Science.gov

Sample records for regional biogenic emissions

  1. BIOGENIC EMISSIONS INVENTORY SYSTEM (BEIS)

    EPA Science Inventory

    The Biogenic Emissions Inventory System (BEIS) is a computer algorithm used to generate emissions for air quality simulation models, such as EPAs Regional Acid Deposition Model (RADM). Emission sources that are modeled include volatile organic compound (VOC) emissions from vegeta...

  2. Biogenic Emissions Inventory System

    EPA Science Inventory

    ***BEIS3 is now embedded in the CMAQ model***

    The Biogenic Emissions Inventory System, Version 3 (BEIS3) is being developed to support the needs of regional and urban-scale air quality simulation models. BEIS3 is designed to be incorporated into the Sparse Matrix Op...

  3. The contribution of soil biogenic NO emissions from a managed hyper-arid ecosystem to the regional NO2 emissions during growing season

    NASA Astrophysics Data System (ADS)

    Mamtimin, B.; Badawy, M.; Behrendt, T.; Meixner, F. X.; Wagner, T.

    2015-12-01

    A study was carried out to understand the contributions of soil biogenic NO emissions from managed (fertilized and irrigated) hyper-arid ecosystem in NW-China to the regional NO2 emissions during growing season. Soil biogenic NO emissions were quantified by laboratory incubation of corresponding soil samples. We have developed the Geoscience General Tool Package (GGTP) to obtain soil temperature, soil moisture and biogenic soil NO emission at oasis scale. Bottom-up anthropogenic NO2 emissions have been scaled down from annual to monthly values to compare mean monthly soil biogenic NO2 emissions. The top-down emission estimates have been derived from satellite observations compared then with the bottom-up emission estimates (anthropogenic and biogenic). The results show that the soil biogenic emissions of NO2 during the growing period are (at least) equal until twofold of the related anthropogenic sources. We found that the grape soils are the main summertime contributor to the biogenic NO emissions of study area, followed by cotton soils. The top-down and bottom-up emission estimates were shown to be useful methods to estimate the monthly/seasonal cycle of the total regional NO2 emissions. The resulting total NO2 emissions show a strong peak in winter and a secondary peak in summer, providing confidence in the method. These findings provide strong evidence that biogenic emissions from soils of managed drylands (irrigated and fertilized) in the growing period can be much more important contributors to the regional NO2 budget (hence to regional photochemistry) of dryland regions than thought before.

  4. Biogenic voc emissions development and its impacts on regional o3 in PRD, china

    NASA Astrophysics Data System (ADS)

    Wang, Xuemei; Shuping, Situ; Guenther, Alex; Chen, Fei; Wu, Zhiyong

    2010-05-01

    The new Model of Emissions of Gases and Aerosols from Nature (MEGAN) has been coupled with WRF-Chem to investigate the influence of biogenic violate organic carbon (BVOC ) emissions on the regional distribution of O3 and SOA concentration in the Pearl River Delta (PRD), China. MEGAN first estimate an emission factor which represents the net above-canopy emission rate expected at optimal conditions, and use a number of environmental correction factor based on photosynthetically activated radiation (PAR) and leaf temperature to adjust the emission rate due to deviations from optimal conditions. Total emissions are the sum of emissions estimated for each plant functional type (PFT) in a given grid cell. Our model simulations estimated showed: (1) Total annual BVOCs emissions were 339.01× 106 kg, which is 40.68% of annual AVOCs emissions and 28.91% of total VOCs emission in PRD in 2006. Isoprene, monoterpene, sesquiterpene and OVOCs contributed about 31.94%, 39.23%, 3.27% and 25.56% of the estimated total annual emissions respectively. α- pinene and β- pinene were the major components in monoterpene, which contributed 28.09% and 26.98% to the total annual monoterpene emissions respectively;β-caryophyllene andα-farnesene were two important sesquiterpene, and they contributed to 22.31% and 18.76% of the annual sesquiterpene emissions.(2) BVOCs emissions have large variations in their spatial distributions, which were mainly resulted from the differences in the geographical distribution of vegetation. Their emission amounts were larger in the places where urbanization were relative lower and plants distributions were higher.(3) Emissions of terpenoids had significant annual and diurnal variations and the largest emission rate occurred at 13:00 local time while the amount of emission in summer is the largest.(4) There were significant terpenoids emission rate (≥1.21.2 kg km-2h-1) in the remote areas in PRD region where the emissions of AVOCs were low, and

  5. Impacts of Regional Climate Change on Biogenic Emissions and Air Quality

    SciTech Connect

    Zhang, Yang; Hu, X.-M.; Leung, Lai R.; Gustafson, William I.

    2008-09-25

    Regional air quality simulations are conducted for four summers (2001, 2002, 2051, and 2052) to examine the sensitivity of air quality to potential regional climate change in the U.S. In response to the predicted warmer climate in 2051/2052, emissions of isoprene and terpene increase by 20-92.1% and 20-56%, respectively, over most of the domain. Surface O3, which is sensitive to changes in temperature and solar radiation but relatively insensitive to changes in PBL height and cloud fraction, increase by up to 19-20%. PM2.5, its compositions, and visibility exhibit an overall negative sensitivity (decrease by up to 40%), resulting from the competition of the negative temperature effect and positive emission/temperature effects. While the response of dry deposition is governed by the negative sensitivity of surface resistances, that of wet deposition is either positive or negative, depending on the relative dominancy of changes in PM2.5 and precipitation. Overall the net climatic effect dominates changes in O3, PM2.5, wet and total deposition, and the net biogenic emission effect is important for isoprene, organic matter, visibility, and dry deposition over several regions. Models that do not include secondary organic aerosol formation from isoprene photooxidation may underestimate by at least 20% the air quality responses to future climate changes over many areas of the modeling domain. Both regional climate and air quality exhibit interannual variability, particularly in temperature, isoprene emissions, and PM2.5 concentrations, indicating a need for long-term simulations to predict future air quality.

  6. The contribution of soil biogenic NO and HONO emissions from a managed hyperarid ecosystem to the regional NOx emissions during growing season

    NASA Astrophysics Data System (ADS)

    Mamtimin, Buhalqem; Meixner, Franz X.; Behrendt, Thomas; Badawy, Moawad; Wagner, Thomas

    2016-08-01

    A study was carried out to understand the contributions of soil biogenic NO emissions from managed (fertilized and irrigated) hyperarid ecosystems in NW China to the regional NOx emissions during the growing season. Soil biogenic net potential NO fluxes were quantified by laboratory incubation of soil samples from the three dominating ecosystems (desert, cotton, and grape fields). Regional biogenic NO emissions were calculated bottom-up hourly for the entire growing season (April-September 2010) by considering corresponding land use, hourly data of soil temperature, gravimetric soil moisture, and fertilizer enhancement factors. The regional HONO emissions were estimated using the ratio of the optimum condition ((FN,opt(HONO) to FN,opt (NO)). Regional anthropogenic NOx emissions were calculated bottom-up from annual statistical data provided by regional and local government bureaus which have been downscaled to monthly value. Regional top-down emission estimates of NOx were derived on the monthly basis from satellite observations (OMI) of tropospheric vertical NO2 column densities and prescribed values of the tropospheric NOx lifetime. In order to compare the top-down and bottom-up emission estimates, all emission estimates were expressed in terms of mass of atomic nitrogen. Consequently, monthly top-down NOx emissions (total) were compared with monthly bottom-up NOx emissions (biogenic + anthropogenic) for the time of the satellite overpass (around 13:00 LT) with the consideration of the diurnal cycle of bottom-up estimates. Annual variation in total Tohsun Oasis NOx emissions is characterized by a strong peak in winter (December-February) and a secondary peak in summer (June-August). During summer, soil biogenic emissions were from equal to double that of related anthropogenic emissions, and grape soils were the main contributor to soil biogenic emissions, followed by cotton soils, while emissions from the desert were negligible. The top-down and bottom

  7. Numerical model to quantify biogenic volatile organic compound emissions: The Pearl River Delta region as a case study.

    PubMed

    Wang, Xuemei; Situ, Shuping; Chen, Weihua; Zheng, Junyu; Guenther, Alex; Fan, Qi; Chang, Ming

    2016-08-01

    This article compiles the actual knowledge of the biogenic volatile organic compound (BVOC) emissions estimated using model methods in the Pearl River Delta (PRD) region, one of the most developed regions in China. The developed history of BVOC emission models is presented briefly and three typical emission models are introduced and compared. The results from local studies related to BVOC emissions have been summarized. Based on this analysis, it is recommended that local researchers conduct BVOC emission studies systematically, from the assessment of model inputs, to compiling regional emission inventories to quantifying the uncertainties and evaluating the model results. Beyond that, more basic researches should be conducted in the future to close the gaps in knowledge on BVOC emission mechanisms, to develop the emission models and to refine the inventory results. This paper can provide a perspective on these aspects in the broad field of research associated with BVOC emissions in the PRD region. PMID:27521938

  8. Impacts of seasonal and regional variability in biogenic VOC emissions on surface ozone in the Pearl River Delta region, China

    SciTech Connect

    Situ, S.; Guenther, Alex B.; Wang, X. J.; Jiang, X.; Turnipseed, A.; Wu, Z.; Bai, J.; Wang, X.

    2013-12-05

    In this study, the BVOC emissions in November 2010 over the Pearl River Delta (PRD) region in southern China have been estimated by the latest version of a Biogenic Volatile Organic Compound (BVOC) emission model (MEGAN v2.1). The evaluation of MEGAN performance at a representative forest site within this region indicates MEGAN can estimate BVOC emissions reasonably well in this region except overestimating isoprene emission in autumn for reasons that are discussed in this manuscript. Along with the output from MEGAN, the Weather Research and Forecasting model with chemistry (WRF-Chem) is used to estimate the impacts of BVOC emissions on surface ozone in the PRD region. The results show BVOC emissions increase the daytime ozone peak by *3 ppb on average, and the max hourly impacts of BVOC emissions on the daytime ozone peak is 24.8 ppb. Surface ozone mixing ratios in the central area of Guangzhou- Foshan and the western Jiangmen are most sensitive to BVOC emissions BVOCs from outside and central PRD influence the central area of Guangzhou-Foshan and the western Jiangmen significantly while BVOCs from rural PRD mainly influence the western Jiangmen. The impacts of BVOC emissions on surface ozone differ in different PRD cities, and the impact varies in different seasons. Foshan and Jiangmen being most affected in autumn, result in 6.0 ppb and 5.5 ppb increases in surface ozone concentrations, while Guangzhou and Huizhou become more affected in summer. Three additional experiments concerning the sensitivity of surface ozone to MEGAN input variables show that surface ozone is more sensitive to landcover change, followed by emission factors and meteorology.

  9. Biogenic emissions modeling for Southeastern Texas

    SciTech Connect

    Estes, M.; Jacob, D.; Jarvie, J.

    1996-12-31

    The Texas Natural Resource Conservation Commission (TNRCC) modeling staff performed biogenic hydrocarbon emissions modeling in support of gridded photochemical modeling for ozone episodes in 1992 and 1993 for the Coastal Oxidant Assessment for Southeast Texas (COAST) modeling domain. This paper summarizes the results of the biogenic emissions modeling and compares preliminary photochemical modeling results to ambient air monitoring data collected during the 1993 COAST study. Biogenic emissions were estimated using BIOME, a gridded biogenic emissions model that uses region-specific land use and biomass density data, and plant species-specific emission factor data. Ambient air monitoring data were obtained by continuous automated gas chromatography at two sites, one-hour canister samples at 5 sites, and 24-hour canister samples at 13 other sites. The concentrations of Carbon Bond-IV species (as determined from urban airshed modeling) were compared to measured hydrocarbon concentrations. In this paper, we examined diurnal and seasonal variations, as well as spatial variations.

  10. Study of the effect of biogenic VOC emissions on regional ozone production and the implications for VOC or NO{sub x} control

    SciTech Connect

    Stockwell, W.R.; Kuhn, M.

    1998-12-31

    A key question for the development of air pollution control strategies is whether to reduce nitrogen oxides (NO{sub x}) or volatile organic compound (VOC) emissions. Significant levels of biogenic VOC emissions may greatly limit the effectiveness of VOC control strategies. Concerns have been raised because for many cities it has been suggested that biogenic emissions are a dominate source of VOCs. Biogenic emissions would be expected to contribute an even larger fraction of the VOC emissions on the regional scale than within urban areas. The authors used a new atmospheric chemistry mechanism, the Regional Atmospheric Chemistry Mechanism (RACM), to perform ozone reactivity calculations to investigate the effects of biogenic emissions on the production of photooxidants in the atmosphere. The results show that incremental reactivity of isoprene is about the same as xylene and that the incremental reactivities of d-limonene and a-pinene are near those of toluene.

  11. Preliminary carbon isotope measurements of fossil fuel and biogenic emissions from the Brazilian Southeastern region

    NASA Astrophysics Data System (ADS)

    Oliveira, F. M.; Santos, G.; Macario, K.; Muniz, M.; Queiroz, E.; Park, J.

    2014-12-01

    Researchers have confirmed that the continuing global rising of atmospheric CO2 content is caused by anthropogenic CO2 contributions. Most of those contributions are essentially associated with burning of fossil fuels (coal, petroleum and natural gas). However, deforestation, biomass burning, and land use changes, can also play important roles. Researchers have showed that 14C measurements of annual plants, such as corn leaf (Hsueh et al. 2007), annual grasses (Wang and Pataki 2012), and leaves of deciduous trees (Park et al. 2013) can be used to obtain time-integrated information of the fossil fuel ration in the atmosphere. Those regional-scale fossil fuel maps are essential for monitoring CO2 emissions mitigation efforts and/or growth spikes around the globe. However, no current data from anthropogenic contributions from both biogenic and fossil carbon has been reported from the major urban areas of Brazil. Here we make use of carbon isotopes (13C and 14C) to infer sources of CO2 in the highly populated Brazilian Southeastern region (over 80 million in 2010). This region leads the country in population, urban population, population density, vehicles, industries, and many other utilities and major infrastructures. For a starting point, we focus on collecting Ipê leaves (Tabebuia, a popular deciduous tree) from across Rio de Janeiro city and state as well as Sao Paulo city during May/June of 2014 to obtain the regional distribution of 13C and 14C of those urban domes. So far, Δ14C range from -10 to 32‰, when δ13C values are running from -26 to -35‰. The result of these preliminary investigations will be presented and discussed.Hsueh et al. 2007 Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America. Geophysical Research Letters. 34: L02816. doi:10.1029/2006GL027032 Wang and Pataki 2012 Drivers of spatial variability in urban plant and soil isotopic composition in the Los Angeles Basin. Plant and Soil 350: 323

  12. IMPROVING BIOGENIC EMISSION ESTIMATES WITH SATELLITE IMAGERY

    EPA Science Inventory

    This presentation will review how existing and future applications of satellite imagery can improve the accuracy of biogenic emission estimates. Existing applications of satellite imagery to biogenic emission estimates have focused on characterizing land cover. Vegetation dat...

  13. MEASUREMENT OF BIOGENIC EMISSION FROM CORN

    EPA Science Inventory

    A pilot study was conducted to determine whether techniques for measuring biogenic emissions from tree saplings, branches, and leaves could be adapted to the measurement of biogenic emissions from individual plants of agricultural species. easurements were then made to determine ...

  14. NEW BIOGENIC VOC EMISSIONS MODEL

    EPA Science Inventory

    We intend to develop new prognostic models for the prediction of biogenic volatile organic compound emissions from forest ecosystems in the face of possible future changes in the climate and the concentration of carbon dioxide in the atmosphere. These models will b...

  15. Specification of Biogenic VOC Emission Data in the Coupled System of Regional Climate and Atmospheric Chemistry/Aerosols Model

    NASA Astrophysics Data System (ADS)

    Zemankova, K.; Huszar, P.

    2009-12-01

    Coupling of regional climate model RegCM (Pal et al., 2007) and atmospheric chemistry/aerosols model CAMx (Environ, 2006) is being developed at our department under the CECILIA project (EC 6th FP) with the aim to study climate forcing due to atmospheric chemistry/aerosols on regional scale. Regional climate model RegCM with the resolution of 10 km drives transport, chemistry and dry/wet deposition of the CAMx model being operated on the Central and Eastern European domain and consequently the radiative active agents from the CAMx model enter the radiative transfer schemes for the calculation of heating rate changes in the regional climate model. In order to increase the accuracy of land cover data in this model system, a new input dataset has been prepared and used for the calculation of emissions of volatile organic compounds (VOCs) from natural sources. This dataset is mainly based on the single tree species database from the european project of JRC in Ispra - Agriculture, Forestry, and Other Land Uses in Europe (AFOLU) which covers most of the model domain. For the locations where AFOLU data were not available, i.e. basically non-EU areas, the USGS Eurasia land cover database has been used. Both databases are available in 1 km resolution. Emission factors for new land cover categories were obtained either from the laboratory measurements or from the literature. The Guenther et al. (1995) model algorithm has been used for the calculation of biogenic VOC (BVOC) emission fluxes. Effects of new land cover and BVOC emission data on the CAMx model simulations of low level ozone in the year 2000 have been studied. Improvement of model results when compared with the measured data may be seen, especially in the simulation of extreme values such as ozone summer maxima. References: - ENVIRON Corp., 2006. CAMx User’s Guide, version 4.40 - Guenther A., Hewitt N., Erickson D., Fall R., Geron Ch., Graedel T., Harley P., Klinger L., Lerdau M., McKay W. A., Pierce T., Scholes

  16. Ice core sulfur and methanesulfonic acid (MSA) records from southern Greenland document North American and European air pollution and suggest a decline in regional biogenic sulfur emissions.

    NASA Astrophysics Data System (ADS)

    Pasteris, D. R.; McConnell, J. R.; Burkhart, J. F.; Saltzman, E. S.

    2014-12-01

    Sulfate aerosols have an important cooling effect on the Earth because they scatter sunlight back to space and form cloud condensation nuclei. However, understanding of the atmospheric sulfur cycle is incomplete, leading to uncertainty in the assessment of past, present and future climate forcing. Here we use annually resolved observations of sulfur and methanesulfonic acid (MSA) concentration in an array of precisely dated Southern Greenland ice cores to assess the history of sulfur pollution emitted from North America and Europe and the history of biogenic sulfate aerosol derived from the North Atlantic Ocean over the last 250 years. The ice core sulfur time series is found to closely track sulfur concentrations in North American and European precipitation since records began in 1965, and also closely tracks estimated sulfur emissions since 1850 within the air mass source region as determined by back trajectory analysis. However, a decline to near-preindustrial sulfur concentrations in the ice cores after 1995 that is not so extensive in the source region emissions indicates that there has been a change in sulfur cycling over the last 150 years. The ice core MSA time series shows a decline of 60% since the 1860s, and is well correlated with declining sea ice concentrations around Greenland, suggesting that the phytoplankton source of biogenic sulfur has declined due to a loss of marginal sea ice zone habitat. Incorporating the implied decrease in biogenic sulfur in our analysis improves the match between the ice core sulfur record and the source region emissions throughout the last 150 years, and solves the problem of the recent return to near-preindustrial levels in the Greenland ice. These findings indicate that the transport efficiency of sulfur air pollution has been relatively stable through the industrial era and that biogenic sulfur emissions in the region have declined.

  17. Framework for Assessing Biogenic CO2 Emissions from Stationary Sources

    EPA Science Inventory

    This revision of the 2011 report, Accounting Framework for Biogenic CO2 Emissions from Stationary Sources, evaluates biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with assessing biogenic carbon dioxide...

  18. The ABAG biogenic emissions inventory project

    NASA Technical Reports Server (NTRS)

    Carson-Henry, C. (Editor)

    1982-01-01

    The ability to identify the role of biogenic hydrocarbon emissions in contributing to overall ozone production in the Bay Area, and to identify the significance of that role, were investigated in a joint project of the Association of Bay Area Governments (ABAG) and NASA/Ames Research Center. Ozone, which is produced when nitrogen oxides and hydrocarbons combine in the presence of sunlight, is a primary factor in air quality planning. In investigating the role of biogenic emissions, this project employed a pre-existing land cover classification to define areal extent of land cover types. Emission factors were then derived for those cover types. The land cover data and emission factors were integrated into an existing geographic information system, where they were combined to form a Biogenic Hydrocarbon Emissions Inventory. The emissions inventory information was then integrated into an existing photochemical dispersion model.

  19. Biogenic emissions from Citrus species in California

    NASA Astrophysics Data System (ADS)

    Fares, Silvano; Gentner, Drew R.; Park, Jeong-Hoo; Ormeno, Elena; Karlik, John; Goldstein, Allen H.

