Science.gov

Sample records for regenerative medicine opportunities

  1. The Pharmacology of Regenerative Medicine

    PubMed Central

    Saul, Justin M.; Furth, Mark E.; Andersson, Karl-Erik

    2013-01-01

    Regenerative medicine is a rapidly evolving multidisciplinary, translational research enterprise whose explicit purpose is to advance technologies for the repair and replacement of damaged cells, tissues, and organs. Scientific progress in the field has been steady and expectations for its robust clinical application continue to rise. The major thesis of this review is that the pharmacological sciences will contribute critically to the accelerated translational progress and clinical utility of regenerative medicine technologies. In 2007, we coined the phrase “regenerative pharmacology” to describe the enormous possibilities that could occur at the interface between pharmacology, regenerative medicine, and tissue engineering. The operational definition of regenerative pharmacology is “the application of pharmacological sciences to accelerate, optimize, and characterize (either in vitro or in vivo) the development, maturation, and function of bioengineered and regenerating tissues.” As such, regenerative pharmacology seeks to cure disease through restoration of tissue/organ function. This strategy is distinct from standard pharmacotherapy, which is often limited to the amelioration of symptoms. Our goal here is to get pharmacologists more involved in this field of research by exposing them to the tools, opportunities, challenges, and interdisciplinary expertise that will be required to ensure awareness and galvanize involvement. To this end, we illustrate ways in which the pharmacological sciences can drive future innovations in regenerative medicine and tissue engineering and thus help to revolutionize the discovery of curative therapeutics. Hopefully, the broad foundational knowledge provided herein will spark sustained conversations among experts in diverse fields of scientific research to the benefit of all. PMID:23818131

  2. Bioprinting in Regenerative Medicine.

    PubMed

    Monti, Manuela

    2016-01-01

    Prof. Turksen is a very well known scientist in the stem cell biology field and he is also internationally known for his fundamental studies on claudin-6. In addition to his research activity he is editor for the Stem Cell Biology and Regenerative Medicine series (Humana Press) and editor-in-chief of Stem Cell Reviews and Reports..... PMID:26972720

  3. Cytomics in regenerative medicine

    NASA Astrophysics Data System (ADS)

    Tárnok, Attila; Pierzchalski, Arkadiusz

    2008-02-01

    Cytomics is the high-content analysis of cell-systems [6, 78]. The area of Cytomics and Systems Biology received great attention during the last years as it harbours the promise to substantially impact on various fields of biomedicine, drug discovery, predictive medicine [6] and may have major potential for regenerative medicine. In regenerative medicine Cytomics includes process control of cell preparation and culturing using non-invasive detection techniques, quality control and standardization for GMP and GLP conformity and even prediction of cell fate based on sophisticated data analysis. Cytomics requires quantitative and stoichiometric single cell analysis. In some areas the leading cytometric techniques represent the cutting edge today. Many different applications/variations of multicolour staining were developed for flow- or slide-based cytometry (SBC) analysis of suspensions and sections to whole animal analysis [78]. SBC has become an important analytical technology in drug discovery, diagnosis and research and is an emerging technology for systems analysis [78]. It enables high-content high-throughput measurement of cell suspensions, cell cultures and tissues. In the last years various commercial SBC instruments were launched principally enabling to perform similar tasks. Standardisation as well as comparability of different instruments is a major challenge. Hyperspectral optical imaging may be implemented in SBC analysis for label free cell detection based on cellular autofluorescence [3]. All of these developments push the systemic approach of the analysis of biological specimens to enhance the outcome of regenerative medicine.

  4. Will Regenerative Medicine Replace Transplantation?

    PubMed Central

    Orlando, Giuseppe; Soker, Shay; Stratta, Robert J.; Atala, Anthony

    2013-01-01

    Recent groundbreaking advances in organ bioengineering and regeneration have provided evidence that regenerative medicine holds promise to dramatically improve the approach to organ transplantation. The two fields, however, share a common heritage. Alexis Carrel can be considered the father of both regenerative medicine and organ transplantation, and it is now clear that his legacy is equally applicable for the present and future generations of transplant and regenerative medicine investigators. In this review, we will briefly illustrate the interplay that should be established between these two complementary disciplines of health sciences. Although regenerative medicine has shown to the transplant field its potential, transplantation is destined to align with regenerative medicine and foster further progress probably more than either discipline alone. Organ bioengineering and regeneration technologies hold the promise to meet at the same time the two most urgent needs in organ transplantation, namely, the identification of a new, potentially inexhaustible source of organs and immunosuppression-free transplantation of tissues and organs. PMID:23906883

  5. Will regenerative medicine replace transplantation?

    PubMed

    Orlando, Giuseppe; Soker, Shay; Stratta, Robert J; Atala, Anthony

    2013-08-01

    Recent groundbreaking advances in organ bioengineering and regeneration have provided evidence that regenerative medicine holds promise to dramatically improve the approach to organ transplantation. The two fields, however, share a common heritage. Alexis Carrel can be considered the father of both regenerative medicine and organ transplantation, and it is now clear that his legacy is equally applicable for the present and future generations of transplant and regenerative medicine investigators. In this review, we will briefly illustrate the interplay that should be established between these two complementary disciplines of health sciences. Although regenerative medicine has shown to the transplant field its potential, transplantation is destined to align with regenerative medicine and foster further progress probably more than either discipline alone. Organ bioengineering and regeneration technologies hold the promise to meet at the same time the two most urgent needs in organ transplantation, namely, the identification of a new, potentially inexhaustible source of organs and immunosuppression-free transplantation of tissues and organs. PMID:23906883

  6. Hydrogels in Regenerative Medicine

    PubMed Central

    Slaughter, Brandon V.; Khurshid, Shahana S.; Fisher, Omar Z.; Khademhosseini, Ali

    2015-01-01

    Hydrogels, due to their unique biocompatibility, flexible methods of synthesis, range of constituents, and desirable physical characteristics, have been the material of choice for many applications in regenerative medicine. They can serve as scaffolds that provide structural integrity to tissue constructs, control drug and protein delivery to tissues and cultures, and serve as adhesives or barriers between tissue and material surfaces. In this work, the properties of hydrogels that are important for tissue engineering applications and the inherent material design constraints and challenges are discussed. Recent research involving several different hydrogels polymerized from a variety of synthetic and natural monomers using typical and novel synthetic methods are highlighted. Finally, special attention is given to the microfabrication techniques that are currently resulting in important advances in the field. PMID:20882499

  7. Regenerative Medicine Build-Out

    PubMed Central

    Pfenning, Michael A.; Gores, Gregory J.; Harper, C. Michel

    2015-01-01

    Summary Regenerative technologies strive to boost innate repair processes and restitute normative impact. Deployment of regenerative principles into practice is poised to usher in a new era in health care, driving radical innovation in patient management to address the needs of an aging population challenged by escalating chronic diseases. There is urgency to design, execute, and validate viable paradigms for translating and implementing the science of regenerative medicine into tangible health benefits that provide value to stakeholders. A regenerative medicine model of care would entail scalable production and standardized application of clinical grade biotherapies supported by comprehensive supply chain capabilities that integrate sourcing and manufacturing with care delivery. Mayo Clinic has rolled out a blueprint for discovery, translation, and application of regenerative medicine therapies for accelerated adoption into the standard of care. To establish regenerative medical and surgical service lines, the Mayo Clinic model incorporates patient access, enabling platforms and delivery. Access is coordinated through a designated portal, the Regenerative Medicine Consult Service, serving to facilitate patient/provider education, procurement of biomaterials, referral to specialty services, and/or regenerative interventions, often in clinical trials. Platforms include the Regenerative Medicine Biotrust and Good Manufacturing Practice facilities for manufacture of clinical grade products for cell-based, acellular, and/or biomaterial applications. Care delivery leverages dedicated interventional suites for provision of regenerative services. Performance is tracked using a scorecard system to inform decision making. The Mayo Clinic roadmap exemplifies an integrated organization in the discovery, development, and delivery of regenerative medicine within a growing community of practice at the core of modern health care. Significance Regenerative medicine is at the

  8. Electrospun Nanofibers for Regenerative Medicine**

    PubMed Central

    Liu, Wenying; Thomopoulos, Stavros

    2013-01-01

    This article reviews recent progress in applying electrospun nanofibers to the emerging field of regenerative medicine. We begin with a brief introduction to electrospinning and nanofibers, with a focus on issues related to the selection of materials, incorporation of bioactive molecules, degradation characteristics, control of mechanical properties, and facilitation of cell infiltration. We then discuss a number of approaches to fabrication of scaffolds from electrospun nanofibers, including techniques for controlling the alignment of nanofibers and for producing scaffolds with complex architectures. We also highlight applications of the nanofiber-based scaffolds in four areas of regenerative medicine that involve nerves, dural tissues, tendons, and the tendon-to-bone insertion site. We conclude this review with perspectives on challenges and future directions for design, fabrication, and utilization of scaffolds based on electrospun nanofibers. PMID:23184683

  9. Regenerative medicine in kidney disease.

    PubMed

    Little, Melissa H; Kairath, Pamela

    2016-08-01

    The treatment of renal failure has changed little in decades. Organ transplantation and dialysis continue to represent the only therapeutic options available. However, decades of fundamental research into the response of the kidney to acute injury and the processes driving progression to chronic kidney disease are beginning to open doors to new options. Similarly, continued investigations into the cellular and molecular basis of normal kidney development, together with major advances in stem cell biology, are now delivering options in regenerative medicine not possible as recently as a decade ago. In this review, we will discuss advances in regenerative medicine as it may be applied to the kidney. This will cover cellular therapies focused on ameliorating injury and improving repair as well as advancements in the generation of new renal tissue from stem/progenitor cells. PMID:27234568

  10. CMD kinetics and regenerative medicine

    PubMed Central

    Anjamrooz, Seyed Hadi

    2016-01-01

    The author’s theory of the cell memory disc (CMD) offers a radical and holistic picture of the cell from both functional and structural perspectives. Despite all of the attention that has been focused on different regenerative strategies, several serious CMD-based obstacles still remain that make current cell therapies inherently unethical, harmful, and largely ineffective from a clinical viewpoint. Accordingly, unless there is a real breakthrough in finding an alternative or complementary approach to overcome these barriers, all of the discussion regarding cell-based therapies may be fruitless. Hence, this paper focuses on the issue of CMD kinetics in an attempt to provide a fresh perspective on regenerative medicine. PMID:27186287

  11. The economic value of investing in regenerative medicine.

    PubMed

    Hussain, Aftab; Rivers, Patrick A

    2009-01-01

    This article discusses the science of regenerative medicine and presents evidence that investments towards the development of this technology will reduce total health care output. Use of regenerative medicine will also be an important factor in eliminating chronic diseases such as diabetes, heart disease, and Parkinson's disease. Investment in regenerative medicine is a sound strategy for several reasons: human suffering will be reduced, if not eliminated; and the economy will be stimulated by creating employment opportunities, generating additional income and tax revenues, increasing worker productivity, creating new conglomerates, and reducing insurance costs. This article discusses some of the latest advances in regenerative medicine as well as the progress that has been made in the development of new stem cell therapies. PMID:20499720

  12. Emerging translational research on magnetic nanoparticles for regenerative medicine.

    PubMed

    Gao, Yu; Lim, Jing; Teoh, Swee-Hin; Xu, Chenjie

    2015-10-01

    Regenerative medicine, which replaces or regenerates human cells, tissues or organs, to restore or establish normal function, is one of the fastest-evolving interdisciplinary fields in healthcare. Over 200 regenerative medicine products, including cell-based therapies, tissue-engineered biomaterials, scaffolds and implantable devices, have been used in clinical development for diseases such as diabetes and inflammatory and immune diseases. To facilitate the translation of regenerative medicine from research to clinic, nanotechnology, especially magnetic nanoparticles have attracted extensive attention due to their unique optical, electrical, and magnetic properties and specific dimensions. In this review paper, we intend to summarize current advances, challenges, and future opportunities of magnetic nanoparticles for regenerative medicine. PMID:26505058

  13. Regenerative Medicine for Parkinson’s Disease

    PubMed Central

    YASUHARA, Takao; KAMEDA, Masahiro; AGARI, Takashi; DATE, Isao

    2015-01-01

    Regenerative medicine for Parkinson’s disease (PD) is expected to develop dramatically with the advancement of biotechnology as represented by induced pluripotent stem cells. Existing therapeutic strategy for PD consists of medication using L-DOPA, surgery such as deep brain stimulation and rehabilitation. Current treatment cannot stop the progression of the disease, although there is definite therapeutic effect. True neurorestoration is strongly desired by regenerative medicine. This review article describes the historical development of regenerative medicine for PD, with a focus on fetal nigral cell transplantation and glial cell line-derived neurotrophic factor infusion. Subsequently, the current status of regenerative medicine for PD in terms of cell therapy and gene therapy are reviewed. In the end, the future direction to realize regenerative medicine for PD is discussed. PMID:25746305

  14. Perivascular cells for regenerative medicine

    PubMed Central

    Crisan, Mihaela; Corselli, Mirko; Chen, William CW; Péault, Bruno; Moldovan, NI

    2012-01-01

    Mesenchymal stem/stromal cells (MSC) are currently the best candidate therapeutic cells for regenerative medicine related to osteoarticular, muscular, vascular and inflammatory diseases, although these cells remain heterogeneous and necessitate a better biological characterization. We and others recently described that MSC originate from two types of perivascular cells, namely pericytes and adventitial cells and contain the in situ counterpart of MSC in developing and adult human organs, which can be prospectively purified using well defined cell surface markers. Pericytes encircle endothelial cells of capillaries and microvessels and express the adhesion molecule CD146 and the PDGFRβ, but lack endothelial and haematopoietic markers such as CD34, CD31, vWF (von Willebrand factor), the ligand for Ulex europaeus 1 (UEA1) and CD45 respectively. The proteoglycan NG2 is a pericyte marker exclusively associated with the arterial system. Besides its expression in smooth muscle cells, smooth muscle actin (αSMA) is also detected in subsets of pericytes. Adventitial cells surround the largest vessels and, opposite to pericytes, are not closely associated to endothelial cells. Adventitial cells express CD34 and lack αSMA and all endothelial and haematopoietic cell markers, as for pericytes. Altogether, pericytes and adventitial perivascular cells express in situ and in culture markers of MSC and display capacities to differentiate towards osteogenic, adipogenic and chondrogenic cell lineages. Importantly, adventitial cells can differentiate into pericyte-like cells under inductive conditions in vitro. Altogether, using purified perivascular cells instead of MSC may bring higher benefits to regenerative medicine, including the possibility, for the first time, to use these cells uncultured. PMID:22882758

  15. Clinical imaging in regenerative medicine

    PubMed Central

    Naumova, Anna V; Modo, Michel; Moore, Anna; Murry, Charles E; Frank, Joseph A

    2014-01-01

    In regenerative medicine, clinical imaging is indispensable for characterizing damaged tissue and for measuring the safety and efficacy of therapy. However, the ability to track the fate and function of transplanted cells with current technologies is limited. Exogenous contrast labels such as nanoparticles give a strong signal in the short term but are unreliable long term. Genetically encoded labels are good both short- and long-term in animals, but in the human setting they raise regulatory issues related to the safety of genomic integration and potential immunogenicity of reporter proteins. Imaging studies in brain, heart and islets share a common set of challenges, including developing novel labeling approaches to improve detection thresholds and early delineation of toxicity and function. Key areas for future research include addressing safety concerns associated with genetic labels and developing methods to follow cell survival, differentiation and integration with host tissue. Imaging may bridge the gap between cell therapies and health outcomes by elucidating mechanisms of action through longitudinal monitoring. PMID:25093889

  16. Regenerative medicine applications in combat casualty care.

    PubMed

    Fleming, Mark E; Bharmal, Husain; Valerio, Ian

    2014-03-01

    The purpose of this report is to describe regenerative medicine applications in the management of complex injuries sustained by service members injured in support of the wars in Afghanistan and Iraq. Improvements in body armor, resuscitative techniques and faster transport have translated into increased patient survivability and more complex wounds. Combat-related blast injuries have resulted in multiple extremity injuries, significant tissue loss and amputations. Due to the limited availability and morbidity associated with autologous tissue donor sites, the introduction of regenerative medicine has been critical in managing war extremity injuries with composite massive tissue loss. Through case reports and clinical images, this report reviews the application of regenerative medicine modalities employed to manage combat-related injuries. It illustrates that the novel use of hybrid reconstructions combining traditional and regenerative medicine approaches are an effective tool in managing wounds. Lessons learned can be adapted to civilian care. PMID:24750059

  17. Global strategic partnerships in regenerative medicine.

    PubMed

    French, Anna; Suh, Jane Y; Suh, Carol Y; Rubin, Lee; Barker, Richard; Bure, Kim; Reeve, Brock; Brindley, David A

    2014-09-01

    The approach to research and development in biomedical science is changing. Increasingly, academia and industry seek to collaborate, and share resources and expertise, by establishing partnerships. Here, we explore the co-development partnership landscape in the field of regenerative medicine, focusing on agreements involving one or more private entities. A majority of the largest biopharmaceutical companies have announced strategic partnerships with a specific regenerative medicine focus, signifying the growth and widening appeal of this emerging sector. PMID:25150363

  18. Functional imaging for regenerative medicine.

    PubMed

    Leahy, Martin; Thompson, Kerry; Zafar, Haroon; Alexandrov, Sergey; Foley, Mark; O'Flatharta, Cathal; Dockery, Peter

    2016-01-01

    In vivo imaging is a platform technology with the power to put function in its natural structural context. With the drive to translate stem cell therapies into pre-clinical and clinical trials, early selection of the right imaging techniques is paramount to success. There are many instances in regenerative medicine where the biological, biochemical, and biomechanical mechanisms behind the proposed function of stem cell therapies can be elucidated by appropriate imaging. Imaging techniques can be divided according to whether labels are used and as to whether the imaging can be done in vivo. In vivo human imaging places additional restrictions on the imaging tools that can be used. Microscopies and nanoscopies, especially those requiring fluorescent markers, have made an extraordinary impact on discovery at the molecular and cellular level, but due to their very limited ability to focus in the scattering tissues encountered for in vivo applications they are largely confined to superficial imaging applications in research laboratories. Nanoscopy, which has tremendous benefits in resolution, is limited to the near-field (e.g. near-field scanning optical microscope (NSNOM)) or to very high light intensity (e.g. stimulated emission depletion (STED)) or to slow stochastic events (photo-activated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM)). In all cases, nanoscopy is limited to very superficial applications. Imaging depth may be increased using multiphoton or coherence gating tricks. Scattering dominates the limitation on imaging depth in most tissues and this can be mitigated by the application of optical clearing techniques that can impose mild (e.g. topical application of glycerol) or severe (e.g. CLARITY) changes to the tissue to be imaged. Progression of therapies through to clinical trials requires some thought as to the imaging and sensing modalities that should be used. Smoother progression is facilitated by the use of

  19. Regenerative medicine: learning from past examples.

    PubMed

    Couto, Daniela S; Perez-Breva, Luis; Cooney, Charles L

    2012-11-01

    Regenerative medicine products have characteristically shown great therapeutic potential, but limited market success. Learning from the past attempts at capturing value is critical for new and emerging regenerative medicine therapies to define and evolve their business models as new therapies emerge and others mature. We propose a framework that analyzes technological developments along with alternative business models and illustrates how to use both strategically to map value capture by companies in regenerative medicine. We analyze how to balance flexibility of the supply chain and clarity in the regulatory pathway for each business model and propose the possible pathways of evolution between business models. We also drive analogies between cell-based therapies and other healthcare products such as biologicals and medical devices and suggest how to strategically evolve from these areas into the cell therapy space. PMID:22697402

  20. Regenerative medicine: Current therapies and future directions

    PubMed Central

    Mao, Angelo S.; Mooney, David J.

    2015-01-01

    Organ and tissue loss through disease and injury motivate the development of therapies that can regenerate tissues and decrease reliance on transplantations. Regenerative medicine, an interdisciplinary field that applies engineering and life science principles to promote regeneration, can potentially restore diseased and injured tissues and whole organs. Since the inception of the field several decades ago, a number of regenerative medicine therapies, including those designed for wound healing and orthopedics applications, have received Food and Drug Administration (FDA) approval and are now commercially available. These therapies and other regenerative medicine approaches currently being studied in preclinical and clinical settings will be covered in this review. Specifically, developments in fabricating sophisticated grafts and tissue mimics and technologies for integrating grafts with host vasculature will be discussed. Enhancing the intrinsic regenerative capacity of the host by altering its environment, whether with cell injections or immune modulation, will be addressed, as well as methods for exploiting recently developed cell sources. Finally, we propose directions for current and future regenerative medicine therapies. PMID:26598661

  1. Regenerative medicine: Current therapies and future directions.

    PubMed

    Mao, Angelo S; Mooney, David J

    2015-11-24

    Organ and tissue loss through disease and injury motivate the development of therapies that can regenerate tissues and decrease reliance on transplantations. Regenerative medicine, an interdisciplinary field that applies engineering and life science principles to promote regeneration, can potentially restore diseased and injured tissues and whole organs. Since the inception of the field several decades ago, a number of regenerative medicine therapies, including those designed for wound healing and orthopedics applications, have received Food and Drug Administration (FDA) approval and are now commercially available. These therapies and other regenerative medicine approaches currently being studied in preclinical and clinical settings will be covered in this review. Specifically, developments in fabricating sophisticated grafts and tissue mimics and technologies for integrating grafts with host vasculature will be discussed. Enhancing the intrinsic regenerative capacity of the host by altering its environment, whether with cell injections or immune modulation, will be addressed, as well as methods for exploiting recently developed cell sources. Finally, we propose directions for current and future regenerative medicine therapies. PMID:26598661

  2. Functionalized Nanostructures with Application in Regenerative Medicine

    PubMed Central

    Perán, Macarena; García, María A.; López-Ruiz, Elena; Bustamante, Milán; Jiménez, Gema; Madeddu, Roberto; Marchal, Juan A.

    2012-01-01

    In the last decade, both regenerative medicine and nanotechnology have been broadly developed leading important advances in biomedical research as well as in clinical practice. The manipulation on the molecular level and the use of several functionalized nanoscaled materials has application in various fields of regenerative medicine including tissue engineering, cell therapy, diagnosis and drug and gene delivery. The themes covered in this review include nanoparticle systems for tracking transplanted stem cells, self-assembling peptides, nanoparticles for gene delivery into stem cells and biomimetic scaffolds useful for 2D and 3D tissue cell cultures, transplantation and clinical application. PMID:22489186

  3. 25th Anniversary Article: Supramolecular Materials for Regenerative Medicine

    PubMed Central

    Boekhoven, Job

    2014-01-01

    In supramolecular materials, molecular building blocks are designed to interact with one another via non-covalent interactions in order to create function. This offers the opportunity to create structures similar to those found in living systems that combine order and dynamics through the reversibility of intermolecular bonds. For regenerative medicine there is a great need to develop materials that signal cells effectively, deliver or bind bioactive agents in vivo at controlled rates, have highly tunable mechanical properties, but at the same time, can biodegrade safely and rapidly after fulfilling their function. These requirements make supramolecular materials a great platform to develop regenerative therapies. This review illustrates the emerging science of these materials and their use in a number of applications for regenerative medicine. PMID:24496667

  4. Overcoming immunological barriers in regenerative medicine

    PubMed Central

    Zakrzewski, Johannes L; van den Brink, Marcel R M; Hubbell, Jeffrey A

    2015-01-01

    Regenerative therapies that use allogeneic cells are likely to encounter immunological barriers similar to those that occur with transplantation of solid organs and allogeneic hematopoietic stem cells (HSCs). Decades of experience in clinical transplantation hold valuable lessons for regenerative medicine, offering approaches for developing tolerance-induction treatments relevant to cell therapies. Outside the field of solid-organ and allogeneic HSC transplantation, new strategies are emerging for controlling the immune response, such as methods based on biomaterials or mimicry of antigen-specific peripheral tolerance. Novel biomaterials can alter the behavior of cells in tissue-engineered constructs and can blunt host immune responses to cells and biomaterial scaffolds. Approaches to suppress autoreactive immune cells may also be useful in regenerative medicine. The most innovative solutions will be developed through closer collaboration among stem cell biologists, transplantation immunologists and materials scientists. PMID:25093888

  5. Overcoming immunological barriers in regenerative medicine.

    PubMed

    Zakrzewski, Johannes L; van den Brink, Marcel R M; Hubbell, Jeffrey A

    2014-08-01

    Regenerative therapies that use allogeneic cells are likely to encounter immunological barriers similar to those that occur with transplantation of solid organs and allogeneic hematopoietic stem cells (HSCs). Decades of experience in clinical transplantation hold valuable lessons for regenerative medicine, offering approaches for developing tolerance-induction treatments relevant to cell therapies. Outside the field of solid-organ and allogeneic HSC transplantation, new strategies are emerging for controlling the immune response, such as methods based on biomaterials or mimicry of antigen-specific peripheral tolerance. Novel biomaterials can alter the behavior of cells in tissue-engineered constructs and can blunt host immune responses to cells and biomaterial scaffolds. Approaches to suppress autoreactive immune cells may also be useful in regenerative medicine. The most innovative solutions will be developed through closer collaboration among stem cell biologists, transplantation immunologists and materials scientists. PMID:25093888

  6. Therapeutic potential of nanoceria in regenerative medicine

    SciTech Connect

    Das, Soumen; Chigurupati, Srinivasulu; Dowding, Janet; Munusamy, Prabhakaran; Baer, Donald R.; McGinnis, James F.; Mattson, Mark P.; Self, William; Seal, Sudipta

    2014-11-01

    Tissue engineering and regenerative medicine aim to achieve functional restoration of tissue or cells damaged through disease, aging or trauma. Advancement of tissue engineering requires innovation in the field of 3D scaffolding, and functionalization with bioactive molecules. Nanotechnology offers advanced materials with patterned nano-morphologies for cell growth and different molecular substrates which can support cell survival and functions. Cerium oxide nanoparticles (nanoceria) can control intracellular as well as extracellular reactive oxygen and nitrogen species. Recent findings suggest that nanoceria can enhance long-term cell survival, enable cell migration and proliferation, and promote stem cell differentiation. Moreover, the self-regenerative property of nanoceria permits a small dose to remain catalytically active for extended time. This review summarizes the possibilities and applications of nanoceria in the field of tissue engineering and regenerative medicine.

  7. Applications of regenerative medicine in organ transplantation

    PubMed Central

    Jain, Aditya; Bansal, Ramta

    2015-01-01

    A worldwide shortage of organs for clinical implantation establishes the need to bring forward and test new technologies that will help in solving the problem. The concepts of regenerative medicine hold the potential for augmenting organ function or repairing damaged organ or allowing regeneration of deteriorated organs and tissue. Researchers are exploring possible regenerative medicine applications in organ transplantation so that coming together of the two fields can benefit each other. The present review discusses the strategies that are being implemented to regenerate or bio-engineer human organs for clinical purposes. It also highlights the limitations of the regenerative medicine that needs to be addressed to explore full potential of the field. A web-based research on MEDLINE was done using keywords “regenerative medicine,” “tissue-engineering,” “bio-engineered organs,” “decellularized scaffold” and “three-dimensional printing.” This review screened about 170 articles to get the desired knowledge update. PMID:26229352

  8. Common ethical issues in regenerative medicine.

    PubMed

    Awaya, Tsuyoshi

    2005-01-01

    One of the common ethical issues in regenerative medicine is progress in 'componentation' (= being treated as parts) of the human body, and the enhancement of the view of such "human body parts." 'Componentation' of the human body represents a preliminary step toward commodification of the human body. The process of commodification of the human body follows the steps of 'materialization' (= being treated as a material object) [first step] -- 'componentation' [second step] -- 'resourcialization' (= being treated as resources) [third step] -- commodification [fourth step]. Transplantation medicine and artificial organ developments have dramatically exposed the potential of organs and tissues as parts, and regenerative medicine has a role in advancing 'componentation' of the human body and further enhancing the view of human body parts. The 'componentation' of the human body, regardless of the degree of regenerative medicine's contribution to it, is considered as a challenge to the traditional view of human bodies and the abstract value of "Human Dignity" in the same way or alongside the 'resourcialization' and commodification. However, in the future, a new perspective of human bodies that means "a perspective whereby human bodies, organs, tissues, and even the bodies themselves are perceived as disposable tools like disposable cameras, syringes, or contact lens" and therefore a new ethical view, suitable for a new reality, may emerge. PMID:16637131

  9. Fluorescent Cell Imaging in Regenerative Medicine

    PubMed Central

    Sapoznik, Etai; Niu, Guoguang; Zhou, Yu; Murphy, Sean V.; Soker, Shay

    2016-01-01

    Fluorescent protein imaging, a promising tool in biological research, incorporates numerous applications that can be of specific use in the field of regenerative medicine. To enhance tissue regeneration efforts, scientists have been developing new ways to monitor tissue development and maturation in vitro and in vivo. To that end, new imaging tools and novel fluorescent proteins have been developed for the purpose of performing deep-tissue high-resolution imaging. These new methods, such as intra-vital microscopy and Förster resonance energy transfer, are providing new insights into cellular behavior, including cell migration, morphology, and phenotypic changes in a dynamic environment. Such applications, combined with multimodal imaging, significantly expand the utility of fluorescent protein imaging in research and clinical applications of regenerative medicine. PMID:27158228

  10. Electrospun Silk Biomaterial Scaffolds for Regenerative Medicine

    PubMed Central

    Zhang, Xiaohui; Reagan, Michaela R; Kaplan, David L.

    2009-01-01

    Electrospinning is a versatile technique that enables the development of nanofiber-based biomaterial scaffolds. Scaffolds can be generated that are useful for tissue engineering and regenerative medicine since they mimic the nanoscale properties of certain fibrous components of the native extracellular matrix in tissues. Silk is a natural protein with excellent biocompatibility, remarkable mechanical properties as well as tailorable degradability. Integrating these protein polymer advantages with electrospinning results in scaffolds with combined biochemical, topographical and mechanical cues with versatility for a range of biomaterial, cell and tissue studies and applications. This review covers research related to electrospinning of silk, including process parameters, post treatment of the spun fibers, functionalization of nanofibers, and the potential applications for these material systems in regenerative medicine. Research challenges and future trends are also discussed. PMID:19643154

  11. Translational strategies and challenges in regenerative medicine.

    PubMed

    Dimmeler, Stefanie; Ding, Sheng; Rando, Thomas A; Trounson, Alan

    2014-08-01

    The scientific community is currently witnessing substantial strides in understanding stem cell biology in humans; however, major disappointments in translating this knowledge into medical therapies are flooding the field as well. Despite these setbacks, investigators are determined to better understand the caveats of regeneration, so that major pathways of repair and regrowth can be exploited in treating aged and diseased tissues. Last year, in an effort to contribute to this burgeoning field, Nature Medicine, in collaboration with the Volkswagen Foundation, organized a meeting with a panel of experts in regenerative medicine to identify the most pressing challenges, as well as the crucial strategies and stem cell concepts that can best help advance the translational regenerative field. Here some experts who participated in the meeting provide an outlook at some of those key issues and concepts. PMID:25100527

  12. Researches on regenerative medicine-current state and prospect.

    PubMed

    Wang, Zheng-Guo; Xiao, Kai

    2012-01-01

    Since 1980s, the rapid development of tissue engineering and stem cell research has pushed regenerative medicine to a new fastigium, and regenerative medicine has become a noticeable research field in the international biology and medicine. In China, about 100 million patients need repair and regeneration treatment every year, while the number is much larger in the world. Regenerative medicine could provide effective salvation for these patients. Both Chinese Academy of Sciences and Chinese Academy of Engineering have made roadmaps of 2010-2050 and 2011-2030 for regenerative medicine. The final goal of the two roadmaps is to make China go up to leading position in most research aspects of regenerative medicine. In accord with this strategy, the government and some enterprises have invested 3-5 billion RMB (0.5-0.8 billion USD) for the research on regenerative medicine. In order to push the translation of regenerative medicine forward-from bench to bedside, a strategic alliance has been established, and it includes 27 top-level research institutes, medical institutes, colleges, universities and enterprises in the field of stem cell and regeneration medicine. Recently the journal, Science, has published a special issue-Regenerative Medicine in China, consisting of 35 papers dealing with stem cell and regeneration, tissue engineering and regeneration, trauma and regeneration and bases for tissue repair and regenerative medicine. It is predicated that a greater breakthrough in theory and practice of regenerative medicine will be achieved in the near future (20 to 30 years). PMID:23069095

  13. Stem cell platforms for regenerative medicine.

    PubMed

    Nelson, Timothy J; Behfar, Atta; Yamada, Satsuki; Martinez-Fernandez, Almudena; Terzic, Andre

    2009-06-01

    The pandemic of chronic degenerative diseases associated with aging demographics mandates development of effective approaches for tissue repair. As diverse stem cells directly contribute to innate healing, the capacity for de novo tissue reconstruction harbors a promising role for regenerative medicine. Indeed, a spectrum of natural stem cell sources ranging from embryonic to adult progenitors has been recently identified with unique characteristics for regeneration. The accessibility and applicability of the regenerative armamentarium has been further expanded with stem cells engineered by nuclear reprogramming. Through strategies of replacement to implant functional tissues, regeneration to transplant progenitor cells or rejuvenation to activate endogenous self-repair mechanisms, the overarching goal of regenerative medicine is to translate stem cell platforms into practice and achieve cures for diseases limited to palliative interventions. Harnessing the full potential of each platform will optimize matching stem cell-based biologics with the disease-specific niche environment of individual patients to maximize the quality of long-term management, while minimizing the needs for adjunctive therapy. Emerging discovery science with feedback from clinical translation is therefore poised to transform medicine offering safe and effective stem cell biotherapeutics to enable personalized solutions for incurable diseases. PMID:19779576

  14. Upconversion Nanoparticles for Bioimaging and Regenerative Medicine.

    PubMed

    González-Béjar, María; Francés-Soriano, Laura; Pérez-Prieto, Julia

    2016-01-01

    Nanomaterials are proving useful for regenerative medicine in combination with stem cell therapy. Nanoparticles (NPs) can be administrated and targeted to desired tissues or organs and subsequently be used in non-invasive real-time visualization and tracking of cells by means of different imaging techniques, can act as therapeutic agent nanocarriers, and can also serve as scaffolds to guide the growth of new tissue. NPs can be of different chemical nature, such as gold, iron oxide, cadmium selenide, and carbon, and have the potential to be used in regenerative medicine. However, there are still many issues to be solved, such as toxicity, stability, and resident time. Upconversion NPs have relevant properties such as (i) low toxicity, (ii) capability to absorb light in an optical region where absorption in tissues is minimal and penetration is optimal (note they can also be designed to emit in the near-infrared region), and (iii) they can be used in multiplexing and multimodal imaging. An overview on the potentiality of upconversion materials in regenerative medicine is given. PMID:27379231

  15. Upconversion Nanoparticles for Bioimaging and Regenerative Medicine

    PubMed Central

    González-Béjar, María; Francés-Soriano, Laura; Pérez-Prieto, Julia

    2016-01-01

    Nanomaterials are proving useful for regenerative medicine in combination with stem cell therapy. Nanoparticles (NPs) can be administrated and targeted to desired tissues or organs and subsequently be used in non-invasive real-time visualization and tracking of cells by means of different imaging techniques, can act as therapeutic agent nanocarriers, and can also serve as scaffolds to guide the growth of new tissue. NPs can be of different chemical nature, such as gold, iron oxide, cadmium selenide, and carbon, and have the potential to be used in regenerative medicine. However, there are still many issues to be solved, such as toxicity, stability, and resident time. Upconversion NPs have relevant properties such as (i) low toxicity, (ii) capability to absorb light in an optical region where absorption in tissues is minimal and penetration is optimal (note they can also be designed to emit in the near-infrared region), and (iii) they can be used in multiplexing and multimodal imaging. An overview on the potentiality of upconversion materials in regenerative medicine is given. PMID:27379231

  16. Application of regenerative medicine for kidney diseases.

    PubMed

    Yokoo, Takashi; Fukui, Akira; Kobayashi, Eiji

    2007-01-01

    Following recent advancements of stem cell research, the potential for organ regeneration using somatic stem cells as an ultimate therapy for organ failure has increased. However, anatomically complicated organs such as the kidney and liver have proven more refractory to stem cell-based regenerative techniques. At present, kidney regeneration is considered to require one of two approaches depending on the type of renal failure, namely acute renal failure (ARF) and chronic renal failure (CRF).The kidney has the potential to regenerate itself provided that the damage is not too severe and the kidney's structure remains intact. Regenerative medicine for ARF should therefore aim to activate or support this potent. In cases of the irreversible damage to the kidney, which is most likely in patients with CRF undergoing long-term dialysis, self-renewal is totally lost. Thus, regenerative medicine for CRF will likely involve the establishment of a functional whole kidney de novo. This article reviews the challenges and recent advances in both approaches and discusses the potential approach of these novel strategies for clinical application. PMID:19279698

  17. Application of Regenerative Medicine for Kidney Diseases

    PubMed Central

    Fukui, Akira; Kobayashi, Eiji

    2007-01-01

    Following recent advancements of stem cell research, the potential for organ regeneration using somatic stem cells as an ultimate therapy for organ failure has increased. However, anatomically complicated organs such as the kidney and liver have proven more refractory to stem cell-based regenerative techniques. At present, kidney regeneration is considered to require one of two approaches depending on the type of renal failure, namely acute renal failure (ARF) and chronic renal failure (CRF). The kidney has the potential to regenerate itself provided that the damage is not too severe and the kidney's structure remains intact. Regenerative medicine for ARF should therefore aim to activate or support this potent. In cases of the irreversible damage to the kidney, which is most likely in patients with CRF undergoing long-term dialysis, self-renewal is totally lost. Thus, regenerative medicine for CRF will likely involve the establishment of a functional whole kidney de novo. This article reviews the challenges and recent advances in both approaches and discusses the potential approach of these novel strategies for clinical application. PMID:19279698

  18. Controlled release of growth factors for regenerative medicine.

    PubMed

    Liu, Libiao; Zhou, Xinwei; Xu, Yufan; Zhang, Weiming; Liu, Cheng-Hsien; Wang, Xiaohong

    2015-01-01

    How to release growth factors (GFs) scientifically to promote stem cell proliferation and differentiation is one of the most significant research focuses in the field of regenerative medicine. In a controlled release system, growth factors, extracellular matrices or biomaterial carriers, and sometimes stem cells together form a geometric entirety. Biomaterial carriers provide GFs with a support structure to be adhered, immobilized, encapsulated or/and protected. As a unity, the release rate and rhythm of GFs on cells are normally very delicate and precise. Up to now, the best strategy for clinical applications is the combination systems that encapsulate GFs in microspheres, particularly the nano- or micro-encapsulation techniques integrated GFs with biomaterial carriers. In this mini review, we summarize the current progress in GF delivery systems for regenerative medicine and provide an outlook on two main aspects: one is the classes of stem cells and GFs that have been used frequently in regenerative medicine, including their respective application conditions and functions; the other is the controlled GF release systems, in which various GFs are released orderly and continuously without diffusing simply and rapidly, including their respective opportunities and challenges. PMID:25594403

  19. Phosphorous-Containing Polymers for Regenerative Medicine

    PubMed Central

    Watson, Brendan M.; Kasper, F. Kurtis; Mikos, Antonios G.

    2014-01-01

    Disease and injury have resulted in a large, unmet need for functional tissue replacements. Polymeric scaffolds can be used to deliver cells and bioactive signals to address this need for regenerating damaged tissue. Phosphorous-containing polymers have been implemented to improve and accelerate the formation of native tissue both by mimicking the native role of phosphorous groups in the body and by attachment of other bioactive molecules. This manuscript reviews the synthesis, properties, and performance of phosphorous-containing polymers that can be useful in regenerative medicine applications. PMID:24565855

  20. The essential materials paradigms for regenerative medicine

    NASA Astrophysics Data System (ADS)

    Williams, David

    2011-04-01

    Medical technology is changing rapidly. Several disease states can now be treated very effectively by implantable devices that restore mechanical and physical functionality, such as replacement of hip joints or restoration of heart rhythms by pacemakers. These techniques, however, are rather limited, and no biological functionality can be restored through the use of inert materials and devices. This paper explores the role of new types of biomaterials within the emerging area of regenerative medicine, where they are able to play a powerful role in persuading the human body to regenerate itself.

  1. Bioprinting is changing regenerative medicine forever.

    PubMed

    Collins, Scott Forrest

    2014-12-01

    3D printing, or solid freeform fabrication, applied to regenerative medicine brings technologies from several industries together to help solve unique challenges in both basic science and tissue engineering. By more finely organizing cells and supporting structures precisely in 3D space, we will gain critical knowledge of cell-cell communications and cell-environment interactions. As we increase the scale, we will move toward complex tissue and organ structures where several cell phenotypes will functionally and structurally interact, thus recapitulating the form and function of native tissues and organs. PMID:25457969

  2. The effect of the bioactive sphingolipids S1P and C1P on multipotent stromal cells--new opportunities in regenerative medicine.

    PubMed

    Marycz, Krzysztof; Śmieszek, Agnieszka; Jeleń, Marta; Chrząstek, Klaudia; Grzesiak, Jakub; Meissner, Justyna

    2015-09-01

    Sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) belong to a family of bioactive sphingolipids that act as important extracellular signaling molecules and chemoattractants. This study investigated the influence of S1P and C1P on the morphology, proliferation activity and osteogenic properties of rat multipotent stromal cells derived from bone marrow (BMSCs) and subcutaneous adipose tissue (ASCs). We show that S1P and C1P can influence mesenchymal stem cells (MSCs), each in a different manner. S1P stimulation promoted the formation of cellular aggregates of BMSCs and ASCs, while C1P had an effect on the regular growth pattern and expanded intercellular connections, thereby increasing the proliferative activity. Although osteogenic differentiation of MSCs was enhanced by the addition of S1P, the effectiveness of osteoblast differentiation was more evident in BMSCs, particularly when biochemical and molecular marker levels were considered. The results of the functional osteogenic differentiation assay, which includes an evaluation of the efficiency of extracellular matrix mineralization (SEM-EDX), revealed the formation of numerous mineral aggregates in BMSC cultures stimulated with S1P. Our data demonstrated that in an appropriate combination, the bioactive sphingolipids S1P and C1P may find wide application in regenerative medicine, particularly in bone regeneration with the use of MSCs. PMID:26110483

  3. Extracellular Vesicles: Potential Roles in Regenerative Medicine

    PubMed Central

    De Jong, Olivier G.; Van Balkom, Bas W. M.; Schiffelers, Raymond M.; Bouten, Carlijn V. C.; Verhaar, Marianne C.

    2014-01-01

    Extracellular vesicles (EV) consist of exosomes, which are released upon fusion of the multivesicular body with the cell membrane, and microvesicles, which are released directly from the cell membrane. EV can mediate cell–cell communication and are involved in many processes, including immune signaling, angiogenesis, stress response, senescence, proliferation, and cell differentiation. The vast amount of processes that EV are involved in and the versatility of manner in which they can influence the behavior of recipient cells make EV an interesting source for both therapeutic and diagnostic applications. Successes in the fields of tumor biology and immunology sparked the exploration of the potential of EV in the field of regenerative medicine. Indeed, EV are involved in restoring tissue and organ damage, and may partially explain the paracrine effects observed in stem cell-based therapeutic approaches. The function and content of EV may also harbor information that can be used in tissue engineering, in which paracrine signaling is employed to modulate cell recruitment, differentiation, and proliferation. In this review, we discuss the function and role of EV in regenerative medicine and elaborate on potential applications in tissue engineering. PMID:25520717

  4. Tissue engineering and regenerative medicine: manufacturing challenges.

    PubMed

    Williams, D J; Sebastine, I M

    2005-12-01

    Tissue engineering and regenerative medicine are interdisciplinary fields that apply principles of engineering and life sciences to develop biological substitutes, typically composed of biological and synthetic components, that restore, maintain or improve tissue function. Many tissue engineering technologies are still at a laboratory or pre-commercial scale. The short review paper describes the most significant manufacturing and bio-process challenges inherent in the commercialisation and exploitation of the exciting results emerging from the biological and clinical laboratories exploring tissue engineering and regenerative medicine. A three-generation road map of the industry has been used to structure a view of these challenges and to define where the manufacturing community can contribute to the commercial success of the products from these emerging fields. The first-generation industry is characterised by its demonstrated clinical applications and products in the marketplace, the second is characterised by emerging clinical applications, and the third generation is characterised by aspirational clinical applications. The paper focuses on the cost reduction requirement of the first generation of the industry to allow more market penetration and consequent patient impact. It indicates the technological requirements, for instance the creation of three-dimensional tissue structures, and value chain issues in the second generation of the industry. The third-generation industry challenges lie in fundamental biological and clinical science. The paper sets out a road map of these generations to identify areas for research. PMID:16441181

  5. CIRM and UKRMP: Different Ways to Invest in Regenerative Medicine.

    PubMed

    Weissman, Irving L; Watt, Fiona M

    2016-07-01

    The California Institute for Regenerative Medicine (CIRM) and the UK Regenerative Medicine Platform (UKRMP) have similar objectives, but their histories, funding mechanisms, and governance could hardly be more different. Here, we compare the two programs and explore their impact in translating stem cell research into clinical applications. PMID:27392224

  6. 78 FR 43889 - Synergizing Efforts in Standards Development for Cellular Therapies and Regenerative Medicine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ...: Standardization efforts concerning the clinical development of cellular therapies and regenerative medicine... Therapies and Regenerative Medicine Products; Public Workshop AGENCY: Food and Drug Administration, HHS... Development for Cellular Therapies and Regenerative Medicine Products.'' The purpose of the public workshop...

  7. Liposomes in tissue engineering and regenerative medicine

    PubMed Central

    Monteiro, Nelson; Martins, Albino; Reis, Rui L.; Neves, Nuno M.

    2014-01-01

    Liposomes are vesicular structures made of lipids that are formed in aqueous solutions. Structurally, they resemble the lipid membrane of living cells. Therefore, they have been widely investigated, since the 1960s, as models to study the cell membrane, and as carriers for protection and/or delivery of bioactive agents. They have been used in different areas of research including vaccines, imaging, applications in cosmetics and tissue engineering. Tissue engineering is defined as a strategy for promoting the regeneration of tissues for the human body. This strategy may involve the coordinated application of defined cell types with structured biomaterial scaffolds to produce living structures. To create a new tissue, based on this strategy, a controlled stimulation of cultured cells is needed, through a systematic combination of bioactive agents and mechanical signals. In this review, we highlight the potential role of liposomes as a platform for the sustained and local delivery of bioactive agents for tissue engineering and regenerative medicine approaches. PMID:25401172

  8. Carbohydrate Engineered Cells for Regenerative Medicine

    PubMed Central

    Du, Jian; Yarema, Kevin J.

    2010-01-01

    Carbohydrates are integral components of the stem cell niche on several levels; proteoglycans are a major constituent of the extracellular matrix (ECM) surrounding a cell, glycosoaminoglycans (GAGs) help link cells to the ECM and the neighboring cells, and small but informationally-rich oligosaccharides provide a “sugar code” that identifies each cell and provides it with unique functions. This article samples roles that glycans play in development and then describes how metabolic glycoengineering – a technique where monosaccharide analogs are introduced into the metabolic pathways of a cell and are biosynthetically incorporated into the glycocalyx – is overcoming many of the long-standing barriers to manipulating carbohydrates in living cells and tissues and is becoming an intriguing new tool for tissue engineering and regenerative medicine. PMID:20117158

  9. Epidermal Stem Cells in Orthopaedic Regenerative Medicine

    PubMed Central

    Li, Jin; Zhen, Gehua; Tsai, Shin-Yi; Jia, Xiaofeng

    2013-01-01

    In the last decade, great advances have been made in epidermal stem cell studies at the cellular and molecular level. These studies reported various subpopulations and differentiations existing in the epidermal stem cell. Although controversies and unknown issues remain, epidermal stem cells possess an immune-privileged property in transplantation together with easy accessibility, which is favorable for future clinical application. In this review, we will summarize the biological characteristics of epidermal stem cells, and their potential in orthopedic regenerative medicine. Epidermal stem cells play a critical role via cell replacement, and demonstrate significant translational potential in the treatment of orthopedic injuries and diseases, including treatment for wound healing, peripheral nerve and spinal cord injury, and even muscle and bone remodeling. PMID:23727934

  10. Regenerative medicine: the emergence of an industry

    PubMed Central

    Nerem, Robert M.

    2010-01-01

    Over the last quarter of a century there has been an emergence of a tissue engineering industry, one that has now evolved into the broader area of regenerative medicine. There have been ‘ups and downs’ in this industry; however, it now appears to be on a track that may be described as ‘back to the future’. The latest data indicate that for 2007 the private sector activity in the world for this industry is approaching $2.5 billion, with 167 companies/business units and more than 6000 employee full time equivalents. Although small compared with the medical device and also the pharmaceutical industries, these numbers are not insignificant. Thus, there is the indication that this industry, and the related technology, may still achieve its potential and address the needs of millions of patients worldwide, in particular those with needs that currently are unmet. PMID:20843840

  11. Materials science tools for regenerative medicine

    NASA Astrophysics Data System (ADS)

    Richardson, Wade Nicholas

    Regenerative therapies originating from recent technological advances in biology could revolutionize medicine in the coming years. In particular, the advent of human pluripotent stem cells (hPSCs), with their ability to become any cell in the adult body, has opened the door to an entirely new way of treating disease. However, currently these medical breakthroughs remain only a promise. To make them a reality, new tools must be developed to surmount the new technical hurdles that have arisen from dramatic departure from convention that this field represents. The collected work presented in this dissertation covers several projects that seek to apply the skills and knowledge of materials science to this tool synthesizing effort. The work is divided into three chapters. The first deals with our work to apply Raman spectroscopy, a tool widely used for materials characterization, to degeneration in cartilage. We have shown that Raman can effectively distinguish the matrix material of healthy and diseased tissue. The second area of work covered is the development of a new confocal image analysis for studying hPSC colonies that are chemical confined to uniform growth regions. This tool has important application in understanding the heterogeneity that may slow the development of hPSC -based treatment, as well as the use of such confinement in the eventually large-scale manufacture of hPSCs for therapeutic use. Third, the use of structural templating in tissue engineering scaffolds is detailed. We have utilized templating to tailor scaffold structures for engineering of constructs mimicking two tissues: cartilage and lung. The work described here represents several important early steps towards large goals in regenerative medicine. These tools show a great deal of potential for accelerating progress in this field that seems on the cusp of helping a great many people with otherwise incurable disease.

  12. Rejuvenation: an integrated approach to regenerative medicine.

    PubMed

    Kang, Y James; Zheng, Lily

    2013-12-01

    The word "rejuvenate" found in the Merriam-Webster dictionary is (1) to make young or youthful again: give new vigor to, and (2) to restore to an original or new state. Regenerative medicine is the process of creating living, functional tissues to repair or replace tissue or organ function lost due to age, disease, damage, or congenital defects. To accomplish this, approaches including transplantation, tissue engineering, cell therapy, and gene therapy are brought into action. These all use exogenously prepared materials to forcefully mend the failed organ. The adaptation of the materials in the host and their integration into the organ are all uncertain. It is a common sense that tissue injury in the younger is easily repaired and the acute injury is healed better and faster. Why does the elder have a diminished capacity of self-repairing, or why does chronic injury cause the loss of the self-repairing capacity? There must be some critical elements that are involved in the repair process, but are suppressed in the elder or under the chronic injury condition. Rejuvenation of the self-repair mechanism would be an ideal solution for functional recovery of the failed organ. To achieve this, it would involve renewal of the injury signaling, reestablishment of the communication and transportation system, recruitment of the materials for repairing, regeneration of the failed organ, and rehabilitation of the renewed organ. It thus would require a comprehensive understanding of developmental biology and a development of new approaches to activate the critical players to rejuvenate the self-repair mechanism in the elder or under chronic injury condition. Efforts focusing on rejuvenation would expect an alternative, if not a better, accomplishment in the regenerative medicine. PMID:25984326

  13. State of the art: stem cells in equine regenerative medicine.

    PubMed

    Lopez, M J; Jarazo, J

    2015-03-01

    According to Greek mythology, Prometheus' liver grew back nightly after it was removed each day by an eagle as punishment for giving mankind fire. Hence, contrary to popular belief, the concept of tissue and organ regeneration is not new. In the early 20th century, cell culture and ex vivo organ preservation studies by Alexis Carrel, some with famed aviator Charles Lindbergh, established a foundation for much of modern regenerative medicine. While early beliefs and discoveries foreshadowed significant accomplishments in regenerative medicine, advances in knowledge within numerous scientific disciplines, as well as nano- and micromolecular level imaging and detection technologies, have contributed to explosive advances over the last 20 years. Virtually limitless preparations, combinations and applications of the 3 major components of regenerative medicine, namely cells, biomaterials and bioactive molecules, have created a new paradigm of future therapeutic options for most species. It is increasingly clear, however, that despite significant parallels among and within species, there is no 'one-size-fits-all' regenerative therapy. Likewise, a panacea has yet to be discovered that completely reverses the consequences of time, trauma and disease. Nonetheless, there is no question that the promise and potential of regenerative medicine have forever altered medical practices. The horse is a relative newcomer to regenerative medicine applications, yet there is already a large body of work to incorporate novel regenerative therapies into standard care. This review focuses on the current state and potential future of stem cells in equine regenerative medicine. PMID:24957845

  14. Stem Cells Applications in Regenerative Medicine and Disease Therapeutics.

    PubMed

    Mahla, Ranjeet Singh

    2016-01-01

    Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of tissues or organs for the patient suffering from severe injuries or chronic disease. The spectacular progress in the field of stem cell research has laid the foundation for cell based therapies of disease which cannot be cured by conventional medicines. The indefinite self-renewal and potential to differentiate into other types of cells represent stem cells as frontiers of regenerative medicine. The transdifferentiating potential of stem cells varies with source and according to that regenerative applications also change. Advancements in gene editing and tissue engineering technology have endorsed the ex vivo remodelling of stem cells grown into 3D organoids and tissue structures for personalized applications. This review outlines the most recent advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally, this review also discusses stem cells regenerative application in wildlife conservation. PMID:27516776

  15. Stem Cells Applications in Regenerative Medicine and Disease Therapeutics

    PubMed Central

    2016-01-01

    Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of tissues or organs for the patient suffering from severe injuries or chronic disease. The spectacular progress in the field of stem cell research has laid the foundation for cell based therapies of disease which cannot be cured by conventional medicines. The indefinite self-renewal and potential to differentiate into other types of cells represent stem cells as frontiers of regenerative medicine. The transdifferentiating potential of stem cells varies with source and according to that regenerative applications also change. Advancements in gene editing and tissue engineering technology have endorsed the ex vivo remodelling of stem cells grown into 3D organoids and tissue structures for personalized applications. This review outlines the most recent advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally, this review also discusses stem cells regenerative application in wildlife conservation. PMID:27516776

  16. Science and Ethics: Bridge to the Future for Regenerative Medicine

    PubMed Central

    Patricio, Ventura-Juncá

    2011-01-01

    The objective of this article is to reflect on the relationship between regenerative medicine and ethics, using as references the Aristotelian concept of what is ethical and that of Raessler Van Potter about bioethics. To do this, I will briefly describe the advances in regenerative medicine with stem cells, the strategies for producing pluripotential cells without destroying human embryos, and the great potential of stem cells to improve life for Humanity, noting that for this to be possible, it is necessary to locate the role of regenerative medicine in the context of human values and well being. In this way, this article has a real perspective of the role that regenerative medicine can play in benefitting human beings and engendering respect for human and natural environments. PMID:24298338

  17. Science and ethics: bridge to the future for regenerative medicine.

    PubMed

    Patricio, Ventura-Juncá

    2011-11-01

    The objective of this article is to reflect on the relationship between regenerative medicine and ethics, using as references the Aristotelian concept of what is ethical and that of Raessler Van Potter about bioethics. To do this, I will briefly describe the advances in regenerative medicine with stem cells, the strategies for producing pluripotential cells without destroying human embryos, and the great potential of stem cells to improve life for Humanity, noting that for this to be possible, it is necessary to locate the role of regenerative medicine in the context of human values and well being. In this way, this article has a real perspective of the role that regenerative medicine can play in benefitting human beings and engendering respect for human and natural environments. PMID:24298338

  18. Manufacturing Road Map for Tissue Engineering and Regenerative Medicine Technologies

    PubMed Central

    Hunsberger, Joshua; Harrysson, Ola; Shirwaiker, Rohan; Starly, Binil; Wysk, Richard; Cohen, Paul; Allickson, Julie; Yoo, James

    2015-01-01

    Summary The Regenerative Medicine Foundation Annual Conference held on May 6 and 7, 2014, had a vision of assisting with translating tissue engineering and regenerative medicine (TERM)-based technologies closer to the clinic. This vision was achieved by assembling leaders in the field to cover critical areas. Some of these critical areas included regulatory pathways for regenerative medicine therapies, strategic partnerships, coordination of resources, developing standards for the field, government support, priorities for industry, biobanking, and new technologies. The final day of this conference featured focused sessions on manufacturing, during which expert speakers were invited from industry, government, and academia. The speakers identified and accessed roadblocks plaguing the field where improvements in advanced manufacturing offered many solutions. The manufacturing sessions included (a) product development toward commercialization in regenerative medicine, (b) process challenges to scale up manufacturing in regenerative medicine, and (c) infrastructure needs for manufacturing in regenerative medicine. Subsequent to this, industry was invited to participate in a survey to further elucidate the challenges to translation and scale-up. This perspective article will cover the lessons learned from these manufacturing sessions and early results from the survey. We also outline a road map for developing the manufacturing infrastructure, resources, standards, capabilities, education, training, and workforce development to realize the promise of TERM. PMID:25575525

  19. Manufacturing road map for tissue engineering and regenerative medicine technologies.

    PubMed

    Hunsberger, Joshua; Harrysson, Ola; Shirwaiker, Rohan; Starly, Binil; Wysk, Richard; Cohen, Paul; Allickson, Julie; Yoo, James; Atala, Anthony

    2015-02-01

    The Regenerative Medicine Foundation Annual Conference held on May 6 and 7, 2014, had a vision of assisting with translating tissue engineering and regenerative medicine (TERM)-based technologies closer to the clinic. This vision was achieved by assembling leaders in the field to cover critical areas. Some of these critical areas included regulatory pathways for regenerative medicine therapies, strategic partnerships, coordination of resources, developing standards for the field, government support, priorities for industry, biobanking, and new technologies. The final day of this conference featured focused sessions on manufacturing, during which expert speakers were invited from industry, government, and academia. The speakers identified and accessed roadblocks plaguing the field where improvements in advanced manufacturing offered many solutions. The manufacturing sessions included (a) product development toward commercialization in regenerative medicine, (b) process challenges to scale up manufacturing in regenerative medicine, and (c) infrastructure needs for manufacturing in regenerative medicine. Subsequent to this, industry was invited to participate in a survey to further elucidate the challenges to translation and scale-up. This perspective article will cover the lessons learned from these manufacturing sessions and early results from the survey. We also outline a road map for developing the manufacturing infrastructure, resources, standards, capabilities, education, training, and workforce development to realize the promise of TERM. PMID:25575525

  20. The regenerative medicine coalition. Interview with Frank-Roman Lauter.

    PubMed

    Lauter, Frank-Roman

    2012-11-01

    Frank-Roman Lauter, Secretary General of the recently launched Regenerative Medicine Coalition, explains how the coalition was formed and what they hope to achieve. Frank-Roman Lauter has served as Secretary General of the Regenerative Medicine Coalition since 2012, and as Head of Business Development at Berlin-Brandenburg Center for Regenerative Therapies since 2007. Frank-Roman Lauter's interest is the organization of academic infrastructures to promote efficient translation of research findings into new therapies. He co-organizes joined strategy development for regenerative medicine clusters from seven European countries (FP7-EU Project) and has initiated cooperation between the California Institute for Regenerative Medicine and the German Federal Ministry for Education & Research, resulting in a joined funding program. Recently, he cofounded the international consortium of Regenerative Medicine translational centers (RMC; www.the-rmc.org ). Trained as a molecular biologist at the Max-Planck Institute in Berlin-Dahlem and at Stanford, he has 16 years of experience as an entrepreneur and life science manager in Germany and the USA. PMID:23210813

  1. Rethinking Regenerative Medicine: A Macrophage-Centered Approach

    PubMed Central

    Brown, Bryan N.; Sicari, Brian M.; Badylak, Stephen F.

    2014-01-01

    Regenerative medicine, a multi-disciplinary approach that seeks to restore form and function to damaged or diseased tissues and organs, has evolved significantly during the past decade. By adapting and integrating fundamental knowledge from cell biology, polymer science, and engineering, coupled with an increasing understanding of the mechanisms which underlie the pathogenesis of specific diseases, regenerative medicine has the potential for innovative and transformative therapies for heretofore unmet medical needs. However, the translation of novel technologies from the benchtop to animal models and clinical settings is non-trivial and requires an understanding of the mechanisms by which the host will respond to these novel therapeutic approaches. The role of the innate immune system, especially the role of macrophages, in the host response to regenerative medicine based strategies has recently received considerable attention. Macrophage phenotype and function have been suggested as critical and determinant factors in downstream outcomes. The constructive and regulatory, and in fact essential, role of macrophages in positive outcomes represents a significant departure from the classical paradigms of host–biomaterial interactions, which typically consider activation of the host immune system as a detrimental event. It appears desirable that emerging regenerative medicine approaches should not only accommodate but also promote the involvement of the immune system to facilitate positive outcomes. Herein, we describe the current understanding of macrophage phenotype as it pertains to regenerative medicine and suggest that improvement of our understanding of context-dependent macrophage polarization will lead to concurrent improvement in outcomes. PMID:25408693

  2. Stem cells have the potential to rejuvenate regenerative medicine research.

    PubMed

    Eve, David J; Fillmore, Randolph; Borlongan, Cesar V; Sanberg, Paul R

    2010-10-01

    The increasing number of publications featuring the use of stem cells in regenerative processes supports the idea that they are revolutionizing regenerative medicine research. In an analysis of the articles published in the journal Cell Transplantation - The Regenerative Medicine Journal between 2008 and 2009, which reveals the topics and categories that are on the cutting edge of regenerative medicine research, stem cells are becoming increasingly relevant as the "runner-up" category to "neuroscience" related articles. The high volume of stem cell research casts a bright light on the hope for stem cells and their role in regenerative medicine as a number of reports deal with research using stem cells entering, or seeking approval for, clinical trials. The "methods and new technologies" and "tissue engineering" sections were almost equally as popular, and in part, reflect attempts to maximize the potential of stem cells and other treatments for the repair of damaged tissue. Transplantation studies were again more popular than non-transplantation, and the contribution of stem cell-related transplants was greater than other types of transplants. The non-transplantation articles were predominantly related to new methods for the preparation, isolation and manipulation of materials for transplant by specific culture media, gene therapy, medicines, dietary supplements, and co-culturing with other cells and further elucidation of disease mechanisms. A sizeable proportion of the transplantation articles reported on how previously new methods may have aided the ability of the cells or tissue to exert beneficial effects following transplantation. PMID:20885363

  3. Biomolecule Delivery to Engineer the Cellular Microenvironment for Regenerative Medicine

    PubMed Central

    Bishop, Corey J.; Kim, Jayoung; Green, Jordan J.

