Science.gov

Sample records for region dna sequence

  1. Atypical regions in large genomic DNA sequences

    SciTech Connect

    Scherer, S. |; McPeek, M.S.; Speed, T.P.

    1994-07-19

    Large genomic DNA sequences contain regions with distinctive patterns of sequence organization. The authors describe a method using logarithms of probabilities based on seventh-order Markov chains to rapidly identify genomic sequences that do not resemble models of genome organization built from compilations of octanucleotide usage. Data bases have been constructed from Escherichia coli and Saccharomyces cerevisiae DNA sequences of >1000 nt and human sequences of >10,000 nt. Atypical genes and clusters of genes have been located in bacteriophage, yeast, and primate DNA sequences. The authors consider criteria for statistical significance of the results, offer possible explanations for the observed variation in genome organization, and give additional applications of these methods in DNA sequence analysis.

  2. Kinetoplast DNA minicircles: regions of extensive sequence divergence.

    PubMed Central

    Rogers, W O; Wirth, D F

    1987-01-01

    Previous work has shown that the kinetoplast minicircle DNA of Leishmania species exhibits species-specific sequence divergence and this observation has led to the development of a DNA probe-based diagnostic test for leishmaniasis. In the work reported here, we demonstrate that the minicircle is composed of three types of DNA sequences with differing specificities reflecting different rates of DNA sequence change. A library of cloned fragments of kinetoplast DNA (kDNA) from Leishmania mexicana amazonensis was prepared and the cloned subfragments were found to contain DNA sequences with different taxonomic specificities based on hybridization analysis with various species of Leishmania. Four groups of subfragments were found, those that hybridized with a large number of Leishmania sp. as well as sequences unique to the species, subspecies, or isolate. Analysis of nested deletions of a single, full-length minicircle demonstrates that these different taxonomic specificities are contained within a single minicircle. This implies that different regions of a single minicircle have DNA sequences that diverge at different rates. These sequences represent potentially valuable tools in diagnostic, epidemiologic, and ecological studies of leishmaniasis and provide the basis for a model of kDNA sequence evolution. Images PMID:3025880

  3. Correlation approach to identify coding regions in DNA sequences

    NASA Technical Reports Server (NTRS)

    Ossadnik, S. M.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Peng, C. K.; Simons, M.; Stanley, H. E.

    1994-01-01

    Recently, it was observed that noncoding regions of DNA sequences possess long-range power-law correlations, whereas coding regions typically display only short-range correlations. We develop an algorithm based on this finding that enables investigators to perform a statistical analysis on long DNA sequences to locate possible coding regions. The algorithm is particularly successful in predicting the location of lengthy coding regions. For example, for the complete genome of yeast chromosome III (315,344 nucleotides), at least 82% of the predictions correspond to putative coding regions; the algorithm correctly identified all coding regions larger than 3000 nucleotides, 92% of coding regions between 2000 and 3000 nucleotides long, and 79% of coding regions between 1000 and 2000 nucleotides. The predictive ability of this new algorithm supports the claim that there is a fundamental difference in the correlation property between coding and noncoding sequences. This algorithm, which is not species-dependent, can be implemented with other techniques for rapidly and accurately locating relatively long coding regions in genomic sequences.

  4. Terminal region sequence variations in variola virus DNA.

    PubMed

    Massung, R F; Loparev, V N; Knight, J C; Totmenin, A V; Chizhikov, V E; Parsons, J M; Safronov, P F; Gutorov, V V; Shchelkunov, S N; Esposito, J J

    1996-07-15

    Genome DNA terminal region sequences were determined for a Brazilian alastrim variola minor virus strain Garcia-1966 that was associated with an 0.8% case-fatality rate and African smallpox strains Congo-1970 and Somalia-1977 associated with variola major (9.6%) and minor (0.4%) mortality rates, respectively. A base sequence identity of > or = 98.8% was determined after aligning 30 kb of the left- or right-end region sequences with cognate sequences previously determined for Asian variola major strains India-1967 (31% death rate) and Bangladesh-1975 (18.5% death rate). The deduced amino acid sequences of putative proteins of > or = 65 amino acids also showed relatively high identity, although the Asian and African viruses were clearly more related to each other than to alastrim virus. Alastrim virus contained only 10 of 70 proteins that were 100% identical to homologs in Asian strains, and 7 alastrim-specific proteins were noted. PMID:8661439

  5. Dna Sequencing

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1995-04-25

    A method for sequencing a strand of DNA, including the steps off: providing the strand of DNA; annealing the strand with a primer able to hybridize to the strand to give an annealed mixture; incubating the mixture with four deoxyribonucleoside triphosphates, a DNA polymerase, and at least three deoxyribonucleoside triphosphates in different amounts, under conditions in favoring primer extension to form nucleic acid fragments complementory to the DNA to be sequenced; labelling the nucleic and fragments; separating them and determining the position of the deoxyribonucleoside triphosphates by differences in the intensity of the labels, thereby to determine the DNA sequence.

  6. Sequence analysis of mitochondrial DNA hypervariable regions using infrared fluorescence detection.

    PubMed

    Steffens, D L; Roy, R

    1998-06-01

    The non-coding region of the mitochondrial genome provides an attractive target for human forensic identification studies. Two hypervariable (HV) regions, each approximately 250-350 bp in length, contain the majority of mitochondrial DNA (mtDNA) sequence variability among different individuals. Various approaches to determine mtDNA sequence were evaluated utilizing highly sensitive infrared (IR) fluorescence detection. HV regions were amplified either together or separately and cycle-sequenced using a Thermo Sequenase protocol. An M13 universal primer sequence tail covalently attached to the 5' terminus of an amplification primer facilitated electrophoretic analysis and direct sequencing of the amplification products using IR detection. PMID:9631201

  7. Population variation of human mtDNA control region sequences detected by enzymatic amplification and sequence-specific oligonucleotide probes.

    PubMed Central

    Stoneking, M; Hedgecock, D; Higuchi, R G; Vigilant, L; Erlich, H A

    1991-01-01

    A method for detecting sequence variation of hypervariable segments of the mtDNA control region was developed. The technique uses hybridization of sequence-specific oligonucleotide (SSO) probes to DNA sequences that have been amplified by PCR. The nucleotide sequences of the two hypervariable segments of the mtDNA control region from 52 individuals were determined; these sequences were then used to define nine regions suitable for SSO typing. A total of 23 SSO probes were used to detect sequence variants at these nine regions in 525 individuals from five ethnic groups (African, Asian, Caucasian, Japanese, and Mexican). The SSO typing revealed an enormous amount of variability, with 274 mtDNA types observed among these 525 individuals and with diversity values, for each population, exceeding .95. For each of the nine mtDNA regions significant differences in the frequencies of sequence variants were observed between these five populations. The mtDNA SSO-typing system was successfully applied to a case involving individual identification of skeletal remains; the probability of a random match was approximately 0.7%. The potential useful applications of this mtDNA SSO-typing system thus include the analysis of individual identity as well as population genetic studies. Images Figure 3 PMID:1990843

  8. Modular sequence elements associated with origin regions in eukaryotic chromosomal DNA.

    PubMed Central

    Dobbs, D L; Shaiu, W L; Benbow, R M

    1994-01-01

    We have postulated that chromosomal replication origin regions in eukaryotes have in common clusters of certain modular sequence elements (Benbow, Zhao, and Larson, BioEssays 14, 661-670, 1992). In this study, computer analyses of DNA sequences from six origin regions showed that each contained one or more potential initiation regions consisting of a putative DUE (DNA unwinding element) aligned with clusters of SAR (scaffold associated region), and ARS (autonomously replicating sequence) consensus sequences, and pyrimidine tracts. The replication origins analyzed were from the following loci: Tetrahymena thermophila macronuclear rDNA gene, Chinese hamster ovary dihydrofolate reductase amplicon, human c-myc proto-oncogene, chicken histone H5 gene, Drosophila melanogaster chorion gene cluster on the third chromosome, and Chinese hamster ovary rhodopsin gene. The locations of putative initiation regions identified by the computer analyses were compared with published data obtained using diverse methods to map initiation sites. For at least four loci, the potential initiation regions identified by sequence analysis aligned with previously mapped initiation events. A consensus DNA sequence, WAWTTDDWWWDHWGWHMAWTT, was found within the potential initiation regions in every case. An additional 35 kb of combined flanking sequences from the six loci were also analyzed, but no additional copies of this consensus sequence were found. Images PMID:8041609

  9. A database of mitochondrial DNA hypervariable regions I and II sequences of individuals from Slovakia.

    PubMed

    Lehocký, Ivan; Baldovic, Marian; Kádasi, Ludevít; Metspalu, Ene

    2008-09-01

    In order to identify polymorphic positions and to determine their frequencies and the frequency of haplotypes in the human mitochondrial control region, two hypervariable regions (HV1 and HV2) of the mitochondrial DNA (mtDNA) of 374 unrelated individuals from Slovakia were amplified and sequenced. Sequence comparison led to the identification of 284 mitochondrial lineages as defined by 163 variable sites. Genetic diversity (GD) was estimated at 0.997 and the probability of two randomly selected individuals from population having identical mtDNA types (random match probability, RMP) for the both regions is 0.60%. PMID:19083829

  10. Investigation of mtDNA control region sequences in an Egyptian population sample.

    PubMed

    Elmadawy, Mostafa Ali; Nagai, Atsushi; Gomaa, Ghada M; Hegazy, Hanaa M R; Shaaban, Fawzy Eid; Bunai, Yasuo

    2013-11-01

    The sequences of mitochondrial DNA (mtDNA) control region were investigated in 101 unrelated individuals living in the northern region of Nile delta (Gharbia, N=55 and Kafrelsheikh, N=46). DNA was extracted from blood stained filter papers or buccal swabs. HV1, HV2 and HV3 were PCR amplified and sequenced; the resulted sequences were aligned and compared with revised Cambridge sequence (rCRS). The results revealed presence of total 93 different haplotypes, 86 of them are unique and 7 are shared haplotypes, the most common haplotype, was observed with a frequency, 2.97% of population sample. High mtDNA diversity was observed with genetic diversity and power of discrimination, 0.9982 and 0.9883, respectively. In this dataset the west Eurasian haplogroups predominated over the African haplogroups. The results would be useful for forensic examinations and human genetic studies. PMID:23910099

  11. Multiple independent transpositions of mitochondrial DNA control region sequences to the nucleus.

    PubMed

    Sorenson, M D; Fleischer, R C

    1996-12-24

    Transpositions of mtDNA sequences to the nuclear genome have been documented in a wide variety of individual taxa, but little is known about their taxonomic frequency or patterns of variation. We provide evidence of nuclear sequences homologous to the mtDNA control region in seven species of diving ducks (tribe Aythyini). Phylogenetic analysis places each nuclear sequence as a close relative of the mtDNA haplotypes of the specie(s) in which it occurs, indicating that they derive from six independent transposition events, all occurring within the last approximately 1.5 million years. Relative-rate tests and comparison of intraspecific variation in nuclear and mtDNA sequences confirm the expectation of a greatly reduced rate of evolution in the nuclear copies. By representing mtDNA haplotypes from ancestral populations, nuclear insertions may be valuable in some phylogenetic analyses, but they also confound the accurate determination of mtDNA sequences. In particular, our data suggest that the presumably nonfunctional but more slowly evolving nuclear sequences often will not be identifiable by changes incompatible with function and may be preferentially amplified by PCR primers based on mtDNA sequences from related taxa. PMID:8986794

  12. Role of DNA sequence in chromatin remodeling and the formation of nucleosome-free regions

    PubMed Central

    Lorch, Yahli; Maier-Davis, Barbara; Kornberg, Roger D.

    2014-01-01

    AT-rich DNA is concentrated in the nucleosome-free regions (NFRs) associated with transcription start sites of most genes. We tested the hypothesis that AT-rich DNA engenders NFR formation by virtue of its rigidity and consequent exclusion of nucleosomes. We found that the AT-rich sequences present in many NFRs have little effect on the stability of nucleosomes. Rather, these sequences facilitate the removal of nucleosomes by the RSC chromatin remodeling complex. RSC activity is stimulated by AT-rich sequences in nucleosomes and inhibited by competition with AT-rich DNA. RSC may remove NFR nucleosomes without effect on adjacent ORF nucleosomes. Our findings suggest that many NFRs are formed and maintained by an active mechanism involving the ATP-dependent removal of nucleosomes rather than a passive mechanism due to the intrinsic instability of nucleosomes on AT-rich DNA sequences. PMID:25403179

  13. Role of DNA sequence in chromatin remodeling and the formation of nucleosome-free regions.

    PubMed

    Lorch, Yahli; Maier-Davis, Barbara; Kornberg, Roger D

    2014-11-15

    AT-rich DNA is concentrated in the nucleosome-free regions (NFRs) associated with transcription start sites of most genes. We tested the hypothesis that AT-rich DNA engenders NFR formation by virtue of its rigidity and consequent exclusion of nucleosomes. We found that the AT-rich sequences present in many NFRs have little effect on the stability of nucleosomes. Rather, these sequences facilitate the removal of nucleosomes by the RSC chromatin remodeling complex. RSC activity is stimulated by AT-rich sequences in nucleosomes and inhibited by competition with AT-rich DNA. RSC may remove NFR nucleosomes without effect on adjacent ORF nucleosomes. Our findings suggest that many NFRs are formed and maintained by an active mechanism involving the ATP-dependent removal of nucleosomes rather than a passive mechanism due to the intrinsic instability of nucleosomes on AT-rich DNA sequences. PMID:25403179

  14. Mitochondrial DNA control region sequences study in Saraiki population from Pakistan.

    PubMed

    Hayat, Sikandar; Akhtar, Tanveer; Siddiqi, Muhammad Hassan; Rakha, Allah; Haider, Naeem; Tayyab, Muhammad; Abbas, Ghazanfar; Ali, Azam; Bokhari, Syed Yassir Abbas; Tariq, Muhammad Akram; Khan, Fazle Majid

    2015-03-01

    The analysis of mitochondrial DNA (mtDNA) control region was carried in 85 unrelated Sariki individuals living in the different provinces of Pakistan. DNA was extracted from blood preserved in EDTA vacutainers. Hypervariable regions (HV1, HV2 & HV3) were PCR amplified and sequenced. Sequencing results were aligned and compared with revised Cambridge reference sequence (rCRS). The sequencing results showed presence of total 63 different haplotypes, 58 of them are unique and 05 are common haplotypes shared by more than one individual. The most common haplotype observed was (W6) with a frequency 12.9% of population sample. The Saraiki population was detected with genetic diversity (0.9570) and power of discrimination (0.9458). This study will be beneficial for forensic casework. PMID:25465675

  15. Analysis of mixtures using next generation sequencing of mitochondrial DNA hypervariable regions

    PubMed Central

    Kim, Hanna; Erlich, Henry A.; Calloway, Cassandra D.

    2015-01-01

    Aim To apply massively parallel and clonal sequencing (next generation sequencing or NGS) to the analysis of forensic mixed samples. Methods A duplex polymerase chain reaction (PCR) assay targeting the mitochondrial DNA (mtDNA) hypervariable regions I/II (HVI/HVII) was developed for NGS analysis on the Roche 454 GS Junior instrument. Eight sets of multiplex identifier-tagged 454 fusion primers were used in a combinatorial approach for amplification and deep sequencing of up to 64 samples in parallel. Results This assay was shown to be highly sensitive for sequencing limited DNA amounts ( ~ 100 mtDNA copies) and analyzing contrived and biological mixtures with low level variants ( ~ 1%) as well as “complex” mixtures (≥3 contributors). PCR artifact “hybrid” sequences generated by jumping PCR or template switching were observed at a low level (<2%) in the analysis of mixed samples but could be eliminated by reducing the PCR cycle number. Conclusion This study demonstrates the power of NGS technologies targeting the mtDNA HVI/HVII regions for analysis of challenging forensic samples, such as mixtures and specimens with limited DNA. PMID:26088845

  16. Regions of the polytene chromosomes of Drosophila virilis carrying multiple dispersed p Dv 111 DNA sequences

    SciTech Connect

    Gubenko, I.S.; Evgen'ev, M.B.

    1986-09-01

    The cloned sequences of p Dv 111 DNA hybridized in situ with more than 170 regions of Drosophila virilis salivary gland chromosomes. Comparative autoradiography of in situ hybridization and the nature of pulse /sup 3/H-thymidine and /sup 3/H-deoxycytidine incorporation into the polytene chromosomes of D. virilis at the puparium formation stage showed that the hybridization sites of p Dv 111 are distributed not only in the heterochromatic regions but also in the euchromatic regions of the chromosomes that are not late replicating. Two distinct bands of hybridization of p Dv 111 /sup 3/H-DNA were observed in the region of the heat shock puff 20CD. The regions of the distal end of chromosome 2, in which breaks appeared during radiation-induced chromosomal rearrangements, hybridized with the p Dv 111 DNA.

  17. Rapid evolution of a heteroplasmic repetitive sequence in the mitochondrial DNA control region of carnivores.

    PubMed

    Hoelzel, A R; Lopez, J V; Dover, G A; O'Brien, S J

    1994-08-01

    We describe a repetitive DNA region at the 3' end of the mitochondrial DNA (mtDNA) control region and compare it in 21 carnivore species representing eight carnivore families. The sequence and organization of the repetitive motifs can differ extensively between arrays; however, all motifs appear to be derived from the core motif "ACGT." Sequence data and Southern blot analysis demonstrate extensive heteroplasmy. The general form of the array is similar between heteroplasmic variants within an individual and between individuals within a species (varying primarily in the length of the array, though two clones from the northern elephant seal are exceptional). Within certain families, notably ursids, the array structure is also similar between species. Similarity between species was not apparent in other carnivore families, such as the mustelids, suggesting rapid changes in the organization and sequence of some arrays. The pattern of change seen within and between species suggests that a dominant mechanism involved in the evolution of these arrays is DNA slippage. A comparative analysis shows that the motifs that are being reiterated or deleted vary within and between arrays, suggesting a varying rate of DNA turnover. We discuss the evolutionary implications of the observed patterns of variation and extreme levels of heteroplasmy. PMID:7932782

  18. Distribution of sequence variation in the mtDNA control region of Native North Americans.

    PubMed

    Lorenz, J G; Smith, D G

    1997-12-01

    The distributions of mtDNA diversity within and/or among North American haplogroups, language groups, and tribes were used to characterize the process of tribalization that followed the colonization of the New World. Approximately 400 bp from the mtDNA control region of 1 Na-Dene and 33 Amerind individuals representing a wide variety of languages and geographic origins were sequenced. With the inclusion of data from previous studies, 225 native North American (284 bp) sequences representing 85 distinct mtDNA lineages were analyzed. Mean pairwise sequence differences between (and within) tribes and language groups were primarily due to differences in the distribution of three of the four major haplogroups that evolved before settlement of the New World. Pairwise sequence differences within each of these three haplogroups were more similar than previous studies based on restriction enzyme analysis have indicated. The mean of pairwise sequence differences between Amerind members of haplogroup A, the most common of the four haplogroups in North America, was only slightly higher than that for the Eskimo, providing no evidence of separate ancestry, but was about two-thirds higher than that for the Na-Dene. However, analysis of pairwise sequence divergence between only tribal-specific lineages, unweighted for sample size, suggests that random evolutionary processes have reduced sequence diversity within the Na-Dene and that members of all three language groups possess approximately equally diverse mtDNA lineages. Comparisons of diversity within and between specific ethnic groups with the largest sample size were also consistent with this outcome. These data are not consistent with the hypothesis that the New World was settled by more than a single migration. Because lineages tended not to cluster by tribe and because lineage sharing among linguistically unrelated groups was restricted to geographically proximate groups, the tribalization process probably did not occur

  19. Mitochondrial DNA control region sequence variation in migraine headache and cyclic vomiting syndrome.

    PubMed

    Wang, Qingxue; Ito, Masamichi; Adams, Kathleen; Li, B U K; Klopstock, Thomas; Maslim, Audrey; Higashimoto, Tomoyasu; Herzog, Juergen; Boles, Richard G

    2004-11-15

    Migraine headache is a very common condition affecting about 10% of the population that results in substantial morbidity and economic loss. The two most common variants are migraine with (MA) and without (MO) aura. Often considered to be a migraine-like variant, cyclic vomiting syndrome (CVS) is a predominately childhood condition characterized by severe, discrete episodes of nausea, vomiting, and lethargy. Disease-associated mitochondrial DNA (mtDNA) sequence variants are suggested in common migraine and CVS based upon a strong bias towards the maternal inheritance of disease, and several other factors. Temporal temperature gradient gel electrophoresis (TTGE) followed by cyclosequencing and RFLP was used to screen almost 90% of the mtDNA, including the control region (CR), for heteroplasmy in 62 children with CVS and neuromuscular disease (CVS+) and in 95 control subjects. One or two rare mtDNA-CR heteroplasmic sequence variants were found in six CVS+ and in zero control subjects (P = 0.003). These variants comprised 6 point and 2 length variants in hypervariable regions 1 and 2 (HV1 and HV2, both part of the mtDNA-CR), one half of which were clustered in the nt 16040-16188 segment of HV1 that includes the termination associated sequence (TAS), a functional location important in the regulation of mtDNA replication. Based upon our findings, sequencing and statistical analysis looking for homoplasmic nucleotide changes was performed in HV1 among 30 CVS+, 30 randomly-ascertained CVS (rCVS), 18 MA, 32 MO, and 35 control haplogroup H cases. Within the nt 16040-16188 segment, homoplasmic sequence variants were three-fold more common relative to control subjects in both CVS groups (P = 0.01 combined data) and in MO (P = 0.02), but not in MA (P = 0.5 vs. control subjects and 0.02 vs. MO). No group differences were noted in the remainder of HV1. We conclude that sequence variation in this small "peri-TAS" segment is associated with CVS and MO, but not MA. These variants

  20. Human phosphoribosylformylglycineamide amidotransferase (FGARAT): regional mapping, complete coding sequence, isolation of a functional genomic clone, and DNA sequence analysis.

    PubMed

    Patterson, D; Bleskan, J; Gardiner, K; Bowersox, J

    1999-11-01

    Purines play essential roles in many cellular functions, including DNA replication, transcription, intra- and extra-cellular signaling, energy metabolism, and as coenzymes for many biochemical reactions. The de-novo synthesis of purines requires 10 enzymatic steps for the production of inosine monophosphate (IMP). Defects in purine metabolism are associated with human diseases. Further, many anticancer agents function as inhibitors of the de-novo biosynthetic pathway. Genes or cDNAs for most of the enzymes comprising this pathway have been isolated from humans or other mammals. One notable exception is the phosphoribosylformylglycineamide amidotransferase (FGARAT) gene, which encodes the fourth step of this pathway. This gene has been cloned from numerous microorganisms and from Drosophila melanogaster and C. elegans. We report here the identification of a human cDNA containing the coding region of the FGARAT mRNA and the isolation of a P1 clone that contains an intact human FGARAT gene. The P1 clone corrects the purine auxotrophy and protein deficiency of Chinese hamster ovary (CHO) cell mutants (AdeB) deficient in both the activity and the protein for FGARAT. The P1 clone was used to regionally map the FGARAT gene to chromosome region 17p13, a location consistent with our prior assignment of this gene to chromosome 17. A comparison of the DNA sequence of the human FGARAT and FGARAT DNA sequence from 17 other organisms is reported. The isolation of this gene means that DNA clones for all the 10 steps of IMP synthesis have been isolated from humans or other mammals. PMID:10548741

  1. Sequence polymorphism of the mitochondrial DNA control region in the population of Vojvodina Province, Serbia.

    PubMed

    Zgonjanin, Dragana; Veselinović, Igor; Kubat, Milovan; Furac, Ivana; Antov, Mirjana; Loncar, Eva; Tasić, Milos; Vuković, Radenko; Omorjan, Radovan

    2010-03-01

    In order to generate and establish the database for forensic identification purposes in Vojvodina Province (Serbia), the sequence of the hypervariable regions 1 (HV1) and 2 (HV2) of the mtDNA control region were determined in a population of 104 unrelated individuals from Vojvodina Province, using a fluorescent-based capillary electrophoresis sequencing method. A total of 93 different haplotypes were found, of these 83 mtDNA types were unique, nine haplotypes were shared by two individuals and one haplotype by three individuals. The variation of mtDNA HV1 and HV2 regions was confined to 116 nucleotide positions, of which 72 were observed in the HV1 and 44 in the HV2. A statistical estimate of the results for this population showed the genetic diversity of 0.9977 and the random match probability of 1.18%. Haplogroup H was the most common haplogroup (43.3%). Haplogroups observed at intermediate levels included clusters U (13.5%), T (10.6%), J (8.6%) and W (5.8%). PMID:19962932

  2. Optimization of human mtDNA control region sequencing for forensic applications.

    PubMed

    Bourdon, Véronique; Ng, Carolyn; Harris, Jessica; Prinz, Mechthild; Shapiro, Eli

    2014-07-01

    Sequencing mitochondrial DNA hypervariable regions I and II (HVI and HVII) is useful in forensic missing person and unidentified remains cases. Improvements in ease and sensitivity of testing will yield results from more samples in a timely fashion. Routinely, amplification of HVI and HVII is followed by Sanger sequencing using the BigDye(®) Terminator v3.1 Cycle Sequencing kit (Applied Biosystems) using 4 μL of ready reaction mix (RRM). Each sequencing reaction is then purified through column filtration before capillary electrophoresis. Using lower amounts of RRM (2 μL or 1 μL) and purification using BigDye(®) XTerminator(™) (Applied Biosystems) instead of columns showed no loss of sequence length and increased the quality and the sensitivity of testing, allowing HVI and HVII typing from mitochondrial genome equivalent to 125 fg of nuclear DNA, or 100 pg of HVI/HVII amplicons. Using this methodology, testing can be completed in 1 day, and the cost of testing is reduced. PMID:24666098

  3. Mitochondrial DNA hypervariable region-1 sequence variation and phylogeny of the concolor gibbons, Nomascus.

    PubMed

    Monda, Keri; Simmons, Rachel E; Kressirer, Philipp; Su, Bing; Woodruff, David S

    2007-11-01

    The still little known concolor gibbons are represented by 14 taxa (five species, nine subspecies) distributed parapatrically in China, Myanmar, Vietnam, Laos and Cambodia. To set the stage for a phylogeographic study of the genus we examined DNA sequences from the highly variable mitochondrial hypervariable region-1 (HVR-1 or control region) in 51 animals, mostly of unknown geographic provenance. We developed gibbon-specific primers to amplify mtDNA noninvasively and obtained >477 bp sequences from 38 gibbons in North American and European zoos and >159 bp sequences from ten Chinese museum skins. In hindsight, we believe these animals represent eight of the nine nominal subspecies and four of the five nominal species. Bayesian, maximum likelihood and maximum parsimony haplotype network analyses gave concordant results and show Nomascus to be monophyletic. Significant intraspecific variation within N. leucogenys (17 haplotypes) is comparable with that reported earlier in Hylobates lar and less than half the known interspecific pairwise distances in gibbons. Sequence data support the recognition of five species (concolor, leucogenys, nasutus, gabriellae and probably hainanus) and suggest that nasutus is the oldest and leucogenys, the youngest taxon. In contrast, the subspecies N. c. furvogaster, N. c. jingdongensis, and N. leucogenys siki, are not recognizable at this otherwise informative genetic locus. These results show that HVR-1 sequence is variable enough to define evolutionarily significant units in Nomascus and, if coupled with multilocus microsatellite or SNP genotyping, more than adequate to characterize their phylogeographic history. There is an urgent need to obtain DNA from gibbons of known geographic provenance before they are extirpated to facilitate the conservation genetic management of the surviving animals. PMID:17455231

  4. Nonessential region of bacteriophage P4: DNA sequence, transcription, gene products, and functions.

    PubMed Central

    Ghisotti, D; Finkel, S; Halling, C; Dehò, G; Sironi, G; Calendar, R

    1990-01-01

    We sequenced the leftmost 2,640 base pairs of bacteriophage P4 DNA, thus completing the sequence of the 11,627-base-pair P4 genome. The newly sequenced region encodes three nonessential genes, which are called gop, beta, and cII (in order, from left to right). The gop gene product kills Escherichia coli when the beta protein is absent; the gop and beta genes are transcribed rightward from the same promoter. The cII gene is transcribed leftward to a rho-independent terminator. Mutation of this terminator creates a temperature-sensitive phenotype, presumably owing to a defect in expression of the beta gene. Images PMID:2403440

  5. Sequence polymorphism of the mitochondrial DNA hypervariable regions I and II in 205 Singapore Malays.

    PubMed

    Wong, Hang Yee; Tang, June S W; Budowle, Bruce; Allard, Marc W; Syn, Christopher K C; Tan-Siew, Wai Fun; Chow, Shui Tse

    2007-01-01

    Mitochondrial DNA sequences of the hypervariable regions HV1 and HV2 were analyzed in 205 unrelated ethnic Malays residing in Singapore as an initial effort to generate a database for forensic identification purposes. Sequence polymorphism was detected using PCR and direct sequencing analysis. A total of 152 haplotypes was found containing 152 polymorphisms. Out of the 152 haplotypes, 115 were observed only once and 37 types were seen in multiple individuals. The most common haplotype (16223T, 16295T, 16362C, 73G, 146C, 199C, 263G, and 315.1C) was shared by 7 (3.41%) individuals, two haplotypes were shared by 4 individuals, seven haplotypes were shared by 3 individuals, and 27 haplotypes by 2 individuals. Haplotype diversity and random match probability were estimated to be 0.9961% and 0.87%, respectively. PMID:17150401

  6. Variability of the human mitochondrial DNA control region sequences in the Lithuanian population.

    PubMed

    Kasperaviciūte, Dalia; Kucinskas, Vaidutis

    2002-01-01

    The Lithuanians and Latvians are the only two Baltic cultures that survived until today. Since the Neolithic period the native inhabitants of the present-day Lithuanian territory have not been replaced by any other ethnic group. Therefore the genetic characterization of the present-day Lithuanians may shed some light on the early history of the Balts. We have analysed 120 DNA samples from two Lithuanian ethnolinguistic groups (Aukstaiciai and Zemaiciai) by direct sequencing of the first hypervariable segment (HVI) of the control region of mitochondrial DNA (mtDNA) and restriction enzyme digestion for polymorphic site 00073. On the basis of specific nucleotide substitutions the obtained sequences were classified to mtDNA haplogroups. This revealed the presence of almost all European haplogroups (except X) in the Lithuanian sample, including those that expanded through Europe in the Palaeolithic and those whose expansion occurred during the Neolithic. Molecular diversity indices (gene diversity 0.97, nucleotide diversity 0.012 and mean number of pairwise differences 4.5) were within the range usually reported in European populations. No significant differences between Aukstaiciai and Zemaiciai subgroups were found, but some slight differences need further investigation. PMID:12080181

  7. Genetic structure of Florida green turtle rookeries as indicated by mitochondrial DNA control region sequences

    USGS Publications Warehouse

    Shamblin, Brian M.; Bagley, Dean A.; Ehrhart, Llewellyn M.; Desjardin, Nicole A.; Martin, R. Erik; Hart, Kristen M.; Naro-Maciel, Eugenia; Rusenko, Kirt; Stiner, John C.; Sobel, Debra; Johnson, Chris; Wilmers, Thomas; Wright, Laura J.; Nairn, Campbell J.

    2014-01-01

    Green turtle (Chelonia mydas) nesting has increased dramatically in Florida over the past two decades, ranking the Florida nesting aggregation among the largest in the Greater Caribbean region. Individual beaches that comprise several hundred kilometers of Florida’s east coast and Keys support tens to thousands of nests annually. These beaches encompass natural to highly developed habitats, and the degree of demographic partitioning among rookeries was previously unresolved. We characterized the genetic structure of ten Florida rookeries from Cape Canaveral to the Dry Tortugas through analysis of 817 base pair mitochondrial DNA (mtDNA) control region sequences from 485 nesting turtles. Two common haplotypes, CM-A1.1 and CM-A3.1, accounted for 87 % of samples, and the haplotype frequencies were strongly partitioned by latitude along Florida’s Atlantic coast. Most genetic structure occurred between rookeries on either side of an apparent genetic break in the vicinity of the St. Lucie Inlet that separates Hutchinson Island and Jupiter Island, representing the finest scale at which mtDNA structure has been documented in marine turtle rookeries. Florida and Caribbean scale analyses of population structure support recognition of at least two management units: central eastern Florida and southern Florida. More thorough sampling and deeper sequencing are necessary to better characterize connectivity among Florida green turtle rookeries as well as between the Florida nesting aggregation and others in the Greater Caribbean region.

  8. Indexing Similar DNA Sequences

    NASA Astrophysics Data System (ADS)

    Huang, Songbo; Lam, T. W.; Sung, W. K.; Tam, S. L.; Yiu, S. M.

    To study the genetic variations of a species, one basic operation is to search for occurrences of patterns in a large number of very similar genomic sequences. To build an indexing data structure on the concatenation of all sequences may require a lot of memory. In this paper, we propose a new scheme to index highly similar sequences by taking advantage of the similarity among the sequences. To store r sequences with k common segments, our index requires only O(n + NlogN) bits of memory, where n is the total length of the common segments and N is the total length of the distinct regions in all texts. The total length of all sequences is rn + N, and any scheme to store these sequences requires Ω(n + N) bits. Searching for a pattern P of length m takes O(m + m logN + m log(rk)psc(P) + occlogn), where psc(P) is the number of prefixes of P that appear as a suffix of some common segments and occ is the number of occurrences of P in all sequences. In practice, rk ≤ N, and psc(P) is usually a small constant. We have implemented our solution and evaluated our solution using real DNA sequences. The experiments show that the memory requirement of our solution is much less than that required by BWT built on the concatenation of all sequences. When compared to the other existing solution (RLCSA), we use less memory with faster searching time.

  9. Population Genetic Analysis of Lobelia rhynchopetalum Hemsl. (Campanulaceae) Using DNA Sequences from ITS and Eight Chloroplast DNA Regions

    PubMed Central

    Geleta, Mulatu; Bryngelsson, Tomas

    2012-01-01

    DNA sequence data from the internal transcribed spacer of nuclear ribosomal DNA and eight chloroplast DNA regions were used to investigate haplotypic variation and population genetic structure of the Afroalpine giant lobelia, Lobelia rhynchopetalum. The study was based on eight populations sampled from two mountain systems in Ethiopia. A total of 20 variable sites were obtained, which resulted in 13 unique haplotypes and an overall nucleotide diversity (ND) of 0.281 ± 0.15 and gene diversity (GD) of 0.85 ± 0.04. Analysis of molecular variance (AMOVA) revealed a highly significant variation (P < 0.001) among populations (FST), and phylogenetic analysis revealed that populations from the two mountain systems formed their own distinct clade with >90% bootstrap support. Each population should be regarded as a significant unit for conservation of this species. The primers designed for this study can be applied to any Lobelia and other closely related species for population genetics and phylogenetic studies. PMID:22272170

  10. Nucleotide sequence analysis of the DNA binding region of the chicken fibronectin gene.

    PubMed

    Karasaki, Y; Gotoh, S; Kubomura, S; Higashi, K; Hirano, H

    1988-12-01

    We have determined the nucleotide sequence of 2.0 kb EcoRI segment from the clone lambda FC32 of the genomic chicken fibronectin gene, which is called DNA binding domain. This segment overlapped another clone lambda FC36 and contained three exons which were 16, 17 and 18. They were classified as Type III repeat as originally shown in bovine plasma fibronectin. The average homologies of these three exons among the chicken, rat and human fibronectins in amino acid level are very high (87-98%) compared with that (79-88%) of the exons in the cell binding domain, indicating that this region is highly conservative during the evolution. PMID:3212295

  11. Molecular phylogenetic analysis of Indonesia Solanaceae based on DNA sequences of internal transcribed spacer region

    NASA Astrophysics Data System (ADS)

    Hidayat, Topik; Priyandoko, Didik; Islami, Dina Karina; Wardiny, Putri Yunitha

    2016-02-01

    Solanaceae is one of largest family in Angiosperm group with highly diverse in morphological character. In Indonesia, this group of plant is very popular due to its usefulness as food, ornamental and medicinal plants. However, investigation on phylogenetic relationship among the member of this family in Indonesia remains less attention. The purpose of this study was to evaluate the phylogenetics relationship of the family especially distributed in Indonesia. DNA sequences of Internal Transcribed Spacer (ITS) region of 19 species of Solanaceae and three species of outgroup, which belongs to family Convolvulaceae, Apocynaceae, and Plantaginaceae, were isolated, amplified, and sequenced. Phylogenetic tree analysis based on parsimony method was conducted with using data derived from the ITS-1, 5.8S, and ITS-2, separately, and the combination of all. Results indicated that the phylogenetic tree derived from the combined data established better pattern of relationship than separate data. Thus, three major groups were revealed. Group 1 consists of tribe Datureae, Cestreae, and Petunieae, whereas group 2 is member of tribe Physaleae. Group 3 belongs to tribe Solaneae. The use of the ITS region as a molecular markers, in general, support the global Solanaceae relationship that has been previously reported.