    2011-09-01

    Biogenic Volatile Organic Compounds (BVOC) emitted from plants are the dominant source of reduced carbon chemicals to the atmosphere and are important precursors to the photochemical production of ozone and secondary organic aerosols. Considering the extensive land used for agriculture, cultivated Citrus plantations may play an important role in the chemistry of the atmosphere especially in regions such as the Central Valley of California. Moreover, the BVOC emissions from Citrus species have not been characterized in detail and more species-specific inputs for regional models of BVOC emissions are needed. In this study, we measured the physiological parameters and emissions of the most relevant BVOC (oxygenated compounds, monoterpenes, and sesquiterpenes) for four predominant Citrus species planted in California ( Citrus sinensis var. 'Parent Navel', Citrus limon var. 'Meyer', Citrus reticulata var. 'W. Murcott' and 'Clementine'). We used two analytical techniques to measure a full range of BVOC emitted: Proton Transfer Reaction Mass Spectrometry (PTR-MS) and gas chromatography with mass spectrometry. Methanol, followed by acetone and acetaldehyde, were the dominant BVOC emitted from lemon and mandarin trees (basal emission rates up to 300 ng(C) g(DW) -1 h -1), while oxygenated monoterpenes, monoterpenes, and sesquiterpenes were the main BVOC emitted from orange trees (basal emission rates up to = 2500 ng(C) g(DW) -1 h -1). Light and temperature-dependent algorithms were better predictors of methanol, acetaldehyde, acetone, isoprene and monoterpenes for all the Citrus species. Whereas, temperature-dependent algorithms were better predictors of oxygenated monoterpenes, and sesquiterpenes. We observed that flowering increased emissions from orange trees by an order of magnitude with the bulk of BVOC emissions being comprised of monoterpenes, sesquiterpenes, and oxygenated monoterpenes. Chemical speciation of BVOC emissions show that the various classes of terpene

  20. High Arctic Biogenic Volatile Organic Compound emissions

    NASA Astrophysics Data System (ADS)

    Schollert, Michelle; Buchard, Sebrina; Faubert, Patrick; Michelsen, Anders; Rinnan, Riikka

    2013-04-01

    Biogenic volatile organic compounds (BVOCs) emitted from terrestrial vegetation participate in oxidative reactions, affecting the tropospheric ozone concentration and the lifetimes of greenhouse gasses such as methane. Also, they affect the formation of secondary organic aerosols. BVOCs thus provide a strong link between the terrestrial biosphere, the atmosphere and the climate. Global models of BVOC emissions have assumed minimal emissions from the high latitudes due to low temperatures, short growing seasons and sparse vegetation cover. However, measurements from this region of the world are lacking and emissions from the High Arctic have not been published yet. The aim of this study was to obtain the first estimates for BVOC emissions from the High Arctic. Hereby, we wish to add new knowledge to the understanding of global BVOC emissions. Measurements were conducted in NE Greenland (74°30' N, 20°30' W) in four vegetation communities in the study area. These four vegetation communities were dominated by Cassiope tetragona, Salix arctica, Vaccinium uliginosum and Kobresia myosuroides/Dryas octopetela/Salix arctica, respectively. Emissions were measured by enclosure technique and collection of volatiles into adsorbent cartridges in August 2009. The volatiles were analyzed by gas chromatography-mass spectrometry following thermal desorption. Isoprene showed highest emissions in S. arctica-dominated heath, where it was the dominant single BVOC. However, isoprene emission decreased below detection limit in the end of August when the temperature was at or below 10°C. According to a principal component analysis, monoterpene and sesquiterpene emissions were especially associated with C. tetragona-dominated heath. Especially S. arctica and C. tetragona dominated heaths showed distinct patterns of emitted BVOCs. Emissions of BVOC from the studied high arctic heaths were clearly lower than the emissions observed previously in subarctic heaths with more dense vegetation

  1. Modeling Global Biogenic Emission of Isoprene: Exploration of Model Drivers

    NASA Technical Reports Server (NTRS)

    Alexander, Susan E.; Potter, Christopher S.; Coughlan, Joseph C.; Klooster, Steven A.; Lerdau, Manuel T.; Chatfield, Robert B.; Peterson, David L. (Technical Monitor)

    1996-01-01

    Vegetation provides the major source of isoprene emission to the atmosphere. We present a modeling approach to estimate global biogenic isoprene emission. The isoprene flux model is linked to a process-based computer simulation model of biogenic trace-gas fluxes that operates on scales that link regional and global data sets and ecosystem nutrient transformations Isoprene emission estimates are determined from estimates of ecosystem specific biomass, emission factors, and algorithms based on light and temperature. Our approach differs from an existing modeling framework by including the process-based global model for terrestrial ecosystem production, satellite derived ecosystem classification, and isoprene emission measurements from a tropical deciduous forest. We explore the sensitivity of model estimates to input parameters. The resulting emission products from the global 1 degree x 1 degree coverage provided by the satellite datasets and the process model allow flux estimations across large spatial scales and enable direct linkage to atmospheric models of trace-gas transport and transformation.

  2. Regional biogenic emissions of reactive volatile organic compounds (BVOC) from forests: First results on process studies, modelling and validation experiments (BEWA2000)

    NASA Astrophysics Data System (ADS)

    Rappenglück, B.; Bewa2000 Team

    2003-04-01

    The overall objective of the research consortia is to develop for a forest canopy a prognostic, validated emission model for primary and secondary volatile organic compounds (VOC) to be used for estimating regional biogenic emissions with a higher spatial and temporal resolution than present. To achieve this objective requires a better description of biosynthetic processes as well as chemical degradation mechanisms for reactive biogenic VOC in combination with a process-based model and latest vegetation specific land use information. Up to now several highlights were achieved within the different key activities. In the section model development a process-based isoprenoid emission model was supplemented with new differential equations especially taking into account the influence of transport-resistances for leaf gas-exchange. In biochemical process-studies related to the formation of isoprene in leaves it turned out that during daytime about 20-70% of the total carbon delivered to poplar leaves (photosynthesis + other sources) was derived from xylem-transported sugars. This finding indicates that xylem-delivered carbon may indeed act as a significant alternative carbon source for isoprenoid biosynthesis. First chemical process studies on the reaction of limonene with NO3 radicals (observed in the night and under low light conditions) in the EUPHORE (European Photoreactor) demonstrated a secondary particle formation. At the field site Waldstein (Fichtelgebirge) this reaction may result in maximum pinonealdhyde concentrations in the air and on particles observed in night periods. A first analysis of particle size distributions over the Norway spruce canopy showed the appearance of small particles (< 10nm) during early daytime. The first results demonstrate that the proposed approach of combining interdisciplinary field, laboratory and modelling exercises to address the complexity of the biosphere/atmosphere exchange of reactive trace gases will contribute

  3. An intercomparison of biogenic emissions estimates from BEIS2 and BIOME: Reconciling the differences

    SciTech Connect

    Wilkinson, J.G.; Emigh, R.A.; Pierce, T.E.

    1996-12-31

    Biogenic emissions play a critical role in urban and regional air quality. For instance, biogenic emissions contribute upwards of 76% of the daily hydrocarbon emissions in the Atlanta, Georgia airshed. The Biogenic Emissions Inventory System-Version 2.0 (BEIS2) and the Biogenic Model for Emissions (BIOME) are two models that compute biogenic emissions estimates. BEIS2 is a FORTRAN-based system, and BIOME is an ARC/INFO{reg_sign} - and SAS{reg_sign}-based system. Although the technical formulations of the models are similar, the models produce different biogenic emissions estimates for what appear to be essentially the same inputs. The goals of our study are the following: (1) Determine why BIOME and BEIS2 produce different emissions estimates; (2) Attempt to understand the impacts that the differences have on the emissions estimates; (3) Reconcile the differences where possible; and (4) Present a framework for the use of BEIS2 and BIOME. In this study, we used the Coastal Oxidant Assessment for Southeast Texas (COAST) biogenics data which were supplied to us courtesy of the Texas Natural Resource Conservation Commission (TNRCC), and we extracted the BEIS2 data for the same domain. We compared the emissions estimates of the two models using their respective data sets BIOME Using TNRCC data and BEIS2 using BEIS2 data.

  4. Seasonal trends of biogenic terpene emissions.

    PubMed

    Helmig, Detlev; Daly, Ryan Woodfin; Milford, Jana; Guenther, Alex

    2013-09-01

    Biogenic volatile organic compound (BVOC) emissions from six coniferous tree species, i.e. Pinus ponderosa (Ponderosa Pine), Picea pungens (Blue Spruce), Pseudotsuga menziesii (Rocky Mountain Douglas Fir) and Pinus longaeva (Bristlecone Pine), as well as from two deciduous species, Quercus gambelii (Gamble Oak) and Betula occidentalis (Western River Birch) were studied over a full annual growing cycle. Monoterpene (MT) and sesquiterpene (SQT) emissions rates were quantified in a total of 1236 individual branch enclosure samples. MT dominated coniferous emissions, producing greater than 95% of BVOC emissions. MT and SQT demonstrated short-term emission dependence with temperature. Two oxygenated MT, 1,8-cineol and piperitone, were both light and temperature dependent. Basal emission rates (BER, normalized to 1000μmolm(-2)s(-1) and 30°C) were generally higher in spring and summer than in winter; MT seasonal BER from the coniferous trees maximized between 1.5 and 6.0μgg(-1)h(-1), while seasonal lows were near 0.1μgg(-1)h(-1). The fractional contribution of individual MT to total emissions was found to fluctuate with season. SQT BER measured from the coniferous trees ranged from <0.01 to 0.15μgg(-1)h(-1). BER of up to 1.2μgg(-1)h(-1) of the SQT germacrene B were found from Q. gambelii, peaking in late summer. The β-factor, used to define temperature dependence in emissions modeling, was not found to exhibit discernible growth season trends. A seasonal correction factor proposed by others in previous work to account for a sinusoidal shaped emission pattern was applied to the data. Varying levels of agreement were found between the data and model results for the different plant species seasonal data sets using this correction. Consequently, the analyses on this extensive data set suggest that it is not feasible to apply a universal seasonal correction factor across different vegetation species. A modeling exercise comparing two case scenarios, (1) without and (2

  5. A biogenic volatile organic compounds emission inventory for Yunnan Province.

    PubMed

    Wang, Zhi-Hui; Bai, Yu-Hua; Zhang, Shu-Yu

    2005-01-01

    The first detailed inventory for volatile organic compounds (VOC) emissions from vegetation over Yunnan Province, China was presented. The spatially and temporally resolved inventory was developed based on a geographic information system (GIS), remote sensing (RS) data and field measurement data, such as digitized land-use data, normalized difference vegetation index (NDVI) and temperature data from direct real-time measurement. The inventory has a spatial resolution of 5 km x 5 km and a time resolution of 1 h. Urban, agriculture, and natural land-use distributions in Yunnan Province were combined with biomass factors for each land-use category to produce a spatially resolved biomass inventory. A biogenic emission inventory was developed by combining the biomass inventory with hourly emission rates for tree, shrub and ground cover species of the study area. Correcting for environmental factors, including light intensity and temperature, a value of 1.1 x 10(12) gC for total annual biogenic VOC emissions from Yunnan Province, including 6.1 x 10(11) gC for isoprene, 2.1 x 10(11) gC for monoterpenes, and 2.6 x 10(11) gC for OVOC was obtained. The highest VOC emissions occurred in the northwestern, southwestern and north region of Yunnan Province. Some uncertainties were also discussed in this study. PMID:16083102

  6. Observational constraints on biogenic VOC emission model estimates (Invited)

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.

    2013-12-01

    Chemistry and transport models require accurate estimates of biogenic volatile organic compound (BVOC) emissions in order to simulate the atmospheric constituents controlling air quality and climate, such as ozone and particles, and so the uncertainties associated with BVOC estimates may be limiting the development of effective air quality and climate management strategies. BVOC emission models include driving variables and algorithms that span scales from the leaf level to entire landscapes. While considerable effort has been made to improve BVOC emission models in the past decades, there have been relatively few attempts to quantify the uncertainties associated with these estimates or to rigorously assess emission modeling approaches. This presentation will summarize the availability of observations that can be used to constrain BVOC emission models including flux measurements (leaf enclosure, above canopy tower, and aircraft platforms) and ambient concentrations of BVOC and their products. Results from studies targeting specific BVOC emission processes (e.g., the response of isoprene emission to drought and the response of monoterpene emissions to bark beetle attack) will be shown and the application of these observations for BVOC model evaluation will be discussed. In addition, the results from multi-scale BVOC emission studies (leaf enclosure, whole canopy flux tower, regional aircraft eddy covariance) will be presented and a approach for incorporating these observations into a community model testbed will be described and used to evaluate regional BVOC emission models.

  7. Applications of Satellite Remote Sensing Data for Biogenic Emission Estimates in Southeastern Texas

    NASA Astrophysics Data System (ADS)

    Feldman, M. S.; Howard, T.; Mullins, G.; McDonald-Buller, E.; Allen, D. T.

    2007-12-01

    Biogenic hydrocarbons, including isoprene, monoterpenes, and oxygenated compounds, are emitted in substantial quantities by vegetation and dominate the overall volatile organic compound emission inventory in Southeastern Texas. Spatial distributions of biogenic emissions in Texas are heterogeneous, and biogenic emission processes are affected by the characterization of land cover, leaf area index, drought stress, and surface temperatures. On a regional scale, biogenic emissions, particularly isoprene, in the presence of high levels of nitrogen oxides (NOx), will produce elevated ground-level ozone concentrations. The sensitivity of biogenic emission estimates and air quality model predictions to the characterization of land use/land cover (LULC) in southeastern Texas is examined. A LULC database has been developed for the region based on source imagery collected by the Landsat 7 Enhanced Thematic Mapper-Plus sensor between 1999 and 2003, and data from field studies used for species identification and quantification of biomass densities. This database and the LULC database currently used in regulatory air quality models by the State of Texas are compared. Effects of the LULC data on biogenic emission estimates and modeled ozone concentrations are examined using the Global Biosphere Emissions and Interactions System and the Comprehensive Air Quality Model with extensions during an August 22-September 6, 2000 episode developed for the Houston/Galveston area. These results are also compared to biogenic emission estimates from the recently created Model of Emissions of Gases and Aerosols from Nature (MEGAN), which includes a global vegetation map compiled from recent satellite data and ecosystem inventories. Biogenic emissions estimated from the new LULC dataset showed good general spatial agreement with those from the currently used LULC dataset but significantly lower emissions (~40% less hourly emissions across the modeling domain), primarily due to differences in

  8. Source apportionment of PM10 in a North-Western Europe regional urban background site (Lens, France) using Positive Matrix Factorization and including primary biogenic emissions

    NASA Astrophysics Data System (ADS)

    Waked, A.; Favez, O.; Alleman, L. Y.; Piot, C.; Petit, J.-E.; Delaunay, T.; Verlinden, E.; Golly, B.; Besombes, J.-L.; Jaffrezo, J.-L.; Leoz-Garziandia, E.

    2013-10-01

    In this work, the source of ambient particulate matter (PM10) collected over a one year period at an urban background site in Lens (France) were determined and investigated using a~Positive Matrix Factorization receptor model (US EPA PMF v3.0). In addition, a Potential Source Contribution Function (PSCF) was performed by means of the Hysplit v4.9 model to assess prevailing geographical origins of the identified sources. A selective iteration process was followed for the qualification of the more robust and meaningful PMF solution. Components measured and used in the PMF include inorganic and organic species: soluble ionic species, trace elements, elemental carbon (EC), sugars alcohols, sugar anhydride, and organic carbon (OC). The mean PM10 concentration measured from March 2011 to March 2012 was about 21 μg m-3 with typically OM, nitrate and sulfate contributing to most of the mass and accounting respectively for 5.8, 4.5 and 2.3 μg m-3 on a yearly basis. Accordingly, PMF outputs showed that the main emission sources were (in a decreasing order of contribution): secondary inorganic aerosols (28% of the total PM10 mass), aged marine emissions (19%), with probably predominant contribution of shipping activities, biomass burning (13%), mineral dust (13%), primary biogenic emissions (9%), fresh sea salts (8%), primary traffic emissions (6%) and heavy oil combustion (4%). Significant temporal variations were observed for most of the identified sources. In particular, biomass burning emissions were negligible in summer but responsible for about 25% of total PM10 and 50% of total OC at wintertime. Conversely, primary biogenic emissions were found to be negligible in winter but to represent about 20% of total PM10 and 40% of total OC in summer. The latter result calls for more investigations of primary biogenic aerosols using source apportionment studies, which quite usually disregards this type of sources. This study furthermore underlines the major influence of

  9. Source apportionment of PM10 in a north-western Europe regional urban background site (Lens, France) using positive matrix factorization and including primary biogenic emissions

    NASA Astrophysics Data System (ADS)

    Waked, A.; Favez, O.; Alleman, L. Y.; Piot, C.; Petit, J.-E.; Delaunay, T.; Verlinden, E.; Golly, B.; Besombes, J.-L.; Jaffrezo, J.-L.; Leoz-Garziandia, E.

    2014-04-01

    In this work, the source of ambient particulate matter (PM10) collected over a one-year period at an urban background site in Lens (France) was determined and investigated using a positive matrix factorization receptor model (US EPA PMF v3.0). In addition, a potential source contribution function (PSCF) was performed by means of the Hybrid Single-Particle Lagrangian Integrated Trajectory (Hysplit) v4.9 model to assess prevailing geographical origins of the identified sources. A selective iteration process was followed for the qualification of the more robust and meaningful PMF solution. Components measured and used in the PMF included inorganic and organic species: soluble ionic species, trace elements, elemental carbon (EC), sugar alcohols, sugar anhydride, and organic carbon (OC). The mean PM10 concentration measured from March 2011 to March 2012 was about 21 μg m-3 with typically OM, nitrate and sulfate contributing to most of the mass and accounting respectively for 5.8, 4.5 and 2.3 μg m-3 on a yearly basis. Accordingly, PMF outputs showed that the main emission sources were (in decreasing order of contribution) secondary inorganic aerosols (28% of the total PM10 mass), aged marine emissions (19%), with probably predominant contribution of shipping activities, biomass burning (13%), mineral dust (13%), primary biogenic emissions (9%), fresh sea salts (8%), primary traffic emissions (6%) and heavy oil combustion (4%). Significant temporal variations were observed for most of the identified sources. In particular, biomass burning emissions were negligible in summer but responsible for about 25% of total PM10 and 50% of total OC in wintertime. Conversely, primary biogenic emissions were found to be negligible in winter but to represent about 20% of total PM10 and 40% of total OC in summer. The latter result calls for more investigations of primary biogenic aerosols using source apportionment studies, which quite usually disregard this type of source. This study

  10. Biogenic emission measurement and inventories determination of biogenic emissions in the eastern United States and Texas and comparison with biogenic emission inventories

    NASA Astrophysics Data System (ADS)

    Warneke, C.; de Gouw, J. A.; Del Negro, L.; Brioude, J.; McKeen, S.; Stark, H.; Kuster, W. C.; Goldan, P. D.; Trainer, M.; Fehsenfeld, F. C.; Wiedinmyer, C.; Guenther, A. B.; Hansel, A.; Wisthaler, A.; Atlas, E.; Holloway, J. S.; Ryerson, T. B.; Peischl, J.; Huey, L. G.; Hanks, A. T. Case

    2010-04-01

    During the NOAA Southern Oxidant Study 1999 (SOS1999), Texas Air Quality Study 2000 (TexAQS2000), International Consortium for Atmospheric Research on Transport and Transformation (ICARTT2004), and Texas Air Quality Study 2006 (TexAQS2006) campaigns, airborne measurements of isoprene and monoterpenes were made in the eastern United States and in Texas, and the results are used to evaluate the biogenic emission inventories BEIS3.12, BEIS3.13, MEGAN2, and WM2001. Two methods are used for the evaluation. First, the emissions are directly estimated from the ambient isoprene and monoterpene measurements assuming a well-mixed boundary layer and are compared with the emissions from the inventories extracted along the flight tracks. Second, BEIS3.12 is incorporated into the detailed transport model FLEXPART, which allows the isoprene and monoterpene mixing ratios to be calculated and compared to the measurements. The overall agreement for all inventories is within a factor of 2 and the two methods give consistent results. MEGAN2 is in most cases higher, and BEIS3.12 and BEIS3.13 lower than the emissions determined from the measurements. Regions with clear discrepancies are identified. For example, an isoprene hot spot to the northwest of Houston, Texas, was expected from BEIS3 but not observed in the measurements. Interannual differences in emissions of about a factor of 2 were observed in Texas between 2000 and 2006.

  11. Marine aerosol formation from biogenic iodine emissions.

    PubMed

    O'Dowd, Colin D; Jimenez, Jose L; Bahreini, Roya; Flagan, Richard C; Seinfeld, John H; Hämeri, Kaarle; Pirjola, Liisa; Kulmala, Markku; Jennings, S Gerard; Hoffmann, Thorsten

    2002-06-01

    The formation of marine aerosols and cloud condensation nuclei--from which marine clouds originate--depends ultimately on the availability of new, nanometre-scale particles in the marine boundary layer. Because marine aerosols and clouds scatter incoming radiation and contribute a cooling effect to the Earth's radiation budget, new particle production is important in climate regulation. It has been suggested that sulphuric acid derived from the oxidation of dimethyl sulphide is responsible for the production of marine aerosols and cloud condensation nuclei. It was accordingly proposed that algae producing dimethyl sulphide play a role in climate regulation, but this has been difficult to prove and, consequently, the processes controlling marine particle formation remains largely undetermined. Here, using smog chamber experiments under coastal atmospheric conditions, we demonstrate that new particles can form from condensable iodine-containing vapours, which are the photolysis products of biogenic iodocarbons emitted from marine algae. Moreover, we illustrate, using aerosol formation models, that concentrations of condensable iodine-containing vapours over the open ocean are sufficient to influence marine particle formation. We suggest therefore that marine iodocarbon emissions have a potentially significant effect on global radiative forcing. PMID:12050661

  12. 76 FR 80368 - Notification of Teleconferences of the Science Advisory Board Biogenic Carbon Emissions Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... draft report and accounting framework. As noticed in 76 FR 61100-61101, the SAB Biogenic Carbon... AGENCY Notification of Teleconferences of the Science Advisory Board Biogenic Carbon Emissions Panel... Biogenic Carbon Emissions Panel to review EPA's draft Accounting Framework for Biogenic CO2 Emissions...

  13. BIOGENIC HYDROCARBON EMISSION INVENTORY FOR THE U.S. USING A SIMPLE FOREST CANOPY MODEL

    EPA Science Inventory

    A biogenic hydrocarbon emission inventory system, developed for acid deposition and regional oxidant modeling, is described, and results for a U.S. emission inventory are presented. or deciduous and coniferous forests, scaling relationships are used to account for canopy effects ...

  14. Biogenic volatile organic compound emissions from vegetation fires.

    PubMed

    Ciccioli, Paolo; Centritto, Mauro; Loreto, Francesco

    2014-08-01

    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. PMID:24689733

  15. Biogenic volatile organic compound emissions from vegetation fires

    PubMed Central

    CICCIOLI, PAOLO; CENTRITTO, MAURO; LORETO, FRANCESCO

    2014-01-01

    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. PMID:24689733

  16. Measurement of biogenic hydrocarbon emissions from vegetation in the Lower Fraser Valley, British Columbia

    NASA Astrophysics Data System (ADS)

    Drewitt, G. B.; Curren, K.; Steyn, D. G.; Gillespie, T. J.; Niki, H.

    Biogenic volatile organic compounds (VOCs) participate in many chemical reactions in the atmosphere and in some cases, adversely affect air quality through increased production of photochemical ozone near urban sources of nitrogen oxides. In order to implement an effective control strategy, the relative role of these biogenic hydrocarbon emissions in producing ground-level ozone must be known. During the summers of 1995 and 1996, a field study was undertaken to determine fluxes of biogenic VOCs from both natural and agricultural surfaces in the Lower Fraser Valley located in southwestern British Columbia. Emissions from agricultural surfaces were measured using a flux gradient approach while emissions from the dominant tree species in the region were measured with a branch enclosure system. Results show very little biogenic VOC production from many agricultural crops such as pasture, Potatoes or Blueberries. Cranberries showed very high emissions during the summer of 1994 but failed to show similar results during the summer of 1995. Emissions of isoprene and monoterpenes from native tree species such as Western Red Cedar, Douglas Fir and Coastal Hemlock were quite low. Cottonwood trees on the other hand had fairly low emissions of monoterpenes but extremely high emissions of isoprene. Measurements provided here will be useful for improving our database of hydrocarbon emissions rates from vegetation for future emission inventories and model testing.