    2013-01-01

    To realize the potential of regenerative medicine, controlling the delivery of biomolecules in the cellular microenvironment is important as these factors control cell fate. Controlled delivery for tissue engineering and regenerative medicine often requires bioengineered materials and cells capable of spatiotemporal modulation of biomolecule release and presentation. This review discusses biomolecule delivery from the outside of the cell inwards through the delivery of soluble and insoluble biomolecules as well as from the inside of the cell outwards through gene transfer. Ex vivo and in vivo therapeutic strategies are discussed, as well as combination delivery of biomolecules, scaffolds, and cells. Various applications in regenerative medicine are highlighted including bone tissue engineering and wound healing. PMID:24170072

  4. Eighth Symposium on Biologic Scaffolds for Regenerative Medicine

    PubMed Central

    Dearth, Christopher L

    2014-01-01

    The Eighth Symposium on Biologic Scaffolds for Regenerative Medicine was held from 24 to 26 April 2014 at the Silverado Resort in Napa, CA, USA. The symposium was well attended by a diverse audience of academic scientists, industry members and physicians from around the world. The conference showcased the strong foundation of both basic and translational research utilizing biologic scaffolds in regenerative medicine applications across nearly all tissue systems and facilitated vibrant discussions among participants. This article provides an overview of the conference by providing a brief synopsis of selected presentations, each focused on a unique research and/or clinical investigation currently underway. PMID:25372075

  5. Turning Regenerative Medicine Breakthrough Ideas and Innovations into Commercial Products.

    PubMed

    Bayon, Yves; Vertès, Alain A; Ronfard, Vincent; Culme-Seymour, Emily; Mason, Chris; Stroemer, Paul; Najimi, Mustapha; Sokal, Etienne; Wilson, Clayton; Barone, Joe; Aras, Rahul; Chiesi, Andrea

    2015-12-01

    The TERMIS-Europe (EU) Industry committee intended to address the two main critical issues in the clinical/commercial translation of Advanced Therapeutic Medicine Products (ATMP): (1) entrepreneurial exploitation of breakthrough ideas and innovations, and (2) regulatory market approval. Since January 2012, more than 12,000 publications related to regenerative medicine and tissue engineering have been accepted for publications, reflecting the intense academic research activity in this field. The TERMIS-EU 2014 Industry Symposium provided a reflection on the management of innovation and technological breakthroughs in biotechnology first proposed to contextualize the key development milestones and constraints of allocation of financial resources, in the development life-cycle of radical innovation projects. This was illustrated with the biofuels story, sharing similarities with regenerative medicine. The transition was then ensured by an overview of the key identified challenges facing the commercialization of cell therapy products as ATMP examples. Real cases and testimonies were then provided by a palette of medical technologies and regenerative medicine companies from their commercial development of cell and gene therapy products. Although the commercial development of ATMP is still at the proof-of-concept stage due to technology risks, changing policies, changing markets, and management changes, the sector is highly dynamic with a number of explored therapeutic approaches, developed by using a large diversity of business models, both proposed by the experience, pitfalls, and successes of regenerative medicine pioneers, and adapted to the constraint resource allocation and environment in radical innovation projects. PMID:26179129

  6. Regenerative Medicine: Charting a New Course in Wound Healing

    PubMed Central

    Gurtner, Geoffrey C.; Chapman, Mary Ann

    2016-01-01

    Significance: Chronic wounds are a prevalent and costly problem in the United States. Improved treatments are needed to heal these wounds and prevent serious complications such as infection and amputation. Recent Advances: In wound healing, as in other areas of medicine, technologies that have the potential to regenerate as opposed to repair tissue are gaining ground. These include customizable nanofiber matrices incorporating novel materials; a variety of autologous and allogeneic cell types at various stages of differentiation (e.g., pluripotent, terminally differentiated); peptides; proteins; small molecules; RNA inhibitors; and gene therapies. Critical Issues: Wound healing is a logical target for regenerative medicine due to the accessibility and structure of skin, the regenerative nature of healing, the lack of good limb salvage treatments, and the current use of cell therapies. However, more extensive knowledge of pathophysiologic targets is needed to inform regenerative strategies, and new technologies must demonstrate value in terms of outcomes and related health economic measures to achieve successful market access and penetration. Future Directions: Due to similarities in cell pathways and developmental mechanisms, regenerative technologies developed in one therapeutic area may be applicable to others. Approaches that proceed from human genomic or other big data sources to models are becoming increasingly common and will likely suggest novel therapeutic avenues. To fully capitalize on the advances in regenerative medicine, studies must demonstrate the value of new therapies in identified patient populations, and sponsors must work with regulatory agencies to develop appropriate dossiers supporting timely approval. PMID:27366592

  7. Cell sheet approach for tissue engineering and regenerative medicine.

    PubMed

    Matsuura, Katsuhisa; Utoh, Rie; Nagase, Kenichi; Okano, Teruo

    2014-09-28

    After the biotech medicine era, regenerative medicine is expected to be an advanced medicine that is capable of curing patients with difficult-to-treat diseases and physically impaired function. Our original scaffold-free cell sheet-based tissue engineering technology enables transplanted cells to be engrafted for a long time, while fully maintaining their viability. This technology has already been applied to various diseases in the clinical setting, including the cornea, esophagus, heart, periodontal ligament, and cartilage using autologous cells. Transplanted cell sheets not only replace the injured tissue and compensate for impaired function, but also deliver growth factors and cytokines in a spatiotemporal manner over a prolonged period, which leads to promotion of tissue repair. Moreover, the integration of stem cell biology and cell sheet technology with sufficient vascularization opens possibilities for fabrication of human three-dimensional vascularized dense and intact tissue grafts for regenerative medicine to parenchymal organs. PMID:24858800

  8. Strategies for improving animal models for regenerative medicine.

    PubMed

    Cibelli, Jose; Emborg, Marina E; Prockop, Darwin J; Roberts, Michael; Schatten, Gerald; Rao, Mahendra; Harding, John; Mirochnitchenko, Oleg

    2013-03-01

    The field of regenerative medicine is moving toward translation to clinical practice. However, there are still knowledge gaps and safety concerns regarding stem cell-based therapies. Improving large animal models and methods for transplantation, engraftment, and imaging should help address these issues, facilitating eventual use of stem cells in the clinic. PMID:23472868

  9. Strategies for Improving Animal Models for Regenerative Medicine

    PubMed Central

    Cibelli, Jose; Emborg, Marina E.; Prockop, Darwin J.; Roberts, Michael; Schatten, Gerald; Rao, Mahendra; Harding, John; Mirochnitchenko, Oleg

    2015-01-01

    The field of regenerative medicine is moving toward translation to clinical practice. However, there are still knowledge gaps and safety concerns regarding stem cell-based therapies. Improving large animal models and methods for transplantation, engraftment, and imaging should help address these issues, facilitating eventual use of stem cells in the clinic. PMID:23472868

  10. Conference report: the third BIRAX Regenerative Medicine Conference.

    PubMed

    Rooney, Alasdair G; Easterbrook, Jennifer

    2016-07-01

    The third Britain/Israel Research and Academic Exchange Partnership Regenerative Medicine conference was recently held in Oxford (UK). This conference report summarizes highlights from the scientific program. There is a particular emphasis on internationally collaborative projects funded by this initiative, the young researchers' symposium, and a lively panel session focused on the relationships between industry and academia. PMID:27404395

  11. Stem cells: a promising source for vascular regenerative medicine.

    PubMed

    Rammal, Hassan; Harmouch, Chaza; Lataillade, Jean-Jacques; Laurent-Maquin, Dominique; Labrude, Pierre; Menu, Patrick; Kerdjoudj, Halima

    2014-12-15

    The rising and diversity of many human vascular diseases pose urgent needs for the development of novel therapeutics. Stem cell therapy represents a challenge in the medicine of the twenty-first century, an area where tissue engineering and regenerative medicine gather to provide promising treatments for a wide variety of diseases. Indeed, with their extensive regeneration potential and functional multilineage differentiation capacity, stem cells are now highlighted as promising cell sources for regenerative medicine. Their multilineage differentiation involves environmental factors such as biochemical, extracellular matrix coating, oxygen tension, and mechanical forces. In this review, we will focus on human stem cell sources and their applications in vascular regeneration. We will also discuss the different strategies used for their differentiation into both mature and functional smooth muscle and endothelial cells. PMID:25167472

  12. Repairing quite swimmingly: advances in regenerative medicine using zebrafish

    PubMed Central

    Goessling, Wolfram; North, Trista E.

    2014-01-01

    Regenerative medicine has the promise to alleviate morbidity and mortality caused by organ dysfunction, longstanding injury and trauma. Although regenerative approaches for a few diseases have been highly successful, some organs either do not regenerate well or have no current treatment approach to harness their intrinsic regenerative potential. In this Review, we describe the modeling of human disease and tissue repair in zebrafish, through the discovery of disease-causing genes using classical forward-genetic screens and by modulating clinically relevant phenotypes through chemical genetic screening approaches. Furthermore, we present an overview of those organ systems that regenerate well in zebrafish in contrast to mammalian tissue, as well as those organs in which the regenerative potential is conserved from fish to mammals, enabling drug discovery in preclinical disease-relevant models. We provide two examples from our own work in which the clinical translation of zebrafish findings is either imminent or has already proven successful. The promising results in multiple organs suggest that further insight into regenerative mechanisms and novel clinically relevant therapeutic approaches will emerge from zebrafish research in the future. PMID:24973747

  13. Achieving reimbursement for regenerative medicine products in the USA.

    PubMed

    Ginty, P J; Singh, P B; Smith, D; Hourd, P; Williams, D J

    2010-05-01

    Achieving reimbursement for regenerative medicine products is potentially a greater challenge than gaining US FDA approval, making it a decisive factor in the success or failure of small businesses. However, the mechanisms by which reimbursement is achieved are still seen as something of a 'black box', especially to those outside of the USA. This report aims to provide insights into the mechanisms of reimbursement and variety of payers in the USA, and to act as a starting point for a successful US reimbursement strategy. Fundamental concepts such as coverage, payment and coding are explained and linked with the factors that potentially determine the successful reimbursement of regenerative medicine products, including cost of goods and clinical study design. Finally, important considerations for the design of clinical studies that satisfy both the payers and the FDA are discussed and the key elements of a successful company strategy identified. PMID:20455656

  14. Trends in the stem cell and regenerative medicine industry.

    PubMed

    Ilic, Dusko

    2012-09-01

    The World Stem Cell Regenerative Medicine Congress series, now in its 7th year, is organized annually in the USA, Europe and Asia by Terrapinn, a business media company with its head office in London, and has grown over the last several years into the largest and probably the most important strategic stem cell conference where regulators, investors, big pharma, and small and medium enterprises gather to share and create synergy in developing and commercializing stem cell applications. The conference, held in London on 21-23 May 2012, only confirmed that this series is the meeting to attend if you want to get a clear understanding of trends in the stem cell and regenerative medicine industry. PMID:22954435

  15. Tissue engineering and regenerative medicine: concepts for clinical application.

    PubMed

    Atala, Anthony

    2004-01-01

    Patients suffering from diseased and injured organs may be treated with transplanted organs. However, there is a severe shortage of donor organs that is worsening yearly given the aging population. Scientists in the field of regenerative medicine and tissue engineering apply the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Therapeutic cloning, where the nucleus from a donor cell is transferred into an enucleated oocyte in order to extract pluripotent embryonic stem cells, offers a potentially limitless source of cells for tissue engineering applications. The stem cell field is also advancing rapidly, opening new options for therapy. This paper reviews recent advances that have occurred in regenerative medicine and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure. PMID:15256042

  16. On the Genealogy of Tissue Engineering and Regenerative Medicine

    PubMed Central

    2015-01-01

    In this article, we identify and discuss a timeline of historical events and scientific breakthroughs that shaped the principles of tissue engineering and regenerative medicine (TERM). We explore the origins of TERM concepts in myths, their application in the ancient era, their resurgence during Enlightenment, and, finally, their systematic codification into an emerging scientific and technological framework in recent past. The development of computational/mathematical approaches in TERM is also briefly discussed. PMID:25343302

  17. On the genealogy of tissue engineering and regenerative medicine.

    PubMed

    Kaul, Himanshu; Ventikos, Yiannis

    2015-04-01

    In this article, we identify and discuss a timeline of historical events and scientific breakthroughs that shaped the principles of tissue engineering and regenerative medicine (TERM). We explore the origins of TERM concepts in myths, their application in the ancient era, their resurgence during Enlightenment, and, finally, their systematic codification into an emerging scientific and technological framework in recent past. The development of computational/mathematical approaches in TERM is also briefly discussed. PMID:25343302

  18. Regenerative medicine in Europe: global competition and innovation governance.

    PubMed

    Hogarth, Stuart; Salter, Brian

    2010-11-01

    Leading European nations with strong biotech sectors, such as the UK and Germany, are investing heavily in regenerative medicine, seeking competitive advantage in this emerging sector. However, in the broader biopharmaceutical sector, the EU is outperformed by the USA on all metrics, reflecting longstanding problems: limited venture capital finance, a fragmented patent system, and relatively weak relations between academia and industry. The current global downturn has exacerbated these difficulties. The crisis comes at a time when the EU is reframing its approach to the governance of innovation and renewing its commitment to the goal of making Europe the leading player in the global knowledge economy. If the EU is to gain a competitive advantage in the regenerative medicine sector then it must coordinate a complex multilevel governance framework that encompasses the EU, member states and regional authorities. This article takes stock of Europe's current competitive position within the global bioeconomy, drawing on a variety of metrics in the three intersecting spheres of innovation governance: science, market and society. These data then provide a platform for reviewing the problems of innovation governance faced by the EU and the strategic choices that have to be confronted in the regenerative medicine sector. PMID:21082895

  19. Planarians: an In Vivo Model for Regenerative Medicine

    PubMed Central

    Karami, Ali; Tebyanian, Hamid; Goodarzi, Vahabodin; Shiri, Sajad

    2015-01-01

    The emergence of regenerative medicine has raised the hope of treating an extraordinary range of disease and serious injuries. Understanding the processes of cell proliferation, differentiation and pattern formation in regenerative organisms could help find ways to enhance the poor regenerative abilities shown by many other animals, including humans. Recently, planarians have emerged as an attractive model in which to study regeneration. These animals are considering as in vivo plate, during which we can study the behavior and characristics of stem cells in their own niche. A variety of characteristic such as: simplicity, easy to manipulate experimentally, the existence of more than 100 years of literature, makes these animals an extraordinary model for regenerative medicine researches. Among planarians free-living freshwater hermaphrodite Schmidtea mediterranea has emerged as a suitable model system because it displays robust regenerative properties and, unlike most other planarians, it is a stable diploid with a genome size of about 4.8×108 base pairs, nearly half that of other common planarians. Planarian regeneration involves two highly flexible systems: pluripotent neoblasts that can generate any new cell type and muscle cells that provide positional instructions for the regeneration of anybody region. neoblasts represent roughly 25~30 percent of all planarian cells and are scattered broadly through the parenchyma, being absent only from the animal head tips and the pharynx. Two models for neo-blast specification have been proposed; the naive model posits that all neoblasts are stem cells with the same potential and are a largely homogeneous population. PMID:26634061

  20. Planarians: an In Vivo Model for Regenerative Medicine.

    PubMed

    Karami, Ali; Tebyanian, Hamid; Goodarzi, Vahabodin; Shiri, Sajad

    2015-11-01

    The emergence of regenerative medicine has raised the hope of treating an extraordinary range of disease and serious injuries. Understanding the processes of cell proliferation, differentiation and pattern formation in regenerative organisms could help find ways to enhance the poor regenerative abilities shown by many other animals, including humans. Recently, planarians have emerged as an attractive model in which to study regeneration. These animals are considering as in vivo plate, during which we can study the behavior and characristics of stem cells in their own niche. A variety of characteristic such as: simplicity, easy to manipulate experimentally, the existence of more than 100 years of literature, makes these animals an extraordinary model for regenerative medicine researches. Among planarians free-living freshwater hermaphrodite Schmidtea mediterranea has emerged as a suitable model system because it displays robust regenerative properties and, unlike most other planarians, it is a stable diploid with a genome size of about 4.8×10(8) base pairs, nearly half that of other common planarians. Planarian regeneration involves two highly flexible systems: pluripotent neoblasts that can generate any new cell type and muscle cells that provide positional instructions for the regeneration of anybody region. neoblasts represent roughly 25~30 percent of all planarian cells and are scattered broadly through the parenchyma, being absent only from the animal head tips and the pharynx. Two models for neo-blast specification have been proposed; the naive model posits that all neoblasts are stem cells with the same potential and are a largely homogeneous population. PMID:26634061

  1. Nonhuman primate models in translational regenerative medicine.

    PubMed

    Daadi, Marcel M; Barberi, Tiziano; Shi, Qiang; Lanford, Robert E

    2014-12-01

    Humans and nonhuman primates (NHPs) are similar in size, behavior, physiology, biochemistry, structure and function of organs, and complexity of the immune system. Research on NHPs generates complementary data that bridge translational research from small animal models to humans. NHP models of human disease offer unique opportunities to develop stem cell-based therapeutic interventions that directly address relevant and challenging translational aspects of cell transplantation therapy. These include the use of autologous induced pluripotent stem cell-derived cellular products, issues related to the immune response in autologous and allogeneic setting, pros and cons of delivery techniques in a clinical setting, as well as the safety and efficacy of candidate cell lines. The NHP model allows the assessment of complex physiological, biochemical, behavioral, and imaging end points, with direct relevance to human conditions. At the same time, the value of using primates in scientific research must be carefully evaluated and timed due to expense and the necessity for specialized equipment and highly trained personnel. Often it is more efficient and useful to perform initial proof-of-concept studies for new therapeutics in rodents and/or other species before the pivotal studies in NHPs that may eventually lead to first-in-human trials. In this report, we present how the Southwest National Primate Research Center, one of seven NIH-funded National Primate Research Centers, may help the global community in translating promising technologies to the clinical arena. PMID:25457970

  2. Nonhuman Primate Models in Translational Regenerative Medicine

    PubMed Central

    Daadi, Marcel M.; Barberi, Tiziano; Shi, Qiang; Lanford, Robert E.

    2014-01-01

    Abstract Humans and nonhuman primates (NHPs) are similar in size, behavior, physiology, biochemistry, structure and function of organs, and complexity of the immune system. Research on NHPs generates complementary data that bridge translational research from small animal models to humans. NHP models of human disease offer unique opportunities to develop stem cell–based therapeutic interventions that directly address relevant and challenging translational aspects of cell transplantation therapy. These include the use of autologous induced pluripotent stem cell–derived cellular products, issues related to the immune response in autologous and allogeneic setting, pros and cons of delivery techniques in a clinical setting, as well as the safety and efficacy of candidate cell lines. The NHP model allows the assessment of complex physiological, biochemical, behavioral, and imaging end points, with direct relevance to human conditions. At the same time, the value of using primates in scientific research must be carefully evaluated and timed due to expense and the necessity for specialized equipment and highly trained personnel. Often it is more efficient and useful to perform initial proof-of-concept studies for new therapeutics in rodents and/or other species before the pivotal studies in NHPs that may eventually lead to first-in-human trials. In this report, we present how the Southwest National Primate Research Center, one of seven NIH-funded National Primate Research Centers, may help the global community in translating promising technologies to the clinical arena. PMID:25457970

  3. Potential of regenerative medicine techniques in canine hepatology.

    PubMed

    Schotanus, Baukje A; Penning, Louis C; Spee, Bart

    2013-12-01

    Liver cell turnover is very slow, especially compared to intestines and stomach epithelium and hair cells. Since the liver is the main detoxifying organ in the body, it does not come as a surprise that the liver has an unmatched regenerative capacity. After 70% partial hepatectomy, the liver size returns to normal in about two weeks due to replication of differentiated hepatocytes and cholangiocytes. Despite this, liver diseases are regularly encountered in the veterinary clinic. Dogs primarily present with parenchymal pathologies such as hepatitis. The estimated frequency of canine hepatitis depends on the investigated population and accounts for 1%-2% of our university clinic referral population, and up to 12% in a general population. In chronic and severe acute liver disease, the regenerative and replicative capacity of the hepatocytes and/or cholangiocytes falls short and the liver is not restored. In this situation, proliferation of hepatic stem cells or hepatic progenitor cells (HPCs), on histology called the ductular reaction, comes into play to replace the damaged hepatocytes or cholangiocytes. For unknown reasons the ductular reaction is often too little and too late, or differentiation into fully differentiated hepatocytes or cholangiocytes is hampered. In this way, HPCs fail to fully regenerate the liver. The presence and potential of HPCs does, however, provide great prospectives for their use in regenerative strategies. This review highlights the regulation of, and the interaction between, HPCs and other liver cell types and discusses potential regenerative medicine-oriented strategies in canine hepatitis, making use of (liver) stem cells. PMID:24422896

  4. Regulators of pluripotency and their implications in regenerative medicine

    PubMed Central

    El-Badawy, Ahmed; El-Badri, Nagwa

    2015-01-01

    The ultimate goal of regenerative medicine is to replace damaged tissues with new functioning ones. This can potentially be accomplished by stem cell transplantation. While stem cell transplantation for blood diseases has been increasingly successful, widespread application of stem cell therapy in the clinic has shown limited results. Despite successful efforts to refine existing methodologies and to develop better ones for reprogramming, clinical application of stem cell therapy suffers from issues related to the safety of the transplanted cells, as well as the low efficiency of reprogramming technology. Better understanding of the underlying mechanism(s) involved in pluripotency should accelerate the clinical application of stem cell transplantation for regenerative purposes. This review outlines the main decision-making factors involved in pluripotency, focusing on the role of microRNAs, epigenetic modification, signaling pathways, and toll-like receptors. Of special interest is the role of toll-like receptors in pluripotency, where emerging data indicate that the innate immune system plays a vital role in reprogramming. Based on these data, we propose that nongenetic mechanisms for reprogramming provide a novel and perhaps an essential strategy to accelerate application of regenerative medicine in the clinic. PMID:25960670

  5. Human dental pulp stem cells: Applications in future regenerative medicine

    PubMed Central

    Potdar, Pravin D; Jethmalani, Yogita D

    2015-01-01

    Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells (MSCs) from various human tissues, peripheral blood and body fluids. These cells are then characterized by cellular and molecular markers to understand their specific phenotypes. Dental pulp stem cells (DPSCs) are having a MSCs phenotype and they are differentiated into neuron, cardiomyocytes, chondrocytes, osteoblasts, liver cells and β cells of islet of pancreas. Thus, DPSCs have shown great potentiality to use in regenerative medicine for treatment of various human diseases including dental related problems. These cells can also be developed into induced pluripotent stem cells by incorporation of pluripotency markers and use for regenerative therapies of various diseases. The DPSCs are derived from various dental tissues such as human exfoliated deciduous teeth, apical papilla, periodontal ligament and dental follicle tissue. This review will overview the information about isolation, cellular and molecular characterization and differentiation of DPSCs into various types of human cells and thus these cells have important applications in regenerative therapies for various diseases. This review will be most useful for postgraduate dental students as well as scientists working in the field of oral pathology and oral medicine. PMID:26131314

  6. Organizational profile: UK regenerative medicine platform immunomodulation hub.

    PubMed

    Asante, Curtis O

    2015-01-01

    The UK Regenerative Medicine Platform was launched in 2013 as a jointly funded venture by the Biotechnology and Biological Sciences Research Council (BBSRC), Biotechnology and Biological Sciences Research Council, Engineering and Physical Sciences Research Council (EPSRC) and Medical Research Council (MRC) to address the technical and scientific challenges associated with translating promising scientific discoveries into the clinical setting. The first stage of the Platform involved the establishment of five interdisciplinary and cross-institutional research Hubs and the final Hub, the Immunomodulation Hub, was formed in 2014. The Immunomodulation Hub comprises scientists from diverse clinical and nonclinical research backgrounds. Collectively, they provide expertise in tissues for which there is an unmet clinical need for regenerative treatments, in innate and adaptive immunity and in whole organ transplantation. Their vision is that by working together to determine how regenerative medicine cell therapies in a laboratory setting are affected by the immune system, they will make a substantial contribution to long-term clinical deliverables that include improved efficacy of photoreceptor cell therapy to treat blindness; improved repair of damaged heart tissue; and improved survival and functionality of transplanted hepatocytes as an alternative to liver transplantation. PMID:25933235

  7. From regenerative dentistry to regenerative medicine: progress, challenges, and potential applications of oral stem cells

    PubMed Central

    Xiao, Li; Nasu, Masanori

    2014-01-01

    Adult mesenchymal stem cells (MSCs) and epithelial stem cells play essential roles in tissue repair and self-healing. Oral MSCs and epithelial stem cells can be isolated from adult human oral tissues, for example, teeth, periodontal ligament, and gingiva. Cocultivated adult oral epithelial stem cells and MSCs could represent some developmental events, such as epithelial invagination and tubular structure formation, signifying their potentials for tissue regeneration. Oral epithelial stem cells have been used in regenerative medicine over 1 decade. They are able to form a stratified cell sheet under three-dimensional culture conditions. Both experimental and clinical data indicate that the cell sheets can not only safely and effectively reconstruct the damaged cornea in humans, but also repair esophageal ulcer in animal models. Oral MSCs include dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous teeth (SHED), stem cells from apical papilla (SCAP), periodontal ligament stem cells (PDLSCs), and mesenchymal stem cells from gingiva (GMSCs). They are widely applied in both regenerative dentistry and medicine. DPSCs, SHED, and SCAP are able to form dentin–pulp complex when being transplanted into immunodeficient animals. They have been experimentally used for the regeneration of dental pulp, neuron, bone muscle and blood vessels in animal models and have shown promising results. PDLSCs and GMSCs are demonstrated to be ideal cell sources for repairing the damaged tissues of periodontal, muscle, and tendon. Despite the abovementioned applications of oral stem cells, only a few human clinical trials are now underway to use them for the treatment of certain diseases. Since clinical use is the end goal, their true regenerative power and safety need to be further examined. PMID:25506228

  8. Cell/tissue processing information system for regenerative medicine.

    PubMed

    Iwayama, Daisuke; Yamato, Masayuki; Tsubokura, Tetsuya; Takahashi, Minoru; Okano, Teruo

    2014-04-01

    When conducting clinical studies of regenerative medicine, compliance to good manufacturing practice (GMP) is mandatory, and thus much time is needed for manufacturing and quality management. It is therefore desired to introduce the manufacturing execution system (MES), which is being adopted by factories manufacturing pharmaceutical products. Meanwhile, in manufacturing human cell/tissue processing autologous products, it is necessary to protect patients' personal information, prevent patients from being identified and obtain information for cell/tissue identification. We therefore considered it difficult to adopt conventional MES to regenerative medicine-related clinical trials, and so developed novel software for production/quality management to be used in cell-processing centres (CPCs), conforming to GMP. Since this system satisfies the requirements of regulations in Japan and the USA for electronic records and electronic signatures (ER/ES), the use of ER/ES has been allowed, and the risk of contamination resulting from the use of recording paper has been eliminated, thanks to paperless operations within the CPC. Moreover, to reduce the risk of mix-up and cross-contamination due to contact during production, we developed a touchless input device with built-in radio frequency identification (RFID) reader-writer devices and optical sensors. The use of this system reduced the time to prepare and issue manufacturing instructions by 50% or more, compared to the conventional handwritten system. The system contributes to producing more large-scale production and to reducing production costs for cell and tissue products in regenerative medicine. Copyright © 2014 John Wiley & Sons, Ltd. PMID:24700532

  9. Precision manufacturing for clinical-quality regenerative medicines.

    PubMed

    Williams, David J; Thomas, Robert J; Hourd, Paul C; Chandra, Amit; Ratcliffe, Elizabeth; Liu, Yang; Rayment, Erin A; Archer, J Richard

    2012-08-28

    Innovations in engineering applied to healthcare make a significant difference to people's lives. Market growth is guaranteed by demographics. Regulation and requirements for good manufacturing practice-extreme levels of repeatability and reliability-demand high-precision process and measurement solutions. Emerging technologies using living biological materials add complexity. This paper presents some results of work demonstrating the precision automated manufacture of living materials, particularly the expansion of populations of human stem cells for therapeutic use as regenerative medicines. The paper also describes quality engineering techniques for precision process design and improvement, and identifies the requirements for manufacturing technology and measurement systems evolution for such therapies. PMID:22802496

  10. Stem cell therapies and regenerative medicine in China.

    PubMed

    Huang, Sha; Fu, XiaoBing

    2014-02-01

    Stem cells are the core of tissue repair and regeneration, and a promising cell source for novel therapies. In recent years, research into stem cell therapies has been particularly exciting in China. The remarkable advancements in basic stem cell research and clinically effective trials have led to fresh insights into regenerative medicine, such as treatments for sweat gland injury after burns, diabetes, and liver injury. High hopes have inspired numerous experimental and clinical trials. At the same time, government investment and policy support of research continues to increase markedly. However, numerous challenges must be overcome before novel stem cell therapies can achieve meaningful clinical outcomes. PMID:24430560

  11. Regenerative medicine: challenges and perspectives for successful therapies.

    PubMed

    Viswanathan, S; Joshi, C

    2013-01-01

    Regenerative Medicine (RM) has the promise to revolutionize the treatment of many debilitating diseases for which the current therapies are inadequate. To realize the full potential of RM, a pragmatic approach needs to be taken by all stakeholders keeping in mind the lessons learnt from recombinant protein manufacturing, gene therapy trials, etc., to develop novel service delivery models for economic viability and regulatory processes in the absence of long-term data. In this chapter, we focus on the three main drivers of RM field and discuss the potential pitfalls and possible ways to mitigate them in order to move the field closer to clinical implementation. PMID:23208552

  12. Direct Cardiomyocyte Reprogramming: A New Direction for Cardiovascular Regenerative Medicine

    PubMed Central

    Yi, B. Alexander; Mummery, Christine L.; Chien, Kenneth R.

    2013-01-01

    The past few years have seen unexpected new developments in direct cardiomyocyte reprogramming. Direct cardiomyocyte reprogramming potentially offers an entirely novel approach to cardiovascular regenerative medicine by converting cardiac fibroblasts into functional cardiomyocytes in situ. There is much to be learned, however, about the mechanisms of direct reprogramming in order that the process can be made more efficient. Early efforts have suggested that this new technology can be technically challenging. Moreover, new methods of inducing heart reprogramming will need to be developed before this approach can be translated to the bedside. Despite this, direct cardiomyocyte reprogramming may lead to new therapeutic options for sufferers of heart disease. PMID:24003244

  13. Controlling life: from Jacques Loeb to regenerative medicine.

    PubMed

    Maienschein, Jane

    2009-01-01

    In his 1987 book Controlling Life: Jacques Loeb and the Engineering Ideal in Biology, Philip Pauly presented his readers with the biologist Jacques Loeb and his role in developing an emphasis on control of life processes. Loeb's work on artificial parthenogenesis, for example, provided an example of bioengineering at work. This paper revisits Pauly's study of Loeb and explores the way current research in regenerative medicine reflects the same tradition. A history of regeneration research reveals patterns of thinking and research methods that both echo Loeb's ideology and point the way to modern studies. Pauly's work revealed far more than we readers realized at the time of its publication. PMID:19852396

  14. Regenerative Medicine for Periodontal and Peri-implant Diseases.

    PubMed

    Larsson, L; Decker, A M; Nibali, L; Pilipchuk, S P; Berglundh, T; Giannobile, W V

    2016-03-01

    The balance between bone resorption and bone formation is vital for maintenance and regeneration of alveolar bone and supporting structures around teeth and dental implants. Tissue regeneration in the oral cavity is regulated by multiple cell types, signaling mechanisms, and matrix interactions. A goal for periodontal tissue engineering/regenerative medicine is to restore oral soft and hard tissues through cell, scaffold, and/or signaling approaches to functional and aesthetic oral tissues. Bony defects in the oral cavity can vary significantly, ranging from smaller intrabony lesions resulting from periodontal or peri-implant diseases to large osseous defects that extend through the jaws as a result of trauma, tumor resection, or congenital defects. The disparity in size and location of these alveolar defects is compounded further by patient-specific and environmental factors that contribute to the challenges in periodontal regeneration, peri-implant tissue regeneration, and alveolar ridge reconstruction. Efforts have been made over the last few decades to produce reliable and predictable methods to stimulate bone regeneration in alveolar bone defects. Tissue engineering/regenerative medicine provide new avenues to enhance tissue regeneration by introducing bioactive models or constructing patient-specific substitutes. This review presents an overview of therapies (e.g., protein, gene, and cell based) and biomaterials (e.g., resorbable, nonresorbable, and 3-dimensionally printed) used for alveolar bone engineering around teeth and implants and for implant site development, with emphasis on most recent findings and future directions. PMID:26608580

  15. The hematopoietic system in the context of regenerative medicine.

    PubMed

    Porada, Christopher D; Atala, Anthony J; Almeida-Porada, Graça

    2016-04-15

    Hematopoietic stem cells (HSC) represent the prototype stem cell within the body. Since their discovery, HSC have been the focus of intensive research, and have proven invaluable clinically to restore hematopoiesis following inadvertent radiation exposure and following radio/chemotherapy to eliminate hematologic tumors. While they were originally discovered in the bone marrow, HSC can also be isolated from umbilical cord blood and can be "mobilized" peripheral blood, making them readily available in relatively large quantities. While their ability to repopulate the entire hematopoietic system would already guarantee HSC a valuable place in regenerative medicine, the finding that hematopoietic chimerism can induce immunological tolerance to solid organs and correct autoimmune diseases has dramatically broadened their clinical utility. The demonstration that these cells, through a variety of mechanisms, can also promote repair/regeneration of non-hematopoietic tissues as diverse as liver, heart, and brain has further increased their clinical value. The goal of this review is to provide the reader with a brief glimpse into the remarkable potential HSC possess, and to highlight their tremendous value as therapeutics in regenerative medicine. PMID:26319943

  16. Somatic Cell Dedifferentiation/Reprogramming for Regenerative Medicine

    PubMed Central

    Ramesh, Thiyagarajan; Lee, Sun-Hee; Lee, Choon-Soo; Kwon, Yoo-Wook; Cho, Hyun-Jai

    2009-01-01

    The concept of dedifferentiation or reprogramming of a somatic cell into a pluripotent embryonic stem cell-like cell (ES-like cell), which give rise to three germ layers and differentiate various cell types, opens a new era in stem cell biology and provides potential therapeutic modality in regenerative medicine. Here, we outline current dedifferentiation/reprogramming methods and their technical hurdles, and the safety and therapeutic applications of reprogrammed pluripotent stem cells in regenerative medicine. This review summarizes the concept and data of somatic cell nuclear transfer, fusion of somatic cells with ES cells, viral or non-viral transduction of pluripotency-related genes into somatic cells, introduction of extract (or proteins) of pluripotent cells into somatic cells. Dedifferentiated/reprogrammed ES-like cells could be a perfect genetic match (autologous or tailored pluripotent stem cells) for future applications. Further studies regarding technical refinements as well as mechanistic analysis of dedifferentiation induction and re-differentiation into specific cell types will provide us with the substantial application of pluripotent stem cells to therapeutic purposes. PMID:24855516

  17. Three-dimensional bioprinting in tissue engineering and regenerative medicine.

    PubMed

    Gao, Guifang; Cui, Xiaofeng

    2016-02-01

    With the advances of stem cell research, development of intelligent biomaterials and three-dimensional biofabrication strategies, highly mimicked tissue or organs can be engineered. Among all the biofabrication approaches, bioprinting based on inkjet printing technology has the promises to deliver and create biomimicked tissue with high throughput, digital control, and the capacity of single cell manipulation. Therefore, this enabling technology has great potential in regenerative medicine and translational applications. The most current advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review, including vasculature, muscle, cartilage, and bone. In addition, the benign side effect of bioprinting to the printed mammalian cells can be utilized for gene or drug delivery, which can be achieved conveniently during precise cell placement for tissue construction. With layer-by-layer assembly, three-dimensional tissues with complex structures can be printed using converted medical images. Therefore, bioprinting based on thermal inkjet is so far the most optimal solution to engineer vascular system to the thick and complex tissues. Collectively, bioprinting has great potential and broad applications in tissue engineering and regenerative medicine. The future advances of bioprinting include the integration of different printing mechanisms to engineer biphasic or triphasic tissues with optimized scaffolds and further understanding of stem cell biology. PMID:26466597

  18. Stem cells and regenerative medicine on the Asian horizon: an economic, industry and social perspective.

    PubMed

    Sipp, Douglas

    2009-11-01

    For the past decade, forays into stem cell research and regenerative medicine by institutes and companies based in the Asia-Pacific region have attracted global attention at levels unprecedented in the life sciences. The unique combination of economic pressures, competitiveness and opportunism, laissez-faire regulation, burgeoning investment in the life sciences and rapidly growing markets, coupled with its great diversity, have propelled the region to surge forward in some areas, but to stumble in others. This article provides a historical and scientific context to the state of stem cell research and clinical applications in the region, and highlights trends and new possibilities to watch for on the Asian horizon. PMID:19903008

  19. Opportunities for Regenerative Rehabilitation and Advanced Technologies in Physical Therapy: Perspective From Academia.

    PubMed

    Norland, Ryan; Muchnick, Matthew; Harmon, Zachary; Chin, Tiffany; Kakar, Rumit Singh

    2016-04-01

    As rehabilitation specialists, physical therapists must continue to stay current with advances in technologies to provide appropriate rehabilitation protocols, improve patient outcomes, and be the preferred clinician of choice. To accomplish this vision, the physical therapy profession must begin to develop a culture of lifelong learning at the early stages of education and clinical training in order to embrace cutting-edge advancements such as stem cell therapies, tissue engineering, and robotics, to name a few. The purposes of this article are: (1) to provide a current perspective on faculty and graduate student awareness of regenerative rehabilitation concepts and (2) to advocate for increased integration of these emerging technologies within the doctor of physical therapy (DPT) curriculum. An online survey was designed to gauge awareness of principles in regenerative rehabilitation and to determine whether the topic was included and assessed in doctoral curricula. The survey yielded 1,006 responses from 82 DPT programs nationwide and indicated a disconnect in familiarity with the term "regenerative rehabilitation" and awareness of the inclusion of this material in the curriculum. To resolve this disconnect, the framework of the curriculum can be used to integrate new material via guest lecturers, interdisciplinary partnerships, and research opportunities. Successfully mentoring a generation of clinicians and rehabilitation scientists who incorporate new medical knowledge and technology into their own clinical and research practice depends greatly on sharing the responsibility among graduate students, professors, the American Physical Therapy Association (APTA), and DPT programs. Creating an interdisciplinary culture and integrating regenerative medicine and rehabilitation concepts into the curriculum will cultivate individuals who will be advocates for interprofessional behaviors and will ensure that the profession meets the goals stated in APTA Vision 2020

  20. Multiscale Inorganic Hierarchically Materials: Towards an Improved Orthopaedic Regenerative Medicine.

    PubMed

    Ruso, Juan M; Sartuqui, Javier; Messina, Paula V

    2015-01-01

    Bone is a biologically and structurally sophisticated multifunctional tissue. It dynamically responds to biochemical, mechanical and electrical clues by remodelling itself and accordingly the maximum strength and toughness are along the lines of the greatest applied stress. The challenge is to develop an orthopaedic biomaterial that imitates the micro- and nano-structural elements and compositions of bone to locally match the properties of the host tissue resulting in a biologically fixed implant. Looking for the ideal implant, the convergence of life and materials sciences occurs. Researchers in many different fields apply their expertise to improve implantable devices and regenerative medicine. Materials of all kinds, but especially hierarchical nano-materials, are being exploited. The application of nano-materials with hierarchical design to calcified tissue reconstructive medicine involve intricate systems including scaffolds with multifaceted shapes that provides temporary mechanical function; materials with nano-topography modifications that guarantee their integration to tissues and that possesses functionalized surfaces to transport biologic factors to stimulate tissue growth in a controlled, safe, and rapid manner. Furthermore materials that should degrade on a timeline coordinated to the time that takes the tissues regrow, are prepared. These implantable devices are multifunctional and for its construction they involve the use of precise strategically techniques together with specific material manufacturing processes that can be integrated to achieve in the design, the required multifunctionality. For such reasons, even though the idea of displacement from synthetic implants and tissue grafts to regenerative-medicine-based tissue reconstruction has been guaranteed for well over a decade, the reality has yet to emerge. In this paper, we examine the recent approaches to create enhanced bioactive materials. Their design and manufacturing procedures as well

  1. Nanotechnology-based approaches for regenerative medicine and biosensing

    NASA Astrophysics Data System (ADS)

    Solanki, Aniruddh P.

    The recent emergence of nanotechnology has set high expectations in many fields of science, especially in biology and medicine. Nanotechnology-based approaches are expected to solve key questions in the emerging field of regenerative medicine. Regenerative medicine essentially deals with regeneration of cells, ultimately leading to the formation of tissues and organs. For this purpose, stem cells, embryonic stem cells or adult stem cells, are thought to be ideal resources. However, many challenges need to be addressed before the full therapeutic potential of stem cells can be harnessed. Controlling the differentiation of stem cells into cells of a specific lineage is extremely vital and challenging. Addressing this challenge, in this work, novel nanotechnology-based approaches for controlling the differentiation of neural stem cells (NSCs) into neurons has been presented. Regeneration of damaged neurons, due to traumatic injuries or degenerative diseases, is extremely challenging. For this purpose, NSCs can be used as resources that can differentiate into neurons, thus having great potential in solving needs of many patients suffering from such conditions. For controlling the differentiation of stem cells, soluble cues (comprising of small molecules and biomolecules) and insoluble cues (cell-cell interactions and cell-microenvironment interactions) play a very important role. The delivery of soluble cues, such as genetic material, into stem cells is extremely challenging. The initial part of this work presents the use of nanomaterials for efficiently delivering soluble cues such as small molecules and small interfering RNA (siRNA) into NSCs for controlling their differentiation into neurons. However, for regenerative purposes, it is preferred that least amounts of the delivery vehicle be used. Thus, the following part of the thesis presents the development and applications of nanotechnology-based approaches for enhancing the differentiation of NSCs into neurons

  2. Therapeutic Potential of Mesenchymal Stem Cells in Regenerative Medicine

    PubMed Central

    Patel, Devang M.; Shah, Jainy; Srivastava, Anand S.

    2013-01-01

    Mesenchymal stem cells (MSCs) are stromal cells that have the ability to self-renew and also exhibit multilineage differentiation into both mesenchymal and nonmesenchymal lineages. The intrinsic properties of these cells make them an attractive candidate for clinical applications. MSCs are of keen interest because they can be isolated from a small aspirate of bone marrow or adipose tissues and can be easily expanded in vitro. Moreover, their ability to modulate immune responses makes them an even more attractive candidate for regenerative medicine as allogeneic transplant of these cells is feasible without a substantial risk of immune rejection. MSCs secrete various immunomodulatory molecules which provide a regenerative microenvironment for a variety of injured tissues or organ to limit the damage and to increase self-regulated tissue regeneration. Autologous/allogeneic MSCs delivered via the bloodstream augment the titers of MSCs that are drawn to sites of tissue injury and can accelerate the tissue repair process. MSCs are currently being tested for their potential use in cell and gene therapy for a number of human debilitating diseases and genetic disorders. This paper summarizes the current clinical and nonclinical data for the use of MSCs in tissue repair and potential therapeutic role in various diseases. PMID:23577036

  3. Preserving human cells for regenerative, reproductive, and transfusion medicine.

    PubMed

    Asghar, Waseem; El Assal, Rami; Shafiee, Hadi; Anchan, Raymond M; Demirci, Utkan

    2014-07-01

    Cell cryopreservation maintains cellular life at sub-zero temperatures by slowing down biochemical processes. Various cell types are routinely cryopreserved in modern reproductive, regenerative, and transfusion medicine. Current cell cryopreservation methods involve freezing (slow/rapid) or vitrifying cells in the presence of a cryoprotective agent (CPA). Although these methods are clinically utilized, cryo-injury due to ice crystals, osmotic shock, and CPA toxicity cause loss of cell viability and function. Recent approaches using minimum volume vitrification provide alternatives to the conventional cryopreservation methods. Minimum volume vitrification provides ultra-high cooling and rewarming rates that enable preserving cells without ice crystal formation. Herein, we review recent advances in cell cryopreservation technology and provide examples of techniques that are utilized in oocyte, stem cell, and red blood cell cryopreservation. PMID:24995723

  4. Regenerative medicine in China: demands, capacity, and regulation.

    PubMed

    Cheng, Biao; Lu, Shuliang; Fu, Xiaobing

    2016-01-01

    Regenerative medicine (RM) is an emerging interdisciplinary field of research. Its clinical application focuses on the repair, replacement, and regeneration of cells, tissues, and organs by approaches including cell reprogramming, stem cell transplantation, tissue engineering, activating factors, and clone treatment. RM has become a hot point of research in China and other countries. China's main and local governments have attached great importance to RM and given strong support in relevant policies and funding. About 3.5 billion RMB has been invested in this field. Since 1999, China has established about 30 RM centers and cooperates with many advanced countries in RM research and benefits from their cooperation. However, China needs to develop standards, regulations, and management practices suitable for the healthy development of RM. In this review, we focus on its great demand, capacity, and relative regulations. PMID:27574693

  5. Preserving human cells for regenerative, reproductive, and transfusion medicine

    PubMed Central

    Asghar, Waseem; Assal, Rami El; Shafiee, Hadi; Anchan, Raymond M.; Demirci, Utkan

    2014-01-01

    Cell cryopreservation enables maintaining cellular life at sub-zero temperatures by slowing down biochemical processes. Various cell types are routinely cryopreserved in modern reproductive, regenerative, and transfusion medicine. Current cell cryopreservation methods involve freezing (slow/rapid) or vitrifying cells in the presence of a cryoprotective agent (CPA). Although these methods are clinically utilized, cryo-injury due to ice crystals, osmotic shock, and CPA toxicity cause loss of cell viability and function. Recent approaches using minimum volume vitrification provide alternatives to the conventional cryopreservation methods. Minimum volume vitrification provides ultra-high cooling and rewarming rates that enable preserving cells without ice crystal formation. Herein, we review recent advances in cell cryopreservation technology and provide examples of techniques that are utilized in oocyte, stem cell, and red blood cell cryopreservation. PMID:24995723

  6. miRNA Inhibition in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Beavers, Kelsey R.; Nelson, Christopher E.; Duvall, Craig L.

    2014-01-01

    MicroRNA (miRNA) are noncoding RNA that provide an endogenous negative feedback mechanism for translation of messenger RNA (mRNA) into protein. Single miRNAs can regulate hundreds of mRNAs, enabling miRNAs to orchestrate robust biological responses by simultaneously impacting multiple gene networks. MiRNAs can act as master regulators of normal and pathological tissue development, homeostasis, and repair, which has recently motivated expanding efforts toward development of technologies for therapeutically modulating miRNA activity for regenerative medicine and tissue engineering applications. This review highlights the tools currently available for miRNA inhibition and their recent therapeutic applications for improving tissue repair. PMID:25553957

  7. Bioengineering Heart Muscle: A Paradigm for Regenerative Medicine

    PubMed Central

    Lui, Kathy O.; Tandon, Nina

    2012-01-01

    The idea of extending the lifetime of our organs is as old as humankind, fueled by major advances in organ transplantation, novel drugs, and medical devices. However, true regeneration of human tissue has becoming increasingly plausible only in recent years. The human heart has always been a focus of such efforts, given its notorious inability to repair itself following injury or disease. We discuss here the emerging bioengineering approaches to regeneration of heart muscle as a paradigm for regenerative medicine. Our focus is on biologically inspired strategies for heart regeneration, knowledge gained thus far about how to make a “perfect” heart graft, and the challenges that remain to be addressed for tissue-engineered heart regeneration to become a clinical reality. We emphasize the need for interdisciplinary research and training, as recent progress in the field is largely being made at the interfaces between cardiology, stem cell science, and bioengineering. PMID:21568715

  8. Thermal Inkjet Printing in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Cui, Xiaofeng; Boland, Thomas; D’Lima, Darryl D.; Lotz, Martin K.

    2013-01-01

    With the advantages of high throughput, digital control, and highly accurate placement of cells and biomaterial scaffold to the desired 2D and 3D locations, bioprinting has great potential to develop promising approaches in translational medicine and organ replacement. The most recent advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review. Bioprinting has no or little side effect to the printed mammalian cells and it can conveniently combine with gene transfection or drug delivery to the ejected living systems during the precise placement for tissue construction. With layer-by-layer assembly, 3D tissues with complex structures can be printed using scanned CT or MRI images. Vascular or nerve systems can be enabled simultaneously during the organ construction with digital control. Therefore, bioprinting is the only solution to solve this critical issue in thick and complex tissues fabrication with vascular system. Collectively, bioprinting based on thermal inkjet has great potential and broad applications in tissue engineering and regenerative medicine. This review article introduces some important patents related to bioprinting living systems and the bioprinting in tissue engineering field. PMID:22436025

  9. [Platelets-rich plasma: a versatile tool for regenerative medicine?].

    PubMed

    Carrillo-Mora, Paul; González-Villalva, Adriana; Macías-Hernández, Salvador Israel; Villaseñor, Carlos Pineda

    2013-01-01

    Platelet-rich plasma is a blood product concentrate obtained by centrifugation of whole blood that is characterized by a high concentration of platelets (4 to 6 times their normal values). The high concentration of trophic factors contained in the granules of platelets, have led to suggest that the application of platelet-rich plasma can help to stimulate or accelerate the repair or regeneration of a number of tissues. Since their first application in the treatment of skin ulcers in 1980, a considerable number of novel applications in different fields of medicine have emerged (Ophthalmology, Otorhinolaryngology, Maxillofacial Surgery surgical wounds, musculoskeletal disorders, burns, Esthetic Surgery, repair of peripheral nerves, etc.), some of these applications with clearly positive or very promising results. Despite the large amount of experimental and clinical literature about the usefulness of platelet-rich plasma in different areas of regenerative medicine, there are few therapeutic indications in which it is fully demonstrated its effectiveness. This fact highlights the importance of carry out methodologically appropriate clinical trials in the near future, in order to improve the evidence level of platelet-rich plasma treatment. The purpose of this article is to perform an update and critical review about the biological basis of platelet-rich plasma, to review indications for which there is more scientific support on its use, and finally to describe their new indications that are currently under research. PMID:23461926

  10. Thermal inkjet printing in tissue engineering and regenerative medicine.

    PubMed

    Cui, Xiaofeng; Boland, Thomas; D'Lima, Darryl D; Lotz, Martin K

    2012-08-01

    With the advantages of high throughput, digital control, and highly accurate placement of cells and biomaterial scaffold to the desired 2D and 3D locations, bioprinting has great potential to develop promising approaches in translational medicine and organ replacement. The most recent advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review. Bioprinting has no or little side effect to the printed mammalian cells and it can conveniently combine with gene transfection or drug delivery to the ejected living systems during the precise placement for tissue construction. With layer-by-layer assembly, 3D tissues with complex structures can be printed using scanned CT or MRI images. Vascular or nerve systems can be enabled simultaneously during the organ construction with digital control. Therefore, bioprinting is the only solution to solve this critical issue in thick and complex tissues fabrication with vascular system. Collectively, bioprinting based on thermal inkjet has great potential and broad applications in tissue engineering and regenerative medicine. This review article introduces some important patents related to bioprinting of living systems and the applications of bioprinting in tissue engineering field. PMID:22436025

  11. Tissue engineering and regenerative medicine: past, present, and future.

    PubMed

    Salgado, António J; Oliveira, Joaquim M; Martins, Albino; Teixeira, Fábio G; Silva, Nuno A; Neves, Nuno M; Sousa, Nuno; Reis, Rui L

    2013-01-01

    Tissue and organ repair still represents a clinical challenge. Tissue engineering and regenerative medicine (TERM) is an emerging field focused on the development of alternative therapies for tissue/organ repair. This highly multidisciplinary field, in which bioengineering and medicine merge, is based on integrative approaches using scaffolds, cell populations from different sources, growth factors, nanomedicine, gene therapy, and other techniques to overcome the limitations that currently exist in the clinics. Indeed, its overall objective is to induce the formation of new functional tissues, rather than just implanting spare parts. This chapter aims at introducing the reader to the concepts and techniques of TERM. It begins by explaining how TERM have evolved and merged into TERM, followed by a short overview of some of its key aspects such as the combinations of scaffolds with cells and nanomedicine, scaffold processing, and new paradigms of the use of stem cells for tissue repair/regeneration, which ultimately could represent the future of new therapeutic approaches specifically aimed at clinical applications. PMID:24083429

  12. Induced Pluripotent Stem Cell Technology in Regenerative Medicine and Biology

    NASA Astrophysics Data System (ADS)

    Pei, Duanqing; Xu, Jianyong; Zhuang, Qiang; Tse, Hung-Fat; Esteban, Miguel A.

    The potential of human embryonic stem cells (ESCs) for regenerative medicine is unquestionable, but practical and ethical considerations have hampered clinical application and research. In an attempt to overcome these issues, the conversion of somatic cells into pluripotent stem cells similar to ESCs, commonly termed nuclear reprogramming, has been a top objective of contemporary biology. More than 40 years ago, King, Briggs, and Gurdon pioneered somatic cell nuclear reprogramming in frogs, and in 1981 Evans successfully isolated mouse ESCs. In 1997 Wilmut and collaborators produced the first cloned mammal using nuclear transfer, and then Thomson obtained human ESCs from in vitro fertilized blastocysts in 1998. Over the last 2 decades we have also seen remarkable findings regarding how ESC behavior is controlled, the importance of which should not be underestimated. This knowledge allowed the laboratory of Shinya Yamanaka to overcome brilliantly conceptual and technical barriers in 2006 and generate induced pluripotent stem cells (iPSCs) from mouse fibroblasts by overexpressing defined combinations of ESC-enriched transcription factors. Here, we discuss some important implications of human iPSCs for biology and medicine and also point to possible future directions.

  13. Systemically Administered, Target Organ-Specific Therapies for Regenerative Medicine

    PubMed Central

    Järvinen, Tero A. H.; May, Ulrike; Prince, Stuart

    2015-01-01

    Growth factors and other agents that could potentially enhance tissue regeneration have been identified, but their therapeutic value in clinical medicine has been limited for reasons such as difficulty to maintain bioactivity of locally applied therapeutics in the protease-rich environment of regenerating tissues. Although human diseases are treated with systemically administered drugs in general, all current efforts aimed at enhancing tissue repair with biological drugs have been based on their local application. The systemic administration of growth factors has been ruled out due to concerns about their safety. These concerns are warranted. In addition, only a small proportion of systemically administered drugs reach their intended target. Selective delivery of the drug to the target tissue and use of functional protein domains capable of penetrating cells and tissues could alleviate these problems in certain circumstances. We will present in this review a novel approach utilizing unique molecular fingerprints (“Zip/postal codes”) in the vasculature of regenerating tissues that allows target organ-specific delivery of systemically administered therapeutic molecules by affinity-based physical targeting (using peptides or antibodies as an “address tag”) to injured tissues undergoing repair. The desired outcome of targeted therapies is increased local accumulation and lower systemic concentration of the therapeutic payload. We believe that the physical targeting of systemically administered therapeutic molecules could be rapidly adapted in the field of regenerative medicine. PMID:26437400

  14. Scaffold characterization using NLO multimodal microscopy in metrology for regenerative medicine

    NASA Astrophysics Data System (ADS)

    Mortati, Leonardo; Divieto, Carla; Boffitto, Monica; Sartori, Susanna; Ciardelli, Gianluca; Sassi, Maria Paola

    2013-09-01

    Metrology in regenerative medicine aims to develop traceable measurement technologies for characterizing cellular and macromolecule behaviour in regenerative medicine products and processes. One key component in regenerative medicine is using three-dimensional porous scaffolds to guide cells during the regeneration process. The regeneration of specific tissues guided by tissue analogous substrates is dependent on diverse scaffold architectural properties that can be derived quantitatively from scaffolds images. This paper discuss the results obtained with the multimodal NLO microscope recently realized in our laboratory in characterizing 3D tissue engineered (TE) scaffolds colonized from human Mesenchimal stem cells (hMSC), focusing on the study of the three-dimensional metrological parameters.

  15. Soy Protein Scaffold Biomaterials for Tissue Engineering and Regenerative Medicine

    NASA Astrophysics Data System (ADS)

    Chien, Karen B.

    Developing functional biomaterials using highly processable materials with tailorable physical and bioactive properties is an ongoing challenge in tissue engineering. Soy protein is an abundant, natural resource with potential use for regenerative medicine applications. Preliminary studies show that soy protein can be physically modified and fabricated into various biocompatible constructs. However, optimized soy protein structures for tissue regeneration (i.e. 3D porous scaffolds) have not yet been designed. Furthermore, little work has established the in vivo biocompatibility of implanted soy protein and the benefit of using soy over other proteins including FDA-approved bovine collagen. In this work, freeze-drying and 3D printing fabrication processes were developed using commercially available soy protein to create porous scaffolds that improve cell growth and infiltration compared to other soy biomaterials previously reported. Characterization of scaffold structure, porosity, and mechanical/degradation properties was performed. In addition, the behavior of human mesenchymal stem cells seeded on various designed soy scaffolds was analyzed. Biological characterization of the cell-seeded scaffolds was performed to assess feasibility for use in liver tissue regeneration. The acute and humoral response of soy scaffolds implanted in an in vivo mouse subcutaneous model was also investigated. All fabricated soy scaffolds were modified using thermal, chemical, and enzymatic crosslinking to change properties and cell growth behavior. 3D printing allowed for control of scaffold pore size and geometry. Scaffold structure, porosity, and degradation rate significantly altered the in vivo response. Freeze-dried soy scaffolds had similar biocompatibility as freeze-dried collagen scaffolds of the same protein content. However, the soy scaffolds degraded at a much faster rate, minimizing immunogenicity. Interestingly, subcutaneously implanted soy scaffolds affected blood

  16. Stem cells from amniotic fluid - Potential for regenerative medicine.

    PubMed

    Loukogeorgakis, Stavros P; De Coppi, Paolo

    2016-02-01

    Regenerative medicine has recently been established as an emerging field focussing on repair, replacement or regeneration of cells, tissues and whole organs. The significant recent advances in the field have intensified the search for novel sources of stem cells with potential for therapy. Recently, researchers have identified the amniotic fluid as an untapped source of stem cells that are multipotent, possess immunomodulatory properties and do not have the ethical and legal limitations of embryonic stem cells. Stem cells from the amniotic fluid have been shown to differentiate into cell lineages representing all three embryonic germ layers without generating tumours, which make them an ideal candidate for tissue engineering applications. In addition, their ability to engraft in injured organs and modulate immune and repair responses of host tissues suggest that transplantation of such cells may be useful for the treatment of various degenerative and inflammatory diseases affecting major tissues/organs. This review summarises the evidence on amniotic fluid cells over the past 15 years and explores the potential therapeutic applications of amniotic fluid stem cells and amniotic fluid mesenchymal stem cells. PMID:26542929

  17. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine.

    PubMed

    Nowakowski, Adam; Walczak, Piotr; Janowski, Miroslaw; Lukomska, Barbara

    2015-10-01

    Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented. PMID:26140302

  18. Emerging tools for erectile dysfunction: a role for regenerative medicine.

    PubMed

    Hakim, Lukman; Van der Aa, Frank; Bivalacqua, Trinity J; Hedlund, Petter; Albersen, Maarten

    2012-09-01

    Erectile dysfunction (ED) is the most common sexual disorder reported by men to their health-care providers and the most investigated male sexual dysfunction. Currently, the treatment of ED focuses on 'symptomatic relief' of ED and, therefore, tends to provide temporary relief rather than providing a cure or reversing the cause. The identification of a large population of "difficult-to-treat" patients has triggered researchers to identify novel treatment approaches, which focus on cure and restoration of the underlying cause of ED. Regenerative medicine has developed extensively in the past few decades and preclinical trials have emphasized the benefit of growth factor therapy, gene transfer, stem cells and tissue engineering for the restoration of erectile function. Development of clinical trials involving immunomodulation in postprostatectomy ED patients and the use of maxi-K channels for gene therapy are illustrative of the advances in the field. However, the search for novel treatment targets and a wealth of preclinical studies represent a dynamic and continuing field of enquiry. PMID:22824778

  19. Harnessing the potential of lung stem cells for regenerative medicine.

    PubMed

    McQualter, Jonathan L; Anthony, Desiree; Bozinovski, Steven; Prêle, Cecilia M; Laurent, Geoffrey J

    2014-11-01

    In response to recurrent exposure to environmental insults such as allergens, pollution, irritants, smoke and viral/bacterial infection, the epithelium of the lung is continually damaged. Homeostasis of the lung requires a balance between immune regulation and promotion of tissue regeneration, which requires the co-ordinated proliferation and differentiation of stem and progenitor cells. In this review we reflect on the current understanding of lung epithelial stem and progenitor cells and advocate a model hierarchy in which self-renewing multipotent lung epithelial stem cells give rise to lineage restricted progenitor cells that repopulate airway and alveolar epithelial cell lineages during homeostasis and repair. We also discuss the role of mesenchymal progenitor cells in maintaining the structural integrity of the lung and propose a model in which mesenchymal cells act as the quintessential architects of lung regeneration by providing molecular signals, such as FGF-10, to regulate the fate and specificity of epithelial stem and progenitor cells. Moreover, we discuss the current status and future prospects for translating lung stem cell therapies to the clinic to replace, repair, or regenerate diseased lung tissue. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation. PMID:25450456

  20. Regenerative medicine in China: main progress in different fields.

    PubMed

    Cheng, Biao; Lu, Shu-Liang; Fu, Xiao-Bing

    2016-01-01

    Regenerative medicine (RM) is an emerging interdisciplinary field of research and China has developed the research quickly and impressed the world with numerous research findings in stem cells, tissue engineering, active molecules and gene therapy. Important directions are induced differentiation of induced pluripotent stem and embryo stem cells as well as somatic stem cell differentiation potential and their application in trauma, burns, diseases of aging and nerve regeneration. The products ActivSkin and bone repair scaffolds have been approved and are applied in the clinic, and similar products are being studied. About 10 engineered growth-factor drugs for repair and regeneration have been approved and are used in the clinic. Gene therapy, therapeutic cloning and xenotransplantation are some of the strategies being studied. However, China needs to develop standards, regulations and management practices suitable for the healthy development of RM. Aspects that should be strengthened include sound administrative systems, laws, and technical specifications and guidelines; conservation of stem cell resources; emphasis on training and retention of talented stem cell researchers; and reasonable allocation of resources, diversification of investment and breakthroughs in key areas. Finally, broad and deep international cooperation is necessary. PMID:27547444

  1. Dedifferentiated fat cells: A cell source for regenerative medicine

    PubMed Central

    Jumabay, Medet; Boström, Kristina I

    2015-01-01

    The identification of an ideal cell source for tissue regeneration remains a challenge in the stem cell field. The ability of progeny cells to differentiate into other cell types is important for the processes of tissue reconstruction and tissue engineering and has clinical, biochemical or molecular implications. The adaptation of stem cells from adipose tissue for use in regenerative medicine has created a new role for adipocytes. Mature adipocytes can easily be isolated from adipose cell suspensions and allowed to dedifferentiate into lipid-free multipotent cells, referred to as dedifferentiated fat (DFAT) cells. Compared to other adult stem cells, the DFAT cells have unique advantages in their abundance, ease of isolation and homogeneity. Under proper condition in vitro and in vivo, the DFAT cells have exhibited adipogenic, osteogenic, chondrogenic, cardiomyogenc, angiogenic, myogenic, and neurogenic potentials. In this review, we first discuss the phenomena of dedifferentiation and transdifferentiation of cells, and then dedifferentiation of adipocytes in particular. Understanding the dedifferentiation process itself may contribute to our knowledge of normal growth processes, as well as mechanisms of disease. Second, we highlight new developments in DFAT cell culture and summarize the current understanding of DFAT cell properties. The unique features of DFAT cells are promising for clinical applications such as tissue regeneration. PMID:26640620

  2. Tissue Engineering and Regenerative Medicine 2015: A Year in Review.

    PubMed

    Wobma, Holly; Vunjak-Novakovic, Gordana

    2016-04-01

    This may be the most exciting time ever for the field of tissue engineering and regenerative medicine (TERM). After decades of progress, it has matured, integrated, and diversified into entirely new areas, and it is starting to make the pivotal shift toward translation. The most exciting science and applications continue to emerge at the boundaries of disciplines, through increasingly effective interactions between stem cell biologists, bioengineers, clinicians, and the commercial sector. In this "Year in Review," we highlight some of the major advances reported over the last year (Summer 2014-Fall 2015). Using a methodology similar to that established in previous years, we identified four areas that generated major progress in the field: (i) pluripotent stem cells, (ii) microtissue platforms for drug testing and disease modeling, (iii) tissue models of cancer, and (iv) whole organ engineering. For each area, we used some of the most impactful articles to illustrate the important concepts and results that advanced the state of the art of TERM. We conclude with reflections on emerging areas and perspectives for future development in the field. PMID:26714410

  3. Polymer-based microparticles in tissue engineering and regenerative medicine.

    PubMed

    Oliveira, Mariana B; Mano, João F

    2011-07-01

    Different types of biomaterials, processed into different shapes, have been proposed as temporary support for cells in tissue engineering (TE) strategies. The manufacturing methods used in the production of particles in drug delivery strategies have been adapted for the development of microparticles in the fields of TE and regenerative medicine (RM). Microparticles have been applied as building blocks and matrices for the delivery of soluble factors, aiming for the construction of TE scaffolds, either by fusion giving rise to porous scaffolds or as injectable systems for in situ scaffold formation, avoiding complicated surgery procedures. More recently, organ printing strategies have been developed by the fusion of hydrogel particles with encapsulated cells, aiming the production of organs in in vitro conditions. Mesoscale self-assembly of hydrogel microblocks and the use of leachable particles in three-dimensional (3D) layer-by-layer (LbL) techniques have been suggested as well in recent works. Along with innovative applications, new perspectives are open for the use of these versatile structures, and different directions can still be followed to use all the potential that such systems can bring. This review focuses on polymeric microparticle processing techniques and overviews several examples and general concepts related to the use of these systems in TE and RE applications. The use of materials in the development of microparticles from research to clinical applications is also discussed. PMID:21584949

  4. Potency of Fish Collagen as a Scaffold for Regenerative Medicine

    PubMed Central

    Yamamoto, Kohei; Yanagiguchi, Kajiro

    2014-01-01

    Cells, growth factors, and scaffold are the crucial factors for tissue engineering. Recently, scaffolds consisting of natural polymers, such as collagen and gelatin, bioabsorbable synthetic polymers, such as polylactic acid and polyglycolic acid, and inorganic materials, such as hydroxyapatite, as well as composite materials have been rapidly developed. In particular, collagen is the most promising material for tissue engineering due to its biocompatibility and biodegradability. Collagen contains specific cell adhesion domains, including the arginine-glycine-aspartic acid (RGD) motif. After the integrin receptor on the cell surface binds to the RGD motif on the collagen molecule, cell adhesion is actively induced. This interaction contributes to the promotion of cell growth and differentiation and the regulation of various cell functions. However, it is difficult to use a pure collagen scaffold as a tissue engineering material due to its low mechanical strength. In order to make up for this disadvantage, collagen scaffolds are often modified using a cross-linker, such as gamma irradiation and carbodiimide. Taking into account the possibility of zoonosis, a variety of recent reports have been documented using fish collagen scaffolds. We herein review the potency of fish collagen scaffolds as well as associated problems to be addressed for use in regenerative medicine. PMID:24982861

  5. Porous tantalum and tantalum oxide nanoparticles for regenerative medicine.

    PubMed

    Mohandas, Gokhuldass; Oskolkov, Nikita; McMahon, Michael T; Walczak, Piotr; Janowski, Miroslaw

    2014-01-01

    For centuries, inflammatory/foreign body reactions have plagued the attempts of clinicians to use metals for tissue and bone reconstructions. Since corrosion contributes to the rejection of metal by the body, an extremely bioinert metal - tantalum - has been successfully used in medicine. The outstanding biocompatibility and flexibility of tantalum established the basis for a growing cadre of clinical applications. One important application which benefited from the introduction of powder (particle) metallurgy is use of tantalum as bone implants. Porous materials have re-shaped the landscape of bone implants, as they allow for bone ingrowth and biological fixation, and eliminate implant loosening and related treatment failures. The unique bone-mimicking properties of porous tantalum enabled the use of tantalum as a material for bulk implants, and not only for coatings, as is the case with other porous metals. Moreover, porous tantalum also facilitates the ingrowth of soft tissue, including the formation of blood vessels that were found to assemble on the surface and within the structure of the porous tantalum. Also, since tantalum is strongly radiopaque due its high atomic number, this property is widely employed for marking in orthopedics and in endovascular medical devices. Another important development was the production of nanoparticles based on tantalum. These particles have been shown to be superior to iodinated contrast agents for blood pool imaging applications due to their longer circulation time. Their properties are similar to gold nanoparticles, but are far more cost-effective, and thus, well-positioned to replace gold in regenerative medicine for labeling and tracking of cell grafts through x-ray-based imaging. However, the amount of tantalum nanoparticles that can be taken up by stem cells is not enough to make individual cells visible in x-ray images. Thus, alternative strategies are needed, such as hydrogel or nanofiber scaffolds, which can be loaded

  6. Bringing regenerative medicines to the clinic: the future for regulation and reimbursement.

    PubMed

    Bubela, Tania; McCabe, Christopher; Archibald, Peter; Atkins, Harold; Bradshaw, Steven E; Kefalas, Panos; Mujoomdar, Michelle; Packer, Claire; Piret, James; Raxworthy, Mike; Soares, Marta; Viswanathan, Sowmya

    2015-01-01

    Significant investments in regenerative medicine necessitate discussion to align evidentiary requirements and decision-making considerations from regulatory, health system payer and developer perspectives. Only with coordinated efforts will the potential of regenerative medicine be realized. We report on discussions from two workshops sponsored by NICE, University of Alberta, Cell Therapy Catapult and Centre for Commercialization of Regenerative Medicine. We discuss methods to support the assessment of value for regenerative medicine products and services and the synergies that exist between market authorization and reimbursement regulations and practices. We discuss the convergence in novel adaptive licensing practices that may promote the development and adoption of novel therapeutics that meet the needs of healthcare payers. PMID:26565607

  7. The Social Framework Surrounding the Development of Regenerative Medicine in Japan.

    PubMed

    Nakazawa, Eisuke; Takimoto, Yoshiyuki; Akabayashi, Akira

    2016-07-01

    In 2014, the Japanese government amended the laws concerning regenerative medicine. This reform aimed to contribute to the appropriate promotion of regenerative medicine and new drug discovery for intractable diseases using stem cells. It also helped restrict stem cell tourism, that is, provision of stem cell therapy of unclear efficacy and safety to tourists from abroad, and its relaxed regulations may even lead to the resolution of the drug lag problem. Stem cell medicine is positioned as a part of a national growth strategy that requires cooperation among the industry, government, healthcare field, and academia. It can be characterized as a "mesoscopic strategy," in that it aims to achieve high-level technological developments that would allow results from human-induced pluripotent stem cell and traditional stem cell research to contribute to regenerative medicine and drug development for intractable diseases, while attempting to strike a balance with commercialization and improved access of citizens to cutting-edge medical care. PMID:27348830

  8. Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine

    NASA Astrophysics Data System (ADS)

    Sharma, Gulshan B.; Robertson, Douglas D.

