchymal tissue and to repopulate the liver with healthy hepatocytes. A prime focus in regenerative medicine of the liver is the use of adult liver stem cells, or hepatic progenitor cells (HPCs), for functional recovery of liver disease. This review describes recent developments in HPC research in dog and cat and compares these findings to experimental rodent studies and human pathology. Specifically, the role of HPCs in liver regeneration, key components of the HPC niche, and HPC activation in specific types of canine and feline liver disease will be reviewed. Finally, the potential applications of HPCs in regenerative medicine of the liver are discussed and a potential role is suggested for dogs as first target species for HPC-based trials. PMID:24946932

  13. Tissue Engineering and Regenerative Medicine: Recent Innovations and the Transition to Translation

    PubMed Central

    Fisher, Matthew B.

    2013-01-01

    The field of tissue engineering and regenerative medicine (TERM) has exploded in the last decade. In this Year (or so) in Review, we highlight some of the high impact advances within the field over the past several years. Using the past as our guide and starting with an objective premise, we attempt so to identify recent “hot topics” and transformative publications within the field. Through this process, several key themes emerged: (1) tissue engineering: grafts and materials, (2) regenerative medicine: scaffolds and factors that control endogenous tissue formation, (3) clinical trials, and (4) novel cell sources: induced pluripotent stem cells. Within these focus areas, we summarize the highly impactful articles that emerged from our objective analysis and review additional recent publications to augment and expand upon these key themes. Finally, we discuss where the TERM field may be headed and how to monitor such a broad-based and ever-expanding community. PMID:23253031

  14. The early career researcher's toolkit: translating tissue engineering, regenerative medicine and cell therapy products.

    PubMed

    Rafiq, Qasim A; Ortega, Ilida; Jenkins, Stuart I; Wilson, Samantha L; Patel, Asha K; Barnes, Amanda L; Adams, Christopher F; Delcassian, Derfogail; Smith, David

    2015-11-01

    Although the importance of translation for the development of tissue engineering, regenerative medicine and cell-based therapies is widely recognized, the process of translation is less well understood. This is particularly the case among some early career researchers who may not appreciate the intricacies of translational research or make decisions early in development which later hinders effective translation. Based on our own research and experiences as early career researchers involved in tissue engineering and regenerative medicine translation, we discuss common pitfalls associated with translational research, providing practical solutions and important considerations which will aid process and product development. Suggestions range from effective project management, consideration of key manufacturing, clinical and regulatory matters and means of exploiting research for successful commercialization.

  15. Tissue engineering and regenerative medicine in applied research: a year in review of 2014.

    PubMed

    Lin, Xunxun; Huang, Jia; Shi, Yuan; Liu, Wei

    2015-04-01

    Tissue engineering and regenerative medicine (TERM) remains to be one of the fastest growing fields, which covers a wide scope of topics of both basic and applied biological researches. This overview article summarized the advancements in applied researches of TERM area, including stem cell-mediated tissue regeneration, material science, and TERM clinical trial. These achievements demonstrated the great potential of clinical regenerative therapy of tissue/organ disease or defect through stem cells and tissue engineering approaches.

  16. Cyclodextrins as versatile building blocks for regenerative medicine.

    PubMed

    Alvarez-Lorenzo, Carmen; García-González, Carlos A; Concheiro, Angel

    2017-12-28

    Cyclodextrins (CDs) are one of the most versatile substances produced by nature, and it is in the aqueous biological environment where the multifaceted potential of CDs can be completely unveiled. CDs form inclusion complexes with a variety of guest molecules, including polymers, producing very diverse biocompatible supramolecular structures. Additionally, CDs themselves can trigger cell differentiation to distinct lineages depending on the substituent groups and also promote salt nucleation. These features together with the affinity-driven regulated release of therapeutic molecules, growth factors and gene vectors explain the rising interest for CDs as building blocks in regenerative medicine. Supramolecular poly(pseudo)rotaxane structures and zipper-like assemblies exhibit outstanding viscoelastic properties, performing as syringeable implants. The sharp shear-responsiveness of the supramolecular assemblies is opening new avenues for the design of bioinks for 3D printing and also of electrospun fibers. CDs can also be transformed into polymerizable monomers to prepare alternative nanostructured materials. The aim of this review is to analyze the role that CDs may play in regenerative medicine through the analysis of the last decade research. Most applications of CD-based scaffolds are focussed on non-healing bone fractures, cartilage reparation and skin recovery, but also on even more challenging demands such as neural grafts. For the sake of clarity, main sections of this review are organized according to the architecture of the CD-based scaffolds, mainly syringeable supramolecular hydrogels, 3D printed scaffolds, electrospun fibers, and composites, since the same scaffold type may find application in different tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Concise Review: Translating Regenerative Biology into Clinically Relevant Therapies: Are We on the Right Path?

    PubMed Central

    2017-01-01

    Abstract Despite approaches in regenerative medicine using stem cells, bio‐engineered scaffolds, and targeted drug delivery to enhance human tissue repair, clinicians remain unable to regenerate large‐scale, multi‐tissue defects in situ. The study of regenerative biology using mammalian models of complex tissue regeneration offers an opportunity to discover key factors that stimulate a regenerative rather than fibrotic response to injury. For example, although primates and rodents can regenerate their distal digit tips, they heal more proximal amputations with scar tissue. Rabbits and African spiny mice re‐grow tissue to fill large musculoskeletal defects through their ear pinna, while other mammals fail to regenerate identical defects and instead heal ear holes through fibrotic repair. This Review explores the utility of these comparative healing models using the spiny mouse ear pinna and the mouse digit tip to consider how mechanistic insight into reparative regeneration might serve to advance regenerative medicine. Specifically, we consider how inflammation and immunity, extracellular matrix composition, and controlled cell proliferation intersect to establish a pro‐regenerative microenvironment in response to injuries. Understanding how some mammals naturally regenerate complex tissue can provide a blueprint for how we might manipulate the injury microenvironment to enhance regenerative abilities in humans. Stem Cells Translational Medicine 2018;7:220–231 PMID:29271610

  18. Novel surgical techniques, regenerative medicine, tissue engineering and innovative immunosuppression in kidney transplantation.

    PubMed

    Nowacki, Maciej; Nazarewski, Łukasz; Kloskowski, Tomasz; Tyloch, Dominik; Pokrywczyńska, Marta; Pietkun, Katarzyna; Jundziłł, Arkadiusz; Tyloch, Janusz; Habib, Samy L; Drewa, Tomasz

    2016-10-01

    On the 60 th anniversary of the first successfully performed renal transplantation, we summarize the historical, current and potential future status of kidney transplantation. We discuss three different aspects with a potential significant influence on kidney transplantation progress: the development of surgical techniques, the influence of regenerative medicine and tissue engineering, and changes in immunosuppression. We evaluate the standard open surgical procedures with modern techniques and compare them to less invasive videoscopic as well as robotic techniques. The role of tissue engineering and regenerative medicine as a potential method for future kidney regeneration or replacement and the interesting search for novel solutions in the field of immunosuppression will be discussed. After 60 years since the first successfully performed kidney transplantation, we can conclude that the greatest achievements are associated with the development of surgical techniques and with planned systemic immunosuppression.

  19. Novel surgical techniques, regenerative medicine, tissue engineering and innovative immunosuppression in kidney transplantation

    PubMed Central

    Nowacki, Maciej; Nazarewski, Łukasz; Tyloch, Dominik; Pokrywczyńska, Marta; Pietkun, Katarzyna; Jundziłł, Arkadiusz; Tyloch, Janusz; Habib, Samy L.; Drewa, Tomasz

    2016-01-01

    On the 60th anniversary of the first successfully performed renal transplantation, we summarize the historical, current and potential future status of kidney transplantation. We discuss three different aspects with a potential significant influence on kidney transplantation progress: the development of surgical techniques, the influence of regenerative medicine and tissue engineering, and changes in immunosuppression. We evaluate the standard open surgical procedures with modern techniques and compare them to less invasive videoscopic as well as robotic techniques. The role of tissue engineering and regenerative medicine as a potential method for future kidney regeneration or replacement and the interesting search for novel solutions in the field of immunosuppression will be discussed. After 60 years since the first successfully performed kidney transplantation, we can conclude that the greatest achievements are associated with the development of surgical techniques and with planned systemic immunosuppression. PMID:27695507

  20. The erythropoietin and regenerative medicine: a lesson from fish.

    PubMed

    Buemi, M; Lacquaniti, A; Bolignano, D; Maricchiolo, G; Favaloro, A; Buemi, A; Grasso, G; Donato, V; Giorgianni, G; Genovese, L; Coppolino, G; Sfacteria, A

    2009-11-01

    Erythropoietin (EPO), the main haematopoietic growth factor for the proliferation and differentiation of erythroid progenitor cells, is also known for its angiogenic and regenerative properties. In this study, we aimed to test the regenerative effects of EPO administration in an experimental model of Sea bass (Dicentrarchus labrax) subjected to amputation of the caudal fin. Erythropoietin-treated fishes (3000 UI of human recombinant EPO-alpha immediately after cutting and after 15 days) showed an increased growth rate of their fins compared with those untreated (anova variance: P: 0.01 vs. P: 0.04). By analysing fin length at established times (15 and 30 days after cut), EPO-treated fishes always showed an increased length compared with untreated ones (T-15: 1.1 +/- 0.2 vs. 0.7 +/- 0.2 cm, P: 0.03; T-30: 1.9 +/- 0.3 vs. 1.2 +/- 0.2 cm, P: 0.01). Moreover, exogenous EPO administration induced an enormous increase in EPO-blood levels at each observation time (T-15: 2240 +/- 210 vs. 16.7 +/- 1.8 mU mL(-1), P < 0.001; T-30: 2340 +/- 190 vs. 17.1 +/- 1.9 mU mL(-1), P < 0.001), whereas these levels remained quite unmodified in untreated fishes. Immunochemical analyses performed by confocal laser scanning microscopic observations showed an increased expression of EPO-receptors and PECAM-1 (an endothelial surface marker of vessels sprout) in the regenerating tissue, whereas no signs of inflammation or fibrosis were recognisable. All these findings confirm EPO as a new factor involved in regenerative processes, also suggesting a potential, future utility for new therapeutical applications in the field of human regenerative medicine.

  1. Nanotechnology-based approaches for regenerative medicine and biosensing

    NASA Astrophysics Data System (ADS)

    Solanki, Aniruddh P.

    The recent emergence of nanotechnology has set high expectations in many fields of science, especially in biology and medicine. Nanotechnology-based approaches are expected to solve key questions in the emerging field of regenerative medicine. Regenerative medicine essentially deals with regeneration of cells, ultimately leading to the formation of tissues and organs. For this purpose, stem cells, embryonic stem cells or adult stem cells, are thought to be ideal resources. However, many challenges need to be addressed before the full therapeutic potential of stem cells can be harnessed. Controlling the differentiation of stem cells into cells of a specific lineage is extremely vital and challenging. Addressing this challenge, in this work, novel nanotechnology-based approaches for controlling the differentiation of neural stem cells (NSCs) into neurons has been presented. Regeneration of damaged neurons, due to traumatic injuries or degenerative diseases, is extremely challenging. For this purpose, NSCs can be used as resources that can differentiate into neurons, thus having great potential in solving needs of many patients suffering from such conditions. For controlling the differentiation of stem cells, soluble cues (comprising of small molecules and biomolecules) and insoluble cues (cell-cell interactions and cell-microenvironment interactions) play a very important role. The delivery of soluble cues, such as genetic material, into stem cells is extremely challenging. The initial part of this work presents the use of nanomaterials for efficiently delivering soluble cues such as small molecules and small interfering RNA (siRNA) into NSCs for controlling their differentiation into neurons. However, for regenerative purposes, it is preferred that least amounts of the delivery vehicle be used. Thus, the following part of the thesis presents the development and applications of nanotechnology-based approaches for enhancing the differentiation of NSCs into neurons

  2. Advanced Tissue Sciences Inc.: learning from the past, a case study for regenerative medicine.

    PubMed

    Pangarkar, Nitin; Pharoah, Marc; Nigam, Avinav; Hutmacher, Dietmar W; Champ, Simon

    2010-09-01

    On 31st March 2003 Advanced Tissue Sciences (ATS) was liquidated, with the effect that in excess of US$300 million of stakeholder financing was destroyed. Although successful in the development of breakthrough technologies in the regenerative medicine arena and the building of a substantial portfolio of patents, the company never made a profit. In this case study, ATS’ business strategy, market and competitive environment will be discussed in the context of the company’s historical development. A number of important lessons from this case are discussed. From a management perspective the most critical lesson is the importance of effective financial planning and management of costs, and in particular R&D costs, including the significant costs associated with clinical trials. In addition, a clear strategic focus is extremely important due to the significant resources required in the development of a new therapy. From an investor’s perspective the lessons to be gathered from the ATS case are related to the risk involved in investing in the field of regenerative medicine. This case indicates that both professional and private investors did not fully question the validity of ATS’ business strategy and financial forecasts. A clear and focused strategy based on long-term investor commitment is essential for the successful commercialization of regenerative medicine.

  3. Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine

    PubMed Central

    Samsonraj, Rebekah M.; Raghunath, Michael; Nurcombe, Victor; Hui, James H.

    2017-01-01

    Abstract Mesenchymal stem cells (MSC) hold great potential for regenerative medicine because of their ability for self‐renewal and differentiation into tissue‐specific cells such as osteoblasts, chondrocytes, and adipocytes. MSCs orchestrate tissue development, maintenance and repair, and are useful for musculoskeletal regenerative therapies to treat age‐related orthopedic degenerative diseases and other clinical conditions. Importantly, MSCs produce secretory factors that play critical roles in tissue repair that support both engraftment and trophic functions (autocrine and paracrine). The development of uniform protocols for both preparation and characterization of MSCs, including standardized functional assays for evaluation of their biological potential, are critical factors contributing to their clinical utility. Quality control and release criteria for MSCs should include cell surface markers, differentiation potential, and other essential cell parameters. For example, cell surface marker profiles (surfactome), bone‐forming capacities in ectopic and orthotopic models, as well as cell size and granularity, telomere length, senescence status, trophic factor secretion (secretome), and immunomodulation, should be thoroughly assessed to predict MSC utility for regenerative medicine. We propose that these and other functionalities of MSCs should be characterized prior to use in clinical applications as part of comprehensive and uniform guidelines and release criteria for their clinical‐grade production to achieve predictably favorable treatment outcomes for stem cell therapy. Stem Cells Translational Medicine 2017;6:2173–2185 PMID:29076267

  4. Induced pluripotent stem cells and their implication for regenerative medicine.

    PubMed

    Csobonyeiova, Maria; Polak, Stefan; Koller, Jan; Danisovic, Lubos

    2015-06-01

    In 2006 Yamanaka's group showed that stem cells with properties similar to embryonic stem cells could be generated from mouse fibroblasts by introducing four genes. These cells were termed induced pluripotent stem cells (iPSCs). Because iPSCs avoid many of ethical concerns associated with the use of embryonic material, they have great potential in cell-based regenerative medicine. They are suitable also for other various purposes, including disease modelling, personalized cell therapy, drug or toxicity screening and basic research. Moreover, in the future, there might become possible to generate organs for human transplantation. Despite these progresses, several studies have raised the concern for genetic and epigenetic abnormalities of iPSCs that could contribute to immunogenicity of some cells differentiated from iPSCs. Recent methodological improvements are increasing the ease and efficacy of reprogramming, and reducing the genomic modification. However, to minimize or eliminate genetic alternations in the derived iPSC line creation, factor-free human iPSCs are necessary. In this review we discuss recent possibilities of using iPSCs for clinical applications and new advances in field of their reprogramming methods. The main goal of present article was to review the current knowledge about iPSCs and to discuss their potential for regenerative medicine.

  5. Combining regenerative medicine strategies to provide durable reconstructive options: auricular cartilage tissue engineering.

    PubMed

    Jessop, Zita M; Javed, Muhammad; Otto, Iris A; Combellack, Emman J; Morgan, Siân; Breugem, Corstiaan C; Archer, Charles W; Khan, Ilyas M; Lineaweaver, William C; Kon, Moshe; Malda, Jos; Whitaker, Iain S

    2016-01-28

    Recent advances in regenerative medicine place us in a unique position to improve the quality of engineered tissue. We use auricular cartilage as an exemplar to illustrate how the use of tissue-specific adult stem cells, assembly through additive manufacturing and improved understanding of postnatal tissue maturation will allow us to more accurately replicate native tissue anisotropy. This review highlights the limitations of autologous auricular reconstruction, including donor site morbidity, technical considerations and long-term complications. Current tissue-engineered auricular constructs implanted into immune-competent animal models have been observed to undergo inflammation, fibrosis, foreign body reaction, calcification and degradation. Combining biomimetic regenerative medicine strategies will allow us to improve tissue-engineered auricular cartilage with respect to biochemical composition and functionality, as well as microstructural organization and overall shape. Creating functional and durable tissue has the potential to shift the paradigm in reconstructive surgery by obviating the need for donor sites.

  6. Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity.

    PubMed

    Mousa, Mohamed; Evans, Nicholas D; Oreffo, Richard O C; Dawson, Jonathan I

    2018-03-01

    Clay nanoparticles, composites and hydrogels are emerging as a new class of biomaterial with exciting potential for tissue engineering and regenerative medicine applications. Clay particles have been extensively explored in polymeric nanocomposites for self-assembly and enhanced mechanical properties as well as for their potential as drug delivery modifiers. In recent years, a cluster of studies have explored cellular interactions with clay nanoparticles alone or in combination with polymeric matrices. These pioneering studies have suggested new and unforeseen utility for certain clays as bioactive additives able to enhance cellular functions including adhesion, proliferation and differentiation, most notably for osteogenesis. This review examines the recent literature describing the potential effects of clay-based nanomaterials on cell function and examines the potential role of key clay physicochemical properties in influencing such interactions and their exciting possibilities for regenerative medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Development of a Cell Sheet Transportation Technique for Regenerative Medicine

    PubMed Central

    Oie, Yoshinori; Nozaki, Takayuki; Takayanagi, Hiroshi; Hara, Susumu; Hayashi, Ryuhei; Takeda, Shizu; Mori, Keisuke; Moriya, Noboru; Soma, Takeshi; Tsujikawa, Motokazu; Saito, Kazuo

    2014-01-01

    Purpose: A transportation technique for cell sheets is necessary to standardize regenerative medicine. The aim of this article is to develop and evaluate a new transportation technique for cell sheets. Material and Methods: We developed a transportation container with three basic functions: the maintenance of interior temperature, air pressure, and sterility. The interior temperature and air pressure were monitored by a recorder. Human oral mucosal epithelial cells obtained from two healthy volunteers were cultured on temperature-responsive culture dishes. The epithelial cell sheets were transported via an airplane between the Osaka University and Tohoku University using the developed cell transportation container. Histological and immunohistochemical analyses and flow cytometric analyses for cell viability and cell purity were performed for the cell sheets before and 12 h after transportation to assess the influence of transportation on the cell sheets. Sterility tests and screening for endotoxin and mycoplasma in the cell sheets were performed before and after transportation. Results: During transportation via an airplane, the temperature inside the container was maintained above 32°C, and the changes in air pressure remained within 10 hPa. The cell sheets were well stratified and successfully harvested before and after transportation. The expression patterns of keratin 3/76, p63, and MUC16 were equivalent before and after transportation. However, the expression of ZO-1 in the cell sheet after transportation was slightly weaker than that before transportation. The cell viability was 72.0% before transportation and 77.3% after transportation. The epithelial purity was 94.6% before transportation and 87.9% after transportation. Sterility tests and screening for endotoxin and mycoplasma were negative for all cell sheets. Conclusion: The newly developed transportation technique for air travel is essential technology for regenerative medicine and promotes the

  8. Development of a cell sheet transportation technique for regenerative medicine.

    PubMed

    Oie, Yoshinori; Nozaki, Takayuki; Takayanagi, Hiroshi; Hara, Susumu; Hayashi, Ryuhei; Takeda, Shizu; Mori, Keisuke; Moriya, Noboru; Soma, Takeshi; Tsujikawa, Motokazu; Saito, Kazuo; Nishida, Kohji

    2014-05-01

    A transportation technique for cell sheets is necessary to standardize regenerative medicine. The aim of this article is to develop and evaluate a new transportation technique for cell sheets. We developed a transportation container with three basic functions: the maintenance of interior temperature, air pressure, and sterility. The interior temperature and air pressure were monitored by a recorder. Human oral mucosal epithelial cells obtained from two healthy volunteers were cultured on temperature-responsive culture dishes. The epithelial cell sheets were transported via an airplane between the Osaka University and Tohoku University using the developed cell transportation container. Histological and immunohistochemical analyses and flow cytometric analyses for cell viability and cell purity were performed for the cell sheets before and 12 h after transportation to assess the influence of transportation on the cell sheets. Sterility tests and screening for endotoxin and mycoplasma in the cell sheets were performed before and after transportation. During transportation via an airplane, the temperature inside the container was maintained above 32°C, and the changes in air pressure remained within 10 hPa. The cell sheets were well stratified and successfully harvested before and after transportation. The expression patterns of keratin 3/76, p63, and MUC16 were equivalent before and after transportation. However, the expression of ZO-1 in the cell sheet after transportation was slightly weaker than that before transportation. The cell viability was 72.0% before transportation and 77.3% after transportation. The epithelial purity was 94.6% before transportation and 87.9% after transportation. Sterility tests and screening for endotoxin and mycoplasma were negative for all cell sheets. The newly developed transportation technique for air travel is essential technology for regenerative medicine and promotes the standardization and spread of regenerative therapies.

  9. Regenerative photonic therapy: Review

    NASA Astrophysics Data System (ADS)

    Salansky, Natasha; Salansky, Norman

    2012-09-01

    After four decades of research of photobiomodulation phenomena in mammals in vitro and in vivo, a solid foundation is created for the use of photobiomodulation in regenerative medicine. Significant accomplishments are achieved in animal models that demonstrate opportunities for photo-regeneration of injured or pathological tissues: skin, muscles and nerves. However, the use of photobiomodulation in clinical studies leads to controversial results while negative or marginal clinical efficacy is reported along with positive findings. A thor ough analysis of requirements to the optical parameters (dosimetry) for high efficacy in photobimodulation led us to the conclusion that there are several misconceptions in the clinical applications of low level laser therapy (LLLT). We present a novel appr oach of regenerative photonic therapy (RPT) for tissue healing and regeneration that overcomes major drawbacks of LLLT. Encouraging clinical results on RPT efficacy are presented. Requirements for RPT approach and vision for its future development for tissue regeneration is discussed.

  10. Impedance-based cellular assays for regenerative medicine.

    PubMed

    Gamal, W; Wu, H; Underwood, I; Jia, J; Smith, S; Bagnaninchi, P O

    2018-07-05

    Therapies based on regenerative techniques have the potential to radically improve healthcare in the coming years. As a result, there is an emerging need for non-destructive and label-free technologies to assess the quality of engineered tissues and cell-based products prior to their use in the clinic. In parallel, the emerging regenerative medicine industry that aims to produce stem cells and their progeny on a large scale will benefit from moving away from existing destructive biochemical assays towards data-driven automation and control at the industrial scale. Impedance-based cellular assays (IBCA) have emerged as an alternative approach to study stem-cell properties and cumulative studies, reviewed here, have shown their potential to monitor stem-cell renewal, differentiation and maturation. They offer a novel method to non-destructively assess and quality-control stem-cell cultures. In addition, when combined with in vitro disease models they provide complementary insights as label-free phenotypic assays. IBCA provide quantitative and very sensitive results that can easily be automated and up-scaled in multi-well format. When facing the emerging challenge of real-time monitoring of three-dimensional cell culture dielectric spectroscopy and electrical impedance tomography represent viable alternatives to two-dimensional impedance sensing.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'. © 2018 The Author(s).

  11. Regenerative medicine, resource and regulation: lessons learned from the remedi project.

    PubMed

    Ginty, Patrick J; Rayment, Erin A; Hourd, Paul; Williams, David J

    2011-03-01

    The successful commercialization of regenerative medicine products provides a unique challenge to the manufacturer owing to a lack of suitable investment/business models and a constantly evolving regulatory framework. The resultant slow translation of scientific discovery into safe and clinically efficacious therapies is preventing many potential products from reaching the market. This is despite of the need for new therapies that may reduce the burden on the world's healthcare systems and address the desperate need for replacement tissues and organs. The collaborative Engineering and Physical Sciences Research Council (EPSRC)-funded remedi project was devised to take a holistic but manufacturing-led approach to the challenge of translational regenerative medicine in the UK. Through strategic collaborations and discussions with industry and other academic partners, many of the positive and negative issues surrounding business and regulatory success have been documented to provide a remedi-led perspective on the management of risk in business and the elucidation of the regulatory pathways, and how the two are inherently linked. This article represents the findings from these discussions with key stakeholders and the research into best business and regulatory practices.

  12. Exploiting Advanced Hydrogel Technologies to Address Key Challenges in Regenerative Medicine

    PubMed Central

    Gentleman, Eileen

    2018-01-01

    Regenerative medicine aims to tackle a panoply of challenges, from repairing focal damage to articular cartilage to preventing pathological tissue remodelling after myocardial infarction. Hydrogels are water-swollen networks formed from synthetic or naturally derived polymers, and are emerging as important tools to address these challenges. Recent advances in hydrogel chemistries are enabling researchers to create hydrogels that can act as 3D ex vivo tissue models, allowing them to explore fundamental questions in cell biology by replicating tissues’ dynamic and non-linear physical properties. Enabled by emerging techniques such as 3D bioprinting, cell-laden hydrogels are also being developed with highly controlled tissue-specific architectures, vasculature, and biological functions that together can direct tissue repair. Moreover, advanced in situ forming and acellular hydrogels are increasingly finding use as delivery vehicles for bioactive compounds and in mediating host cell response. Here, we review advances in the design and fabrication of hydrogels for regenerative medicine. We also address how controlled chemistries are allowing for precise engineering of spatial and time-dependent properties in hydrogels with a look to how these materials will eventually translate to clinical applications. PMID:29316363

  13. Regenerative medicine using dental pulp stem cells for liver diseases.

    PubMed

    Ohkoshi, Shogo; Hara, Hajime; Hirono, Haruka; Watanabe, Kazuhiko; Hasegawa, Katsuhiko

    2017-02-06

    Acute liver failure is a refractory disease and its prognosis, if not treated using liver transplantation, is extremely poor. It is a good candidate for regenerative medicine, where stem cell-based therapies play a central role. Mesenchymal stem cells (MSCs) are known to differentiate into multiple cell lineages including hepatocytes. Autologous cell transplant without any foreign gene induction is feasible using MSCs, thereby avoiding possible risks of tumorigenesis and immune rejection. Dental pulp also contains an MSC population that differentiates into hepatocytes. A point worthy of special mention is that dental pulp can be obtained from deciduous teeth during childhood and can be subsequently harvested when necessary after deposition in a tooth bank. MSCs have not only a regenerative capacity but also act in an anti-inflammatory manner via paracrine mechanisms. Promising efficacies and difficulties with the use of MSC derived from teeth are summarized in this review.

  14. Stem cell therapies and regenerative medicine in China.

    PubMed

    Huang, Sha; Fu, XiaoBing

    2014-02-01

    Stem cells are the core of tissue repair and regeneration, and a promising cell source for novel therapies. In recent years, research into stem cell therapies has been particularly exciting in China. The remarkable advancements in basic stem cell research and clinically effective trials have led to fresh insights into regenerative medicine, such as treatments for sweat gland injury after burns, diabetes, and liver injury. High hopes have inspired numerous experimental and clinical trials. At the same time, government investment and policy support of research continues to increase markedly. However, numerous challenges must be overcome before novel stem cell therapies can achieve meaningful clinical outcomes.

  15. A case of cellular alchemy: lineage reprogramming and its potential in regenerative medicine

    PubMed Central

    Asuelime, Grace E.; Shi, Yanhong

    2012-01-01

    The field of regenerative medicine is rapidly gaining momentum as an increasing number of reports emerge concerning the induced conversions observed in cellular fate reprogramming. While in recent years, much attention has been focused on the conversion of fate-committed somatic cells to an embryonic-like or pluripotent state, there are still many limitations associated with the applications of induced pluripotent stem cell reprogramming, including relatively low reprogramming efficiency, the times required for the reprogramming event to take place, the epigenetic instability, and the tumorigenicity associated with the pluripotent state. On the other hand, lineage reprogramming involves the conversion from one mature cell type to another without undergoing conversion to an unstable intermediate. It provides an alternative approach in regenerative medicine that has a relatively lower risk of tumorigenesis and increased efficiency within specific cellular contexts. While lineage reprogramming provides exciting potential, there is still much to be assessed before this technology is ready to be applied in a clinical setting. PMID:22371436

  16. The Impact of Biomechanics in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Butler, David L.; Goldstein, Steven A.; Guo, X. Edward; Kamm, Roger; Laurencin, Cato T.; McIntire, Larry V.; Mow, Van C.; Nerem, Robert M.; Sah, Robert L.; Soslowsky, Louis J.; Spilker, Robert L.; Tranquillo, Robert T.

    2009-01-01

    Biomechanical factors profoundly influence the processes of tissue growth, development, maintenance, degeneration, and repair. Regenerative strategies to restore damaged or diseased tissues in vivo and create living tissue replacements in vitro have recently begun to harness advances in understanding of how cells and tissues sense and adapt to their mechanical environment. It is clear that biomechanical considerations will be fundamental to the successful development of clinical therapies based on principles of tissue engineering and regenerative medicine for a broad range of musculoskeletal, cardiovascular, craniofacial, skin, urinary, and neural tissues. Biomechanical stimuli may in fact hold the key to producing regenerated tissues with high strength and endurance. However, many challenges remain, particularly for tissues that function within complex and demanding mechanical environments in vivo. This paper reviews the present role and potential impact of experimental and computational biomechanics in engineering functional tissues using several illustrative examples of past successes and future grand challenges. PMID:19583462

  17. Comparison of Hematopoietic and Spermatogonial Stem Cell Niches from the Regenerative Medicine Aspect.

    PubMed

    Köse, Sevil; Yersal, Nilgün; Önen, Selin; Korkusuz, Petek

    2018-06-08

    Recent advances require a dual evaluation of germ and somatic stem cell niches with a regenerative medicine perspective. For a better point of view of the niche concept, it is needed to compare the microenvironments of those niches in respect to several components. The cellular environment of spermatogonial stem cells' niche consists of Sertoli cells, Leydig cells, vascular endothelial cells, epididymal fat cells, peritubular myoid cells while hematopoietic stem cells have mesenchymal stem cells, osteoblasts, osteoclasts, megacaryocytes, macrophages, vascular endothelial cells, pericytes and adipocytes in their microenvironment. Not only those cells', but also the effect of the other factors such as hormones, growth factors, chemokines, cytokines, extracellular matrix components, biomechanical forces (like shear stress, tension or compression) and physical environmental elements such as temperature, oxygen level and pH will be clarified during the chapter. Because it is known that the microenvironment has an important role in the stem cell homeostasis and disease conditions, it is crucial to understand the details of the microenvironment and to be able to compare the niche concepts of the different types of stem cells from each other, for the regenerative interventions. Indeed, the purpose of this chapter is to point out the usage of niche engineering within the further studies in the regenerative medicine field. Decellularized, synthetic or non-synthetic scaffolds may help to mimic the stem cell niche. However, the shared or different characteristics of germ and somatic stem cell microenvironments are necessary to constitute a proper niche model. When considered from this aspect, it is possible to produce some strategies on the personalized medicine by using those artificial models of stem cell microenvironment.

  18. Regenerative medicine technology applied to gastroenterology: Current status and future perspectives

    PubMed Central

    Orlando, Giuseppe

    2012-01-01

    This special issue of World Journal of Gastroenterology has been conceived to illustrate to gastroenterology operators the role that regenerative medicine (RM) will have in the progress of gastrointestinal (GI) medicine. RM is a multidisciplinary field aiming to replace, regenerate or repair diseased tissues or organs. The past decade has been marked by numerous ground-breaking achievements that led experts in the field to manufacture functional substitutes of relatively simple organs. This progress is paving the ground for investigations that aims to the bioengineering and regeneration of more complex organs like livers, pancreas and intestine. In this special issue, the reader will be introduced, hand-in-hand, to explore the field of RM and will be educated on the progress, pitfalls and promise of RM technologies as applied to GI medicine. PMID:23322983

  19. Regenerative medicine technology applied to gastroenterology: current status and future perspectives.

    PubMed

    Orlando, Giuseppe

    2012-12-21

    This special issue of World Journal of Gastroenterology has been conceived to illustrate to gastroenterology operators the role that regenerative medicine (RM) will have in the progress of gastrointestinal (GI) medicine. RM is a multidisciplinary field aiming to replace, regenerate or repair diseased tissues or organs. The past decade has been marked by numerous ground-breaking achievements that led experts in the field to manufacture functional substitutes of relatively simple organs. This progress is paving the ground for investigations that aims to the bioengineering and regeneration of more complex organs like livers, pancreas and intestine. In this special issue, the reader will be introduced, hand-in-hand, to explore the field of RM and will be educated on the progress, pitfalls and promise of RM technologies as applied to GI medicine.

  20. Genetic engineering for skeletal regenerative medicine.

    PubMed

    Gersbach, Charles A; Phillips, Jennifer E; García, Andrés J

    2007-01-01

    The clinical challenges of skeletal regenerative medicine have motivated significant advances in cellular and tissue engineering in recent years. In particular, advances in molecular biology have provided the tools necessary for the design of gene-based strategies for skeletal tissue repair. Consequently, genetic engineering has emerged as a promising method to address the need for sustained and robust cellular differentiation and extracellular matrix production. As a result, gene therapy has been established as a conventional approach to enhance cellular activities for skeletal tissue repair. Recent literature clearly demonstrates that genetic engineering is a principal factor in constructing effective methods for tissue engineering approaches to bone, cartilage, and connective tissue regeneration. This review highlights this literature, including advances in the development of efficacious gene carriers, novel cell sources, successful delivery strategies, and optimal target genes. The current status of the field and the challenges impeding the clinical realization of these approaches are also discussed.

  1. Regenerative medicine and responsible research and innovation: proposals for a responsible acceleration to the clinic.

    PubMed

    Webster, Andrew

    2017-10-01

    This paper asks how regenerative medicine can be examined through the 'responsible research and innovation' (RRI) approach which has been developed over the past decade. It describes the drivers to the development of RRI, and then argues for the need to understand innovation itself through drawing on social science analysis rooted in science and technology studies. The paper then identifies a number of highly specific challenges faced by the regenerative medicine field and the implications these have for value creation. It offers a number of examples of how a combined RRI/science and technology studies perspective can identify priority areas for policy and concludes by arguing for a 'responsible acceleration', more likely to foster readiness at a time when much of the policy domain is pushing for ever-rapid access to cell therapies.

  2. Concise Review: Endothelial Progenitor Cells in Regenerative Medicine: Applications and Challenges

    PubMed Central

    Chong, Mark Seow Khoon; Ng, Wei Kai

    2016-01-01

    Endothelial progenitor cells (EPCs) are currently being studied as candidate cell sources for revascularization strategies. Significant advances have been made in understanding the biology of EPCs, and preclinical studies have demonstrated the vasculogenic, angiogenic, and beneficial paracrine effects of transplanted EPCs in the treatment of ischemic diseases. Despite these promising results, widespread clinical acceptance of EPCs for clinical therapies remains hampered by several challenges. The present study provides a concise summary of the different EPC populations being studied for ischemic therapies and their known roles in the healing of ischemic tissues. The challenges and issues surrounding the use of EPCs and the current strategies being developed to improve the harvest efficiency and functionality of EPCs for application in regenerative medicine are discussed. Significance Endothelial progenitor cells (EPCs) have immense clinical value for cardiovascular therapies. The present study provides a concise description of the EPC subpopulations being evaluated for clinical applications. The current major lines of investigation involving preclinical and clinical evaluations of EPCs are discussed, and significant gaps limiting the translation of EPCs are highlighted. The present report could be useful for clinicians and clinical researchers with interests in ischemic therapy and for basic scientists working in the related fields of tissue engineering and regenerative medicine. PMID:26956207

  3. Integration of Drug, Protein, and Gene Delivery Systems with Regenerative Medicine

    PubMed Central

    Lorden, Elizabeth R.; Levinson, Howard M.; Leong, Kam W.

    2013-01-01

    Regenerative medicine has the potential to drastically change the field of health care from reactive to preventative and restorative. Exciting advances in stem cell biology and cellular reprogramming have fueled the progress of this field. Biochemical cues in the form of small molecule drugs, growth factors, zinc finger protein transcription factors and nucleases, transcription activator-like effector nucleases, monoclonal antibodies, plasmid DNA, aptamers, or RNA interference agents can play an important role to influence stem cell differentiation and the outcome of tissue regeneration. Many of these biochemical factors are fragile and must act intracellularly at the molecular level. They require an effective delivery system, which can take the form of a scaffold (e.g. hydrogels and electrospun fibers), carrier (viral and nonviral), nano- and micro-particle, or genetically modified cell. In this review, we will discuss the history and current technologies of drug, protein and gene delivery in the context of regenerative medicine. Next we will present case examples of how delivery technologies are being applied to promote angiogenesis in non-healing wounds or prevent angiogenesis in age related macular degeneration. Finally, we will conclude with a brief discussion of the regulatory pathway from bench-to-bedside for the clinical translation of these novel therapeutics. PMID:25787742

  4. Whole-organ re-engineering: a regenerative medicine approach to digestive organ replacement.

    PubMed

    Yagi, Hiroshi; Soto-Gutierrez, Alejandro; Kitagawa, Yuko

    2013-06-01

    Recovery from end-stage organ failure presents a challenge for the medical community, considering the limitations of extracorporeal assist devices and the shortage of donors when organ replacement is needed. There is a need for new methods to promote recovery from organ failure and regenerative medicine is an option that should be considered. Recent progress in the field of tissue engineering has opened avenues for potential clinical applications, including the use of microfluidic devices for diagnostic purposes, and bioreactors or cell/tissue-based therapies for transplantation. Early attempts to engineer tissues produced thin, planar constructs; however, recent approaches using synthetic scaffolds and decellularized tissue have achieved a more complex level of tissue organization in organs such as the urinary bladder and trachea, with some success in clinical trials. In this context, the concept of decellularization technology has been applied to produce whole organ-derived scaffolds by removing cellular content while retaining all the necessary vascular and structural cues of the native organ. In this review, we focus on organ decellularization as a new regenerative medicine approach for whole organs, which may be applied in the field of digestive surgery.

  5. Regenerative medicine in otorhinolaryngology.

    PubMed

    Wormald, J C R; Fishman, J M; Juniat, S; Tolley, N; Birchall, M A

    2015-08-01

    Tissue engineering using biocompatible scaffolds, with or without cells, can permit surgeons to restore structure and function following tissue resection or in cases of congenital abnormality. Tracheal regeneration has emerged as a spearhead application of these technologies, whilst regenerative therapies are now being developed to treat most other diseases within otolaryngology. A systematic review of the literature was performed using Ovid Medline and Ovid Embase, from database inception to 15 November 2014. A total of 561 papers matched the search criteria, with 76 fulfilling inclusion criteria. Articles were predominantly pre-clinical animal studies, reflecting the current status of research in this field. Several key human research articles were identified and discussed. The main issues facing research in regenerative surgery are translation of animal model work into human models, increasing stem cell availability so it can be used to further research, and development of better facilities to enable implementation of these advances.

  6. Plasticity of male germline stem cells and their applications in reproductive and regenerative medicine.

    PubMed

    Chen, Zheng; Li, Zheng; He, Zuping

    2015-01-01

    Spermatogonial stem cells (SSCs), also known as male germline stem cells, are a small subpopulation of type A spermatogonia with the potential of self-renewal to maintain stem cell pool and differentiation into spermatids in mammalian testis. SSCs are previously regarded as the unipotent stem cells since they can only give rise to sperm within the seminiferous tubules. However, this concept has recently been challenged because numerous studies have demonstrated that SSCs cultured with growth factors can acquire pluripotency to become embryonic stem-like cells. The in vivo and in vitro studies from peers and us have clearly revealed that SSCs can directly transdifferentiate into morphologic, phenotypic, and functional cells of other lineages. Direct conversion to the cells of other tissues has important significance for regenerative medicine. SSCs from azoospermia patients could be induced to differentiate into spermatids with fertilization and developmental potentials. As such, SSCs could have significant applications in both reproductive and regenerative medicine due to their unique and great potentials. In this review, we address the important plasticity of SSCs, with focuses on their self-renewal, differentiation, dedifferentiation, transdifferentiation, and translational medicine studies.

  7. Multiscale Inorganic Hierarchically Materials: Towards an Improved Orthopaedic Regenerative Medicine.

    PubMed

    Ruso, Juan M; Sartuqui, Javier; Messina, Paula V

    2015-01-01

    Bone is a biologically and structurally sophisticated multifunctional tissue. It dynamically responds to biochemical, mechanical and electrical clues by remodelling itself and accordingly the maximum strength and toughness are along the lines of the greatest applied stress. The challenge is to develop an orthopaedic biomaterial that imitates the micro- and nano-structural elements and compositions of bone to locally match the properties of the host tissue resulting in a biologically fixed implant. Looking for the ideal implant, the convergence of life and materials sciences occurs. Researchers in many different fields apply their expertise to improve implantable devices and regenerative medicine. Materials of all kinds, but especially hierarchical nano-materials, are being exploited. The application of nano-materials with hierarchical design to calcified tissue reconstructive medicine involve intricate systems including scaffolds with multifaceted shapes that provides temporary mechanical function; materials with nano-topography modifications that guarantee their integration to tissues and that possesses functionalized surfaces to transport biologic factors to stimulate tissue growth in a controlled, safe, and rapid manner. Furthermore materials that should degrade on a timeline coordinated to the time that takes the tissues regrow, are prepared. These implantable devices are multifunctional and for its construction they involve the use of precise strategically techniques together with specific material manufacturing processes that can be integrated to achieve in the design, the required multifunctionality. For such reasons, even though the idea of displacement from synthetic implants and tissue grafts to regenerative-medicine-based tissue reconstruction has been guaranteed for well over a decade, the reality has yet to emerge. In this paper, we examine the recent approaches to create enhanced bioactive materials. Their design and manufacturing procedures as well

  8. Caenorhabditis elegans in regenerative medicine: a simple model for a complex discipline.

    PubMed

    Aitlhadj, Layla; Stürzenbaum, Stephen R

    2014-06-01

    Stem cell research is a major focus of regenerative medicine, which amalgamates diverse disciplines ranging from developmental cell biology to chemical and genetic therapy. Although embryonic stem cells have provided the foundation of stem cell therapy, they offer an in vitro study system that might not provide the best insight into mechanisms and behaviour of cells within living organisms. Caenorhabditis elegans is a well defined model organism with highly conserved cell development and signalling processes that specify cell fate. Its genetic amenability coupled with its chemical screening applicability make the nematode well suited as an in vivo system in which regenerative therapy and stem cell processes can be explored. Here, we describe some of the major advances in stem cell research from the worm's perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Applications and Implications of Heparin and Protamine in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Nemeno, Judee Grace E.; Lee, Kyung Mi

    2014-01-01

    Drug repositioning is one of the most rapidly emerging fields of study. This concept is anchored on the principle that diseases have similar damaged or affected signaling pathways. Recently, drugs have been repositioned not only for their alternative therapeutic uses but also for their applications as biomaterials in various fields. However, medical drugs as biomaterials are rarely focused on in reviews. Fragmin and protamine have been recently the sources of increasing attention in the field of tissue engineering and regenerative medicine. Fragmin and protamine have been manufactured primarily as a safe antidote for the circulating heparin. Lately, these drugs have been utilized as either micro- or nanoparticle biomaterials. In this paper, we will briefly describe the concept of drug repositioning and some of the medical drugs that have been repurposed for their alternative therapeutic uses. Also, this will feature the historical background of the studies focused on fragmin/protamine micro/nanoparticles (F/P M/NPs) and their applications as biomaterials in tissue engineering, stem cell therapy, and regenerative medicine. PMID:24995338

  10. Regenerative Rehabilitation – a New Future?

    PubMed Central

    Perez-Terzic, Carmen; Childers, Martin K.

    2014-01-01

    Modern rehabilitation medicine is propelled by newfound knowledge aimed at offering solutions for an increasingly aging population afflicted by chronic debilitating conditions. Considered a core component of future healthcare, the roll-out of regenerative medicine underscores a paradigm shift in patient management targeted at restoring physiologic function and restituting normative impact. Nascent regenerative technologies offer unprecedented prospects in achieving repair of degenerated, diseased or damaged tissues. In this context, principles of regenerative science are increasingly integrated in rehabilitation practices as illustrated in the present Supplement. Encompassing a growing multidisciplinary domain, the emergent era of “regenerative rehabilitation” brings radical innovations at the forefront of healthcare blueprints. PMID:25310603

  11. Fibrin glue as the cell-delivery vehicle for mesenchymal stromal cells in regenerative medicine.

    PubMed

    Wu, Xiuwen; Ren, Jianan; Li, Jieshou

    2012-05-01

    The use of tissue-engineering techniques such as stem-cell therapy to renew injured tissues is a promising strategy in regenerative medicine. As a cell-delivery vehicle, fibrin glues (FG) facilitate cell attachment, growth and differentiation and, ultimately, tissue formation and organization by its three-dimensional structure. Numerous studies have provided evidence that stromal cells derived from bone marrow (bone marrow stromal cells; BMSC) and adipose tissue (adipose-derived stromal cells; ADSC) contain a population of adult multipotent mesenchymal stromal cells (MSC) and endothelial progenitor cells that can differentiate into several lineages. By combining MSC with FG, the implantation could take advantage of the mutual benefits. Researchers and physicians have pinned their hopes on stem cells for developing novel approaches in regenerative medicine. This review focuses on the therapeutic potential of MSC with FG in bone defect reconstruction, cartilage and tendon injury repair, ligament, heart and nerve regeneration, and, furthermore, wound healing.

  12. Biologically active chitosan systems for tissue engineering and regenerative medicine.

    PubMed

    Jiang, Tao; Kumbar, Sangamesh G; Nair, Lakshmi S; Laurencin, Cato T

    2008-01-01

    Biodegradable polymeric scaffolds are widely used as a temporary extracellular matrix in tissue engineering and regenerative medicine. By physical adsorption of biomolecules on scaffold surface, physical entrapment of biomolecules in polymer microspheres or hydrogels, and chemical immobilization of oligopeptides or proteins on biomaterials, biologically active biomaterials and scaffolds can be derived. These bioactive systems show great potential in tissue engineering in rendering bioactivity and/or specificity to scaffolds. This review highlights some of the biologically active chitosan systems for tissue engineering application and the associated strategies to develop such bioactive chitosan systems.

  13. Attenuated Innate Immunity in Embryonic Stem Cells and Its Implications in Developmental Biology and Regenerative Medicine.

    PubMed

    Guo, Yan-Lin; Carmichael, Gordon G; Wang, Ruoxing; Hong, Xiaoxiao; Acharya, Dhiraj; Huang, Faqing; Bai, Fengwei

    2015-11-01

    Embryonic stem cells (ESCs) represent a promising cell source for regenerative medicine. Intensive research over the past 2 decades has led to the feasibility of using ESC-differentiated cells (ESC-DCs) in regenerative medicine. However, increasing evidence indicates that ESC-DCs generated by current differentiation methods may not have equivalent cellular functions to their in vivo counterparts. Recent studies have revealed that both human and mouse ESCs as well as some types of ESC-DCs lack or have attenuated innate immune responses to a wide range of infectious agents. These findings raise important concerns for their therapeutic applications since ESC-DCs, when implanted to a wound site of a patient, where they would likely be exposed to pathogens and inflammatory cytokines. Understanding whether an attenuated immune response is beneficial or harmful to the interaction between host and grafted cells becomes an important issue for ESC-based therapy. A substantial amount of recent evidence has demonstrated that the lack of innate antiviral responses is a common feature to ESCs and other types of pluripotent cells. This has led to the hypothesis that mammals may have adapted different antiviral mechanisms at different stages of organismal development. The underdeveloped innate immunity represents a unique and uncharacterized property of ESCs that may have important implications in developmental biology, immunology, and in regenerative medicine. © 2015 AlphaMed Press.

  14. 78 FR 43889 - Synergizing Efforts in Standards Development for Cellular Therapies and Regenerative Medicine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Synergizing Efforts in Standards Development for Cellular Therapies and Regenerative Medicine Products; Public Workshop AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public workshop. The Food and Drug Administration (FDA), Center for...

  15. Identifying viable regulatory and innovation pathways for regenerative medicine: a case study of cultured red blood cells.

    PubMed

    Mittra, J; Tait, J; Mastroeni, M; Turner, M L; Mountford, J C; Bruce, K

    2015-01-25

    The creation of red blood cells for the blood transfusion markets represents a highly innovative application of regenerative medicine with a medium term (5-10 year) prospect for first clinical studies. This article describes a case study analysis of a project to derive red blood cells from human embryonic stem cells, including the systemic challenges arising from (i) the selection of appropriate and viable regulatory protocols and (ii) technological constraints related to stem cell manufacture and scale up to clinical Good Manufacturing Practice (GMP) standard. The method used for case study analysis (Analysis of Life Science Innovation Systems (ALSIS)) is also innovative, demonstrating a new approach to social and natural science collaboration to foresight product development pathways. Issues arising along the development pathway include cell manufacture and scale-up challenges, affected by regulatory demands emerging from the innovation ecosystem (preclinical testing and clinical trials). Our discussion reflects on the efforts being made by regulators to adapt the current pharmaceuticals-based regulatory model to an allogeneic regenerative medicine product and the broader lessons from this case study for successful innovation and translation of regenerative medicine therapies, including the role of methodological and regulatory innovation in future development in the field. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Regenerative medicine: the emergence of an industry

    PubMed Central

    Nerem, Robert M.

    2010-01-01

    Over the last quarter of a century there has been an emergence of a tissue engineering industry, one that has now evolved into the broader area of regenerative medicine. There have been ‘ups and downs’ in this industry; however, it now appears to be on a track that may be described as ‘back to the future’. The latest data indicate that for 2007 the private sector activity in the world for this industry is approaching $2.5 billion, with 167 companies/business units and more than 6000 employee full time equivalents. Although small compared with the medical device and also the pharmaceutical industries, these numbers are not insignificant. Thus, there is the indication that this industry, and the related technology, may still achieve its potential and address the needs of millions of patients worldwide, in particular those with needs that currently are unmet. PMID:20843840

  17. Concise Review: Amniotic Fluid Stem Cells: The Known, the Unknown, and Potential Regenerative Medicine Applications.

    PubMed

    Loukogeorgakis, Stavros P; De Coppi, Paolo

    2017-07-01

    The amniotic fluid has been identified as an untapped source of cells with broad potential, which possess immunomodulatory properties and do not have the ethical and legal limitations of embryonic stem cells. CD117(c-Kit)+ cells selected from amniotic fluid have been shown to differentiate into cell lineages representing all three embryonic germ layers without generating tumors, making them ideal candidates for regenerative medicine applications. Moreover, their ability to engraft in injured organs and modulate immune and repair responses of host tissues, suggest that transplantation of such cells may be useful for the treatment of various degenerative and inflammatory diseases. Although significant questions remain regarding the origin, heterogeneous phenotype, and expansion potential of amniotic fluid stem cells, evidence to date supports their potential role as a valuable stem cell source for the field of regenerative medicine. Stem Cells 2017;35:1663-1673. © 2016 AlphaMed Press.

  18. Translating stem cell therapies: the role of companion animals in regenerative medicine

    PubMed Central

    Volk, Susan W.; Theoret, Christine

    2013-01-01

    Veterinarians and veterinary medicine have been integral to the development of stem cell therapies. The contributions of large animal experimental models to the development and refinement of modern hematopoietic stem cell transplantation were noted nearly five decades ago. More recent advances in adult stem cell/regenerative cell therapies continue to expand knowledge of the basic biology and clinical applications of stem cells. A relatively liberal legal and ethical regulation of stem cell research in veterinary medicine has facilitated the development and in some instances clinical translation of a variety of cell-based therapies involving hematopoietic (HSC) and mesenchymal stem cells (MSC) as well as other adult regenerative cells and recently embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC). In fact, many of the pioneering developments in these fields of stem cell research have been achieved through collaborations of veterinary and human scientists. This review aims to provide an overview of the contribution of large animal veterinary models in advancing stem cell therapies for both human and clinical veterinary applications. Moreover, in the context of the “One Health Initiative”, the role veterinary patients may play in the future evolution of stem cell therapies for both human and animal patients will be explored. PMID:23627495

  19. Stem Cells and Regenerative Medicine: Myth or Reality of the 21th Century

    PubMed Central

    Stoltz, J.-F.; de Isla, N.; Li, Y. P.; Bensoussan, D.; Zhang, L.; Huselstein, C.; Chen, Y.; Decot, V.; Magdalou, J.; Li, N.; Reppel, L.; He, Y.