  17. Assessment of Biogenic Terpenoid Emission Inventories in Asia using Remotely Sensed Spatial and Temporal Surrogate Data

    NASA Astrophysics Data System (ADS)

    Kim, H. K.; Woo, J. H.; Choi, K. C.; Lee, Y. M.; Kim, Y.

    2014-12-01

    Among biogenic volatile organic compound (BVOC) species, the most comprehensively studied species are isoprene and monoterpene (terpenoid) due to their significant impacts on global and regional total VOC emission budget and ozone and aerosol formation mechanisms. Biogenic terpenoid emission inventories have been often assessed on a global basis and consistently available on model grid system units to support climate and chemical transport modeling. However, little of these have been assessed based on the political units such as countries and provinces. On the basis of political boundaries in Asia, we assembled and compared a large number of terpenoid emission estimates including currently published or reported sources. We assessed these terpenoid emission estimates in the context of the spatial and temporal consistency. Since the biogenic terpenoid emission inventories commonly use leaf biomass density, solar radiation and temperature as driving variables, we used the MODIS Gross Primary Productivity (GPP) and Land Surface Temperature (LST) datasets as surrogates to correlate with the terpenoid emission estimates in Asia. Based on our current assessment, we will discuss about the current status of the biogenic terpenoid emission inventories in Asia.

  18. BIOGENIC VOLATILE ORGANIC COMPOUND EMISSIONS FROM DESERT VEGETATION OF THE SOUTHWESTERN U.S.

    EPA Science Inventory

    Thirteen common plant species in the Mojave and Sonoran Desert regions of the western United States were tested for emissions of biogenic non-methane volatile organic compounds (BVOCs). Only two of the species examined emitted isoprene at rates of 10 µgCg−1 ...

  19. Three-North Shelter Forest Program contribution to long-term increasing trends of biogenic isoprene emissions in northern China

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Huang, Tao; Zhang, Leiming; Shen, Yanjie; Zhao, Yuan; Gao, Hong; Mao, Xiaoxuan; Jia, Chenhui; Ma, Jianmin

    2016-06-01

    To assess the long-term trends of isoprene emissions in northern China and the impact of the Three-North Shelter Forest Program (TNRSF) on these trends, a database of historical biogenic isoprene emissions from 1982 to 2010 was developed for this region using a biogenic emission model for gases and aerosols. The total amount of the biogenic isoprene emissions during the 3 decades was 4.4 Tg in northern China and 1.6 Tg in the TNRSF, with annual emissions ranging from 132 000 to 176 000 t yr-1 and from 45 000 to 70 000 t yr-1, respectively, in the two regions. Isoprene emission fluxes have increased substantially in many areas of the TNRSF over the last 3 decades due to the growing trees and vegetation coverage, especially in the central north China region where the highest emission incline reached to 58 % from 1982 to 2010. Biogenic isoprene emissions produced from anthropogenic forests tended to surpass those produced from natural forests, such as boreal forests in northeastern China. The estimated isoprene emissions suggest that the TNRSF has altered the long-term emission trend in north China from a decreasing trend during 1982 to 2010 (slope = -0.533, R2 = 0.05) to an increasing trend for the same period of time (slope = 0.347, R2 = 0.014), providing strong evidence for the change in the emissions of biogenic volatile organic compounds (BVOCs) induced by the human activities on decadal or longer timescales.

  20. BIOGENIC NITRIC OXIDE EMISSIONS FROM CROPLAND SOILS

    EPA Science Inventory

    Emissions of nitric oxide (NO) were determined during late spring and summer 1995 and the spring of 1996 from four agricultural soils on which four different crops were grown. These agricultural soils were located at four different sites throughout North Carolina. Emission rates ...

  1. Global Biogenic Emission of Carbon Dioxide from Landfills

    NASA Astrophysics Data System (ADS)

    Lima, R.; Nolasco, D.; Meneses, W.; Salazar, J.; Hernández, P.; Pérez, N.

    2002-12-01

    Human-induced increases in the atmospheric concentrations of greenhouse gas components have been underway over the past century and are expected to drive climate change in the coming decades. Carbon dioxide was responsible for an estimated 55 % of the antropogenically driven radiactive forcing of the atmosphere in the 1980s and is predicted to have even greater importance over the next century (Houghton et al., 1990). A highly resolved understanding of the sources and sinks of atmospheric CO2, and how they are affected by climate and land use, is essential in the analysis of the global carbon cycle and how it may be impacted by human activities. Landfills are biochemical reactors that produce CH4 and CO2 emissions due to anaerobic digestion of solid urban wastes. Estimated global CH4 emission from landfills is about 44 millions tons per year and account for a 7.4 % of all CH4 sources (Whiticar, 1989). Observed CO2/CH4 molar ratios from landfill gases lie within the range of 0.7-1.0; therefore, an estimated global biogenic emission of CO2 from landfills could reach levels of 11.2-16 millions tons per year. Since biogas extraction systems are installed for extracting, purifying and burning the landfill gases, most of the biogenic gas emission to the atmosphere from landfills occurs through the surface environment in a diffuse and disperse form, also known as non-controlled biogenic emission. Several studies of non-controlled biogenic gas emission from landfills showed that CO2/CH4 weight ratios of surface landfill gases, which are directly injected into the atmosphere, are about 200-300 times higher than those observed in the landfill wells, which are usually collected and burned by gas extraction systems. This difference between surface and well landfill gases is mainly due to bacterial oxidation of the CH4 to CO2 inducing higher CO2/CH4 ratios for surface landfill gases than those well landfill gases. Taking into consideration this observation, the global biogenic

  2. Emissions of biogenic VOC from forest ecosystems in central Europe: estimation and comparison with anthropogenic emission inventory.

    PubMed

    Zemankova, Katerina; Brechler, Josef

    2010-02-01

    This paper describes a method of estimating emission fluxes of biogenic volatile organic compounds (BVOCs) based on the approach proposed by Guenther et al. (1995) and the high-resolution Corine land-cover 2000 database (1x1km resolution). The computed emission fluxes for the Czech Republic (selected for analysis as being representative of a heavily cultivated, central European country) are compared with anthropogenic emissions, both for the entire country and for individual administrative regions. In some regions, BVOC emissions are as high as anthropogenic emissions; however, in most regions the BVOC emissions are approximately 50% of the anthropogenic emissions. The yearly course of BVOC emissions (represented by monoterpenes and isoprene) is presented, along with the spatial distribution of annual mean values. Differences in emission distributions during winter (January) and summer (June) are also considered. PMID:19773106

  3. Biogenic 2-methyl-3-buten-2-ol increases regional ozone and HOx sources

    NASA Astrophysics Data System (ADS)

    Steiner, Allison L.; Tonse, Shaheen; Cohen, Ronald C.; Goldstein, Allen H.; Harley, Robert A.

    2007-08-01

    We present the first regional-scale chemistry simulation investigating the effects of biogenic 2-methyl-3-buten-2-ol (MBO) emissions on air quality. In a central California model domain, MBO emissions have a distinctly different regional pattern than isoprene but have similar daily maxima of about 5 mg m-2 hr-1. MBO oxidation causes an increase in ozone, formaldehyde, acetone and consequently hydrogen radical production (PHOx). The addition of MBO increases the daily maximum ozone as much as 3 ppb near source regions (2-5% in rural areas) and as much as 1 ppb in the Central Valley. Formaldehyde concentrations increase by as much as 1 ppb (40%) over the Sierra Nevada Mountains, increasing the production of HOx by 10-20% and accelerating local chemistry. This indicates that inclusion of MBO and other biogenic oxygenated emissions in regional simulations in the western and southeastern United States is essential for accurate representation of ozone and HOx.

  4. Evaluating Global Emission Inventories of Biogenic Bromocarbons

    NASA Technical Reports Server (NTRS)

    Hossaini, Ryan; Mantle, H.; Chipperfield, M. P.; Montzka, S. A.; Hamer, P.; Ziska, F.; Quack, B.; Kruger, K.; Tegtmeier, S.; Atlas, E.; Sala, S.; Engel, A.; Bonisch, H.; Keber, T.; Oram, D.; Mills, G.; Ordonez, C.; Saiz-Lopez, A.; Warwick, N.; Liang, Q.; Feng, W.; Moore, F.; Miller, F.; Marecal, V.; Richards, N. A. D.; Dorf, M.; Pfeilsticker, K.

    2013-01-01

    Emissions of halogenated very short-lived substances (VSLS) are poorly constrained. However, their inclusion in global models is required to simulate a realistic inorganic bromine (Bry) loading in both the troposphere, where bromine chemistry perturbs global oxidizing capacity, and in the stratosphere, where it is a major sink for ozone (O3). We have performed simulations using a 3-D chemical transport model (CTM) including three top-down and a single bottom-up derived emission inventory of the major brominated VSLS bromoform (CHBr3) and dibromomethane (CH2Br2). We perform the first concerted evaluation of these inventories, comparing both the magnitude and spatial distribution of emissions. For a quantitative evaluation of each inventory, model output is compared with independent long-term observations at National Oceanic and Atmospheric Administration (NOAA) ground-based stations and with aircraft observations made during the NSF (National Science Foundation) HIAPER Pole-to-Pole Observations (HIPPO) project. For CHBr3, the mean absolute deviation between model and surface observation ranges from 0.22 (38 %) to 0.78 (115 %) parts per trillion (ppt) in the tropics, depending on emission inventory. For CH2Br2, the range is 0.17 (24 %) to 1.25 (167 %) ppt. We also use aircraft observations made during the 2011 Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere (SHIVA) campaign, in the tropical western Pacific. Here, the performance of the various inventories also varies significantly, but overall the CTM is able to reproduce observed CHBr3 well in the free troposphere using an inventory based on observed sea-to-air fluxes. Finally, we identify the range of uncertainty associated with these VSLS emission inventories on stratospheric bromine loading due to VSLS (Br(VSLS/y)). Our simulations show Br(VSLS/y) ranges from approximately 4.0 to 8.0 ppt depending on the inventory. We report an optimized estimate at the lower end of this range (approximately 4 ppt

  5. Biogenic Emissions of Light Alkenes from a Coniferous Forest

    NASA Astrophysics Data System (ADS)

    Rhew, R. C.; Turnipseed, A. A.; Martinez, L.; Shen, S.; De Gouw, J. A.; Warneke, C.; Koss, A.; Lerner, B. M.; Miller, B. R.; Smith, J. N.; Guenther, A. B.

    2014-12-01

    Alkenes are reactive hydrocarbons that play important roles in the photochemical production of tropospheric ozone and in the formation of secondary organic aerosols. The light alkenes (C2-C4) originate from both biogenic and anthropogenic sources and include C2H4 (ethene), C3H6 (propene) and C4H8 (1-butene, 2-butene, 2-methylpropene). Light alkenes are used widely as chemical feedstocks because their double bond makes them versatile for industrial reactions. Their biogenic sources are poorly characterized, with most global emissions estimates relying on laboratory-based studies; net ecosystem emissions have been measured at only one site thus far. Here we report net ecosystem fluxes of light alkenes and isoprene from a semi-arid ponderosa pine forest in the Rocky Mountains of Colorado, USA. Canopy scale fluxes were measured using relaxed eddy accumulation (REA) techniques on the 28-meter NCAR tower in the Manitou Experimental Forest Observatory. Updrafts and downdrafts were determined by sonic anemometry and segregated into 'up' and 'down' reservoirs over the course of an hour. Samples were then measured on two separate automated gas chromatographs (GCs). The first GC measured light hydrocarbons (C2-C6 alkanes and C2-C5 alkenes) by flame ionization detection (FID). The second GC measured halocarbons (methyl chloride, CFC-12, and HCFC-22) by electron capture detection (ECD). Additional air measurements from the top of the tower included hydrocarbons and their oxidation products by Proton Transfer Reaction Mass Spectrometry (PTR-MS). Three field intensives were conducted during the summer of 2014. The REA flux measurements showed that ethene, propene and the butene emissions have significant diurnal cycles, with maximum emissions at midday. The light alkenes contribute significantly to the overall biogenic source of reactive hydrocarbons and have a temporal variability that may be associated with physical and biological parameters. These ecosystem scale measurements

  6. Soil Moisture Characterization for Biogenic Emissions Modeling in Texas

    NASA Astrophysics Data System (ADS)

    McGaughey, G.; Sun, Y.; Kimura, Y.; Huang, L.; Fu, R.; McDonald-Buller, E.

    2014-12-01

    The role of isoprene and other biogenic volatile organic compounds (BVOCs) in the formation of tropospheric ozone has been recognized as critical for air quality planning in Texas. In the southwestern United States, drought has become a recurring phenomenon and, in addition to other extreme weather events, can impose profound and complex effects on human populations and the environment. Understanding these effects on vegetation and biogenic emissions is important as Texas concurrently faces requirements to achieve and maintain attainment with the National Ambient Air Quality Standard (NAAQS) for ozone in several large metropolitan areas. This research evaluated the impact of soil moisture through the use of simulated and observational datasets on emissions estimates of isoprene. Soil moisture measurements (e.g., Climate Reference Network, Soil Climate Analysis Network) at limited locations in eastern Texas during 2006-2011 showed spatial and temporal variability associated with environmental drivers such as meteorology and physical soil characteristics; low volumetric soil moisture values (< 0.05 m3/m3) were observed during 2011, a year characterized by all-time record drought over the majority of Texas. Comparisons of soil moisture observations in the upper one meter to predictions from the North American Land Data Assimilation System (NLDAS) indicated a tendency towards a dry bias for NLDAS especially at depths greater than 10 cm. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) was used to explore the sensitivity of biogenic emissions estimates to alternative soil moisture representations for year 2011. A range of soil moisture inputs over eastern Texas informed by the observed to simulated comparisons demonstrated that the impact on predicted isoprene emissions was affected by both the soil moisture and specific wilting point datasets employed.

  7. An above-canopy flux network for improving and evaluating biogenic VOC emission models: GLOBal Organic Emissions NETwork (GLOBOENET) (Invited)

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.; Turnipseed, A.; Duhl, T.; Shertz, S.; Karl, T.; Monson, R.; Litvak, M. E.; Jardine, K. J.; Abrell, L.; Geron, C.; Seco, R.

    2009-12-01

    The first estimates of global total biogenic VOC emissions were reported almost 50 years ago. Observations over the following three decades were incorporated into a monthly biogenic VOC emission inventory on a 1 degree by 1 degree grid, called the GEIA natural VOC emission inventory, in the early 1990s and began to be widely used in global chemistry and transport models. Also in the 1990s, regulatory air quality modelers began to routinely include regional biogenic VOC emission inventories using procedures such as BEIS/BEIS2/BEIS3. These approaches are still used today although there have been advances in the past two decades that have improved our understanding of the processes controlling biogenic VOC emissions. Current models, including the Model of Emissions of Gases and Aerosols from Nature (MEGAN), have integrated some of this information and are being incorporated as on-line components of coupled models. A major limitation in the advancement and evaluation of these models is the lack of suitable observations from representative ecosystems. We have initiated a community activity, called GLOBOENET, to address the need for observations that can be used to improve and evaluate these models. GLOBOENET is enhancing existing flux towers, such as those participating in FLUXNET, by adding biogenic VOC flux measurements to sites that are well characterized and are already measuring fluxes of CO2, water and energy. The biogenic VOC flux measurements are made with a low-cost and low-power Relaxed Eddy Accumulation (REA) system that has been evaluated by comparison to a PTRMS eddy covariance system. This presentation will describe the GLOBOENET approach and present some initial results. This includes seasonal and interannual variations at a forested site in Colorado that demonstrates the importance of climate, phenology and stress-induced emissions. Results from additional sites in Arizona, North Carolina, Michigan and New Mexico will also be shown and a strategy for

  8. Enhanced SOA formation from mixed anthropogenic and biogenic emissions during the CARES campaign

    SciTech Connect

    Shilling, John E.; Zaveri, Rahul A.; Fast, Jerome D.; Kleinman, Lawrence I.; Alexander, M. L.; Canagaratna, Manjula R.; Fortner, Edward; Hubbe, John M.; Jayne, John T.; Sedlacek, Art; Setyan, Ari; Springston, S.; Worsnop, Douglas R.; Zhang, Qi

    2013-02-21

    The CARES campaign was conducted during June, 2010 in the vicinity of Sacramento, California to study aerosol formation and aging in a region where anthropogenic and biogenic emissions regularly mix. Here, we describe measurements from an Aerodyne High Resolution Aerosol Mass Spectrometer (AMS), an Ionicon Proton Transfer Reaction Mass Spectrometer (PTR-MS), and trace gas detectors (CO, NO, NOx) deployed on the G-1 research aircraft to investigate ambient gas- and particle-phase chemical composition. AMS measurements showed that the particle phase is dominated by organic aerosol (OA) (85% on average) with smaller concentrations of sulfate (5%), nitrate (6%) and ammonium (3%) observed. PTR-MS data showed that isoprene dominated the biogenic volatile organic compound concentrations (BVOCs), with monoterpene concentrations generally below the detection limit. Using two different metrics, median OA concentrations and the slope of plots of OA vs. CO concentrations (i.e., ΔOA/ΔCO), we contrast organic aerosol evolution on flight days with different prevailing meteorological conditions to elucidate the role of anthropogenic and biogenic emissions on OA formation. Airmasses influenced predominantly by biogenic emissions had median OA concentrations of 2.9 μg/m3 and near zero ΔOA/ΔCO. Those influenced predominantly by anthropogenic emissions had median OA concentrations of 4.7 μg/m3 and ΔOA/ΔCO ratios of 35 - 44 μg/m3ppmv. When biogenic and anthropogenic emissions mix, OA levels are dramatically enhanced with median OA concentrations of 11.4 μg/m3 and ΔOA/ΔCO ratios of 77 - 157 μg/m3ppmv. Taken together, our observations show that production of OA is enhanced when anthropogenic emissions from Sacramento mix with isoprene-rich air from the foothills. A strong, non-linear dependence of SOA yield from isoprene is the mechanistic explanation for this enhancement most consistent with both the gas- and particle-phase data. If these observations are found to be robust

  9. Addressing biogenic greenhouse gas emissions from hydropower in LCA.

    PubMed

    Hertwich, Edgar G

    2013-09-01

    The ability of hydropower to contribute to climate change mitigation is sometimes questioned, citing emissions of methane and carbon dioxide resulting from the degradation of biogenic carbon in hydropower reservoirs. These emissions are, however, not always addressed in life cycle assessment, leading to a bias in technology comparisons, and often misunderstood. The objective of this paper is to review and analyze the generation of greenhouse gas emissions from reservoirs for the purpose of technology assessment, relating established emission measurements to power generation. A literature review, data collection, and statistical analysis of methane and CO2 emissions are conducted. In a sample of 82 measurements, methane emissions per kWh hydropower generated are log-normally distributed, ranging from micrograms to 10s of kg. A multivariate regression analysis shows that the reservoir area per kWh electricity is the most important explanatory variable. Methane emissions flux per reservoir area are correlated with the natural net primary production of the area, the age of the power plant, and the inclusion of bubbling emissions in the measurement. Even together, these factors fail to explain most of the variation in the methane flux. The global average emissions from hydropower are estimated to be 85 gCO2/kWh and 3 gCH4/kWh, with a multiplicative uncertainty factor of 2. GHG emissions from hydropower can be largely avoided by ceasing to build hydropower plants with high land use per unit of electricity generated. PMID:23909506

  10. European Biogenic Volatile Organic Compound emissions estimate using MEGAN v2.10

    NASA Astrophysics Data System (ADS)

    Dawoud, M.; Pozzoli, L.; Unal, A.; Kindap, T.; Poupkou, A.; Katragou, E.; Melas, D.

    2013-12-01

    . The difference between the two models estimates could be related to using specific regional EFs and PFTs for NEMO while a global dataset was used in our study, and also to the differences in the meteorological simulations. This is the first study quantifying biogenic emissions over Europe for one entire year with the new MEGAN version. This study will present our results in light of previous findings and, in order to understand the large uncertainty related to BVOC emissions and their impacts on air quality, we will show as well the results from CMAQ model for the summer 2008 episode using BVOC emissions from both MEGAN2.10 and NEMO models.

  11. Emissions of biogenic sulfur gases from Alaskan tundra

    NASA Technical Reports Server (NTRS)

    Hines, Mark E.; Morrison, Michael C.

    1992-01-01

    Fluxes of the biogenic sulfur gases carbonyl sulfide (COS), dimethyl sulfide (DMS), methyl mercaptan (MeSH), and carbon disulfide (CS2) were determined for several freshwater and coastal marine tundra habitats using a dynamic enclosure method and gas chromatography. In the freshwater tundra sites, highest emissions, with a mean of 6.0 nmol/m(sup -2)H(sup -1) (1.5-10) occurred in the water-saturated wet meadow areas inhabited by grasses, sedges, and Sphagnum mosses. In the drier upland tundra sites, highest fluxes occurred in areas inhabited by mixed vegetation and labrador tea at 3.0 nmol/m(sup -2)h(sup -1) (0-8.3) and lowest fluxes were from lichen-dominated areas at 0.9 nmol/m(sup -2)h(sup -1). Sulfur emissions from a lake surface were also low at 0.8 nmol/m(sup -2)h(sup -1). Of the compounds measured, DMS was the dominant gas emitted from all of these sites. Sulfure emissions from the marine sites were up to 20-fold greater than fluxes in the freshwater habitats and were also dominated by DMS. Emissions of DMS were highest from intertidal soils inhabited by Carex subspathacea (150-250 nmol/m(sup -2)h(sup -1)). This Carex sp. was grazed thoroughly by geese and DMS fluxes doubled when goose feces were left within the flux chamber. Emissions were much lower from other types of vegetation which were more spatially dominant. Sulfure emissions from tundra were among the lowest reported in the literature. When emission data were extrapolated to include all tundra globally, the global flux of biogenic sulfur from this biome is 2-3 x 10(exp 8) g/yr. This represents less than 0.001 percent of the estimated annual global flux (approximately 50 Tg) of biogenic sulfur and less than 0.01 percent of the estimated terrestrial flux. The low emissions are attributed to the low availability of sulfate, certain hydrological characteristics of tundra, and the tendency for tundra to accumulate organic matter.

  12. Emissions of biogenic sulfur gases from Alaskan tundra

    SciTech Connect

    Hines, M.E.; Morrison, M.C.