    2013-07-01

    specimen. Low predicted bone density was lower than actual specimen. Differences were probably due to applied muscle and joint reaction loads, boundary conditions, and values of constants used. Work is underway to study this. Nonetheless, the results demonstrate three dimensional bone remodeling simulation validity and potential. Such adaptive predictions take physiological bone remodeling simulations one step closer to reality. Computational analyses are needed that integrate biological remodeling rules and predict how bone will respond over time. We expect the combination of computational static stress analyses together with adaptive bone remodeling simulations to become effective tools for regenerative medicine research.

  9. Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine

    SciTech Connect

    Sharma, Gulshan B.; Robertson, Douglas D.

    2013-07-01

    actual specimen. Low predicted bone density was lower than actual specimen. Differences were probably due to applied muscle and joint reaction loads, boundary conditions, and values of constants used. Work is underway to study this. Nonetheless, the results demonstrate three dimensional bone remodeling simulation validity and potential. Such adaptive predictions take physiological bone remodeling simulations one step closer to reality. Computational analyses are needed that integrate biological remodeling rules and predict how bone will respond over time. We expect the combination of computational static stress analyses together with adaptive bone remodeling simulations to become effective tools for regenerative medicine research.

  10. Tissue engineering and regenerative medicine in applied research: a year in review of 2014.

    PubMed

    Lin, Xunxun; Huang, Jia; Shi, Yuan; Liu, Wei

    2015-04-01

    Tissue engineering and regenerative medicine (TERM) remains to be one of the fastest growing fields, which covers a wide scope of topics of both basic and applied biological researches. This overview article summarized the advancements in applied researches of TERM area, including stem cell-mediated tissue regeneration, material science, and TERM clinical trial. These achievements demonstrated the great potential of clinical regenerative therapy of tissue/organ disease or defect through stem cells and tissue engineering approaches. PMID:25588683

  11. Concepts in regenerative medicine: Past, present, and future in articular cartilage treatment.

    PubMed

    Anz, Adam W; Bapat, Asawari; Murrell, William D

    2016-01-01

    Regenerative medicine is emerging with great interest and hope from patients, industry, academia, and medical professionals. Cartilage regeneration, restoration, or repair is one of the prime targets that remains largely unsolved, and many believe that regenerative medicine can possibly deliver solutions that can be widely used to address the current gap(s) in treatment. In the United States, Europe, Australia, and India the regulation of regenerative based treatments has become a big debate. Although the rules and regulations remain unclear, clinicians that are interested should carry-on with the best available guidelines to ensure safety and compliance during delivery in clinical practice to avoid regulatory infraction. Many have made significant investment of time, resources, and facilities in recent years to provide new regenerative treatment options and advance medical care for patients. Instead of reinventing the wheel, it would be more efficient to adopt currently accepted standards and nomenclature borrowed from transplantation science, and cord blood storage industries. The purposes of this article are to provide some historical background to the field of regenerative medicine as it applies to cartilage, and how this field has developed. This will be followed by a separate discussion on regulatory oversight and input and how it has influenced access to care. Furthermore, we discuss current clinical techniques and progress, and ways to deliver these treatments to patients safely, effectively, and in a cost sensitive manner, concluding with an overview of some of the promising regenerative techniques specific to cartilage. PMID:27489407

  12. Prospects for regenerative medicine approaches in women's health.

    PubMed

    Schenke-Layland, Katja; Brucker, Sara Y

    2015-12-01

    Novel regenerative strategies, stem cell-based therapies or the development of advanced human cell-based in vitro-manufactured preclinical test systems offer great potential to generate advances in clinical practice in the field of women's health. This review aims to provide a brief overview of the current advances in the field. PMID:26173979

  13. [Clinical and organizational way of innovative development of regenerative medicine in security agencies].

    PubMed

    Ryzhman, N N; Maksimov, A G; Tyrenko, V V; Karamullin, M A; Yurkin, A K; Golota, A S; Lisovets, D G; Sarana, A M; Barsevich, O V

    2015-03-01

    The article covers organizational aspects of development of innovative technologies in the field of regenerative medicine. It is shown that for the effective design and implementation into medical practice of regenerative medicine requires a united complex of military health care, military medical research and education. The main goal is to formate a biological insurance of personnel to treat different consequences of radiological incidents, burn disease, identification of the remains of the victims; the maximum returning to action after disturbed as a result of health services. Proposes the creation of "Interdepartmental Clinical Research and Education Center for Regenerative Medicine", combining research, clinical, industrial and educational potential of the leading institutions of various departments that will enhance the national security of the Russian Federation. PMID:26454924

  14. Dental pulp stem cells: function, isolation and applications in regenerative medicine.

    PubMed

    Tatullo, Marco; Marrelli, Massimo; Shakesheff, Kevin M; White, Lisa J

    2015-11-01

    Dental pulp stem cells (DPSCs) are a promising source of cells for numerous and varied regenerative medicine applications. Their natural function in the production of odontoblasts to create reparative dentin support applications in dentistry in the regeneration of tooth structures. However, they are also being investigated for the repair of tissues outside of the tooth. The ease of isolation of DPSCs from discarded or removed teeth offers a promising source of autologous cells, and their similarities with bone marrow stromal cells (BMSCs) suggest applications in musculoskeletal regenerative medicine. DPSCs are derived from the neural crest and, therefore, have a different developmental origin to BMSCs. These differences from BMSCs in origin and phenotype are being exploited in neurological and other applications. This review briefly highlights the source and functions of DPSCs and then focuses on in vivo applications across the breadth of regenerative medicine. PMID:24850632

  15. The pluralization of the international: Resistance and alter-standardization in regenerative stem cell medicine

    PubMed Central

    Rosemann, Achim; Chaisinthop, Nattaka

    2016-01-01

    The article explores the formation of an international politics of resistance and ‘alter-standardization’ in regenerative stem cell medicine. The absence of internationally harmonized regulatory frameworks in the clinical stem cell field and the presence of lucrative business opportunities have resulted in the formation of transnational networks adopting alternative research standards and practices. These oppose, as a universal global standard, strict evidence-based medicine clinical research protocols as defined by scientists and regulatory agencies in highly developed countries. The emergence of transnational spaces of alter-standardization is closely linked to scientific advances in rapidly developing countries such as China and India, but calls for more flexible regulatory frameworks, and the legitimization of experimental for-profit applications outside of evidence-based medical care, are emerging increasingly also within more stringently regulated countries, such as the United States and countries in the European Union. We can observe, then, a trend toward the pluralization of the standards, practices, and concepts in the stem cell field. PMID:26983174

  16. The pluralization of the international: Resistance and alter-standardization in regenerative stem cell medicine.

    PubMed

    Rosemann, Achim; Chaisinthop, Nattaka

    2016-02-01

    The article explores the formation of an international politics of resistance and 'alterstandardization' in regenerative stem cell medicine. The absence of internationally harmonized regulatory frameworks in the clinical stem cell field and the presence of lucrative business opportunities have resulted in the formation of transnational networks adopting alternative research standards and practices. These oppose, as a universal global standard, strict evidence-based medicine clinical research protocols as defined by scientists and regulatory agencies in highly developed countries. The emergence of transnational spaces of alter-standardization is closely linked to scientific advances in rapidly developing countries such as China and India, but calls for more flexible regulatory frameworks, and the legitimization of experimental for-profit applications outside of evidence-based medical care, are emerging increasingly also within more stringently regulated countries, such as the United States and countries in the European Union. We can observe, then, a trend toward the pluralization of the standards, practices, and concepts in the stem cell field. PMID:26983174

  17. Regenerative medicine: tissue-engineered cell sheet for the prevention of post-esophageal ESD stricture.

    PubMed

    Ohki, Takeshi; Yamato, Masayuki; Okano, Teruo; Yamamoto, Masakazu

    2014-04-01

    Induced pluripotent stem (iPS) cells have captured the world's attention and directed an unprecedented focus on regenerative medicine. The potential of iPS cells to aid in the development of new treatments for various diseases is exciting, and researchers are only beginning to discover their potential benefits for humans. iPS cells are more effective if they are interconnected with tissues; however, new technologies are needed to create and transplant these tissues. This study introduces a new connection between endoscopy and regenerative medicine in gastroenterology through specifically addressing how cell sheet technology can be a viable method of tissue creation and transplantation. PMID:24679238

  18. Endogenous lung stem cells: what is their potential for use in regenerative medicine?

    PubMed

    Bertoncello, Ivan; McQualter, Jonathan L

    2010-06-01

    Advances in stem cell technologies in recent years have generated considerable interest in harnessing the potential of adult and embryonic stem cells in regenerative medicine. Stem cell-based therapies are a particularly attractive option for the treatment of intractable lung diseases for which current therapies are essentially palliative. Proof-of-principle experiments in animal models demonstrate the efficacy of exogenous stem cells in mediating lung repair by attenuating fibrotic responses to injury, but also suggest that their ability to contribute to lung epithelial regeneration and repair is limited. Consequently, attention has turned to endogenous lung stem cells as targets or vehicles for the delivery of lung regenerative therapies. In this article, we discuss the potential and promise of endogenous lung stem cells in regenerative medicine, and the problems and challenges faced by researchers and clinicians in harnessing their potential to repair the lung. PMID:20524918

  19. Design, clinical translation and immunological response of biomaterials in regenerative medicine

    NASA Astrophysics Data System (ADS)

    Sadtler, Kaitlyn; Singh, Anirudha; Wolf, Matthew T.; Wang, Xiaokun; Pardoll, Drew M.; Elisseeff, Jennifer H.

    2016-07-01

    The field of regenerative medicine aims to replace tissues lost as a consequence of disease, trauma or congenital abnormalities. Biomaterials serve as scaffolds for regenerative medicine to deliver cells, provide biological signals and physical support, and mobilize endogenous cells to repair tissues. Sophisticated chemistries are used to synthesize materials that mimic and modulate native tissue microenvironments, to replace form and to elucidate structure–function relationships of cell–material interactions. The therapeutic relevance of these biomaterial properties can only be studied after clinical translation, whereby key parameters for efficacy can be defined and then used for future design. In this Review, we present the development and translation of biomaterials for two tissue engineering targets, cartilage and cornea, both of which lack the ability to self-repair. Finally, looking to the future, we discuss the role of the immune system in regeneration and the potential for biomaterial scaffolds to modulate immune signalling to create a pro-regenerative environment.

  20. [Translational/regulatory science researches of NIHS for regenerative medicine and cellular therapy products].

    PubMed

    Sato, Yoji

    2014-01-01

    In 2013, the Japanese Diet passed the Regenerative Medicine Promotion Act and the revisions to the Pharmaceutical Affairs Act, which was also renamed as the Therapeutic Products Act (TPA). One of the aims of the new/revised Acts is to promote the development and translation of and access to regenerative/cellular therapies. In the TPA, a product derived from processing cells is categorized as a subgroup of "regenerative medicine, cellular therapy and gene therapy products" (RCGPs), products distinct from pharmaceuticals and medical devices, allowing RCGPs to obtain a conditional and time- limited marketing authorization much earlier than that under the conventional system. To foster not only RCGPs, but also innovative pharmaceuticals and medical devices, the Ministry of Health, Labour and Welfare recently launched Translational Research Program for Innovative Pharmaceuticals, Medical Devices and RCGPs. This mini-review introduces contributions of the National Institute of Health Sciences (NIHS) to research projects on RCGPs in the Program. PMID:25707195

  1. 3D printed PLA-based scaffolds: a versatile tool in regenerative medicine.

    PubMed

    Serra, Tiziano; Mateos-Timoneda, Miguel A; Planell, Josep A; Navarro, Melba

    2013-10-01

    Rapid prototyping (RP), also known as additive manufacturing (AM), has been well received and adopted in the biomedical field. The capacity of this family of techniques to fabricate customized 3D structures with complex geometries and excellent reproducibility has revolutionized implantology and regenerative medicine. In particular, nozzle-based systems allow the fabrication of high-resolution polylactic acid (PLA) structures that are of interest in regenerative medicine. These 3D structures find interesting applications in the regenerative medicine field where promising applications including biodegradable templates for tissue regeneration purposes, 3D in vitro platforms for studying cell response to different scaffolds conditions and for drug screening are considered among others. Scaffolds functionality depends not only on the fabrication technique, but also on the material used to build the 3D structure, the geometry and inner architecture of the structure, and the final surface properties. All being crucial parameters affecting scaffolds success. This Commentary emphasizes the importance of these parameters in scaffolds' fabrication and also draws the attention toward the versatility of these PLA scaffolds as a potential tool in regenerative medicine and other medical fields. PMID:23959206

  2. Stem cells, growth factors and scaffolds in craniofacial regenerative medicine

    PubMed Central

    Tollemar, Viktor; Collier, Zach J.; Mohammed, Maryam K.; Lee, Michael J.; Ameer, Guillermo A.; Reid, Russell R.

    2015-01-01

    Current reconstructive approaches to large craniofacial skeletal defects are often complicated and challenging. Critical-sized defects are unable to heal via natural regenerative processes and require surgical intervention, traditionally involving autologous bone (mainly in the form of nonvascularized grafts) or alloplasts. Autologous bone grafts remain the gold standard of care in spite of the associated risk of donor site morbidity. Tissue engineering approaches represent a promising alternative that would serve to facilitate bone regeneration even in large craniofacial skeletal defects. This strategy has been tested in a myriad of iterations by utilizing a variety of osteoconductive scaffold materials, osteoblastic stem cells, as well as osteoinductive growth factors and small molecules. One of the major challenges facing tissue engineers is creating a scaffold fulfilling the properties necessary for controlled bone regeneration. These properties include osteoconduction, osetoinduction, biocompatibility, biodegradability, vascularization, and progenitor cell retention. This review will provide an overview of how optimization of the aforementioned scaffold parameters facilitates bone regenerative capabilities as well as a discussion of common osteoconductive scaffold materials. PMID:27239485

  3. Regenerative medicine for the treatment of heart disease.

    PubMed

    Hansson, E M; Lendahl, U

    2013-03-01

    Heart failure is a major cause of mortality worldwide with a steady increase in prevalence. There is currently no available cure beyond orthotopic heart transplantation, which for a number of reasons is an option only for a small fraction of all patients. Considerable hope has therefore been placed on the possibility of treating a failing heart by replacing lost cardiomyocytes, either through transplantation of various types of stem cells or by boosting endogenous regenerative mechanisms in the heart. Here, we review the current status of stem and progenitor cell-based therapies for heart disease. We discuss the pros and cons of different stem and progenitor cell types that can be considered for transplantation and describe recent advances in the understanding of how cardiomyocytes normally differentiate and how these cells can be generated from more immature cells ex vivo. Finally, we consider the possibility of activation of endogenous stem and progenitor cells to treat heart failure. PMID:23331408

  4. Application of Stem Cell Technology in Dental Regenerative Medicine

    PubMed Central

    Feng, Ruoxue; Lengner, Chistopher

    2013-01-01

    Significance In this review, we summarize the current literature regarding the isolation and characterization of dental tissue-derived stem cells and address the potential of these cell types for use in regenerative cell transplantation therapy. Recent Advances Looking forward, platforms for the delivery of stem cells via scaffolds and the use of growth factors and cytokines for enhancing dental stem cell self-renewal and differentiation are discussed. Critical Issues We aim to understand the developmental origins of dental tissues in an effort to elucidate the molecular pathways governing the genesis of somatic dental stem cells. The advantages and disadvantages of several dental stem cells are discussed, including the developmental stage and specific locations from which these cells can be purified. In particular, stem cells from human exfoliated deciduous teeth may act as a very practical and easily accessibly reservoir for autologous stem cells and hold the most value in stem cell therapy. Dental pulp stem cells and periodontal ligament stem cells should also be considered for their triple lineage differentiation ability and relative ease of isolation. Further, we address the potentials and limitations of induced pluripotent stem cells as a cell source in dental regenerative. Future Directions From an economical and a practical standpoint, dental stem cell therapy would be most easily applied in the prevention of periodontal ligament detachment and bone atrophy, as well as in the regeneration of dentin-pulp complex. In contrast, cell-based tooth replacement due to decay or other oral pathology seems, at the current time, an untenable approach. PMID:24527351

  5. Opportunities for emergency medicine training in Australia.

    PubMed Central

    Ryan, J M; Gaudry, P I

    1997-01-01

    Opportunities exist for graduates from the United Kingdom to undertake some of their emergency medicine training in Australia. Guidelines for graduates are presented on when to travel, how to find a position, what information one should obtain about a position, and how to acquire the necessary visa and medical registration. A successful visit takes some time to plan and requires cooperation between the negotiating parties. The graduate who undertakes training abroad can expect to benefit professionally and personally. The development of an international exchange network for trainees would streamline the process and broaden the appeal to graduates of completing some of their emergency medicine training in another country. PMID:9023622

  6. Processing of Materials for Regenerative Medicine Using Supercritical Fluid Technology.

    PubMed

    García-González, Carlos A; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2015-07-15

    The increase in the world demand of bone and cartilage replacement therapies urges the development of advanced synthetic scaffolds for regenerative purposes, not only providing mechanical support for tissue formation, but also promoting and guiding the tissue growth. Conventional manufacturing techniques have severe restrictions for designing these upgraded scaffolds, namely, regarding the use of organic solvents, shearing forces, and high operating temperatures. In this context, the use of supercritical fluid technology has emerged as an attractive solution to design solvent-free scaffolds and ingredients for scaffolds under mild processing conditions. The state-of-the-art on the technological endeavors for scaffold production using supercritical fluids is presented in this work with a critical review on the key processing parameters as well as the main advantages and limitations of each technique. A special stress is focused on the strategies suitable for the incorporation of bioactive agents (drugs, bioactive glasses, and growth factors) and the in vitro and in vivo performance of supercritical CO2-processed scaffolds. PMID:25587916

  7. Engineering Mesenchymal Stem Cells for Regenerative Medicine and Drug Delivery

    PubMed Central

    Park, Ji Sun; Suryaprakash, Smruthi; Lao, Yeh-Hsing; Leong, Kam W.

    2015-01-01

    Researchers have applied mesenchymal stem cells (MSC) to a variety of therapeutic scenarios by harnessing their multipotent, regenerative, and immunosuppressive properties with tropisms toward inflamed, hypoxic, and cancerous sites. Although MSC-based therapies have been shown to be safe and effective to a certain degree, the efficacy remains low in most cases when MSC are applied alone. To enhance their therapeutic efficacy, researchers have equipped MSC with targeted delivery functions using genetic engineering, therapeutic agent incorporation, and cell surface modification. MSC can be genetically modified virally or non-virally to overexpress therapeutic proteins that complement their innate properties. MSC can also be primed with non-peptidic drugs or magnetic nanoparticles for enhanced efficacy and externally regulated targeting, respectively. Furthermore, MSC can be functionalized with targeting moieties to augment their homing toward therapeutic sites using enzymatic modification, chemical conjugation, or non-covalent interactions. These engineering techniques are still works in progress, requiring optimization to improve the therapeutic efficacy and targeting effectiveness while minimizing any loss of MSC function. In this review, we will highlight the advanced techniques of engineering MSC, describe their promise and the challenges of translation into clinical settings, and suggest future perspectives on realizing their full potential for MSC-based therapy. PMID:25770356

  8. Sulfoximines: a neglected opportunity in medicinal chemistry.

    PubMed

    Lücking, Ulrich

    2013-09-01

    Innovation has frequently been described as the key to drug discovery. However, in the daily routine, medicinal chemists often tend to stick to the functional groups and structural elements they know and love. Blockbuster cancer drug Velcade (bortezomib), for example, was rejected by more than 50 companies, supposedly because of its unusual boronic acid function (as often repeated: "only a moron would put boron in a drug!"). Similarly, in the discovery process of the pan-CDK inhibitor BAY 1000394, the unconventional proposal to introduce a sulfoximine group into the lead series also led to sneers and raised eyebrows, since sulfoximines have seldom been used in medicinal chemistry. However, it was the introduction of the sulfoximine group that finally allowed the fundamental issues of the project to be overcome, culminating in the identification of the clinical sulfoximine pan-CDK inhibitor BAY 1000394. This Minireview provides an overview of a widely neglected opportunity in medicinal chemistry--the sulfoximine group. PMID:23934828

  9. California dreaming? A new start for regenerative medicine in the Golden State. Interview with Dr. Zach Hall.

    PubMed

    Hall, Zach W

    2007-01-01

    The California Institute for Regenerative Medicine (CIRM) was established in 2004 with the passage of Proposition 71, the California Stem Cell Research and Cures Initiative. The statewide ballot measure, which provided US$3 billion in funding for stem cell research at California universities and research institutions, was approved by California voters, and called for the establishment of an entity to make grants and provide loans for stem cell research, research facilities and other vital research opportunities. Here, Dr Zach Hall, Interim President of the CIRM, outlines the ethos and aspirations of the CIRM to Regenerative Medicine. Dr Hall trained as a basic neuroscientist and became a faculty member and department chair at the University of California, San Francisco. In 1994, he was appointed Director of National Institute of Neurological Disorders and Stroke within the National Institutes of Health, and was responsible for a research program that awarded more than US$500 million a year in grants and contracts. Since that time, he has held senior positions in research administration within both the University of California, San Francisco, where he was Executive Vice Chancellor, and the University of Southern California. Full information about the CIRM can be found at www.cirm.ca.gov. PMID:17465772

  10. The potential role of regenerative medicine in the management of traumatic patients

    PubMed Central

    Moradi, Mahmoudreza; Hood, Brandy; Moradi, Marzieh; Atala, Anthony

    2015-01-01

    Abstract: Traumatic injury represents the most common cause of death in ages 1 to 44 years and a significant proportion of patients treated in hospital emergency wards each year. Unfortunately, for patients who survive their injuries, survival is not equal to complete recovery. Many traumatic injuries are difficult to treat with conventional therapy and result in permanent disability. In such situations, regenerative medicine has the potential to play an important role in recovery of function. Regenerative medicine is a field that seeks to maintain or restore function with the development of biological substitutes for diseased or damaged tissues. Several regenerative approaches are currently under investigation, with a few achieving clinical application. For example, engineered skin has gained FDA approval, and more than 20 tissue engineered skin substitutes are now commercially available. Other organ systems with promising animal models and small human series include the central and peripheral nervous systems, the musculoskeletal system, the respiratory and genitourinary tracts, and others. This paper will be a clinically oriented review of the regenerative approaches currently under investigation of special interest to those caring for traumatic patients. PMID:25618439

  11. Hepatic progenitor cells in canine and feline medicine: potential for regenerative strategies

    PubMed Central

    2014-01-01

    New curative therapies for severe liver disease are urgently needed in both the human and veterinary clinic. It is important to find new treatment modalities which aim to compensate for the loss of parenchymal tissue and to repopulate the liver with healthy hepatocytes. A prime focus in regenerative medicine of the liver is the use of adult liver stem cells, or hepatic progenitor cells (HPCs), for functional recovery of liver disease. This review describes recent developments in HPC research in dog and cat and compares these findings to experimental rodent studies and human pathology. Specifically, the role of HPCs in liver regeneration, key components of the HPC niche, and HPC activation in specific types of canine and feline liver disease will be reviewed. Finally, the potential applications of HPCs in regenerative medicine of the liver are discussed and a potential role is suggested for dogs as first target species for HPC-based trials. PMID:24946932

  12. Regenerative medicine through a crisis: social perception and the financial reality.

    PubMed

    Brindley, David; Davie, Natasha

    2009-12-01

    The aim of this perspective piece is to highlight how the "social perception" and "financial reality" of regenerative medicine may act to hinder its evolution into the principal health-care option for the future. We also consider the role of the consumer and the need for increased public awareness. Furthermore, we consider the effects of the changing social attitudes toward the field, as well as taking into account the influence of current and future political thinking. From a financial viewpoint, we analyze the compatibility of the current venture capital model with regenerative medicine start-ups and explore approaches to ensure sufficient funding and support throughout all stages of product development, for example, the modularization of funding. PMID:20041739

  13. Stem Cell Tracking with Nanoparticles for Regenerative Medicine Purposes: An Overview

    PubMed Central

    Accomasso, Lisa; Gallina, Clara; Turinetto, Valentina; Giachino, Claudia

    2016-01-01

    Accurate and noninvasive stem cell tracking is one of the most important needs in regenerative medicine to determine both stem cell destinations and final differentiation fates, thus allowing a more detailed picture of the mechanisms involved in these therapies. Given the great importance and advances in the field of nanotechnology for stem cell imaging, currently, several nanoparticles have become standardized products and have been undergoing fast commercialization. This review has been intended to summarize the current use of different engineered nanoparticles in stem cell tracking for regenerative medicine purposes, in particular by detailing their main features and exploring their biosafety aspects, the first step for clinical application. Moreover, this review has summarized the advantages and applications of stem cell tracking with nanoparticles in experimental and preclinical studies and investigated present limitations for their employment in the clinical setting. PMID:26839568

  14. Early evaluation and value-based pricing of regenerative medicine technologies.

    PubMed

    Koerber, Florian; Rolauffs, Bernd; Rogowski, Wolf

    2013-11-01

    Since the first pioneering scientists explored the potential of using human cells for therapeutic purposes the branch of regenerative medicine has evolved to become a mature industry. The focus has switched from 'what can be done' to 'what can be commercialized'. Timely health economic evaluation supports successful marketing by establishing the value of a product from a healthcare system perspective. This article reports results from a research project on early health economic evaluation in collaboration with developers, clinicians and manufacturers. We present an approach to determine an early value-based price for a new treatment of cartilage defects of the knee from the area of regenerative medicine. Examples of using evaluation results for the purpose of business planning, market entry, preparing the coverage decision and managed entry are discussed. PMID:24147530

  15. Combining regenerative medicine strategies to provide durable reconstructive options: auricular cartilage tissue engineering.

    PubMed

    Jessop, Zita M; Javed, Muhammad; Otto, Iris A; Combellack, Emman J; Morgan, Siân; Breugem, Corstiaan C; Archer, Charles W; Khan, Ilyas M; Lineaweaver, William C; Kon, Moshe; Malda, Jos; Whitaker, Iain S

    2016-01-01

    Recent advances in regenerative medicine place us in a unique position to improve the quality of engineered tissue. We use auricular cartilage as an exemplar to illustrate how the use of tissue-specific adult stem cells, assembly through additive manufacturing and improved understanding of postnatal tissue maturation will allow us to more accurately replicate native tissue anisotropy. This review highlights the limitations of autologous auricular reconstruction, including donor site morbidity, technical considerations and long-term complications. Current tissue-engineered auricular constructs implanted into immune-competent animal models have been observed to undergo inflammation, fibrosis, foreign body reaction, calcification and degradation. Combining biomimetic regenerative medicine strategies will allow us to improve tissue-engineered auricular cartilage with respect to biochemical composition and functionality, as well as microstructural organization and overall shape. Creating functional and durable tissue has the potential to shift the paradigm in reconstructive surgery by obviating the need for donor sites. PMID:26822227

  16. Hepatic progenitor cells in canine and feline medicine: potential for regenerative strategies.

    PubMed

    Kruitwagen, Hedwig S; Spee, Bart; Schotanus, Baukje A

    2014-01-01

    New curative therapies for severe liver disease are urgently needed in both the human and veterinary clinic. It is important to find new treatment modalities which aim to compensate for the loss of parenchymal tissue and to repopulate the liver with healthy hepatocytes. A prime focus in regenerative medicine of the liver is the use of adult liver stem cells, or hepatic progenitor cells (HPCs), for functional recovery of liver disease. This review describes recent developments in HPC research in dog and cat and compares these findings to experimental rodent studies and human pathology. Specifically, the role of HPCs in liver regeneration, key components of the HPC niche, and HPC activation in specific types of canine and feline liver disease will be reviewed. Finally, the potential applications of HPCs in regenerative medicine of the liver are discussed and a potential role is suggested for dogs as first target species for HPC-based trials. PMID:24946932

  17. The UK relative to other single payer-dominated healthcare markets for regenerative medicine therapies.

    PubMed

    Rose, James B; Williams, David J

    2012-05-01

    The UK has for many years been considered by businesses, including those based in the UK, as at best a second market for the launch of innovative medical technology products. Historically, this has been attributed to the slow pace of adoption in its National Health Service (NHS). The NHS is perceived to be subject to cost containment, high levels of fragmentation and a lack of strategic incentives to resolve its key failings as a market. Canada and Sweden offer examples of different operating models of healthcare delivery in a single payer-dominated market, and as a consequence, have evolved with different market characteristics. Together, these economies represent an important subsection of healthcare markets that are predominantly publically funded. This report examines the barriers to market entry for regenerative medicine products in these economies and attempts to evaluate the upcoming UK healthcare reforms in terms of impact on the regenerative medicine industry sector. PMID:22594333

  18. Tissue Engineering and Regenerative Medicine: Recent Innovations and the Transition to Translation

    PubMed Central

    Fisher, Matthew B.

    2013-01-01

    The field of tissue engineering and regenerative medicine (TERM) has exploded in the last decade. In this Year (or so) in Review, we highlight some of the high impact advances within the field over the past several years. Using the past as our guide and starting with an objective premise, we attempt so to identify recent “hot topics” and transformative publications within the field. Through this process, several key themes emerged: (1) tissue engineering: grafts and materials, (2) regenerative medicine: scaffolds and factors that control endogenous tissue formation, (3) clinical trials, and (4) novel cell sources: induced pluripotent stem cells. Within these focus areas, we summarize the highly impactful articles that emerged from our objective analysis and review additional recent publications to augment and expand upon these key themes. Finally, we discuss where the TERM field may be headed and how to monitor such a broad-based and ever-expanding community. PMID:23253031

  19. Cell Processing Engineering for Regenerative Medicine : Noninvasive Cell Quality Estimation and Automatic Cell Processing.

    PubMed

    Takagi, Mutsumi

    2016-01-01

    The cell processing engineering including automatic cell processing and noninvasive cell quality estimation of adherent mammalian cells for regenerative medicine was reviewed. Automatic cell processing necessary for the industrialization of regenerative medicine was introduced. The cell quality such as cell heterogeneity should be noninvasively estimated before transplantation to patient, because cultured cells are usually not homogeneous but heterogeneous and most protocols of regenerative medicine are autologous system. The differentiation level could be estimated by two-dimensional cell morphology analysis using a conventional phase-contrast microscope. The phase-shifting laser microscope (PLM) could determine laser phase shift at all pixel in a view, which is caused by the transmitted laser through cell, and might be more noninvasive and more useful than the atomic force microscope and digital holographic microscope. The noninvasive determination of the laser phase shift of a cell using a PLM was carried out to determine the three-dimensional cell morphology and estimate the cell cycle phase of each adhesive cell and the mean proliferation activity of a cell population. The noninvasive discrimination of cancer cells from normal cells by measuring the phase shift was performed based on the difference in cytoskeleton density. Chemical analysis of the culture supernatant was also useful to estimate the differentiation level of a cell population. A probe beam, an infrared beam, and Raman spectroscopy are useful for diagnosing the viability, apoptosis, and differentiation of each adhesive cell. PMID:25373455

  20. Advanced Tissue Sciences Inc.: learning from the past, a case study for regenerative medicine.

    PubMed

    Pangarkar, Nitin; Pharoah, Marc; Nigam, Avinav; Hutmacher, Dietmar W; Champ, Simon

    2010-09-01

    On 31st March 2003 Advanced Tissue Sciences (ATS) was liquidated, with the effect that in excess of US$300 million of stakeholder financing was destroyed. Although successful in the development of breakthrough technologies in the regenerative medicine arena and the building of a substantial portfolio of patents, the company never made a profit. In this case study, ATS’ business strategy, market and competitive environment will be discussed in the context of the company’s historical development. A number of important lessons from this case are discussed. From a management perspective the most critical lesson is the importance of effective financial planning and management of costs, and in particular R&D costs, including the significant costs associated with clinical trials. In addition, a clear strategic focus is extremely important due to the significant resources required in the development of a new therapy. From an investor’s perspective the lessons to be gathered from the ATS case are related to the risk involved in investing in the field of regenerative medicine. This case indicates that both professional and private investors did not fully question the validity of ATS’ business strategy and financial forecasts. A clear and focused strategy based on long-term investor commitment is essential for the successful commercialization of regenerative medicine. PMID:20868336

  1. Translating cell-based regenerative medicines from research to successful products: challenges and solutions.

    PubMed

    Bayon, Yves; Vertès, Alain A; Ronfard, Vincent; Egloff, Matthieu; Snykers, Sarah; Salinas, Gabriella Franco; Thomas, Robert; Girling, Alan; Lilford, Richard; Clermont, Gaelle; Kemp, Paul

    2014-08-01

    The Tissue Engineering & Regenerative Medicine International Society-Europe (TERMIS-EU) Industry Committee as well as its TERMIS-Americas (AM) counterpart intend to address the specific challenges and needs facing the industry in translating academic research into commercial products. Over the last 3 years, the TERMIS-EU Industry Committee has worked with commercial bodies to deliver programs that encourage academics to liaise with industry in proactive collaborations. The TERMIS-EU 2013 Industry Symposium aimed to build on this commercial agenda by focusing on two topics: Operations Management (How to move a process into the good manufacturing practice [GMP] environment) and Clinical Translation (Moving a GMP process into robust trials). These topics were introduced by providing the synergistic business perspective of partnering between the multiple regenerative medicine stakeholders, throughout the life cycle of product development. Seven industry leaders were invited to share their experience, expertise, and strategies. Due to the complex nature of regenerative medicine products, partnering for their successful commercial development seems inevitable to overcome all obstacles by sharing experiences and expertise of all stakeholders. When ideally implemented, the "innovation quotient" of a virtual team resulting from the combination of internal and external project teams can be maximized through maximizing the three main dimensions: core competences, technology portfolio, and alliance management. PMID:24754565

  2. Review and Updates in Regenerative and Personalized Medicine, Preclinical Animal Models, and Clinical Care in Cardiovascular Medicine.

    PubMed

    Barbato, Emanuele; Barton, Paul J; Bartunek, Jozef; Huber, Sally; Ibanez, Borja; Judge, Daniel P; Lara-Pezzi, Enrique; Stolen, Craig M; Taylor, Angela; Hall, Jennifer L

    2015-11-01

    The goal of this paper is to provide an updated review for scientists and clinicians on the major areas in cardiovascular medicine published in the Journal. Leading topics in regenerative and personalized medicine are presented along with a critical overview of the field. New standards in large preclinical animal models of pulmonary hypertension and left bundle branch block are highlighted. Finally, clinical care in the areas of atherosclerosis, the aortic valve, platelet biology, and myocarditis is discussed as well as autonomic modulation therapies. PMID:26453460

  3. The Endometrium as a Source of Mesenchymal Stem Cells for Regenerative Medicine1

    PubMed Central

    Mutlu, Levent; Hufnagel, Demetra; Taylor, Hugh S.

    2015-01-01

    Stem cell therapies have opened new frontiers in medicine with the possibility of regenerating lost or damaged cells. Embryonic stem cells, induced pluripotent stem cells, hematopoietic stem cells, and mesenchymal stem cells have been used to derive mature cell types for tissue regeneration and repair. However, the endometrium has emerged as an attractive, novel source of adult stem cells that are easily accessed and demonstrate remarkable differentiation capacity. In this review, we summarize our current understanding of endometrial stem cells and their therapeutic potential in regenerative medicine. PMID:25904012

  4. 3D Biofabrication Strategies for Tissue Engineering and Regenerative Medicine

    PubMed Central

    Bajaj, Piyush; Schweller, Ryan M.; Khademhosseini, Ali; West, Jennifer L.; Bashir, Rashid

    2014-01-01

    Over the past several decades, there has been an ever-increasing demand for organ transplants. However, there is a severe shortage of donor organs, and as a result of the increasing demand, the gap between supply and demand continues to widen. A potential solution to this problem is to grow or fabricate organs using biomaterial scaffolds and a person’s own cells. Although the realization of this solution has been limited, the development of new biofabrication approaches has made it more realistic. This review provides an overview of natural and synthetic biomaterials that have been used for organ/tissue development. It then discusses past and current biofabrication techniques, with a brief explanation of the state of the art. Finally, the review highlights the need for combining vascularization strategies with current biofabrication techniques. Given the multitude of applications of biofabrication technologies, from organ/tissue development to drug discovery/screening to development of complex in vitro models of human diseases, these manufacturing technologies can have a significant impact on the future of medicine and health care. PMID:24905875

  5. Qualifying stem cell sources: how to overcome potential pitfalls in regenerative medicine?

    PubMed

    Reinke, Simon; Dienelt, Anke; Blankenstein, Antje; Duda, Georg N; Geissler, Sven

    2016-01-01

    Regenerative medicine aims to replace lost cells and to restore damaged tissues and organs by either tissue-engineering approaches or stimulation of endogenous processes. Due to their biological properties, stem cells promise to be an effective source for such strategies. Especially adult multipotent stem cells (ASCs) are believed to be applicable in a broad range of therapies for the treatment of multifactorial diseases or age-related degeneration, although the molecular and cellular mechanisms underlying their regenerative function are often hardly described. Moreover, in some demanding clinical situations their efficiency remains limited. Thus, a basic understanding of ASCs regenerative function, their complex interplay with their microenvironment and how compromising conditions interfere with their efficiency is mandatory for any regenerative strategy. Concerning this matter, the impact of patient-specific constraints are often underestimated in research projects and their influence on the study results disregarded. Thus, researchers are urgently depending on well-characterized tissue samples or cells that are connected with corresponding donor information, such as secondary diseases, medication. Here, we outline principle pitfalls during experimental studies using human samples, and describe a potential strategy to overcome these challenges by establishing a core unit for cell and tissue harvesting. This facility aims to bridge the gap between clinic and research laboratories by the provision of a direct link to the clinical operating theatres. Such a strategy clearly supports basic and clinical research in the conduct of their studies and supplies highly characterized human samples together with the corresponding donor information. PMID:24919850

  6. Great expectations: private sector activity in tissue engineering, regenerative medicine, and stem cell therapeutics.

    PubMed

    Lysaght, Michael J; Jaklenec, Ana; Deweerd, Elizabeth

    2008-02-01

    This report draws upon data from a variety of sources to provide a detailed estimate of the current scope of private sector development and commercial activity in the aggregate field comprising tissue engineering, regenerative medicine, and stem cell therapeutics. Economic activity has grown a remarkable fivefold in the past 5 years. As of mid-2007 approximately 50 firms or business units with over 3000 employees offered commercial tissue-regenerative products or services with generally profitable annual sales in excess of $1.3 billion. Well over a million patients have been treated with these products. In addition, 110 development-stage companies with over 55 products in FDA-level clinical trials and other preclinical stages employed approximately 2500 scientists or support personnel and spent 850 million development dollars in 2007. These totals represent a remarkable recovery from the downturn of 2000-2002, at which time tissue engineering was in shambles because of disappointing product launches, failed regulatory trials, and the general investment pullback following the dot-com crash. Commercial success has resulted in large measure from identification of products that are achievable with available technology and under existing regulatory guidelines. Development-stage firms have become much more adept at risk management. The resilience of the field, as well as its current breadth and diversity, augurs well for the future of regenerative medicine. PMID:18333783

  7. Stress Incontinence in the Era of Regenerative Medicine: Reviewing the Importance of the Pudendal Nerve

    PubMed Central

    Gill, Bradley C.; Damaser, Margot S.; Vasavada, Sandip P.; Goldman, Howard B.

    2014-01-01

    Purpose Regenerative medicine will likely facilitate improved stress urinary incontinence (SUI) treatment via restoration of its neurogenic, myogenic, and structural etiologies. Understanding these pathophysiologies and how each can optimally benefit from cellular, molecular, and minimally invasive therapies will become necessary. While stem cells in sphincteric deficiency dominate the regenerative urology literature, little is published on pudendal nerve (PN) regeneration or other regenerative targets. The purpose of this review is to discuss regenerative therapies for PN injury in SUI. Materials and Methods A PubMed® search for pudendal nerve combined individually with regeneration, injury, electrophysiology, measurement, and activity produced a combined but non-independent 621 results. English language articles were reviewed by title for relevance, identifying a combined but non-independent 68 articles. A subsequent Google Scholar® searchand review of references in articles obtained aided in broadening discussion. Results Electrophysiological studies associate PN dysfunction with SUI clinically and assess PN regeneration functionally while animal models provide physiological insight. Stem cell treatment has improved continence clinically while ex vivo sphincteric bulk and muscle function gains have been noted in the laboratory. Stem cells, neurotrophic factors, and electrical stimulation each benefit PN regeneration in animal models. Conclusions Most regenerative work to date focuses on stem cells restoring sphincteric function and bulk, but whether a sphincter denervated by PN injury will benefit is unclear. Regeneration of the PN appears possible through minimally invasive therapies that exhibit significant clinical potential. Treating poor central control and coordination of the neuromuscular continence mechanism remains another challenge. PMID:23376143

  8. Advancements in Induced Pluripotent Stem Cell Technology for Cardiac Regenerative Medicine

    PubMed Central

    Suh, Carol Y.; Wang, Zelun; Bártulos, Oscar; Qyang, Yibing

    2014-01-01

    Cardiovascular diseases remain the leading causes of morbidity and mortality in the developed world. Cellular based cardiac regenerative therapy serves as a potential approach to treating cardiovascular diseases. Although various cellular types have been tested, induced pluripotent stem cells are regarded as a promising cell source for therapy. In this review, we will highlight some of the advances in generating induced pluripotent stem cells and differentiation to cardiac cells. We will also discuss the progress in modeling cardiovascular diseases using induced pluripotent stem cell derived cardiac cells. As we continue to make progress in induced pluripotent stem cell and cardiac differentiation technology, we will become closer to application of cardiac regenerative medicine. PMID:24651517

  9. Complementary and alternative medicine. Integrative medicine: business risks and opportunities.

    PubMed

    Berndtson, K

    1998-01-01

    Much of the buzz over integrative medicine is well deserved. The opportunities seem to outweigh the risks, but superior management skills are needed to guide these programs through adolescence into clinical and business maturity. By carefully considering the staffing, team building, compensation methods, marketing, and program evaluation and development issues explored in this article, health care and physician executives should be able to steer between the rocks on their way to integrative medicine decisions that are right for their organizations. Many claim that integrative medicine has the potential to reshape health care delivery in a more patient-centered direction. While this may be true, such programs must prove themselves from financial and clinical operational perspectives in order to achieve this potential. Luminary clinical skills are not enough to guarantee the survival of such programs--a strong clinical base of expertise in alternative therapies is a key success factor. As with any health care venture, there are no substitutes for clinical excellence or sound management. PMID:10351711

  10. Induced Pluripotent Stem Cells and Their Use in Cardiac and Neural Regenerative Medicine

    PubMed Central

    Skalova, Stepanka; Svadlakova, Tereza; Qureshi, Wasay Mohiuddin Shaikh; Dev, Kapil; Mokry, Jaroslav

    2015-01-01

    Stem cells are unique pools of cells that are crucial for embryonic development and maintenance of adult tissue homeostasis. The landmark Nobel Prize winning research by Yamanaka and colleagues to induce pluripotency in somatic cells has reshaped the field of stem cell research. The complications related to the usage of pluripotent embryonic stem cells (ESCs) in human medicine, particularly ESC isolation and histoincompatibility were bypassed with induced pluripotent stem cell (iPSC) technology. The human iPSCs can be used for studying embryogenesis, disease modeling, drug testing and regenerative medicine. iPSCs can be diverted to different cell lineages using small molecules and growth factors. In this review we have focused on iPSC differentiation towards cardiac and neuronal lineages. Moreover, we deal with the use of iPSCs in regenerative medicine and modeling diseases like myocardial infarction, Timothy syndrome, dilated cardiomyopathy, Parkinson’s, Alzheimer’s and Huntington’s disease. Despite the promising potential of iPSCs, genome contamination and low efficacy of cell reprogramming remain significant challenges. PMID:25689424

  11. Microfabricated Modular Scale-Down Device for Regenerative Medicine Process Development

    PubMed Central

    Reichen, Marcel; Macown, Rhys J.; Jaccard, Nicolas; Super, Alexandre; Ruban, Ludmila; Griffin, Lewis D.; Veraitch, Farlan S.; Szita, Nicolas

    2012-01-01

    The capacity of milli and micro litre bioreactors to accelerate process development has been successfully demonstrated in traditional biotechnology. However, for regenerative medicine present smaller scale culture methods cannot cope with the wide range of processing variables that need to be evaluated. Existing microfabricated culture devices, which could test different culture variables with a minimum amount of resources (e.g. expensive culture medium), are typically not designed with process development in mind. We present a novel, autoclavable, and microfabricated scale-down device designed for regenerative medicine process development. The microfabricated device contains a re-sealable culture chamber that facilitates use of standard culture protocols, creating a link with traditional small-scale culture devices for validation and scale-up studies. Further, the modular design can easily accommodate investigation of different culture substrate/extra-cellular matrix combinations. Inactivated mouse embryonic fibroblasts (iMEF) and human embryonic stem cell (hESC) colonies were successfully seeded on gelatine-coated tissue culture polystyrene (TC-PS) using standard static seeding protocols. The microfluidic chip included in the device offers precise and accurate control over the culture medium flow rate and resulting shear stresses in the device. Cells were cultured for two days with media perfused at 300 µl.h−1 resulting in a modelled shear stress of 1.1×10−4 Pa. Following perfusion, hESC colonies stained positively for different pluripotency markers and retained an undifferentiated morphology. An image processing algorithm was developed which permits quantification of co-cultured colony-forming cells from phase contrast microscope images. hESC colony sizes were quantified against the background of the feeder cells (iMEF) in less than 45 seconds for high-resolution images, which will permit real-time monitoring of culture progress in future experiments. The

  12. Regulation of the matrix microenvironment for stem cell engineering and regenerative medicine

    PubMed Central

    Huang, Ngan F.; Li, Song

    2013-01-01

    The extracellular matrix (ECM) microenvironment consists of structural and functional molecules. The ECM relays both biochemical and biophysical cues to and from the cells to modulate cell behavior and function. The biophysical cues can be engineered and applied to cells by means of spatial patterning, matrix rigidity and matrix actuation. Tissue engineering strategies that utilize ECMs to direct stem cell organization and lineage specification show tremendous potential. This review describes the technologies for modulating ECM spatial patterning, matrix rigidity, chemical composition and matrix actuation. The role of ECMs in vascular tissue engineering is then discussed as a model of tissue engineering and regenerative medicine. PMID:21424849

  13. Recent Developments in Vascular Imaging Techniques in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Upputuri, Paul Kumar; Sivasubramanian, Kathyayini; Mark, Chong Seow Khoon; Pramanik, Manojit

    2015-01-01

    Adequate vascularisation is key in determining the clinical outcome of stem cells and engineered tissue in regenerative medicine. Numerous imaging modalities have been developed and used for the visualization of vascularisation in tissue engineering. In this review, we briefly discuss the very recent advances aiming at high performance imaging of vasculature. We classify the vascular imaging modalities into three major groups: nonoptical methods (X-ray, magnetic resonance, ultrasound, and positron emission imaging), optical methods (optical coherence, fluorescence, multiphoton, and laser speckle imaging), and hybrid methods (photoacoustic imaging). We then summarize the strengths and challenges of these methods for preclinical and clinical applications. PMID:25821821

  14. Enzyme-based biosilica and biocalcite: biomaterials for the future in regenerative medicine.

    PubMed

    Wang, Xiaohong; Schröder, Heinz C; Müller, Werner E G

    2014-09-01

    The oldest animals on Earth, sponges, form both the calcareous and the siliceous matrices of their spicules enzymatically. Until recently, it has been neglected that enzymes play crucial roles during formation of these biominerals. This paradigm shift occurred after the discovery that the enzyme silicatein, which catalyzes the polycondensation of silica, and the enzyme carbonic anhydrase (CA), which catalyzes the formation of bicarbonate (HCO3(-)/CaCO3), produce solid amorphous bioglass or biocalcite. This suggests that in mammals, biosilica and biocalcite can act anabolically during hydroxyapatite (HA) synthesis and bone formation. Biosilica and biocalcite are thus promising candidates for the fabrication of biomaterials for regenerative medicine. PMID:24908383

  15. Signaling pathways in osteogenesis and osteoclastogenesis: Lessons from cranial sutures and applications to regenerative medicine

    PubMed Central

    Maxhimer, Justin B.; Bradley, James P.; Lee, Justine C.

    2015-01-01

    One of the simplest models for examining the interplay between bone formation and resorption is the junction between the cranial bones. Although only roughly a quarter of patients diagnosed with craniosynostosis have been linked to known genetic disturbances, the molecular mechanisms elucidated from these studies have provided basic knowledge of bone homeostasis. This work has translated to methods and advances in bone tissue engineering. In this review, we examine the current knowledge of cranial suture biology derived from human craniosynostosis syndromes and discuss its application to regenerative medicine. PMID:25961069

  16. Recent developments in vascular imaging techniques in tissue engineering and regenerative medicine.

    PubMed

    Upputuri, Paul Kumar; Sivasubramanian, Kathyayini; Mark, Chong Seow Khoon; Pramanik, Manojit

    2015-01-01

    Adequate vascularisation is key in determining the clinical outcome of stem cells and engineered tissue in regenerative medicine. Numerous imaging modalities have been developed and used for the visualization of vascularisation in tissue engineering. In this review, we briefly discuss the very recent advances aiming at high performance imaging of vasculature. We classify the vascular imaging modalities into three major groups: nonoptical methods (X-ray, magnetic resonance, ultrasound, and positron emission imaging), optical methods (optical coherence, fluorescence, multiphoton, and laser speckle imaging), and hybrid methods (photoacoustic imaging). We then summarize the strengths and challenges of these methods for preclinical and clinical applications. PMID:25821821

  17. Therapeutic application of mesenchymal stem cell-derived exosomes: A promising cell-free therapeutic strategy in regenerative medicine.

    PubMed

    Motavaf, M; Pakravan, K; Babashah, S; Malekvandfard, F; Masoumi, M; Sadeghizadeh, M

    2016-01-01

    Mesenchymal stem cells have emerged as promising therapeutic candidates in regenerative medicine. The mechanisms underlying mesenchymal stem cells regenerative properties were initially attributed to their engraftment in injured tissues and their subsequent transdifferentiation to repair and replace damaged cells. However, studies in animal models and patients indicated that the low number of transplanted mesenchymal stem cells localize to the target tissue and transdifferentiate to appropriate cell lineage. Instead the regenerative potential of mesenchymal stem cells has been found - at least in part - to be mediated via their paracrine actions. Recently, a secreted group of vesicles, called "exosome" has been identified as major mediator of mesenchymal stem cells therapeutic efficacy. In this review, we will summarize the current literature on administration of exosomes released by mesenchymal stem cells in regenerative medicine and suggest how they could help to improve tissue regeneration following injury. PMID:27453276

  18. Regenerative Medicine for the Heart: Perspectives on Stem-Cell Therapy

    PubMed Central

    Cho, Gun-Sik; Fernandez, Laviel

    2014-01-01

    Abstract Significance: Despite decades of progress in cardiovascular biology and medicine, heart disease remains the leading cause of death, and there is no cure for the failing heart. Since heart failure is mostly caused by loss or dysfunction of cardiomyocytes (CMs), replacing dead or damaged CMs with new CMs might be an ideal way to reverse the disease. However, the adult heart is composed mainly of terminally differentiated CMs that have no significant self-regeneration capacity. Recent Advances: Stem cells have tremendous regenerative potential and, thus, current cardiac regenerative research has focused on developing stem cell sources to repair damaged myocardium. Critical Issues: In this review, we examine the potential sources of cells that could be used for heart therapies, including embryonic stem cells and induced pluripotent stem cells, as well as alternative methods for activating the endogenous regenerative mechanisms of the heart via transdifferentiation and cell reprogramming. We also discuss the current state of knowledge of cell purification, delivery, and retention. Future Directions: Efforts are underway to improve the current stem cell strategies and methodologies, which will accelerate the development of innovative stem-cell therapies for heart regeneration. Antioxid. Redox Signal. 21, 2018–2031. PMID:25133793

  19. The potential role of telocytes in Tissue Engineering and Regenerative Medicine.

    PubMed

    Boos, Anja M; Weigand, Annika; Brodbeck, Rebekka; Beier, Justus P; Arkudas, Andreas; Horch, Raymund E

    2016-07-01

    Research and ideas for potential applications in the field of Tissue Engineering (TE) and Regenerative Medicine (RM) have been constantly increasing over recent years, basically driven by the fundamental human dream of repairing and regenerating lost tissue and organ functions. The basic idea of TE is to combine cells with putative stem cell properties with extracellular matrix components, growth factors and supporting matrices to achieve independently growing tissue. As a side effect, in the past years, more insights have been gained into cell-cell interaction and how to manipulate cell behavior. However, to date the ideal cell source has still to be found. Apart from commonly known various stem cell sources, telocytes (TC) have recently attracted increasing attention because they might play a potential role for TE and RM. It becomes increasingly evident that TC provide a regenerative potential and act in cellular communication through their network-forming telopodes. While TE in vitro experiments can be the first step, the key for elucidating their regenerative role will be the investigation of the interaction of TC with the surrounding tissue. For later clinical applications further steps have to include an upscaling process of vascularization of engineered tissue. Arteriovenous loop models to vascularize such constructs provide an ideal platform for preclinical testing of future therapeutic concepts in RM. The following review article should give an overview of what is known so far about the potential role of TC in TE and RM. PMID:26805441

  20. Back to the future: how human induced pluripotent stem cells will transform regenerative medicine

    PubMed Central

    Svendsen, Clive N.

    2013-01-01

    Based on cloning studies in mammals, all adult human cells theoretically contain DNA that is capable of creating a whole new person. Cells are maintained in their differentiated state by selectively activating some genes and silencing. The dogma until recently was that cell differentiation was largely fixed unless exposed to the environment of an activated oocyte. However, it is now possible to activate primitive pluripotent genes within adult human cells that take them back in time to a pluripotent state (termed induced pluripotent stem cells). This technology has grown at an exponential rate over the past few years, culminating in the Nobel Prize in medicine. Discussed here are recent developments in the field as they relate to regenerative medicine, with an emphasis on creating functional cells, editing their genome, autologous transplantation and how this ground-breaking field may eventually impact human aging. PMID:23945396

  1. Are there specific translational challenges in regenerative medicine? Lessons from other fields.

    PubMed

    Gardner, John; Faulkner, Alex; Mahalatchimy, Aurélie; Webster, Andrew

    2015-01-01

    There is concern that translation 'from bench to bedside' within regenerative medicine (RM) will fail to materialize, or will be dismally slow, due to various challenges arising from the highly novel and disruptive nature of RM. In this article, we provide a summary of these challenges, and we critically engage with the notion that such challenges are specific to RM. It is important, we argue, not to overstate the exceptional nature of RM, as valuable lessons can be learned from elsewhere in medicine. Using several examples of technology adoption, we suggest that emerging RM products and procedures will have to work hard to find or create an adoption space if translation into the clinic is to be successful. PMID:26541074

  2. Genetic and Epigenetic Regulation of Human Cardiac Reprogramming and Differentiation in Regenerative Medicine

    PubMed Central

    Burridge, Paul W.; Sharma, Arun; Wu, Joseph C.

    2016-01-01

    Regeneration or replacement of lost cardiomyocytes within the heart has the potential to revolutionize cardiovascular medicine. Numerous methodologies have been used to achieve this aim, including the engraftment of bone marrow- and heart-derived cells as well as the identification of modulators of adult cardiomyocyte proliferation. Recently, the conversion of human somatic cells into induced pluripotent stem cells and induced cardiomyocyte-like cells has transformed potential approaches toward this goal, and the engraftment of cardiac progenitors derived from human embryonic stem cells into patients is now feasible. Here we review recent advances in our understanding of the genetic and epigenetic control of human cardiogenesis, cardiac differentiation, and the induced reprogramming of somatic cells to cardiomyocytes. We also cover genetic programs for inducing the proliferation of endogenous cardiomyocytes and discuss the genetic state of cells used in cardiac regenerative medicine. PMID:26631515

  3. Opening the gateways to market and adoption of regenerative medicine? The UK case in context.

    PubMed

    Faulkner, Alex

    2016-04-01

    Regenerative medicine is a site for opposing forces of gatekeeping and innovation. This applies both to regulation of market entry and to clinical adoption. Key gateways include the EU's Advanced Therapy Medicinal Products Regulation, technology assessment body NICE and commissioning/service contractor National Health Service England. The paper maps recent gatekeeping flexibilities, describing the range of gateways to market and healthcare adoption seen as alternatives to mainstream routes. The initiatives range from exemptions in pharmaceutical and ATMP regulations, through 'adaptive pathways' and 'risk-based' approaches, to special designation for promising innovation, value-based assessment and commissioner developments. Future developments are considered in the UK's 'accelerated access review'. Caution is urged in assessing the impact of these gateway flexibilities and their market and public health implications. PMID:27035398

  4. A case of cellular alchemy: lineage reprogramming and its potential in regenerative medicine.

    PubMed

    Asuelime, Grace E; Shi, Yanhong

    2012-08-01

    The field of regenerative medicine is rapidly gaining momentum as an increasing number of reports emerge concerning the induced conversions observed in cellular fate reprogramming. While in recent years, much attention has been focused on the conversion of fate-committed somatic cells to an embryonic-like or pluripotent state, there are still many limitations associated with the applications of induced pluripotent stem cell reprogramming, including relatively low reprogramming efficiency, the times required for the reprogramming event to take place, the epigenetic instability, and the tumorigenicity associated with the pluripotent state. On the other hand, lineage reprogramming involves the conversion from one mature cell type to another without undergoing conversion to an unstable intermediate. It provides an alternative approach in regenerative medicine that has a relatively lower risk of tumorigenesis and increased efficiency within specific cellular contexts. While lineage reprogramming provides exciting potential, there is still much to be assessed before this technology is ready to be applied in a clinical setting. PMID:22371436

  5. Integration of Drug, Protein, and Gene Delivery Systems with Regenerative Medicine

    PubMed Central

    Lorden, Elizabeth R.; Levinson, Howard M.; Leong, Kam W.

    2013-01-01

    Regenerative medicine has the potential to drastically change the field of health care from reactive to preventative and restorative. Exciting advances in stem cell biology and cellular reprogramming have fueled the progress of this field. Biochemical cues in the form of small molecule drugs, growth factors, zinc finger protein transcription factors and nucleases, transcription activator-like effector nucleases, monoclonal antibodies, plasmid DNA, aptamers, or RNA interference agents can play an important role to influence stem cell differentiation and the outcome of tissue regeneration. Many of these biochemical factors are fragile and must act intracellularly at the molecular level. They require an effective delivery system, which can take the form of a scaffold (e.g. hydrogels and electrospun fibers), carrier (viral and nonviral), nano- and micro-particle, or genetically modified cell. In this review, we will discuss the history and current technologies of drug, protein and gene delivery in the context of regenerative medicine. Next we will present case examples of how delivery technologies are being applied to promote angiogenesis in non-healing wounds or prevent angiogenesis in age related macular degeneration. Finally, we will conclude with a brief discussion of the regulatory pathway from bench-to-bedside for the clinical translation of these novel therapeutics. PMID:25787742

  6. Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine

    PubMed Central

    Rodríguez-Vázquez, Martin; Vega-Ruiz, Brenda; Ramos-Zúñiga, Rodrigo; Saldaña-Koppel, Daniel Alexander; Quiñones-Olvera, Luis Fernando

    2015-01-01

    Tissue engineering is an important therapeutic strategy to be used in regenerative medicine in the present and in the future. Functional biomaterials research is focused on the development and improvement of scaffolding, which can be used to repair or regenerate an organ or tissue. Scaffolds are one of the crucial factors for tissue engineering. Scaffolds consisting of natural polymers have recently been developed more quickly and have gained more popularity. These include chitosan, a copolymer derived from the alkaline deacetylation of chitin. Expectations for use of these scaffolds are increasing as the knowledge regarding their chemical and biological properties expands, and new biomedical applications are investigated. Due to their different biological properties such as being biocompatible, biodegradable, and bioactive, they have given the pattern for use in tissue engineering for repair and/or regeneration of different tissues including skin, bone, cartilage, nerves, liver, and muscle. In this review, we focus on the intrinsic properties offered by chitosan and its use in tissue engineering, considering it as a promising alternative for regenerative medicine as a bioactive polymer. PMID:26504833

  7. Stem Cells and Regenerative Medicine: Myth or Reality of the 21th Century.

    PubMed

    Stoltz, J-F; de Isla, N; Li, Y P; Bensoussan, D; Zhang, L; Huselstein, C; Chen, Y; Decot, V; Magdalou, J; Li, N; Reppel, L; He, Y

    2015-01-01

    Since the 1960s and the therapeutic use of hematopoietic stem cells of bone marrow origin, there has been an increasing interest in the study of undifferentiated progenitors that have the ability to proliferate and differentiate into various tissues. Stem cells (SC) with different potency can be isolated and characterised. Despite the promise of embryonic stem cells, in many cases, adult or even fetal stem cells provide a more interesting approach for clinical applications. It is undeniable that mesenchymal stem cells (MSC) from bone marrow, adipose tissue, or Wharton's Jelly are of potential interest for clinical applications in regenerative medicine because they are easily available without ethical problems for their uses. During the last 10 years, these multipotent cells have generated considerable interest and have particularly been shown to escape to allogeneic immune response and be capable of immunomodulatory activity. These properties may be of a great interest for regenerative medicine. Different clinical applications are under study (cardiac insufficiency, atherosclerosis, stroke, bone and cartilage deterioration, diabetes, urology, liver, ophthalmology, and organ's reconstruction). This review focuses mainly on tissue and organ regeneration using SC and in particular MSC. PMID:26300923

  8. Generation and Assessment of Functional Biomaterial Scaffolds for Applications in Cardiovascular Tissue Engineering and Regenerative Medicine.