    2015-01-01

    Since the 1960s and the therapeutic use of hematopoietic stem cells of bone marrow origin, there has been an increasing interest in the study of undifferentiated progenitors that have the ability to proliferate and differentiate into various tissues. Stem cells (SC) with different potency can be isolated and characterised. Despite the promise of embryonic stem cells, in many cases, adult or even fetal stem cells provide a more interesting approach for clinical applications. It is undeniable that mesenchymal stem cells (MSC) from bone marrow, adipose tissue, or Wharton's Jelly are of potential interest for clinical applications in regenerative medicine because they are easily available without ethical problems for their uses. During the last 10 years, these multipotent cells have generated considerable interest and have particularly been shown to escape to allogeneic immune response and be capable of immunomodulatory activity. These properties may be of a great interest for regenerative medicine. Different clinical applications are under study (cardiac insufficiency, atherosclerosis, stroke, bone and cartilage deterioration, diabetes, urology, liver, ophthalmology, and organ's reconstruction). This review focuses mainly on tissue and organ regeneration using SC and in particular MSC. PMID:26300923

  20. Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine

    PubMed Central

    Rodríguez-Vázquez, Martin; Vega-Ruiz, Brenda; Ramos-Zúñiga, Rodrigo; Saldaña-Koppel, Daniel Alexander; Quiñones-Olvera, Luis Fernando

    2015-01-01

    Tissue engineering is an important therapeutic strategy to be used in regenerative medicine in the present and in the future. Functional biomaterials research is focused on the development and improvement of scaffolding, which can be used to repair or regenerate an organ or tissue. Scaffolds are one of the crucial factors for tissue engineering. Scaffolds consisting of natural polymers have recently been developed more quickly and have gained more popularity. These include chitosan, a copolymer derived from the alkaline deacetylation of chitin. Expectations for use of these scaffolds are increasing as the knowledge regarding their chemical and biological properties expands, and new biomedical applications are investigated. Due to their different biological properties such as being biocompatible, biodegradable, and bioactive, they have given the pattern for use in tissue engineering for repair and/or regeneration of different tissues including skin, bone, cartilage, nerves, liver, and muscle. In this review, we focus on the intrinsic properties offered by chitosan and its use in tissue engineering, considering it as a promising alternative for regenerative medicine as a bioactive polymer. PMID:26504833

  1. Why regenerative medicine needs an extracellular matrix.

    PubMed

    Prestwich, Glenn D; Healy, Kevin E

    2015-01-01

    Regenerative medicine is now coming of age. Many attempts at cell therapy have failed to show significant efficacy, and the umbrella term 'stem cell therapy' is perceived in some quarters as hype or just expensive and unnecessary medical tourism. Here we present a short editorial in three parts. First, we examine the importance of using a semisynthetic extracellular matrix (ECM) mimetic, or sECM, to deliver and retain therapeutic cells at the site of administration. Second, we describe one approach in which biophysical and biochemical properties are tailored to each tissue type, which we call "design for optimal functionality." Third, we describe an alternative approach to sECM design and implementation, called "design for simplicity," in which a deconstructed, minimalist sECM is employed and biology is allowed to perform the customization in situ. We opine that an sECM, whether minimal or instructive, is an essential contributor to improve the outcomes of cell-based therapies.

  2. Liposomes in tissue engineering and regenerative medicine

    PubMed Central

    Monteiro, Nelson; Martins, Albino; Reis, Rui L.; Neves, Nuno M.

    2014-01-01

    Liposomes are vesicular structures made of lipids that are formed in aqueous solutions. Structurally, they resemble the lipid membrane of living cells. Therefore, they have been widely investigated, since the 1960s, as models to study the cell membrane, and as carriers for protection and/or delivery of bioactive agents. They have been used in different areas of research including vaccines, imaging, applications in cosmetics and tissue engineering. Tissue engineering is defined as a strategy for promoting the regeneration of tissues for the human body. This strategy may involve the coordinated application of defined cell types with structured biomaterial scaffolds to produce living structures. To create a new tissue, based on this strategy, a controlled stimulation of cultured cells is needed, through a systematic combination of bioactive agents and mechanical signals. In this review, we highlight the potential role of liposomes as a platform for the sustained and local delivery of bioactive agents for tissue engineering and regenerative medicine approaches. PMID:25401172

  3. Osteoblastic/Cementoblastic and Neural Differentiation of Dental Stem Cells and Their Applications to Tissue Engineering and Regenerative Medicine

    PubMed Central

    Kim, Byung-Chul; Bae, Hojae; Kwon, Il-Keun; Lee, Eun-Jun; Park, Jae-Hong

    2012-01-01

    Recently, dental stem and progenitor cells have been harvested from periodontal tissues such as dental pulp, periodontal ligament, follicle, and papilla. These cells have received extensive attention in the field of tissue engineering and regenerative medicine due to their accessibility and multilineage differentiation capacity. These dental stem and progenitor cells are known to be derived from ectomesenchymal origin formed during tooth development. A great deal of research has been accomplished for directing osteoblastic/cementoblastic differentiation and neural differentiation from dental stem cells. To differentiate dental stem cells for use in tissue engineering and regenerative medicine, there needs to be efficient in vitro differentiation toward the osteoblastic/cementoblastic and neural lineage with well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source. This review focuses on the multilineage differentiation capacity, especially into osteoblastic/cementoblastic lineage and neural lineages, of dental stem cells such as dental pulp stem cells (DPSC), dental follicle stem cells (DFSC), periodontal ligament stem cells (PDLSC), and dental papilla stem cells (DPPSC). It also covers various experimental strategies that could be used to direct lineage-specific differentiation, and their potential applications in tissue engineering and regenerative medicine. PMID:22224548

  4. Osteoblastic/cementoblastic and neural differentiation of dental stem cells and their applications to tissue engineering and regenerative medicine.

    PubMed

    Kim, Byung-Chul; Bae, Hojae; Kwon, Il-Keun; Lee, Eun-Jun; Park, Jae-Hong; Khademhosseini, Ali; Hwang, Yu-Shik

    2012-06-01

    Recently, dental stem and progenitor cells have been harvested from periodontal tissues such as dental pulp, periodontal ligament, follicle, and papilla. These cells have received extensive attention in the field of tissue engineering and regenerative medicine due to their accessibility and multilineage differentiation capacity. These dental stem and progenitor cells are known to be derived from ectomesenchymal origin formed during tooth development. A great deal of research has been accomplished for directing osteoblastic/cementoblastic differentiation and neural differentiation from dental stem cells. To differentiate dental stem cells for use in tissue engineering and regenerative medicine, there needs to be efficient in vitro differentiation toward the osteoblastic/cementoblastic and neural lineage with well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source. This review focuses on the multilineage differentiation capacity, especially into osteoblastic/cementoblastic lineage and neural lineages, of dental stem cells such as dental pulp stem cells (DPSC), dental follicle stem cells (DFSC), periodontal ligament stem cells (PDLSC), and dental papilla stem cells (DPPSC). It also covers various experimental strategies that could be used to direct lineage-specific differentiation, and their potential applications in tissue engineering and regenerative medicine.

  5. Employment of the Triple Helix concept for development of regenerative medicine applications based on human pluripotent stem cells

    PubMed Central

    2014-01-01

    Using human pluripotent stem cells as a source to generate differentiated progenies for regenerative medicine applications has attracted substantial interest during recent years. Having the capability to produce large quantities of human cells that can replace damaged tissue due to disease or injury opens novel avenues for relieving symptoms and also potentially offers cures for many severe human diseases. Although tremendous advancements have been made, there is still much research and development left before human pluripotent stem cell derived products can be made available for cell therapy applications. In order to speed up the development processes, we argue strongly in favor of cross-disciplinary collaborative efforts which have many advantages, especially in a relatively new field such as regenerative medicine based on human pluripotent stem cells. In this review, we aim to illustrate how some of the hurdles for bringing human pluripotent stem cell derivatives from bench-to-bed can be effectively addressed through the establishment of collaborative programs involving academic institutions, biotech industries, and pharmaceutical companies. By taking advantage of the strengths from each organization, innovation and productivity can be maximized from a resource perspective and thus, the chances of successfully bringing novel regenerative medicine treatment options to patients increase. PMID:24872863

  6. Emerging Applications of Stem Cell and Regenerative Medicine to Sports Injuries

    PubMed Central

    Ajibade, David A.; Vance, Danica D.; Hare, Joshua M.; Kaplan, Lee D.; Lesniak, Bryson P.

    2014-01-01

    Background: The treatment of sports-related musculoskeletal injuries with stem cells has become more publicized because of recent reports of high-profile athletes undergoing stem cell procedures. There has been increased interest in defining the parameters of safety and efficacy and the indications for potential use of stem cells in clinical practice. Purpose: To review the role of regenerative medicine in the treatment of sports-related injuries. Study Design: Review. Method: Relevant studies were identified through a PubMed search combining the terms stem cells and cartilage, ligament, tendon, muscle, and bone from January 2000 to August 2013. Studies and works cited in these studies were also reviewed. Results: Treatment of sports-related injuries with stem cells shows potential for clinical efficacy from the data available from basic science and animal studies. Conclusion: Cell-based therapies and regenerative medicine offer safe and potentially efficacious treatment for sports-related musculoskeletal injuries. Basic science and preclinical studies that support the possibility of enhanced recovery from sports injuries using cell-based therapies are accumulating; however, more clinical evidence is necessary to define the indications and parameters for their use. Accordingly, exposing patients to cell-based therapies could confer an unacceptable risk profile with minimal or no benefit. Continued clinical testing with animal models and clinical trials is necessary to determine the relative risks and benefits as well as the indications and methodology of treatment. PMID:26535296

  7. Rapid End-Group Modification of Polysaccharides for Biomaterial Applications in Regenerative Medicine.

    PubMed

    Bondalapati, Somasekhar; Ruvinov, Emil; Kryukov, Olga; Cohen, Smadar; Brik, Ashraf

    2014-09-15

    Polysaccharides have emerged as important functional materials because of their unique properties such as biocompatibility, biodegradability, and availability of reactive sites for chemical modifications to optimize their properties. The overwhelming majority of the methods to modify polysaccharides employ random chemical modifications, which often improve certain properties while compromising others. On the other hand, the employed methods for selective modifications often require excess of coupling partners, long reaction times and are limited in their scope and wide applicability. To circumvent these drawbacks, aniline-catalyzed oxime formation is developed for selective modification of a variety of polysaccharides through their reducing end. Notably, it is found that for efficient oxime formation, different conditions are required depending on the composition of the specific polysaccharide. It is also shown how our strategy can be applied to improve the physical and functional properties of alginate hydrogels, which are widely used in tissue engineering and regenerative medicine applications. While the randomly and selectively modified alginate exhibits similar viscoelastic properties, the latter forms significantly more stable hydrogel and superior cell adhesive and functional properties. Our results show that the developed conjugation reaction is robust and should open new opportunities for preparing polysaccharide-based functional materials with unique properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Embryonic and Induced Pluripotent Stem Cells: Understanding, Creating, and Exploiting the Nano-Niche for Regenerative Medicine

    PubMed Central

    2013-01-01

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have the capacity to differentiate into any specialized cell type of the human body, and therefore, ESC/iPSC-derived cell types offer great potential for regenerative medicine. However, key to realizing this potential requires a strong understanding of stem cell biology, techniques to maintain stem cells, and strategies to manipulate cells to efficiently direct cell differentiation toward a desired cell type. As nanoscale science and engineering continues to produce novel nanotechnology platforms, which inform, infiltrate, and impinge on many aspects of everyday life, it is no surprise that stem cell research is turning toward developments in nanotechnology to answer research questions and to overcome obstacles in regenerative medicine. Here we discuss recent advances in ESC and iPSC manipulation using nanomaterials and highlight future challenges within this area of research. PMID:23414366

  9. MicroRNA delivery for regenerative medicine.

    PubMed

    Peng, Bo; Chen, Yongming; Leong, Kam W

    2015-07-01

    MicroRNA (miRNA) directs post-transcriptional regulation of a network of genes by targeting mRNA. Although relatively recent in development, many miRNAs direct differentiation of various stem cells including induced pluripotent stem cells (iPSCs), a major player in regenerative medicine. An effective and safe delivery of miRNA holds the key to translating miRNA technologies. Both viral and nonviral delivery systems have seen success in miRNA delivery, and each approach possesses advantages and disadvantages. A number of studies have demonstrated success in augmenting osteogenesis, improving cardiogenesis, and reducing fibrosis among many other tissue engineering applications. A scaffold-based approach with the possibility of local and sustained delivery of miRNA is particularly attractive since the physical cues provided by the scaffold may synergize with the biochemical cues induced by miRNA therapy. Herein, we first briefly cover the application of miRNA to direct stem cell fate via replacement and inhibition therapies, followed by the discussion of the promising viral and nonviral delivery systems. Next we present the unique advantages of a scaffold-based delivery in achieving lineage-specific differentiation and tissue development. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Hurdles in tissue engineering/regenerative medicine product commercialization: a survey of North American academia and industry.

    PubMed

    Johnson, Peter C; Bertram, Timothy A; Tawil, Bill; Hellman, Kiki B

    2011-01-01

    The Tissue Engineering and Regenerative Medicine International Society-North America (TERMIS-NA) Industry Committee was formed in February 2009 to address the common roadblocks (i.e., hurdles) in the commercialization of tissue engineering/regenerative medicine products for its members. A semiquantitative online opinion survey instrument that delineated potentially sensitive hurdles to commercialization in each of the TERMIS constituency groups that generally participate in the stream of technology commercialization (academia, startup companies, development-stage companies, and established companies) was developed. The survey was opened to each of the 863 members of TERMIS-NA for a period of 5 weeks from October to November 2009. By its conclusion, 215 members (25%) had responded. Their proportionate numbers were closely representative of TERMIS-NA constituencies. The resulting data delineate what each group considers to be its most difficult and also its easiest hurdles in taking a technology to full product development. In addition, each group ranked its perception of the difficult and easy hurdles for all other groups, enabling an assessment of the degree of understanding between groups. The data depict not only critical hurdles in the path to commercialization at each stage in product development but also a variable understanding of perceptions of hurdles between groups. This assessment has provided the Industry Committee with activity foci needed to assist individual groups in the technology-commercialization stream. Moreover, the analysis suggests that enhanced communication between groups engaged in commercialization will be critical to the successful development of products in the tissue engineering/regenerative medicine sector.

  11. [Regenerative medicine: orthopaedical applications and medico legal questions].

    PubMed

    Ricci, S; Ricci, O; Tucci, C E; Massoni, F; Sarra, M V; Ricci, S

    2012-01-01

    Over the last decades, the increase in the global population's mean age has implied a corresponding increase in degenerative disease affecting various anatomical areas and tissues, including bones and cartilages, thus provoking a rising number of disabilities and a wider usage of drugs, mostly anti-inflammatory and cortisone. New developments in technologic and biomedical fields gave birth to new subjects, such as tissue engineering, cell therapy, gene therapy that, by and large, create a knowledge network falling under the concept of Regenerative Medicine. This science is essentially based on the usage of stem cells that can replicate and renovate themselves originating, if adequately stimulated, a number of cell types. Inter alia, in orthopaedic field a particular type of adult stem cells is used, the mesenchymal stem cells (MSCs). If combined with synthetic material produced in laboratories, the usage of these cells has provided inspiration for new study interests; today, it can be applied in various degenerative and post-traumatic pathologies, with great therapeutic benefits for the patient. Actually, many studies write about an improvement in patients' life quality. In this sense appear significant reflections on legal medicine, both in accidents and insurance, of this innovative therapeutic alternative and is hopefully an equally valid process of improvement of regulatory and case law.

  12. The assessment and appraisal of regenerative medicines and cell therapy products: an exploration of methods for review, economic evaluation and appraisal.

    PubMed

    Hettle, Robert; Corbett, Mark; Hinde, Sebastian; Hodgson, Robert; Jones-Diette, Julie; Woolacott, Nerys; Palmer, Stephen

    2017-02-01

    The National Institute for Health and Care Excellence (NICE) commissioned a 'mock technology appraisal' to assess whether changes to its methods and processes are needed. This report presents the findings of independent research commissioned to inform this appraisal and the deliberations of a panel convened by NICE to evaluate the mock appraisal. Our research included reviews to identify issues, analysis methods and conceptual differences and the relevance of alternative decision frameworks, alongside the development of an exemplar case study of chimeric antigen receptor (CAR) T-cell therapy for treating acute lymphoblastic leukaemia. An assessment of previous evaluations of regenerative medicines found that, although there were a number of evidential challenges, none was unique to regenerative medicines or was beyond the scope of existing methods used to conceptualise decision uncertainty. Regarding the clinical evidence for regenerative medicines, the issues were those associated with a limited evidence base but were not unique to regenerative medicines: small non-randomised studies, high variation in response and the intervention subject to continuing development. The relative treatment effects generated from single-arm trials are likely to be optimistic unless it is certain that the historical data have accurately estimated the efficacy of the control agent. Pivotal trials may use surrogate end points, which, on average, overestimate treatment effects. To reduce overall uncertainty, multivariate meta-analysis of all available data should be considered. Incorporating indirectly relevant but more reliable (more mature) data into the analysis can also be considered; such data may become available as a result of the evolving regulatory pathways being developed by the European Medicines Agency. For the exemplar case of CAR T-cell therapy, target product profiles (TPPs) were developed, which considered the 'curative' and 'bridging to stem-cell transplantation

  13. New advances in stem cell research: practical implications for regenerative medicine.

    PubMed

    Ratajczak, Mariusz Z; Jadczyk, Tomasz; Pędziwiatr, Daniel; Wojakowski, Wojciech

    2014-01-01

    Regenerative medicine is searching for stem cells that can be safely and efficiently employed for regeneration of damaged solid organs (e.g., the heart, brain, or liver). Ideal for this purpose would be pluripotent stem cells, which, according to their definition, have broad potential to differentiate into all types of adult cells. For almost 20 years, there have been unsuccessful attempts to harness controversial embryonic stem cells (ESCs) isolated from embryos. Induced pluripotent stem cells (iPSCs), generated by genetic modification of adult somatic cells, are a more promising source. However, both iPSC and ESCs are associated with a risk of teratoma formation. At the same time, various types of more‑differentiated adult stem and progenitor cells derived from the bone marrow, umbilical cord blood, mobilized peripheral blood, or fat tissue are being employed in clinical trials to regenerate damaged solid organs. However, for most of these cells, there is a lack of convincing documentation for successful regeneration of the treated organs. Beneficial effects of those cells might be explained by paracrine effects of growth factors, cytokines, chemokines, bioactive lipids, and extracellular microvesicles, which are released from the cells and have trophic, antiapoptotic, and angiopoietic effects. Nevertheless, there is evidence that adult tissues harbor a promising population of very rare dormant stem cells with broad differentiation potential. In this review, we will discuss various potential sources of stem cells for regenerative medicine and the mechanisms that explain some of their beneficial effects as well as highlight the results of the first clinical trials.  

  14. Tissue engineering and regenerative medicine approaches to enhance the functional response to skeletal muscle injury.

    PubMed

    Sicari, Brian M; Dearth, Christopher L; Badylak, Stephen F

    2014-01-01

    The well-recognized ability of skeletal muscle for functional and structural regeneration following injury is severely compromised in degenerative diseases and in volumetric muscle loss. Tissue engineering and regenerative medicine strategies to support muscle reconstruction have typically been cell-centric with approaches that involve the exogenous delivery of cells with myogenic potential. These strategies have been limited by poor cell viability and engraftment into host tissue. Alternative approaches have involved the use of biomaterial scaffolds as substrates or delivery vehicles for exogenous myogenic progenitor cells. Acellular biomaterial scaffolds composed of mammalian extracellular matrix (ECM) have also been used as an inductive niche to promote the recruitment and differentiation of endogenous myogenic progenitor cells. An acellular approach, which activates or utilizes endogenous cell sources, obviates the need for exogenous cell administration and provides an advantage for clinical translation. The present review examines the state of tissue engineering and regenerative medicine therapies directed at augmenting the skeletal muscle response to injury and presents the pros and cons of each with respect to clinical translation. Copyright © 2013 Wiley Periodicals, Inc.

  15. REGENERATIVE MEDICINE AS APPLIED TO GENERAL SURGERY

    PubMed Central

    Orlando, Giuseppe; Wood, Kathryn J; De Coppi, Paolo; Baptista, Pedro M; Binder, Kyle W; Bitar, Khalil N; Breuer, Christopher; Burnett, Luke; Christ, George; Farney, Alan; Figliuzzi, Marina; Holmes, James H; Koch, Kenneth; Macchiarini, Paolo; Sani, Sayed-Hadi Mirmalek; Opara, Emmanuel; Remuzzi, Andrea; Rogers, Jeffrey; Saul, Justin M; Seliktar, Dror; Shapira-Schweitzer, Keren; Smith, Tom; Solomon, Daniel; Van Dyke, Mark; Yoo, James J; Zhang, Yuanyuan; Atala, Anthony; Stratta, Robert J; Soker, Shay

    2012-01-01

    The present review illustrates the state of the art of regenerative medicine (RM) as applied to surgical diseases and demonstrates that this field has the potential to address some of the unmet needs in surgery. RM is a multidisciplinary field whose purpose is to regenerate in vivo or ex vivo human cells, tissues or organs in order to restore or establish normal function through exploitation of the potential to regenerate, which is intrinsic to human cells, tissues and organs. RM uses cells and/or specially designed biomaterials to reach its goals and RM-based therapies are already in use in several clinical trials in most fields of surgery. The main challenges for investigators are threefold: Creation of an appropriate microenvironment ex vivo that is able to sustain cell physiology and function in order to generate the desired cells or body parts; identification and appropriate manipulation of cells that have the potential to generate parenchymal, stromal and vascular components on demand, both in vivo and ex vivo; and production of smart materials that are able to drive cell fate. PMID:22330032

  16. The potential role of telocytes in Tissue Engineering and Regenerative Medicine.

    PubMed

    Boos, Anja M; Weigand, Annika; Brodbeck, Rebekka; Beier, Justus P; Arkudas, Andreas; Horch, Raymund E

    2016-07-01

    Research and ideas for potential applications in the field of Tissue Engineering (TE) and Regenerative Medicine (RM) have been constantly increasing over recent years, basically driven by the fundamental human dream of repairing and regenerating lost tissue and organ functions. The basic idea of TE is to combine cells with putative stem cell properties with extracellular matrix components, growth factors and supporting matrices to achieve independently growing tissue. As a side effect, in the past years, more insights have been gained into cell-cell interaction and how to manipulate cell behavior. However, to date the ideal cell source has still to be found. Apart from commonly known various stem cell sources, telocytes (TC) have recently attracted increasing attention because they might play a potential role for TE and RM. It becomes increasingly evident that TC provide a regenerative potential and act in cellular communication through their network-forming telopodes. While TE in vitro experiments can be the first step, the key for elucidating their regenerative role will be the investigation of the interaction of TC with the surrounding tissue. For later clinical applications further steps have to include an upscaling process of vascularization of engineered tissue. Arteriovenous loop models to vascularize such constructs provide an ideal platform for preclinical testing of future therapeutic concepts in RM. The following review article should give an overview of what is known so far about the potential role of TC in TE and RM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Thermal Inkjet Printing in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Cui, Xiaofeng; Boland, Thomas; D’Lima, Darryl D.; Lotz, Martin K.

    2013-01-01

    With the advantages of high throughput, digital control, and highly accurate placement of cells and biomaterial scaffold to the desired 2D and 3D locations, bioprinting has great potential to develop promising approaches in translational medicine and organ replacement. The most recent advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review. Bioprinting has no or little side effect to the printed mammalian cells and it can conveniently combine with gene transfection or drug delivery to the ejected living systems during the precise placement for tissue construction. With layer-by-layer assembly, 3D tissues with complex structures can be printed using scanned CT or MRI images. Vascular or nerve systems can be enabled simultaneously during the organ construction with digital control. Therefore, bioprinting is the only solution to solve this critical issue in thick and complex tissues fabrication with vascular system. Collectively, bioprinting based on thermal inkjet has great potential and broad applications in tissue engineering and regenerative medicine. This review article introduces some important patents related to bioprinting living systems and the bioprinting in tissue engineering field. PMID:22436025

  18. Thermal inkjet printing in tissue engineering and regenerative medicine.

    PubMed

    Cui, Xiaofeng; Boland, Thomas; D'Lima, Darryl D; Lotz, Martin K

    2012-08-01

    With the advantages of high throughput, digital control, and highly accurate placement of cells and biomaterial scaffold to the desired 2D and 3D locations, bioprinting has great potential to develop promising approaches in translational medicine and organ replacement. The most recent advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review. Bioprinting has no or little side effect to the printed mammalian cells and it can conveniently combine with gene transfection or drug delivery to the ejected living systems during the precise placement for tissue construction. With layer-by-layer assembly, 3D tissues with complex structures can be printed using scanned CT or MRI images. Vascular or nerve systems can be enabled simultaneously during the organ construction with digital control. Therefore, bioprinting is the only solution to solve this critical issue in thick and complex tissues fabrication with vascular system. Collectively, bioprinting based on thermal inkjet has great potential and broad applications in tissue engineering and regenerative medicine. This review article introduces some important patents related to bioprinting of living systems and the applications of bioprinting in tissue engineering field.

  19. Induced pluripotent stem cells (iPSCs) derived from different cell sources and their potential for regenerative and personalized medicine.

    PubMed

    Shtrichman, R; Germanguz, I; Itskovitz-Eldor, J

    2013-06-01

    Human induced pluripotent stem cells (hiPSCs) have great potential as a robust source of progenitors for regenerative medicine. The novel technology also enables the derivation of patient-specific cells for applications to personalized medicine, such as for personal drug screening and toxicology. However, the biological characteristics of iPSCs are not yet fully understood and their similarity to human embryonic stem cells (hESCs) is still unresolved. Variations among iPSCs, resulting from their original tissue or cell source, and from the experimental protocols used for their derivation, significantly affect epigenetic properties and differentiation potential. Here we review the potential of iPSCs for regenerative and personalized medicine, and assess their expression pattern, epigenetic memory and differentiation capabilities in relation to their parental tissue source. We also summarize the patient-specific iPSCs that have been derived for applications in biological research and drug discovery; and review risks that must be overcome in order to use iPSC technology for clinical applications.

  20. Regenerative Rehabilitation: Applied Biophysics Meets Stem Cell Therapeutics.

    PubMed

    Rando, Thomas A; Ambrosio, Fabrisia

    2018-03-01

    The emerging field of regenerative rehabilitation integrates biological and bioengineering advances in regenerative medicine with rehabilitative sciences. Here we highlight recent stem cell-based examples of the regenerative rehabilitation paradigm to promote tissue repair and regeneration, and we discuss remaining challenges and future directions for the field. Published by Elsevier Inc.

  1. Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine.

    PubMed

    Onoshima, Daisuke; Yukawa, Hiroshi; Baba, Yoshinobu

    2015-12-01

    A field of recent diagnostics and therapeutics has been advanced with quantum dots (QDs). QDs have developed into new formats of biomolecular sensing to push the limits of detection in biology and medicine. QDs can be also utilized as bio-probes or labels for biological imaging of living cells and tissues. More recently, QDs has been demonstrated to construct a multifunctional nanoplatform, where the QDs serve not only as an imaging agent, but also a nanoscaffold for diagnostic and therapeutic modalities. This review highlights the promising applications of multi-functionalized QDs as advanced nanosensors for diagnosing cancer and as innovative fluorescence probes for in vitro or in vivo stem cell imaging in regenerative medicine. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Toward a convergence of regenerative medicine, rehabilitation, and neuroprosthetics.

    PubMed

    Aravamudhan, Shyam; Bellamkonda, Ravi V

    2011-11-01

    No effective therapeutic interventions exist for severe neural pathologies, despite significant advances in regenerative medicine, rehabilitation, and neuroprosthetics. Our current hypothesis is that a specific combination of tissue engineering, pharmacology, cell replacement, drug delivery, and electrical stimulation, together with plasticity-promoting and locomotor training (neurorehabilitation) is necessary to interact synergistically in order to activate and enable all damaged circuits. We postulate that various convergent themes exist among the different therapeutic fields. Therefore, the objective of this review is to highlight the convergent themes, which we believe have a common goal of restoring function after neural damage. The convergent themes discussed in this review include modulation of inflammation and secondary damage, encouraging endogenous repair/regeneration (using scaffolds, cell transplantation, and drug delivery), application of electrical fields to modulate healing and/or activity, and finally modulation of plasticity.

  3. Honey: an effective regenerative medicine product in wound management.

    PubMed

    Martinotti, Simona; Bucekova, Marcela; Majtan, Juraj; Ranzato, Elia

    2018-05-10

    Honey has successfully been used in treatment of a broad spectrum of injuries including burns and non-healing wounds. It acts as antibacterial and anti-biofilm agent with anti/pro-inflammatory properties. However, besides these traditional properties, recent evidence suggests that honey is also an immunomodulator in wound healing and contains several bee and plant-derived components that may speed up the wound healing and tissue regeneration process. Identifying their exact mechanism of action allows better understanding of honey healing properties and promotes its wider translation into clinical practice. This review will discuss the physiological basis for the use of honey in wound management, its current clinical uses, as well as the potential role of honey bioactive compounds in dermal regenerative medicine and tissue re-modelling. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Convergence of regenerative medicine and synthetic biology to develop standardized and validated models of human diseases with clinical relevance.

    PubMed

    Hutmacher, Dietmar Werner; Holzapfel, Boris Michael; De-Juan-Pardo, Elena Maria; Pereira, Brooke Anne; Ellem, Stuart John; Loessner, Daniela; Risbridger, Gail Petuna

    2015-12-01

    In order to progress beyond currently available medical devices and implants, the concept of tissue engineering has moved into the centre of biomedical research worldwide. The aim of this approach is not to replace damaged tissue with an implant or device but rather to prompt the patient's own tissue to enact a regenerative response by using a tissue-engineered construct to assemble new functional and healthy tissue. More recently, it has been suggested that the combination of Synthetic Biology and translational tissue-engineering techniques could enhance the field of personalized medicine, not only from a regenerative medicine perspective, but also to provide frontier technologies for building and transforming the research landscape in the field of in vitro and in vivo disease models. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  5. Generation and Assessment of Functional Biomaterial Scaffolds for Applications in Cardiovascular Tissue Engineering and Regenerative Medicine

    PubMed Central

    Hinderer, Svenja; Brauchle, Eva

    2015-01-01

    Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug‐free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus‐free vascular substitutes that are smaller than 6 mm, and stem cell‐recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off‐the‐shelf biomaterials as well as automatable and up‐scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact‐ and marker‐free biomaterial and extracellular matrix assessment methods are highlighted. PMID:25778713

  6. Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel.

    PubMed

    Wang, Zheng; Zhang, Yeshun; Zhang, Jinxiang; Huang, Lei; Liu, Jia; Li, Yongkui; Zhang, Guozheng; Kundu, Subhas C; Wang, Lin

    2014-11-20

    Sericin, a major component of silk, has a long history of being discarded as a waste during silk processing. The value of sericin for tissue engineering is underestimated and its potential application in regenerative medicine has just begun to be explored. Here we report the successful fabrication and characterization of a covalently-crosslinked 3D pure sericin hydrogel for delivery of cells and drugs. This hydrogel is injectable, permitting its implantation through minimally invasive approaches. Notably, this hydrogel is found to exhibit photoluminescence, enabling bioimaging and in vivo tracking. Moreover, this hydrogel system possesses excellent cell-adhesive capability, effectively promoting cell attachment, proliferation and long-term survival of various types of cells. Further, the sericin hydrogel releases bioactive reagents in a sustained manner. Additionally, this hydrogel demonstrates good elasticity, high porosity, and pH-dependent degradation dynamics, which are advantageous for this sericin hydrogel to serve as a delivery vehicle for cells and therapeutic drugs. With all these unique features, it is expected that this sericin hydrogel will have wide utility in the areas of tissue engineering and regenerative medicine.

  7. Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel

    PubMed Central

    Wang, Zheng; Zhang, Yeshun; Zhang, Jinxiang; Huang, Lei; Liu, Jia; Li, Yongkui; Zhang, Guozheng; Kundu, Subhas C.; Wang, Lin

    2014-01-01

    Sericin, a major component of silk, has a long history of being discarded as a waste during silk processing. The value of sericin for tissue engineering is underestimated and its potential application in regenerative medicine has just begun to be explored. Here we report the successful fabrication and characterization of a covalently-crosslinked 3D pure sericin hydrogel for delivery of cells and drugs. This hydrogel is injectable, permitting its implantation through minimally invasive approaches. Notably, this hydrogel is found to exhibit photoluminescence, enabling bioimaging and in vivo tracking. Moreover, this hydrogel system possesses excellent cell-adhesive capability, effectively promoting cell attachment, proliferation and long-term survival of various types of cells. Further, the sericin hydrogel releases bioactive reagents in a sustained manner. Additionally, this hydrogel demonstrates good elasticity, high porosity, and pH-dependent degradation dynamics, which are advantageous for this sericin hydrogel to serve as a delivery vehicle for cells and therapeutic drugs. With all these unique features, it is expected that this sericin hydrogel will have wide utility in the areas of tissue engineering and regenerative medicine. PMID:25412301

  8. Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Zhang, Yeshun; Zhang, Jinxiang; Huang, Lei; Liu, Jia; Li, Yongkui; Zhang, Guozheng; Kundu, Subhas C.; Wang, Lin

    2014-11-01

    Sericin, a major component of silk, has a long history of being discarded as a waste during silk processing. The value of sericin for tissue engineering is underestimated and its potential application in regenerative medicine has just begun to be explored. Here we report the successful fabrication and characterization of a covalently-crosslinked 3D pure sericin hydrogel for delivery of cells and drugs. This hydrogel is injectable, permitting its implantation through minimally invasive approaches. Notably, this hydrogel is found to exhibit photoluminescence, enabling bioimaging and in vivo tracking. Moreover, this hydrogel system possesses excellent cell-adhesive capability, effectively promoting cell attachment, proliferation and long-term survival of various types of cells. Further, the sericin hydrogel releases bioactive reagents in a sustained manner. Additionally, this hydrogel demonstrates good elasticity, high porosity, and pH-dependent degradation dynamics, which are advantageous for this sericin hydrogel to serve as a delivery vehicle for cells and therapeutic drugs. With all these unique features, it is expected that this sericin hydrogel will have wide utility in the areas of tissue engineering and regenerative medicine.

  9. The regenerative medicine in oral and maxillofacial surgery: the most important innovations in the clinical application of mesenchymal stem cells.

    PubMed

    Tatullo, Marco; Marrelli, Massimo; Paduano, Francesco

    2015-01-01

    Regenerative medicine is an emerging field of biotechnology that combines various aspects of medicine, cell and molecular biology, materials science and bioengineering in order to regenerate, repair or replace tissues. The oral surgery and maxillofacial surgery have a role in the treatment of traumatic or degenerative diseases that lead to a tissue loss: frequently, to rehabilitate these minuses, you should use techniques that have been improved over time. Since 1990, we started with the use of growth factors and platelet concentrates in oral and maxillofacial surgery; in the following period we start to use biomaterials, as well as several type of scaffolds and autologous tissues. The frontier of regenerative medicine nowadays is represented by the mesenchymal stem cells (MSCs): overcoming the ethical problems thanks to the use of mesenchymal stem cells from adult patient, and with the increasingly sophisticated technology to support their manipulation, MSCs are undoubtedly the future of medicine regenerative and they are showing perspectives unimaginable just a few years ago. Most recent studies are aimed to tissues regeneration using MSCs taken from sites that are even more accessible and rich in stem cells: the oral cavity turned out to be an important source of MSCs with the advantage to be easily accessible to the surgeon, thus avoiding to increase the morbidity of the patient. The future is the regeneration of whole organs or biological systems consisting of many different tissues, starting from an initial stem cell line, perhaps using innovative scaffolds together with the nano-engineering of biological tissues.

  10. Sparse QSAR modelling methods for therapeutic and regenerative medicine

    NASA Astrophysics Data System (ADS)

    Winkler, David A.

    2018-02-01

    The quantitative structure-activity relationships method was popularized by Hansch and Fujita over 50 years ago. The usefulness of the method for drug design and development has been shown in the intervening years. As it was developed initially to elucidate which molecular properties modulated the relative potency of putative agrochemicals, and at a time when computing resources were scarce, there is much scope for applying modern mathematical methods to improve the QSAR method and to extending the general concept to the discovery and optimization of bioactive molecules and materials more broadly. I describe research over the past two decades where we have rebuilt the unit operations of the QSAR method using improved mathematical techniques, and have applied this valuable platform technology to new important areas of research and industry such as nanoscience, omics technologies, advanced materials, and regenerative medicine. This paper was presented as the 2017 ACS Herman Skolnik lecture.

  11. Induced Pluripotent Stem Cell Technology in Regenerative Medicine and Biology

    NASA Astrophysics Data System (ADS)

    Pei, Duanqing; Xu, Jianyong; Zhuang, Qiang; Tse, Hung-Fat; Esteban, Miguel A.

    The potential of human embryonic stem cells (ESCs) for regenerative medicine is unquestionable, but practical and ethical considerations have hampered clinical application and research. In an attempt to overcome these issues, the conversion of somatic cells into pluripotent stem cells similar to ESCs, commonly termed nuclear reprogramming, has been a top objective of contemporary biology. More than 40 years ago, King, Briggs, and Gurdon pioneered somatic cell nuclear reprogramming in frogs, and in 1981 Evans successfully isolated mouse ESCs. In 1997 Wilmut and collaborators produced the first cloned mammal using nuclear transfer, and then Thomson obtained human ESCs from in vitro fertilized blastocysts in 1998. Over the last 2 decades we have also seen remarkable findings regarding how ESC behavior is controlled, the importance of which should not be underestimated. This knowledge allowed the laboratory of Shinya Yamanaka to overcome brilliantly conceptual and technical barriers in 2006 and generate induced pluripotent stem cells (iPSCs) from mouse fibroblasts by overexpressing defined combinations of ESC-enriched transcription factors. Here, we discuss some important implications of human iPSCs for biology and medicine and also point to possible future directions.

  12. Regenerative Rehabilitation: Combining Stem Cell Therapies and Activity-Dependent Stimulation.

    PubMed

    Moritz, Chet T; Ambrosio, Fabrisia

    2017-07-01

    The number of clinical trials in regenerative medicine is burgeoning, and stem cell/tissue engineering technologies hold the possibility of becoming the standard of care for a multitude of diseases and injuries. Advances in regenerative biology reveal novel molecular and cellular targets, with potential to optimize tissue healing and functional recovery, thereby refining rehabilitation clinical practice. The purpose of this review is to (1) highlight the potential for synergy between the fields of regenerative medicine and rehabilitation, a convergence of disciplines known as regenerative rehabilitation; (2) provide translational examples of regenerative rehabilitation within the context of neuromuscular injuries and diseases; and (3) offer recommendations for ways to leverage activity dependence via combined therapy and technology, with the goal of enhancing long-term recovery. The potential clinical benefits of regenerative rehabilitation will likely become a critical aspect in the standard of care for many neurological and musculoskeletal disorders.

  13. ECM and ECM-like materials - Biomaterials for applications in regenerative medicine and cancer therapy.

    PubMed

    Hinderer, Svenja; Layland, Shannon Lee; Schenke-Layland, Katja

    2016-02-01

    Regenerative strategies such as stem cell-based therapies and tissue engineering applications are being developed with the aim to replace, remodel, regenerate or support damaged tissues and organs. In addition to careful cell type selection, the design of appropriate three-dimensional (3D) scaffolds is essential for the generation of bio-inspired replacement tissues. Such scaffolds are usually made of degradable or non-degradable biomaterials and can serve as cell or drug carriers. The development of more effective and efficient drug carrier systems is also highly relevant for novel cancer treatment strategies. In this review, we provide a summary of current approaches that employ ECM and ECM-like materials, or ECM-synthetic polymer hybrids, as biomaterials in the field of regenerative medicine. We further discuss the utilization of such materials for cell and drug delivery, and highlight strategies for their use as vehicles for cancer therapy. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Surface functionalization of nanobiomaterials for application in stem cell culture, tissue engineering, and regenerative medicine.

    PubMed

    Rana, Deepti; Ramasamy, Keerthana; Leena, Maria; Jiménez, Constanza; Campos, Javier; Ibarra, Paula; Haidar, Ziyad S; Ramalingam, Murugan

    2016-05-01

    Stem cell-based approaches offer great application potential in tissue engineering and regenerative medicine owing to their ability of sensing the microenvironment and respond accordingly (dynamic behavior). Recently, the combination of nanobiomaterials with stem cells has paved a great way for further exploration. Nanobiomaterials with engineered surfaces could mimic the native microenvironment to which the seeded stem cells could adhere and migrate. Surface functionalized nanobiomaterial-based scaffolds could then be used to regulate or control the cellular functions to culture stem cells and regenerate damaged tissues or organs. Therefore, controlling the interactions between nanobiomaterials and stem cells is a critical factor. However, surface functionalization or modification techniques has provided an alternative approach for tailoring the nanobiomaterials surface in accordance to the physiological surrounding of a living cells; thereby, enhancing the structural and functional properties of the engineered tissues and organs. Currently, there are a variety of methods and technologies available to modify the surface of biomaterials according to the specific cell or tissue properties to be regenerated. This review highlights the trends in surface modification techniques for nanobiomaterials and the biological relevance in stem cell-based tissue engineering and regenerative medicine. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:554-567, 2016. © 2016 American Institute of Chemical Engineers.

  15. Generation and Assessment of Functional Biomaterial Scaffolds for Applications in Cardiovascular Tissue Engineering and Regenerative Medicine.

    PubMed

    Hinderer, Svenja; Brauchle, Eva; Schenke-Layland, Katja

    2015-11-18

    Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug-free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus-free vascular substitutes that are smaller than 6 mm, and stem cell-recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off-the-shelf biomaterials as well as automatable and up-scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact- and marker-free biomaterial and extracellular matrix assessment methods are highlighted. © 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Recent Developments in Vascular Imaging Techniques in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Upputuri, Paul Kumar; Sivasubramanian, Kathyayini; Mark, Chong Seow Khoon; Pramanik, Manojit

    2015-01-01

    Adequate vascularisation is key in determining the clinical outcome of stem cells and engineered tissue in regenerative medicine. Numerous imaging modalities have been developed and used for the visualization of vascularisation in tissue engineering. In this review, we briefly discuss the very recent advances aiming at high performance imaging of vasculature. We classify the vascular imaging modalities into three major groups: nonoptical methods (X-ray, magnetic resonance, ultrasound, and positron emission imaging), optical methods (optical coherence, fluorescence, multiphoton, and laser speckle imaging), and hybrid methods (photoacoustic imaging). We then summarize the strengths and challenges of these methods for preclinical and clinical applications. PMID:25821821

  17. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine.

    PubMed

    Nowakowski, Adam; Walczak, Piotr; Janowski, Miroslaw; Lukomska, Barbara

    2015-10-01

    Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.

  18. Regenerative medicine in Brazil: small but innovative.

    PubMed

    McMahon, Dominique S; Singer, Peter A; Daar, Abdallah S; Thorsteinsdóttir, Halla

    2010-11-01

    Although Brazil has received attention for conducting one of the world's largest stem cell clinical trials for heart disease, little has been published regarding Brazil's regenerative medicine (RM) sector. Here we present a comprehensive case study of RM in Brazil, including analysis of the current activity, the main motivations for engaging in RM and the remaining challenges to development in this field. Our case study is primarily based on semi-structured interviews with experts on RM in Brazil, including researchers, policymakers, clinicians, representatives of firms and regulators. Driven by domestic health needs and strategic government support, Brazil is producing innovative RM research, particularly for clinical research in cardiology, orthopedics, diabetes and neurology. We describe the main RM research currently taking place in Brazil, as well as some of the economic, regulatory and policy events that have created a favorable environment for RM development. Brazilian RM researchers need to overcome several formidable challenges to research: research funding is inconsistent, importation of materials is costly and slow, and weak linkages between universities, hospitals and industry impede translational research. Although Brazil's contribution to the RM sector is small, its niche emphasis on clinical applications may become of global importance, particularly if Brazil manages to address the challenges currently impinging on RM innovation.

  19. Genetic and Epigenetic Regulation of Human Cardiac Reprogramming and Differentiation in Regenerative Medicine

    PubMed Central

    Burridge, Paul W.; Sharma, Arun; Wu, Joseph C.

    2016-01-01

    Regeneration or replacement of lost cardiomyocytes within the heart has the potential to revolutionize cardiovascular medicine. Numerous methodologies have been used to achieve this aim, including the engraftment of bone marrow- and heart-derived cells as well as the identification of modulators of adult cardiomyocyte proliferation. Recently, the conversion of human somatic cells into induced pluripotent stem cells and induced cardiomyocyte-like cells has transformed potential approaches toward this goal, and the engraftment of cardiac progenitors derived from human embryonic stem cells into patients is now feasible. Here we review recent advances in our understanding of the genetic and epigenetic control of human cardiogenesis, cardiac differentiation, and the induced reprogramming of somatic cells to cardiomyocytes. We also cover genetic programs for inducing the proliferation of endogenous cardiomyocytes and discuss the genetic state of cells used in cardiac regenerative medicine. PMID:26631515

  20. Current concepts: tissue engineering and regenerative medicine applications in the ankle joint.

    PubMed

    Correia, S I; Pereira, H; Silva-Correia, J; Van Dijk, C N; Espregueira-Mendes, J; Oliveira, J M; Reis, R L

    2014-03-06

    Tissue engineering and regenerative medicine (TERM) has caused a revolution in present and future trends of medicine and surgery. In different tissues, advanced TERM approaches bring new therapeutic possibilities in general population as well as in young patients and high-level athletes, improving restoration of biological functions and rehabilitation. The mainstream components required to obtain a functional regeneration of tissues may include biodegradable scaffolds, drugs or growth factors and different cell types (either autologous or heterologous) that can be cultured in bioreactor systems (in vitro) prior to implantation into the patient. Particularly in the ankle, which is subject to many different injuries (e.g. acute, chronic, traumatic and degenerative), there is still no definitive and feasible answer to 'conventional' methods. This review aims to provide current concepts of TERM applications to ankle injuries under preclinical and/or clinical research applied to skin, tendon, bone and cartilage problems. A particular attention has been given to biomaterial design and scaffold processing with potential use in osteochondral ankle lesions.

  1. Looking into the Future: Toward Advanced 3D Biomaterials for Stem-Cell-Based Regenerative Medicine.

    PubMed

    Liu, Zhongmin; Tang, Mingliang; Zhao, Jinping; Chai, Renjie; Kang, Jiuhong

    2018-04-01

    Stem-cell-based therapies have the potential to provide novel solutions for the treatment of a variety of diseases, but the main obstacles to such therapies lie in the uncontrolled differentiation and functional engraftment of implanted tissues. The physicochemical microenvironment controls the self-renewal and differentiation of stem cells, and the key step in mimicking the stem cell microenvironment is to construct a more physiologically relevant 3D culture system. Material-based 3D assemblies of stem cells facilitate the cellular interactions that promote morphogenesis and tissue organization in a similar manner to that which occurs during embryogenesis. Both natural and artificial materials can be used to create 3D scaffolds, and synthetic organic and inorganic porous materials are the two main kinds of artificial materials. Nanotechnology provides new opportunities to design novel advanced materials with special physicochemical properties for 3D stem cell culture and transplantation. Herein, the advances and advantages of 3D scaffold materials, especially with respect to stem-cell-based therapies, are first outlined. Second, the stem cell biology in 3D scaffold materials is reviewed. Third, the progress and basic principles of developing 3D scaffold materials for clinical applications in tissue engineering and regenerative medicine are reviewed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Regenerative medicine in kidney disease: where we stand and where to go.

    PubMed

    Borges, Fernanda T; Schor, Nestor

    2017-07-22

    The kidney is a complex organ with more than 20 types of specialized cells that play an important role in maintaining the body's homeostasis. The epithelial tubular cell is formed during embryonic development and has little proliferative capacity under physiological conditions, but after acute injury the kidney does have regenerative capacity. However, after repetitive or severe lesions, it may undergo a maladaptation process that predisposes it to chronic kidney injury. Regenerative medicine includes various repair and regeneration techniques, and these have gained increasing attention in the scientific literature. In the future, not only will these techniques contribute to the repair and regeneration of the human kidney, but probably also to the construction of an entire organ. New mechanisms studied for kidney regeneration and repair include circulating stem cells as mesenchymal stromal/stem cells and their paracrine mechanisms of action; renal progenitor stem cells; the leading role of tubular epithelial cells in the tubular repair process; the study of zebrafish larvae to understand the process of nephron development, kidney scaffold and its repopulation; and, finally, the development of organoids. This review elucidates where we are in terms of current scientific knowledge regarding these mechanisms and the promises of future scientific perspectives.

  3. A Comparative Analysis of Attitudes on Communication Toward Stem Cell Research and Regenerative Medicine Between the Public and the Scientific Community.

    PubMed

    Shineha, Ryuma; Inoue, Yusuke; Ikka, Tsunakuni; Kishimoto, Atsuo; Yashiro, Yoshimi

    2018-02-01

    Owing to the rapid progress in stem cell research (SCR) and regenerative medicine (RM), society's expectation and interest in these fields are increasing. For effective communication on issues concerning SCR and RM, surveys for understanding the interests of stakeholders is essential. For this purpose, we conducted a large-scale survey with 2,160 public responses and 1,115 responses from the member of the Japanese Society for Regenerative Medicine. Results showed that the public is more interested in the post-realization aspects of RM, such as cost of care, countermeasures for risks and accidents, and clarification of responsibility and liability, than in the scientific aspects; the latter is of greater interest only to scientists. Our data indicate that an increased awareness about RM-associated social responsibility and regulatory framework is required among scientists, such as those regarding its benefits, potential accidents, abuse, and other social consequences. Awareness regarding the importance of communication and education for scientists are critical to bridge the gaps in the interests of the public and scientists. Stem Cells Translational Medicine 2018;7:251-257. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  4. Stem cell applications in military medicine.

    PubMed

    Christopherson, Gregory T; Nesti, Leon J

    2011-10-19

    There are many similarities between health issues affecting military and civilian patient populations, with the exception of the relatively small but vital segment of active soldiers who experience high-energy blast injuries during combat. A rising incidence of major injuries from explosive devices in recent campaigns has further complicated treatment and recovery, highlighting the need for tissue regenerative options and intensifying interest in the possible role of stem cells for military medicine. In this review we outline the array of tissue-specific injuries typically seen in modern combat - as well as address a few complications unique to soldiers--and discuss the state of current stem cell research in addressing each area. Embryonic, induced-pluripotent and adult stem cell sources are defined, along with advantages and disadvantages unique to each cell type. More detailed stem cell sources are described in the context of each tissue of interest, including neural, cardiopulmonary, musculoskeletal and sensory tissues, with brief discussion of their potential role in regenerative medicine moving forward. Additional commentary is given to military stem cell applications aside from regenerative medicine, such as blood pharming, immunomodulation and drug screening, with an overview of stem cell banking and the unique opportunity provided by the military and civilian overlap of stem cell research.

  5. Soy Protein Scaffold Biomaterials for Tissue Engineering and Regenerative Medicine

    NASA Astrophysics Data System (ADS)

    Chien, Karen B.

    Developing functional biomaterials using highly processable materials with tailorable physical and bioactive properties is an ongoing challenge in tissue engineering. Soy protein is an abundant, natural resource with potential use for regenerative medicine applications. Preliminary studies show that soy protein can be physically modified and fabricated into various biocompatible constructs. However, optimized soy protein structures for tissue regeneration (i.e. 3D porous scaffolds) have not yet been designed. Furthermore, little work has established the in vivo biocompatibility of implanted soy protein and the benefit of using soy over other proteins including FDA-approved bovine collagen. In this work, freeze-drying and 3D printing fabrication processes were developed using commercially available soy protein to create porous scaffolds that improve cell growth and infiltration compared to other soy biomaterials previously reported. Characterization of scaffold structure, porosity, and mechanical/degradation properties was performed. In addition, the behavior of human mesenchymal stem cells seeded on various designed soy scaffolds was analyzed. Biological characterization of the cell-seeded scaffolds was performed to assess feasibility for use in liver tissue regeneration. The acute and humoral response of soy scaffolds implanted in an in vivo mouse subcutaneous model was also investigated. All fabricated soy scaffolds were modified using thermal, chemical, and enzymatic crosslinking to change properties and cell growth behavior. 3D printing allowed for control of scaffold pore size and geometry. Scaffold structure, porosity, and degradation rate significantly altered the in vivo response. Freeze-dried soy scaffolds had similar biocompatibility as freeze-dried collagen scaffolds of the same protein content. However, the soy scaffolds degraded at a much faster rate, minimizing immunogenicity. Interestingly, subcutaneously implanted soy scaffolds affected blood

  6. Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications

    PubMed Central

    Dai, Ru; Wang, Zongjie; Samanipour, Roya; Koo, Kyo-in; Kim, Keekyoung

    2016-01-01

    Adipose-derived stem cells (ASCs) are a mesenchymal stem cell source with properties of self-renewal and multipotential differentiation. Compared to bone marrow-derived stem cells (BMSCs), ASCs can be derived from more sources and are harvested more easily. Three-dimensional (3D) tissue engineering scaffolds are better able to mimic the in vivo cellular microenvironment, which benefits the localization, attachment, proliferation, and differentiation of ASCs. Therefore, tissue-engineered ASCs are recognized as an attractive substitute for tissue and organ transplantation. In this paper, we review the characteristics of ASCs, as well as the biomaterials and tissue engineering methods used to proliferate and differentiate ASCs in a 3D environment. Clinical applications of tissue-engineered ASCs are also discussed to reveal the potential and feasibility of using tissue-engineered ASCs in regenerative medicine. PMID:27057174

  7. PLURIPOTENT STEM CELL APPLICATIONS FOR REGENERATIVE MEDICINE

    PubMed Central

    Angelos, Mathew G.; Kaufman, Dan S.