    1992-10-30

    Fluxes of the biogenic sulfur gases carbonyl sulfide (COS), dimethyl sulfide (DMS), methyl mercaptan (MeSH), and carbon disulfide (CS{sub 2}) were determined from several freshwater and coastal marine tundra habitats using a dynamic enclosure method and gas chromatography. In the freshwater tundra sites, highest emissions, with a mean of 6.0 nmol m{sup {minus}2}h{sup {minus}1} (1.5-10) occurred in the water-saturated wet meadow areas inhabited by grasses, sedges, and Shpagnum mosses. In the drier upland tundra sites, highest fluxes occurred in areas inhabited by mixed vegetation and labrador tea at 3.0 nmol m{sup {minus}2}h{sup {minus}1} (0-8.3) and lowest fluxes were from lichen-dominated areas at 0.8 nmol m{sup {minus}2}h{sup {minus}1}. Sulfur emissions from a lake surface were also low at 0.8 nmol m{sup {minus}2}h{sup {minus}1}. Of the compounds measured, DMS was the dominant gas emitted from all of these sites. Sulfur emissions from the marine sites were up to 20-fold greater than fluxes in the freshwater habitats and were also dominated by DMS. Emissions of DMS were highest from intertidal soils inhabited by Carex subspathacea. This Carex sp. was grazed thoroughly by geese and DMS fluxes doubled when goose feces were left within the flux chamber. Emissions were much lower from other types of vegetation which were more spatially dominant. Sulfur emissions from tundra were among the lowest reported in the literature. When emission data were extrapolated to include all tundra globally, the global flux of biogenic sulfur from this biome is 2-3 x 10{sup 8} g yr{sup {minus}1}. This represents less than 0.001% of the estimated annual global flux of biogenic sulfur and <0.01% of the estimated terrestrial flux. The low emissions are attributed to the low availability of sulfate, certain hydrological characteristics of tundra, and the tendency for tundra to accumulate organic matter. 31 refs., 1 fig., 2 tabs.

  13. USER'S GUIDE TO THE PERSONAL COMPUTER VERSION OF THE BIOGENIC EMISSIONS INVENTORY SYSTEM (PC-BEIS)

    EPA Science Inventory

    The Personal Computer Version of the Biogenic Emissions Inventory System (PC-BEIS) has been developed to allow users to estimate hourly emissions of biogenic non-methane hydrocarbon emissions for any county in the contiguous United States. PC-BEIS has been compiled using Microsof...

  14. DEVELOPMENT OF SEASONAL AND ANNUAL BIOGENIC EMISSIONS INVENTORIES FOR THE U.S. AND CANADA

    EPA Science Inventory

    The report describes the development of a biogenic emissions inventory for the U.S. and Canada, to assess the role of biogenic emissions in ozone formation. Emission inventories were developed at hourly and grid (1/4 x 116 degree) level from input data at the same scales. Emissio...

  15. Deducing a Canopy Reduction Factor for Biogenic Emission Modeling

    NASA Astrophysics Data System (ADS)

    Karl, T.; Guenther, A.

    2005-12-01

    The IPCC 2001 report states that "there is a serious discrepancy between the isoprene emissions derived by [Guenther et al., 1995] based on a global scaling of emission" . and "highlights a key uncertainty in global modeling of highly reactive trace gases: namely, what fraction of primary emissions escapes immediate reaction/removal in the vegetation canopy or immediate boundary layer and participates in the chemistry on the scales represented by global models?". A recent modeling study [Makar et al., 1999] suggested that up to 40 % of isoprene can be lost due to in-canopy chemistry. However, up to date only limited experimental datasets have been used to constrain canopy reduction factors (CRF) . Based on our recent CELTIC (Chemistry, Emission, Loss and Transformation in Canopies) initiative we measured VOC emissions above tropical, deciduous and evergreen ecosystems. In this paper we infer a new parameterization for modeling a CRF due to chemically short-lived biogenic compounds of the form: CRF = h/(a x u* x tau +h) (h: canopy height [m], u*: friction velocity [m/s], tau: lifetime [s], a: dimensionless fitting parameter a=1.5 +/- 0.1). This parameterization is based on results obtained during recent field studies in combination with a random walk model. For isoprene we find that the CRF is on the order of 2-5 % for typical daytime conditions. Loss rates for isoprene are somewhat smaller but within the range of previously reported values [Strong et al., 2004], [Stroud et al., 2005]. Many reactive terpenoid compounds (such as beta-caryophellene) with lifetimes on the order of minutes can be substantially reduced (e.g. up to 60-80 %) before they escape the forest canopy. References: Guenther, A., C.N. Hewitt, D. Erickson, and R. Fall, A global model of natural volatile organic compound emissions, Journal of geophysical research, 100 (D/5), 8873-8892, 1995. Makar, P., J. Fuentes, D. Wang, R. Staebler, and H. Wiebe, Chemical processing of biogenic hydrocarbons within

  16. [Investigation on emission properties of biogenic VOCs of landscape plants in Shenzhen].

    PubMed

    Huang, Ai-Kui; Li, Nan; Guenther, Alex; Greenberg, Jim; Baker, Brad; Graessli, Michael; Bai, Jian-Hui

    2011-12-01

    Isoprene and monoterpene emissions were characterized using flow and enclosure sampling method and GC-MS in USA for 158 species of plants growing in Shenzhen, China. This survey was designed to include all of the dominant plants within the Shenzhen region as well as unique plants such as Cycads. These are the first measurements in a subtropical Asian metropolis. Substantial isoprene emissions were observed from thirty-one species, including Caryota mitis, Adenanthera pavonina var. microsperma, Mangifera indica and Excoecoria agalloch. Monoterpene emissions were observed from fifty-two species, including Passiflora edulis, Bambusa glaucescens cv. silverstripe as well as some primitive and rare Cycadaceae and Cyatheaceae plants. For the first time some of red plants have been measured, most of them have the ability of releasing terpene. These results will be used to develop biogenic emission model estimates for Shenzhen and the surrounding region that can be used as inputs for regional air quality models. PMID:22468517

  17. Emissions of biogenic volatile organic compounds & their photochemical transformation

    NASA Astrophysics Data System (ADS)

    Yu, Zhujun; Hohaus, Thorsten; Tillmann, Ralf; Andres, Stefanie; Kuhn, Uwe; Rohrer, Franz; Wahner, Andreas; Kiendler-Scharr, Astrid

    2015-04-01

    Natural and anthropogenic activities emit volatile organic compounds (VOC) into the atmosphere. While it is known that land vegetation accounts for 90% of the global VOC emissions, only a few molecules' emission factors are understood. Through VOCs atmospheric oxidation intermediate products are formed. The detailed chemical mechanisms involved are insufficiently known to date and need to be understood for air quality management and climate change predictions. In an experiment using a PTR-ToF-MS with the new-built plant chamber SAPHIR-PLUS in Forschungszentrum Juelich, biogenic emissions of volatile organic compounds (BVOC) from Quercus ilex trees were measured. The BVOC emissions were dominated by monoterpenes, minor emissions of isoprene and methanol were also observed with the overall emission pattern typical for Quercus ilex trees in the growing season. Monoterpenes and isoprene emissions showed to be triggered by light. Additionally, their emissions showed clear exponential temperature dependence under constant light condition as reported in literature. As a tracer for leaf growth, methanol emission showed an abrupt increase at the beginning of light exposure. This is explained as instantaneous release of methanol produced during the night once stomata of leaves open upon light exposure. Emission of methanol showed a near linear increase with temperature in the range of 10 to 35 °C. BVOC were transferred from the plant chamber PLUS to the atmospheric simulation chamber SAPHIR, where their oxidation products from O3 oxidation were measured with PTR-ToF-MS. Gas phase oxidation products such as acetone and acetaldehyde were detected. A quantitative analysis of the data will be presented, including comparison of observations to the Master Chemical Mechanism model.

  18. The Influence of Biogenic Emissions on Tropospheric Composition over Africa during 2006

    NASA Astrophysics Data System (ADS)

    Williams, J. E.; Scheele, R.; van Velthoven, P. F. J.; Cammas, J.-P.; Galy-Lacaux, C.; Thouret, V.

    2009-04-01

    Biogenic emissions of NO and Volatile Organic Compounds (BVOC's) play an important role in determining the oxidizing capacity of the troposphere near tropical regions which have sparse populations. Here we use a 3D global CTM (TM4) for the purpose of examining the effect of using a recent climatology of biogenic emissions from the ORCHIDEE model (Lathiére et al, 2006) on the distribution and concentrations of trace gas species over equatorial Africa during the AMMA measurement year of 2006. We compare the results against simulations which adopt an older biogenic inventory compiled during the POET project (Granier et al, 2005). Sensitivity studies are conducted to determine the effect of both NO emitted from soils and BVOC's emitted from vegetation (namely the cumulative effect of CO, HCHO, ethanol, acetic acid, acetone and CH3CHO) on tropospheric ozone, NOx and the nitrogen reservoir species PAN and HNO3. Comparisons with a host of measurements have been performed to assess the impact on model performance. Finally an analysis of the tropical O3 budget is performed to quantify differences introduced for the oxidizing capacity of the tropical troposphere. Granier, C., Guether, A., Lamarque, J. F., Mieville, A., Muller, J.F., Olivier, J., Orlando, J., Peters, J., Petron, G., Tyndall, G., amd Wallens, S., POET - a database of surface emissions of ozone precursors, available at: http://www.aero.jussieu.fr/project/ACCENT/POET.php, 2005. Lathiére, J., Hauglustaine, D. A., Friend, A. D., De Noblet-Ducoudré, N., Viovy, N., and Folberth, G. A., Impact of climate variability and land use changes on global biogenic volatile organic compound emissions, Atms. Chem. Phys., 6, 2129-2146, 2006.

  19. CO2 EMISSIONS FROM BIOENERGY AND OTHER BIOGENIC SOURCES IN STATIONARY SOURCES

    EPA Science Inventory

    On January 12, 2011, EPA announced a series of steps to address the treatment of biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with accounting for biogenic carbon dioxide emissions from stationary sour...

  20. Biogenic emission from the Mediterranean pseudosteppe ecosystem present in Castelporziano

    NASA Astrophysics Data System (ADS)

    Ciccioli, Paolo; Fabozzi, Concetta; Brancaleoni, Enzo; Cecinato, Angelo; Frattoni, Massimiliano; Cieslik, Stanislaw; Kotzias, Dimitrios; Seufert, Guenther; Foster, Panayotis; Steinbrecher, Rainer

    Emission rates and fluxes of biogenic components emitted by a Mediterranean Pseudosteppe were measured in the BEMA test site of Castelporziano during the 1993 and 1994 field campaigns. Enclosure and micrometeorological techniques were used. Although the emission was comprised of isoprene, semi-volatile aldehydes, acetic acid and monoterpenes at trace levels, the most relevant compound in air was isoprene. Basal emission rates for isoprene (normalized at 30°C and 1000 μE PAR) as defined by Guenther et al. (1991, J. geophys. Res.96, 10,799-10,808) were obtained for this ecosystem by combining experimental observations and predictions based on the Guenther algorithm. It is shown that the Mediterranean Pseudosteppe is a strong isoprene emitter with a basal emission rate of 0.45 μg m -2 s -1 during the flowering season. At the end of the maximum physiologically active season basal emission rate ranged only in 0.1-0.15 μg m -2 s -1. A close dependence from light and temperature for the isoprene emission is observed. The decline in emission rates seems to be associated with a reduction in photosynthetic activity linked to senescence of the vegetation present in this ecosystem. The results obtained indicate that the Mediterranean Pseudosteppe is an ecosystem characterized by a rapid and strong variability in isoprene emission. It represents a source of isoprene comparable to deciduous forest areas only during the flowering season (from the middle of March to the middle of May) whereas it becomes a minor source during the end of the maximum physiologically active season.

  1. Spatial and temporal variations in biogenic volatile organic compound emissions for Africa south of the equator

    NASA Astrophysics Data System (ADS)

    Otter, L.; Guenther, A.; Wiedinmyer, C.; Fleming, G.; Harley, P.; Greenberg, J.

    2003-07-01

    Improved vegetation distribution and emission data for Africa south of the equator were developed for the Southern African Regional Science Initiative (SAFARI 2000) and were combined with biogenic volatile organic compound (BVOC) emission measurements to estimate BVOC emissions for the southern African region. The BVOCs are estimated to total 80 Tg C yr-1 for the region, with isoprene and monoterpenes contributing 56 and 7 Tg C yr-1, respectively. The large uncertainties, particularly in terms of basal emission capacity assignment, associated with these outputs are discussed. Woodlands are predicted to be the dominant vegetation type, covering 23% of southern Africa, and are the largest annual source of isoprene (20 Tg C), monoterpenes (3 Tg C), and other VOCs (4 Tg C). Mopane savannas and woodlands are predicted to contribute over 75% of all monoterpenes, primarily from light-dependent emission processes. Rain forests cover only 3.5% of the total area but have high annual emission rates (9.8 g C m-2 yr-1). In the tropical regions with high rainfall, warm temperatures, and high plant productivity throughout the year, the seasonal variation in VOC emissions was small. In subtropical regions, dominated by highly seasonal savannas and grasslands, large variations were predicted, with emissions declining by up to 85% during dry winter periods (June-August) due to low leaf area index after leaf drop.

  2. Emissions of biogenic sulfur gases from Alaskan tundra

    NASA Technical Reports Server (NTRS)

    Hines, Mark E.; Morrison, Michael C.

    1992-01-01

    Results of sulfur emission measurements made in freshwater and marine wetlands in Alaskan tundra during the Arctic Boundary Layer Expedition 2A (ABLE 3A) in July 1988 are presented. The data indicate that this type of tundra emits very small amounts of gaseous sulfur and, when extrapolated globally, accounts for a very small percentage of the global flux of biogenic sulfur to the atmosphere. Sulfur emissions from marine sites are up to 20-fold greater than fluxes from freshwater habitats and are dominated by dimethyl sulfide (DMS). Highest emissions, with a mean of 6.0 nmol/sq m/h, occurred in water-saturated wet meadow areas. In drier upland tundra sites, highest fluxes occurred in areas inhabited by mixed vegetation and labrador tea at 3.0 nmol/sq m/h and lowest fluxes were from lichen-dominated areas at 0.9 nmol/sq m/h. DMS was the dominant gas emitted from all these sites. Emissions of DMS were highest from intertidal soils inhabited by Carex subspathacea.

  3. Emissions of biogenic sulfur gases from northern bogs and fens

    NASA Technical Reports Server (NTRS)

    Demello, William Zamboni; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Sulfur gases are important components of the global cycle of S. They contribute to the acidity of precipitation and they influence global radiation balance and climate. The role of terrestrial sources of biogenic S and their effect on atmospheric chemistry remain as major unanswered questions in our understanding of the natural S cycle. The role of northern wetlands as sources and sinks of gaseous S by measuring rates of S gas exchange as a function of season, hydrologic conditions, and gradients in tropic status was investigated. Experiments were conducted in wetlands in New Hampshire, particularly a poor fen, and in Mire 239, a poor fen at the Experimental Lakes Area (ELA) in Ontario. Emissions were determined using Teflon enclosures, gas cryotrapping methods and gas chromatography (GC) with flame photometric detection. Dynamic (sweep flow) and static enclosures were employed which yielded similar results. Dissolved S gases and methane were determined by gas stripping followed by GC.

  4. Offline identification and characterization of biogenic primary emissions

    NASA Astrophysics Data System (ADS)

    Bozzetti, Carlo; El-Haddad, Imad; Dällenbach, Kaspar Rudolf; Sciare, Jean; Kasper-Giebl, Anne; Hueglin, Christoph; Canonaco, Francesco; Flasch, Mira; Wolf, Robert; Krepelova, Adela; Gates Slowik, Jay; Baltensperger, Urs; Prévôt, André Stéphan Henry

    2014-05-01

    Primary biological particles (e.g. pollen, spores) are known to have adverse influence on human health. Several studies illustrated also their ice-nuclei activity (Vali et al., 1976) showing their potential role in the climate changes. Nevertheless, the contribution and the chemical characterization of the biogenic emissions are poorly understood. The Aerodyne aerosol mass spectrometer (AMS, Aerodyne) has significantly advanced real-time PM1 monitoring. The AMS provides both quantitative measurements of the non-refractory (NR) components (organic aerosol (OA), Cl-, NO3-, NH4+, SO42-) and organic fraction mass spectra of the submicron fraction. Application of the positive matrix factorization (PMF) and other statistical tools such as ME-2 (Paatero, 1999; Canonaco et al., 2013) demonstrated that OA AMS mass spectra contain enough information to differentiate several factors subsequently associated with different aerosol sources (Jimenez et al., 2009). However, AMS measurements are restricted to the PM1 fraction and the AMS deployment remains complex and expensive, limiting long-term sampling and the spatial coverage. We explored a novel offline AMS application (Dällenbach et al., 2014) including a water extraction of the particulate matter from quartz filters by sonication. The resulting liquid extracts are nebulized generating an aerosol analyzed by High-Resolution-Time-of-Flight-AMS. The approach allows registering mass spectra and monitoring different particle size fractions not available by normal online AMS measurement (e.g. PM10). Moreover it broadens the sampling coverage since the filters are relatively easy and inexpensive to be collected and stored, furthermore filter samples are already routinely collected at many air quality stations worldwide. PM1, PM2.5, and PM10 filter samples from Payerne (a rural site on the Swiss Plateau)were collected both in summer and in winter. We clearly identified using PMF the contribution of biogenic primary emissions in

  5. An atmospheric emission inventory of anthropogenic and biogenic sources for Lebanon

    NASA Astrophysics Data System (ADS)

    Waked, Antoine; Afif, Charbel; Seigneur, Christian

    2012-04-01

    A temporally-resolved and spatially-distributed emission inventory was developed for Lebanon to provide quantitative information for air pollution studies as well as for use as input to air quality models. This inventory covers major anthropogenic and biogenic sources in the region with 5 km spatial resolution for Lebanon and 1 km spatial resolution for its capital city Beirut and its suburbs. The results obtained for CO, NOx, SO2, NMVOC, NH3, PM10 and PM2.5 for the year 2010 were 563, 75, 62, 115, 4, 12, and 9 Gg, respectively. About 93% of CO emissions, 67% of NMVOC emissions and 52% of NOx emissions are calculated to originate from the on-road transport sector while 73% of SO2 emissions, 62% of PM10 emissions and 59% of PM2.5 emissions are calculated to originate from power plants and industrial sources. The spatial allocation of emissions shows that the city of Beirut and its suburbs encounter a large fraction of the emissions from the on-road transport sector while urban areas such as Zouk Mikael, Jieh, Chekka and Selaata are mostly affected by emissions originating from the industrial and energy production sectors. Temporal profiles were developed for several emission sectors.

  6. Photochemistry of biogenic emissions over the Amazon forest

    NASA Technical Reports Server (NTRS)

    Jacob, Daniel J.; Wofsy, Steven C.

    1988-01-01

    The boundary layer chemistry over the Amazon forest during the dry season is simulated with a photochemical model. Results are in good agreement with measurements of isoprene, NO, ozone, and organic acids. Photochemical reactions of biogenic isoprene and NOx can supply most of the ozone observed in the boundary layer. Production of ozone is very sensitive to the availability of NOx, but is insensitive to the isoprene source strength. High concentrations of total odd nitrogen (NOy) are predicted for the planetary boundary layer, about 1 ppb in the mixed layer and 0.75 ppb in the convective cloud layer. Most of the odd nitrogen is present as PAN-type species, which are removed by dry deposition to the forest. The observed daytime variations of isoprene are explained by a strong dependence of the isoprene emission flux on sun angle. Nighttime losses of isoprene exceed rates of reaction with NO3 and O3 and appear to reflect dry-deposition processes. The 24-hour averaged isoprene emission flux is calculated to be 38 mg/sq m per day. Photooxidation of isoprene could account for a large fraction of the CO enrichment observed in the boundary layer under unpolluted conditions and could constitute an important atmospheric source of formic acid, methacrylic acid, and pyruvic acid.

  7. Biogenic Volatile Organic Compound Emission Rates From Urban Vegetation in Southeast China

    NASA Astrophysics Data System (ADS)

    Baker, B.; Graessli, M.; Bai, J.; Huang, A.; Li, N.; Guenther, A.

    2005-12-01

    Currently, the country of China is growing economically at an extraordinary pace. With this growth comes an increase in emissions of anthropogenic pollutants such as hydrocarbons and nitrogen oxides from factories and vehicles. To accurately determine the effects of these pollutants on regional ozone production, and to best determine mitigation strategies, biogenic volatile organic compound (BVOC) emissions must be considered in regional atmospheric chemistry models. To date, few studies have been carried out to determine BVOC emission factors for plant species that occur in China. Considering that approximately 20% of the world's population resides in this region, it is important to develop accurate databases for BVOC emissions for the country of China. This experiment took place during May and June of 2005 and was based in the Fairy Lake Botanical Gardens (FLBG) located to the northeast of the city of Shenzhen. The city of Shenzhen is located in southeast China in Guangdong province. The city was designated a 'special economic zone' in 1980 and has experienced intense population and economic growth ever since. The dense city is surrounded by hilly rural areas of forest on three sides, and Hong Kong to the south. The purpose of the experiment was to evaluate emissions of BVOC from plants that are important to the Shenzhen region as well as to southeastern China. Over 150 species of plants were screened for emissions of isoprene and monoterpenes. These species include most of the dominant trees and shrubs planted in the Shenzhen area. Samples were collected at the FLBG as well as at various locations around the city of Shenzhen. BVOC emission samples were collected and analyzed in one of two ways. First, a Teflon enclosure was placed over a plant's branch with a constant flow of ambient air passing through the enclosure. Samples were then pumped into a Teflon bag for analysis. Samples were analyzed within 30 minutes by gas chromatography (GC) with either a photo

  8. Historical variations of biogenic volatile organic compound emission inventories in China, 1981-2003

    NASA Astrophysics Data System (ADS)

    Li, L. Y.; Xie, S. D.

    2014-10-01

    To evaluate the variations in temporal and spatial distribution of biogenic volatile organic compound (BVOC) emissions in China, historical BVOC emission inventories at a spatial resolution of 36 km × 36 km for the period of 1981-2003 were developed firstly. Based on the time-varying statistical data and Vegetation Atlas of China (1:1,000,000), emissions of isoprene, 37 monoterpenes, 32 sesquiterpenes, and other volatile organic compounds (OVOCs) were estimated using MEGANv2.1 driven by WRF model. Results show China's BVOC emissions had increased by 28.01% at an annual average rate of 1.27% from 37.89 Tg in 1981 to 48.50 Tg in 2003. Emissions of isoprene, monoterpenes, sesquiterpenes, and OVOCs had increased by 41.60%, 34.78%, 41.05%, and 4.89%, respectively. With fixed meteorological variables, the estimated BVOC emissions would increase by 19.25%, resulting from the increasing of vegetation biomass during the last 23 years. On average, isoprene, monoterpenes, sesquiterpenes, and OVOCs were responsible for 52.40%, 12.73%, 2.58%, and 32.29% of the national BVOC emissions, respectively. β-pinene and α-pinene, farnesene and caryophyllene were the largest contributors to the total monoterpene and sesquiterpene emissions, respectively. The highest emissions were found over northeastern, southeastern, southwestern China, Qinling Mountain, and Hainan and Taiwan provinces. The regions with high emissions had been expanding over the years, especially in the Changbai Mountain, southern China, and southwestern forest regions. The lowest emissions in southern China occurred in 1984-1988. Almost all the provinces had experienced increasing emissions, but their contributions to the national emissions differed significantly over the past 23 years. Yunnan, Guangxi, Heilongjiang, Jiangxi, Fujian, Guangdong, and Sichuan provinces always dominated the national BVOC emissions, excluding in 1977-1981, when the three northeastern provinces had relatively lower emissions.