  12. Detection of spurious interruptions of protein-coding regions in cloned cDNA sequences by GeneMark analysis.

    PubMed

    Hirosawa, M; Ishikawa, K; Nagase, T; Ohara, O

    2000-09-01

    cDNA is an artificial copy of mRNA and, therefore, no cDNA can be completely free from suspicion of cloning errors. Because overlooking these cloning errors results in serious misinterpretation of cDNA sequences, development of an alerting system targeting spurious sequences in cloned cDNAs is an urgent requirement for massive cDNA sequence analysis. We describe here the application of a modified GeneMark program, originally designed for prokaryotic gene finding, for detection of artifacts in cDNA clones. This program serves to provide a warning when any spurious split of protein-coding regions is detected through statistical analysis of cDNA sequences based on Markov models. In this study, 817 cDNA sequences deposited in public databases by us were subjected to analysis using this alerting system to assess its sensitivity and specificity. The results indicated that any spurious split of protein-coding regions in cloned cDNAs could be sensitively detected and systematically revised by means of this system after the experimental validation of the alerts. Furthermore, this study offered us, for the first time, statistical data regarding the rates and types of errors causing protein-coding splits in cloned cDNAs obtained by conventional cloning methods. PMID:10984451

  13. Haplogroup Classification of Korean Cattle Breeds Based on Sequence Variations of mtDNA Control Region.

    PubMed

    Kim, Jae-Hwan; Lee, Seong-Su; Kim, Seung Chang; Choi, Seong-Bok; Kim, Su-Hyun; Lee, Chang Woo; Jung, Kyoung-Sub; Kim, Eun Sung; Choi, Young-Sun; Kim, Sung-Bok; Kim, Woo Hyun; Cho, Chang-Yeon

    2016-05-01

    Many studies have reported the frequency and distribution of haplogroups among various cattle breeds for verification of their origins and genetic diversity. In this study, 318 complete sequences of the mtDNA control region from four Korean cattle breeds were used for haplogroup classification. 71 polymorphic sites and 66 haplotypes were found in these sequences. Consistent with the genetic patterns in previous reports, four haplogroups (T1, T2, T3, and T4) were identified in Korean cattle breeds. In addition, T1a, T3a, and T3b sub-haplogroups were classified. In the phylogenetic tree, each haplogroup formed an independent cluster. The frequencies of T3, T4, T1 (containing T1a), and T2 were 66%, 16%, 10%, and 8%, respectively. Especially, the T1 haplogroup contained only one haplotype and a sample. All four haplogroups were found in Chikso, Jeju black and Hanwoo. However, only the T3 and T4 haplogroups appeared in Heugu, and most Chikso populations showed a partial of four haplogroups. These results will be useful for stable conservation and efficient management of Korean cattle breeds. PMID:26954229

  14. Haplogroup Classification of Korean Cattle Breeds Based on Sequence Variations of mtDNA Control Region

    PubMed Central

    Kim, Jae-Hwan; Lee, Seong-Su; Kim, Seung Chang; Choi, Seong-Bok; Kim, Su-Hyun; Lee, Chang Woo; Jung, Kyoung-Sub; Kim, Eun Sung; Choi, Young-Sun; Kim, Sung-Bok; Kim, Woo Hyun; Cho, Chang-Yeon

    2016-01-01

    Many studies have reported the frequency and distribution of haplogroups among various cattle breeds for verification of their origins and genetic diversity. In this study, 318 complete sequences of the mtDNA control region from four Korean cattle breeds were used for haplogroup classification. 71 polymorphic sites and 66 haplotypes were found in these sequences. Consistent with the genetic patterns in previous reports, four haplogroups (T1, T2, T3, and T4) were identified in Korean cattle breeds. In addition, T1a, T3a, and T3b sub-haplogroups were classified. In the phylogenetic tree, each haplogroup formed an independent cluster. The frequencies of T3, T4, T1 (containing T1a), and T2 were 66%, 16%, 10%, and 8%, respectively. Especially, the T1 haplogroup contained only one haplotype and a sample. All four haplogroups were found in Chikso, Jeju black and Hanwoo. However, only the T3 and T4 haplogroups appeared in Heugu, and most Chikso populations showed a partial of four haplogroups. These results will be useful for stable conservation and efficient management of Korean cattle breeds. PMID:26954229

  15. Computational and biological analysis of 680 kb of DNA sequence from the human 5q31 cytokine gene cluster region.

    PubMed

    Frazer, K A; Ueda, Y; Zhu, Y; Gifford, V R; Garofalo, M R; Mohandas, N; Martin, C H; Palazzolo, M J; Cheng, J F; Rubin, E M

    1997-05-01

    With the human genome project advancing into what will be a 7- to 10-year DNA sequencing phase, we are presented with the challenge of developing strategies to convert genomic sequence data, as they become available, into biologically meaningful information. We have analyzed 680 kb of noncontiguous DNA sequence from a 1-Mb region of human chromosome 5q31, coupling computational analysis with gene expression studies of tissues isolated from humans as well as from mice containing human YAC transgenes. This genomic interval has been noted previously for containing the cytokine gene cluster and a quantitative trait locus associated with inflammatory diseases. Our analysis identified and verified expression of 16 new genes, as well as 7 previously known genes. Of the total of 23 genes in this region, 78% had similarity matches to sequences in protein databases and 83% had exact expressed sequence tag (EST) database matches. Comparative mapping studies of eight of the new human genes discovered in the 5q31 region revealed that all are located in the syntenic region of mouse chromosome 11q. Our analysis demonstrates an approach for examining human sequence as it is made available from large sequencing programs and has resulted in the discovery of several biomedically important genes, including a cyclin, a transcription factor that is homologous to an oncogene, a protein involved in DNA repair, and several new members of a family of transporter proteins. PMID:9149945

  16. DNA sequencing conference, 2

    SciTech Connect

    Cook-Deegan, R.M.; Venter, J.C.; Gilbert, W.; Mulligan, J.; Mansfield, B.K.

    1991-06-19

    This conference focused on DNA sequencing, genetic linkage mapping, physical mapping, informatics and bioethics. Several were used to study this sequencing and mapping. This article also discusses computer hardware and software aiding in the mapping of genes.

  17. Nucleotide sequence analysis of the hypervariable region III of mitochondrial DNA in Thais.

    PubMed

    Thongngam, Punlop; Leewattanapasuk, Worraanong; Bhoopat, Tanin; Sangthong, Padchanee

    2016-07-01

    This study analyzed the nucleotide sequences of the hypervariable region III (HVRIII) of mitochondrial DNA in Thai individuals. Buccal swab samples were randomly obtained from 100 healthy, unrelated, adult (18-60 years old), volunteer donors living in Thailand. Eighteen different haplotypes were found, of which 11 haplotypes were unique. The most frequent haplotypes observed were 522D-523D. Nucleotide transition from Thymine (T) to Cytosine (C) at position 489 (43%) was the most frequent substitution. Nucleotide transversions were also observed at position 433 (Adenine (A) to C, 1%) and position 499 (Guanine (G) to C, 1%). Fifty-three samples presented nucleotide insertion and deletion of C and A (CA) at position 514-523. Insertion of 1AC (3%) and 2AC (2%) were observed. Deletion of 1CA (53%) and 2CA (2%) at position 514-523 were revealed. The deletion of T at position 459 was observed. The haplotype diversity, random match probability, and discrimination power were calculated to be 0.7770, 0.2308, and 0.7692, respectively. PMID:27107562

  18. Chromosome specific repetitive DNA sequences

    DOEpatents

    Moyzis, Robert K.; Meyne, Julianne

    1991-01-01

    A method is provided for determining specific nucleotide sequences useful in forming a probe which can identify specific chromosomes, preferably through in situ hybridization within the cell itself. In one embodiment, chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family me This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  19. Massively parallel sequencing of the entire control region and targeted coding region SNPs of degraded mtDNA using a simplified library preparation method.

    PubMed

    Lee, Eun Young; Lee, Hwan Young; Oh, Se Yoon; Jung, Sang-Eun; Yang, In Seok; Lee, Yang-Han; Yang, Woo Ick; Shin, Kyoung-Jin

    2016-05-01

    The application of next-generation sequencing (NGS) to forensic genetics is being explored by an increasing number of laboratories because of the potential of high-throughput sequencing for recovering genetic information from multiple markers and multiple individuals in a single run. A cumbersome and technically challenging library construction process is required for NGS. In this study, we propose a simplified library preparation method for mitochondrial DNA (mtDNA) analysis that involves two rounds of PCR amplification. In the first-round of multiplex PCR, six fragments covering the entire mtDNA control region and 22 fragments covering interspersed single nucleotide polymorphisms (SNPs) in the coding region that can be used to determine global haplogroups and East Asian haplogroups were amplified using template-specific primers with read sequences. In the following step, indices and platform-specific sequences for the MiSeq(®) system (Illumina) were added by PCR. The barcoded library produced using this simplified workflow was successfully sequenced on the MiSeq system using the MiSeq Reagent Nano Kit v2. A total of 0.4 GB of sequences, 80.6% with base quality of >Q30, were obtained from 12 degraded DNA samples and mapped to the revised Cambridge Reference Sequence (rCRS). A relatively even read count was obtained for all amplicons, with an average coverage of 5200 × and a less than three-fold read count difference between amplicons per sample. Control region sequences were successfully determined, and all samples were assigned to the relevant haplogroups. In addition, enhanced discrimination was observed by adding coding region SNPs to the control region in in silico analysis. Because the developed multiplex PCR system amplifies small-sized amplicons (<250 bp), NGS analysis using the library preparation method described here allows mtDNA analysis using highly degraded DNA samples. PMID:26844917

  20. Sequence analysis of the mitochondrial DNA control region of ciscoes (genus Coregonus): Taxonomic implications for the Great Lakes species flock

    USGS Publications Warehouse

    Reed, Kent M.; Dorschner, Michael O.; Todd, Thomas N.; Phillips, Ruth B.

    1998-01-01

    Sequence variation in the control region (D-loop) of the mitochondrial DNA (mtDNA) was examined to assess the genetic distinctiveness of the shortjaw cisco (Coregonus zenithicus). Individuals from within the Great Lakes Basin as well as inland lakes outside the basin were sampled. DNA fragments containing the entire D-loop were amplified by PCR from specimens ofC. zenithicus and the related species C. artedi, C. hoyi, C. kiyi, and C. clupeaformis. DNA sequence analysis revealed high similarity within and among species and shared polymorphism for length variants. Based on this analysis, the shortjaw cisco is not genetically distinct from other cisco species.

  1. [Analysis of DNA homology and 16S rDNA sequence of rhizobia, a new phenotypic subgroup, isolated from Xizang Autonomous Region of China].

    PubMed

    Wang, Su-ying; Yang, Xiao-li; Li, Hai-feng; Liu, Jie

    2006-02-01

    Based on the studies of numerical taxonomy, the seven rhizobial strains isolated from the root nodules of leguminous plants Trigonella spp. and Astragalus spp. growing in the Xizang Autonomous Region of China constituted a new phenotypic subgroup, where wide phenotypic and genotypic diversity among legume crops had been reported due to complex terrain and various climate. The new phenotypic subgroup were further identified to clarify its taxonomic position by DNA homology analysis and 16S rDNA gene sequencing. The mol% G + C ratio of the DNA among members of the new subgroup ranged from 59.5 to 63.3 mol% as determined by T (m) assay. The levels of DNA relatedness, determined by using the DNA liquid hybridization method, among the members of the new subgroup were between 74.3% and 92.3%, while level of DNA relatedness between the central strains XZ2-3 of the new subgroup and the type strains of known species of Rhizobium was less than 47.4%. These results indicated that the new phenotypic subgroup is a DNA homological group different from described species of Rhizobium. Therefore, this new phenotypic subgroup was supposed to be a new species in the genus of Rhizobium since the strains in the same species generally exhibit levels of DNA homology ranging from 70 to 100%. A systematic identification method-16S rDNA gene sequence comparison was carried out to determine the phylogenetic relationships of the new subgroup with the described species of Rhizobium. The GenBank accession number for the 16S rDNA sequence of the central strain XZ2-3 of the new subgroup is DQ099745. The full-length 16S rDNA gene sequence were sequenced by chain terminator techniques and analyzed with PHYLIP. The phylogenetic trees were constructed by using the programs DRAWTREE. The phylogenetic analysis indicated that new subgroup occupy a independent sub-branch in phylogenetic tree. The sequence similarities between the center strain XZ2-3 and the closest relatives, strain R. leguminosarum USDA

  2. Automated DNA Sequencing System

    SciTech Connect

    Armstrong, G.A.; Ekkebus, C.P.; Hauser, L.J.; Kress, R.L.; Mural, R.J.

    1999-04-25

    Oak Ridge National Laboratory (ORNL) is developing a core DNA sequencing facility to support biological research endeavors at ORNL and to conduct basic sequencing automation research. This facility is novel because its development is based on existing standard biology laboratory equipment; thus, the development process is of interest to the many small laboratories trying to use automation to control costs and increase throughput. Before automation, biology Laboratory personnel purified DNA, completed cycle sequencing, and prepared 96-well sample plates with commercially available hardware designed specifically for each step in the process. Following purification and thermal cycling, an automated sequencing machine was used for the sequencing. A technician handled all movement of the 96-well sample plates between machines. To automate the process, ORNL is adding a CRS Robotics A- 465 arm, ABI 377 sequencing machine, automated centrifuge, automated refrigerator, and possibly an automated SpeedVac. The entire system will be integrated with one central controller that will direct each machine and the robot. The goal of this system is to completely automate the sequencing procedure from bacterial cell samples through ready-to-be-sequenced DNA and ultimately to completed sequence. The system will be flexible and will accommodate different chemistries than existing automated sequencing lines. The system will be expanded in the future to include colony picking and/or actual sequencing. This discrete event, DNA sequencing system will demonstrate that smaller sequencing labs can achieve cost-effective the laboratory grow.

  3. Discrimination of two natural biocontrol agents in the Mediterranean region based on mitochondrial DNA sequencing data.

    PubMed

    Evangelou, V I; Bouga, M; Emmanouel, N G; Perdikis, D Ch; Papadoulis, G Th

    2013-12-01

    Macrolophus pygmaeus and M. melanotoma (Hemiptera: Miridae) are biological control agents used in greenhouse crops, the former preferring plants of the Solanaceae family and the latter the aster Dittrichia viscosa. The discrimination of these species is of high significance for effective biological pest control, but identification based on morphological characters of the host plant is not always reliable. In this study, sequencing analysis of mitochondrial gene segments 12S rDNA and COI has been combined with crossing experiments and morphological observations to develop new markers for Macrolophus spp. discrimination and to provide new data on their genetic variability. This is the first comprehensive research in Greece on M. pygmaeus and M. melanotoma genetic variability based on sequencing data from 12S rDNA and COI gene segments. The relationship of this variability to host plant preference must be investigated in an agricultural ecosystem. PMID:23839086

  4. Mitochondrial DNA variation and phylogenetic relationships among five tuna species based on sequencing of D-loop region.

    PubMed

    Kumar, Girish; Kocour, Martin; Kunal, Swaraj Priyaranjan

    2016-05-01

    In order to assess the DNA sequence variation and phylogenetic relationship among five tuna species (Auxis thazard, Euthynnus affinis, Katsuwonus pelamis, Thunnus tonggol, and T. albacares) out of all four tuna genera, partial sequences of the mitochondrial DNA (mtDNA) D-loop region were analyzed. The estimate of intra-specific sequence variation in studied species was low, ranging from 0.027 to 0.080 [Kimura's two parameter distance (K2P)], whereas values of inter-specific variation ranged from 0.049 to 0.491. The longtail tuna (T. tonggol) and yellowfin tuna (T. albacares) were found to share a close relationship (K2P = 0.049) while skipjack tuna (K. pelamis) was most divergent studied species. Phylogenetic analysis using Maximum-Likelihood (ML) and Neighbor-Joining (NJ) methods supported the monophyletic origin of Thunnus species. Similarly, phylogeny of Auxis and Euthynnus species substantiate the monophyly. However, results showed a distinct origin of K. pelamis from genus Thunnus as well as Auxis and Euthynnus. Thus, the mtDNA D-loop region sequence data supports the polyphyletic origin of tuna species. PMID:25329285

  5. DNA sequence variation in a non-coding region of low recombination on the human X chromosome.

    PubMed

    Kaessmann, H; Heissig, F; von Haeseler, A; Pääbo, S

    1999-05-01

    DNA sequence variation has become a major source of insight regarding the origin and history of our species as well as an important tool for the identification of allelic variants associated with disease. Comparative sequencing of DNA has to date focused mainly on mitochondrial (mt) DNA, which due to its apparent lack of recombination and high evolutionary rate lends itself well to the study of human evolution. These advantages also entail limitations. For example, the high mutation rate of mtDNA results in multiple substitutions that make phylogenetic analysis difficult and, because mtDNA is maternally inherited, it reflects only the history of females. For the history of males, the non-recombining part of the paternally inherited Y chromosome can be studied. The extent of variation on the Y chromosome is so low that variation at particular sites known to be polymorphic rather than entire sequences are typically determined. It is currently unclear how some forms of analysis (such as the coalescent) should be applied to such data. Furthermore, the lack of recombination means that selection at any locus affects all 59 Mb of DNA. To gauge the extent and pattern of point substitutional variation in non-coding parts of the human genome, we have sequenced 10 kb of non-coding DNA in a region of low recombination at Xq13.3. Analysis of this sequence in 69 individuals representing all major linguistic groups reveals the highest overall diversity in Africa, whereas deep divergences also exist in Asia. The time elapsed since the most recent common ancestor (MRCA) is 535,000+/-119,000 years. We expect this type of nuclear locus to provide more answers about the genetic origin and history of humans. PMID:10319866

  6. Gene identification and DNA sequence analysis in the GC-poor 20 megabase region of human chromosome 21.

    PubMed

    Yu, J; Tong, S; Shen, Y; Kao, F T

    1997-06-24

    In contrast to the distal half of the long arm of chromosome 21, the proximal half of approximately 20 megabases of DNA, including 21q11-21 bands, is low in GC content, CpG islands, and identified genes. Despite intensive searches, very few genes and cDNAs have been found in this region. Since the 21q11-21 region is associated with certain Down syndrome pathologies like mental retardation, the identification of relevant genes in this region is important. We used a different approach by constructing microdissection libraries specifically for this region and isolating unique sequence microclones for detailed molecular analysis. We found that this region is enriched with middle and low-copy repetitive sequences, and is also heavily methylated. By sequencing and homology analysis, we identified a significant number of genes/cDNAs, most of which appear to belong to gene families. In addition, we used unique sequence microclones in direct screening of cDNA libraries and isolated 12 cDNAs for this region. Thus, although the 21q11-21 region is gene poor, it is not completely devoid of genes/cDNAs. The presence of high proportions of middle and low-copy repetitive sequences in this region may have evolutionary significance in the genome organization and function of this region. Since 21q11-21 is heavily methylated, the expression of genes in this region may be regulated by a delicate balance of methylation and demethylation, and the presence of an additional copy of chromosome 21 may seriously disturb this balance and cause specific Down syndrome anomalies including mental retardation. PMID:9192657

  7. Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach

    SciTech Connect

    Uberbacher, E.C.; Mural, R.J. Univ. of Tennessee, Oak Ridge )

    1991-12-15

    Genes in higher eukaryotes may span tens or hundreds of kilobases with the protein-coding regions accounting for only a few percent of the total sequence. Identifying genes within large regions of uncharacterized DNA is a difficult undertaking and is currently the focus of many research efforts. The authors describe a reliable computational approach for locating protein-coding portions of genes in anonymous DNA sequence. Using a concept suggested by robotic environmental sensing, the authors method combines a set of sensor algorithms and a neural network to localize the coding regions. Several algorithms that report local characteristics of the DNA sequence, and therefore act as sensors, are also described. In its current configuration the coding recognition module identifies 90% of coding exons of length 100 bases or greater with less than one false positive coding exon indicated per five coding exons indicated. This is a significantly lower false positive rate than any method of which the authors are aware. This module demonstrates a method with general applicability to sequence-pattern recognition problems and is available for current research efforts.

  8. Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach.

    PubMed Central

    Uberbacher, E C; Mural, R J

    1991-01-01

    Genes in higher eukaryotes may span tens or hundreds of kilobases with the protein-coding regions accounting for only a few percent of the total sequence. Identifying genes within large regions of uncharacterized DNA is a difficult undertaking and is currently the focus of many research efforts. We describe a reliable computational approach for locating protein-coding portions of genes in anonymous DNA sequence. Using a concept suggested by robotic environmental sensing, our method combines a set of sensor algorithms and a neural network to localize the coding regions. Several algorithms that report local characteristics of the DNA sequence, and therefore act as sensors, are also described. In its current configuration the "coding recognition module" identifies 90% of coding exons of length 100 bases or greater with less than one false positive coding exon indicated per five coding exons indicated. This is a significantly lower false positive rate than any method of which we are aware. This module demonstrates a method with general applicability to sequence-pattern recognition problems and is available for current research efforts. PMID:1763041

  9. DNA Sequencing apparatus

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1992-01-01

    An automated DNA sequencing apparatus having a reactor for providing at least two series of DNA products formed from a single primer and a DNA strand, each DNA product of a series differing in molecular weight and having a chain terminating agent at one end; separating means for separating the DNA products to form a series bands, the intensity of substantially all nearby bands in a different series being different, band reading means for determining the position an This invention was made with government support including a grant from the U.S. Public Health Service, contract number AI-06045. The U.S. government has certain rights in the invention.

  10. Statistical properties of DNA sequences

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Simons, M.; Stanley, H. E.

    1995-01-01

    We review evidence supporting the idea that the DNA sequence in genes containing non-coding regions is correlated, and that the correlation is remarkably long range--indeed, nucleotides thousands of base pairs distant are correlated. We do not find such a long-range correlation in the coding regions of the gene. We resolve the problem of the "non-stationarity" feature of the sequence of base pairs by applying a new algorithm called detrended fluctuation analysis (DFA). We address the claim of Voss that there is no difference in the statistical properties of coding and non-coding regions of DNA by systematically applying the DFA algorithm, as well as standard FFT analysis, to every DNA sequence (33301 coding and 29453 non-coding) in the entire GenBank database. Finally, we describe briefly some recent work showing that the non-coding sequences have certain statistical features in common with natural and artificial languages. Specifically, we adapt to DNA the Zipf approach to analyzing linguistic texts. These statistical properties of non-coding sequences support the possibility that non-coding regions of DNA may carry biological information.

  11. Statistical properties of DNA sequences

    NASA Astrophysics Data System (ADS)

    Peng, C.-K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Simons, M.; Stanley, H. E.

    1995-02-01

    We review evidence supporting the idea that the DNA sequence in genese containing non-coding regions is correlated, and that the correlation is remarkably long range - indeed, nucleotides thousands of base pairs distant are correlated. We do not find such a long-range correlation in the coding regions of the gene. We resolve the problem of the “non-stationarity” feature of the sequence of base pairs by applying a new algorithm called detrended fluctuation analysis (DFA). We address the claim of Voss that there is no difference in the statistical properties of coding and non-coding regions of DNA by systematically applying the DFA algorithm, as well as standard FFT analysis, to every DNA sequence (33 301 coding and 29 453 non-coding) in the entire GenBank database. Finally, we describe briefly some recent work showing that the non-coding sequences have certain statistical features in common with natural and artificial languages. Specifically, we adapt to DNA the Zipf approach to analyzing linguistic texts. These statistical properties of non-coding sequences support the possibility that non-coding regions of DNA may carry biological information.

  12. Mitochondrial DNA control region sequences in Koreans: identification of useful variable sites and phylogenetic analysis for mtDNA data quality control.

    PubMed

    Lee, Hwan Young; Yoo, Ji-Eun; Park, Myung Jin; Chung, Ukhee; Shin, Kyoung-Jin

    2006-01-01

    We have established a high-quality mtDNA control region sequence database for Koreans. To identify polymorphic sites and to determine their frequencies and haplotype frequencies, the complete mtDNA control region was sequenced in 593 Koreans, and major length variants of poly-cytosine tracts in HV2 and HV3 were determined in length heteroplasmic individuals by PCR analysis using fluorescence-labeled primers. Sequence comparison showed that 494 haplotypes defined by 285 variable sites were found when the major poly-cytosine tract genotypes were considered in distinguishing haplotypes, whereas 441 haplotypes were found when the poly-cytosine tracts were ignored. Statistical parameters indicated that analysis of partial mtDNA control region which encompasses the extended regions of HV1 and HV2, CA dinucleotide repeats in HV3 and nucleotide position 16497, 16519, 456, 489 and 499 (HV1ex+HV2ex+HV3CA+5SNPs) and the analysis of another partial mtDNA control region including extended regions of HV1 and HV2, HV3 region and nucleotide position 16497 and 16519 (HV1ex+HV2ex+HV3+2SNPs) can be used as efficient alternatives for the analysis of the entire mtDNA control region in Koreans. Also, we collated the basic informative SNPs, suggested the important mutation motifs for the assignment of East Asian haplogroups, and classified 592 Korean mtDNAs (99.8%) into various East Asian haplogroups or sub-haplogroups. Haplogroup-directed database comparisons confirmed the absence of any major systematic errors in our data, e.g., a mix-up of site designations, base shifts or mistypings. PMID:16177905

  13. Associations between sequence variations in the mitochondrial DNA D-loop region and outcome of hepatocellular carcinoma

    PubMed Central

    LI, SHILAI; WAN, PEIQI; PENG, TAO; XIAO, KAIYIN; SU, MING; SHANG, LIMING; XU, BANGHAO; SU, ZHIXIONG; YE, XINPING; PENG, NING; QIN, QUANLIN; LI, LEQUN

    2016-01-01

    The association between mitochondrial DNA (mtDNA) polymorphisms or mutations and the prognoses of cancer have been investigated previously, but the results have been ambiguous. In the present study, the associations between sequence variations in the mtDNA D-loop region and the outcomes of patients with hepatocellular carcinoma (HCC) were analysed. A total of 140 patients with HCC (123 males and 17 females), who were hospitalised to undergo radical resection, were studied. Polymerase chain reaction and direct sequencing were performed to detect the sequence variations in the mtDNA D-loop region. Multivariate and univariate analyses were conducted to determine important factors in the prognosis of HCC. A total of 150 point sequence variations were observed in the 140 cases (13 point mutations, 8 insertions, 20 deletions and 116 polymorphisms). The variation rate was 13.4% (150/1, 122). mtDNA nucleotide 150 (C/T) was an independent factor in the logistic regression for early/late recurrence of HCC. Patients with 150T appeared to have later recurrences. In a Cox proportional hazards regression model, hepatitis B virus DNA, Child-Pugh class, differentiation degree, tumour-node-metastasis (TNM) stage, nucleotide 16263 (T/C) and nucleotide 315 (N/insertion C) were independent factors for tumour-free survival time. Patients with the 16263T allele had a greater tumour-free survival time than patients with the 16263C allele. Similarly, patients with 315 insertion C had a superior tumour-free survival time when compared with patients with 315 N (normal). In the Cox proportional hazards regression model, recurrence type (early/late), Child-Pugh class, TNM stage and adjuvant treatment after tumour recurrence (none or one/more than one treatment) were independent factors for overall survival. None of the mtDNA variations served as independent factors. Patients with late recurrence, Child-Pugh class A, and low TNM stages and/or those who received more than one adjuvant treatment

  14. Isolation and characterization of 21 novel expressed DNA sequences from the distal region of human chromosome 4p

    SciTech Connect

    Ishida, Yoshikazu; Hadano, Shinji; Nagayama, Tomiko

    1994-07-15

    The authors have established an approach to the isolation of expressed DNA sequences from a defined region of the human chromosome. The method relies on the direct screening of cDNA libraries using pooled single-copy microclones generated by a laser chromosome microdissection in conjunction with a single unique primer polymerase chain reaction (SUP-PCR) procedure. They applied this method to the distal region of human chromosome 4p (4p15-4pter), which contains the Huntington disease (HD) and the Wolf-Hirschhorn syndrome (WHS) loci. Twenty-one nonoverlapping and region-specific cDNA clones encoding novel genes were isolated in this manner. Ten of 21 clones were subregionally assigned to 4p16.1-4pter, and the remainder mapped to the region proximal to 4p16.1. Northern blot and reverse transcription followed by the PCR (RT-PCR) analysis revealed that 16 of these 21 clones detected transcripts in total RNA from human tissues. The method is applicable to other chromosomal regions and is a powerful approach to the isolation of region-specific cDNA clones. 44 refs., 3 figs., 3 tabs.

  15. Automated DNA sequencing.

    PubMed

    Wallis, Yvonne; Morrell, Natalie

    2011-01-01

    Fluorescent cycle sequencing of PCR products is a multistage process and several methodologies are available to perform each stage. This chapter will describe the more commonly utilised dye-terminator cycle sequencing approach using BigDye® terminator chemistry (Applied Biosystems) ready for analysis on a 3730 DNA genetic analyzer. Even though DNA sequencing is one of the most common and robust techniques performed in molecular laboratories it may not always produce desirable results. The causes of the most common problems will also be discussed in this chapter. PMID:20938839

  16. Targeted enrichment of genomic DNA regions for next-generation sequencing

    PubMed Central

    ElSharawy, Abdou; Sauer, Sascha; van Helvoort, Joop M.L.M.; van der Zaag, P.J.; Franke, Andre; Nilsson, Mats; Lehrach, Hans; Brookes, Anthony J.

    2011-01-01

    In this review, we discuss the latest targeted enrichment methods and aspects of their utilization along with second-generation sequencing for complex genome analysis. In doing so, we provide an overview of issues involved in detecting genetic variation, for which targeted enrichment has become a powerful tool. We explain how targeted enrichment for next-generation sequencing has made great progress in terms of methodology, ease of use and applicability, but emphasize the remaining challenges such as the lack of even coverage across targeted regions. Costs are also considered versus the alternative of whole-genome sequencing which is becoming ever more affordable. We conclude that targeted enrichment is likely to be the most economical option for many years to come in a range of settings. PMID:22121152

  17. Investigation of mtDNA control region sequences in a Tibetan population sample from China.

    PubMed

    Wang, Yun-Ke; Yao, Jun; Han, Xuan; Ding, Mei; Pang, Hao; Wang, Bao-Jie; Zhang, Zhi-Qiang

    2016-05-01

    Mitochondrial hypervariable region sequences including HVI and HVII (15,751-520) were investigated from 174 unrelated Tibetan individuals living in Tibet Autonomous Region in People's Republic of China. The resulted sequences were aligned and compared with revised Cambridge sequence (rCRS). This sequence variability rendered a high gene diversity value (0.9940 ± 0.0021) and a high random match probability (0.0118) was determined with PIC of 0.9882. Among a total of 174 samples, 217 polymorphic sites were identified, which defined 135 haplotypes. A total of 135 different haplotypes were detected, 113 of them were unique and 22 were shared. The most common haplogroup was M9a1a1c1b1 (16.09%), followed by A11 (6.32%), A (5.17%), R (4.60%), A15 (4.60%), and G3a1 (3.45). The proportions of macro-haplogroups M, N, and L were 54.60%, 42.53%, and 2.87%, respectively. By principal component analysis (PCA), there was no special cluster between Tibetans and other populations except that the structure of Tibetans closely resembled that of Uygur in component 2. PMID:25423521

  18. Multiplex genotype determination at a DNA sequence polymorphism cluster in the human immunoglobulin heavy-chain region

    SciTech Connect

    Li, H.; Hood, L.

    1995-03-20

    We have developed a method for multilocus genotype determination. The method involves using restriction fragment length polymorphisms (RFLPs) for allele discrimination. If a polymorphism is not an RFLP, it is converted into an RFLP during the polymerase chain reaction (PCR). After amplification and restriction enzyme digestion, samples are analyzed by sequential gel loading during electrophoresis. The efficiency of this method was demonstrated by determining the genotypes of 108 semen samples at seven DNA sequence polymorphic sites identified in the human immunoglobulin heavy-chain variable region. It was shown that more than 1000 PCR products could be easily analyzed per day per investigator. To show the reliability of this method, some of the typing results were confirmed by DNA sequence analysis. By computer simulation, most (98%) polymorphisms were shown to be natural or convertible (by changing 1 bp close to or next to each polymorphic site) RFLPs for the commercially available 4-base cutters. 47 refs., 4 figs., 3 tabs.

  19. Identification and mapping of DNA binding proteins target sequences in long genomic regions by two-dimensional EMSA.

    PubMed

    Chernov, Igor P; Akopov, Sergey B; Nikolaev, Lev G; Sverdlov, Eugene D

    2006-07-01

    Specific binding of nuclear proteins, in particular transcription factors, to target DNA sequences is a major mechanism of genome functioning and gene expression regulation in eukaryotes. Therefore, identification and mapping specific protein target sites (PTS) is necessary for understanding genomic regulation. Here we used a novel two-dimensional electrophoretic mobility shift assay (2D-EMSA) procedure for identification and mapping of 52 PTS within a 563-kb human genome region located between the FXYD5 and TZFP genes. The PTS occurred with approximately equal frequency within unique and repetitive genomic regions. PTS belonging to unique sequences tended to group together within gene introns and close to their 5' and 3' ends, whereas PTS located within repeats were evenly distributed between transcribed and intragenic regions. PMID:16869519

  20. DNA sequencing: chemical methods

    SciTech Connect

    Ambrose, B.J.B.; Pless, R.C.

    1987-01-01

    Limited base-specific or base-selective cleavage of a defined DNA fragment yields polynucleotide products, the length of which correlates with the positions of the particular base (or bases) in the original fragment. Sverdlov and co-workers recognized the possibility of using this principle for the determination of DNA sequences. In 1977 a fully elaborated method was introduced based on this principle, which allowed routine analysis of DNA sequences over distances greater than 100 nucleotide unite from a defined, radiolabeled terminus. Six procedures for partial cleavage were described. Simultaneous parallel resolution of an appropriate set of partial cleavage mixtures by polyacrylamide gel electrophoresis, followed by visualization of the radioactive bands by autoradiography, allows the deduction of nucleotide sequence.

  1. Localised sequence regions possessing high melting temperatures prevent the amplification of a DNA mimic in competitive PCR.