    2015-01-01

    Purpose of Review In this review, we summarize the current status of clinical trials using therapeutic cells produced from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). We also discuss combined cell and gene therapy via correction of defined mutations in human pluripotent stem cells and provide commentary on key obstacles facing wide-scale clinical adoption of pluripotent stem cell-based therapy. Recent Findings Initial data suggest hESC/hiPSC-derived cell products used for retinal repair and spinal cord injury are safe for human use. Early stage studies for treatment of cardiac injury and diabetes are also in progress. However, there remain key concerns regarding the safety and efficacy of these cells that need to be addressed in additional well-designed clinical trials. Advances using the CRISPR/Cas9 gene-editing system offer an improved tool for more rapid and on-target gene correction of genetic diseases. Combined gene and cell therapy using human pluripotent stem cells may provide an additional curative approach for disabling or lethal genetic and degenerative diseases where there are currently limited therapeutic opportunities. Summary Human pluripotent stem cells are emerging as a promising tool to produce cells and tissues suitable for regenerative therapy for a variety of genetic and degenerative diseases. PMID:26536430

  8. A Comparative Analysis of Attitudes on Communication Toward Stem Cell Research and Regenerative Medicine Between the Public and the Scientific Community

    PubMed Central

    Inoue, Yusuke; Ikka, Tsunakuni; Kishimoto, Atsuo

    2018-01-01

    Abstract Owing to the rapid progress in stem cell research (SCR) and regenerative medicine (RM), society's expectation and interest in these fields are increasing. For effective communication on issues concerning SCR and RM, surveys for understanding the interests of stakeholders is essential. For this purpose, we conducted a large‐scale survey with 2,160 public responses and 1,115 responses from the member of the Japanese Society for Regenerative Medicine. Results showed that the public is more interested in the post‐realization aspects of RM, such as cost of care, countermeasures for risks and accidents, and clarification of responsibility and liability, than in the scientific aspects; the latter is of greater interest only to scientists. Our data indicate that an increased awareness about RM‐associated social responsibility and regulatory framework is required among scientists, such as those regarding its benefits, potential accidents, abuse, and other social consequences. Awareness regarding the importance of communication and education for scientists are critical to bridge the gaps in the interests of the public and scientists. Stem Cells Translational Medicine 2018;7:251–257 PMID:29372590

  9. How Regenerative Medicine Stakeholders Adapt to Ever-Changing Technology and Regulatory Challenges? Snapshots from the World TERMIS Industry Symposium (September 10, 2015, Boston).

    PubMed

    Bayon, Yves; Van Dyke, Mark; Buelher, Robert; Tubo, Ross; Bertram, Tim; Malfroy-Camine, Bernard; Rathman, Michelle; Ronfard, Vincent

    2017-04-01

    Regenerative medicine (RM) is a fascinating area of research and innovation. The huge potential of the field has been fairly underexploited so far. Both TERMIS-AM and TERMIS-EU Industry Committees are committed to mentoring and training young entrepreneurs for more successful commercial translation of upstream research. With this objective in mind, the two entities jointly organized an industry symposium during the past TERMIS World Congress (Boston, September 8-11, 2015) and invited senior managers of the RM industry for lectures and panel discussions. One of the two sessions of the symposium-How to overcome obstacles encountered when bringing products to the commercial phase?-aimed to share the inside, real experiences of leaders from TEI Biosciences (an Integra Company), Vericel (formerly Aastrom; acquirer of Genzyme Regenerative Medicine assets), RegenMedTX (formerly Tengion), Mindset Rx, ViThera Pharmaceuticals, and L'Oreal Research & Innovation. The symposium provided practical recommendations for RM product development, for remaining critical and objective when reviewing progress, for keeping solutions simple, and for remaining relevant and persistent.

  10. Current advances in the generation of human iPS cells: implications in cell-based regenerative medicine.

    PubMed

    Revilla, Ana; González, Clara; Iriondo, Amaia; Fernández, Bárbara; Prieto, Cristina; Marín, Carlos; Liste, Isabel

    2016-11-01

    Over the last few years, the generation of induced pluripotent stem cells (iPSCs) from human somatic cells has proved to be one of the most potentially useful discoveries in regenerative medicine. iPSCs are becoming an invaluable tool to study the pathology of different diseases and for drug screening. However, several limitations still affect the possibility of applying iPS cell-based technology in therapeutic prospects. Most strategies for iPSCs generation are based on gene delivery via retroviral or lentiviral vectors, which integrate into the host's cell genome, causing a remarkable risk of insertional mutagenesis and oncogenic transformation. To avoid such risks, significant advances have been made with non-integrative reprogramming strategies. On the other hand, although many different kinds of somatic cells have been employed to generate iPSCs, there is still no consensus about the ideal type of cell to be reprogrammed. In this review we present the recent advances in the generation of human iPSCs, discussing their advantages and limitations in terms of safety and efficiency. We also present a selection of somatic cell sources, considering their capability to be reprogrammed and tissue accessibility. From a translational medicine perspective, these two topics will provide evidence to elucidate the most suitable combination of reprogramming strategy and cell source to be applied in each human iPSC-based therapy. The wide variety of diseases this technology could treat opens a hopeful future for regenerative medicine. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Current concepts: tissue engineering and regenerative medicine applications in the ankle joint

    PubMed Central

    Correia, S. I.; Pereira, H.; Silva-Correia, J.; Van Dijk, C. N.; Espregueira-Mendes, J.; Oliveira, J. M.; Reis, R. L.

    2014-01-01

    Tissue engineering and regenerative medicine (TERM) has caused a revolution in present and future trends of medicine and surgery. In different tissues, advanced TERM approaches bring new therapeutic possibilities in general population as well as in young patients and high-level athletes, improving restoration of biological functions and rehabilitation. The mainstream components required to obtain a functional regeneration of tissues may include biodegradable scaffolds, drugs or growth factors and different cell types (either autologous or heterologous) that can be cultured in bioreactor systems (in vitro) prior to implantation into the patient. Particularly in the ankle, which is subject to many different injuries (e.g. acute, chronic, traumatic and degenerative), there is still no definitive and feasible answer to ‘conventional’ methods. This review aims to provide current concepts of TERM applications to ankle injuries under preclinical and/or clinical research applied to skin, tendon, bone and cartilage problems. A particular attention has been given to biomaterial design and scaffold processing with potential use in osteochondral ankle lesions. PMID:24352667

  12. Opportunities for medical student engagement with family medicine.

    PubMed

    Heidelbaugh, Joel; Cooke, James; Wimsatt, Leslie

    2013-01-01

    Several factors have been linked to the decline in medical student choice of a career in primary care (eg, gender, race, family income, student debt), yet understanding remains limited regarding the availability of curricular and co-curricular experiences for medical students within family medicine that may play a role, particularly one-on-one opportunities such as faculty mentoring and advising. Our study sought to collect baseline data on family medicine learning experiences during predoctoral training. An online 21-question survey was sent to family medicine departments at US allopathic medical schools between January and March 2012 (84.6% response rate) to capture institutional representation and experiences within family medicine. Most institutions reported offering family medicine interest groups (98.1%), electives (97.1%), and clerkships (90.4%). Career advising as an elective course component was available at 53.8% of schools and as part of a required course at 46.2%. Comparison of public versus private institutions revealed differences in rural medicine experiences, admissions preferences, and residency director involvement in hands-on and small- group teaching. Additional differences were noted by total enrollment, number of family medicine faculty in senior leadership positions, and proportion of full-time clinical faculty teaching family medicine. Availability of family medicine curricular programming, formal advising/mentoring opportunities, and full-time faculty as teachers and senior administrators differed across various characteristics of medical schools. Results can be used to direct future research on medical student engagement with family medicine educational experiences relative to recruitment.

  13. Regenerative nanomedicines: an emerging investment prospective?

    PubMed Central

    Prescott, Catherine

    2010-01-01

    Cells respond to their structural surrounding and within nanostructures exhibit unique proliferative and differentiation properties. The application of nanotechnologies to the field of regenerative medicine offers the potential to direct cell fate, target the delivery of cells and reduce immune rejection (via encapsulation), thereby supporting the development of regenerative medicines. The overall objective of any therapy is the delivery of the product not just into the clinic but also to patients on a routine basis. Such a goal typically requires a commercial vehicle and substantial levels of investment in scientific, clinical, regulatory and business expertise, resources, time and funding. Therefore, this paper focuses on some of the challenges facing this emerging industry, including investment by the venture capital community. PMID:20826478

  14. Leveraging “Raw Materials” as Building Blocks and Bioactive Signals in Regenerative Medicine

    PubMed Central

    Renth, Amanda N.

    2012-01-01

    Components found within the extracellular matrix (ECM) have emerged as an essential subset of biomaterials for tissue engineering scaffolds. Collagen, glycosaminoglycans, bioceramics, and ECM-based matrices are the main categories of “raw materials” used in a wide variety of tissue engineering strategies. The advantages of raw materials include their inherent ability to create a microenvironment that contains physical, chemical, and mechanical cues similar to native tissue, which prove unmatched by synthetic biomaterials alone. Moreover, these raw materials provide a head start in the regeneration of tissues by providing building blocks to be bioresorbed and incorporated into the tissue as opposed to being biodegraded into waste products and removed. This article reviews the strategies and applications of employing raw materials as components of tissue engineering constructs. Utilizing raw materials holds the potential to provide both a scaffold and a signal, perhaps even without the addition of exogenous growth factors or cytokines. Raw materials contain endogenous proteins that may also help to improve the translational success of tissue engineering solutions to progress from laboratory bench to clinical therapies. Traditionally, the tissue engineering triad has included cells, signals, and materials. Whether raw materials represent their own new paradigm or are categorized as a bridge between signals and materials, it is clear that they have emerged as a leading strategy in regenerative medicine. The common use of raw materials in commercial products as well as their growing presence in the research community speak to their potential. However, there has heretofore not been a coordinated or organized effort to classify these approaches, and as such we recommend that the use of raw materials be introduced into the collective consciousness of our field as a recognized classification of regenerative medicine strategies. PMID:22462759

  15. Aging of bone marrow mesenchymal stromal/stem cells: Implications on autologous regenerative medicine.

    PubMed

    Charif, N; Li, Y Y; Targa, L; Zhang, L; Ye, J S; Li, Y P; Stoltz, J F; Han, H Z; de Isla, N

    2017-01-01

    With their proliferation, differentiation into specific cell types, and secretion properties, mesenchymal stromal/stem cells (MSC) are very interesting tools to be used in regenerative medicine. Bone marrow (BM) was the first MSC source characterized. In the frame of autologous MSC therapy, it is important to detect donor's parameters affecting MSC potency. Age of the donors appears as one parameter that could greatly affect MSC properties. Moreover, in vitro cell expansion is needed to obtain the number of cells necessary for clinical developments. It will lead to in vitro cell aging that could modify cell properties. This review recapitulates several studies evaluating the effect of in vitro and in vivo MSC aging on cell properties.

  16. Prospect of stem cell conditioned medium in regenerative medicine.

    PubMed

    Pawitan, Jeanne Adiwinata

    2014-01-01

    Stem cell-derived conditioned medium has a promising prospect to be produced as pharmaceuticals for regenerative medicine. To investigate various methods to obtain stem cell-derived conditioned medium (CM) to get an insight into their prospect of application in various diseases. Systematic review using keywords "stem cell" and "conditioned medium" or "secretome" and "therapy." Data concerning treated conditions/diseases, type of cell that was cultured, medium and supplements to culture the cells, culture condition, CM processing, growth factors and other secretions that were analyzed, method of application, and outcome were noted, grouped, tabulated, and analyzed. Most of CM using studies showed good results. However, the various CM, even when they were derived from the same kind of cells, were produced by different condition, that is, from different passage, culture medium, and culture condition. The growth factor yields of the various types of cells were available in some studies, and the cell number that was needed to produce CM for one application could be computed. Various stem cell-derived conditioned media were tested on various diseases and mostly showed good results. However, standardized methods of production and validations of their use need to be conducted.

  17. Respiratory medicine in China: progress, challenges, and opportunities.

    PubMed

    Wang, Chen; Xiao, Fei; Qiao, Renli; Shen, Ying H

    2013-06-01

    The past century witnessed a rapid development of respiratory medicine in China. The major burden of respiratory disease has shifted from infectious diseases to chronic noninfectious diseases. Great achievements have been made in improving the national standard of clinical management of various respiratory diseases and in smoking control. The specialty of respiratory medicine is expanding into pulmonary and critical care medicine. Nevertheless, respiratory diseases remain a major public health problem, with new challenges such as air pollution and nosocomial infections. This review describes the history, accomplishments, new challenges, and opportunities in respiratory medicine in China.

  18. Developmental Biology and Regenerative Medicine: Addressing the Vexing Problem of Persistent Muscle Atrophy in the Chronically Torn Human Rotator Cuff.

    PubMed

    Meyer, Gretchen A; Ward, Samuel R

    2016-05-01

    Persistent muscle atrophy in the chronically torn rotator cuff is a significant obstacle for treatment and recovery. Large atrophic changes are predictive of poor surgical and nonsurgical outcomes and frequently fail to resolve even following functional restoration of loading and rehabilitation. New insights into the processes of muscle atrophy and recovery gained through studies in developmental biology combined with the novel tools and strategies emerging in regenerative medicine provide new avenues to combat the vexing problem of muscle atrophy in the rotator cuff. Moving these treatment strategies forward likely will involve the combination of surgery, biologic/cellular agents, and physical interventions, as increasing experimental evidence points to the beneficial interaction between biologic therapies and physiologic stresses. Thus, the physical therapy profession is poised to play a significant role in defining the success of these combinatorial therapies. This perspective article will provide an overview of the developmental biology and regenerative medicine strategies currently under investigation to combat muscle atrophy and how they may integrate into the current and future practice of physical therapy. © 2016 American Physical Therapy Association.

  19. Regenerative Medicine: Solution in Sight.

    PubMed

    Wang, Qingjie; Stern, Jeffrey H; Temple, Sally

    2016-01-01

    The retina, like other central nervous system tissues, has poor regenerative properties in humans. Therefore, diseases that cause retinal cell loss, such as Age-related macular degeneration (AMD), retinitis pigmentosa (RP), Leber congenital amaurosis, Usher syndrome, glaucoma, and diabetic retinopathy, typically result in permanent visual impairment. Stem cell technologies have revolutionized our ability to produce neural cells in abundant supply. Much stem cell research effort is focused on producing the required cell types for cell replacement, or to generate disease-in-a-dish models to elucidate novel disease mechanisms for therapeutic development. Here we review the recent advances in stem cell studies relevant to producing RPE and retinal cells, and highlight future directions.

  20. Tissue Engineering and Regenerative Medicine 2015: A Year in Review.

    PubMed

    Wobma, Holly; Vunjak-Novakovic, Gordana

    2016-04-01

    This may be the most exciting time ever for the field of tissue engineering and regenerative medicine (TERM). After decades of progress, it has matured, integrated, and diversified into entirely new areas, and it is starting to make the pivotal shift toward translation. The most exciting science and applications continue to emerge at the boundaries of disciplines, through increasingly effective interactions between stem cell biologists, bioengineers, clinicians, and the commercial sector. In this "Year in Review," we highlight some of the major advances reported over the last year (Summer 2014-Fall 2015). Using a methodology similar to that established in previous years, we identified four areas that generated major progress in the field: (i) pluripotent stem cells, (ii) microtissue platforms for drug testing and disease modeling, (iii) tissue models of cancer, and (iv) whole organ engineering. For each area, we used some of the most impactful articles to illustrate the important concepts and results that advanced the state of the art of TERM. We conclude with reflections on emerging areas and perspectives for future development in the field.

  1. Messenger RNA Delivery for Tissue Engineering and Regenerative Medicine Applications.

    PubMed

    Patel, Siddharth; Athirasala, Avathamsa; Menezes, Paula P; Ashwanikumar, N; Zou, Ting; Sahay, Gaurav; Bertassoni, Luiz E

    2018-06-07

    The ability to control cellular processes and precisely direct cellular reprogramming has revolutionized regenerative medicine. Recent advances in in vitro transcribed (IVT) mRNA technology with chemical modifications have led to development of methods that control spatiotemporal gene expression. Additionally, there is a current thrust toward the development of safe, integration-free approaches to gene therapy for translational purposes. In this review, we describe strategies of synthetic IVT mRNA modifications and nonviral technologies for intracellular delivery. We provide insights into the current tissue engineering approaches that use a hydrogel scaffold with genetic material. Furthermore, we discuss the transformative potential of novel mRNA formulations that when embedded in hydrogels can trigger controlled genetic manipulation to regenerate tissues and organs in vitro and in vivo. The role of mRNA delivery in vascularization, cytoprotection, and Cas9-mediated xenotransplantation is additionally highlighted. Harmonizing mRNA delivery vehicle interactions with polymeric scaffolds can be used to present genetic cues that lead to precise command over cellular reprogramming, differentiation, and secretome activity of stem cells-an ultimate goal for tissue engineering.

  2. Tissue Engineering and Regenerative Medicine 2015: A Year in Review

    PubMed Central

    Wobma, Holly

    2016-01-01

    This may be the most exciting time ever for the field of tissue engineering and regenerative medicine (TERM). After decades of progress, it has matured, integrated, and diversified into entirely new areas, and it is starting to make the pivotal shift toward translation. The most exciting science and applications continue to emerge at the boundaries of disciplines, through increasingly effective interactions between stem cell biologists, bioengineers, clinicians, and the commercial sector. In this “Year in Review,” we highlight some of the major advances reported over the last year (Summer 2014–Fall 2015). Using a methodology similar to that established in previous years, we identified four areas that generated major progress in the field: (i) pluripotent stem cells, (ii) microtissue platforms for drug testing and disease modeling, (iii) tissue models of cancer, and (iv) whole organ engineering. For each area, we used some of the most impactful articles to illustrate the important concepts and results that advanced the state of the art of TERM. We conclude with reflections on emerging areas and perspectives for future development in the field. PMID:26714410

  3. The Armed Forces Institute of Regenerative Medicine: a collaborative approach to Department of Defense-relevant research.

    PubMed

    Dean, Wendy

    2011-11-01

    The wars in Iraq and Afghanistan have resulted in the most severe survivable war injuries ever seen in prolonged conflict. The Armed Forces Institute of Regenerative Medicine (AFIRM) was conceived as a way to deliver solutions to the existing gaps in military trauma care. The AFIRM is a collaborative effort between the Department of Defense, academia and private industry to accelerate the development of critically needed technology for the treatment of severely wounded warriors, and to restore to meaningful form and function those who have followed orders into harm's way.

  4. Understanding Mechanobiology: Physical Therapists as a Force in Mechanotherapy and Musculoskeletal Regenerative Rehabilitation

    PubMed Central

    Thompson, William R.; Scott, Alexander; Loghmani, M. Terry; Ward, Samuel R.

    2016-01-01

    Achieving functional restoration of diseased or injured tissues is the ultimate goal of both regenerative medicine approaches and physical therapy interventions. Proper integration and healing of the surrogate cells, tissues, or organs introduced using regenerative medicine techniques are often dependent on the co-introduction of therapeutic physical stimuli. Thus, regenerative rehabilitation represents a collaborative approach whereby rehabilitation specialists, basic scientists, physicians, and surgeons work closely to enhance tissue restoration by creating tailored rehabilitation treatments. One of the primary treatment regimens that physical therapists use to promote tissue healing is the introduction of mechanical forces, or mechanotherapies. These mechanotherapies in regenerative rehabilitation activate specific biological responses in musculoskeletal tissues to enhance the integration, healing, and restorative capacity of implanted cells, tissues, or synthetic scaffolds. To become future leaders in the field of regenerative rehabilitation, physical therapists must understand the principles of mechanobiology and how mechanotherapies augment tissue responses. This perspective article provides an overview of mechanotherapy and discusses how mechanical signals are transmitted at the tissue, cellular, and molecular levels. The synergistic effects of physical interventions and pharmacological agents also are discussed. The goals are to highlight the critical importance of mechanical signals on biological tissue healing and to emphasize the need for collaboration within the field of regenerative rehabilitation. As this field continues to emerge, physical therapists are poised to provide a critical contribution by integrating mechanotherapies with regenerative medicine to restore musculoskeletal function. PMID:26637643

  5. Papilla regeneration by injectable stem cell therapy with regenerative medicine: long-term clinical prognosis.

    PubMed

    Yamada, Yoichi; Nakamura, Sayaka; Ueda, Minoru; Ito, Kenji

    2015-03-01

    Black triangle (BT), an open interproximal space between teeth, can cause aesthetic concerns, food impaction, phonetic difficulties and periodontitis. The aim of this study was to determine the possibility and long-term prognosis of novel papilla regeneration with regenerative medicine, i.e. tissue-engineered papilla (TEP), and to investigate the potential of a tissue-engineering method for soft-tissue augmentation, especially aesthetic improvement of BT, with mesenchymal stem cells (MSCs) as the isolated cells, platelet-rich plasma (PRP) as the growth factor and hyaluronic acid (HA) as the scaffold. The parameters were assessed from a clinical point of view by measuring the distance from the tip of the interproximal papilla to the base of the contact area in each study region. The mean volumes, operation times and follow-up periods of TEP were 1.32 ± 0.25 ml, 2.2 ± 1.62 times and 55.3 ± 17.7 months; the mean improved BT values were 2.55 ± 0.89 mm. An aesthetic improvement was achieved. TEP was able to provide aesthetic improvement of black triangle and predictable results, and could emerge as another novel option for periodontal regenerative therapy in periodontal diseases. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Functional imaging for regenerative medicine.

    PubMed

    Leahy, Martin; Thompson, Kerry; Zafar, Haroon; Alexandrov, Sergey; Foley, Mark; O'Flatharta, Cathal; Dockery, Peter

    2016-04-19

    In vivo imaging is a platform technology with the power to put function in its natural structural context. With the drive to translate stem cell therapies into pre-clinical and clinical trials, early selection of the right imaging techniques is paramount to success. There are many instances in regenerative medicine where the biological, biochemical, and biomechanical mechanisms behind the proposed function of stem cell therapies can be elucidated by appropriate imaging. Imaging techniques can be divided according to whether labels are used and as to whether the imaging can be done in vivo. In vivo human imaging places additional restrictions on the imaging tools that can be used. Microscopies and nanoscopies, especially those requiring fluorescent markers, have made an extraordinary impact on discovery at the molecular and cellular level, but due to their very limited ability to focus in the scattering tissues encountered for in vivo applications they are largely confined to superficial imaging applications in research laboratories. Nanoscopy, which has tremendous benefits in resolution, is limited to the near-field (e.g. near-field scanning optical microscope (NSNOM)) or to very high light intensity (e.g. stimulated emission depletion (STED)) or to slow stochastic events (photo-activated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM)). In all cases, nanoscopy is limited to very superficial applications. Imaging depth may be increased using multiphoton or coherence gating tricks. Scattering dominates the limitation on imaging depth in most tissues and this can be mitigated by the application of optical clearing techniques that can impose mild (e.g. topical application of glycerol) or severe (e.g. CLARITY) changes to the tissue to be imaged. Progression of therapies through to clinical trials requires some thought as to the imaging and sensing modalities that should be used. Smoother progression is facilitated by the use of

  7. Exploiting the Bioactive Properties of the Dentin-Pulp Complex in Regenerative Endodontics.

    PubMed

    Smith, Anthony J; Duncan, Henry F; Diogenes, Anibal; Simon, Stephane; Cooper, Paul R

    2016-01-01

    The development of regenerative endodontic therapies offers exciting opportunities for future improvements in treatment outcomes. Advances in our understanding of regenerative events at the molecular and cellular levels are helping to underpin development of these therapies, although the various strategies differ in the translational challenges they pose. The identification of a variety of bioactive molecules, including growth factors, cytokines, chemokines, and matrix molecules, sequestered within dentin and dental pulp provides the opportunity to present key signaling molecules promoting reparative and regenerative events after injury. The protection of the biological activity of these molecules by mineral in dentin before their release allows a continuing supply of these molecules, while avoiding the short half-life and the non-human origin of exogenous molecules. The ready release of these bioactive molecules by the various tissue preparation agents, medicaments, and materials commonly used in endodontics highlights the opportunities for translational regenerative strategies exploiting these molecules with little change to existing clinical practice. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Nanotechnology and regenerative therapeutics in plastic surgery: The next frontier

    PubMed Central

    Tan, Aaron; Chawla, Reema; Natasha, G; Mahdibeiraghdar, Sara; Jeyaraj, Rebecca; Rajadas, Jayakumar; Hamblin, Michael R.; Seifalian, Alexander M.

    2015-01-01

    Summary The rapid ascent of nanotechnology and regenerative therapeutics as applied to medicine and surgery has seen an exponential rise in the scale of research generated in this field. This is evidenced not only by the sheer volume of papers dedicated to nanotechnology but also in a large number of new journals dedicated to nanotechnology and regenerative therapeutics specifically to medicine and surgery. Aspects of nanotechnology that have already brought benefits to these areas include advanced drug delivery platforms, molecular imaging and materials engineering for surgical implants. Particular areas of interest include nerve regeneration, burns and wound care, artificial skin with nanoelectronic sensors and head and neck surgery. This study presents a review of nanotechnology and regenerative therapeutics, with focus on its applications and implications in plastic surgery. PMID:26422652

  9. Regenerative dentistry: translating advancements in basic science research to the dental practice.

    PubMed

    Garcia-Godoy, Franklin; Murray, Peter

    2010-01-01

    Scientific advances in the creation of restorative biomaterials, in vitro cell culture technology, tissue engineering, molecular biology and the human genome project provide the basis for the introduction of new technologies into dentistry. This review provides an assessment of how tissue engineering, stem cell, genetic transfer, biomaterial and growth factor therapies can be integrated into clinical dental therapies to restore and regenerate oral tissues. In parallel to the creation of a new field in general medicine called "regenerative medicine," we call this field "regenerative dentistry." While the problems of introducing regenerative therapies are substantial, the potential benefits to patients and the profession are equally ground-breaking. In this review, we outline a few areas of interest for the future of oral and dental medicine in which advancements in basic science have already been adapted to fit the goals of 21st century dentistry.

  10. Mechanical cues in orofacial tissue engineering and regenerative medicine.

    PubMed

    Brouwer, Katrien M; Lundvig, Ditte M S; Middelkoop, Esther; Wagener, Frank A D T G; Von den Hoff, Johannes W

    2015-01-01

    Cleft lip and palate patients suffer from functional, aesthetical, and psychosocial problems due to suboptimal regeneration of skin, mucosa, and skeletal muscle after restorative cleft surgery. The field of tissue engineering and regenerative medicine (TE/RM) aims to restore the normal physiology of tissues and organs in conditions such as birth defects or after injury. A crucial factor in cell differentiation, tissue formation, and tissue function is mechanical strain. Regardless of this, mechanical cues are not yet widely used in TE/RM. The effects of mechanical stimulation on cells are not straight-forward in vitro as cellular responses may differ with cell type and loading regime, complicating the translation to a therapeutic protocol. We here give an overview of the different types of mechanical strain that act on cells and tissues and discuss the effects on muscle, and skin and mucosa. We conclude that presently, sufficient knowledge is lacking to reproducibly implement external mechanical loading in TE/RM approaches. Mechanical cues can be applied in TE/RM by fine-tuning the stiffness and architecture of the constructs to guide the differentiation of the seeded cells or the invading surrounding cells. This may already improve the treatment of orofacial clefts and other disorders affecting soft tissues. © 2015 by the Wound Healing Society.

  11. Ectodermal Differentiation of Wharton's Jelly Mesenchymal Stem Cells for Tissue Engineering and Regenerative Medicine Applications.

    PubMed

    Jadalannagari, Sushma; Aljitawi, Omar S

    2015-06-01

    Mesenchymal stem cells (MSCs) from Wharton's jelly (WJ) of the human umbilical cord are perinatal stem cells that have self-renewal ability, extended proliferation potential, immunosuppressive properties, and are accordingly excellent candidates for tissue engineering. These MSCs are unique, easily accessible, and a noncontroversial cell source of regeneration in medicine. Wharton's jelly mesenchymal stem cells (WJMSCs) are multipotent and capable of multilineage differentiation into cells like adipocytes, bone, cartilage, and skeletal muscle upon exposure to appropriate conditions. The ectoderm is one of the three primary germ layers found in the very early embryo that differentiates into the epidermis, nervous system (spine, peripheral nerves, brain), and exocrine glands (mammary, sweat, salivary, and lacrimal glands). Accumulating evidence shows that MSCs obtained from WJ have an ectodermal differentiation potential. The current review examines this differentiation potential of WJMSC into the hair follicle, skin, neurons, and sweat glands along with discussing the potential utilization of such differentiation in regenerative medicine.

  12. Concise Review: Human Dermis as an Autologous Source of Stem Cells for Tissue Engineering and Regenerative Medicine.

    PubMed

    Vapniarsky, Natalia; Arzi, Boaz; Hu, Jerry C; Nolta, Jan A; Athanasiou, Kyriacos A

    2015-10-01

    The exciting potential for regenerating organs from autologous stem cells is on the near horizon, and adult dermis stem cells (DSCs) are particularly appealing because of the ease and relative minimal invasiveness of skin collection. A substantial number of reports have described DSCs and their potential for regenerating tissues from mesenchymal, ectodermal, and endodermal lineages; however, the exact niches of these stem cells in various skin types and their antigenic surface makeup are not yet clearly defined. The multilineage potential of DSCs appears to be similar, despite great variability in isolation and in vitro propagation methods. Despite this great potential, only limited amounts of tissues and clinical applications for organ regeneration have been developed from DSCs. This review summarizes the literature on DSCs regarding their niches and the specific markers they express. The concept of the niches and the differentiation capacity of cells residing in them along particular lineages is discussed. Furthermore, the advantages and disadvantages of widely used methods to demonstrate lineage differentiation are considered. In addition, safety considerations and the most recent advancements in the field of tissue engineering and regeneration using DSCs are discussed. This review concludes with thoughts on how to prospectively approach engineering of tissues and organ regeneration using DSCs. Our expectation is that implementation of the major points highlighted in this review will lead to major advancements in the fields of regenerative medicine and tissue engineering. Autologous dermis-derived stem cells are generating great excitement and efforts in the field of regenerative medicine and tissue engineering. The substantial impact of this review lies in its critical coverage of the available literature and in providing insight regarding niches, characteristics, and isolation methods of stem cells derived from the human dermis. Furthermore, it provides

  13. Concise Review: Human Dermis as an Autologous Source of Stem Cells for Tissue Engineering and Regenerative Medicine

    PubMed Central

    Vapniarsky, Natalia; Arzi, Boaz; Hu, Jerry C.; Nolta, Jan A.

    2015-01-01

    The exciting potential for regenerating organs from autologous stem cells is on the near horizon, and adult dermis stem cells (DSCs) are particularly appealing because of the ease and relative minimal invasiveness of skin collection. A substantial number of reports have described DSCs and their potential for regenerating tissues from mesenchymal, ectodermal, and endodermal lineages; however, the exact niches of these stem cells in various skin types and their antigenic surface makeup are not yet clearly defined. The multilineage potential of DSCs appears to be similar, despite great variability in isolation and in vitro propagation methods. Despite this great potential, only limited amounts of tissues and clinical applications for organ regeneration have been developed from DSCs. This review summarizes the literature on DSCs regarding their niches and the specific markers they express. The concept of the niches and the differentiation capacity of cells residing in them along particular lineages is discussed. Furthermore, the advantages and disadvantages of widely used methods to demonstrate lineage differentiation are considered. In addition, safety considerations and the most recent advancements in the field of tissue engineering and regeneration using DSCs are discussed. This review concludes with thoughts on how to prospectively approach engineering of tissues and organ regeneration using DSCs. Our expectation is that implementation of the major points highlighted in this review will lead to major advancements in the fields of regenerative medicine and tissue engineering. Significance Autologous dermis-derived stem cells are generating great excitement and efforts in the field of regenerative medicine and tissue engineering. The substantial impact of this review lies in its critical coverage of the available literature and in providing insight regarding niches, characteristics, and isolation methods of stem cells derived from the human dermis. Furthermore, it

  14. Nanotechnology and regenerative therapeutics in plastic surgery: The next frontier.

    PubMed

    Tan, Aaron; Chawla, Reema; G, Natasha; Mahdibeiraghdar, Sara; Jeyaraj, Rebecca; Rajadas, Jayakumar; Hamblin, Michael R; Seifalian, Alexander M

    2016-01-01

    The rapid ascent of nanotechnology and regenerative therapeutics as applied to medicine and surgery has seen an exponential rise in the scale of research generated in this field. This is evidenced not only by the sheer volume of papers dedicated to nanotechnology but also in a large number of new journals dedicated to nanotechnology and regenerative therapeutics specifically to medicine and surgery. Aspects of nanotechnology that have already brought benefits to these areas include advanced drug delivery platforms, molecular imaging and materials engineering for surgical implants. Particular areas of interest include nerve regeneration, burns and wound care, artificial skin with nanoelectronic sensors and head and neck surgery. This study presents a review of nanotechnology and regenerative therapeutics, with focus on its applications and implications in plastic surgery. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. All rights reserved.

  15. Educational Opportunities in "Law and Medicine" in Law Schools

    ERIC Educational Resources Information Center

    Hirsh, Harold L.

    1975-01-01

    Noting the rapid expansion of forensic or legal medicine the author reports a survey conducted to determine the medical-legal education opportunities in American law schools. Findings showed that in 73 percent of the schools courses in law and medicine or forensic psychiatry are offered but many are limited in scope. (JT)

  16. Gene therapy for eye as regenerative medicine? Lessons from RPE65 gene therapy for Leber's Congenital Amaurosis.

    PubMed

    Rakoczy, Elizabeth P; Narfström, Kristina

    2014-11-01

    Recombinant virus mediated gene therapy of Leber's Congenital Amaurosis has provided a wide range of data on the utility of gene replacement therapy for recessive diseases. Studies to date demonstrate that gene therapy in the eye is safe and can result in long-term recovery of visual function, but they also highlight that further research is required to identify optimum intervention time-points, target populations and the compatibility of associate therapies. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Potential Use of Human Periapical Cyst-Mesenchymal Stem Cells (hPCy-MSCs) as a Novel Stem Cell Source for Regenerative Medicine Applications

    PubMed Central

    Tatullo, Marco; Codispoti, Bruna; Pacifici, Andrea; Palmieri, Francesca; Marrelli, Massimo; Pacifici, Luciano; Paduano, Francesco

    2017-01-01

    Mesenchymal stem cells (MSCs) are attracting growing interest by the scientific community due to their huge regenerative potential. Thus, the plasticity of MSCs strongly suggests the utilization of these cells for regenerative medicine applications. The main issue about the clinical use of MSCs is related to the complex way to obtain them from healthy tissues; this topic has encouraged scientists to search for novel and more advantageous sources of these cells in easily accessible tissues. The oral cavity hosts several cell populations expressing mesenchymal stem cell like-features, furthermore, the access to oral and dental tissues is simple and isolation of cells is very efficient. Thus, oral-derived stem cells are highly attractive for clinical purposes. In this context, human periapical cyst mesenchymal stem cells (hPCy-MSCs) exhibit characteristics similar to other dental-derived MSCs, including their extensive proliferative potential, cell surface marker profile and the ability to differentiate into various cell types such as osteoblasts, adipocytes and neurons. Importantly, hPCy-MSCs are easily collected from the surgically removed periapical cysts; this reusing of biological waste guarantees a smart source of stem cells without any impact on the surrounding healthy tissues. In this review, we report the most interesting research topics related to hPCy-MSCs with a newsworthy discussion about the future insights. This newly discovered cell population exhibits interesting and valuable potentialities that could be of high impact in the future regenerative medicine applications. PMID:29259970

  18. Potential Use of Human Periapical Cyst-Mesenchymal Stem Cells (hPCy-MSCs) as a Novel Stem Cell Source for Regenerative Medicine Applications.

    PubMed

    Tatullo, Marco; Codispoti, Bruna; Pacifici, Andrea; Palmieri, Francesca; Marrelli, Massimo; Pacifici, Luciano; Paduano, Francesco

    2017-01-01

    Mesenchymal stem cells (MSCs) are attracting growing interest by the scientific community due to their huge regenerative potential. Thus, the plasticity of MSCs strongly suggests the utilization of these cells for regenerative medicine applications. The main issue about the clinical use of MSCs is related to the complex way to obtain them from healthy tissues; this topic has encouraged scientists to search for novel and more advantageous sources of these cells in easily accessible tissues. The oral cavity hosts several cell populations expressing mesenchymal stem cell like-features, furthermore, the access to oral and dental tissues is simple and isolation of cells is very efficient. Thus, oral-derived stem cells are highly attractive for clinical purposes. In this context, human periapical cyst mesenchymal stem cells (hPCy-MSCs) exhibit characteristics similar to other dental-derived MSCs, including their extensive proliferative potential, cell surface marker profile and the ability to differentiate into various cell types such as osteoblasts, adipocytes and neurons. Importantly, hPCy-MSCs are easily collected from the surgically removed periapical cysts; this reusing of biological waste guarantees a smart source of stem cells without any impact on the surrounding healthy tissues. In this review, we report the most interesting research topics related to hPCy-MSCs with a newsworthy discussion about the future insights. This newly discovered cell population exhibits interesting and valuable potentialities that could be of high impact in the future regenerative medicine applications.

  19. Mesenchymal Stem and Progenitor Cells in Regeneration: Tissue Specificity and Regenerative Potential

    PubMed Central

    Pieber, Thomas Rudolf

    2017-01-01

    It has always been an ambitious goal in medicine to repair or replace morbid tissues for regaining the organ functionality. This challenge has recently gained momentum through considerable progress in understanding the biological concept of the regenerative potential of stem cells. Routine therapeutic procedures are about to shift towards the use of biological and molecular armamentarium. The potential use of embryonic stem cells and invention of induced pluripotent stem cells raised hope for clinical regenerative purposes; however, the use of these interventions for regenerative therapy showed its dark side, as many health concerns and ethical issues arose in terms of using these cells in clinical applications. In this regard, adult stem cells climbed up to the top list of regenerative tools and mesenchymal stem cells (MSC) showed promise for regenerative cell therapy with a rather limited level of risk. MSC have been successfully isolated from various human tissues and they have been shown to offer the possibility to establish novel therapeutic interventions for a variety of hard-to-noncurable diseases. There have been many elegant studies investigating the impact of MSC in regenerative medicine. This review provides compact information on the role of stem cells, in particular, MSC in regeneration. PMID:28286525

  20. [Internationalization, science and health: global regenerative medicine and the parallel markets].

    PubMed

    Acero, Liliana

    2015-02-01

    Regenerative medicine involves a paradigm change due to organism regeneration at cellular and tissue level - a controversial contemporary issue and difficult to regulate. This article presents a summary of the main scientific, economic, social and regulatory global trends, analyzed according to relevant theoretical dilemmas in medical anthropology and in the sociology of science and health. This is especially true of the construction of a 'collective frame of reference' on the new biological and ontological entities, the shaping of biological citizenship, and governance through uncertainty. Empirical evidence is also presented on a key aspect in regulation and governance, namely the emergence of a new transnational demand in health research through the establishment of parallel markets for ova and experimental cellular therapies. Qualitative data collected for a broader research paper is analyzed, as well as journal reviews and information gathered during interviews with international leaders. The paper concludes with a discussion on the importance on international governance of clinical trials and on further exploration, towards a multilevel harmonization of a diversity of normative practices.

  1. Tissue Engineering and Regenerative Medicine: Semantic Considerations for an Evolving Paradigm

    PubMed Central

    Katari, Ravi; Peloso, Andrea; Orlando, Giuseppe

    2015-01-01

    Tissue engineering (TE) and regenerative medicine (RM) are rapidly evolving fields that are often obscured by a dense cloud of hype and commercialization potential. We find, in the literature and general commentary, that several of the associated terms are casually referenced in varying contexts that ultimately result in the blurring of the distinguishing boundaries which define them. “TE” and “RM” are often used interchangeably, though some experts vehemently argue that they, in fact, represent different conceptual entities. Nevertheless, contemporary scientists have a general idea of the experiments and milestones that can be classified within either or both categories. Given the groundbreaking achievements reported within the past decade and consequent watershed potential of this field, we feel that it would be useful to properly contextualize these terms semantically and historically. In this concept paper, we explore the various definitions proposed in the literature and emphasize that ambiguous terminology can lead to misplaced apprehension. We assert that the central motifs of both concepts have existed within the surgical sciences long before their appearance as terms in the scientific literature. PMID:25629029

  2. Advances toward regenerative medicine in the central nervous system: challenges in making stem cell therapy a viable clinical strategy.

    PubMed

    Stoll, Elizabeth A

    2014-01-01

    Over recent years, there has been a great deal of interest in the prospects of stem cell-based therapies for the treatment of nervous system disorders. The eagerness of scientists, clinicians, and spin-out companies to develop new therapies led to premature clinical trials in human patients, and now the initial excitement has largely turned to skepticism. Rather than embracing a defeatist attitude or pressing blindly ahead, I argue it is time to evaluate the challenges encountered by regenerative medicine in the central nervous system and the progress that is being made to solve these problems. In the twenty years since the adult brain was discovered to have an endogenous regenerative capacity, much basic research has been done to elucidate mechanisms controlling proliferation and cellular identity; how stem cells may be directed into neuronal lineages; genetic, pharmacological, and behavioral interventions that modulate neurogenic activity; and the exact nature of limitations to regeneration in the adult, aged, diseased and injured CNS. These findings should prove valuable in designing realistic clinical strategies to improve the prospects of stem cell-based therapies. In this review, I discuss how basic research continues to play a critical role in identifying both barriers and potential routes to regenerative therapy in the CNS.

  3. Concise Review: Parthenote Stem Cells for Regenerative Medicine: Genetic, Epigenetic, and Developmental Features

    PubMed Central

    Daughtry, Brittany

    2014-01-01

    Embryonic stem cells (ESCs) have the potential to provide unlimited cells and tissues for regenerative medicine. ESCs derived from fertilized embryos, however, will most likely be rejected by a patient’s immune system unless appropriately immunomatched. Pluripotent stem cells (PSCs) genetically identical to a patient can now be established by reprogramming of somatic cells. However, practical applications of PSCs for personalized therapies are projected to be unfeasible because of the enormous cost and time required to produce clinical-grade cells for each patient. ESCs derived from parthenogenetic embryos (pESCs) that are homozygous for human leukocyte antigens may serve as an attractive alternative for immunomatched therapies for a large population of patients. In this study, we describe the biology and genetic nature of mammalian parthenogenesis and review potential advantages and limitations of pESCs for cell-based therapies. PMID:24443005

  4. Progenitor cells for regenerative medicine and consequences of ART and cloning-associated epimutations.

    PubMed

    Laprise, Shari L

    2010-06-01

    The "holy grail" of regenerative medicine is the identification of an undifferentiated progenitor cell that is pluripotent, patient specific, and ethically unambiguous. Such a progenitor cell must also be able to differentiate into functional, transplantable tissue, while avoiding the risks of immune rejection. With reports detailing aberrant genomic imprinting associated with assisted reproductive technologies (ART) and reproductive cloning, the idea that human embryonic stem cells (hESCs) derived from surplus in vitro fertilized embryos or nuclear transfer ESCs (ntESCs) harvested from cloned embryos may harbor dangerous epigenetic errors has gained attention. Various progenitor cell sources have been proposed for human therapy, from hESCs to ntESCs, and from adult stem cells to induced pluripotent stem cells (iPS and piPS cells). This review highlights the advantages and disadvantages of each of these technologies, with particular emphasis on epigenetic stability.

  5. Complementary and alternative medicine. Integrative medicine: business risks and opportunities.

    PubMed

    Berndtson, K

    1998-01-01

    Much of the buzz over integrative medicine is well deserved. The opportunities seem to outweigh the risks, but superior management skills are needed to guide these programs through adolescence into clinical and business maturity. By carefully considering the staffing, team building, compensation methods, marketing, and program evaluation and development issues explored in this article, health care and physician executives should be able to steer between the rocks on their way to integrative medicine decisions that are right for their organizations. Many claim that integrative medicine has the potential to reshape health care delivery in a more patient-centered direction. While this may be true, such programs must prove themselves from financial and clinical operational perspectives in order to achieve this potential. Luminary clinical skills are not enough to guarantee the survival of such programs--a strong clinical base of expertise in alternative therapies is a key success factor. As with any health care venture, there are no substitutes for clinical excellence or sound management.

  6. Adipose tissue-derived stem cells in neural regenerative medicine.

    PubMed

    Yeh, Da-Chuan; Chan, Tzu-Min; Harn, Horng-Jyh; Chiou, Tzyy-Wen; Chen, Hsin-Shui; Lin, Zung-Sheng; Lin, Shinn-Zong

    2015-01-01

    Adipose tissue-derived stem cells (ADSCs) have two essential characteristics with regard to regenerative medicine: the convenient and efficient generation of large numbers of multipotent cells and in vitro proliferation without a loss of stemness. The implementation of clinical trials has prompted widespread concern regarding safety issues and has shifted research toward the therapeutic efficacy of stem cells in dealing with neural degeneration in cases such as stroke, amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, cavernous nerve injury, and traumatic brain injury. Most existing studies have reported that cell therapies may be able to replenish lost cells and promote neuronal regeneration, protect neuronal survival, and play a role in overcoming permanent paralysis and loss of sensation and the recovery of neurological function. The mechanisms involved in determining therapeutic capacity remain largely unknown; however, this concept can still be classified in a methodical manner by citing current evidence. Possible mechanisms include the following: 1) the promotion of angiogenesis, 2) the induction of neuronal differentiation and neurogenesis, 3) reductions in reactive gliosis, 4) the inhibition of apoptosis, 5) the expression of neurotrophic factors, 6) immunomodulatory function, and 7) facilitating neuronal integration. In this study, several human clinical trials using ADSCs for neuronal disorders were investigated. It is suggested that ADSCs are one of the choices among various stem cells for translating into clinical application in the near future.

  7. Comparison of the new Japanese legislation for expedited approval of regenerative medicine products with the existing systems in the USA and European Union.

    PubMed

    Jokura, Yoji; Yano, Kazuo; Yamato, Masayuki

    2018-02-01

    Legislation for expedited-approval pathways and programmes for drugs, biologics or medical devices has been enacted for rapid commercialization of innovative products in the United States of America (USA) and the European Union (EU). However, less innovative products are increasingly benefitting from these expedited-approval pathways, and obligations to collect and report post-marketing data on approved products are being bypassed frequently. The Japanese government recently enacted legislation for a new conditional and time-limited approval pathway dedicated to regenerative medicine products. The current study examines this new legislation and compares it with existing US and EU regulatory frameworks, with a particular focus on how it addresses the limitations of existing systems. Regulations, guidance documents and approval information were gathered from the websites of the respective authorities in the USA, the EU and Japan, and the systems were categorized through qualitative analysis. The pathways and programmes from each region were categorized into four groups, based on the requirement of pre- or post-marketing clinical data. Expedited-approval pathways in the USA and the EU provide similar qualification criteria, such as severity of target disease; however, such criteria are not specified for the new pathway in Japan. Only the Japanese pathway stipulates a time limitation on exceptional approval, requiring post-marketing study for conditional and time-limited products. Continuous improvement is necessary to solve previously addressed issues within the expedited-approval pathways and programmes and to ensure that innovative medical products are rigourously screened, but also readily available to patients in need. The time limitation of conditional approval could be a potential solution to some of these problems. Copyright © 2017 The Authors. Tissue Engineering Regenerative Medicine published by John Wiley & Sons, Ltd. Copyright © 2017 The Authors. Tissue

  8. Proceedings of the signature series event of the international society for cellular therapy: "Advancements in cellular therapies and regenerative medicine in digestive diseases," London, United Kingdom, May 3, 2017.

    PubMed

    Ciccocioppo, Rachele; Dos Santos, Claudia C; Baumgart, Daniel C; Cangemi, Giuseppina C; Cardinale, Vincenzo; Ciacci, Carolina; De Coppi, Paolo; Haldar, Debashis; Klersy, Catherine; Nostro, M Cristina; Ott, Michael; Piemonti, Lorenzo; Tomei, Alice A; Uygun, Basak; Vetrano, Stefania; Orlando, Giuseppe

    2018-03-01

    A summary of the First Signature Series Event, "Advancements in Cellular Therapies and Regenerative Medicine for Digestive Diseases," held on May 3, 2017, in London, United Kingdom, is presented. Twelve speakers from three continents covered major topics in the areas of cellular therapy and regenerative medicine applied to liver and gastrointestinal medicine as well as to diabetes mellitus. Highlights from their presentations, together with an overview of the global impact of digestive diseases and a proposal for a shared online collection and data-monitoring platform tool, are included in this proceedings. Although growing evidence demonstrate the feasibility and safety of exploiting cell-based technologies for the treatment of digestive diseases, regulatory and methodological obstacles will need to be overcome before the successful implementation in the clinic of these novel attractive therapeutic strategies. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  9. Temporomandibular Joint Regenerative Medicine

    PubMed Central

    Van Bellinghen, Xavier; Idoux-Gillet, Ysia; Pugliano, Marion; Strub, Marion; Bornert, Fabien; Clauss, Francois; Schwinté, Pascale; Keller, Laetitia; Benkirane-Jessel, Nadia; Lutz, Jean Christophe; Fioretti, Florence

    2018-01-01

    The temporomandibular joint (TMJ) is an articulation formed between the temporal bone and the mandibular condyle which is commonly affected. These affections are often so painful during fundamental oral activities that patients have lower quality of life. Limitations of therapeutics for severe TMJ diseases have led to increased interest in regenerative strategies combining stem cells, implantable scaffolds and well-targeting bioactive molecules. To succeed in functional and structural regeneration of TMJ is very challenging. Innovative strategies and biomaterials are absolutely crucial because TMJ can be considered as one of the most difficult tissues to regenerate due to its limited healing capacity, its unique histological and structural properties and the necessity for long-term prevention of its ossified or fibrous adhesions. The ideal approach for TMJ regeneration is a unique scaffold functionalized with an osteochondral molecular gradient containing a single stem cell population able to undergo osteogenic and chondrogenic differentiation such as BMSCs, ADSCs or DPSCs. The key for this complex regeneration is the functionalization with active molecules such as IGF-1, TGF-β1 or bFGF. This regeneration can be optimized by nano/micro-assisted functionalization and by spatiotemporal drug delivery systems orchestrating the 3D formation of TMJ tissues. PMID:29393880

  10. ATOM - Accelerating Therapeutics for Opportunities in Medicine | FNLCR Staging

    Cancer.gov

    The Frederick National Lab is a founding member of the Accelerating Therapeutics for Opportunities in Medicine (ATOM) Consortium,a public-private partnership with themission oftransforming drug discovery by accelerating the deve

  11. Intervertebral disc-derived stem cells: implications for regenerative medicine and neural repair.

    PubMed

    Erwin, W Mark; Islam, Diana; Eftekarpour, Eftekhar; Inman, Robert D; Karim, Muhammad Zia; Fehlings, Michael G

    2013-02-01

    An in vitro and in vivo evaluation of intervertebral disc (IVD)-derived stem/progenitor cells. To determine the chondrogenic, adipogenic, osteogenic, and neurogenic differentiation capacity of disc-derived stem/progenitor cells in vitro and neurogenic differentiation in vivo. Tissue repair strategies require a source of appropriate cells that could be used to replace dead or damaged cells and tissues such as stem cells. Here we examined the potential use of IVD-derived stem cells in regenerative medicine approaches and neural repair. Nonchondrodystrophic canine IVD nucleus pulposus (NP) cells were used to generate stem/progenitor cells (NP progenitor cells [NPPCs]) and the NPPCs were differentiated in vitro into chondrogenic, adipogenic, and neurogenic lineages and in vivo into the neurogenic lineage. NPPCs were compared with bone marrow-derived mesenchymal (stromal) stem cells in terms of the expression of stemness genes. The expression of the neural crest marker protein 0 and the Brachyury gene were evaluated in NP cells and NPPCs. NPPCs contain stem/progenitor cells and express "stemness" genes such as Sox2, Oct3/4, Nanog, CD133, Nestin, and neural cell adhesion molecule but differ from mesenchymal (stromal) stem cells in the higher expression of the Nanog gene by NPPCs. NPPCs do not express protein 0 or the Brachyury gene both of which are expressed by the totality of IVD NP cells. The percentage of NPPCs within the IVD is 1% of the total as derived by colony-forming assay. NPPCs are capable of differentiating along chondrogenic, adipogenic, and neurogenic lineages in vitro and into oligodendrocyte, neuron, and astroglial specific precursor cells in vivo within the compact myelin-deficient shiverer mouse. We propose that the IVD NP represents a regenerative niche suggesting that the IVD could represent a readily accessible source of precursor cells for neural repair and regeneration.

  12. Potency of Fish Collagen as a Scaffold for Regenerative Medicine

    PubMed Central

    Yamamoto, Kohei; Yanagiguchi, Kajiro

    2014-01-01

    Cells, growth factors, and scaffold are the crucial factors for tissue engineering. Recently, scaffolds consisting of natural polymers, such as collagen and gelatin, bioabsorbable synthetic polymers, such as polylactic acid and polyglycolic acid, and inorganic materials, such as hydroxyapatite, as well as composite materials have been rapidly developed. In particular, collagen is the most promising material for tissue engineering due to its biocompatibility and biodegradability. Collagen contains specific cell adhesion domains, including the arginine-glycine-aspartic acid (RGD) motif. After the integrin receptor on the cell surface binds to the RGD motif on the collagen molecule, cell adhesion is actively induced. This interaction contributes to the promotion of cell growth and differentiation and the regulation of various cell functions. However, it is difficult to use a pure collagen scaffold as a tissue engineering material due to its low mechanical strength. In order to make up for this disadvantage, collagen scaffolds are often modified using a cross-linker, such as gamma irradiation and carbodiimide. Taking into account the possibility of zoonosis, a variety of recent reports have been documented using fish collagen scaffolds. We herein review the potency of fish collagen scaffolds as well as associated problems to be addressed for use in regenerative medicine. PMID:24982861

  13. Harnessing the potential of lung stem cells for regenerative medicine.

    PubMed

    McQualter, Jonathan L; Anthony, Desiree; Bozinovski, Steven; Prêle, Cecilia M; Laurent, Geoffrey J

    2014-11-01

    In response to recurrent exposure to environmental insults such as allergens, pollution, irritants, smoke and viral/bacterial infection, the epithelium of the lung is continually damaged. Homeostasis of the lung requires a balance between immune regulation and promotion of tissue regeneration, which requires the co-ordinated proliferation and differentiation of stem and progenitor cells. In this review we reflect on the current understanding of lung epithelial stem and progenitor cells and advocate a model hierarchy in which self-renewing multipotent lung epithelial stem cells give rise to lineage restricted progenitor cells that repopulate airway and alveolar epithelial cell lineages during homeostasis and repair. We also discuss the role of mesenchymal progenitor cells in maintaining the structural integrity of the lung and propose a model in which mesenchymal cells act as the quintessential architects of lung regeneration by providing molecular signals, such as FGF-10, to regulate the fate and specificity of epithelial stem and progenitor cells. Moreover, we discuss the current status and future prospects for translating lung stem cell therapies to the clinic to replace, repair, or regenerate diseased lung tissue. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Three dimensional de novo micro bone marrow and its versatile application in drug screening and regenerative medicine.