    PubMed

    Hinderer, Svenja; Brauchle, Eva; Schenke-Layland, Katja

    2015-11-18

    Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug-free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus-free vascular substitutes that are smaller than 6 mm, and stem cell-recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off-the-shelf biomaterials as well as automatable and up-scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact- and marker-free biomaterial and extracellular matrix assessment methods are highlighted. PMID:25778713

  9. Generation and Assessment of Functional Biomaterial Scaffolds for Applications in Cardiovascular Tissue Engineering and Regenerative Medicine

    PubMed Central

    Hinderer, Svenja; Brauchle, Eva

    2015-01-01

    Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug‐free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus‐free vascular substitutes that are smaller than 6 mm, and stem cell‐recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off‐the‐shelf biomaterials as well as automatable and up‐scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact‐ and marker‐free biomaterial and extracellular matrix assessment methods are highlighted. PMID:25778713

  10. Translating stem cell therapies: the role of companion animals in regenerative medicine

    PubMed Central

    Volk, Susan W.; Theoret, Christine

    2013-01-01

    Veterinarians and veterinary medicine have been integral to the development of stem cell therapies. The contributions of large animal experimental models to the development and refinement of modern hematopoietic stem cell transplantation were noted nearly five decades ago. More recent advances in adult stem cell/regenerative cell therapies continue to expand knowledge of the basic biology and clinical applications of stem cells. A relatively liberal legal and ethical regulation of stem cell research in veterinary medicine has facilitated the development and in some instances clinical translation of a variety of cell-based therapies involving hematopoietic (HSC) and mesenchymal stem cells (MSC) as well as other adult regenerative cells and recently embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC). In fact, many of the pioneering developments in these fields of stem cell research have been achieved through collaborations of veterinary and human scientists. This review aims to provide an overview of the contribution of large animal veterinary models in advancing stem cell therapies for both human and clinical veterinary applications. Moreover, in the context of the “One Health Initiative”, the role veterinary patients may play in the future evolution of stem cell therapies for both human and animal patients will be explored. PMID:23627495

  11. Stem cells, a two-edged sword: Risks and potentials of regenerative medicine

    PubMed Central

    Piscaglia, Anna Chiara

    2008-01-01

    The recent advancements in stem cell (SC) biology have led to the concept of regenerative medicine, which is based on the potential of SC for therapies aimed to facilitate the repair of degenerating or injured tissues. Nonetheless, prior to large scale clinical applications, critical aspects need to be further addressed, including the long-term safety, tolerability, and efficacy of SC-based treatments. Most problematic among the risks of SC-based therapies, in addition to the possible rejection or loss of function of the infused cells, is their potential neoplastic transformation. Indeed, SCs may be used to cure devastating diseases, but their specific properties of self-renewal and clonogenicity may render them prone to generate cancers. In this respect, ‘Stemness’ might be seen as a two-edged sword, its bright side being represented by normal SCs, its dark side by cancer SCs. A better understanding of SC biology will help fulfill the promise of regenerative medicine aimed at curing human pathologies and fighting cancer from its roots. PMID:18666313

  12. Application of 3D biomimetic models in drug delivery and regenerative medicine.

    PubMed

    Xu, Yufan; Wang, Xiaohong

    2015-01-01

    Regenerative medicine holds much promise in assisting patients to recover from injured or lost tissues and organs through organism reconstruction. Three-dimensional (3D) biomimetic models via various approaches can be used by pharmaceutical industry for controlled drug delivery. With proper biomaterials and engineering technologies, drugs can be released in a rate-manipulated manner towards targeted regions with spatial and temporal effects. Much of the success is a result of a combination of growth factors, stem cells, biomaterials, nanotechnologies, electrospinning and 3D printing techniques mimicking in vivo angiogenesis, histogenesis and tumorigenesis processes. This interdisciplinary field on biomimetic drug delivery and regenerative medicine has already opened up a new avenue for medical progress and reformation. This article presents a comprehensive review of the 3D biomimetic models in the pertinent fields of tissue and organ manufacturing, cell-material mutual interactions, bioactive agent carrier systems and anti-cancer drug delivery methods. Particularly, the potential trends and challenges of tissue and organ manufacturing are discussed from different perspectives. PMID:25594404

  13. Stem Cells and Regenerative Medicine: Myth or Reality of the 21th Century

    PubMed Central

    Stoltz, J.-F.; de Isla, N.; Li, Y. P.; Bensoussan, D.; Zhang, L.; Huselstein, C.; Chen, Y.; Decot, V.; Magdalou, J.; Li, N.; Reppel, L.; He, Y.

    2015-01-01

    Since the 1960s and the therapeutic use of hematopoietic stem cells of bone marrow origin, there has been an increasing interest in the study of undifferentiated progenitors that have the ability to proliferate and differentiate into various tissues. Stem cells (SC) with different potency can be isolated and characterised. Despite the promise of embryonic stem cells, in many cases, adult or even fetal stem cells provide a more interesting approach for clinical applications. It is undeniable that mesenchymal stem cells (MSC) from bone marrow, adipose tissue, or Wharton's Jelly are of potential interest for clinical applications in regenerative medicine because they are easily available without ethical problems for their uses. During the last 10 years, these multipotent cells have generated considerable interest and have particularly been shown to escape to allogeneic immune response and be capable of immunomodulatory activity. These properties may be of a great interest for regenerative medicine. Different clinical applications are under study (cardiac insufficiency, atherosclerosis, stroke, bone and cartilage deterioration, diabetes, urology, liver, ophthalmology, and organ's reconstruction). This review focuses mainly on tissue and organ regeneration using SC and in particular MSC. PMID:26300923

  14. Canadians' support for radical life extension resulting from advances in regenerative medicine.

    PubMed

    Dragojlovic, Nick

    2013-04-01

    This paper explores Canadian public perceptions of a hypothetical scenario in which a radical increase in life expectancy results from advances in regenerative medicine. A national sample of 1231 adults completed an online questionnaire on stem cell research and regenerative medicine, including three items relating to the possibility of Canadians' average life expectancy increasing to 120 years by 2050. Overall, Canadians are strongly supportive of the prospect of extended lifespans, with 59% of the sample indicating a desire to live to 120 if scientific advances made it possible, and 47% of respondents agreeing that such increases in life expectancy are possible by 2050. The strongest predictors of support for radical life extension are individuals' general orientation towards science and technology and their evaluation of its plausibility. These results contrast with previous research, which has suggested public ambivalence for biomedical life extension, and point to the need for more research in this area. They suggest, moreover, that efforts to increase public awareness about anti-aging research are likely to increase support for the life-extending consequences of that research program. PMID:23561280

  15. Acellular approaches for regenerative medicine: on the verge of clinical trials with extracellular membrane vesicles?

    PubMed

    Fuster-Matanzo, Almudena; Gessler, Florian; Leonardi, Tommaso; Iraci, Nunzio; Pluchino, Stefano

    2015-01-01

    Extracellular vesicles (EVs) are a heterogeneous population of naturally occurring secreted small vesicles, with distinct biophysical properties and different functions both in physiology and under pathological conditions. In recent years, a number of studies have demonstrated that EVs might hold remarkable potential in regenerative medicine by acting as therapeutically promising nanodrugs. Understanding their final impact on the biology of specific target cells as well as clarification of their overall therapeutic impact remains a matter of intense debate. Here we review the key principles of EVs in physiological and pathological conditions with a specific highlight on the most recently described mechanisms regulating some of the EV-mediated effects. First, we describe the current debates and the upcoming research on EVs as potential novel therapeutics in regenerative medicine, either as unmodified agents or as functionalized small carriers for targeted drug delivery. Moreover, we address a number of safety aspects and regulatory limitations related to the novel nature of EV-mediated therapeutic applications. Despite the emerging possibilities of EV treatments, these issues need to be overcome in order to allow their safe and successful application in future explorative clinical studies. PMID:26631254

  16. Surface functionalization of nanobiomaterials for application in stem cell culture, tissue engineering, and regenerative medicine.

    PubMed

    Rana, Deepti; Ramasamy, Keerthana; Leena, Maria; Jiménez, Constanza; Campos, Javier; Ibarra, Paula; Haidar, Ziyad S; Ramalingam, Murugan

    2016-05-01

    Stem cell-based approaches offer great application potential in tissue engineering and regenerative medicine owing to their ability of sensing the microenvironment and respond accordingly (dynamic behavior). Recently, the combination of nanobiomaterials with stem cells has paved a great way for further exploration. Nanobiomaterials with engineered surfaces could mimic the native microenvironment to which the seeded stem cells could adhere and migrate. Surface functionalized nanobiomaterial-based scaffolds could then be used to regulate or control the cellular functions to culture stem cells and regenerate damaged tissues or organs. Therefore, controlling the interactions between nanobiomaterials and stem cells is a critical factor. However, surface functionalization or modification techniques has provided an alternative approach for tailoring the nanobiomaterials surface in accordance to the physiological surrounding of a living cells; thereby, enhancing the structural and functional properties of the engineered tissues and organs. Currently, there are a variety of methods and technologies available to modify the surface of biomaterials according to the specific cell or tissue properties to be regenerated. This review highlights the trends in surface modification techniques for nanobiomaterials and the biological relevance in stem cell-based tissue engineering and regenerative medicine. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:554-567, 2016. PMID:27006260

  17. The Powerful Functions of Peptide-Based Bioactive Matrices for Regenerative Medicine

    PubMed Central

    Rubert Pérez, Charles M.; Stephanopoulos, Nicholas; Sur, Shantanu; Lee, Sungsoo S.; Newcomb, Christina; Stupp, Samuel I.

    2014-01-01

    In an effort to develop bioactive matrices for regenerative medicine, peptides have been used widely to promote interactions with cells and elicit desired behaviors in vivo. This paper describes strategies that utilize peptide-based molecules as building blocks to create supramolecular nanostructures that emulate not only the architecture but also the chemistry of the extracellular matrix in mammalian biology. After initiating a desired regenerative response in vivo, the innate biodegradability of these systems allow for the natural biological processes to take over in order to promote formation of a new tissue without leaving a trace of the nonnatural components. These bioactive matrices can either bind or mimic growth factors or other protein ligands to elicit a cellular response, promote specific mechanobiological responses, and also guide the migration of cells with programmed directionality. In vivo applications discussed in this review using peptide-based matrices include the regeneration of axons after spinal cord injury, regeneration of bone, and the formation of blood vessels in ischemic muscle as a therapy in peripheral arterial disease and cardiovascular diseases. PMID:25366903

  18. The Interface of Functional Biotribology and Regenerative Medicine in Synovial Joints

    PubMed Central

    Komvopoulos, Kyriakos; Reddi, A. Hari

    2008-01-01

    Biotribology is the science of biological surfaces in sliding contact encompassing the concepts of friction, wear, and lubrication of interacting surfaces. This bioscience field has emerged from the classical field of tribology and is of paramount importance to the normal function of numerous tissues, including articular cartilage, blood vessels, heart, tendons, ligaments, and skin. Surprisingly, relatively little attention has been given to the restoration of surface characteristics in the fields of tissue engineering and regenerative medicine—the science of design and manufacture of new tissues for the functional restoration of impaired or diseased organs that depend on inductive signals, responding stem cells, and extracellular matrix scaffolding. Analogous to ancient civilizations (c. 3000 B.C.) that introduced wheeled vehicles, sledges for transporting heavy blocks, and lubricants, modern biotribologists must aim to restore surface characteristics to regenerated tissues and develop novel biomaterials with optimal tribological properties. The objective of this article is to highlight the significance of functional biotribology in the physiology of body surfaces and provide a comprehensive overview of unresolved issues and controversies as it relates to regenerative medicine. Specific attention is placed on the molecular basis of lubrication, mechanical and biochemical regulation of lubricating molecules, and the need to study wear processes in articular cartilage, especially in light of degenerative diseases, such as osteoarthritis. Surface engineering of replacement tissues exhibiting low friction and high wear resistance is examined using articular cartilage as an illustrative model system. PMID:18601586

  19. Stem cell-based regenerative opportunities for the liver: State of the art and beyond

    PubMed Central

    Tsolaki, Eleftheria; Yannaki, Evangelia

    2015-01-01

    The existing mismatch between the great demand for liver transplants and the number of available donor organs highlights the urgent need for alternative therapeutic strategies in patients with acute or chronic liver failure. The rapidly growing knowledge on stem cell biology and the intrinsic repair processes of the liver has opened new avenues for using stem cells as a cell therapy platform in regenerative medicine for hepatic diseases. An impressive number of cell types have been investigated as sources of liver regeneration: adult and fetal liver hepatocytes, intrahepatic stem cell populations, annex stem cells, adult bone marrow-derived hematopoietic stem cells, endothelial progenitor cells, mesenchymal stromal cells, embryonic stem cells, and induced pluripotent stem cells. All these highly different cell types, used either as cell suspensions or, in combination with biomaterials as implantable liver tissue constructs, have generated great promise for liver regeneration. However, fundamental questions still need to be addressed and critical hurdles to be overcome before liver cell therapy emerges. In this review, we summarize the state-of-the-art in the field of stem cell-based therapies for the liver along with existing challenges and future perspectives towards a successful liver cell therapy that will ultimately deliver its demanding goals. PMID:26604641

  20. Reprogramming and transdifferentiation for cardiovascular development and regenerative medicine: where do we stand?

    PubMed Central

    Ebert, Antje D; Diecke, Sebastian; Chen, Ian Y; Wu, Joseph C

    2015-01-01

    Heart disease remains a leading cause of mortality and a major worldwide healthcare burden. Recent advances in stem cell biology have made it feasible to derive large quantities of cardiomyocytes for disease modeling, drug development, and regenerative medicine. The discoveries of reprogramming and transdifferentiation as novel biological processes have significantly contributed to this paradigm. This review surveys the means by which reprogramming and transdifferentiation can be employed to generate induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and induced cardiomyocytes (iCMs). The application of these patient-specific cardiomyocytes for both in vitro disease modeling and in vivo therapies for various cardiovascular diseases will also be discussed. We propose that, with additional refinement, human disease-specific cardiomyocytes will allow us to significantly advance the understanding of cardiovascular disease mechanisms and accelerate the development of novel therapeutic options. PMID:26183451

  1. Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine

    PubMed Central

    Pan, Zhen; Ding, Jiandong

    2012-01-01

    Porous scaffolds fabricated from biocompatible and biodegradable polymers play vital roles in tissue engineering and regenerative medicine. Among various scaffold matrix materials, poly(lactide-co-glycolide) (PLGA) is a very popular and an important biodegradable polyester owing to its tunable degradation rates, good mechanical properties and processibility, etc. This review highlights the progress on PLGA scaffolds. In the latest decade, some facile fabrication approaches at room temperature were put forward; more appropriate pore structures were designed and achieved; the mechanical properties were investigated both for dry and wet scaffolds; a long time biodegradation of the PLGA scaffold was observed and a three-stage model was established; even the effects of pore size and porosity on in vitro biodegradation were revealed; the PLGA scaffolds have also been implanted into animals, and some tissues have been regenerated in vivo after loading cells including stem cells. PMID:23741612

  2. The Combination of Light and Stem Cell Therapies: A Novel Approach in Regenerative Medicine

    SciTech Connect

    Anders, Juanita; Moges, Helina; Wu, Xingjia; Ilev, Ilko; Waynant, Ronald; Longo, Leonardo

    2010-05-31

    Light therapy commonly referred to as low level laser therapy can alter cellular functions and clinical conditions. Some of the commonly reported in vitro and in vivo effects of light therapy include cellular proliferation, alterations in the inflammatory response to injury, and increases in mitochondrial respiration and adenosine triphosphate synthesis. Based on the known effects of light on cells and tissues in general and on reports in the last 5 years on the interaction of light with stem cells, evidence is mounting indicating that light therapy could greatly benefit stem cell regenerative medicine. Experiments on a variety of harvested adult stem cells demonstrate that light therapy enhances differentiation and proliferation of the cells and alters the expression of growth factors in a number of different types of adult stem cells and progenitors in vitro. It also has the potential to attenuate cytotoxic effects of drugs used to purge harvested autologous stem cells and to increase survival of transplanted cells.

  3. Two- and Three-Dimensional All-Carbon Nanomaterial Assemblies for Tissue Engineering and Regenerative Medicine.

    PubMed

    Lalwani, Gaurav; Patel, Sunny C; Sitharaman, Balaji

    2016-06-01

    Carbon nanomaterials such as carbon nanotubes and graphene have gained significant interest in the fields of materials science, electronics and biomedicine due to their interesting physiochemical properties. Typically these carbon nanomaterials have been dispersed in polymeric matrices at low concentrations to improve the functional properties of nanocomposites employed as two-dimensional (2D) substrates or three-dimensional (3D) porous scaffolds for tissue engineering applications. There has been a growing interest in the assembly of these nanomaterials into 2D and 3D architectures without the use of polymeric matrices, surfactants or binders. In this article, we review recent advances in the development of 2D or 3D all-carbon assemblies using carbon nanotubes or graphene as nanoscale building-block biomaterials for tissue engineering and regenerative medicine applications. PMID:27126776

  4. The future of replacement and restorative therapies: from organ transplantation to regenerative medicine.

    PubMed

    Daar, A S

    2013-01-01

    As we continue to have severe shortages of organs for transplantation, we need to consider alternatives for the future. The most likely to make a real difference in the long term is regenerative medicine (RM), a field that has emerged from the conjunction of stem cell biology and cell therapies; gene therapy; biomaterials and tissue engineering; and organ transplantation. Transplantation and RM share the same essential goal: to replace or restore organ function. Herein I briefly review some major breakthroughs of RM that are relevant to the future of organ transplantation, with a focus on the needs of people in the developing world. A definition of RM is provided and the ethical, legal, and social issues are briefly highlighted. In conclusion, I provide a projection of what the future may be for RM. PMID:24314929

  5. Progenitor cells for regenerative medicine and consequences of ART and cloning-associated epimutations.

    PubMed

    Laprise, Shari L

    2010-06-01

    The "holy grail" of regenerative medicine is the identification of an undifferentiated progenitor cell that is pluripotent, patient specific, and ethically unambiguous. Such a progenitor cell must also be able to differentiate into functional, transplantable tissue, while avoiding the risks of immune rejection. With reports detailing aberrant genomic imprinting associated with assisted reproductive technologies (ART) and reproductive cloning, the idea that human embryonic stem cells (hESCs) derived from surplus in vitro fertilized embryos or nuclear transfer ESCs (ntESCs) harvested from cloned embryos may harbor dangerous epigenetic errors has gained attention. Various progenitor cell sources have been proposed for human therapy, from hESCs to ntESCs, and from adult stem cells to induced pluripotent stem cells (iPS and piPS cells). This review highlights the advantages and disadvantages of each of these technologies, with particular emphasis on epigenetic stability. PMID:20162468

  6. Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications

    PubMed Central

    Dai, Ru; Wang, Zongjie; Samanipour, Roya; Koo, Kyo-in; Kim, Keekyoung

    2016-01-01

    Adipose-derived stem cells (ASCs) are a mesenchymal stem cell source with properties of self-renewal and multipotential differentiation. Compared to bone marrow-derived stem cells (BMSCs), ASCs can be derived from more sources and are harvested more easily. Three-dimensional (3D) tissue engineering scaffolds are better able to mimic the in vivo cellular microenvironment, which benefits the localization, attachment, proliferation, and differentiation of ASCs. Therefore, tissue-engineered ASCs are recognized as an attractive substitute for tissue and organ transplantation. In this paper, we review the characteristics of ASCs, as well as the biomaterials and tissue engineering methods used to proliferate and differentiate ASCs in a 3D environment. Clinical applications of tissue-engineered ASCs are also discussed to reveal the potential and feasibility of using tissue-engineered ASCs in regenerative medicine. PMID:27057174

  7. Scaffold and scaffold-free self-assembled systems in regenerative medicine.

    PubMed

    Thomas, Dilip; Gaspar, Diana; Sorushanova, Anna; Milcovich, Gesmi; Spanoudes, Kyriakos; Mullen, Anne Maria; O'Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I

    2016-06-01

    Self-assembly in tissue engineering refers to the spontaneous chemical or biological association of components to form a distinct functional construct, reminiscent of native tissue. Such self-assembled systems have been widely used to develop platforms for the delivery of therapeutic and/or bioactive molecules and various cell populations. Tissue morphology and functional characteristics have been recapitulated in several self-assembled constructs, designed to incorporate stimuli responsiveness and controlled architecture through spatial confinement or field manipulation. In parallel, owing to substantial functional properties, scaffold-free cell-assembled devices have aided in the development of functional neotissues for various clinical targets. Herein, we discuss recent advancements and future aspirations in scaffold and scaffold-free self-assembled devices for regenerative medicine purposes. Biotechnol. Bioeng. 2016;113: 1155-1163. © 2015 Wiley Periodicals, Inc. PMID:26498484

  8. Concise Review: Parthenote Stem Cells for Regenerative Medicine: Genetic, Epigenetic, and Developmental Features

    PubMed Central

    Daughtry, Brittany

    2014-01-01

    Embryonic stem cells (ESCs) have the potential to provide unlimited cells and tissues for regenerative medicine. ESCs derived from fertilized embryos, however, will most likely be rejected by a patient’s immune system unless appropriately immunomatched. Pluripotent stem cells (PSCs) genetically identical to a patient can now be established by reprogramming of somatic cells. However, practical applications of PSCs for personalized therapies are projected to be unfeasible because of the enormous cost and time required to produce clinical-grade cells for each patient. ESCs derived from parthenogenetic embryos (pESCs) that are homozygous for human leukocyte antigens may serve as an attractive alternative for immunomatched therapies for a large population of patients. In this study, we describe the biology and genetic nature of mammalian parthenogenesis and review potential advantages and limitations of pESCs for cell-based therapies. PMID:24443005

  9. The Combination of Light and Stem Cell Therapies: A Novel Approach in Regenerative Medicine

    NASA Astrophysics Data System (ADS)

    Anders, Juanita; Moges, Helina; Wu, Xingjia; Ilev, Ilko; Waynant, Ronald; Longo, Leonardo

    2010-05-01

    Light therapy commonly referred to as low level laser therapy can alter cellular functions and clinical conditions. Some of the commonly reported in vitro and in vivo effects of light therapy include cellular proliferation, alterations in the inflammatory response to injury, and increases in mitochondrial respiration and adenosine triphosphate synthesis. Based on the known effects of light on cells and tissues in general and on reports in the last 5 years on the interaction of light with stem cells, evidence is mounting indicating that light therapy could greatly benefit stem cell regenerative medicine. Experiments on a variety of harvested adult stem cells demonstrate that light therapy enhances differentiation and proliferation of the cells and alters the expression of growth factors in a number of different types of adult stem cells and progenitors in vitro. It also has the potential to attenuate cytotoxic effects of drugs used to purge harvested autologous stem cells and to increase survival of transplanted cells.

  10. Adipose tissue-derived microvascular fragments: natural vascularization units for regenerative medicine.

    PubMed

    Laschke, Matthias W; Menger, Michael D

    2015-08-01

    The establishment of effective vascularization is a key challenge in regenerative medicine. To achieve this, the transplantation of native microvascular fragments has emerged as a promising novel concept. Microvascular fragments can be isolated in large amounts from fat tissue, exhibit a high angiogenic activity, and represent a rich source of mesenchymal stem cells. Originally, microvascular fragments have been used in angiogenesis research for the isolation of capillary endothelium and for functional sprouting assays. More recent studies have demonstrated that they rapidly develop into microvascular networks after transfer into tissue defects. Moreover, they are suitable for the generation of prevascularized tissue constructs. Hence, a wide range of future medical applications may benefit from the use of these natural vascularization units. PMID:26137863

  11. [Research progress of cell sheet technology and its applications in tissue engineering and regenerative medicine].

    PubMed

    Ma, Dongyang; Ren, Liling; Mao, Tianqiu

    2014-10-01

    Cell sheet engineering is an important technology to harvest the cultured cells in the form of confluent monolayers using a continuous culture method and a physical approach. Avoiding the use of enzymes, expended cells can be harvested together with endogenous extracellular matrix, cell-matrix contacts, and cell-cell contacts. With high efficiency of cell loading ability and without using exogenous scaffolds, cell sheet engineering has several advantages over traditional tissue engineering methods. In this article, we give an overview on cell sheet technology about its applications in the filed of tissue regeneration, including the construction of soft tissues (corneal, mucous membrane, myocardium, blood vessel, pancreas islet, liver, bladder and skin) and hard tissues (bone, cartilage and tooth root). This techonoly is promising to provide a novel strategy for the development of tissue engineering and regenerative medicine. And further works should be carried out on the operability of this technology and its feasibility to construct thick tissues. PMID:25764743

  12. Regenerative Medicine in Organ and Tissue Transplantation: Shortly and Practically Achievable?

    PubMed Central

    Heidary Rouchi, A.; Mahdavi-Mazdeh, M.

    2015-01-01

    Since the beginning of organ/tissue transplantation, the therapeutic modality of choice in end-stage organ failure, organ shortage has been the main problem in transplantation medicine. Given the so far unsolved obstacle, all hope-raising procedures to possibly tackle this long-lasting problem can draw attentions. In this context, “regenerative medicine” sounds to be more promising compared to other approaches. To consider the huge impact of hematopoietic stem cell transplantation on the treatment of some congenital or acquired hematological or metabolic disorders and some advances to produce tissue engineered materials on one hand, and to take all aspects of this emerging and costly interdisciplinary field of research into consideration, on the other hand, inevitably makes this reality unchanged, in particular in countries with low or middle income, that allograft (from deceased or living donors) will remain for years as the irreplaceable source of organ transplantation. PMID:26306154

  13. A novel method to precisely assemble loose nanofiber structures for regenerative medicine applications.

    PubMed

    Beachley, Vince; Katsanevakis, Eleni; Zhang, Ning; Wen, Xuejun

    2013-02-01

    Polymer nanofibers are favorable for tissue engineering scaffolds because of their high surface-to-volume ratio and biomimicry of the extracellular matrix. Random and uniaxially oriented polymer nanofibers are easily fabricated by conventional electrospinning techniques; however, control over fiber organization within nanofiber structures is limited when they are collected directly from an electrospinning jet. The regenerative medicine applications of electrospun scaffolds could be expanded by developing assembly methods that allow better control of fiber organization. Here, a novel technique is presented that utilizes parallel automated tracks to orient and collect nanofibers from an electrospinning jet. The stabilized fibers are then subsequently assembled into desirable structures. It is difficult to assemble complex structures directly from an electrospinning jet because of high electrical charge and velocities, so this technology adds an intermediate step where nanofibers are immobilized on automated tracks. The result is a continuous steady-state delivery of static stabilized nanofibers that provides a unique and promising platform for automated post processing into useful nanofiber structures. This technique also allows for an indefinite amount of time, as determined by design parameters, for fibers to dry or cool before they contact other nanofibers in the collection site, thus eliminating potential for fiber-to-fiber adhesions even with slow evaporating solvents or high-temperature melts. To demonstrate potential in regenerative medicine applications, several nanofiber structures were fabricated, including: 2D structures with well-controlled fiber density; 3D loosely assembled aligned nanofiber structures with good cell penetration properties; and, complex layer-by-layer 3D aligned fiber structures assembled by integration with post-processing techniques. PMID:23184622

  14. Bone marrow derived stem cells in regenerative medicine as Advanced Therapy Medicinal Products

    PubMed Central

    Astori, Giuseppe; Soncin, Sabrina; Lo Cicero, Viviana; Siclari, Francesco; Sürder, Daniel; Turchetto, Lucia; Soldati, Gianni; Moccetti, Tiziano

    2010-01-01

    Bone marrow derived stem cells administered after minimal manipulation represent an important cell source for cellbased therapies. Clinical trial results, have revealed both safety and efficacy of the cell reinfusion procedure in many cardiovascular diseases. Many of these early clinical trials were performed in a period before the entry into force of the US and European regulation on cellbased therapies. As a result, conflicting data have been generated on the effectiveness of those therapies in certain conditions as acute myocardial infarction. As more academic medical centers and private companies move toward exploiting the full potential of cellbased medicinal products, needs arise for the development of the infrastructure necessary to support these investigations. This review describes the regulatory environment surrounding the production of cell based medicinal products and give practical aspects for cell isolation, characterization, production following Good Manufacturing Practice, focusing on the activities associated with the investigational new drug development. PMID:20589167

  15. The role of tissue engineering and biomaterials in cardiac regenerative medicine.

    PubMed

    Zhao, Yimu; Feric, Nicole T; Thavandiran, Nimalan; Nunes, Sara S; Radisic, Milica

    2014-11-01

    In recent years, the development of 3-dimensional engineered heart tissue (EHT) has made large strides forward because of advances in stem cell biology, materials science, prevascularization strategies, and nanotechnology. As a result, the role of tissue engineering in cardiac regenerative medicine has become multifaceted as new applications become feasible. Cardiac tissue engineering has long been established to have the potential to partially or fully restore cardiac function after cardiac injury. However, EHTs may also serve as surrogate human cardiac tissue for drug-related toxicity screening. Cardiotoxicity remains a major cause of drug withdrawal in the pharmaceutical industry. Unsafe drugs reach the market because preclinical evaluation is insufficient to weed out cardiotoxic drugs in all their forms. Bioengineering methods could provide functional and mature human myocardial tissues, ie, physiologically relevant platforms, for screening the cardiotoxic effects of pharmaceutical agents and facilitate the discovery of new therapeutic agents. Finally, advances in induced pluripotent stem cells have made patient-specific EHTs possible, which opens up the possibility of personalized medicine. Herein, we give an overview of the present state of the art in cardiac tissue engineering, the challenges to the field, and future perspectives. PMID:25442432

  16. Current concepts: tissue engineering and regenerative medicine applications in the ankle joint

    PubMed Central

    Correia, S. I.; Pereira, H.; Silva-Correia, J.; Van Dijk, C. N.; Espregueira-Mendes, J.; Oliveira, J. M.; Reis, R. L.

    2014-01-01

    Tissue engineering and regenerative medicine (TERM) has caused a revolution in present and future trends of medicine and surgery. In different tissues, advanced TERM approaches bring new therapeutic possibilities in general population as well as in young patients and high-level athletes, improving restoration of biological functions and rehabilitation. The mainstream components required to obtain a functional regeneration of tissues may include biodegradable scaffolds, drugs or growth factors and different cell types (either autologous or heterologous) that can be cultured in bioreactor systems (in vitro) prior to implantation into the patient. Particularly in the ankle, which is subject to many different injuries (e.g. acute, chronic, traumatic and degenerative), there is still no definitive and feasible answer to ‘conventional’ methods. This review aims to provide current concepts of TERM applications to ankle injuries under preclinical and/or clinical research applied to skin, tendon, bone and cartilage problems. A particular attention has been given to biomaterial design and scaffold processing with potential use in osteochondral ankle lesions. PMID:24352667

  17. Optimal use of blood and innovative approaches to stem cells, regenerative medicine and donor recruitment.

    PubMed

    Colligan, David; McGowan, Neil; Seghatchian, Jerard

    2014-04-01

    The annual scientific meeting of the Scotblood National Blood Transfusion Service, (SNBTS), continues to enjoy success. Scotblood 2013 focused on the contemporary issues affecting the various essential areas of blood transfusion and transfusion medicine. Presentations ranged from the challenges of recruiting young donors, forecasting future blood demand and celebrating the success of the better blood transfusion program. The meeting also discussed potential future developments in regenerative medicine particularly the potential of mesenchymal stromal cells and discussion of the ongoing Bloodpharma project, the ultimate aim of developing cultured red blood cells. This commentary comprises summaries of the presentations, based in part on the abstracts provided by the speakers. The Scotblood Conference began with the welcoming introduction by SNBTS Director Mrs. Mary Morgan, during which she updated the ongoing developments within SNBTS over the last year. Mrs. Morgan described how SNBTS met the challenges and obstacles that have been prevalent in all Blood Transfusion Services, whilst also meeting the transfusion needs of the people of Scotland. Mrs. Morgan then introduced the keynote speaker Dr. Aileen Keel CBE, Deputy Chief Medical Officer of Scotland. Dr. Keel's presentation was entitled "Twenty years in the Scottish Government-edited highlights" in which she described the various challenges that have presented themselves to her throughout her career. Dr. Keel highlighted how the various risks in the blood transfusion field (from HCV, HIV through to nvCJD) have arisen and then reduced to miniscule levels through hard work and perseverance. The highlights of the conference are summarised below. PMID:24642068

  18. Regenerative medicine: then and now – an update of recent history into future possibilities

    PubMed Central

    Polykandriotis, E; Popescu, L M; Horch, R E

    2010-01-01

    Abstract The fields of tissue engineering (TE) and regenerative medicine (RegMed) are yet to bring about the anticipated therapeutic revolution. After two decades of extremely high expectations and often disappointing returns both in the medical as well as in the financial arena, this scientific field reflects the sense of a new era and suggests the feeling of making a fresh start although many scientists are probably seeking reorientation. Much of research was industry driven, so that especially in the aftermath of the recent financial meltdown in the last 2 years we have witnessed a biotech asset yard sale. Despite any monetary shortcomings, from a technological point of view there have been great leaps that are yet to find their way to the patient. RegMed is definitely bound to play a major role in our life because it embodies one of the primordial dreams of mankind, such as: everlasting youth, flying, remote communication and setting foot on the moon. The Journal of Cellular and Molecular Medicine has been at the frontier of these developments in TE and RegMed from its beginning and reflects recent scientific advances in both fields. Therefore this review tries to look at RegMed through the keyhole of history which might just be like looking ‘back to the future’. PMID:20825521

  19. New Therapeutic Window of Regenerative Opportunity in Diabetic Retinopathy by VESGEN Analysis

    NASA Technical Reports Server (NTRS)

    Parsons-Wingert, Patricia A.

    2012-01-01

    Vascular pattern may serve as a useful new biomarker principle of complex, multi-scale signaling in pathological, physiological angiogenesis and microvascular remodeling. Each angiogenesis stimulator or inhibitor we have analyzed, including VEGF, bFGF, TGF-beta1, angiostatin and triamcinolone acetonide, has induced a novel "fingerprint" or "signature" biomarker vascular pattern that is spatio-temporally unique. Remodeling vasculature thereby provides an informative read-out of dominant molecular signaling, when analyzed by innovative, fractal-based VESsel GENeration (VESGEN) Analysis software. Using VESGEN to analyze ophthalmic clinical vascular images, we recently introduced a potential paradigm shift to the understanding of early-stage progression that suggests new regenerative opportunities for human diabetic retinopathy (DR), the major blinding disease for working-aged adults. In a pilot study, we discovered that angiogenesis oscillates as a surprising, homeostatic-like regeneration of retinal vessels during early progression of DR (IOVS 51(1):498). Results suggest that the term non-proliferative DR may be a misnomer. In new studies, normalization of the vasculature will be determined from the response of vascular pattern to therapeutic monitoring and treatment. We have mapped and quantified in vivo experimental models of angiogenesis, lymphangiogenesis and intravital blood flow from cellular/molecular to higher systems levels that include a murine model of infant retinopathy of prematurity (ROP); developing and pathological coronary and placental-like vessel models; progressive intestinal inflammation, growing murine tumors, and other pathological, physiological and therapeutically treated tissues of transgenic mice and avian embryos. Vascular Alterations, Visual Impairments (VIIP) & Increased Intracranial Pressure (ICP), Immunosuppression & Bone Loss: NASA-defined risk categories for human space exploration and ISS Utilization

  20. GMP cryopreservation of large volumes of cells for regenerative medicine: active control of the freezing process.

    PubMed

    Massie, Isobel; Selden, Clare; Hodgson, Humphrey; Fuller, Barry; Gibbons, Stephanie; Morris, G John

    2014-09-01

    Cryopreservation protocols are increasingly required in regenerative medicine applications but must deliver functional products at clinical scale and comply with Good Manufacturing Process (GMP). While GMP cryopreservation is achievable on a small scale using a Stirling cryocooler-based controlled rate freezer (CRF) (EF600), successful large-scale GMP cryopreservation is more challenging due to heat transfer issues and control of ice nucleation, both complex events that impact success. We have developed a large-scale cryocooler-based CRF (VIA Freeze) that can process larger volumes and have evaluated it using alginate-encapsulated liver cell (HepG2) spheroids (ELS). It is anticipated that ELS will comprise the cellular component of a bioartificial liver and will be required in volumes of ∼2 L for clinical use. Sample temperatures and Stirling cryocooler power consumption was recorded throughout cooling runs for both small (500 μL) and large (200 mL) volume samples. ELS recoveries were assessed using viability (FDA/PI staining with image analysis), cell number (nuclei count), and function (protein secretion), along with cryoscanning electron microscopy and freeze substitution techniques to identify possible injury mechanisms. Slow cooling profiles were successfully applied to samples in both the EF600 and the VIA Freeze, and a number of cooling and warming profiles were evaluated. An optimized cooling protocol with a nonlinear cooling profile from ice nucleation to -60°C was implemented in both the EF600 and VIA Freeze. In the VIA Freeze the nucleation of ice is detected by the control software, allowing both noninvasive detection of the nucleation event for quality control purposes and the potential to modify the cooling profile following ice nucleation in an active manner. When processing 200 mL of ELS in the VIA Freeze-viabilities at 93.4% ± 7.4%, viable cell numbers at 14.3 ± 1.7 million nuclei/mL alginate, and protein secretion at 10.5 ± 1.7

  1. GMP Cryopreservation of Large Volumes of Cells for Regenerative Medicine: Active Control of the Freezing Process

    PubMed Central

    Massie, Isobel; Selden, Clare; Hodgson, Humphrey; Gibbons, Stephanie; Morris, G. John

    2014-01-01

    Cryopreservation protocols are increasingly required in regenerative medicine applications but must deliver functional products at clinical scale and comply with Good Manufacturing Process (GMP). While GMP cryopreservation is achievable on a small scale using a Stirling cryocooler-based controlled rate freezer (CRF) (EF600), successful large-scale GMP cryopreservation is more challenging due to heat transfer issues and control of ice nucleation, both complex events that impact success. We have developed a large-scale cryocooler-based CRF (VIA Freeze) that can process larger volumes and have evaluated it using alginate-encapsulated liver cell (HepG2) spheroids (ELS). It is anticipated that ELS will comprise the cellular component of a bioartificial liver and will be required in volumes of ∼2 L for clinical use. Sample temperatures and Stirling cryocooler power consumption was recorded throughout cooling runs for both small (500 μL) and large (200 mL) volume samples. ELS recoveries were assessed using viability (FDA/PI staining with image analysis), cell number (nuclei count), and function (protein secretion), along with cryoscanning electron microscopy and freeze substitution techniques to identify possible injury mechanisms. Slow cooling profiles were successfully applied to samples in both the EF600 and the VIA Freeze, and a number of cooling and warming profiles were evaluated. An optimized cooling protocol with a nonlinear cooling profile from ice nucleation to −60°C was implemented in both the EF600 and VIA Freeze. In the VIA Freeze the nucleation of ice is detected by the control software, allowing both noninvasive detection of the nucleation event for quality control purposes and the potential to modify the cooling profile following ice nucleation in an active manner. When processing 200 mL of ELS in the VIA Freeze—viabilities at 93.4%±7.4%, viable cell numbers at 14.3±1.7 million nuclei/mL alginate, and protein secretion at 10.5±1.7

  2. The Regenerative Medicine in Oral and Maxillofacial Surgery: The Most Important Innovations in the Clinical Application of Mesenchymal Stem Cells

    PubMed Central

    Tatullo, Marco; Marrelli, Massimo; Paduano, Francesco

    2015-01-01

    Regenerative medicine is an emerging field of biotechnology that combines various aspects of medicine, cell and molecular biology, materials science and bioengineering in order to regenerate, repair or replace tissues. The oral surgery and maxillofacial surgery have a role in the treatment of traumatic or degenerative diseases that lead to a tissue loss: frequently, to rehabilitate these minuses, you should use techniques that have been improved over time. Since 1990, we started with the use of growth factors and platelet concentrates in oral and maxillofacial surgery; in the following period we start to use biomaterials, as well as several type of scaffolds and autologous tissues. The frontier of regenerative medicine nowadays is represented by the mesenchymal stem cells (MSCs): overcoming the ethical problems thanks to the use of mesenchymal stem cells from adult patient, and with the increasingly sophisticated technology to support their manipulation, MSCs are undoubtedly the future of medicine regenerative and they are showing perspectives unimaginable just a few years ago. Most recent studies are aimed to tissues regeneration using MSCs taken from sites that are even more accessible and rich in stem cells: the oral cavity turned out to be an important source of MSCs with the advantage to be easily accessible to the surgeon, thus avoiding to increase the morbidity of the patient. The future is the regeneration of whole organs or biological systems consisting of many different tissues, starting from an initial stem cell line, perhaps using innovative scaffolds together with the nano-engineering of biological tissues. PMID:25552921

  3. Exploring innovation in stem cell and regenerative medicine in Japan: the power of the consortium-based approach.

    PubMed

    Munisi, Hawa Issa; Xie, Zhongquan; Sengoku, Shintaro

    2014-01-01

    This article describes a recent trend in Japanese research, development and commercialization toward the application of stem cell technologies. Japan is the world's third largest economy and has a significant national presence in the pharmaceutical and biotechnology businesses; as such, stem cell R&D is abundant in the country. As indicated by the second largest share of patent applications worldwide, Japan had been expected to assert significant added value in the commercialization and industrial application of stem cell technologies; however, difficulties have impeded clinical development in this area, particularly the very small number of clinical trials and approved products for regenerative medicine or cell therapy. To address this 'Japan paradox', this report provides an overview of approaches for the commercialization of stem cell technologies in areas such as drug discovery, cell therapy and regenerative medicine, by discussing representative case examples of listed firms. PMID:25159064

  4. Embryonic and Induced Pluripotent Stem Cells: Understanding, Creating, and Exploiting the Nano-Niche for Regenerative Medicine

    PubMed Central

    2013-01-01

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have the capacity to differentiate into any specialized cell type of the human body, and therefore, ESC/iPSC-derived cell types offer great potential for regenerative medicine. However, key to realizing this potential requires a strong understanding of stem cell biology, techniques to maintain stem cells, and strategies to manipulate cells to efficiently direct cell differentiation toward a desired cell type. As nanoscale science and engineering continues to produce novel nanotechnology platforms, which inform, infiltrate, and impinge on many aspects of everyday life, it is no surprise that stem cell research is turning toward developments in nanotechnology to answer research questions and to overcome obstacles in regenerative medicine. Here we discuss recent advances in ESC and iPSC manipulation using nanomaterials and highlight future challenges within this area of research. PMID:23414366

  5. Immune physiology in tissue regeneration and aging, tumor growth, and regenerative medicine

    PubMed Central

    Bukovsky, Antonin; Caudle, Michael R.; Carson, Ray J.; Gaytán, Francisco; Huleihel, Mahmoud; Kruse, Andrea; Schatten, Heide; Telleria, Carlos M.

    2009-01-01

    The immune system plays an important role in immunity (immune surveillance), but also in the regulation of tissue homeostasis (immune physiology). Lessons from the female reproductive tract indicate that immune system related cells, such as intraepithelial T cells and monocyte-derived cells (MDC) in stratified epithelium, interact amongst themselves and degenerate whereas epithelial cells proliferate and differentiate. In adult ovaries, MDC and T cells are present during oocyte renewal from ovarian stem cells. Activated MDC are also associated with follicular development and atresia, and corpus luteum differentiation. Corpus luteum demise resembles rejection of a graft since it is attended by a massive influx of MDC and T cells resulting in parenchymal and vascular regression. Vascular pericytes play important roles in immune physiology, and their activities (including secretion of the Thy-1 differentiation protein) can be regulated by vascular autonomic innervation. In tumors, MDC regulate proliferation of neoplastic cells and angiogenesis. Tumor infiltrating T cells die among malignant cells. Alterations of immune physiology can result in pathology, such as autoimmune, metabolic, and degenerative diseases, but also in infertility and intrauterine growth retardation, fetal morbidity and mortality. Animal experiments indicate that modification of tissue differentiation (retardation or acceleration) during immune adaptation can cause malfunction (persistent immaturity or premature aging) of such tissue during adulthood. Thus successful stem cell therapy will depend on immune physiology in targeted tissues. From this point of view, regenerative medicine is more likely to be successful in acute rather than chronic tissue disorders. PMID:20195382

  6. Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine.

    PubMed

    Hemshekhar, Mahadevappa; Thushara, Ram M; Chandranayaka, Siddaiah; Sherman, Larry S; Kemparaju, Kempaiah; Girish, Kesturu S

    2016-05-01

    Hyaluronic acid (HA), is a glycosaminoglycan comprised of repeating disaccharide units of N-acetyl-D-glucosamine and D-glucuronic acid. HA is synthesized by hyaluronan synthases and reaches sizes in excess of 2MDa. It plays numerous roles in normal tissues but also has been implicated in inflammatory processes, multiple drug resistance, angiogenesis, tumorigenesis, water homeostasis, and altered viscoelasticity of extracellular matrix. The physicochemical properties of HA including its solubility and the availability of reactive functional groups facilitate chemical modifications on HA, which makes it a biocompatible material for use in tissue regeneration. HA-based biomaterials and bioscaffolds do not trigger allergies or inflammation and are hydrophilic which make them popular as injectable dermal and soft tissue fillers. They are manufactured in different forms including hydrogels, tubes, sheets and meshes. Here, we review the pathophysiological and pharmacological properties and the clinical uses of native and modified HA. The review highlights the therapeutic applications of HA-based bioscaffolds in organ-specific tissue engineering and regenerative medicine. PMID:26893053

  7. Understanding Melanocyte Stem Cells for Disease Modeling and Regenerative Medicine Applications

    PubMed Central

    Mull, Amber N.; Zolekar, Ashwini; Wang, Yu-Chieh

    2015-01-01

    Melanocytes in the skin play an indispensable role in the pigmentation of skin and its appendages. It is well known that the embryonic origin of melanocytes is neural crest cells. In adult skin, functional melanocytes are continuously repopulated by the differentiation of melanocyte stem cells (McSCs) residing in the epidermis of the skin. Many preceding studies have led to significant discoveries regarding the cellular and molecular characteristics of this unique stem cell population. The alteration of McSCs has been also implicated in several skin abnormalities and disease conditions. To date, our knowledge of McSCs largely comes from studying the stem cell niche of mouse hair follicles. Suggested by several anatomical differences between mouse and human skin, there could be distinct features associated with mouse and human McSCs as well as their niches in the skin. Recent advances in human pluripotent stem cell (hPSC) research have provided us with useful tools to potentially acquire a substantial amount of human McSCs and functional melanocytes for research and regenerative medicine applications. This review highlights recent studies and progress involved in understanding the development of cutaneous melanocytes and the regulation of McSCs. PMID:26703580

  8. Concise Review: Cell-Based Strategies in Bone Tissue Engineering and Regenerative Medicine

    PubMed Central

    Ma, Jinling; Both, Sanne K.; Yang, Fang; Cui, Fu-Zhai; Pan, Juli; Meijer, Gert J.; Jansen, John A.

    2014-01-01

    Cellular strategies play an important role in bone tissue engineering and regenerative medicine (BTE/RM). Variability in cell culture procedures (e.g., cell types, cell isolation and expansion, cell seeding methods, and preculture conditions before in vivo implantation) may influence experimental outcome. Meanwhile, outcomes from initial clinical trials are far behind those of animal studies, which is suggested to be related to insufficient nutrient and oxygen supply inside the BTE/RM constructs as some complex clinical implementations require bone regeneration in too large a quantity. Coculture strategies, in which angiogenic cells are introduced into osteogenic cell cultures, might provide a solution for improving vascularization and hence increasing bone formation for cell-based constructs. So far, preclinical studies have demonstrated that cell-based tissue-engineered constructs generally induce more bone formation compared with acellular constructs. Further, cocultures have been shown to enhance vascularization and bone formation compared with monocultures. However, translational efficacy from animal studies to clinical use requires improvement, and the role implanted cells play in clinical bone regeneration needs to be further elucidated. In view of this, the present review provides an overview of the critical procedures during in vitro and in vivo phases for cell-based strategies (both monoculture and coculture) in BTE/RM to achieve more standardized culture conditions for future studies, and hence enhance bone formation. PMID:24300556

  9. Novel magnetic indenter for rheological analysis of thin biological sheet for regenerative medicine

    NASA Astrophysics Data System (ADS)

    Kageshima, Masami; Maruyama, Toshiro; Akama, Tomoya; Nakamura, Tomoyuki

    2016-07-01

    A novel method is proposed for analyzing the mechanical properties of a thin sheet of cells or extracellular matrix cultured for regenerative medicine. A steel sphere is mounted onto the center of the sheet sample, placed over a circular aperture, and a loading force is exerted via an electromagnet with well-regulated current while the displacement of the sample center is optically detected. Details of the instrument and its performance are described. Loading and unloading experiment with stepwise magnetic force revealed that creep response of each of the cell sheet and matrix sheet can be expressed as a combination of a quasi-instantaneous deformation and two delayed elastic responses having different retardation times. The retardation time exhibited an increasing trend with the loading force. Close analysis of loading-force dependence and reversibility of the derived mechanical parameters revealed that these deformation modes are not independent but flexibly switches to each other depending on load magnitude and loading history. The cell sheet sample exhibited remarkable irreversibility between loading and unloading responses, which is attributed to response of the live cells to the sustained loading.

  10. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine.

    SciTech Connect

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela; Burger, Maximilian; Schaefer, Dirk J.; Wolff, Thomas; Gurke, Lorenz; Briquez, Priscilla S.; Larsson, Hans M.; Gianni-Barrera, Roberto; Hubbell, Jeffrey A.; Banfi, Andrea

    2015-04-01

    Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.

  11. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    DOE PAGESBeta

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela; Burger, Maximilian; Schaefer, Dirk J.; Wolff, Thomas; Gurke, Lorenz; Briquez, Priscilla S.; Larsson, Hans M.; Gianni-Barrera, Roberto; et al

    2015-04-01

    In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular,more » the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  12. CellCAN: a unique enabler of regenerative medicine and cell therapy in Canada.

    PubMed

    Roy, Denis-Claude; Alarco, Anne-Marie; Isasi, Rosario

    2014-12-01

    Regenerative Medicine and Cell Therapy (RMCT) is paving the way for the most innovative and promising medical breakthroughs of the 21st century. Indeed, its curative potential is immense and builds on the already proven benefits of stem cell transplantation. Successful and broad clinical implementation of RMCT, as well as reaping of its full social and economic benefits, is contingent on the resolution of a range of issues. The CellCAN network, a not-for-profit corporation, was created to tackle these challenges, gathering the key forces of the numerous Canadian organizations involved in basic research, assay development, manufacturing, clinical research, clinical trials, legal and ethical regulations, and policies, all working to move RMCT forward. CellCAN creates a national enterprise by bringing together a community of renowned researchers, industries, clinicians, funders and regulators, and aligning it with cell-handling facilities involved in processing cell products and other products for cell therapy clinical trials to ensure capacity and know-how for stem cell research and efficient execution of cell therapy clinical trials. CellCAN is uniquely positioned to accelerate the implementation of RMCT in Canada and disseminate novel developments and findings, thus significantly contributing to the world's knowledge in cellular therapeutics. As such, the CellCAN model could also serve as a useful benchmark to accelerate RMCT implementation in other countries. PMID:25457957

  13. Mesenchymal stem cells and their subpopulation, pluripotent muse cells, in basic research and regenerative medicine.

    PubMed

    Kuroda, Yasumasa; Dezawa, Mari

    2014-01-01

    Mesenchymal stem cells (MSCs) have gained a great deal of attention for regenerative medicine because they can be obtained from easy accessible mesenchymal tissues, such as bone marrow, adipose tissue, and the umbilical cord, and have trophic and immunosuppressive effects to protect tissues. The most outstanding property of MSCs is their potential for differentiation into cells of all three germ layers. MSCs belong to the mesodermal lineage, but they are known to cross boundaries from mesodermal to ectodermal and endodermal lineages, and differentiate into a variety of cell types both in vitro and in vivo. Such behavior is exceptional for tissue stem cells. As observed with hematopoietic and neural stem cells, tissue stem cells usually generate cells that belong to the tissue in which they reside, and do not show triploblastic differentiation. However, the scientific basis for the broad multipotent differentiation of MSCs still remains an enigma. This review summarizes the properties of MSCs from representative mesenchymal tissues, including bone marrow, adipose tissue, and the umbilical cord, to demonstrate their similarities and differences. Finally, we introduce a novel type of pluripotent stem cell, multilineage-differentiating stress-enduring (Muse) cells, a small subpopulation of MSCs, which can explain the broad spectrum of differentiation ability in MSCs. PMID:24293378

  14. Laminin- and basement membrane-polycaprolactone blend nanofibers as a scaffold for regenerative medicine

    PubMed Central

    Neal, Rebekah A.; Lenz, Steven M.; Wang, Tiffany; Abebayehu, Daniel; Brooks, Benjamin P.C.; Ogle, Roy C.; Botchwey, Edward A.

    2016-01-01

    Mimicking one or more components of the basement membrane (BM) holds great promise for overcoming insufficiencies in tissue engineering therapies. We have electrospun laminin nanofibers (NFs) isolated from the murine Engelbreth-Holm Swarm (EHS) tumor and evaluated them as a scaffold for embryonic stem cell culture. Seeded human embryonic stem cells were found to better maintain their undifferentiated, colony environment when cultured on laminin NFs compared to laminin mats, with 75% remaining undifferentiated on NFs. Mouse embryonic stem cells cultured on 10% laminin-polycaprolactone (PCL) NFs maintained their colony formation for twice as long without passage compared to those on PCL or gelatin substrates. In addition, we have established a protocol for electrospinning reconstituted basement membrane aligned (RBM)-PCL NFs within 10° of angular deviation. Neuron-like PC12 cells show significantly greater attachment (p < 0.001) and percentage of neurite-extending cells in vitro on 10% RBM-PCL NFs when compared to 1% and 0% RBM-PCL NFs (p < 0.015 and p < 0.001, respectively). Together, these results implicate laminin- and RBM-PCL scaffolds as a promising biomimetic substrate for regenerative medicine applications.

  15. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    SciTech Connect

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela; Burger, Maximilian; Schaefer, Dirk J.; Wolff, Thomas; Gurke, Lorenz; Briquez, Priscilla S.; Larsson, Hans M.; Gianni-Barrera, Roberto; Hubbell, Jeffrey A.; Banfi, Andrea

    2015-04-01

    In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.

  16. Cell Microenvironment Engineering and Monitoring for Tissue Engineering and Regenerative Medicine: The Recent Advances

    PubMed Central

    Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul

    2014-01-01

    In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future. PMID:25143954

  17. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances.

    PubMed

    Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul; Vrana, Nihal Engin

    2014-01-01

    In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future. PMID:25143954

  18. Performance of PRP Associated with Porous Chitosan as a Composite Scaffold for Regenerative Medicine

    PubMed Central

    Shimojo, Andréa Arruda Martins; Perez, Amanda Gomes Marcelino; Galdames, Sofia Elisa Moraga; Brissac, Isabela Cambraia de Souza; Santana, Maria Helena Andrade

    2015-01-01

    This study aimed to evaluate the in vitro performance of activated platelet-rich plasma associated with porous sponges of chitosan as a composite scaffold for proliferation and osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. The sponges were prepared by controlled freezing (−20, −80, or −196°C) and lyophilization of chitosan solutions (1, 2, or 3% w/v). The platelet-rich plasma was obtained from controlled centrifugation of whole blood and activated with calcium and autologous serum. The composite scaffolds were prepared by embedding the sponges with the activated platelet-rich plasma. The results showed the performance of the scaffolds was superior to that of activated platelet-rich plasma alone, in terms of delaying the release of growth factors and increased proliferation of the stem cells. The best preparation conditions of chitosan composite scaffolds that coordinated the physicochemical and mechanical properties and cell proliferation were 3% (w/v) chitosan and a −20°C freezing temperature, while −196°C favored osteogenic differentiation. Although the composite scaffolds are promising for regenerative medicine, the structures require stabilization to prevent the collapse observed after five days. PMID:25821851

  19. Current Status of Stem Cells and Regenerative Medicine in Lung Biology and Diseases

    PubMed Central

    Weiss, Daniel J.

    2014-01-01

    Lung diseases remain a significant and devastating cause of morbidity and mortality worldwide. In contrast to many other major diseases, lung diseases notably chronic obstructive pulmonary diseases (COPD), including both asthma and emphysema, are increasing in prevalence and COPD is expected to become the 3rd leading cause of disease mortality worldwide by 2020. New therapeutic options are desperately needed. A rapidly growing number of investigations of stem cells and cell therapies in lung biology and diseases as well as in ex vivo lung bioengineering have offered exciting new avenues for advancing knowledge of lung biology as well as providing novel potential therapeutic approaches for lung diseases. These initial observations have led to a growing exploration of endothelial progenitor cells and mesenchymal stem (stromal) cells in clinical trials of pulmonary hypertension and chronic obstructive pulmonary disease (COPD) with other clinical investigations planned. Ex vivo bioengineering of the trachea, larynx, diaphragm, and the lung itself with both biosynthetic constructs as well as decellularized tissues have been utilized to explore engineering both airway and vascular systems of the lung. Lung is thus a ripe organ for a variety of cell therapy and regenerative medicine approaches. Current state-of-the-art progress for each of the above areas will be presented as will discussion of current considerations for cell therapy based clinical trials in lung diseases. PMID:23959715

  20. The social management of biomedical novelty: Facilitating translation in regenerative medicine.

    PubMed

    Gardner, John; Webster, Andrew

    2016-05-01

    Regenerative medicine (RM) is championed as a potential source of curative treatments for a variety of illnesses, and as a generator of economic wealth and prosperity. Alongside this optimism, however, is a sense of concern that the translation of basic science into useful RM therapies will be laboriously slow due to a range of challenges relating to live tissue handling and manufacturing, regulation, reimbursement and commissioning, and clinical adoption. This paper explores the attempts of stakeholders to overcome these innovation challenges and thus facilitate the emergence of useful RM therapies. The paper uses the notion of innovation niches as an analytical frame. Innovation niches are collectively constructed socio-technical spaces in which a novel technology can be tested and further developed, with the intention of enabling wider adoption. Drawing on primary and secondary data, we explore the motivation for, and the attempted construction of, niches in three domains which are central to the adoption of innovative technologies: the regulatory, the health economic, and the clinical. We illustrate that these niches are collectively constructed via both formal and informal initiatives, and we argue that they reflect wider socio-political trends in the social management of biomedical novelty. PMID:27019143

  1. 25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine

    PubMed Central

    Annabi, Nasim; Tamayol, Ali; Uquillas, Jorge Alfredo; Akbari, Mohsen; Bertassoni, Luiz E.; Cha, Chaenyung; Camci-Unal, Gulden; Dokmeci, Mehmet R.

    2014-01-01

    Hydrogels are hydrophilic polymer-based materials with high water content and physical characteristics that resemble the native extracellular matrix. Because of their remarkable properties, hydrogel systems are used for a wide range of biomedical applications, such as three-dimensional (3D) matrices for tissue engineering, drug-delivery vehicles, composite biomaterials, and as injectable fillers in minimally invasive surgeries. In addition, the rational design of hydrogels with controlled physical and biological properties can be used to modulate cellular functionality and tissue morphogenesis. Here, the development of advanced hydrogels with tunable physiochemical properties is highlighted, with particular emphasis on elastomeric, light-sensitive, composite, and shape-memory hydrogels. Emerging technologies developed over the past decade to control hydrogel architecture are also discussed and a number of potential applications and challenges in the utilization of hydrogels in regenerative medicine are reviewed. It is anticipated that the continued development of sophisticated hydrogels will result in clinical applications that will improve patient care and quality of life. PMID:24741694

  2. Cell-derived matrices for tissue engineering and regenerative medicine applications1

    PubMed Central

    Fitzpatrick, Lindsay E.; McDevitt, Todd C.

    2014-01-01

    The development and application of decellularized extracellular matrices (ECM) has grown rapidly in the fields of cell biology, tissue engineering and regenerative medicine in recent years. Similar to decellularized tissues and whole organs, cell-derived matrices (CDMs) represent bioactive, biocompatible materials consisting of a complex assembly of fibrillar proteins, matrix macromolecules and associated growth factors that often recapitulate, at least to some extent, the composition and organization of native ECM microenvironments. The unique ability to engineer CDMs de novo based on cell source and culture methods makes them an attractive alternative to conventional allogeneic and xenogeneic tissue-derived matrices that are currently harvested from cadaveric sources, suffer from inherent heterogeneity, and have limited ability for customization. Although CDMs have been investigated for a number of biomedical applications, including adhesive cell culture substrates, synthetic scaffold coatings, and tissue engineered products, such as heart valves and vascular grafts, the state of the field is still at a relatively nascent stage of development. In this review, we provide an overview of the various applications of CDM and discuss successes to date, current limitations and future directions. PMID:25530850

  3. Concise review: current status of stem cells and regenerative medicine in lung biology and diseases.

    PubMed

    Weiss, Daniel J

    2014-01-01

    Lung diseases remain a significant and devastating cause of morbidity and mortality worldwide. In contrast to many other major diseases, lung diseases notably chronic obstructive pulmonary diseases (COPDs), including both asthma and emphysema, are increasing in prevalence and COPD is expected to become the third leading cause of disease mortality worldwide by 2020. New therapeutic options are desperately needed. A rapidly growing number of investigations of stem cells and cell therapies in lung biology and diseases as well as in ex vivo lung bioengineering have offered exciting new avenues for advancing knowledge of lung biology as well as providing novel potential therapeutic approaches for lung diseases. These initial observations have led to a growing exploration of endothelial progenitor cells and mesenchymal stem (stromal) cells in clinical trials of pulmonary hypertension and COPD with other clinical investigations planned. Ex vivo bioengineering of the trachea, larynx, diaphragm, and the lung itself with both biosynthetic constructs as well as decellularized tissues have been used to explore engineering both airway and vascular systems of the lung. Lung is thus a ripe organ for a variety of cell therapy and regenerative medicine approaches. Current state-of-the-art progress for each of the above areas will be presented as will discussion of current considerations for cell therapy-based clinical trials in lung diseases. PMID:23959715

  4. Mathematical Models of Pluripotent Stem Cells: At the Dawn of Predictive Regenerative Medicine.

    PubMed

    Pir, Pınar; Le Novère, Nicolas

    2016-01-01

    Regenerative medicine, ranging from stem cell therapy to organ regeneration, is promising to revolutionize treatments of diseases and aging. These approaches require a perfect understanding of cell reprogramming and differentiation. Predictive modeling of cellular systems has the potential to provide insights about the dynamics of cellular processes, and guide their control. Moreover in many cases, it provides alternative to experimental tests, difficult to perform for practical or ethical reasons. The variety and accuracy of biological processes represented in mathematical models grew in-line with the discovery of underlying molecular mechanisms. High-throughput data generation led to the development of models based on data analysis, as an alternative to more established modeling based on prior mechanistic knowledge. In this chapter, we give an overview of existing mathematical models of pluripotency and cell fate, to illustrate the variety of methods and questions. We conclude that current approaches are yet to overcome a number of limitations: Most of the computational models have so far focused solely on understanding the regulation of pluripotency, and the differentiation of selected cell lineages. In addition, models generally interrogate only a few biological processes. However, a better understanding of the reprogramming process leading to ESCs and iPSCs is required to improve stem-cell therapies. One also needs to understand the links between signaling, metabolism, regulation of gene expression, and the epigenetics machinery. PMID:26677190

  5. Tubular Tissues and Organs of Human Body--Challenges in Regenerative Medicine.

    PubMed

    Góra, Aleksander; Pliszka, Damian; Mukherjee, Shayanti; Ramakrishna, Seeram

    2016-01-01

    Tissue engineering of tubular organs such as the blood vessel, trachea gastrointestinal tract, urinary tract are of the great interest due to the high amount of surgeries performed annually on those organs. Development in tissue engineering in recent years and promising results, showed need to investigate more complex constructs that need to be designed in special manner. Stent technology remain the most widely used procedure to restore functions of tubular tissues after cancer treatment, or after organ removal due to traumatic accidents. Tubular structures like blood vessels, intestines, and trachea have to work in specific environment at the boundary of the liquids, solids or air and surrounding tissues and ensure suitable separation between them. This brings additional challenges in tissue engineering science in order to construct complete organs by using combinations of various cells along with the support material systems. Here we give a comprehensive review of the tubular structures of the human body, in perspective of the current methods of treatment and progress in regenerative medicine that aims to develop fully functioning organs of tubular shape. Extensive analysis of the available literature has been done focusing on materials and methods of creations of such organs. This work describes the attempts to incorporate growth factors and drugs within the scaffolds to ensure localized drug release and enhance vascularization of the organ by attracting blood vessels to the site of implantation. PMID:27398431

  6. Engineering Novel Thermoreversible Hydrogels with Applications in Regenerative Medicine and Delivery Systems

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Divya; Mehandru, Nikhil; Nanda, Japbani; Sun, Yicheng; Rafailovch, Miriam

    2012-02-01

    A major concern in regenerative medicine is the increasing need for effective biomaterials for scaffolds, cell delivery vehicles, and drug delivery systems. In this study, we engineered a thermo reversible composite hydrogel of hard, medium and soft stiffness by blending Pluronic F127 (F127) with biocompatible hyaluronic acid (HA) and bioadhesive gelatin. Rheological analysis demonstrated that hard gel produced the highest elastic modulus in both HA-F127 and Gelatin-F127 hydrogels. It was found that increasing the concentration of HA and gelatin increased the critical solution temperature (CST) at which the solution gels. Glucose and sodium chloride, additives commonly found within the body, were analyzed to have minimal effect on the mechanical properties but caused a decrease in CST. Adult human dermal fibroblasts were plated on the composite hydrogels to demonstrate scaffolding and cell delivery. The highest growth was observed in hard Gelatin-F127 hydrogels. Cells also showed the best response to hard Gelatin-F127 gels in shear modulation force microscopy and were found to be homogenously distributed in the three-dimensional matrix of the gels. Our novel composite hydrogel displayed synergistic properties of its individual components and had the necessary characteristics for effective use in the medical setting: mechanical strength, cell adhesion and viability.