    PubMed

    McDowell, D G; Burns, N A; Parkes, H C

    1998-07-15

    The polymerase chain reaction is an immensely powerful technique for identification and detection purposes. Increasingly, competitive PCR is being used as the basis for quantification. However, sequence length, melting temperature and primary sequence have all been shown to influence the efficiency of amplification in PCR systems and may therefore compromise the required equivalent co-amplification of target and mimic in competitive PCR. The work discussed here not only illustrates the need to balance length and melting temperature when designing a competitive PCR assay, but also emphasises the importance of careful examination of sequences for GC-rich domains and other sequences giving rise to stable secondary structures which could reduce the efficiency of amplification by serving as pause or termination sites. We present data confirming that under particular circumstances such localised sequence, high melting temperature regions can act as permanent termination sites, and offer an explanation for the severity of this effect which results in prevention of amplification of a DNA mimic in competitive PCR. It is also demonstrated that when Taq DNA polymerase is used in the presence of betaine or a proof reading enzyme, the effect may be reduced or eliminated. PMID:9649616

  2. Phylogeny and Biogeography of Cedrus (Pinaceae) Inferred from Sequences of Seven Paternal Chloroplast and Maternal Mitochondrial DNA Regions

    PubMed Central

    Qiao, Cai-Yuan; Ran, Jin-Hua; Li, Yan; Wang, Xiao-Quan

    2007-01-01

    Background and Aims Cedrus (true cedars) is a very important horticultural plant group. It has a disjunct distribution in the Mediterranean region and western Himalaya. Its evolution and biogeography are of great interest to botanists. This study aims to investigate the phylogeny and biogeography of Cedrus based on sequence analyses of seven cytoplasmic DNA fragments. Methods The methods used were PCR amplification and sequencing of seven paternal cpDNA and maternal mtDNA fragments, parsimony and maximum likelihood analyses of the DNA dataset, and molecular clock estimate of divergence times of Cedrus species. Key Results Phylogenies of Cedrus constructed from cpDNA, mtDNA and the combined cp- and mt-DNA dataset are identical in topology. It was found that the Himalayan cedar C. deodara diverged first, and then the North African species C. atlantica separated from the common ancestor of C. libani and C. brevifolia, two species from the eastern Mediterranean area. Molecular clock estimates suggest that the divergence between C. atlantica and the eastern Mediterranean clade at 23·49 ± 3·55 to 18·81 ± 1·25 Myr and the split between C. libani and C. brevifolia at 7·83 ± 2·79 to 6·56 ± 1·20 Myr. Conclusions The results, combined with palaeogeographical and palaeoecological information, indicate that Cedrus could have an origin in the high latitude area of Eurasia, and its present distribution might result from vicariance of southerly migrated populations during climatic oscillations in the Tertiary and further fragmentation and dispersal of these populations. It is very likely that Cedrus migrated into North Africa in the very late Tertiary, while its arrival in the Himalayas would not have been before the Miocene, after which the phased or fast uplift of the Tibetan plateau happened. PMID:17611189

  3. Comparison of Sequences from the Ribosomal DNA Intergenic Region of Meloidogyne mayaguensis and Other Major Tropical Root-Knot Nematodes

    PubMed Central

    Blok, V. C.; Phillips, M. S.; Fargette, M.

    1997-01-01

    The unusual arrangement of the 5S ribosomal gene within the intergenic sequence (IGS) of the ribosomal cistron, previously reported for Meloidogyne arenaria, was also found in the ribosomal DNA of two other economically important species of tropical root-knot nematodes, M, incognita and M. javanica. This arrangement also was found in M. hapla, which is important in temperate regions, and M. mayaguensis, a virulent species of concern in West Africa. Amplification of the region between the 5S and 18S genes by PCR yielded products of three different sizes such that M. mayaguensis could be readily differentiated from the other species in this study. This product can be amplified from single juveniles, females, or egg masses. The sequences obtained in this region for one line of each of M. incognita, M. arenaria, and M. javanica were very similar, reflecting the close relationships of these lineages. The M. mayaguensis sequence for this region had a number of small deletions and insertions of various sizes, including possible sequence duplications. PMID:19274129

  4. Phylogenetic relations of humans and African apes from DNA sequences in the Psi eta-globin region

    SciTech Connect

    Miyamoto, M.M.; Slightom, J.L.; Goodman, M.

    1987-10-16

    Sequences from the upstream and downstream flanking DNA regions of the Psi eta-globin locus in Pan troglodytes (common chimpanzee), Gorilla gorilla (gorilla), and Pongo pygmaeus (orangutan, the closest living relative to Homo, Pan, and Gorilla) provided further data for evaluating the phylogenetic relations of humans and African apes. These newly sequenced orthologs (an additional 4.9 kilobase pairs (kbp) for each species) were combined with published Psi eta-gene sequences and then compared to the same orthologous stretch (a continuous 7.1-kbp region) available for humans. Phylogenetic analysis of these nucleotide sequences by the parsimony method indicated (i) that human and chimpanzee are more closely related to each other than either is to gorilla and (ii) that the slowdown in the rate of sequence evolution evident in higher primates is especially pronounced in humans. These results indicate that features unique to African apes (but not to humans) are primitive and that even local molecular clocks should be applied with caution.

  5. Transposon facilitated DNA sequencing

    SciTech Connect

    Berg, D.E.; Berg, C.M.; Huang, H.V.

    1990-01-01

    The purpose of this research is to investigate and develop methods that exploit the power of bacterial transposable elements for large scale DNA sequencing: Our premise is that the use of transposons to put primer binding sites randomly in target DNAs should provide access to all portions of large DNA fragments, without the inefficiencies of methods involving random subcloning and attendant repetitive sequencing, or of sequential synthesis of many oligonucleotide primers that are used to match systematically along a DNA molecule. Two unrelated bacterial transposons, Tn5 and {gamma}{delta}, are being used because they have both proven useful for molecular analyses, and because they differ sufficiently in mechanism and specificity of transposition to merit parallel development.

  6. Minding the gap: Frequency of indels in mtDNA control region sequence data and influence on population genetic analyses

    USGS Publications Warehouse

    Pearce, J.M.

    2006-01-01

    Insertions and deletions (indels) result in sequences of various lengths when homologous gene regions are compared among individuals or species. Although indels are typically phylogenetically informative, occurrence and incorporation of these characters as gaps in intraspecific population genetic data sets are rarely discussed. Moreover, the impact of gaps on estimates of fixation indices, such as FST, has not been reviewed. Here, I summarize the occurrence and population genetic signal of indels among 60 published studies that involved alignments of multiple sequences from the mitochondrial DNA (mtDNA) control region of vertebrate taxa. Among 30 studies observing indels, an average of 12% of both variable and parsimony-informative sites were composed of these sites. There was no consistent trend between levels of population differentiation and the number of gap characters in a data block. Across all studies, the average influence on estimates of ??ST was small, explaining only an additional 1.8% of among population variance (range 0.0-8.0%). Studies most likely to observe an increase in ??ST with the inclusion of gap characters were those with < 20 variable sites, but a near equal number of studies with few variable sites did not show an increase. In contrast to studies at interspecific levels, the influence of indels for intraspecific population genetic analyses of control region DNA appears small, dependent upon total number of variable sites in the data block, and related to species-specific characteristics and the spatial distribution of mtDNA lineages that contain indels. ?? 2006 Blackwell Publishing Ltd.

  7. Genetic variability among Schistosoma japonicum isolates from different endemic regions in China revealed by sequences of three mitochondrial DNA genes.

    PubMed

    Zhao, G H; Mo, X H; Zou, F C; Li, J; Weng, Y B; Lin, R Q; Xia, C M; Zhu, X Q

    2009-05-26

    The present study examined sequence variation in three mitochondrial DNA (mtDNA) regions, namely cytochrome c oxidase subunit 3 (cox3), NADH dehydrogenase subunits 4 and 5 (nad4 and nad5), among Schistosoma japonicum isolates from different endemic regions in China, and their phylogenetic relationships were re-constructed. A portion of the cox3 gene (pcox3), a portion of the nad4 and nad5 genes (pnad4 and pnad5) were amplified separately from individual trematodes by polymerase chain reaction (PCR) and the amplicons were subjected to direct sequencing. In the mountainous areas, sequence variations between parasites from Yunnan and those from Sichuan were 0.3% for pcox3, 0.0-0.1% for pnad4, and 0.0-0.2% for pnad5. In the lake/marshland areas, sequence variations between male and female parasites among different geographical locations were 0.0-0.3% for pcox3, 0.0-0.7% for pnad4, and 0.0-1.6% for pnad5. Sequence variations between S. japonicum from mountainous areas and those from lake/marshland areas were 0.0-0.5% for pcox3, 0.0-0.7% for pnad4, and 0.0-1.6% for pnad5. Phylogenetic analyses based on the combined sequences of pcox3, pnad4 and pnad5 revealed that S. japonicum isolates from mountainous areas (Yunnan and Sichuan provinces) clustered together. For isolates from the lake/marshland areas, isolates from Anhui and Jiangsu provinces clustered together and was sister to samples from Jiangxi province, while isolates from Hubei and Zhejiang province clustered together. However, isolates from different geographical locations in Hunan province were in different clades. These findings demonstrated the usefulness and attributes of the three mtDNA sequences for population genetic studies of S. japonicum, and have implications for studying population biology, molecular epidemiology, and genetic structure of S. japonicum, as well as for the effective control of schistosomiasis. PMID:19303214

  8. DNA Sequences at a Glance

    PubMed Central

    Pinho, Armando J.; Garcia, Sara P.; Pratas, Diogo; Ferreira, Paulo J. S. G.

    2013-01-01

    Data summarization and triage is one of the current top challenges in visual analytics. The goal is to let users visually inspect large data sets and examine or request data with particular characteristics. The need for summarization and visual analytics is also felt when dealing with digital representations of DNA sequences. Genomic data sets are growing rapidly, making their analysis increasingly more difficult, and raising the need for new, scalable tools. For example, being able to look at very large DNA sequences while immediately identifying potentially interesting regions would provide the biologist with a flexible exploratory and analytical tool. In this paper we present a new concept, the “information profile”, which provides a quantitative measure of the local complexity of a DNA sequence, independently of the direction of processing. The computation of the information profiles is computationally tractable: we show that it can be done in time proportional to the length of the sequence. We also describe a tool to compute the information profiles of a given DNA sequence, and use the genome of the fission yeast Schizosaccharomyces pombe strain 972 h− and five human chromosomes 22 for illustration. We show that information profiles are useful for detecting large-scale genomic regularities by visual inspection. Several discovery strategies are possible, including the standalone analysis of single sequences, the comparative analysis of sequences from individuals from the same species, and the comparative analysis of sequences from different organisms. The comparison scale can be varied, allowing the users to zoom-in on specific details, or obtain a broad overview of a long segment. Software applications have been made available for non-commercial use at http://bioinformatics.ua.pt/software/dna-at-glance. PMID:24278218

  9. DNA sequences at a glance.

    PubMed

    Pinho, Armando J; Garcia, Sara P; Pratas, Diogo; Ferreira, Paulo J S G

    2013-01-01

    Data summarization and triage is one of the current top challenges in visual analytics. The goal is to let users visually inspect large data sets and examine or request data with particular characteristics. The need for summarization and visual analytics is also felt when dealing with digital representations of DNA sequences. Genomic data sets are growing rapidly, making their analysis increasingly more difficult, and raising the need for new, scalable tools. For example, being able to look at very large DNA sequences while immediately identifying potentially interesting regions would provide the biologist with a flexible exploratory and analytical tool. In this paper we present a new concept, the "information profile", which provides a quantitative measure of the local complexity of a DNA sequence, independently of the direction of processing. The computation of the information profiles is computationally tractable: we show that it can be done in time proportional to the length of the sequence. We also describe a tool to compute the information profiles of a given DNA sequence, and use the genome of the fission yeast Schizosaccharomyces pombe strain 972 h(-) and five human chromosomes 22 for illustration. We show that information profiles are useful for detecting large-scale genomic regularities by visual inspection. Several discovery strategies are possible, including the standalone analysis of single sequences, the comparative analysis of sequences from individuals from the same species, and the comparative analysis of sequences from different organisms. The comparison scale can be varied, allowing the users to zoom-in on specific details, or obtain a broad overview of a long segment. Software applications have been made available for non-commercial use at http://bioinformatics.ua.pt/software/dna-at-glance. PMID:24278218

  10. Comparison of mitochondrial DNA control region sequence and microsatellite DNA analyses in estimating population structure and gene flow rates in Atlantic sturgeon Acipenser oxyrinchus

    USGS Publications Warehouse

    Wirgin, I.; Waldman, J.; Stabile, J.; Lubinski, B.; King, T.

    2002-01-01

    Atlantic sturgeon Acipenser oxyrinchus is large, long-lived, and anadromous with subspecies distributed along the Atlantic (A. oxyrinchus oxyrinchus) and Gulf of Mexico (A. o. desotoi) coasts of North America. Although it is not certain if extirpation of some population units has occurred, because of anthropogenic influences abundances of all populations are low compared with historical levels. Informed management of A. oxyrinchus demands a detailed knowledge of its population structure, levels of genetic diversity, and likelihood to home to natal rivers. We compared the use of mitochondrial DNA (mtDNA) control region sequence and microsatellite nuclear DNA (nDNA) analyses in identifying the stock structure and homing fidelity of Atlantic and Gulf coast populations of A. oxyrinchus. The approaches were concordant in that they revealed moderate to high levels of genetic diversity and suggested that populations of Atlantic sturgeon are highly structured. At least six genetically distinct management units were detected using the two approaches among the rivers surveyed. Mitochondrial DNA sequences revealed a significant cline in haplotype diversity along the Atlantic coast with monomorphism observed in Canadian populations. High levels of nDNA diversity were also observed among populations along the Atlantic coast, including the two Canadian populations, probably resulting from the more rapid rate of mutational and evolutionary change at microsatellite loci. Estimates of gene flow among populations were similar between both approaches with the exception that because of mtDNA monomorphism in Canadian populations, gene flow estimates between them were unobtainable. Analyses of both genomes provided high resolution and confidence in characterizing the population structure of Atlantic sturgeon. Microsatellite analysis was particularly informative in delineating population structure in rivers that were recently glaciated and may prove diagnostic in rivers that are

  11. {open_quotes}Feature{close_quotes} mapping of the HLA-C linked DNA region: Construction by sequencing from nested deletions

    SciTech Connect

    Krishnan, B.R.; Chaplin, D.D. |

    1994-09-01

    The HLA complex located on chromosome 6p spans {approximately}4 Mb and is gene dense. To enable systematic analysis of less well-characterized portions of HLA, we are defining significant {open_quotes}features{close_quotes} of these DNA regions: locations of putative genes (prediction of exons by GRAIL analysis) and Alu elements, regions with homology to the database, and regions of evolutionarily conserved DNA sequence. Initially, we cloned a 35 kb DNA segment adjacent to HLA-C into a transposon {gamma}{delta}-based cosmid vector designed for generating nested deletions in vivo. Over 70 informative nested deletions were obtained and sequenced by fluorescent-automated technology. Islands of DNA sequences were obtained and used to construct a feature map of the 35 kb HLA segment. Our data (i) defined the organization of the previously identified keratinocyte-specific S gene, (ii) generated the DNA sequence of two evolutionarily conserved DNA segments, and (iii) located otherwise undefined putative exons and Alu elements. The construction of such feature maps of large DNA segments using the nested deletion-sequencing approach provides an efficient means to identify DNA segments meriting systematic and detailed analysis.

  12. [Polymorphism and Genetic Structure of Microtus maximowiczii (Schrenck, 1858) (Rodentia, Cricetidae) from the Middle Amur River Region as Inferred from Sequencing of the mtDNA Control Region].

    PubMed

    Sheremetyeva, I N; Kartavtseva, I V; Frisman, L V; Vasil'eva, T V; Adnagulova, A V

    2015-10-01

    The genetic variability of the mitochondrial DNA control region sequences was estimated for the Maximowicz's vole Microtus maximowiczii from the Middle Amur River region located between the confluence of Amur River with Ussuri River and Zeya River. The species as a whole was characterized by a high level of genetic variability. For each individual sample, low nucleotide diversity was observed, except for two samples in which a more than twofold increase in this index was revealed. The presence of the contact zone of two genetically distinct populations in the area between Bira and Bidzhan rivers is suggested. PMID:27169230

  13. Molecular identification of isolated fungi from unopened containers of greek yogurt by DNA sequencing of internal transcribed spacer region.

    PubMed

    Sulaiman, Irshad M; Jacobs, Emily; Simpson, Steven; Kerdahi, Khalil

    2014-01-01

    In our previous study, we described the development of an internal transcribed spacer (ITS)1 sequencing method, and used this protocol in species-identification of isolated fungi collected from the manufacturing areas of a compounding company known to have caused the multistate fungal meningitis outbreak in the United States. In this follow-up study, we have analyzed the unopened vials of Greek yogurt from the recalled batch to determine the possible cause of microbial contamination in the product. A total of 15 unopened vials of Greek yogurt belonging to the recalled batch were examined for the detection of fungi in these samples known to cause foodborne illness following conventional microbiological protocols. Fungi were isolated from all of the 15 Greek yogurt samples analyzed. The isolated fungi were genetically typed by DNA sequencing of PCR-amplified ITS1 region of rRNA gene. Analysis of data confirmed all of the isolated fungal isolates from the Greek yogurt to be Rhizomucor variabilis. The generated ITS1 sequences matched 100% with the published sequences available in GenBank. In addition, these yogurt samples were also tested for the presence of five types of bacteria (Salmonella, Listeria, Staphylococcus, Bacillus and Escherichia coli) causing foodborne disease in humans, and found negative for all of them. PMID:25438008

  14. Molecular Identification of Isolated Fungi from Unopened Containers of Greek Yogurt by DNA Sequencing of Internal Transcribed Spacer Region

    PubMed Central

    Sulaiman, Irshad M.; Jacobs, Emily; Simpson, Steven; Kerdahi, Khalil

    2014-01-01

    In our previous study, we described the development of an internal transcribed spacer (ITS)1 sequencing method, and used this protocol in species-identification of isolated fungi collected from the manufacturing areas of a compounding company known to have caused the multistate fungal meningitis outbreak in the United States. In this follow-up study, we have analyzed the unopened vials of Greek yogurt from the recalled batch to determine the possible cause of microbial contamination in the product. A total of 15 unopened vials of Greek yogurt belonging to the recalled batch were examined for the detection of fungi in these samples known to cause foodborne illness following conventional microbiological protocols. Fungi were isolated from all of the 15 Greek yogurt samples analyzed. The isolated fungi were genetically typed by DNA sequencing of PCR-amplified ITS1 region of rRNA gene. Analysis of data confirmed all of the isolated fungal isolates from the Greek yogurt to be Rhizomucor variabilis. The generated ITS1 sequences matched 100% with the published sequences available in GenBank. In addition, these yogurt samples were also tested for the presence of five types of bacteria (Salmonella, Listeria, Staphylococcus, Bacillus and Escherichia coli) causing foodborne disease in humans, and found negative for all of them. PMID:25438008

  15. U3 Region in the HIV-1 Genome Adopts a G-Quadruplex Structure in Its RNA and DNA Sequence

    PubMed Central

    2015-01-01

    Genomic regions rich in G residues are prone to adopt G-quadruplex structure. Multiple Sp1-binding motifs arranged in tandem have been suggested to form this structure in promoters of cancer-related genes. Here, we demonstrate that the G-rich proviral DNA sequence of the HIV-1 U3 region, which serves as a promoter of viral transcription, adopts a G-quadruplex structure. The sequence contains three binding elements for transcription factor Sp1, which is involved in the regulation of HIV-1 latency, reactivation, and high-level virus expression. We show that the three Sp1 binding motifs can adopt different forms of G-quadruplex structure and that the Sp1 protein can recognize and bind to its site folded into a G-quadruplex. In addition, a c-kit2 specific antibody, designated hf2, binds to two different G-quadruplexes formed in Sp1 sites. Since U3 is encoded at both viral genomic ends, the G-rich sequence is also present in the RNA genome. We demonstrate that the RNA sequence of U3 forms dimers with characteristics known for intermolecular G-quadruplexes. Together with previous reports showing G-quadruplex dimers in the gag and cPPT regions, these results suggest that integrity of the two viral genomes is maintained through numerous intermolecular G-quadruplexes formed in different RNA genome locations. Reconstituted reverse transcription shows that the potassium-dependent structure formed in U3 RNA facilitates RT template switching, suggesting that the G-quadruplex contributes to recombination in U3. PMID:24735378

  16. Evolution of vertebrate IgM: complete amino acid sequence of the constant region of Ambystoma mexicanum mu chain deduced from cDNA sequence.

    PubMed

    Fellah, J S; Wiles, M V; Charlemagne, J; Schwager, J

    1992-10-01

    cDNA clones coding for the constant region of the Mexican axolotl (Ambystoma mexicanum) mu heavy immunoglobulin chain were selected from total spleen RNA, using a cDNA polymerase chain reaction technique. The specific 5'-end primer was an oligonucleotide homologous to the JH segment of Xenopus laevis mu chain. One of the clones, JHA/3, corresponded to the complete constant region of the axolotl mu chain, consisting of a 1362-nucleotide sequence coding for a polypeptide of 454 amino acids followed in 3' direction by a 179-nucleotide untranslated region and a polyA+ tail. The axolotl C mu is divided into four typical domains (C mu 1-C mu 4) and can be aligned with the Xenopus C mu with an overall identity of 56% at the nucleotide level. Percent identities were particularly high between C mu 1 (59%) and C mu 4 (71%). The C-terminal 20-amino acid segment which constitutes the secretory part of the mu chain is strongly homologous to the equivalent sequences of chondrichthyans and of other tetrapods, including a conserved N-linked oligosaccharide, the penultimate cysteine and the C-terminal lysine. The four C mu domains of 13 vertebrate species ranging from chondrichthyans to mammals were aligned and compared at the amino acid level. The significant number of mu-specific residues which are conserved into each of the four C mu domains argues for a continuous line of evolution of the vertebrate mu chain. This notion was confirmed by the ability to reconstitute a consistent vertebrate evolution tree based on the phylogenic parsimony analysis of the C mu 4 sequences. PMID:1382992

  17. mtDNAmanager: a Web-based tool for the management and quality analysis of mitochondrial DNA control-region sequences

    PubMed Central

    Lee, Hwan Young; Song, Injee; Ha, Eunho; Cho, Sung-Bae; Yang, Woo Ick; Shin, Kyoung-Jin

    2008-01-01

    Background For the past few years, scientific controversy has surrounded the large number of errors in forensic and literature mitochondrial DNA (mtDNA) data. However, recent research has shown that using mtDNA phylogeny and referring to known mtDNA haplotypes can be useful for checking the quality of sequence data. Results We developed a Web-based bioinformatics resource "mtDNAmanager" that offers a convenient interface supporting the management and quality analysis of mtDNA sequence data. The mtDNAmanager performs computations on mtDNA control-region sequences to estimate the most-probable mtDNA haplogroups and retrieves similar sequences from a selected database. By the phased designation of the most-probable haplogroups (both expected and estimated haplogroups), mtDNAmanager enables users to systematically detect errors whilst allowing for confirmation of the presence of clear key diagnostic mutations and accompanying mutations. The query tools of mtDNAmanager also facilitate database screening with two options of "match" and "include the queried nucleotide polymorphism". In addition, mtDNAmanager provides Web interfaces for users to manage and analyse their own data in batch mode. Conclusion The mtDNAmanager will provide systematic routines for mtDNA sequence data management and analysis via easily accessible Web interfaces, and thus should be very useful for population, medical and forensic studies that employ mtDNA analysis. mtDNAmanager can be accessed at . PMID:19014619

  18. Irritable Bowel Syndrome may be associated with maternal inheritance and mitochondrial DNA control region sequence variants

    PubMed Central

    van Tilburg, Miranda A.L.; Zaki, Essam A.; Venkatesan, Thangam; Boles, Richard G.

    2014-01-01

    Background & Aims Mitochondrial dysfunction has been implicated in various functional disorders that are co-morbid to Irritable Bowel Syndrome (IBS) such as migraine, depression and chronic fatigue syndrome. The aim of the current case-control pilot study was to determine if functional symptoms in IBS show a maternal inheritance bias, and if the degree of this maternal inheritance is related to mitochondrial DNA (mtDNA) polymorphisms. Methods Pedigrees were obtained from N=308 adult IBS patients, N=102 healthy controls, and N=36 controls with Inflammatory Bowel Disease (IBD), all from Caucasian heritage, to determine probable maternal inheritance. Two mtDNA polymorphisms (16519T and 3010A), which have previously been implicated in other functional disorders, were assayed in mtDNA haplogroup H IBS subjects and compared to genetic data from N=344 published haplogroup H controls. Results Probable Maternal Inheritance was found in 17.5% IBS, 2% healthy controls and 0% IBD controls (p < 0.0001). No difference was found between IBS and control for 3010A, and a trend was found for 16519T (p=.05). IBS with maternal inheritance were significantly more likely to have the 16519T than controls (OR=5.8; 95%CI=1.5–23.1) or IBS without maternal inheritance (OR=5.2; 95%CI=1.2–22.6). Conclusions This small pilot study shows that a significant minority (1/6) of IBS patients have pedigrees suggestive of maternal inheritance. The mtDNA polymorphism 16519T, which has been previously implicated in other functional disorders, is also associated with IBS patients who display maternal inheritance. These findings suggest that mtDNA-related mitochondrial dysfunction may constitute a sub-group within IBS. Future replication studies in larger samples are needed. PMID:24500451

  19. Variable copy number DNA sequences in rice.

    PubMed

    Kikuchi, S; Takaiwa, F; Oono, K

    1987-12-01

    We have cloned two types of variable copy number DNA sequences from the rice embryo genome. One of these sequences, which was cloned in pRB301, was amplified about 50-fold during callus formation and diminished in copy number to the embryonic level during regeneration. The other clone, named pRB401, showed the reciprocal pattern. The copy numbers of both sequences were changed even in the early developmental stage and eliminated from nuclear DNA along with growth of the plant. Sequencing analysis of the pRB301 insert revealed some open reading frames and direct repeat structures, but corresponding sequences were not identified in the EMBL and LASL DNA databases. Sequencing of the nuclear genomic fragment cloned in pRB401 revealed the presence of the 3'rps12-rps7 region of rice chloroplast DNA. Our observations suggest that during callus formation (dedifferentiation), regeneration and the growth process the copy numbers of some DNA sequences are variable and that nuclear integrated chloroplast DNA acts as a variable copy number sequence in the rice genome. Based on data showing a common sequence in mitochondria and chloroplast DNA of maize (Stern and Lonsdale 1982) and that the rps12 gene of tobacco chloroplast DNA is a divided gene (Torazawa et al. 1986), it is suggested that the sequence on the inverted repeat structure of chloroplast DNA may have the character of a movable genetic element. PMID:3481021

  20. Transformation by Epstein-Barr virus requires DNA sequences in the region of BamHI fragments Y and H.

    PubMed Central

    Skare, J; Farley, J; Strominger, J L; Fresen, K O; Cho, M S; zur Hausen, H

    1985-01-01

    Eight independent recombinant Epstein-Barr virus genomes, each of which was a transforming strain, were made by superinfecting cell lines containing Epstein-Barr virus DNA (Raji or B95-8 strain) with a nontransforming virus (P3HR1 strain). A knowledge of the constitution of each transforming recombinant allowed the localization of the defect in the genome of the nontransforming parent to a 12-megadalton sequence within the EcoRI A fragment. Within this region, the nontransforming virus has a deletion of the BamHI Y fragment and about half of the sequences in the adjacent BamHI H fragment. The present data suggest that this deletion is responsible for the nontransforming phenotype. Furthermore, mapping a deletion in one of the recombinant genomes allowed the conclusion that a sequence (comprising about 20% of the Epstein-Barr virus genome) from the center of BamHI-D to BamHI-I' is not necessary for the maintenance of transformation by Epstein-Barr virus. Images PMID:2991556

  1. [Genetic variation of Manchurian pheasant (Phasianus colchicus pallasi Rotshild, 1903) inferred from mitochondrial DNA control region sequences].

    PubMed

    Kozyrenko, M M; Fisenko, P V; Zhuravlev, Iu N

    2009-04-01

    Sequence variation of the mitochondrial DNA control region was studied in Manchurian pheasants (Phasianus colchicus pallasi Rotshild, 1903) representing three geographic populations from the southern part of the Russian Far East. Extremely low population genetic differentiation (F(ST) = 0.0003) pointed to a very high gene exchange between the populations. Combination of such characters as high haplotype diversity (0.884 to 0.913), low nucleotide diversity (0.0016 to 0.0022), low R2 values (0.1235 to 0.1337), certain patterns of pairwise-difference distributions, and the absence of phylogenetic structure suggested that the phylogenetic history of Ph. C. pallasi included passing through a bottleneck with further expansion in the postglacial period. According to the data obtained, it was suggested that differentiation between the mitochondrial lineages started approximately 100 000 years ago. PMID:19507706

  2. Identification of sequence polymorphisms in the D-loop region of mitochondrial DNA as risk biomarker for liposarcoma.

    PubMed

    Xun, Jianjun; Song, Xiaolei; Gao, Shejun; Yang, Huichai; Li, Zhenxing; Li, Linxing

    2016-09-01

    Single nucleotide polymorphisms (SNPs) in the Displacement-loop (D-loop) region of mitochondrial DNA have been reported to be associated with cancer risk in various types of cancer. To assess the frequency of D-loop SNPs in a large series of liposarcoma and establish correlations with cancer risk, we sequenced the D-loop of 82 liposarcoma patients and analyzed their use as predictive biomarkers for liposarcoma risk. The minor alleles of nucleotides 73G, 523-524del, 16,290T, 16,319A, 16,356C were associated with an increased risk for liposarcoma patients, whereas the insertion of C at the site 315 (located within the D310) were associated with a decreased risk for liposarcoma patients. These results suggest that SNPs in the mitochondrial D-loop should be considered as a biomarker which may be useful for the early detection of liposarcoma in individuals at risk of this cancer. PMID:25812053

  3. Analyses of nuclear ldhA gene and mtDNA control region sequences of Atlantic northern bluefin tuna populations.

    PubMed

    Ely, B; Stoner, D S; Bremer, Alvarado J R; Dean, J M; Addis, P; Cau, A; Thelen, E J; Jones, W J; Black, D E; Smith, L; Scott, K; Naseri, I; Quattro, J M

    2002-12-01

    There has been considerable debate about whether the Atlantic northern bluefin tuna exist as a single panmictic unit. We have addressed this issue by examining both mitochondrial DNA control region nucleotide sequences and nuclear gene ldhA allele frequencies in replicate size or year class samples of northern bluefin tuna from the Mediterranean Sea and the northwestern Atlantic Ocean. Pairwise comparisons of multiple year class samples from the 2 regions provided no evidence for population subdivision. Similarly, analyses of molecular variance of both mitochondrial and ldhA data revealed no significant differences among or between samples from the 2 regions. These results demonstrate the importance of analyzing multiple year classes and large sample sizes to obtain accurate estimates when using allele frequencies to characterize a population. It is important to note that the absence of genetic evidence for population substructure does not unilaterally constitute evidence of a single panmictic population, as genetic differentiation can be prevented by large population sizes and by migration. PMID:14961233

  4. cDNA sequence, genomic organization, and evolutionary conservation of a novel gene from the WAGR region

    SciTech Connect

    Schwartz, F.; Eisenman, R.; Knoll, J.; Bruns, G.

    1995-09-20

    A new gene (239FB) with predominant and differential expression in fetal brain has recently been isolated from a chromosome 11p13-p14 boundary area near FSHB. The corresponding mRNA has an open reading frame of 294 amino acids, a 3` untranslated region of 1247 nucleotides, and a highly GC-rich 5` untranslated region. The coding and 3` UT sequence is specified by 6 exons within nearly 87 kb of isolated genomic locus. The 5` end region of the transcript maps adjacent to the only genomically defined CpG island in a chromosomal subregion that may be associated with part of the mental retardation of some WAGR (Wilms tumor, aniridia, genitourinary anomalies, and mental retardation) syndrome patients. In addition to nucleotide and amino acid similarity to an EST from a normalized infant brain cDNA library, the predicted protein has extensive similarity to Caenorhbditis elegans polypeptides of, as yet, unknown function. The 239FB locus is, therefore, likely part of a family of genes with two members expressed in human brain. The extensive conservation of the predicted protein suggests a fundamental function of the gene product and will enable evaluation of the role of the 239FB gene in neurogenesis in model organisms. 48 refs., 4 figs., 1 tab.

  5. The Dynamics of DNA Sequencing.

    ERIC Educational Resources Information Center

    Morvillo, Nancy

    1997-01-01

    Describes a paper-and-pencil activity that helps students understand DNA sequencing and expands student understanding of DNA structure, replication, and gel electrophoresis. Appropriate for advanced biology students who are familiar with the Sanger method. (DDR)

  6. Biosensors for DNA sequence detection

    NASA Technical Reports Server (NTRS)

    Vercoutere, Wenonah; Akeson, Mark

    2002-01-01

    DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.

  7. Graphene nanodevices for DNA sequencing.

    PubMed

    Heerema, Stephanie J; Dekker, Cees

    2016-02-01

    Fast, cheap, and reliable DNA sequencing could be one of the most disruptive innovations of this decade, as it will pave the way for personalized medicine. In pursuit of such technology, a variety of nanotechnology-based approaches have been explored and established, including sequencing with nanopores. Owing to its unique structure and properties, graphene provides interesting opportunities for the development of a new sequencing technology. In recent years, a wide range of creative ideas for graphene sequencers have been theoretically proposed and the first experimental demonstrations have begun to appear. Here, we review the different approaches to using graphene nanodevices for DNA sequencing, which involve DNA passing through graphene nanopores, nanogaps, and nanoribbons, and the physisorption of DNA on graphene nanostructures. We discuss the advantages and problems of each of these key techniques, and provide a perspective on the use of graphene in future DNA sequencing technology. PMID:26839258

  8. Graphene nanodevices for DNA sequencing

    NASA Astrophysics Data System (ADS)

    Heerema, Stephanie J.; Dekker, Cees

    2016-02-01

    Fast, cheap, and reliable DNA sequencing could be one of the most disruptive innovations of this decade, as it will pave the way for personalized medicine. In pursuit of such technology, a variety of nanotechnology-based approaches have been explored and established, including sequencing with nanopores. Owing to its unique structure and properties, graphene provides interesting opportunities for the development of a new sequencing technology. In recent years, a wide range of creative ideas for graphene sequencers have been theoretically proposed and the first experimental demonstrations have begun to appear. Here, we review the different approaches to using graphene nanodevices for DNA sequencing, which involve DNA passing through graphene nanopores, nanogaps, and nanoribbons, and the physisorption of DNA on graphene nanostructures. We discuss the advantages and problems of each of these key techniques, and provide a perspective on the use of graphene in future DNA sequencing technology.

  9. DNA sequence analysis suggests that cytb-nd1 PCR-RFLP may not be applicable to sandfly species identification throughout the Mediterranean region.

    PubMed

    Llanes-Acevedo, Ivonne Pamela; Arcones, Carolina; Gálvez, Rosa; Martin, Oihane; Checa, Rocío; Montoya, Ana; Chicharro, Carmen; Cruz, Susana; Miró, Guadalupe; Cruz, Israel

    2016-03-01

    Molecular methods are increasingly used for both species identification of sandflies and assessment of their population structure. In general, they are based on DNA sequence analysis of targets previously amplified by PCR. However, this approach requires access to DNA sequence facilities, and in some circumstances, it is time-consuming. Though DNA sequencing provides the most reliable information, other downstream PCR applications are explored to assist in species identification. Thus, it has been recently proposed that the amplification of a DNA region encompassing partially both the cytochrome-B (cytb) and the NADH dehydrogenase 1 (nd1) genes followed by RFLP analysis with the restriction enzyme Ase I allows the rapid identification of the most prevalent species of phlebotomine sandflies in the Mediterranean region. In order to confirm the suitability of this method, we collected, processed, and molecularly analyzed a total of 155 sandflies belonging to four species including Phlebotomus ariasi, P. papatasi, P. perniciosus, and Sergentomyia minuta from different regions in Spain. This data set was completed with DNA sequences available at the GenBank for species prevalent in the Mediterranean basin and the Middle East. Additionally, DNA sequences from 13 different phlebotomine species (P. ariasi, P. balcanicus, P. caucasicus, P. chabaudi, P. chadlii, P. longicuspis, P. neglectus, P. papatasi, P. perfiliewi, P. perniciosus, P. riouxi, P. sergenti, and S. minuta), from 19 countries, were added to the data set. Overall, our molecular data revealed that this PCR-RFLP method does not provide a unique and specific profile for each phlebotomine species tested. Intraspecific variability and similar RFLP patterns were frequently observed among the species tested. Our data suggest that this method may not be applicable throughout the Mediterranean region as previously proposed. Other molecular approaches like DNA barcoding or phylogenetic analyses would allow a more

  10. Sequencing Intractable DNA to Close Microbial Genomes

    SciTech Connect

    Hurt, Jr., Richard Ashley; Brown, Steven D; Podar, Mircea; Palumbo, Anthony Vito; Elias, Dwayne A

    2012-01-01

    Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled intractable resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such difficult regions in the non-contiguous finished Desulfovibrio desulfuricans ND132 genome (6 intractable gaps) and the Desulfovibrio africanus genome (1 intractable gap). The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. These developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  11. Complementary DNA sequencing: Expressed sequence tags and human genome project

    SciTech Connect

    Adams, M.D.; Kelley, J.M.; Gocayne, J.D.; Dubnick, M.; Wu, A.; Olde, B.; Moreno, R.F.; Kerlavage, A.R.; McCombie, W.R.; Venter, J.C. ); Polymeropoulos, M.H.; Hong Xiao; Merril, C.R. )

    1991-06-21

    Automated partial DNA sequencing was conducted on more than 600 randomly selected human brain complementary DNA (cDNA) clones to generate expressed sequence tags (ESTs). ESTs have applications in the discovery of new human genes, mapping of the human genome, and identification of coding regions in genomic sequences. Of the sequences generated, 337 represent new genes, including 48 with significant similarity to genes from other organisms, such as a yeast RNA polymerase II subunit; Drosophila kinesin, Notch, and Enhancer of split; and a murine tyrosine kinase receptor. Forty-six ESTs were mapped to chromosomes after amplification by the polymerase chain reaction. This fast approach to cDNA characterization will facilitate the tagging of most human genes in a few years at a fraction of the cost of complete genomic sequencing, provide new genetic markers, and serve as a resource in diverse biological research fields.