    PubMed

    Li, Guanqun; Liu, Xujun; Du, Qian; Gao, Mei; An, Jing

    2015-08-01

    The finding that bone marrow hosts several types of multipotent stem cell has prompted extensive research aimed at regenerating organs and building models to elucidate the mechanisms of diseases. Conventional research depends on the use of two-dimensional (2D) bone marrow systems, which imposes several obstacles. The development of 3D bone marrow systems with appropriate molecules and materials however, is now showing promising results. In this review, we discuss the advantages of 3D bone marrow systems over 2D systems and then point out various factors that can enhance the 3D systems. The intensive research on 3D bone marrow systems has revealed multiple important clinical applications including disease modeling, drug screening, regenerative medicine, etc. We also discuss some possible future directions in the 3D bone marrow research field. © 2015 by the Society for Experimental Biology and Medicine.

  15. Enhancing Tissue Engineering and Regenerative Medicine Product Commercialization: The Role of Science in Regulatory Decision-Making for the TE/RM Product Development.

    PubMed

    Bertram, Timothy A; Johnson, Peter C; Tawil, Bill J; Van Dyke, Mark; Hellman, Kiki B

    2015-10-01

    TERMIS-AM Industry Committee (TERMIS-AM/IC), in collaboration with the TERMIS-Europe (EU)/IC, conducted a symposium involving the European Medicines Agency and the U.S. Food and Drug Administration (FDA) toward building an understanding of the rational basis for regulatory decision-making and providing a framework for decisions made during the evaluation of safety and efficacy of TE/RM technologies. This symposium was held in August 2012 during the TERMIS-WC in Vienna, Austria. Emerging from this international initiative by the European Union and the United States, representatives from the respective agencies demonstrated that there are ongoing interagency efforts for developing common national practices toward harmonization of regulatory requirements for the TE/RM products. To extend a broad-based understanding of the role of science in regulatory decision-making, TERMIS-AM/IC, in cooperation with the FDA, organized a symposium at the 2014 TERMIS-AM Annual Meeting, which was held in Washington, DC. This event provided insights from leaders in the FDA and TERMIS on the current status of regulatory approaches for the approved TE/RM products, the use of science in making regulatory decisions, and TE/RM technologies that are in the development pipeline to address unmet medical needs. A far-ranging discussion with FDA representatives, industrialists, physicians, regenerative medicine biologists, and tissue engineers considered the gaps in today's scientific and regulatory understanding of TE/RM technologies. The identified gaps represent significant opportunities to advance TE/RM technologies toward commercialization.

  16. [Precision medicine: new opportunities and challenges for molecular epidemiology].

    PubMed

    Song, Jing; Hu, Yonghua

    2016-04-01

    Since the completion of the Human Genome Project in 2003 and the announcement of the Precision Medicine Initiative by U.S. President Barack Obama in January 2015, human beings have initially completed the " three steps" of " genomics to biology, genomics to health as well as genomics to society". As a new inter-discipline, the emergence and development of precision medicine have relied on the support and promotion from biological science, basic medicine, clinical medicine, epidemiology, statistics, sociology and information science, etc. Meanwhile, molecular epidemiology is considered to be the core power to promote precision medical as a cross discipline of epidemiology and molecular biology. This article is based on the characteristics and research progress of medicine and molecular epidemiology respectively, focusing on the contribution and significance of molecular epidemiology to precision medicine, and exploring the possible opportunities and challenges in the future.

  17. Viral Vector-Based Innovative Approaches to Directly Abolishing Tumorigenic Pluripotent Stem Cells for Safer Regenerative Medicine.

    PubMed

    Mitsui, Kaoru; Ide, Kanako; Takahashi, Tomoyuki; Kosai, Ken-Ichiro

    2017-06-16

    Human pluripotent stem cells (hPSCs) are a promising source of regenerative material for clinical applications. However, hPSC transplant therapies pose the risk of teratoma formation and malignant transformation of undifferentiated remnants. These problems underscore the importance of developing technologies that completely prevent tumorigenesis to ensure safe clinical application. Research to date has contributed to establishing safe hPSC lines, improving the efficiency of differentiation induction, and indirectly ensuring the safety of products. Despite such efforts, guaranteeing the clinical safety of regenerative medicine products remains a key challenge. Given the intrinsic genome instability of hPSCs, selective growth advantage of cancer cells, and lessons learned through failures in previous attempts at hematopoietic stem cell gene therapy, conventional strategies are unlikely to completely overcome issues related to hPSC tumorigenesis. Researchers have recently embarked on studies aimed at locating and directly treating hPSC-derived tumorigenic cells. In particular, novel approaches to directly killing tumorigenic cells by transduction of suicide genes and oncolytic viruses are expected to improve the safety of hPSC-based therapy. This article discusses the current status and future perspectives of methods aimed at directly eradicating undifferentiated tumorigenic hPSCs, with a focus on viral vector transduction.

  18. New frontier in regenerative medicine: site-specific gene correction in patient-specific induced pluripotent stem cells.

    PubMed

    Garate, Zita; Davis, Brian R; Quintana-Bustamante, Oscar; Segovia, Jose C

    2013-06-01

    Advances in cell and gene therapy are opening up new avenues for regenerative medicine. Because of their acquired pluripotency, human induced pluripotent stem cells (hiPSCs) are a promising source of autologous cells for regenerative medicine. They show unlimited self-renewal while retaining the ability, in principle, to differentiate into any cell type of the human body. Since Yamanaka and colleagues first reported the generation of hiPSCs in 2007, significant efforts have been made to understand the reprogramming process and to generate hiPSCs with potential for clinical use. On the other hand, the development of gene-editing platforms to increase homologous recombination efficiency, namely DNA nucleases (zinc finger nucleases, TAL effector nucleases, and meganucleases), is making the application of locus-specific gene therapy in human cells an achievable goal. The generation of patient-specific hiPSC, together with gene correction by homologous recombination, will potentially allow for their clinical application in the near future. In fact, reports have shown targeted gene correction through DNA-Nucleases in patient-specific hiPSCs. Various technologies have been described to reprogram patient cells and to correct these patient hiPSCs. However, no approach has been clearly more efficient and safer than the others. In addition, there are still significant challenges for the clinical application of these technologies, such as inefficient differentiation protocols, genetic instability resulting from the reprogramming process and hiPSC culture itself, the efficacy and specificity of the engineered DNA nucleases, and the overall homologous recombination efficiency. To summarize advances in the generation of gene corrected patient-specific hiPSCs, this review focuses on the available technological platforms, including their strengths and limitations regarding future therapeutic use of gene-corrected hiPSCs.

  19. Hurdles in tissue engineering/regenerative medicine product commercialization: a pilot survey of governmental funding agencies and the financial industry.

    PubMed

    Bertram, Timothy A; Tentoff, Edward; Johnson, Peter C; Tawil, Bill; Van Dyke, Mark; Hellman, Kiki B

    2012-11-01

    The Tissue Engineering and Regenerative Medicine International Society of the Americas (TERMIS-AM) Industry Committee conducted a semiquantitative opinion survey in 2010 to delineate potential hurdles to commercialization perceived by the TERMIS constituency groups that participate in the stream of technology commercialization (academia, start-up companies, development-stage companies, and established companies). A significant hurdle identified consistently by each group was access to capital for advancing potential technologies into development pathways leading to commercialization. A follow-on survey was developed by the TERMIS-AM Industry Committee to evaluate the financial industry's perspectives on investing in regenerative medical technologies. The survey, composed of 15 questions, was developed and provided to 37 investment organizations in one of three sectors (governmental, private, and public investors). The survey was anonymous and confidential with sector designation the only identifying feature of each respondent's organization. Approximately 80% of the survey was composed of respondents from the public (n=14) and private (n=15) sectors. Each respondent represents one investment organization with the potential of multiple participants participating to form the organization's response. The remaining organizations represented governmental agencies (n=8). Results from this survey indicate that a high percentage (<60%) of respondents (governmental, private, and public) were willing to invest >$2MM into regenerative medical companies at the different stages of a company's life cycle. Investors recognized major hurdles to this emerging industry, including regulatory pathway, clinical translation, and reimbursement of these new products. Investments in regenerative technologies have been cyclical over the past 10-15 years, but investors recognized a 1-5-year investment period before the exit via Merger and Acquisition (M&A). Investors considered

  20. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    DOE PAGES

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela; ...

    2015-04-01

    In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular,more » the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  1. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela

    In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular,more » the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  2. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela

    Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localizationmore » of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  3. REIMBURSEMENT OF CELL-BASED REGENERATIVE THERAPY IN THE UK AND FRANCE

    PubMed Central

    Mahalatchimy, Aurélie

    2016-01-01

    Cell-based regenerative therapies are presented as being able to cure the diseases of the twenty-first century, especially those coming from the degeneration of the aging human body. But their specific nature based on biological materials raises particular challenging issues on how regulation should frame biomedical innovation for society's benefit regarding public health. The European Union (EU) supports the development of cell-based regenerative therapies that are medicinal products with a specific regulation providing their wide access to the European market for European patients. However, once these medicinal products have obtained a European marketing authorisation, they are still far away from being fully accessible to European patients in all EU Member States. Whereas there is much written on the EU regulatory system for new biotechnologies, there is no systematic legal study comparing the insurance provisions in two EU countries. Focussing on the situation in the UK and France that are based on two different healthcare systems, this paper is based on a comparative methodological approach. It raises the question of regulatory reimbursement mechanisms that determine access to innovative treatments and their consequences for social protection systems in the general context of public health. After having compared the French and English regulations of cell-based regenerative therapy regarding pricing and reimbursement, this papers analyses how England and France are addressing two main challenges of cell-based regenerative therapy, to take into account their long-term benefit through their potential curative nature and their high upfront cost, towards their adoption within the English and French healthcare systems. It concludes that England and France have different general legal frameworks that are not specific to the reimbursement of cell-based regenerative therapy, although their two current and respective trends would bring more convergence between the two

  4. 25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine

    PubMed Central

    Annabi, Nasim; Tamayol, Ali; Uquillas, Jorge Alfredo; Akbari, Mohsen; Bertassoni, Luiz E.; Cha, Chaenyung; Camci-Unal, Gulden; Dokmeci, Mehmet R.

    2014-01-01

    Hydrogels are hydrophilic polymer-based materials with high water content and physical characteristics that resemble the native extracellular matrix. Because of their remarkable properties, hydrogel systems are used for a wide range of biomedical applications, such as three-dimensional (3D) matrices for tissue engineering, drug-delivery vehicles, composite biomaterials, and as injectable fillers in minimally invasive surgeries. In addition, the rational design of hydrogels with controlled physical and biological properties can be used to modulate cellular functionality and tissue morphogenesis. Here, the development of advanced hydrogels with tunable physiochemical properties is highlighted, with particular emphasis on elastomeric, light-sensitive, composite, and shape-memory hydrogels. Emerging technologies developed over the past decade to control hydrogel architecture are also discussed and a number of potential applications and challenges in the utilization of hydrogels in regenerative medicine are reviewed. It is anticipated that the continued development of sophisticated hydrogels will result in clinical applications that will improve patient care and quality of life. PMID:24741694

  5. [The application of stem together with visible and infrared light in regenerative medicine (Part 2)].

    PubMed

    Emel'yanov, A N; Kir'yanova, V V

    2015-01-01

    The objective of the present study was to review the experimental studies concerned with in vitro and in vivo visible and infrared light irradiation of human and animal stem cells (SC) to assess the possibilities of using its photobiomodulatory effects for the purpose of regenerative medicine (RM). Despite the long history of photochromotherapy there is thus far no reliable theoretical basis for the choice of such irradiation parameters as power density, radiation dose and exposure time. Nor is there a generally accepted opinion on the light application for the purpose of regenerative medicine. Therefore, the clinical application of light irradiation remains a matter of controversy, in the first place due to the difficulty of the rational choice of irradiation parameters. In laboratory research, the theoretical basis for the choice of irradiation parameters remains a stumbling block too. A relationship between the increased radiation power density and the cell differentiation rate was documented. SC exposure to light in the absence of the factors causing their differentiation failed to induce it. On the contrary, it increased the features characteristic of undifferentiated cells. The maximum differentiation rate of the same cells was achieved by using irradiation parameters different from those needed to achieve the maxi- mum proliferation rate. The increase of SC differentiation rate upon a rise in radiation power density was induced by increasing ir- radiation energy density. The increase of power density and the reduction of either energy density or exposure time were needed to enhance the SC responsiveness to irradiation in the form of either proliferation or differentiation. The effectiveness of phototherapy at all stages of SC treatment was documented especially when it was applied to stimulate the reservoirs of bone marrow lying far from the site of the pathogenic process together with simultaneous light irradiation of the affected site and pre-treatment of

  6. Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine

    PubMed Central

    Sundelacruz, Sarah; Kaplan, David L.

    2009-01-01

    In osteochondral tissue engineering, cell recruitment, proliferation, differentiation, and patterning are critical for forming biologically and structurally viable constructs for repair of damaged or diseased tissue. However, since constructs prepared ex vivo lack the multitude of cues present in the in vivo microenvironment, cells often need to be supplied with external biological and physical stimuli to coax them towards targeted tissue functions. To determine which stimuli to present to cells, bioengineering strategies can benefit significantly from endogenous examples of skeletogenesis. As an example of developmental skeletogenesis, the developing limb bud serves as an excellent model system in which to study how an osteochondral structures form from undifferentiated precursor cells. Alongside skeletal formation during embryogenesis, bone also possesses innate regenerative capacity, displaying remarkable ability to heal after damage. Bone fracture healing shares many features with bone development, driving the hypothesis that the regenerative process generally recapitulates development. Similarities and differences between the two modes of bone formation may offer insight into the special requirements for healing damaged or diseased bone. Thus, endogenous fracture healing, as an example of regenerative skeletogenesis, may also inform bioengineering strategies. In this review, we summarize the key cellular events involving stem and progenitor cells in developmental and regenerative skeletogenesis, and discuss in parallel the corresponding cell- and scaffold-based strategies that tissue engineers employ to recapitulate these events in vitro. PMID:19508851

  7. Cryopreserved Dental Pulp Tissues of Exfoliated Deciduous Teeth Is a Feasible Stem Cell Resource for Regenerative Medicine

    PubMed Central

    Yamaza, Haruyoshi; Akiyama, Kentaro; Hoshino, Yoshihiro; Song, Guangtai; Kukita, Toshio; Nonaka, Kazuaki; Shi, Songtao; Yamaza, Takayoshi

    2012-01-01

    Human exfoliated deciduous teeth have been considered to be a promising source for regenerative therapy because they contain unique postnatal stem cells from human exfoliated deciduous teeth (SHED) with self-renewal capacity, multipotency and immunomodulatory function. However preservation technique of deciduous teeth has not been developed. This study aimed to evaluate that cryopreserved dental pulp tissues of human exfoliated deciduous teeth is a retrievable and practical SHED source for cell-based therapy. SHED isolated from the cryopreserved deciduous pulp tissues for over 2 years (25–30 months) (SHED-Cryo) owned similar stem cell properties including clonogenicity, self-renew, stem cell marker expression, multipotency, in vivo tissue regenerative capacity and in vitro immunomodulatory function to SHED isolated from the fresh tissues (SHED-Fresh). To examine the therapeutic efficacy of SHED-Cryo on immune diseases, SHED-Cryo were intravenously transplanted into systemic lupus erythematosus (SLE) model MRL/lpr mice. Systemic SHED-Cryo-transplantation improved SLE-like disorders including short lifespan, elevated autoantibody levels and nephritis-like renal dysfunction. SHED-Cryo amended increased interleukin 17-secreting helper T cells in MRL/lpr mice systemically and locally. SHED-Cryo-transplantation was also able to recover osteoporosis bone reduction in long bones of MRL/lpr mice. Furthermore, SHED-Cryo-mediated tissue engineering induced bone regeneration in critical calvarial bone-defect sites of immunocompromised mice. The therapeutic efficacy of SHED-Cryo transplantation on immune and skeletal disorders was similar to that of SHED-Fresh. These data suggest that cryopreservation of dental pulp tissues of deciduous teeth provide a suitable and desirable approach for stem cell-based immune therapy and tissue engineering in regenerative medicine. PMID:23251621

  8. The Light and Shadow of Senescence and Inflammation in Cardiovascular Pathology and Regenerative Medicine

    PubMed Central

    Dal Sasso, Eleonora; Schirone, Leonardo; Forte, Maurizio; Palmerio, Silvia; Gerosa, Gino; Sciarretta, Sebastiano

    2017-01-01

    Recent epidemiologic studies evidence a dramatic increase of cardiovascular diseases, especially associated with the aging of the world population. During aging, the progressive impairment of the cardiovascular functions results from the compromised tissue abilities to protect the heart against stress. At the molecular level, in fact, a gradual weakening of the cellular processes regulating cardiovascular homeostasis occurs in aging cells. Atherosclerosis and heart failure are particularly correlated with aging-related cardiovascular senescence, that is, the inability of cells to progress in the mitotic program until completion of cytokinesis. In this review, we explore the intrinsic and extrinsic causes of cellular senescence and their role in the onset of these cardiovascular pathologies. Additionally, we dissect the effects of aging on the cardiac endogenous and exogenous reservoirs of stem cells. Finally, we offer an overview on the strategies of regenerative medicine that have been advanced in the quest for heart rejuvenation. PMID:29118467

  9. Printing of Three-Dimensional Tissue Analogs for Regenerative Medicine

    PubMed Central

    Lee, Vivian K.; Dai, Guohao

    2016-01-01

    3-D cell printing, which can accurately deposit cells, biomaterial scaffolds and growth factors in precisely defined spatial patterns to form biomimetic tissue structures, has emerged as a powerful enabling technology to create live tissue and organ structures for drug discovery and tissue engineering applications. Unlike traditional 3-D printing that uses metals, plastics and polymers as the printing materials, cell printing has to be compatible with living cells and biological matrix. It is also required that the printing process preserves the biological functions of the cells and extracellular matrix, and to mimic the cell-matrix architectures and mechanical properties of the native tissues. Therefore, there are significant challenges in order to translate the technologies of traditional 3-D printing to cell printing, and ultimately achieve functional outcomes in the printed tissues. So it is essential to develop new technologies specially designed for cell printing and in-depth basic research in the bioprinted tissues, such as developing novel biomaterials specifically for cell printing applications, understanding the complex cell-matrix remodeling for the desired mechanical properties and functional outcomes, establishing proper vascular perfusion in bioprinted tissues, etc. In recent years, many exciting research progresses have been made in the 3-D cell printing technology and its application in engineering live tissue constructs. This review paper summarized the current development in 3-D cell printing technologies; focus on the outcomes of the live printed tissues and their potential applications in drug discovery and regenerative medicine. Current challenges and limitations are highlighted, and future directions of 3-D cell printing technology are also discussed. PMID:27066784

  10. [Medical imaging in tumor precision medicine: opportunities and challenges].

    PubMed

    Xu, Jingjing; Tan, Yanbin; Zhang, Minming

    2017-05-25

    Tumor precision medicine is an emerging approach for tumor diagnosis, treatment and prevention, which takes account of individual variability of environment, lifestyle and genetic information. Tumor precision medicine is built up on the medical imaging innovations developed during the past decades, including the new hardware, new imaging agents, standardized protocols, image analysis and multimodal imaging fusion technology. Also the development of automated and reproducible analysis algorithm has extracted large amount of information from image-based features. With the continuous development and mining of tumor clinical and imaging databases, the radiogenomics, radiomics and artificial intelligence have been flourishing. Therefore, these new technological advances bring new opportunities and challenges to the application of imaging in tumor precision medicine.

  11. REIMBURSEMENT OF CELL-BASED REGENERATIVE THERAPY IN THE UK AND FRANCE.

    PubMed

    Mahalatchimy, Aurélie

    2016-01-01

    Cell-based regenerative therapies are presented as being able to cure the diseases of the twenty-first century, especially those coming from the degeneration of the aging human body. But their specific nature based on biological materials raises particular challenging issues on how regulation should frame biomedical innovation for society's benefit regarding public health. The European Union (EU) supports the development of cell-based regenerative therapies that are medicinal products with a specific regulation providing their wide access to the European market for European patients. However, once these medicinal products have obtained a European marketing authorisation, they are still far away from being fully accessible to European patients in all EU Member States. Whereas there is much written on the EU regulatory system for new biotechnologies, there is no systematic legal study comparing the insurance provisions in two EU countries. Focussing on the situation in the UK and France that are based on two different healthcare systems, this paper is based on a comparative methodological approach. It raises the question of regulatory reimbursement mechanisms that determine access to innovative treatments and their consequences for social protection systems in the general context of public health. After having compared the French and English regulations of cell-based regenerative therapy regarding pricing and reimbursement, this papers analyses how England and France are addressing two main challenges of cell-based regenerative therapy, to take into account their long-term benefit through their potential curative nature and their high upfront cost, towards their adoption within the English and French healthcare systems. It concludes that England and France have different general legal frameworks that are not specific to the reimbursement of cell-based regenerative therapy, although their two current and respective trends would bring more convergence between the two

  12. Potential feasibility of dental stem cells for regenerative therapies: stem cell transplantation and whole-tooth engineering.

    PubMed

    Nakahara, Taka

    2011-07-01

    Multipotent mesenchymal stem cells from bone marrow are expected to be a somatic stem cell source for the development of new cell-based therapy in regenerative medicine. However, dental clinicians are unlikely to carry out autologous cell/tissue collection from patients (i.e., marrow aspiration) as a routine procedure in their clinics; hence, the utilization of bone marrow stem cells seems impractical in the dental field. Dental tissues harvested from extracted human teeth are well known to contain highly proliferative and multipotent stem cell compartments and are considered to be an alternative autologous cell source in cell-based medicine. This article provides a short overview of the ongoing studies for the potential application of dental stem cells and suggests the utilization of 2 concepts in future regenerative medicine: (1) dental stem cell-based therapy for hepatic and other systemic diseases and (2) tooth replacement therapy using the bioengineered human whole tooth, called the "test-tube dental implant." Regenerative therapies will bring new insights and benefits to the fields of clinical medicine and dentistry.

  13. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review.

    PubMed

    Pina, Sandra; Oliveira, Joaquim M; Reis, Rui L

    2015-02-18

    Tissue engineering and regenerative medicine has been providing exciting technologies for the development of functional substitutes aimed to repair and regenerate damaged tissues and organs. Inspired by the hierarchical nature of bone, nanostructured biomaterials are gaining a singular attention for tissue engineering, owing their ability to promote cell adhesion and proliferation, and hence new bone growth, compared with conventional microsized materials. Of particular interest are nanocomposites involving biopolymeric matrices and bioactive nanosized fillers. Biodegradability, high mechanical strength, and osteointegration and formation of ligamentous tissue are properties required for such materials. Biopolymers are advantageous due to their similarities with extracellular matrices, specific degradation rates, and good biological performance. By its turn, calcium phosphates possess favorable osteoconductivity, resorbability, and biocompatibility. Herein, an overview on the available natural polymer/calcium phosphate nanocomposite materials, their design, and properties is presented. Scaffolds, hydrogels, and fibers as biomimetic strategies for tissue engineering, and processing methodologies are described. The specific biological properties of the nanocomposites, as well as their interaction with cells, including the use of bioactive molecules, are highlighted. Nanocomposites in vivo studies using animal models are also reviewed and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The Hippo Pathway as Drug Targets in Cancer Therapy and Regenerative Medicine.

    PubMed

    Nagashima, Shunta; Bao, Yijun; Hata, Yutaka

    2017-01-01

    Yes-associated protein 1 (YAP1) and transcriptional co-activator with PDZ-binding motif (TAZ) co-operate with numerous transcription factors to regulate gene transcriptions. YAP1 and TAZ are negatively regulated by the tumor suppressive Hippo pathway. In human cancers, the Hippo pathway is frequently deregulated and YAP1 and TAZ escape the inhibition by the Hippo pathway. The upregulation of YAP1 and TAZ induces epithelial-mesenchymal transition and increases drug resistance in cancer cells. TAZ is implicated in cancer stemness. In consequence cancers with hyperactive YAP1 and TAZ are associated with poor clinical prognosis. Inhibitors of YAP1 and TAZ are reasoned to be beneficial in cancer therapy. On the other hand, since YAP1 and TAZ play important roles in the regulation of various tissue stem cells and in tissue repair, activators of YAP1 and TAZ are useful in the regenerative medicine. We discuss the potential application of inhibitors and activators of YAP1 and TAZ in human diseases and review the progress of drug screenings to search for them. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Purity and the dangers of regenerative medicine: regulatory innovation of human tissue-engineered technology.

    PubMed

    Faulkner, Alex; Kent, Julie; Geesink, Ingrid; FitzPatrick, David

    2006-11-01

    This paper examines the development of innovation in human tissue technologies as a form of regenerative medicine, firstly by applying 'pollution ideas' to contemporary trends in its risk regulation and to the processes of regulatory policy formation, and secondly by analysing the classificatory processes deployed in regulatory policy. The analysis draws upon data from fieldwork and documentary materials with a focus on the UK and EU (2002-05) and explores four arenas: governance and regulatory policy; commercialisation and the market; 'evidentiality' manifest in evidence-based policy; and publics' and technology users' values and ethics. The analysis suggests that there is a trend toward 'purification' across these arenas, both material and socio-political. A common process of partitioning is found in stakeholders' attempts to define a clear terrain, which the field of tissue-engineered technology might occupy. We conclude that pollution ideas and partitioning processes are useful in understanding regulatory ordering and innovation in the emerging technological zone of human tissue engineering.

  16. The Chemo-Biological Outreach of Nano-Biomaterials: Implications for Tissue Engineering and Regenerative Medicine.

    PubMed

    Kumar, Pradeep; Choonara, Yahya E; Khan, Riaz A; Pillay, Viness

    2017-01-01

    Nanobiomaterials can be defined as materials interacting with and influencing the biological microenvironment at a nanointerface. Recently the basic as well as applied research related to nanobiomaterials - a conjugation of nano-, material- and life-sciences - has immensely evolved for therapeutics and related biotechnology areas. The current overview focused on the potential of nanobiomaterial-based substrates towards the generation of biocompatible surfaces, tissue engineering architectures, and regenerative medicine. Emphasis was given to chemomolecular functionalization of nanobiomaterials, nanobiomaterial composites, and morphomechanically modified nanoarchetypes and their inherent chemo-biological interaction with the biological microenvironment. Additionally, recent developments in nanobiomaterial substrate design and structure, chemo-biological interface related bio-systems uses and further evolving applications in health care, therapeutics and nanomedicine were discussed herein. Furthermore, a special emphasis was placed on the nano-chemo-biological interactions inherent to various nanobiomaterial substrates in close vicinity with biological systems. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. A review of gradient stiffness hydrogels used in tissue engineering and regenerative medicine.

    PubMed

    Xia, Tingting; Liu, Wanqian; Yang, Li

    2017-06-01

    Substrate stiffness is known to impact characteristics including cell differentiation, proliferation, migration and apoptosis. Hydrogels are polymeric materials distinguished by high water content and diverse physical properties. Gradient stiffness hydrogels are designed by the need to develop biologically friendly materials as extracellular matrix (ECM) alternatives to replace the separated and narrow-ranged hydrogel substrates. Important new discoveries in cell behaviors have been realized with model gradient stiffness hydrogel systems from the two-dimensional (2D) to three-dimensional (3D) scale. Basic and clinical applications for gradient stiffness hydrogels in tissue engineering and regenerative medicine continue to drive the development of stiffness and structure varied hydrogels. Given the importance of gradient stiffness hydrogels in basic research and biomedical applications, there is a clear need for systems for gradient stiffness hydrogel design strategies and their applications. This review will highlight past work in the field of gradient stiffness hydrogels fabrication methods, mechanical property test, applications as well as areas for future study. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1799-1812, 2017. © 2017 Wiley Periodicals, Inc.

  18. Regenerative medicine: then and now – an update of recent history into future possibilities

    PubMed Central

    Polykandriotis, E; Popescu, L M; Horch, R E

    2010-01-01

    Abstract The fields of tissue engineering (TE) and regenerative medicine (RegMed) are yet to bring about the anticipated therapeutic revolution. After two decades of extremely high expectations and often disappointing returns both in the medical as well as in the financial arena, this scientific field reflects the sense of a new era and suggests the feeling of making a fresh start although many scientists are probably seeking reorientation. Much of research was industry driven, so that especially in the aftermath of the recent financial meltdown in the last 2 years we have witnessed a biotech asset yard sale. Despite any monetary shortcomings, from a technological point of view there have been great leaps that are yet to find their way to the patient. RegMed is definitely bound to play a major role in our life because it embodies one of the primordial dreams of mankind, such as: everlasting youth, flying, remote communication and setting foot on the moon. The Journal of Cellular and Molecular Medicine has been at the frontier of these developments in TE and RegMed from its beginning and reflects recent scientific advances in both fields. Therefore this review tries to look at RegMed through the keyhole of history which might just be like looking ‘back to the future’. PMID:20825521

  19. Regenerative Endodontics: Barriers and Strategies for Clinical Translation

    PubMed Central

    Kim, Sahng G.; Zhou, Jian; Ye, Ling; Cho, Shoko; Suzuki, Takahiro; Fu, Susan Y.; Yang, Rujing; Zhou, Xuedong; Mao, Jeremy J.

    2014-01-01

    SYNOPSIS Despite a great deal of enthusiasm and effort, regenerative endodontics has encountered substantial challenges towards clinical translation. Recent adoption by the American Dental Association (ADA) of evoked pulp bleeding in immature permanent teeth is an important step for regenerative endodontics. However, there is no regenerative therapy for the majority of endodontic diseases. Simple recapitulation of cell therapy and tissue engineering strategies that are under development for other organ systems has not led to clinical translation in regeneration endodontics. Dental pulp stem cells may appear to be a priori choice for dental pulp regeneration. However, dental pulp stem cells may not be available in a patient who is in need of pulp regeneration. Even if dental pulp stem cells are available autologously or perhaps allogeneically, one must address a multitude of scientific, regulatory and commercialization barriers, and unless these issues are resolved, transplantation of dental pulp stem cells will remain a scientific exercise, rather than a clinical reality. Recent work using novel biomaterial scaffolds and growth factors that orchestrate the homing of host endogenous cells represents a departure from traditional cell transplantation approaches and may accelerate clinical translation. Given the functions and scale of dental pulp and dentin, regenerative endodontics is poised to become one of the early biological solutions in regenerative dental medicine. PMID:22835543

  20. A global perspective: training opportunities in Adolescent Medicine for healthcare professionals.

    PubMed

    Golub, Sarah A; Arunakul, Jiraporn; Hassan, Areej

    2016-08-01

    The review briefly describes the current state of adolescent health globally, and highlights current educational and training opportunities in Adolescent Medicine for healthcare providers worldwide. Despite a growing body of literature demonstrating a shift toward recognizing Adolescent Medicine as a subspecialty, there are very few countries that offer nationally recognized Adolescent Medicine training programs. In recent years, several countries have begun to offer educational programming, such as noncredentialed short training programs, conferences, and online courses. Challenges, including cultural barriers, financing, and lack of governmental recognition and support, have hindered progress in the development of accredited training programs globally. It is crucial to support efforts for sustainable training programs, especially within low and middle-income countries where a majority of the world's adolescent population lives. Sharing knowledge of existing curriculums, programs, and systems will increase opportunities globally to build regional capacity, increase access to interdisciplinary services, and to implement health-promoting policies for youth worldwide.

  1. Laboratory animal medicine — Needs and opportunities for Canadian veterinarians

    PubMed Central

    Turner, Patricia V.; Baar, Michael; Olfert, Ernest D.

    2009-01-01

    Laboratory animal medicine is a growing field of veterinary practice that emphasizes animal welfare and refinement of research animal care. The Canadian Association for Laboratory Animal Medicine/L’association canadienne de la medecine des animaux de laboratoire (CALAM/ACMAL) and the Canadian Council on Animal Care (CCAC) provide a framework within which laboratory animal veterinarians practise. Numerous continuing education and post-graduate training opportunities exist in Canada for veterinarians interested in pursuing this specialty. PMID:19436476

  2. Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine

    PubMed Central

    Srivastava, Amit K.; Kadayakkara, Deepak K.; Bar-Shir, Amnon; Gilad, Assaf A.; McMahon, Michael T.; Bulte, Jeff W. M.

    2015-01-01

    The field of molecular and cellular imaging allows molecules and cells to be visualized in vivo non-invasively. It has uses not only as a research tool but in clinical settings as well, for example in monitoring cell-based regenerative therapies, in which cells are transplanted to replace degenerating or damaged tissues, or to restore a physiological function. The success of such cell-based therapies depends on several critical issues, including the route and accuracy of cell transplantation, the fate of cells after transplantation, and the interaction of engrafted cells with the host microenvironment. To assess these issues, it is necessary to monitor transplanted cells non-invasively in real-time. Magnetic resonance imaging (MRI) is a tool uniquely suited to this task, given its ability to image deep inside tissue with high temporal resolution and sensitivity. Extraordinary efforts have recently been made to improve cellular MRI as applied to regenerative medicine, by developing more advanced contrast agents for use as probes and sensors. These advances enable the non-invasive monitoring of cell fate and, more recently, that of the different cellular functions of living cells, such as their enzymatic activity and gene expression, as well as their time point of cell death. We present here a review of recent advancements in the development of these probes and sensors, and of their functioning, applications and limitations. PMID:26035841

  3. Structure and properties of slow-resorbing nanofibers obtained by (co-axial) electrospinning as tissue scaffolds in regenerative medicine

    PubMed Central

    Gola, Joanna; Ghavami, Saeid; Skonieczna, Magdalena; Markowski, Jarosław; Likus, Wirginia; Lewandowska, Magdalena; Maziarz, Wojciech

    2017-01-01

    With the rapid advancement of regenerative medicine technologies, there is an urgent need for the development of new, cell-friendly techniques for obtaining nanofibers—the raw material for an artificial extracellular matrix production. We investigated the structure and properties of PCL10 nanofibers, PCL5/PCL10 core-shell type nanofibers, as well as PCL5/PCLAg nanofibres prepared by electrospinning. For the production of the fiber variants, a 5–10% solution of polycaprolactone (PCL) (Mw = 70,000–90,000), dissolved in a mixture of formic acid and acetic acid at a ratio of 70:30 m/m was used. In order to obtain fibers containing PCLAg 1% of silver nanoparticles was added. The electrospin was conducted using the above-described solutions at the electrostatic field. The subsequent bio-analysis shows that synthesis of core-shell nanofibers PCL5/PCL10, and the silver-doped variant nanofiber core shell PCL5/PCLAg, by using organic acids as solvents, is a robust technique. Furthermore, the incorporation of silver nanoparticles into PCL5/PCLAg makes such nanofibers toxic to model microbes without compromising its biocompatibility. Nanofibers obtained such way may then be used in regenerative medicine, for the preparation of extracellular scaffolds: (i) for controlled bone regeneration due to the long decay time of the PCL, (ii) as bioscaffolds for generation of other types of artificial tissues, (iii) and as carriers of nanocapsules for local drug delivery. Furthermore, the used solvents are significantly less toxic than the solvents for polycaprolactone currently commonly used in electrospin, like for example chloroform (CHCl3), methanol (CH3OH), dimethylformamide (C3H7NO) or tetrahydrofuran (C4H8O), hence the presented here electrospin technique may allow for the production of multilayer nanofibres more suitable for the use in medical field. PMID:29302386

  4. Tubular Tissues and Organs of Human Body--Challenges in Regenerative Medicine.

    PubMed

    Góra, Aleksander; Pliszka, Damian; Mukherjee, Shayanti; Ramakrishna, Seeram

    2016-01-01

    Tissue engineering of tubular organs such as the blood vessel, trachea gastrointestinal tract, urinary tract are of the great interest due to the high amount of surgeries performed annually on those organs. Development in tissue engineering in recent years and promising results, showed need to investigate more complex constructs that need to be designed in special manner. Stent technology remain the most widely used procedure to restore functions of tubular tissues after cancer treatment, or after organ removal due to traumatic accidents. Tubular structures like blood vessels, intestines, and trachea have to work in specific environment at the boundary of the liquids, solids or air and surrounding tissues and ensure suitable separation between them. This brings additional challenges in tissue engineering science in order to construct complete organs by using combinations of various cells along with the support material systems. Here we give a comprehensive review of the tubular structures of the human body, in perspective of the current methods of treatment and progress in regenerative medicine that aims to develop fully functioning organs of tubular shape. Extensive analysis of the available literature has been done focusing on materials and methods of creations of such organs. This work describes the attempts to incorporate growth factors and drugs within the scaffolds to ensure localized drug release and enhance vascularization of the organ by attracting blood vessels to the site of implantation.

  5. Future role of MR elastography in tissue engineering and regenerative medicine.

    PubMed

    Othman, Shadi F; Xu, Huihui; Mao, Jeremy J

    2015-05-01

    Tissue engineering (TE) has been introduced for more than 25 years without a boom in clinical trials. More than 70 TE-related start-up companies spent more than $600 million/year, with only two FDA-approved tissue-engineered products. Given the modest performance in clinically approved organs, TE is a tenaciously promising field. The TE community is advocating the application of clinically driven methodologies in large animal models enabling clinical translation. This challenge is hindered by the scarcity of tissue biopsies and the absence of standardized evaluation tools, but can be negated through non-invasive assessment of growth and integration, with reduced sample size and low cost. Solving this issue will speed the transition to cost-efficient clinical studies. In this paper we: (a) introduce magnetic resonance elastography to the tissue-engineering and regenerative medicine (TERM) community; (b) review recent MRE applications in TERM; and (c) discuss future directions of MRE in TERM. We have used MRE to study engineered tissues both in vitro and in vivo, where the mechanical properties of mesenchymally derived constructs were progressively monitored before and after tissues were implanted in mouse models. This study represents a stepping stone toward the applications of MRE in directing clinical trials with low cost and likely expediting the translation to more relevantly large animal models and clinical trials. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Opportunities for the Cardiovascular Community in the Precision Medicine Initiative.

    PubMed

    Shah, Svati H; Arnett, Donna; Houser, Steven R; Ginsburg, Geoffrey S; MacRae, Calum; Mital, Seema; Loscalzo, Joseph; Hall, Jennifer L

    2016-01-12

    The Precision Medicine Initiative recently announced by President Barack Obama seeks to move the field of precision medicine more rapidly into clinical care. Precision medicine revolves around the concept of integrating individual-level data including genomics, biomarkers, lifestyle and other environmental factors, wearable device physiological data, and information from electronic health records to ultimately provide better clinical care to individual patients. The Precision Medicine Initiative as currently structured will primarily fund efforts in cancer genomics with longer-term goals of advancing precision medicine to all areas of health, and will be supported through creation of a 1 million person cohort study across the United States. This focused effort on precision medicine provides scientists, clinicians, and patients within the cardiovascular community an opportunity to work together boldly to advance clinical care; the community needs to be aware and engaged in the process as it progresses. This article provides a framework for potential involvement of the cardiovascular community in the Precision Medicine Initiative, while highlighting significant challenges for its successful implementation. © 2016 American Heart Association, Inc.

  7. Mucosal-Associated Invariant T Cells in Regenerative Medicine

    PubMed Central

    Wakao, Hiroshi; Sugimoto, Chie; Kimura, Shinzo; Wakao, Rika

    2017-01-01

    Although antibiotics to inhibit bacterial growth and small compounds to interfere with the productive life cycle of human immunodeficiency virus (HIV) have successfully been used to control HIV infection, the recent emergence of the drug-resistant bacteria and viruses poses a serious concern for worldwide public health. Despite intensive scrutiny in developing novel antibiotics and drugs to overcome these problems, there is a dilemma such that once novel antibiotics are launched in markets, sooner or later antibiotic-resistant strains emerge. Thus, it is imperative to develop novel methods to avoid this vicious circle. Here, we discuss the possibility of using induced pluripotent stem cell (iPSC)-derived, innate-like T cells to control infection and potential application of these cells for cancer treatment. Mucosal-associated invariant T (MAIT) cells belong to an emerging family of innate-like T cells that link innate immunity to adaptive immunity. MAIT cells exert effector functions without priming and clonal expansion like innate immune cells and relay the immune response to adaptive immune cells through production of relevant cytokines. With these characteristics, MAIT cells are implicated in a wide range of human diseases such as autoimmune, infectious, and metabolic diseases, and cancer. Circulating MAIT cells are often depleted by these diseases and often remain depleted even after appropriate remedy because MAIT cells are susceptible to activation-induced cell death and poor at proliferation in vivo, which threatens the integrity of the immune system. Because MAIT cells have a pivotal role in human immunity, supplementation of MAIT cells into immunocompromised patients suffering from severe depletion of these cells may help recapitulate or recover immunocompetence. The generation of MAIT cells from human iPSCs has made it possible to procure MAIT cells lost from disease. Such technology creates new avenues for cell therapy and regenerative medicine for

  8. Multi-Functional Macromers for Hydrogel Design in Biomedical Engineering and Regenerative Medicine

    PubMed Central

    Hacker, Michael C.; Nawaz, Hafiz Awais

    2015-01-01

    Contemporary biomaterials are expected to provide tailored mechanical, biological and structural cues to encapsulated or invading cells in regenerative applications. In addition, the degradative properties of the material also have to be adjustable to the desired application. Oligo- or polymeric building blocks that can be further cross-linked into hydrogel networks, here addressed as macromers, appear as the prime option to assemble gels with the necessary degrees of freedom in the adjustment of the mentioned key parameters. Recent developments in the design of multi-functional macromers with two or more chemically different types of functionalities are summarized and discussed in this review illustrating recent trends in the development of advanced hydrogel building blocks for regenerative applications. PMID:26610468

  9. Multi-Functional Macromers for Hydrogel Design in Biomedical Engineering and Regenerative Medicine.

    PubMed

    Hacker, Michael C; Nawaz, Hafiz Awais

    2015-11-19

    Contemporary biomaterials are expected to provide tailored mechanical, biological and structural cues to encapsulated or invading cells in regenerative applications. In addition, the degradative properties of the material also have to be adjustable to the desired application. Oligo- or polymeric building blocks that can be further cross-linked into hydrogel networks, here addressed as macromers, appear as the prime option to assemble gels with the necessary degrees of freedom in the adjustment of the mentioned key parameters. Recent developments in the design of multi-functional macromers with two or more chemically different types of functionalities are summarized and discussed in this review illustrating recent trends in the development of advanced hydrogel building blocks for regenerative applications.

  10. Regenerative (Regen) ECLSS Operations Water Balance

    NASA Technical Reports Server (NTRS)

    Tobias, Barry

    2010-01-01

    In November 2008, the Water Regenerative System racks were launched aboard Space Shuttle flight, STS-126 (ULF2) and installed and activated on the International Space Station (ISS). These racks, consisting of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA), completed the installation of the Regenerative (Regen) ECLSS systems which includes the Oxygen Generator Assembly (OGA) that was launched 2 years prior. With the onset of active water management on the US segment of the ISS, a new operational concept was required, that of "water balance." Even more recently, in 2010 the Sabatier system came online which converts H2 and CO2 into water and methane. The Regen ECLSS systems accept condensation from the atmosphere, urine from crew, and processes that fluid via various means into potable water which is used for crew drinking, building up skip-cycle water inventory, and water for electrolysis to produce oxygen. Specification rates of crew urine output, condensate output, O2 requirements, toilet flush water and drinking needs are well documented and used as a general plan when Regen ECLSS came online. Spec rates are useful in long term planning, however, daily or weekly rates are dependent on a number of variables. The constantly changing rates created a new challenge for the ECLSS flight controllers, who are responsible for operating the ECLSS systems onboard ISS. This paper will review the various inputs to rate changes and inputs to planning events, including but not limited to; crew personnel makeup, Regen ECLSS system operability, vehicle traffic, water containment availability, and Carbon Dioxide Removal Assembly (CDRA) capability. Along with the inputs that change the various rates, the paper will review the different systems, their constraints and finally the operational means by which flight controllers manage this new challenge of "water balance."

  11. Hyaluronic Acid (HA) Scaffolds and Multipotent Stromal Cells (MSCs) in Regenerative Medicine.

    PubMed

    Prè, Elena Dai; Conti, Giamaica; Sbarbati, Andrea

    2016-12-01

    Traditional methods for tissue regeneration commonly used synthetic scaffolds to regenerate human tissues. However, they had several limitations, such as foreign body reactions and short time duration. In order to overcome these problems, scaffolds made of natural polymers are preferred. One of the most suitable and widely used materials to fabricate these scaffolds is hyaluronic acid. Hyaluronic acid is the primary component of the extracellular matrix of the human connective tissue. It is an ideal material for scaffolds used in tissue regeneration, thanks to its properties of biocompatibility, ease of chemical functionalization and degradability. In the last few years, especially from 2010, scientists have seen that the cell-based engineering of these natural scaffolds allows obtaining even better results in terms of tissue regeneration and the research started to grow in this direction. Multipotent stromal cells, also known as mesenchymal stem cells, plastic-adherent cells isolated from bone marrow and other mesenchymal tissues, with self-renew and multi-potency properties are ideal candidates for this aim. Normally, they are pre-seeded onto these scaffolds before their implantation in vivo. This review discusses the use of hyaluronic acid-based scaffolds together with multipotent stromal cells, as a very promising tool in regenerative medicine.

  12. Liability versus innovation: the legal case for regenerative medicine.

    PubMed

    Keren-Paz, Tsachi; El Haj, Alicia J

    2014-10-01

    Medical innovation occupies a position somewhere between standard practice and clinical research, but innovation is primarily intended to benefit an individual patient where standard treatment fails. Medical innovations in the area of regenerative medicine have the potential to completely transform medical practice, but rely upon some major revision to the nature of treatments beyond drug-based therapies. There is considerable investment in scientific and clinical research, but further attention could be paid to legal barriers to medical innovation imposed by the threat of medical malpractice. We survey in this article the legal framework for making determinations of medical malpractice in general, and highlight the issues specific to innovative treatments. In essence, liability could be imposed for failing to adequately inform the patient about the innovative nature of the suggested therapy or based on the fact that the risks outweighed the benefits. As for the latter, we examine whether liability is likely to be based merely on deviating from existing practice or on an examination on the merits of the treatments' risks and benefits. The facts that some risks are unforeseeable and some benefits are external to the patient complicate negligence determinations. The first fact relates to the problem of judging adverse events in hindsight; the second, to the obligation to make decisions based on the patient's best interest and avoid conflict of interests. In addition, we evaluate the relationship between the obligations to secure the patient's informed consent and to avoid clinical negligence. We identify the need for further research to examine the significance of the putative anti-innovation bias that current liability regimen has, and to examine whether a move to strict liability might avoid such bias, while being fair to patients who contribute for the advancement of medical knowledge by participating in innovative therapies.

  13. Inflammation-sensitive in situ smart scaffolding for regenerative medicine.

    PubMed

    Patra, Hirak K; Sharma, Yashpal; Islam, Mohammad Mirazul; Jafari, Mohammad Javad; Murugan, N Arul; Kobayashi, Hisatoshi; Turner, Anthony P F; Tiwari, Ashutosh

    2016-10-06

    gated inflammation-sensitive smart biomaterials for advanced tissue regeneration and regenerative medicine.

  14. WNT signaling in stem cell biology and regenerative medicine.

    PubMed

    Katoh, Masaru

    2008-07-01

    WNT family members are secreted-type glycoproteins to orchestrate embryogenesis, to maintain homeostasis, and to induce pathological conditions. FZD1, FZD2, FZD3, FZD4, FZD5, FZD6, FZD7, FZD8, FZD9, FZD10, LRP5, LRP6, and ROR2 are transmembrane receptors transducing WNT signals based on ligand-dependent preferentiality for caveolin- or clathrin-mediated endocytosis. WNT signals are transduced to canonical pathway for cell fate determination, and to non-canonical pathways for regulation of planar cell polarity, cell adhesion, and motility. MYC, CCND1, AXIN2, FGF20, WISP1, JAG1, DKK1 and Glucagon are target genes of canonical WNT signaling cascade, while CD44, Vimentin and STX5 are target genes of non-canonical WNT signaling cascades. However, target genes of WNT signaling cascades are determined in a context-dependent manner due to expression profile of transcription factors and epigenetic status. WNT signaling cascades network with Notch, FGF, BMP and Hedgehog signaling cascades to regulate the balance of stem cells and progenitor cells. Here WNT signaling in embryonic stem cells, neural stem cells, mesenchymal stem cells, hematopoietic stem cells, and intestinal stem cells will be reviewed. WNT3, WNT5A and WNT10B are expressed in undifferentiated human embryonic stem cells, while WNT6, WNT8B and WNT10B in endoderm precursor cells. Wnt6 is expressed in intestinal crypt region for stem or progenitor cells. TNF/alpha-WNT10B signaling is a negative feedback loop to maintain homeostasis of adipose tissue and gastrointestinal mucosa with chronic inflammation. Recombinant WNT protein or WNT mimetic (circular peptide, small molecule compound, or RNA aptamer) in combination with Notch mimetic, FGF protein, and BMP protein opens a new window to tissue engineering for regenerative medicine.

  15. Latest status of the clinical and industrial applications of cell sheet engineering and regenerative medicine.

    PubMed

    Egami, Mime; Haraguchi, Yuji; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2014-01-01

    Cell sheet engineering, which allows tissue engineering to be realized without the use of biodegradable scaffolds as an original approach, using a temperature-responsive intelligent surface, has been applied in regenerative medicine for various tissues, and a number of clinical studies have been already performed for life-threatening diseases. By using the results and findings obtained from the initial clinical studies, additional investigative clinical studies in several tissues with cell sheet engineering are currently in preparation stage. For treating many patients effectively by cell sheet engineering, an automated system integrating cell culture, cell-sheet fabrication, and layering is essential, and the system should include an advanced three-dimensional suspension cell culture system and an in vitro bioreactor system to scale up the production of cultured cells and fabricate thicker vascularized tissues. In this paper, cell sheet engineering, its clinical application, and further the authors' challenge to develop innovative cell culture systems under newly legislated regulatory platform in Japan are summarized and discussed.

  16. Application of stem cell/growth factor system, as a multimodal therapy approach in regenerative medicine to improve cell therapy yields.

    PubMed

    Pourrajab, Fatemeh; Babaei Zarch, Mojtaba; Baghi Yazdi, Mohammad; Rahimi Zarchi, Abolfazl; Vakili Zarch, Abbas

    2014-04-15

    Stem cells hold a great promise for regenerative medicine, especially for replacing cells in infarcted organ that hardly have any intrinsic renewal capacity, including heart and brain. Signaling pathways that regulate pluripotency or lineage-specific gene and protein expression have been the major focus of stem cell research. Between them, there are some well known signaling pathways such as GF/GFR systems, SDF-1α/CXC4 ligand receptor interaction and PI3K/Akt signaling, and cytokines may regulate cell fate decisions, and can be utilized to positively influence cell therapy outcomes or accentuate synergistic compliance. For example, contributing factors in the progression of heart failure are both the loss of cardiomyocytes after myocardial infarction, and the absence of an adequate endogenous repair signaling. Combining cell engraftment with therapeutic signaling factor delivery is more exciting in terms of host progenitor/donor stem cell survival and proliferation. Thus stem cell-based therapy, besides triggering signaling pathways through GF/GFR systems can become a realistic option in regenerative processes for replacing lost cells and reconstituting the damaged organ, as before. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Forensic medicine: a forgotten world of opportunities and challenges for research.

    PubMed

    Magalhães, Teresa; Santos, Agostinho; Dinis-Oliveira, Ricardo Jorge

    2013-08-01

    Forensic medicine deals with a wide variety of cases. To accomplish the main objectives, this professional field needs to adopt and apply findings from other sciences, namely, different medical specialties and other forensic sciences. The opposite is not yet entirely true due to the fact that forensic medicine deals with cases that are very far away from other medical and scientific interests. It is obvious that this forgotten world of forensic medicine … is also a new world of opportunities and challenges to research in all scientific areas. Copyright © 2013 IMSS. Published by Elsevier Inc. All rights reserved.

  18. Laminin- and basement membrane-polycaprolactone blend nanofibers as a scaffold for regenerative medicine.

    PubMed

    Neal, Rebekah A; Lenz, Steven M; Wang, Tiffany; Abebayehu, Daniel; Brooks, Benjamin P C; Ogle, Roy C; Botchwey, Edward A

    2014-09-01

    Mimicking one or more components of the basement membrane (BM) holds great promise for overcoming insufficiencies in tissue engineering therapies. We have electrospun laminin nanofibers (NFs) isolated from the murine Engelbreth-Holm Swarm (EHS) tumor and evaluated them as a scaffold for embryonic stem cell culture. Seeded human embryonic stem cells were found to better maintain their undifferentiated, colony environment when cultured on laminin NFs compared to laminin mats, with 75% remaining undifferentiated on NFs. Mouse embryonic stem cells cultured on 10% laminin-polycaprolactone (PCL) NFs maintained their colony formation for twice as long without passage compared to those on PCL or gelatin substrates. In addition, we have established a protocol for electrospinning reconstituted basement membrane aligned (RBM)-PCL NFs within 10° of angular deviation. Neuron-like PC12 cells show significantly greater attachment (p < 0.001) and percentage of neurite-extending cells in vitro on 10% RBM-PCL NFs when compared to 1% and 0% RBM-PCL NFs (p < 0.015 and p < 0.001, respectively). Together, these results implicate laminin- and RBM-PCL scaffolds as a promising biomimetic substrate for regenerative medicine applications.