  9. What, Where, When, Who and How: Accounting for Biogenic CO2 Emissions Fluxes

    NASA Astrophysics Data System (ADS)

    Ohrel, S. B.

    2013-12-01

    The world is facing a future with a changing climate as well as increasing energy needs. Many countries, including the United States, are therefore considering an increased role of biomass in domestic energy portfolios. Accounting for emissions related to biomass production and use for energy is a complex issue: determining the extent to which biomass utilization can contribute to meeting energy needs while not contributing additional GHG emissions to the atmosphere necessitates further research. Such analysis becomes more challenging when evaluating biogenic feedstocks with long rotations (i.e., woody biomass). Detailed analysis and new accounting methods are needed in order to better assess and understand the potential implications of increased bioenergy utilization in the United States energy portfolio. In response to the EPA's 2011 Draft Accounting Framework for Biogenic CO2 Emissions from Stationary Sources, the Biogenic Carbon Emissions Panel (BCE Panel) appointed by the Science Advisory Board (2013) found that 'Carbon neutrality cannot be assumed for all biomass energy a priori. There are circumstances in which biomass is grown, harvested and combusted in a carbon neutral fashion but carbon neutrality is not an appropriate a priori assumption; it is a conclusion that should be reached only after considering a particular feedstock's production and consumption cycle. There is considerable heterogeneity in feedstock types, sources and production methods and thus net biogenic carbon emissions will vary considerably.' In that light, this study discusses the current policy discussion on biogenic feedstock use for energy in the United States. It then evaluates the question: how can we account for stationary source biogenic CO2 emissions while considering the biological cycling of carbon on the biogenic feedstock production landscape? The analysis discusses current biogenic feedstock usage in the U.S. and potential future impacts of increased biogenic feedstock

  10. Constraining Anthropogenic and Biogenic Emissions Using Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Spencer, Kathleen M.

    Numerous gas-phase anthropogenic and biogenic compounds are emitted into the atmosphere. These gases undergo oxidation to form other gas-phase species and particulate matter. Whether directly or indirectly, primary pollutants, secondary gas-phase products, and particulate matter all pose health and environmental risks. In this work, ambient measurements conducted using chemical ionization mass spectrometry are used as a tool for investigating regional air quality. Ambient measurements of peroxynitric acid (HO2NO2) were conducted in Mexico City. A method of inferring the rate of ozone production, PO3, is developed based on observations of HO2NO 2, NO, and NO2. Comparison of this observationally based PO3 to a highly constrained photochemical box model indicates that regulations aimed at reducing ozone levels in Mexico City by reducing NOx concentrations may be effective at higher NO x levels than predicted using accepted photochemistry. Measurements of SO2 and particulate sulfate were conducted over the Los Angeles basin in 2008 and are compared to measurements made in 2002. A large decrease in SO2 concentration and a change in spatial distribution are observed. Nevertheless, only a modest reduction in sulfate concentration is observed at ground sites within the basin. Possible explanations for these trends are investigated. Two techniques, single and triple quadrupole chemical ionization mass spectrometry, were used to quantify ambient concentrations of biogenic oxidation products, hydroxyacetone and glycolaldehyde. The use of these techniques demonstrates the advantage of triple quadrupole mass spectrometry for separation of mass analogues, provided the collision-induced daughter ions are sufficiently distinct. Enhancement ratios of hydroxyacetone and glycolaldehyde in Californian biomass burning plumes are presented as are concentrations of these compounds at a rural ground site downwind of Sacramento.

  11. An atmospheric emission inventory of anthropogenic and biogenic sources for Lebanon

    NASA Astrophysics Data System (ADS)

    Waked, A.; Afif, C.; Seigneur, C.

    2011-12-01

    The Middle East region, which is a significant source for photochemical air pollution and a place for dust storms activities, is facing today serious air pollution problems. In this region, local inventory data are sparse and the development of an emission inventory is a challenge. In Lebanon, a small developing country in the Middle East region, data on air pollution are sketchy and the development of an emission inventory is an essential step to develop efficient emission control strategies to decrease air pollution levels. Accordingly, a temporally-resolved and spatially-distributed emission inventory was developed for Lebanon to provide quantitative information for air pollution studies as well as for use as input to air quality models. This inventory covers major anthropogenic and biogenic sources in the region with 5 km spatial resolution for Lebanon and 1 km spatial resolution for its capital city Beirut and its suburbs. The results obtained for CO, NOx, SO2, VOC, NH3, PM10 and PM2.5 show some differences with previous estimates. Emissions show different temporal and spatial patterns depending on the source categories. Major source contributions are on-road traffic (particularly in Beirut) and industry (particularly in Zouk Mikael, Jieh, Chekka, and Selaata). Pollutant ratios (CO/NOx and PM10/PM2.5) obtained from the emission inventory and ambient measurements are compared and major sources of uncertainty are identified.

  12. 76 FR 61100 - Notification of a Public Meeting of the Science Advisory Board Biogenic Carbon Emissions Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... serve on a review panel to advise the Agency on April 27, 2011 (76 FR 23587-23588). The SAB Staff Office... AGENCY Notification of a Public Meeting of the Science Advisory Board Biogenic Carbon Emissions Panel... of the SAB Biogenic Carbon Emissions Panel to review EPA's draft Accounting Framework for Biogenic...

  13. Operation of marine diesel engines on biogenic fuels: modification of emissions and resulting climate effects.

    PubMed

    Petzold, Andreas; Lauer, Peter; Fritsche, Uwe; Hasselbach, Jan; Lichtenstern, Michael; Schlager, Hans; Fleischer, Fritz

    2011-12-15

    The modification of emissions of climate-sensitive exhaust compounds such as CO(2), NO(x), hydrocarbons, and particulate matter from medium-speed marine diesel engines was studied for a set of fossil and biogenic fuels. Applied fossil fuels were the reference heavy fuel oil (HFO) and the low-sulfur marine gas oil (MGO); biogenic fuels were palm oil, soybean oil, sunflower oil, and animal fat. Greenhouse gas (GHG) emissions related to the production of biogenic fuels were treated by means of a fuel life cycle analysis which included land use changes associated with the growth of energy plants. Emissions of CO(2) and NO(x) per kWh were found to be similar for fossil fuels and biogenic fuels. PM mass emission was reduced to 10-15% of HFO emissions for all low-sulfur fuels including MGO as a fossil fuel. Black carbon emissions were reduced significantly to 13-30% of HFO. Changes in emissions were predominantly related to particulate sulfate, while differences between low-sulfur fossil fuels and low-sulfur biogenic fuels were of minor significance. GHG emissions from the biogenic fuel life cycle (FLC) depend crucially on energy plant production conditions and have the potential of shifting the overall GHG budget from positive to negative compared to fossil fuels. PMID:22044020

  14. Multi-model simulation of CO and HCHO in the Southern Hemisphere: comparison with observations and impact of biogenic emissions

    NASA Astrophysics Data System (ADS)

    Zeng, G.; Williams, J. E.; Fisher, J. A.; Emmons, L. K.; Jones, N. B.; Morgenstern, O.; Robinson, J.; Smale, D.; Paton-Walsh, C.; Griffith, D. W. T.

    2015-07-01

    We investigate the impact of biogenic emissions on carbon monoxide (CO) and formaldehyde (HCHO) in the Southern Hemisphere (SH), with simulations using two different biogenic emission inventories for isoprene and monoterpenes. Results from four atmospheric chemistry models are compared to continuous long-term ground-based CO and HCHO column measurements at the SH Network for the Detection of Atmospheric Composition Change (NDACC) sites, the satellite measurement of tropospheric CO columns from the Measurement of Pollution in the Troposphere (MOPITT), and in situ surface CO measurements from across the SH, representing a subset of the National Oceanic and Atmospheric Administration's Global Monitoring Division (NOAA GMD) network. Simulated mean model CO using the Model of Emissions of Gases and Aerosols from Nature (v2.1) computed in the frame work of the Land Community Model (CLM-MEGANv2.1) inventory is in better agreement with both column and surface observations than simulations adopting the emission inventory generated from the LPJ-GUESS dynamical vegetation model framework, which markedly underestimate measured column and surface CO at most sites. Differences in biogenic emissions cause large differences in CO in the source regions which propagate to the remote SH. Significant inter-model differences exist in modelled column and surface CO, and secondary production of CO dominates these inter-model differences, due mainly to differences in the models' oxidation schemes for volatile organic compounds, predominantly isoprene oxidation. While biogenic emissions are a significant factor in modelling SH CO, inter-model differences pose an additional challenge to constrain these emissions. Corresponding comparisons of HCHO columns at two SH mid-latitude sites reveal that all models significantly underestimate the observed values by approximately a factor of 2. There is a much smaller impact on HCHO of the significantly different biogenic emissions in remote regions

  15. Impact of regional transport on the anthropogenic and biogenic secondary organic aerosols in the Los Angeles Basin

    NASA Astrophysics Data System (ADS)

    Heo, Jongbae; de Foy, Benjamin; Olson, Michael R.; Pakbin, Payam; Sioutas, Constantinos; Schauer, James J.

    2015-02-01

    This manuscript explores the role of regional transport on anthropogenic and biogenic secondary organic carbon (SOC) concentrations in ambient fine particulate (PM2.5) organic carbon (OC) in the Los Angeles (LA) Basin. Daily organic molecular markers, water soluble organic carbon (WSOC), OC, and elemental carbon (EC) measurements from May 2009 through April 2010 at a central site in downtown LA, and results from a positive matrix factorization (PMF) analysis of these data, were used to understand the role of regional transport on SOC concentrations. A backward-trajectory analysis, coupled with the measurements and estimated source contributions, were used to evaluate the origins of SOC aerosols. Anthropogenic and biogenic SOC were identified in central LA over the study period, together contributing 40% of the annual average PM2.5 OC mass. There were distinct seasonal variations, with high contributions of anthropogenic SOC in summer, and high contributions of biogenic SOC in spring. The back-trajectory analysis, coupled with daily source contributions of SOC and organic compounds as indicators, allowed us to identify potential source locations and dominant meteorological conditions contributing to elevated SOC at the measurement site. The results show that air mass movements from the Pacific Ocean are associated with higher contributions of anthropogenic SOC to the PM2.5 OC in downtown LA, suggesting that the combination of local meteorological conditions and local anthropogenic emissions led to an increase in the anthropogenic SOC. In contrast, air masses passing over the Central Valley and forested areas where there are biogenic hydrocarbon emissions are closely associated with higher contributions of biogenic SOC in the region. The study emphasizes that higher anthropogenic SOC contributions are due to the combination of local emissions with humidity air from the ocean, and that higher biogenic SOC contributions are impacted by transport of pollutants from

  16. Evaluation of MEGAN predicted biogenic isoprene emissions at urban locations in Southeast Texas

    NASA Astrophysics Data System (ADS)

    Kota, Sri Harsha; Schade, Gunnar; Estes, Mark; Boyer, Doug; Ying, Qi

    2015-06-01

    Summertime isoprene emissions in the Houston area predicted by the Model of Emissions of Gases and Aerosol from Nature (MEGAN) version 2.1 during the 2006 TexAQS study were evaluated using a source-oriented Community Multiscale Air Quality (CMAQ) Model. Predicted daytime isoprene concentrations at nine surface sites operated by the Texas Commission of Environmental Quality (TCEQ) were significantly higher than local observations when biogenic emissions dominate the total isoprene concentrations, with mean normalized bias (MNB) ranges from 2.0 to 7.7 and mean normalized error (MNE) ranges from 2.2 to 7.7. Predicted upper air isoprene and its first generation oxidation products of methacrolein (MACR) and methyl vinyl ketone (MVK) were also significantly higher (MNB = 8.6, MNE = 9.1) than observations made onboard of NOAA's WP-3 airplane, which flew over the urban area. Over-prediction of isoprene and its oxidation products both at the surface and the upper air strongly suggests that biogenic isoprene emissions in the Houston area are significantly overestimated. Reducing the emission rates by approximately 3/4 was necessary to reduce the error between predictions and observations. Comparison of gridded leaf area index (LAI), plant functional type (PFT) and gridded isoprene emission factor (EF) used in MEGAN modeling with estimates of the same factors from a field survey north of downtown Houston showed that the isoprene over-prediction is likely caused by the combined effects of a large overestimation of the gridded EF in urban Houston and an underestimation of urban LAI. Nevertheless, predicted ozone concentrations in this region were not significantly affected by the isoprene over-predictions, while predicted isoprene SOA and total SOA concentrations can be higher by as much as 50% and 13% using the higher isoprene emission rates, respectively.

  17. Are biogenic emissions a significant source of summertime atmospheric toluene in rural Northeastern United States?

    NASA Astrophysics Data System (ADS)

    White, M. L.; Russo, R. S.; Zhou, Y.; Ambrose, J. L.; Haase, K.; Frinak, E. K.; Varner, R. K.; Wingenter, O. W.; Mao, H.; Talbot, R.; Sive, B. C.

    2008-06-01

    Summertime atmospheric toluene enhancements at Thompson Farm in the rural northeastern United States were unexpected and resulted in a toluene/benzene seasonal pattern that was distinctly different from that of other anthropogenic volatile organic compounds. Consequentially, three hydrocarbon sources were investigated for potential contributions to the enhancements during 2004 2006. These included: 1) increased warm season fuel evaporation coupled with changes in reformulated gasoline (RFG) content to meet U.S. EPA summertime volatility standards, 2) local industrial emissions and 3) local vegetative emissions. The contribution of fuel evaporation emission to summer toluene mixing ratios was estimated to range from 16 to 30 pptv d-1, and did not fully account for the observed enhancements (20 50 pptv) in 2004 2006. Static chamber measurements of alfalfa, a crop at Thompson Farm, and dynamic branch enclosure measurements of loblolly pine trees in North Carolina suggested vegetative emissions of 5 and 12 pptv d-1 for crops and coniferous trees, respectively. Toluene emission rates from alfalfa are potentially much larger as these plants were only sampled at the end of the growing season. Measured biogenic fluxes were on the same order of magnitude as the influence from gasoline evaporation and industrial sources (regional industrial emissions estimated at 7 pptv d-1) and indicated that local vegetative emissions make a significant contribution to summertime toluene enhancements. Additional studies are needed to characterize the variability and factors controlling toluene emissions from alfalfa and other vegetation types throughout the growing season.

  18. Are biogenic emissions a significant source of summertime atmospheric toluene in the rural Northeastern United States?

    NASA Astrophysics Data System (ADS)

    White, M. L.; Russo, R. S.; Zhou, Y.; Ambrose, J. L.; Haase, K.; Frinak, E. K.; Varner, R. K.; Wingenter, O. W.; Mao, H.; Talbot, R.; Sive, B. C.

    2009-01-01

    Summertime atmospheric toluene enhancements at Thompson Farm in the rural northeastern United States were unexpected and resulted in a toluene/benzene seasonal pattern that was distinctly different from that of other anthropogenic volatile organic compounds. Consequently, three hydrocarbon sources were investigated for potential contributions to the enhancements during 2004-2006. These included: (1) increased warm season fuel evaporation coupled with changes in reformulated gasoline (RFG) content to meet US EPA summertime volatility standards, (2) local industrial emissions and (3) local vegetative emissions. The contribution of fuel evaporation emission to summer toluene mixing ratios was estimated to range from 16 to 30 pptv d-1, and did not fully account for the observed enhancements (20-50 pptv) in 2004-2006. Static chamber measurements of alfalfa, a crop at Thompson Farm, and dynamic branch enclosure measurements of loblolly pine trees in North Carolina suggested vegetative emissions of 5 and 12 pptv d-1 for crops and coniferous trees, respectively. Toluene emission rates from alfalfa are potentially much larger as these plants were only sampled at the end of the growing season. Measured biogenic fluxes were on the same order of magnitude as the influence from gasoline evaporation and industrial sources (regional industrial emissions estimated at 7 pptv d-1 and indicated that local vegetative emissions make a significant contribution to summertime toluene enhancements. Additional studies are needed to characterize the variability and factors controlling toluene emissions from alfalfa and other vegetation types throughout the growing season.

  19. The Influence of Pyrogenic, Biogenic and Anthropogenic Emissions on Ozone Production Downwind from Boreal Forest Fires

    NASA Astrophysics Data System (ADS)

    Finch, Douglas; Palmer, Paul

    2016-04-01

    Boreal forest fires emit pollutants that can have a strong influence on downwind surface ozone concentrations, with potential implications for exceeding air quality regulations. The influence of the mixing of pyrogenic, biogenic and anthropogenic emissions on ozone is not well understood. Using the nested 0.5° latitude x 0.667° longitude GEOS-Chem chemical transport model we track biomass burning plumes in North America. We identify the changes in key chemical reactions within these plumes as well as the sensitivity of ozone to the different emission sources. We illustrate the importance of this method using a case study of a multi-day forest fire during the BORTAS aircraft campaign over eastern Canada during summer 2011. We focus on emissions from the fire on the 17th of July and follow the plume for eight days. After the initial 24 hours of pyrogenic emissions the main source of VOCs is biogenic with increasing emissions from anthropogenic sources including outflow from Quebec City and Newfoundland. Using a Lagrangian framework, we show that the ozone production efficiency (OPE) of this plume decreases steadily as it moves away from the fire but increases rapidly as the plume reaches the east coast of Canada. Using a Eulerian framework we show that ozone mixing ratios of a east coast receptor region increase by approximately 15% even though the ozone tendency of the regional air mass is negative, which we find is due to the arrival of ozone precursors in the plume. We also consider the contribution of anthropogenic outflow over Nova Scotia that originates from the eastern seaboard of the United States to the local chemistry. Using these sensitivity model runs we generate a chemical reaction narrative for the plume trajectory that helps to understand the attribution of observed ozone variations.

  20. Effects of future climate and land cover changes on biogenic emissions and air quality in the US

    NASA Astrophysics Data System (ADS)

    Chung, S. H.; Gonzalez Abraham, R.; Arroyo, A.; Lamb, B. K.; Duhl, T.; Wiedinmyer, C.; Guenther, A. B.; Zhang, Y.; Salathe, E. P.

    2009-12-01

    Biogenic volatile organic compounds (BVOCs) emitted from vegetations are highly reactive in the atmosphere and contribute to ozone and secondary organic aerosol formation. Climate change influences vegetation distributions and emissions of BVOCs and thereby affects air quality. As part of a comprehensive investigation of the effects of global change on regional air quality in the US, this study examines the effects of future climate and land cover changes on emissions of BVOCs into the atmosphere and air quality in the US. The mesoscale WRF (Weather Research and Forecasting) model is applied at hemispheric (220 km grid cells) and continental US (36 km grid cells) scales for current (1995-2004) and future (2045-2054) decades to downscale climate results from the ECHAM5 global climate model for IPCC SRES scenario A1B. The MEGAN (Model of Emissions of Gases and Aerosols from Nature) model is driven by WRF meteorological results to predict biogenic emissions of VOCs and NOx. MEGAN accounts for vegetation species distributions and environmental factors such as temperature and light. Current decade vegetation distributions are derived from satellite observations. Future vegetation distributions are predicted from MAPSS (Mapped Atmosphere-Plant-Soil System) and the land cover model of IMAGE 2.0 (Integrated Model to Assess the Global Environment). Future land cover changes include the expansion of croplands so that land management changes can also be examined. The CMAQ (Community Multiscale Air Quality Modeling) chemical transport model is used to simulate O3 and aerosol concentrations using current- and future-decade biogenic emissions but with anthropogenic emissions held constant at current-decade levels. Results showing the changes in US air quality due to climate- and landuse-driven changes in biogenic emissions will be presented. These results are compared to previous simulations derived from the IPCC SRES scenario A1 scenario with the PCM (Parallel Climate Model

  1. Uncertainty in biogenic isoprene emissions and its impacts on tropospheric chemistry in East Asia.

    PubMed

    Han, K M; Park, R S; Kim, H K; Woo, J H; Kim, J; Song, C H

    2013-10-01

    In this study, the accuracy of biogenic isoprene emission fluxes over East Asia during two summer months (July and August) was examined by comparing two tropospheric HCHO columns (ΩHCHO) obtained from the SCIAMACHY sensor and the Community Multi-scale Air Quality (CMAQ v4.7.1) model simulations, using three available biogenic isoprene emission inventories over East Asia: i) GEIA, ii) MEGAN and iii) MOHYCAN. From this comparative analysis, the tropospheric HCHO columns from the CMAQ model simulations, using the MEGAN and MOHYCAN emission inventories (Ω(CMAQ, MEGAN) and Ω(CMAQ, MOHYCAN)), were found to agree well with the tropospheric HCHO columns from the SCIAMACHY observations (Ω(SCIA)). Secondly, the propagation of such uncertainties in the biogenic isoprene emission fluxes to the levels of atmospheric oxidants (e.g., OH and HO2) and other atmospheric gaseous/particulate species over East Asia during the two summer months was also investigated. As the biogenic isoprene emission fluxes decreased from the GEIA to the MEGAN emission inventories, the levels of OH radicals increased by factors of 1.39 and 1.75 over Central East China (CEC) and South China, respectively. Such increases in the OH radical mixing ratios subsequently influence the partitioning of HO(y) species. For example, the HO2/OH ratios from the CMAQ model simulations with GEIA isoprene emissions were 2.7 times larger than those from the CMAQ model simulations based on MEGAN isoprene emissions. The large HO2/OH ratios from the CMAQ model simulations with the GEIA biogenic emission were possibly due to the overestimation of GEIA biogenic isoprene emissions over East Asia. It was also shown that such large changes in HO(x) radicals created large differences on other tropospheric compounds (e.g., NO(y) chemistry) over East Asia during the summer months. PMID:23867846

  2. Emissions of terpenoids, benzenoids, and other biogenic gas-phase organic compounds from agricultural crops and their potential implications for air quality

    NASA Astrophysics Data System (ADS)

    Gentner, D. R.; Ormeño, E.; Fares, S.; Ford, T. B.; Weber, R.; Park, J.-H.; Brioude, J.; Angevine, W. M.; Karlik, J. F.; Goldstein, A. H.