  7. Novel magnetic indenter for rheological analysis of thin biological sheet for regenerative medicine.

    PubMed

    Kageshima, Masami; Maruyama, Toshiro; Akama, Tomoya; Nakamura, Tomoyuki

    2016-07-01

    A novel method is proposed for analyzing the mechanical properties of a thin sheet of cells or extracellular matrix cultured for regenerative medicine. A steel sphere is mounted onto the center of the sheet sample, placed over a circular aperture, and a loading force is exerted via an electromagnet with well-regulated current while the displacement of the sample center is optically detected. Details of the instrument and its performance are described. Loading and unloading experiment with stepwise magnetic force revealed that creep response of each of the cell sheet and matrix sheet can be expressed as a combination of a quasi-instantaneous deformation and two delayed elastic responses having different retardation times. The retardation time exhibited an increasing trend with the loading force. Close analysis of loading-force dependence and reversibility of the derived mechanical parameters revealed that these deformation modes are not independent but flexibly switches to each other depending on load magnitude and loading history. The cell sheet sample exhibited remarkable irreversibility between loading and unloading responses, which is attributed to response of the live cells to the sustained loading. PMID:27475573

  8. [Internationalization, science and health: global regenerative medicine and the parallel markets].

    PubMed

    Acero, Liliana

    2015-02-01

    Regenerative medicine involves a paradigm change due to organism regeneration at cellular and tissue level - a controversial contemporary issue and difficult to regulate. This article presents a summary of the main scientific, economic, social and regulatory global trends, analyzed according to relevant theoretical dilemmas in medical anthropology and in the sociology of science and health. This is especially true of the construction of a 'collective frame of reference' on the new biological and ontological entities, the shaping of biological citizenship, and governance through uncertainty. Empirical evidence is also presented on a key aspect in regulation and governance, namely the emergence of a new transnational demand in health research through the establishment of parallel markets for ova and experimental cellular therapies. Qualitative data collected for a broader research paper is analyzed, as well as journal reviews and information gathered during interviews with international leaders. The paper concludes with a discussion on the importance on international governance of clinical trials and on further exploration, towards a multilevel harmonization of a diversity of normative practices. PMID:25715137

  9. Concise review: tailoring bioengineered scaffolds for stem cell applications in tissue engineering and regenerative medicine.

    PubMed

    Cosson, Steffen; Otte, Ellen A; Hezaveh, Hadi; Cooper-White, Justin J

    2015-02-01

    The potential for the clinical application of stem cells in tissue regeneration is clearly significant. However, this potential has remained largely unrealized owing to the persistent challenges in reproducibly, with tight quality criteria, and expanding and controlling the fate of stem cells in vitro and in vivo. Tissue engineering approaches that rely on reformatting traditional Food and Drug Administration-approved biomedical polymers from fixation devices to porous scaffolds have been shown to lack the complexity required for in vitro stem cell culture models or translation to in vivo applications with high efficacy. This realization has spurred the development of advanced mimetic biomaterials and scaffolds to increasingly enhance our ability to control the cellular microenvironment and, consequently, stem cell fate. New insights into the biology of stem cells are expected to eventuate from these advances in material science, in particular, from synthetic hydrogels that display physicochemical properties reminiscent of the natural cell microenvironment and that can be engineered to display or encode essential biological cues. Merging these advanced biomaterials with high-throughput methods to systematically, and in an unbiased manner, probe the role of scaffold biophysical and biochemical elements on stem cell fate will permit the identification of novel key stem cell behavioral effectors, allow improved in vitro replication of requisite in vivo niche functions, and, ultimately, have a profound impact on our understanding of stem cell biology and unlock their clinical potential in tissue engineering and regenerative medicine. PMID:25575526

  10. Tissue Engineering and Regenerative Medicine: Semantic Considerations for an Evolving Paradigm

    PubMed Central

    Katari, Ravi; Peloso, Andrea; Orlando, Giuseppe

    2015-01-01

    Tissue engineering (TE) and regenerative medicine (RM) are rapidly evolving fields that are often obscured by a dense cloud of hype and commercialization potential. We find, in the literature and general commentary, that several of the associated terms are casually referenced in varying contexts that ultimately result in the blurring of the distinguishing boundaries which define them. “TE” and “RM” are often used interchangeably, though some experts vehemently argue that they, in fact, represent different conceptual entities. Nevertheless, contemporary scientists have a general idea of the experiments and milestones that can be classified within either or both categories. Given the groundbreaking achievements reported within the past decade and consequent watershed potential of this field, we feel that it would be useful to properly contextualize these terms semantically and historically. In this concept paper, we explore the various definitions proposed in the literature and emphasize that ambiguous terminology can lead to misplaced apprehension. We assert that the central motifs of both concepts have existed within the surgical sciences long before their appearance as terms in the scientific literature. PMID:25629029

  11. [Precision medicine: new opportunities and challenges for molecular epidemiology].

    PubMed

    Song, Jing; Hu, Yonghua

    2016-04-01

    Since the completion of the Human Genome Project in 2003 and the announcement of the Precision Medicine Initiative by U.S. President Barack Obama in January 2015, human beings have initially completed the " three steps" of " genomics to biology, genomics to health as well as genomics to society". As a new inter-discipline, the emergence and development of precision medicine have relied on the support and promotion from biological science, basic medicine, clinical medicine, epidemiology, statistics, sociology and information science, etc. Meanwhile, molecular epidemiology is considered to be the core power to promote precision medical as a cross discipline of epidemiology and molecular biology. This article is based on the characteristics and research progress of medicine and molecular epidemiology respectively, focusing on the contribution and significance of molecular epidemiology to precision medicine, and exploring the possible opportunities and challenges in the future. PMID:27087232

  12. Identifying viable regulatory and innovation pathways for regenerative medicine: a case study of cultured red blood cells.

    PubMed

    Mittra, J; Tait, J; Mastroeni, M; Turner, M L; Mountford, J C; Bruce, K

    2015-01-25

    The creation of red blood cells for the blood transfusion markets represents a highly innovative application of regenerative medicine with a medium term (5-10 year) prospect for first clinical studies. This article describes a case study analysis of a project to derive red blood cells from human embryonic stem cells, including the systemic challenges arising from (i) the selection of appropriate and viable regulatory protocols and (ii) technological constraints related to stem cell manufacture and scale up to clinical Good Manufacturing Practice (GMP) standard. The method used for case study analysis (Analysis of Life Science Innovation Systems (ALSIS)) is also innovative, demonstrating a new approach to social and natural science collaboration to foresight product development pathways. Issues arising along the development pathway include cell manufacture and scale-up challenges, affected by regulatory demands emerging from the innovation ecosystem (preclinical testing and clinical trials). Our discussion reflects on the efforts being made by regulators to adapt the current pharmaceuticals-based regulatory model to an allogeneic regenerative medicine product and the broader lessons from this case study for successful innovation and translation of regenerative medicine therapies, including the role of methodological and regulatory innovation in future development in the field. PMID:25094050

  13. Employment of the Triple Helix concept for development of regenerative medicine applications based on human pluripotent stem cells

    PubMed Central

    2014-01-01

    Using human pluripotent stem cells as a source to generate differentiated progenies for regenerative medicine applications has attracted substantial interest during recent years. Having the capability to produce large quantities of human cells that can replace damaged tissue due to disease or injury opens novel avenues for relieving symptoms and also potentially offers cures for many severe human diseases. Although tremendous advancements have been made, there is still much research and development left before human pluripotent stem cell derived products can be made available for cell therapy applications. In order to speed up the development processes, we argue strongly in favor of cross-disciplinary collaborative efforts which have many advantages, especially in a relatively new field such as regenerative medicine based on human pluripotent stem cells. In this review, we aim to illustrate how some of the hurdles for bringing human pluripotent stem cell derivatives from bench-to-bed can be effectively addressed through the establishment of collaborative programs involving academic institutions, biotech industries, and pharmaceutical companies. By taking advantage of the strengths from each organization, innovation and productivity can be maximized from a resource perspective and thus, the chances of successfully bringing novel regenerative medicine treatment options to patients increase. PMID:24872863

  14. Non-viral gene delivery strategies for cancer therapy, tissue engineering and regenerative medicine

    NASA Astrophysics Data System (ADS)

    Bhise, Nupura S.

    Gene therapy involves the delivery of deoxyribonucleic acid (DNA) into cells to override or replace a malfunctioning gene for treating debilitating genetic diseases, including cancer and neurodegenerative diseases. In addition to its use as a therapeutic, it can also serve as a technology to enable regenerative medicine strategies. The central challenge of the gene therapy research arena is developing a safe and effective delivery agent. Since viral vectors have critical immunogenic and tumorogenic safety issues that limit their clinical use, recent efforts have focused on developing non-viral biomaterial based delivery vectors. Cationic polymers are an attractive class of gene delivery vectors due to their structural versatility, ease of synthesis, biodegradability, ability to self-complex into nanoparticles with negatively charged DNA, capacity to carry large cargo, cellular uptake and endosomal escape capacity. In this thesis, we hypothesized that developing a biomaterial library of poly(betaamino esters) (PBAE), a newer class of cationic polymers consisting of biodegradable ester groups, would allow investigating vector design parameters and formulating effective non-viral gene delivery strategies for cancer drug delivery, tissue engineering and stem cell engineering. Consequently, a high-throughput transfection assay was developed to screen the PBAE-based nanoparticles in hard to transfect fibroblast cell lines. To gain mechanistic insights into the nanoparticle formulation process, biophysical properties of the vectors were characterized in terms of molecular weight (MW), nanoparticle size, zeta potential and plasmid per particle count. We report a novel assay developed for quantifying the plasmid per nanoparticle count and studying its implications for co-delivery of multiple genes. The MW of the polymers ranged from 10 kDa to 100 kDa, nanoparticle size was about 150 run, zeta potential was about 30 mV in sodium acetate buffer (25 mM, pH 5) and 30 to 100

  15. Biological computational approaches: new hopes to improve (re)programming robustness, regenerative medicine and cancer therapeutics.

    PubMed

    Ebrahimi, Behnam

    2016-01-01

    Hundreds of transcription factors (TFs) are expressed and work in each cell type, but the identity of the cells is defined and maintained through the activity of a small number of core TFs. Existing reprogramming strategies predominantly focus on the ectopic expression of core TFs of an intended fate in a given cell type regardless of the state of native/somatic gene regulatory networks (GRNs) of the starting cells. Interestingly, an important point is that how much products of the reprogramming, transdifferentiation and differentiation (programming) are identical to their in vivo counterparts. There is evidence that shows that direct fate conversions of somatic cells are not complete, with target cell identity not fully achieved. Manipulation of core TFs provides a powerful tool for engineering cell fate in terms of extinguishment of native GRNs, the establishment of a new GRN, and preventing installation of aberrant GRNs. Conventionally, core TFs are selected to convert one cell type into another mostly based on literature and the experimental identification of genes that are differentially expressed in one cell type compared to the specific cell types. Currently, there is not a universal standard strategy for identifying candidate core TFs. Remarkably, several biological computational platforms are developed, which are capable of evaluating the fidelity of reprogramming methods and refining existing protocols. The current review discusses some deficiencies of reprogramming technologies in the production of a pure population of authentic target cells. Furthermore, it reviews the role of computational approaches (e.g. CellNet, KeyGenes, Mogrify, etc.) in improving (re)programming methods and consequently in regenerative medicine and cancer therapeutics. PMID:27056282

  16. Regenerative photonic therapy: Review

    NASA Astrophysics Data System (ADS)

    Salansky, Natasha; Salansky, Norman

    2012-09-01

    After four decades of research of photobiomodulation phenomena in mammals in vitro and in vivo, a solid foundation is created for the use of photobiomodulation in regenerative medicine. Significant accomplishments are achieved in animal models that demonstrate opportunities for photo-regeneration of injured or pathological tissues: skin, muscles and nerves. However, the use of photobiomodulation in clinical studies leads to controversial results while negative or marginal clinical efficacy is reported along with positive findings. A thor ough analysis of requirements to the optical parameters (dosimetry) for high efficacy in photobimodulation led us to the conclusion that there are several misconceptions in the clinical applications of low level laser therapy (LLLT). We present a novel appr oach of regenerative photonic therapy (RPT) for tissue healing and regeneration that overcomes major drawbacks of LLLT. Encouraging clinical results on RPT efficacy are presented. Requirements for RPT approach and vision for its future development for tissue regeneration is discussed.

  17. Opportunities for the Cardiovascular Community in the Precision Medicine Initiative.

    PubMed

    Shah, Svati H; Arnett, Donna; Houser, Steven R; Ginsburg, Geoffrey S; MacRae, Calum; Mital, Seema; Loscalzo, Joseph; Hall, Jennifer L

    2016-01-12

    The Precision Medicine Initiative recently announced by President Barack Obama seeks to move the field of precision medicine more rapidly into clinical care. Precision medicine revolves around the concept of integrating individual-level data including genomics, biomarkers, lifestyle and other environmental factors, wearable device physiological data, and information from electronic health records to ultimately provide better clinical care to individual patients. The Precision Medicine Initiative as currently structured will primarily fund efforts in cancer genomics with longer-term goals of advancing precision medicine to all areas of health, and will be supported through creation of a 1 million person cohort study across the United States. This focused effort on precision medicine provides scientists, clinicians, and patients within the cardiovascular community an opportunity to work together boldly to advance clinical care; the community needs to be aware and engaged in the process as it progresses. This article provides a framework for potential involvement of the cardiovascular community in the Precision Medicine Initiative, while highlighting significant challenges for its successful implementation. PMID:27028435

  18. Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery

    PubMed Central

    Singh, Vimal K.; Kalsan, Manisha; Kumar, Neeraj; Saini, Abhishek; Chandra, Ramesh

    2015-01-01

    such as animal models. Many toxic compounds (different chemical compounds, pharmaceutical drugs, other hazardous chemicals, or environmental conditions) which are encountered by humans and newly designed drugs may be evaluated for toxicity and effects by using iPSCs. Thus, the applications of iPSCs in regenerative medicine, disease modeling, and drug discovery are enormous and should be explored in a more comprehensive manner. PMID:25699255

  19. Regenerative medicine for the treatment of spinal cord injury: more than just promises?

    PubMed Central

    Pêgo, Ana Paula; Kubinova, Sarka; Cizkova, Dasa; Vanicky, Ivo; Mar, Fernando Milhazes; Sousa, Mónica Mendes; Sykova, Eva

    2012-01-01

    Spinal cord injury triggers a complex set of events that lead to tissue healing without the restoration of normal function due to the poor regenerative capacity of the spinal cord. Nevertheless, current knowledge about the intrinsic regenerative ability of central nervous system axons, when in a supportive environment, has made the prospect of treating spinal cord injury a reality. Among the range of strategies under investigation, cell-based therapies offer the most promising results, due to the multifactorial roles that these cells can fulfil. However, the best cell source is still a matter of debate, as are clinical issues that include the optimal cell dose as well as the timing and route of administration. In this context, the role of biomaterials is gaining importance. These can not only act as vehicles for the administered cells but also, in the case of chronic lesions, can be used to fill the permanent cyst, thus creating a more favourable and conducive environment for axonal regeneration in addition to serving as local delivery systems of therapeutic agents to improve the regenerative milieu. Some of the candidate molecules for the future are discussed in view of the knowledge derived from studying the mechanisms that facilitate the intrinsic regenerative capacity of central nervous system neurons. The future challenge for the multidisciplinary teams working in the field is to translate the knowledge acquired in basic research into effective combinatorial therapies to be applied in the clinic. PMID:22805417

  20. Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Zhang, Yeshun; Zhang, Jinxiang; Huang, Lei; Liu, Jia; Li, Yongkui; Zhang, Guozheng; Kundu, Subhas C.; Wang, Lin

    2014-11-01

    Sericin, a major component of silk, has a long history of being discarded as a waste during silk processing. The value of sericin for tissue engineering is underestimated and its potential application in regenerative medicine has just begun to be explored. Here we report the successful fabrication and characterization of a covalently-crosslinked 3D pure sericin hydrogel for delivery of cells and drugs. This hydrogel is injectable, permitting its implantation through minimally invasive approaches. Notably, this hydrogel is found to exhibit photoluminescence, enabling bioimaging and in vivo tracking. Moreover, this hydrogel system possesses excellent cell-adhesive capability, effectively promoting cell attachment, proliferation and long-term survival of various types of cells. Further, the sericin hydrogel releases bioactive reagents in a sustained manner. Additionally, this hydrogel demonstrates good elasticity, high porosity, and pH-dependent degradation dynamics, which are advantageous for this sericin hydrogel to serve as a delivery vehicle for cells and therapeutic drugs. With all these unique features, it is expected that this sericin hydrogel will have wide utility in the areas of tissue engineering and regenerative medicine.

  1. Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel

    PubMed Central

    Wang, Zheng; Zhang, Yeshun; Zhang, Jinxiang; Huang, Lei; Liu, Jia; Li, Yongkui; Zhang, Guozheng; Kundu, Subhas C.; Wang, Lin

    2014-01-01

    Sericin, a major component of silk, has a long history of being discarded as a waste during silk processing. The value of sericin for tissue engineering is underestimated and its potential application in regenerative medicine has just begun to be explored. Here we report the successful fabrication and characterization of a covalently-crosslinked 3D pure sericin hydrogel for delivery of cells and drugs. This hydrogel is injectable, permitting its implantation through minimally invasive approaches. Notably, this hydrogel is found to exhibit photoluminescence, enabling bioimaging and in vivo tracking. Moreover, this hydrogel system possesses excellent cell-adhesive capability, effectively promoting cell attachment, proliferation and long-term survival of various types of cells. Further, the sericin hydrogel releases bioactive reagents in a sustained manner. Additionally, this hydrogel demonstrates good elasticity, high porosity, and pH-dependent degradation dynamics, which are advantageous for this sericin hydrogel to serve as a delivery vehicle for cells and therapeutic drugs. With all these unique features, it is expected that this sericin hydrogel will have wide utility in the areas of tissue engineering and regenerative medicine. PMID:25412301

  2. Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel.

    PubMed

    Wang, Zheng; Zhang, Yeshun; Zhang, Jinxiang; Huang, Lei; Liu, Jia; Li, Yongkui; Zhang, Guozheng; Kundu, Subhas C; Wang, Lin

    2014-01-01

    Sericin, a major component of silk, has a long history of being discarded as a waste during silk processing. The value of sericin for tissue engineering is underestimated and its potential application in regenerative medicine has just begun to be explored. Here we report the successful fabrication and characterization of a covalently-crosslinked 3D pure sericin hydrogel for delivery of cells and drugs. This hydrogel is injectable, permitting its implantation through minimally invasive approaches. Notably, this hydrogel is found to exhibit photoluminescence, enabling bioimaging and in vivo tracking. Moreover, this hydrogel system possesses excellent cell-adhesive capability, effectively promoting cell attachment, proliferation and long-term survival of various types of cells. Further, the sericin hydrogel releases bioactive reagents in a sustained manner. Additionally, this hydrogel demonstrates good elasticity, high porosity, and pH-dependent degradation dynamics, which are advantageous for this sericin hydrogel to serve as a delivery vehicle for cells and therapeutic drugs. With all these unique features, it is expected that this sericin hydrogel will have wide utility in the areas of tissue engineering and regenerative medicine. PMID:25412301

  3. Hurdles in tissue engineering/regenerative medicine product commercialization: a pilot survey of governmental funding agencies and the financial industry.

    PubMed

    Bertram, Timothy A; Tentoff, Edward; Johnson, Peter C; Tawil, Bill; Van Dyke, Mark; Hellman, Kiki B

    2012-11-01

    The Tissue Engineering and Regenerative Medicine International Society of the Americas (TERMIS-AM) Industry Committee conducted a semiquantitative opinion survey in 2010 to delineate potential hurdles to commercialization perceived by the TERMIS constituency groups that participate in the stream of technology commercialization (academia, start-up companies, development-stage companies, and established companies). A significant hurdle identified consistently by each group was access to capital for advancing potential technologies into development pathways leading to commercialization. A follow-on survey was developed by the TERMIS-AM Industry Committee to evaluate the financial industry's perspectives on investing in regenerative medical technologies. The survey, composed of 15 questions, was developed and provided to 37 investment organizations in one of three sectors (governmental, private, and public investors). The survey was anonymous and confidential with sector designation the only identifying feature of each respondent's organization. Approximately 80% of the survey was composed of respondents from the public (n=14) and private (n=15) sectors. Each respondent represents one investment organization with the potential of multiple participants participating to form the organization's response. The remaining organizations represented governmental agencies (n=8). Results from this survey indicate that a high percentage (<60%) of respondents (governmental, private, and public) were willing to invest >$2MM into regenerative medical companies at the different stages of a company's life cycle. Investors recognized major hurdles to this emerging industry, including regulatory pathway, clinical translation, and reimbursement of these new products. Investments in regenerative technologies have been cyclical over the past 10-15 years, but investors recognized a 1-5-year investment period before the exit via Merger and Acquisition (M&A). Investors considered

  4. Multi-Functional Macromers for Hydrogel Design in Biomedical Engineering and Regenerative Medicine.

    PubMed

    Hacker, Michael C; Nawaz, Hafiz Awais

    2015-01-01

    Contemporary biomaterials are expected to provide tailored mechanical, biological and structural cues to encapsulated or invading cells in regenerative applications. In addition, the degradative properties of the material also have to be adjustable to the desired application. Oligo- or polymeric building blocks that can be further cross-linked into hydrogel networks, here addressed as macromers, appear as the prime option to assemble gels with the necessary degrees of freedom in the adjustment of the mentioned key parameters. Recent developments in the design of multi-functional macromers with two or more chemically different types of functionalities are summarized and discussed in this review illustrating recent trends in the development of advanced hydrogel building blocks for regenerative applications. PMID:26610468

  5. Multi-Functional Macromers for Hydrogel Design in Biomedical Engineering and Regenerative Medicine

    PubMed Central

    Hacker, Michael C.; Nawaz, Hafiz Awais

    2015-01-01

    Contemporary biomaterials are expected to provide tailored mechanical, biological and structural cues to encapsulated or invading cells in regenerative applications. In addition, the degradative properties of the material also have to be adjustable to the desired application. Oligo- or polymeric building blocks that can be further cross-linked into hydrogel networks, here addressed as macromers, appear as the prime option to assemble gels with the necessary degrees of freedom in the adjustment of the mentioned key parameters. Recent developments in the design of multi-functional macromers with two or more chemically different types of functionalities are summarized and discussed in this review illustrating recent trends in the development of advanced hydrogel building blocks for regenerative applications. PMID:26610468

  6. Precision medicine: opportunities, possibilities, and challenges for patients and providers.

    PubMed

    Adams, Samantha A; Petersen, Carolyn

    2016-07-01

    Precision medicine approaches disease treatment and prevention by taking patients' individual variability in genes, environment, and lifestyle into account. Although the ideas underlying precision medicine are not new, opportunities for its more widespread use in practice have been enhanced by the development of large-scale databases, new methods for categorizing and representing patients, and computational tools for analyzing large datasets. New research methods may create uncertainty for both healthcare professionals and patients. In such situations, frameworks that address ethical, legal, and social challenges can be instrumental for facilitating trust between patients and providers, but must protect patients while not stifling progress or overburdening healthcare professionals. In this perspective, we outline several ethical, legal, and social issues related to the Precision Medicine Initiative's proposed changes to current institutions, values, and frameworks. This piece is not an exhaustive overview, but is intended to highlight areas meriting further study and action, so that precision medicine's goal of facilitating systematic learning and research at the point of care does not overshadow healthcare's goal of providing care to patients. PMID:26977101

  7. The great opportunity: Evolutionary applications to medicine and public health.

    PubMed

    Nesse, Randolph M; Stearns, Stephen C

    2008-02-01

    Evolutionary biology is an essential basic science for medicine, but few doctors and medical researchers are familiar with its most relevant principles. Most medical schools have geneticists who understand evolution, but few have even one evolutionary biologist to suggest other possible applications. The canyon between evolutionary biology and medicine is wide. The question is whether they offer each other enough to make bridge building worthwhile. What benefits could be expected if evolution were brought fully to bear on the problems of medicine? How would studying medical problems advance evolutionary research? Do doctors need to learn evolution, or is it valuable mainly for researchers? What practical steps will promote the application of evolutionary biology in the areas of medicine where it offers the most? To address these questions, we review current and potential applications of evolutionary biology to medicine and public health. Some evolutionary technologies, such as population genetics, serial transfer production of live vaccines, and phylogenetic analysis, have been widely applied. Other areas, such as infectious disease and aging research, illustrate the dramatic recent progress made possible by evolutionary insights. In still other areas, such as epidemiology, psychiatry, and understanding the regulation of bodily defenses, applying evolutionary principles remains an open opportunity. In addition to the utility of specific applications, an evolutionary perspective fundamentally challenges the prevalent but fundamentally incorrect metaphor of the body as a machine designed by an engineer. Bodies are vulnerable to disease - and remarkably resilient - precisely because they are not machines built from a plan. They are, instead, bundles of compromises shaped by natural selection in small increments to maximize reproduction, not health. Understanding the body as a product of natural selection, not design, offers new research questions and a framework for

  8. The great opportunity: Evolutionary applications to medicine and public health

    PubMed Central

    Nesse, Randolph M; Stearns, Stephen C

    2008-01-01

    Abstract Evolutionary biology is an essential basic science for medicine, but few doctors and medical researchers are familiar with its most relevant principles. Most medical schools have geneticists who understand evolution, but few have even one evolutionary biologist to suggest other possible applications. The canyon between evolutionary biology and medicine is wide. The question is whether they offer each other enough to make bridge building worthwhile. What benefits could be expected if evolution were brought fully to bear on the problems of medicine? How would studying medical problems advance evolutionary research? Do doctors need to learn evolution, or is it valuable mainly for researchers? What practical steps will promote the application of evolutionary biology in the areas of medicine where it offers the most? To address these questions, we review current and potential applications of evolutionary biology to medicine and public health. Some evolutionary technologies, such as population genetics, serial transfer production of live vaccines, and phylogenetic analysis, have been widely applied. Other areas, such as infectious disease and aging research, illustrate the dramatic recent progress made possible by evolutionary insights. In still other areas, such as epidemiology, psychiatry, and understanding the regulation of bodily defenses, applying evolutionary principles remains an open opportunity. In addition to the utility of specific applications, an evolutionary perspective fundamentally challenges the prevalent but fundamentally incorrect metaphor of the body as a machine designed by an engineer. Bodies are vulnerable to disease – and remarkably resilient – precisely because they are not machines built from a plan. They are, instead, bundles of compromises shaped by natural selection in small increments to maximize reproduction, not health. Understanding the body as a product of natural selection, not design, offers new research questions and a

  9. Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine

    PubMed Central

    Srivastava, Amit K.; Kadayakkara, Deepak K.; Bar-Shir, Amnon; Gilad, Assaf A.; McMahon, Michael T.; Bulte, Jeff W. M.

    2015-01-01

    The field of molecular and cellular imaging allows molecules and cells to be visualized in vivo non-invasively. It has uses not only as a research tool but in clinical settings as well, for example in monitoring cell-based regenerative therapies, in which cells are transplanted to replace degenerating or damaged tissues, or to restore a physiological function. The success of such cell-based therapies depends on several critical issues, including the route and accuracy of cell transplantation, the fate of cells after transplantation, and the interaction of engrafted cells with the host microenvironment. To assess these issues, it is necessary to monitor transplanted cells non-invasively in real-time. Magnetic resonance imaging (MRI) is a tool uniquely suited to this task, given its ability to image deep inside tissue with high temporal resolution and sensitivity. Extraordinary efforts have recently been made to improve cellular MRI as applied to regenerative medicine, by developing more advanced contrast agents for use as probes and sensors. These advances enable the non-invasive monitoring of cell fate and, more recently, that of the different cellular functions of living cells, such as their enzymatic activity and gene expression, as well as their time point of cell death. We present here a review of recent advancements in the development of these probes and sensors, and of their functioning, applications and limitations. PMID:26035841

  10. Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine.

    PubMed

    Srivastava, Amit K; Kadayakkara, Deepak K; Bar-Shir, Amnon; Gilad, Assaf A; McMahon, Michael T; Bulte, Jeff W M

    2015-04-01

    The field of molecular and cellular imaging allows molecules and cells to be visualized in vivo non-invasively. It has uses not only as a research tool but in clinical settings as well, for example in monitoring cell-based regenerative therapies, in which cells are transplanted to replace degenerating or damaged tissues, or to restore a physiological function. The success of such cell-based therapies depends on several critical issues, including the route and accuracy of cell transplantation, the fate of cells after transplantation, and the interaction of engrafted cells with the host microenvironment. To assess these issues, it is necessary to monitor transplanted cells non-invasively in real-time. Magnetic resonance imaging (MRI) is a tool uniquely suited to this task, given its ability to image deep inside tissue with high temporal resolution and sensitivity. Extraordinary efforts have recently been made to improve cellular MRI as applied to regenerative medicine, by developing more advanced contrast agents for use as probes and sensors. These advances enable the non-invasive monitoring of cell fate and, more recently, that of the different cellular functions of living cells, such as their enzymatic activity and gene expression, as well as their time point of cell death. We present here a review of recent advancements in the development of these probes and sensors, and of their functioning, applications and limitations. PMID:26035841

  11. The Use of Stem Cells to Model Amyotrophic Lateral Sclerosis and Frontotemporal Dementia: From Basic Research to Regenerative Medicine

    PubMed Central

    Hedges, Erin C.; Mehler, Vera J.; Nishimura, Agnes L.

    2016-01-01

    In recent years several genes have linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) as a spectrum disease; however little is known about what triggers their onset. With the ability to generate patient specific stem cell lines from somatic cells, it is possible to model disease without the need to transfect cells with exogenous DNA. These pluripotent stem cells have opened new avenues for identification of disease phenotypes and their relation to specific molecular pathways. Thus, as never before, compounds with potential applications for regenerative medicine can be specifically tailored in patient derived cultures. In this review, we discuss how patient specific induced pluripotent stem cells (iPSCs) have been used to model ALS and FTD and the most recent drug screening targets for these diseases. We also discuss how an iPSC bank would improve the quality of the available cell lines and how it would increase knowledge about the ALS/FTD disease spectrum. PMID:26966440

  12. Complementary and alternative medicine on wikipedia: opportunities for improvement.

    PubMed

    Koo, Malcolm

    2014-01-01

    Wikipedia, a free and collaborative Internet encyclopedia, has become one of the most popular sources of free information on the Internet. However, there have been concerns over the quality of online health information, particularly that on complementary and alternative medicine (CAM). This exploratory study aimed to evaluate several page attributes of articles on CAM in the English Wikipedia. A total of 97 articles were analyzed and compared with eight articles of broad categories of therapies in conventional medicine using the Mann-Whitney U test. Based on the Wikipedia editorial assessment grading, 4% of the articles attained "good article" status, 34% required considerable editing, and 56% needed substantial improvements in their content. The median daily access of the articles over the previous 90 days was 372 (range: 7-4,214). The median word count was 1840 with a readability of grade 12.7 (range: 9.4-17.7). Medians of word count and citation density of the CAM articles were significantly lower than those in the articles of conventional medicine therapies. In conclusion, despite its limitations, the general public will continue to access health information on Wikipedia. There are opportunities for health professionals to contribute their knowledge and to improve the accuracy and completeness of the CAM articles on Wikipedia. PMID:24864148

  13. Change, Challenge and Opportunity: Departments of Medicine and Their Leaders.

    PubMed

    Feussner, John R; Landefeld, C Seth; Weinberger, Steven E

    2016-01-01

    Academic Health Centers are evolving to larger and more complex Academic Health Systems (AHS), reflecting financial stresses requiring them to become nimble, efficient, and patient (consumer) and faculty (employee) focused. The evolving AHS organization includes many positive attributes: unity of purpose, structural integration, collaboration and teamwork, alignment of goals with resource allocation, and increased financial success. The organization, leadership, and business acumen of the AHS influence directly opportunities for Departments of Medicine. Just as leadership capabilities of the AHS affect its future success, the same is true for departmental leadership. The Department of Medicine is no longer a quasi- autonomous entity, and the chairperson is no longer an independent decision-maker. Departments of Medicine will be most successful if they maintain internal unity and cohesion by not fragmenting along specialty lines. Departments with larger endowments or those with public financial support have more flexibility when investing in the academic missions. The chairpersons of the future should serve as change agents while simultaneously adopting a "servant leadership" model. Chairpersons with executive and team building skills, and business acumen and experience, are more likely to succeed in managing productive and lean departments. Quality of patient care and service delivery enhance the department's effectiveness and credibility and assure access to additional financial resources to subsidize the academic missions. Moreover, the drive for excellence, high performance and growth will fuel financial solvency. PMID:26802752

  14. Advances in material design for regenerative medicine, drug delivery and targeting/imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many of the major breakthroughs and paradigm shifts in medicine to date have occurred due to innovations and materials and/or application/implementation of materials in clinical medicine. Artificial heart valves, implantable cardiac devices, limb prosthesis, cardiovascular stents, orthopedic implan...

  15. Allogeneic and autologous mode of stem cell transplantation in regenerative medicine: which way to go?

    PubMed

    Mamidi, Murali Krishna; Dutta, Susmita; Bhonde, Ramesh; Das, Anjan Kumar; Pal, Rajarshi

    2014-12-01

    Stem cell transplantation is a generic term covering different techniques. However there is argument over the pros and cons of autologous and allogeneic transplants of mesenchymal stem cells (MSCs) for regenerative therapy. Given that the MSCs have already been proven to be safe in patients, we hypothesize that allogeneic transplantation could be more effective and cost-effective as compared to autologous transplantation specifically in older subjects who are the likely victims of degenerative diseases. This analysis is based on the scientific logic that allogeneic stem cells extracted in large numbers from young and healthy donors could be physiologically, metabolically and genetically more stable. Therefore stem cells from young donors may be expected to exhibit higher vigor in secreting trophic factors leading to activation of host tissue-specific stem cells and also be more efficient in remodeling the micro-environmental niche of damaged tissue. PMID:25456787

  16. Microtissues in Cardiovascular Medicine: Regenerative Potential Based on a 3D Microenvironment

    PubMed Central

    Günter, Julia; Wolint, Petra; Bopp, Annina; Steiger, Julia; Cambria, Elena; Hoerstrup, Simon P.; Emmert, Maximilian Y.

    2016-01-01

    More people die annually from cardiovascular diseases than from any other cause. In particular, patients who suffer from myocardial infarction may be affected by ongoing adverse remodeling processes of the heart that may ultimately lead to heart failure. The introduction of stem and progenitor cell-based applications has raised substantial hope for reversing these processes and inducing cardiac regeneration. However, current stem cell therapies using single-cell suspensions have failed to demonstrate long-lasting efficacy due to the overall low retention rate after cell delivery to the myocardium. To overcome this obstacle, the concept of 3D cell culture techniques has been proposed to enhance therapeutic efficacy and cell engraftment based on the simulation of an in vivo-like microenvironment. Of great interest is the use of so-called microtissues or spheroids, which have evolved from their traditional role as in vitro models to their novel role as therapeutic agents. This review will provide an overview of the therapeutic potential of microtissues by addressing primarily cardiovascular regeneration. It will accentuate their advantages compared to other regenerative approaches and summarize the methods for generating clinically applicable microtissues. In addition, this review will illustrate the unique properties of the microenvironment within microtissues that makes them a promising next-generation therapeutic approach. PMID:27073399

  17. Spermatogonial stem cells: Current biotechnological advances in reproduction and regenerative medicine.

    PubMed

    Aponte, Pedro Manuel

    2015-05-26

    Spermatogonial stem cells (SSCs) are the germ stem cells of the seminiferous epithelium in the testis. Through the process of spermatogenesis, they produce sperm while concomitantly keeping their cellular pool constant through self-renewal. SSC biology offers important applications for animal reproduction and overcoming human disease through regenerative therapies. To this end, several techniques involving SSCs have been developed and will be covered in this article. SSCs convey genetic information to the next generation, a property that can be exploited for gene targeting. Additionally, SSCs can be induced to become embryonic stem cell-like pluripotent cells in vitro. Updates on SSC transplantation techniques with related applications, such as fertility restoration and preservation of endangered species, are also covered on this article. SSC suspensions can be transplanted to the testis of an animal and this has given the basis for SSC functional assays. This procedure has proven technically demanding in large animals and men. In parallel, testis tissue xenografting, another transplantation technique, was developed and resulted in sperm production in testis explants grafted into ectopical locations in foreign species. Since SSC culture holds a pivotal role in SSC biotechnologies, current advances are overviewed. Finally, spermatogenesis in vitro, already demonstrated in mice, offers great promises to cope with reproductive issues in the farm animal industry and human clinical applications. PMID:26029339

  18. Enzymatically synthesized inorganic polymers as morphogenetically active bone scaffolds: application in regenerative medicine.

    PubMed

    Wang, Xiaohong; Schröder, Heinz C; Müller, Werner E G

    2014-01-01

    In recent years a paradigm shift in understanding of human bone formation has occurred that starts to change current concepts in tissue engineering of bone and cartilage. New discoveries revealed that fundamental steps in biomineralization are enzyme driven, not only during hydroxyapatite deposition, but also during initial bioseed formation, involving the transient deposition and subsequent transformation of calcium carbonate to calcium phosphate mineral. The principal enzymes mediating these reactions, carbonic anhydrase and alkaline phosphatase, open novel targets for pharmacological intervention of bone diseases like osteoporosis, by applying compounds acting as potential activators of these enzymes. It is expected that these new findings will give an innovation boost for the development of scaffolds for bone repair and reconstruction, which began with the use of bioinert materials, followed by bioactive materials and now leading to functional regenerative tissue units. These new developments have become possible with the discovery of the morphogenic activity of bioinorganic polymers, biocalcit, bio-polyphosphate and biosilica that are formed by a biogenic, enzymatic mechanism, a driving force along with the development of novel rapid-prototyping three-dimensional (3D) printing methods and bioprinting (3D cell printing) techniques that may allow a fabrication of customized implants for patients suffering in bone diseases in the future. PMID:25376489

  19. Spermatogonial stem cells: Current biotechnological advances in reproduction and regenerative medicine

    PubMed Central

    Aponte, Pedro Manuel

    2015-01-01

    Spermatogonial stem cells (SSCs) are the germ stem cells of the seminiferous epithelium in the testis. Through the process of spermatogenesis, they produce sperm while concomitantly keeping their cellular pool constant through self-renewal. SSC biology offers important applications for animal reproduction and overcoming human disease through regenerative therapies. To this end, several techniques involving SSCs have been developed and will be covered in this article. SSCs convey genetic information to the next generation, a property that can be exploited for gene targeting. Additionally, SSCs can be induced to become embryonic stem cell-like pluripotent cells in vitro. Updates on SSC transplantation techniques with related applications, such as fertility restoration and preservation of endangered species, are also covered on this article. SSC suspensions can be transplanted to the testis of an animal and this has given the basis for SSC functional assays. This procedure has proven technically demanding in large animals and men. In parallel, testis tissue xenografting, another transplantation technique, was developed and resulted in sperm production in testis explants grafted into ectopical locations in foreign species. Since SSC culture holds a pivotal role in SSC biotechnologies, current advances are overviewed. Finally, spermatogenesis in vitro, already demonstrated in mice, offers great promises to cope with reproductive issues in the farm animal industry and human clinical applications. PMID:26029339

  20. Graphene in Regenerative Medicine: Focus on Stem Cells and Neuronal Differentiation.

    PubMed

    Gardin, Chiara; Piattelli, Adriano; Zavan, Barbara

    2016-06-01

    Emerging graphene-based materials offer numerous opportunities to design novel scaffolds for neural tissue engineering. Graphene is a promising candidate due to its superior topographical, chemical, and electrical cues compared with conventional biomaterials. Here we examine the state of the art in graphene-based materials science for the neurodifferentiation of stem cells. PMID:26879187

  1. Being human: The role of pluripotent stem cells in regenerative medicine and humanizing Alzheimer's disease models.

    PubMed

    Sproul, Andrew A

    2015-01-01

    Human pluripotent stem cells (PSCs) have the capacity to revolutionize medicine by allowing the generation of functional cell types such as neurons for cell replacement therapy. However, the more immediate impact of PSCs on treatment of Alzheimer's disease (AD) will be through improved human AD model systems for mechanistic studies and therapeutic screening. This review will first briefly discuss different types of PSCs and genome-editing techniques that can be used to modify PSCs for disease modeling or for personalized medicine. This will be followed by a more in depth analysis of current AD iPSC models and a discussion of the need for more complex multicellular models, including cell types such as microglia. It will finish with a discussion on current clinical trials using PSC-derived cells and the long-term potential of such strategies for treating AD. PMID:26101165

  2. Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors

    PubMed Central

    2013-01-01

    Introduction Platelet-rich plasma (PRP) is nowadays widely applied in different clinical scenarios, such as orthopedics, ophthalmology and healing therapies, as a growth factor pool for improving tissue regeneration. Studies into its clinical efficiency are not conclusive and one of the main reasons for this is that different PRP preparations are used, eliciting different responses that cannot be compared. Platelet quantification and the growth factor content definition must be defined in order to understand molecular mechanisms behind PRP regenerative strength. Standardization of PRP preparations is thus urgently needed. Methods PRP was prepared by centrifugation varying the relative centrifugal force, temperature, and time. Having quantified platelet recovery and yield, the two-step procedure that rendered the highest output was chosen and further analyzed. Cytokine content was determined in different fractions obtained throughout the whole centrifugation procedure. Results Our method showed reproducibility when applied to different blood donors. We recovered 46.9 to 69.5% of total initial platelets and the procedure resulted in a 5.4-fold to 7.3-fold increase in platelet concentration (1.4 × 106 to 1.9 × 106 platelets/μl). Platelets were highly purified, because only <0.3% from the initial red blood cells and leukocytes was present in the final PRP preparation. We also quantified growth factors, cytokines and chemokines secreted by the concentrated platelets after activation with calcium and calcium/thrombin. High concentrations of platelet-derived growth factor, endothelial growth factor and transforming growth factor (TGF) were secreted, together with the anti-inflammatory and proinflammatory cytokines interleukin (IL)-4, IL-8, IL-13, IL-17, tumor necrosis factor (TNF)-α and interferon (IFN)-α. No cytokines were secreted before platelet activation. TGF-β3 and IFNγ were not detected in any studied fraction. Clots obtained after platelet coagulation

  3. Comparison of international guidelines for regenerative medicine: Knee cartilage repair and replacement using human-derived cells and tissues.

    PubMed

    Itoh, Kuni; Kano, Shingo

    2016-07-01

    Regenerative medicine (RM) is an emerging field using human-derived cells and tissues (HCT). Due to the complexity and diversity of HCT products, each country has its own regulations for authorization and no common method has been applied to date. Individual regulations were previously clarified at the level of statutes but no direct comparison has been reported at the level of guidelines. Here, we generated a new analytical framework that allows comparison of guidelines independent from local definitions of RM, using 2 indicators, product type and information type. The guidelines for products for repair and replacement of knee cartilage in Japan, the United States of America, and Europe were compared and differences were detected in both product type and information type by the proposed analytical framework. Those findings will be critical not only for the product developers to determine the region to initiate the clinical trials but also for the regulators to assess and build their regulations. This analytical framework is potentially expandable to other RM guidelines to identify gaps, leading to trigger discussion of global harmonization in RM regulations. PMID:27156144

  4. Pluripotent muse cells derived from human adipose tissue: a new perspective on regenerative medicine and cell therapy.

    PubMed

    Simerman, Ariel A; Dumesic, Daniel A; Chazenbalk, Gregorio D

    2014-01-01

    In 2010, Multilineage Differentiating Stress Enduring (Muse) cells were introduced to the scientific community, offering potential resolution to the issue of teratoma formation that plagues both embryonic stem (ES) and induced pluripotent (iPS) stem cells. Isolated from human bone marrow, dermal fibroblasts, adipose tissue and commercially available adipose stem cells (ASCs) under severe cellular stress conditions, Muse cells self-renew in a controlled manner and do not form teratomas when injected into immune-deficient mice. Furthermore, Muse cells express classic pluripotency markers and differentiate into cells from the three embryonic germ layers both spontaneously and under media-specific induction. When transplanted in vivo, Muse cells contribute to tissue generation and repair. This review delves into the aspects of Muse cells that set them apart from ES, iPS, and various reported adult pluripotent stem cell lines, with specific emphasis on Muse cells derived from adipose tissue (Muse-AT), and their potential to revolutionize the field of regenerative medicine and stem cell therapy. PMID:24940477

  5. Pluripotent muse cells derived from human adipose tissue: a new perspective on regenerative medicine and cell therapy

    PubMed Central

    2014-01-01

    In 2010, Multilineage Differentiating Stress Enduring (Muse) cells were introduced to the scientific community, offering potential resolution to the issue of teratoma formation that plagues both embryonic stem (ES) and induced pluripotent (iPS) stem cells. Isolated from human bone marrow, dermal fibroblasts, adipose tissue and commercially available adipose stem cells (ASCs) under severe cellular stress conditions, Muse cells self-renew in a controlled manner and do not form teratomas when injected into immune-deficient mice. Furthermore, Muse cells express classic pluripotency markers and differentiate into cells from the three embryonic germ layers both spontaneously and under media-specific induction. When transplanted in vivo, Muse cells contribute to tissue generation and repair. This review delves into the aspects of Muse cells that set them apart from ES, iPS, and various reported adult pluripotent stem cell lines, with specific emphasis on Muse cells derived from adipose tissue (Muse-AT), and their potential to revolutionize the field of regenerative medicine and stem cell therapy. PMID:24940477

  6. The effect of medium selection on adipose-derived stem cell expansion and differentiation: implications for application in regenerative medicine.

    PubMed

    Roxburgh, J; Metcalfe, A D; Martin, Y H

    2016-08-01

    The use of adipose-derived stem cells is wide-spread in both basic biology and regenerative medicine, due to the abundance of adipose tissue and the multipotent differentiation potential of the cells. However, the methods used to isolate and culture cells vary greatly between different research groups. Identification of medium formulations which provide rapid cell expansion while maintaining cell phenotype would have clear advantages. We compared growth and differentiation potential along the adipogenic lineage in human ADSCs in nine different media. We further assessed induced and spontaneous differentiation along the adipogenic, chondrogenic and osteogenic lineage in three different media. There was significant variation in the rate of growth between different media. All media supported ADSC phenotype and adipogenic differentiation, although there was variation between the different media. Differentiation along the adipogenic, chondrogenic and osteogenic lineages in the three media was confirmed, with some upregulation of specific genes observed when cells were left to spontaneously differentiate. Our study shows a direct comparison of human ADSCs grown in different media, both reported in the literature and commercially available. It indicates that rapid proliferation occurs most often in media which contain 10 % foetal bovine serum and that differentiation along different lineages can be induced but also occurs spontaneously once cells become confluent. These data provide a tool for other researchers to facilitate the choice of medium formulation most appropriate for different applications. PMID:25795468

  7. A Shift From Cell Cultures to Creatures: In Vivo Imaging of Small Animals in Experimental Regenerative Medicine

    PubMed Central

    Studwell, Anna J; Kotton, Darrell N

    2011-01-01

    Although the use of small animals for in vivo experimentation has been widespread, only recently has there been easy availability of techniques that allow noninvasive in vivo imaging of small animals. Because these techniques allow the same individual subject to be followed longitudinally throughout the duration of an experiment, their use is rapidly changing the way small animals are employed in the laboratory. In this review, we focus on six imaging modalities that are increasingly employed for small animal in vivo imaging: optical imaging (OI), magnetic resonance imaging (MRI), computed tomography (CT), single-photon emission tomography (SPECT), ultrasound (US), and positron-emission tomography (PET). Each modality allows for the noninvasive tracking of cells and cell products in vivo. In addition, multimodality imaging, combining two or more of these techniques, has also been increasingly employed to overcome the limitations of each independent technique. After reviewing these available imaging modalities, we detail their experimental application, exemplified by the emerging field of regenerative medicine, referring to publications whose conclusions would otherwise be difficult to support without the availability of in vivo imaging. PMID:21952170

  8. Current and future regenerative medicine — Principles, concepts, and therapeutic use of stem cell therapy and tissue engineering in equine medicine

    PubMed Central

    Koch, Thomas G.; Berg, Lise C.; Betts, Dean H.

    2009-01-01

    This paper provides a bird’s-eye perspective of the general principles of stem-cell therapy and tissue engineering; it relates comparative knowledge in this area to the current and future status of equine regenerative medicine. The understanding of equine stem cell biology, biofactors, and scaffolds, and their potential therapeutic use in horses are rudimentary at present. Mesenchymal stem cell isolation has been proclaimed from several equine tissues in the past few years. Based on the criteria of the International Society for Cellular Therapy, most of these cells are more correctly referred to as multipotent mesenchymal stromal cells, unless there is proof that they exhibit the fundamental in vivo characteristics of pluripotency and the ability to self-renew. That said, these cells from various tissues hold great promise for therapeutic use in horses. The 3 components of tissue engineering — cells, biological factors, and biomaterials — are increasingly being applied in equine medicine, fuelled by better scaffolds and increased understanding of individual biofactors and cell sources. The effectiveness of stem cell-based therapies and most tissue engineering concepts has not been demonstrated sufficiently in controlled clinical trials in equine patients to be regarded as evidence-based medicine. In the meantime, the medical mantra “do no harm” should prevail, and the application of stem cell-based therapies in the horse should be done critically and cautiously, and treatment outcomes (good and bad) should be recorded and reported. Stem cell and tissue engineering research in the horse has exciting comparative and equine specific perspectives that most likely will benefit the health of horses and humans. Controlled, well-designed studies are needed to move this new equine research field forward. PMID:19412395

  9. "Personalizing" academic medicine: opportunities and challenges in implementing genomic profiling.

    PubMed

    Tweardy, David J; Belmont, John W

    2009-12-01

    BCM faculty members spearheaded the development of a first-generation Personal Genome Profile (Baylor PGP) assay to assist physicians in diagnosing and managing patients in this new era of medicine. The principles that guided the design and implementation of the Baylor PGP were high quality, robustness, low expense, flexibility, practical clinical utility, and the ability to facilitate broad areas of clinical research. The most distinctive feature of the approach taken is an emphasis on extensive screening for rare disease-causing mutations rather than common risk-increasing polymorphisms. Because these variants have large direct effects, the ability to screen for them inexpensively could have a major immediate clinical impact in disease diagnosis, carrier detection, presymptomatic detection of late onset disease, and even prenatal diagnosis. In addition to creating a counseling tool for individual "consumers," this system will fit into the established medical record and be used by physicians involved in direct patient care. This article describes an overall framework for clinical diagnostic array genotyping and the available technologies, as well as highlights the opportunities and challenges for implementation. PMID:19931194

  10. Clinical tumor sequencing: opportunities and challenges for precision cancer medicine.

    PubMed

    Damodaran, Senthilkumar; Berger, Michael F; Roychowdhury, Sameek

    2015-01-01

    Advances in tumor genome sequencing have enabled discovery of actionable alterations leading to novel therapies. Currently, there are approved targeted therapies across various tumors that can be matched to genomic alterations, such as point mutations, gene amplification, and translocations. Tools to detect these genomic alterations have emerged as a result of decreasing costs and improved throughput enabled by next-generation sequencing (NGS) technologies. NGS has been successfully utilized for developing biomarkers to assess susceptibility, diagnosis, prognosis, and treatment of cancers. However, clinical application presents some potential challenges in terms of tumor specimen acquisition, analysis, privacy, interpretation, and drug development in rare cancer subsets. Although whole-genome sequencing offers the most complete strategy for tumor analysis, its present utility in clinical care is limited. Consequently, targeted gene capture panels are more commonly employed by academic institutions and commercial vendors for clinical grade cancer genomic testing to assess molecular eligibility for matching therapies, whereas whole-exome and transcriptome (RNASeq) sequencing are being utilized for discovery research. This review discusses the strategies, clinical challenges, and opportunities associated with the application of cancer genomic testing for precision cancer medicine. PMID:25993170

  11. Stem cells and regenerative medicine: accomplishments to date and future promise

    PubMed Central

    Helmy, Karim Y.; Patel, Shyam A.; Silverio, Kimberly; Pliner, Lillian; Rameshwar, Pranela

    2010-01-01

    More than fifty years has passed since the first allogeneic hematopoietic stem cell transplant in patients, however, the promise of other stem cell populations for tissue replacement and repair remains unachieved. When considering cell-based interventions for personalized medicine, the factors influencing therapeutic success and safety are more complicated than for traditional small-molecule pharmacological agents and protein biologics. Failure to progress personalized stem cell therapies to the clinic has resulted from complications that include an incomplete understanding of stem cell development programs and the diversity of host-donor interactions between patients and in different microenvironments within the same patient. In order to more rapidly extend the use of non-hematopoietic stem cells to the clinic, a better understanding of the different stem cell sources and the implications of their host interactions is required. In this review, we introduce currently available stem cell sources and highlight recent literature that instructs the potential and limitations of their use, with a focus on mesenchymal stem cells. PMID:21113422

  12. Textile-templated electrospun anisotropic scaffolds for tissue engineering and regenerative medicine.

    PubMed

    Senel-Ayaz, H G; Perets, A; Govindaraj, M; Brookstein, D; Lelkes, P I

    2010-01-01

    Cardiovascular diseases, specifically myocardial infarction and end-stage heart failure represent some of the major pathologies that threaten human life. Here we present a novel approach for a bioactive cardiac patch based on a combination of biomedical and textile manufacturing techniques in concert with nano-biotechnology based tissue-engineering stratagems. The technological goal is to create BioNanoTextiles™ (BNT) by using "conventional" fabrics as templates for creating three-dimensional nanofibrous scaffolds. Electrospinning nanofibrous scaffolds templated after "ordinary" textiles is a novel way to create complex-patterned, 3-D scaffolds intrinsically mimicking some of the anisotropic structural features of the ventricular wall's extracellular matrix. In preliminary studies, we established that this approach will yield anisotropic 3-D scaffolds with mechanical properties dependent upon the yarn type of the textile-templates. These scaffolds are biocompatible, as inferred from their support of H9C2 cardiac myoblast adhesion which promotes their proliferation as well as cardiac-like anisotropic organization. The use of textile manufacturing strategies will enhance the complexity of the 3-D scaffold structures and enable their commercialization, while providing an opportunity for the textile industry to advance established "low-tech" manufacturing technologies into the realm of "high-tech" BioNanoTextiles. PMID:21096749

  13. Stem cells for regenerative medicine: advances in the engineering of tissues and organs

    NASA Astrophysics Data System (ADS)

    Ringe, Jochen; Kaps, Christian; Burmester, Gerd-Rüdiger; Sittinger, Michael

    2002-07-01

    The adult bone marrow stroma contains a subset of nonhematopoietic cells referred to as mesenchymal stem or mesenchymal progenitor cells (MSC). These cells have the capacity to undergo extensive replication in an undifferentiated state ex vivo. In addition, MSC have the potential to develop either in vitro or in vivo into distinct mesenchymal tissues, including bone, cartilage, fat, tendon, muscle, and marrow stroma, which suggest these cells as an attractive cell source for tissue engineering approaches. The interest in modern biological technologies such as tissue engineering has dramatically increased since it is feasible to isolate living, healthy cells from the body, expand them under cell culture conditions, combine them with biocompatible carrier materials and retransplant them into patients. Therefore, tissue engineering gives the opportunity to generate living substitutes for tissues and organs, which may overcome the drawbacks of classical tissue reconstruction: lacking quality and quantity of autologous grafts, immunogenicity of allogenic grafts and loosening of alloplastic implants. Due to the prerequisite for tissue engineering to ensure a sufficient number of tissue specific cells without donor site morbidity, much attention has been drawn to multipotential progenitor cells such as embryonic stem cells, periosteal cells and mesenchymal stem cells. In this report we review the state of the art in tissue engineering with mesenchymal stem and mesenchymal progenitor cells with emphasis on bone and cartilage reconstruction. Furthermore, several issues of importance, especially with regard to the clinical application of mesenchymal stem cells, are discussed.

  14. In silico regenerative medicine: how computational tools allow regulatory and financial challenges to be addressed in a volatile market

    PubMed Central

    Geris, L.; Guyot, Y.; Schrooten, J.; Papantoniou, I.

    2016-01-01

    The cell therapy market is a highly volatile one, due to the use of disruptive technologies, the current economic situation and the small size of the market. In such a market, companies as well as academic research institutes are in need of tools to advance their understanding and, at the same time, reduce their R&D costs, increase product quality and productivity, and reduce the time to market. An additional difficulty is the regulatory path that needs to be followed, which is challenging in the case of cell-based therapeutic products and should rely on the implementation of quality by design (QbD) principles. In silico modelling is a tool that allows the above-mentioned challenges to be addressed in the field of regenerative medicine. This review discusses such in silico models and focuses more specifically on the bioprocess. Three (clusters of) examples related to this subject are discussed. The first example comes from the pharmaceutical engineering field where QbD principles and their implementation through the use of in silico models are both a regulatory and economic necessity. The second example is related to the production of red blood cells. The described in silico model is mainly used to investigate the manufacturing process of the cell-therapeutic product, and pays special attention to the economic viability of the process. Finally, we describe the set-up of a model capturing essential events in the development of a tissue-engineered combination product in the context of bone tissue engineering. For each of the examples, a short introduction to some economic aspects is given, followed by a description of the in silico tool or tools that have been developed to allow the implementation of QbD principles and optimal design. PMID:27051516

  15. In silico regenerative medicine: how computational tools allow regulatory and financial challenges to be addressed in a volatile market.

    PubMed

    Geris, L; Guyot, Y; Schrooten, J; Papantoniou, I

    2016-04-01

    The cell therapy market is a highly volatile one, due to the use of disruptive technologies, the current economic situation and the small size of the market. In such a market, companies as well as academic research institutes are in need of tools to advance their understanding and, at the same time, reduce their R&D costs, increase product quality and productivity, and reduce the time to market. An additional difficulty is the regulatory path that needs to be followed, which is challenging in the case of cell-based therapeutic products and should rely on the implementation of quality by design (QbD) principles. In silico modelling is a tool that allows the above-mentioned challenges to be addressed in the field of regenerative medicine. This review discusses such in silico models and focuses more specifically on the bioprocess. Three (clusters of) examples related to this subject are discussed. The first example comes from the pharmaceutical engineering field where QbD principles and their implementation through the use of in silico models are both a regulatory and economic necessity. The second example is related to the production of red blood cells. The described in silico model is mainly used to investigate the manufacturing process of the cell-therapeutic product, and pays special attention to the economic viability of the process. Finally, we describe the set-up of a model capturing essential events in the development of a tissue-engineered combination product in the context of bone tissue engineering. For each of the examples, a short introduction to some economic aspects is given, followed by a description of the in silico tool or tools that have been developed to allow the implementation of QbD principles and optimal design. PMID:27051516

  16. Dangers and opportunities for social media in medicine.

    PubMed

    George, Daniel R; Rovniak, Liza S; Kraschnewski, Jennifer L

    2013-09-01

    Health professionals have begun using social media to benefit patients, enhance professional networks, and advance understanding of individual and contextual factors influencing public health. However, discussion of the dangers of these technologies in medicine has overwhelmed consideration of positive applications. This article summarizes the hazards of social media in medicine and explores how changes in functionality on sites like Facebook may make these technologies less perilous for health professionals. Finally, it describes the most promising avenues through which professionals can use social media in medicine-improving patient communication, enhancing professional development, and contributing to public health research and service. PMID:23903375

  17. Women in hospital medicine: career choices and opportunities.

    PubMed

    Fitzgerald, R C; Black, C

    2001-12-01

    A significant number of women now enter hospital medicine. However, many do not make the expected progression within the medical specialties. The Royal College of Physicians set up a working party to examine and collect evidence on the career choices and progression of women in the hospital medical specialties under its remit and published a report of this evidence. This article outlines the findings of the report and the implications for hospital medicine. PMID:11810739

  18. Telocytes in regenerative medicine

    PubMed Central

    Bei, Yihua; Wang, Fei; Yang, Changqing; Xiao, Junjie

    2015-01-01

    Telocytes (TCs) are a distinct type of interstitial cells characterized by a small cell body and extremely long and thin telopodes (Tps). The presence of TCs has been documented in many tissues and organs (go to http://www.telocytes.com). Functionally, TCs form a three-dimensional (3D) interstitial network by homocellular and heterocellular communication and are involved in the maintenance of tissue homeostasis. As important interstitial cells to guide or nurse putative stem and progenitor cells in stem cell niches in a spectrum of tissues and organs, TCs contribute to tissue repair and regeneration. This review focuses on the latest progresses regarding TCs in the repair and regeneration of different tissues and organs, including heart, lung, skeletal muscle, skin, meninges and choroid plexus, eye, liver, uterus and urinary system. By targeting TCs alone or in tandem with stem cells, we might promote regeneration and prevent the evolution to irreversible tissue damage. Exploring pharmacological or non-pharmacological methods to enhance the growth of TCs would be a novel therapeutic strategy besides exogenous transplantation for many diseased disorders. PMID:26059693

  19. Regenerative Medicine in Diabetes

    PubMed Central

    Matveyenko, Aleksey; Vella, Adrian

    2015-01-01

    Diabetes is a common, multisystem disease that results in hyperglycemia due to a relative or absolute insulin deficiency. Improved glycemic control decreases the risk of development and progression of microvascular and, to a lesser extent, macrovascular complications as well as preventing symptomatic hyperglycemia. However, complex treatment regimens aimed at improving glycemic control are associated with an increased incidence of hypoglycemia. On paper at least, cellular therapies arising from reprogramed stem cells or other somatic cell types would provide ideal therapy for diabetes and the prevention of its complications. This has led to intensive efforts at growing β-cells from various sources. In this review, we provide an overview of β-cell development as well as the efforts reported to date in terms of cellular therapy for diabetes. Engineering β-cell replacement therapy requires an understanding of how β-cells respond to other metabolites such as amino acids, free fatty acids and ketones. Indeed, efforts to date have been characterized by an inability of cellular replacement products to adequately respond to metabolites which normally couple the metabolic state to β-cell function and insulin secretion. Efforts to date intended to capitalize on current knowledge of islet development and stimulus-secretion coupling of the β-cell are encouraging but as yet of little clinical relevance. PMID:25841258

  20. Why ring regenerative amplification (regen)?

    NASA Astrophysics Data System (ADS)

    Yanovsky, V.; Felix, C.; Mourou, G.

    2002-06-01

    We show that ring cavity regenerative amplifiers (regens) have distinct advantages over the linear ones for applications in chirped pulse amplification. Larger energy, better contrast and better isolation from the oscillator are experimentally demonstrated.

  1. Why ring regenerative amplification (regen)?

    NASA Astrophysics Data System (ADS)

    Yanovsky, V.; Felix, C.; Mourou, G.

    We show that ring cavity regenerative amplifiers (regens) have distinct advantages over the linear ones for applications in chirped pulse amplification. Larger energy, better contrast and better isolation from the oscillator are experimentally demonstrated.

  2. Genomic medicine: a decade of successes, challenges, and opportunities.

    PubMed

    McCarthy, Jeanette J; McLeod, Howard L; Ginsburg, Geoffrey S

    2013-06-12

    Genomic medicine--an aspirational term 10 years ago--is gaining momentum across the entire clinical continuum from risk assessment in healthy individuals to genome-guided treatment in patients with complex diseases. We review the latest achievements in genome research and their impact on medicine, primarily in the past decade. In most cases, genomic medicine tools remain in the realm of research, but some tools are crossing over into clinical application, where they have the potential to markedly alter the clinical care of patients. In this State of the Art Review, we highlight notable examples including the use of next-generation sequencing in cancer pharmacogenomics, in the diagnosis of rare disorders, and in the tracking of infectious disease outbreaks. We also discuss progress in dissecting the molecular basis of common diseases, the role of the host microbiome, the identification of drug response biomarkers, and the repurposing of drugs. The significant challenges of implementing genomic medicine are examined, along with the innovative solutions being sought. These challenges include the difficulty in establishing clinical validity and utility of tests, how to increase awareness and promote their uptake by clinicians, a changing regulatory and coverage landscape, the need for education, and addressing the ethical aspects of genomics for patients and society. Finally, we consider the future of genomics in medicine and offer a glimpse of the forces shaping genomic medicine, such as fundamental shifts in how we define disease, how medicine is delivered to patients, and how consumers are managing their own health and affecting change. PMID:23761042

  3. Personalized medicine: challenges and opportunities for translational bioinformatics

    PubMed Central

    Overby, Casey Lynnette; Tarczy-Hornoch, Peter

    2013-01-01

    Personalized medicine can be defined broadly as a model of healthcare that is predictive, personalized, preventive and participatory. Two US President’s Council of Advisors on Science and Technology reports illustrate challenges in personalized medicine (in a 2008 report) and in use of health information technology (in a 2010 report). Translational bioinformatics is a field that can help address these challenges and is defined by the American Medical Informatics Association as “the development of storage, analytic and interpretive methods to optimize the transformation of increasing voluminous biomedical data into proactive, predictive, preventative and participatory health.” This article discusses barriers to implementing genomics applications and current progress toward overcoming barriers, describes lessons learned from early experiences of institutions engaged in personalized medicine and provides example areas for translational bioinformatics research inquiry. PMID:24039624

  4. Bioinformatics opportunities for identification and study of medicinal plants

    PubMed Central

    Sharma, Vivekanand

    2013-01-01

    Plants have been used as a source of medicine since historic times and several commercially important drugs are of plant-based origin. The traditional approach towards discovery of plant-based drugs often times involves significant amount of time and expenditure. These labor-intensive approaches have struggled to keep pace with the rapid development of high-throughput technologies. In the era of high volume, high-throughput data generation across the biosciences, bioinformatics plays a crucial role. This has generally been the case in the context of drug designing and discovery. However, there has been limited attention to date to the potential application of bioinformatics approaches that can leverage plant-based knowledge. Here, we review bioinformatics studies that have contributed to medicinal plants research. In particular, we highlight areas in medicinal plant research where the application of bioinformatics methodologies may result in quicker and potentially cost-effective leads toward finding plant-based remedies. PMID:22589384

  5. Developing the medicinal plants sector in northern India: challenges and opportunities

    PubMed Central

    Kala, Chandra Prakash; Dhyani, Pitamber Prasad; Sajwan, Bikram Singh

    2006-01-01

    The medicinal properties of plant species have made an outstanding contribution in the origin and evolution of many traditional herbal therapies. These traditional knowledge systems have started to disappear with the passage of time due to scarcity of written documents and relatively low income in these traditions. Over the past few years, however, the medicinal plants have regained a wide recognition due to an escalating faith in herbal medicine in view of its lesser side effects compared to allopathic medicine in addition the necessity of meeting the requirements of medicine for an increasing human population. Through the realization of the continuous erosion of traditional knowledge of plants used for medicine in the past and the renewed interest at the present time, a need existed to review this valuable knowledge of medicinal plants with the purpose of developing medicinal plants sectors across the different states in India. Our major objectives therefore were to explore the potential in medicinal plants resources, to understand the challenges and opportunities with the medicinal plants sector, and also to suggest recommendations based upon the present state of knowledge for the establishment and smooth functioning of the medicinal plants sector along with improving the living standards of the underprivileged communities. The review reveals that northern India harbors a rich diversity of valuable medicinal plants, and attempts are being made at different levels for sustainable utilization of this resource in order to develop the medicinal plants sector.