  19. The promise of organ and tissue preservation to transform medicine.

    PubMed

    Giwa, Sebastian; Lewis, Jedediah K; Alvarez, Luis; Langer, Robert; Roth, Alvin E; Church, George M; Markmann, James F; Sachs, David H; Chandraker, Anil; Wertheim, Jason A; Rothblatt, Martine; Boyden, Edward S; Eidbo, Elling; Lee, W P Andrew; Pomahac, Bohdan; Brandacher, Gerald; Weinstock, David M; Elliott, Gloria; Nelson, David; Acker, Jason P; Uygun, Korkut; Schmalz, Boris; Weegman, Brad P; Tocchio, Alessandro; Fahy, Greg M; Storey, Kenneth B; Rubinsky, Boris; Bischof, John; Elliott, Janet A W; Woodruff, Teresa K; Morris, G John; Demirci, Utkan; Brockbank, Kelvin G M; Woods, Erik J; Ben, Robert N; Baust, John G; Gao, Dayong; Fuller, Barry; Rabin, Yoed; Kravitz, David C; Taylor, Michael J; Toner, Mehmet

    2017-06-07

    The ability to replace organs and tissues on demand could save or improve millions of lives each year globally and create public health benefits on par with curing cancer. Unmet needs for organ and tissue preservation place enormous logistical limitations on transplantation, regenerative medicine, drug discovery, and a variety of rapidly advancing areas spanning biomedicine. A growing coalition of researchers, clinicians, advocacy organizations, academic institutions, and other stakeholders has assembled to address the unmet need for preservation advances, outlining remaining challenges and identifying areas of underinvestment and untapped opportunities. Meanwhile, recent discoveries provide proofs of principle for breakthroughs in a family of research areas surrounding biopreservation. These developments indicate that a new paradigm, integrating multiple existing preservation approaches and new technologies that have flourished in the past 10 years, could transform preservation research. Capitalizing on these opportunities will require engagement across many research areas and stakeholder groups. A coordinated effort is needed to expedite preservation advances that can transform several areas of medicine and medical science.

  20. Disease-in-a-dish: the contribution of patient-specific induced pluripotent stem cell technology to regenerative rehabilitation.

    PubMed

    Mack, David L; Guan, Xuan; Wagoner, Ashley; Walker, Stephen J; Childers, Martin K

    2014-11-01

    Advances in regenerative medicine technologies will lead to dramatic changes in how patients in rehabilitation medicine clinics are treated in the upcoming decades. The multidisciplinary field of regenerative medicine is developing new tools for disease modeling and drug discovery based on induced pluripotent stem cells. This approach capitalizes on the idea of personalized medicine by using the patient's own cells to discover new drugs, increasing the likelihood of a favorable outcome. The search for compounds that can correct disease defects in the culture dish is a conceptual departure from how drug screens were done in the past. This system proposes a closed loop from sample collection from the diseased patient, to in vitro disease model, to drug discovery and Food and Drug Administration approval, to delivering that drug back to the same patient. Here, recent progress in patient-specific induced pluripotent stem cell derivation, directed differentiation toward diseased cell types, and how those cells can be used for high-throughput drug screens are reviewed. Given that restoration of normal function is a driving force in rehabilitation medicine, the authors believe that this drug discovery platform focusing on phenotypic rescue will become a key contributor to therapeutic compounds in regenerative rehabilitation.

  1. [Development of guidance for the approval process of brand-new medical products and regenerative medicine products].

    PubMed

    Niimi, Shingo

    2015-01-01

    Ministry of Health, Labour and Weltare has been conducting development of guidance for the approval process of brand-new medical products/development of guidance for medical devices in collaboration with Ministry of Economy, Trade and Industry as part of measures to promote practical use of brand-new medical products since 2005. The objective of this project is to expedite the processes from developmental process of medical devices to approval review and to introduce the medical devices to medical front quickly.. Ministry of Health, Labour and Welfare side has been making guidance for the guide in approval process of brand-new medical products and regeneration medicine products to aim at acceleration and facilitation of development and approval process of innovative medical products. Twenty-two of the guidance have been issued as director of the evaluation and licensing division. The evaluation index about safety and efficacy required for medical devices and regenerative medicine products in progress were put together in these guidance and useful for medical devices developer to understand the point at the approved review. Therefore, I think that the evaluation index could also contribute to the efficient product development. The guidance about implantable artificial heart is issued as the representative example which was useful in the approved review.

  2. Current and emerging global themes in the bioethics of regenerative medicine: the tangled web of stem cell translation.

    PubMed

    Chan, Sarah

    2017-10-01

    Probably the most serious problem facing the field of regenerative medicine today is the challenge of effective translation and development of viable stem cell-based therapies. Particular concerns have been raised over the growing market in unproven cell therapies. In this article, I explore recent developments in the stem cell therapy landscape and argue that while the sale of unproven therapies undoubtedly poses ethical concerns, it must be understood as part of a larger problem at the interface between biomedicine, healthcare, publics, policy and the market. Addressing this will require a broader perspective incorporating the shifting relationships between different stakeholder groups, the global politics of research and innovation, and the evolving role of publics and patients with respect to science.

  3. Current and emerging global themes in the bioethics of regenerative medicine: the tangled web of stem cell translation

    PubMed Central

    Chan, Sarah

    2017-01-01

    Probably the most serious problem facing the field of regenerative medicine today is the challenge of effective translation and development of viable stem cell-based therapies. Particular concerns have been raised over the growing market in unproven cell therapies. In this article, I explore recent developments in the stem cell therapy landscape and argue that while the sale of unproven therapies undoubtedly poses ethical concerns, it must be understood as part of a larger problem at the interface between biomedicine, healthcare, publics, policy and the market. Addressing this will require a broader perspective incorporating the shifting relationships between different stakeholder groups, the global politics of research and innovation, and the evolving role of publics and patients with respect to science. PMID:29119870

  4. Update on Foregut Molecular Embryology and Role of Regenerative Medicine Therapies

    PubMed Central

    Perin, Silvia; McCann, Conor J.; Borrelli, Osvaldo; De Coppi, Paolo; Thapar, Nikhil

    2017-01-01

    Esophageal atresia (OA) represents one of the commonest and most severe developmental disorders of the foregut, the most proximal segment of the gastrointestinal (GI) tract (esophagus and stomach) in embryological terms. Of intrigue is the common origin from this foregut of two very diverse functional entities, the digestive and respiratory systems. OA appears to result from incomplete separation of the ventral and dorsal parts of the foregut during development, resulting in disruption of esophageal anatomy and frequent association with tracheo-oesophageal fistula. Not surprisingly, and likely inherent to OA, are associated abnormalities in components of the enteric neuromusculature and ultimately loss of esophageal functional integrity. An appreciation of such developmental processes and associated defects has not only enhanced our understanding of the etiopathogenesis underlying such devastating defects but also highlighted the potential of novel corrective therapies. There has been considerable progress in the identification and propagation of neural crest stem cells from the GI tract itself or derived from pluripotent cells. Such cells have been successfully transplanted into models of enteric neuropathy confirming their ability to functionally integrate and replenish missing or defective enteric nerves. Combinatorial approaches in tissue engineering hold significant promise for the generation of organ-specific scaffolds such as the esophagus with current initiatives directed toward their cellularization to facilitate optimal function. This chapter outlines the most current understanding of the molecular embryology underlying foregut development and OA, and also explores the promise of regenerative medicine. PMID:28503544

  5. Update on Foregut Molecular Embryology and Role of Regenerative Medicine Therapies.

    PubMed

    Perin, Silvia; McCann, Conor J; Borrelli, Osvaldo; De Coppi, Paolo; Thapar, Nikhil

    2017-01-01

    Esophageal atresia (OA) represents one of the commonest and most severe developmental disorders of the foregut, the most proximal segment of the gastrointestinal (GI) tract (esophagus and stomach) in embryological terms. Of intrigue is the common origin from this foregut of two very diverse functional entities, the digestive and respiratory systems. OA appears to result from incomplete separation of the ventral and dorsal parts of the foregut during development, resulting in disruption of esophageal anatomy and frequent association with tracheo-oesophageal fistula. Not surprisingly, and likely inherent to OA, are associated abnormalities in components of the enteric neuromusculature and ultimately loss of esophageal functional integrity. An appreciation of such developmental processes and associated defects has not only enhanced our understanding of the etiopathogenesis underlying such devastating defects but also highlighted the potential of novel corrective therapies. There has been considerable progress in the identification and propagation of neural crest stem cells from the GI tract itself or derived from pluripotent cells. Such cells have been successfully transplanted into models of enteric neuropathy confirming their ability to functionally integrate and replenish missing or defective enteric nerves. Combinatorial approaches in tissue engineering hold significant promise for the generation of organ-specific scaffolds such as the esophagus with current initiatives directed toward their cellularization to facilitate optimal function. This chapter outlines the most current understanding of the molecular embryology underlying foregut development and OA, and also explores the promise of regenerative medicine.

  6. Stem cells and regenerative medicine for diabetes mellitus.

    PubMed

    Sumi, Shoichiro; Gu, Yuanjun; Hiura, Akihito; Inoue, Kazutomo

    2004-10-01

    A profound knowledge of the development and differentiation of pancreatic tissues, especially islets of Langerhans, is necessary for developing regenerative therapy for severe diabetes mellitus. A recent developmental study showed that PTF-1a is expressed in almost all parts of pancreatic tissues, in addition to PDX-1, a well-known transcription factor that is essential for pancreas development. Another study suggested that alpha cells and beta cells individually, but not sequentially, differentiated from neurogenin-3--expressing precursor cells. Under strong induction of pancreas regeneration, it is likely that pancreatic duct cells dedifferentiate to grow, express PDX-1, and re-differentiate toward other cell types including islet cells. Duct epithelium-like cells can be cultivated from crude pancreatic exocrine cells and can be induced to differentiate toward islet-like cell clusters under some culture conditions. These cell clusters made from murine pancreas have been shown to control hyperglycemia when transplanted into diabetic mice. Liver-derived oval cells and their putative precursor H-CFU-C have been shown to differentiate toward pancreatic cells. Furthermore, extrapancreatic cells contained in bone marrow and amniotic membrane are reported to become insulin-producing cells. However, their exact characterization and relationship between these cell types remain to be elucidated. Our recent study has shown that islet-like cell clusters can be differentiated from mouse embryonic stem cells. Transplantation of these clusters could ameliorate hyperglycemia of STZ-induced diabetic mice without forming teratomas. Interestingly, these cells expressed several genes specific to exocrine pancreatic tissue in addition to islet-related genes, suggesting that stable and efficient differentiation toward certain tissues can only be achieved through a process mimicking normal development of the tissue. Perhaps recent developments in these fields may rapidly lead to an

  7. Traditional Medicines and Kidney Disease in Low- and Middle-Income Countries: Opportunities and Challenges.

    PubMed

    Stanifer, John W; Kilonzo, Kajiru; Wang, Daphne; Su, Guobin; Mao, Wei; Zhang, Lei; Zhang, La; Nayak-Rao, Shobhana; Miranda, J Jaime

    2017-05-01

    Traditional medicines are a principal form of health care for many populations, particularly in low- and middle-income countries, and they have gained attention as an important means of health care coverage globally. In the context of kidney diseases, the challenges and opportunities presented by traditional medicine practices are among the most important considerations for developing effective and sustainable public health strategies. However, little is known about the practices of traditional medicines in relation to kidney diseases, especially concerning benefits and harms. Kidney diseases may be caused, treated, prevented, improved, or worsened by traditional medicines depending on the setting, the person, and the types, modes, and frequencies of traditional medicine use. Given the profound knowledge gaps, nephrology practitioners and researchers may be uniquely positioned to facilitate more optimal public health strategies through recognition and careful investigation of traditional medicine practices. Effective implementation of such strategies also will require local partnerships, including engaging practitioners and users of traditional medicines. As such, practitioners and researchers investigating kidney diseases may be uniquely positioned to bridge the cultural, social, historical, and biologic differences between biomedicine and traditional medicine, and they have opportunities to lead efforts in developing public health strategies that are sensitive to these differences. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Application of Stem Cell Technology in Dental Regenerative Medicine.

    PubMed

    Feng, Ruoxue; Lengner, Chistopher

    2013-07-01

    In this review, we summarize the current literature regarding the isolation and characterization of dental tissue-derived stem cells and address the potential of these cell types for use in regenerative cell transplantation therapy. Looking forward, platforms for the delivery of stem cells via scaffolds and the use of growth factors and cytokines for enhancing dental stem cell self-renewal and differentiation are discussed. We aim to understand the developmental origins of dental tissues in an effort to elucidate the molecular pathways governing the genesis of somatic dental stem cells. The advantages and disadvantages of several dental stem cells are discussed, including the developmental stage and specific locations from which these cells can be purified. In particular, stem cells from human exfoliated deciduous teeth may act as a very practical and easily accessibly reservoir for autologous stem cells and hold the most value in stem cell therapy. Dental pulp stem cells and periodontal ligament stem cells should also be considered for their triple lineage differentiation ability and relative ease of isolation. Further, we address the potentials and limitations of induced pluripotent stem cells as a cell source in dental regenerative. From an economical and a practical standpoint, dental stem cell therapy would be most easily applied in the prevention of periodontal ligament detachment and bone atrophy, as well as in the regeneration of dentin-pulp complex. In contrast, cell-based tooth replacement due to decay or other oral pathology seems, at the current time, an untenable approach.

  9. Current and future regenerative medicine — Principles, concepts, and therapeutic use of stem cell therapy and tissue engineering in equine medicine

    PubMed Central

    Koch, Thomas G.; Berg, Lise C.; Betts, Dean H.

    2009-01-01

    This paper provides a bird’s-eye perspective of the general principles of stem-cell therapy and tissue engineering; it relates comparative knowledge in this area to the current and future status of equine regenerative medicine. The understanding of equine stem cell biology, biofactors, and scaffolds, and their potential therapeutic use in horses are rudimentary at present. Mesenchymal stem cell isolation has been proclaimed from several equine tissues in the past few years. Based on the criteria of the International Society for Cellular Therapy, most of these cells are more correctly referred to as multipotent mesenchymal stromal cells, unless there is proof that they exhibit the fundamental in vivo characteristics of pluripotency and the ability to self-renew. That said, these cells from various tissues hold great promise for therapeutic use in horses. The 3 components of tissue engineering — cells, biological factors, and biomaterials — are increasingly being applied in equine medicine, fuelled by better scaffolds and increased understanding of individual biofactors and cell sources. The effectiveness of stem cell-based therapies and most tissue engineering concepts has not been demonstrated sufficiently in controlled clinical trials in equine patients to be regarded as evidence-based medicine. In the meantime, the medical mantra “do no harm” should prevail, and the application of stem cell-based therapies in the horse should be done critically and cautiously, and treatment outcomes (good and bad) should be recorded and reported. Stem cell and tissue engineering research in the horse has exciting comparative and equine specific perspectives that most likely will benefit the health of horses and humans. Controlled, well-designed studies are needed to move this new equine research field forward. PMID:19412395

  10. Trends in Regenerative Medicine: Repigmentation in Vitiligo Through Melanocyte Stem Cell Mobilization.

    PubMed

    Birlea, Stanca A; Costin, Gertrude-E; Roop, Dennis R; Norris, David A

    2017-07-01

    Vitiligo is the most frequent human pigmentary disorder, characterized by progressive autoimmune destruction of mature epidermal melanocytes. Of the current treatments offering partial and temporary relief, ultraviolet (UV) light is the most effective, coordinating an intricate network of keratinocyte and melanocyte factors that control numerous cellular and molecular signaling pathways. This UV-activated process is a classic example of regenerative medicine, inducing functional melanocyte stem cell populations in the hair follicle to divide, migrate, and differentiate into mature melanocytes that regenerate the epidermis through a complex process involving melanocytes and other cell lineages in the skin. Using an in-depth correlative analysis of multiple experimental and clinical data sets, we generated a modern molecular research platform that can be used as a working model for further research of vitiligo repigmentation. Our analysis emphasizes the active participation of defined molecular pathways that regulate the balance between stemness and differentiation states of melanocytes and keratinocytes: p53 and its downstream effectors controlling melanogenesis; Wnt/β-catenin with proliferative, migratory, and differentiation roles in different pigmentation systems; integrins, cadherins, tetraspanins, and metalloproteinases, with promigratory effects on melanocytes; TGF-β and its effector PAX3, which control differentiation. Our long-term goal is to design pharmacological compounds that can specifically activate melanocyte precursors in the hair follicle in order to obtain faster, better, and durable repigmentation. © 2016 Wiley Periodicals, Inc.

  11. Trends in Regenerative Medicine: Repigmentation in Vitiligo Through Melanocyte Stem Cell Mobilization

    PubMed Central

    Birlea, Stanca A.; Costin, Gertrude-E.; Roop, Dennis R.; Norris, David A.

    2017-01-01

    Vitiligo is the most frequent human pigmentary disorder, characterized by progressive autoimmune destruction of mature epidermal melanocytes. Of the current treatments offering partial and temporary relief, ultraviolet (UV) light is the most effective, coordinating an intricate network of keratinocyte and melanocyte factors that control numerous cellular and molecular signaling pathways. This UV-activated process is a classic example of regenerative medicine, inducing functional melanocyte stem cell populations in the hair follicle to divide, migrate, and differentiate into mature melanocytes that regenerate the epidermis through a complex process involving melanocytes and other cell lineages in the skin. Using an in-depth correlative analysis of multiple experimental and clinical data sets, we generated a modern molecular research platform that can be used as a working model for further research of vitiligo repigmentation. Our analysis emphasizes the active participation of defined molecular pathways that regulate the balance between stemness and differentiation states of melanocytes and keratinocytes: p53 and its downstream effectors controlling melanogenesis; Wnt/β-catenin with proliferative, migratory, and differentiation roles in different pigmentation systems; integrins, cadherins, tetraspanins, and metalloproteinases, with promigratory effects on melanocytes; TGF-β and its effector PAX3, which control differentiation. Our long-term goal is to design pharmacological compounds that can specifically activate melanocyte precursors in the hair follicle in order to obtain faster, better, and durable repigmentation. PMID:28029168

  12. Mycoplasma detection and elimination are necessary for the application of stem cell from human dental apical papilla to tissue engineering and regenerative medicine.

    PubMed

    Kim, Byung-Chul; Kim, So Yeon; Kwon, Yong-Dae; Choe, Sung Chul; Han, Dong-Wook; Hwang, Yu-Shik

    2015-01-01

    Recently, postnatal stem cells from dental papilla with neural crest origin have been considered as one of potent stem cell sources in regenerative medicine regarding their multi-differentiation capacity and relatively easy access. However, almost human oral tissues have been reported to be infected by mycoplasma which gives rise to oral cavity in teeth, and mycoplasma contamination of ex-vivo cultured stem cells from such dental tissues and its effect on stem cell culture has received little attention. In this study, mycoplama contamination was evaluated with stem cells from apical papilla which were isolated from human third molar and premolars from various aged patients undergoing orthodontic therapy. The ex-vivo expanded stem cells from apical papilla were found to express stem cell markers such as Stro-1, CD44, nestin and CD133, but mycoplama contamination was detected in almost all cell cultures of the tested 20 samples, which was confirmed by mycoplasma-specific gene expression and fluorescence staining. Such contaminated mycoplasma could be successfully eliminated using elimination kit, and proliferation test showed decreased proliferation activity in mycoplasma-contaminated cells. After elimination of contaminated mycoplasma, stem cells from apical papilla showed osteogenic and neural lineage differentiation under certain culture conditions. Our study proposes that the evaluation of mycoplasma contamination and elimination process might be required in the use of stem cells from apical papilla for their potent applications to tissue engineering and regenerative medicine.

  13. [Opportunity cost for men who visit family medicine units in the city of Querétaro, Mexico].

    PubMed

    Martínez Carranza, Edith Olimpia; Villarreal Ríos, Enrique; Vargas Daza, Emma Rosa; Galicia Rodríguez, Liliana; Martínez González, Lidia

    2010-12-01

    To determine the opportunity cost for men who seek care in the family medicine units (FMU) of the Mexican Social Security Institute (IMSS, Instituto Mexicano del Seguro Social) in the city of Querétaro. A sample was selected of 807 men, ages 20 to 59 years, who sought care through the family medicine, laboratory, and pharmacy services provided by the FMU at the IMSS in Querétaro. Patients referred for emergency services and those who left the facilities without receiving care were excluded. The sample (n = 807) was calculated using the averages for an infinite population formula, with a confidence interval of 95% (CI95%) and an average opportunity cost of US$5.5 for family medicine, US$3.1 for laboratory services, and US$2.3 for pharmacy services. Estimates included the amount of time spent on travel, waiting, and receiving care; the number of people accompanying the patient, and the cost per minute of paid and unpaid job activities. The opportunity cost was calculated using the estimated cost per minute for travel, waiting, and receiving care for patients and their companions. The opportunity cost for the patient travel was estimated at US$0.97 (CI95%: 0.81-1.15), while wait time was US$5.03 (CI95%: 4.08-6.09) for family medicine, US$0.06 (CI95%: 0.05-0.08) for pharmacy services, and US$1.89 (CI95%: 1.56-2.25) for laboratory services. The average opportunity cost for an unaccompanied patient visit varied between US$1.10 for pharmacy services alone and US$8.64 for family medicine, pharmacy, and laboratory services. The weighted opportunity cost for family medicine was US$6.24. Given that the opportunity cost for men who seek services in FMU corresponds to more than half of a minimum salary, it should be examined from an institutional perspective whether this is the best alternative for care.

  14. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications.

    PubMed

    Koutsopoulos, Sotirios

    2016-04-01

    Until the mid-1980s, mainly biologists were conducting peptide research. This changed with discoveries that opened new paths of research involving the use of peptides in bioengineering, biotechnology, biomedicine, nanotechnology, and bioelectronics. Peptide engineering and rational design of novel peptide sequences with unique and tailor-made properties further expanded the field. The discovery of short self-assembling peptides, which upon association form well-defined supramolecular architectures, created new and exciting areas of research. Depending on the amino acid sequence, the pH, and the type of the electrolyte in the medium, peptide self-assembly leads to the formation of nanofibers, which are further organized to form a hydrogel. In this review, the application of ionic complementary peptides which self-assemble to form nanofiber hydrogels for tissue engineering and regenerative medicine will be discussed through a selective presentation of the most important work performed during the last 25 years. © 2016 Wiley Periodicals, Inc.

  15. Regenerative medicine as applied to solid organ transplantation: current status and future challenges

    PubMed Central

    Orlando, Giuseppe; Baptista, Pedro; Birchall, Martin; De Coppi, Paolo; Farney, Alan; Guimaraes-Souza, Nadia K.; Opara, Emmanuel; Rogers, Jeffrey; Seliktar, Dror; Shapira-Schweitzer, Keren; Stratta, Robert J.; Atala, Anthony; Wood, Kathryn J.; Soker, Shay

    2013-01-01

    Summary In the last two decades, regenerative medicine has shown the potential for “bench-to-bedside” translational research in specific clinical settings. Progress made in cell and stem cell biology, material sciences and tissue engineering enabled researchers to develop cutting-edge technology which has lead to the creation of nonmodular tissue constructs such as skin, bladders, vessels and upper airways. In all cases, autologous cells were seeded on either artificial or natural supporting scaffolds. However, such constructs were implanted without the reconstruction of the vascular supply, and the nutrients and oxygen were supplied by diffusion from adjacent tissues. Engineering of modular organs (namely, organs organized in functioning units referred to as modules and requiring the reconstruction of the vascular supply) is more complex and challenging. Models of functioning hearts and livers have been engineered using “natural tissue” scaffolds and efforts are underway to produce kidneys, pancreata and small intestine. Creation of custom-made bioengineered organs, where the cellular component is exquisitely autologous and have an internal vascular network, will theoretically overcome the two major hurdles in transplantation, namely the shortage of organs and the toxicity deriving from lifelong immuno-suppression. This review describes recent advances in the engineering of several key tissues and organs. PMID:21062367

  16. On recent advances in human engineering Provocative trends in embryology, genetics, and regenerative medicine.

    PubMed

    Anton, Roman

    2016-01-01

    Advances in embryology, genetics, and regenerative medicine regularly attract attention from scientists, scholars, journalists, and policymakers, yet implications of these advances may be broader than commonly supposed. Laboratories culturing human embryos, editing human genes, and creating human-animal chimeras have been working along lines that are now becoming intertwined. Embryogenic methods are weaving traditional in vivo and in vitro distinctions into a new "in vivitro" (in life in glass) fabric. These and other methods known to be in use or thought to be in development promise soon to bring society to startling choices and discomfiting predicaments, all in a global effort to supply reliably rejuvenating stem cells, to grow immunologically non-provocative replacement organs, and to prevent, treat, cure, or even someday eradicate diseases having genetic or epigenetic mechanisms. With humanity's human-engineering era now begun, procedural prohibitions, funding restrictions, institutional controls, and transparency rules are proving ineffective, and business incentives are migrating into the most basic life-sciences inquiries, wherein lie huge biomedical potentials and bioethical risks. Rights, health, and heritage are coming into play with bioethical presumptions and formal protections urgently needing reassessment.

  17. Performance of PRP Associated with Porous Chitosan as a Composite Scaffold for Regenerative Medicine

    PubMed Central

    Shimojo, Andréa Arruda Martins; Perez, Amanda Gomes Marcelino; Galdames, Sofia Elisa Moraga; Brissac, Isabela Cambraia de Souza; Santana, Maria Helena Andrade

    2015-01-01

    This study aimed to evaluate the in vitro performance of activated platelet-rich plasma associated with porous sponges of chitosan as a composite scaffold for proliferation and osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. The sponges were prepared by controlled freezing (−20, −80, or −196°C) and lyophilization of chitosan solutions (1, 2, or 3% w/v). The platelet-rich plasma was obtained from controlled centrifugation of whole blood and activated with calcium and autologous serum. The composite scaffolds were prepared by embedding the sponges with the activated platelet-rich plasma. The results showed the performance of the scaffolds was superior to that of activated platelet-rich plasma alone, in terms of delaying the release of growth factors and increased proliferation of the stem cells. The best preparation conditions of chitosan composite scaffolds that coordinated the physicochemical and mechanical properties and cell proliferation were 3% (w/v) chitosan and a −20°C freezing temperature, while −196°C favored osteogenic differentiation. Although the composite scaffolds are promising for regenerative medicine, the structures require stabilization to prevent the collapse observed after five days. PMID:25821851

  18. A successful combined treatment with dermal substitutes and products of regenerative medicine in a patient affected by extravasation injury from hypertonic solution.

    PubMed

    Onesti, Maria Giuseppina; Carella, Sara; Maruccia, Michele; Marchese, Cinzia; Fino, Pasquale; Scuderi, Nicolò

    2012-01-01

    In neonatal intensive care units, extravasation is one of the most common injuries occurring in infants as a complication of infusion therapy. These very preterm infants have immature skin which is easily damaged. They often require a longer duration of intravenous therapy, and obtaining intravenous access can be difficult. An invasive treatment should be avoided, whenever possible, particularly for very immature infants. In our Special Operative Unit for ulcers and difficult-to-heal wounds, University of Rome, we successfully treated a premature neonate, who experienced extravasation of hypertonic fluid, using dermal substitutes and products of regenerative medicine.

  19. Toward Evidence-Based Chinese Medicine: Status Quo, Opportunities and Challenges.

    PubMed

    Chen, Yao-Long; Zhao, Chen; Zhang, Li; Li, Bo; Wu, Chuan-Hong; Mu, Wei; Wang, Jia-Ying; Yang, Ke-Hu; Li, You-Ping; Chen, Chiehfeng; Wang, Yong-Yan; Wang, Chen; Bian, Zhao-Xiang; Shang, Hong-Cai

    2018-03-01

    How to test the treatments of Chinese medicine (CM) and make them more widely accepted by practitioners of Western medicine and the international healthcare community is a major concern for practitioners and researchers of CM. For centuries, various approaches have been used to identify and measure the efficacy and safety of CM. However, the high-quality evidence related to CM that produced in China is still rare. Over the recent years, evidence-based medicine (EBM) has been increasingly applied to CM, strengthening its theoretical basis. This paper reviews the past and present state of CM, analyzes the status quo, challenges and opportunities of basic research, clinical trials, systematic reviews, clinical practice guidelines and clinical pathways and evidence-based education developed or conducted in China, pointing out how EBM can help to make CM more widely used and recognized worldwide.

  20. Regenerative medicine for the respiratory system: distant future or tomorrow's treatment?

    PubMed

    Brouwer, Katrien M; Hoogenkamp, Henk R; Daamen, Willeke F; van Kuppevelt, Toin H

    2013-03-01

    Regenerative medicine (RM) is a new field of biomedical science that focuses on the regeneration of tissues and organs and the restoration of organ function. Although regeneration of organ systems such as bone, cartilage, and heart has attracted intense scientific research over recent decades, RM research regarding the respiratory system, including the trachea, the lung proper, and the diaphragm, has lagged behind. However, the last 5 years have witnessed novel approaches and initial clinical applications of tissue-engineered constructs to restore organ structure and function. In this regard, this article briefly addresses the basics of RM and introduces the key elements necessary for tissue regeneration, including (stem) cells, biomaterials, and extracellular matrices. In addition, the current status of the (clinical) application of RM to the respiratory system is discussed, and bottlenecks and recent approaches are identified. For the trachea, several initial clinical studies have been reported and have used various combinations of cells and scaffolds. Although promising, the methods used in these studies require optimization and standardization. For the lung proper, only (stem) cell-based approaches have been probed clinically, but it is becoming apparent that combinations of cells and scaffolds are required to successfully restore the lung's architecture and function. In the case of the diaphragm, clinical applications have focused on the use of decellularized scaffolds, but novel scaffolds, with or without cells, are clearly needed for true regeneration of diaphragmatic tissue. We conclude that respiratory treatment with RM will not be realized tomorrow, but its future looks promising.

  1. Regenerative medicine provides alternative strategies for the treatment of anal incontinence.

    PubMed

    Gräs, Søren; Tolstrup, Cæcilie Krogsgaard; Lose, Gunnar

    2017-03-01

    Anal incontinence is a common disorder but current treatment modalities are not ideal and the development of new treatments is needed. The aim of this review was to identify the existing knowledge of regenerative medicine strategies in the form of cellular therapies or bioengineering as a treatment for anal incontinence caused by anal sphincter defects. PubMed was searched for preclinical and clinical studies in English published from January 2005 to January 2016. Animal studies have demonstrated that cellular therapy in the form of local injections of culture-expanded skeletal myogenic cells stimulates repair of both acute and 2 - 4-week-old anal sphincter injuries. The results from a small clinical trial with ten patients and a case report support the preclinical findings. Animal studies have also demonstrated that local injections of mesenchymal stem cells stimulate repair of sphincter injuries, and a complex bioengineering strategy for creation and implantation of an intrinsically innervated internal anal sphincter construct has been successfully developed in a series of animal studies. Cellular therapies with myogenic cells and mesenchymal stem cells and the use of bioengineering technology to create an anal sphincter are new potential strategies to treat anal incontinence caused by anal sphincter defects, but the clinical evidence is extremely limited. The use of culture-expanded autologous skeletal myogenic cells has been most intensively investigated and several clinical trials were ongoing at the time of this report. The cost-effectiveness of such a therapy is an issue and muscle fragmentation is suggested as a simple alternative.

  2. Developing the medicinal plants sector in northern India: challenges and opportunities

    PubMed Central

    Kala, Chandra Prakash; Dhyani, Pitamber Prasad; Sajwan, Bikram Singh

    2006-01-01

    The medicinal properties of plant species have made an outstanding contribution in the origin and evolution of many traditional herbal therapies. These traditional knowledge systems have started to disappear with the passage of time due to scarcity of written documents and relatively low income in these traditions. Over the past few years, however, the medicinal plants have regained a wide recognition due to an escalating faith in herbal medicine in view of its lesser side effects compared to allopathic medicine in addition the necessity of meeting the requirements of medicine for an increasing human population. Through the realization of the continuous erosion of traditional knowledge of plants used for medicine in the past and the renewed interest at the present time, a need existed to review this valuable knowledge of medicinal plants with the purpose of developing medicinal plants sectors across the different states in India. Our major objectives therefore were to explore the potential in medicinal plants resources, to understand the challenges and opportunities with the medicinal plants sector, and also to suggest recommendations based upon the present state of knowledge for the establishment and smooth functioning of the medicinal plants sector along with improving the living standards of the underprivileged communities. The review reveals that northern India harbors a rich diversity of valuable medicinal plants, and attempts are being made at different levels for sustainable utilization of this resource in order to develop the medicinal plants sector.

  3. Reconciling evidence-based medicine and precision medicine in the era of big data: challenges and opportunities.

    PubMed

    Beckmann, Jacques S; Lew, Daniel

    2016-12-19

    This era of groundbreaking scientific developments in high-resolution, high-throughput technologies is allowing the cost-effective collection and analysis of huge, disparate datasets on individual health. Proper data mining and translation of the vast datasets into clinically actionable knowledge will require the application of clinical bioinformatics. These developments have triggered multiple national initiatives in precision medicine-a data-driven approach centering on the individual. However, clinical implementation of precision medicine poses numerous challenges. Foremost, precision medicine needs to be contrasted with the powerful and widely used practice of evidence-based medicine, which is informed by meta-analyses or group-centered studies from which mean recommendations are derived. This "one size fits all" approach can provide inadequate solutions for outliers. Such outliers, which are far from an oddity as all of us fall into this category for some traits, can be better managed using precision medicine. Here, we argue that it is necessary and possible to bridge between precision medicine and evidence-based medicine. This will require worldwide and responsible data sharing, as well as regularly updated training programs. We also discuss the challenges and opportunities for achieving clinical utility in precision medicine. We project that, through collection, analyses and sharing of standardized medically relevant data globally, evidence-based precision medicine will shift progressively from therapy to prevention, thus leading eventually to improved, clinician-to-patient communication, citizen-centered healthcare and sustained well-being.

  4. New Therapeutic Window of Regenerative Opportunity in Diabetic Retinopathy by VESGEN Analysis

    NASA Technical Reports Server (NTRS)

    Parsons-Wingert, Patricia A.

    2012-01-01

    Vascular pattern may serve as a useful new biomarker principle of complex, multi-scale signaling in pathological, physiological angiogenesis and microvascular remodeling. Each angiogenesis stimulator or inhibitor we have analyzed, including VEGF, bFGF, TGF-beta1, angiostatin and triamcinolone acetonide, has induced a novel "fingerprint" or "signature" biomarker vascular pattern that is spatio-temporally unique. Remodeling vasculature thereby provides an informative read-out of dominant molecular signaling, when analyzed by innovative, fractal-based VESsel GENeration (VESGEN) Analysis software. Using VESGEN to analyze ophthalmic clinical vascular images, we recently introduced a potential paradigm shift to the understanding of early-stage progression that suggests new regenerative opportunities for human diabetic retinopathy (DR), the major blinding disease for working-aged adults. In a pilot study, we discovered that angiogenesis oscillates as a surprising, homeostatic-like regeneration of retinal vessels during early progression of DR (IOVS 51(1):498). Results suggest that the term non-proliferative DR may be a misnomer. In new studies, normalization of the vasculature will be determined from the response of vascular pattern to therapeutic monitoring and treatment. We have mapped and quantified in vivo experimental models of angiogenesis, lymphangiogenesis and intravital blood flow from cellular/molecular to higher systems levels that include a murine model of infant retinopathy of prematurity (ROP); developing and pathological coronary and placental-like vessel models; progressive intestinal inflammation, growing murine tumors, and other pathological, physiological and therapeutically treated tissues of transgenic mice and avian embryos. Vascular Alterations, Visual Impairments (VIIP) & Increased Intracranial Pressure (ICP), Immunosuppression & Bone Loss: NASA-defined risk categories for human space exploration and ISS Utilization

  5. GMP Cryopreservation of Large Volumes of Cells for Regenerative Medicine: Active Control of the Freezing Process

    PubMed Central

    Massie, Isobel; Selden, Clare; Hodgson, Humphrey; Gibbons, Stephanie; Morris, G. John

    2014-01-01

    Cryopreservation protocols are increasingly required in regenerative medicine applications but must deliver functional products at clinical scale and comply with Good Manufacturing Process (GMP). While GMP cryopreservation is achievable on a small scale using a Stirling cryocooler-based controlled rate freezer (CRF) (EF600), successful large-scale GMP cryopreservation is more challenging due to heat transfer issues and control of ice nucleation, both complex events that impact success. We have developed a large-scale cryocooler-based CRF (VIA Freeze) that can process larger volumes and have evaluated it using alginate-encapsulated liver cell (HepG2) spheroids (ELS). It is anticipated that ELS will comprise the cellular component of a bioartificial liver and will be required in volumes of ∼2 L for clinical use. Sample temperatures and Stirling cryocooler power consumption was recorded throughout cooling runs for both small (500 μL) and large (200 mL) volume samples. ELS recoveries were assessed using viability (FDA/PI staining with image analysis), cell number (nuclei count), and function (protein secretion), along with cryoscanning electron microscopy and freeze substitution techniques to identify possible injury mechanisms. Slow cooling profiles were successfully applied to samples in both the EF600 and the VIA Freeze, and a number of cooling and warming profiles were evaluated. An optimized cooling protocol with a nonlinear cooling profile from ice nucleation to −60°C was implemented in both the EF600 and VIA Freeze. In the VIA Freeze the nucleation of ice is detected by the control software, allowing both noninvasive detection of the nucleation event for quality control purposes and the potential to modify the cooling profile following ice nucleation in an active manner. When processing 200 mL of ELS in the VIA Freeze—viabilities at 93.4%±7.4%, viable cell numbers at 14.3±1.7 million nuclei/mL alginate, and protein secretion at 10.5±1.7

  6. The great opportunity: Evolutionary applications to medicine and public health.

    PubMed

    Nesse, Randolph M; Stearns, Stephen C

    2008-02-01

    Evolutionary biology is an essential basic science for medicine, but few doctors and medical researchers are familiar with its most relevant principles. Most medical schools have geneticists who understand evolution, but few have even one evolutionary biologist to suggest other possible applications. The canyon between evolutionary biology and medicine is wide. The question is whether they offer each other enough to make bridge building worthwhile. What benefits could be expected if evolution were brought fully to bear on the problems of medicine? How would studying medical problems advance evolutionary research? Do doctors need to learn evolution, or is it valuable mainly for researchers? What practical steps will promote the application of evolutionary biology in the areas of medicine where it offers the most? To address these questions, we review current and potential applications of evolutionary biology to medicine and public health. Some evolutionary technologies, such as population genetics, serial transfer production of live vaccines, and phylogenetic analysis, have been widely applied. Other areas, such as infectious disease and aging research, illustrate the dramatic recent progress made possible by evolutionary insights. In still other areas, such as epidemiology, psychiatry, and understanding the regulation of bodily defenses, applying evolutionary principles remains an open opportunity. In addition to the utility of specific applications, an evolutionary perspective fundamentally challenges the prevalent but fundamentally incorrect metaphor of the body as a machine designed by an engineer. Bodies are vulnerable to disease - and remarkably resilient - precisely because they are not machines built from a plan. They are, instead, bundles of compromises shaped by natural selection in small increments to maximize reproduction, not health. Understanding the body as a product of natural selection, not design, offers new research questions and a framework for

  7. The promise of organ and tissue preservation to transform medicine

    PubMed Central

    Giwa, Sebastian; Lewis, Jedediah K; Alvarez, Luis; Langer, Robert; Roth, Alvin E; Church, George M; Markmann, James F; Sachs, David H; Chandraker, Anil; Wertheim, Jason A; Rothblatt, Martine; Boyden, Edward S; Eidbo, Elling; Lee, W P Andrew; Pomahac, Bohdan; Brandacher, Gerald; Weinstock, David M; Elliott, Gloria; Nelson, David; Acker, Jason P; Uygun, Korkut; Schmalz, Boris; Weegman, Brad P; Tocchio, Alessandro; Fahy, Greg M; Storey, Kenneth B; Rubinsky, Boris; Bischof, John; Elliott, Janet A W; Woodruff, Teresa K; Morris, G John; Demirci, Utkan; Brockbank, Kelvin G M; Woods, Erik J; Ben, Robert N; Baust, John G; Gao, Dayong; Fuller, Barry; Rabin, Yoed; Kravitz, David C; Taylor, Michael J; Toner, Mehmet

    2017-01-01

    The ability to replace organs and tissues on demand could save or improve millions of lives each year globally and create public health benefits on par with curing cancer. Unmet needs for organ and tissue preservation place enormous logistical limitations on transplantation, regenerative medicine, drug discovery, and a variety of rapidly advancing areas spanning biomedicine. A growing coalition of researchers, clinicians, advocacy organizations, academic institutions, and other stakeholders has assembled to address the unmet need for preservation advances, outlining remaining challenges and identifying areas of underinvestment and untapped opportunities. Meanwhile, recent discoveries provide proofs of principle for breakthroughs in a family of research areas surrounding biopreservation. These developments indicate that a new paradigm, integrating multiple existing preservation approaches and new technologies that have flourished in the past 10 years, could transform preservation research. Capitalizing on these opportunities will require engagement across many research areas and stakeholder groups. A coordinated effort is needed to expedite preservation advances that can transform several areas of medicine and medical science. PMID:28591112

  8. Immune physiology in tissue regeneration and aging, tumor growth, and regenerative medicine.

    PubMed

    Bukovsky, Antonin; Caudle, Michael R; Carson, Ray J; Gaytán, Francisco; Huleihel, Mahmoud; Kruse, Andrea; Schatten, Heide; Telleria, Carlos M

    2009-02-13

    The immune system plays an important role in immunity (immune surveillance), but also in the regulation of tissue homeostasis (immune physiology). Lessons from the female reproductive tract indicate that immune system related cells, such as intraepithelial T cells and monocyte-derived cells (MDC) in stratified epithelium, interact amongst themselves and degenerate whereas epithelial cells proliferate and differentiate. In adult ovaries, MDC and T cells are present during oocyte renewal from ovarian stem cells. Activated MDC are also associated with follicular development and atresia, and corpus luteum differentiation. Corpus luteum demise resembles rejection of a graft since it is attended by a massive influx of MDC and T cells resulting in parenchymal and vascular regression. Vascular pericytes play important roles in immune physiology, and their activities (including secretion of the Thy-1 differentiation protein) can be regulated by vascular autonomic innervation. In tumors, MDC regulate proliferation of neoplastic cells and angiogenesis. Tumor infiltrating T cells die among malignant cells. Alterations of immune physiology can result in pathology, such as autoimmune, metabolic, and degenerative diseases, but also in infertility and intrauterine growth retardation, fetal morbidity and mortality. Animal experiments indicate that modification of tissue differentiation (retardation or acceleration) during immune adaptation can cause malfunction (persistent immaturity or premature aging) of such tissue during adulthood. Thus successful stem cell therapy will depend on immune physiology in targeted tissues. From this point of view, regenerative medicine is more likely to be successful in acute rather than chronic tissue disorders.

  9. Immune physiology in tissue regeneration and aging, tumor growth, and regenerative medicine

    PubMed Central

    Bukovsky, Antonin; Caudle, Michael R.; Carson, Ray J.; Gaytán, Francisco; Huleihel, Mahmoud; Kruse, Andrea; Schatten, Heide; Telleria, Carlos M.

    2009-01-01

    The immune system plays an important role in immunity (immune surveillance), but also in the regulation of tissue homeostasis (immune physiology). Lessons from the female reproductive tract indicate that immune system related cells, such as intraepithelial T cells and monocyte-derived cells (MDC) in stratified epithelium, interact amongst themselves and degenerate whereas epithelial cells proliferate and differentiate. In adult ovaries, MDC and T cells are present during oocyte renewal from ovarian stem cells. Activated MDC are also associated with follicular development and atresia, and corpus luteum differentiation. Corpus luteum demise resembles rejection of a graft since it is attended by a massive influx of MDC and T cells resulting in parenchymal and vascular regression. Vascular pericytes play important roles in immune physiology, and their activities (including secretion of the Thy-1 differentiation protein) can be regulated by vascular autonomic innervation. In tumors, MDC regulate proliferation of neoplastic cells and angiogenesis. Tumor infiltrating T cells die among malignant cells. Alterations of immune physiology can result in pathology, such as autoimmune, metabolic, and degenerative diseases, but also in infertility and intrauterine growth retardation, fetal morbidity and mortality. Animal experiments indicate that modification of tissue differentiation (retardation or acceleration) during immune adaptation can cause malfunction (persistent immaturity or premature aging) of such tissue during adulthood. Thus successful stem cell therapy will depend on immune physiology in targeted tissues. From this point of view, regenerative medicine is more likely to be successful in acute rather than chronic tissue disorders. PMID:20195382

  10. Regenerative medicine for diabetes: differentiation of human pluripotent stem cells into functional β-cells in vitro and their proposed journey to clinical translation.

    PubMed

    Bose, Bipasha; Katikireddy, Kishore Reddy; Shenoy, P Sudheer

    2014-01-01

    Diabetes is a group of metabolic diseases, rising globally at an alarming rate. Type 1 (juvenile diabetes) is the autoimmune version of diabetes where the pancreas is unable to produce insulin, whereas type 2 (adult onset diabetes) is caused due to insulin resistance of the cells. In either of the cases, elevated blood glucose levels are observed which leads to progressive comorbidity like renal failure, cardiovascular disease, retinopathy, etc. Metformin, sulphonyl urea group of drugs, as well as insulin injections are the available therapies. In advanced cases of diabetes, the drug alone or drug in combination with insulin injections are not able to maintain a steady level of blood glucose. Moreover, frequent insulin injections are rather cumbersome for the patient. So, regenerative medicine could be a permanent solution for fighting diabetes. Islet transplantation has been tried with a limited amount of success on a large population of diabetics because of the shortage of cadaveric pancreas. Therefore, the best proposed alternative is regenerative medicine involving human pluripotent stem cell (hPSC)-derived beta islet transplantation which can be obtained in large quantities. Efficient protocols for in vitro differentiation of hPSC into a large number of sustained insulin-producing beta cells for transplantation will be considered to be a giant leap to address global rise in diabetic cases. Although most of the protocols mimic in vivo pancreatic development in humans, considerable amount of lacuna persists for near-perfect differentiation strategies. Moreover, beta islets differentiated from hPSC have not yet been successfully translated under clinical scenario. © 2014 Elsevier Inc. All rights reserved.

  11. European School of Internal Medicine: a window of opportunity for RCP activities in Europe.

    PubMed

    Davidson, Chris; Higgens, Clare

    2009-04-01

    The Royal College of Physicians (RCP) is to host the European School of Internal Medicine for two years from 2009-10. This affords a unique opportunity for specialist registrars to exchange ideas about professional development and training and to make contacts with young internists from across Europe. Such links should prove useful for future RCP initiatives in European medicine.

  12. Pricing medicines: theory and practice, challenges and opportunities.

    PubMed

    Gregson, Nigel; Sparrowhawk, Keiron; Mauskopf, Josephine; Paul, John

    2005-02-01

    The pricing of medicines has become one of the most hotly debated topics of recent times, with the pharmaceutical industry seemingly being attacked from all quarters. From a company perspective, determining the price for each new product is more crucial than ever, given the present dearth of new drug introductions. But how are pricing strategies developed in practice? What is value-based pricing and how are financial models of return on investment constructed? What are the challenges faced in setting the price for a particular product, and how will scientific and environmental trends provide future pricing challenges or opportunities?

  13. Brain tumour stem cells: implications for cancer therapy and regenerative medicine.

    PubMed

    Sanchez-Martin, Manuel

    2008-09-01

    The cancer relapse and mortality rate suggest that current therapies do not eradicate all malignant cells. Currently, it is accepted that tumorigenesis and organogenesis are similar in many respects, as for example, homeostasis is governed by a distinct sub-population of stem cells in both situations. There is increasing evidence that many types of cancer contain their own stem cells: cancer stem cells (CSC), which are characterized by their self-renewing capacity and differentiation ability. The investigation of solid tumour stem cells has gained momentum particularly in the area of brain tumours. Gliomas are the most common type of primary brain tumours. Nearly two-thirds of gliomas are highly malignant lesions with fast progression and unfortunate prognosis. Despite recent advances, two-year survival for glioblastoma (GBM) with optimal therapy is less than 30%. Even among patients with low-grade gliomas that confer a relatively good prognosis, treatment is almost never curative. Recent studies have demonstrated the existence of a small fraction of glioma cells endowed with features of primitive neural progenitor cells and a tumour-initiating function. In general, this fraction is characterized for forming neurospheres, being endowed with drug resistance properties and often, we can isolate some of them using sorting methods with specific antibodies. The molecular characterization of these stem populations will be critical to developing an effective therapy for these tumours with very dismal prognosis. To achieve this aim, the development of a mouse model which recapitulates the nature of these tumours is essential. This review will focus on glioma stem cell knowledge and discuss future implications in brain cancer therapy and regenerative medicine.

  14. Current Status of Stem Cells and Regenerative Medicine in Lung Biology and Diseases

    PubMed Central

    Weiss, Daniel J.

    2014-01-01

    Lung diseases remain a significant and devastating cause of morbidity and mortality worldwide. In contrast to many other major diseases, lung diseases notably chronic obstructive pulmonary diseases (COPD), including both asthma and emphysema, are increasing in prevalence and COPD is expected to become the 3rd leading cause of disease mortality worldwide by 2020. New therapeutic options are desperately needed. A rapidly growing number of investigations of stem cells and cell therapies in lung biology and diseases as well as in ex vivo lung bioengineering have offered exciting new avenues for advancing knowledge of lung biology as well as providing novel potential therapeutic approaches for lung diseases. These initial observations have led to a growing exploration of endothelial progenitor cells and mesenchymal stem (stromal) cells in clinical trials of pulmonary hypertension and chronic obstructive pulmonary disease (COPD) with other clinical investigations planned. Ex vivo bioengineering of the trachea, larynx, diaphragm, and the lung itself with both biosynthetic constructs as well as decellularized tissues have been utilized to explore engineering both airway and vascular systems of the lung. Lung is thus a ripe organ for a variety of cell therapy and regenerative medicine approaches. Current state-of-the-art progress for each of the above areas will be presented as will discussion of current considerations for cell therapy based clinical trials in lung diseases. PMID:23959715

  15. Artificial intelligence: A joint narrative on potential use in pediatric stem and immune cell therapies and regenerative medicine.

    PubMed

    Sniecinski, Irena; Seghatchian, Jerard

    2018-05-09

    Artificial Intelligence (AI) reflects the intelligence exhibited by machines and software. It is a highly desirable academic field of many current fields of studies. Leading AI researchers describe the field as "the study and design of intelligent agents". McCarthy invented this term in 1955 and defined it as "the science and engineering of making intelligent machines". The central goals of AI research are reasoning, knowledge, planning, learning, natural language processing (communication), perception and the ability to move and manipulate objects. In fact the multidisplinary AI field is considered to be rather interdisciplinary covering numerous number of sciences and professions, including computer science, psychology, linguistics, philosophy and neurosciences. The field was founded on the claim that a central intellectual property of humans, intelligence-the sapience of Homo Sapiens "can be so precisely described that a machine can be made to simulate it". This raises philosophical issues about the nature of the mind and the ethics of creating artificial beings endowed with human-like intelligence. Artificial Intelligence has been the subject of tremendous optimism but has also suffered stunning setbacks. The goal of this narrative is to review the potential use of AI approaches and their integration into pediatric cellular therapies and regenerative medicine. Emphasis is placed on recognition and application of AI techniques in the development of predictive models for personalized treatments with engineered stem cells, immune cells and regenerated tissues in adults and children. These intelligent machines could dissect the whole genome and isolate the immune particularities of individual patient's disease in a matter of minutes and create the treatment that is customized to patient's genetic specificity and immune system capability. AI techniques could be used for optimization of clinical trials of innovative stem cell and gene therapies in pediatric patients

  16. Concise review: reprogramming strategies for cardiovascular regenerative medicine: from induced pluripotent stem cells to direct reprogramming.

    PubMed

    Budniatzky, Inbar; Gepstein, Lior

    2014-04-01

    Myocardial cell-replacement therapies are emerging as novel therapeutic paradigms for myocardial repair but are hampered by the lack of sources of autologous human cardiomyocytes. The recent advances in stem cell biology and in transcription factor-based reprogramming strategies may provide exciting solutions to this problem. In the current review, we describe the different reprogramming strategies that can give rise to cardiomyocytes for regenerative medicine purposes. Initially, we describe induced pluripotent stem cell technology, a method by which adult somatic cells can be reprogrammed to yield pluripotent stem cells that could later be coaxed ex vivo to differentiate into cardiomyocytes. The generated induced pluripotent stem cell-derived cardiomyocytes could then be used for myocardial cell transplantation and tissue engineering strategies. We also describe the more recent direct reprogramming approaches that aim to directly convert the phenotype of one mature cell type (fibroblast) to another (cardiomyocyte) without going through a pluripotent intermediate cell type. The advantages and shortcomings of each strategy for cardiac regeneration are discussed, along with the hurdles that need to be overcome on the road to clinical translation.