  12. Development of a control region-based mtDNA SNaPshot™ selection tool, integrated into a mini amplicon sequencing method.

    PubMed

    Weiler, Natalie E C; de Vries, Gerda; Sijen, Titia

    2016-03-01

    Mitochondrial DNA (mtDNA) analysis is regularly applied to forensic DNA samples with limited amounts of nuclear DNA (nDNA), such as hair shafts and bones. Generally, this mtDNA analysis involves examination of the hypervariable control region by Sanger sequencing of amplified products. When samples are severely degraded, small-sized amplicons can be applied and an earlier described mini-mtDNA method by Eichmann et al. [1] that accommodates ten mini amplicons in two multiplexes is found to be a very robust approach. However, in cases with large numbers of samples, like when searching for hairs with an mtDNA profile deviant from that of the victim, the method is time (and cost) consuming. Previously, Chemale et al. [2] described a SNaPshot™-based screening tool for a Brazilian population that uses standard-size amplicons for HVS-I and HVS-II. Here, we describe a similar tool adapted to the full control region and compatible with mini-mtDNA amplicons. Eighteen single nucleotide polymorphisms (SNPs) were selected based on their relative frequencies in a European population. They showed a high discriminatory power in a Dutch population (97.2%). The 18 SNPs are assessed in two SNaPshot™ multiplexes that pair to the two mini-mtDNA amplification multiplexes. Degenerate bases are included to limit allele dropout due to SNPs at primer binding site positions. Three SNPs provide haplogroup information. Reliability testing showed no differences with Sanger sequencing results. Since mini-mtSNaPshot screening uses only a small portion of the same PCR products used for Sanger sequencing, no additional DNA extract is consumed, which is forensically advantageous. PMID:26976467

  13. Sequence independent amplification of DNA

    DOEpatents

    Bohlander, S.K.

    1998-03-24

    The present invention is a rapid sequence-independent amplification procedure (SIA). Even minute amounts of DNA from various sources can be amplified independent of any sequence requirements of the DNA or any a priori knowledge of any sequence characteristics of the DNA to be amplified. This method allows, for example, the sequence independent amplification of microdissected chromosomal material and the reliable construction of high quality fluorescent in situ hybridization (FISH) probes from YACs or from other sources. These probes can be used to localize YACs on metaphase chromosomes but also--with high efficiency--in interphase nuclei. 25 figs.

  14. Sequence independent amplification of DNA

    DOEpatents

    Bohlander, Stefan K.

    1998-01-01

    The present invention is a rapid sequence-independent amplification procedure (SIA). Even minute amounts of DNA from various sources can be amplified independent of any sequence requirements of the DNA or any a priori knowledge of any sequence characteristics of the DNA to be amplified. This method allows, for example the sequence independent amplification of microdissected chromosomal material and the reliable construction of high quality fluorescent in situ hybridization (FISH) probes from YACs or from other sources. These probes can be used to localize YACs on metaphase chromosomes but also--with high efficiency--in interphase nuclei.

  15. Phylogenetics of Bonamia parasites based on small subunit and internal transcribed spacer region ribosomal DNA sequence data.

    PubMed

    Hill, Kristina M; Stokes, Nancy A; Webb, Stephen C; Hine, P Mike; Kroeck, Marina A; Moore, James D; Morley, Margaret S; Reece, Kimberly S; Burreson, Eugene M; Carnegie, Ryan B

    2014-07-24

    The genus Bonamia (Haplosporidia) includes economically significant oyster parasites. Described species were thought to have fairly circumscribed host and geographic ranges: B. ostreae infecting Ostrea edulis in Europe and North America, B. exitiosa infecting O. chilensis in New Zealand, and B. roughleyi infecting Saccostrea glomerata in Australia. The discovery of B. exitiosa-like parasites in new locations and the observation of a novel species, B. perspora, in non-commercial O. stentina altered this perception and prompted our wider evaluation of the global diversity of Bonamia parasites. Samples of 13 oyster species from 21 locations were screened for Bonamia spp. by PCR, and small subunit and internal transcribed spacer regions of Bonamia sp. ribosomal DNA were sequenced from PCR-positive individuals. Infections were confirmed histologically. Phylogenetic analyses using parsimony and Bayesian methods revealed one species, B. exitiosa, to be widely distributed, infecting 7 oyster species from Australia, New Zealand, Argentina, eastern and western USA, and Tunisia. More limited host and geographic distributions of B. ostreae and B. perspora were confirmed, but nothing genetically identifiable as B. roughleyi was found in Australia or elsewhere. Newly discovered diversity included a Bonamia sp. in Dendostrea sandvicensis from Hawaii, USA, that is basal to the other Bonamia species and a Bonamia sp. in O. edulis from Tomales Bay, California, USA, that is closely related to both B. exitiosa and the previously observed Bonamia sp. from O. chilensis in Chile. PMID:25060496

  16. Population genetic diversity of the northern snakehead (Channa argus) in China based on the mitochondrial DNA control region and adjacent regions sequences.

    PubMed

    Zhou, Aiguo; Zhuo, Xiaolei; Zou, Qing; Chen, Jintao; Zou, Jixing

    2015-06-01

    Genetic variation and population structure of northern snakehead (Channa argus) from eight locations in China were investigated using mitochondrial DNA control region and adjacent regions sequences. Sequence analysis showed that there were 105 haplotypes in 260 individuals, 48 unique haplotypes and 57 shared haplotypes, but no common haplotype shared by all populations. As a whole, the haplotype diversity was high (h=0.989), while the nucleotide diversity was low (π=0.00482). AMOVA analysis detected significant genetic differentiation among all eight populations (FST=0.328, p<0.01) and 66.17% of the total variance was resulted from intra-population differentiation. UPGMA analysis indicated that the eight populations could be divided into four major clusters, which was consistent with that the eight sampled locations were belonged to four isolated river systems. The neutrality and mismatch distribution tests suggested that the eight populations of C. argus in the sampling locations underwent recent population expansion. Among the eight populations, the Erhai Lake population may represent a unique genetic resource and therefore needs to be conserved. PMID:24724976

  17. Characterization of a DNA sequence family in the Prader-Willi/Angelman syndrome chromosome region in 15q11-q13

    SciTech Connect

    Dittrich, B.; Knoblauch, H.; Buiting, K.; Horsthemke, B. )

    1993-04-01

    IR4-3R (D15S11) is an anonymous DNA sequence from human chromosome 15. Using YAC cloning and restriction enzyme analysis, the authors have found that IR4-3R detects five related DNA sequences, which are spread over 700 kb within the Prader-Willi/Angelman syndrome chromosome region in 15q11-q 13. The RsaI and StyI polymorphisms, which were described previously, are associated with the most proximal copy of IR4-3R and are in strong linkage disequilibrium. IR4-3R represents the third DNA sequence family that has been identified in 15q11-q13. 14 refs., 2 figs., 1 tab.

  18. Counterintuitive DNA Sequence Dependence in Supercoiling-Induced DNA Melting

    PubMed Central

    Vlijm, Rifka; v.d. Torre, Jaco; Dekker, Cees

    2015-01-01

    The metabolism of DNA in cells relies on the balance between hybridized double-stranded DNA (dsDNA) and local de-hybridized regions of ssDNA that provide access to binding proteins. Traditional melting experiments, in which short pieces of dsDNA are heated up until the point of melting into ssDNA, have determined that AT-rich sequences have a lower binding energy than GC-rich sequences. In cells, however, the double-stranded backbone of DNA is destabilized by negative supercoiling, and not by temperature. To investigate what the effect of GC content is on DNA melting induced by negative supercoiling, we studied DNA molecules with a GC content ranging from 38% to 77%, using single-molecule magnetic tweezer measurements in which the length of a single DNA molecule is measured as a function of applied stretching force and supercoiling density. At low force (<0.5pN), supercoiling results into twisting of the dsDNA backbone and loop formation (plectonemes), without inducing any DNA melting. This process was not influenced by the DNA sequence. When negative supercoiling is introduced at increasing force, local melting of DNA is introduced. We measured for the different DNA molecules a characteristic force Fchar, at which negative supercoiling induces local melting of the dsDNA. Surprisingly, GC-rich sequences melt at lower forces than AT-rich sequences: Fchar = 0.56pN for 77% GC but 0.73pN for 38% GC. An explanation for this counterintuitive effect is provided by the realization that supercoiling densities of a few percent only induce melting of a few percent of the base pairs. As a consequence, denaturation bubbles occur in local AT-rich regions and the sequence-dependent effect arises from an increased DNA bending/torsional energy associated with the plectonemes. This new insight indicates that an increased GC-content adjacent to AT-rich DNA regions will enhance local opening of the double-stranded DNA helix. PMID:26513573

  19. Reduced-Median-Network Analysis of Complete Mitochondrial DNA Coding-Region Sequences for the Major African, Asian, and European Haplogroups

    PubMed Central

    Herrnstadt, Corinna; Elson, Joanna L.; Fahy, Eoin; Preston, Gwen; Turnbull, Douglass M.; Anderson, Christen; Ghosh, Soumitra S.; Olefsky, Jerrold M.; Beal, M. Flint; Davis, Robert E.; Howell, Neil

    2002-01-01

    The evolution of the human mitochondrial genome is characterized by the emergence of ethnically distinct lineages or haplogroups. Nine European, seven Asian (including Native American), and three African mitochondrial DNA (mtDNA) haplogroups have been identified previously on the basis of the presence or absence of a relatively small number of restriction-enzyme recognition sites or on the basis of nucleotide sequences of the D-loop region. We have used reduced-median-network approaches to analyze 560 complete European, Asian, and African mtDNA coding-region sequences from unrelated individuals to develop a more complete understanding of sequence diversity both within and between haplogroups. A total of 497 haplogroup-associated polymorphisms were identified, 323 (65%) of which were associated with one haplogroup and 174 (35%) of which were associated with two or more haplogroups. Approximately one-half of these polymorphisms are reported for the first time here. Our results confirm and substantially extend the phylogenetic relationships among mitochondrial genomes described elsewhere from the major human ethnic groups. Another important result is that there were numerous instances both of parallel mutations at the same site and of reversion (i.e., homoplasy). It is likely that homoplasy in the coding region will confound evolutionary analysis of small sequence sets. By a linkage-disequilibrium approach, additional evidence for the absence of human mtDNA recombination is presented here. PMID:11938495

  20. Evaluation of internal transcribed spacer region of ribosomal DNA sequence analysis for molecular characterization of Candida albicans and Candida dubliniensis isolates from HIV-infected patients.

    PubMed

    Millon, L; Piarroux, R; Drobacheff, C; Monod, M; Grenouillet, F; Bulle, B; Bole, J; Blancard, A; Meillet, D

    2002-12-01

    Molecular typing systems have been needed to study Candida colonization in HIV-infected patients, particularly for investigating virulence and fluconazole resistance. Three methods--electrophoretic karyotyping (EK), detection of restriction fragment length polymorphisms (RFLP) and randomly amplified polymorphic DNA analysis (RAPD)--have been most frequently used. In this study, comparative sequence analysis of the internal transcribed spacer (ITS) region of rDNA was evaluated for delineation of Candida isolates from 14 HIV-infected patients. EK, ITS sequence analysis, RFLP and RAPD resulted in 11, 10, 9 and 8 DNA genotypes, respectively, from 39 Candida albicans isolates. The 10 genotypes observed using ITS sequence analysis were defined by six variation sites in the sequence. Molecular typing of sequential oral isolates showed the persistence of the same genotype of C. albicans in nine patients, and genotype variation in one patient. EK and RAPD showed that another patient was co-infected by two distinct genotypes and ITS analysis identified one of the two genotypes as Candida dubliniensis. Comparative ITS sequence analysis is a quick and reproducible method that provides clear and objective results, and it also identifies C. dubliniensis. The discriminatory power of this new typing approach could be improved by concomitant analysis of other DNA polymorphic sequences. PMID:12521117

  1. Statistical and linguistic features of DNA sequences

    NASA Technical Reports Server (NTRS)

    Havlin, S.; Buldyrev, S. V.; Goldberger, A. L.; Mantegna, R. N.; Peng, C. K.; Simons, M.; Stanley, H. E.

    1995-01-01

    We present evidence supporting the idea that the DNA sequence in genes containing noncoding regions is correlated, and that the correlation is remarkably long range--indeed, base pairs thousands of base pairs distant are correlated. We do not find such a long-range correlation in the coding regions of the gene. We resolve the problem of the "non-stationary" feature of the sequence of base pairs by applying a new algorithm called Detrended Fluctuation Analysis (DFA). We address the claim of Voss that there is no difference in the statistical properties of coding and noncoding regions of DNA by systematically applying the DFA algorithm, as well as standard FFT analysis, to all eukaryotic DNA sequences (33 301 coding and 29 453 noncoding) in the entire GenBank database. We describe a simple model to account for the presence of long-range power-law correlations which is based upon a generalization of the classic Levy walk. Finally, we describe briefly some recent work showing that the noncoding sequences have certain statistical features in common with natural languages. Specifically, we adapt to DNA the Zipf approach to analyzing linguistic texts, and the Shannon approach to quantifying the "redundancy" of a linguistic text in terms of a measurable entropy function. We suggest that noncoding regions in plants and invertebrates may display a smaller entropy and larger redundancy than coding regions, further supporting the possibility that noncoding regions of DNA may carry biological information.

  2. Linguistic features of noncoding DNA sequences

    NASA Astrophysics Data System (ADS)

    Mantegna, R. N.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Peng, C.-K.; Simons, M.; Stanley, H. E.

    1994-12-01

    We extend the Zipf approach to analyzing linguistic texts to the statistical study of DNA base pair sequences, and find that the noncoding regions are more similar to natural languages than the coding regions. We also adapt the Shannon approach to quantifying the ``redundancy'' of a linguistic text in terms of a measurable entropy function, and demonstrate that noncoding regions in eukaryotes display a smaller entropy and larger redundancy B than coding regions, supporting the possibility that noncoding regions of DNA may carry biological information.

  3. Phylogenetic analysis of Pythium insidiosum Thai strains using cytochrome oxidase II (COX II) DNA coding sequences and internal transcribed spacer regions (ITS).

    PubMed

    Kammarnjesadakul, Patcharee; Palaga, Tanapat; Sritunyalucksana, Kallaya; Mendoza, Leonel; Krajaejun, Theerapong; Vanittanakom, Nongnuch; Tongchusak, Songsak; Denduangboripant, Jessada; Chindamporn, Ariya

    2011-04-01

    To investigate the phylogenetic relationship among Pythium insidiosum isolates in Thailand, we investigated the genomic DNA of 31 P. insidiosum strains isolated from humans and environmental sources from Thailand, and two from North and Central America. We used PCR to amplify the partial COX II DNA coding sequences and the ITS regions of these isolates. The nucleotide sequences of both amplicons were analyzed by the Bioedit program. Phylogenetic analysis using genetic distance method with Neighbor Joining (NJ) approach was performed using the MEGA4 software. Additional sequences of three other Pythium species, Phytophthora sojae and Lagenidium giganteum were employed as outgroups. The sizes of the COX II amplicons varied from 558-564 bp, whereas the ITS products varied from approximately 871-898 bp. Corrected sequence divergences with Kimura 2-parameter model calculated for the COX II and the ITS DNA sequences ranged between 0.0000-0.0608 and 0.0000-0.2832, respectively. Phylogenetic analysis using both the COX II and the ITS DNA sequences showed similar trees, where we found three sister groups (A(TH), B(TH), and C(TH)) among P. insidiosum strains. All Thai isolates from clinical cases and environmental sources were placed in two separated sister groups (B(TH) and C(TH)), whereas the Americas isolates were grouped into A(TH.) Although the phylogenetic tree based on both regions showed similar distribution, the COX II phylogenetic tree showed higher resolution than the one using the ITS sequences. Our study indicates that COX II gene is the better of the two alternatives to study the phylogenetic relationships among P. insidiosum strains. PMID:20818919

  4. Dpb11 Controls the Association between DNA Polymerases α and ɛ and the Autonomously Replicating Sequence Region of Budding Yeast

    PubMed Central

    Masumoto, Hiroshi; Sugino, Akio; Araki, Hiroyuki

    2000-01-01

    Dpb11 is required for chromosomal DNA replication and the S-phase checkpoint in Saccharomyces cerevisiae. Here, we report detection of a physical complex containing Dpb11 and DNA polymerase ɛ (Dpb11-Polɛ complex). During the S phase of the cell cycle, Dpb11 associated preferentially with DNA fragments containing autonomously replicating sequences (ARSs), at the same time as Polɛ associated with these fragments. Association of Dpb11 and Polɛ with these fragments was mutually dependent, suggesting that the Dpb11-Polɛ complex associates with the ARS. Moreover, Dpb11 was required for the association of Polα-primase with the fragments. Thus, it seems likely that association of the Dpb11-Polɛ complex with the ARS fragments is required for the association of the Polα-primase complex. Hydroxyurea inhibits late-origin firing in S. cerevisiae, and the checkpoint genes, RAD53 and MEC1, are involved in this inhibition. In the presence of hydroxyurea at temperatures permissive for cell growth, Polɛ in dpb11-1 cells associated with early- and late-origin fragments. In wild-type cells, however, it associated only with early-origin fragments. This indicates that Dpb11 may also be involved in the regulation of late-origin firing. Overall, these results suggest that Dpb11 controls the association between DNA polymerases α and ɛ and the ARS. PMID:10733584

  5. Evaluation of DNA extraction kits and phylogenetic diversity of the porcine gastrointestinal tract based on Illumina sequencing of two hypervariable regions.

    PubMed

    Burbach, Katharina; Seifert, Jana; Pieper, Dietmar H; Camarinha-Silva, Amélia

    2016-02-01

    A robust DNA extraction method is important to identify the majority of microorganisms present in environmental microbial communities and to enable a consistent comparison between different studies. Here, 15 manual and four automated commercial DNA extraction kits were evaluated for their efficiency to extract DNA from porcine feces and ileal digesta samples. DNA yield, integrity, and purity varied among the different methods. Terminal restriction fragment length polymorphism (T-RFLP) and Illumina amplicon sequencing were used to characterize the diversity and composition of the microbial communities. We also compared phylogenetic profiles of two regions of the 16S rRNA gene, one of the most used region (V1-2) and the V5-6 region. A high correlation between community structures obtained by analyzing both regions was observed at genus and family level for ileum digesta and feces. Based on our findings, we want to recommend the FastDNA(™) SPIN Kit for Soil (MP Biomedical) as a suitable kit for the analyses of porcine gastrointestinal tract samples. PMID:26541370

  6. DNA sequencing with pyrophosphatase

    DOEpatents

    Tabor, S.; Richardson, C.C.

    1996-03-12

    A kit or solution is disclosed for use in extension of an oligonucleotide primer having a first single-stranded region on a template molecule and having a second single-stranded region homologous to the first single-stranded region. The first agent is able to cause extension of the first single-stranded region of the primer on the second single-stranded region of the template in a reaction mixture. The second agent is able to reduce the amount of pyrophosphate in the reaction mixture below the amount produced during the extension in the absence of the second agent.

  7. DNA sequencing with pyrophosphatase

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1996-03-12

    A kit or solution for use in extension of an oligonucleotide primer having a first single-stranded region on a template molecule having a second single-stranded region homologous to the first single-stranded region, comprising a first agent able to cause extension of the first single-stranded region of the primer on the second single-stranded region of the template in a reaction mixture, and a second agent able to reduce the amount of pyrophosphate in the reaction mixture below the amount produced during the extension in the absence of the second agent.

  8. Image analysis for DNA sequencing

    NASA Astrophysics Data System (ADS)

    Palaniappan, Kannappan; Huang, Thomas S.

    1991-07-01

    There is a great deal of interest in automating the process of DNA (deoxyribonucleic acid) sequencing to support the analysis of genomic DNA such as the Human and Mouse Genome projects. In one class of gel-based sequencing protocols autoradiograph images are generated in the final step and usually require manual interpretation to reconstruct the DNA sequence represented by the image. The need to handle a large volume of sequence information necessitates automation of the manual autoradiograph reading step through image analysis in order to reduce the length of time required to obtain sequence data and reduce transcription errors. Various adaptive image enhancement, segmentation and alignment methods were applied to autoradiograph images. The methods are adaptive to the local characteristics of the image such as noise, background signal, or presence of edges. Once the two-dimensional data is converted to a set of aligned one-dimensional profiles waveform analysis is used to determine the location of each band which represents one nucleotide in the sequence. Different classification strategies including a rule-based approach are investigated to map the profile signals, augmented with the original two-dimensional image data as necessary, to textual DNA sequence information.

  9. Microchips for DNA sequencing

    NASA Astrophysics Data System (ADS)

    Mastrangelo, Carlos H.; Palaniappan, S.; Man, Piu Francis; Burns, Mark A.; Burke, David T.

    1999-08-01

    Genetic information is vital for understanding features and response of an organism. In humans, genetic errors are linked to the development of major diseases such as cancer and diabetes. In order to maximally exploit this information it is necessary to develop miniature sequencing assays that are rapid and inexpensive. In this paper we show how this could be attained with microfluidic chips that contain integrated assays. To date simple silicon/glass chips aimed for sequencing purpose have been realized; but these chips are not yet practical. Some of the solutions that are used to bring these devices closer to commercial applications are discussed.

  10. Quadruplex DNA: sequence, topology and structure

    PubMed Central

    Burge, Sarah; Parkinson, Gary N.; Hazel, Pascale; Todd, Alan K.; Neidle, Stephen

    2006-01-01

    G-quadruplexes are higher-order DNA and RNA structures formed from G-rich sequences that are built around tetrads of hydrogen-bonded guanine bases. Potential quadruplex sequences have been identified in G-rich eukaryotic telomeres, and more recently in non-telomeric genomic DNA, e.g. in nuclease-hypersensitive promoter regions. The natural role and biological validation of these structures is starting to be explored, and there is particular interest in them as targets for therapeutic intervention. This survey focuses on the folding and structural features on quadruplexes formed from telomeric and non-telomeric DNA sequences, and examines fundamental aspects of topology and the emerging relationships with sequence. Emphasis is placed on information from the high-resolution methods of X-ray crystallography and NMR, and their scope and current limitations are discussed. Such information, together with biological insights, will be important for the discovery of drugs targeting quadruplexes from particular genes. PMID:17012276

  11. Helena, the hidden beauty: Resolving the most common West Eurasian mtDNA control region haplotype by massively parallel sequencing an Italian population sample.

    PubMed

    Bodner, Martin; Iuvaro, Alessandra; Strobl, Christina; Nagl, Simone; Huber, Gabriela; Pelotti, Susi; Pettener, Davide; Luiselli, Donata; Parson, Walther

    2015-03-01

    The analysis of mitochondrial (mt)DNA is a powerful tool in forensic genetics when nuclear markers fail to give results or maternal relatedness is investigated. The mtDNA control region (CR) contains highly condensed variation and is therefore routinely typed. Some samples exhibit an identical haplotype in this restricted range. Thus, they convey only weak evidence in forensic queries and limited phylogenetic information. However, a CR match does not imply that also the mtDNA coding regions are identical or samples belong to the same phylogenetic lineage. This is especially the case for the most frequent West Eurasian CR haplotype 263G 315.1C 16519C, which is observed in various clades within haplogroup H and occurs at a frequency of 3-4% in many European populations. In this study, we investigated the power of massively parallel complete mtGenome sequencing in 29 Italian samples displaying the most common West Eurasian CR haplotype - and found an unexpected high diversity. Twenty-eight different haplotypes falling into 19 described sub-clades of haplogroup H were revealed in the samples with identical CR sequences. This study demonstrates the benefit of complete mtGenome sequencing for forensic applications to enforce maximum discrimination, more comprehensive heteroplasmy detection, as well as highest phylogenetic resolution. PMID:25303789

  12. Sequencing and functional annotation of the Bacillus subtilis genes in the 200 kb rrnB-dnaB region.

    PubMed

    Lapidus, A; Galleron, N; Sorokin, A; Ehrlich, S D

    1997-11-01

    The 200 kb region of the Bacillus subtilis chromosome spanning from 255 to 275 degrees on the genetic map was sequenced. The strategy applied, based on use of yeast artificial chromosomes and multiplex Long Accurate PCR, proved to be very efficient for sequencing a large bacterial chromosome area. A total of 193 genes of this part of the chromosome was classified by level of knowledge and biological category of their functions. Five levels of gene function understanding are defined. These are: (i) experimental evidence is available of gene product or biological function; (ii) strong homology exists for the putative gene product with proteins from other organisms; (iii) some indication of the function can be derived from homologies with known proteins; (iv) the gene product can be clustered with hypothetical proteins; (v) no indication on the gene function exists. The percentage of detected genes in each category was: 20, 28, 20, 15 and 17, respectively. In the sequenced region, a high percentage of genes are implicated in transport and metabolic linking of glycolysis and the citric acid cycle. A functional connection of several genes from this region and the genes close to 140 degrees in the chromosome was also observed. PMID:9387221

  13. Sequencing mitochondrial DNA polymorphisms by hybridization

    SciTech Connect

    Chee, M.S.; Lockhart, D.J.; Hubbell, E.

    1994-09-01

    We have investigated the use of DNA chips for genetic analysis, using human mitochondrial DNA (mtDNA) as a model. The DNA chips are made up of ordered arrays of DNA oligonucleotide probes, synthesized on a glass substrate using photolithographic techniques. The synthesis site for each different probe is specifically addressed by illumination of the substrate through a photolithographic mask, achieving selective deprotection Nucleoside phosphoramidites bearing photolabile protecting groups are coupled only to exposed sites. Repeated cycles of deprotection and coupling generate all the probes in parallel. The set of 4{sup N} N-mer probes can be synthesized in only 4N steps. Any subset can be synthesized in 4N steps. Any subset can be synthesized in 4N or fewer steps. Sequences amplified from the D-loop region of human mitochondrial DNA (mtDNA) were fluorescently labelled and hybridized to DNA chips containing probes specific for mtDNA. Each nucleotide of a 1.3 kb region spanning the D loop is represented by four probes on the chip. Each probe has a different base at the position of interest: together they comprise a set of A, C, G and T probes which are otherwise identical. In principle, only one probe-target hybrid will be a perfect match. The other three will be single base mismatches. Fluorescence imaging of the hybridized chip allows quantification of hybridization signals. Heterozygous mixtures of sequences can also be characterized. We have developed software to quantitate and interpret the hybridization signals, and to call the sequence automatically. Results of sequence analysis of human mtDNAs will be presented.

  14. Structural Complexity of DNA Sequence

    PubMed Central

    Liou, Cheng-Yuan; Cheng, Wei-Chen; Tsai, Huai-Ying

    2013-01-01

    In modern bioinformatics, finding an efficient way to allocate sequence fragments with biological functions is an important issue. This paper presents a structural approach based on context-free grammars extracted from original DNA or protein sequences. This approach is radically different from all those statistical methods. Furthermore, this approach is compared with a topological entropy-based method for consistency and difference of the complexity results. PMID:23662161

  15. DNA Sequencing by Capillary Electrophoresis

    PubMed Central

    Karger, Barry L.; Guttman, Andras

    2009-01-01

    Sequencing of human and other genomes has been at the center of interest in the biomedical field over the past several decades and is now leading toward an era of personalized medicine. During this time, DNA sequencing methods have evolved from the labor intensive slab gel electrophoresis, through automated multicapillary electrophoresis systems using fluorophore labeling with multispectral imaging, to the “next generation” technologies of cyclic array, hybridization based, nanopore and single molecule sequencing. Deciphering the genetic blueprint and follow-up confirmatory sequencing of Homo sapiens and other genomes was only possible by the advent of modern sequencing technologies that was a result of step by step advances with a contribution of academics, medical personnel and instrument companies. While next generation sequencing is moving ahead at break-neck speed, the multicapillary electrophoretic systems played an essential role in the sequencing of the Human Genome, the foundation of the field of genomics. In this prospective, we wish to overview the role of capillary electrophoresis in DNA sequencing based in part of several of our articles in this journal. PMID:19517496

  16. Apparatus for improved DNA sequencing

    DOEpatents

    Douthart, R.J.; Crowell, S.L.

    1996-05-07

    This invention is a means for the rapid sequencing of DNA samples. More specifically, it consists of a new design direct blotting electrophoresis unit. The DNA sequence is deposited on a membrane attached to a rotating drum. Initial data compaction is facilitated by the use of a machined multi-channeled plate called a ribbon channel plate. Each channel is an isolated mini gel system much like a gel filled capillary. The system as a whole, however, is in a slab gel like format with the advantages of uniformity and easy reusability. The system can be used in different embodiments. The drum system is unique in that after deposition the drum rotates the deposited DNA into a large non-buffer open space where processing and detection can occur. The drum can also be removed in toto to special workstations for downstream processing, multiplexing and detection. 18 figs.

  17. Apparatus for improved DNA sequencing

    DOEpatents

    Douthart, Richard J.; Crowell, Shannon L.

    1996-01-01

    This invention is a means for the rapid sequencing of DNA samples. More specifically, it consists of a new design direct blotting electrophoresis unit. The DNA sequence is deposited on a membrane attached to a rotating drum. Initial data compaction is facilitated by the use of a machined multi-channeled plate called a ribbon channel plate. Each channel is an isolated mini gel system much like a gel filled capillary. The system as a whole, however, is in a slab gel like format with the advantages of uniformity and easy reusability. The system can be used in different embodiments. The drum system is unique in that after deposition the drum rotates the deposited DNA into a large non-buffer open space where processing and detection can occur. The drum can also be removed in toto to special workstations for downstream processing, multiplexing and detection.

  18. Engineered DNA sequence syntax inspector.

    PubMed

    Hsiau, Timothy Hwei-Chung; Anderson, J Christopher

    2014-02-21

    DNAs encoding polypeptides often contain design errors that cause experiments to prematurely fail. One class of design errors is incorrect or missing elements in the DNA, here termed syntax errors. We have identified three major causes of syntax errors: point mutations from sequencing or manual data entry, gene structure misannotation, and unintended open reading frames (ORFs). The Engineered DNA Sequence Syntax Inspector (EDSSI) is an online bioinformatics pipeline that checks for syntax errors through three steps. First, ORF prediction in input DNA sequences is done by GeneMark; next, homologous sequences are retrieved by BLAST, and finally, syntax errors in the protein sequence are predicted by using the SIFT algorithm. We show that the EDSSI is able to identify previously published examples of syntactical errors and also show that our indel addition to the SIFT program is 97% accurate on a test set of Escherichia coli proteins. The EDSSI is available at http://andersonlab.qb3.berkeley.edu/Software/EDSSI/ . PMID:24364864

  19. mtDNA control-region sequence variation suggests multiple independent origins of an "Asian-specific" 9-bp deletion in sub-Saharan Africans.

    PubMed Central

    Soodyall, H.; Vigilant, L.; Hill, A. V.; Stoneking, M.; Jenkins, T.

    1996-01-01

    The intergenic COII/tRNA(Lys) 9-bp deletion in human mtDNA, which is found at varying frequencies in Asia, Southeast Asia, Polynesia, and the New World, was also found in 81 of 919 sub-Saharan Africans. Using mtDNA control-region sequence data from a subset of 41 individuals with the deletion, we identified 22 unique mtDNA types associated with the deletion in Africa. A comparison of the unique mtDNA types from sub-Saharan Africans and Asians with the 9-bp deletion revealed that sub-Saharan Africans and Asians have sequence profiles that differ in the locations and frequencies of variant sites. Both phylogenetic and mismatch-distribution analysis suggest that 9-bp deletion arose independently in sub-Saharan Africa and Asia and that the deletion has arisen more than once in Africa. Within Africa, the deletion was not found among Khoisan peoples and was rare to absent in western and southwestern African populations, but it did occur in Pygmy and Negroid populations from central Africa and in Malawi and southern African Bantu-speakers. The distribution of the 9-bp deletion in Africa suggests that the deletion could have arisen in central Africa and was then introduced to southern Africa via the recent "Bantu expansion." PMID:8644719

  20. Cloning and physical mapping of DNA sequences encompassing a region in N-myc amplicons of a human neuroblastoma cell line.

    PubMed Central

    Akiyama, K; Nishi, Y

    1991-01-01

    Cloning and physical mapping of DNA sequences encompassing N-myc amplicons of a human neuroblastoma cell line were done. A number of lambda phage clones within this region were isolated using the probes prepared by the phenol emulsion reassociation technique. Based on the restriction mapping, they were integrated into 8 contigs with sizes of 25-60 kb which, in total, encompassed a 330 kb region. Several amplicons, 100, 420, 480 and 520 kb in size as a Notl fragment, were identified using hexagonal field gel electrophoresis, and the contigs were assigned in these Notl fragments. The region encompassed by the contigs was equivalent to some 60-80% of the amplicons identified as a Notl fragment. In order to compare the amplified regions flanking the N-myc gene among the cell lines, the phage clones to cover the whole contigs were used for hybridization as a probe. The results showed that the portions of the whole contigs ranging 18-45% were also amplified in the cell lines examined. These results allowed us to identified the 'rearranged sites' which were rather evenly distributed, one at every 40 kb, through the contigs. These observations lead to the idea that an amplified DNA domain is constructed after the multiple rearrangements and then increases in number, finally resulting in the formation of subsets of amplicons with sequence homogeneity. Images PMID:1762918

  1. Non-random DNA fragmentation in next-generation sequencing

    PubMed Central

    Poptsova, Maria S.; Il'icheva, Irina A.; Nechipurenko, Dmitry Yu.; Panchenko, Larisa A.; Khodikov, Mingian V.; Oparina, Nina Y.; Polozov, Robert V.; Nechipurenko, Yury D.; Grokhovsky, Sergei L.

    2014-01-01

    Next Generation Sequencing (NGS) technology is based on cutting DNA into small fragments, and their massive parallel sequencing. The multiple overlapping segments termed “reads” are assembled into a contiguous sequence. To reduce sequencing errors, every genome region should be sequenced several dozen times. This sequencing approach is based on the assumption that genomic DNA breaks are random and sequence-independent. However, previously we showed that for the sonicated restriction DNA fragments the rates of double-stranded breaks depend on the nucleotide sequence. In this work we analyzed genomic reads from NGS data and discovered that fragmentation methods based on the action of the hydrodynamic forces on DNA, produce similar bias. Consideration of this non-random DNA fragmentation may allow one to unravel what factors and to what extent influence the non-uniform coverage of various genomic regions. PMID:24681819

  2. Non-random DNA fragmentation in next-generation sequencing

    NASA Astrophysics Data System (ADS)

    Poptsova, Maria S.; Il'Icheva, Irina A.; Nechipurenko, Dmitry Yu.; Panchenko, Larisa A.; Khodikov, Mingian V.; Oparina, Nina Y.; Polozov, Robert V.; Nechipurenko, Yury D.; Grokhovsky, Sergei L.

    2014-03-01

    Next Generation Sequencing (NGS) technology is based on cutting DNA into small fragments, and their massive parallel sequencing. The multiple overlapping segments termed ``reads'' are assembled into a contiguous sequence. To reduce sequencing errors, every genome region should be sequenced several dozen times. This sequencing approach is based on the assumption that genomic DNA breaks are random and sequence-independent. However, previously we showed that for the sonicated restriction DNA fragments the rates of double-stranded breaks depend on the nucleotide sequence. In this work we analyzed genomic reads from NGS data and discovered that fragmentation methods based on the action of the hydrodynamic forces on DNA, produce similar bias. Consideration of this non-random DNA fragmentation may allow one to unravel what factors and to what extent influence the non-uniform coverage of various genomic regions.