  6. Opportunities for the transfer of astronomical technology to medicine.

    PubMed

    Hughes, S

    2007-12-01

    There are many examples of technology transfer from astronomy to medicine, for example algorithms for reconstructing X-ray CT images were first developed for processing radio astronomy images. In more recent times, X-ray detectors developed for the Hubble Space Telescope have been used in a fine-needle breast biopsy system. Software originally developed to mosaic planetary images has been incorporated into a system for detecting breast cancer. Australia has expertise in the development of instrumentation for producing radio images from an array of radio telescopes and in multi-object fibre systems for capturing the spectra of hundreds of stellar objects simultaneously. Two possible applications of these Australian technologies are suggested that may merit further exploration. A meeting between interested parties is suggested to discuss future directions and funding. PMID:18274070

  7. The Glymphatic-Lymphatic Continuum: Opportunities for Osteopathic Manipulative Medicine.

    PubMed

    Hitscherich, Kyle; Smith, Kyle; Cuoco, Joshua A; Ruvolo, Kathryn E; Mancini, Jayme D; Leheste, Joerg R; Torres, German

    2016-03-01

    The brain has long been thought to lack a lymphatic drainage system. Recent studies, however, show the presence of a brain-wide paravascular system appropriately named the glymphatic system based on its similarity to the lymphatic system in function and its dependence on astroglial water flux. Besides the clearance of cerebrospinal fluid and interstitial fluid, the glymphatic system also facilitates the clearance of interstitial solutes such as amyloid-β and tau from the brain. As cerebrospinal fluid and interstitial fluid are cleared through the glymphatic system, eventually draining into the lymphatic vessels of the neck, this continuous fluid circuit offers a paradigm shift in osteopathic manipulative medicine. For instance, manipulation of the glymphatic-lymphatic continuum could be used to promote experimental initiatives for nonpharmacologic, noninvasive management of neurologic disorders. In the present review, the authors describe what is known about the glymphatic system and identify several osteopathic experimental strategies rooted in a mechanistic understanding of the glymphatic-lymphatic continuum. PMID:26927910

  8. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications.

    PubMed

    Grzesiak, Jakub; Marycz, Krzysztof; Szarek, Dariusz; Bednarz, Paulina; Laska, Jadwiga

    2015-01-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane-polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane-polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. PMID:25953554

  9. Microbial challenge promotes the regenerative process of the injured central nervous system of the medicinal leech by inducing the synthesis of antimicrobial peptides in neurons and microglia.

    PubMed

    Schikorski, David; Cuvillier-Hot, Virginie; Leippe, Matthias; Boidin-Wichlacz, Céline; Slomianny, Christian; Macagno, Eduardo; Salzet, Michel; Tasiemski, Aurélie

    2008-07-15

    Following trauma, the CNS of the medicinal leech, unlike the mammalian CNS, has a strong capacity to regenerate neurites and synaptic connections that restore normal function. In this study, we show that this regenerative process is enhanced by a controlled bacterial infection, suggesting that induction of regeneration of normal CNS function may depend critically upon the coinitiation of an immune response. We explore the interaction between the activation of a neuroimmune response and the process of regeneration by assaying the potential roles of two newly characterized antimicrobial peptides. Our data provide evidence that microbial components differentially induce the transcription, by microglial cells, of both antimicrobial peptide genes, the products of which accumulate rapidly at sites in the CNS undergoing regeneration following axotomy. Using a preparation of leech CNS depleted of microglial cells, we also demonstrate the production of antimicrobial peptides by neurons. Interestingly, in addition to exerting antibacterial properties, both peptides act as promoters of the regenerative process of axotomized leech CNS. These data are the first to report the neuronal synthesis of antimicrobial peptides and their participation in the immune response and the regeneration of the CNS. Thus, the leech CNS appears as an excellent model for studying the implication of immune molecules in neural repair. PMID:18606660

  10. Microbial challenge promotes the regenerative process of the injured central nervous system of the medicinal leech by inducing the synthesis of antimicrobial peptides in neurons and microglia

    PubMed Central

    Schikorski, David; Cuvillier-Hot, Virginie; Leippe, Matthias; Boidin-Wichlacz, Céline; Slomianny, Christian; Macagno, Eduardo; Salzet, Michel; Tasiemski, Aurélie

    2010-01-01

    Following trauma, the central nervous system (CNS) of the medicinal leech, unlike the mammalian CNS, has a strong capacity to regenerate neurites and synaptic connections that restore normal function. Here, we show that this regenerative process is enhanced by a controlled bacterial infection, suggesting that induction of regeneration of normal CNS function may depend critically upon the co-initiation of an immune response. We explore the interaction between the activation of a neuroimmune response and the process of regeneration by assaying the potential roles of two newly characterized antimicrobial peptides. Our data provide evidence that microbial components differentially induce the transcription, by microglial cells, of both antimicrobial peptide genes, the products of which accumulate rapidly at sites in the CNS undergoing regeneration following axotomy. Using a preparation of leech CNS depleted of microglial cells, we also demonstrate the production of antimicrobial peptides by neurons. Interestingly, in addition to exerting antibacterial properties, both peptides act as promoters of the regenerative process of axotomized leech CNS. These data are the first to report the neuronal synthesis of antimicrobial peptides and their participation in the immune response and the regeneration of the CNS. Thus, the leech CNS appears as an excellent model for studying the implication of immune molecules in neural repair. PMID:18606660

  11. Challenges and opportunities in polymer technology applied to veterinary medicine.

    PubMed

    Bermudez, J M; Cid, A G; Ramírez-Rigo, M V; Quinteros, D; Simonazzi, A; Sánchez Bruni, S; Palma, S

    2014-04-01

    An important frontier in the administration of therapeutic drugs to veterinary species is the use of different polymers as drug delivery platforms. The usefulness of polymers as platforms for the administration of pharmaceutical and agricultural agents has been clearly recognized in the recent decades. The chemical versatility of polymers and the wide range of developed controlled-release strategies enhance the possibilities for the formulation of active molecules. In particular, the veterinary area offers opportunities for the development of novel controlled-release drug delivery technologies adapted to livestock or companion animal health needs. In some cases, it also allows to improve profitability in meat production or to meet the safety criteria related to drug residues. A number of factors affect the selection of polymers and subsequent properties of the controlled-release drug delivery system. However, their selection also dictates the release kinetics of the drug from the delivery system. Such choices are therefore crucial as they affect the success and potential of the delivery system for achieving the therapeutic goals of the veterinarian. It is the intention of this review to give an overview of the most relevant polymers, which are used or have been tested as drug delivery release rate modifiers in the veterinary field. The article highlights some recent developments focusing on their advantages and applications and analyzes the future direction of the scientific and technological advancements in this area. PMID:23980692

  12. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    SciTech Connect

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita; Barhanpurkar, Amruta P.; Pote, Satish T.; Jhaveri, Hiral M.; Mishra, Gyan C.; Wani, Mohan R.

    2010-03-12

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  13. Cartilage defect repair in horses: Current strategies and recent developments in regenerative medicine of the equine joint with emphasis on the surgical approach.

    PubMed

    Cokelaere, Stefan; Malda, Jos; van Weeren, René

    2016-08-01

    Chondral and osteochondral lesions due to injury or other pathology are highly prevalent conditions in horses (and humans) and commonly result in the development of osteoarthritis and progression of joint deterioration. Regenerative medicine of articular cartilage is an emerging clinical treatment option for patients with articular cartilage injury or disease. Functional articular cartilage restoration, however, remains a major challenge, but the field is progressing rapidly and there is an increasing body of supportive clinical and scientific evidence. This review gives an overview of the established and emerging surgical techniques employed for cartilage repair in horses. Through a growing insight in surgical cartilage repair possibilities, surgeons might be more stimulated to explore novel techniques in a clinical setting. PMID:27387728

  14. Regenerative medicine for diabetes: differentiation of human pluripotent stem cells into functional β-cells in vitro and their proposed journey to clinical translation.

    PubMed

    Bose, Bipasha; Katikireddy, Kishore Reddy; Shenoy, P Sudheer

    2014-01-01

    Diabetes is a group of metabolic diseases, rising globally at an alarming rate. Type 1 (juvenile diabetes) is the autoimmune version of diabetes where the pancreas is unable to produce insulin, whereas type 2 (adult onset diabetes) is caused due to insulin resistance of the cells. In either of the cases, elevated blood glucose levels are observed which leads to progressive comorbidity like renal failure, cardiovascular disease, retinopathy, etc. Metformin, sulphonyl urea group of drugs, as well as insulin injections are the available therapies. In advanced cases of diabetes, the drug alone or drug in combination with insulin injections are not able to maintain a steady level of blood glucose. Moreover, frequent insulin injections are rather cumbersome for the patient. So, regenerative medicine could be a permanent solution for fighting diabetes. Islet transplantation has been tried with a limited amount of success on a large population of diabetics because of the shortage of cadaveric pancreas. Therefore, the best proposed alternative is regenerative medicine involving human pluripotent stem cell (hPSC)-derived beta islet transplantation which can be obtained in large quantities. Efficient protocols for in vitro differentiation of hPSC into a large number of sustained insulin-producing beta cells for transplantation will be considered to be a giant leap to address global rise in diabetic cases. Although most of the protocols mimic in vivo pancreatic development in humans, considerable amount of lacuna persists for near-perfect differentiation strategies. Moreover, beta islets differentiated from hPSC have not yet been successfully translated under clinical scenario. PMID:24559920

  15. Non ionising radiation as a non chemical strategy in regenerative medicine: Ca(2+)-ICR "In Vitro" effect on neuronal differentiation and tumorigenicity modulation in NT2 cells.

    PubMed

    Ledda, Mario; Megiorni, Francesca; Pozzi, Deleana; Giuliani, Livio; D'Emilia, Enrico; Piccirillo, Sara; Mattei, Cristiana; Grimaldi, Settimio; Lisi, Antonella

    2013-01-01

    In regenerative medicine finding a new method for cell differentiation without pharmacological treatment or gene modification and minimal cell manipulation is a challenging goal. In this work we reported a neuronal induced differentiation and consequent reduction of tumorigenicity in NT2 human pluripotent embryonal carcinoma cells exposed to an extremely low frequency electromagnetic field (ELF-EMF), matching the cyclotron frequency corresponding to the charge/mass ratio of calcium ion (Ca(2+)-ICR). These cells, capable of differentiating into post-mitotic neurons following treatment with Retinoic Acid (RA), were placed in a solenoid and exposed for 5 weeks to Ca(2+)-ICR. The solenoid was installed in a μ-metal shielded room to avoid the effect of the geomagnetic field and obtained totally controlled and reproducible conditions. Contrast microscopy analysis reveled, in the NT2 exposed cells, an important change in shape and morphology with the outgrowth of neuritic-like structures together with a lower proliferation rate and metabolic activity alike those found in the RA treated cells. A significant up-regulation of early and late neuronal differentiation markers and a significant down-regulation of the transforming growth factor-α (TGF-α) and the fibroblast growth factor-4 (FGF-4) were also observed in the exposed cells. The decreased protein expression of the transforming gene Cripto-1 and the reduced capability of the exposed NT2 cells to form colonies in soft agar supported these last results. In conclusion, our findings demonstrate that the Ca(2+)-ICR frequency is able to induce differentiation and reduction of tumorigenicity in NT2 exposed cells suggesting a new potential therapeutic use in regenerative medicine. PMID:23585910

  16. The Opportunities Map at Cornell University: finding direction in dairy production medicine.

    PubMed

    Mitchell, Hilda M; Nydam, Daryl V; Reyher, Kristen; Gilbert, Robert O

    2004-01-01

    Discussion between faculty and interested students revealed the existence of a multitude of opportunities in dairy production medicine at the College of Veterinary Medicine at Cornell University. Many of these were not well known to students, or even to some of the faculty, and the means of accessing specific learning experiences were sometimes obscure. Together, an informal group of faculty, students, and alumni set about cataloging available educational opportunities, resulting in a 31-page publication referred to as the "Opportunities Map." Essentially a student handbook for production medicine students, the Opportunities Map at Cornell helps guide the travel of food animal-interested students through the curriculum without missing the important highlights along the way. The map was originally developed to chronicle the opportunities and resources available to students, but it has also been used to foster face-to-face communications between students and faculty, to welcome incoming students with production animal interests, and to provide a baseline description for further discussion about the curriculum. PMID:15551234

  17. Regenerative burner

    SciTech Connect

    Davies, T.E.; Quinn, D.E.; Watson, J.E.

    1986-08-05

    A regenerative burner is described operable in fire and flue modes comprising: a burner shell having first and second internal chambers, the first chamber being disposed on the flame axis of the burner and the second chamber surrounding the radial perimeter of the first chamber; a gas permeable annular regenerative bed separating the first and second chambers such that gas flow between the first and second chambers must travel through the regenerative bed in a generally radial direction with respect to the flame axis; means for supplying combustion air to the second chamber when the burner is in the fire mode and for exhausting the products of combustion from the second chamber when the burner is in the flue mode; and means for supplying fuel in the vicinity of the flame axis for mixing with combustion air to support combustion when the burner is in the fire mode.

  18. Assessment of herbal medicinal products: Challenges, and opportunities to increase the knowledge base for safety assessment

    SciTech Connect

    Jordan, Scott A.; Cunningham, David G.; Marles, Robin J.

    2010-03-01

    Although herbal medicinal products (HMP) have been perceived by the public as relatively low risk, there has been more recognition of the potential risks associated with this type of product as the use of HMPs increases. Potential harm can occur via inherent toxicity of herbs, as well as from contamination, adulteration, plant misidentification, and interactions with other herbal products or pharmaceutical drugs. Regulatory safety assessment for HMPs relies on both the assessment of cases of adverse reactions and the review of published toxicity information. However, the conduct of such an integrated investigation has many challenges in terms of the quantity and quality of information. Adverse reactions are under-reported, product quality may be less than ideal, herbs have a complex composition and there is lack of information on the toxicity of medicinal herbs or their constituents. Nevertheless, opportunities exist to capitalise on newer information to increase the current body of scientific evidence. Novel sources of information are reviewed, such as the use of poison control data to augment adverse reaction information from national pharmacovigilance databases, and the use of more recent toxicological assessment techniques such as predictive toxicology and omics. The integration of all available information can reduce the uncertainty in decision making with respect to herbal medicinal products. The example of Aristolochia and aristolochic acids is used to highlight the challenges related to safety assessment, and the opportunities that exist to more accurately elucidate the toxicity of herbal medicines.

  19. Constraining the Pluripotent Fate of Human Embryonic Stem Cells for Tissue Engineering and Cell Therapy – The Turning Point of Cell-Based Regenerative Medicine

    PubMed Central

    Parsons, Xuejun H.

    2014-01-01

    To date, the lack of a clinically-suitable source of engraftable human stem/progenitor cells with adequate neurogenic potential has been the major setback in developing safe and effective cell-based therapies for regenerating the damaged or lost CNS structure and circuitry in a wide range of neurological disorders. Similarly, the lack of a clinically-suitable human cardiomyocyte source with adequate myocardium regenerative potential has been the major setback in regenerating the damaged human heart. Given the limited capacity of the CNS and heart for self-repair, there is a large unmet healthcare need to develop stem cell therapies to provide optimal regeneration and reconstruction treatment options to restore normal tissues and function. Derivation of human embryonic stem cells (hESCs) provides a powerful in vitro model system to investigate molecular controls in human embryogenesis as well as an unlimited source to generate the diversity of human somatic cell types for regenerative medicine. However, realizing the developmental and therapeutic potential of hESC derivatives has been hindered by the inefficiency and instability of generating clinically-relevant functional cells from pluripotent cells through conventional uncontrollable and incomplete multi-lineage differentiation. Recent advances and breakthroughs in hESC research have overcome some major obstacles in bringing hESC therapy derivatives towards clinical applications, including establishing defined culture systems for de novo derivation and maintenance of clinical-grade pluripotent hESCs and lineage-specific differentiation of pluripotent hESCs by small molecule induction. Retinoic acid was identified as sufficient to induce the specification of neuroectoderm direct from the pluripotent state of hESCs and trigger a cascade of neuronal lineage-specific progression to human neuronal progenitors and neurons of the developing CNS in high efficiency, purity, and neuronal lineage specificity by promoting

  20. Taking a deep look: modern microscopy technologies to optimize the design and functionality of biocompatible scaffolds for tissue engineering in regenerative medicine

    PubMed Central

    Vielreicher, M.; Schürmann, S.; Detsch, R.; Schmidt, M. A.; Buttgereit, A.; Boccaccini, A.; Friedrich, O.

    2013-01-01

    This review focuses on modern nonlinear optical microscopy (NLOM) methods that are increasingly being used in the field of tissue engineering (TE) to image tissue non-invasively and without labelling in depths unreached by conventional microscopy techniques. With NLOM techniques, biomaterial matrices, cultured cells and their produced extracellular matrix may be visualized with high resolution. After introducing classical imaging methodologies such as µCT, MRI, optical coherence tomography, electron microscopy and conventional microscopy two-photon fluorescence (2-PF) and second harmonic generation (SHG) imaging are described in detail (principle, power, limitations) together with their most widely used TE applications. Besides our own cell encapsulation, cell printing and collagen scaffolding systems and their NLOM imaging the most current research articles will be reviewed. These cover imaging of autofluorescence and fluorescence-labelled tissue and biomaterial structures, SHG-based quantitative morphometry of collagen I and other proteins, imaging of vascularization and online monitoring techniques in TE. Finally, some insight is given into state-of-the-art three-photon-based imaging methods (e.g. coherent anti-Stokes Raman scattering, third harmonic generation). This review provides an overview of the powerful and constantly evolving field of multiphoton microscopy, which is a powerful and indispensable tool for the development of artificial tissues in regenerative medicine and which is likely to gain importance also as a means for general diagnostic medical imaging. PMID:23864499

  1. Conference Scene: Induced pluripotent cells: a new path for regenerative medicine. 7 October 2010, BioPark, Welwyn Garden City, Hertfordshire, UK.

    PubMed

    Crutzen, Hélène S G

    2011-01-01

    Embryonic stem cells and induced pluripotent stem (iPS) cells, which are embryonic stem-like cells derived from adult tissues, have the broadest differentiation potential. These cells are unique in their ability to self-renew, to be maintained in an undifferentiated state for long periods of culturing and to give rise to many different cell lineages including germ-line cells. They therefore represent an invaluable tool for facilitating research towards the realization of regenerative medicine. The recent developments in embryonic stem cell and iPS cell technology have allowed human cell models to be developed that will hopefully provide novel platforms for disease analysis not only at the basic science level, but also for drug discovery and screening, and other clinical applications. This 1-day conference, chaired by Professor Peter Andrews from the University of Sheffield, UK, and Dr Chris Denning from the University of Nottingham, UK, focused on generation of iPS cells, their differentiation into specific fates and applications to disease modeling. It consisted of 11 talks by UK-based and international researchers, and three posters; Ms Azra Fatima from Cologne University, Germany, won the competition for her poster on the derivation of iPS cells from a patient with arrhythmogenic right ventricular cardiomyopathy. PMID:21175284

  2. Lipoaspirate fluid proteome: A preliminary investigation by LC-MS top-down/bottom-up integrated platform of a high potential biofluid in regenerative medicine.

    PubMed

    Inserra, Ilaria; Martelli, Claudia; Cipollina, Mara; Cicione, Claudia; Iavarone, Federica; Taranto, Giuseppe Di; Barba, Marta; Castagnola, Massimo; Desiderio, Claudia; Lattanzi, Wanda

    2016-04-01

    The lipoaspirate fluid (LAF) is emerging as a potentially valuable source in regenerative medicine. In particular, our group recently demonstrated that it is able to exert osteoinductive properties in vitro. This original observation stimulated the investigation of the proteomic component of LAF, by means of LC-ESI-LTQ-Orbitrap-MS top-down/bottom-up integrated approach, which represents the object of the present study. Top-down analyses required the optimization of sample pretreatment procedures to enable the correct investigation of the intact proteome. Bottom-up analyses have been directly applied to untreated samples after monodimensional SDS-PAGE separation. The analysis of the acid-soluble fraction of LAF by top-down approach allowed demonstrating the presence of albumin and hemoglobin fragments (i.e. VV- and LVV-hemorphin-7), thymosins β4 and β10 peptides, ubiquitin and acyl-CoA binding protein; adipogenesis regulatory factor, perilipin-1 fragments, and S100A6, along with their PTMs. Part of the bottom-up proteomic profile was reproducibly found in both tested samples. The bottom-up approach allowed demonstrating the presence of proteins, listed among the components of adipose tissue and/or comprised within the ASCs intracellular content and secreted proteome. Our data provide a first glance on the LAF molecular profile, which is consistent with its tissue environment. LAF appeared to contain bioactive proteins, peptides and paracrine factors, suggesting its potential translational exploitation. PMID:26719138

  3. Concise Review: Ex Vivo Expansion of Cord Blood-Derived Hematopoietic Stem and Progenitor Cells: Basic Principles, Experimental Approaches, and Impact in Regenerative Medicine

    PubMed Central

    Flores-Guzmán, Patricia; Fernández-Sánchez, Verónica

    2013-01-01

    Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) play key roles in the production of mature blood cells and in the biology and clinical outcomes of hematopoietic transplants. The numbers of these cells, however, are extremely low, particularly in umbilical cord blood (UCB); thus, ex vivo expansion of human UCB-derived HSCs and HPCs has become a priority in the biomedical field. Expansion of progenitor cells can be achieved by culturing such cells in the presence of different combinations of recombinant stimulatory cytokines; in contrast, expansion of actual HSCs has proved to be more difficult because, in addition to needing recombinant cytokines, HSCs seem to deeply depend on the presence of stromal cells and/or elements that promote the activation of particular self-renewal signaling pathways. Hence, there is still controversy regarding the optimal culture conditions that should be used to achieve this. To date, UCB transplants using ex vivo-expanded cells have already been performed for the treatment of different hematological disorders, and although results are still far from being optimal, the advances are encouraging. Recent studies suggest that HSCs may also give rise to nonhematopoietic cells, such as neural, cardiac, mesenchymal, and muscle cells. Such plasticity and the possibility of producing nonhematopoietic cells at the clinical scale could bring new alternatives for the treatment of neural, metabolic, orthopedic, cardiac, and neoplastic disorders. Once standardized, ex vivo expansion of human HSCs/HPCs will surely have a positive impact in regenerative medicine. PMID:24101670

  4. Upconverting nanoparticles for the near infrared photoactivation of transition metal complexes: new opportunities and challenges in medicinal inorganic photochemistry.

    PubMed

    Ruggiero, Emmanuel; Alonso-de Castro, Silvia; Habtemariam, Abraha; Salassa, Luca

    2016-08-16

    The article highlights the emergent use of upconverting nanoparticles as tools for the near infrared photoactivation of transition metal complexes, identifying opportunities and challenges of this approach in the context of medicinal inorganic chemistry. PMID:27482656

  5. The Current Status of iPS Cells in Cardiac Research and Their Potential for Tissue Engineering and Regenerative Medicine

    PubMed Central

    Martins, Ana M.; Vunjak-Novakovic, Gordana

    2015-01-01

    The recent availability of human cardiomyocytes derived from induced pluripotent stem (iPS) cells opens new opportunities to build in vitro models of cardiac disease, screening for new drugs, and patient-specific cardiac therapy. Notably, the use of iPS cells enables studies in the wide pool of genotypes and phenotypes. We describe progress in reprogramming of induced pluripotent stem (iPS) cells towards the cardiac lineage/differentiation. The focus is on challenges of cardiac disease modeling using iPS cells and their potential to produce safe, effective and affordable therapies/applications with the emphasis of cardiac tissue engineering. We also discuss implications of human iPS cells to biological research and some of the future needs. PMID:24425421

  6. High altitude medicine in China in the 21st century: opportunities and challenges.

    PubMed

    Huang, Lan

    2014-01-01

    China has the largest plateau, Qinghai-Tibet Plateau, where inhabited the most high altitude populations. Moreover, millions of people from plain areas come to the plateau for travel and work purposes and the number of the newcomers has been increasing every year. The hypoxic environment of plateau raised a series of related health issues in the new immigrants, so have created a special medical discipline - High Altitude Medicine. Over the past decades, researches on high altitude medicine have never being ceased in China, and lots of research findings have been reported. Application and practice of these achievements have greatly decreased the mobility and mortality of high-altitude diseases, however, there remained lots of questions to be elucidated. In view of this, the authors were granted a special project from the National Health and Family Planning Commission of China, and conducted a multi-center, prospective, on-scene high altitude medicine study for the acute mountain sickness. Some innovative findings were achieved, and the parameters for diagnosis and application conditions were proposed. Furthermore, the different diagnoses and treatment effects were compared, and a more standardized, reasonable scheme was drawn up. Regarding the unbalanced medical resources in the vast high altitude area, an application system for the public and the army has been established. In the 21st century, innovations in China and novel research approaches have provided great opportunities for the development of high altitude medicine. It is believed that the researchers in China are able to catch the opportunities and address the challenges. PMID:25937936

  7. In situ forming collagen-hyaluronic acid membrane structures: mechanism of self-assembly and applications in regenerative medicine.

    PubMed

    Chung, Eun Ji; Jakus, Adam E; Shah, Ramille N

    2013-02-01

    Bioactive, in situ forming materials have the potential to complement minimally invasive surgical procedures and enhance tissue healing. For such biomaterials to be adopted in the clinic, they must be cost-effective, easily handled by the surgeon and have a history of biocompatibility. To this end, we report a novel and facile self-assembling strategy to create membranes and encapsulating structures using collagen and hyaluronic acid (HA). Unlike membranes built by layer-by-layer deposition of oppositely charged biomolecules, the collagen-HA membranes described here form a diffusion barrier upon electrostatic interaction of the oppositely charged biomolecules, which is further driven by osmotic pressure imbalances. The resulting membranes have a nanofibrous architecture, a thicknesses of 130 μm and a tensile modulus (0.59±0.06 MPa) that can increase 7-fold using carbodiimide chemistry (4.42±1.46 MPa). Collagen-HA membranes support mesenchymal stem cell proliferation and have a slow and steady protein release profile (7% at day 28), offering opportunities for targeted tissue regeneration. We demonstrate the capacity to encapsulate cells by injecting HA into the collagen solution, and enhance allograft and implant biocompatibility through a coating technique. This study describes a novel mechanism of collagen-HA membrane formation and provides the groundwork to apply these membranes in a variety of tissue engineering applications. PMID:23022546

  8. hiPSC-derived iMSCs: NextGen MSCs as an advanced therapeutically active cell resource for regenerative medicine.

    PubMed

    Sabapathy, Vikram; Kumar, Sanjay

    2016-08-01

    Mesenchymal stem cells (MSCs) are being assessed for ameliorating the severity of graft-versus-host disease, autoimmune conditions, musculoskeletal injuries and cardiovascular diseases. While most of these clinical therapeutic applications require substantial cell quantities, the number of MSCs that can be obtained initially from a single donor remains limited. The utility of MSCs derived from human-induced pluripotent stem cells (hiPSCs) has been shown in recent pre-clinical studies. Since adult MSCs have limited capability regarding proliferation, the quantum of bioactive factor secretion and immunomodulation ability may be constrained. Hence, the alternate source of MSCs is being considered to replace the commonly used adult tissue-derived MSCs. The MSCs have been obtained from various adult and foetal tissues. The hiPSC-derived MSCs (iMSCs) are transpiring as an attractive source of MSCs because during reprogramming process, cells undergo rejuvination, exhibiting better cellular vitality such as survival, proliferation and differentiations potentials. The autologous iMSCs could be considered as an inexhaustible source of MSCs that could be used to meet the unmet clinical needs. Human-induced PSC-derived MSCs are reported to be superior when compared to the adult MSCs regarding cell proliferation, immunomodulation, cytokines profiles, microenvironment modulating exosomes and bioactive paracrine factors secretion. Strategies such as derivation and propagation of iMSCs in chemically defined culture conditions and use of footprint-free safer reprogramming strategies have contributed towards the development of clinically relevant cell types. In this review, the role of iPSC-derived mesenchymal stromal cells (iMSCs) as an alternate source of therapeutically active MSCs has been described. Additionally, we also describe the role of iMSCs in regenerative medical applications, the necessary strategies, and the regulatory policies that have to be enforced to render i

  9. Perspective: global medicine: opportunities and challenges for academic health science systems.

    PubMed

    Ackerly, D Clay; Udayakumar, Krishna; Taber, Robert; Merson, Michael H; Dzau, Victor J

    2011-09-01

    Globalization is having a growing impact on health and health care, presenting challenges as well as opportunities for the U.S. health care industry in general and for academic health science systems (AHSSs) in particular. The authors believe that AHSSs must develop long-term strategies that address their future role in global medicine. AHSSs should meet global challenges through planning, engagement, and innovation that combine traditional academic activities with entrepreneurial approaches to health care delivery, research, and education, including international public-private partnerships. The opportunities for U.S.-based AHSSs to be global health care leaders and establish partnerships that improve health locally and globally more than offset the potential financial, organizational, politico-legal, and reputational risks that exist in the global health care arena. By examining recent international activities of leading AHSSs, the authors review the risks and the critical factors for success and discuss external policy shifts in workforce development and accreditation that would further support the growth of global medicine. PMID:21785305

  10. Challenges and Opportunities Faced by Biofield Practitioners in Global Health and Medicine: A White Paper.

    PubMed

    Guarneri, Erminia; King, Rauni Prittinen

    2015-11-01

    Biofield therapies (BTs) are increasingly employed in contemporary healthcare. In this white paper, we review specific challenges faced by biofield practitioners resulting from a lack of (1) a common scientific definition of BT; (2) common educational standards for BT training (including core competencies for clinical care); (3) collaborative team care education in complementary and alternative medicine (CAM) and in integrative health and medicine (IHM); (4) a focused agenda in BT research; and (5) standardized devices and scientifically validated mechanisms in biofield research. We present a description of BT and discuss its current status and challenges as an integrative healthcare discipline. To address the challenges cited and to enhance collaboration across disciplines, we propose (1) standardized biofield education that leads to professional licensure and (2) interprofessional education (IPE) competencies in BT training required for licensed healthcare practitioners and encouraged for other practitioners using these therapies. Lastly, we discuss opportunities for growth and a potential strategic agenda to achieve these goals. The Academy of Integrative Health and Medicine (AIHM) provides a unique forum to facilitate development of this emerging discipline, to facilitate IPE, and to further increase the availability of BT to patients. PMID:26665047

  11. Challenges and Opportunities Faced by Biofield Practitioners in Global Health and Medicine: A White Paper

    PubMed Central

    King, Rauni Prittinen

    2015-01-01

    Biofield therapies (BTs) are increasingly employed in contemporary healthcare. In this white paper, we review specific challenges faced by biofield practitioners resulting from a lack of (1) a common scientific definition of BT; (2) common educational standards for BT training (including core competencies for clinical care); (3) collaborative team care education in complementary and alternative medicine (CAM) and in integrative health and medicine (IHM); (4) a focused agenda in BT research; and (5) standardized devices and scientifically validated mechanisms in biofield research. We present a description of BT and discuss its current status and challenges as an integrative healthcare discipline. To address the challenges cited and to enhance collaboration across disciplines, we propose (1) standardized biofield education that leads to professional licensure and (2) interprofessional education (IPE) competencies in BT training required for licensed healthcare practitioners and encouraged for other practitioners using these therapies. Lastly, we discuss opportunities for growth and a potential strategic agenda to achieve these goals. The Academy of Integrative Health and Medicine (AIHM) provides a unique forum to facilitate development of this emerging discipline, to facilitate IPE, and to further increase the availability of BT to patients. PMID:26665047

  12. Regenerative burner

    SciTech Connect

    Gitman, G.M.

    1990-05-08

    This patent describes a method of combusting fuel in a furnace having a pair of regenerative burners, each burner having a combustion chamber. It comprises: supplying fuel and oxygen alternatively to each burner to create alternating firing burners wherein the oxygen is supplied from two sources providing first and second oxidizing gases having different oxygen concentrations and simultaneously alternating the application of negative pressure to the remaining non-firing burner to recover heat from flue gases exhausted by the regenerative bed of the non-firing burner to be used further to preheat at least part of the oxygen being supplied to the firing burner; mixing the fuel with a fraction of the oxygen under substoichiometric combustion condition to create products of incomplete combustion to form a hot, luminous flame core containing partially pyrolized fuel; and mixing the partially pyrolyzed fuel with a remaining fraction of the oxygen to complete combustion of the pyrolized fuel; and controlling the total flow of fuel and oxygen supplied to each burner to provide each burner with a desired flame stoichiometry.

  13. Regenerative Aerobraking

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.

    2004-01-01

    NASA's exploration goals for Mars and Beyond will require new power systems and in situ resource utilization technologies. Regenerative aerobraking may offer a revolutionary approach for in situ power generation and oxygen harvesting during these exploration missions. In theory, power and oxygen can be collected during aerobraking and stored for later use in orbit or on the planet. This technology would capture energy and oxygen from the plasma field that occurs naturally during hypersonic entry using well understood principles of magnetohydrodynamics and oxygen filtration. This innovative approach generates resources upon arrival at the operational site, and thus greatly differs from the traditional approach of taking everything you need with you from Earth. Fundamental analysis, computational fluid dynamics, and some testing of experimental hardware have established the basic feasibility of generating power during a Mars entry. Oxygen filtration at conditions consistent with spacecraft entry parameters at Mars has been studied to a lesser extent. Other uses of the MHD power are presented. This paper illustrates how some features of regenerative aerobraking may be applied to support human and robotic missions at Mars.

  14. Opportunities

    ERIC Educational Resources Information Center

    Estkowski, Terri

    2008-01-01

    In life, each person is offered opportunities, one after the other, until life ceases. For the author, one of those opportunities was to attend the Kalamazoo Area Mathematics and Science Center (KAMSC), an NCSSSMST school. While attending KAMSC as a member of its inaugural class required a bit of imagination regarding the opportunity at hand, and…

  15. Injectable Foams for Regenerative Medicine

    PubMed Central

    Prieto, Edna M.; Page, Jonathan M.; Harmata, Andrew J.

    2013-01-01

    The design of injectable biomaterials has attracted considerable attention in recent years. Many injectable biomaterials, such as hydrogels and calcium phosphate cements, have nanoscale pores that limit the rate of cellular migration and proliferation. While introduction of macroporosity has been suggested to increase cellular infiltration and tissue healing, many conventional methods for generating macropores often require harsh processing conditions that preclude their use in injectable foams. In recent years, processes such as porogen leaching, gas foaming, and emulsion-templating have been adapted to generate macroporosity in injectable calcium phosphate cements, hydrogels, and hydrophobic polymers. While some of the more mature injectable foam technologies have been evaluated in clinical trials, there are challenges remaining to be addressed, such as the biocompatibility and ultimate fate of the sacrificial phase used to generate pores within the foam after it sets in situ. Furthermore, while implantable scaffolds can be washed extensively to remove undesirable impurities, all of the components required to synthesize injectable foams must be injected into the defect. Thus, every compound in the foam must be biocompatible and non-cytotoxic at the concentrations utilized. As future research addresses these critical challenges, injectable macroporous foams are anticipated to have an increasingly significant impact on improving patient outcomes for a number of clinical procedures. PMID:24127230

  16. Regenerative Strategies for Craniofacial Disorders

    PubMed Central

    Garland, Catharine B.; Pomerantz, Jason H.

    2012-01-01

    Craniofacial disorders present markedly complicated problems in reconstruction because of the complex interactions of the multiple, simultaneously affected tissues. Regenerative medicine holds promise for new strategies to improve treatment of these disorders. This review addresses current areas of unmet need in craniofacial reconstruction and emphasizes how craniofacial tissues differ from their analogs elsewhere in the body. We present a problem-based approach to illustrate current treatment strategies for various craniofacial disorders, to highlight areas of need, and to suggest regenerative strategies for craniofacial bone, fat, muscle, nerve, and skin. For some tissues, current approaches offer excellent reconstructive solutions using autologous tissue or prosthetic materials. Thus, new “regenerative” approaches would need to offer major advantages in order to be adopted. In other tissues, the unmet need is great, and we suggest the greatest regenerative need is for muscle, skin, and nerve. The advent of composite facial tissue transplantation and the development of regenerative medicine are each likely to add important new paradigms to our treatment of craniofacial disorders. PMID:23248598

  17. Examining Quality Management Audits in Nuclear Medicine Practice as a lifelong learning process: opportunities and challenges to the nuclear medicine professional and beyond.

    PubMed

    Pascual, Thomas N B

    2016-08-01

    This essay will explore the critical issues and challenges surrounding lifelong learning for professionals, initially exploring within the profession and organizational context of nuclear medicine practice. It will critically examine how the peer-review process called Quality Management Audits in Nuclear Medicine Practice (QUANUM) of the International Atomic Energy Agency (IAEA) can be considered a lifelong learning opportunity to instill a culture of quality to improve patient care and elevate the status of the nuclear medicine profession and practice within the demands of social changes, policy, and globalization. This will be explored initially by providing contextual background to the identity of the IAEA as an organization responsible for nuclear medicine professionals, followed by the benefits that QUANUM can offer. Further key debates surrounding lifelong learning, such as compulsification of lifelong learning and impact on professional change, will then be weaved through the discussion using theoretical grounding through a qualitative review of the literature. Keeping in mind that there is very limited literature focusing on the implications of QUANUM as a lifelong learning process for nuclear medicine professionals, this essay uses select narratives and observations of QUANUM as a lifelong learning process from an auditor's perspective and will further provide a comparative perspective of QUANUM on the basis of other lifelong learning opportunities such as continuing professional development activities and observe parallelisms on its benefits and challenges that it will offer to other professionals in other medical speciality fields and in the teaching profession. PMID:27195385

  18. Exploring the Realities of Curriculum-by-Random-Opportunity: The Case of Geriatrics on the Internal Medicine Clerkship Rotation

    PubMed Central

    Diachun, Laura; Charise, Andrea; Goldszmidt, Mark; Hui, Yin; Lingard, Lorelei

    2014-01-01

    Background While major clerkship blocks may have objectives related to specialized areas such as geriatrics, gay and lesbian bisexual transgender health, and palliative care, there is concern that teaching activities may not attend sufficiently to these objectives. Rather, these objectives are assumed to be met “by random opportunity”.(1) This study explored the case of geriatric learning opportunities on internal medicine clinical teaching units, to better understand the affordances and limitations of curriculum by random opportunity. Methods Using audio-recordings of morning case review discussions of 13 patients > 65 years old and the Canadian geriatric core competencies for medical students, we conducted a content analysis of each case for potential geriatric and non-geriatric learning opportunities. These learning opportunities were compared with attendings’ case review teaching discussions. The 13 cases contained 40 geriatric-related and 110 non-geriatric-related issues. While many of the geriatric issues (e.g., delirium, falls) were directly relevant to the presenting illness, attendings’ teaching discussions focused almost exclusively on non-geriatric medical issues, such as management of diabetes and anemia, many of which were less directly relevant to the reason for presenting to hospital. Results The authors found that the general medicine rotation provides opportunities to acquire geriatric competencies. However, the rare uptake of opportunities in this study suggests that, in curriculum-by-random-opportunity, presence of an opportunity does not justify the assumption that learning objectives will be met. Conclusions More studies are required to investigate whether these findings are transferrable to other vulnerable populations about which undergraduate students are expected to learn through curriculum by random opportunity. PMID:25452825

  19. Complementary and alternative medicine (CAM) following traumatic brain injury (TBI): Opportunities and challenges.

    PubMed

    Hernández, Theresa D; Brenner, Lisa A; Walter, Kristen H; Bormann, Jill E; Johansson, Birgitta

    2016-06-01

    Traumatic brain injury (TBI) is highly prevalent and occurs in a variety of populations. Because of the complexity of its sequelae, treatment strategies pose a challenge. Given this complexity, TBI provides a unique target of opportunity for complementary and alternative medicine (CAM) treatments. The present review describes and discusses current opportunitites and challenges associated with CAM research and clinical applications in civilian, veteran and military service populations. In addition to a brief overview of CAM, the translational capacity from basic to clinical research to clinical practice will be described. Finally, a systematic approach to developing an adoptable evidence base, with proof of effectiveness based on the literature will be discussed. Inherent in this discussion will be the methodological and ethical challenges associated with CAM research in those with TBI and associated comorbidities, specifically in terms of how these challenges relate to practice and policy issues, implementation and dissemination. This article is part of a Special Issue entitled SI:Brain injury and recovery. PMID:26806403

  20. Win/win: creating collaborative training opportunities for behavioral health providers within family medicine residency programs.

    PubMed

    Ruddy, Nancy Breen; Borresen, Dorothy; Myerholtz, Linda

    2013-01-01

    Integrating behavioral health into primary healthcare offers multiple advantages for patients and health professionals. This model requires a new skill set for all healthcare professionals that is not emphasized in current educational models. The new skills include interprofessional team-based care competencies and expanded patient care competencies. Health professionals must learn new ways to efficiently and effectively address health behavior change, and manage behavioral health issues such as depression and anxiety. Learning environments that co-train mental health and primary care professionals facilitate acquisition of both teamwork and patient care competencies for mental health and primary care professional trainees. Family Medicine Residency programs provide an excellent opportunity for co-training. This article serves as a "how to" guide for residency programs interested in developing a co-training program. Necessary steps to establish and maintain a program are reviewed, as well as goals and objectives for a co-training curriculum and strategies to overcome barriers and challenges in co-training models. PMID:24261270

  1. Study of medicine 2.0 due to Web 2.0?! - Risks and opportunities for the curriculum in Leipzig

    PubMed Central

    Hempel, Gunther; Neef, Martin; Rotzoll, Daisy; Heinke, Wolfgang

    2013-01-01

    Web 2.0 is changing the study of medicine by opening up totally new ways of learning and teaching in an ongoing process. Global social networking services like Facebook, YouTube, Flickr, Google Drive and Xing already play an important part in communication both among students and between students and teaching staff. Moreover, local portals (such as the platform [http://www.leipzig-medizin.de] established in 2003) have also caught on and in some cases eclipsed the use of the well-known location-independent social media. The many possibilities and rapid changes brought about by social networks need to be publicized within medical faculties. Therefore, an E-learning and New Media Working Group was set up at the Faculty of Medicine of Universität Leipzig in order to harness the opportunities of Web 2.0, analyse the resulting processes of change in the study of medicine, and curb the risks of the Internet. With Web 2.0 and the social web already influencing the study of medicine, the opportunities of the Internet now need to be utilized to improve the teaching of medicine. PMID:23467440

  2. Fully relayed regenerative amplifier

    DOEpatents

    Glass, Alexander J.

    1981-01-01

    A regenerative laser apparatus and method using the optical relay concept to maintain high fill factors, to suppress diffraction effects, and to minimize phase distortions in a regenerative amplifier.

  3. Stem cell therapy for heart failure: Ensuring regenerative proficiency.

    PubMed

    Terzic, Andre; Behfar, Atta

    2016-07-01

    Patient-derived stem cells enable promising regenerative strategies, but display heterogenous cardiac reparative proficiency, leading to unpredictable therapeutic outcomes impeding practice adoption. Means to establish and certify the regenerative potency of emerging biotherapies are thus warranted. In this era of clinomics, deconvolution of variant cytoreparative performance in clinical trials offers an unprecedented opportunity to map pathways that segregate regenerative from non-regenerative states informing the evolution of cardio-regenerative quality systems. A maiden example of this approach is cardiopoiesis-mediated lineage specification developed to ensure regenerative performance. Successfully tested in pre-clinical and early clinical studies, the safety and efficacy of the cardiopoietic stem cell phenotype is undergoing validation in pivotal trials for chronic ischemic cardiomyopathy offering the prospect of a next-generation regenerative solution for heart failure. PMID:27020904

  4. Non Ionising Radiation as a Non Chemical Strategy in Regenerative Medicine: Ca2+-ICR “In Vitro” Effect on Neuronal Differentiation and Tumorigenicity Modulation in NT2 Cells

    PubMed Central

    Ledda, Mario; Megiorni, Francesca; Pozzi, Deleana; Giuliani, Livio; D’Emilia, Enrico; Piccirillo, Sara; Mattei, Cristiana; Grimaldi, Settimio; Lisi, Antonella

    2013-01-01

    In regenerative medicine finding a new method for cell differentiation without pharmacological treatment or gene modification and minimal cell manipulation is a challenging goal. In this work we reported a neuronal induced differentiation and consequent reduction of tumorigenicity in NT2 human pluripotent embryonal carcinoma cells exposed to an extremely low frequency electromagnetic field (ELF-EMF), matching the cyclotron frequency corresponding to the charge/mass ratio of calcium ion (Ca2+-ICR). These cells, capable of differentiating into post-mitotic neurons following treatment with Retinoic Acid (RA), were placed in a solenoid and exposed for 5 weeks to Ca2+-ICR. The solenoid was installed in a μ-metal shielded room to avoid the effect of the geomagnetic field and obtained totally controlled and reproducible conditions. Contrast microscopy analysis reveled, in the NT2 exposed cells, an important change in shape and morphology with the outgrowth of neuritic-like structures together with a lower proliferation rate and metabolic activity alike those found in the RA treated cells. A significant up-regulation of early and late neuronal differentiation markers and a significant down-regulation of the transforming growth factor-α (TGF-α) and the fibroblast growth factor-4 (FGF-4) were also observed in the exposed cells. The decreased protein expression of the transforming gene Cripto-1 and the reduced capability of the exposed NT2 cells to form colonies in soft agar supported these last results. In conclusion, our findings demonstrate that the Ca2+-ICR frequency is able to induce differentiation and reduction of tumorigenicity in NT2 exposed cells suggesting a new potential therapeutic use in regenerative medicine. PMID:23585910

  5. Personalized medicine and genomics: challenges and opportunities in assessing effectiveness, cost-effectiveness, and future research priorities.

    PubMed

    Conti, Rena; Veenstra, David L; Armstrong, Katrina; Lesko, Lawrence J; Grosse, Scott D

    2010-01-01

    Personalized medicine is health care that tailors interventions to individual variation in risk and treatment response. Although medicine has long strived to achieve this goal, advances in genomics promise to facilitate this process. Relevant to present-day practice is the use of genomic information to classify individuals according to disease susceptibility or expected responsiveness to a pharmacologic treatment and to provide targeted interventions. A symposium at the annual meeting of the Society for Medical Decision Making on 23 October 2007 highlighted the challenges and opportunities posed in translating advances in molecular medicine into clinical practice. A panel of US experts in medical practice, regulatory policy, technology assessment, and the financing and organization of medical innovation was asked to discuss the current state of practice and research on personalized medicine as it relates to their own field. This article reports on the issues raised, discusses potential approaches to meet these challenges, and proposes directions for future work. The case of genetic testing to inform dosing with warfarin, an anticoagulant, is used to illustrate differing perspectives on evidence and decision making for personalized medicine. PMID:20086232

  6. Reducing follow-ups: an opportunity to increase the capacity of genitourinary medicine services across the UK.

    PubMed

    Ahmed-Jushuf, I; Griffiths, V

    2007-05-01

    Significant increases in genitourinary (GU) medicine clinic workloads throughout the UK have resulted in an unmet demand for appointments, and increased waiting times. In order to meet the government target of a 48-hour maximum waiting time for all patients, many clinics are modernising current practices to increase capacity and improve access to services. The 'Six Sigma' study group of 12 GU medicine clinics which was formed in 2003 to investigate means of enhancing capacity of GU medicine services, has demonstrated that there is a significant amount of unreleased capacity within UK clinics. In this article, the Six Sigma group present potential actions which other GU medicine clinics in the UK may be able to apply and thereby release additional capacity. Example case studies from the Six Sigma study are also presented, illustrating the applicability of this model throughout the UK. The findings of the Six Sigma project offer GU medicine clinics across the UK the opportunity to increase capacity, without adversely affecting quality of care. PMID:17524188

  7. Specific enhancement of vascular endothelial growth factor (VEGF) production in ischemic region by alprostadil--potential therapeutic application in pharmaceutical regenerative medicine.

    PubMed

    Inoue, Hajime; Aihara, Masaki; Tomioka, Miyuki; Watabe, Yu-ichi

    2013-01-01

    Alprostadil (lipo-PGE1) is a drug delivery system preparation. This preparation is applied to treat refractory skin ulcers and arteriosclerosis obliterans. We investigated the effects of alprostadil by using the earflap ischemic model. The following results were obtained: 1) Treatment with alprostadil significantly increased the VEGF contents in an ischemic ear; 2) Treatment with alprostadil resulted in strongly expressed VEGF levels only in the ischemic region; 3) Image analysis revealed a significant increase in the number of vessel bypasses and paths after flap creation with alprostadil administration compared to the vehicle-treated ears. The results suggest that it may be possible to apply alprostadil as one device for regenerative medical technology. PMID:23728380

  8. Study on viability and chondrogenic differentiation of cryopreserved adipose tissue-derived mesenchymal stromal cells for future use in regenerative medicine.

    PubMed

    González-Fernández, M L; Pérez-Castrillo, S; Ordás-Fernández, P; López-González, M E; Colaço, B; Villar-Suárez, V

    2015-10-01

    Adipose-derived mesenchymal stromal cells are promising as a regenerative therapy tool for defective tissues in mesenchymal lineage, including fat, bone, cartilage, and blood vessels. In potential future clinical applications, adipose-derived stem cell cryopreservation is an essential fundamental technology. The aim of this study is to define an adequate protocol for the cryopreservation of adipose-derived mesenchymal stromal cells, by comparing various protocols so as to determine the effects of cryopreservation on viability and chondrogenic differentiation potential of adipose-derived stem cells upon freeze-thawing of AT-MSCs colonies cryopreserved with standard and modified protocols, using flow cytometry and confocal microscopy. The study concludes that adipose-derived mesenchymal stromal cells could be long-term cryopreserved without any loss of their proliferative or differentiation potential. PMID:26209137

  9. [Opportunity and challenge of post-marketing evaluation of traditional Chinese medicine].

    PubMed

    Du, Xiao-Xi; Song, Hai-Bo; Ren, Jing-Tian; Yang, Le; Guo, Xiao-Xin; Pang, Yu

    2014-09-01

    Post-marketing evaluation is a process which evaluate the risks and benefits of drug clinical application comprehensively and systematically, scientific and systematic results of post-marketing evaluation not only can provide data support for clinical application of traditional Chinese medicine, but also can be a reliable basis for the supervision department to develop risk control measures. With the increasing demands for treatment and prevention of disease, traditional Chinese medicine has been widely used, and security issues are also exposed. How to find risk signal of traditional Chinese medicine in the early stages, carry out targeted evaluation work and control risk timely have become challenges in the development of traditional Chinese medicine industry. PMID:25532372

  10. Psychological Factors Associated with Head and Neck Cancer Treatment and Survivorship: Evidence and Opportunities for Behavioral Medicine

    PubMed Central

    Howren, M. Bryant; Christensen, Alan J.; Karnell, Lucy Hynds; Funk, Gerry F.

    2012-01-01

    Individuals diagnosed with head and neck cancer (HNC) face not only a potentially life-threatening diagnosis, but must endure treatment that often results in significant, highly visible disfigurement and disruptions of essential functioning, such as deficits or complications in eating, swallowing, breathing, and speech. Each year, approximately 650,000 new cases are diagnosed, making HNC the sixth most common type of cancer in the world. Despite this, however, HNC remains understudied in behavioral medicine. In this article, the authors review available evidence regarding several important psychosocial and behavioral factors associated with HNC diagnosis, treatment, and recovery, as well as various psychosocial interventions conducted in this patient population, before concluding with opportunities for behavioral medicine research and practice. PMID:22963591

  11. Comparison of pharmacist knowledge, perceptions and training opportunities regarding maternal-fetal medicine in Canada, Qatar and Uganda

    PubMed Central

    Bains, Serena; Kitutu, Freddy E.; Rahhal, Ala’a; Abu Samaha, Rana; Wilby, Kyle J.

    2014-01-01

    Background: Although pharmacists have great potential to modify and optimize drug therapy in pregnancy and lactation, current literature demonstrates that they do not routinely provide this care and often feel ill equipped to do so. The objective of this study was to determine pharmacists’ knowledge and perceptions of maternal-fetal medicine in Canada, Uganda and Qatar. Secondary objectives were to determine factors associated with pharmacists’ knowledge and to characterize training opportunities and resources available to practising pharmacists. Methods: A cross-sectional survey using online software (SurveyMonkey) was sent to the e-mails of potential research participants. Practising pharmacists and resident pharmacists in British Columbia, Canada; the country of Qatar; and the country of Uganda were eligible for inclusion. The survey was designed to assess knowledge and perceptions, and to create a baseline inventory of current practice and information resources used in practice. Results: The mean knowledge assessment scores of pharmacists in Canada, Qatar and Uganda were 62.9%, 53.3%, and 57.7%, respectively (p < 0.05). Pharmacists in British Columbia scored higher on knowledge assessment than pharmacists in Qatar (p < 0.05), but other country comparisons were not significant. No predefined factors (gender, years of experience, practice area or parental status) were found to be significant in determining the knowledge score. More than two-thirds of pharmacists expressed interest in participating in continuing education opportunities in maternal-fetal medicine. Conclusion: Pharmacists have differing levels of knowledge in the area of maternal-fetal medicine. Continuing education and degree curricula should be reviewed and developed to fill the knowledge gaps of student pharmacists and practising pharmacists in maternal-fetal medicine. PMID:25364351

  12. Breast Cancer in Africa: Limitations and Opportunities for Application of Genomic Medicine

    PubMed Central

    Sood, Rachita

    2016-01-01

    As genomic medicine gains clinical applicability across a spectrum of diseases, insufficient application in low-income settings stands to increase health disparity. Breast cancer screening, diagnosis, and treatment have benefited greatly from genomic medicine in high-income settings. As breast cancer is a leading cause of both cancer incidence and mortality in Africa, attention and resources must be applied to research and clinical initiatives to integrate genomic medicine into breast cancer care. In terms of research, there is a paucity of investigations into genetic determinants of breast cancer specific to African populations, despite consensus in the literature that predisposition and susceptibility genes vary between populations. Therefore, we need targeted strengthening of existing research efforts and support of new initiatives. Results will improve clinical care through screening and diagnosis with genetic testing specific to breast cancer in African populations. Clinically, genomic medicine can provide information capable of improving resource allocation to the population which most stands to benefit from increased screening or tailored treatment modalities. In situations where mammography or chemotherapy options are limited, this information will allow for the greatest impact. Implementation of genomic medicine will face numerous systemic barriers but is essential to improve breast cancer outcomes and survival. PMID:27413551

  13. Regenerative (Regen) ECLSS Operations Water Balance

    NASA Technical Reports Server (NTRS)

    Tobias, Barry

    2010-01-01

    In November 2008, the Water Regenerative System racks were launched aboard Space Shuttle flight, STS-126 (ULF2) and installed and activated on the International Space Station (ISS). These racks, consisting of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA), completed the installation of the Regenerative (Regen) ECLSS systems which includes the Oxygen Generator Assembly (OGA) that was launched 2 years prior. With the onset of active water management on the US segment of the ISS, a new operational concept was required, that of "water balance." Even more recently, in 2010 the Sabatier system came online which converts H2 and CO2 into water and methane. The Regen ECLSS systems accept condensation from the atmosphere, urine from crew, and processes that fluid via various means into potable water which is used for crew drinking, building up skip-cycle water inventory, and water for electrolysis to produce oxygen. Specification rates of crew urine output, condensate output, O2 requirements, toilet flush water and drinking needs are well documented and used as a general plan when Regen ECLSS came online. Spec rates are useful in long term planning, however, daily or weekly rates are dependent on a number of variables. The constantly changing rates created a new challenge for the ECLSS flight controllers, who are responsible for operating the ECLSS systems onboard ISS. This paper will review the various inputs to rate changes and inputs to planning events, including but not limited to; crew personnel makeup, Regen ECLSS system operability, vehicle traffic, water containment availability, and Carbon Dioxide Removal Assembly (CDRA) capability. Along with the inputs that change the various rates, the paper will review the different systems, their constraints and finally the operational means by which flight controllers manage this new challenge of "water balance."

  14. The role of family therapists in veterinary medicine: opportunities for clinical services, education, and research.

    PubMed

    Hafen, McArthur; Rush, Bonnie R; Reisbig, Allison M J; McDaniel, Kara Z; White, Mark B

    2007-04-01

    Marriage and family therapists (MFTs) are applying their specific skill set in a variety of arenas. A new area for collaboration is veterinary medicine. The veterinary medical profession is emphasizing the importance of non-biomedical skills such as communication skills, acknowledging that human clientele are likely to view their pets as family members, and discussing veterinarian personal well-being. Each of these trends has clear application for intervention by MFTs. A discussion of how MFTs may be uniquely positioned to assist veterinary medicine is presented. An example of collaboration between MFT and veterinary medicine at Kansas State University is highlighted. Recommendations are made for development of effective educational relationships and possible private sector collaborations. PMID:17437457

  15. Toward precision medicine and health: Opportunities and challenges in allergic diseases.

    PubMed

    Galli, Stephen Joseph

    2016-05-01

    Precision medicine (also called personalized, stratified, or P4 medicine) can be defined as the tailoring of preventive measures and medical treatments to the characteristics of each patient to obtain the best clinical outcome for each person while ideally also enhancing the cost-effectiveness of such interventions for patients and society. Clearly, the best clinical outcome for allergic diseases is not to get them in the first place. To emphasize the importance of disease prevention, a critical component of precision medicine can be referred to as precision health, which is defined herein as the use of all available information pertaining to specific subjects (including family history, individual genetic and other biometric information, and exposures to risk factors for developing or exacerbating disease), as well as features of their environments, to sustain and enhance health and prevent the development of disease. In this article I will provide a personal perspective on how the precision health-precision medicine approach can be applied to the related goals of preventing the development of allergic disorders and providing the most effective diagnosis, disease monitoring, and care for those with these prevalent diseases. I will also mention some of the existing and potential challenges to achieving these ambitious goals. PMID:27155026

  16. Regenerative nanomedicine: current perspectives and future directions

    PubMed Central

    Chaudhury, Koel; Kumar, Vishu; Kandasamy, Jayaprakash; RoyChoudhury, Sourav

    2014-01-01

    Nanotechnology has considerably accelerated the growth of regenerative medicine in recent years. Application of nanotechnology in regenerative medicine has revolutionized the designing of grafts and scaffolds which has resulted in new grafts/scaffold systems having significantly enhanced cellular and tissue regenerative properties. Since the cell–cell and cell-matrix interaction in biological systems takes place at the nanoscale level, the application of nanotechnology gives an edge in modifying the cellular function and/or matrix function in a more desired way to mimic the native tissue/organ. In this review, we focus on the nanotechnology-based recent advances and trends in regenerative medicine and discussed under individual organ systems including bone, cartilage, nerve, skin, teeth, myocardium, liver and eye. Recent studies that are related to the design of various types of nanostructured scaffolds and incorporation of nanomaterials into the matrices are reported. We have also documented reports where these materials and matrices have been compared for their better biocompatibility and efficacy in supporting the damaged tissue. In addition to the recent developments, future directions and possible challenges in translating the findings from bench to bedside are outlined. PMID:25214780

  17. High Yield Research Opportunities in Geriatric Emergency Medicine: Prehospital Care, Delirium, Adverse Drug Events, and Falls

    PubMed Central

    Carpenter, Christopher R.; Shah, Manish N.; Hustey, Fredric M.; Heard, Kennon; Gerson, Lowell W.

    2011-01-01

    Emergency services constitute crucial and frequently used safety nets for older persons, an emergency visit by a senior very often indicates high vulnerability for functional decline and death, and interventions via the emergency system have significant opportunities to change the clinical course of older patients who require its services. However, the evidence base for widespread employment of emergency system-based interventions is lacking. In this article, we review the evidence and offer crucial research questions to capitalize on the opportunity to optimize health trajectories of older persons seeking emergency care in four areas: prehospital care, delirium, adverse drug events, and falls. PMID:21498881

  18. Platelet-Rich Plasma and Adipose-Derived Mesenchymal Stem Cells for Regenerative Medicine-Associated Treatments in Bottlenose Dolphins (Tursiops truncatus)

    PubMed Central

    Griffeth, Richard J.; García-Párraga, Daniel; Mellado-López, Maravillas; Crespo-Picazo, Jose Luis; Soriano-Navarro, Mario; Martinez-Romero, Alicia; Moreno-Manzano, Victoria

    2014-01-01

    Dolphins exhibit an extraordinary capacity to heal deep soft tissue injuries. Nevertheless, accelerated wound healing in wild or captive dolphins would minimize infection and other side effects associated with open wounds in marine animals. Here, we propose the use of a biological-based therapy for wound healing in dolphins by the application of platelet-rich plasma (PRP). Blood samples were collected from 9 different dolphins and a specific and simple protocol which concentrates platelets greater than two times that of whole blood was developed. As opposed to a commonly employed human protocol for PRP preparation, a single centrifugation for 3 minutes at 900 rpm resulted in the best condition for the concentration of dolphin platelets. By FACS analysis, dolphin platelets showed reactivity to platelet cell-surface marker CD41. Analysis by electron microscopy revealed that dolphin platelets were larger in size than human platelets. These findings may explain the need to reduce the duration and speed of centrifugation of whole blood from dolphins to obtain a 2-fold increase and maintain proper morphology of the platelets. For the first time, levels of several growth factors from activated dolphin platelets were quantified. Compared to humans, concentrations of PDGF-BB were not different, while TGFβ and VEGF-A were significantly lower in dolphins. Additionally, adipose tissue was obtained from cadaveric dolphins found along the Spanish Mediterranean coast, and adipose-derived mesenchymal stem cells (ASCs) were successfully isolated, amplified, and characterized. When dolphin ASCs were treated with 2.5 or 5% dolphin PRP they exhibited significant increased proliferation and improved phagocytotic activity, indicating that in culture, PRP may improve the regenerative capacity of ASCs. Taken together, we show an effective and well-defined protocol for efficient PRP isolation. This protocol alone or in combination with ASCs, may constitute the basis of a biological

  19. Platelet-rich plasma and adipose-derived mesenchymal stem cells for regenerative medicine-associated treatments in bottlenose dolphins (Tursiops truncatus).

    PubMed

    Griffeth, Richard J; García-Párraga, Daniel; Mellado-López, Maravillas; Crespo-Picazo, Jose Luis; Soriano-Navarro, Mario; Martinez-Romero, Alicia; Moreno-Manzano, Victoria

    2014-01-01

    Dolphins exhibit an extraordinary capacity to heal deep soft tissue injuries. Nevertheless, accelerated wound healing in wild or captive dolphins would minimize infection and other side effects associated with open wounds in marine animals. Here, we propose the use of a biological-based therapy for wound healing in dolphins by the application of platelet-rich plasma (PRP). Blood samples were collected from 9 different dolphins and a specific and simple protocol which concentrates platelets greater than two times that of whole blood was developed. As opposed to a commonly employed human protocol for PRP preparation, a single centrifugation for 3 minutes at 900 rpm resulted in the best condition for the concentration of dolphin platelets. By FACS analysis, dolphin platelets showed reactivity to platelet cell-surface marker CD41. Analysis by electron microscopy revealed that dolphin platelets were larger in size than human platelets. These findings may explain the need to reduce the duration and speed of centrifugation of whole blood from dolphins to obtain a 2-fold increase and maintain proper morphology of the platelets. For the first time, levels of several growth factors from activated dolphin platelets were quantified. Compared to humans, concentrations of PDGF-BB were not different, while TGFβ and VEGF-A were significantly lower in dolphins. Additionally, adipose tissue was obtained from cadaveric dolphins found along the Spanish Mediterranean coast, and adipose-derived mesenchymal stem cells (ASCs) were successfully isolated, amplified, and characterized. When dolphin ASCs were treated with 2.5 or 5% dolphin PRP they exhibited significant increased proliferation and improved phagocytotic activity, indicating that in culture, PRP may improve the regenerative capacity of ASCs. Taken together, we show an effective and well-defined protocol for efficient PRP isolation. This protocol alone or in combination with ASCs, may constitute the basis of a biological

  20. Graduate Education in Risk Analysis for Food, Agriculture, and Veterinary Medicine: Challenges and Opportunities

    ERIC Educational Resources Information Center

    Correia, Ana-Paula; Wolt, Jeffrey D.