  17. Nanomaterials in Neural-Stem-Cell-Mediated Regenerative Medicine: Imaging and Treatment of Neurological Diseases.

    PubMed

    Zhang, Bingbo; Yan, Wei; Zhu, Yanjing; Yang, Weitao; Le, Wenjun; Chen, Bingdi; Zhu, Rongrong; Cheng, Liming

    2018-04-01

    Patients are increasingly being diagnosed with neuropathic diseases, but are rarely cured because of the loss of neurons in damaged tissues. This situation creates an urgent clinical need to develop alternative treatment strategies for effective repair and regeneration of injured or diseased tissues. Neural stem cells (NSCs), highly pluripotent cells with the ability of self-renewal and potential for multidirectional differentiation, provide a promising solution to meet this demand. However, some serious challenges remaining to be addressed are the regulation of implanted NSCs, tracking their fate, monitoring their interaction with and responsiveness to the tissue environment, and evaluating their treatment efficacy. Nanomaterials have been envisioned as innovative components to further empower the field of NSC-based regenerative medicine, because their unique physicochemical characteristics provide unparalleled solutions to the imaging and treatment of diseases. By building on the advantages of nanomaterials, tremendous efforts have been devoted to facilitate research into the clinical translation of NSC-based therapy. Here, recent work on emerging nanomaterials is highlighted and their performance in the imaging and treatment of neurological diseases is evaluated, comparing the strengths and weaknesses of various imaging modalities currently used. The underlying mechanisms of therapeutic efficacy are discussed, and future research directions are suggested. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Cell Microenvironment Engineering and Monitoring for Tissue Engineering and Regenerative Medicine: The Recent Advances

    PubMed Central

    Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul

    2014-01-01

    In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future. PMID:25143954

  19. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances.

    PubMed

    Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul; Vrana, Nihal Engin

    2014-01-01

    In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.

  20. Biocompatibility of two model elastin-like recombinamer-based hydrogels formed through physical or chemical cross-linking for various applications in tissue engineering and regenerative medicine.

    PubMed

    Ibáñez-Fonseca, Arturo; Ramos, Teresa L; González de Torre, Israel; Sánchez-Abarca, Luis Ignacio; Muntión, Sandra; Arias, Francisco Javier; Del Cañizo, María Consuelo; Alonso, Matilde; Sánchez-Guijo, Fermín; Rodríguez-Cabello, José Carlos

    2018-03-01

    Biocompatibility studies, especially innate immunity induction, in vitro and in vivo cytotoxicity, and fibrosis, are often lacking for many novel biomaterials including recombinant protein-based ones, such as elastin-like recombinamers (ELRs), and has not been extensively explored in the scientific literature, in contrast to traditional biomaterials. Herein, we present the results from a set of experiments designed to elucidate the preliminary biocompatibility of 2 types of ELRs that are able to form extracellular matrix-like hydrogels through either physical or chemical cross-linking both of which are intended for different applications in tissue engineering and regenerative medicine. Initially, we present in vitro cytocompatibility results obtained upon culturing human umbilical vein endothelial cells on ELR substrates, showing optimal proliferation up to 9 days. Regarding in vivo cytocompatibility, luciferase-expressing hMSCs were viable for at least 4 weeks in terms of bioluminescence emission when embedded in ELR hydrogels and injected subcutaneously into immunosuppressed mice. Furthermore, both types of ELR-based hydrogels were injected subcutaneously in immunocompetent mice and serum TNFα, IL-1β, IL-4, IL-6, and IL-10 concentrations were measured by enzyme-linked immunosorbent assay, confirming the lack of inflammatory response, as also observed upon macroscopic and histological evaluation. All these findings suggest that both types of ELRs possess broad biocompatibility, thus making them very promising for tissue engineering and regenerative medicine-related applications. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Regenerative Engineering and Bionic Limbs.

    PubMed

    James, Roshan; Laurencin, Cato T

    2015-03-01

    Amputations of the upper extremity are severely debilitating, current treatments support very basic limb movement, and patients undergo extensive physiotherapy and psychological counselling. There is no prosthesis that allows the amputees near-normal function. With increasing number of amputees due to injuries sustained in accidents, natural calamities and international conflicts, there is a growing requirement for novel strategies and new discoveries. Advances have been made in technological, material and in prosthesis integration where researchers are now exploring artificial prosthesis that integrate with the residual tissues and function based on signal impulses received from the residual nerves. Efforts are focused on challenging experts in different disciplines to integrate ideas and technologies to allow for the regeneration of injured tissues, recording on tissue signals and feed-back to facilitate responsive movements and gradations of muscle force. A fully functional replacement and regenerative or integrated prosthesis will rely on interface of biological process with robotic systems to allow individual control of movement such as at the elbow, forearm, digits and thumb in the upper extremity. Regenerative engineering focused on the regeneration of complex tissue and organ systems will be realized by the cross-fertilization of advances over the past thirty years in the fields of tissue engineering, nanotechnology, stem cell science, and developmental biology. The convergence of toolboxes crated within each discipline will allow interdisciplinary teams from engineering, science, and medicine to realize new strategies, mergers of disparate technologies, such as biophysics, smart bionics, and the healing power of the mind. Tackling the clinical challenges, interfacing the biological process with bionic technologies, engineering biological control of the electronic systems, and feed-back will be the important goals in regenerative engineering over the next

  2. Regenerative Engineering and Bionic Limbs

    PubMed Central

    James, Roshan; Laurencin, Cato T.

    2015-01-01

    Amputations of the upper extremity are severely debilitating, current treatments support very basic limb movement, and patients undergo extensive physiotherapy and psychological counselling. There is no prosthesis that allows the amputees near-normal function. With increasing number of amputees due to injuries sustained in accidents, natural calamities and international conflicts, there is a growing requirement for novel strategies and new discoveries. Advances have been made in technological, material and in prosthesis integration where researchers are now exploring artificial prosthesis that integrate with the residual tissues and function based on signal impulses received from the residual nerves. Efforts are focused on challenging experts in different disciplines to integrate ideas and technologies to allow for the regeneration of injured tissues, recording on tissue signals and feed-back to facilitate responsive movements and gradations of muscle force. A fully functional replacement and regenerative or integrated prosthesis will rely on interface of biological process with robotic systems to allow individual control of movement such as at the elbow, forearm, digits and thumb in the upper extremity. Regenerative engineering focused on the regeneration of complex tissue and organ systems will be realized by the cross-fertilization of advances over the past thirty years in the fields of tissue engineering, nanotechnology, stem cell science, and developmental biology. The convergence of toolboxes crated within each discipline will allow interdisciplinary teams from engineering, science, and medicine to realize new strategies, mergers of disparate technologies, such as biophysics, smart bionics, and the healing power of the mind. Tackling the clinical challenges, interfacing the biological process with bionic technologies, engineering biological control of the electronic systems, and feed-back will be the important goals in regenerative engineering over the next

  3. Precision medicine: opportunities, possibilities, and challenges for patients and providers.

    PubMed

    Adams, Samantha A; Petersen, Carolyn

    2016-07-01

    Precision medicine approaches disease treatment and prevention by taking patients' individual variability in genes, environment, and lifestyle into account. Although the ideas underlying precision medicine are not new, opportunities for its more widespread use in practice have been enhanced by the development of large-scale databases, new methods for categorizing and representing patients, and computational tools for analyzing large datasets. New research methods may create uncertainty for both healthcare professionals and patients. In such situations, frameworks that address ethical, legal, and social challenges can be instrumental for facilitating trust between patients and providers, but must protect patients while not stifling progress or overburdening healthcare professionals. In this perspective, we outline several ethical, legal, and social issues related to the Precision Medicine Initiative's proposed changes to current institutions, values, and frameworks. This piece is not an exhaustive overview, but is intended to highlight areas meriting further study and action, so that precision medicine's goal of facilitating systematic learning and research at the point of care does not overshadow healthcare's goal of providing care to patients. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Ethical implications of regenerative medicine in orthopedics: an empirical study with surgeons and scientists in the field.

    PubMed

    Niemansburg, Sophie L; van Delden, Johannes J M; Oner, F Cumhur; Dhert, Wouter J A; Bredenoord, Annelien L

    2014-06-01

    Regenerative medicine (RM) interventions, such as (stem) cell transplantation, scaffolds, gene transfer, and tissue engineering, are likely to change the field of orthopedics considerably. These strategies will significantly differ from treatments in current orthopedic practice, as they treat the underlying cause of disease and intervene at a biological level, preferably in an earlier stage. Whereas most of the RM interventions for orthopedics are still in the preclinical phase of research, the number of clinical studies is expected to increase rapidly in the future. The debate about the challenging scientific and ethical issues of translating these innovative interventions into (early) clinical studies is developing. However, no empirical studies that have systematically described the attitudes, opinions, and experiences of experts in the field of orthopedic RM concerning these challenges exist. The aim of this study was to identify ethical issues that experts in the area of RM for musculoskeletal disorders consider to be relevant to address so as to properly translate RM interventions into (early) clinical studies. In-depth qualitative interviews were conducted with 36 experts in the field, mainly spine surgeons and musculoskeletal scientists from The Netherlands and the United Kingdom. A topic list of open questions, based on existing literature and pilot interviews, was used to guide the interviews. Data analysis was based on the constant comparative method, which means going back and forth from the data to develop codes, concepts, and themes. Four ethical themes emerged from the interview data. First, the risks to study participants. Second, the appropriate selection of study participants. Third, setting relevant goal(s) for measuring outcome, varying from regenerating tissue to improving well-being of patients. Finally, the need for evidence-based medicine and scientific integrity, which is considered challenging in orthopedics. The overall attitude toward

  5. Institutional profile. The International Society for Cellular Therapy: evolving to meet the demands of the regenerative medicine industry.

    PubMed

    Maziarz, Richard T; Arthurs, Jane; Horwitz, Edwin

    2011-03-01

    The International Society for Cellular Therapy is a global association driving the translation of scientific research to deliver innovative cellular therapies to patients. Established in 1992, its membership and leadership comprises world-class scientists, clinicians, technologists, biotech/pharma and regulatory professionals from 40 countries focused on preclinical and translational aspects of developing cell therapy products. The International Society for Cellular Therapy has evolved in alignment with the maturation of the field of cell therapy and regenerative medicine to create forums for discussion of shared concerns for commercialization of cell therapies and of development of consensus standards, recognizing that true commercialization depends upon the translational scientific community, the regional regulatory and policy institutions, and the technology support and capital investment from industry. It exists to facilitate the international work of many, to spawn new initiatives, and to synergize with other stakeholders to create the best outcome for the many patients across the world depending on the answers and improved health that cellular therapeutics will provide them.

  6. PEO-PPO-PEO Tri-Block Copolymers for Gene Delivery Applications in Human Regenerative Medicine—An Overview

    PubMed Central

    Cucchiarini, Magali

    2018-01-01

    Lineal (poloxamers or Pluronic®) or X-shaped (poloxamines or Tetronic®) amphiphilic tri-block copolymers of poly(ethylene oxide) and poly(propylene oxide) (PEO-PPO-PEO) have been broadly explored for controlled drug delivery in different regenerative medicine approaches. The ability of these copolymers to self-assemble as micelles and to undergo sol-to-gel transitions upon heating has endowed the denomination of “smart” or “intelligent” systems. The use of PEO-PPO-PEO copolymers as gene delivery systems is a powerful emerging strategy to improve the performance of classical gene transfer vectors. This review summarizes the state of art of the application of PEO-PPO-PEO copolymers in both nonviral and viral gene transfer approaches and their potential as gene delivery systems in different regenerative medicine approaches. PMID:29518011

  7. Regenerative endodontics.

    PubMed

    Simon, S; Smith, A J

    2014-03-01

    Significant advances in our understanding of the biological processes involved in tooth development and repair at the cellular and molecular levels have underpinned the newly emerging area of regenerative endodontics. Development of treatment protocols based on exploiting the natural wound healing properties of the dental pulp and applying tissue engineering principles has allowed reporting of case series showing preservation of tissue vitality and apexogenesis. To review current case series reporting regenerative endodontics. Current treatment approaches tend to stimulate more reparative than regenerative responses in respect of the new tissue generated, which often does not closely resemble the physiological structure of dentine-pulp. However, despite these biological limitations, such techniques appear to offer significant promise for improved treatment outcomes. Improved biological outcomes will likely emerge from the many experimental studies being reported and will further contribute to improvements in clinical treatment protocols.

  8. Complementary and alternative medicine on wikipedia: opportunities for improvement.

    PubMed

    Koo, Malcolm

    2014-01-01

    Wikipedia, a free and collaborative Internet encyclopedia, has become one of the most popular sources of free information on the Internet. However, there have been concerns over the quality of online health information, particularly that on complementary and alternative medicine (CAM). This exploratory study aimed to evaluate several page attributes of articles on CAM in the English Wikipedia. A total of 97 articles were analyzed and compared with eight articles of broad categories of therapies in conventional medicine using the Mann-Whitney U test. Based on the Wikipedia editorial assessment grading, 4% of the articles attained "good article" status, 34% required considerable editing, and 56% needed substantial improvements in their content. The median daily access of the articles over the previous 90 days was 372 (range: 7-4,214). The median word count was 1840 with a readability of grade 12.7 (range: 9.4-17.7). Medians of word count and citation density of the CAM articles were significantly lower than those in the articles of conventional medicine therapies. In conclusion, despite its limitations, the general public will continue to access health information on Wikipedia. There are opportunities for health professionals to contribute their knowledge and to improve the accuracy and completeness of the CAM articles on Wikipedia.

  9. Non-viral gene delivery strategies for cancer therapy, tissue engineering and regenerative medicine

    NASA Astrophysics Data System (ADS)

    Bhise, Nupura S.

    Gene therapy involves the delivery of deoxyribonucleic acid (DNA) into cells to override or replace a malfunctioning gene for treating debilitating genetic diseases, including cancer and neurodegenerative diseases. In addition to its use as a therapeutic, it can also serve as a technology to enable regenerative medicine strategies. The central challenge of the gene therapy research arena is developing a safe and effective delivery agent. Since viral vectors have critical immunogenic and tumorogenic safety issues that limit their clinical use, recent efforts have focused on developing non-viral biomaterial based delivery vectors. Cationic polymers are an attractive class of gene delivery vectors due to their structural versatility, ease of synthesis, biodegradability, ability to self-complex into nanoparticles with negatively charged DNA, capacity to carry large cargo, cellular uptake and endosomal escape capacity. In this thesis, we hypothesized that developing a biomaterial library of poly(betaamino esters) (PBAE), a newer class of cationic polymers consisting of biodegradable ester groups, would allow investigating vector design parameters and formulating effective non-viral gene delivery strategies for cancer drug delivery, tissue engineering and stem cell engineering. Consequently, a high-throughput transfection assay was developed to screen the PBAE-based nanoparticles in hard to transfect fibroblast cell lines. To gain mechanistic insights into the nanoparticle formulation process, biophysical properties of the vectors were characterized in terms of molecular weight (MW), nanoparticle size, zeta potential and plasmid per particle count. We report a novel assay developed for quantifying the plasmid per nanoparticle count and studying its implications for co-delivery of multiple genes. The MW of the polymers ranged from 10 kDa to 100 kDa, nanoparticle size was about 150 run, zeta potential was about 30 mV in sodium acetate buffer (25 mM, pH 5) and 30 to 100

  10. Fully relayed regenerative amplifier

    DOEpatents

    Glass, Alexander J.

    1981-01-01

    A regenerative laser apparatus and method using the optical relay concept to maintain high fill factors, to suppress diffraction effects, and to minimize phase distortions in a regenerative amplifier.

  11. Evaluating the Past, Present, and Future of Regenerative Medicine: A Global View.

    PubMed

    Ronfard, Vincent; Vertès, Alain A; May, Michael H; Dupraz, Anne; van Dyke, Mark E; Bayon, Yves

    2017-04-01

    "Evaluating the Past and Present of Regenerative Medicine (RM)" was the first part of an Industry Symposium dedicated to the subject during the 2015 TERMIS World Congress in Boston. This working session presented a critical review of the current RM landscape in Europe and North America with possible projections for the future. Interestingly, the RM development cycle seems to obey the Gartner hype cycle, now at the enlightenment phase, after past exaggerated expectations and discouragements, as suggested by increasing numbers of clinical trials and recent market approvals of RM solutions in both Europe (Glybera and Holoclar ® from Chiesi Pharma and Strimvelis ® from GSK) and Japan (Remestemcel-L from Mesoblast ® ). The successful commercial translation of RM research is governed by five major drivers: (i) fully validated manufacturing capability for autologous or allogeneic products, (ii) reimbursement for targeted clinical indications with high and demonstrable medico-economic benefits versus standard of care, (iii) implication of regulatory bodies in the design and development plan of any RM solution, which should be well characterized, robust, with proven consistent efficacy and an acceptable and controlled positive benefit/risk ratio, (iv) collaborations facilitated by multicompetence hubs/consortia of excellence, (v) well-thought-out clinical development plans for reducing the risk of failure. Benefiting from past and present experience, the RM burgeoning industry is expected to accelerate the market release of cost-effective RM products with real curative potential for specific clinical indications with high unmet needs. This should be achieved by wisely leveraging all possible synergies of the different stakeholders, for example, patients, clinicians, reimbursement and health technology assessment (HTA) agencies, regulatory authorities, public/private investors, academia, and companies.

  12. Development of Sendai Virus Vectors and their Potential Applications in Gene Therapy and Regenerative Medicine

    PubMed Central

    Nakanishi, Mahito; Otsu, Makoto

    2012-01-01

    Gene delivery/expression vectors have been used as fundamental technologies in gene therapy since the 1980s. These technologies are also being applied in regenerative medicine as tools to reprogram cell genomes to a pluripotent state and to other cell lineages. Rapid progress in these new research areas and expectations for their translation into clinical applications have facilitated the development of more sophisticated gene delivery/expression technologies. Since its isolation in 1953 in Japan, Sendai virus (SeV) has been widely used as a research tool in cell biology and in industry, but the application of SeV as a recombinant viral vector has been investigated only recently. Recombinant SeV vectors have various unique characteristics, such as low pathogenicity, powerful capacity for gene expression and a wide host range. In addition, the cytoplasmic gene expression mediated by this vector is advantageous for applications, in that chromosomal integration of exogenous genes can be undesirable. In this review, we introduce a brief historical background on the development of recombinant SeV vectors and describe their current applications in gene therapy. We also describe the application of SeV vectors in advanced nuclear reprogramming and introduce a defective and persistent SeV vector (SeVdp) optimized for such reprogramming. PMID:22920683

  13. Comparison of the new Japanese legislation for expedited approval of regenerative medicine products with the existing systems in the USA and European Union

    PubMed Central

    Jokura, Yoji; Yano, Kazuo

    2017-01-01

    Abstract Legislation for expedited‐approval pathways and programmes for drugs, biologics or medical devices has been enacted for rapid commercialization of innovative products in the United States of America (USA) and the European Union (EU). However, less innovative products are increasingly benefitting from these expedited‐approval pathways, and obligations to collect and report post‐marketing data on approved products are being bypassed frequently. The Japanese government recently enacted legislation for a new conditional and time‐limited approval pathway dedicated to regenerative medicine products. The current study examines this new legislation and compares it with existing US and EU regulatory frameworks, with a particular focus on how it addresses the limitations of existing systems. Regulations, guidance documents and approval information were gathered from the websites of the respective authorities in the USA, the EU and Japan, and the systems were categorized through qualitative analysis. The pathways and programmes from each region were categorized into four groups, based on the requirement of pre‐ or post‐marketing clinical data. Expedited‐approval pathways in the USA and the EU provide similar qualification criteria, such as severity of target disease; however, such criteria are not specified for the new pathway in Japan. Only the Japanese pathway stipulates a time limitation on exceptional approval, requiring post‐marketing study for conditional and time‐limited products. Continuous improvement is necessary to solve previously addressed issues within the expedited‐approval pathways and programmes and to ensure that innovative medical products are rigourously screened, but also readily available to patients in need. The time limitation of conditional approval could be a potential solution to some of these problems. Copyright © 2017 The Authors. Tissue Engineering Regenerative Medicine published by John Wiley & Sons, Ltd. PMID

  14. Ultrasound-Assisted Liposuction Does Not Compromise the Regenerative Potential of Adipose-Derived Stem Cells

    PubMed Central

    Duscher, Dominik; Atashroo, David; Maan, Zeshaan N.; Luan, Anna; Brett, Elizabeth A.; Barrera, Janos; Khong, Sacha M.; Zielins, Elizabeth R.; Whittam, Alexander J.; Hu, Michael S.; Walmsley, Graham G.; Pollhammer, Michael S.; Schmidt, Manfred; Schilling, Arndt F.; Machens, Hans-Günther; Huemer, Georg M.; Wan, Derrick C.; Longaker, Michael T.

    2016-01-01

    Human mesenchymal stem cells (MSCs) have recently become a focus of regenerative medicine, both for their multilineage differentiation capacity and their excretion of proregenerative cytokines. Adipose-derived mesenchymal stem cells (ASCs) are of particular interest because of their abundance in fat tissue and the ease of harvest via liposuction. However, little is known about the impact of different liposuction methods on the functionality of ASCs. Here we evaluate the regenerative abilities of ASCs harvested via a third-generation ultrasound-assisted liposuction (UAL) device versus ASCs obtained via standard suction-assisted lipoaspiration (SAL). Lipoaspirates were sorted using fluorescent assisted cell sorting based on an established surface-marker profile (CD34+/CD31−/CD45−), to obtain viable ASCs. Yield and viability were compared and the differentiation capacities of the ASCs were assessed. Finally, the regenerative potential of ASCs was examined using an in vivo model of tissue regeneration. UAL- and SAL-derived samples demonstrated equivalent ASC yield and viability, and UAL ASCs were not impaired in their osteogenic, adipogenic, or chondrogenic differentiation capacity. Equally, quantitative real-time polymerase chain reaction showed comparable expression of most osteogenic, adipogenic, and key regenerative genes between both ASC groups. Cutaneous regeneration and neovascularization were significantly enhanced in mice treated with ASCs obtained by either UAL or SAL compared with controls, but there were no significant differences in healing between cell-therapy groups. We conclude that UAL is a successful method of obtaining fully functional ASCs for regenerative medicine purposes. Cells harvested with this alternative approach to liposuction are suitable for cell therapy and tissue engineering applications. Significance Adipose-derived mesenchymal stem cells (ASCs) are an appealing source of therapeutic progenitor cells because of their multipotency

  15. Ultrasound-Assisted Liposuction Does Not Compromise the Regenerative Potential of Adipose-Derived Stem Cells.

    PubMed

    Duscher, Dominik; Atashroo, David; Maan, Zeshaan N; Luan, Anna; Brett, Elizabeth A; Barrera, Janos; Khong, Sacha M; Zielins, Elizabeth R; Whittam, Alexander J; Hu, Michael S; Walmsley, Graham G; Pollhammer, Michael S; Schmidt, Manfred; Schilling, Arndt F; Machens, Hans-Günther; Huemer, Georg M; Wan, Derrick C; Longaker, Michael T; Gurtner, Geoffrey C

    2016-02-01

    Human mesenchymal stem cells (MSCs) have recently become a focus of regenerative medicine, both for their multilineage differentiation capacity and their excretion of proregenerative cytokines. Adipose-derived mesenchymal stem cells (ASCs) are of particular interest because of their abundance in fat tissue and the ease of harvest via liposuction. However, little is known about the impact of different liposuction methods on the functionality of ASCs. Here we evaluate the regenerative abilities of ASCs harvested via a third-generation ultrasound-assisted liposuction (UAL) device versus ASCs obtained via standard suction-assisted lipoaspiration (SAL). Lipoaspirates were sorted using fluorescent assisted cell sorting based on an established surface-marker profile (CD34+/CD31-/CD45-), to obtain viable ASCs. Yield and viability were compared and the differentiation capacities of the ASCs were assessed. Finally, the regenerative potential of ASCs was examined using an in vivo model of tissue regeneration. UAL- and SAL-derived samples demonstrated equivalent ASC yield and viability, and UAL ASCs were not impaired in their osteogenic, adipogenic, or chondrogenic differentiation capacity. Equally, quantitative real-time polymerase chain reaction showed comparable expression of most osteogenic, adipogenic, and key regenerative genes between both ASC groups. Cutaneous regeneration and neovascularization were significantly enhanced in mice treated with ASCs obtained by either UAL or SAL compared with controls, but there were no significant differences in healing between cell-therapy groups. We conclude that UAL is a successful method of obtaining fully functional ASCs for regenerative medicine purposes. Cells harvested with this alternative approach to liposuction are suitable for cell therapy and tissue engineering applications. Significance: Adipose-derived mesenchymal stem cells (ASCs) are an appealing source of therapeutic progenitor cells because of their multipotency

  16. First Characterization of Human Amniotic Fluid Stem Cell Extracellular Vesicles as a Powerful Paracrine Tool Endowed with Regenerative Potential.

    PubMed

    Balbi, Carolina; Piccoli, Martina; Barile, Lucio; Papait, Andrea; Armirotti, Andrea; Principi, Elisa; Reverberi, Daniele; Pascucci, Luisa; Becherini, Pamela; Varesio, Luigi; Mogni, Massimo; Coviello, Domenico; Bandiera, Tiziano; Pozzobon, Michela; Cancedda, Ranieri; Bollini, Sveva

    2017-05-01

    Human amniotic fluid stem cells (hAFS) have shown a distinct secretory profile and significant regenerative potential in several preclinical models of disease. Nevertheless, little is known about the detailed characterization of their secretome. Herein we show for the first time that hAFS actively release extracellular vesicles (EV) endowed with significant paracrine potential and regenerative effect. c-KIT + hAFS were isolated from leftover samples of amniotic fluid from prenatal screening and stimulated to enhance EV release (24 hours 20% O 2 versus 1% O 2 preconditioning). The capacity of the c-KIT + hAFS-derived EV (hAFS-EV) to induce proliferation, survival, immunomodulation, and angiogenesis were investigated in vitro and in vivo. The hAFS-EV regenerative potential was also assessed in a model of skeletal muscle atrophy (HSA-Cre, Smn F7/F7 mice), in which mouse AFS transplantation was previously shown to enhance muscle strength and survival. hAFS secreted EV ranged from 50 up to 1,000 nm in size. In vitro analysis defined their role as biological mediators of regenerative, paracrine effects while their modulatory role in decreasing skeletal muscle inflammation in vivo was shown for the first time. Hypoxic preconditioning significantly induced the enrichment of exosomes endowed with regenerative microRNAs within the hAFS-EV. In conclusion, this is the first study showing that c-KIT + hAFS dynamically release EV endowed with remarkable paracrine potential, thus representing an appealing tool for future regenerative therapy. Stem Cells Translational Medicine 2017;6:1340-1355. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  17. Stem cells and regenerative medicine: principles, prospects and problems.

    PubMed

    Gardner, Richard L

    2007-01-01

    Stem cells have been used routinely for more than three decades to repair tissues and organs damaged by injury or disease, most notably haematopoietic stem cells taken from bone marrow, umbilical cord or, increasingly, from peripheral blood. Other examples, such as grafts of skin to treat severe burns, entail transplantation of stem cells within organized tissue rather than following isolation. The prospect of exploiting stem cells more widely in regenerative medicine was encouraged both by the development of human assisted conception and growing evidence that various adult cells retained greater versatility than had been suspected hitherto. The aim is to employ stem cells as a source of appropriately differentiated cells to replace those lost through physical, chemical or ischaemic injury, or as a result of degenerative disease. This may entail transplantation of just a single type of cell or, more challengingly, require a complex of several different types of cells possessing a defined architecture. Cardiomyocytes, hepatocytes or neuronal cells producing specific transmitters offer promising examples of the former, although how transplanted healthy cells will function in a perturbed tissue environment remains to be established. Recent success in repairing urinary bladder defects with grafts of urothelial and muscle cells seeded on a biodegradable collagen scaffold is an encouraging step towards assembling organs in vitro. Nevertheless, this is still far removed from the level of sophistication required to counter the ever increasing shortfall in supply of kidneys for transplantation. Various problems must be addressed if recent advances in the laboratory are to be translated into clinical practice. In many cases, it has yet to be established that cells derived from adults that retain plasticity are actually stem cells. There is also a pressing need for appropriate assays to ensure that, regardless of source, stem cells maintained in vitro are safe to transplant

  18. Regenerative Medicine Will Make Orthopaedic Implants Obsolete In Our Time Orthopaedic Research Society First Annual Meeting Debate, San Diego, March 21st , 2017.

    PubMed

    Johnstone, Brian; Jacobs, Joshua J; Sandell, Linda J; Wilkinson, J Mark

    2018-05-10

    The mission of the Orthopaedic Research Society is to promote and advance musculoskeletal research worldwide. With this in mind, the Annual Meeting Program Committee sought to establish a debate as a key component of the meeting. Our purpose was to provoke discussion on topics that are core to our mission and to engage all constituencies within the society by examining questions of broad relevance. To this end, the topic "Regenerative medicine will make orthopaedic implants obsolete in our time" was selected as the title of the inaugural debate. The arguments for and against the motion are presented in this perspectives article. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Elixir of Life: Thwarting Aging With Regenerative Reprogramming.

    PubMed

    Beyret, Ergin; Martinez Redondo, Paloma; Platero Luengo, Aida; Izpisua Belmonte, Juan Carlos

    2018-01-05

    All living beings undergo systemic physiological decline after ontogeny, characterized as aging. Modern medicine has increased the life expectancy, yet this has created an aged society that has more predisposition to degenerative disorders. Therefore, novel interventions that aim to extend the healthspan in parallel to the life span are needed. Regeneration ability of living beings maintains their biological integrity and thus is the major leverage against aging. However, mammalian regeneration capacity is low and further declines during aging. Therefore, modalities that reinforce regeneration can antagonize aging. Recent advances in the field of regenerative medicine have shown that aging is not an irreversible process. Conversion of somatic cells to embryonic-like pluripotent cells demonstrated that the differentiated state and age of a cell is not fixed. Identification of the pluripotency-inducing factors subsequently ignited the idea that cellular features can be reprogrammed by defined factors that specify the desired outcome. The last decade consequently has witnessed a plethora of studies that modify cellular features including the hallmarks of aging in addition to cellular function and identity in a variety of cell types in vitro. Recently, some of these reprogramming strategies have been directly used in animal models in pursuit of rejuvenation and cell replacement. Here, we review these in vivo reprogramming efforts and discuss their potential use to extend the longevity by complementing or augmenting the regenerative capacity. © 2017 American Heart Association, Inc.

  20. Placenta and Placental Derivatives in Regenerative Therapies: Experimental Studies, History, and Prospects

    PubMed Central

    Prokopyuk, Volodymyr; Pogozhykh, Denys

    2018-01-01

    Placental structures, capable to persist in a genetically foreign organism, are a natural model of allogeneic engraftment carrying a number of distinctive properties. In this review, the main features of the placenta and its derivatives such as structure, cellular composition, immunological and endocrine aspects, and the ability to invasion and deportation are discussed. These features are considered from a perspective that determines the placental material as a unique source for regenerative cell therapies and a lesson for immunological tolerance. A historical overview of clinical applications of placental extracts, cells, and tissue components is described. Empirically accumulated data are summarized and compared with modern research. Furthermore, we define scopes and outlooks of application of placental cells and tissues in the rapidly progressing field of regenerative medicine. PMID:29535770

  1. The use of stem cells in regenerative medicine for Parkinson's and Huntington's Diseases.

    PubMed

    Lescaudron, L; Naveilhan, P; Neveu, I

    2012-01-01

    Cell transplantation has been proposed as a means of replacing specific cell populations lost through neurodegenerative processes such as that seen in Parkinson's or Huntington's diseases. Improvement of the clinical symptoms has been observed in a number of Parkinson and Huntington's patients transplanted with freshly isolated fetal brain tissue but such restorative approach is greatly hampered by logistic and ethical concerns relative to the use of fetal tissue, in addition to potential side effects that remain to be controlled. In this context, stem cells that are capable of self-renewal and can differentiate into neurons, have received a great deal of interest, as demonstrated by the numerous studies based on the transplantation of neural stem/progenitor cells, embryonic stem cells or mesenchymal stem cells into animal models of Parkinson's or Huntington's diseases. More recently, the induction of pluripotent stem cells from somatic adult cells has raised a new hope for the treatment of neurodegenerative diseases. In the present article, we review the main experimental approaches to assess the efficiency of cell-based therapy for Parkinson's or Huntington's diseases, and discuss the recent advances in using stem cells to replace lost dopaminergic mesencephalic or striatal neurons. Characteristics of the different stem cells are extensively examined with a special attention to their ability of producing neurotrophic or immunosuppressive factors, as these may provide a favourable environment for brain tissue repair and long-term survival of transplanted cells in the central nervous system. Thus, stem cell therapy can be a valuable tool in regenerative medicine.

  2. The Use of Stem Cells to Model Amyotrophic Lateral Sclerosis and Frontotemporal Dementia: From Basic Research to Regenerative Medicine.

    PubMed

    Hedges, Erin C; Mehler, Vera J; Nishimura, Agnes L

    2016-01-01

    In recent years several genes have linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) as a spectrum disease; however little is known about what triggers their onset. With the ability to generate patient specific stem cell lines from somatic cells, it is possible to model disease without the need to transfect cells with exogenous DNA. These pluripotent stem cells have opened new avenues for identification of disease phenotypes and their relation to specific molecular pathways. Thus, as never before, compounds with potential applications for regenerative medicine can be specifically tailored in patient derived cultures. In this review, we discuss how patient specific induced pluripotent stem cells (iPSCs) have been used to model ALS and FTD and the most recent drug screening targets for these diseases. We also discuss how an iPSC bank would improve the quality of the available cell lines and how it would increase knowledge about the ALS/FTD disease spectrum.

  3. Expanding the foundation for personalized medicine: implications and challenges for dentistry.

    PubMed

    Garcia, I; Kuska, R; Somerman, M J

    2013-07-01

    Personalized medicine aims to individualize care based on a person's unique genetic, environmental, and clinical profile. Dentists and physicians have long recognized variations between and among patients, and have customized care based on each individual's health history, environment, and behavior. However, the sequencing of the human genome in 2003 and breakthroughs in regenerative medicine, imaging, and computer science redefined "personalized medicine" as clinical care that takes advantage of new molecular tools to facilitate highly precise health care based on an individual's unique genomic and molecular characteristics. Major investments in science bring a new urgency toward realizing the promise of personalized medicine; yet, many challenges stand in the way. In this article, we present an overview of the opportunities and challenges that influence the oral health community's full participation in personalized medicine. We highlight selected research advances that are solidifying the foundation of personalized oral health care, elaborate on their impact on dentistry, and explore obstacles toward their adoption into practice. It is our view that now is the time for oral health professionals, educators, students, researchers, and patients to engage fully in preparations for the arrival of personalized medicine as a means to provide quality, customized, and effective oral health care for all.

  4. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications.

    PubMed

    Grzesiak, Jakub; Marycz, Krzysztof; Szarek, Dariusz; Bednarz, Paulina; Laska, Jadwiga

    2015-01-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane-polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane-polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. Copyright © 2015. Published by Elsevier B.V.

  5. Cartilage defect repair in horses: Current strategies and recent developments in regenerative medicine of the equine joint with emphasis on the surgical approach.

    PubMed

    Cokelaere, Stefan; Malda, Jos; van Weeren, René

    2016-08-01

    Chondral and osteochondral lesions due to injury or other pathology are highly prevalent conditions in horses (and humans) and commonly result in the development of osteoarthritis and progression of joint deterioration. Regenerative medicine of articular cartilage is an emerging clinical treatment option for patients with articular cartilage injury or disease. Functional articular cartilage restoration, however, remains a major challenge, but the field is progressing rapidly and there is an increasing body of supportive clinical and scientific evidence. This review gives an overview of the established and emerging surgical techniques employed for cartilage repair in horses. Through a growing insight in surgical cartilage repair possibilities, surgeons might be more stimulated to explore novel techniques in a clinical setting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Concise review: current status of stem cells and regenerative medicine in lung biology and diseases.

    PubMed

    Weiss, Daniel J

    2014-01-01

    Lung diseases remain a significant and devastating cause of morbidity and mortality worldwide. In contrast to many other major diseases, lung diseases notably chronic obstructive pulmonary diseases (COPDs), including both asthma and emphysema, are increasing in prevalence and COPD is expected to become the third leading cause of disease mortality worldwide by 2020. New therapeutic options are desperately needed. A rapidly growing number of investigations of stem cells and cell therapies in lung biology and diseases as well as in ex vivo lung bioengineering have offered exciting new avenues for advancing knowledge of lung biology as well as providing novel potential therapeutic approaches for lung diseases. These initial observations have led to a growing exploration of endothelial progenitor cells and mesenchymal stem (stromal) cells in clinical trials of pulmonary hypertension and COPD with other clinical investigations planned. Ex vivo bioengineering of the trachea, larynx, diaphragm, and the lung itself with both biosynthetic constructs as well as decellularized tissues have been used to explore engineering both airway and vascular systems of the lung. Lung is thus a ripe organ for a variety of cell therapy and regenerative medicine approaches. Current state-of-the-art progress for each of the above areas will be presented as will discussion of current considerations for cell therapy-based clinical trials in lung diseases. © AlphaMed Press.

  7. Examining Quality Management Audits in Nuclear Medicine Practice as a lifelong learning process: opportunities and challenges to the nuclear medicine professional and beyond.

    PubMed

    Pascual, Thomas N B

    2016-08-01

    This essay will explore the critical issues and challenges surrounding lifelong learning for professionals, initially exploring within the profession and organizational context of nuclear medicine practice. It will critically examine how the peer-review process called Quality Management Audits in Nuclear Medicine Practice (QUANUM) of the International Atomic Energy Agency (IAEA) can be considered a lifelong learning opportunity to instill a culture of quality to improve patient care and elevate the status of the nuclear medicine profession and practice within the demands of social changes, policy, and globalization. This will be explored initially by providing contextual background to the identity of the IAEA as an organization responsible for nuclear medicine professionals, followed by the benefits that QUANUM can offer. Further key debates surrounding lifelong learning, such as compulsification of lifelong learning and impact on professional change, will then be weaved through the discussion using theoretical grounding through a qualitative review of the literature. Keeping in mind that there is very limited literature focusing on the implications of QUANUM as a lifelong learning process for nuclear medicine professionals, this essay uses select narratives and observations of QUANUM as a lifelong learning process from an auditor's perspective and will further provide a comparative perspective of QUANUM on the basis of other lifelong learning opportunities such as continuing professional development activities and observe parallelisms on its benefits and challenges that it will offer to other professionals in other medical speciality fields and in the teaching profession.

  8. Gender influences on career opportunities, practice choices, and job satisfaction in a cohort of physicians with certification in sports medicine.

    PubMed

    Pana, A L; McShane, J

    2001-04-01

    To examine the gender differences in practice patterns, experiences, and career opportunities for family physicians who practice sports medicine. Descriptive, self-administered questionnaire. Family physicians with Certificate of Added Qualification (CAQ) in sports medicine were surveyed. The survey was sent to all women with a CAQ in Sports Medicine and a random sample of 20% of the men with CAQs in sports medicine. Survey consisted of multiple choice, Likert scale, and opened-ended questions. The data was analyzed with contingency tables, with gender as the dependent variable. Response rate to the survey was 75%, which included 42 females and 102 males. Demographics of our population demonstrated some gender differences. Males were of higher average age (41.1 vs. 38.1), and more likely to be married and have children. Practice types, location, and time spent in sports medicine did not differ with the exception of training room and event coverage. Males were more likely to cover all levels of training room except at the Division I level, where the percent of males and females covering training rooms were equal. Males were also more likely to cover all types of sporting events. Job satisfaction and reasons for choosing current jobs did not show significant gender differences. However, factors affecting career opportunities did vary. Professional relationships with athletic trainers and coaches were perceived to be different by males and females surveyed. Our survey of sports medicine physicians showed some gender differences in practice patterns relative to training room and sporting event coverage. Surprisingly, there were not many differences in the factors that affected job choice and factors affecting job opportunities with the exception of gender itself. However, our study does not conclude how or when gender begins to affect the female sports medicine physician's career opportunities.

  9. Multicenter Cell Processing for Cardiovascular Regenerative Medicine Applications - The Cardiovascular Cell Therapy Research Network (CCTRN) Experience

    PubMed Central

    Gee, Adrian P.; Richman, Sara; Durett, April; McKenna, David; Traverse, Jay; Henry, Timothy; Fisk, Diann; Pepine, Carl; Bloom, Jeannette; Willerson, James; Prater, Karen; Zhao, David; Koç, Jane Reese; Ellis, Steven; Taylor, Doris; Cogle, Christopher; Moyé, Lemuel; Simari, Robert; Skarlatos, Sonia

    2013-01-01

    Background Aims Multi-center cellular therapy clinical trials require the establishment and implementation of standardized cell processing protocols and associated quality control mechanisms. The aims here were to develop such an infrastructure in support of the Cardiovascular Cell Therapy Research Network (CCTRN) and to report on the results of processing for the first 60 patients. Methods Standardized cell preparations, consisting of autologous bone marrow mononuclear cells, prepared using the Sepax device were manufactured at each of the five processing facilities that supported the clinical treatment centers. Processing staff underwent centralized training that included proficiency evaluation. Quality was subsequently monitored by a central quality control program that included product evaluation by the CCTRN biorepositories. Results Data from the first 60 procedures demonstrate that uniform products, that met all release criteria, could be manufactured at all five sites within 7 hours of receipt of the bone marrow. Uniformity was facilitated by use of the automated systems (the Sepax for processing and the Endosafe device for endotoxin testing), standardized procedures and centralized quality control. Conclusions Complex multicenter cell therapy and regenerative medicine protocols can, where necessary, successfully utilize local processing facilities once an effective infrastructure is in place to provide training, and quality control. PMID:20524773

  10. Regenerative nanotechnology in oral and maxillofacial surgery.

    PubMed

    Shakib, Kaveh; Tan, Aaron; Soskic, Vukic; Seifalian, Alexander M

    2014-12-01

    Regenerative nanotechnology is at the forefront of medical research, and translational medicine is a challenge to both scientists and clinicians. Although there has been an exponential rise in the volume of research generated about it for both medical and surgical uses, key questions remain about its actual benefits. Nevertheless, some people think that therapeutics based on its principles may form the core of applied research for the future. Here we give an account of its current use in oral and maxillofacial surgery, and implications and challenges for the future. Copyright © 2014 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. Fetoscopic Therapy for Severe Pulmonary Hypoplasia in Congenital Diaphragmatic Hernia: A First in Prenatal Regenerative Medicine at Mayo Clinic.

    PubMed

    Ruano, Rodrigo; Klinkner, Denise B; Balakrishnan, Karthik; Novoa Y Novoa, Victoria A; Davies, Norman; Potter, Dean D; Carey, William A; Colby, Christopher E; Kolbe, Amy B; Arendt, Katherine W; Segura, Leal; Sviggum, Hans P; Lemens, Maureen A; Famuyide, Abimbola; Terzic, Andre

    2018-05-15

    To introduce the prenatal regenerative medicine service at Mayo Clinic for fetal endoscopic tracheal occlusion (FETO) care for severe congenital diaphragmatic hernia (CDH). Two cases of prenatal management of severe CDH with FETO between January and August 2017 are reported. Per protocol, FETO was offered for life-threatening severe CDH at between 26 and 29 weeks' gestation. Regenerative outcome end point was fetal lung growth. Gestational age at procedure and maternal and perinatal outcomes were additional monitored parameters. Diagnosis by ultrasonography of severe CDH was based on extremely reduced lung size (observed-to-expected lung area to head circumference ratio [o/e-LHR], eg, o/e-LHR of 20.3% for fetus 1 and 23.0% for fetus 2) along with greater than one-third of the liver herniated into the chest in both fetuses. Both patients underwent successful FETO at 28 weeks. At the time of intervention, no maternal or fetal complications were observed. Postintervention, fetal lung growth was observed in both fetuses, reaching an o/e-LHR of 62.7% at 36 weeks in fetus 1 and 52.4% at 32 weeks in fetus 2. The balloons were removed successfully at 35 weeks and 4 days by ultrasound-guided puncture in the first patient and at 32 weeks and 3 days by ex utero intrapartum therapy-to-airway procedure in the second patient. Postnatal management followed standard of care with patch CDH therapy. At discharge, one patient was breathing normally, whereas the other required minimal nasal cannula oxygen support. The successful launch of the first fetoscopic therapy for CDH at Mayo Clinic reveals its feasibility and safety, with early signs of benefit documented by fetal lung growth and reversal of severe pulmonary hypoplasia. clinicaltrials.gov Identifier: G170062. Copyright © 2018 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  12. Dental Mesenchymal Stem Cell-Based Translational Regenerative Dentistry: From Artificial to Biological Replacement

    PubMed Central

    Marei, Mona K.; El Backly, Rania M.

    2018-01-01

    Dentistry is a continuously changing field that has witnessed much advancement in the past century. Prosthodontics is that branch of dentistry that deals with replacing missing teeth using either fixed or removable appliances in an attempt to simulate natural tooth function. Although such “replacement therapies” appear to be easy and economic they fall short of ever coming close to their natural counterparts. Complications that arise often lead to failures and frequent repairs of such devices which seldom allow true physiological function of dental and oral-maxillofacial tissues. Such factors can critically affect the quality of life of an individual. The market for dental implants is continuously growing with huge economic revenues. Unfortunately, such treatments are again associated with frequent problems such as peri-implantitis resulting in an eventual loss or replacement of implants. This is particularly influential for patients having co-morbid diseases such as diabetes or osteoporosis and in association with smoking and other conditions that undoubtedly affect the final treatment outcome. The advent of tissue engineering and regenerative medicine therapies along with the enormous strides taken in their associated interdisciplinary fields such as stem cell therapy, biomaterial development, and others may open arenas to enhancing tissue regeneration via designing and construction of patient-specific biological and/or biomimetic substitutes. This review will overview current strategies in regenerative dentistry while overviewing key roles of dental mesenchymal stem cells particularly those of the dental pulp, until paving the way to precision/translational regenerative medicine therapies for future clinical use. PMID:29770323

  13. Towards personalized medicine for patients with autoimmune diseases: Opportunities and challenges.

    PubMed

    Tavakolpour, Soheil

    2017-10-01

    There is generally no cure for autoimmune disorders, but the symptoms can be managed. Currently available drugs/treatments are more potent than those in the past decades. However, finding the right drug and right patients has remained a serious problem. We should revise our diagnosis criteria to more accurate ones. During the recent years, personalized medicine has attracted much attention. However, it needs to be well-explained for autoimmune diseases. Personalized medicine aims to find the most optimum drugs for a patient. Hence, recognizing the drugs based on genetics and molecular profile of patients, needs a comprehensive protocol. This study attempted to discuss the most practical and effective ways for identifying right patient and right drug. Patients should be divided into subpopulations. According to the last diagnosis criteria and therapeutic options, it was attempted to highlight the gaps or contradictions in current understanding and suggest what the future of research in this area may hold. Various factors could be considered, including genes variants, genes expression, epigenetic alterations, immune responses, and also basic and obvious characteristics (sex, age, ethnic, etc.). Moreover, advantages, disadvantages, obstacles, and opportunities during the personalized medicine for autoimmune diseases have been discussed in great detail. Finally, creation of a global library that covers all the aspects of personalized medicines for different types of autoimmune disease was suggested. In conclusion, revising diagnosis and treatments of autoimmune diseases toward personalized medicine could be the revolutionary step for having more effective and safer therapeutic options. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  14. Study of medicine 2.0 due to Web 2.0?! - Risks and opportunities for the curriculum in Leipzig

    PubMed Central

    Hempel, Gunther; Neef, Martin; Rotzoll, Daisy; Heinke, Wolfgang

    2013-01-01

    Web 2.0 is changing the study of medicine by opening up totally new ways of learning and teaching in an ongoing process. Global social networking services like Facebook, YouTube, Flickr, Google Drive and Xing already play an important part in communication both among students and between students and teaching staff. Moreover, local portals (such as the platform [http://www.leipzig-medizin.de] established in 2003) have also caught on and in some cases eclipsed the use of the well-known location-independent social media. The many possibilities and rapid changes brought about by social networks need to be publicized within medical faculties. Therefore, an E-learning and New Media Working Group was set up at the Faculty of Medicine of Universität Leipzig in order to harness the opportunities of Web 2.0, analyse the resulting processes of change in the study of medicine, and curb the risks of the Internet. With Web 2.0 and the social web already influencing the study of medicine, the opportunities of the Internet now need to be utilized to improve the teaching of medicine. PMID:23467440

  15. Translating Periosteum's Regenerative Power: Insights From Quantitative Analysis of Tissue Genesis With a Periosteum Substitute Implant.

    PubMed

    Moore, Shannon R; Heu, Céline; Yu, Nicole Y C; Whan, Renee M; Knothe, Ulf R; Milz, Stefan; Knothe Tate, Melissa L

    2016-12-01

    : An abundance of surgical studies during the past 2 centuries provide empirical evidence of periosteum's regenerative power for reconstructing tissues as diverse as trachea and bone. This study aimed to develop quantitative, efficacy-based measures, thereby providing translational guidelines for the use of periosteum to harness the body's own healing potential and generate target tissues. The current study quantitatively and qualitatively demonstrated tissue generation modulated by a periosteum substitute membrane that replicates the structural constituents of native periosteum (elastin, collagen, progenitor cells) and its barrier, extracellular, and cellular properties. It shows the potentiation of the periosteum's regenerative capacity through the progenitor cells that inhabit the tissue, biological factors intrinsic to the extracellular matrix of periosteum, and mechanobiological factors related to implant design and implementation. In contrast to the direct intramembranous bone generated in defects surrounded by patent periosteum in situ, tissue generation in bone defects bounded by the periosteum substitute implant occurred primarily via endochondral mechanisms whereby cartilage was first generated and then converted to bone. In addition, in defects treated with the periosteum substitute, tissue generation was highest along the major centroidal axis, which is most resistant to prevailing bending loads. Taken together, these data indicate the possibility of designing modular periosteum substitute implants that can be tuned for vectorial and spatiotemporal delivery of biological agents and facilitation of target tissue genesis for diverse surgical scenarios and regenerative medicine approaches. It also underscores the potential to develop physical therapy protocols to maximize tissue genesis via the implant's mechanoactive properties. In the past 2 centuries, the periosteum, a niche for stem cells and super-smart biological material, has been used empirically

  16. A Review of Current Regenerative Medicine Strategies that Utilize Nanotechnology to Treat Cartilage Damage

    PubMed Central

    Kumar, R.; Griffin, M.; Butler, P.E.

    2016-01-01

    Background: Cartilage is an important tissue found in a variety of anatomical locations. Damage to cartilage is particularly detrimental, owing to its intrinsically poor healing capacity. Current reconstructive options for cartilage repair are limited, and alternative approaches are required. Biomaterial science and Tissue engineering are multidisciplinary areas of research that integrate biological and engineering principles for the purpose of restoring premorbid tissue function. Biomaterial science traditionally focuses on the replacement of diseased or damaged tissue with implants. Conversely, tissue engineering utilizes porous biomimetic scaffolds, containing cells and bioactive molecules, to regenerate functional tissue. However, both paradigms feature several disadvantages. Faced with the increasing clinical burden of cartilage defects, attention has shifted towards the incorporation of Nanotechnology into these areas of regenerative medicine. Methods: Searches were conducted on Pubmed using the terms “cartilage”, “reconstruction”, “nanotechnology”, “nanomaterials”, “tissue engineering” and “biomaterials”. Abstracts were examined to identify articles of relevance, and further papers were obtained from the citations within. Results: The content of 96 articles was ultimately reviewed. The literature yielded no studies that have progressed beyond in vitro and in vivo experimentation. Several limitations to the use of nanomaterials to reconstruct damaged cartilage were identified in both the tissue engineering and biomaterial fields. Conclusion: Nanomaterials have unique physicochemical properties that interact with biological systems in novel ways, potentially opening new avenues for the advancement of constructs used to repair cartilage. However, research into these technologies is in its infancy, and clinical translation remains elusive. PMID:28217211

  17. Participant selection for preventive Regenerative Medicine trials: ethical challenges of selecting individuals at risk.

    PubMed

    Niemansburg, Sophie L; Habets, Michelle G J L; Dhert, Wouter J A; van Delden, Johannes J M; Bredenoord, Annelien L

    2015-11-01

    The innovative field of Regenerative Medicine (RM) is expected to extend the possibilities of prevention or early treatment in healthcare. Increasingly, clinical trials will be developed for people at risk of disease to investigate these RM interventions. These individuals at risk are characterised by their susceptibility for developing clinically manifest disease in future due to the existence of degenerative abnormalities. So far, there has been little debate about the ethical appropriateness of including such individuals at risk in clinical trials. We discuss three main challenges of selecting this participant model for testing RM interventions: the challenge of achieving a proportional risk-benefit balance; complexities in the trial design in terms of follow-up and sample size; and the difficulty of obtaining informed consent due to the many uncertainties. We conclude that selecting the model is not ethically justifiable for first-in-man trials with RM interventions due to the high risks and uncertainties. However, the model can be ethically appropriate for testing the efficacy of RM interventions under the following conditions: interventions should be low risk; the degenerative abnormalities (and other risk factors) should be strongly related with disease within a short time frame; robust preclinical evidence of efficacy needs to be present; and the informed consent procedure should contain extra safeguards with regard to communication on uncertainties. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine

    PubMed Central

    Murphy, Matthew B; Moncivais, Kathryn; Caplan, Arnold I

    2013-01-01

    Mesenchymal stem cells (MSCs) are partially defined by their ability to differentiate into tissues including bone, cartilage and adipose in vitro, but it is their trophic, paracrine and immunomodulatory functions that may have the greatest therapeutic impact in vivo. Unlike pharmaceutical treatments that deliver a single agent at a specific dose, MSCs are site regulated and secrete bioactive factors and signals at variable concentrations in response to local microenvironmental cues. Significant progress has been made in understanding the biochemical and metabolic mechanisms and feedback associated with MSC response. The anti-inflammatory and immunomodulatory capacity of MSC may be paramount in the restoration of localized or systemic conditions for normal healing and tissue regeneration. Allogeneic MSC treatments, categorized as a drug by regulatory agencies, have been widely pursued, but new studies demonstrate the efficacy of autologous MSC therapies, even for individuals affected by a disease state. Safety and regulatory concerns surrounding allogeneic cell preparations make autologous and minimally manipulated cell therapies an attractive option for many regenerative, anti-inflammatory and autoimmune applications. PMID:24232253

  19. Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Gulshan B., E-mail: gbsharma@ucalgary.ca; University of Pittsburgh, Swanson School of Engineering, Department of Bioengineering, Pittsburgh, Pennsylvania 15213; University of Calgary, Schulich School of Engineering, Department of Mechanical and Manufacturing Engineering, Calgary, Alberta T2N 1N4

    than actual specimen. Low predicted bone density was lower than actual specimen. Differences were probably due to applied muscle and joint reaction loads, boundary conditions, and values of constants used. Work is underway to study this. Nonetheless, the results demonstrate three dimensional bone remodeling simulation validity and potential. Such adaptive predictions take physiological bone remodeling simulations one step closer to reality. Computational analyses are needed that integrate biological remodeling rules and predict how bone will respond over time. We expect the combination of computational static stress analyses together with adaptive bone remodeling simulations to become effective tools for regenerative medicine research.« less

  20. Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine

    NASA Astrophysics Data System (ADS)

    Sharma, Gulshan B.; Robertson, Douglas D.