  3. The sequence of sequencers: The history of sequencing DNA

    PubMed Central

    Heather, James M.; Chain, Benjamin

    2016-01-01

    Determining the order of nucleic acid residues in biological samples is an integral component of a wide variety of research applications. Over the last fifty years large numbers of researchers have applied themselves to the production of techniques and technologies to facilitate this feat, sequencing DNA and RNA molecules. This time-scale has witnessed tremendous changes, moving from sequencing short oligonucleotides to millions of bases, from struggling towards the deduction of the coding sequence of a single gene to rapid and widely available whole genome sequencing. This article traverses those years, iterating through the different generations of sequencing technology, highlighting some of the key discoveries, researchers, and sequences along the way. PMID:26554401

  4. Dynamical model for DNA sequences

    NASA Astrophysics Data System (ADS)

    Allegrini, P.; Barbi, M.; Grigolini, P.; West, B. J.

    1995-11-01

    We address the problem of DNA sequences, developing a ``dynamical'' method based on the assumption that the statistical properties of DNA paths are determined by the joint action of two processes, one deterministic with long-range correlations, and the other random and δ-function correlated. The generator of the deterministic evolution is a nonlinear map, belonging to a class of maps recently tailored to mimic the processes of weak chaos that are responsible for the birth of anomalous diffusion. It is assumed that the deterministic process corresponds to unknown biological rules that determine the DNA path, whereas the noise mimics the influence of an infinite-dimensional environment on the biological process under study. We prove that the resulting diffusion process, if the effect of the random process is neglected, is an α-stable Lévy process with 1<α<2. We also show that, if the diffusion process is determined by the joint action of the deterministic and the random process, the correlation effects of the ``deterministic dynamics'' are cancelled on the short-range scale, but show up in the long-range one. We denote our prescription to generate statistical sequences as the copying mistake map (CMM). We carry out our analysis of several DNA sequences and their CMM realizations with a variety of techniques, and we especially focus on a method of regression to equilibrium, which we call the Onsager analysis. With these techniques we establish the statistical equivalence of the real DNA sequences with their CMM realizations. We show that long-range correlations are present in exons as well as in introns, but are difficult to detect, since the exon ``dynamics'' is shown to be determined by the entanglement of three distinct and independent CMM's.

  5. Single-strand conformation polymorphism analysis coupled with stratified DNA sequencing reveals reduced sequence variation in the su(s) and su(wa) regions of the Drosophila melanogaster X chromosome.

    PubMed Central

    Aguadé, M; Meyers, W; Long, A D; Langley, C H

    1994-01-01

    Single-strand conformation polymorphism (SSCP) analysis followed by DNA sequencing of stratified sub-samples was used to survey DNA polymorphism in the su(s) and su(wa) regions in a natural population of Drosophila melanogaster. su(s) and su(wa) are located near the telomere of the X chromosome, where the rate of crossing over per kilobase of DNA monotonically decreases toward the tip. SSCP was assessed in 12 noncoding segments amplified from the su(s) region (3213 bp) and in 8 noncoding segments amplified from the su(wa) region (1955 bp). Sets of segments were multiplexed in a single electrophoretic lane to increase the number of base pairs assayed per lane. Eight segments were monomorphic, and the other 12 segments exhibited two to four SSCP classes. Only four within-SSCP-class DNA sequence differences (a single nucleotide substitution) were observed among 24,360 bp compared within classes. The between-SSCP-class DNA sequence comparisons revealed 27 substitutions and 9 insertion/deletion polymorphisms. The average numbers of substitutional differences per site were 0.0010 and 0.0021 for su(s) and su(wa), respectively. These values are intermediate between those reported for the more distal y-ASC region (0.0004) and the more proximal Pgd locus (0.0024). This observation is consistent with the prediction of the hitchhiking-effect model-i.e., a monotonic increase in polymorphism as a function of crossing over per kilobase. Images PMID:8197115

  6. Low Genetic Diversity and Strong Geographical Structure of the Critically Endangered White-Headed Langur (Trachypithecus leucocephalus) Inferred from Mitochondrial DNA Control Region Sequences

    PubMed Central

    Wang, Weiran; Qiao, Yu; Pan, Wenshi; Yao, Meng

    2015-01-01

    Many Asian colobine monkey species are suffering from habitat destruction and population size decline. There is a great need to understand their genetic diversity, population structure and demographic history for effective species conservation. The white-headed langur (Trachypithecus leucocephalus) is a Critically Endangered colobine species endemic to the limestone karst forests in southwestern China. We analyzed the mitochondrial DNA (mtDNA) control region sequences of 390 fecal samples from 40 social groups across the main distribution areas, which represented one-third of the total extant population. Only nine haplotypes and 10 polymorphic sites were identified, indicating remarkably low genetic diversity in the species. Using a subset of 77 samples from different individuals, we evaluated genetic variation, population structure, and population demographic history. We found very low values of haplotype diversity (h = 0.570 ± 0.056) and nucleotide diversity (π = 0.00323 ± 0.00044) in the hypervariable region I (HVRI) of the mtDNA control region. Distribution of haplotypes displayed marked geographical pattern, with one population (Chongzuo, CZ) showing a complete lack of genetic diversity (having only one haplotype), whereas the other population (Fusui, FS) having all nine haplotypes. We detected strong population genetic structure among habit patches (ΦST = 0.375, P < 0.001). In addition, the Mantel test showed a significant correlation between the pairwise genetic distances and geographical distances among social groups in FS (correlation coefficient = 0.267, P = 0.003), indicting isolation-by-distance pattern of genetic divergence in the mtDNA sequences. Analyses of demographic history suggested an overall stable historical population size and modest population expansion in the last 2,000 years. Our results indicate different genetic diversity and possibly distinct population history for different local populations, and suggest that CZ and FS should be

  7. Toward a visualization of DNA sequences.

    PubMed

    Cox, David N; Tharp, Alan L

    2010-01-01

    Most biologists associate pattern discovery in DNA with finding repetitive sequences or commonalities across several sequences. However, pattern discovery is not limited to finding repetitions and commonalities. Pattern discovery also involves identifying objects and distinguishing objects from one another. Human vision is unmatched in its ability to identify and distinguish objects. Considerable research into human vision has revealed to a fair degree the visual cues that our brains use to segment an image into separate regions and entities. In this paper, we consider some of these visual cues to construct a novel graphical representation of a DNA sequence. We exploit one of these cues, proximity, to segment DNA into visibly distinct regions and structures. We also demonstrate how to manipulate proximity to identify motifs visually. Lastly, we demonstrate how an additional cue, color, can be used to visualize the Shannon entropy associated with different structures. The presence of large numbers of such regions and structures in DNA suggests that they likely play some important biological role and would be interesting targets for further research. PMID:20865527

  8. Heteroplasmy, length and sequence variation in the mtDNA control regions of three percid fish species (Perca fluviatilis, Acerina cernua, Stizostedion lucioperca).

    PubMed Central

    Nesbø, C L; Arab, M O; Jakobsen, K S

    1998-01-01

    The nucleotide sequence of the control region and flanking tRNA genes of perch (Perca fluviatilis) mtDNA was determined. The organization of this region is similar to that of other vertebrates. A tandem array of 10-bp repeats, associated with length variation and heteroplasmy was observed in the 5' end. While the location of the array corresponds to that reported in other species, the length of the repeated unit is shorter than previously observed for tandem repeats in this region. The repeated sequence was highly similar to the Mt5 element which has been shown to specifically bind a putative D-loop DNA termination protein. Of 149 perch analyzed, 74% showed length variation heteroplasmy. Single-cell PCR on oocytes suggested that the high level of heteroplasmy is passively maintained by maternal transmission. The array was also observed in the two other percid species, ruffe (Acerina cernua) and zander (Stizostedion lucioperca). The array and the associated length variation heteroplasmy are therefore likely to be general features of percid mtDNAs. Among the perch repeats, the mutation pattern is consistent with unidirectional slippage, and statistical analyses supported the notion that the various haplotypes are associated with different levels of heteroplasmy. The variation in array length among and within species is ascribed to differences in predicted stability of secondary structures made between repeat units. PMID:9560404

  9. Spatiotemporal reconstruction of the Aquilegia rapid radiation through next-generation sequencing of rapidly evolving cpDNA regions.

    PubMed

    Fior, Simone; Li, Mingai; Oxelman, Bengt; Viola, Roberto; Hodges, Scott A; Ometto, Lino; Varotto, Claudio

    2013-04-01

    Aquilegia is a well-known model system in the field of evolutionary biology, but obtaining a resolved and well-supported phylogenetic reconstruction for the genus has been hindered by its recent and rapid diversification. Here, we applied 454 next-generation sequencing to PCR amplicons of 21 of the most rapidly evolving regions of the plastome to generate c. 24 kb of sequences from each of 84 individuals from throughout the genus. The resulting phylogeny has well-supported resolution of the main lineages of the genus, although recent diversification such as in the European taxa remains unresolved. By producing a chronogram of the whole Ranunculaceae family based on published data, we inferred calibration points for dating the Aquilegia radiation. The genus originated in the upper Miocene c. 6.9 million yr ago (Ma) in Eastern Asia, and diversification occurred c. 4.8 Ma with the split of two main clades, one colonizing North America, and the other Western Eurasia through the mountains of Central Asia. This was followed by a back-to-Asia migration, originating from the European stock using a North Asian route. These results provide the first backbone phylogeny and spatiotemporal reconstruction of the Aquilegia radiation, and constitute a robust framework to address the adaptative nature of speciation within the group. PMID:23379348

  10. Sequence determinants of DNA bending in the ilvlH promoter and regulatory region of Escherichia coli.

    PubMed Central

    Wang, Q; Albert, F G; Fitzgerald, D J; Calvo, J M; Anderson, J N

    1994-01-01

    Previous studies have shown that the promoter/regulatory region of the ilvlH operon displays intrinsic curvature, with the bend center located at position -120 relative to the transcription start site. In this report, a 57 bp sequence spanning the bend center was mutagenized in vitro in order to study the relationship between nucleotide sequence and curvature measured by electrophoresis. The strategy used for analyzing the results consisted of determining the strengths of the relationships between electrophoretic anomaly and predicted curvature calculated by computer programs that differ in wedge angle composition. The results revealed that programs which assume that bending occurs only at AA/TT display good predictive value, with correlation coefficients between electrophoretic anomaly and predicted curvature as high as 0.93. In contrast, a program which assumes that bending occurs at all 16 dinucleotide steps exhibited lower predictive value, while there were no significant relationships between the experimental data and curvature calculated by a program that was based on all non-AA/TT wedge values. These results show that the complete wedge model which incorporates values for all dinucleotide steps does not adequately describe the electrophoretic data in this report. PMID:7838732

  11. Channel plate for DNA sequencing

    DOEpatents

    Douthart, Richard J.; Crowell, Shannon L.

    1998-01-01

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface.

  12. Channel plate for DNA sequencing

    DOEpatents

    Douthart, R.J.; Crowell, S.L.

    1998-01-13

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface. 15 figs.

  13. DNA Sequencing Using capillary Electrophoresis

    SciTech Connect

    Dr. Barry Karger

    2011-05-09

    The overall goal of this program was to develop capillary electrophoresis as the tool to be used to sequence for the first time the Human Genome. Our program was part of the Human Genome Project. In this work, we were highly successful and the replaceable polymer we developed, linear polyacrylamide, was used by the DOE sequencing lab in California to sequence a significant portion of the human genome using the MegaBase multiple capillary array electrophoresis instrument. In this final report, we summarize our efforts and success. We began our work by separating by capillary electrophoresis double strand oligonucleotides using cross-linked polyacrylamide gels in fused silica capillaries. This work showed the potential of the methodology. However, preparation of such cross-linked gel capillaries was difficult with poor reproducibility, and even more important, the columns were not very stable. We improved stability by using non-cross linked linear polyacrylamide. Here, the entangled linear chains could move when osmotic pressure (e.g. sample injection) was imposed on the polymer matrix. This relaxation of the polymer dissipated the stress in the column. Our next advance was to use significantly lower concentrations of the linear polyacrylamide that the polymer could be automatically blown out after each run and replaced with fresh linear polymer solution. In this way, a new column was available for each analytical run. Finally, while testing many linear polymers, we selected linear polyacrylamide as the best matrix as it was the most hydrophilic polymer available. Under our DOE program, we demonstrated initially the success of the linear polyacrylamide to separate double strand DNA. We note that the method is used even today to assay purity of double stranded DNA fragments. Our focus, of course, was on the separation of single stranded DNA for sequencing purposes. In one paper, we demonstrated the success of our approach in sequencing up to 500 bases. Other

  14. Classification and phylogeny of sika deer (Cervus nippon) subspecies based on the mitochondrial control region DNA sequence using an extended sample set.

    PubMed

    Ba, Hengxing; Yang, Fuhe; Xing, Xiumei; Li, Chunyi

    2015-06-01

    To further refine the classification and phylogeny of sika deer subspecies, the well-annotated sequences of the complete mitochondrial DNA (mtDNA) control region of 13 sika deer subspecies from GenBank were downloaded, aligned and analyzed in this study. By reconstructing the phylogenetic tree with an extended sample set, the results revealed a split between Northern and Southern Mainland Asia/Taiwan lineages, and moreover, two subspecies, C.n.mantchuricus and C.n.hortulorum, were existed in Northern Mainland Asia. Unexpectedly, Dybowskii's sika deer that was thought to originate from Northern Mainland Asia joins the Southern Mainland Asia/Taiwan lineage. The genetic divergences were ranged from 2.1% to 4.7% between Dybowskii's sika deer and all the other established subspecies at the mtDNA sequence level, which suggests that the maternal lineage of uncertain sika subspecies in Europe had been maintained until today. This study also provides a better understanding for the classification, phylogeny and phylogeographic history of sika deer subspecies. PMID:24063645

  15. Mitochondrial DNA control region sequence variation suggests an independent origin of an {open_quotes}Asian-specific{close_quotes} 9-bp deletion in Africans

    SciTech Connect

    Soodyall, H.; Redd, A.; Vigilant

    1994-09-01

    The intergenic noncoding region between the cytochrome oxidase II and lysyl tRNA genes of human mitochondrial DNA (mtDNA) is associated with two tandemly arranged copies of a 9-bp sequence. A deletion of one of these repeats has been found at varying frequencies in populations of Asian descent, and is commonly referred to as an {open_quotes}Asian-specific{close_quotes} marker. We report here that the 9-bp deletion is also found at a frequency of 10.2% (66/649) in some indigenous African populations, with frequencies of 28.6% (20/70) in Pygmies, 26.6% (12/45) in Malawians and 15.4% (31/199) in southeastern Bantu-speaking populations. The deletion was not found in 123 Khoisan individuals nor in 209 western Bantu-speaking individuals, with the exception of 3 individuals from one group that was admixed with Pygmies. Sequence analysis of the two hypervariable segments of the mtDNA control region reveals that the types associated with the African 9-bp deletion are different from those found in Asian-derived populations with the deletion. Phylogenetic analysis separates the {open_quotes}African{close_quotes} and {open_quotes}Asian{close_quotes} 9-bp deletion types into two different clusters which are statistically supported. Mismatch distributions based on the number of differences between pairs of mtDNA types are consistent with this separation. These findings strongly support the view that the 9-bp deletion originated independently in Africa and in Asia.

  16. Genetic relationships among some subspecies of the Peregrine Falcon (Falco peregrinus L.), inferred from mitochondrial DNA control-region sequences

    USGS Publications Warehouse

    White, Clayton M.; Sonsthagen, Sarah A.; Sage, George K.; Anderson, Clifford; Talbot, Sandra L.

    2013-01-01

    The ability to successfully colonize and persist in diverse environments likely requires broad morphological and behavioral plasticity and adaptability, and this may partly explain why the Peregrine Falcon (Falco peregrinus) exhibits a large range of morphological characteristics across their global distribution. Regional and local differences within Peregrine Falcons were sufficiently variable that ∼75 subspecies have been described; many were subsumed, and currently 19 are generally recognized. We used sequence information from the control region of the mitochondrial genome to test for concordance between genetic structure and representatives of 12 current subspecies and from two areas where subspecies distributions overlap. Haplotypes were broadly shared among subspecies, and all geographic locales shared a widely distributed common haplotype (FalconCR2). Haplotypes were distributed in a star-like phylogeny, consistent with rapid expansion of a recently derived species, with observed genetic patterns congruent with incomplete lineage sorting and/or differential rates of evolution on morphology and neutral genetic characters. Hierarchical analyses of molecular variance did not uncover genetic partitioning at the continental level, despite strong population-level structure (FST = 0.228). Similar analyses found weak partitioning, albeit significant, among subspecies (FCT = 0.138). All reconstructions placed the hierofalcons' (Gyrfalcon [F. rusticolus] and Saker Falcon [F. cherrug]) haplotypes in a well-supported clade either basal or unresolved with respect to the Peregrine Falcon. In addition, haplotypes representing Taita Falcon (F. fasciinucha) were placed within the Peregrine Falcon clade.

  17. Molecular and Cytogenetic Analysis of the Heterochromatin-Euchromatin Junction Region of the Drosophila Melanogaster X Chromosome Using Cloned DNA Sequences

    PubMed Central

    Yamamoto, M. T.; Mitchelson, A.; Tudor, M.; O'Hare, K.; Davies, J. A.; Miklos, GLG.

    1990-01-01

    We have used three cloned DNA sequences consisting of (1) part of the suppressor of forked transcription unit, (2) a cloned 359-bp satellite, and (3), a type I ribosomal insertion, to examine the structure of the base of the X chromosome of Drosophila melanogaster where different chromatin types are found in juxtaposition. A DNA probe from the suppressor of forked locus hybridizes exclusively to the very proximal polytenized part of division 20, which forms part of the β-heterochromatin of the chromocenter. The cloned 359-bp satellite sequence, which derives from the proximal mitotic heterochromatin between the centromere and the ribosomal genes, hybridizes to the under replicated α-heterochromatin of the chromocenter. The type I insertion sequence, which has major locations in the ribosomal genes and in the distal mitotic heterochromatin of the X chromosome, hybridizes as expected to the nucleolus but does not hybridize to the β-heterochromatic division 20 of the polytene X chromosome. Our molecular data reveal that the suppressor of forked locus, which on cytogenetic grounds is the most proximal ordinary gene on the X chromosome, is very close to the junction of the polytenized and non-polytenized region of the X chromosome. The data have implications for the structure of β-heterochromatin-α-heterochromatin junction zones in both mitotic and polytene chromosomes, and are discussed with reference to models of chromosome structure. PMID:2118871

  18. Phylogenetic analysis of the genus Sorghum based on combined sequence data from cpDNA regions and ITS generate well-supported trees with two major lineages

    PubMed Central

    Ng'uni, Dickson; Geleta, Mulatu; Fatih, Moneim; Bryngelsson, Tomas

    2010-01-01

    Background and Aims Wild Sorghum species provide novel traits for both biotic and abiotic stress resistance and yield for the improvement of cultivated sorghum. A better understanding of the phylogeny in the genus Sorghum will enhance use of the valuable agronomic traits found in wild sorghum. Methods Four regions of chloroplast DNA (cpDNA; psbZ-trnG, trnY-trnD, trnY-psbM and trnT-trnL) and the internal transcribed spacer (ITS) of nuclear ribosomal DNA were used to analyse the phylogeny of sorghum based on maximum-parsimony analyses. Key Results Parsimony analyses of the ITS and cpDNA regions as separate or combined sequence datasets formed trees with strong bootstrap support with two lineages: the Eu-sorghum species S. laxiflorum and S. macrospermum in one and Stiposorghum and Para-sorghum in the other. Within Eu-sorghum, S. bicolor-3, -11 and -14 originating from southern Africa form a distinct clade. S. bicolor-2, originally from Yemen, is distantly related to other S. bicolor accessions. Conclusions Eu-sorghum species are more closely related to S. macrospermum and S. laxiflorum than to any other Australian wild Sorghum species. S. macrospermum and S. laxiflorum are so closely related that it is inappropriate to classify them in separate sections. S. almum is closely associated with S. bicolor, suggesting that the latter is the maternal parent of the former given that cpDNA is maternally inherited in angiosperms. S. bicolor-3, -11 and -14, from southern Africa, are closely related to each other but distantly related to S. bicolor-2. PMID:20061309

  19. Origin and genetic diversity of Egyptian native chickens based on complete sequence of mitochondrial DNA D-loop region.

    PubMed

    Osman, Sayed A-M; Yonezawa, Takahiro; Nishibori, Masahide

    2016-06-01

    Domestic chickens (Gallus gallus) play a significant role, ranging from food and entertainment to religion and ornamentation. However, the details on their domestication process are still controversial, especially the origin and evolution of African chickens. Egypt is thought to be important place for this event because of its geographic location as well as its long history of civilization. However, the genetic component and structure of Egyptian native chicken (ENC) have not been studied so far. The aim of this study is to clarify the origin and evolution of African chickens through assessing the genetic diversities and structure of five ENC breeds using the mitochondrial D-loop sequences. Our results suggest there is genetic differentiation between the pure native breeds and the improved native breeds. The latter breeds were established by the hybridization of the pure native and the exotic breeds. The pure native breeds were estimated to be established about 800 years ago. Subsequently, we extensively analyzed the D-loop sequences from the ENC as well as the globally collected chickens (2,010 individuals in total). Our phylogenetic tree among the regional populations shows African chickens can be separated to two distinct clades. The first clade consists of North African (Egypt), Central African (Sudan and Cameroon), European, and West (and Central) Asian chickens. The second clade consists of East African (Kenya, Malawi, and Zimbabwe) and Pacific chickens. It suggests the dual origins of African native chickens. The first group was probably originated from South Asia, and then migrated to West Asia, and finally arrived to Africa thorough Egypt. The second group migrated from Pacific to East Africa via Indian Ocean probably by Austronesian people. This dual origin hypothesis as well as estimated divergence times in this study is harmonious with the archaeological and historical evidences. Our migration analysis suggests there is limited gene flow within African

  20. Nanopore DNA sequencing with MspA

    PubMed Central

    Derrington, Ian M.; Butler, Tom Z.; Collins, Marcus D.; Manrao, Elizabeth; Pavlenok, Mikhail; Niederweis, Michael; Gundlach, Jens H.

    2010-01-01

    Nanopore sequencing has the potential to become a direct, fast, and inexpensive DNA sequencing technology. The simplest form of nanopore DNA sequencing utilizes the hypothesis that individual nucleotides of single-stranded DNA passing through a nanopore will uniquely modulate an ionic current flowing through the pore, allowing the record of the current to yield the DNA sequence. We demonstrate that the ionic current through the engineered Mycobacterium smegmatis porin A, MspA, has the ability to distinguish all four DNA nucleotides and resolve single-nucleotides in single-stranded DNA when double-stranded DNA temporarily holds the nucleotides in the pore constriction. Passing DNA with a series of double-stranded sections through MspA provides proof of principle of a simple DNA sequencing method using a nanopore. These findings highlight the importance of MspA in the future of nanopore sequencing. PMID:20798343

  1. Nanopore DNA sequencing with MspA.

    PubMed

    Derrington, Ian M; Butler, Tom Z; Collins, Marcus D; Manrao, Elizabeth; Pavlenok, Mikhail; Niederweis, Michael; Gundlach, Jens H

    2010-09-14

    Nanopore sequencing has the potential to become a direct, fast, and inexpensive DNA sequencing technology. The simplest form of nanopore DNA sequencing utilizes the hypothesis that individual nucleotides of single-stranded DNA passing through a nanopore will uniquely modulate an ionic current flowing through the pore, allowing the record of the current to yield the DNA sequence. We demonstrate that the ionic current through the engineered Mycobacterium smegmatis porin A, MspA, has the ability to distinguish all four DNA nucleotides and resolve single-nucleotides in single-stranded DNA when double-stranded DNA temporarily holds the nucleotides in the pore constriction. Passing DNA with a series of double-stranded sections through MspA provides proof of principle of a simple DNA sequencing method using a nanopore. These findings highlight the importance of MspA in the future of nanopore sequencing. PMID:20798343

  2. DNA sequence of the control region of phage D108: the N-terminal amino acid sequences of repressor and transposase are similar both in phage D108 and in its relative, phage Mu.

    PubMed Central

    Mizuuchi, M; Weisberg, R A; Mizuuchi, K

    1986-01-01

    We have determined the DNA sequence of the control region of phage D108 up to position 1419 at the left end of the phage genome. Open reading frames for the repressor gene, ner gene, and the 5' part of the A gene (which codes for transposase) are found in the sequence. The genetic organization of this region of phage D108 is quite similar to that of phage Mu in spite of considerable divergence, both in the nucleotide sequence and in the amino acid sequences of the regulatory proteins of the two phages. The N-terminal amino acid sequences of the transposases of the two phages also share only limited homology. On the other hand, a significant amino acid sequence homology was found within each phage between the N-terminal parts of the repressor and transposase. We propose that the N-terminal domains of the repressor and transposase of each phage interact functionally in the process of making the decision between the lytic and the lysogenic mode of growth. PMID:3012481

  3. Towards modeling DNA sequences as automata

    NASA Astrophysics Data System (ADS)

    Burks, Christian; Farmer, Doyne

    1984-01-01

    We seek to describe a starting point for modeling the evolution and role of DNA sequences within the framework of cellular automata by discussing the current understanding of genetic information storage in DNA sequences. This includes alternately viewing the role of DNA in living organisms as a simple scheme and as a complex scheme; a brief review of strategies for identifying and classifying patterns in DNA sequences; and finally, notes towards establishing DNA-like automata models, including a discussion of the extent of experimentally determined DNA sequence data present in the database at Los Alamos.

  4. Mitochondrial DNA sequence variation in Drosophilid species (Diptera: Drosophilidae) along altitudinal gradient from Central Himalayan region of India.

    PubMed

    Sarswat, Manisha; Dewan, Saurabh; Fartyal, Rajendra Singh

    2016-06-01

    Central Himalayan region of India encompasses varied ecological habitats ranging from near tropics to the mid-elevation forests dominated by cool-temperate taxa. In past, we have reported several new records and novel species from Uttarakhand state of India. Here, we assessed genetic variations in three mitochondrial genes, namely, 16S rRNA, cytochrome c oxidase subunit I and cytochrome c oxidase subunit II (COI and COII) in 26 drosophilid species collected along altitudinal transect from 550 to 2700 m above mean sea level. In the present study, overall 543 sequences were generated, 82 for 16S rRNA, 238 for COI, 223 for COII with 21, 47 and 45 mitochondrial haplotypes for 16S rRNA, COI and COII genes, respectively. Almost all species were represented by 2-3 unique mitochondrial haplotypes, depicting a significant impact of environmental heterogeneity along altitudinal gradient on genetic diversity. Also for the first time, molecular data of some rare species like Drosophila mukteshwarensis, Liodrosophila nitida, Lordiphosa parantillaria, Lordiphosa ayarpathaensis, Scaptomyza himalayana, Scaptomyza tistai, Zaprionus grandis and Stegana minuta are provided to public domains through this study. PMID:27350680

  5. Sequence-Specific DNA Binding by a Short Peptide Dimer

    NASA Astrophysics Data System (ADS)

    Talanian, Robert V.; McKnight, C. James; Kim, Peter S.

    1990-08-01

    A recently described class of DNA binding proteins is characterized by the "bZIP" motif, which consists of a basic region that contacts DNA and an adjacent "leucine zipper" that mediates protein dimerization. A peptide model for the basic region of the yeast transcriptional activator GCN4 has been developed in which the leucine zipper has been replaced by a disulfide bond. The 34-residue peptide dimer, but not the reduced monomer, binds DNA with nanomolar affinity at 4^circC. DNA binding is sequence-specific as judged by deoxyribonuclease I footprinting. Circular dichroism spectroscopy suggests that the peptide adopts a helical structure when bound to DNA. These results demonstrate directly that the GCN4 basic region is sufficient for sequence-specific DNA binding and suggest that a major function of the GCN4 leucine zipper is simply to mediate protein dimerization. Our approach provides a strategy for the design of short sequence-specific DNA binding peptides.

  6. Fluorescence-detected DNA sequencing

    SciTech Connect

    Haugland, R.P.

    1990-01-01

    Our research effort funded by this grant primarily focused on development of suitable fluorescent dyes for DNA sequencing studies. Prior to our efforts, the dyes being sued in commercial DNA sequencers were various versions of fluorescein dyes for the shorter wavelengths and of rhodamine dyes for the longer wavelengths. Our initial goal was to synthesize a set of four dyes that could all be excited by the 488 and 514 nm line of the argon laser lines and that have emission spectra that minimize spectral overlap. The specific result sought was higher fluorescent intensity, particularly of the longest wavelength dyes than was available using existing dyes. Another important property of the desired set of dyes was uniform ionic charge in order to have minimum interference on the electrophoretic mobility during the sequencing. During the period of this grant we prepared and characterized four types of dyes: fluorescent bifluorophores, derivatives of rhodamine dyes, derivatives of rhodol dyes and derivatives of boron dipyrromethene difluoride (BODIPY{trademark}) dyes.

  7. COLD-PCR amplification of bisulfite-converted DNA allows the enrichment and sequencing of rare un-methylated genomic regions.

    PubMed

    Castellanos-Rizaldos, Elena; Milbury, Coren A; Karatza, Elli; Chen, Clark C; Makrigiorgos, G Mike; Merewood, Anne

    2014-01-01

    Aberrant hypo-methylation of DNA is evident in a range of human diseases including cancer and diabetes. Development of sensitive assays capable of detecting traces of un-methylated DNA within methylated samples can be useful in several situations. Here we describe a new approach, fast-COLD-MS-PCR, which amplifies preferentially un-methylated DNA sequences. By employing an appropriate denaturation temperature during PCR of bi-sulfite converted DNA, fast-COLD-MS-PCR enriches un-methylated DNA and enables differential melting analysis or bisulfite sequencing. Using methylation on the MGMT gene promoter as a model, it is shown that serial dilutions of controlled methylation samples lead to the reliable sequencing of un-methylated sequences down to 0.05% un-methylated-to-methylated DNA. Screening of clinical glioma tumor and infant blood samples demonstrated that the degree of enrichment of un-methylated over methylated DNA can be modulated by the choice of denaturation temperature, providing a convenient method for analysis of partially methylated DNA or for revealing and sequencing traces of un-methylated DNA. Fast-COLD-MS-PCR can be useful for the detection of loss of methylation/imprinting in cancer, diabetes or diet-related methylation changes. PMID:24728321

  8. Particle sizer and DNA sequencer

    DOEpatents

    Olivares, Jose A.; Stark, Peter C.

    2005-09-13

    An electrophoretic device separates and detects particles such as DNA fragments, proteins, and the like. The device has a capillary which is coated with a coating with a low refractive index such as Teflon.RTM. AF. A sample of particles is fluorescently labeled and injected into the capillary. The capillary is filled with an electrolyte buffer solution. An electrical field is applied across the capillary causing the particles to migrate from a first end of the capillary to a second end of the capillary. A detector light beam is then scanned along the length of the capillary to detect the location of the separated particles. The device is amenable to a high throughput system by providing additional capillaries. The device can also be used to determine the actual size of the particles and for DNA sequencing.

  9. Genetic mapping and DNA sequencing

    SciTech Connect

    Speed, T.; Waterman, M.S.

    1996-12-31

    The Human Genome Initiative has as its primary objective the characterization of the human genome. High-resolution linkage maps of genetic markers will play an important role in completing the human genome project. This is one of two volumes based on the proceedings of the 1994 IMA Summer Program on Molecular Biology and comprises Weeks 1 and 2 of the four-week program. This volume focuses on genetic mapping and DNA sequencing. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  10. The Historical Demography and Genetic Variation of the Endangered Cycas multipinnata (Cycadaceae) in the Red River Region, Examined by Chloroplast DNA Sequences and Microsatellite Markers

    PubMed Central

    Gong, Yi-Qing; Zhan, Qing-Qing; Nguyen, Khang Sinh; Nguyen, Hiep Tien; Wang, Yue-Hua; Gong, Xun

    2015-01-01

    Cycas multipinnata C.J. Chen & S.Y. Yang is a cycad endemic to the Red River drainage region that occurs under evergreen forest on steep limestone slopes in Southwest China and northern Vietnam. It is listed as endangered due to habitat loss and over-collecting for the ornamental plant trade, and only several populations remain. In this study, we assess the genetic variation, population structure, and phylogeography of C. multipinnata populations to help develop strategies for the conservation of the species. 60 individuals from six populations were used for chloroplast DNA (cpDNA) sequencing and 100 individuals from five populations were genotyped using 17 nuclear microsatellites. High genetic differentiation among populations was detected, suggesting that pollen or seed dispersal was restricted within populations. Two main genetic clusters were observed in both the cpDNA and microsatellite loci, corresponding to Yunnan China and northern Vietnam. These clusters indicated low levels of gene flow between the regions since their divergence in the late Pleistocene, which was inferred from both Bayesian and coalescent analysis. In addition, the result of a Bayesian skyline plot based on cpDNA portrayed a long history of constant population size followed by a decline in the last 50,000 years of C. multipinnata that was perhaps affected by the Quaternary glaciations, a finding that was also supported by the Garza-Williamson index calculated from the microsatellite data. The genetic consequences produced by climatic oscillations and anthropogenic disturbances are considered key pressures on C. multipinnata. To establish a conservation management plan, each population of C. multipinnata should be recognized as a Management Unit (MU). In situ and ex situ actions, such as controlling overexploitation and creating a germplasm bank with high genetic diversity, should be urgently implemented to preserve this species. PMID:25689828

  11. The historical demography and genetic variation of the endangered Cycas multipinnata (Cycadaceae) in the red river region, examined by chloroplast DNA sequences and microsatellite markers.

    PubMed

    Gong, Yi-Qing; Zhan, Qing-Qing; Nguyen, Khang Sinh; Nguyen, Hiep Tien; Wang, Yue-Hua; Gong, Xun

    2015-01-01

    Cycas multipinnata C.J. Chen & S.Y. Yang is a cycad endemic to the Red River drainage region that occurs under evergreen forest on steep limestone slopes in Southwest China and northern Vietnam. It is listed as endangered due to habitat loss and over-collecting for the ornamental plant trade, and only several populations remain. In this study, we assess the genetic variation, population structure, and phylogeography of C. multipinnata populations to help develop strategies for the conservation of the species. 60 individuals from six populations were used for chloroplast DNA (cpDNA) sequencing and 100 individuals from five populations were genotyped using 17 nuclear microsatellites. High genetic differentiation among populations was detected, suggesting that pollen or seed dispersal was restricted within populations. Two main genetic clusters were observed in both the cpDNA and microsatellite loci, corresponding to Yunnan China and northern Vietnam. These clusters indicated low levels of gene flow between the regions since their divergence in the late Pleistocene, which was inferred from both Bayesian and coalescent analysis. In addition, the result of a Bayesian skyline plot based on cpDNA portrayed a long history of constant population size followed by a decline in the last 50,000 years of C. multipinnata that was perhaps affected by the Quaternary glaciations, a finding that was also supported by the Garza-Williamson index calculated from the microsatellite data. The genetic consequences produced by climatic oscillations and anthropogenic disturbances are considered key pressures on C. multipinnata. To establish a conservation management plan, each population of C. multipinnata should be recognized as a Management Unit (MU). In situ and ex situ actions, such as controlling overexploitation and creating a germplasm bank with high genetic diversity, should be urgently implemented to preserve this species. PMID:25689828

  12. Sequencing Complex Genomic Regions

    SciTech Connect

    Eichler, Evan

    2009-05-28

    Evan Eichler, Howard Hughes Medical Investigator at the University of Washington, gives the May 28, 2009 keynote speech at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM. Part 1 of 2

  13. Sequencing Complex Genomic Regions

    SciTech Connect

    Eichler, Evan

    2009-05-28

    Evan Eichler, Howard Hughes Medical Investigator at the University of Washington, gives the May 28, 2009 keynote speech at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM. Part 2 of 2

  14. Local Renyi entropic profiles of DNA sequences

    PubMed Central

    Vinga, Susana; Almeida, Jonas S

    2007-01-01

    Background In a recent report the authors presented a new measure of continuous entropy for DNA sequences, which allows the estimation of their randomness level. The definition therein explored was based on the Rényi entropy of probability density estimation (pdf) using the Parzen's window method and applied to Chaos Game Representation/Universal Sequence Maps (CGR/USM). Subsequent work proposed a fractal pdf kernel as a more exact solution for the iterated map representation. This report extends the concepts of continuous entropy by defining DNA sequence entropic profiles using the new pdf estimations to refine the density estimation of motifs. Results The new methodology enables two results. On the one hand it shows that the entropic profiles are directly related with the statistical significance of motifs, allowing the study of under and over-representation of segments. On the other hand, by spanning the parameters of the kernel function it is possible to extract important information about the scale of each conserved DNA region. The computational applications, developed in Matlab m-code, the corresponding binary executables and additional material and examples are made publicly available at . Conclusion The ability to detect local conservation from a scale-independent representation of symbolic sequences is particularly relevant for biological applications where conserved motifs occur in multiple, overlapping scales, with significant future applications in the recognition of foreign genomic material and inference of motif structures. PMID:17939871

  15. Evaluation of the effects of intrapartum antibiotic prophylaxis on newborn intestinal microbiota using a sequencing approach targeted to multi hypervariable 16S rDNA regions.