    2010-01-01

    The notion of risk in relation to food and food production has heightened the need to educate students to effectively deal with risk in relation to decision making from a science-based perspective. Curricula and related materials were developed and adopted to support graduate learning opportunities in risk analysis and decision making as applied…

  1. Predictive medicine: outcomes, challenges and opportunities in the Synergy-COPD project

    PubMed Central

    2014-01-01

    Background Chronic Obstructive Pulmonary Disease (COPD) is a major challenge for healthcare. Heterogeneities in clinical manifestations and in disease progression are relevant traits in COPD with impact on patient management and prognosis. It is hypothesized that COPD heterogeneity results from the interplay of mechanisms governing three conceptually different phenomena: 1) pulmonary disease, 2) systemic effects of COPD and 3) co-morbidity clustering. Objectives To assess the potential of systems medicine to better understand non-pulmonary determinants of COPD heterogeneity. To transfer acquired knowledge to healthcare enhancing subject-specific health risk assessment and stratification to improve management of chronic patients. Method Underlying mechanisms of skeletal muscle dysfunction and of co-morbidity clustering in COPD patients were explored with strategies combining deterministic modelling and network medicine analyses using the Biobridge dataset. An independent data driven analysis of co-morbidity clustering examining associated genes and pathways was done (ICD9-CM data from Medicare, 13 million people). A targeted network analysis using the two studies: skeletal muscle dysfunction and co-morbidity clustering explored shared pathways between them. Results (1) Evidence of abnormal regulation of pivotal skeletal muscle biological pathways and increased risk for co-morbidity clustering was observed in COPD; (2) shared abnormal pathway regulation between skeletal muscle dysfunction and co-morbidity clustering; and, (3) technological achievements of the projects were: (i) COPD Knowledge Base; (ii) novel modelling approaches; (iii) Simulation Environment; and, (iv) three layers of Clinical Decision Support Systems. Conclusions The project demonstrated the high potential of a systems medicine approach to address COPD heterogeneity. Limiting factors for the project development were identified. They were relevant to shape strategies fostering 4P Medicine for

  2. Pediatric systems medicine: evaluating needs and opportunities using congenital heart block as a case study.

    PubMed

    Tegnér, Jesper; Abugessaisa, Imad

    2013-04-01

    Medicine and pediatrics are changing and health care is moving from being reactive to becoming preventive. Despite rapid developments of new technologies for molecular profiling and systems analysis of diseases, significant hurdles remain. Here, we use the clinical setting of congenital heart block (CHB) to uncover and illustrate key informatics challenges impeding the development of a systems medicine approach emphasizing the prevention and prediction of disease. We find that there is a paucity of useful bioinformatics tools enabling the integrative analysis of different databases of molecular information and clinical sources in a disease context such as CHB, contrasting with the current emphasis on developing bioinformatics tools for the analysis of individual data types. Moreover, informatics solutions for managing data, such as the Integrating Biology and the Bedside (i2b2) or Stanford Translational Research Integrated Database Environment, require serious software engineering support for the maintenance and import of data beyond the capabilities of clinicians working with CHB. Hence, there is an urgent unmet need for user-friendly tools facilitating the integrative analysis and management of omics data and clinical information. Pediatrics represents an untapped potential to execute such a systems medicine program in close collaboration with clinicians and families who are keen to do what is needed for their children to prevent and predict diseases and nurture wellness. PMID:23370412

  3. Future directions in training of veterinarians for small exotic mammal medicine: expectations, potential, opportunities, and mandates.

    PubMed

    Rosenthal, Karen

    2006-01-01

    Small exotic mammals have been companions to people for almost as long as dogs and cats have been. The challenge for veterinary medicine today is to decipher the tea leaves and determine whether small mammals are fad or transient pets or whether they will still be popular in 20 years. This article focuses on pet small-mammal medicine, as the concerns of the laboratory animal are better known and may differ profoundly from those of a pet. Dozens of species of small exotic mammals are kept as pets. These pet small-mammal species have historically served human purposes other than companionship: for hunting, for their pelts, or for meat. Now, they are common pets. At present, most veterinary schools lack courses in the medical care of these animals. Veterinary students need at least one required class to introduce them to these pets. Currently, there are no small-mammal-only residency programs. This does not correspond with current needs. The only way to judge current needs is by assessing what employers are looking for. In a recent JAVMA classified section, almost 30% of small-animal practices in suburban/urban areas were hiring veterinarians with knowledge of exotic pets. All veterinarians must recognize that pet exotic small mammals have changed the landscape of small-animal medicine. It is a reality that, today, many small-animal practices see pet exotic small mammals on a daily basis. PMID:17035210

  4. The rise of Chinese military medicine: opportunity for mercy ship, not gunboat, diplomacy.

    PubMed

    Chambers, James A

    2011-09-01

    Recent exchanges between the United States and China at the presidential and cabinet level have emphasized the need for an enhanced military-to-military relationship to further mutual understanding and promote cooperation. This article explores the historic context of military medical relations between the two nations as well as the rationale and opportunities for increased interaction through medical diplomacy. Specific areas for potential collaboration are discussed with recommendations for future action. PMID:21987964

  5. The demise of the super-aspirins: an opportunity for integrative medicine?

    PubMed

    Block, Keith I

    2005-03-01

    The recent findings of significant cardiac risks with longterm use of the selective COX-2 inhibitors and naproxen leave many patients without access to drugs they may depend on for sustained management of pain. These cardiac risks can arise from disturbances in the ratio of prostacyclin and thromboxane A-2. Integrative medicine offers a variety of interventions that do not disrupt this ratio, including herbs, nutriceuticals, mind-body strategies, and physical care. Clinical studies for evaluating these interventions, and research on sustainable production of those that are natural substances, should be given greater funding priority at this time. PMID:15695471

  6. One world--one medicine--one health: emerging veterinary challenges and opportunities.

    PubMed

    Osburn, B; Scott, C; Gibbs, P

    2009-08-01

    The interdependence of humans, animals, and their environment has never been more important than now. The most prominent issues putting pressure on global health today include the dramatic emergence and spread of zoonotic diseases, contamination of food, water and soil, bioterrorist events, and degradation of resources and habitats. Current global health challenges have prompted a call for more holistic, collaborative, action-oriented approaches toward the goal of logical and practical solutions. Veterinarians have pivotal obligations, opportunities, and contributions to make in enhancing public health, recognising and responding to zoonotic disease transmission, maintaining food and water quality, and promoting wildlife and ecosystem health. PMID:20128454

  7. Comparability: manufacturing, characterization and controls, report of a UK Regenerative Medicine Platform Pluripotent Stem Cell Platform Workshop, Trinity Hall, Cambridge, 14-15 September 2015.

    PubMed

    Williams, David J; Archer, Richard; Archibald, Peter; Bantounas, Ioannis; Baptista, Ricardo; Barker, Roger; Barry, Jacqueline; Bietrix, Florence; Blair, Nicholas; Braybrook, Julian; Campbell, Jonathan; Canham, Maurice; Chandra, Amit; Foldes, Gabor; Gilmanshin, Rudy; Girard, Mathilde; Gorjup, Erwin; Hewitt, Zöe; Hourd, Paul; Hyllner, Johan; Jesson, Helen; Kee, Jasmin; Kerby, Julie; Kotsopoulou, Nina; Kowalski, Stanley; Leidel, Chris; Marshall, Damian; Masi, Louis; McCall, Mark; McCann, Conor; Medcalf, Nicholas; Moore, Harry; Ozawa, Hiroki; Pan, David; Parmar, Malin; Plant, Anne L; Reinwald, Yvonne; Sebastian, Sujith; Stacey, Glyn; Thomas, Robert J; Thomas, Dave; Thurman-Newell, Jamie; Turner, Marc; Vitillio, Loriana; Wall, Ivan; Wilson, Alison; Wolfrum, Jacqueline; Yang, Ying; Zimmerman, Heiko

    2016-07-01

    This paper summarizes the proceedings of a workshop held at Trinity Hall, Cambridge to discuss comparability and includes additional information and references to related information added subsequently to the workshop. Comparability is the need to demonstrate equivalence of product after a process change; a recent publication states that this 'may be difficult for cell-based medicinal products'. Therefore a well-managed change process is required which needs access to good science and regulatory advice and developers are encouraged to seek help early. The workshop shared current thinking and best practice and allowed the definition of key research questions. The intent of this report is to summarize the key issues and the consensus reached on each of these by the expert delegates. PMID:27404768

  8. Regenerative Engineering and Bionic Limbs

    PubMed Central

    James, Roshan; Laurencin, Cato T.

    2015-01-01

    Amputations of the upper extremity are severely debilitating, current treatments support very basic limb movement, and patients undergo extensive physiotherapy and psychological counselling. There is no prosthesis that allows the amputees near-normal function. With increasing number of amputees due to injuries sustained in accidents, natural calamities and international conflicts, there is a growing requirement for novel strategies and new discoveries. Advances have been made in technological, material and in prosthesis integration where researchers are now exploring artificial prosthesis that integrate with the residual tissues and function based on signal impulses received from the residual nerves. Efforts are focused on challenging experts in different disciplines to integrate ideas and technologies to allow for the regeneration of injured tissues, recording on tissue signals and feed-back to facilitate responsive movements and gradations of muscle force. A fully functional replacement and regenerative or integrated prosthesis will rely on interface of biological process with robotic systems to allow individual control of movement such as at the elbow, forearm, digits and thumb in the upper extremity. Regenerative engineering focused on the regeneration of complex tissue and organ systems will be realized by the cross-fertilization of advances over the past thirty years in the fields of tissue engineering, nanotechnology, stem cell science, and developmental biology. The convergence of toolboxes crated within each discipline will allow interdisciplinary teams from engineering, science, and medicine to realize new strategies, mergers of disparate technologies, such as biophysics, smart bionics, and the healing power of the mind. Tackling the clinical challenges, interfacing the biological process with bionic technologies, engineering biological control of the electronic systems, and feed-back will be the important goals in regenerative engineering over the next

  9. Increasing access to nonprescription medicines: a global public health challenge and opportunity.

    PubMed

    Hemwall, E L

    2010-03-01

    As escalating health-care costs continue to be a focus of public discourse, the populace has become increasingly attentive to its own health and lifestyle choices. Nonprescription (over-the-counter, OTC) medicines represent an important option in this evolving environment and, through novel "Rx-to-OTC" switch efforts, could expand beyond their traditional role in symptomatic relief of common conditions such as minor pain, coughs, colds, heartburn, and allergy. This is certainly not a new concept. In fact, the self-care movement has roots reaching into the past century. Pharmaceutical companies and their consumer-product subsidiaries or partners have long considered and, when feasible, invested in difficult OTC switch development programs. PMID:20160746

  10. [AAL: Ambient Assisted Living Assistive technologies for healthy ageing and opportunities for medicine and caring].

    PubMed

    Misoch, Sabina

    2015-09-01

    Ambient Assisted Living (AAL) summarizes various connected digital networked assisting technologies with the aim to support elderly and chronically ill people and to improve their quality of life. This paper defines the term AAL and shows different fields of application for AAL technologies. It illustrates the role of AAL against the background of the societal and demographic changes, of the expected growth of older people in need of care, and of the ongoing trend of singularisation of elderly. We describe medical application areas with new opportunities for the use of AAL technologies. The article highlights further the importance of the technical acceptance of these technologies by the end users, which we deem to be the most critical factor for the diffusion and use of AAL technologies in the forthcoming years. PMID:26323955

  11. Regenerative nanomedicines: an emerging investment prospective?

    PubMed Central

    Prescott, Catherine

    2010-01-01

    Cells respond to their structural surrounding and within nanostructures exhibit unique proliferative and differentiation properties. The application of nanotechnologies to the field of regenerative medicine offers the potential to direct cell fate, target the delivery of cells and reduce immune rejection (via encapsulation), thereby supporting the development of regenerative medicines. The overall objective of any therapy is the delivery of the product not just into the clinic but also to patients on a routine basis. Such a goal typically requires a commercial vehicle and substantial levels of investment in scientific, clinical, regulatory and business expertise, resources, time and funding. Therefore, this paper focuses on some of the challenges facing this emerging industry, including investment by the venture capital community. PMID:20826478

  12. Regenerative nanomedicines: an emerging investment prospective?

    PubMed

    Prescott, Catherine

    2010-12-01

    Cells respond to their structural surrounding and within nanostructures exhibit unique proliferative and differentiation properties. The application of nanotechnologies to the field of regenerative medicine offers the potential to direct cell fate, target the delivery of cells and reduce immune rejection (via encapsulation), thereby supporting the development of regenerative medicines. The overall objective of any therapy is the delivery of the product not just into the clinic but also to patients on a routine basis. Such a goal typically requires a commercial vehicle and substantial levels of investment in scientific, clinical, regulatory and business expertise, resources, time and funding. Therefore, this paper focuses on some of the challenges facing this emerging industry, including investment by the venture capital community. PMID:20826478

  13. Training international medical graduate clinical fellows: the challenges and opportunities for adolescent medicine programs.

    PubMed

    Goldberg, Eudice

    2016-08-01

    Adolescent medicine achieved accreditation status first in the United States in 1994 and then in Canada in 2008 and even if it is not an accredited subspecialty in most other Western nations, it has still become firmly established as a distinct discipline. This has not necessarily been the case in some developing countries, where even the recognition of adolescence as a unique stage of human development is not always acknowledged. The program at SickKids in Toronto has prided itself in treating its international medical graduates (IMG) clinical fellows the same as their Canadian subspecialty residents by integrating them seamlessly into the training program. Although this approach has been laudable to a great extent, it may have fallen short in formally acknowledging and addressing the challenges that the IMG trainees have had to overcome. Moving forward, faculty must be trained and supports instituted that are geared specifically towards these challenges. This must be done on a formal basis to ensure both the success of the trainees as well as the overall enrichment of the fellowship training programs. PMID:26115499

  14. Next generation sequencing in cancer: opportunities and challenges for precision cancer medicine.

    PubMed

    Paolillo, Carmela; Londin, Eric; Fortina, Paolo

    2016-01-01

    Over the past decade, testing the genes of patients and their specific cancer types has become standardized practice in medical oncology since somatic mutations, changes in gene expression and epigenetic modifications are all hallmarks of cancer. However, while cancer genetic assessment has been limited to single biomarkers to guide the use of therapies, improvements in nucleic acid sequencing technologies and implementation of different genome analysis tools have enabled clinicians to detect these genomic alterations and identify functional and disease-associated genomic variants. Next-generation sequencing (NGS) technologies have provided clues about therapeutic targets and genomic markers for novel clinical applications when standard therapy has failed. While Sanger sequencing, an accurate and sensitive approach, allows for the identification of potential novel variants, it is however limited by the single amplicon being interrogated. Similarly, quantitative and qualitative profiling of gene expression changes also represents a challenge for the cancer field. Both RT-PCR and microarrays are efficient approaches, but are limited to the genes present on the array or being assayed. This leaves vast swaths of the transcriptome, including non-coding RNAs and other features, unexplored. With the advent of the ability to collect and analyze genomic sequence data in a timely fashion and at an ever-decreasing cost, many of these limitations have been overcome and are being incorporated into cancer research and diagnostics giving patients and clinicians new hope for targeted and personalized treatment. Below we highlight the various applications of next-generation sequencing in precision cancer medicine. PMID:27542004

  15. Implementation of Electronic Consent at a Biobank: An Opportunity for Precision Medicine Research

    PubMed Central

    Boutin, Natalie T.; Mathieu, Kathleen; Hoffnagle, Alison G.; Allen, Nicole L.; Castro, Victor M.; Morash, Megan; O’Rourke, P. Pearl; Hohmann, Elizabeth L.; Herring, Neil; Bry, Lynn; Slaugenhaupt, Susan A.; Karlson, Elizabeth W.; Weiss, Scott T.; Smoller, Jordan W.

    2016-01-01

    The purpose of this study is to characterize the potential benefits and challenges of electronic informed consent (eIC) as a strategy for rapidly expanding the reach of large biobanks while reducing costs and potentially enhancing participant engagement. The Partners HealthCare Biobank (Partners Biobank) implemented eIC tools and processes to complement traditional recruitment strategies in June 2014. Since then, the Partners Biobank has rigorously collected and tracked a variety of metrics relating to this novel recruitment method. From June 2014 through January 2016, the Partners Biobank sent email invitations to 184,387 patients at Massachusetts General Hospital and Brigham and Women’s Hospital. During the same time period, 7078 patients provided their consent via eIC. The rate of consent of emailed patients was 3.5%, and the rate of consent of patients who log into the eIC website at Partners Biobank was 30%. Banking of biospecimens linked to electronic health records has become a critical element of genomic research and a foundation for the NIH’s Precision Medicine Initiative (PMI). eIC is a feasible and potentially game-changing strategy for these large research studies that depend on patient recruitment. PMID:27294961

  16. Evidence-based medicine: opportunities and challenges in a diverse society.

    PubMed

    Whitley, Rob; Rousseau, Cecile; Carpenter-Song, Elizabeth; Kirmayer, Laurence J

    2011-09-01

    In this article we explore the discourse and practice of evidence-based medicine (EBM) in the context of social and cultural diversity. The article consists of 2 parts. First, we begin by defining EBM, describing its historical development and current ascendance in medical practice. We then note its importance in contemporary psychiatry, comparing dynamics between the United States and Canada. Secondly, we offer a constructive critique of the application of EBM and evidence-based practices in the context of ethnocultural diversity, as one consistent reflection on the EBM literature is that it is does not adequately address issues of diversity. In doing so, we use the situation here in Canada as an extended case study, though our observations will likely be applicable in other diverse nations, such as the United States, the United Kingdom, and Australia. We critically examine the following 6 issues related to the practice of EBM in a diverse society: generalizability and transferability of evidence-based interventions; diversifying standards of evidence in EBM; strategies to address diversity in EBM research; cultural adaptations of evidence-based interventions; integrating idiographic knowledge; and, training and health service delivery. Concurrent with our critique, we offer research and practice suggestions that may address outstanding challenges vis-à-vis the practice of EBM in a diverse society. These include a need for more effectiveness research, more openness to diverse sources of knowledge, better integration of idiographic and nomothetic knowledge, and a critical approach to extrapolation and transfer of knowledge. PMID:21959026

  17. 3D genome organization in health and disease: emerging opportunities in cancer translational medicine

    PubMed Central

    Babu, Deepak; Fullwood, Melissa J

    2015-01-01

    Organizing the DNA to fit inside a spatially constrained nucleus is a challenging problem that has attracted the attention of scientists across all disciplines of science. Increasing evidence has demonstrated the importance of genome geometry in several cellular contexts that affect human health. Among several approaches, the application of sequencing technologies has substantially increased our understanding of this intricate organization, also known as chromatin interactions. These structures are involved in transcriptional control of gene expression by connecting distal regulatory elements with their target genes and regulating co-transcriptional splicing. In addition, chromatin interactions play pivotal roles in the organization of the genome, the formation of structural variants, recombination, DNA replication and cell division. Mutations in factors that regulate chromatin interactions lead to the development of pathological conditions, for example, cancer. In this review, we discuss key findings that have shed light on the importance of these structures in the context of cancers, and highlight the applicability of chromatin interactions as potential biomarkers in molecular medicine as well as therapeutic implications of chromatin interactions. PMID:26553406

  18. Implementation of Electronic Consent at a Biobank: An Opportunity for Precision Medicine Research.

    PubMed

    Boutin, Natalie T; Mathieu, Kathleen; Hoffnagle, Alison G; Allen, Nicole L; Castro, Victor M; Morash, Megan; O'Rourke, P Pearl; Hohmann, Elizabeth L; Herring, Neil; Bry, Lynn; Slaugenhaupt, Susan A; Karlson, Elizabeth W; Weiss, Scott T; Smoller, Jordan W

    2016-01-01

    The purpose of this study is to characterize the potential benefits and challenges of electronic informed consent (eIC) as a strategy for rapidly expanding the reach of large biobanks while reducing costs and potentially enhancing participant engagement. The Partners HealthCare Biobank (Partners Biobank) implemented eIC tools and processes to complement traditional recruitment strategies in June 2014. Since then, the Partners Biobank has rigorously collected and tracked a variety of metrics relating to this novel recruitment method. From June 2014 through January 2016, the Partners Biobank sent email invitations to 184,387 patients at Massachusetts General Hospital and Brigham and Women's Hospital. During the same time period, 7078 patients provided their consent via eIC. The rate of consent of emailed patients was 3.5%, and the rate of consent of patients who log into the eIC website at Partners Biobank was 30%. Banking of biospecimens linked to electronic health records has become a critical element of genomic research and a foundation for the NIH's Precision Medicine Initiative (PMI). eIC is a feasible and potentially game-changing strategy for these large research studies that depend on patient recruitment. PMID:27294961

  19. Medicines

    MedlinePlus

    ... better. In the United States, the Food and Drug Administration is in charge of assuring the safety ... prescription and over-the-counter medicines. Even safe drugs can cause unwanted side effects or interactions with ...

  20. Medicines

    MedlinePlus

    ... you get better. In the United States, the Food and Drug Administration is in charge of assuring ... can cause unwanted side effects or interactions with food or other medicines you may be taking. They ...

  1. Regenerative Life Support Evaluation

    NASA Technical Reports Server (NTRS)

    Kleiner, G. N.; Thompson, C. D.

    1977-01-01

    This paper describes the development plan and design concept of the Regenerative Life Support Evaluation (RLSE) planned for flight testing in the European Space Agency Spacelab. The development plan encompasses the ongoing advanced life support subsystem and a systems integration effort to evolve concurrently subsystem concepts that perform their function and can be integrated with other subsystems in a flight demonstration of a regenerative life support system. The design concept for RLSE comprises water-electrolysis O2 generation, electrochemically depolarized CO2 removal, and Sabatier CO2 reduction for atmosphere regeneration, urine vapor-compression distillation, and wash-water hyperfiltration for waste-water recovery. The flight demonstration by RLSE is an important step in qualifying the regenerative concepts for life support in space stations.

  2. Everyday ethics in internal medicine resident clinic: an opportunity to teach

    PubMed Central

    Carrese, Joseph A; McDonald, Erin L; Moon, Margaret; Taylor, Holly A; Khaira, Kiran; Beach, Mary Catherine; Hughes, Mark T

    2011-01-01

    OBJECTIVES Being a good doctor requires competency in ethics. Accordingly, ethics education during residency training is important. We studied the everyday ethics-related issues (i.e. ordinary ethics issues commonly faced) that internal medical residents encounter in their out-patient clinic and determined whether teaching about these issues occurred during faculty preceptor–resident interactions. METHODS This study involved a multi-method qualitative research design combining observation of preceptor-resident discussions with preceptor interviews. The study was conducted in two different internal medicine training programme clinics over a 2-week period in June 2007. Fifty-three residents and 19 preceptors were observed, and 10 preceptors were interviewed. Transcripts of observer field notes and faculty interviews were carefully analysed. The analysis identified several themes of everyday ethics issues and determined whether preceptors identified and taught about these issues. RESULTS Everyday ethics content was considered present in 109 (81%) of the 135 observed case presentations. Three major thematic domains and associated sub-themes related to everyday ethics issues were identified, concerning: (i) the Doctor–Patient Interaction (relationships; communication; shared decision making); (ii) the Resident as Learner (developmental issues; challenges and conflicts associated with training; relationships with colleagues and mentors; interactions with the preceptor), and; (iii) the Doctor–System Interaction (financial issues; doctor–system issues; external influences; doctor frustration related to system issues). Everyday ethics issues were explicitly identified by preceptors (without teaching) in 18 of 109 cases (17%); explicit identification and teaching occurred in only 13 cases (12%). CONCLUSIONS In this study a variety of everyday ethics issues were frequently encountered as residents cared for patients. Yet, faculty preceptors infrequently explicitly

  3. Microscale Regenerative Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2006-01-01

    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.

  4. Stem cell applications in military medicine

    PubMed Central

    2011-01-01

    There are many similarities between health issues affecting military and civilian patient populations, with the exception of the relatively small but vital segment of active soldiers who experience high-energy blast injuries during combat. A rising incidence of major injuries from explosive devices in recent campaigns has further complicated treatment and recovery, highlighting the need for tissue regenerative options and intensifying interest in the possible role of stem cells for military medicine. In this review we outline the array of tissue-specific injuries typically seen in modern combat - as well as address a few complications unique to soldiers - and discuss the state of current stem cell research in addressing each area. Embryonic, induced-pluripotent and adult stem cell sources are defined, along with advantages and disadvantages unique to each cell type. More detailed stem cell sources are described in the context of each tissue of interest, including neural, cardiopulmonary, musculoskeletal and sensory tissues, with brief discussion of their potential role in regenerative medicine moving forward. Additional commentary is given to military stem cell applications aside from regenerative medicine, such as blood pharming, immunomodulation and drug screening, with an overview of stem cell banking and the unique opportunity provided by the military and civilian overlap of stem cell research. PMID:22011454

  5. Mesenchymal stem cells in regenerative rehabilitation

    PubMed Central

    Nurkovic, Jasmin; Dolicanin, Zana; Mustafic, Fahrudin; Mujanovic, Rifat; Memic, Mensur; Grbovic, Vesna; Skevin, Aleksandra Jurisic; Nurkovic, Selmina

    2016-01-01

    [Purpose] Regenerative medicine and rehabilitation contribute in many ways to a specific plan of care based on a patient’s medical status. The intrinsic self-renewing, multipotent, regenerative, and immunosuppressive properties of mesenchymal stem cells offer great promise in the treatment of numerous autoimmune, degenerative, and graft-versus-host diseases, as well as tissue injuries. As such, mesenchymal stem cells represent a therapeutic fortune in regenerative medicine. The aim of this review is to discuss possibilities, limitations, and future clinical applications of mesenchymal stem cells. [Subjects and Methods] The authors have identified and discussed clinically and scientifically relevant articles from PubMed that have met the inclusion criteria. [Results] Direct treatment of muscle injuries, stroke, damaged peripheral nerves, and cartilage with mesenchymal stem cells has been demonstrated to be effective, with synergies seen between cellular and physical therapies. Over the past few years, several researchers, including us, have shown that there are certain limitations in the use of mesenchymal stem cells. Aging and spontaneous malignant transformation of mesenchymal stem cells significantly affect the functionality of these cells. [Conclusion] Definitive conclusions cannot be made by these studies because limited numbers of patients were included. Studies clarifying these results are expected in the near future. PMID:27390452

  6. Mesenchymal stem cells in regenerative rehabilitation.

    PubMed

    Nurkovic, Jasmin; Dolicanin, Zana; Mustafic, Fahrudin; Mujanovic, Rifat; Memic, Mensur; Grbovic, Vesna; Skevin, Aleksandra Jurisic; Nurkovic, Selmina

    2016-06-01

    [Purpose] Regenerative medicine and rehabilitation contribute in many ways to a specific plan of care based on a patient's medical status. The intrinsic self-renewing, multipotent, regenerative, and immunosuppressive properties of mesenchymal stem cells offer great promise in the treatment of numerous autoimmune, degenerative, and graft-versus-host diseases, as well as tissue injuries. As such, mesenchymal stem cells represent a therapeutic fortune in regenerative medicine. The aim of this review is to discuss possibilities, limitations, and future clinical applications of mesenchymal stem cells. [Subjects and Methods] The authors have identified and discussed clinically and scientifically relevant articles from PubMed that have met the inclusion criteria. [Results] Direct treatment of muscle injuries, stroke, damaged peripheral nerves, and cartilage with mesenchymal stem cells has been demonstrated to be effective, with synergies seen between cellular and physical therapies. Over the past few years, several researchers, including us, have shown that there are certain limitations in the use of mesenchymal stem cells. Aging and spontaneous malignant transformation of mesenchymal stem cells significantly affect the functionality of these cells. [Conclusion] Definitive conclusions cannot be made by these studies because limited numbers of patients were included. Studies clarifying these results are expected in the near future. PMID:27390452

  7. Osteograft, plastic material for regenerative medicine

    NASA Astrophysics Data System (ADS)

    Zaidman, A. M.; Korel, A. V.; Shevchenko, A. I.; Shchelkunova, E. I.; Sherman, K. M.; Predein, Yu. A.; Kosareva, O. S.

    2016-08-01

    Creating tissue-engineering constructs based on the mechanism of cartilage-bone evolution is promising for traumatology and orthopedics. Such a graft was obtained from a chondrograft by transdifferentiation. The hondrograft placed in osteogenic medium is undergoing osteogenic differentiation for 14-30 days. Tissue specificity of the osteograft was studied by morphology, immunohistochemistry, electron microscopy, and the expression of the corresponding genes was estimated. The expression of osteonectin, fibronectin, collagen of type I, izolektin and CD 44 is determined. Alkaline phosphatase and matrix vesicles are determined in osteoblasts. Calcificates are observed in the matrix. Chondrogenic proteins expression is absent. These findings evidence the tissue specificity of the developed osteograft.

  8. Future Perspectives for Regenerative Medicine in Ophthalmology

    PubMed Central

    Elisseeff, Jennifer; Madrid, Marcos G.; Lu, Qiaozhi; Chae, J. Jeremy; Guo, Qiongyu

    2013-01-01

    Repair and reconstruction of the cornea has historically relied on synthetic materials or tissue transplantation. However, the future holds promise for treatments using smart biomaterials and stem cells that direct tissue repair and regeneration to ultimately create new ocular structures that are indistinguishable from the original native tissue. The cornea is a remarkable engineering structure. By understanding the physical structure of the tissue and the resulting impact of the structure on biological function, we can design novel materials for a number of ophthalmic clinical applications. Furthermore, by extending this structure-function approach to characterizing corneal disease processes, new therapies can be engineered. PMID:23580850

  9. Endothelial-Mesenchymal Transition in Regenerative Medicine

    PubMed Central

    Medici, Damian

    2016-01-01

    Endothelial-mesenchymal transition (EndMT) is a fundamental cellular mechanism that regulates embryonic development and diseases such as cancer and fibrosis. Recent developments in biomedical research have shown remarkable potential to harness the EndMT process for tissue engineering and regeneration. As an alternative to traditional or artificial stem cell therapies, EndMT may represent a safe method for engineering new tissues to treat degenerative diseases by mimicking a process that occurs in nature. This review discusses the signaling mechanisms and therapeutic inhibitors of EndMT, as well as the role of EndMT in development, disease, acquiring stem cell properties and generating connective tissues, and its potential as a novel mechanism for tissue regeneration. PMID:27143978

  10. Reprogramming cellular identity for regenerative medicine

    PubMed Central

    Cherry, Anne B.C.; Daley, George Q.

    2012-01-01

    The choreographed development of over 200 distinct differentiated cell types from a single zygote is a complex and poorly understood process. Whereas development leads unidirectionally towards more restricted cell fates, recent work in cellular reprogramming has proven that striking conversions of one cellular identity into another can be engineered, promising countless applications in biomedical research and paving the way for modeling disease with patient-derived stem cells. To date, there has been little discussion of which disease models are likely to be most informative. We here review evidence demonstrating that because environmental influences and epigenetic signatures are largely erased during reprogramming, patient-specific models of diseases with strong genetic bases and high penetrance are likely to prove most informative in the near term. However, manipulating in vitro culture conditions may ultimately enable cell-based models to recapitulate gene-environment interactions. Here, we discuss the implications of the new reprogramming paradigm in biomedicine and outline how reprogramming of cell identities is enhancing our understanding of cell differentiation and prospects for cellular therapies and in vivo regeneration. PMID:22424223

  11. Amphibians as research models for regenerative medicine

    PubMed Central

    Song, Fengyu; Li, Bingbing

    2010-01-01

    The ability to regenerate bone across a critical size defect would be a marked clinical advance over current methods for dealing with such structural gaps. Here, we briefly review the development of limb bones and the mandible, the regeneration of urodele limbs after amputation, and present evidence that urodele and anuran amphibians represent a valuable research model for the study of segment defect regeneration in both limb bones and mandible. PMID:21197215

  12. Regenerative fuel cells

    NASA Technical Reports Server (NTRS)

    Swette, Larry L.; Kackley, Nancy D.; Laconti, Anthony B.

    1992-01-01

    A development status evaluation is presented for moderate-temperature, single-unit, regenerative fuel cells using either alkaline or solid polymer proton-exchange membrane (PEM) electrolytes. Attention is given to the results thus far obtained for Pt, Ir, Rh, and Na(x)Pt3O4 catalysts. Alkaline electrolyte tests have been performed on a half-cell basis with a floating-electrode cell; PEM testing has been with complete fuel cells, using Nafion 117.

  13. Regenerative feedback resonant circuit

    DOEpatents

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  14. [Tissue engineered skin and regenerative wound repair].

    PubMed

    Han, Chun-mao; Wang, Xin-gang

    2013-04-01

    Various skin defects resulting from mechanical injury, burns, chronic ulcers, and resection of tumor etc. are very common in clinic. The traditional treatment measure, such as grafting of autologous split-thickness skin remains the gold standard. However, its limitations are obvious, such as shortage of donor sites, creation of new injury, and scar formation. To realize regenerative or scarless repair of tissue defects has always been the dream of human being. The advent of tissue engineered skin (TES) provides an ideal access to tissue regeneration. After decades of development, several kinds of TES products have been developed and used in clinic, with promising effects. However, a large number of basic scientific problems regarding TES, as well as difficulties in translation of basic research to bedside should be taken into serious consideration. This article presents a comprehensive overview of strategies of construction of TES, the role of TES in regenerative wound repair, and its opportunities and challenges. PMID:23985197

  15. Nanotechnology and regenerative therapeutics in plastic surgery: The next frontier.

    PubMed

    Tan, Aaron; Chawla, Reema; G, Natasha; Mahdibeiraghdar, Sara; Jeyaraj, Rebecca; Rajadas, Jayakumar; Hamblin, Michael R; Seifalian, Alexander M

    2016-01-01

    The rapid ascent of nanotechnology and regenerative therapeutics as applied to medicine and surgery has seen an exponential rise in the scale of research generated in this field. This is evidenced not only by the sheer volume of papers dedicated to nanotechnology but also in a large number of new journals dedicated to nanotechnology and regenerative therapeutics specifically to medicine and surgery. Aspects of nanotechnology that have already brought benefits to these areas include advanced drug delivery platforms, molecular imaging and materials engineering for surgical implants. Particular areas of interest include nerve regeneration, burns and wound care, artificial skin with nanoelectronic sensors and head and neck surgery. This study presents a review of nanotechnology and regenerative therapeutics, with focus on its applications and implications in plastic surgery. PMID:26422652

  16. Regenerative nanomedicine and the treatment of degenerative retinal diseases.

    PubMed

    Zarbin, Marco A; Montemagno, Carlo; Leary, James F; Ritch, Robert

    2012-01-01

    Regenerative medicine deals with the repair or the replacement of tissues and organs using advanced materials and methodologies. Regenerative nanomedicine uses nanoparticles containing gene transcription factors and other modulating molecules that allow reprogramming of cells in vivo as well as nanomaterials to induce selective differentiation of neural progenitor cells and to create neural-mechanical interfaces. In this article, we consider some applications of nanotechnology that may be useful for the treatment of degenerative retinal diseases, for example, use of nanoparticles for drug and gene therapy, use of nanomaterials for neural interfaces and extracellular matrix construction for cell-based therapy and neural prosthetics, and the use of bionanotechnology to re-engineer proteins and cell behavior for regenerative medicine. PMID:22170869

  17. Regenerative air heater

    DOEpatents

    Hasselquist, Paul B.; Baldner, Richard

    1982-01-01

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  18. Regenerative adsorbent heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  19. Regenerative air heater

    DOEpatents

    Hasselquist, P.B.; Baldner, R.

    1980-11-26

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  20. Regenerative Sorption Refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Wen, Liang-Chi; Bard, Steven

    1991-01-01

    Two-stage sorption refrigerator achieves increased efficiency via regenerative-heating concept in which waste heat from praseodymium/cerium oxide (PCO) chemisorption compressor runs charcoal/krypton (C/Kr) sorption compressor. Waste heat from each PCO sorption compressor used to power surrounding C/Kr sorption compressor. Flows of heat in two compressor modules controlled by gas-gap thermal switches. Has no wearing moving parts other than extremely long life, room-temperature check valves operating about twice per hour. Virtually no measurable vibration, and has potential operating life of at least ten years.

  1. REGENERATIVE TRANSISTOR AMPLIFIER

    DOEpatents

    Kabell, L.J.

    1958-11-25

    Electrical circults for use in computers and the like are described. particularly a regenerative bistable transistor amplifler which is iurned on by a clock signal when an information signal permits and is turned off by the clock signal. The amplifier porforms the above function with reduced power requirements for the clock signal and circuit operation. The power requirements are reduced in one way by employing transformer coupling which increases the collector circuit efficiency by eliminating the loss of power in the collector load resistor.

  2. PEM regenerative fuel cells

    NASA Technical Reports Server (NTRS)

    Swette, Larry L.; Laconti, Anthony B.; Mccatty, Stephen A.

    1993-01-01

    This paper will update the progress in developing electrocatalyst systems and electrode structures primarily for the positive electrode of single-unit solid polymer proton exchange membrane (PEM) regenerative fuel cells. The work was done with DuPont Nafion 117 in complete fuel cells (40 sq cm electrodes). The cells were operated alternately in fuel cell mode and electrolysis mode at 80 C. In fuel cell mode, humidified hydrogen and oxygen were supplied at 207 kPa (30 psi); in electrolysis mode, water was pumped over the positive electrode and the gases were evolved at ambient pressure. Cycling data will be presented for Pt-Ir catalysts and limited bifunctional data will be presented for Pt, Ir, Ru, Rh, and Na(x)Pt3O4 catalysts as well as for electrode structure variations.

  3. Regenerative combustion device

    DOEpatents

    West, Phillip B.

    2004-03-16

    A regenerative combustion device having a combustion zone, and chemicals contained within the combustion zone, such as water, having a first equilibrium state, and a second combustible state. Means for transforming the chemicals from the first equilibrium state to the second combustible state, such as electrodes, are disposed within the chemicals. An igniter, such as a spark plug or similar device, is disposed within the combustion zone for igniting combustion of the chemicals in the second combustible state. The combustion products are contained within the combustion zone, and the chemicals are selected such that the combustion products naturally chemically revert into the chemicals in the first equilibrium state following combustion. The combustion device may thus be repeatedly reused, requiring only a brief wait after each ignition to allow the regeneration of combustible gasses within the head space.

  4. Regenerative braking device

    DOEpatents

    Hoppie, Lyle O.

    1982-01-12

    Disclosed are several embodiments of a regenerative braking device for an automotive vehicle. The device includes a plurality of rubber rollers (24, 26) mounted for rotation between an input shaft (14) connectable to the vehicle drivetrain and an output shaft (16) which is drivingly connected to the input shaft by a variable ratio transmission (20). When the transmission ratio is such that the input shaft rotates faster than the output shaft, the rubber rollers are torsionally stressed to accumulate energy, thereby slowing the vehicle. When the transmission ratio is such that the output shaft rotates faster than the input shaft, the rubber rollers are torsionally relaxed to deliver accumulated energy, thereby accelerating or driving the vehicle.

  5. PEM regenerative fuel cells

    NASA Astrophysics Data System (ADS)

    Swette, Larry L.; Laconti, Anthony B.; McCatty, Stephen A.

    1993-11-01

    This paper will update the progress in developing electrocatalyst systems and electrode structures primarily for the positive electrode of single-unit solid polymer proton exchange membrane (PEM) regenerative fuel cells. The work was done with DuPont Nafion 117 in complete fuel cells (40 sq cm electrodes). The cells were operated alternately in fuel cell mode and electrolysis mode at 80 C. In fuel cell mode, humidified hydrogen and oxygen were supplied at 207 kPa (30 psi); in electrolysis mode, water was pumped over the positive electrode and the gases were evolved at ambient pressure. Cycling data will be presented for Pt-Ir catalysts and limited bifunctional data will be presented for Pt, Ir, Ru, Rh, and Na(x)Pt3O4 catalysts as well as for electrode structure variations.

  6. Use of Rhenium-188 Liquid-Filled Balloons for Inhibition of Coronary Restenosis After PTCA - A New Opportunity for Nuclear Medicine

    SciTech Connect

    Knapp, F.F., Jr.; Spencer, R.H.; Stabin, M.

    1999-05-13

    Although the use of ionizing radiation for the treatment of benign lesions such as keloids has been available for nearly one hundred years, only recently have the cost effective benefits of such technology for the inhibition of arterial restenosis following controlled vessel damage from balloon angioplasty been fully realized. In particular, the use of balloons filled with solutions of beta-emitting radioisotopes for vessel irradiation provide the benefit of uniform vessel irradiation. Use of such contained ("unsealed") sources is expected to represent a new opportunity for nuclear medicine physicians working in conjunction with interventional cardiologists to provide this new approach for restenosis therapy.

  7. Understanding Mechanobiology: Physical Therapists as a Force in Mechanotherapy and Musculoskeletal Regenerative Rehabilitation.

    PubMed

    Thompson, William R; Scott, Alexander; Loghmani, M Terry; Ward, Samuel R; Warden, Stuart J

    2016-04-01

    Achieving functional restoration of diseased or injured tissues is the ultimate goal of both regenerative medicine approaches and physical therapy interventions. Proper integration and healing of the surrogate cells, tissues, or organs introduced using regenerative medicine techniques are often dependent on the co-introduction of therapeutic physical stimuli. Thus, regenerative rehabilitation represents a collaborative approach whereby rehabilitation specialists, basic scientists, physicians, and surgeons work closely to enhance tissue restoration by creating tailored rehabilitation treatments. One of the primary treatment regimens that physical therapists use to promote tissue healing is the introduction of mechanical forces, or mechanotherapies. These mechanotherapies in regenerative rehabilitation activate specific biological responses in musculoskeletal tissues to enhance the integration, healing, and restorative capacity of implanted cells, tissues, or synthetic scaffolds. To become future leaders in the field of regenerative rehabilitation, physical therapists must understand the principles of mechanobiology and how mechanotherapies augment tissue responses. This perspective article provides an overview of mechanotherapy and discusses how mechanical signals are transmitted at the tissue, cellular, and molecular levels. The synergistic effects of physical interventions and pharmacological agents also are discussed. The goals are to highlight the critical importance of mechanical signals on biological tissue healing and to emphasize the need for collaboration within the field of regenerative rehabilitation. As this field continues to emerge, physical therapists are poised to provide a critical contribution by integrating mechanotherapies with regenerative medicine to restore musculoskeletal function. PMID:26637643

  8. A helium regenerative compressor

    SciTech Connect

    Swift, W.L.; Nutt, W.E.; Sixsmith, H.

    1994-12-31

    This paper discusses the design and performance of a regenerative compressor that was developed primarily for use in cryogenic helium systems. The objectives for the development were to achieve acceptable efficiency in the machine using conventional motor and bearing technology while reducing the complexity of the system required to control contamination from the lubricants. A single stage compressor was built and tested. The compressor incorporates aerodynamically shaped blades on a 218 mm (8.6 inches) diameter impeller to achieve high efficiency. A gas-buffered non-contact shaft seal is used to oppose the diffusion of lubricant from the motor bearings into the cryogenic circuit. Since it is a rotating machine, the flow is continuous and steady, and the machine is very quiet. During performance testing with helium, the single stage machine has demonstrated a pressure ratio of 1.5 at a flow rate of 12 g/s with measured isothermal efficiencies in excess of 30%. This performance compares favorably with efficiencies generally achieved in oil flooded screw compressors.

  9. Regenerative switching CMOS system

    DOEpatents

    Welch, J.D.

    1998-06-02

    Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a series combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electrically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided. 14 figs.

  10. Regenerative switching CMOS system

    DOEpatents

    Welch, James D.

    1998-01-01

    Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a seriesed combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided.

  11. The first center for evidence-based medicine in Lithuania: an opportunity to change culture and improve clinical practice.

    PubMed

    Beinortas, Tumas; Bauza, Karolis; Howick, Jeremy; Nunan, David; Mahtani, Kamal Ram

    2015-05-01

    In post-Soviet countries, where medical practice largely relies on experience alone, the incorporation of the best research evidence in clinical practice is limited. In order to promote the awareness and utilization of evidence-based medicine (EBM) among Lithuanian doctors, we organized EBM conferences in each of the two Lithuanian medical schools. More than 500 medical professionals and students attended the conferences in Vilnius (2013) and Kaunas (2014) demonstrating that there is a high demand for formal EBM teaching. Building on the success of these seminal conferences, and to start addressing the lack of EBM practice in the country, the first Lithuanian Centre for Evidence-Based Medicine was established at Vilnius University Medical Faculty in 2014. The Centre will focus on the implementation of EBM teaching in medical school curriculum, formulating management guidelines, writing systematic reviews and supporting Lithuanian authors in doing so. PMID:25955430

  12. Clinical concepts for regenerative therapy in furcations.

    PubMed

    Sanz, Mariano; Jepsen, Karin; Eickholz, Peter; Jepsen, Søren

    2015-06-01

    Furcation involvements present one of the greatest challenges in periodontal therapy because furcation-involved molar teeth respond less favorably to conventional periodontal therapy compared with noninvolved molar or nonmolar teeth. Various regenerative procedures have been proposed and applied with the aim of eliminating the furcation defect or reducing the furcation depth. An abundance of studies and several systematic reviews have established the effectiveness of membrane therapy (guided tissue regeneration) for buccal Class II furcation involvement of mandibular and maxillary molars compared with open flap surgery. Bone grafts/substitutes may enhance the results of guided tissue regeneration. However, complete furcation closure is not a predictable outcome. Limited data and no meta-analyses are available on the effects of enamel matrix proteins for furcation regeneration. Enamel matrix protein therapy has demonstrated clinical improvements in the treatment of buccal Class II furcation defects in mandibular molars; however, complete closure of the furcation lesion is achieved only in a minority of cases. Neither guided tissue regeneration nor enamel matrix protein therapy have demonstrated predictable results for approximal Class II and for Class III furcations. Promising preclinical data from furcation regeneration studies in experimental animals is available for growth factor- and differentiation factor-based technologies, but very limited data are available from human clinical studies. Although cell-based therapies have received considerable attention in regenerative medicine, their experimental evaluation in the treatment of periodontal furcation lesions is at a very early stage of development. In summary, the indications and the limitations for currently available treatment modalities for furcation defects are well established. New regenerative treatments are clearly needed to improve the predictability of a complete resolution of furcation defects. PMID

  13. Regenerative hyperpolarization in rods.

    PubMed Central

    Werblin, F S

    1975-01-01

    1. The electrical properties of the rods in Necturus maculosus were studied at the cell body and the outer segments in dark and light under current and voltage clamp with a pair of intracellular electrodes separated by about 1 mum. 2. The membrane resistance in the dark was voltage- and time-dependent both for the cell body and the outer segment. Slight depolarizations in the cell body reduced the slope resistance from 60 to 10 M omega with a time constant of about 1 sec. Polarization in either direction, at the outer segment, when greater than about 20 mV, reduced the slope resistance from 60 to 30 M omega. The dark potential in the cell body was typically -30 to -35 m V; at the outer segment it was typically only -10 to -15 mV. 3. The light-elicited voltage response in both the cell body and the outer segment was largest with the membrane near the dark potential level. In both regions, the response was reduced when the membrane was polarized in either direction. 4. Under voltage-clamp conditions, a reversal potential for the light response near + 10 mV was measured at the outer segment. At the cell body no reversal potential for the light response was measured; there the clamping current required during the light response was almost of the same magnitude at all potential levels. 5. When the membrane at the cell body was hyperpolarized in the dark under voltage clamp, a transient outward current, typically about one-half the magnitude of the initial inward clamping current was required to maintain the membrane at the clamped potential level. This outward current transient was associated with a decrease in membrane resistance with similar time course. The transient outward current reversed and became inward when the membrane was clamped to potentials more negative than -80 mV. Thus, the transient outward current appears to involve a transient activation initiated by hyperpolarization. I is regenerative in that it is initiated by hyperpolarization and tends to

  14. Biofilms as "Connectors" for Oral and Systems Medicine: A New Opportunity for Biomarkers, Molecular Targets, and Bacterial Eradication.

    PubMed

    Sintim, Herman O; Gürsoy, Ulvi Kahraman

    2016-01-01

    Oral health and systems medicine are intimately related but have remained, sadly, as isolated knowledge communities for decades. Are there veritable connector knowledge domains that can usefully link them together on the critical path to biomarker research and "one health"? In this context, it is noteworthy that bacteria form surface-attached communities on most biological surfaces, including the oral cavity. Biofilm-forming bacteria contribute to periodontal diseases and recent evidences point to roles of these bacteria in systemic diseases as well, with cardiovascular diseases, obesity, and cancer as notable examples. Interestingly, the combined mass of microorganisms such as bacteria are so large that when we combine all plants and animals on earth, the total biomass of bacteria is still bigger. They literally do colonize everywhere, not only soil and water but our skin, digestive tract, and even oral cavity are colonized by bacteria. Hence efforts to delineate biofilm formation mechanisms of oral bacteria and microorganisms and the development of small molecules to inhibit biofilm formation in the oral cavity is very timely for both diagnostics and therapeutics. Research on biofilms can benefit both oral and systems medicine. Here, we examine, review, and synthesize new knowledge on the current understanding of oral biofilm formation, the small molecule targets that can inhibit biofilm formation in the mouth. We suggest new directions for both oral and systems medicine, using various omics technologies such as SILAC and RNAseq, that could yield deeper insights, biomarkers, and molecular targets to design small molecules that selectively aim at eradication of pathogenic oral bacteria. Ultimately, devising new ways to control and eradicate bacteria in biofilms will open up novel diagnostic and therapeutic avenues for oral and systemic diseases alike. PMID:26583256

  15. Biofilms as “Connectors” for Oral and Systems Medicine: A New Opportunity for Biomarkers, Molecular Targets, and Bacterial Eradication

    PubMed Central

    Gürsoy, Ulvi Kahraman

    2016-01-01

    Abstract Oral health and systems medicine are intimately related but have remained, sadly, as isolated knowledge communities for decades. Are there veritable connector knowledge domains that can usefully link them together on the critical path to biomarker research and “one health”? In this context, it is noteworthy that bacteria form surface-attached communities on most biological surfaces, including the oral cavity. Biofilm-forming bacteria contribute to periodontal diseases and recent evidences point to roles of these bacteria in systemic diseases as well, with cardiovascular diseases, obesity, and cancer as notable examples. Interestingly, the combined mass of microorganisms such as bacteria are so large that when we combine all plants and animals on earth, the total biomass of bacteria is still bigger. They literally do colonize everywhere, not only soil and water but our skin, digestive tract, and even oral cavity are colonized by bacteria. Hence efforts to delineate biofilm formation mechanisms of oral bacteria and microorganisms and the development of small molecules to inhibit biofilm formation in the oral cavity is very timely for both diagnostics and therapeutics. Research on biofilms can benefit both oral and systems medicine. Here, we examine, review, and synthesize new knowledge on the current understanding of oral biofilm formation, the small molecule targets that can inhibit biofilm formation in the mouth. We suggest new directions for both oral and systems medicine, using various omics technologies such as SILAC and RNAseq, that could yield deeper insights, biomarkers, and molecular targets to design small molecules that selectively aim at eradication of pathogenic oral bacteria. Ultimately, devising new ways to control and eradicate bacteria in biofilms will open up novel diagnostic and therapeutic avenues for oral and systemic diseases alike. PMID:26583256

  16. Commercial Opportunities and Ethical Pitfalls in Personalized Medicine: A Myriad of Reasons to Revisit the Myriad Genetics Saga.

    PubMed

    So, Derek; Joly, Yann

    2013-06-01

    In 1996, the US-based biotechnology company Myriad Genetics began offering genetic diagnostic tests for mutations in the genes BRCA1 and BRCA2, which are linked to hereditary breast and ovarian cancer. Since that time, Myriad has been a forerunner in the field of personalized medicine through the use of effective commercialization strategies which have been emulated by other commercial biotechnology companies. Myriad's strategies include patent acquisition and active enforcement, direct-to-consumer advertising, diversification, and trade secrets. These business models have raised substantial ethical controversy and criticism, often related to the company's focus on market dominance and the potential conflict between private sector profitability and the promotion of public health. However, these strategies have enabled Myriad to survive the economic challenges that have affected the biotechnology sector and to become financially successful in the field of personalized medicine. Our critical assessment of the legal, economic and ethical aspects of Myriad's practices over this period allows the identification of the company's more effective business models. It also discusses of the consequences of implementing economically viable models without first carrying out broader reflection on the socio-cultural, ethical and political contexts in which they would apply. PMID:23885284

  17. Commercial Opportunities and Ethical Pitfalls in Personalized Medicine: A Myriad of Reasons to Revisit the Myriad Genetics Saga

    PubMed Central

    So, Derek; Joly, Yann

    2013-01-01

    In 1996, the US-based biotechnology company Myriad Genetics began offering genetic diagnostic tests for mutations in the genes BRCA1 and BRCA2, which are linked to hereditary breast and ovarian cancer. Since that time, Myriad has been a forerunner in the field of personalized medicine through the use of effective commercialization strategies which have been emulated by other commercial biotechnology companies. Myriad’s strategies include patent acquisition and active enforcement, direct-to-consumer advertising, diversification, and trade secrets. These business models have raised substantial ethical controversy and criticism, often related to the company’s focus on market dominance and the potential conflict between private sector profitability and the promotion of public health. However, these strategies have enabled Myriad to survive the economic challenges that have affected the biotechnology sector and to become financially successful in the field of personalized medicine. Our critical assessment of the legal, economic and ethical aspects of Myriad’s practices over this period allows the identification of the company’s more effective business models. It also discusses of the consequences of implementing economically viable models without first carrying out broader reflection on the socio-cultural, ethical and political contexts in which they would apply. PMID:23885284

  18. Regeneratively Cooled Porous Media Jacket

    NASA Technical Reports Server (NTRS)

    Mungas, Greg (Inventor); Fisher, David J. (Inventor); London, Adam Pollok (Inventor); Fryer, Jack Merrill (Inventor)

    2013-01-01

    The fluid and heat transfer theory for regenerative cooling of a rocket combustion chamber with a porous media coolant jacket is presented. This model is used to design a regeneratively cooled rocket or other high temperature engine cooling jacket. Cooling jackets comprising impermeable inner and outer walls, and porous media channels are disclosed. Also disclosed are porous media coolant jackets with additional structures designed to transfer heat directly from the inner wall to the outer wall, and structures designed to direct movement of the coolant fluid from the inner wall to the outer wall. Methods of making such jackets are also disclosed.

  19. Laser system using regenerative amplifier

    DOEpatents

    Emmett, J.L.

    1980-03-04

    High energy laser system is disclosed using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output. 10 figs.

  20. Laser system using regenerative amplifier

    DOEpatents

    Emmett, John L. [Pleasanton, CA

    1980-03-04

    High energy laser system using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output.

  1. Nondestructive test of regenerative chambers

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Stauffis, R.; Wood, R.

    1972-01-01

    Flat panels simulating internally cooled regenerative thrust chamber walls were fabricated by electroforming, brazing and diffusion bonding to evaluate the feasibility of nondestructive evaluation techniques to detect bonds of various strength integrities. Ultrasonics, holography, and acoustic emission were investigated and found to yield useful and informative data regarding the presence of bond defects in these structures.

  2. REGene: a literature-based knowledgebase of animal regeneration that bridge tissue regeneration and cancer.

    PubMed

    Zhao, Min; Rotgans, Bronwyn; Wang, Tianfang; Cummins, S F

    2016-01-01

    Regeneration is a common phenomenon across multiple animal phyla. Regeneration-related genes (REGs) are critical for fundamental cellular processes such as proliferation and differentiation. Identification of REGs and elucidating their functions may help to further develop effective treatment strategies in regenerative medicine. So far, REGs have been largely identified by small-scale experimental studies and a comprehensive characterization of the diverse biological processes regulated by REGs is lacking. Therefore, there is an ever-growing need to integrate REGs at the genomics, epigenetics, and transcriptome level to provide a reference list of REGs for regeneration and regenerative medicine research. Towards achieving this, we developed the first literature-based database called REGene (REgeneration Gene database). In the current release, REGene contains 948 human (929 protein-coding and 19 non-coding genes) and 8445 homologous genes curated from gene ontology and extensive literature examination. Additionally, the REGene database provides detailed annotations for each REG, including: gene expression, methylation sites, upstream transcription factors, and protein-protein interactions. An analysis of the collected REGs reveals strong links to a variety of cancers in terms of genetic mutation, protein domains, and cellular pathways. We have prepared a web interface to share these regeneration genes, supported by refined browsing and searching functions at http://REGene.bioinfo-minzhao.org/. PMID:26975833

  3. REGene: a literature-based knowledgebase of animal regeneration that bridge tissue regeneration and cancer

    PubMed Central

    Zhao, Min; Rotgans, Bronwyn; Wang, Tianfang; Cummins, S. F.

    2016-01-01

    Regeneration is a common phenomenon across multiple animal phyla. Regeneration-related genes (REGs) are critical for fundamental cellular processes such as proliferation and differentiation. Identification of REGs and elucidating their functions may help to further develop effective treatment strategies in regenerative medicine. So far, REGs have been largely identified by small-scale experimental studies and a comprehensive characterization of the diverse biological processes regulated by REGs is lacking. Therefore, there is an ever-growing need to integrate REGs at the genomics, epigenetics, and transcriptome level to provide a reference list of REGs for regeneration and regenerative medicine research. Towards achieving this, we developed the first literature-based database called REGene (REgeneration Gene database). In the current release, REGene contains 948 human (929 protein-coding and 19 non-coding genes) and 8445 homologous genes curated from gene ontology and extensive literature examination. Additionally, the REGene database provides detailed annotations for each REG, including: gene expression, methylation sites, upstream transcription factors, and protein-protein interactions. An analysis of the collected REGs reveals strong links to a variety of cancers in terms of genetic mutation, protein domains, and cellular pathways. We have prepared a web interface to share these regeneration genes, supported by refined browsing and searching functions at http://REGene.bioinfo-minzhao.org/. PMID:26975833

  4. Modelling the regenerative niche: a major challenge in biomaterials research.

    PubMed

    Kirkpatrick, C James

    2015-12-01

    By definition, biomaterials are developed for clinical application. In the field of regenerative medicine their principal function is to play a significant, and, if possible, an instructive role in tissue healing. In the last analysis the latter involves targeting the 'regenerative niche'. The present paper will address the problem of simulating this niche in the laboratory and adopts a life science approach involving the harnessing of heterotypic cellular communication to achieve this, that is, the ability of cells of different types to mutually influence cellular functions. Thus, co-culture systems using human cells are the methodological focus and will concern four exemplary fields of regeneration, namely, bone, soft tissue, lower respiratory tract and airway regeneration. The working hypothesis underlying this approach is that in vitro models of higher complexity will be more clinically relevant than simple monolayer cultures of transformed cell lines in testing innovative strategies with biomaterials for regeneration. PMID:26816650

  5. Modelling the regenerative niche: a major challenge in biomaterials research†

    PubMed Central

    Kirkpatrick, C. James

    2015-01-01

    By definition, biomaterials are developed for clinical application. In the field of regenerative medicine their principal function is to play a significant, and, if possible, an instructive role in tissue healing. In the last analysis the latter involves targeting the ‘regenerative niche’. The present paper will address the problem of simulating this niche in the laboratory and adopts a life science approach involving the harnessing of heterotypic cellular communication to achieve this, that is, the ability of cells of different types to mutually influence cellular functions. Thus, co-culture systems using human cells are the methodological focus and will concern four exemplary fields of regeneration, namely, bone, soft tissue, lower respiratory tract and airway regeneration. The working hypothesis underlying this approach is that in vitro models of higher complexity will be more clinically relevant than simple monolayer cultures of transformed cell lines in testing innovative strategies with biomaterials for regeneration. PMID:26816650

  6. Nanotechnology Biomimetic Cartilage Regenerative Scaffolds

    PubMed Central

    Sardinha, Jose Paulo; Myers, Simon

    2014-01-01

    Cartilage has a limited regenerative capacity. Faced with the clinical challenge of reconstruction of cartilage defects, the field of cartilage engineering has evolved. This article reviews current concepts and strategies in cartilage engineering with an emphasis on the application of nanotechnology in the production of biomimetic cartilage regenerative scaffolds. The structural architecture and composition of the cartilage extracellular matrix and the evolution of tissue engineering concepts and scaffold technology over the last two decades are outlined. Current advances in biomimetic techniques to produce nanoscaled fibrous scaffolds, together with innovative methods to improve scaffold biofunctionality with bioactive cues are highlighted. To date, the majority of research into cartilage regeneration has been focused on articular cartilage due to the high prevalence of large joint osteoarthritis in an increasingly aging population. Nevertheless, the principles and advances are applicable to cartilage engineering for plastic and reconstructive surgery. PMID:24883273

  7. Precision test for precision medicine: opportunities, challenges and perspectives regarding pre-eclampsia as an intervention window for future cardiovascular disease

    PubMed Central

    Zhou, Xin; Niu, Jian-Min; Ji, Wen-Jie; Zhang, Zhuoli; Wang, Peizhong P; Ling, Xue-Feng B; Li, Yu-Ming

    2016-01-01

    Hypertensive disorders of pregnancy (HDP) comprise a spectrum of syndromes that range in severity from gestational hypertension and pre-eclamplsia (PE) to eclampsia, as well as chronic hypertension and chronic hypertension with superimposed PE. HDP occur in 2% to 10% of pregnant women worldwide, and impose a substantial burden on maternal and fetal/infant health. Cardiovascular disease (CVD) is the leading cause of death in women. The high prevalence of non-obstructive coronary artery disease and the lack of an efficient diagnostic workup make the identification of CVD in women challenging. Accumulating evidence suggests that a previous history of PE is consistently associated with future CVD risk. Moreover, PE as a maladaptation to pregnancy-induced hemodynamic and metabolic stress may also be regarded as a “precision” testing result that predicts future cardiovascular risk. Therefore, the development of PE provides a tremendous, early opportunity that may lead to changes in maternal and infant future well-being. However, the underlying pathogenesis of PE is not precise, which warrants precision medicine-based approaches to establish a more precise definition and reclassification. In this review, we proposed a stage-specific, PE-targeted algorithm, which may provide novel hypotheses that bridge the gap between Big Data-generating approaches and clinical translational research in terms of PE prediction and prevention, clinical treatment, and long-term CVD management. PMID:27347303

  8. Complementary medicine.

    PubMed Central

    Spiegel, D; Stroud, P; Fyfe, A

    1998-01-01

    The widespread use of complementary and alternative medicine techniques, often explored by patients without discussion with their primary care physician, is seen as a request from patients for care as well as cure. In this article, we discuss the reasons for the growth of and interest in complementary and alternative medicine in an era of rapidly advancing medical technology. There is, for instance, evidence of the efficacy of supportive techniques such as group psychotherapy in improving adjustment and increasing survival time of cancer patients. We describe current and developing complementary medicine programs as well as opportunities for integration of some complementary techniques into standard medical care. PMID:9584661

  9. Simulation of a regenerative MW FEL amplifier

    SciTech Connect

    Nguyen, R.T.; Colson, W.B.; Wong, R.K.; Sheffield, R.L.

    1997-08-01

    Both oscillator and regenerative amplifier configurations are being studied to optimize the design of a MW class FEL. The regenerative amplifier uses a longer undulator and relies on higher extraction efficiency to achieve high average power, whereas the oscillator is a more compact overall design requiring the transport of the high energy electron beam around bends for energy recovery. Using parameters extrapolated from the 1 kW LANL regenerative amplifier, simulations study the feasibility of achieving 1 MW average power.

  10. [Nodular regenerative hyperplasia following liver tuberculosis].

    PubMed

    Boursier, Jérôme; Foulet, Armelle; Pilette, Christophe

    2005-10-01

    We reported a case of nodular regenerative hyperplasia revealed by hemorrhage from portal hypertention and ascites in a 81 years old patient. This patient presented two years ago hepatic tuberculosis well documented by liver biopsy. If this patient do not have exhaustive etiologic research of nodular regenerative hyperplasia, the relationship between the tuberculosis infection and the developpement of this nodular regenerative hyperplasia appears highly probable and must be researched. PMID:16435515

  11. Analysing regenerative potential in zebrafish models of congenital muscular dystrophy.

    PubMed

    Wood, A J; Currie, P D

    2014-11-01

    The congenital muscular dystrophies (CMDs) are a clinically and genetically heterogeneous group of muscle disorders. Clinically hypotonia is present from birth, with progressive muscle weakness and wasting through development. For the most part, CMDs can mechanistically be attributed to failure of basement membrane protein laminin-α2 sufficiently binding with correctly glycosylated α-dystroglycan. The majority of CMDs therefore arise as the result of either a deficiency of laminin-α2 (MDC1A) or hypoglycosylation of α-dystroglycan (dystroglycanopathy). Here we consider whether by filling a regenerative medicine niche, the zebrafish model can address the present challenge of delivering novel therapeutic solutions for CMD. In the first instance the readiness and appropriateness of the zebrafish as a model organism for pioneering regenerative medicine therapies in CMD is analysed, in particular for MDC1A and the dystroglycanopathies. Despite the recent rapid progress made in gene editing technology, these approaches have yet to yield any novel zebrafish models of CMD. Currently the most genetically relevant zebrafish models to the field of CMD, have all been created by N-ethyl-N-nitrosourea (ENU) mutagenesis. Once genetically relevant models have been established the zebrafish has several important facets for investigating the mechanistic cause of CMD, including rapid ex vivo development, optical transparency up to the larval stages of development and relative ease in creating transgenic reporter lines. Together, these tools are well suited for use in live-imaging studies such as in vivo modelling of muscle fibre detachment. Secondly, the zebrafish's contribution to progress in effective treatment of CMD was analysed. Two approaches were identified in which zebrafish could potentially contribute to effective therapies. The first hinges on the augmentation of functional redundancy within the system, such as upregulating alternative laminin chains in the candyfloss

  12. Advanced regenerative absorption refrigeration cycles

    DOEpatents

    Dao, Kim

    1990-01-01

    Multi-effect regenerative absorption cycles which provide a high coefficient of performance (COP) at relatively high input temperatures. An absorber-coupled double-effect regenerative cycle (ADR cycle) (10) is provided having a single-effect absorption cycle (SEA cycle) (11) as a topping subcycle and a single-effect regenerative absorption cycle (1R cycle) (12) as a bottoming subcycle. The SEA cycle (11) includes a boiler (13), a condenser (21), an expansion device (28), an evaporator (31), and an absorber (40), all operatively connected together. The 1R cycle (12) includes a multistage boiler (48), a multi-stage resorber (51), a multisection regenerator (49) and also uses the condenser (21), expansion device (28) and evaporator (31) of the SEA topping subcycle (11), all operatively connected together. External heat is applied to the SEA boiler (13) for operation up to about 500 degrees F., with most of the high pressure vapor going to the condenser (21) and evaporator (31) being generated by the regenerator (49). The substantially adiabatic and isothermal functioning of the SER subcycle (12) provides a high COP. For higher input temperatures of up to 700 degrees F., another SEA cycle (111) is used as a topping subcycle, with the absorber (140) of the topping subcycle being heat coupled to the boiler (13) of an ADR cycle (10). The 1R cycle (12) itself is an improvement in that all resorber stages (50b-f) have a portion of their output pumped to boiling conduits (71a-f) through the regenerator (49), which conduits are connected to and at the same pressure as the highest pressure stage (48a) of the 1R multistage boiler (48).