    2013-07-01

    specimen. Low predicted bone density was lower than actual specimen. Differences were probably due to applied muscle and joint reaction loads, boundary conditions, and values of constants used. Work is underway to study this. Nonetheless, the results demonstrate three dimensional bone remodeling simulation validity and potential. Such adaptive predictions take physiological bone remodeling simulations one step closer to reality. Computational analyses are needed that integrate biological remodeling rules and predict how bone will respond over time. We expect the combination of computational static stress analyses together with adaptive bone remodeling simulations to become effective tools for regenerative medicine research.

  1. Molecular aspects of eye evolution and development: from the origin of retinal cells to the future of regenerative medicine.

    PubMed

    Ohuchi, Hideyo

    2013-01-01

    A central issue of evolutionary developmental biology is how the eye is diverged morphologically and functionally. However, the unifying mechanisms or schemes that govern eye diversification remain unsolved. In this review, I first introduce the concept of evolutionary developmental biology of the eye with a focus on photoreception, the fundamental property of retinal cells. Second, I summarize the early development of vertebrate eyes and the role of a homeobox gene, Lhx1, in subdivision of the retina into 2 domains, the neural retina and retinal pigmented epithelium of the optic primordium. The 2 retinal domains are essential components of the eye as they are found in such prototypic eyes as the extant planarian eye. Finally, I propose the presence of novel retinal cell subtypes with photosensory functions based on our recent work on atypical photopigments (opsins) in vertebrates. Since human diseases are attributable to the aberration of various types of cells due to alterations in gene expression, understanding the precise mechanisms of cellular diversification and unraveling the molecular profiles of cellular subtypes are essential to future regenerative medicine.

  2. Concise review: tailoring bioengineered scaffolds for stem cell applications in tissue engineering and regenerative medicine.

    PubMed

    Cosson, Steffen; Otte, Ellen A; Hezaveh, Hadi; Cooper-White, Justin J

    2015-02-01

    The potential for the clinical application of stem cells in tissue regeneration is clearly significant. However, this potential has remained largely unrealized owing to the persistent challenges in reproducibly, with tight quality criteria, and expanding and controlling the fate of stem cells in vitro and in vivo. Tissue engineering approaches that rely on reformatting traditional Food and Drug Administration-approved biomedical polymers from fixation devices to porous scaffolds have been shown to lack the complexity required for in vitro stem cell culture models or translation to in vivo applications with high efficacy. This realization has spurred the development of advanced mimetic biomaterials and scaffolds to increasingly enhance our ability to control the cellular microenvironment and, consequently, stem cell fate. New insights into the biology of stem cells are expected to eventuate from these advances in material science, in particular, from synthetic hydrogels that display physicochemical properties reminiscent of the natural cell microenvironment and that can be engineered to display or encode essential biological cues. Merging these advanced biomaterials with high-throughput methods to systematically, and in an unbiased manner, probe the role of scaffold biophysical and biochemical elements on stem cell fate will permit the identification of novel key stem cell behavioral effectors, allow improved in vitro replication of requisite in vivo niche functions, and, ultimately, have a profound impact on our understanding of stem cell biology and unlock their clinical potential in tissue engineering and regenerative medicine. ©AlphaMed Press.

  3. Postnatal extra-embryonic tissues as a source of multiple cell types for regenerative medicine applications.

    PubMed

    Gubar, O S; Rodnichenko, A E; Vasyliev, R G; Zlatska, A V; Zubov, D O

    2017-09-01

    We aimed to isolate and characterize the cell types which could be obtained from postnatal extra-embryonic tissues. Fresh tissues (no more than 12 h after delivery) were used for enzymatic or explants methods of cell isolation. Obtained cultures were further maintained at 5% oxygen. At P3 cell phenotype was assessed by fluorescence-activated cell sorting, population doubling time was calculated and the multilineage differentiation assay was performed. We have isolated multiple cell types from postnatal tissues. Namely, placental mesenchymal stromal cells from placenta chorionic disc, chorionic membrane mesenchymal stromal cells (ChM-MSC) from free chorionic membrane, umbilical cord MSC (UC-MSC) from whole umbilical cord, human umbilical vein endothelial cells (HUVEC) from umbilical vein, amniotic epithelial cells (AEC) and amniotic MSC (AMSC) from amniotic membrane. All isolated cell types displayed high proliferation rate together with the typical MSC phenotype: CD73 + CD90 + CD105 + CD146 + CD166+CD34 - CD45 - HLA-DR - . HUVEC constitutively expressed key markers CD31 and CD309. Most MSC and AEC were capable of osteogenic and adipogenic differentiation. We have shown that a wide variety of cell types can be easily isolated from extra-embryonic tissues and expanded ex vivo for regenerative medicine applications. These cells possess typical MSC properties and can be considered an alternative for adult MSC obtained from bone marrow or fat, especially for allogeneic use.

  4. Future Propulsion Opportunities for Commuter Airplanes

    NASA Technical Reports Server (NTRS)

    Strack, W. C.

    1982-01-01

    Commuter airplane propulsion opportunities are summarized. Consideration is given to advanced technology conventional turboprop engines, advanced propellers, and several unconventional alternatives: regenerative turboprops, rotaries, and diesels. Advanced versions of conventional turboprops (including propellers) offer 15-20 percent savings in fuel and 10-15 percent in DOC compared to the new crop of 1500-2000 SHP engines currently in development. Unconventional engines could boost the fuel savings to 30-40 percent. The conclusion is that several important opportunities exist and, therefore, powerplant technology need not plateau.

  5. Changes in Regenerative Capacity through Lifespan

    PubMed Central

    Yun, Maximina H.

    2015-01-01

    Most organisms experience changes in regenerative abilities through their lifespan. During aging, numerous tissues exhibit a progressive decline in homeostasis and regeneration that results in tissue degeneration, malfunction and pathology. The mechanisms responsible for this decay are both cell intrinsic, such as cellular senescence, as well as cell-extrinsic, such as changes in the regenerative environment. Understanding how these mechanisms impact on regenerative processes is essential to devise therapeutic approaches to improve tissue regeneration and extend healthspan. This review offers an overview of how regenerative abilities change through lifespan in various organisms, the factors that underlie such changes and the avenues for therapeutic intervention. It focuses on established models of mammalian regeneration as well as on models in which regenerative abilities do not decline with age, as these can deliver valuable insights for our understanding of the interplay between regeneration and aging. PMID:26512653

  6. Embryonic stem cells and prospects for their use in regenerative medicine approaches to motor neurone disease.

    PubMed

    Christou, Y A; Moore, H D; Shaw, P J; Monk, P N

    2007-10-01

    Human embryonic stem cells are pluripotent cells with the potential to differentiate into any cell type in the presence of appropriate stimulatory factors and environmental cues. Their broad developmental potential has led to valuable insights into the principles of developmental and cell biology and to the proposed use of human embryonic stem cells or their differentiated progeny in regenerative medicine. This review focuses on the prospects for the use of embryonic stem cells in cell-based therapy for motor neurone disease or amyotrophic lateral sclerosis, a progressive neurodegenerative disease that specifically affects upper and lower motor neurones and leads ultimately to death from respiratory failure. Stem cell-derived motor neurones could conceivably be used to replace the degenerated cells, to provide authentic substrates for drug development and screening and for furthering our understanding of disease mechanisms. However, to reliably and accurately culture motor neurones, the complex pathways by which differentiation occurs in vivo must be understood and reiterated in vitro by embryonic stem cells. Here we discuss the need for new therapeutic strategies in the treatment of motor neurone disease, the developmental processes that result in motor neurone formation in vivo, a number of experimental approaches to motor neurone production in vitro and recent progress in the application of stem cells to the treatment and understanding of motor neurone disease.

  7. Regenerative Life Support Evaluation

    NASA Technical Reports Server (NTRS)

    Kleiner, G. N.; Thompson, C. D.

    1977-01-01

    This paper describes the development plan and design concept of the Regenerative Life Support Evaluation (RLSE) planned for flight testing in the European Space Agency Spacelab. The development plan encompasses the ongoing advanced life support subsystem and a systems integration effort to evolve concurrently subsystem concepts that perform their function and can be integrated with other subsystems in a flight demonstration of a regenerative life support system. The design concept for RLSE comprises water-electrolysis O2 generation, electrochemically depolarized CO2 removal, and Sabatier CO2 reduction for atmosphere regeneration, urine vapor-compression distillation, and wash-water hyperfiltration for waste-water recovery. The flight demonstration by RLSE is an important step in qualifying the regenerative concepts for life support in space stations.

  8. KrioBlast TM as a New Technology of Hyper-fast Cryopreservation of Cells and Tissues. Part I. Thermodynamic Aspects and Potential Applications in Reproductive and Regenerative Medicine.

    PubMed

    Katkov, I I; Bolyukh, V F; Sukhikh, G T

    2018-03-01

    Kinetic (dynamic) vitrification is a promising trend in cryopreservation of biological materials because it allows avoiding the formation of lethal intracellular ice and minimizes harmful effects of highly toxic penetrating cryoprotectants. A uniform cooling protocol and the same instruments can be used for practically all types of cells. In modern technologies, the rate of cooling is essentially limited by the Leidenfrost effect. We describe a novel platform for kinetic vitrification of biological materials KrioBlast TM that realizes hyper-fast cooling and allows overcoming the Leidenfrost effect. This opens prospects for creation of a novel technology of cell cryopreservation for reproductive and regenerative medicine.

  9. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita

    2010-03-12

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activitymore » in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.« less

  10. Change, Challenge and Opportunity: Departments of Medicine and Their Leaders.

    PubMed

    Feussner, John R; Landefeld, C Seth; Weinberger, Steven E

    2016-01-01

    Academic Health Centers are evolving to larger and more complex Academic Health Systems (AHS), reflecting financial stresses requiring them to become nimble, efficient, and patient (consumer) and faculty (employee) focused. The evolving AHS organization includes many positive attributes: unity of purpose, structural integration, collaboration and teamwork, alignment of goals with resource allocation, and increased financial success. The organization, leadership, and business acumen of the AHS influence directly opportunities for Departments of Medicine. Just as leadership capabilities of the AHS affect its future success, the same is true for departmental leadership. The Department of Medicine is no longer a quasi- autonomous entity, and the chairperson is no longer an independent decision-maker. Departments of Medicine will be most successful if they maintain internal unity and cohesion by not fragmenting along specialty lines. Departments with larger endowments or those with public financial support have more flexibility when investing in the academic missions. The chairpersons of the future should serve as change agents while simultaneously adopting a "servant leadership" model. Chairpersons with executive and team building skills, and business acumen and experience, are more likely to succeed in managing productive and lean departments. Quality of patient care and service delivery enhance the department's effectiveness and credibility and assure access to additional financial resources to subsidize the academic missions. Moreover, the drive for excellence, high performance and growth will fuel financial solvency. Copyright © 2016 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  11. Processing of Materials for Regenerative Medicine Using Supercritical Fluid Technology.

    PubMed

    García-González, Carlos A; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2015-07-15

    The increase in the world demand of bone and cartilage replacement therapies urges the development of advanced synthetic scaffolds for regenerative purposes, not only providing mechanical support for tissue formation, but also promoting and guiding the tissue growth. Conventional manufacturing techniques have severe restrictions for designing these upgraded scaffolds, namely, regarding the use of organic solvents, shearing forces, and high operating temperatures. In this context, the use of supercritical fluid technology has emerged as an attractive solution to design solvent-free scaffolds and ingredients for scaffolds under mild processing conditions. The state-of-the-art on the technological endeavors for scaffold production using supercritical fluids is presented in this work with a critical review on the key processing parameters as well as the main advantages and limitations of each technique. A special stress is focused on the strategies suitable for the incorporation of bioactive agents (drugs, bioactive glasses, and growth factors) and the in vitro and in vivo performance of supercritical CO2-processed scaffolds.

  12. Summary of: Regenerative endodontics.

    PubMed

    Clark, Stephen J

    2014-03-01

    Significant advances in our understanding of the biological processes involved in tooth development and repair at the cellular and molecular levels have underpinned the newly emerging area of regenerative endodontics. Development of treatment protocols based on exploiting the natural wound healing properties of the dental pulp and applying tissue engineering principles has allowed reporting of case series showing preservation of tissue vitality and apexogenesis. To review current case series reporting regenerative endodontics. Current treatment approaches tend to stimulate more reparative than regenerative responses in respect of the new tissue generated, which often does not closely resemble the physiological structure of dentine-pulp. However, despite these biological limitations, such techniques appear to offer significant promise for improved treatment outcomes. Improved biological outcomes will likely emerge from the many experimental studies being reported and will further contribute to improvements in clinical treatment protocols.

  13. Assessment of herbal medicinal products: Challenges, and opportunities to increase the knowledge base for safety assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Scott A., E-mail: scott.jordan@hc-sc.gc.c; Cunningham, David G.; Marles, Robin J.

    Although herbal medicinal products (HMP) have been perceived by the public as relatively low risk, there has been more recognition of the potential risks associated with this type of product as the use of HMPs increases. Potential harm can occur via inherent toxicity of herbs, as well as from contamination, adulteration, plant misidentification, and interactions with other herbal products or pharmaceutical drugs. Regulatory safety assessment for HMPs relies on both the assessment of cases of adverse reactions and the review of published toxicity information. However, the conduct of such an integrated investigation has many challenges in terms of the quantitymore » and quality of information. Adverse reactions are under-reported, product quality may be less than ideal, herbs have a complex composition and there is lack of information on the toxicity of medicinal herbs or their constituents. Nevertheless, opportunities exist to capitalise on newer information to increase the current body of scientific evidence. Novel sources of information are reviewed, such as the use of poison control data to augment adverse reaction information from national pharmacovigilance databases, and the use of more recent toxicological assessment techniques such as predictive toxicology and omics. The integration of all available information can reduce the uncertainty in decision making with respect to herbal medicinal products. The example of Aristolochia and aristolochic acids is used to highlight the challenges related to safety assessment, and the opportunities that exist to more accurately elucidate the toxicity of herbal medicines.« less

  14. TH-AB-206-00: Challenges and Opportunities for Nuclear Medicine Theranostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    In the past few decades, the field of nuclear medicine has made long strides with the continued advancement of related sciences and engineering and the availability of diagnostic and therapeutic radionuclides. Leveraging these advancements while combining the advantages of therapeutic and diagnostic radionuclides into one radiopharmaceutical has also created a new subfield “theranostics” in nuclear medicine that has the potential to further propel the field into the future. This session is composed of two talks; one focused on the physics principles of theranostics from properties of beta and alpha emitting radionuclides to dosimetric models and quantification; while the second describesmore » preclinical and clinical applications of theranostics and discusses the challenges and opportunities of bringing them to the clinic. At the end of the session the listener should be able to identify: The different properties of beta and alpha emitting radionuclides Which radionuclides are selected for which nuclear medicine therapies and why How PET can be used to accurately quantify the uptake of tumor targeting molecules How individualized dosimetry can be performed from the management of thyroid cancer to novel radiolabeled antibody therapies Promising pre-clinical radiopharmaceutical pairs in prostate cancer and melanoma. Promising clinical Theranostics in neuroendocrine cancers. Challenges of bringing Theranostics to the clinic. E. Delpassand, RITA Foundation -Houston; SBIR Grant; CEO and share holder of RadioMedix.« less

  15. Adipose-derived mesenchymal stem cells from liposuction and resected fat are feasible sources for regenerative medicine.

    PubMed

    Schneider, Sandra; Unger, Marina; van Griensven, Martijn; Balmayor, Elizabeth R

    2017-05-19

    The use of mesenchymal stem cells (MSCs) in research and in regenerative medicine has progressed. Bone marrow as a source has drawbacks because of subsequent morbidities. An easily accessible and valuable source is adipose tissue. This type of tissue contains a high number of MSCs, and obtaining higher quantities of tissue is more feasible. Fat tissue can be harvested using different methods such as liposuction and resection. First, a detailed isolation protocol with complete characterization is described. This also includes highlighting problems and pitfalls. Furthermore, some comparisons of these different harvesting methods exist. However, the later characterization of the cells is conducted poorly in most cases. We performed an in-depth characterization over five passages including an investigation of the effect of freezing and thawing. Characterization was performed using flow cytometry with CD markers, metabolic activity with Alamar Blue, growth potential in between passages, and cytoskeleton staining. Our results show that the cells isolated with distinct isolation methods (solid versus liposuction "liquid") have the same MSC potential. However, the percentage of cells positive for the markers CD73, CD90, and CD105 is initially quite low. The cells isolated from the liquid fat tissue grow faster at higher passages, and significantly more cells display MSC markers. In summary, we show a simple and efficient method to isolate adipose-derived mesenchymal stem cells from different preparations. Liposuctions and resection can be used, whereas liposuction has more growth potential at higher passages.

  16. Medical students' opportunities to participate and learn from activities at an internal medicine ward: an ethnographic study

    PubMed Central

    Hägg-Martinell, A; Hult, H; Henriksson, P; Kiessling, A

    2017-01-01

    Objectives To optimise medical students’ early clerkship is a complex task since it is conducted in a context primarily organised to take care of patients. Previous studies have explored medical students’ perceptions of facilitation and hindrance of learning. However, the opportunities for medical student to learn within the culture of acute medicine care have not been fully investigated. This study aimed to explore how medical students approach, interact and socialise in an acute internal medicine ward context, and how spaces for learning are created and used in such a culture. Design and setting Ethnographic observations were performed of medical students' interactions and learning during early clerkship at an acute internal medicine care ward. Field notes were taken, transcribed and analysed qualitatively. Data analysis was guided by Wenger's theory of communities of practice. Participants 21 medical students and 30 supervisors participated. Results Two themes were identified: Nervousness and curiosity—students acted nervously and stressed, especially when they could not answer questions. Over time curiosity could evolve. Unexplored opportunities to support students in developing competence to judge and approach more complex patient-related problems were identified. Invited and involved—students were exposed to a huge variation of opportunities to learn, and to interact and to be involved. Short placements seemed to disrupt the learning process. If and how students became involved also depended on supervisors' activities and students' initiatives. Conclusions This study shed light on how an acute internal medicine ward culture can facilitate medical students' possibilities to participate and learn. Medical students' learning situations were characterised by questions and answers rather than challenging dialogues related to the complexity of presented patient cases. Further, students experienced continuous transfers between learning situations where the

  17. A review of the regenerative endodontic treatment procedure

    PubMed Central

    Lee, Bin-Na; Moon, Jong-Wook; Chang, Hoon-Sang; Hwang, In-Nam; Oh, Won-Mann

    2015-01-01

    Traditionally, apexification has been used to treat immature permanent teeth that have lost pulp vitality. This technique promotes the formation of an apical barrier to close the open apex so that the filling materials can be confined to the root canal. Because tissue regeneration cannot be achieved with apexification, a new technique called regenerative endodontic treatment was presented recently to treat immature permanent teeth. Regenerative endodontic treatment is a treatment procedure designed to replace damaged pulp tissue with viable tissue which restores the normal function of the pulp-dentin structure. After regenerative endodontic treatment, continued root development and hard tissue deposition on the dentinal wall can occur under ideal circumstances. However, it is difficult to predict the result of regenerative endodontic treatment. Therefore, the purpose of this study was to summarize multiple factors effects on the result of regenerative endodontic treatment in order to achieve more predictable results. In this study, we investigated the features of regenerative endodontic treatment in comparison with those of other pulp treatment procedures and analyzed the factors that have an effect on regenerative endodontic treatment. PMID:26295020

  18. Regenerative endodontics: a comprehensive review.

    PubMed

    Kim, S G; Malek, M; Sigurdsson, A; Lin, L M; Kahler, B

    2018-05-19

    The European Society of Endodontology and the American Association for Endodontists have released position statements and clinical considerations for regenerative endodontics. There is increasing literature on this field since the initial reports of Iwaya et al. (Dental Traumatology, 17, 2001, 185) and Banchs & Trope (Journal of Endodontics, 30, 2004, 196). Endogenous stem cells from an induced periapical bleeding and scaffolds using blood clot, platelet rich plasma or platelet-rich fibrin have been utilized in regenerative endodontics. This approach has been described as a 'paradigm shift' and considered the first treatment option for immature teeth with pulp necrosis. There are three treatment outcomes of regenerative endodontics; (i) resolution of clinical signs and symptoms; (ii) further root maturation; and (iii) return of neurogenesis. It is known that results are variable for these objectives, and true regeneration of the pulp/dentine complex is not achieved. Repair derived primarily from the periodontal and osseous tissues has been shown histologically. It is hoped that with the concept of tissue engineering, namely stem cells, scaffolds and signalling molecules, that true pulp regeneration is an achievable goal. This review discusses current knowledge as well as future directions for regenerative endodontics. Patient-centred outcomes such as tooth discolouration and possibly more appointments with the potential for adverse effects needs to be discussed with patients and parents. Based on the classification of Cvek (Endodontics and Dental Traumatology, 8, 1992, 45), it is proposed that regenerative endodontics should be considered for teeth with incomplete root formation although teeth with near or complete root formation may be more suited for conventional endodontic therapy or MTA barrier techniques. However, much is still not known about clinical and biological aspects of regenerative endodontics. © 2018 International Endodontic Journal. Published by

  19. A pharmacy student's role as a teaching assistant in an undergraduate medicinal chemistry course - Implementation, evaluation, and unexpected opportunities for educational outreach.

    PubMed

    DellaVecchia, Matthew J; Claudio, Alyssa M; Fairclough, Jamie L

    2017-11-01

    To describe 1) a pharmacy student's teaching assistant (TA) role in an undergraduate medicinal chemistry course, 2) an active learning module co-developed by the TA and instructor, and 3) the unexpected opportunities for pharmacy educational outreach that resulted from this collaboration. Medicinal Chemistry (CHM3413) is an undergraduate course offered each fall at Palm Beach Atlantic University (PBA). As a TA for CHM3413, a pharmacy student from the Gregory School of Pharmacy (GSOP) at PBA co-developed and implemented an active learning module emphasizing foundational medicinal chemistry concepts as they pertain to performance enhancing drugs (PEDs). Surveys assessed undergraduate students' perceived knowledge of medicinal chemistry concepts, PEDs, and TA involvement. Students' (total n = 60, three fall semesters) perceived confidence in knowledge of medicinal chemistry concepts and PEDs increased significantly (p < 0.001) after the TA's module. Nearly 93% of students acknowledged this was their first interaction with a TA at PBA, ~ 82% "agreed/strongly agreed" that the TA provided effective instruction, and ~ 62% "agreed/strongly agreed" that TA availability raised overall confidence in CHM3413. Unexpected "side-effects" of this collaboration included opportunities for the TA and instructor to discuss health risks associated with PED usage with student-athletes and coaches at PBA. This collaboration developed the pharmacy student's teaching skills and reinforced knowledge of foundational pharmaceutical science concepts for both the TA and undergraduate students. Unexpected "side-effects" that resulted from this collaboration included opportunities for the TA and instructor to discuss health risks associated with PED usage with student-athletes in PBA's athletic department. Educational/interprofessional outreach opportunities resulted from a pharmacy student TA's involvement in an undergraduate medicinal chemistry course. An advanced pharmacy practice experience

  20. Regenerative braking system of PM synchronous motor

    NASA Astrophysics Data System (ADS)

    Gao, Qian; Lv, Chengxing; Zhao, Na; Zang, Hechao; Jiang, Huilue; Zhang, Zhaowen; Zhang, Fengli

    2018-04-01

    Permanent-magnet synchronous motor is widely adopted in many fields with the advantage of a high efficiency and a high torque density. Regenerative Braking Systems (RBS) provide an efficient method to assist PMSM system achieve better fuel economy and lowering exhaust emissions. This paper describes the design and testing of the regenerative braking systems of PMSM. The mode of PWM duty has been adjusted to control regenerative braking of PMSM using energy controller for the port-controlled Hamiltonian model. The simulation analysis indicates that a smooth control could be realized and the highest efficiency and the smallest current ripple could be achieved by Regenerative Braking Systems.

  1. Cord blood in regenerative medicine: do we need immune suppression?

    PubMed Central

    Riordan, Neil H; Chan, Kyle; Marleau, Annette M; Ichim, Thomas E

    2007-01-01

    Cord blood is currently used as an alternative to bone marrow as a source of stem cells for hematopoietic reconstitution after ablation. It is also under intense preclinical investigation for a variety of indications ranging from stroke, to limb ischemia, to myocardial regeneration. A major drawback in the current use of cord blood is that substantial morbidity and mortality are associated with pre-transplant ablation of the recipient hematopoietic system. Here we raise the possibility that due to unique immunological properties of both the stem cell and non-stem cell components of cord blood, it may be possible to utilize allogeneic cells for regenerative applications without needing to fully compromise the recipient immune system. Issues raised will include: graft versus host potential, the immunogeneicity of the cord blood graft, and the parallels between cord blood transplantation and fetal to maternal trafficking. The previous use of unmatched cord blood in absence of any immune ablation, as well as potential steps for widespread clinical implementation of allogeneic cord blood grafts will also be discussed. PMID:17261200

  2. Exploiting the unique regenerative capacity of the liver to underpin cell and gene therapy strategies for genetic and acquired liver disease.

    PubMed

    Logan, Grant J; de Alencastro, Gustavo; Alexander, Ian E; Yeoh, George C

    2014-11-01

    The number of genetic or acquired diseases of the liver treatable by organ transplantation is ever-increasing as transplantation techniques improve placing additional demands on an already limited organ supply. While cell and gene therapies are distinctly different modalities, they offer a synergistic alternative to organ transplant due to distinct architectural and physiological properties of the liver. The hepatic blood supply and fenestrated endothelial system affords relatively facile accessibility for cell and/or gene delivery. More importantly, however, the remarkable capacity of hepatocytes to proliferate and repopulate the liver creates opportunities for new treatments based on emerging technologies. This review will summarise current understanding of liver regeneration, describe clinical and experimental cell and gene therapeutic modalities and discuss critical challenges to translate these new technologies to wider clinical utility. This article is part of a Directed Issue entitled: "Regenerative Medicine: the challenge of translation". Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Regenerative immunology: the immunological reaction to biomaterials.

    PubMed

    Cravedi, Paolo; Farouk, Samira; Angeletti, Andrea; Edgar, Lauren; Tamburrini, Riccardo; Duisit, Jerome; Perin, Laura; Orlando, Giuseppe

    2017-12-01

    Regenerative medicine promises to meet two of the most urgent needs of modern organ transplantation, namely immunosuppression-free transplantation and an inexhaustible source of organs. Ideally, bioengineered organs would be manufactured from a patient's own biomaterials-both cells and the supporting scaffolding materials in which cells would be embedded and allowed to mature to eventually regenerate the organ in question. While some groups are focusing on the feasibility of this approach, few are focusing on the immunogenicity of the scaffolds that are being developed for organ bioengineering purposes. This review will succinctly discuss progress in the understanding of immunological characteristics and behavior of different scaffolds currently under development, with emphasis on the extracellular matrix scaffolds obtained decellularized animal or human organs which seem to provide the ideal template for bioengineering purposes. © 2017 Steunstichting ESOT.

  4. Current overview on challenges in regenerative endodontics

    PubMed Central

    Bansal, Ramta; Jain, Aditya; Mittal, Sunandan

    2015-01-01

    Introduction: Regenerative endodontics provides hope of converting the non-vital tooth into vital once again. It focuses on substituting traumatized and pathological pulp with functional pulp tissue. Current regenerative procedures successfully produce root development but still fail to re-establish real pulp tissue and give unpredictable results. There are several drawbacks that need to be addressed to improve the quality and efficiency of the treatment. Aim: The aim of this review article is to discuss major priorities that ought to be dealt before applications of regenerative endodontics flourish the clinical practice. Materials and Methods: A web-based research on MEDLINE was done using filter terms Review, published in the last 10 years and Dental journals. Keywords used for research were “regenerative endodontics,” “dental stem cells,” “growth factor regeneration,” “scaffolds,” and “challenges in regeneration.” This review article screened about 150 articles and then the relevant information was compiled. Results: Inspite of the impressive growth in regenerative endodontic field, there are certain loopholes in the existing treatment protocols that might sometimes result in undesired and unpredictable outcomes. Conclusion: Considerable research and development efforts are required to improve and update existing regenerative endodontic strategies to make it an effective, safe, and biological mode to save teeth. PMID:25657518

  5. Biological computational approaches: new hopes to improve (re)programming robustness, regenerative medicine and cancer therapeutics.

    PubMed

    Ebrahimi, Behnam

    2016-01-01

    Hundreds of transcription factors (TFs) are expressed and work in each cell type, but the identity of the cells is defined and maintained through the activity of a small number of core TFs. Existing reprogramming strategies predominantly focus on the ectopic expression of core TFs of an intended fate in a given cell type regardless of the state of native/somatic gene regulatory networks (GRNs) of the starting cells. Interestingly, an important point is that how much products of the reprogramming, transdifferentiation and differentiation (programming) are identical to their in vivo counterparts. There is evidence that shows that direct fate conversions of somatic cells are not complete, with target cell identity not fully achieved. Manipulation of core TFs provides a powerful tool for engineering cell fate in terms of extinguishment of native GRNs, the establishment of a new GRN, and preventing installation of aberrant GRNs. Conventionally, core TFs are selected to convert one cell type into another mostly based on literature and the experimental identification of genes that are differentially expressed in one cell type compared to the specific cell types. Currently, there is not a universal standard strategy for identifying candidate core TFs. Remarkably, several biological computational platforms are developed, which are capable of evaluating the fidelity of reprogramming methods and refining existing protocols. The current review discusses some deficiencies of reprogramming technologies in the production of a pure population of authentic target cells. Furthermore, it reviews the role of computational approaches (e.g. CellNet, KeyGenes, Mogrify, etc.) in improving (re)programming methods and consequently in regenerative medicine and cancer therapeutics. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  6. Regenerative Simulation of Harris Recurrent Markov Chains.

    DTIC Science & Technology

    1982-07-01

    Sutijle) S. TYPE OF REPORT A PERIOD COVERED REGENERATIVE SIMULATION OF HARRIS RECURRENT Technical Report MARKOV CHAINS 14. PERFORMING ORG. REPORT NUMBER...7 AD-Ag 251 STANFORD UNIV CA DEPT OF OPERATIONS RESEARCH /s i2/ REGENERATIVE SIMULATION OF HARRIS RECURRENT MARKOV CHAINS,(U) JUL 82 P W GLYNN N0001...76-C-0578 UNtLASSIFIED TR-62 NL EhhhIhEEEEEEI EEEEEIIIIIII REGENERATIVE SIMULATION OF HARRIS RECURRENT MARKOV CHAINS by Peter W. Glynn TECHNICAL

  7. Hematopoietic Stem Cells in Regenerative Medicine: Astray or on the Path?

    PubMed Central

    Müller, Albrecht M.; Huppertz, Sascha; Henschler, Reinhard

    2016-01-01

    Hematopoietic stem cells (HSCs) are the best characterized adult stem cells and the only stem cell type in routine clinical use. The concept of stem cell transplantation laid the foundations for the development of novel cell therapies within, and even outside, the hematopoietic system. Here, we report on the history of hematopoietic cell transplantation (HCT) and of HSC isolation, we briefly summarize the capabilities of HSCs to reconstitute the entire hemato/lymphoid cell system, and we assess current indications for HCT. We aim to draw the lines between areas where HCT has been firmly established, areas where HCT can in the future be expected to be of clinical benefit using their regenerative functions, and areas where doubts persist. We further review clinical trials for diverse approaches that are based on HCT. Finally, we highlight the advent of genome editing in HSCs and critically view the use of HSCs in non-hematopoietic tissue regeneration. PMID:27721700

  8. Placenta Derived Mesenchymal Stem Cells Hosted on RKKP Glass-Ceramic: A Tissue Engineering Strategy for Bone Regenerative Medicine Applications

    PubMed Central

    Fosca, Marco; De Bonis, Angela; Curcio, Mariangela; Lolli, Maria Grazia; De Stefanis, Adriana; Marchese, Rodolfo; Rau, Julietta V.

    2016-01-01

    In tissue engineering protocols, the survival of transplanted stem cells is a limiting factor that could be overcome using a cell delivery matrix able to support cell proliferation and differentiation. With this aim, we studied the cell-friendly and biocompatible behavior of RKKP glass-ceramic coated Titanium (Ti) surface seeded with human amniotic mesenchymal stromal cells (hAMSCs) from placenta. The sol-gel synthesis procedure was used to prepare the RKKP glass-ceramic material, which was then deposited onto the Ti surface by Pulsed Laser Deposition method. The cell metabolic activity and proliferation rate, the cytoskeletal actin organization, and the cell cycle phase distribution in hAMSCs seeded on the RKKP coated Ti surface revealed no significant differences when compared to the cells grown on the treated plastic Petri dish. The health of of hAMSCs was also analysed studying the mRNA expressions of MSC key genes and the osteogenic commitment capability using qRT-PCR analysis which resulted in being unchanged in both substrates. In this study, the combination of the hAMSCs' properties together with the bioactive characteristics of RKKP glass-ceramics was investigated and the results obtained indicate its possible use as a new and interesting cell delivery system for bone tissue engineering and regenerative medicine applications. PMID:28078286

  9. Medical students' opportunities to participate and learn from activities at an internal medicine ward: an ethnographic study.

    PubMed

    Hägg-Martinell, A; Hult, H; Henriksson, P; Kiessling, A

    2017-02-14

    To optimise medical students' early clerkship is a complex task since it is conducted in a context primarily organised to take care of patients. Previous studies have explored medical students' perceptions of facilitation and hindrance of learning. However, the opportunities for medical student to learn within the culture of acute medicine care have not been fully investigated. This study aimed to explore how medical students approach, interact and socialise in an acute internal medicine ward context, and how spaces for learning are created and used in such a culture. Ethnographic observations were performed of medical students' interactions and learning during early clerkship at an acute internal medicine care ward. Field notes were taken, transcribed and analysed qualitatively. Data analysis was guided by Wenger's theory of communities of practice. 21 medical students and 30 supervisors participated. Two themes were identified: Nervousness and curiosity- students acted nervously and stressed, especially when they could not answer questions. Over time curiosity could evolve. Unexplored opportunities to support students in developing competence to judge and approach more complex patient-related problems were identified. Invited and involved -students were exposed to a huge variation of opportunities to learn, and to interact and to be involved. Short placements seemed to disrupt the learning process. If and how students became involved also depended on supervisors' activities and students' initiatives. This study shed light on how an acute internal medicine ward culture can facilitate medical students' possibilities to participate and learn. Medical students' learning situations were characterised by questions and answers rather than challenging dialogues related to the complexity of presented patient cases. Further, students experienced continuous transfers between learning situations where the potential to be involved differed in a wide variety of ways. Published

  10. Intelligent Techniques Using Molecular Data Analysis in Leukaemia: An Opportunity for Personalized Medicine Support System

    PubMed Central

    Adelson, David; Brown, Fred; Chaudhri, Naeem

    2017-01-01

    The use of intelligent techniques in medicine has brought a ray of hope in terms of treating leukaemia patients. Personalized treatment uses patient's genetic profile to select a mode of treatment. This process makes use of molecular technology and machine learning, to determine the most suitable approach to treating a leukaemia patient. Until now, no reviews have been published from a computational perspective concerning the development of personalized medicine intelligent techniques for leukaemia patients using molecular data analysis. This review studies the published empirical research on personalized medicine in leukaemia and synthesizes findings across studies related to intelligence techniques in leukaemia, with specific attention to particular categories of these studies to help identify opportunities for further research into personalized medicine support systems in chronic myeloid leukaemia. A systematic search was carried out to identify studies using intelligence techniques in leukaemia and to categorize these studies based on leukaemia type and also the task, data source, and purpose of the studies. Most studies used molecular data analysis for personalized medicine, but future advancement for leukaemia patients requires molecular models that use advanced machine-learning methods to automate decision-making in treatment management to deliver supportive medical information to the patient in clinical practice. PMID:28812013

  11. Intelligent Techniques Using Molecular Data Analysis in Leukaemia: An Opportunity for Personalized Medicine Support System.

    PubMed

    Banjar, Haneen; Adelson, David; Brown, Fred; Chaudhri, Naeem

    2017-01-01

    The use of intelligent techniques in medicine has brought a ray of hope in terms of treating leukaemia patients. Personalized treatment uses patient's genetic profile to select a mode of treatment. This process makes use of molecular technology and machine learning, to determine the most suitable approach to treating a leukaemia patient. Until now, no reviews have been published from a computational perspective concerning the development of personalized medicine intelligent techniques for leukaemia patients using molecular data analysis. This review studies the published empirical research on personalized medicine in leukaemia and synthesizes findings across studies related to intelligence techniques in leukaemia, with specific attention to particular categories of these studies to help identify opportunities for further research into personalized medicine support systems in chronic myeloid leukaemia. A systematic search was carried out to identify studies using intelligence techniques in leukaemia and to categorize these studies based on leukaemia type and also the task, data source, and purpose of the studies. Most studies used molecular data analysis for personalized medicine, but future advancement for leukaemia patients requires molecular models that use advanced machine-learning methods to automate decision-making in treatment management to deliver supportive medical information to the patient in clinical practice.

  12. Stem cell- and growth factor-based regenerative therapies for avascular necrosis of the femoral head

    PubMed Central

    2012-01-01

    Avascular necrosis (AVN) of the femoral head is a debilitating disease of multifactorial genesis, predominately affects young patients, and often leads to the development of secondary osteoarthritis. The evolving field of regenerative medicine offers promising treatment strategies using cells, biomaterial scaffolds, and bioactive factors, which might improve clinical outcome. Early stages of AVN with preserved structural integrity of the subchondral plate are accessible to retrograde surgical procedures, such as core decompression to reduce the intraosseous pressure and to induce bone remodeling. The additive application of concentrated bone marrow aspirates, ex vivo expanded mesenchymal stem cells, and osteogenic or angiogenic growth factors (or both) holds great potential to improve bone regeneration. In contrast, advanced stages of AVN with collapsed subchondral bone require an osteochondral reconstruction to preserve the physiological joint function. Analogously to strategies for osteochondral reconstruction in the knee, anterograde surgical techniques, such as osteochondral transplantation (mosaicplasty), matrix-based autologous chondrocyte implantation, or the use of acellular scaffolds alone, might preserve joint function and reduce the need for hip replacement. This review summarizes recent experimental accomplishments and initial clinical findings in the field of regenerative medicine which apply cells, growth factors, and matrices to address the clinical problem of AVN. PMID:22356811

  13. Localizing Global Medicine: Challenges and Opportunities in Cervical Screening in an Indigenous Community in Ecuador.

    PubMed

    Nugus, Peter; Désalliers, Julie; Morales, Juana; Graves, Lisa; Evans, Andrea; Macaulay, Ann C

    2018-04-01

    This participatory research study examines the tensions and opportunities in accessing allopathic medicine, or biomedicine, in the context of a cervical cancer screening program in a rural indigenous community of Northern Ecuador. Focusing on the influence of social networks, the article extends research on "re-appropriation" of biomedicine. It does so by recognizing two competing tensions expressed through social interactions: suspicion of allopathic medicine and the desire to maximize one's health. Semistructured individual interviews and focus groups were conducted with 28 women who had previously participated in a government-sponsored cervical screening program. From inductive thematic analysis, the article traces these women's active agency in navigating coherent paths of health. Despite drawing on social networks to overcome formidable challenges, the participants faced enduring system obstacles-the organizational effects of the networks of allopathic medicine. Such obstacles need to be understood to reconcile competing knowledge systems and improve health care access in underresourced communities.

  14. Regenerative Repair of Damaged Meniscus with Autologous Adipose Tissue-Derived Stem Cells

    PubMed Central

    Pak, Jaewoo; Lee, Jung Hun; Lee, Sang Hee

    2014-01-01

    Mesenchymal stem cells (MSCs) are defined as pluripotent cells found in numerous human tissues, including bone marrow and adipose tissue. Such MSCs, isolated from bone marrow and adipose tissue, have been shown to differentiate into bone and cartilage, along with other types of tissues. Therefore, MSCs represent a promising new therapy in regenerative medicine. The initial treatment of meniscus tear of the knee is managed conservatively with nonsteroidal anti-inflammatory drugs and physical therapy. When such conservative treatment fails, an arthroscopic resection of the meniscus is necessary. However, the major drawback of the meniscectomy is an early onset of osteoarthritis. Therefore, an effective and noninvasive treatment for patients with continuous knee pain due to damaged meniscus has been sought. Here, we present a review, highlighting the possible regenerative mechanisms of damaged meniscus with MSCs (especially adipose tissue-derived stem cells (ASCs)), along with a case of successful repair of torn meniscus with significant reduction of knee pain by percutaneous injection of autologous ASCs into an adult human knee. PMID:24592390

  15. Microscale Regenerative Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2006-01-01

    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.

  16. Translating Periosteum's Regenerative Power: Insights From Quantitative Analysis of Tissue Genesis With a Periosteum Substitute Implant

    PubMed Central

    Moore, Shannon R.; Heu, Céline; Yu, Nicole Y.C.; Whan, Renee M.; Knothe, Ulf R.; Milz, Stefan

    2016-01-01

    An abundance of surgical studies during the past 2 centuries provide empirical evidence of periosteum's regenerative power for reconstructing tissues as diverse as trachea and bone. This study aimed to develop quantitative, efficacy-based measures, thereby providing translational guidelines for the use of periosteum to harness the body's own healing potential and generate target tissues. The current study quantitatively and qualitatively demonstrated tissue generation modulated by a periosteum substitute membrane that replicates the structural constituents of native periosteum (elastin, collagen, progenitor cells) and its barrier, extracellular, and cellular properties. It shows the potentiation of the periosteum's regenerative capacity through the progenitor cells that inhabit the tissue, biological factors intrinsic to the extracellular matrix of periosteum, and mechanobiological factors related to implant design and implementation. In contrast to the direct intramembranous bone generated in defects surrounded by patent periosteum in situ, tissue generation in bone defects bounded by the periosteum substitute implant occurred primarily via endochondral mechanisms whereby cartilage was first generated and then converted to bone. In addition, in defects treated with the periosteum substitute, tissue generation was highest along the major centroidal axis, which is most resistant to prevailing bending loads. Taken together, these data indicate the possibility of designing modular periosteum substitute implants that can be tuned for vectorial and spatiotemporal delivery of biological agents and facilitation of target tissue genesis for diverse surgical scenarios and regenerative medicine approaches. It also underscores the potential to develop physical therapy protocols to maximize tissue genesis via the implant's mechanoactive properties. Significance In the past 2 centuries, the periosteum, a niche for stem cells and super-smart biological material, has been used

  17. Personalized Medicine and Genomics: Challenges and Opportunities in Assessing Effectiveness, Cost-Effectiveness, and Future Research Priorities

    PubMed Central

    Conti, Rena; Veenstra, David L.; Armstrong, Katrina; Lesko, Lawrence J.; Grosse, Scott D.

    2015-01-01

    Personalized medicine is health care that tailors interventions to individual variation in risk and treatment response. Although medicine has long strived to achieve this goal, advances in genomics promise to facilitate this process. Relevant to present-day practice is the use of genomic information to classify individuals according to disease susceptibility or expected responsiveness to a pharmacologic treatment and to provide targeted interventions. A symposium at the annual meeting of the Society for Medical Decision Making on 23 October 2007 highlighted the challenges and opportunities posed in translating advances in molecular medicine into clinical practice. A panel of US experts in medical practice, regulatory policy, technology assessment, and the financing and organization of medical innovation was asked to discuss the current state of practice and research on personalized medicine as it relates to their own field. This article reports on the issues raised, discusses potential approaches to meet these challenges, and proposes directions for future work. The case of genetic testing to inform dosing with warfarin, an anticoagulant, is used to illustrate differing perspectives on evidence and decision making for personalized medicine. PMID:20086232

  18. Biomaterials for Bone Regenerative Engineering.

    PubMed

    Yu, Xiaohua; Tang, Xiaoyan; Gohil, Shalini V; Laurencin, Cato T

    2015-06-24

    Strategies for bone tissue regeneration have been continuously evolving for the last 25 years since the introduction of the "tissue engineering" concept. The convergence of the life, physical, and engineering sciences has brought in several advanced technologies available to tissue engineers and scientists. This resulted in the creation of a new multidisciplinary field termed as "regenerative engineering". In this article, the role of biomaterials in bone regenerative engineering is systematically reviewed to elucidate the new design criteria for the next generation of biomaterials for bone regenerative engineering. The exemplary design of biomaterials harnessing various materials characteristics towards successful bone defect repair and regeneration is highlighted. Particular attention is given to the attempts of incorporating advanced materials science, stem cell technologies, and developmental biology into biomaterials design to engineer and develop the next generation bone grafts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Clinical applications of decellularized extracellular matrices for tissue engineering and regenerative medicine.

    PubMed

    Parmaksiz, Mahmut; Dogan, Arin; Odabas, Sedat; Elçin, A Eser; Elçin, Y Murat

    2016-03-17

    Decellularization is the process of removing the cellular components from tissues or organs. It is a promising technology for obtaining a biomaterial with a highly preserved extracellular matrix (ECM), which may also act as a biological scaffold for tissue engineering and regenerative therapies. Decellularized products are gaining clinical importance and market space due to their ease of standardized production, constant availability for grafting and mechanical or biochemical superiority against competing clinical options, yielding clinical results ahead of the ones with autografts in some applications. Current drawbacks and limitations of traditional treatments and clinical applications can be overcome by using decellularized or acellular matrices. Several companies are leading the market with versatile acellular products designed for diverse use in the reconstruction of tissues and organs. This review describes ECM-based decellularized and acellular products that are currently in use for different branches of clinic.

  20. Design of An Energy Efficient Hydraulic Regenerative circuit

    NASA Astrophysics Data System (ADS)

    Ramesh, S.; Ashok, S. Denis; Nagaraj, Shanmukha; Adithyakumar, C. R.; Reddy, M. Lohith Kumar; Naulakha, Niranjan Kumar

    2018-02-01

    Increasing cost and power demand, leads to evaluation of new method to increase through productivity and help to solve the power demands. Many researchers have break through to increase the efficiency of a hydraulic power pack, one of the promising methods is the concept of regenerative. The objective of this research work is to increase the efficiency of a hydraulic circuit by introducing a concept of regenerative circuit. A Regenerative circuit is a system that is used to speed up the extension stroke of the double acting single rod hydraulic cylinder. The output is connected to the input in the directional control value. By this concept, increase in velocity of the piston and decrease the cycle time. For the research, a basic hydraulic circuit and a regenerative circuit are designated and compared both with their results. The analysis was based on their time taken for extension and retraction of the piston. From the detailed analysis of both the hydraulic circuits, it is found that the efficiency by introducing hydraulic regenerative circuit increased by is 5.3%. The obtained results conclude that, implementing hydraulic regenerative circuit in a hydraulic power pack decreases power consumption, reduces cycle time and increases productivity in a longer run.

  1. Airport surveys at travel destinations--underutilized opportunities in travel medicine research?

    PubMed

    Bauer, Irmgard L

    2015-01-01

    Research in destination airports, especially in resource-poor areas, allows unique immediate access to travelers at the conclusion of their trip. Response rates are high and the recall gap small. Trip-related health matters can be elicited relatively easily. An insight into travelers' decision-making processes on location would fill large gaps in our knowledge regarding travel health advice provision; yet, this approach is still much underutilized. Using PubMed, ScienceDirect, Google Scholar, and ProQuest, a review of the literature on airport surveys was conducted to determine where they were used, their response rates and purpose, and location-relevant methodological information. The lack of methodological guidelines in the reviewed literature resulted in recommendations for planning and conducting an airport survey at a destination airport. Millions of travelers in airports around the world represent an underutilized sample of potential study participants for topics that cannot be studied adequately in other settings. Benefiting from close cooperation between travel health professionals and airport authorities, researchers can expect not only large-scale convenience samples for surveys, but also opportunities to explore exciting and creative research topics to broaden our understanding of travel medicine and health. © 2014 International Society of Travel Medicine.

  2. Engineering mesenchymal stem cells for regenerative medicine and drug delivery.

    PubMed

    Park, Ji Sun; Suryaprakash, Smruthi; Lao, Yeh-Hsing; Leong, Kam W

    2015-08-01

    Researchers have applied mesenchymal stem cells (MSC) to a variety of therapeutic scenarios by harnessing their multipotent, regenerative, and immunosuppressive properties with tropisms toward inflamed, hypoxic, and cancerous sites. Although MSC-based therapies have been shown to be safe and effective to a certain degree, the efficacy remains low in most cases when MSC are applied alone. To enhance their therapeutic efficacy, researchers have equipped MSC with targeted delivery functions using genetic engineering, therapeutic agent incorporation, and cell surface modification. MSC can be genetically modified virally or non-virally to overexpress therapeutic proteins that complement their innate properties. MSC can also be primed with non-peptidic drugs or magnetic nanoparticles for enhanced efficacy and externally regulated targeting, respectively. Furthermore, MSC can be functionalized with targeting moieties to augment their homing toward therapeutic sites using enzymatic modification, chemical conjugation, or non-covalent interactions. These engineering techniques are still works in progress, requiring optimization to improve the therapeutic efficacy and targeting effectiveness while minimizing any loss of MSC function. In this review, we will highlight the advanced techniques of engineering MSC, describe their promise and the challenges of translation into clinical settings, and suggest future perspectives on realizing their full potential for MSC-based therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Regenerative Aerobraking

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.

    2004-01-01

    NASA's exploration goals for Mars and Beyond will require new power systems and in situ resource utilization technologies. Regenerative aerobraking may offer a revolutionary approach for in situ power generation and oxygen harvesting during these exploration missions. In theory, power and oxygen can be collected during aerobraking and stored for later use in orbit or on the planet. This technology would capture energy and oxygen from the plasma field that occurs naturally during hypersonic entry using well understood principles of magnetohydrodynamics and oxygen filtration. This innovative approach generates resources upon arrival at the operational site, and thus greatly differs from the traditional approach of taking everything you need with you from Earth. Fundamental analysis, computational fluid dynamics, and some testing of experimental hardware have established the basic feasibility of generating power during a Mars entry. Oxygen filtration at conditions consistent with spacecraft entry parameters at Mars has been studied to a lesser extent. Other uses of the MHD power are presented. This paper illustrates how some features of regenerative aerobraking may be applied to support human and robotic missions at Mars.

  4. Stem Cell Pathology.

    PubMed

    Fu, Dah-Jiun; Miller, Andrew D; Southard, Teresa L; Flesken-Nikitin, Andrea; Ellenson, Lora H; Nikitin, Alexander Yu

    2018-01-24

    Rapid advances in stem cell biology and regenerative medicine have opened new opportunities for better understanding disease pathogenesis and the development of new diagnostic, prognostic, and treatment approaches. Many stem cell niches are well defined anatomically, thereby allowing their routine pathological evaluation during disease initiation and progression. Evaluation of the consequences of genetic manipulations in stem cells and investigation of the roles of stem cells in regenerative medicine and pathogenesis of various diseases such as cancer require significant expertise in pathology for accurate interpretation of novel findings. Therefore, there is an urgent need for developing stem cell pathology as a discipline to facilitate stem cell research and regenerative medicine. This review provides examples of anatomically defined niches suitable for evaluation by diagnostic pathologists, describes neoplastic lesions associated with them, and discusses further directions of stem cell pathology.

  5. Promises and challenges of stem cell research for regenerative medicine.

    PubMed

    Power, Carl; Rasko, John E J

    2011-11-15

    In recent years, stem cells have generated increasing excitement, with frequent claims that they are revolutionizing medicine. For those not directly involved in stem cell research, however, it can be difficult to separate fact from fiction or realistic expectation from wishful thinking. This article aims to provide internists with a clear and concise introduction to the field. While recounting some scientific and medical milestones, the authors discuss the 3 main varieties of stem cells-adult, embryonic, and induced pluripotent-comparing their advantages and disadvantages for clinical medicine. The authors have sought to avoid the moral and political debates surrounding stem cell research, focusing instead on scientific and medical issues.

  6. Pharmacogenomics and Global Precision Medicine in the Context of Adverse Drug Reactions: Top 10 Opportunities and Challenges for the Next Decade.