    PubMed

    Aloisio, Irene; Quagliariello, Andrea; De Fanti, Sara; Luiselli, Donata; De Filippo, Carlotta; Albanese, Davide; Corvaglia, Luigi Tommaso; Faldella, Giacomo; Di Gioia, Diana

    2016-06-01

    Different factors are known to influence the early gut colonization in newborns, among them the perinatal use of antibiotics. On the other hand, the effect on the baby of the administration of antibiotics to the mother during labor, referred to as intrapartum antibiotic prophylaxis (IAP), has received less attention, although routinely used in group B Streptococcus positive women to prevent the infection in newborns. In this work, the fecal microbiota of neonates born to mothers receiving IAP and of control subjects were compared taking advantage for the first time of high-throughput DNA sequencing technology. Seven different 16S rDNA hypervariable regions (V2, V3, V4, V6 + V7, V8, and V9) were amplified and sequenced using the Ion Torrent Personal Genome Machine. The results obtained showed significant differences in the microbial composition of newborns born to mothers who had received IAP, with a lower abundance of Actinobacteria and Bacteroidetes as well as an overrepresentation of Proteobacteria. Considering that the seven hypervariable regions showed different discriminant ability in the taxonomic identification, further analyses were performed on the V4 region evidencing in IAP infants a reduced microbial richness and biodiversity, as well as a lower number of bacterial families with a predominance of Enterobacteriaceae members. In addition, this analysis pointed out a significant reduction in Bifidobacterium spp. strains. The reduced abundance of these beneficial microorganisms, together with the increased amount of potentially pathogenic bacteria, may suggest that IAP infants are more exposed to gastrointestinal or generally health disorders later in age. PMID:26971496

  16. Identification of sequence polymorphism in the D-Loop region of mitochondrial DNA as a risk factor for hepatocellular carcinoma with distinct etiology

    PubMed Central

    2010-01-01

    Background Hepatocellular carcinoma (HCC) is frequently preceded by hepatitis virus infection or alcohol abuse. Genetic backgrounds may increase susceptibility to HCC from these exposures. Methods Mitochondrial DNA (mtDNA) of peripheral blood, tumor, and/or adjacent non-tumor tissue from 49 hepatitis B virus-related and 11 alcohol-related HCC patients, and from 38 controls without HCC were examined for single nucleotide polymorphisms (SNPs) and mutations in the D-Loop region. Results Single nucleotide polymorphisms (SNPs) in the D-loop region of mt DNA were examined in HCC patients. Individual SNPs, namely the 16266C/T, 16293A/G, 16299A/G, 16303G/A, 242C/T, 368A/G, and 462C/T minor alleles, were associated with increased risk for alcohol- HCC, and the 523A/del was associated with increased risks of both HCC types. The mitochondrial haplotypes under the M haplogroup with a defining 489C polymorphism were detected in 27 (55.1%) of HBV-HCCand 8 (72.7%) of alcohol- HCC patients, and in 15 (39.5%) of controls. Frequencies of the 489T/152T, 489T/523A, and 489T/525C haplotypes were significantly reduced in HBV-HCC patients compared with controls. In contrast, the haplotypes of 489C with 152T, 249A, 309C, 523Del, or 525Del associated significantly with increase of alcohol-HCC risk. Mutations in the D-Loop region were detected in 5 adjacent non-tumor tissues and increased in cancer stage (21 of 49 HBV-HCC and 4 of 11 alcohol- HCC, p < 0.002). Conclusions In sum, mitochondrial haplotypes may differentially predispose patients to HBV-HCC and alcohol-HCC. Mutations of the mitochondrial D-Loop sequence may relate to HCC development. PMID:20849651

  17. Investigating the prehistory of Tungusic peoples of Siberia and the Amur-Ussuri region with complete mtDNA genome sequences and Y-chromosomal markers.

    PubMed

    Duggan, Ana T; Whitten, Mark; Wiebe, Victor; Crawford, Michael; Butthof, Anne; Spitsyn, Victor; Makarov, Sergey; Novgorodov, Innokentiy; Osakovsky, Vladimir; Pakendorf, Brigitte

    2013-01-01

    Evenks and Evens, Tungusic-speaking reindeer herders and hunter-gatherers, are spread over a wide area of northern Asia, whereas their linguistic relatives the Udegey, sedentary fishermen and hunter-gatherers, are settled to the south of the lower Amur River. The prehistory and relationships of these Tungusic peoples are as yet poorly investigated, especially with respect to their interactions with neighbouring populations. In this study, we analyse over 500 complete mtDNA genome sequences from nine different Evenk and even subgroups as well as their geographic neighbours from Siberia and their linguistic relatives the Udegey from the Amur-Ussuri region in order to investigate the prehistory of the Tungusic populations. These data are supplemented with analyses of Y-chromosomal haplogroups and STR haplotypes in the Evenks, Evens, and neighbouring Siberian populations. We demonstrate that whereas the North Tungusic Evenks and Evens show evidence of shared ancestry both in the maternal and in the paternal line, this signal has been attenuated by genetic drift and differential gene flow with neighbouring populations, with isolation by distance further shaping the maternal genepool of the Evens. The Udegey, in contrast, appear quite divergent from their linguistic relatives in the maternal line, with a mtDNA haplogroup composition characteristic of populations of the Amur-Ussuri region. Nevertheless, they show affinities with the Evenks, indicating that they might be the result of admixture between local Amur-Ussuri populations and Tungusic populations from the north. PMID:24349531

  18. Investigating the Prehistory of Tungusic Peoples of Siberia and the Amur-Ussuri Region with Complete mtDNA Genome Sequences and Y-chromosomal Markers

    PubMed Central

    Duggan, Ana T.; Whitten, Mark; Wiebe, Victor; Crawford, Michael; Butthof, Anne; Spitsyn, Victor; Makarov, Sergey; Novgorodov, Innokentiy; Osakovsky, Vladimir; Pakendorf, Brigitte

    2013-01-01

    Evenks and Evens, Tungusic-speaking reindeer herders and hunter-gatherers, are spread over a wide area of northern Asia, whereas their linguistic relatives the Udegey, sedentary fishermen and hunter-gatherers, are settled to the south of the lower Amur River. The prehistory and relationships of these Tungusic peoples are as yet poorly investigated, especially with respect to their interactions with neighbouring populations. In this study, we analyse over 500 complete mtDNA genome sequences from nine different Evenk and even subgroups as well as their geographic neighbours from Siberia and their linguistic relatives the Udegey from the Amur-Ussuri region in order to investigate the prehistory of the Tungusic populations. These data are supplemented with analyses of Y-chromosomal haplogroups and STR haplotypes in the Evenks, Evens, and neighbouring Siberian populations. We demonstrate that whereas the North Tungusic Evenks and Evens show evidence of shared ancestry both in the maternal and in the paternal line, this signal has been attenuated by genetic drift and differential gene flow with neighbouring populations, with isolation by distance further shaping the maternal genepool of the Evens. The Udegey, in contrast, appear quite divergent from their linguistic relatives in the maternal line, with a mtDNA haplogroup composition characteristic of populations of the Amur-Ussuri region. Nevertheless, they show affinities with the Evenks, indicating that they might be the result of admixture between local Amur-Ussuri populations and Tungusic populations from the north. PMID:24349531

  19. Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes.

    PubMed Central

    Sofia, H J; Burland, V; Daniels, D L; Plunkett, G; Blattner, F R

    1994-01-01

    The DNA sequence of a 225.4 kilobase segment of the Escherichia coli K-12 genome is described here, from 76.0 to 81.5 minutes on the genetic map. This brings the total of contiguous sequence from the E.coli genome project to 725.1 kb (76.0 to 92.8 minutes). We found 191 putative coding genes (ORFs) of which 72 genes were previously known, and 110 of which remain unidentified despite literature and similarity searches. Seven new genes--arsE, arsF, arsG, treF, xylR, xylG, and xylH--were identified as well as the previously mapped pit and dctA genes. The arrangement of proposed genes relative to possible promoters and terminators suggests 90 potential transcription units. Other features include 19 REP elements, 95 computer-predicted bends, 50 Chi sites, and one grey hole. Thirty-one putative signal peptides were found, including those of thirteen known membrane or periplasmic proteins. One tRNA gene (proK) and two insertion sequences (IS5 and IS150) are located in this segment. The genes in this region are organized with equal numbers oriented with or against replication. PMID:8041620

  20. Spectral entropy criteria for structural segmentation in genomic DNA sequences

    NASA Astrophysics Data System (ADS)

    Chechetkin, V. R.; Lobzin, V. V.

    2004-07-01

    The spectral entropy is calculated with Fourier structure factors and characterizes the level of structural ordering in a sequence of symbols. It may efficiently be applied to the assessment and reconstruction of the modular structure in genomic DNA sequences. We present the relevant spectral entropy criteria for the local and non-local structural segmentation in DNA sequences. The results are illustrated with the model examples and analysis of intervening exon-intron segments in the protein-coding regions.

  1. Identification of sequence polymorphisms in the displacement loop region of mitochondrial DNA as a risk factor for renal cell carcinoma

    PubMed Central

    ZHANG, JUNXIA; GUO, ZHANJUN; BAI, YALING; CUI, LIWEN; ZHANG, SHENGLEI; XU, JINSHENG

    2013-01-01

    The accumulation of single-nucleotide polymorphisms (SNPs) in the displacement loop (D-loop) of mitochondrial DNA (mtDNA) may be associated with an increased cancer risk. In this case-control study, the SNPs in the mitochondrial D-loop of renal cell carcinoma (RCC) patients were identified and their association with cancer risk was evaluated. The minor alleles of nucleotides 16293A/G, 262A/G and 488T/C were associated with an increased risk, whereas the minor alleles of nucleotides 16298T/C and 16319G/A were associated with a decreased risk for RCC. Moreover, the nucleotides 16293, 262, 16298 and 16319 were identified as specifically associated with the risk of clear cell RCC (ccRCC), whereas 262 and 488 were specifically associated with papillary RCC and renal oncocytoma. In conclusion, SNPs in mtDNA are potential modifiers of RCC. The analysis of genetic polymorphisms in the mitochondrial D-loop may help identify the patient subgroups at a high risk of developing RCC. PMID:24648987

  2. The Value of DNA Sequencing - TCGA

    Cancer.gov

    DNA sequencing: what it tells us about DNA changes in cancer, how looking across many tumors will help to identify meaningful changes and potential drug targets, and how genomics is changing the way we think about cancer.

  3. Method for sequencing DNA base pairs

    DOEpatents

    Sessler, Andrew M.; Dawson, John

    1993-01-01

    The base pairs of a DNA structure are sequenced with the use of a scanning tunneling microscope (STM). The DNA structure is scanned by the STM probe tip, and, as it is being scanned, the DNA structure is separately subjected to a sequence of infrared radiation from four different sources, each source being selected to preferentially excite one of the four different bases in the DNA structure. Each particular base being scanned is subjected to such sequence of infrared radiation from the four different sources as that particular base is being scanned. The DNA structure as a whole is separately imaged for each subjection thereof to radiation from one only of each source.

  4. Sequence specific generation of a DNA panhandle permits PCR amplification of unknown flanking DNA.

    PubMed Central

    Jones, D H; Winistorfer, S C

    1992-01-01

    We present a novel method for the PCR amplification of unknown DNA that flanks a known segment directly from human genomic DNA. PCR requires that primer annealing sites be present on each end of the DNA segment that is to be amplified. In this method, known DNA is placed on the uncharacterized side of the sequence of interest via DNA polymerase mediated generation of a PCR template that is shaped like a pan with a handle. Generation of this template permits specific amplification of the unknown sequence. Taq (DNA) polymerase was used to form the original template and to generate the PCR product. 2.2 kb of the beta-globin gene, and 657 bp of the 5' flanking region of the cystic fibrosis transmembrane conductance regulator gene, were amplified directly from human genomic DNA using primers that initially flank only one side of the region amplified. This method will provide a powerful tool for acquiring DNA sequence information. Images PMID:1371352

  5. Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8.

    PubMed Central

    Piddington, C S; Kovacevich, B R; Rambosek, J

    1995-01-01

    Dibenzothiophene (DBT), a model compound for sulfur-containing organic molecules found in fossil fuels, can be desulfurized to 2-hydroxybiphenyl (2-HBP) by Rhodococcus sp. strain IGTS8. Complementation of a desulfurization (dsz) mutant provided the genes from Rhodococcus sp. strain IGTS8 responsible for desulfurization. A 6.7-kb TaqI fragment cloned in Escherichia coli-Rhodococcus shuttle vector pRR-6 was found to both complement this mutation and confer desulfurization to Rhodococcus fascians, which normally is not able to desulfurize DBT. Expression of this fragment in E. coli also conferred the ability to desulfurize DBT. A molecular analysis of the cloned fragment revealed a single operon containing three open reading frames involved in the conversion of DBT to 2-HBP. The three genes were designated dszA, dszB, and dszC. Neither the nucleotide sequences nor the deduced amino acid sequences of the enzymes exhibited significant similarity to sequences obtained from the GenBank, EMBL, and Swiss-Prot databases, indicating that these enzymes are novel enzymes. Subclone analyses revealed that the gene product of dszC converts DBT directly to DBT-sulfone and that the gene products of dszA and dszB act in concert to convert DBT-sulfone to 2-HBP. PMID:7574582

  6. Fibonacci Sequence and Supramolecular Structure of DNA.

    PubMed

    Shabalkin, I P; Grigor'eva, E Yu; Gudkova, M V; Shabalkin, P I

    2016-05-01

    We proposed a new model of supramolecular DNA structure. Similar to the previously developed by us model of primary DNA structure [11-15], 3D structure of DNA molecule is assembled in accordance to a mathematic rule known as Fibonacci sequence. Unlike primary DNA structure, supramolecular 3D structure is assembled from complex moieties including a regular tetrahedron and a regular octahedron consisting of monomers, elements of the primary DNA structure. The moieties of the supramolecular DNA structure forming fragments of regular spatial lattice are bound via linker (joint) sequences of the DNA chain. The lattice perceives and transmits information signals over a considerable distance without acoustic aberrations. Linker sequences expand conformational space between lattice segments allowing their sliding relative to each other under the action of external forces. In this case, sliding is provided by stretching of the stacked linker sequences. PMID:27265133

  7. Conserved Sequences at the Origin of Adenovirus DNA Replication

    PubMed Central

    Stillman, Bruce W.; Topp, William C.; Engler, Jeffrey A.

    1982-01-01

    The origin of adenovirus DNA replication lies within an inverted sequence repetition at either end of the linear, double-stranded viral DNA. Initiation of DNA replication is primed by a deoxynucleoside that is covalently linked to a protein, which remains bound to the newly synthesized DNA. We demonstrate that virion-derived DNA-protein complexes from five human adenovirus serological subgroups (A to E) can act as a template for both the initiation and the elongation of DNA replication in vitro, using nuclear extracts from adenovirus type 2 (Ad2)-infected HeLa cells. The heterologous template DNA-protein complexes were not as active as the homologous Ad2 DNA, most probably due to inefficient initiation by Ad2 replication factors. In an attempt to identify common features which may permit this replication, we have also sequenced the inverted terminal repeated DNA from human adenovirus serotypes Ad4 (group E), Ad9 and Ad10 (group D), and Ad31 (group A), and we have compared these to previously determined sequences from Ad2 and Ad5 (group C), Ad7 (group B), and Ad12 and Ad18 (group A) DNA. In all cases, the sequence around the origin of DNA replication can be divided into two structural domains: a proximal A · T-rich region which is partially conserved among these serotypes, and a distal G · C-rich region which is less well conserved. The G · C-rich region contains sequences similar to sequences present in papovavirus replication origins. The two domains may reflect a dual mechanism for initiation of DNA replication: adenovirus-specific protein priming of replication, and subsequent utilization of this primer by host replication factors for completion of DNA synthesis. Images PMID:7143575

  8. Sequence and Structure Dependent DNA-DNA Interactions

    NASA Astrophysics Data System (ADS)

    Kopchick, Benjamin; Qiu, Xiangyun

    Molecular forces between dsDNA strands are largely dominated by electrostatics and have been extensively studied. Quantitative knowledge has been accumulated on how DNA-DNA interactions are modulated by varied biological constituents such as ions, cationic ligands, and proteins. Despite its central role in biology, the sequence of DNA has not received substantial attention and ``random'' DNA sequences are typically used in biophysical studies. However, ~50% of human genome is composed of non-random-sequence DNAs, particularly repetitive sequences. Furthermore, covalent modifications of DNA such as methylation play key roles in gene functions. Such DNAs with specific sequences or modifications often take on structures other than the canonical B-form. Here we present series of quantitative measurements of the DNA-DNA forces with the osmotic stress method on different DNA sequences, from short repeats to the most frequent sequences in genome, and to modifications such as bromination and methylation. We observe peculiar behaviors that appear to be strongly correlated with the incurred structural changes. We speculate the causalities in terms of the differences in hydration shell and DNA surface structures.

  9. Sequence variants of the CRH 5'-flanking region: effects on DNA-protein interactions studied by EMSA in PC12 cells.

    PubMed

    Wagner, Uta; Wahle, Matthias; Malysheva, Olga; Wagner, Ulf; Häntzschel, Holm; Baerwald, Christoph

    2006-06-01

    Recently, studies in adult rheumatoid arthritis patients have shown an association with four single-nucleotide polymorphisms (SNPs) in the 3.7-kb regulatory region of human corticotropin-releasing hormone (hCRH) gene located at positions -3531, -3371, -2353, and -684 bp. Three of these novel polymorphisms are in absolute linkage disequilibrium, resulting in three combined alleles, named A1B1, A2B1, and A2B2. To study whether the described polymorphic nucleotide sequences in the 5' region of the hCRH gene interfere with binding of nuclear proteins, an electric mobility shift assay (EMSA) was performed. At position -2353 bp, a specific DNA protein complex was detected for the wild-type sequence only, possibly interfering with a binding site for the activating transcription factor 6 (ATF6). In contrast, no difference could be detected for the other SNPs. However, at position -684, a quantitative difference in protein binding due to cAMP incubation could be observed. To further investigate whether these SNPs in the CRH promoter are associated with an altered regulation of the CRH gene, we performed a luciferase reporter gene assay with transiently transfected rat pheochromocytoma cells PC12. Incubation with 8-Br-cAMP alone or in combination with cytokines enhanced significantly the promoter activity in PC12 cells. The promoter haplotypes studied exhibited a differential capacity to modulate CRH gene expression. In all our experiments, haplotype A1B1 showed the most pronounced influence on promoter activity. Taken together, our results demonstrate a differential binding capacity of nuclear proteins of the promoter polymorphisms resulting in a different gene regulation. Most probably the SNP at position -2,353 plays a major role in mediating these differences. PMID:16855132

  10. Analysis of separate isolates of Bordetella pertussis repeated DNA sequences.

    PubMed

    McPheat, W L; Hanson, J H; Livey, I; Robertson, J S

    1989-06-01

    Two independent isolates of a Bordetella pertussis repeated DNA unit were sequenced and shown to be an insertion sequence element with five nucleotide differences between the two copies. The sequences were 1053 bp in length with near-perfect terminal inverted repeats of 28 bp, had three open reading frames, and were each flanked by short direct repeats. The two insertion sequences showed considerable homology to two other B. pertussis repeated DNA sequences reported recently: IS481 and a 530 bp repeated DNA unit. The B. pertussis insertion sequence would appear to comprise a group of closely related sequences differing mainly in flanking direct repeats and the terminal inverted repeats. The two isolates reported here, which were from the adenylate cyclase and agglutinogen 2 regions of the genome, were numbered IS48lvl and IS48lv2 respectively. PMID:2559151

  11. DNA sequence analysis of a 5.27-kb direct repeat occurring adjacent to the regions of S-episome homology in maize mitochondria.

    PubMed Central

    Houchins, J P; Ginsburg, H; Rohrbaugh, M; Dale, R M; Schardl, C L; Hodge, T P; Lonsdale, D M

    1986-01-01

    The DNA sequence of the 5270-bp repeated DNA element from the mitochondrial genome of the fertile cytoplasm of maize has been determined. The repeat is a major site of recombination within the mitochondrial genome and sequences related to the R1(S1) and R2(S2) linear episomes reside immediately adjacent to the repeat. The terminal inverted repeats of the R1 and R2 homologous sequences form one of the two boundaries of the repeat. Frame-shift mutations have introduced 11 translation termination codons into the transcribed S2/R2 URFI gene. The repeated sequence, though recombinantly active, appears to serve no biological function. Images Fig. 7. PMID:3792299

  12. Sequence Affects the Cyclization of DNA Minicircles.

    PubMed

    Wang, Qian; Pettitt, B Montgomery

    2016-03-17

    Understanding how the sequence of a DNA molecule affects its dynamic properties is a central problem affecting biochemistry and biotechnology. The process of cyclizing short DNA, as a critical step in molecular cloning, lacks a comprehensive picture of the kinetic process containing sequence information. We have elucidated this process by using coarse-grained simulations, enhanced sampling methods, and recent theoretical advances. We are able to identify the types and positions of structural defects during the looping process at a base-pair level. Correlations along a DNA molecule dictate critical sequence positions that can affect the looping rate. Structural defects change the bending elasticity of the DNA molecule from a harmonic to subharmonic potential with respect to bending angles. We explore the subelastic chain as a possible model in loop formation kinetics. A sequence-dependent model is developed to qualitatively predict the relative loop formation time as a function of DNA sequence. PMID:26938490

  13. PCR detection and DNA sequence analysis of the regulatory region of lymphotropic papovavirus in peripheral blood mononuclear cells of an immunocompromised rhesus macaque

    NASA Technical Reports Server (NTRS)

    Lednicky, John A.; Halvorson, Steven J.; Butel, Janet S.

    2002-01-01

    A lymphotropic papovavirus (LPV) archetypal regulatory region was amplified from DNA from the blood of an immunocompromised rhesus monkey. We believe this is the first nonserological evidence of LPV infection in rhesus monkeys.

  14. Phylogenetic Analysis of a 'Jewel Orchid' Genus Goodyera (Orchidaceae) Based on DNA Sequence Data from Nuclear and Plastid Regions.

    PubMed

    Hu, Chao; Tian, Huaizhen; Li, Hongqing; Hu, Aiqun; Xing, Fuwu; Bhattacharjee, Avishek; Hsu, Tianchuan; Kumar, Pankaj; Chung, Shihwen

    2016-01-01

    A molecular phylogeny of Asiatic species of Goodyera (Orchidaceae, Cranichideae, Goodyerinae) based on the nuclear ribosomal internal transcribed spacer (ITS) region and two chloroplast loci (matK and trnL-F) was presented. Thirty-five species represented by 132 samples of Goodyera were analyzed, along with other 27 genera/48 species, using Pterostylis longifolia and Chloraea gaudichaudii as outgroups. Bayesian inference, maximum parsimony and maximum likelihood methods were used to reveal the intrageneric relationships of Goodyera and its intergeneric relationships to related genera. The results indicate that: 1) Goodyera is not monophyletic; 2) Goodyera could be divided into four sections, viz., Goodyera, Otosepalum, Reticulum and a new section; 3) sect. Reticulum can be further divided into two subsections, viz., Reticulum and Foliosum, whereas sect. Goodyera can in turn be divided into subsections Goodyera and a new subsection. PMID:26927946

  15. Using DNA looping to measure sequence dependent DNA elasticity

    NASA Astrophysics Data System (ADS)

    Kandinov, Alan; Raghunathan, Krishnan; Meiners, Jens-Christian

    2012-10-01

    We are using tethered particle motion (TPM) microscopy to observe protein-mediated DNA looping in the lactose repressor system in DNA constructs with varying AT / CG content. We use these data to determine the persistence length of the DNA as a function of its sequence content and compare the data to direct micromechanical measurements with constant-force axial optical tweezers. The data from the TPM experiments show a much smaller sequence effect on the persistence length than the optical tweezers experiments.

  16. Detecting seeded motifs in DNA sequences.

    PubMed

    Pizzi, Cinzia; Bortoluzzi, Stefania; Bisognin, Andrea; Coppe, Alessandro; Danieli, Gian Antonio

    2005-01-01

    The problem of detecting DNA motifs with functional relevance in real biological sequences is difficult due to a number of biological, statistical and computational issues and also because of the lack of knowledge about the structure of searched patterns. Many algorithms are implemented in fully automated processes, which are often based upon a guess of input parameters from the user at the very first step. In this paper, we present a novel method for the detection of seeded DNA motifs, composed by regions with a different extent of variability. The method is based on a multi-step approach, which was implemented in a motif searching web tool (MOST). Overrepresented exact patterns are extracted from input sequences and clustered to produce motifs core regions, which are then extended and scored to generate seeded motifs. The combination of automated pattern discovery algorithms and different display tools for the evaluation and selection of results at several analysis steps can potentially lead to much more meaningful results than complete automation can produce. Experimental results on different yeast and human real datasets proved the methodology to be a promising solution for finding seeded motifs. MOST web tool is freely available at http://telethon.bio.unipd.it/bioinfo/MOST. PMID:16141193

  17. Detecting seeded motifs in DNA sequences

    PubMed Central

    Pizzi, Cinzia; Bortoluzzi, Stefania; Bisognin, Andrea; Coppe, Alessandro; Danieli, Gian Antonio

    2005-01-01

    The problem of detecting DNA motifs with functional relevance in real biological sequences is difficult due to a number of biological, statistical and computational issues and also because of the lack of knowledge about the structure of searched patterns. Many algorithms are implemented in fully automated processes, which are often based upon a guess of input parameters from the user at the very first step. In this paper, we present a novel method for the detection of seeded DNA motifs, composed by regions with a different extent of variability. The method is based on a multi-step approach, which was implemented in a motif searching web tool (MOST). Overrepresented exact patterns are extracted from input sequences and clustered to produce motifs core regions, which are then extended and scored to generate seeded motifs. The combination of automated pattern discovery algorithms and different display tools for the evaluation and selection of results at several analysis steps can potentially lead to much more meaningful results than complete automation can produce. Experimental results on different yeast and human real datasets proved the methodology to be a promising solution for finding seeded motifs. MOST web tool is freely available at . PMID:16141193

  18. Multiple tag labeling method for DNA sequencing

    DOEpatents

    Mathies, R.A.; Huang, X.C.; Quesada, M.A.

    1995-07-25

    A DNA sequencing method is described which uses single lane or channel electrophoresis. Sequencing fragments are separated in the lane and detected using a laser-excited, confocal fluorescence scanner. Each set of DNA sequencing fragments is separated in the same lane and then distinguished using a binary coding scheme employing only two different fluorescent labels. Also described is a method of using radioisotope labels. 5 figs.

  19. Multiple tag labeling method for DNA sequencing

    DOEpatents

    Mathies, Richard A.; Huang, Xiaohua C.; Quesada, Mark A.

    1995-01-01

    A DNA sequencing method described which uses single lane or channel electrophoresis. Sequencing fragments are separated in said lane and detected using a laser-excited, confocal fluorescence scanner. Each set of DNA sequencing fragments is separated in the same lane and then distinguished using a binary coding scheme employing only two different fluorescent labels. Also described is a method of using radio-isotope labels.

  20. The investigation of genetic diversity and evolution of Daweishan Mini chicken based on the complete mitochondrial (mt)DNA D-loop region sequence.

    PubMed

    Jia, Xiao-Xu; Tang, Xiu-Jun; Lu, Jun-Xian; Fan, Yan-Feng; Chen, Da-Wei; Tang, Meng-Jun; Gu, Rong; Gao, Yu-Shi

    2016-07-01

    This study evaluated the genetic diversity and origin of Daweishan Mini chickens using mtDNA sequence polymorphism. Blood samples from 30 Daweishan Mini chickens were collected. The complete D-loop was PCR amplified, sequenced and compared with the DNA data of five Red Junglefowl (Gallus gallus) subspecies. Eighteen variable sites that defined six haplotypes were observed. The six haplotypes were clustered into four clades (A, B, D and E), of which clade A and B were dominant. Clades Aand B were clustered with G.g. spadiceus, indicating these two clades may have originated from this subspecies. These results show there is diversity in the middle of the mtDNA D-loop, and indicate there are multiple maternal origins for Daweishan Mini chickens. It appears that G.g. spadiceus contributed more to the evolution of the Daweishan Mini chickens breed than the other four subspecies tested here. PMID:26153755

  1. Sequence of figwort mosaic virus DNA (caulimovirus group).

    PubMed

    Richins, R D; Scholthof, H B; Shepherd, R J

    1987-10-26

    The nucleotide sequence of an infectious clone of figwort mosaic virus (FMV) was determined using the dideoxynucleotide chain termination method. The double-stranded DNA genome (7743 base pairs) contained eight open reading frames (ORFs), seven of which corresponded approximately in size and location to the ORFs found in the genome of cauliflower mosaic virus (CaMV) and carnation etched ring virus (CERV). ORFs I and V of FMV demonstrated the highest degrees of nucleotide and amino acid sequence homology with the equivalent coding regions of CaMV and CERV. Regions II, III and IV showed somewhat less homology with the analogous regions of CaMV and CERV, and ORF VI showed homology with the corresponding gene of CaMV and CERV in only a short segment near the middle of the putative gene product. A 16 nucleotide sequence, complementary to the 3' terminus of methionine initiator tRNA (tRNAimet) and presumed to be the primer binding site for initiation of reverse transcription to produce minus strand DNA, was found in the FMV genome near the discontinuity in the minus strand. Sequences near the three interruptions in the plus strand of FMV DNA bear strong resemblance to similarly located sequences of 3 other caulimoviruses and are inferred to be initiation sites for second strand DNA synthesis. Additional conserved sequences in the small and large intergenic regions are pointed out including a highly conserved 35 bp sequence that occurs in the latter region. PMID:3671088

  2. Sequence of figwort mosaic virus DNA (caulimovirus group).

    PubMed Central

    Richins, R D; Scholthof, H B; Shepherd, R J

    1987-01-01

    The nucleotide sequence of an infectious clone of figwort mosaic virus (FMV) was determined using the dideoxynucleotide chain termination method. The double-stranded DNA genome (7743 base pairs) contained eight open reading frames (ORFs), seven of which corresponded approximately in size and location to the ORFs found in the genome of cauliflower mosaic virus (CaMV) and carnation etched ring virus (CERV). ORFs I and V of FMV demonstrated the highest degrees of nucleotide and amino acid sequence homology with the equivalent coding regions of CaMV and CERV. Regions II, III and IV showed somewhat less homology with the analogous regions of CaMV and CERV, and ORF VI showed homology with the corresponding gene of CaMV and CERV in only a short segment near the middle of the putative gene product. A 16 nucleotide sequence, complementary to the 3' terminus of methionine initiator tRNA (tRNAimet) and presumed to be the primer binding site for initiation of reverse transcription to produce minus strand DNA, was found in the FMV genome near the discontinuity in the minus strand. Sequences near the three interruptions in the plus strand of FMV DNA bear strong resemblance to similarly located sequences of 3 other caulimoviruses and are inferred to be initiation sites for second strand DNA synthesis. Additional conserved sequences in the small and large intergenic regions are pointed out including a highly conserved 35 bp sequence that occurs in the latter region. PMID:3671088

  3. Fractal analysis of DNA sequence data

    SciTech Connect

    Berthelsen, C.L.

    1993-01-01

    DNA sequence databases are growing at an almost exponential rate. New analysis methods are needed to extract knowledge about the organization of nucleotides from this vast amount of data. Fractal analysis is a new scientific paradigm that has been used successfully in many domains including the biological and physical sciences. Biological growth is a nonlinear dynamic process and some have suggested that to consider fractal geometry as a biological design principle may be most productive. This research is an exploratory study of the application of fractal analysis to DNA sequence data. A simple random fractal, the random walk, is used to represent DNA sequences. The fractal dimension of these walks is then estimated using the [open quote]sandbox method[close quote]. Analysis of 164 human DNA sequences compared to three types of control sequences (random, base-content matched, and dimer-content matched) reveals that long-range correlations are present in DNA that are not explained by base or dimer frequencies. The study also revealed that the fractal dimension of coding sequences was significantly lower than sequences that were primarily noncoding, indicating the presence of longer-range correlations in functional sequences. The multifractal spectrum is used to analyze fractals that are heterogeneous and have a different fractal dimension for subsets with different scalings. The multifractal spectrum of the random walks of twelve mitochondrial genome sequences was estimated. Eight vertebrate mtDNA sequences had uniformly lower spectra values than did four invertebrate mtDNA sequences. Thus, vertebrate mitochondria show significantly longer-range correlations than to invertebrate mitochondria. The higher multifractal spectra values for invertebrate mitochondria suggest a more random organization of the sequences. This research also includes considerable theoretical work on the effects of finite size, embedding dimension, and scaling ranges.

  4. Fractal Analysis of DNA Sequence Data

    NASA Astrophysics Data System (ADS)

    Berthelsen, Cheryl Lynn

    DNA sequence databases are growing at an almost exponential rate. New analysis methods are needed to extract knowledge about the organization of nucleotides from this vast amount of data. Fractal analysis is a new scientific paradigm that has been used successfully in many domains including the biological and physical sciences. Biological growth is a nonlinear dynamic process and some have suggested that to consider fractal geometry as a biological design principle may be most productive. This research is an exploratory study of the application of fractal analysis to DNA sequence data. A simple random fractal, the random walk, is used to represent DNA sequences. The fractal dimension of these walks is then estimated using the "sandbox method." Analysis of 164 human DNA sequences compared to three types of control sequences (random, base -content matched, and dimer-content matched) reveals that long-range correlations are present in DNA that are not explained by base or dimer frequencies. The study also revealed that the fractal dimension of coding sequences was significantly lower than sequences that were primarily noncoding, indicating the presence of longer-range correlations in functional sequences. The multifractal spectrum is used to analyze fractals that are heterogeneous and have a different fractal dimension for subsets with different scalings. The multifractal spectrum of the random walks of twelve mitochondrial genome sequences was estimated. Eight vertebrate mtDNA sequences had uniformly lower spectra values than did four invertebrate mtDNA sequences. Thus, vertebrate mitochondria show significantly longer-range correlations than do invertebrate mitochondria. The higher multifractal spectra values for invertebrate mitochondria suggest a more random organization of the sequences. This research also includes considerable theoretical work on the effects of finite size, embedding dimension, and scaling ranges.

  5. Phylogeny of immunoglobulin heavy chain isotypes: structure of the constant region of Ambystoma mexicanum upsilon chain deduced from cDNA sequence.

    PubMed

    Fellah, J S; Kerfourn, F; Wiles, M V; Schwager, J; Charlemagne, J

    1993-01-01

    An RNA polymerase chain reaction strategy was used to amplify and clone a cDNA segment encoding for the complete constant part of the axolotl IgY heavy (C upsilon) chain. C upsilon is 433 amino acids long and organized into four domains (C upsilon 1-C upsilon 4); each has the typical internal disulfide bond and invariant tryptophane residues. Axolotl C upsilon is most closely related to Xenopus C upsilon (40% identical amino acid residues) and C upsilon 1 shares 46.4% amino acid residues among these species. The presence of additional cysteines in C upsilon 1 and C upsilon 2 domains is consistent with an additional intradomain S-S bond similar to that suggested for Xenopus C upsilon and C chi, and for the avian C upsilon and the human C epsilon. C upsilon 4 ends with the Gly-Lys dipeptide characteristic of secreted mammalian C gamma 3, human C epsilon 4, and avian and anuran C upsilon 4, and contains the consensus [G/GT(AA)] nucleotide splice signal sequence for joining C upsilon 4 to the transmembrane region. These results are consistent with the hypothesis of an ancestral structural relationship between amphibian, avian upsilon chains, and mammalian epsilon chains. However, these molecules have different biological properties: axolotl IgY is secretory Ig, anuran and avian IgY behave like mammalian IgG, and mammalian IgE is implicated in anaphylactic reactions. PMID:8344718

  6. DNA Sequencing in Cultural Heritage.

    PubMed

    Vai, Stefania; Lari, Martina; Caramelli, David

    2016-02-01

    During the last three decades, DNA analysis on degraded samples revealed itself as an important research tool in anthropology, archaeozoology, molecular evolution, and population genetics. Application on topics such as determination of species origin of prehistoric and historic objects, individual identification of famous personalities, characterization of particular samples important for historical, archeological, or evolutionary reconstructions, confers to the paleogenetics an important role also for the enhancement of cultural heritage. A really fast improvement in methodologies in recent years led to a revolution that permitted recovering even complete genomes from highly degraded samples with the possibility to go back in time 400,000 years for samples from temperate regions and 700,000 years for permafrozen remains and to analyze even more recent material that has been subjected to hard biochemical treatments. Here we propose a review on the different methodological approaches used so far for the molecular analysis of degraded samples and their application on some case studies. PMID:27572991

  7. DNA sequencing: bench to bedside and beyond†

    PubMed Central

    Hutchison, Clyde A.