    2013-11-01

    Agriculture comprises a substantial fraction of land cover in many regions of the world, including California's San Joaquin Valley, which is out of compliance with state and federal standards for tropospheric ozone and particulate matter (PM2.5). Emissions from vegetation and other biogenic and anthropogenic sources react in the atmosphere to produce ozone and secondary organic aerosol, which comprises a substantial fraction of PM2.5. Using data from three measurement campaigns, we examine emissions of reactive gas-phase organic carbon from agricultural crops and their potential to impact regional air quality relative to anthropogenic emissions in California's San Joaquin Valley. Emission rates for a suite of biogenic terpenoid compounds were measured in a greenhouse for 25 representative crops from California in 2008, and ambient measurements of terpenoids and other biogenic compounds in the volatile and intermediate-volatility organic compound range were made over an orange orchard in a rural area of the San Joaquin Valley during two seasons in 2010: summer and spring flowering. When accounting for both emissions of reactive precursors and the deposition of ozone to an orange orchard, the net effect of the orange trees is a net source of ozone in the springtime during flowering, and relatively neutral for most of the summer until the fall when it becomes a sink. Flowering was a major emission event and caused a large increase in emissions including a suite of compounds that had not been measured in the atmosphere before. Such biogenic emission events need to be better parameterized in models as they have significant potential to impact regional air quality since emissions increase by an order of magnitude. In regions like the San Joaquin Valley, the mass of biogenic emissions from agricultural crops during the summer (without flowering) and the potential ozone and secondary organic aerosol formation from these emissions are on the same order as anthropogenic

  3. Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon boundary layer

    NASA Technical Reports Server (NTRS)

    Zimmerman, P. R.; Greenberg, J. P.; Westberg, C. E.

    1988-01-01

    Tropospheric mixing ratios of methane, C2-C10 hydrocarbons, and carbon monoxide were measured over the Amazon tropical forest near Manaus, Amazonas, Brazil, in July and August 1985. The measurements, consisting mostly of altitude profiles of these gases, were all made within the atmospheric boundary layer up to an altitude of 1000 m above ground level. Data characterize the diurnal hydrocarbon composition of the boundary layer. Biogenic emissions of isoprene control hydroxyl radical concentrations over the forest. Biogenic emission fluxes of isoprene and terpenes are estimated to be 25,000 micrograms/sq m per day and 5600 micrograms/sq m per day, respectively. This isoprene emission is equivalent to 2 percent of the net primary productivity of the tropical forest. Atmospheric oxidation of biogenic isoprene and terpenes emissions from the Amazon forest may account for daily increases of 8-13 ppb for carbon monoxide in the planetary boundary layer.

  4. USER'S GUIDE TO THE PERSONAL COMPUTER VERSION OF THE BIOGENIC EMISSIONS INVENTORY SYSTEM (PC-BEIS2)

    EPA Science Inventory

    The document is a user's guide for an updated Personal Computer version of the Biogenic Emissions Inventory System (PC-BEIS2), allowing users to estimate hourly emissions of biogenic volatile organic compounds (BVOCs) and soil nitrogen oxide emissions for any county in the contig...

  5. Methyl Chavicol: Characterization of its Biogenic Emission Rate, Abundance, and Oxidation Products in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Bouvier-Brown, N. C.; Goldstein, A. H.; Worton, D. R.; Matross, D. M.; Gilman, J.; Kuster, W.; Degouw, J.; Cahill, T. M.; Holzinger, R.

    2008-12-01

    We report quantitative measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments: gas chromatograph with mass spectrometer detector (GC-MS), proton transfer reaction mass spectrometer (PTR-MS), and thermal desorption aerosol GC-MS (TAG). Previously identified as a potential bark beetle disruptant, methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO), a light and temperature dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4-68 % of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72-10.2 μ gCg-1h-1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde) in the ambient atmosphere. Methyl chavicol is a major essential oil component of many species. We propose this newly- characterized biogenic compound should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  6. Chemistry of new particle growth in mixed urban and biogenic emissions - insights from CARES

    NASA Astrophysics Data System (ADS)

    Setyan, A.; Song, C.; Merkel, M.; Knighton, W. B.; Onasch, T. B.; Canagaratna, M. R.; Worsnop, D. R.; Wiedensohler, A.; Shilling, J. E.; Zhang, Q.

    2014-01-01

    , and toluene) were significantly higher whereas the photo-oxidation products of biogenic VOC and the biogenically-influenced SOA also increased moderately during the NPE days compared to the non-event days. These results indicate that the frequently occurring NPE over the Sacramento and Sierra Nevada regions were mainly driven by urban plumes from Sacramento and that the interaction of regional biogenic emissions with the urban plumes has enhanced the new particle growth. This finding has important implication for quantifying the climate impacts of NPE on global scale.

  7. Chemistry of new particle growth in mixed urban and biogenic emissions - insights from CARES

    NASA Astrophysics Data System (ADS)

    Setyan, A.; Song, C.; Merkel, M.; Knighton, W. B.; Onasch, T. B.; Canagaratna, M. R.; Worsnop, D. R.; Wiedensohler, A.; Shilling, J. E.; Zhang, Q.

    2014-07-01

    , CO, NOx, and toluene) were significantly higher whereas the photo-oxidation products of biogenic VOCs (volatile organic compounds) and the biogenically influenced SOA also increased moderately during the NPE days compared to the non-event days. These results indicate that the frequently occurring NPEs over the Sacramento and Sierra Nevada regions were mainly driven by urban plumes from Sacramento and the San Francisco Bay Area, and that the interaction of regional biogenic emissions with the urban plumes has enhanced the new particle growth. This finding has important implications for quantifying the climate impacts of NPEs on global scale.

  8. Global dataset of biogenic VOC emissions calculated by the MEGAN model over the last 30 years

    NASA Astrophysics Data System (ADS)

    Sindelarova, K.; Granier, C.; Bouarar, I.; Guenther, A.; Tilmes, S.; Stavrakou, T.; Müller, J.-F.; Kuhn, U.; Stefani, P.; Knorr, W.

    2014-04-01

    The Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) together with the Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields were used to create a global emission dataset of biogenic volatile organic compounds (BVOC) available on a monthly basis for the time period of 1980-2010. This dataset is called MEGAN-MACC. The model estimated mean annual total BVOC emission of 760 Tg (C) yr-1 consisting of isoprene (70%), monoterpenes (11%), methanol (6%), acetone (3%), sesquiterpenes (2.5%) and other BVOC species each contributing less than 2%. Several sensitivity model runs were performed to study the impact of different model input and model settings on isoprene estimates and resulted in differences of up to ±17% of the reference isoprene total. A greater impact was observed for a sensitivity run applying parameterization of soil moisture deficit that led to a 50% reduction of isoprene emissions on a global scale, most significantly in specific regions of Africa, South America and Australia. MEGAN-MACC estimates are comparable to results of previous studies. More detailed comparison with other isoprene inventories indicated significant spatial and temporal differences between the datasets especially for Australia, Southeast Asia and South America. MEGAN-MACC estimates of isoprene, α-pinene and group of monoterpenes showed a reasonable agreement with surface flux measurements at sites located in tropical forests in the Amazon and Malaysia. The model was able to capture the seasonal variation of isoprene emissions in the Amazon forest.

  9. CHANGES TO THE BIOGENIC EMISSION INVENTORY SYSTEM VERSION 3 (BEIS3)

    EPA Science Inventory

    This extended abstract describes recent changes to the Biogenic Emissions Inventory System (BEIS3) that were completed in preparation for the 2005 release of the Community Multiscale Air Quality model. Changes to the model affect the calculated emissions of isoprene and monoterp...

  10. BOREAS TGB-5 Biogenic Soil Emissions of NO and N2O

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Winstead, E. L.; Parsons, D. A. B.; Scholes, M. C.; Cofer, W. R.; Cahoon, D. R.; Sebacher, D. I.; Scholes, R. J.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB)-5 team made several measurements of trace gas concentrations and fluxes at various NSA sites. This data set contains biogenic soil emissions of nitric oxide and nitrous oxide that were measured over a wide range of spatial and temporal site parameters. Since very little is known about biogenic soil emissions of nitric oxide and nitrous oxide from the boreal forest, the goal of the measurements was to characterize the biogenic soil fluxes of nitric oxide and nitrous oxide from black spruce and jack pine areas in the boreal forest. The diurnal variation and monthly variation of the emissions was examined as well as the impact of wetting through natural or artificial means. Temporally, the data cover mid-August 1993, June to August 1994, and mid-July 1995. The data are provided in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884).

  11. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols

    SciTech Connect

    Lee, Hyun Ji; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A.

    2013-05-10

    Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of SOA generated from two monoterpenes, limonene and a-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ~100 ppb ammonia vapor in air saturated with water vapor. Absorption and excitation-emission matrix (EEM) spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (~0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for excitation = 420+- 50 nm and emission = 475 +- 38 nm. The window of the strongest fluorescence shifted to excitation = 320 +- 25 nm and emission = 425 +- 38 nm for the a-pinene-derived SOA. Both regions overlap with the excitation-emission matrix (EEM) spectra of some of the fluorophores found in primary biological aerosols. Our study suggests that, despite the low quantum yield, the aged SOA particles should have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.

  12. Enhanced biogenic emissions of nitric oxide and nitrous oxide following surface biomass burning

    NASA Technical Reports Server (NTRS)

    Anderson, Iris C.; Levine, Joel S.; Poth, Mark A.; Riggan, Philip J.

    1988-01-01

    Recent measurements indicate significantly enhanced biogenic soil emissions of both nitric oxide (NO) and nitrous oxide (N2O) following surface burning. These enhanced fluxes persisted for at least six months following the burn. Simultaneous measurements indicate enhanced levels of exchangeable ammonium in the soil following the burn. Biomass burning is known to be an instantaneous source of NO and N2O resulting from high-temperature combustion. Now it is found that biomass burning also results in significantly enhanced biogenic emissions of these gases, which persist for months following the burn.

  13. A 750 year ice core record of past biogenic emissions and wild fires from Siberian boreal forests

    NASA Astrophysics Data System (ADS)

    Eichler, Anja; Schwikowski, Margit; Brütsch, Sabina; Olivier, Susanne; Papina, Tatyana; Tinner, Willy

    2010-05-01

    Direct emissions from forests and forest fires represent an important source of gaseous precursors of aerosols and soot that can significantly alter the regional radiation balance. Long-term records of gaseous and particulate emissions are available for Northern America and the Amazon Basin, whereas the historical development of emissions from Siberian forests, comprising about 20% of the world's forested area, is unknown so far. Here we investigate ice core ammonium, formate, nitrate, potassium, and charcoal records for the last 750 years, representing direct biogenic and biomass burning emissions from boreal Siberian forests in the pre-industrial era. Biogenic emissions were found to be closely related to changes in temperature following variations in solar activity. Emissions from forest fire activities do not show a long-term trend, but a period of strongly increased frequency around 1600-1670. The reasons are most probably exceptionally dry conditions in the period 1550-1600 and increased temperatures. In addition, anthropogenic emissions have caused a strong increase of the ammonium and nitrate concentrations and a drop of the formate concentrations in the last 60 years.

  14. VOLATILE ORGANIC COMPOUNDS FROM VEGETATION IN SOUTHERN YUNNAN PROVINCE, CHINA: EMISSION RATES AND SOME POTENTIAL REGIONAL IMPLICATIONS

    EPA Science Inventory

    Little information is currently available regarding emissions of biogenic volatile organic compounds (BVOCs) in southern Asia. To address the need for BVOC emission estimates in regional atmospheric chemistry simulations, 95 common plant species were screened for emissions of BVO...

  15. Simultaneous Factor Analysis of Coupled Aerosol and VOC Mass Spectra in Regions of Biogenic Influence

    NASA Astrophysics Data System (ADS)

    Slowik, Jay; Chang, Rachel; Hayden, Katherine; Li, Shao-Meng; Liggio, John; Sjostedt, Steven; Vlasenko, Alexander; Leaitch, Richard; Abbatt, Jonathan

    2010-05-01

    Recent studies suggest that the traditional binary treatments of atmospheric organics as either gases or particles may be inadequate, highlighting the need for analytical techniques capable of simultaneously considering particle and gas-phase species. Organic mass spectra of particles and volatile organic compounds (VOCs) were collected using an Aerodyne time-of-flight aerosol mass spectrometer (C-ToF-AMS), and a proton transfer reaction-mass spectrometer (PTR-MS), respectively. The particle and VOC mass spectra were combined into a single dataset, which was analyzed using the positive matrix factorization (PMF) receptor modeling technique. The relative weights of the AMS and PTR-MS data were balanced in the PMF analysis according to the criteria that the scaled residuals within a solution be independent of the measuring instrument. Instrument relative weight is controlled by the application of a scaling factor to the PTR-MS uncertainties. The AMS and PTR-MS instruments were deployed from mid-May to mid-June at two sites in Canada: (1) Egbert, ON (2007), a semirural site ~70 km north of Toronto, and (2) Whistler, BC (2008), a remote site ~120 km north of Vancouver. The Egbert site is influenced by anthropogenic emissions from Toronto and populated regions to the south, biogenic emissions from boreal forests to the north, and biomass burning emissions. The Whistler site is strongly influenced by boreal forest terpene emissions, with lesser contributions from long-range transport and anthropogenic emissions.

  16. Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere

    NASA Astrophysics Data System (ADS)

    Bouvier-Brown, N. C.; Goldstein, A. H.; Worton, D. R.; Matross, D. M.; Gilman, J. B.; Kuster, W. C.; Welsh-Bon, D.; Warneke, C.; de Gouw, J. A.; Cahill, T. M.; Holzinger, R.

    2009-03-01

    We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments - a gas chromatograph with mass spectrometer detector (GC-MS), a proton transfer reaction mass spectrometer (PTR-MS), and a thermal desorption aerosol GC-MS (TAG) - and found to be abundant within and above Blodgett Forest. Methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO), a light- and temperature-dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4-68% of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72-10.2 μgCg-1 h-1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde) in the ambient atmosphere. Methyl chavicol is a major essential oil component of many plant species. This work suggests that methyl chavicol plays a significant role in the atmospheric chemistry of Blodgett Forest, and potentially other sites, and should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  17. Biogenic volatile organic compounds from the urban forest of the Metropolitan Region, Chile.

    PubMed

    Préndez, Margarita; Carvajal, Virginia; Corada, Karina; Morales, Johanna; Alarcón, Francis; Peralta, Hugo

    2013-12-01

    Tropospheric ozone is a secondary pollutant whose primary sources are volatile organic compounds and nitrogen oxides. The national standard is exceeded on a third of summer days in some areas of the Chilean Metropolitan Region (MR). This study reports normalized springtime experimental emissions factors (EF) for biogenic volatile organic compounds from tree species corresponding to approximately 31% of urban trees in the MR. A Photochemical Ozone Creation Index (POCI) was calculated using Photochemical Ozone Creation Potential of quantified terpenes. Ten species, natives and exotics, were analysed using static enclosure technique. Terpene quantification was performed using GC-FID, thermal desorption, cryogenic concentration and automatic injection. Observed EF and POCI values for terpenes from exotic species were 78 times greater than native values; within the same family, exotic EF and POCI values were 28 and 26 times greater than natives. These results support reforestation with native species for improved urban pollution management. PMID:23639471

  18. EARTH, WIND AND FIRE: BUILDING METEOROLOGICALLY-SENSITIVE BIOGENIC AND WILDLAND FIRE EMISSION ESTIMATES FOR AIR QUALITY MODELS

    EPA Science Inventory

    Emission estimates are important for ensuring the accuracy of atmospheric chemical transport models. Estimates of biogenic and wildland fire emissions, because of their sensitivity to meteorological conditions, need to be carefully constructed and closely linked with a meteorolo...

  19. BIOGENIC VOLATILE ORGANIC COMPOUND EMISSIONS FROM A LOWLAND TROPICAL WET FOREST IN COSTA RICA

    EPA Science Inventory

    Twenty common plant species were screened for emissions of biogenic volatile organic compounds (BVOCS) at a lowland tropical wet forest site in Costa Rica. Ten of the species. examined emitted substantial quantities of isoprene. These species accounted for 35-50% of the total bas...

  20. UNITED STATES LAND USE INVENTORY FOR ESTIMATING BIOGENIC OZONE PRECURSOR EMISSIONS

    EPA Science Inventory

    The U.S. Geological Survey's (USGS) Earth Resources Observation System (EROS) Data Center's (EDC) 1-km classified land cover data are combined with other land use data using a Geographic Information System (GIS) to create the Biogenic Emissions Landcover Database (BELD). The land...

  1. Foliar leaching, translocation, and biogenic emission of 35S in radiolabeled loblolly pines

    SciTech Connect

    Garten Jr, Charles T

    1990-02-01

    Foliar leaching, basipetal (downard) translocation, and biogenic emission of sulfur (S), as traced by {sup 35}S, were examined in a field study of loblolly pines. Four trees were radiolabeled by injection with amounts of {sup 35}S in the MBq range, and concentrations in needle fall, stemflow, throughfall, and aboveground biomass were measured over a period of 15-20 wk after injection. The contribution of dry deposition to sulfate-sulfur (SO{sub 4}{sup 2-}-S) concentrations in net throughfall (throughfall SO{sub 4}{sup 2-}-S concentration minus that in incident precipitation) beneath all four trees was >90%. Calculations indicated that about half of the summertime SO{sub 2}2 dry deposition flux to the loblolly pines was fixes in the canopy and not subsequently leached by rainfall. Based on mass balance calculations, {sup 35}S losses through biogenic emissions from girdled trees were inferred to be 25-28% of the amount injected. Estimates based on chamber methods and mass balance calculations indicated a range in daily biogenic S emission of 0.1-10 {micro}g/g dry needles. Translocation of {sup 35}S to roots in nongirdled trees was estimated to be between 14 and 25% of the injection. It is hypothesized that biogenic emission and basipetal translocation of S (and not foliar leaching) are important mechanisms by which forest trees physiologically adapt to excess S in the environment.

  2. Foliar leaching, translocation, and biogenic emission of sup 35 S in radiolabeled loblolly pines

    SciTech Connect

    Garten, C.T. Jr. )

    1990-02-01

    Foliar leaching, basipetal (downward) translocation, and biogenic emission of sulfur (S), as traced by {sup 35}S, were examined in a field study of loblolly pines. Four trees were radiolabeled by injection with amounts of {sup 35}S in the 6-8 MBq range, and concentrations in needle fall, stemflow, throughfall, and aboveground biomass were measured over a period of 15-20 wk after injection. The contribution of dry deposition to sulfate-sulfur (SO{sub 4}{sup 2{minus}}-S) concentrations in net throughfall (throughfall SO{sub 4}{sup 2{minus}}-S concentration minus that in incident precipitation) beneath all four trees was > 90%. Calculations indicated that about half of the summertime SO{sub 2} dry deposition flux to the loblolly pines was fixed in the canopy and not subsequently leached by rainfall. Based on mass balance calculations, {sup 35}S losses through biogenic emissions from girdled trees were inferred to be 25-28% of the amount injected. Estimates based on chamber methods and mass balance calculations indicated a range in daily biogenic S emission of 0.1-10 {mu}g/g dry needles. Translocation of {sup 35}S to roots in nongirdled trees was estimated to be between 14 and 25% of the injection. It is hypothesized that biogenic emission and basipetal translocation of S (and not foliar leaching) are important mechanisms by which forest trees physiologically adapt to excess S in the environment.

  3. Measurements of biogenic non-methane organic compound emissions from grasslands

    SciTech Connect

    Fukui, Yoshiko

    1994-12-31

    Non-methane organic compounds (NMOCs) play an important role in the formation of photochemical oxidants in the troposphere. NMOCs originate from both anthropogenic and biogenic sources. Many organic compounds of biogenic origins are more reactive than those of anthropogenic origin because of the presence of internal double bonds within their molecular structure. The objective of this investigation was to examine the seasonal variation of NMOC emissions from grasslands and determine the environmental factors that control the emissions. An enclosure system was chosen as the most appropriate sampling technique for measuring emissions from herbaceous vegetation, and an analysis method using cryogenic preconcentration/high resolution gas chromatography was established. Emission rates were measured at a fixed location in a natural grassland during 1992 and 1993. Measurements were also made at various locations within the same site where the vegetation was harvested after the emission rates were determined. Emission rates of NMOCs for grasslands are not as large as those reported for forests. However the emissions of oxygenated hydrocarbons exceeded the emissions of monoterpenes and have not previously been identified as important forest-type emissions. A framework for parameterizing the NMOC emissions from grasslands based on seasonal and instantaneous variations of the emission rate measurements was developed. Temperature, hypoxia induced by water saturated soil, and frost were key environmental factors affecting both the composition and magnitude of NMOC emissions.

  4. Estimation of Biogenic VOC Emissions From Ecosystems in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Zemankova, K.; Brechler, J.

    2008-12-01

    Volatile organic compounds (VOC) are one of the crucial elements in photochemical reactions in the atmosphere which lead to tropospheric ozone formation. While modelling concentration of low-level ozone proper information about VOC sources and sinks is necessary. VOC are emitted into the atmosphere both from anthropogenic and natural sources. It has been shown in previous studies (e.g. Simpson et al, 1995) that contribution of volatile organic compounds emitted from biogenic sources to total amount of VOC in the atmosphere can be significant. Our work focuses on estimation of VOC emissions from natural ecosystems, most importantly from forests, and its application in photochemical modelling. Preliminary results have shown that inclusion of biogenic emissions in model input data leads to improvement of resulting ozone concentration which encouraged us to work on detailed biogenic VOC emission estimation. Using grid of 1x1km CORINE Land Cover over the area of the Czech Republic, emissions from deciduous, coniferous and mixed forests were estimated aplying the algorithm of Guenther et al., 1995. According to data from Forest Management Institute each cell of model grid has been assigned a proportional composition of each of thirteen tree species which are the the main forest constituents in the Czech Republic. Aggregating data of tree species composition with land cover category emission factor of particular chemical compound (isoprene, monoterpenes) has been obtained for each cell. Annual emissions of VOC on hourly basis have been calculated for domain of the Czech Republic. Biogenic emissions of isoprene and monoterpenes were compared with the emission inventory of anthropogenic sources. The inventory is provided by Czech Hydrometeorological Institute and covers emissions from major stationary sources, area sources (including domestic heating) and mobile sources. Our results show that natural emissions are approximately half the amount of organic compounds emitted

  5. Contribution of biogenic emissions to the formation of ozone and particulate matter in the eastern United States.

    PubMed

    Pun, Betty K; Wu, Shiang-Yuh; Seigneur, Christian

    2002-08-15

    As anthropogenic emissions of ozone (O3) precursors, fine particulate matter (PM2.5), and PM2.5 precursors continue to decrease in the United States, the fraction of O3 and PM2.5 attributable to natural sources may become significant in some locations, reducing the efficacy that can be expected from future controls of anthropogenic sources. Modeling studies were conducted to estimate the contribution of biogenic emissions to the formation of O3 and PM2.5 in Nashville/TN and the northeastern United States. Two approaches were used to bound the estimates. In an anthropogenic simulation, biogenic emissions and their influence at the domain boundaries were eliminated. Contributions of biogenic compounds to the simulated concentrations of O3 and PM2.5 were determined by the deviation of the concentrations in the anthropogenic case from those in the base case. A biogenic simulation was used to assess the amounts of O3 and PM2.5 produced in an environment free from anthropogenic influences in emissions and boundary conditions. In both locations, the contribution of biogenic emissions to O3 was small (<23%) on a domain-wide basis, despite significant biogenic volatile organic compounds (VOC) emissions (65-89% of total VOC emissions). However, the production of O3 was much more sensitive to biogenic emissions in urban areas (22-34%). Therefore, the effects of biogenic emissions on O3 manifested mostly via their interaction with anthropogenic emissions of NOx. In the anthropogenic simulations, the average contribution of biogenic and natural sources to PM2.5 was estimated at 9% in Nashville/TN and 12% in the northeast domain. Because of the long atmospheric lifetimes of PM2.5, the contribution of biogenic/natural PM2.5 from the boundary conditions was higher than the contribution of biogenic aerosols produced within the domain. The elimination of biogenic emissions also affected the chemistry of other secondary PM2.5 components. Very little PM2.5 was formed in the biogenic

  6. Refined estimates of biogenic hydrocarbon emissions for Atlanta. Interim report, January 1992-November 1993

    SciTech Connect

    Pierce, T.E.; Coventry, D.H.; Van Meter, A.R.; Geron, C.D.