  13. Recent advancements in regenerative dentistry: A review.

    PubMed

    Amrollahi, Pouya; Shah, Brinda; Seifi, Amir; Tayebi, Lobat

    2016-12-01

    Although human mouth benefits from remarkable mechanical properties, it is very susceptible to traumatic damages, exposure to microbial attacks, and congenital maladies. Since the human dentition plays a crucial role in mastication, phonation and esthetics, finding promising and more efficient strategies to reestablish its functionality in the event of disruption has been important. Dating back to antiquity, conventional dentistry has been offering evacuation, restoration, and replacement of the diseased dental tissue. However, due to the limited ability and short lifespan of traditional restorative solutions, scientists have taken advantage of current advancements in medicine to create better solutions for the oral health field and have coined it "regenerative dentistry." This new field takes advantage of the recent innovations in stem cell research, cellular and molecular biology, tissue engineering, and materials science etc. In this review, the recently known resources and approaches used for regeneration of dental and oral tissues were evaluated using the databases of Scopus and Web of Science. Scientists have used a wide range of biomaterials and scaffolds (artificial and natural), genes (with viral and non-viral vectors), stem cells (isolated from deciduous teeth, dental pulp, periodontal ligament, adipose tissue, salivary glands, and dental follicle) and growth factors (used for stimulating cell differentiation) in order to apply tissue engineering approaches to dentistry. Although they have been successful in preclinical and clinical partial regeneration of dental tissues, whole-tooth engineering still seems to be far-fetched, unless certain shortcomings are addressed. PMID:27612840

  14. Fusion and regenerative therapies: is immortality really recessive?

    PubMed

    Stolzing, Alexandra; Hescheler, Jürgen; Sethe, Sebastian

    2007-12-01

    Harnessing cellular fusion as a potential tool for regenerative therapy has been under tentative investigation for decades. A look back the history of fusion experiments in gerontology reveals that whereas some studies indicate that aging-related changes are conserved in fused cells, others have demonstrated that fusion can be used as a tool to revoke cellular senescence and induce tissue regeneration. Recent findings about the role of fusion processes in tissue homeostasis, replenishment, and repair link insights from fusion studies of previous decades with modern developments in stem cell biology and regenerative medicine. We suggest that age-associated loss of regenerative capacity is associated with a decline of effectiveness in stem cell fusion. We project how studies into the fusion of stem cells with tissue cells, or the fusion between activator stem cells and patient cells might help in the development of applications that "rejuvenate" certain target cells, thereby strategically reinstating a regeneration cascade. The outlook is concluded with a discussion of the next research milestones and the potential hazards of fusion therapies. PMID:18072882

  15. Heat regenerative external combustion engine

    NASA Astrophysics Data System (ADS)

    Duva, Anthony W.

    1993-10-01

    A heat regenerative external combustion engine is disclosed. The engine includes fuel inlet means which extends along the exhaust passage and/or combustion chamber in order to preheat the fuel, To provide for preheating by gases in both the combustion chamber and the exhaust passage, the combustion chamber is arranged annularly around the drive shaft and between the cylinders. This configuration also is advantageous in that it reduces the noise of combustion. The engine of the invention is particularly well-suited for use in a torpedo.

  16. Wavelength tunable alexandrite regenerative amplifier

    SciTech Connect

    Harter, D.J.; Bado, P.

    1988-11-01

    We describe a wavelength tunable alexandrite regenerative amplifier which is used to amplify nanosecond slices from a single-frequency cw dye laser or 50-ps pulses emitted by a diode laser to energies in the 10-mJ range. The amplified 5-ns slices generated by the cw-pumped line narrowed dye laser are Fourier transform limited. The 50-ps pulses emitted by a gain-switched diode laser are amplified by more than 10 orders of magnitude in a single stage.

  17. Entropy Generation in Regenerative Systems

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1995-01-01

    Heat exchange to the oscillating flows in regenerative coolers generates entropy. These flows are characterized by oscillating mass flows and oscillating temperatures. Heat is transferred between the flow and heat exchangers and regenerators. In the former case, there is a steady temperature difference between the flow and the heat exchangers. In the latter case, there is no mean temperature difference. In this paper a mathematical model of the entropy generated is developed for both cases. Estimates of the entropy generated by this process are given for oscillating flows in heat exchangers and in regenerators. The practical significance of this entropy is also discussed.

  18. Regenerative superheated steam turbine cycles

    NASA Technical Reports Server (NTRS)

    Fuller, L. C.; Stovall, T. K.

    1980-01-01

    PRESTO computer program was developed to analyze performance of wide range of steam turbine cycles with special attention given to regenerative superheated steam turbine cycles. It can be used to model standard turbine cycles, including such features as process steam extraction, induction and feedwater heating by external sources, peaking, and high back pressure. Expansion line efficiencies, exhaust loss, leakages, mechanical losses, and generator losses are used to calculate cycle heat rate and generator output. Program provides power engineer with flexible aid for design and analysis of steam turbine systems.

  19. Changes in Regenerative Capacity through Lifespan.

    PubMed

    Yun, Maximina H

    2015-01-01

    Most organisms experience changes in regenerative abilities through their lifespan. During aging, numerous tissues exhibit a progressive decline in homeostasis and regeneration that results in tissue degeneration, malfunction and pathology. The mechanisms responsible for this decay are both cell intrinsic, such as cellular senescence, as well as cell-extrinsic, such as changes in the regenerative environment. Understanding how these mechanisms impact on regenerative processes is essential to devise therapeutic approaches to improve tissue regeneration and extend healthspan. This review offers an overview of how regenerative abilities change through lifespan in various organisms, the factors that underlie such changes and the avenues for therapeutic intervention. It focuses on established models of mammalian regeneration as well as on models in which regenerative abilities do not decline with age, as these can deliver valuable insights for our understanding of the interplay between regeneration and aging. PMID:26512653

  20. Changes in Regenerative Capacity through Lifespan

    PubMed Central

    Yun, Maximina H.

    2015-01-01

    Most organisms experience changes in regenerative abilities through their lifespan. During aging, numerous tissues exhibit a progressive decline in homeostasis and regeneration that results in tissue degeneration, malfunction and pathology. The mechanisms responsible for this decay are both cell intrinsic, such as cellular senescence, as well as cell-extrinsic, such as changes in the regenerative environment. Understanding how these mechanisms impact on regenerative processes is essential to devise therapeutic approaches to improve tissue regeneration and extend healthspan. This review offers an overview of how regenerative abilities change through lifespan in various organisms, the factors that underlie such changes and the avenues for therapeutic intervention. It focuses on established models of mammalian regeneration as well as on models in which regenerative abilities do not decline with age, as these can deliver valuable insights for our understanding of the interplay between regeneration and aging. PMID:26512653

  1. Variable ratio regenerative braking device

    DOEpatents

    Hoppie, Lyle O.

    1981-12-15

    Disclosed is a regenerative braking device (10) for an automotive vehicle. The device includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (36) and an output shaft (42), clutches (38, 46) and brakes (40, 48) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. The rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft is clutched to the transmission while the brake on the output shaft is applied, and are torsionally relaxed to deliver energy to the vehicle when the output shaft is clutched to the transmission while the brake on the input shaft is applied. The transmission ratio is varied to control the rate of energy accumulation and delivery for a given rotational speed of the vehicle drivetrain.

  2. Unitized regenerative fuel cell system

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A. (Inventor)

    2008-01-01

    A Unitized Regenerative Fuel Cell system uses heat pipes to convey waste heat from the fuel cell stack to the reactant storage tanks. The storage tanks act as heat sinks/sources and as passive radiators of the waste heat from the fuel cell stack. During charge up, i.e., the electrolytic process, gases are conveyed to the reactant storage tanks by way of tubes that include dryers. Reactant gases moving through the dryers give up energy to the cold tanks, causing water vapor in with the gases to condense and freeze on the internal surfaces of the dryer. During operation in its fuel cell mode, the heat pipes convey waste heat from the fuel cell stack to the respective reactant storage tanks, thereby heating them such that the reactant gases, as they pass though the respective dryers on their way to the fuel cell stacks retrieve the water previously removed.

  3. Modeling regenerative braking and storage for vehicles

    SciTech Connect

    Wicks, F.; Donnelly, K.

    1997-12-31

    The fuel savings benefits of regenerative braking and storage for vehicles are often described but not quantified. For example, the federal government and automobile manufacturers are sponsoring a Program for a New Generation of Vehicles (PGNV) with a goal of obtaining a performance of 80 mpg in a family size car. It is typically suggested that such a vehicle will be a hybrid engine and electric drive with regenerative braking. The authors note that while regenerative braking has the potential of saving fuel, it may also do more harm than good as a result of additional weight, less than ideal charge/discharge efficiency on the batteries or storage flywheels and the limited portion of the entire driving cycle when regenerative braking can be utilized. The authors also noted that if regenerative braking can have a net benefit, it would be on a heavy vehicle such as a municipal bus because of the frequent stop and go requirements for both traffic light and passengers. Thus the authors initiated a study of regenerative braking on such a vehicle. The resulting analysis presented in this paper includes data following municipal buses to define the driving cycle, modeling the bus power requirements from weight, aerodynamics and rolling resistance, and then calculating the fuel saving that could result from an ideal regenerative braking system.

  4. REIMBURSEMENT OF CELL-BASED REGENERATIVE THERAPY IN THE UK AND FRANCE.

    PubMed

    Mahalatchimy, Aurélie

    2016-01-01

    Cell-based regenerative therapies are presented as being able to cure the diseases of the twenty-first century, especially those coming from the degeneration of the aging human body. But their specific nature based on biological materials raises particular challenging issues on how regulation should frame biomedical innovation for society's benefit regarding public health. The European Union (EU) supports the development of cell-based regenerative therapies that are medicinal products with a specific regulation providing their wide access to the European market for European patients. However, once these medicinal products have obtained a European marketing authorisation, they are still far away from being fully accessible to European patients in all EU Member States. Whereas there is much written on the EU regulatory system for new biotechnologies, there is no systematic legal study comparing the insurance provisions in two EU countries. Focussing on the situation in the UK and France that are based on two different healthcare systems, this paper is based on a comparative methodological approach. It raises the question of regulatory reimbursement mechanisms that determine access to innovative treatments and their consequences for social protection systems in the general context of public health. After having compared the French and English regulations of cell-based regenerative therapy regarding pricing and reimbursement, this papers analyses how England and France are addressing two main challenges of cell-based regenerative therapy, to take into account their long-term benefit through their potential curative nature and their high upfront cost, towards their adoption within the English and French healthcare systems. It concludes that England and France have different general legal frameworks that are not specific to the reimbursement of cell-based regenerative therapy, although their two current and respective trends would bring more convergence between the two

  5. Magnetically Targeted Stem Cell Delivery for Regenerative Medicine.

    PubMed

    Cores, Jhon; Caranasos, Thomas G; Cheng, Ke

    2015-01-01

    Stem cells play a special role in the body as agents of self-renewal and auto-reparation for tissues and organs. Stem cell therapies represent a promising alternative strategy to regenerate damaged tissue when natural repairing and conventional pharmacological intervention fail to do so. A fundamental impediment for the evolution of stem cell therapies has been the difficulty of effectively targeting administered stem cells to the disease foci. Biocompatible magnetically responsive nanoparticles are being utilized for the targeted delivery of stem cells in order to enhance their retention in the desired treatment site. This noninvasive treatment-localization strategy has shown promising results and has the potential to mitigate the problem of poor long-term stem cell engraftment in a number of organ systems post-delivery. In addition, these same nanoparticles can be used to track and monitor the cells in vivo, using magnetic resonance imaging. In the present review we underline the principles of magnetic targeting for stem cell delivery, with a look at the logic behind magnetic nanoparticle systems, their manufacturing and design variants, and their applications in various pathological models. PMID:26133387

  6. Hyaluronic Acid Based Hydrogels for Regenerative Medicine Applications

    PubMed Central

    Borzacchiello, Assunta; Russo, Luisa; Malle, Birgitte M.; Schwach-Abdellaoui, Khadija; Ambrosio, Luigi

    2015-01-01

    Hyaluronic acid (HA) hydrogels, obtained by cross-linking HA molecules with divinyl sulfone (DVS) based on a simple, reproducible, and safe process that does not employ any organic solvents, were developed. Owing to an innovative preparation method the resulting homogeneous hydrogels do not contain any detectable residual cross-linking agent and are easier to inject through a fine needle. HA hydrogels were characterized in terms of degradation and biological properties, viscoelasticity, injectability, and network structural parameters. They exhibit a rheological behaviour typical of strong gels and show improved viscoelastic properties by increasing HA concentration and decreasing HA/DVS weight ratio. Furthermore, it was demonstrated that processes such as sterilization and extrusion through clinical needles do not imply significant alteration of viscoelastic properties. Both SANS and rheological tests indicated that the cross-links appear to compact the network, resulting in a reduction of the mesh size by increasing the cross-linker amount. In vitro degradation tests of the HA hydrogels demonstrated that these new hydrogels show a good stability against enzymatic degradation, which increases by increasing HA concentration and decreasing HA/DVS weight ratio. Finally, the hydrogels show a good biocompatibility confirmed by in vitro tests. PMID:26090451

  7. Biodegradable elastomers for biomedical applications and regenerative medicine.

    PubMed

    Bat, Erhan; Zhang, Zheng; Feijen, Jan; Grijpma, Dirk W; Poot, André A

    2014-05-01

    Synthetic biodegradable polymers are of great value for the preparation of implants that are required to reside only temporarily in the body. The use of biodegradable polymers obviates the need for a second surgery to remove the implant, which is the case when a nondegradable implant is used. After implantation in the body, biomedical devices may be subjected to degradation and erosion. Understanding the mechanisms of these processes is essential for the development of biomedical devices or implants with a specific function, for example, scaffolds for tissue-engineering applications. For the engineering and regeneration of soft tissues (e.g., blood vessels, cardiac muscle and peripheral nerves), biodegradable polymers are needed that are flexible and elastic. The scaffolds prepared from these polymers should have tuneable degradation properties and should perform well under long-term cyclic deformation conditions. The required polymers, which are either physically or chemically crosslinked biodegradable elastomers, are reviewed in this article. PMID:24935047

  8. Shock Waves for Possible Application in Regenerative Medicine

    NASA Astrophysics Data System (ADS)

    Hosseini, S. H. R.; Nejad, S. Moosavi; Akiyama, H.

    The paper reports experimental study of underwater shock waves effects in modification and possible control of embryonic stem cell differentiation and proliferation. The study is motivated by its application in regenerativemedicine. Underwater shock waves have been of interest for various scientific, industrial, and medical applications.

  9. Regenerative medicine in 2015: Generating and regenerating the digestive system.

    PubMed

    Wells, James M

    2016-02-01

    Advances into understanding stem and progenitor cells and organoids of the gastrointestinal tract have continued apace. New research published in 2015 identified new cell populations involved in liver regeneration and highlighted the development of pancreatic and gastric organoids. PMID:26758784

  10. Polymer biomaterial constructs for regenerative medicine and functional biological systems

    NASA Astrophysics Data System (ADS)

    Meng, Linghui

    The use of collagen as a biomaterial is currently undergoing a renaissance in the tissue engineering field. The excellent biocompatibility and safety due to its biological characteristics, such as biodegradability and weak antigenicity, make collagen a primary material resource in medical applications. Described herein is work towards the development of novel collagen-based matrices, with additional multi-functionality imparted through a novel in-situ crosslinking approach. The process of electrospinning has become a widely used technique for the creation of fibrous scaffolds for tissue engineering applications due to its ability to rapidly create structures composed of nano-scale polymer fibers closely resembling the architecture of the extracellular matrix (ECM). Collagen-PCL sheath-core bicomponent fibrous scaffolds were fabricated using a novel variation on traditional electrospinning, known as co-axial electrospinning. The results showed that the addition of a synthetic polymer core into collagen nanofibers remarkably increased the mechanical strength of collagen matrices spun from the benign solvent system. A novel single-step, in-situ collagen crosslink approach was developed in order to solve the problems dominating traditional collagen crosslinking methods, such as dimensional shrinking and loss of porous morphology, and to simplify the crosslinking procedure for electrospun collagen scaffolds. The excess amount of NHS present in the crosslinking mixture was found to delay the EDC/collagen coupling reaction in a controlled fashion. Fundamental investigations into the development and characterization of in-situ crosslinked collagen matrices such as fibrous scaffolds, gels and sponges, as well as their biomedical applications including cell culture substrates, wound dressings, drug delivery matrices and bone regeneration substitutes, were performed. The preliminary mice studies indicated that the in-situ crosslinked collagen matrices could be good candidates for wound healing and skin regeneration. Polyelectrolyte fibrous tubes of highly-crosslinked poly (acrylic acid) were fabricated by means of electrospinning as polymer models for functional biological systems, with special attention to the axon cortical layer and its cation-exchange properties. The processing parameters of fiber formation and the reversible phase transitions of PAA tubes according to monovalent-divalent ion exchange in solution were systematically investigated. The results showed that the neutralized PAA tubes were responsive to calcium ions, exhibiting significant shrinkage that could be reversed with a chelator such as citrate. Study of such phase transitions may help to better understand the electrophysiological processes known as nerve excitation and conduction in the nervous system, and the resulting PAA tubes might be used as polymer models of artificial axons for potential tissue engineering and nerve repair applications.

  11. Hyaluronic Acid Based Hydrogels for Regenerative Medicine Applications.

    PubMed

    Borzacchiello, Assunta; Russo, Luisa; Malle, Birgitte M; Schwach-Abdellaoui, Khadija; Ambrosio, Luigi

    2015-01-01

    Hyaluronic acid (HA) hydrogels, obtained by cross-linking HA molecules with divinyl sulfone (DVS) based on a simple, reproducible, and safe process that does not employ any organic solvents, were developed. Owing to an innovative preparation method the resulting homogeneous hydrogels do not contain any detectable residual cross-linking agent and are easier to inject through a fine needle. HA hydrogels were characterized in terms of degradation and biological properties, viscoelasticity, injectability, and network structural parameters. They exhibit a rheological behaviour typical of strong gels and show improved viscoelastic properties by increasing HA concentration and decreasing HA/DVS weight ratio. Furthermore, it was demonstrated that processes such as sterilization and extrusion through clinical needles do not imply significant alteration of viscoelastic properties. Both SANS and rheological tests indicated that the cross-links appear to compact the network, resulting in a reduction of the mesh size by increasing the cross-linker amount. In vitro degradation tests of the HA hydrogels demonstrated that these new hydrogels show a good stability against enzymatic degradation, which increases by increasing HA concentration and decreasing HA/DVS weight ratio. Finally, the hydrogels show a good biocompatibility confirmed by in vitro tests. PMID:26090451

  12. Manipulation of hematopoietic stem cells for regenerative medicine.

    PubMed

    Nakajima-Takagi, Yaeko; Osawa, Mitsujiro; Iwama, Atsushi

    2014-01-01

    Hematopoietic stem cells (HSCs) are defined by their capacity to self-renew and to differentiate into all blood cell lineages while retaining robust capacity to regenerate hematopoiesis. Based on these characteristics, they are widely used for transplantation and gene therapy. However, the dose of HSCs available for use in treatments is limited. Therefore, extensive work has been undertaken to expand HSCs in culture and to produce HSCs from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) in order to improve the efficiency and outcome of HSC-based therapies. Various surface markers have been characterized to improve the purification of HSCs and a huge number of cytokines and small-molecule compounds have been screened for use in the expansion of HSCs. In addition, attempts to generate not only HSCs but also mature blood cells from ESCs and iPSCs are currently ongoing. This review covers recent approaches for the purification, expansion or production of human HSCs and provides insight into problems that need to be resolved. PMID:24293004

  13. Immunoisolation: where regenerative medicine meets solid organ transplantation

    PubMed Central

    Pareta, Rajesh; Sanders, Brian; Babbar, Paurush; Soker, Tom; Booth, Christopher; McQuilling, John; Sivanandane, Sittadjody; Stratta, Robert J; Orlando, Giuseppe; Opara, Emmanuel C

    2013-01-01

    Immunoisolation refers to an immunological strategy in which nonself antigens present on an allograft or xenograft are not allowed to come in contact with the host immune system, and it is implemented to prevent allorecognition and avoid immunosuppression. In this setting, the two most promising technologies, encapsulation of pancreatic islets (EPI) and immunocloaking (IC), are used. In the case of EPI, islets are inserted in capsules that, allow exchange of oxygen, nutrients and other molecules. In the case of IC, a natural nanofilm is injected prior to renal transplantation within the vasculature of the graft with the intent to pave the inner surface of the vascular lumen and camouflage the antigens located on the membrane of endothelia cells. Significant progress achieved in experimental models is leading EPI and IC to clinical translation. PMID:23078065

  14. Topical Collection on Regenerative Medicine and Stem Cell Therapy

    PubMed Central

    Leyton-Mange, Jordan S.; Milan, David J.

    2015-01-01

    Opinion statement Since the first demonstrations of the differentiation of pluripotent stem cells to produce functional human cellular models such as cardiomyocytes, the scientific community has been captivated [1, 2••, 3]. In the time since that seminal work, the field has been catapulted forward by the demonstration that adult somatic cells can be reprogrammed to an induced state of pluripotency [4••], and more recently by the development of efficient and sophisticated genome editing tools [5••, 6••, 7], which together afford a theoretically unlimited supply of relevant genetic disease models. In particular, many of the early successes with induced pluripotent stem cell technology have been realized with cardiac arrhythmia syndromes [8••, 9–15]. There is interest in applying stem cell models in large-scale screens to discover novel therapeutics or drug toxicities. This manuscript aims to discuss the potential role of hPSC-derived cardiomyocyte models in therapeutic arrhythmia screens and review recent advances in the field that bring us closer to this reality. PMID:25074263

  15. Regenerative Medicine: Transforming the Drug Discovery and Development Paradigm

    PubMed Central

    Karathanasis, Sotirios K.

    2014-01-01

    Despite the explosion of knowledge in basic biological processes controlling tissue regeneration and the growing interest in repairing/replacing diseased tissues and organs through various approaches (e.g., small and large molecule therapeutics, stem cell injection, tissue engineering), the pharmaceutical industry (pharma) has been reluctant to fully adopt these technologies into the traditional drug discovery and research and development (R&D) process. In this article, I discuss knowledge-base gaps and other possible factors that may delay full incorporation of these innovations in pharma R&D. I hope that this discussion will illuminate key issues that currently limit synergistic relationships between pharma and academic institutions and may even stimulate initiation of such collaborative research. PMID:25085955

  16. Multiscale assembly for tissue engineering and regenerative medicine

    PubMed Central

    Inci, Fatih; Tasoglu, Savas; Erkmen, Burcu; Demirci, Utkan

    2015-01-01

    Our understanding of cell biology and its integration with materials science has led to technological innovations in the bioengineering of tissue-mimicking grafts that can be utilized in clinical and pharmaceutical applications. Bio-engineering of native-like multiscale building blocks provides refined control over the cellular microenvironment, thus enabling functional tissues. In this review, we focus on assembling building blocks from the biomolecular level to the millimeter scale. We also provide an overview of techniques for assembling molecules, cells, spheroids, and microgels and achieving bottom-up tissue engineering. Additionally, we discuss driving mechanisms for self- and guided assembly to create micro-to-macro scale tissue structures. PMID:25796488

  17. Stem Cells and Regenerative Medicine in Lung Biology and Diseases

    PubMed Central

    Lau, Allison N; Goodwin, Meagan; Kim, Carla F; Weiss, Daniel J

    2012-01-01

    A number of novel approaches for repair and regeneration of injured lung have developed over the past several years. These include a better understanding of endogenous stem and progenitor cells in the lung that can function in reparative capacity as well as extensive exploration of the potential efficacy of administering exogenous stem or progenitor cells to function in lung repair. Recent advances in ex vivo lung engineering have also been increasingly applied to the lung. The current status of these approaches as well as initial clinical trials of cell therapies for lung diseases are reviewed below. PMID:22395528

  18. Impact of Stem Cells in Craniofacial Regenerative Medicine

    PubMed Central

    Sanchez-Lara, Pedro A.; Zhao, Hu; Bajpai, Ruchi; Abdelhamid, Alaa I.; Warburton, David

    2012-01-01

    Interest regarding stem cell based therapies for the treatment of congenital or acquired craniofacial deformities is rapidly growing. Craniofacial problems such as periodontal disease, cleft lip and palate, ear microtia, craniofacial microsomia, and head and neck cancers are not only common but also some of the most burdensome surgical problems worldwide. Treatments often require a multi-staged multidisciplinary team approach. Current surgical therapies attempt to reduce the morbidity and social/emotional impact, yet outcomes can still be unpredictable and unsatisfactory. The concept of harvesting stem cells followed by expansion, differentiation, seeding onto a scaffold and re-transplanting them is likely to become a clinical reality. In this review, we will summarize the translational applications of stem cell therapy in tissue regeneration for craniofacial defects. PMID:22737127

  19. Regenerative medicine based applications to combat stress urinary incontinence

    PubMed Central

    Thaker, Hatim; Sharma, Arun K

    2013-01-01

    Stress urinary incontinence (SUI), as an isolated symptom, is not a life threatening condition. However, the fear of unexpected urine leakage contributes to a significant decline in quality of life parameters for afflicted patients. Compared to other forms of incontinence, SUI cannot be easily treated with pharmacotherapy since it is inherently an anatomic problem. Treatment options include the use of bio-injectable materials to enhance closing pressures, and the placement of slings to bolster fascial support to the urethra. However, histologic findings of degeneration in the incontinent urethral sphincter invite the use of tissues engineering strategies to regenerate structures that aid in promoting continence. In this review, we will assess the role of stem cells in restoring multiple anatomic and physiological aspects of the sphincter. In particular, mesenchymal stem cells and CD34+ cells have shown great promise to differentiate into muscular and vascular components, respectively. Evidence supporting the use of cytokines and growth factors such as hypoxia-inducible factor 1-alpha, vascular endothelial growth factor, basic fibroblast growth factor, hepatocyte growth factor and insulin-like growth factor further enhance the viability and direction of differentiation. Bridging the benefits of stem cells and growth factors involves the use of synthetic scaffolds like poly (1,8-octanediol-co-citrate) (POC) thin films. POC scaffolds are synthetic, elastomeric polymers that serve as substrates for cell growth, and upon degradation, release growth factors to the microenvironment in a controlled, predictable fashion. The combination of cellular, cytokine and scaffold elements aims to address the pathologic deficits to urinary incontinence, with a goal to improve patient symptoms and overall quality of life. PMID:24179600

  20. Regenerative Pulmonary Medicine: Potential and Promise, Pitfalls and Challenges

    PubMed Central

    Anversa, Piero; Perrella, Mark A.; Kourembanas, Stella; Choi, Augustine M. K.; Loscalzo, Joseph

    2012-01-01

    Lung disease is an increasing public health problem worldwide. According to the American Lung Association, more than 400,000 people die of lung diseases in the United States each year, which accounts for one in every six deaths overall. These staggering figures translate into a cost of more than $100 billion per year [1]. Even more concerning is the fact that in many chronic lung diseases, we have no therapeutic interventions with which to arrest or reverse the pathobiology of these destructive processes, or to restore functional lung tissue. Thus, we treat patients’ symptoms, but the underlying diseases continue to progress. In these circumstances, our therapeutic options ultimately turn to lung transplantation once diseases such as chronic obstructive pulmonary disease (COPD)/emphysema, idiopathic pulmonary fibrosis, cystic fibrosis, and idiopathic pulmonary arterial hypertension (PAH) become end-stage. Lung transplantation is a life-prolonging procedure for many patients; however, there is a shortage of available donor lungs, and, even when transplanted, the average survival for adult lung recipients is approximately 5–6 years [2]. Recipients are vulnerable to transplant-related diseases, such as bronchiolitis obliterans syndrome, which limits long-term survival in many patients [2],[3]. Thus, there is a desperate need for new and innovative therapies for a number of chronic lung diseases, including diseases that develop after lung transplantation. PMID:22435680

  1. Recombinant Resilin-Based Bioelastomers for Regenerative Medicine Applications.

    PubMed

    Li, Linqing; Mahara, Atsushi; Tong, Zhixiang; Levenson, Eric A; McGann, Christopher L; Jia, Xinqiao; Yamaoka, Tetsuji; Kiick, Kristi L

    2016-01-21

    The outstanding elasticity, excellent resilience at high-frequency, and hydrophilic capacity of natural resilin have motivated investigations of recombinant resilin-based biomaterials as a new class of bio-elastomers in the engineering of mechanically active tissues. Accordingly, here the comprehensive characterization of modular resilin-like polypeptide (RLP) hydrogels is presented and their suitability as a novel biomaterial for in vivo applications is introduced. Oscillatory rheology confirmed that a full suite of the RLPs can be rapidly cross-linked upon addition of the tris(hydroxymethyl phosphine) cross-linker, achieving similar in situ shear storage moduli (20 k ± 3.5 Pa) across various material compositions. Uniaxial stress relaxation tensile testing of hydrated RLP hydrogels under cyclic loading and unloading showed negligible stress reduction and hysteresis, superior reversible extensibility, and high resilience with Young's moduli of 30 ± 7.4 kPa. RLP hydrogels containing MMP-sensitive domains are susceptible to enzymatic degradation by matrix metalloproteinase-1 (MMP-1). Cell culture studies revealed that RLP-based hydrogels supported the attachment and spreading (2D) of human mesenchymal stem cells and did not activate cultured macrophages. Subcutaneous transplantation of RLP hydrogels in a rat model, which to our knowledge is the first such reported in vivo analysis of RLP-based hydrogels, illustrated that these materials do not elicit a significant inflammatory response, suggesting their potential as materials for tissue engineering applications with targets of mechanically demanding tissues such as vocal fold and cardiovascular tissues. PMID:26632334

  2. Bone regenerative medicine: classic options, novel strategies, and future directions

    PubMed Central

    2014-01-01

    This review analyzes the literature of bone grafts and introduces tissue engineering as a strategy in this field of orthopedic surgery. We evaluated articles concerning bone grafts; analyzed characteristics, advantages, and limitations of the grafts; and provided explanations about bone-tissue engineering technologies. Many bone grafting materials are available to enhance bone healing and regeneration, from bone autografts to graft substitutes; they can be used alone or in combination. Autografts are the gold standard for this purpose, since they provide osteogenic cells, osteoinductive growth factors, and an osteoconductive scaffold, all essential for new bone growth. Autografts carry the limitations of morbidity at the harvesting site and limited availability. Allografts and xenografts carry the risk of disease transmission and rejection. Tissue engineering is a new and developing option that had been introduced to reduce limitations of bone grafts and improve the healing processes of the bone fractures and defects. The combined use of scaffolds, healing promoting factors, together with gene therapy, and, more recently, three-dimensional printing of tissue-engineered constructs may open new insights in the near future. PMID:24628910

  3. Magnetically Targeted Stem Cell Delivery for Regenerative Medicine

    PubMed Central

    Cores, Jhon; Caranasos, Thomas G.; Cheng, Ke

    2015-01-01

    Stem cells play a special role in the body as agents of self-renewal and auto-reparation for tissues and organs. Stem cell therapies represent a promising alternative strategy to regenerate damaged tissue when natural repairing and conventional pharmacological intervention fail to do so. A fundamental impediment for the evolution of stem cell therapies has been the difficulty of effectively targeting administered stem cells to the disease foci. Biocompatible magnetically responsive nanoparticles are being utilized for the targeted delivery of stem cells in order to enhance their retention in the desired treatment site. This noninvasive treatment-localization strategy has shown promising results and has the potential to mitigate the problem of poor long-term stem cell engraftment in a number of organ systems post-delivery. In addition, these same nanoparticles can be used to track and monitor the cells in vivo, using magnetic resonance imaging. In the present review we underline the principles of magnetic targeting for stem cell delivery, with a look at the logic behind magnetic nanoparticle systems, their manufacturing and design variants, and their applications in various pathological models. PMID:26133387

  4. Acute inflammation stimulates a regenerative response in the neonatal mouse heart

    PubMed Central

    Han, Chunyong; Nie, Yu; Lian, Hong; Liu, Rui; He, Feng; Huang, Huihui; Hu, Shengshou

    2015-01-01

    Cardiac injury in neonatal 1-day-old mice stimulates a regenerative response characterized by reactive cardiomyocyte proliferation, which is distinguished from the fibrotic repair process in adults. Acute inflammation occurs immediately after heart injury and has generally been believed to exert a negative effect on heart regeneration by promoting scar formation in adults; however, little is known about the role of acute inflammation in the cardiac regenerative response in neonatal mice. Here, we show that acute inflammation induced cardiomyocyte proliferation after apical intramyocardial microinjection of immunogenic zymosan A particles into the neonatal mouse heart. We also found that cardiac injury-induced regenerative response was suspended after immunosuppression in neonatal mice, and that cardiomyocytes could not be reactivated to proliferate after neonatal heart injury in the absence of interleukin-6 (IL-6). Furthermore, cardiomyocyte-specific deletion of signal transducer and activator of transcription 3 (STAT3), the major downstream effector of IL-6 signaling, decreased reactive cardiomyocyte proliferation after apical resection. Our results indicate that acute inflammation stimulates the regenerative response in neonatal mouse heart, and suggest that modulation of inflammatory signals might have important implications in cardiac regenerative medicine. PMID:26358185

  5. Double regenerative amplification of picosecond pulses

    NASA Astrophysics Data System (ADS)

    Bai, Zhen-ao; Chen, Li-yuan; Bai, Zhen-xu; Chen, Meng; Li, Gang

    2012-04-01

    An double Nd:YAG regenerative amplification picosecond pulse laser is demonstrated under the semiconductor saturable absorption mirror(SESAM) mode-locking technology and regenerative amplification technology, using BBO crystal as PC electro-optic crystal. The laser obtained is 20.71ps pulse width at 10 KHz repetition rate, and the energy power is up to 4W which is much larger than the system without pre-amplification. This result will lay a foundation for the following amplification.

  6. Low NO sub x regenerative burner

    SciTech Connect

    Hovis, J.E.; Finke, H.P.

    1991-01-08

    This patent describes improvements in a regenerative burner having a regenerative bed, a burner port and a fuel nozzle. The improvement comprises: a burner baffle having apertures therein for selectively directing combustion air and inducing combustion gas recirculation into a primary combustion zone for suppressing NO{sub x} emissions, the baffle and the fuel nozzle being positioned substantially adjacent the burner port and being substantially coplanar in a plane perpendicular to a burner axis.

  7. High power regenerative laser amplifier

    DOEpatents

    Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.

    1994-02-08

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.

  8. High power regenerative laser amplifier

    DOEpatents

    Miller, John L.; Hackel, Lloyd A.; Dane, Clifford B.; Zapata, Luis E.

    1994-01-01

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse.

  9. Regenerative rotary displacer Stirling engine

    SciTech Connect

    Isshiki, Naotsugu; Watanabe, Hiroichi; Raggi, L.; Isshiki, Seita; Hirata, Koichi

    1996-12-31

    A few rotary displacer Stirling engines in which the displacer has one gas pocket space at one side and rotates in a main enclosed cylinder, which is heated from one side and cooled from opposite side without any regenerator, have been studied for some time by the authors. The authors tried to improve this engine by equipping it with a regenerator, because without a regenerator, pressure oscillation and efficiency are too small. Here, several types of regenerative rotary displacer piston Stirling engines are proposed. One is the contra-rotating tandem two disc type displacer engine using axial heat conduction through side walls or by heat pipes and another is a single disc type with circulating fluid regenerator or heat pipes. Stirling engines of this new rotary displacer type are thought to attain high speed. Here, experimental results of the original rotary displacer Stirling engine without a regenerator, and one contra-rotating tandem displacer engine with side wall regenerator by axial heat conduction are reported accompanied with a discussion of the results.

  10. Staged regenerative sorption heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1995-01-01

    A regenerative adsorbent heat pump process and system for cooling and heating a space. A sorbent is confined in a plurality of compressors of which at least four are first stage and at least four are second stage. The first stage operates over a first pressure region and the second stage over a second pressure region which is higher than the first. Sorbate from the first stage enters the second stage. The sorbate loop includes a condenser, expansion valve, evaporator and the compressors. A single sorbate loop can be employed for single-temperature-control such as air conditioning and heating. Two sorbate loops can be used for two-temperature-control as in a refrigerator and freezer. The evaporator temperatures control the freezer and refrigerator temperatures. Alternatively the refrigerator temperature can be cooled by the freezer with one sorbate loop. A heat transfer fluid is circulated in a closed loop which includes a radiator and the compressors. Low temperature heat is exhausted by the radiator. High temperature heat is added to the heat transfer fluid entering the compressors which are desorbing vapor. Heat is transferred from compressors which are sorbing vapor to the heat transfer fluid, and from the heat transfer fluid to the compressors which are desorbing vapor. Each compressor is subjected to the following phases, heating to its highest temperature, cooling down from its highest temperature, cooling to its lowest temperature, and warming up from its lowest temperature. The phases are repeated to complete a cycle and regenerate heat.

  11. Current overview on challenges in regenerative endodontics

    PubMed Central

    Bansal, Ramta; Jain, Aditya; Mittal, Sunandan

    2015-01-01

    Introduction: Regenerative endodontics provides hope of converting the non-vital tooth into vital once again. It focuses on substituting traumatized and pathological pulp with functional pulp tissue. Current regenerative procedures successfully produce root development but still fail to re-establish real pulp tissue and give unpredictable results. There are several drawbacks that need to be addressed to improve the quality and efficiency of the treatment. Aim: The aim of this review article is to discuss major priorities that ought to be dealt before applications of regenerative endodontics flourish the clinical practice. Materials and Methods: A web-based research on MEDLINE was done using filter terms Review, published in the last 10 years and Dental journals. Keywords used for research were “regenerative endodontics,” “dental stem cells,” “growth factor regeneration,” “scaffolds,” and “challenges in regeneration.” This review article screened about 150 articles and then the relevant information was compiled. Results: Inspite of the impressive growth in regenerative endodontic field, there are certain loopholes in the existing treatment protocols that might sometimes result in undesired and unpredictable outcomes. Conclusion: Considerable research and development efforts are required to improve and update existing regenerative endodontic strategies to make it an effective, safe, and biological mode to save teeth. PMID:25657518

  12. Regenerative fuel cell engineering - FY99

    SciTech Connect

    Michael A. Inbody; Rodney L. Borup; James C. Hedstrom; Jose Tafoya; Byron Morton; Lois Zook; Nicholas E. Vanderborgh

    2000-01-01

    The authors report the work conducted by the ESA-EPE Fuel Cell Engineering Team at Los Alamos National Laboratory during FY99 on regenerative fuel cell system engineering. The work was focused on the evaluation of regenerative fuel cell system components obtained through the RAFCO program. These components included a 5 kW PEM electrolyzer, a two-cell regenerative fuel cell stack, and samples of the electrolyzer membrane, anode, and cathode. The samples of the electrolyzer membrane, anode, and cathode were analyzed to determine their structure and operating characteristics. Tests were conducted on the two-cell regenerative fuel cell stack to characterize its operation as an electrolyzer and as a fuel cell. The 5 kW PEM electrolyzer was tested in the Regenerative Fuel Cell System Test Facility. These tests served to characterize the operation of the electrolyzer and, also, to verify the operation of the newly completed test facility. Future directions for this work in regenerative fuel cell systems are discussed.

  13. The Regenerative Role of the Fetal and Adult Stem Cell Secretome

    PubMed Central

    Bollini, Sveva; Gentili, Chiara; Tasso, Roberta; Cancedda, Ranieri

    2013-01-01

    For a long time, the stem cell regenerative paradigm has been based on the assumption that progenitor cells play a critical role in tissue repair by means of their plasticity and differentiation potential. However, recent works suggest that the mechanism underlying the benefits of stem cell transplantation might relate to a paracrine modulatory effect rather than the replacement of affected cells at the site of injury. Therefore, mounting evidence that stem cells may act as a reservoir of trophic signals released to modulate the surrounding tissue has led to a paradigm shift in regenerative medicine. Attention has been shifted from analysis of the stem cell genome to understanding the stem cell “secretome”, which is represented by the growth factors, cytokines and chemokines produced through paracrine secretion. Insights into paracrine-mediated repair support a new approach in regenerative medicine and the isolation and administration of specific stem cell-derived paracrine factors may represent an extremely promising strategy, introducing paracrine-based therapy as a novel and feasible clinical application. In this review, we will discuss the regenerative potential of fetal and adult stem cells, with particular attention to their secretome. PMID:26237150

  14. Towards personal health care with model-guided medicine: long-term PPPM-related strategies and realisation opportunities within ‘Horizon 2020’

    PubMed Central

    2014-01-01

    At the international EPMA Summit carried out in the EU Parliament (September 2013), the main challenges in Predictive, Preventive and Personalised Medicine have been discussed and strategies outlined in order to implement scientific and technological innovation in medicine and healthcare utilising new strategic programmes such as ‘Horizon 2020’. The joint EPMA (European Association for Predictive, Preventive and Personalised Medicine) / IFCARS (International Foundation for Computer Assisted Radiology and Surgery) paper emphasises the consolidate position of the leading experts who are aware of the great responsibility of being on a forefront of predictive, preventive and personalised medicine. Both societies consider long-term international partnerships and multidisciplinary projects to create PPPM relevant innovation in science, technological tools and practical implementation in healthcare. Personalisation in healthcare urgently needs innovation in design of PPPM-related medical services, new products, research, education, didactic materials, propagation of targeted prevention in the society and treatments tailored to the person. For the paradigm shift from delayed reactive to predictive, preventive and personalised medicine, a new culture should be created in communication between individual professional domains, between doctor and patient, as well as in communication with individual social (sub)groups and patient cohorts. This is a long-term mission in personalised healthcare with the whole spectrum of instruments available and to be created in the field. PMID:24883142

  15. Towards personal health care with model-guided medicine: long-term PPPM-related strategies and realisation opportunities within 'Horizon 2020'.

    PubMed

    Lemke, Heinz U; Golubnitschaja, Olga

    2014-01-01

    At the international EPMA Summit carried out in the EU Parliament (September 2013), the main challenges in Predictive, Preventive and Personalised Medicine have been discussed and strategies outlined in order to implement scientific and technological innovation in medicine and healthcare utilising new strategic programmes such as 'Horizon 2020'. The joint EPMA (European Association for Predictive, Preventive and Personalised Medicine) / IFCARS (International Foundation for Computer Assisted Radiology and Surgery) paper emphasises the consolidate position of the leading experts who are aware of the great responsibility of being on a forefront of predictive, preventive and personalised medicine. Both societies consider long-term international partnerships and multidisciplinary projects to create PPPM relevant innovation in science, technological tools and practical implementation in healthcare. Personalisation in healthcare urgently needs innovation in design of PPPM-related medical services, new products, research, education, didactic materials, propagation of targeted prevention in the society and treatments tailored to the person. For the paradigm shift from delayed reactive to predictive, preventive and personalised medicine, a new culture should be created in communication between individual professional domains, between doctor and patient, as well as in communication with individual social (sub)groups and patient cohorts. This is a long-term mission in personalised healthcare with the whole spectrum of instruments available and to be created in the field. PMID:24883142

  16. Development of Career Opportunities for Technicians in the Nuclear Medicine Field, Phase I. Interim Report Number 1: Survey of Job Characteristics, Manpower Needs and Training Resources, July 1969.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Cambridge, MA.

    Phase I of a multiphase research program in progress at the Technical Education Research Center, Inc., was conducted to analyze needs and resources in terms of job performance tasks, career opportunities, and training requirements for nuclear medical technicians. Data were gathered through personal interviews with 203 persons, mostly physicians,…

  17. Advances in understanding tissue regenerative capacity and mechanisms in animals

    PubMed Central

    Poss, Kenneth D.

    2011-01-01

    Questions about how and why tissue regeneration occurs capture the attention of countless biologists, biomedical engineers, and clinicians. Regenerative capacity differs greatly across organs and organisms, and a spectrum of model systems with different technical advantages and regenerative strategies are studied. Several key issues common to natural regenerative events are receiving new attention from improving models and approaches, including: the determination of regenerative capacity; the importance of stem cells, dedifferentation and transdifferentiation; how regenerative signals are initiated and targeted; and the mechanisms that control regenerative proliferation and patterning. PMID:20838411

  18. Regenerative amplifier for the OMEGA laser system

    NASA Astrophysics Data System (ADS)

    Babushkin, Andrei; Bittle, W.; Letzring, S. A.; Skeldon, Mark D.; Seka, Wolf D.

    1999-07-01

    We present the requirements, design, and experimental results for a negative feedback-controlled Nd:YLF regenerative amplifier for the OMEGA laser system. This externally synchronizable region boosts the energy of temporally shaped optical pulses from the subnanojoule to the submillijoule energy level with a measured long-term output energy stability of 0.2 percent rms. To our knowledge this represents the highest energy stability ever demonstrated for a millijoule-level laser system, either flashlamp pumped or diode pumped. In addition to the excellent stability and reproducibility, the regen output is very insensitive to the injected pulse energy and the temporal distortions due to the negative feedback are immeasurable. Four regenerative amplifiers equipped with this negative feedback system have operated flawlessly on OMEGA over the past two year period.

  19. Combined hydraulic and regenerative braking system

    SciTech Connect

    Mericle, G.E.; Venkataperumal, R.R.

    1981-06-02

    A combined hydraulic and regenerative braking system and method is disclosed for an electric vehicle. The braking system being responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  20. Combined hydraulic and regenerative braking system

    DOEpatents

    Venkataperumal, Rama R.; Mericle, Gerald E.

    1981-06-02

    A combined hydraulic and regenerative braking system and method for an electric vehicle, with the braking system being responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  1. Combined hydraulic and regenerative braking system

    DOEpatents

    Venkataperumal, R.R.; Mericle, G.E.

    1979-08-09

    A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  2. WIDE BAND REGENERATIVE FREQUENCY DIVIDER AND MULTIPLIER

    DOEpatents

    Laine, E.F.

    1959-11-17

    A regenerative frequency divider and multiplier having wide band input characteristics is presented. The circuit produces output oscillations having frequencies related by a fixed ratio to input oscillations over a wide band of frequencies. In accomplishing this end, the divider-multiplier includes a wide band input circuit coupled by mixer means to a wide band output circuit having a pass band related by a fixed ratio to that of the input circuit. A regenerative feedback circuit derives a fixed frequency ratio feedback signal from the output circuit and applies same to the mixer means in proper phase relation to sustain fixed frequency ratio oscillations in the output circuit.

  3. Improved Regenerative Sorbent-Compressor Refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1992-01-01

    Conceptual regenerative sorbent-compressor refrigerator attains regeneration efficiency and, therefore, overall power efficiency and performance greater than conventional refrigerators. Includes two fluid loops. In one, CH2FCF3 (R134a) ciculates by physical adsorption and desorption in four activated-charcoal sorption compressors. In other, liquid or gas coolant circulated by pump. Wave of regenerative heating and cooling propagates cyclically like peristatic wave among sorption compressors and associated heat exchangers. Powered by electricity, oil, gas, solar heat, or waste heat. Used as air conditioners, refrigerators, and heat pumps in industrial, home, and automotive applications.

  4. Ultrasound-Assisted Liposuction Does Not Compromise the Regenerative Potential of Adipose-Derived Stem Cells

    PubMed Central

    Duscher, Dominik; Atashroo, David; Maan, Zeshaan N.; Luan, Anna; Brett, Elizabeth A.; Barrera, Janos; Khong, Sacha M.; Zielins, Elizabeth R.; Whittam, Alexander J.; Hu, Michael S.; Walmsley, Graham G.; Pollhammer, Michael S.; Schmidt, Manfred; Schilling, Arndt F.; Machens, Hans-Günther; Huemer, Georg M.; Wan, Derrick C.; Longaker, Michael T.

    2016-01-01

    Human mesenchymal stem cells (MSCs) have recently become a focus of regenerative medicine, both for their multilineage differentiation capacity and their excretion of proregenerative cytokines. Adipose-derived mesenchymal stem cells (ASCs) are of particular interest because of their abundance in fat tissue and the ease of harvest via liposuction. However, little is known about the impact of different liposuction methods on the functionality of ASCs. Here we evaluate the regenerative abilities of ASCs harvested via a third-generation ultrasound-assisted liposuction (UAL) device versus ASCs obtained via standard suction-assisted lipoaspiration (SAL). Lipoaspirates were sorted using fluorescent assisted cell sorting based on an established surface-marker profile (CD34+/CD31−/CD45−), to obtain viable ASCs. Yield and viability were compared and the differentiation capacities of the ASCs were assessed. Finally, the regenerative potential of ASCs was examined using an in vivo model of tissue regeneration. UAL- and SAL-derived samples demonstrated equivalent ASC yield and viability, and UAL ASCs were not impaired in their osteogenic, adipogenic, or chondrogenic differentiation capacity. Equally, quantitative real-time polymerase chain reaction showed comparable expression of most osteogenic, adipogenic, and key regenerative genes between both ASC groups. Cutaneous regeneration and neovascularization were significantly enhanced in mice treated with ASCs obtained by either UAL or SAL compared with controls, but there were no significant differences in healing between cell-therapy groups. We conclude that UAL is a successful method of obtaining fully functional ASCs for regenerative medicine purposes. Cells harvested with this alternative approach to liposuction are suitable for cell therapy and tissue engineering applications. Significance Adipose-derived mesenchymal stem cells (ASCs) are an appealing source of therapeutic progenitor cells because of their multipotency

  5. Ultrasound-Assisted Liposuction Does Not Compromise the Regenerative Potential of Adipose-Derived Stem Cells.

    PubMed

    Duscher, Dominik; Atashroo, David; Maan, Zeshaan N; Luan, Anna; Brett, Elizabeth A; Barrera, Janos; Khong, Sacha M; Zielins, Elizabeth R; Whittam, Alexander J; Hu, Michael S; Walmsley, Graham G; Pollhammer, Michael S; Schmidt, Manfred; Schilling, Arndt F; Machens, Hans-Günther; Huemer, Georg M; Wan, Derrick C; Longaker, Michael T; Gurtner, Geoffrey C

    2016-02-01

    Human mesenchymal stem cells (MSCs) have recently become a focus of regenerative medicine, both for their multilineage differentiation capacity and their excretion of proregenerative cytokines. Adipose-derived mesenchymal stem cells (ASCs) are of particular interest because of their abundance in fat tissue and the ease of harvest via liposuction. However, little is known about the impact of different liposuction methods on the functionality of ASCs. Here we evaluate the regenerative abilities of ASCs harvested via a third-generation ultrasound-assisted liposuction (UAL) device versus ASCs obtained via standard suction-assisted lipoaspiration (SAL). Lipoaspirates were sorted using fluorescent assisted cell sorting based on an established surface-marker profile (CD34+/CD31-/CD45-), to obtain viable ASCs. Yield and viability were compared and the differentiation capacities of the ASCs were assessed. Finally, the regenerative potential of ASCs was examined using an in vivo model of tissue regeneration. UAL- and SAL-derived samples demonstrated equivalent ASC yield and viability, and UAL ASCs were not impaired in their osteogenic, adipogenic, or chondrogenic differentiation capacity. Equally, quantitative real-time polymerase chain reaction showed comparable expression of most osteogenic, adipogenic, and key regenerative genes between both ASC groups. Cutaneous regeneration and neovascularization were significantly enhanced in mice treated with ASCs obtained by either UAL or SAL compared with controls, but there were no significant differences in healing between cell-therapy groups. We conclude that UAL is a successful method of obtaining fully functional ASCs for regenerative medicine purposes. Cells harvested with this alternative approach to liposuction are suitable for cell therapy and tissue engineering applications. Significance: Adipose-derived mesenchymal stem cells (ASCs) are an appealing source of therapeutic progenitor cells because of their multipotency

  6. The Nanopharmacology and Nanotoxicology of Nanomaterials: New Opportunities and Challenges.

    PubMed

    Radomska, Anna; Leszczyszyn, Jarosław; Radomski, Marek W

    2016-01-01

    The very dynamic growth of nanotechnology, nanomaterials (sized 1-100 nm) and their medical applications over the past 10 years has promised to add a new impetus to the diagnostics and therapeutics of a wide range of human pathologies, including cancer, cardiovascular diseases and diseases of the central nervous system. This growth in nanomedicine also fuels advances in bioengineering, regenerative medicine and the development of medical devices. However, as with all new pharmaceuticals and medical devices, new opportunities are inherently accompanied by new challenges due to the ability of nanomaterials to interact with the body on the cellular, subcellular and molecular levels. This article reviews some of the most compelling problems related to the nanopharmacology and nanotoxicology of nanomaterials. The overview focuses on opportunities emerging from the development of multifunctional nanomaterials and nanotheranostics for the diagnostics and therapy of both major and rare diseases. Challenges related to the hemocompatibility of nanomaterials are also discussed. PMID:26935510

  7. Stem cell research in Latin America: update, challenges and opportunities in a priority research area.

    PubMed

    Palma, Verónica; Pitossi, Fernando J; Rehen, Stevens K; Touriño, Cristina; Velasco, Iván

    2015-01-01

    Stem cell research is attracting wide attention as a promising and fast-growing field in Latin America, as it is worldwide. Many countries in the region have defined Regenerative Medicine as a research priority and a focus of investment. This field generates not only opportunities but also regulatory, technical and operative challenges. In this review, scientists from Uruguay, Mexico, Chile, Brazil and Argentina provide their view on stem cell research in each of their countries. Despite country-specific characteristics, all countries share several issues such as regulatory challenges. Key initiatives of each country to promote stem cell research are also discussed. As a conclusion, it is clear that regional integration should be more emphasized and international collaboration, promoted. PMID:26440367

  8. Use of elastomers in regenerative braking systems

    NASA Astrophysics Data System (ADS)

    The storage of potential energy as strain energy in elastomers was investigated. The evolution of the preferred stressing scheme is described, and test results on full-size elastomeric energy storage units sized for an automotive regenerative braking system application are presented. The need for elastomeric material improvements is also discussed.

  9. Simulations of the LANL regenerative amplifier FEL

    SciTech Connect

    Kesselring, M.; Colson, W.B.; Wong, R.K.; Sheffield, R.L.

    1997-08-01

    The LANL regenerative amplifier FEL is designed to produce an average output power of 1 kW. Simulations study the transverse effects due to guiding by the intense electron beam and feedback. These simulations coupled with experimental measurements can be used to improve future high-power FEL designs.

  10. Regenerative fuel cell systems for project pathfinder

    NASA Technical Reports Server (NTRS)

    Huff, J. R.; Hedstrom, J.; Vanderborgh, N. E.; Prokopius, P.

    1989-01-01

    The objectives of a surface power program, an element of the exploration thrust of the Pathfinder project, and plans for meeting them are outlined. Technological assessment and tradeoff studies of fuel cell and electrolyzer technologies suitable for use in a regenerative fuel cell are described. The viability of proton exchange membranes (PEM) in meeting the system requirements is discussed.

  11. Regenerative Studies: College Community and Community College.

    ERIC Educational Resources Information Center

    Woltz, Mary G.

    This case study applies principles derived from the Center for Regenerative Studies (CRS) to a community college in North Carolina. CRS, on the campus of California State Polytechnic Institute (California), is dedicated to the education, demonstration, and research of degenerative systems in the areas of shelter, food production, energy, water and…

  12. Regenerative treatments to enhance orthopedic surgical outcome.

    PubMed

    Murrell, William D; Anz, Adam W; Badsha, Humeira; Bennett, William F; Boykin, Robert E; Caplan, Arnold I

    2015-04-01

    In orthopedic surgery there has been a never-ending quest to improve surgical outcome and the patient's experience. Progression has been marked by the refinement of surgical techniques and instruments and later by enhanced diagnostic imaging capability, specifically magnetic resonance. Over time implant optimization was achieved, along with the development of innovative minimally invasive arthroscopic technical skills to leverage new versions of classic procedures and implants to improve short-term patient morbidity and initial, mid-term, and long-term patient outcomes. The use of regenerative and/or biological adjuncts to aid the healing process has followed in the drive for continual improvement, and major breakthroughs in basic science have significantly unraveled the mechanisms of key healing and regenerative pathways. A wide spectrum of primary and complementary regenerative treatments is becoming increasingly available, including blood-derived preparations, growth factors, bone marrow preparations, and stem cells. This is a new era in the application of biologically active material, and it is transforming clinical practice by providing effective supportive treatments either at the time of the index procedure or during the postoperative period. Regenerative treatments are currently in active use to enhance many areas of orthopedic surgery in an attempt to improve success and outcome. In this review we provide a comprehensive overview of the peer-reviewed evidence-based literature, highlighting the clinical outcomes in humans both with preclinical data and human clinical trials involving regenerative preparations within the areas of rotator cuff, meniscus, ligament, and articular cartilage surgical repair. PMID:25864660

  13. Nuclear Medicine

    MedlinePlus

    ... Parents/Teachers Resource Links for Students Glossary Nuclear Medicine What is nuclear medicine? What are radioactive tracers? ... funded researchers advancing nuclear medicine? What is nuclear medicine? Nuclear medicine is a medical specialty that uses ...

  14. Direct-write Bioprinting Three-Dimensional Biohybrid Systems for Future Regenerative Therapies

    PubMed Central

    Chang, Carlos C.; Boland, Eugene D.; Williams, Stuart K.; Hoying, James B.

    2013-01-01

    Regenerative medicine seeks to repair or replace dysfunctional tissues with engineered biological or biohybrid systems. Current clinical regenerative models utilize simple uniform tissue constructs formed with cells cultured onto biocompatible scaffolds. Future regenerative therapies will require the fabrication of complex three-dimensional constructs containing multiple cell types and extracellular matrices. We believe bioprinting technologies will provide a key role in the design and construction of future engineered tissues for cell-based and regenerative therapies. This review describes the current state-of-the-art bioprinting technologies, focusing on direct-write bioprinting. We describe a number of process and device considerations for successful bioprinting of composite biohybrid constructs. In addition, we have provided baseline direct-write printing parameters for a hydrogel system (Pluronic F127) often used in cardiovascular applications. Direct-write dispensed lines (gels with viscosities ranging from 30 mPa*s to greater than 600×106 mPa*s) were measured following mechanical and pneumatic printing via three commercially available needle sizes (20ga, 25ga, and 30ga). Example patterns containing microvascular cells and isolated microvessel fragments were also bioprinted into composite 3D structures. Cells and vessel fragments remained viable and maintained in vitro behavior after incorporation into biohybrid structures. Direct-write bioprinting of biologicals provides a unique method to design and fabricate complex, multi-component 3D structures for experimental use. We hope our design insights and baseline parameter descriptions of direct-write bioprinting will provide a useful foundation for colleagues to incorporate this 3D fabrication method into future regenerative therapies. PMID:21504055

  15. Regenerative Applications Using Tooth Derived Stem Cells in Other Than Tooth Regeneration: A Literature Review

    PubMed Central

    Park, Yun-Jong; Cha, Seunghee; Park, Young-Seok

    2016-01-01

    Tooth derived stem cells or dental stem cells are categorized according to the location from which they are isolated and represent a promising source of cells for regenerative medicine. Originally, as one kind of mesenchymal stem cells, they are considered an alternative of bone marrow stromal cells. They share many commonalties but maintain differences. Considering their original function in development and the homeostasis of tooth structures, many applications of these cells in dentistry have aimed at tooth structure regeneration; however, the application in other than tooth structures has been attempted extensively. The availability from discarded or removed teeth can be an innate benefit as a source of autologous cells. Their origin from the neural crest results in exploitation of neurological and numerous other applications. This review briefly highlights current and future perspectives of the regenerative applications of tooth derived stem cells in areas beyond tooth regeneration. PMID:26798366

  16. Commentary: Personalized health planning and the Patient Protection and Affordable Care Act: an opportunity for academic medicine to lead health care reform.

    PubMed

    Dinan, Michaela A; Simmons, Leigh Ann; Snyderman, Ralph

    2010-11-01

    The Patient Protection and Affordable Care Act of 2010 (PPACA) mandates the exploration of new approaches to coordinated health care delivery--such as patient-centered medical homes, accountable care organizations, and disease management programs--in which reimbursement is aligned with desired outcomes. PPACA does not, however, delineate a standardized approach to improve the delivery process or a specific means to quantify performance for value-based reimbursement; these details are left to administrative agencies to develop and implement. The authors propose that coordinated care can be implemented more effectively and performance quantified more accurately by using personalized health planning, which employs individualized strategic health planning and care relevant to the patient's specific needs. Personalized health plans, developed by providers in collaboration with their patients, quantify patients' health and health risks over time, identify strategies to mitigate risks and/or treat disease, deliver personalized care, engage patients in their care, and measure outcomes. Personalized health planning is a core clinical process that can standardize coordinated care approaches while providing the data needed for performance-based reimbursement. The authors argue that academic health centers have a significant opportunity to lead true health care reform by adopting personalized health planning to coordinate care delivery while conducting the research and education necessary to enable its broad clinical application. PMID:20844424

  17. [Nanotechnology future of medicine].

    PubMed

    Terlega, Katarzyna; Latocha, Małgorzata

    2012-10-01

    Nanotechnology enables to produce products with new, exactly specified, unique properties. Those products are finding application in various branches of electronic, chemical, food and textile industry as well as in medicine, pharmacy, agriculture, architectural engineering, aviation and in defense. In this paper structures used in nanomedicine were characterized. Possibilities and first effort of application of nanotechnology in diagnostics and therapy were also described. Nanotechnology provides tools which allow to identifying changes and taking repair operations on cellular and molecular level and applying therapy oriented for specific structures in cell. Great hope are being associated with entering nanotechnology into the regenerative medicine. It requires astute recognition bases of tissue regeneration biology--initiating signals as well as the intricate control system of the progress of this process. However application of nanotechnology in tissue engineering allows to avoiding problems associated with loss properties of implants what is frequent cause of performing another surgical procedure at present. PMID:23272613

  18. Regenerative Endodontics: A Road Less Travelled

    PubMed Central

    Bansal, Ramta; Mittal, Sunandan; Kumar, Tarun; Kaur, Dilpreet

    2014-01-01

    Although traditional approaches like root canal therapy and apexification procedures have been successful in treating diseased or infected root canals, but these modalities fail to re-establish healthy pulp tissue in treated teeth. Regeneration-based approaches aims to offer high levels of success by replacing diseased or necrotic pulp tissues with healthy pulp tissue to revitalize teeth. The applications of regenerative approaches in dental clinics have potential to dramatically improve patients’ quality of life. This review article offers a detailed overview of present regenerative endodontic approaches aiming to revitalize teeth and also outlines the problems to be dealt before this emerging field contributes to clinical treatment protocols. It conjointly covers the basic trilogy elements of tissue engineering. PMID:25478476

  19. Regenerative Cell Therapy for Corneal Endothelium.

    PubMed

    Bartakova, Alena; Kunzevitzky, Noelia J; Goldberg, Jeffrey L

    2014-09-01

    Endothelial cell dysfunction as in Fuchs dystrophy or pseudophakic bullous keratopathy, and the limited regenerative capacity of human corneal endothelial cells (HCECs), drive the need for corneal transplant. In response to limited donor corneal availability, significant effort has been directed towards cell therapy as an alternative to surgery. Stimulation of endogenous progenitors, or transplant of stem cell-derived HCECs or in vitro-expanded, donor-derived HCECs could replace traditional surgery with regenerative therapy. Ex vivo expansion of HCECs is technically challenging, and the basis for molecular identification of functional HCECs is not established. Delivery of cells to the inner layer of the human cornea is another challenge: different techniques, from simple injection to artificial corneal scaffolds, are being investigated. Despite remaining questions, corneal endothelial cell therapies, translated to the clinic, represent the future for the treatment of corneal endotheliopathies. PMID:25328857

  20. Regenerative cellular therapies for neurologic diseases.

    PubMed

    Levy, Michael; Boulis, Nicholas; Rao, Mahendra; Svendsen, Clive N

    2016-05-01

    The promise of stem cell regeneration has been the hope of many neurologic patients with permanent damage to the central nervous system. There are hundreds of stem cell trials worldwide intending to test the regenerative capacity of stem cells in various neurological conditions from Parkinson׳s disease to multiple sclerosis. Although no stem cell therapy is clinically approved for use in any human disease indication, patients are seeking out trials and asking clinicians for guidance. This review summarizes the current state of regenerative stem cell transplantation divided into seven conditions for which trials are currently active: demyelinating diseases/spinal cord injury, amyotrophic lateral sclerosis, stroke, Parkinson׳s disease, Huntington׳s disease, macular degeneration and peripheral nerve diseases. This article is part of a Special Issue entitled SI: PSC and the brain. PMID:26239912