    2007-01-01

    Fifteen years elapsed between the discovery of the double helix (1953) and the first DNA sequencing (1968). Modern DNA sequencing began in 1977, with development of the chemical method of Maxam and Gilbert and the dideoxy method of Sanger, Nicklen and Coulson, and with the first complete DNA sequence (phage ϕX174), which demonstrated that sequence could give profound insights into genetic organization. Incremental improvements allowed sequencing of molecules >200 kb (human cytomegalovirus) leading to an avalanche of data that demanded computational analysis and spawned the field of bioinformatics. The US Human Genome Project spurred sequencing activity. By 1992 the first ‘sequencing factory’ was established, and others soon followed. The first complete cellular genome sequences, from bacteria, appeared in 1995 and other eubacterial, archaebacterial and eukaryotic genomes were soon sequenced. Competition between the public Human Genome Project and Celera Genomics produced working drafts of the human genome sequence, published in 2001, but refinement and analysis of the human genome sequence will continue for the foreseeable future. New ‘massively parallel’ sequencing methods are greatly increasing sequencing capacity, but further innovations are needed to achieve the ‘thousand dollar genome’ that many feel is prerequisite to personalized genomic medicine. These advances will also allow new approaches to a variety of problems in biology, evolution and the environment. PMID:17855400

  8. Applications of mass spectrometry to DNA fingerprinting and DNA sequencing

    SciTech Connect

    Jacobson, K.B.; Buchanan, M.V.; Chen, C.H.; Doktycz, M.J.; McLuckey, S.A. ); Arlinghaus, H.F. )

    1993-01-01

    DNA fingerprinting and sequencing rely on polyacrylamide gel electrophoresis to determine the sizes of the DNA fragments. Innovative altematives to polyacrylamide gel electrophoresis are under investigation for characterization of such fingerprinting and sequencing. One method uses stable isotopes of tin and other elements to label the DNAwhereas other procedures do not require labels. The detectors in each case are mass spectrometers that detect either the stable isotopes or the DNA fragments themselves. If successful, these methods will speed up the rate of DNA analysis by one or two orders of magnitude.

  9. Applications of mass spectrometry to DNA fingerprinting and DNA sequencing

    SciTech Connect

    Jacobson, K.B.; Buchanan, M.V.; Chen, C.H.; Doktycz, M.J.; McLuckey, S.A.; Arlinghaus, H.F.

    1993-06-01

    DNA fingerprinting and sequencing rely on polyacrylamide gel electrophoresis to determine the sizes of the DNA fragments. Innovative altematives to polyacrylamide gel electrophoresis are under investigation for characterization of such fingerprinting and sequencing. One method uses stable isotopes of tin and other elements to label the DNAwhereas other procedures do not require labels. The detectors in each case are mass spectrometers that detect either the stable isotopes or the DNA fragments themselves. If successful, these methods will speed up the rate of DNA analysis by one or two orders of magnitude.

  10. Data management for re-sequencing DNA

    SciTech Connect

    Ying Jiahsu; Gilson, H.; Long, K.; Gibbs, R.A.

    1993-12-31

    The human genome project has greatly stimulated the advancement of techniques to sequence large fragments of DNA. The development of improved molecular methods has also simplified the process of comparing shorter, homologous DNA sequences from different individuals and species. This process of `re-sequencing` DNA has applications in medical genetics, in evolutionary studies, and for the identification of complex molecular variation that may explain multifactorial traits. Intrinsic differences in the processes of `sequencing` and `re-sequencing` suggest new requirements for data management tools. A data management scheme for a `re-sequencing` project is demonstrated using the Virtual Notebook System, a flexible multi-user tool designed as a metaphor of the laboratory notebook.

  11. Amplification of human papillomavirus DNA sequences by using conserved primers.

    PubMed Central

    Gregoire, L; Arella, M; Campione-Piccardo, J; Lancaster, W D

    1989-01-01

    The polymerase chain reaction has potential for use in the detection of small amounts of human papillomavirus (HPV) viral nucleic acids present in clinical specimens. However, new HPV types for which no probes exist would remain undetected by using type-specific primers for the polymerase chain reaction before hybridization. Primers corresponding to highly conserved HPV sequences may be useful for detecting low amounts of known HPV DNA as well as new HPV types. Here we analyze a pair of primers derived from conserved sequences within the E1 open reading frame for HPV sequence amplification by using the polymerase chain reaction. The longest perfect homology among HPV sequences is a 12-mer within the first exon of E1M. A region of conserved amino acids coded by the E1 open reading frame allowed the detection of another highly conserved region about 850 base pairs downstream. Two 21-mers derived from these conserved regions were used to amplify sequences from all HPV DNAs used as templates. The amplified DNA was shown to be specific for HPV sequences within the E1 open reading frame. DNA from HPVs whose sequences were not available were amplified by using these two primers. HPV DNA sequences in clinical specimens could also be amplified with the primers. Images PMID:2556429

  12. Intragenomic sequence variation at the ITS1 - ITS2 region and at the 18S and 28S nuclear ribosomal DNA genes of the New Zealand mud snail, Potamopyrgus antipodarum (Hydrobiidae: mollusca)

    USGS Publications Warehouse

    Hoy, Marshal S.; Rodriguez, Rusty J.

    2013-01-01

    Molecular genetic analysis was conducted on two populations of the invasive non-native New Zealand mud snail (Potamopyrgus antipodarum), one from a freshwater ecosystem in Devil's Lake (Oregon, USA) and the other from an ecosystem of higher salinity in the Columbia River estuary (Hammond Harbor, Oregon, USA). To elucidate potential genetic differences between the two populations, three segments of nuclear ribosomal DNA (rDNA), the ITS1-ITS2 regions and the 18S and 28S rDNA genes were cloned and sequenced. Variant sequences within each individual were found in all three rDNA segments. Folding models were utilized for secondary structure analysis and results indicated that there were many sequences which contained structure-altering polymorphisms, which suggests they could be nonfunctional pseudogenes. In addition, analysis of molecular variance (AMOVA) was used for hierarchical analysis of genetic variance to estimate variation within and among populations and within individuals. AMOVA revealed significant variation in the ITS region between the populations and among clones within individuals, while in the 5.8S rDNA significant variation was revealed among individuals within the two populations. High levels of intragenomic variation were found in the ITS regions, which are known to be highly variable in many organisms. More interestingly, intragenomic variation was also found in the 18S and 28S rDNA, which has rarely been observed in animals and is so far unreported in Mollusca. We postulate that in these P. antipodarum populations the effects of concerted evolution are diminished due to the fact that not all of the rDNA genes in their polyploid genome should be essential for sustaining cellular function. This could lead to a lessening of selection pressures, allowing mutations to accumulate in some copies, changing them into variant sequences.                   

  13. Laser desorption mass spectrometry for DNA analysis and sequencing

    SciTech Connect

    Chen, C.H.; Taranenko, N.I.; Tang, K.; Allman, S.L.

    1995-03-01

    Laser desorption mass spectrometry has been considered as a potential new method for fast DNA sequencing. Our approach is to use matrix-assisted laser desorption to produce parent ions of DNA segments and a time-of-flight mass spectrometer to identify the sizes of DNA segments. Thus, the approach is similar to gel electrophoresis sequencing using Sanger`s enzymatic method. However, gel, radioactive tagging, and dye labeling are not required. In addition, the sequencing process can possibly be finished within a few hundred microseconds instead of hours and days. In order to use mass spectrometry for fast DNA sequencing, the following three criteria need to be satisfied. They are (1) detection of large DNA segments, (2) sensitivity reaching the femtomole region, and (3) mass resolution good enough to separate DNA segments of a single nucleotide difference. It has been very difficult to detect large DNA segments by mass spectrometry before due to the fragile chemical properties of DNA and low detection sensitivity of DNA ions. We discovered several new matrices to increase the production of DNA ions. By innovative design of a mass spectrometer, we can increase the ion energy up to 45 KeV to enhance the detection sensitivity. Recently, we succeeded in detecting a DNA segment with 500 nucleotides. The sensitivity was 100 femtomole. Thus, we have fulfilled two key criteria for using mass spectrometry for fast DNA sequencing. The major effort in the near future is to improve the resolution. Different approaches are being pursued. When high resolution of mass spectrometry can be achieved and automation of sample preparation is developed, the sequencing speed to reach 500 megabases per year can be feasible.

  14. Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes

    PubMed Central

    Li, Fuyang; Papworth, Monika; Minczuk, Michal; Rohde, Christian; Zhang, Yingying; Ragozin, Sergei; Jeltsch, Albert

    2007-01-01

    Gene silencing by targeted DNA methylation has potential applications in basic research and therapy. To establish targeted methylation in human cell lines, the catalytic domains (CDs) of mouse Dnmt3a and Dnmt3b DNA methyltransferases (MTases) were fused to different DNA binding domains (DBD) of GAL4 and an engineered Cys2His2 zinc finger domain. We demonstrated that (i) Dense DNA methylation can be targeted to specific regions in gene promoters using chimeric DNA MTases. (ii) Site-specific methylation leads to repression of genes controlled by various cellular or viral promoters. (iii) Mutations affecting any of the DBD, MTase or target DNA sequences reduce targeted methylation and gene silencing. (iv) Targeted DNA methylation is effective in repressing Herpes Simplex Virus type 1 (HSV-1) infection in cell culture with the viral titer reduced by at least 18-fold in the presence of an MTase fused to an engineered zinc finger DBD, which binds a single site in the promoter of HSV-1 gene IE175k. In short, we show here that it is possible to direct DNA MTase activity to predetermined sites in DNA, achieve targeted gene silencing in mammalian cell lines and interfere with HSV-1 propagation. PMID:17151075

  15. An isolated case of lissencephaly caused by the insertion of a mitochondrial genome-derived DNA sequence into the 5' untranslated region of the PAFAH1B1 (LIS1) gene.

    PubMed

    Millar, David S; Tysoe, Carolyn; Lazarou, Lazarus P; Pilz, Daniela T; Mohammed, Shehla; Anderson, Katharine; Chuzhanova, Nadia; Cooper, David N; Butler, Rachel

    2010-08-01

    A 130 base pair (bp) insertion (g.-8delCins130) into the 5' untranslated region of the PAFAH1B1 (LIS1) gene, seven nucleotides upstream of the translational initiation site, was detected in an isolated case of lissencephaly. The inserted DNA sequence exhibited perfect homology to two non-contiguous regions of the mitochondrial genome (8479 to 8545 and 8775 to 8835, containing portions of two genes, ATP8 and ATP6 ), as well as near-perfect homology (1 bp mismatch) to a nuclear mitochondrial pseudogene (NUMT) sequence located on chromosome 1p36. This lesion was not evident on polymerase chain reaction (PCR) sequence analysis of either parent, indicating that the mutation had occurred de novo in the patient. Experiments designed to distinguish between a mitochondrial and a nuclear genomic origin for the inserted DNA sequence were, however, inconclusive. Mitochondrial genome sequences from both the patient and his parents were sequenced and found to be identical to the sequence inserted into the PAFAH1B1 gene. Analysis of parental PCR products from the chromosome 1-specific NUMT were also consistent with the interpretation that the inserted sequence had originated directly from the mitochondrial genome. The chromosome 1-specific NUMT in the patient proved to be refractory to PCR analysis, however, suggesting that this region of chromosome 1 could have been deleted or rearranged. Although it remains by far the most likely scenario, in the absence of DNA sequence information from the patient's own chromosome 1-specific NUMT, we cannot unequivocally confirm that the 130 bp insertion originated from mitochondrial genome rather than from the NUMT. PMID:20846927

  16. Method for sequencing DNA base pairs

    DOEpatents

    Sessler, A.M.; Dawson, J.

    1993-12-14

    The base pairs of a DNA structure are sequenced with the use of a scanning tunneling microscope (STM). The DNA structure is scanned by the STM probe tip, and, as it is being scanned, the DNA structure is separately subjected to a sequence of infrared radiation from four different sources, each source being selected to preferentially excite one of the four different bases in the DNA structure. Each particular base being scanned is subjected to such sequence of infrared radiation from the four different sources as that particular base is being scanned. The DNA structure as a whole is separately imaged for each subjection thereof to radiation from one only of each source. 6 figures.

  17. Nucleotide sequence of bacteriophage fd DNA.

    PubMed Central

    Beck, E; Sommer, R; Auerswald, E A; Kurz, C; Zink, B; Osterburg, G; Schaller, H; Sugimoto, K; Sugisaki, H; Okamoto, T; Takanami, M

    1978-01-01

    The sequence of the 6,408 nucleotides of bacteriophage fd DNA has been determined. This allows to deduce the exact organisation of the filamentous phage genome and provides easy access to DNA segments of known structure and function. PMID:745987

  18. Inferring coalescence times from DNA sequence data.

    PubMed

    Tavaré, S; Balding, D J; Griffiths, R C; Donnelly, P

    1997-02-01

    The paper is concerned with methods for the estimation of the coalescence time (time since the most recent common ancestor) of a sample of intraspecies DNA sequences. The methods take advantage of prior knowledge of population demography, in addition to the molecular data. While some theoretical results are presented, a central focus is on computational methods. These methods are easy to implement, and, since explicit formulae tend to be either unavailable or unilluminating, they are also more useful and more informative in most applications. Extensions are presented that allow for the effects of uncertainty in our knowledge of population size and mutation rates, for variability in population sizes, for regions of different mutation rate, and for inference concerning the coalescence time of the entire population. The methods are illustrated using recent data from the human Y chromosome. PMID:9071603

  19. PCR Primers for Metazoan Mitochondrial 12S Ribosomal DNA Sequences

    PubMed Central

    Machida, Ryuji J.; Kweskin, Matthew; Knowlton, Nancy

    2012-01-01

    Background Assessment of the biodiversity of communities of small organisms is most readily done using PCR-based analysis of environmental samples consisting of mixtures of individuals. Known as metagenetics, this approach has transformed understanding of microbial communities and is beginning to be applied to metazoans as well. Unlike microbial studies, where analysis of the 16S ribosomal DNA sequence is standard, the best gene for metazoan metagenetics is less clear. In this study we designed a set of PCR primers for the mitochondrial 12S ribosomal DNA sequence based on 64 complete mitochondrial genomes and then tested their efficacy. Methodology/Principal Findings A total of the 64 complete mitochondrial genome sequences representing all metazoan classes available in GenBank were downloaded using the NCBI Taxonomy Browser. Alignment of sequences was performed for the excised mitochondrial 12S ribosomal DNA sequences, and conserved regions were identified for all 64 mitochondrial genomes. These regions were used to design a primer pair that flanks a more variable region in the gene. Then all of the complete metazoan mitochondrial genomes available in NCBI's Organelle Genome Resources database were used to determine the percentage of taxa that would likely be amplified using these primers. Results suggest that these primers will amplify target sequences for many metazoans. Conclusions/Significance Newly designed 12S ribosomal DNA primers have considerable potential for metazoan metagenetic analysis because of their ability to amplify sequences from many metazoans. PMID:22536450

  20. Essential DNA sequence for the replication of Rts1.

    PubMed Central

    Itoh, Y; Kamio, Y; Terawaki, Y

    1987-01-01

    The promoter sequence of the mini-Rts1 repA gene encoding the 33,000-dalton RepA protein that is essential for replication was defined by RNA polymerase protection experiments and by analyzing RepA protein synthesized in maxicells harboring mini-Rts1 derivatives deleted upstream of or within the presumptive promoter region. The -10 region of the promoter which shows homology to the incII repeat sequences overlaps two inverted repeats. One of the repeats forms a pair with a sequence in the -35 region, and the other forms a pair with the translation initiation region. The replication origin region, ori(Rts1), which was determined by supplying RepA protein in trans, was localized within 188 base pairs in a region containing three incII repeats and four GATC sequences. Dyad dnaA boxes that exist upstream from the GATC sequences appeared to be dispensable for the origin function, but deletion of both dnaA boxes from ori(Rts1) resulted in reduced replication frequency, suggesting that host-encoded DnaA protein is involved in the replication of Rts1 as a stimulatory element. Combination of the minimal repA and ori(Rts1) segments, even in the reverse orientation compared with the natural sequence, resulted in reconstitution of an autonomously replicating molecule. Images PMID:3546265

  1. DNA sequencing using fluorescence background electroblotting membrane

    DOEpatents

    Caldwell, K.D.; Chu, T.J.; Pitt, W.G.

    1992-05-12

    A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through amino groups contained on the surface. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to the target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membranes may be reprobed numerous times. No Drawings

  2. DNA sequencing using fluorescence background electroblotting membrane

    DOEpatents

    Caldwell, Karin D.; Chu, Tun-Jen; Pitt, William G.

    1992-01-01

    A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through said smino groups contained on the surface thereof. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to said target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membrances may be reprobed numerous times.

  3. Sequencer-Based Capillary Gel Electrophoresis (SCGE) Targeting the rDNA Internal Transcribed Spacer (ITS) Regions for Accurate Identification of Clinically Important Yeast Species

    PubMed Central

    Chen, Sharon C.-A.; Wang, He; Zhang, Li; Fan, Xin; Xu, Zhi-Peng; Cheng, Jing-Wei; Kong, Fanrong; Zhao, Yu-Pei; Xu, Ying-Chun

    2016-01-01

    Accurate species identification of Candida, Cryptococcus, Trichosporon and other yeast pathogens is important for clinical management. In the present study, we developed and evaluated a yeast species identification scheme by determining the rDNA internal transcribed spacer (ITS) region length types (LTs) using a sequencer-based capillary gel electrophoresis (SCGE) approach. A total of 156 yeast isolates encompassing 32 species were first used to establish a reference SCGE ITS LT database. Evaluation of the ITS LT database was then performed on (i) a separate set of (n = 97) clinical isolates by SCGE, and (ii) 41 isolates of 41 additional yeast species from GenBank by in silico analysis. Of 156 isolates used to build the reference database, 41 ITS LTs were identified, which correctly identified 29 of the 32 (90.6%) species, with the exception of Trichosporon asahii, Trichosporon japonicum and Trichosporon asteroides. In addition, eight of the 32 species revealed different electropherograms and were subtyped into 2–3 different ITS LTs each. Of the 97 test isolates used to evaluate the ITS LT scheme, 96 (99.0%) were correctly identified to species level, with the remaining isolate having a novel ITS LT. Of the additional 41 isolates for in silico analysis, none was misidentified by the ITS LT database except for Trichosporon mucoides whose ITS LT profile was identical to that of Trichosporon dermatis. In conclusion, yeast identification by the present SCGE ITS LT assay is a fast, reproducible and accurate alternative for the identification of clinically important yeasts with the exception of Trichosporon species. PMID:27105313

  4. The expanding scope of DNA sequencing

    PubMed Central

    Shendure, Jay; Aiden, Erez Lieberman

    2014-01-01

    In just seven years, next-generation technologies have reduced the cost and increased the speed of DNA sequencing by four orders of magnitude, and experiments requiring many millions of sequencing reads are now routine. In research, sequencing is being applied not only to assemble genomes and to investigate the genetic basis of human disease, but also to explore myriad phenomena in organismic and cellular biology. In the clinic, the utility of sequence data is being intensively evaluated in diverse contexts, including reproductive medicine, oncology and infectious disease. A recurrent theme in the development of new sequencing applications is the creative ‘recombination’ of existing experimental building blocks. However, there remain many potentially high-impact applications of next-generation DNA sequencing that are not yet fully realized. PMID:23138308

  5. Osmylated DNA, a novel concept for sequencing DNA using nanopores

    NASA Astrophysics Data System (ADS)

    Kanavarioti, Anastassia

    2015-03-01

    Saenger sequencing has led the advances in molecular biology, while faster and cheaper next generation technologies are urgently needed. A newer approach exploits nanopores, natural or solid-state, set in an electrical field, and obtains base sequence information from current variations due to the passage of a ssDNA molecule through the pore. A hurdle in this approach is the fact that the four bases are chemically comparable to each other which leads to small differences in current obstruction. ‘Base calling’ becomes even more challenging because most nanopores sense a short sequence and not individual bases. Perhaps sequencing DNA via nanopores would be more manageable, if only the bases were two, and chemically very different from each other; a sequence of 1s and 0s comes to mind. Osmylated DNA comes close to such a sequence of 1s and 0s. Osmylation is the addition of osmium tetroxide bipyridine across the C5-C6 double bond of the pyrimidines. Osmylation adds almost 400% mass to the reactive base, creates a sterically and electronically notably different molecule, labeled 1, compared to the unreactive purines, labeled 0. If osmylated DNA were successfully sequenced, the result would be a sequence of osmylated pyrimidines (1), and purines (0), and not of the actual nucleobases. To solve this problem we studied the osmylation reaction with short oligos and with M13mp18, a long ssDNA, developed a UV-vis assay to measure extent of osmylation, and designed two protocols. Protocol A uses mild conditions and yields osmylated thymidines (1), while leaving the other three bases (0) practically intact. Protocol B uses harsher conditions and effectively osmylates both pyrimidines, but not the purines. Applying these two protocols also to the complementary of the target polynucleotide yields a total of four osmylated strands that collectively could define the actual base sequence of the target DNA.

  6. Analysis of a new strain of Euphorbia mosaic virus with distinct replication specificity unveils a lineage of begomoviruses with short Rep sequences in the DNA-B intergenic region

    PubMed Central

    2010-01-01

    Background Euphorbia mosaic virus (EuMV) is a member of the SLCV clade, a lineage of New World begomoviruses that display distinctive features in their replication-associated protein (Rep) and virion-strand replication origin. The first entirely characterized EuMV isolate is native from Yucatan Peninsula, Mexico; subsequently, EuMV was detected in weeds and pepper plants from another region of Mexico, and partial DNA-A sequences revealed significant differences in their putative replication specificity determinants with respect to EuMV-YP. This study was aimed to investigate the replication compatibility between two EuMV isolates from the same country. Results A new isolate of EuMV was obtained from pepper plants collected at Jalisco, Mexico. Full-length clones of both genomic components of EuMV-Jal were biolistically inoculated into plants of three different species, which developed symptoms indistinguishable from those induced by EuMV-YP. Pseudorecombination experiments with EuMV-Jal and EuMV-YP genomic components demonstrated that these viruses do not form infectious reassortants in Nicotiana benthamiana, presumably because of Rep-iteron incompatibility. Sequence analysis of the EuMV-Jal DNA-B intergenic region (IR) led to the unexpected discovery of a 35-nt-long sequence that is identical to a segment of the rep gene in the cognate viral DNA-A. Similar short rep sequences ranging from 35- to 51-nt in length were identified in all EuMV isolates and in three distinct viruses from South America related to EuMV. These short rep sequences in the DNA-B IR are positioned downstream to a ~160-nt non-coding domain highly similar to the CP promoter of begomoviruses belonging to the SLCV clade. Conclusions EuMV strains are not compatible in replication, indicating that this begomovirus species probably is not a replicating lineage in nature. The genomic analysis of EuMV-Jal led to the discovery of a subgroup of SLCV clade viruses that contain in the non-coding region of

  7. Improved Algorithm for Analysis of DNA Sequences Using Multiresolution Transformation

    PubMed Central

    Inbamalar, T. M.; Sivakumar, R.

    2015-01-01

    Bioinformatics and genomic signal processing use computational techniques to solve various biological problems. They aim to study the information allied with genetic materials such as the deoxyribonucleic acid (DNA), the ribonucleic acid (RNA), and the proteins. Fast and precise identification of the protein coding regions in DNA sequence is one of the most important tasks in analysis. Existing digital signal processing (DSP) methods provide less accurate and computationally complex solution with greater background noise. Hence, improvements in accuracy, computational complexity, and reduction in background noise are essential in identification of the protein coding regions in the DNA sequences. In this paper, a new DSP based method is introduced to detect the protein coding regions in DNA sequences. Here, the DNA sequences are converted into numeric sequences using electron ion interaction potential (EIIP) representation. Then discrete wavelet transformation is taken. Absolute value of the energy is found followed by proper threshold. The test is conducted using the data bases available in the National Centre for Biotechnology Information (NCBI) site. The comparative analysis is done and it ensures the efficiency of the proposed system. PMID:26000337

  8. Improved algorithm for analysis of DNA sequences using multiresolution transformation.

    PubMed

    Inbamalar, T M; Sivakumar, R

    2015-01-01

    Bioinformatics and genomic signal processing use computational techniques to solve various biological problems. They aim to study the information allied with genetic materials such as the deoxyribonucleic acid (DNA), the ribonucleic acid (RNA), and the proteins. Fast and precise identification of the protein coding regions in DNA sequence is one of the most important tasks in analysis. Existing digital signal processing (DSP) methods provide less accurate and computationally complex solution with greater background noise. Hence, improvements in accuracy, computational complexity, and reduction in background noise are essential in identification of the protein coding regions in the DNA sequences. In this paper, a new DSP based method is introduced to detect the protein coding regions in DNA sequences. Here, the DNA sequences are converted into numeric sequences using electron ion interaction potential (EIIP) representation. Then discrete wavelet transformation is taken. Absolute value of the energy is found followed by proper threshold. The test is conducted using the data bases available in the National Centre for Biotechnology Information (NCBI) site. The comparative analysis is done and it ensures the efficiency of the proposed system. PMID:26000337

  9. Nuclear and mitochondrial DNA sequences from two Denisovan individuals

    PubMed Central

    Sawyer, Susanna; Renaud, Gabriel; Viola, Bence; Hublin, Jean-Jacques; Gansauge, Marie-Theres; Shunkov, Michael V.; Derevianko, Anatoly P.; Prüfer, Kay; Pääbo, Svante

    2015-01-01

    Denisovans, a sister group of Neandertals, have been described on the basis of a nuclear genome sequence from a finger phalanx (Denisova 3) found in Denisova Cave in the Altai Mountains. The only other Denisovan specimen described to date is a molar (Denisova 4) found at the same site. This tooth carries a mtDNA sequence similar to that of Denisova 3. Here we present nuclear DNA sequences from Denisova 4 and a morphological description, as well as mitochondrial and nuclear DNA sequence data, from another molar (Denisova 8) found in Denisova Cave in 2010. This new molar is similar to Denisova 4 in being very large and lacking traits typical of Neandertals and modern humans. Nuclear DNA sequences from the two molars form a clade with Denisova 3. The mtDNA of Denisova 8 is more diverged and has accumulated fewer substitutions than the mtDNAs of the other two specimens, suggesting Denisovans were present in the region over an extended period. The nuclear DNA sequence diversity among the three Denisovans is comparable to that among six Neandertals, but lower than that among present-day humans. PMID:26630009

  10. Nuclear and mitochondrial DNA sequences from two Denisovan individuals.

    PubMed

    Sawyer, Susanna; Renaud, Gabriel; Viola, Bence; Hublin, Jean-Jacques; Gansauge, Marie-Theres; Shunkov, Michael V; Derevianko, Anatoly P; Prüfer, Kay; Kelso, Janet; Pääbo, Svante

    2015-12-22

    Denisovans, a sister group of Neandertals, have been described on the basis of a nuclear genome sequence from a finger phalanx (Denisova 3) found in Denisova Cave in the Altai Mountains. The only other Denisovan specimen described to date is a molar (Denisova 4) found at the same site. This tooth carries a mtDNA sequence similar to that of Denisova 3. Here we present nuclear DNA sequences from Denisova 4 and a morphological description, as well as mitochondrial and nuclear DNA sequence data, from another molar (Denisova 8) found in Denisova Cave in 2010. This new molar is similar to Denisova 4 in being very large and lacking traits typical of Neandertals and modern humans. Nuclear DNA sequences from the two molars form a clade with Denisova 3. The mtDNA of Denisova 8 is more diverged and has accumulated fewer substitutions than the mtDNAs of the other two specimens, suggesting Denisovans were present in the region over an extended period. The nuclear DNA sequence diversity among the three Denisovans is comparable to that among six Neandertals, but lower than that among present-day humans. PMID:26630009

  11. Structure and evolution of the Phasianidae mitochondrial DNA control region.

    PubMed

    Huang, Zuhao; Ke, Dianhua

    2016-01-01

    The mitochondrial DNA control region is an area of the mitochondrial genome which is non-coding DNA. To infer the structural and evolutionary characteristics of Phasianidae mitochondrial DNA control region, the entire control region sequences of 34 species were analyzed. The length of the control region sequences ranged from 1144 bp (Phasianus colchicus) to 1555 bp (Coturnix japonica) and can be separated into three domains. The average genetic distances among the species within the genera varied from 1.96% (Chrysolophus) to 12.05% (Coturnix). The average genetic distances showed significantly negative correlation with ts/tv. In most genera (except Coturnix), domain I is the most variable among the three domains. However, the first 150 nucleotides apparently evolved at unusually low rates. Four conserved sequence boxes in the domain II of Phasianidae sequences were identified. The alignment of the Phasianidae four boxes and CSB-1 sequences showed considerable sequence variation. PMID:24617466

  12. Dynamics and control of DNA sequence amplification

    SciTech Connect

    Marimuthu, Karthikeyan; Chakrabarti, Raj E-mail: rajc@andrew.cmu.edu

    2014-10-28

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.

  13. Dynamics and control of DNA sequence amplification

    NASA Astrophysics Data System (ADS)

    Marimuthu, Karthikeyan; Chakrabarti, Raj

    2014-10-01

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.

  14. Bayesian classification for promoter prediction in human DNA sequences

    NASA Astrophysics Data System (ADS)

    Bercher, J.-F.; Jardin, P.; Duriez, B.

    2006-11-01

    Many Computational methods are yet available for data retrieval and analysis of genomic sequences, but some functional sites are difficult to characterize. In this work, we examine the problem of promoter localization in human DNA sequences. Promoters are regulatory regions that governs the expression of genes, and their prediction is reputed difficult, so that this issue is still open. We present the Chaos Game representation (CGR) of DNA sequences which has many interesting properties, and the notion of `genomic signature' that proved relevant in phylogeny applications. Based on this notion, we develop a (naïve) bayesian classifier, evaluate its performances, and show that its adaptive implementation enable to reveal or assess core-promoter positions along a DNA sequence.

  15. Sequence-specific binding of luzopeptin to DNA.

    PubMed Central

    Fox, K R; Davies, H; Adams, G R; Portugal, J; Waring, M J

    1988-01-01

    We have examined the binding of luzopeptin, an antitumor antibiotic, to five DNA fragments of varying base composition. The drug forms a tight, possibly covalent, complex with the DNA causing a reduction in mobility on nondenaturing polyacrylamide gels and some smearing of the bands consistent with intramolecular cross-linking of DNA duplexes. DNAase I and micrococcal nuclease footprinting experiments suggest that the drug binds best to regions containing alternating A and T residues, although no consensus di- or trinucleotide sequence emerges. Binding to other sites is not excluded and at moderate ligand concentrations the DNA is almost totally protected from enzyme attack. Ligand-induced enhancement of DNAase I cleavage is observed at both AT and GC-rich regions. The sequence selectivity and characteristics of luzopeptin binding are quite different from those of echinomycin, a bifunctional intercalator of related structure. Images PMID:3362673

  16. Quantum-Sequencing: Fast electronic single DNA molecule sequencing

    NASA Astrophysics Data System (ADS)

    Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant

    2014-03-01

    A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free, high-throughput and cost-effective, single-molecule sequencing method. Here, we present the first demonstration of unique ``electronic fingerprint'' of all nucleotides (A, G, T, C), with single-molecule DNA sequencing, using Quantum-tunneling Sequencing (Q-Seq) at room temperature. We show that the electronic state of the nucleobases shift depending on the pH, with most distinct states identified at acidic pH. We also demonstrate identification of single nucleotide modifications (methylation here). Using these unique electronic fingerprints (or tunneling data), we report a partial sequence of beta lactamase (bla) gene, which encodes resistance to beta-lactam antibiotics, with over 95% success rate. These results highlight the potential of Q-Seq as a robust technique for next-generation sequencing.

  17. Pyrosequencing sheds light on DNA sequencing.

    PubMed

    Ronaghi, M

    2001-01-01

    DNA sequencing is one of the most important platforms for the study of biological systems today. Sequence determination is most commonly performed using dideoxy chain termination technology. Recently, pyrosequencing has emerged as a new sequencing methodology. This technique is a widely applicable, alternative technology for the detailed characterization of nucleic acids. Pyrosequencing has the potential advantages of accuracy, flexibility, parallel processing, and can be easily automated. Furthermore, the technique dispenses with the need for labeled primers, labeled nucleotides, and gel-electrophoresis. This article considers key features regarding different aspects of pyrosequencing technology, including the general principles, enzyme properties, sequencing modes, instrumentation, and potential applications. PMID:11156611

  18. Negatively supercoiled simian virus 40 DNA contains Z-DNA segments within transcriptional enhancer sequences

    NASA Technical Reports Server (NTRS)

    Nordheim, A.; Rich, A.

    1983-01-01

    Three 8-base pair (bp) segments of alternating purine-pyrimidine from the simian virus 40 enhancer region form Z-DNA on negative supercoiling; minichromosome DNase I-hypersensitive sites determined by others bracket these three segments. A survey of transcriptional enhancer sequences reveals a pattern of potential Z-DNA-forming regions which occur in pairs 50-80 bp apart. This may influence local chromatin structure and may be related to transcriptional activation.

  19. Fluorogenic DNA Sequencing in PDMS Microreactors

    PubMed Central

    Sims, Peter A.; Greenleaf, William J.; Duan, Haifeng; Xie, X. Sunney

    2012-01-01

    We have developed a multiplex sequencing-by-synthesis method combining terminal-phosphate labeled fluorogenic nucleotides (TPLFNs) and resealable microreactors. In the presence of phosphatase, the incorporation of a non-fluorescent TPLFN into a DNA primer by DNA polymerase results in a fluorophore. We immobilize DNA templates within polydimethylsiloxane (PDMS) microreactors, sequentially introduce one of the four identically labeled TPLFNs, seal the microreactors, allow template-directed TPLFN incorporation, and measure the signal from the fluorophores trapped in the microreactors. This workflow allows sequencing in a manner akin to pyrosequencing but without constant monitoring of each microreactor. With cycle times of <10 minutes, we demonstrate 30 base reads with ∼99% raw accuracy. “Fluorogenic pyrosequencing” combines benefits of pyrosequencing, such as rapid turn-around, native DNA generation, and single-color detection, with benefits of fluorescence-based approaches, such as highly sensitive detection and simple parallelization. PMID:21666670

  20. FUNGAL-SPECIFIC PCR PRIMERS DEVELOPED FOR ANALYSIS OF THE ITS REGION OF ENVIRONMENTAL DNA EXTRACTS

    EPA Science Inventory

    Background The Internal Transcribed Spacer (ITS) regions of fungal ribosomal DNA (rDNA) are highly variable sequences of great importance in distinguishing fungal species by PCR analysis. Previously published PCR primers available for amplifying these sequences from environmenta...