    1993-11-01

    Biogenic emissions of volatile organic compounds (VOCs) reportedly play an important role in ozone non-attainment for Atlanta. To better understand this problem, the Southern Oxidant Study participated in an intensive field experiment around Atlanta during the summer of 1992. This paper compares estimates from three different inventories. The first inventory uses the existing Biogenic Emissions Inventory System (BEIS) in the Urban Airshed Model (UAM). UAM-BEIS relies on county-aggregated land use patterns and emission factors dating back to the 1970's. A second inventory incorporates recent (circa 1990) satellite data. Information from the U.S. Forest Service (USFS) is used to increase the coverage of trees in urban areas from 20% to 30%. The third inventory uses USFS forest inventory statistics to compute leaf biomass and tree species composition for about 1 acre forest survey plots, which are extrapolated to about 2000 hectares forest areas as delineated by aerial photography.

  7. Large increases in Arctic biogenic volatile emissions are a direct effect of warming

    NASA Astrophysics Data System (ADS)

    Kramshøj, Magnus; Vedel-Petersen, Ida; Schollert, Michelle; Rinnan, Åsmund; Nymand, Josephine; Ro-Poulsen, Helge; Rinnan, Riikka

    2016-05-01

    Biogenic volatile organic compounds are reactive gases that can contribute to atmospheric aerosol formation. Their emission from vegetation is dependent on temperature and light availability. Increasing temperature, changing cloud cover and shifting composition of vegetation communities can be expected to affect emissions in the Arctic, where the ongoing climate changes are particularly severe. Here we present biogenic volatile organic compound emission data from Arctic tundra exposed to six years of experimental warming or reduced sunlight treatment in a randomized block design. By separately assessing the emission response of the whole ecosystem, plant shoots and soil in four measurements covering the growing season, we have identified that warming increased the emissions directly rather than via a change in the plant biomass and species composition. Warming caused a 260% increase in total emission rate for the ecosystem and a 90% increase in emission rates for plants, while having no effect on soil emissions. Compared to the control, reduced sunlight decreased emissions by 69% for the ecosystem, 61-65% for plants and 78% for soil. The detected strong emission response is considerably higher than observed at more southern latitudes, emphasizing the high temperature sensitivity of ecosystem processes in the changing Arctic.

  8. Chemistry of new particle growth in mixed urban and biogenic emissions – insights from CARES

    SciTech Connect

    Setyan, Ari; Song, Chen; Merkel, M.; Knighton, M.; Onasch, Timothy B.; Canagaratna, M. R.; Worsnop, Douglas R.; Wiedensohler, A.; Shilling, John E.; Zhang, Qi

    2014-07-01

    plumes. In addition, the concentrations of species representative of urban emissions (e.g., black carbon,CO, NOx, and toluene) were significantly higher whereas thephoto-oxidation products of biogenic VOCs (volatile organic compounds) and the biogenically influenced SOA also increased moderately during the NPE days compared to the non-event days. These results indicate that the frequently occurring NPEs over the Sacramento and Sierra Nevada regions were mainly driven by urban plumes from Sacramento and the San Francisco Bay Area, and that the interaction of regional biogenic emissions with the urban plumes has enhanced the new particle growth. This finding has important implications for quantifying the climate impacts of NPEs on global scale.

  9. Fertilizer impact on biogenic nitric oxide emissions from agricultural soils of the Taklimakan desert (Xinjiang, China)

    NASA Astrophysics Data System (ADS)

    Fechner, A. D.; Behrendt, T.; Bruse, M.; Mamtimin, B.; Andreae, M. O.; Meixner, F. X.

    2012-04-01

    It is known that soil microbial processes play a crucial role in the production and consumption of atmospheric trace gases worldwide. Soils are mostly a major source of biogenic nitric oxide (NO). The main influencing factors controlling soil NO emissions are soil moisture, soil temperature, as well as nutrient availability. Adding fertilizer to agricultural soils changes the pool of nutrients and impacts the net NO emission from these soils. Irrigated and fertilized oases around the great Central Asian Taklamakan desert form the backbone of the agricultural output (80% of the Chinese cotton production) of the Xinjiang Uygur Autonomous Region (NW-China). While nowadays 90% of the agricultural output is produced on just 4.3% of Xinjiang's total area, recent and future enlargement of farmland and intensification of agriculture will definitely impact the regional soil NO emission and consequently the budget of nitrogen oxides and ozone. We present a systematic laboratory study of the influence of urea (CH4N2O) and diammonium hydrogen phosphate ((NH4)2HPO4, DAP) fertilizer on NO emissions from Xinjiang soil samples. Urea is the most widely and excessively applied fertilizer in Xinjiang. Typically, about 600 kg ha-1 yr-1(in terms of mass of nitrogen) were applied to a cotton field in four separate events. In the laboratory, the fertilizer was applied accordingly, ranging from one quarter of the field amount within one of the four events (i.e. 37.5 kg ha-1 yr-1) to quadruple of that (150 kg ha-1 yr-1). Two different measurement series have been performed on six sub- samples (each out of a total of three soil samples taken in Xinjiang): the first series was conducted solely with urea fertilizer, the second one with a mixture of urea and DAP (2:1). All sub-samples were prepared in a standardized way: a fixed mass of soil (~0.06 kg, dried in field) was sieved (2 mm) and stored at 4° C. Then it was wetted up to a soil moisture tension of 1.8 pF. Subsequently, fertilizer was

  10. Global biogenic volatile organic compound emissions in the ORCHIDEE and MEGAN models and sensitivity to key parameters

    NASA Astrophysics Data System (ADS)

    Messina, P.; Lathière, J.; Sindelarova, K.; Vuichard, N.; Granier, C.; Ghattas, J.; Cozic, A.; Hauglustaine, D. A.

    2015-12-01

    A new version of the BVOC emission scheme has been developed in the global vegetation model ORCHIDEE (Organizing Carbon and Hydrology in Dynamic EcosystEm), including an extended list of biogenic emitted compounds, updated emission factors (EFs), a dependency on light for almost all compounds and a multi-layer radiation scheme. For the 2000-2009 period, we estimate with this model, mean global emissions of 465 Tg C yr-1 for isoprene, 107.5 Tg C yr-1 for monoterpenes, 38 Tg C yr-1 for methanol, 25 Tg C yr-1 for acetone and 24 Tg C yr-1 for sesquiterpenes. The model results are compared to state-of-the-art emission budgets, showing that the ORCHIDEE emissions are within the range of published estimates. ORCHIDEE BVOC emissions are compared to the estimates of the Model of Emissions of Gases and Aerosols from Nature (MEGAN), largely used throughout the biogenic emissions and atmospheric chemistry community. Our results show that global emission budgets are, in general, in good agreement between the two models. ORCHIDEE emissions are 8 % higher for isoprene, 8 % lower for methanol, 17 % higher for acetone, 18 % higher for monoterpenes and 39 % higher for sesquiterpenes compared to MEGAN estimates. At the regional scale, the largest differences between ORCHIDEE and MEGAN are highlighted for isoprene in northern temperate regions, with the ORCHIDEE emissions being higher by 21 Tg C yr-1, and for monoterpenes being higher by 10 and 18 Tg C yr-1 in northern and southern tropical regions compared to MEGAN. The geographical differences, between the two models, are mainly associated with different EF and PFT distribution, while differences in the seasonal cycle are mostly driven by differences in the Leaf Area Index (LAI). Sensitivity tests are carried out for both models to explore the response to key variables or parameters such as LAI and Light Dependent Fraction (LDF). The ORCHIDEE and MEGAN emissions are differently affected by LAI changes, with a response highly

  11. Spatio-temporal variation of biogenic volatile organic compounds emissions in China.

    PubMed

    Li, L Y; Chen, Y; Xie, S D

    2013-11-01

    Aiming to reduce the large uncertainties of biogenic volatile organic compounds (BVOCs) emissions estimation, the emission inventory of BVOCs in China at a high spatial and temporal resolution of 36 km × 36 km and 1 h was established using MEGANv2.1 with MM5 providing high-resolution meteorological data, based on the most detailed and latest vegetation investigations. BVOC emissions from 82 plant functional types in China were computed firstly. More local species-specific emission rates were developed combining statistical analysis and category classification, and the leaf biomass was estimated based on vegetation volume and production with biomass-apportion models. The total annual BVOC emissions in 2003 were 42.5 Tg, including isoprene 23.4 Tg, monoterpene 5.6 Tg, sesquiterpene 1.0 Tg, and other VOCs (OVOCs) 12.5 Tg. Subtropical and tropical evergreen and deciduous broadleaf shrubs, Quercus, and bamboo contributed more than 45% to the total BVOC emissions. The highest biogenic emissions were found over northeastern, southeastern, and southwestern China. Strong seasonal pattern was observed with the highest BVOC emissions in July and the lowest in January and December, with daily emission peaked at approximately 13:00 or 14:00 local time. PMID:23916627

  12. Insights into Methane Formation Temperatures, Biogenic Methanogenesis, and Natural Methane Emissions from Clumped Isotopes

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Stolper, D. A.; Walter Anthony, K. M.; Dallimore, S.; Paull, C. K.; Wik, M.; Crill, P. M.; Winterdahl, M.; Smith, D. A.; Luhmann, A. J.; Ding, K.; Seyfried, W. E., Jr.; Eiler, J. M.; Ponton, C.; Sessions, A. L.

    2015-12-01

    Multiply substituted isotopologues of methane are a valuable new tool for characterizing and understanding the source of methane in different Earth environments. Here we present methane clumped isotope results from natural gas wells, hydrothermal vents, marine and lacustrine methane seeps, and culture experiments. We observe a wide range of formation temperatures for thermogenic methane. Methane samples from low-maturity reservoirs indicate formation temperatures between 102-144° C, high-maturity conventional and shale gasses indicate temperatures between 158-246 °C, and thermogenic coal gases indicate temperatures between 174-267 °C. Methane formation temperatures generally correlate positively with δ13C, and negatively with gas wetness indices. Methane samples from a set of marine hydrothermal vents indicate a formation temperature of 290-350 °C. Methane sampled from subsurface and marine biogenic sources typically indicate temperatures consistent with the formation environment (0-64° C). In contrast, freshwater biogenic methane samples, and cultures of hydrogenotrophic and methylotrophic methanogens, express low levels of isotopic clumping inconsistent with their formation temperature. These data and complementary models suggest that kinetic isotope effects, likely modulated by rates and pathways of methanogenesis, affect biogenic methane in cultures and freshwater environments. Alternatively, non-equilibrium signatures may result from mixing of methane with widely differing δD and δ13C values. Analyses of biogenic methane emissions from lakes indicate a correlation between methane flux and non-equilibrium clumped isotope fractionations in a given lake. Results from large methane seeps in Alaskan lakes confirm that some seeps emit thermogenic methane, but also indicate that other seeps emit subsurface biogenic methane or variable mixtures of biogenic and thermogenic methane. These results point to diverse sources for large Arctic methane seeps.

  13. Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere

    NASA Astrophysics Data System (ADS)

    Bouvier-Brown, N. C.; Goldstein, A. H.; Worton, D. R.; Matross, D. M.; Gilman, J. B.; Kuster, W. C.; Welsh-Bon, D.; Warneke, C.; de Gouw, J. A.; Cahill, T. M.; Holzinger, R.

    2008-11-01

    We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments a gas chromatograph with mass spectrometer detector (GC-MS), a proton transfer reaction mass spectrometer (PTR-MS), and a thermal desorption aerosol GC-MS (TAG) and found to be abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO), a light- and temperature-dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4 68% of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72 10.2 μgCg-1h-1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde) in the ambient atmosphere. Methyl chavicol is a major essential oil component of many plant species. This work suggests that methyl chavicol plays a significant role in the atmospheric chemistry of Blodgett Forest, and potentially other sites, and should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  14. Emissions of biogenic sulfur gases from a danish estuary

    NASA Astrophysics Data System (ADS)

    Barker Jørgensen, Bo; Okholm-Hansen, Bolette

    The diurnal variations in sulfur emission were studied at seven sites in a Danish estuary, Norsminde Fjord. The sites comprised grass vegetation, intertidal mud flats, accretions of green algae, an exposed shore and a river outlet. Direct measurements of emission rates from soil and water were done by a dynamic flux chamber technique in connection with gas Chromatographie detection and separation of the cryogenically trapped sulfur gases. Sulfur gas concentrations in air and sea water were measured together with emission rates at 0.5-1 h intervals over 25-40 h periods. DMS was the most important sulfur gas released from grass and algae, while mostly H 2S was released from intertidal mud flats. OCS, CH 3SH and CS 2 were released from most sites at lower rates. Emission of DMS followed the daylight variations, often with a delay towards maximum emission rates in the evening. H 2S was mostly emitted at night or in short outbursts during low tides. Total sulfur emission rates were 1-10μmol Sm -2 d -1. Extreme rates of 335μmol DMSm -2 d -1 were measured over decomposing green algae ( Ulva lactuca). H 2S emission fractions were < 10 -6 to 2.10 -4. H 2S was detected, along with DMS, CH 3SH, OCS and CS 2, in the oxic seawater of the estuary at diurnal mean concentrations of 0.1-6.5nmol S/ol -1. This may indicate a more widespread occurrence of H 2S in shallow, near-shore waters at nanomolar levels.

  15. Biogenic nonmethane hydrocarbon emissions estimated from tethered balloon observations

    NASA Technical Reports Server (NTRS)

    Davis, K. J.; Lenschow, D. H.; Zimmerman, P. R.

    1994-01-01

    A new technique for estimating surface fluxes of trace gases, the mixed-layer gradient technique, is used to calculate isoprene and terpene emissions from forests. The technique is applied to tethered balloon measurements made over the Amazon forest and a pine-oak forest in Alabama at altitudes up to 300 m. The observations were made during the dry season Amazon Boundary Layer Experiment (ABLE 2A) and the Rural Oxidants in the Southern Environment 1990 experiment (ROSE I). Results from large eddy simulations of scalar transport in the clear convective boundary layer are used to infer fluxes from the balloon profiles. Profiles from the Amazon give a mean daytime emission of 3630 +/- 1400 micrograms isoprene sq m/h, where the uncertainty represents the standard deviation of the mean of eight flux estimates. Twenty profiles from Alabama give emissions of 4470 +/- 3300 micrograms isoprene sq m/h, 1740 +/- 1060 micrograms alpha-pinene sq m/h, and 790 +/- 560 micrograms beta-pinene sq m/h, respectively. These results are in agreement with emissions derived from chemical budgets. The emissions may be overestimated because of uncertainty about how to incorporate the effects of the canopy on the mixed-layer gradients. The large variability in these emission estimates is probably due to the relatively short sampling times of the balloon profiles, though spatially heterogeneous emissions may also play a role. Fluxes derived using this technique are representative of an upwind footprint of several kilometers and are independent of hydrocarbon oxidation rate and mean advection.

  16. Modelling the effects of vegetation and soil moisture onto biogenic nitrogen oxide emissions from Sahelian soils.

    NASA Astrophysics Data System (ADS)

    Delon, Claire; Mougin, Eric; Grippa, Manuela; Galy-Lacaux, Corinne; Serça, Dominique; Kergoat, Laurent; Hiernaux, Pierre; Diawara, Mamadou

    2013-04-01

    Natural (biogenic) emissions of nitrogen oxide (NO) from soils are strongly dependent on soil moisture, particularly in Sahelian regions where the soil moisture is very low at the end of the dry season (around 2% in top soil 0-20 cm). When the first rains fall at the beginning of the wet season, soil moisture increases sharply, until reaching a threshold value above which the microbial population can develop, and the microbial activity generating nitrogen within the soil is reactivated. NO emissions to the atmosphere result from the microbial decomposition of organic matter, and present important peaks at the beginning of the wet season. In Sahelian soils, the organic matter decomposition is very efficient at the onset of the wet season because part of the litter has been buried during the dry season by livestock trampling, and is rapidly decomposed when soil moisture is sufficient. The goal of the work presented here is to simulate NO emissions from soils thanks to a parameterization based on a neural network development, coupled to a vegetation model (STEP) and a litter decomposition model (GENDEC), at the Agoufou site (15.1°N, 1.7°W, Gourma, Mali, super site of the AMMA-CATCH observatory). The resulting coupled model (STEP-GENDEC) includes vegetation growth in a dynamic way, and the quantity of nitrogen brought to the soil either as litter and straws or as livestock excretions. Livestock contributes to the N flux either directly trough excretion deposition (faeces and urine) or indirectly through grazing uptake, conversion of standing straw to litter, fragmentation and burying of litter by trampling. A small part of this N available in the soil is released to the atmosphere in the form of different N compounds such as NO. Knowing the quantity of N available in the soil, NO emissions to the atmosphere are calculated for the years 2006-2007-2008, and compared to the few existing measurements. These results show that Sahelian soils emit non negligible quantities

  17. Testing our Understanding of Biogenic Emissions and their Impacts on Atmospheric Composition above the Amazon Rainforest

    NASA Astrophysics Data System (ADS)

    Levine, J. G.; MacKenzie, A. R.; Squire, O. J.; Archibald, A. T.; Griffiths, P. T.; Oram, D.; Forster, G.; Lee, J. D.; Hopkins, J. R.; Bauguitte, S.; Demarco, C. F.; Artaxo, P.

    2014-12-01

    Biogenic volatile organic compounds (BVOCs) have a profound effect on atmospheric chemistry and composition, and thereby affect global air quality and climate. The Amazon rainforest constitutes an intense source of BVOCs and is thus a key location in which to probe these effects. Notable uncertainties remain regarding the amount of BVOCs emitted from the rainforest (a function of plant type, environmental conditions and physiological factors) and the quantitative influence they have on atmospheric oxidants, such as OH and O3 (a function of physical conditions and ambient atmospheric composition, not least the concentration of nitrogen oxides; NOx=NO+NO2). The effect that isoprene oxidation at low NOx concentrations has on the concentrations of OH and O3 proves a particular challenge to reproduce in atmospheric chemistry-transport models. We present here the results of a series of experiments aimed at testing our understanding of BVOC emissions from the Brazilian Amazon and the atmospheric chemistry stemming from these. We attempt to reproduce aircraft measurements of BVOCs, NOx and O3 from the South American Biomass Burning Analysis (SAMBBA) campaign in 2012, including those made close to the site of recent BVOC emission measurements, just north of Manaus, in the Cooperative LBA Atmospheric Regional Experiment (CLAIRE-UK). We compare the abilities of a variety of atmospheric chemistry mechanisms to capture the measurements in both a global atmospheric chemistry-transport model and a trajectory model of chemistry and transport. The exploration in both Eulerian and Lagrangian frameworks, with their contrasting treatments of mixing, is pertinent in view of: the sensitivity that the chemistry stemming from BVOCs shows to ambient NOx concentrations; and the episodic influence of anthropogenic emissions in this environment, for example from Manaus.

  18. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications

    SciTech Connect

    Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto; Kerminen, Veli-Matti; Junninen, Heikki; Paasonen, Pauli; Stratmann, Frank; Herrmann, Hartmut; Guenther, Alex B.; Worsnop, Douglas R.; Kulmala, M.; Ehn, Mikael K.; Sipila, Mikko

    2015-06-09

    Extremely low volatility organic compounds (ELVOC) are suggested to promote aerosol particle formation and cloud condensation nuclei (CCN) production in the atmosphere. We show that the capability of biogenic VOC (BVOC) to produce ELVOC depends strongly on their chemical structure and relative oxidant levels. BVOC with an endocyclic double bond, representative emissions from, e.g., boreal forests, efficiently produce ELVOC from ozonolysis. Compounds with exocyclic double bonds or acyclic compounds including isoprene, emission representative of the tropics, produce minor quantities of ELVOC, and the role of OH radical oxidation is relatively larger. Implementing these findings into a global modeling framework shows that detailed assessment of ELVOC production pathways is crucial for understanding biogenic secondary organic aerosol and atmospheric CCN formation.

  19. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications

    PubMed Central

    Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto; Kerminen, Veli-Matti; Junninen, Heikki; Stratmann, Frank; Herrmann, Hartmut; Guenther, Alex B.; Worsnop, Douglas R.; Kulmala, Markku; Ehn, Mikael; Sipilä, Mikko

    2015-01-01

    Oxidation products of monoterpenes and isoprene have a major influence on the global secondary organic aerosol (SOA) burden and the production of atmospheric nanoparticles and cloud condensation nuclei (CCN). Here, we investigate the formation of extremely low volatility organic compounds (ELVOC) from O3 and OH radical oxidation of several monoterpenes and isoprene in a series of laboratory experiments. We show that ELVOC from all precursors are formed within the first minute after the initial attack of an oxidant. We demonstrate that under atmospherically relevant concentrations, species with an endocyclic double bond efficiently produce ELVOC from ozonolysis, whereas the yields from OH radical-initiated reactions are smaller. If the double bond is exocyclic or the compound itself is acyclic, ozonolysis produces less ELVOC and the role of the OH radical-initiated ELVOC formation is increased. Isoprene oxidation produces marginal quantities of ELVOC regardless of the oxidant. Implementing our laboratory findings into a global modeling framework shows that biogenic SOA formation in general, and ELVOC in particular, play crucial roles in atmospheric CCN production. Monoterpene oxidation products enhance atmospheric new particle formation and growth in most continental regions, thereby increasing CCN concentrations, especially at high values of cloud supersaturation. Isoprene-derived SOA tends to suppress atmospheric new particle formation, yet it assists the growth of sub-CCN-size primary particles to CCN. Taking into account compound specific monoterpene emissions has a moderate effect on the modeled global CCN budget. PMID:26015574

  20. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications.