    PubMed

    Alessandrini, Marco; Chaudhry, Mamoonah; Dodgen, Tyren M; Pepper, Michael S

    2016-10-01

    In a move indicative of the enthusiastic support of precision medicine, the U.S. President Barack Obama announced the Precision Medicine Initiative in January 2015. The global precision medicine ecosystem is, thus, receiving generous support from the United States ($215 million), and numerous other governments have followed suit. In the context of precision medicine, drug treatment and prediction of its outcomes have been important for nearly six decades in the field of pharmacogenomics. The field offers an elegant solution for minimizing the effects and occurrence of adverse drug reactions (ADRs). The Clinical Pharmacogenetics Implementation Consortium (CPIC) plays an important role in this context, and it aims at specifically guiding the translation of clinically relevant and evidence-based pharmacogenomics research. In this forward-looking analysis, we make particular reference to several of the CPIC guidelines and their role in guiding the treatment of highly relevant diseases, namely cardiovascular disease, major depressive disorder, cancer, and human immunodeficiency virus, with a view to predicting and managing ADRs. In addition, we provide a list of the top 10 crosscutting opportunities and challenges facing the fields of precision medicine and pharmacogenomics, which have broad applicability independent of the drug class involved. Many of these opportunities and challenges pertain to infrastructure, study design, policy, and science culture in the early 21st century. Ultimately, rational pharmacogenomics study design and the acquisition of comprehensive phenotypic data that proportionately match the genomics data should be an imperative as we move forward toward global precision medicine.

  7. Nicotine alters MicroRNA expression and hinders human adult stem cell regenerative potential.

    PubMed

    Ng, Tsz Kin; Carballosa, Carlos M; Pelaez, Daniel; Wong, Hoi Kin; Choy, Kwong Wai; Pang, Chi Pui; Cheung, Herman S

    2013-03-01

    Adult stem cells are critical for the healing process in regenerative medicine. However, cigarette smoking inhibits stem cell recruitment to tissues and delays the wound-healing process. This study investigated the effect of nicotine, a major constituent in the cigarette smoke, on the regenerative potentials of human mesenchymal stem cells (MSC) and periodontal ligament-derived stem cells (PDLSC). The cell proliferation of 1.0 μM nicotine-treated MSC and PDLSC was significantly reduced when compared to the untreated control. Moreover, nicotine also retarded the locomotion of these adult stem cells. Furthermore, their osteogenic differentiation capabilities were reduced in the presence of nicotine as evidenced by gene expression (RUNX2, ALPL, BGLAP, COL1A1, and COL1A2), calcium deposition, and alkaline phosphatase activity analyses. In addition, the microRNA (miRNA) profile of nicotine-treated PDLSC was altered; suggesting miRNAs might play an important role in the nicotine effects on stem cells. This study provided the possible mechanistic explanations on stem cell-associated healing delay in cigarette smoking.

  8. Training for Leadership Roles in Academic Medicine: Opportunities for Psychologists in the AAMC LEAD Program.

    PubMed

    LaPaglia, Donna; Thompson, Britta; Hafler, Janet; Chauvin, Sheila

    2017-06-01

    Psychologists' roles within academic medicine have expanded well beyond research and scholarship. They are active as providers of patient care, medical education, and clinical supervision. Although the number of psychologists in academic health centers continues to grow, they represent a small portion of total medical school faculties. However, with the movement toward collaborative care models, emphasis on interprofessional teams, and increased emphasis on psychological science topics in medical curricula, psychologists are well-positioned to make further contributions. Another path through which psychologists can further increase their contributions and value within academic health centers is to aspire to leadership roles. This article describes the first author's reflections on her experiences in a two-year, cohort-based, educational leadership development certificate program in academic medicine. The cohort was comprised largely of physicians and basic scientists, and a small number of non-physician participants of which the first author was the only clinical psychologist. The insights gained from this experience provide recommendations for psychologists interested in leadership opportunities in academic medicine.

  9. Traditional Chinese medicine research in the post-genomic era: good practice, priorities, challenges and opportunities.

    PubMed

    Uzuner, Halil; Bauer, Rudolf; Fan, Tai-Ping; Guo, De-An; Dias, Alberto; El-Nezami, Hani; Efferth, Thomas; Williamson, Elizabeth M; Heinrich, Michael; Robinson, Nicola; Hylands, Peter J; Hendry, Bruce M; Cheng, Yung-Chi; Xu, Qihe

    2012-04-10

    GP-TCM is the 1st EU-funded Coordination Action consortium dedicated to traditional Chinese medicine (TCM) research. This paper aims to summarise the objectives, structure and activities of the consortium and introduces the position of the consortium regarding good practice, priorities, challenges and opportunities in TCM research. Serving as the introductory paper for the GP-TCM Journal of Ethnopharmacology special issue, this paper describes the roadmap of this special issue and reports how the main outputs of the ten GP-TCM work packages are integrated, and have led to consortium-wide conclusions. Literature studies, opinion polls and discussions among consortium members and stakeholders. By January 2012, through 3 years of team building, the GP-TCM consortium had grown into a large collaborative network involving ∼200 scientists from 24 countries and 107 institutions. Consortium members had worked closely to address good practice issues related to various aspects of Chinese herbal medicine (CHM) and acupuncture research, the focus of this Journal of Ethnopharmacology special issue, leading to state-of-the-art reports, guidelines and consensus on the application of omics technologies in TCM research. In addition, through an online survey open to GP-TCM members and non-members, we polled opinions on grand priorities, challenges and opportunities in TCM research. Based on the poll, although consortium members and non-members had diverse opinions on the major challenges in the field, both groups agreed that high-quality efficacy/effectiveness and mechanistic studies are grand priorities and that the TCM legacy in general and its management of chronic diseases in particular represent grand opportunities. Consortium members cast their votes of confidence in omics and systems biology approaches to TCM research and believed that quality and pharmacovigilance of TCM products are not only grand priorities, but also grand challenges. Non-members, however, gave priority

  10. A survey of dental residents' expectations for regenerative endodontics.

    PubMed

    Manguno, Christine; Murray, Peter E; Howard, Cameron; Madras, Jonathan; Mangan, Stephen; Namerow, Kenneth N

    2012-02-01

    The objective was to survey a group of dental residents regarding their expectations for using regenerative endodontic procedures as part of future dental treatments. After institutional review board approval, the opinions of 32 dentists who were having postgraduate residency training to become specialists in a dental school were surveyed. The survey had 40 questions about professional status, ethical beliefs, judgment, and clinical practice. It was found that 83.9% of dentists had no continuing education or training in stem cells or regenerative endodontic procedures. Results showed that 96.8% of dentists are willing to receive training to be able to provide regenerative endodontic procedures for their patients. Of the total group, 49.1% of dentists already use membranes, scaffolds, or bioactive materials to provide dental treatment. It was determined that 47.3% of dentists agree that the costs of regenerative procedures should be comparable with current treatments. It was also found that 55.1% of dentists were unsure whether regenerative procedures would be successful. Dentists are supportive of using regenerative endodontic procedures in their dental practice, and they are willing to undergo extra training and to buy new technology to provide new procedures. Nevertheless, dentists also need more evidence for the effectiveness and safety of regenerative treatments before they will be recommended for most patients. Copyright © 2012. Published by Elsevier Inc.

  11. Ethics and Policy Issues for Stem Cell Research and Pulmonary Medicine

    PubMed Central

    Lowenthal, Justin

    2015-01-01

    Stem cell research and related initiatives in regenerative medicine, cell-based therapy, and tissue engineering have generated considerable scientific and public interest. Researchers are applying stem cell technologies to chest medicine in a variety of ways: using stem cells as models for drug discovery, testing stem cell-based therapies for conditions as diverse as COPD and cystic fibrosis, and producing functional lung and tracheal tissue for physiologic modeling and potential transplantation. Although significant scientific obstacles remain, it is likely that stem cell-based regenerative medicine will have a significant clinical impact in chest medicine. However, stem cell research has also generated substantial controversy, posing a variety of ethical and regulatory challenges for research and clinical practice. Some of the most prominent ethical questions related to the use of stem cell technologies in chest medicine include (1) implications for donors, (2) scientific prerequisites for clinical testing and use, (3) stem cell tourism, (4) innovation and clinical use of emerging stem cell-based interventions, (5) responsible translation of stem cell-based therapies to clinical use, and (6) appropriate and equitable access to emerging therapies. Having a sense of these issues should help to put emerging scientific advances into appropriate context and to ensure the responsible clinical translation of promising therapeutics. PMID:25732448

  12. Ethics and policy issues for stem cell research and pulmonary medicine.

    PubMed

    Lowenthal, Justin; Sugarman, Jeremy

    2015-03-01

    Stem cell research and related initiatives in regenerative medicine, cell-based therapy, and tissue engineering have generated considerable scientific and public interest. Researchers are applying stem cell technologies to chest medicine in a variety of ways: using stem cells as models for drug discovery, testing stem cell-based therapies for conditions as diverse as COPD and cystic fibrosis, and producing functional lung and tracheal tissue for physiologic modeling and potential transplantation. Although significant scientific obstacles remain, it is likely that stem cell-based regenerative medicine will have a significant clinical impact in chest medicine. However, stem cell research has also generated substantial controversy, posing a variety of ethical and regulatory challenges for research and clinical practice. Some of the most prominent ethical questions related to the use of stem cell technologies in chest medicine include (1) implications for donors, (2) scientific prerequisites for clinical testing and use, (3) stem cell tourism, (4) innovation and clinical use of emerging stem cell-based interventions, (5) responsible translation of stem cell-based therapies to clinical use, and (6) appropriate and equitable access to emerging therapies. Having a sense of these issues should help to put emerging scientific advances into appropriate context and to ensure the responsible clinical translation of promising therapeutics.

  13. Platelet-rich fibrin: a boon in regenerative endodontics.

    PubMed

    Rebentish, Priyanka D; Umashetty, Girish; Kaur, Harpreet; Doizode, Trupthi; Kaslekar, Mithun; Chowdhury, Shouvik

    2016-12-01

    Research into regenerative dentistry has contributed momentum to the field of molecular biology. Periapical surgery aims at removing periapical pathology to achieve complete wound healing and regeneration of bone and periodontal tissue. Regenerative endodontic procedures are widely being added to the current armamentarium of pulp therapy procedures. The regenerative potential of platelets has been deliberated. Platelet-rich fibrin (PRF) is a wonderful tissue-engineering product and has recently gained much popularity due its promising results in wound healing bone induction. The features of this product are an attribute of platelets which, after cellular interactions, release growth factors and have shown application in diverse disciplines of dentistry. This paper is intended to shed light onto the various prospects of PRF and to provide clinical insight into regenerative endodontic therapy.

  14. Advances in material design for regenerative medicine, drug delivery and targeting/imaging

    USDA-ARS?s Scientific Manuscript database

    Many of the major breakthroughs and paradigm shifts in medicine to date have occurred due to innovations and materials and/or application/implementation of materials in clinical medicine. Artificial heart valves, implantable cardiac devices, limb prosthesis, cardiovascular stents, orthopedic implan...

  15. Development of hydrogels for regenerative engineering.

    PubMed

    Guan, Xiaofei; Avci-Adali, Meltem; Alarçin, Emine; Cheng, Hao; Kashaf, Sara Saheb; Li, Yuxiao; Chawla, Aditya; Jang, Hae Lin; Khademhosseini, Ali

    2017-05-01

    The aim of regenerative engineering is to restore complex tissues and biological systems through convergence in the fields of advanced biomaterials, stem cell science, and developmental biology. Hydrogels are one of the most attractive biomaterials for regenerative engineering, since they can be engineered into tissue mimetic 3D scaffolds to support cell growth due to their similarity to native extracellular matrix. Advanced nano- and micro-technologies have dramatically increased the ability to control properties and functionalities of hydrogel materials by facilitating biomimetic fabrication of more sophisticated compositions and architectures, thus extending our understanding of cell-matrix interactions at the nanoscale. With this perspective, this review discusses the most commonly used hydrogel materials and their fabrication strategies for regenerative engineering. We highlight the physical, chemical, and functional modulation of hydrogels to design and engineer biomimetic tissues based on recent achievements in nano- and micro-technologies. In addition, current hydrogel-based regenerative engineering strategies for treating multiple tissues, such as musculoskeletal, nervous and cardiac tissue, are also covered in this review. The interaction of multiple disciplines including materials science, cell biology, and chemistry, will further play an important role in the design of functional hydrogels for the regeneration of complex tissues. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Monitoring/Imaging and Regenerative Agents for Enhancing Tissue Engineering Characterization and Therapies.

    PubMed

    Santiesteban, Daniela Y; Kubelick, Kelsey; Dhada, Kabir S; Dumani, Diego; Suggs, Laura; Emelianov, Stanislav

    2016-03-01

    The past three decades have seen numerous advances in tissue engineering and regenerative medicine (TERM) therapies. However, despite the successes there is still much to be done before TERM therapies become commonplace in clinic. One of the main obstacles is the lack of knowledge regarding complex tissue engineering processes. Imaging strategies, in conjunction with exogenous contrast agents, can aid in this endeavor by assessing in vivo therapeutic progress. The ability to uncover real-time treatment progress will help shed light on the complex tissue engineering processes and lead to development of improved, adaptive treatments. More importantly, the utilized exogenous contrast agents can double as therapeutic agents. Proper use of these Monitoring/Imaging and Regenerative Agents (MIRAs) can help increase TERM therapy successes and allow for clinical translation. While other fields have exploited similar particles for combining diagnostics and therapy, MIRA research is still in its beginning stages with much of the current research being focused on imaging or therapeutic applications, separately. Advancing MIRA research will have numerous impacts on achieving clinical translations of TERM therapies. Therefore, it is our goal to highlight current MIRA progress and suggest future research that can lead to effective TERM treatments.

  17. Regenerative endodontics--Creating new horizons.

    PubMed

    Dhillon, Harnoor; Kaushik, Mamta; Sharma, Roshni

    2016-05-01

    Trauma to the dental pulp, physical or microbiologic, can lead to inflammation of the pulp followed by necrosis. The current treatment modality for such cases is non-surgical root canal treatment. The damaged tissue is extirpated and the root canal system prepared. It is then obturated with an inert material such a gutta percha. In spite of advances in techniques and materials, 10%-15% of the cases may end in failure of treatment. Regenerative endodontics combines principles of endodontics, cell biology, and tissue engineering to provide an ideal treatment for inflamed and necrotic pulp. It utilizes mesenchymal stem cells, growth factors, and organ tissue culture to provide treatment. Potential treatment modalities include induction of blood clot for pulp revascularization, scaffold aided regeneration, and pulp implantation. Although in its infancy, successful treatment of damaged pulp tissue has been performed using principles of regenerative endodontics. This field is dynamic and exciting with the ability to shape the future of endodontics. This article highlights the fundamental concepts, protocol for treatment, and possible avenues for research in regenerative endodontics. © 2015 Wiley Periodicals, Inc.

  18. Differential Regenerative Capacity of Neonatal Mouse Hearts after Cryoinjury

    PubMed Central

    Darehzereshki, Ali; Rubin, Nicole; Gamba, Laurent; Kim, Jieun; Fraser, James; Huang, Ying; Billings, Joshua; Mohammadzadeh, Robabeh; Wood, John; Warburton, David; Kaartinen, Vesa; Lien, Ching-Ling

    2015-01-01

    Neonatal mouse hearts fully regenerate after ventricular resection similar to adult zebrafish. We established cryoinjury models to determine if different types and varying degrees of severity in cardiac injuries trigger different responses in neonatal mouse hearts. In contrast to ventricular resection, neonatal mouse hearts fail to regenerate and show severe impairment of cardiac function post transmural cryoinjury. However, neonatal hearts fully recover after non-transmural cryoinjury. Interestingly, cardiomyocyte proliferation does not significantly increase in neonatal mouse hearts after cryoinjuries. Epicardial activation and new coronary vessel formation occur after cryoinjury. The profibrotic marker PAI-1 is highly expressed after transmural but not non-transmural cryoinjuries, which may contribute to the differential scarring. Our results suggest that regenerative medicine strategies for heart injuries should vary depending on the nature of the injury. PMID:25555840

  19. Genome Editing Redefines Precision Medicine in the Cardiovascular Field

    PubMed Central

    Lahm, Harald; Dreßen, Martina; Lange, Rüdiger; Wu, Sean M.; Krane, Markus

    2018-01-01

    Genome editing is a powerful tool to study the function of specific genes and proteins important for development or disease. Recent technologies, especially CRISPR/Cas9 which is characterized by convenient handling and high precision, revolutionized the field of genome editing. Such tools have enormous potential for basic science as well as for regenerative medicine. Nevertheless, there are still several hurdles that have to be overcome, but patient-tailored therapies, termed precision medicine, seem to be within reach. In this review, we focus on the achievements and limitations of genome editing in the cardiovascular field. We explore different areas of cardiac research and highlight the most important developments: (1) the potential of genome editing in human pluripotent stem cells in basic research for disease modelling, drug screening, or reprogramming approaches and (2) the potential and remaining challenges of genome editing for regenerative therapies. Finally, we discuss social and ethical implications of these new technologies. PMID:29731778

  20. Pharmacogenomics and Global Precision Medicine in the Context of Adverse Drug Reactions: Top 10 Opportunities and Challenges for the Next Decade

    PubMed Central

    Alessandrini, Marco; Chaudhry, Mamoonah; Dodgen, Tyren M.

    2016-01-01

    Abstract In a move indicative of the enthusiastic support of precision medicine, the U.S. President Barack Obama announced the Precision Medicine Initiative in January 2015. The global precision medicine ecosystem is, thus, receiving generous support from the United States ($215 million), and numerous other governments have followed suit. In the context of precision medicine, drug treatment and prediction of its outcomes have been important for nearly six decades in the field of pharmacogenomics. The field offers an elegant solution for minimizing the effects and occurrence of adverse drug reactions (ADRs). The Clinical Pharmacogenetics Implementation Consortium (CPIC) plays an important role in this context, and it aims at specifically guiding the translation of clinically relevant and evidence-based pharmacogenomics research. In this forward-looking analysis, we make particular reference to several of the CPIC guidelines and their role in guiding the treatment of highly relevant diseases, namely cardiovascular disease, major depressive disorder, cancer, and human immunodeficiency virus, with a view to predicting and managing ADRs. In addition, we provide a list of the top 10 crosscutting opportunities and challenges facing the fields of precision medicine and pharmacogenomics, which have broad applicability independent of the drug class involved. Many of these opportunities and challenges pertain to infrastructure, study design, policy, and science culture in the early 21st century. Ultimately, rational pharmacogenomics study design and the acquisition of comprehensive phenotypic data that proportionately match the genomics data should be an imperative as we move forward toward global precision medicine. PMID:27643672

  1. Planform: an application and database of graph-encoded planarian regenerative experiments.

    PubMed

    Lobo, Daniel; Malone, Taylor J; Levin, Michael

    2013-04-15

    Understanding the mechanisms governing the regeneration capabilities of many organisms is a fundamental interest in biology and medicine. An ever-increasing number of manipulation and molecular experiments are attempting to discover a comprehensive model for regeneration, with the planarian flatworm being one of the most important model species. Despite much effort, no comprehensive, constructive, mechanistic models exist yet, and it is now clear that computational tools are needed to mine this huge dataset. However, until now, there is no database of regenerative experiments, and the current genotype-phenotype ontologies and databases are based on textual descriptions, which are not understandable by computers. To overcome these difficulties, we present here Planform (Planarian formalization), a manually curated database and software tool for planarian regenerative experiments, based on a mathematical graph formalism. The database contains more than a thousand experiments from the main publications in the planarian literature. The software tool provides the user with a graphical interface to easily interact with and mine the database. The presented system is a valuable resource for the regeneration community and, more importantly, will pave the way for the application of novel artificial intelligence tools to extract knowledge from this dataset. The database and software tool are freely available at http://planform.daniel-lobo.com.

  2. Regeneratively Cooled Porous Media Jacket

    NASA Technical Reports Server (NTRS)

    Mungas, Greg (Inventor); Fisher, David J. (Inventor); London, Adam Pollok (Inventor); Fryer, Jack Merrill (Inventor)

    2013-01-01

    The fluid and heat transfer theory for regenerative cooling of a rocket combustion chamber with a porous media coolant jacket is presented. This model is used to design a regeneratively cooled rocket or other high temperature engine cooling jacket. Cooling jackets comprising impermeable inner and outer walls, and porous media channels are disclosed. Also disclosed are porous media coolant jackets with additional structures designed to transfer heat directly from the inner wall to the outer wall, and structures designed to direct movement of the coolant fluid from the inner wall to the outer wall. Methods of making such jackets are also disclosed.

  3. Laser system using regenerative amplifier

    DOEpatents

    Emmett, John L. [Pleasanton, CA

    1980-03-04

    High energy laser system using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output.

  4. Laser system using regenerative amplifier

    DOEpatents

    Emmett, J.L.

    1980-03-04

    High energy laser system is disclosed using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output. 10 figs.

  5. Psychological Factors Associated with Head and Neck Cancer Treatment and Survivorship: Evidence and Opportunities for Behavioral Medicine

    PubMed Central

    Howren, M. Bryant; Christensen, Alan J.; Karnell, Lucy Hynds; Funk, Gerry F.

    2012-01-01

    Individuals diagnosed with head and neck cancer (HNC) face not only a potentially life-threatening diagnosis, but must endure treatment that often results in significant, highly visible disfigurement and disruptions of essential functioning, such as deficits or complications in eating, swallowing, breathing, and speech. Each year, approximately 650,000 new cases are diagnosed, making HNC the sixth most common type of cancer in the world. Despite this, however, HNC remains understudied in behavioral medicine. In this article, the authors review available evidence regarding several important psychosocial and behavioral factors associated with HNC diagnosis, treatment, and recovery, as well as various psychosocial interventions conducted in this patient population, before concluding with opportunities for behavioral medicine research and practice. PMID:22963591

  6. Regenerative Hydride Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  7. Combined hydraulic and regenerative braking system

    DOEpatents

    Venkataperumal, R.R.; Mericle, G.E.

    1979-08-09

    A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  8. Combined hydraulic and regenerative braking system

    DOEpatents

    Venkataperumal, Rama R.; Mericle, Gerald E.

    1981-06-02

    A combined hydraulic and regenerative braking system and method for an electric vehicle, with the braking system being responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  9. American Society of Transplantation

    MedlinePlus

    ... Regenerative Medicine Women's Health Patient Information Live Donor Toolkit Patient Education Packets Become an Organ Donor Other Patient Resources About AST Membership FAQs Member Directory Member Spotlight Career Center Volunteer Opportunities Member-Get-A-Member Who ...

  10. Conference Scene: Induced pluripotent cells: a new path for regenerative medicine. 7 October 2010, BioPark, Welwyn Garden City, Hertfordshire, UK.

    PubMed

    Crutzen, Hélène S G

    2011-01-01

    Embryonic stem cells and induced pluripotent stem (iPS) cells, which are embryonic stem-like cells derived from adult tissues, have the broadest differentiation potential. These cells are unique in their ability to self-renew, to be maintained in an undifferentiated state for long periods of culturing and to give rise to many different cell lineages including germ-line cells. They therefore represent an invaluable tool for facilitating research towards the realization of regenerative medicine. The recent developments in embryonic stem cell and iPS cell technology have allowed human cell models to be developed that will hopefully provide novel platforms for disease analysis not only at the basic science level, but also for drug discovery and screening, and other clinical applications. This 1-day conference, chaired by Professor Peter Andrews from the University of Sheffield, UK, and Dr Chris Denning from the University of Nottingham, UK, focused on generation of iPS cells, their differentiation into specific fates and applications to disease modeling. It consisted of 11 talks by UK-based and international researchers, and three posters; Ms Azra Fatima from Cologne University, Germany, won the competition for her poster on the derivation of iPS cells from a patient with arrhythmogenic right ventricular cardiomyopathy.

  11. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine.

    PubMed

    Menaa, Farid; Abdelghani, Adnane; Menaa, Bouzid

    2015-12-01

    The discovery of the interesting intrinsic properties of graphene, a two-dimensional nanomaterial, has boosted further research and development for various types of applications from electronics to biomedicine. During the last decade, graphene and several graphene-derived materials, such as graphene oxide, carbon nanotubes, activated charcoal composite, fluorinated graphenes and three-dimensional graphene foams, have been extensively explored as components of biosensors or theranostics, or to remotely control cell-substrate interfaces, because of their remarkable electro-conductivity. To date, despite the intensive progress in human stem cell research, only a few attempts to use carbon nanotechnology in the stem cell field have been reported. Interestingly, most of the recent in vitro studies indicate that graphene-based nanomaterials (i.e. mainly graphene, graphene oxide and carbon nanotubes) promote stem cell adhesion, growth, expansion and differentiation. Although cell viability in vitro is not affected, their potential nanocytoxicity (i.e. nanocompatibility and consequences of uncontrolled nanobiodegradability) in a clinical setting using humans remains unknown. Therefore, rigorous internationally standardized clinical studies in humans that would aim to assess their nanotoxicology are requested. In this paper we report and discuss the recent and pertinent findings about graphene and derivatives as valuable nanomaterials for stem cell research (i.e. culture, maintenance and differentiation) and tissue engineering, as well as for regenerative, translational and personalized medicine (e.g. bone reconstruction, neural regeneration). Also, from scarce nanotoxicological data, we also highlight the importance of functionalizing graphene-based nanomaterials to minimize the cytotoxic effects, as well as other critical safety parameters that remain important to take into consideration when developing nanobionanomaterials. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Feasibility of human hair follicle-derived mesenchymal stem cells/CultiSpher(®)-G constructs in regenerative medicine.

    PubMed

    Li, Pengdong; Liu, Feilin; Wu, Chunling; Jiang, Wenyue; Zhao, Guifang; Liu, Li; Bai, Tingting; Wang, Li; Jiang, Yixu; Guo, Lili; Qi, Xiaojuan; Kou, Junna; Fan, Ruirui; Hao, Deshun; Lan, Shaowei; Li, Yulin; Liu, Jin Yu

    2015-10-01

    The use of human mesenchymal stem cells (hMSCs) in cell therapies has increased the demand for strategies that allow efficient cell scale-up. Preliminary data on the three-dimensional (3D) spinner culture describing the potential use of microcarriers for hMSCs culture scale-up have been reported. We exploited a rich source of autologous stem cells (human hair follicle) and demonstrated the robust in vitro long-term expansion of human hair follicle-derived mesenchymal stem cells (hHF-MSCs) by using CultiSpher(®)-G microcarriers. We analyzed the feasibility of 3D culture by using hHF-MSCs/CultiSpher(®)-G microcarrier constructs for its potential applicability in regenerative medicine by comparatively analyzing the performance of hHF-MSCs adhered to the CultiSpher(®)-G microspheres in 3D spinner culture and those grown on the gelatin-coated plastic dishes (2D culture), using various assays. We showed that the hHF-MSCs seeded at various densities quickly adhered to and proliferated well on the microspheres, thus generating at least hundreds of millions of hHF-MSCs on 1 g of CultiSpher(®)-G within 12 days. This resulted in a cumulative cell expansion of greater than 26-fold. Notably, the maximum and average proliferation rates in 3D culture were significantly greater than that of the 2D culture. However, the hHF-MSCs from both the cultures retained surface marker and nestin expression, proliferation capacity and differentiation potentials toward adipocytes, osteoblasts and smooth muscle cells and showed no significant differences as evidenced by Edu incorporation, cell cycle, colony formation, apoptosis, biochemical quantification and qPCR assays.

  13. Regenerative agriculture: merging farming and natural resource conservation profitably.

    PubMed

    LaCanne, Claire E; Lundgren, Jonathan G

    2018-01-01

    Most cropland in the United States is characterized by large monocultures, whose productivity is maintained through a strong reliance on costly tillage, external fertilizers, and pesticides (Schipanski et al., 2016). Despite this, farmers have developed a regenerative model of farm production that promotes soil health and biodiversity, while producing nutrient-dense farm products profitably. Little work has focused on the relative costs and benefits of novel regenerative farming operations, which necessitates studying in situ , farmer-defined best management practices. Here, we evaluate the relative effects of regenerative and conventional corn production systems on pest management services, soil conservation, and farmer profitability and productivity throughout the Northern Plains of the United States. Regenerative farming systems provided greater ecosystem services and profitability for farmers than an input-intensive model of corn production. Pests were 10-fold more abundant in insecticide-treated corn fields than on insecticide-free regenerative farms, indicating that farmers who proactively design pest-resilient food systems outperform farmers that react to pests chemically. Regenerative fields had 29% lower grain production but 78% higher profits over traditional corn production systems. Profit was positively correlated with the particulate organic matter of the soil, not yield. These results provide the basis for dialogue on ecologically based farming systems that could be used to simultaneously produce food while conserving our natural resource base: two factors that are pitted against one another in simplified food production systems. To attain this requires a systems-level shift on the farm; simply applying individual regenerative practices within the current production model will not likely produce the documented results.

  14. Challenges and Opportunities Faced by Biofield Practitioners in Global Health and Medicine: A White Paper

    PubMed Central

    King, Rauni Prittinen

    2015-01-01

    Biofield therapies (BTs) are increasingly employed in contemporary healthcare. In this white paper, we review specific challenges faced by biofield practitioners resulting from a lack of (1) a common scientific definition of BT; (2) common educational standards for BT training (including core competencies for clinical care); (3) collaborative team care education in complementary and alternative medicine (CAM) and in integrative health and medicine (IHM); (4) a focused agenda in BT research; and (5) standardized devices and scientifically validated mechanisms in biofield research. We present a description of BT and discuss its current status and challenges as an integrative healthcare discipline. To address the challenges cited and to enhance collaboration across disciplines, we propose (1) standardized biofield education that leads to professional licensure and (2) interprofessional education (IPE) competencies in BT training required for licensed healthcare practitioners and encouraged for other practitioners using these therapies. Lastly, we discuss opportunities for growth and a potential strategic agenda to achieve these goals. The Academy of Integrative Health and Medicine (AIHM) provides a unique forum to facilitate development of this emerging discipline, to facilitate IPE, and to further increase the availability of BT to patients. PMID:26665047

  15. Adaptive controller for regenerative and friction braking system

    DOEpatents

    Davis, R.I.

    1990-10-16

    A regenerative and friction braking system for a vehicle having one or more road wheels driven by an electric traction motor includes a driver responsive device for producing a brake demand signal having a magnitude corresponding to the level of braking force selected by the driver and friction and regenerative brakes operatively connected with the road wheels of the vehicle. A system according to this invention further includes control means for operating the friction and regenerative braking subsystems so that maximum brake torques sustainable by the road wheels of the vehicle without skidding or slipping will not be exceeded. 8 figs.

  16. Adaptive controller for regenerative and friction braking system

    DOEpatents

    Davis, Roy I.

    1990-01-01

    A regenerative and friction braking system for a vehicle having one or more roadwheels driven by an electric traction motor includes a driver responsive device for producing a brake demand signal having a magnitude corresponding to the level of braking force selected by the driver and friction and regenerative brakes operatively connected with the roadwheels of the vehicle. A system according to this invention further includes control means for operating the friction and regenerative braking subsystems so that maximum brake torques sustainable by the roadwheels of the vehicle without skidding or slipping will not be exceeded.

  17. Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery

    PubMed Central

    Singh, Vimal K.; Kalsan, Manisha; Kumar, Neeraj; Saini, Abhishek; Chandra, Ramesh

    2015-01-01

    such as animal models. Many toxic compounds (different chemical compounds, pharmaceutical drugs, other hazardous chemicals, or environmental conditions) which are encountered by humans and newly designed drugs may be evaluated for toxicity and effects by using iPSCs. Thus, the applications of iPSCs in regenerative medicine, disease modeling, and drug discovery are enormous and should be explored in a more comprehensive manner. PMID:25699255

  18. Evaluation strategy of regenerative braking energy for supercapacitor vehicle.

    PubMed

    Zou, Zhongyue; Cao, Junyi; Cao, Binggang; Chen, Wen

    2015-03-01

    In order to improve the efficiency of energy conversion and increase the driving range of electric vehicles, the regenerative energy captured during braking process is stored in the energy storage devices and then will be re-used. Due to the high power density of supercapacitors, they are employed to withstand high current in the short time and essentially capture more regenerative energy. The measuring methods for regenerative energy should be investigated to estimate the energy conversion efficiency and performance of electric vehicles. Based on the analysis of the regenerative braking energy system of a supercapacitor vehicle, an evaluation system for energy recovery in the braking process is established using USB portable data-acquisition devices. Experiments under various braking conditions are carried out. The results verify the higher efficiency of energy regeneration system using supercapacitors and the effectiveness of the proposed measurement method. It is also demonstrated that the maximum regenerative energy conversion efficiency can reach to 88%. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  19. The Scope of Big Data in One Medicine: Unprecedented Opportunities and Challenges.

    PubMed

    McCue, Molly E; McCoy, Annette M

    2017-01-01

    challenges. Here we explore the scope of "big data," including its opportunities, its limitations, and what is needed capitalize on big data in one medicine.

  20. Regenerative endodontics: barriers and strategies for clinical translation.

    PubMed

    Mao, Jeremy J; Kim, Sahng G; Zhou, Jian; Ye, Ling; Cho, Shoko; Suzuki, Takahiro; Fu, Susan Y; Yang, Rujing; Zhou, Xuedong

    2012-07-01

    Regenerative endodontics has encountered substantial challenges toward clinical translation. The adoption by the American Dental Association of evoked pulp bleeding in immature permanent teeth is an important step for regenerative endodontics. However, there is no regenerative therapy for most endodontic diseases. Simple recapitulation of cell therapy and tissue engineering strategies that are under development for other organ systems has not led to clinical translation in regeneration endodontics. Recent work using novel biomaterial scaffolds and growth factors that orchestrate the homing of host endogenous cells represents a departure from traditional cell transplantation approaches and may accelerate clinical translation. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Orthopaedic regenerative tissue engineering en route to the holy grail: disequilibrium between the demand and the supply in the operating room.

    PubMed

    Cengiz, Ibrahim Fatih; Pereira, Hélder; de Girolamo, Laura; Cucchiarini, Magali; Espregueira-Mendes, João; Reis, Rui L; Oliveira, Joaquim Miguel

    2018-05-22

    Orthopaedic disorders are very frequent, globally found and often partially unresolved despite the substantial advances in science and medicine. Their surgical intervention is multifarious and the most favourable treatment is chosen by the orthopaedic surgeon on a case-by-case basis depending on a number of factors related with the patient and the lesion. Numerous regenerative tissue engineering strategies have been developed and studied extensively in laboratory through in vitro experiments and preclinical in vivo trials with various established animal models, while a small proportion of them reached the operating room. However, based on the available literature, the current strategies have not yet achieved to fully solve the clinical problems. Thus, the gold standards, if existing, remain unchanged in the clinics, notwithstanding the known limitations and drawbacks. Herein, the involvement of regenerative tissue engineering in the clinical orthopaedics is reviewed. The current challenges are indicated and discussed in order to describe the current disequilibrium between the needs and solutions made available in the operating room. Regenerative tissue engineering is a very dynamic field that has a high growth rate and a great openness and ability to incorporate new technologies with passion to edge towards the Holy Grail that is functional tissue regeneration. Thus, the future of clinical solutions making use of regenerative tissue engineering principles for the management of orthopaedic disorders is firmly supported by the clinical need.

  2. Cancer Prevention: Opportunities for Action

    Cancer.gov

    Leslie Bernstein, PhD, AFLAC, Inc., Chair in Cancer Research; Professor, Preventive Medicine; and Senior Associate Dean, Faculty Affairs at Keck School of Medicine, University of Southern California, Los Angeles, CA, presented "Cancer Prevention: Opportunities for Action".

  3. Conference Report: 6th Annual International Symposium on Regenerative Rehabilitation.

    PubMed

    Loghmani, M Terry; Roche, Joseph A

    2018-04-03

    The 6th International Symposium on Regenerative Rehabilitation, hosted by the Alliance for Regenerative Rehabilitation Research and Training (AR 3 T), included a preconference meeting of institutional representatives of the International Consortium of Regenerative Rehabilitation, keynote talks from distinguished scientists, platform and poster presentations from experts and trainees, panel discussions and postconference workshops. The following priorities were identified: increasing rigor in basic, preclinical and clinical studies, especially the use of better controls; developing better outcome measures for preclinical and clinical trials; focusing on developing more tissue-based interventions versus cell-based interventions; including regenerative rehabilitation in curricula of professional programs like occupational and physical therapy; and developing better instruments to quantify rehabilitative interventions.

  4. Enhancing regenerative approaches with nanoparticles

    PubMed Central

    Habibovic, Pamela

    2017-01-01

    In this review, we discuss recent developments in the field of nanoparticles and their use in tissue regeneration approaches. Owing to their unique chemical properties and flexibility in design, nanoparticles can be used as drug delivery systems, to create novel features within materials or as bioimaging agents, or indeed these properties can be combined to create smart multifunctional structures. This review aims to provide an overview of this research field where the focus will be on nanoparticle-based strategies to stimulate bone regeneration; however, the same principles can be applied for other tissue and organ regeneration strategies. In the first section, nanoparticle-based methods for the delivery of drugs, growth factors and genetic material to promote tissue regeneration are discussed. The second section deals with the addition of nanoparticles to materials to create nanocomposites. Such materials can improve several material properties, including mechanical stability, biocompatibility and biological activity. The third section will deal with the emergence of a relatively new field of research using nanoparticles in advanced cell imaging and stem cell tracking approaches. As the development of nanoparticles continues, incorporation of this technology in the field of regenerative medicine will ultimately lead to new tools that can diagnose, track and stimulate the growth of new tissues and organs. PMID:28404870

  5. Enhancing regenerative approaches with nanoparticles.

    PubMed

    van Rijt, Sabine; Habibovic, Pamela

    2017-04-01

    In this review, we discuss recent developments in the field of nanoparticles and their use in tissue regeneration approaches. Owing to their unique chemical properties and flexibility in design, nanoparticles can be used as drug delivery systems, to create novel features within materials or as bioimaging agents, or indeed these properties can be combined to create smart multifunctional structures. This review aims to provide an overview of this research field where the focus will be on nanoparticle-based strategies to stimulate bone regeneration; however, the same principles can be applied for other tissue and organ regeneration strategies. In the first section, nanoparticle-based methods for the delivery of drugs, growth factors and genetic material to promote tissue regeneration are discussed. The second section deals with the addition of nanoparticles to materials to create nanocomposites. Such materials can improve several material properties, including mechanical stability, biocompatibility and biological activity. The third section will deal with the emergence of a relatively new field of research using nanoparticles in advanced cell imaging and stem cell tracking approaches. As the development of nanoparticles continues, incorporation of this technology in the field of regenerative medicine will ultimately lead to new tools that can diagnose, track and stimulate the growth of new tissues and organs. © 2017 The Author(s).

  6. Early Orthodontic Tooth Movement into Regenerative Bony Defects: A Case Report.

    PubMed

    Tsai, Hui-Chen; Yao, Chung-Chen Jane; Wong, Man-Ying

    Early orthodontic tooth movement following regenerative surgery is controversial. In this case, during protraction of the maxillary right first premolar to substitute for the long-term missing maxillary right canine, Bio-Oss and Bio-Gide were used for lateral ridge augmentation at the area of the maxillary right lateral incisor and to cover the denuded surface at the buccal side of the first premolar. Orthodontic tooth movement (OTM) commenced 2 weeks after regenerative surgery. After 8 months, new bone formation was observed on the root surface of the first premolar during implant surgery. A cone beam computed tomography scan taken 1.5 years postsurgery revealed good maintenance of regenerative bone at the same site. This satisfactory outcome of early OTM following regenerative surgery suggests biomechanical stimulation may not jeopardize the regenerative effect.

  7. Generation of safe and therapeutically effective human induced pluripotent stem cell‐derived hepatocyte‐like cells for regenerative medicine

    PubMed Central

    Takayama, Kazuo; Akita, Naoki; Mimura, Natsumi; Akahira, Rina; Taniguchi, Yukimasa; Ikeda, Makoto; Sakurai, Fuminori; Ohara, Osamu; Morio, Tomohiro

    2017-01-01

    Hepatocyte‐like cells (HLCs) differentiated from human induced pluripotent stem (iPS) cells are expected to be applied for regenerative medicine. In this study, we attempted to generate safe and therapeutically effective human iPS‐HLCs for hepatocyte transplantation. First, human iPS‐HLCs were generated from a human leukocyte antigen‐homozygous donor on the assumption that the allogenic transplantation might be carried out. Highly efficient hepatocyte differentiation was performed under a feeder‐free condition using human recombinant laminin 111, laminin 511, and type IV collagen. The percentage of asialoglycoprotein receptor 1‐positive cells was greater than 80%, while the percentage of residual undifferentiated cells was approximately 0.003%. In addition, no teratoma formation was observed even at 16 weeks after human iPS‐HLC transplantation. Furthermore, harmful genetic somatic single‐nucleotide substitutions were not observed during the hepatocyte differentiation process. We also developed a cryopreservation protocol for hepatoblast‐like cells without negatively affecting their hepatocyte differentiation potential by programming the freezing temperature. To evaluate the therapeutic potential of human iPS‐HLCs, these cells (1 × 106 cells/mouse) were intrasplenically transplanted into acute liver injury mice treated with 3 mL/kg CCl4 only once and chronic liver injury mice treated with 0.6 mL/kg CCl4 twice weekly for 8 weeks. By human iPS‐HLC transplantation, the survival rate of the acute liver injury mice was significantly increased and the liver fibrosis level of chronic liver injury mice was significantly decreased. Conclusion: We were able to generate safe and therapeutically effective human iPS‐HLCs for hepatocyte transplantation. (Hepatology Communications 2017;1:1058–1069) PMID:29404442

  8. Spermatogonial stem cells: Current biotechnological advances in reproduction and regenerative medicine.

    PubMed

    Aponte, Pedro Manuel

    2015-05-26

    Spermatogonial stem cells (SSCs) are the germ stem cells of the seminiferous epithelium in the testis. Through the process of spermatogenesis, they produce sperm while concomitantly keeping their cellular pool constant through self-renewal. SSC biology offers important applications for animal reproduction and overcoming human disease through regenerative therapies. To this end, several techniques involving SSCs have been developed and will be covered in this article. SSCs convey genetic information to the next generation, a property that can be exploited for gene targeting. Additionally, SSCs can be induced to become embryonic stem cell-like pluripotent cells in vitro. Updates on SSC transplantation techniques with related applications, such as fertility restoration and preservation of endangered species, are also covered on this article. SSC suspensions can be transplanted to the testis of an animal and this has given the basis for SSC functional assays. This procedure has proven technically demanding in large animals and men. In parallel, testis tissue xenografting, another transplantation technique, was developed and resulted in sperm production in testis explants grafted into ectopical locations in foreign species. Since SSC culture holds a pivotal role in SSC biotechnologies, current advances are overviewed. Finally, spermatogenesis in vitro, already demonstrated in mice, offers great promises to cope with reproductive issues in the farm animal industry and human clinical applications.

  9. Micro-Scale Regenerative Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2004-01-01

    A micro-scale regenerative heat exchanger has been designed, optimized and fabricated for use in a micro-Stirling device. Novel design and fabrication techniques enabled the minimization of axial heat conduction losses and pressure drop, while maximizing thermal regenerative performance. The fabricated prototype is comprised of ten separate assembled layers of alternating metal-dielectric composite. Each layer is offset to minimize conduction losses and maximize heat transfer by boundary layer disruption. A grating pattern of 100 micron square non-contiguous flow passages were formed with a nominal 20 micron wall thickness, and an overall assembled ten-layer thickness of 900 microns. Application of the micro heat exchanger is envisioned in the areas of micro-refrigerators/coolers, micropower devices, and micro-fluidic devices.

  10. The Quest toward limb regeneration: a regenerative engineering approach

    PubMed Central

    Laurencin, Cato T.; Nair, Lakshmi S.

    2016-01-01

    The Holy Grail to address the clinical grand challenge of human limb loss is to develop innovative strategies to regrow the amputated limb. The remarkable advances in the scientific understanding of regeneration, stem cell science, material science and engineering, physics and novel surgical approaches in the past few decades have provided a regenerative tool box to face this grand challenge and address the limitations of human wound healing. Here we discuss the convergence approach put forward by the field of Regenerative Engineering to use the regenerative tool box to design and develop novel translational strategies to limb regeneration. PMID:27047679

  11. The hegemony of empiricism: the opportunity for theoretical science in medicine.

    PubMed

    Yun, Anthony J

    2008-01-01

    opportunity are tumor cells, which reprogram themselves to escape their apoptotic fate and assume indefinite persistence. The prevalence and resilience of these cancer cells, and their ability to withstand the protean assaults of toxins, poisons, radiation, and host defenses, presage the potential robustness of life when appropriately programmed. Paradoxical medicine and dynamic range management may represent initial strategies to reprogram the neuroendocrine stress axes to modulate lifespan at the organism level, and many other strategies are anticipated. The key to theoretical science is original insight, but the prevailing pressure to conform to medicine's educational and practice standards dis-incentivizes independent thinking. A scientific future is envisioned when the commoditization of experimental science will enable its outsourcing, liberating health scientists from the tyranny of empiricism to engage in a more balanced process of discovery infused with theoretical considerations.

  12. A Novel Unitized Regenerative Proton Exchange Membrane Fuel Cell

    NASA Technical Reports Server (NTRS)

    Murphy, O. J.; Cisar, A. J.; Gonzalez-Martin, A.; Salinas, C. E.; Simpson, S. F.

    1996-01-01

    A difficulty encountered in designing a unitized regenerative proton exchange membrane (PEM) fuel cell lies in the incompatibility of electrode structures and electrocatalyst materials optimized for either of the two functions (fuel cell or electrolyzer) with the needs of the other function. This difficulty is compounded in previous regenerative fuel cell designs by the fact that water, which is needed for proton conduction in the PEM during both modes of operation, is the reactant supplied to the anode in the electrolyzer mode of operation and the product formed at the cathode in the fuel cell mode. Drawbacks associated with existing regenerative fuel cells have been addressed. In a first innovation, electrodes function either as oxidation electrodes (hydrogen ionization or oxygen evolution) or as reduction electrodes (oxygen reduction or hydrogen evolution) in the fuel cell and electrolyzer modes, respectively. Control of liquid water within the regenerative fuel cell has been brought about by a second innovation. A novel PEM has been developed with internal channels that permit the direct access of water along the length of the membrane. Lateral diffusion of water along the polymer chains of the PEM provides the water needed at electrode/PEM interfaces. Fabrication of the novel single cell unitized regenerative fuel cell and results obtained on testing it are presented.

  13. Erich Regener and the ionisation maximum of the atmosphere

    NASA Astrophysics Data System (ADS)

    Carlson, P.; Watson, A. A.

    2014-12-01

    In the 1930s the German physicist Erich Regener (1881-1955) did important work on the measurement of the rate of production of ionisation deep under water and in the atmosphere. Along with one of his students, Georg Pfotzer, he discovered the altitude at which the production of ionisation in the atmosphere reaches a maximum, often, but misleadingly, called the Pfotzer maximum. Regener was one of the first to estimate the energy density of cosmic rays, an estimate that was used by Baade and Zwicky to bolster their postulate that supernovae might be their source. Yet Regener's name is less recognised by present-day cosmic ray physicists than it should be, largely because in 1937 he was forced to take early retirement by the National Socialists as his wife had Jewish ancestors. In this paper we briefly review his work on cosmic rays and recommend an alternative naming of the ionisation maximum. The influence that Regener had on the field through his son, his son-in-law, his grandsons and his students, and through his links with Rutherford's group in Cambridge, is discussed in an appendix. Regener was nominated for the Nobel Prize in Physics by Schrödinger in 1938. He died in 1955 at the age of 73.

  14. Electrolyte for batteries with regenerative solid electrolyte interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Jie; Lu, Dongping; Shao, Yuyan

    2017-08-01

    An energy storage device comprising: an anode; and a solute-containing electrolyte composition wherein the solute concentration in the electrolyte composition is sufficiently high to form a regenerative solid electrolyte interface layer on a surface of the anode only during charging of the energy storage device, wherein the regenerative layer comprises at least one solute or solvated solute from the electrolyte composition.

  15. Dangers and opportunities for social media in medicine

    PubMed Central

    George, Daniel R.; Rovniak, Liza S.; Kraschnewski, Jennifer L.

    2013-01-01

    Health professionals have begun using social media to benefit patients, enhance professional networks, and advance understanding of individual and contextual factors influencing public health. However, discussion of the dangers of these technologies in medicine has overwhelmed consideration of positive applications. This article summarizes the hazards of social media in medicine and explores how changes in functionality on sites like Facebook may make these technologies less perilous for health professionals. Finally, it describes the most promising avenues through which professionals can use social media in medicine – improving patient communication, enhancing professional development, and contributing to public health research and service. PMID:23903375

  16. Dangers and opportunities for social media in medicine.

    PubMed

    George, Daniel R; Rovniak, Liza S; Kraschnewski, Jennifer L

    2013-09-01

    Health professionals have begun using social media to benefit patients, enhance professional networks, and advance understanding of individual and contextual factors influencing public health. However, discussion of the dangers of these technologies in medicine has overwhelmed consideration of positive applications. This article summarizes the hazards of social media in medicine and explores how changes in functionality on sites like Facebook may make these technologies less perilous for health professionals. Finally, it describes the most promising avenues through which professionals can use social media in medicine-improving patient communication, enhancing professional development, and contributing to public health research and service.

  17. Macroenvironmental regulation of hair cycling and collective regenerative behavior.

    PubMed

    Plikus, Maksim V; Chuong, Cheng-Ming

    2014-01-01

    The hair follicle (HF) regeneration paradigm provides a unique opportunity for studying the collective behavior of stem cells in living animals. Activation of HF stem cells depends on the core inhibitory BMP and activating WNT signals operating within the HF microenvironment. Additionally, HFs receive multilayered signaling inputs from the extrafollicular macroenvironment, which includes dermis, adipocytes, neighboring HFs, hormones, and external stimuli. These activators/inhibitors are integrated across multiple stem-cell niches to produce dynamic hair growth patterns. Because of their pigmentation, these patterns can be easily studied on live shaved animals. Comparing to autonomous regeneration of one HF, populations of HFs display coupled decision making, allowing for more robust and adaptable regenerative behavior to occur collectively. The generic cellular automata model used to simulate coordinated HF cycling here can be extended to study population-level behavior of other complex biological systems made of cycling elements.

  18. Macroenvironmental Regulation of Hair Cycling and Collective Regenerative Behavior

    PubMed Central

    Plikus, Maksim V.; Chuong, Cheng-Ming

    2014-01-01

    The hair follicle (HF) regeneration paradigm provides a unique opportunity for studying the collective behavior of stem cells in living animals. Activation of HF stem cells depends on the core inhibitory BMP and activating WNT signals operating within the HF microenvironment. Additionally, HFs receive multilayered signaling inputs from the extrafollicular macroenvironment, which includes dermis, adipocytes, neighboring HFs, hormones, and external stimuli. These activators/inhibitors are integrated across multiple stem-cell niches to produce dynamic hair growth patterns. Because of their pigmentation, these patterns can be easily studied on live shaved animals. Comparing to autonomous regeneration of one HF, populations of HFs display coupled decision making, allowing for more robust and adaptable regenerative behavior to occur collectively. The generic cellular automata model used to simulate coordinated HF cycling here can be extended to study population-level behavior of other complex biological systems made of cycling elements. PMID:24384813

  19. Regenerative endodontics: A way forward.

    PubMed

    Diogenes, Anibal; Ruparel, Nikita B; Shiloah, Yoav; Hargreaves, Kenneth M

    2016-05-01

    Immature teeth are susceptible to infections due to trauma, anatomic anomalies, and caries. Traditional endodontic therapies for immature teeth, such as apexification procedures, promote resolution of the disease and prevent future infections. However, these procedures fail to promote continued root development, leaving teeth susceptible to fractures. Regenerative endodontic procedures (REPs) have evolved in the past decade, being incorporated into endodontic practice and becoming a viable treatment alternative for immature teeth. The authors have summarized the status of regenerative endodontics on the basis of the available published studies and provide insight into the different levels of clinical outcomes expected from these procedures. Substantial advances in regenerative endodontics are allowing a better understanding of a multitude of factors that govern stem cell-mediated regeneration and repair of the damaged pulp-dentin complex. REPs promote healing of apical periodontitis, continued radiographic root development, and, in certain cases, vitality responses. Despite the clinical success of these procedures, they appear to promote a guided endodontic repair process rather than a true regeneration of physiological-like tissue. Immature teeth with pulpal necrosis with otherwise poor prognosis can be treated with REPs. These procedures do not preclude the possibility of apexification procedures if attempts are unsuccessful. Therefore, REPs may be considered first treatment options for immature teeth with pulpal necrosis. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  20. Challenges and opportunities for stem cell therapy in patients with chronic kidney disease

    PubMed Central

    Hickson, LaTonya J.; Eirin, Alfonso; Lerman, Lilach O.

    2016-01-01

    Chronic kidney disease (CKD) is a global healthcare burden affecting billions of individuals worldwide. The kidney has limited regenerative capacity from chronic insults, and for the most common causes of CKD, no effective treatment exists to prevent progression to end-stage kidney failure. Therefore, novel interventions, such as regenerative cell-based therapies, need to be developed for CKD. Given the risk of allosensitization, autologous transplantation of cells to boost regenerative potential is preferred. Therefore, verification of cell function and vitality in CKD patients is imperative. Two cell types have been most commonly applied in regenerative medicine. Endothelial progenitor cells contribute to neovasculogenesis primarily through paracrine angiogenic activity and partly by differentiation into mature endothelial cells in situ. Mesenchymal stem cells also exert paracrine effects, including pro-angiogenic, anti-inflammatory, and anti-fibrotic activity. However, in CKD, multiple factors may contribute to reduced cell function, including older age, coexisting cardiovascular disease, diabetes, chronic inflammatory states, and uremia, which may limit the effectiveness of an autologous cell-based therapy approach. This review highlights current knowledge on stem and progenitor cell function and vitality, aspects of the uremic milieu that may serve as a barrier to therapy, and novel methods to improve stem cell function for potential transplantation. PMID:26924058