  1. Restriction and sequence alterations affect DNA uptake sequence-dependent transformation in Neisseria meningitidis.

    PubMed

    Ambur, Ole Herman; Frye, Stephan A; Nilsen, Mariann; Hovland, Eirik; Tønjum, Tone

    2012-01-01

    Transformation is a complex process that involves several interactions from the binding and uptake of naked DNA to homologous recombination. Some actions affect transformation favourably whereas others act to limit it. Here, meticulous manipulation of a single type of transforming DNA allowed for quantifying the impact of three different mediators of meningococcal transformation: NlaIV restriction, homologous recombination and the DNA Uptake Sequence (DUS). In the wildtype, an inverse relationship between the transformation frequency and the number of NlaIV restriction sites in DNA was observed when the transforming DNA harboured a heterologous region for selection (ermC) but not when the transforming DNA was homologous with only a single nucleotide heterology. The influence of homologous sequence in transforming DNA was further studied using plasmids with a small interruption or larger deletions in the recombinogenic region and these alterations were found to impair transformation frequency. In contrast, a particularly potent positive driver of DNA uptake in Neisseria sp. are short DUS in the transforming DNA. However, the molecular mechanism(s) responsible for DUS specificity remains unknown. Increasing the number of DUS in the transforming DNA was here shown to exert a positive effect on transformation. Furthermore, an influence of variable placement of DUS relative to the homologous region in the donor DNA was documented for the first time. No effect of altering the orientation of DUS was observed. These observations suggest that DUS is important at an early stage in the recognition of DNA, but does not exclude the existence of more than one level of DUS specificity in the sequence of events that constitute transformation. New knowledge on the positive and negative drivers of transformation may in a larger perspective illuminate both the mechanisms and the evolutionary role(s) of one of the most conserved mechanisms in nature: homologous recombination. PMID

  2. Restriction and Sequence Alterations Affect DNA Uptake Sequence-Dependent Transformation in Neisseria meningitidis

    PubMed Central

    Ambur, Ole Herman; Frye, Stephan A.; Nilsen, Mariann; Hovland, Eirik; Tønjum, Tone

    2012-01-01

    Transformation is a complex process that involves several interactions from the binding and uptake of naked DNA to homologous recombination. Some actions affect transformation favourably whereas others act to limit it. Here, meticulous manipulation of a single type of transforming DNA allowed for quantifying the impact of three different mediators of meningococcal transformation: NlaIV restriction, homologous recombination and the DNA Uptake Sequence (DUS). In the wildtype, an inverse relationship between the transformation frequency and the number of NlaIV restriction sites in DNA was observed when the transforming DNA harboured a heterologous region for selection (ermC) but not when the transforming DNA was homologous with only a single nucleotide heterology. The influence of homologous sequence in transforming DNA was further studied using plasmids with a small interruption or larger deletions in the recombinogenic region and these alterations were found to impair transformation frequency. In contrast, a particularly potent positive driver of DNA uptake in Neisseria sp. are short DUS in the transforming DNA. However, the molecular mechanism(s) responsible for DUS specificity remains unknown. Increasing the number of DUS in the transforming DNA was here shown to exert a positive effect on transformation. Furthermore, an influence of variable placement of DUS relative to the homologous region in the donor DNA was documented for the first time. No effect of altering the orientation of DUS was observed. These observations suggest that DUS is important at an early stage in the recognition of DNA, but does not exclude the existence of more than one level of DUS specificity in the sequence of events that constitute transformation. New knowledge on the positive and negative drivers of transformation may in a larger perspective illuminate both the mechanisms and the evolutionary role(s) of one of the most conserved mechanisms in nature: homologous recombination. PMID

  3. Cloning and sequencing of chloroperoxidase cDNA.

    PubMed Central

    Fang, G H; Kenigsberg, P; Axley, M J; Nuell, M; Hager, L P

    1986-01-01

    An oligod-d(T) 12-18 primed cDNA library has been prepared from Caldariomyces fumago mRNA. A clone containing a full-length insert was sequenced on the supercoiled plasmid, pBR322. The complete primary sequence of chloroperoxidase has been derived. We have also determined about 73% of the peptide sequence by amino acid sequencing. The DNA sequence data matches all of the available known peptide sequences. The mature polypeptide contains 300 amino acids having a combined molecular weight of 32,974 daltons. A putative signal peptide of 21 amino acids is proposed from DNA sequence data. The chloroperoxidase gene encodes three potential glycosylation sites recognized as Asn-X-Thr/Ser sequences. Three cysteine residues are found in the protein sequence. A small region around Cys87 bears a minimal homology to the active site of cytochrome P450cam. No other heme protein homologues can be detected. We propose that Cys87 serves as a thiolate ligand to the iron of heme prosthetic group. A rare arginine codon, AGG, is used three times out of twelve in contrast to the very infrequent use of this codon in E. coli or yeast. PMID:3774552

  4. A Bioluminometric Method of DNA Sequencing

    NASA Technical Reports Server (NTRS)

    Ronaghi, Mostafa; Pourmand, Nader; Stolc, Viktor; Arnold, Jim (Technical Monitor)

    2001-01-01

    Pyrosequencing is a bioluminometric single-tube DNA sequencing method that takes advantage of co-operativity between four enzymes to monitor DNA synthesis. In this sequencing-by-synthesis method, a cascade of enzymatic reactions yields detectable light, which is proportional to incorporated nucleotides. Pyrosequencing has the advantages of accuracy, flexibility and parallel processing. It can be easily automated. Furthermore, the technique dispenses with the need for labeled primers, labeled nucleotides and gel-electrophoresis. In this chapter, the use of this technique for different applications is discussed.

  5. Nanopore Technology: A Simple, Inexpensive, Futuristic Technology for DNA Sequencing.

    PubMed

    Gupta, P D

    2016-10-01

    In health care, importance of DNA sequencing has been fully established. Sanger's Capillary Electrophoresis DNA sequencing methodology is time consuming, cumbersome, hence become more expensive. Lately, because of its versatility DNA sequencing became house hold name, and therefore, there is an urgent need of simple, fast, inexpensive, DNA sequencing technology. In the beginning of this century efforts were made, and Nanopore DNA sequencing technology was developed; still it is infancy, nevertheless, it is the futuristic technology. PMID:27605732

  6. Replication pattern of human repeated DNA sequences.

    PubMed

    Meneveri, R; Agresti, A; Breviario, D; Ginelli, E

    1984-10-01

    Either aphidicolin- or thymidine-synchronized human HL-60 cells were used to study the replication pattern of a family of human repetitive DNA sequences, the Eco RI 340 bp family (alpha RI-DNA), and of the ladders of fragments generated in total human DNA after digestion with XbaI and HaeIII (alpha satellite sequences). DNAs replicated in early, middle-early, middle-late and late S periods were labelled with BUdR or with [3H]thymidine. The efficiency of the cell synchronization procedure was confirmed by the transition from a high-GC to a high-AT average base composition of the DNA synthesized going from early to late S periods. By hybridizing EcoRI 340 bp repetitive fragments to BUdR-DNAs it was found that this family of sequences is replicated throughout the entire S period. Comparing fluorograph densitometric scans of [3H]DNAs to the scans of ethidium bromide patterns of total HL-60 DNA digested with XbaI and HaeIII, it was observed that DNA synthesized in different S periods is characterized by approximately the same ladder of fragments, while the intensity of each band may vary through the S phase; in particular, the XbaI 2.4 kb fragment becomes undetectable in late S. PMID:6089891

  7. DNA sequence organization in the genomes of five marine invertebrates.

    PubMed

    Goldberg, R B; Crain, W R; Ruderman, J V; Moore, G P; Barnett, T R; Higgins, R C; Gelfand, R A; Galau, G A; Britten, R J; Davidson, E H

    1975-07-21

    The arrangement of repetitive and non-repetitive sequence was studied in the genomic DNA of the oyster (Crassostrea virginica), the surf clam (Spisula solidissima), the horseshoe crab (Limulus polyphemus), a nemertean worm (Cerebratulus lacteus) and a jelly-fish (Aurelia aurita). Except for the jellyfish these animals belong to the protostomial branch of animal evolution, for which little information regarding DNA sequence organization has previously been available. The reassociation kinetics of short (250-300 nucleotide) and long (2,000-3,000 nucleotide) DNA fragments was studied by the hydroxyapatite method. It was shown that in each case a major fraction of the DNA consists of single copy sequences less than about 3,000 nucleotides in length, interspersed with short repetitive sequences. The lengths of the repetitive sequences were estimated by optical hyperchromicity and S1 nuclease measurements made on renaturation products. All the genomes studied include a prominent fraction of interspersed repetitive sequences about 300 nucleotides in length, as well as longer repetitive sequence regions. PMID:238802

  8. Sequence change and phylogenetic signal in muscoid COII DNA sequences.

    PubMed

    Szalanski, Allen L; Owens, Carrie B

    2003-08-01

    The complete DNA sequence of the mtDNA cytochrome oxidase II gene from house fly, Musca domestica, face fly, Musca autumnalis, stable fly, Stomoxys calcitrans, horn fly, Haematobia irritans, and black garbage fly, Hydrotaea aenescens, are reported. The nucleotide sequence codes for a 229 amino acid peptide. The COII sequence is A + T rich (74.1%), with up to 12.3% nucleotide and 8.4% amino acid divergence among the five taxa. Of the 688 nucleotides encoding for the gene, 135 nucleotide sites (19.6%) are variable, and 55 (8.0%) are phylogenetically informative. A phylogenetic analysis using three calliphorids as the outgroup taxa, indicates that the two haematophagus species, horn fly and stable fly, form a sister group. PMID:14631656

  9. A microchannel electrophoresis DNA sequencing system

    SciTech Connect

    Madabhushi, R S; Warth, T; Balch, J W; Bass, M; Brewer, L R; Copeland, A C; Davidson, J C; Fitch, J P; Kegelmeyer, L M; Kimbrough, J R; McCready, P; Nelson, D; Pastrone, R L; Richardson, P M; Swierkowski, S P; Tarte, L A; Vainer, M

    1999-01-01

    In order to increase the DNA sequencing throughput of the Joint Genome Institute, we have developed a microchannel electrophoresis system. The critical new and unique elements of this system include 1) a process for the production of arrays of 96 and 384 microchannels on bonded glass substrates up to 14 x 58 cm and 2) new sieving media for high resolution and high speed separations. With custom fabrication apparatus, microchannels are etched in a borosilicate substrate, and then fusion bonded to a top substrate 1.1 mm thick that has access holes formed in it. SEM examination shows a typical microchannel to be 40 micrometers deep x 180 micrometers wide by 46 cm long. This technology offers significant advantages over discrete capillaries or conventional slab-gel approaches. High throughput DNA sequencing with over 550 base pairs resolution has been achieved in roughly half the time of conventional sequencers. In February 1999, we begin a pre-production evaluation protocol for the microchannel and for three glass capillary electrophoresis systems (two from industry and one developed by Lawrence Berkeley National Laboratory for the Joint Genome Institute). In order to utilize these instruments for DNA production sequencing, we have been evaluating and implementing software to convert raw electropherograms into called DNA bases with an associated probability of error. Our original intent was to utilize the DNA base calling software known as Plan and Phred developed by the University of Washington. This software has been outstanding for our slab gel electrophoresis systems currently in the production facility. In our tests and evaluations of this software applied to microchannel data, we observed that the electropherograms are of a different statistical and underlying signal structure compared to slab gels. Even with substantial modifications to the software, base calling performance was not satisfactory for the microchannel data. In this paper, we will present o The

  10. Detection and quantitation of single nucleotide polymorphisms, DNA sequence variations, DNA mutations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.

  11. Nucleotide sequence of an insertion sequence (IS) element identified in the T-DNA region of a spontaneous variant of the Ti-plasmid pTiT37.

    PubMed Central

    Vanderleyden, J; Desair, J; De Meirsman, C; Michiels, K; Van Gool, A P; Chilton, M D; Jen, G C

    1986-01-01

    We have identified and determined the nucleotide sequence of an IS element (IS136) of Agrobacterium tumefaciens. This is the first IS element isolated and sequenced from a nopaline type Ti-plasmid. Our IS element has 32/30 bp inverted repeats with 6 mismatches, is 1,313 bp long and generates 9 bp direct repeats upon integration. IS136 has 3 main open reading frames (ORF's). Only ORF1 (159 codons) is preceded by sequences that are proposed to serve functional roles in transcriptional and translational initiation. No DNA sequence homology was found between IS136 and IS66, an IS element isolated from an octopine type Ti-plasmid. PMID:3018677

  12. Sequence-selective binding of an ellipticine derivative to DNA.

    PubMed Central

    Bailly, C; OhUigin, C; Rivalle, C; Bisagni, E; Hénichart, J P; Waring, M J

    1990-01-01

    The DNA sequence specificity of an ellipticine derivative bearing an aminoalkyl side chain has been determined by a variety of footprinting methods. The drug exhibits sequence selective binding and discriminates against runs of adenines or thymines. Binding is shown to occur at various sequences with a preference for GC rich regions of DNA. A large enhancement of DNAase I and of hydroxyl radical cleavage in regions rich in A's or T's is observed together with hyperreactivity of adenines towards diethylpyrocarbonate in the presence of drug. This indicates the occurrence of drug-induced changes in critical conformational features of DNA. The total absence of hyperreactivity of guanine residues towards diethylpyrocarbonate appears to be related to the sequence selectivity of drug binding. No alteration of the dimethyl sulphate and methylene blue-induced cleavage of DNA is observed. Irradiation of ellipticine derivative-DNA complexes with UV light followed by alkali treatment leads to selective photocleavage at guanine residues, consistent with the deduced degree of selectivity of the binding reaction. Images PMID:2173825

  13. A sequence-specific DNA-binding factor (VF1) from Anabaena sp. strain PCC 7120 vegetative cells binds to three adjacent sites in the xisA upstream region.

    PubMed Central

    Chastain, C J; Brusca, J S; Ramasubramanian, T S; Wei, T F; Golden, J W

    1990-01-01

    A DNA-binding factor (VF1) partially purified from Anabaena sp. strain PCC 7120 vegetative cell extracts by heparin-Sepharose chromatography was found to have affinity for the xisA upstream region. The xisA gene is required for excision of an 11-kilobase element from the nifD gene during heterocyst differentiation. Previous studies of the xisA upstream sequences demonstrated that deletion of this region is required for the expression of xisA from heterologous promoters in vegetative cells. Mobility shift assays with a labeled 250-base-pair fragment containing the binding sites revealed three distinct DNA-protein complexes. Competition experiments showed that VF1 also bound to the upstream sequences of the rbcL and glnA genes, but the rbcL and glnA fragments showed only single complexes in mobility shift assays. The upstream region of the nifH gene formed a weak complex with VF1. DNase footprinting and deletion analysis of the xisA binding site mapped the binding to a 66-base-pair region containing three repeats of the consensus recognition sequence ACATT. Images PMID:2118506

  14. DNA Sequence Alignment during Homologous Recombination.

    PubMed

    Greene, Eric C

    2016-05-27

    Homologous recombination allows for the regulated exchange of genetic information between two different DNA molecules of identical or nearly identical sequence composition, and is a major pathway for the repair of double-stranded DNA breaks. A key facet of homologous recombination is the ability of recombination proteins to perfectly align the damaged DNA with homologous sequence located elsewhere in the genome. This reaction is referred to as the homology search and is akin to the target searches conducted by many different DNA-binding proteins. Here I briefly highlight early investigations into the homology search mechanism, and then describe more recent research. Based on these studies, I summarize a model that includes a combination of intersegmental transfer, short-distance one-dimensional sliding, and length-specific microhomology recognition to efficiently align DNA sequences during the homology search. I also suggest some future directions to help further our understanding of the homology search. Where appropriate, I direct the reader to other recent reviews describing various issues related to homologous recombination. PMID:27129270

  15. Mitochondrial DNA Sequence Analysis - Validation and Use for Forensic Casework.

    PubMed

    Holland, M M; Parsons, T J

    1999-06-01

    With the discovery of the polymerase chain reaction (PCR) in the mid-1980's, the last in a series of critical molecular biology techniques (to include the isolation of DNA from human and non-human biological material, and primary sequence analysis of DNA) had been developed to rapidly analyze minute quantities of mitochondrial DNA (mtDNA). This was especially true for mtDNA isolated from challenged sources, such as ancient or aged skeletal material and hair shafts. One of the beneficiaries of this work has been the forensic community. Over the last decade, a significant amount of research has been conducted to develop PCR-based sequencing assays for the mtDNA control region (CR), which have subsequently been used to further characterize the CR. As a result, the reliability of these assays has been investigated, the limitations of the procedures have been determined, and critical aspects of the analysis process have been identified, so that careful control and monitoring will provide the basis for reliable testing. With the application of these assays to forensic identification casework, mtDNA sequence analysis has been properly validated, and is a reliable procedure for the examination of biological evidence encountered in forensic criminalistic cases. PMID:26255820

  16. DNA sequencing via transverse electronic transport

    NASA Astrophysics Data System (ADS)

    Lagerqvist, Johan; Zwolak, Michael; di Ventra, Massimiliano

    2006-03-01

    Recently, it was theoretically shown that transverse current measurements could be used to distinguish the different bases of single stranded DNA. [1] If electrodes are embedded in a device, e.g., a nanopore, which allows translocation of ss-DNA, the strand can be sequenced by continuous measurement of the current in the direction perpendicular to the DNA backbone. [1] However, variations of the electronic signatures of each base in a real device due to structural fluctuations, counter-ions, water and other sources of noise will be important obstacles to overcome in order to make this theoretical proposal a reality. In order to explore these effects we have coupled molecular dynamics simulations with transport calculations to obtain the real time transverse current of ss-DNA translocating into a nanopore. We find that distributions of currents for each base are indeed different even in the presence of all the sources of noise discussed above. These results support even more the original proposal [1] that fast DNA sequencing could be done using transverse current measurements. Work supported by the National Humane Genome Research Institute. [1] M. Zwolak and M. Di Ventra, ``Electronic Signature of DNA Nucleotides via Transverse Transport'', Nano Lett. 5, 421 (2005).

  17. Imaging of DNA sequences with chemiluminescence

    SciTech Connect

    Tizard, R.; Cate, R.L.; Ramachandran, K.L.; Wysk, M.; Voyta, J.C.; Murphy, O.J.; Bronstein, I. )

    1990-06-01

    We have coupled a chemiluminescent detection method that uses an alkaline phosphatase label to the genomic DNA sequencing protocol of Church and Gilbert . Images of sequence ladders are obtained on x-ray film with exposure times of less than 30 min, as compared to 40 h required for a similar exposure with a 32P-labeled oligomer. Chemically cleaved DNA from a sequencing gel is transferred to a nylon membrane, and specific sequence ladders are selected by hybridization to DNA oligonucleotides labeled with alkaline phosphatase or with biotin, leading directly or indirectly to deposition of enzyme. If a biotinylated probe is used, an incubation with avidin-alkaline phosphatase conjugate follows. The membrane is soaked in the chemiluminescent substrate (AMPPD) and is exposed to film. Dephosphorylation of AMPPD leads in a two-step pathway to a highly localized emission of visible light. The demonstrated shorter exposure times may improve the efficiency of a serial reprobing strategy such as the multiplex sequencing approach of Church and Kieffer-Higgins.

  18. The DNA sequence of human chromosome 7.

    PubMed

    Hillier, Ladeana W; Fulton, Robert S; Fulton, Lucinda A; Graves, Tina A; Pepin, Kymberlie H; Wagner-McPherson, Caryn; Layman, Dan; Maas, Jason; Jaeger, Sara; Walker, Rebecca; Wylie, Kristine; Sekhon, Mandeep; Becker, Michael C; O'Laughlin, Michelle D; Schaller, Mark E; Fewell, Ginger A; Delehaunty, Kimberly D; Miner, Tracie L; Nash, William E; Cordes, Matt; Du, Hui; Sun, Hui; Edwards, Jennifer; Bradshaw-Cordum, Holland; Ali, Johar; Andrews, Stephanie; Isak, Amber; Vanbrunt, Andrew; Nguyen, Christine; Du, Feiyu; Lamar, Betty; Courtney, Laura; Kalicki, Joelle; Ozersky, Philip; Bielicki, Lauren; Scott, Kelsi; Holmes, Andrea; Harkins, Richard; Harris, Anthony; Strong, Cynthia Madsen; Hou, Shunfang; Tomlinson, Chad; Dauphin-Kohlberg, Sara; Kozlowicz-Reilly, Amy; Leonard, Shawn; Rohlfing, Theresa; Rock, Susan M; Tin-Wollam, Aye-Mon; Abbott, Amanda; Minx, Patrick; Maupin, Rachel; Strowmatt, Catrina; Latreille, Phil; Miller, Nancy; Johnson, Doug; Murray, Jennifer; Woessner, Jeffrey P; Wendl, Michael C; Yang, Shiaw-Pyng; Schultz, Brian R; Wallis, John W; Spieth, John; Bieri, Tamberlyn A; Nelson, Joanne O; Berkowicz, Nicolas; Wohldmann, Patricia E; Cook, Lisa L; Hickenbotham, Matthew T; Eldred, James; Williams, Donald; Bedell, Joseph A; Mardis, Elaine R; Clifton, Sandra W; Chissoe, Stephanie L; Marra, Marco A; Raymond, Christopher; Haugen, Eric; Gillett, Will; Zhou, Yang; James, Rose; Phelps, Karen; Iadanoto, Shawn; Bubb, Kerry; Simms, Elizabeth; Levy, Ruth; Clendenning, James; Kaul, Rajinder; Kent, W James; Furey, Terrence S; Baertsch, Robert A; Brent, Michael R; Keibler, Evan; Flicek, Paul; Bork, Peer; Suyama, Mikita; Bailey, Jeffrey A; Portnoy, Matthew E; Torrents, David; Chinwalla, Asif T; Gish, Warren R; Eddy, Sean R; McPherson, John D; Olson, Maynard V; Eichler, Evan E; Green, Eric D; Waterston, Robert H; Wilson, Richard K

    2003-07-10

    Human chromosome 7 has historically received prominent attention in the human genetics community, primarily related to the search for the cystic fibrosis gene and the frequent cytogenetic changes associated with various forms of cancer. Here we present more than 153 million base pairs representing 99.4% of the euchromatic sequence of chromosome 7, the first metacentric chromosome completed so far. The sequence has excellent concordance with previously established physical and genetic maps, and it exhibits an unusual amount of segmentally duplicated sequence (8.2%), with marked differences between the two arms. Our initial analyses have identified 1,150 protein-coding genes, 605 of which have been confirmed by complementary DNA sequences, and an additional 941 pseudogenes. Of genes confirmed by transcript sequences, some are polymorphic for mutations that disrupt the reading frame. PMID:12853948

  19. The DNA sequence and comparative analysis of human chromosome 20.

    PubMed

    Deloukas, P; Matthews, L H; Ashurst, J; Burton, J; Gilbert, J G; Jones, M; Stavrides, G; Almeida, J P; Babbage, A K; Bagguley, C L; Bailey, J; Barlow, K F; Bates, K N; Beard, L M; Beare, D M; Beasley, O P; Bird, C P; Blakey, S E; Bridgeman, A M; Brown, A J; Buck, D; Burrill, W; Butler, A P; Carder, C; Carter, N P; Chapman, J C; Clamp, M; Clark, G; Clark, L N; Clark, S Y; Clee, C M; Clegg, S; Cobley, V E; Collier, R E; Connor, R; Corby, N R; Coulson, A; Coville, G J; Deadman, R; Dhami, P; Dunn, M; Ellington, A G; Frankland, J A; Fraser, A; French, L; Garner, P; Grafham, D V; Griffiths, C; Griffiths, M N; Gwilliam, R; Hall, R E; Hammond, S; Harley, J L; Heath, P D; Ho, S; Holden, J L; Howden, P J; Huckle, E; Hunt, A R; Hunt, S E; Jekosch, K; Johnson, C M; Johnson, D; Kay, M P; Kimberley, A M; King, A; Knights, A; Laird, G K; Lawlor, S; Lehvaslaiho, M H; Leversha, M; Lloyd, C; Lloyd, D M; Lovell, J D; Marsh, V L; Martin, S L; McConnachie, L J; McLay, K; McMurray, A A; Milne, S; Mistry, D; Moore, M J; Mullikin, J C; Nickerson, T; Oliver, K; Parker, A; Patel, R; Pearce, T A; Peck, A I; Phillimore, B J; Prathalingam, S R; Plumb, R W; Ramsay, H; Rice, C M; Ross, M T; Scott, C E; Sehra, H K; Shownkeen, R; Sims, S; Skuce, C D; Smith, M L; Soderlund, C; Steward, C A; Sulston, J E; Swann, M; Sycamore, N; Taylor, R; Tee, L; Thomas, D W; Thorpe, A; Tracey, A; Tromans, A C; Vaudin, M; Wall, M; Wallis, J M; Whitehead, S L; Whittaker, P; Willey, D L; Williams, L; Williams, S A; Wilming, L; Wray, P W; Hubbard, T; Durbin, R M; Bentley, D R; Beck, S; Rogers, J

    The finished sequence of human chromosome 20 comprises 59,187,298 base pairs (bp) and represents 99.4% of the euchromatic DNA. A single contig of 26 megabases (Mb) spans the entire short arm, and five contigs separated by gaps totalling 320 kb span the long arm of this metacentric chromosome. An additional 234,339 bp of sequence has been determined within the pericentromeric region of the long arm. We annotated 727 genes and 168 pseudogenes in the sequence. About 64% of these genes have a 5' and a 3' untranslated region and a complete open reading frame. Comparative analysis of the sequence of chromosome 20 to whole-genome shotgun-sequence data of two other vertebrates, the mouse Mus musculus and the puffer fish Tetraodon nigroviridis, provides an independent measure of the efficiency of gene annotation, and indicates that this analysis may account for more than 95% of all coding exons and almost all genes. PMID:11780052

  20. Nanopore-CMOS Interfaces for DNA Sequencing.

    PubMed

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-01-01

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces. PMID:27509529

  1. Repetitive DNA sequences in Mycoplasma pneumoniae.

    PubMed Central

    Wenzel, R; Herrmann, R

    1988-01-01

    Two types of different repetitive DNA sequences called RepMP1 and RepMP2 were identified in the genome of Mycoplasma pneumoniae. The number of these repeated elements, their nucleotide sequence and their localization on a physical map of the M. pneumoniae genome were determined. The results show that RepMP1 appears at least 10 times and RepMP2 at least 8 times in the genome. The repeated elements are dispersed on the chromosome and, in three cases, linked to each other by a homologous DNA sequence of 400 bp. The elements themselves are 300 bp (for RepMP1) and 150 bp (for RepMP2) long showing a high degree of homology. One copy of RepMP2 is a translated part of the gene for the major cytadhesin protein P1 which is responsible for the adsorption of M. pneumoniae to its host cell. Images PMID:3138660

  2. Mitochondrial DNA sequences in the nuclear genome of a locust.

    PubMed

    Gellissen, G; Bradfield, J Y; White, B N; Wyatt, G R

    The endosymbiotic theory of the origin of mitochondria is widely accepted, and implies that loss of genes from the mitochondria to the nucleus of eukaryotic cells has occurred over evolutionary time. However, evidence at the DNA sequence level for gene transfer between these organelles has so far been limited to a single example, the demonstration that a mitochondrial ATPase subunit gene of Neurospora crassa has an homologous partner in the nuclear genome. From a gene library of the insect, Locusta migratoria, we have now isolated two clones, representing separate fragments of nuclear DNA, which contain sequences homologous to the mitochondrial genes for ribosomal RNA, as well as regions of homology with highly repeated nuclear sequences. The results suggest the transfer of sequences between mitochondrial and nuclear genomes, followed by evolutionary divergence. PMID:6298629

  3. Defining the sequence requirements for the positioning of base J in DNA using SMRT sequencing

    PubMed Central

    Genest, Paul-Andre; Baugh, Loren; Taipale, Alex; Zhao, Wanqi; Jan, Sabrina; van Luenen, Henri G.A.M.; Korlach, Jonas; Clark, Tyson; Luong, Khai; Boitano, Matthew; Turner, Steve; Myler, Peter J.; Borst, Piet

    2015-01-01

    Base J (β-D-glucosyl-hydroxymethyluracil) replaces 1% of T in the Leishmania genome and is only found in telomeric repeats (99%) and in regions where transcription starts and stops. This highly restricted distribution must be co-determined by the thymidine hydroxylases (JBP1 and JBP2) that catalyze the initial step in J synthesis. To determine the DNA sequences recognized by JBP1/2, we used SMRT sequencing of DNA segments inserted into plasmids grown in Leishmania tarentolae. We show that SMRT sequencing recognizes base J in DNA. Leishmania DNA segments that normally contain J also picked up J when present in the plasmid, whereas control sequences did not. Even a segment of only 10 telomeric (GGGTTA) repeats was modified in the plasmid. We show that J modification usually occurs at pairs of Ts on opposite DNA strands, separated by 12 nucleotides. Modifications occur near G-rich sequences capable of forming G-quadruplexes and JBP2 is needed, as it does not occur in JBP2-null cells. We propose a model whereby de novo J insertion is mediated by JBP2. JBP1 then binds to J and hydroxylates another T 13 bp downstream (but not upstream) on the complementary strand, allowing JBP1 to maintain existing J following DNA replication. PMID:25662217

  4. [On the Population Genetic Portrait of Kaluga, Acipenser dauricus Georgi, 1775 Analysis of Sequence Variation in the Mitochondrial DNA Control Region].

    PubMed

    Shedko, S V; Miroshnichenko, I L; Nemkova, G A; Shedko, M B

    2015-09-01

    The variability of the mtDNA D-loop was examined in kaluga endemic to the Amur River, which is classified as critically endangered by the IUCN Red List of Threatened species. Sequencing of the D-loop fragment (819 bp) in 122 kaluga specimens collected in Lower Amur revealed 27 unique genotypes. The sample was characterized by a relatively low level of haplotypic (0.927) and nucleotide (0.0044) diversity. No considerable deviations from the neutral mutation model of DNA polymorphism were observed. Overall, the mismatch distribution patterns and the results of testing of simple demographic models (sudden demographic expansion and exponential population growth) pointed to a past increase in the number of kaluga sturgeons. According to the Bayesian skyline, the kaluga population doubled over the last two to three thousand years. The number of mature females in the modern kaluga population and the assessment of their long-term effective population size (Nef) are roughly at the same level (about three thousand individuals), which confirms the validity of assigning kaluga to the category of species on the brink of extinction. PMID:26606799

  5. Sequence-specific DNA nicking endonucleases.

    PubMed

    Xu, Shuang-yong

    2015-08-01

    A group of small HNH nicking endonucleases (NEases) was discovered recently from phage or prophage genomes that nick double-stranded DNA sites ranging from 3 to 5 bp in the presence of Mg2+ or Mn2+. The cosN site of phage HK97 contains a gp74 nicking site AC↑CGC, which is similar to AC↑CGR (R=A/G) of N.ϕGamma encoded by Bacillus phage Gamma. A minimal nicking domain of 76 amino acid residues from N.ϕGamma could be fused to other DNA binding partners to generate chimeric NEases with new specificities. The biological roles of a few small HNH endonucleases (HNHE, gp74 of HK97, gp37 of ϕSLT, ϕ12 HNHE) have been demonstrated in phage and pathogenicity island DNA packaging. Another group of NEases with 3- to 7-bp specificities are either natural components of restriction systems or engineered from type IIS restriction endonucleases. A phage group I intron-encoded HNH homing endonucleases, I-PfoP3I was found to nick DNA sites of 14-16 bp. I-TslI encoded by T7-like ΦI appeared to nick DNA sites with a 9-bp core sequence. DNA nicking and labeling have been applied to optical mapping to aid genome sequence assembly and detection of large insertion/deletion mutations in genomic DNA of cancer cells. Nicking enzyme-mediated amplification reaction has been applied to rapid diagnostic testing of influenza A and B in clinical setting and for construction of DNA-based Boolean logic gates. The clustered regularly interspaced short palindromic repeats-ribonucleoprotein complex consisting of engineered Cas9 nickases in conjunction with tracerRNA:crRNA or a single-guide RNA have been successfully used in genome modifications. PMID:26352356

  6. Construction and evaluation of a capillary electrophoresis DNA sequencer

    SciTech Connect

    Drossman, H.

    1992-01-01

    This dissertation describes the construction and evaluation of an automated DNA sequencer using capillary gel electrophoresis (CGE) for separating single-strand DNA fragments and a fluorescence detector for analyzing labeled fragments. Theories governing the electrophoretic separation of DNA, dispersion processes in CGE and high sensitivity fluorescence detection are reviewed. The CGE DNA sequencer is compared with current DNA sequencing instruments and with projections of future DNA sequencing instruments. Parameters affecting the limits of detection, DNA sample loading, sample mobility and resolution are evaluated. Predictions for the future of capillary electrophoresis for large-scale sequencing projects are presented.

  7. DNA Sequencing Using an Engineered Protein Nanopore

    NASA Astrophysics Data System (ADS)

    Gundlach, Jens H.

    2010-03-01

    Inexpensive and fast sequencing of DNA is of paramount importance to medicine, the life sciences and to many other applications. Because of the nanometer diameter of DNA a nanometer-scale reader directly interfaced to macroscopic observables seems particularly attractive. We are working on a new single molecule technique based on a biological pore embedded in a lipid bilayer. When a voltage is applied across the bilayer an ion current is measured that flows through the nanometer opening of the pore. Poly-negatively charged single stranded DNA passes through the pore and reduces the ion current with the remaining ion current being indicative of the nucleotide type in the constriction of the pore. The protein pore that we introduced to the field, MspA, has a shape ideally suited to nanopore sequencing, has robustness comparable to solid state devices, is easily reproduced with sub-nanometer level precision and is engineerable using genetic mutations. I will present proof-of-principle data showing that this technique can lead to a direct very inexpensive and fast sequencing technology. The experimental electronic signatures of the DNA translocation process provide an ideal test bed for molecular dynamics simulations, which in turn allows developing intuition and prediction of nanoscale dynamics.

  8. H3 and H4 histone cDNA sequences from Xenopus: a sequence comparison of H4 genes.

    PubMed Central

    Turner, P C; Woodland, H R

    1982-01-01

    Ovarian poly (A) + RNA from Xenopus laevis and Xenopus borealis was used to construct two cDNA libraries which were screened for histone sequences. cDNA clones to H4 mRNA were obtained from both species and an H3 cDNA clone from Xenopus laevis. The complete DNA sequences of these clones have been determined and are presented. These new sequences are compared with other H3 and H4 DNA sequences both in the coding and 3' noncoding regions. We find that there is considerable non-random codon usage in ten H4 genes. In addition there are some sequence similarities in the 3' noncoding regions of H3 and H4 genes. PMID:6896750

  9. TAG Sequence Identification of Genomic Regions Using TAGdb.

    PubMed

    Ruperao, Pradeep

    2016-01-01

    Second-generation sequencing (SGS) technology has enabled the sequencing of genomes and identification of genes. However, large complex plant genomes remain particularly difficult for de novo assembly. Access to the vast quantity of raw sequence data may facilitate discoveries; however the volume of this data makes access difficult. This chapter discusses the Web-based tool TAGdb that enables researchers to identify paired read second-generation DNA sequence data that share identity with a submitted query sequence. The identified reads can be used for PCR amplification of genomic regions to identify genes and promoters without the need for genome assembly. PMID:26519409

  10. Biased distribution of DNA uptake sequences towards genome maintenance genes.

    PubMed

    Davidsen, Tonje; Rødland, Einar A; Lagesen, Karin; Seeberg, Erling; Rognes, Torbjørn; Tønjum, Tone

    2004-01-01

    Repeated sequence signatures are characteristic features of all genomic DNA. We have made a rigorous search for repeat genomic sequences in the human pathogens Neisseria meningitidis, Neisseria gonorrhoeae and Haemophilus influenzae and found that by far the most frequent 9-10mers residing within coding regions are the DNA uptake sequences (DUS) required for natural genetic transformation. More importantly, we found a significantly higher density of DUS within genes involved in DNA repair, recombination, restriction-modification and replication than in any other annotated gene group in these organisms. Pasteurella multocida also displayed high frequencies of a putative DUS identical to that previously identified in H.influenzae and with a skewed distribution towards genome maintenance genes, indicating that this bacterium might be transformation competent under certain conditions. These results imply that the high frequency of DUS in genome maintenance genes is conserved among phylogenetically divergent species and thus are of significant biological importance. Increased DUS density is expected to enhance DNA uptake and the over-representation of DUS in genome maintenance genes might reflect facilitated recovery of genome preserving functions. For example, transient and beneficial increase in genome instability can be allowed during pathogenesis simply through loss of antimutator genes, since these DUS-containing sequences will be preferentially recovered. Furthermore, uptake of such genes could provide a mechanism for facilitated recovery from DNA damage after genotoxic stress. PMID:14960717