    PubMed

    Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto; Kerminen, Veli-Matti; Junninen, Heikki; Paasonen, Pauli; Stratmann, Frank; Herrmann, Hartmut; Guenther, Alex B; Worsnop, Douglas R; Kulmala, Markku; Ehn, Mikael; Sipilä, Mikko

    2015-06-01

    Oxidation products of monoterpenes and isoprene have a major influence on the global secondary organic aerosol (SOA) burden and the production of atmospheric nanoparticles and cloud condensation nuclei (CCN). Here, we investigate the formation of extremely low volatility organic compounds (ELVOC) from O3 and OH radical oxidation of several monoterpenes and isoprene in a series of laboratory experiments. We show that ELVOC from all precursors are formed within the first minute after the initial attack of an oxidant. We demonstrate that under atmospherically relevant concentrations, species with an endocyclic double bond efficiently produce ELVOC from ozonolysis, whereas the yields from OH radical-initiated reactions are smaller. If the double bond is exocyclic or the compound itself is acyclic, ozonolysis produces less ELVOC and the role of the OH radical-initiated ELVOC formation is increased. Isoprene oxidation produces marginal quantities of ELVOC regardless of the oxidant. Implementing our laboratory findings into a global modeling framework shows that biogenic SOA formation in general, and ELVOC in particular, play crucial roles in atmospheric CCN production. Monoterpene oxidation products enhance atmospheric new particle formation and growth in most continental regions, thereby increasing CCN concentrations, especially at high values of cloud supersaturation. Isoprene-derived SOA tends to suppress atmospheric new particle formation, yet it assists the growth of sub-CCN-size primary particles to CCN. Taking into account compound specific monoterpene emissions has a moderate effect on the modeled global CCN budget. PMID:26015574

  1. Investigations of BVOC-SOA-cloud-climate feedbacks via interactive biogenic emissions using NorESM

    NASA Astrophysics Data System (ADS)

    Alterskjær, Kari; Egill Kristjansson, Jon; Grini, Alf; Iversen, Trond; Kirkevåg, Alf; Olivié, Dirk; Schulz, Michael; Seland, Øyvind

    2016-04-01

    Climate feedbacks represent a large source of uncertainty in future climate projections. One such feedback involves a change in emissions of biogenic volatile organic compounds (BVOCs) under global warming and a subsequent change in cloud radiative effects. Parts of the atmospheric BVOCs will oxidize in the atmosphere, which may reduce their volatility enough to form secondary organic aerosols (SOA). A changed SOA load will affect cloud radiative properties through aerosol-cloud interactions (ACI) and therefore act to reduce or enhance the temperature change resulting from greenhouse gases alone. In order to study this effect, a development version of the Norwegian Earth System Model (NorESM) has been extended to include explicit atmospheric particle nucleation and a treatment of SOA based on work by Risto Makkonen and collaborators. Biogenic sources of monoterpene and isoprene are interactively calculated by the Model of Emissions of Gases and Aerosols from Nature (MEGAN), version 2.1, incorporated into the Community Land Model, version 4.5. Monoterpene and isoprene are oxidized by O3, OH and NO3 to form SOA with a yield of 15 % and 5 % respectively. It is assumed that 50 % of the product from monoterpene ozonolysis is of low enough volatility to nucleate new particles. The remaining oxidized BVOCs condensate onto preexisting particles. The model improvements include three new tracers to account for both SOA and the BVOCs. This allows for transport of both SOA and precursor gases, making it possible for SOA to form above the surface layer of the model. The new SOA treatment also changes the size distribution of most model aerosols due to condensation. Preliminary results from 6-year simulations with prescribed sea surface temperatures show that the present day emissions of both isoprene (435.9 Tg/yr) and monoterpenes (121.4 Tg/yr) are within the range found in other studies. The resulting SOA production is on the order of 77 Tg/yr, also within the range found by

  2. Urban stress-induced biogenic VOC emissions impact secondary aerosol formation in Beijing

    NASA Astrophysics Data System (ADS)

    Ghirardo, A.; Xie, J.; Zheng, X.; Wang, Y.; Grote, R.; Block, K.; Wildt, J.; Mentel, T.; Kiendler-Scharr, A.; Hallquist, M.; Butterbach-Bahl, K.; Schnitzler, J.-P.

    2015-08-01

    Trees can significantly impact the urban air chemistry by the uptake and emission of reactive biogenic volatile organic compounds (BVOCs), which are involved in ozone and particle formation. Here we present the emission potentials of "constitutive" (cBVOCs) and "stress-induced" BVOCs (sBVOCs) from the dominant broadleaf woody plant species in the megacity of Beijing. Based on an inventory of BVOC emissions and the tree census, we assessed the potential impact of BVOCs on secondary particulate matter formation in 2005 and 2010, i.e., before and after realizing the large tree-planting program for the 2008 Olympic Games. We found that sBVOCs, such as fatty acid derivatives, benzenoids and sesquiterpenes, constituted a significant fraction (∼ 15 %) of the total annual BVOC emissions, and we estimated that the overall annual BVOC budget may have doubled from ∼ 3.6 × 109 g C year-1 in 2005 to ∼ 7.1 × 109 g C year-1 in 2010 due to the increase in urban greens, while at the same time, the emission of anthropogenic VOCs (AVOCs) could be lowered by 24 %. Based on our BVOC emission assessment, we estimated the biological impact on SOA mass formation in Beijing. Compared to AVOCs, the contribution of biogenic precursors (2-5 %) for secondary particulate matter in Beijing was low. However, sBVOCs can significantly contribute (∼ 40 %) to the formation of total secondary organic aerosol (SOA) from biogenic sources; apparently, their annual emission increased from 1.05 μg m-3 in 2005 to 2.05 μg m-3 in 2010. This study demonstrates that biogenic and, in particular, sBVOC emissions contribute to SOA formation in megacities. However, the main problems regarding air quality in Beijing still originate from anthropogenic activities. Nevertheless, the present survey suggests that in urban plantation programs, the selection of plant species with low cBVOC and sBVOC emission potentials have some possible beneficial effects on urban air quality.

  3. Development and Evaluation of the Biogenic Emissions Inventory System (BEIS) Model v3.5

    NASA Astrophysics Data System (ADS)

    Bash, J. O.; Baker, K. R.; Pouliot, G.

    2014-12-01

    Atmospheric biogenic volatile organic compounds (BVOC) influences ozone and organic aerosol formation and can enhance the impact that anthropogenic pollutants have on ambient air-quality and climate. BVOC emissions are estimated to be approximately an order of magnitude higher than anthropogenic sources of volatile organic compounds. Despite the importance of BVOC emissions on air-quality and climate, considerable uncertainty remains in the parametrization emission algorithms and emission factors from different land uses and vegetation species. We will present three updates to the the BEIS model. (1) The BEIS canopy model has been updated with explicit estimates of leaf temperature coupled to the driving meteorological model's energy balance implemented in. (2) The Biogenic Emission Landuse Database (BELD) was updated with year specific satellite derrived land use, U.S. Department of Agriculture (USDA) crop survey data, and U.S. Forest Service forest Forest Inventory Analyssis (FIA) survayed tree speceis to develop a tree species specific land use data set. (3) A survey of published flux measurements were used to update the BEIS BVOC normalized emission factors. Incremental updates to the BEIS model are evaluated against surface and aircraft based field campain measurements and network observations in Community Multiscale Air Quality (CMAQ) model v5.0.2 simulations. Prelimilar model simulations result in improvements in model O3, isoprene, oxidized nitrogen, and aerosol performance over the contenental U.S.

  4. Impact of forest fires, biogenic emissions and high temperatures on the elevated Eastern Mediterranean ozone levels during the hot summer of 2007

    NASA Astrophysics Data System (ADS)

    Hodnebrog, Ø.; Solberg, S.; Stordal, F.; Svendby, T. M.; Simpson, D.; Gauss, M.; Hilboll, A.; Pfister, G. G.; Turquety, S.; Richter, A.; Burrows, J. P.; Denier van der Gon, H. A. C.

    2012-09-01

    The hot summer of 2007 in southeast Europe has been studied using two regional atmospheric chemistry models; WRF-Chem and EMEP MSC-W. The region was struck by three heat waves and a number of forest fire episodes, greatly affecting air pollution levels. We have focused on ozone and its precursors using state-of-the-art inventories for anthropogenic, biogenic and forest fire emissions. The models have been evaluated against measurement data, and processes leading to ozone formation have been quantified. Heat wave episodes are projected to occur more frequently in a future climate, and therefore this study also makes a contribution to climate change impact research. The plume from the Greek forest fires in August 2007 is clearly seen in satellite observations of CO and NO2 columns, showing extreme levels of CO in and downwind of the fires. Model simulations reflect the location and influence of the fires relatively well, but the modelled magnitude of CO in the plume core is too low. Most likely, this is caused by underestimation of CO in the emission inventories, suggesting that the CO/NOx ratios of fire emissions should be re-assessed. Moreover, higher maximum values are seen in WRF-Chem than in EMEP MSC-W, presumably due to differences in plume rise altitudes as the first model emits a larger fraction of the fire emissions in the lowermost model layer. The model results are also in fairly good agreement with surface ozone measurements. Biogenic VOC emissions reacting with anthropogenic NOx emissions are calculated to contribute significantly to the levels of ozone in the region, but the magnitude and geographical distribution depend strongly on the model and biogenic emission module used. During the July and August heat waves, ozone levels increased substantially due to a combination of forest fire emissions and the effect of high temperatures. We found that the largest temperature impact on ozone was through the temperature dependence of the biogenic emissions

  5. Biogenic emissions and CO 2 gas exchange investigated on four Mediterranean shrubs

    NASA Astrophysics Data System (ADS)

    Hansen, U.; van Eijk, J.; Bertin, N.; Staudt, M.; Kotzias, D.; Seufert, G.; Fugit, J.-L.; Torres, L.; Cecinato, A.; Brancaleoni, E.; Ciccioli, P.; Bomboi, T.

    In order to investigate the impact of plant physiology on emissions of biogenic volatile organic compounds monoterpene emission rates from Rosmarinus officinalis (L.) and Pistacia lentiscus (L.) and isoprene emission rates from Erica arborea (L.) and Myrtus communis (L.) were determined. The study, an activity in the framework of BEMA (Biogenic Emissions in the Mediterranean Area), was carried out in May 1994 at Castelporziano near Rome in Italy, using a dynamic enclosure technique combined with recording CO 2 gas exchange, temperature and irradiance data. The monoterpenes dominating the emission pattern were 1,8-cineol, α-pinene and β-pinene for rosemary and α-pinene, linalool and β-pinene + sabinene for pistachio. Total monoterpene emission rates standardized to 30°C of 1.84 ± 0.24 and 0.35 ± 0.04 μg Cg -1 dw h -1 were found for rosemary and pistachio, respectively (on a leaf dry weight basis). Myrtle emitted 22.2 ± 4.9 μg C g -1 dw h -1 at standard conditions (30°C, PAR 1000 μmol photons m -2 s -1 as isoprene and erica 5.61 μg C g -1 dw h -1 The carbon loss due to terpenoid emissions per photosynthetically carbon uptake was about 0.01-0.1% for the monoterpene emitters. The isoprene emitting shrubs lost 0-0.9% of the assimilated carbon. The rapid induction of emissions in the sun after temporary shading indicates that isoprene emissions were closely linked to photosynthesis. A higher proportion of the assimilated carbon was lost as isoprene under conditions of high light and temperature compared to the morning and evening hours.

  6. Emissions of terpenoids, benzenoids, and other biogenic gas-phase organic compounds from agricultural crops and their potential implications for air quality

    NASA Astrophysics Data System (ADS)

    Gentner, D. R.; Ormeño, E.; Fares, S.; Ford, T. B.; Weber, R.; Park, J.-H.; Brioude, J.; Angevine, W. M.; Karlik, J. F.; Goldstein, A. H.

    2014-06-01

    Agriculture comprises a substantial, and increasing, fraction of land use in many regions of the world. Emissions from agricultural vegetation and other biogenic and anthropogenic sources react in the atmosphere to produce ozone and secondary organic aerosol, which comprises a substantial fraction of particulate matter (PM2.5). Using data from three measurement campaigns, we examine the magnitude and composition of reactive gas-phase organic carbon emissions from agricultural crops and their potential to impact regional air quality relative to anthropogenic emissions from motor vehicles in California's San Joaquin Valley, which is out of compliance with state and federal standards for tropospheric ozone PM2.5. Emission rates for a suite of terpenoid compounds were measured in a greenhouse for 25 representative crops from California in 2008. Ambient measurements of terpenoids and other biogenic compounds in the volatile and intermediate-volatility organic compound ranges were made in the urban area of Bakersfield and over an orange orchard in a rural area of the San Joaquin Valley during two 2010 seasons: summer and spring flowering. We combined measurements from the orchard site with ozone modeling methods to assess the net effect of the orange trees on regional ozone. When accounting for both emissions of reactive precursors and the deposition of ozone to the orchard, the orange trees are a net source of ozone in the springtime during flowering, and relatively neutral for most of the summer until the fall, when it becomes a sink. Flowering was a major emission event and caused a large increase in emissions including a suite of compounds that had not been measured in the atmosphere before. Such biogenic emission events need to be better parameterized in models as they have significant potential to impact regional air quality since emissions increase by several factors to over an order of magnitude. In regions like the San Joaquin Valley, the mass of biogenic

  7. Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years

    SciTech Connect

    Sindelarova, K.; Granier, Claire; Bouarar, I.; Guenther, Alex B.; Tilmes, S.; Stavrakou, T.; Muller, J. F.; Kuhn, U.; Stefani, P.; Knorr, W.

    2014-09-09

    The Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) together with the Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields were used to create a global emission dataset of biogenic VOCs available on a monthly basis for the time period of 1980 - 2010. This dataset is called MEGAN-MACC. The model estimated mean annual total BVOC emission of 760 Tg(C) yr1 consisting of isoprene (70%), monoterpenes (11%), methanol (6%), acetone (3%), sesquiterpenes (2.5%) and other BVOC species each contributing less than 2 %. Several sensitivity model runs were performed to study the impact of different model input and model settings on isoprene estimates and resulted in differences of * 17% of the reference isoprene total. A greater impact was observed for sensitivity run applying parameterization of soil moisture deficit that led to a 50% reduction of isoprene emissions on a global scale, most significantly in specific regions of Africa, South America and Australia. MEGAN-MACC estimates are comparable to results of previous studies. More detailed comparison with other isoprene in ventories indicated significant spatial and temporal differences between the datasets especially for Australia, Southeast Asia and South America. MEGAN-MACC estimates of isoprene and*-pinene showed a reasonable agreement with surface flux measurements in the Amazon andthe model was able to capture the seasonal variation of emissions in this region.

  8. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks

    NASA Astrophysics Data System (ADS)

    Mentel, Th. F.; Kleist, E.; Andres, S.; Dal Maso, M.; Hohaus, T.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Uerlings, R.; Wahner, A.; Wildt, J.

    2013-09-01

    Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Biogenic secondary organic aerosols (BSOAs) comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOCs) emitted by vegetation are the source of BSOAs. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed BSOAs, and possibly their climatic effects. This raises questions of whether stress-induced changes in BSOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on BSOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical BSOA formation for plants infested by aphids in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify BSOA formation and yield. Stress-induced emissions of sesquiterpenes, methyl salicylate, and C17-BVOCs increase BSOA yields. Mixtures including these compounds exhibit BSOA yields between 17 and 33%, significantly higher than mixtures containing mainly monoterpenes (4-6% yield). Green leaf volatiles suppress SOA formation, presumably by scavenging OH, similar to isoprene. By classifying emission types, stressors and BSOA formation potential, we discuss possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate-vegetation feedback mechanisms.

  9. Contribution of flowering trees to urban atmospheric biogenic volatile organic compound emissions

    NASA Astrophysics Data System (ADS)

    Baghi, R.; Helmig, D.; Guenther, A.; Duhl, T.; Daly, R.

    2012-10-01

    Emissions of biogenic volatile organic compounds (BVOC) from urban trees during and after blooming were measured during spring and early summer 2009 in Boulder, Colorado. Air samples were collected onto solid adsorbent cartridges from branch enclosures on the tree species crabapple (Malus sp.), horse chestnut (Aesculus carnea, "Ft. McNair"), honey locust (Gleditsia triacanthos, "Sunburst"), and hawthorn (Crataegus laevigata, "Pauls Scarlet"). These species constitute ~ 65% of the insect-pollinated fraction of the flowering tree canopy (excluding catkin-producing trees) from the street area managed by the City of Boulder. Samples were analyzed for C10-C15 BVOC by thermal desorption and gas chromatography coupled to a flame ionization detector and a mass spectrometer (GC/FID/MS). Identified emissions and emission rates from these four tree species during the flowering phase were found to vary over a wide range. Monoterpene emissions were identified for honey locust, horse chestnut and hawthorn. Sesquiterpene emissions were observed in horse chestnut and hawthorn samples. Crabapple flowers were found to emit significant amounts of benzyl alcohol and benzaldehyde. Floral BVOC emissions increased with temperature, generally exhibiting exponential temperature dependence. Changes in BVOC speciation during and after the flowering period were observed for every tree studied. Emission rates were significantly higher during the blooming compared to the post-blooming state for crabapple and honey locust. The results were scaled to the dry mass of leaves and flowers contained in the enclosure. Only flower dry mass was accounted for crabapple emission rates as leaves appeared at the end of the flowering period. Total normalized (30 °C) monoterpene emissions from honey locust were higher during flowering (5.3 μgC g-1 h-1) than after flowering (1.2 μgC g-1 h-1). The total normalized BVOC emission rate from crabapple (93 μgC g-1 h-1) during the flowering period is of the same

  10. Modeling of global biogenic emissions for key indirect greenhouse gases and their response to atmospheric CO2 increases and changes in land cover and climate

    NASA Astrophysics Data System (ADS)

    Tao, Zhining; Jain, Atul K.

    2005-11-01

    Natural emissions of nonmethane volatile organic compounds (NMVOCs) play a crucial role in the oxidation capacity of the lower atmosphere and changes in concentrations of major greenhouse gases (GHGs), particularly methane and tropospheric ozone. In this study, we integrate a global biogenic model within a terrestrial ecosystem model to investigate the vegetation and soil emissions of key indirect GHGs, e.g., isoprene, monoterpene, other NMVOCs (OVOC), CO, and NOx. The combination of a high-resolution terrestrial ecosystem model with satellite data allows investigation of the potential changes in net primary productivity (NPP) and resultant biogenic emissions of indirect GHGs due to atmospheric CO2 increases and changes in climate and land use practices. Estimated global total annual vegetation emissions for isoprene, monoterpene, OVOC, and CO are 601, 103, 102, and 73 Tg C, respectively. Estimated NOx emissions from soils are 7.51 Tg N. The land cover changes for croplands generally lead to a decline of vegetation emissions for isoprene OVOC, whereas temperature and atmospheric CO2 increases lead to higher vegetation emissions. The modeled global mean isoprene emissions show relatively large seasonal variations over the previous 20 years from 1981 to 2000 (as much as 31% from year to year). Savanna and boreal forests show large seasonal variations, whereas tropical forests with high plant productivity throughout the year show small seasonal variations. Results of biogenic emissions from 1981 to 2000 indicate that the CO2 fertilization effect, along with changes in climate and land use, causes the overall up-trend in isoprene and OVOC emissions over the past 2 decades. This relationship suggests that future emission scenario estimations for NMVOCs should account for effects of CO2 and climate in order to more accurately estimate local, regional, and global chemical composition of the atmosphere, the global carbon budget, and radiation balance of the Earth

  11. Off-season biogenic volatile organic compound emissions from heath mesocosms: responses to vegetation cutting

    PubMed Central

    Rinnan, Riikka; Gierth, Diana; Bilde, Merete; Rosenørn, Thomas; Michelsen, Anders

    2013-01-01

    Biogenic volatile organic compounds (BVOCs) affect both atmospheric processes and ecological interactions. Our primary aim was to differentiate between BVOC emissions from above- and belowground plant parts and heath soil outside the growing season. The second aim was to assess emissions from herbivory, mimicked by cutting the plants. Mesocosms from a temperate Deschampsia flexuosa-dominated heath ecosystem and a subarctic mixed heath ecosystem were either left intact, the aboveground vegetation was cut, or all plant parts (including roots) were removed. For 3–5 weeks, BVOC emissions were measured in growth chambers by an enclosure method using gas chromatography-mass spectrometry. CO2 exchange, soil microbial biomass, and soil carbon and nitrogen concentrations were also analyzed. Vegetation cutting increased BVOC emissions by more than 20-fold, and the induced compounds were mainly eight-carbon compounds and sesquiterpenes. In the Deschampsia heath, the overall low BVOC emissions originated mainly from soil. In the mixed heath, root, and soil emissions were negligible. Net BVOC emissions from roots and soil of these well-drained heaths do not significantly contribute to ecosystem emissions, at least outside the growing season. If insect outbreaks become more frequent with climate change, ecosystem BVOC emissions will periodically increase due to herbivory. PMID:23966983

  12. Contribution of flowering trees to urban atmospheric biogenic volatile organic compound emissions

    NASA Astrophysics Data System (ADS)

    Baghi, R.; Helmig, D.; Guenther, A.; Duhl, T.; Daly, R.

    2012-04-01

    Emissions of biogenic volatile organic compounds (BVOC) from urban trees during and after blooming were measured during spring and early summer 2009 in Boulder, Colorado. Air samples were collected onto solid adsorbent cartridges from branch enclosures on the following trees: crabapple, horse chestnut, honey locust and hawthorn. These species constitute ~65% of the insect-pollinated fraction of the flowering tree canopy (excluding catkin-producing trees) from the total street area managed by the City of Boulder. Samples were subsequently analyzed for C10 - C15 BVOC by thermal desorption and gas chromatography coupled to a flame ionization detector and a mass spectrometer (GC/FID/MS). Identified emissions and emission rates from these four tree species during the flowering phase were found to vary over a wide range. Monoterpene emissions were identified for honey locust, horse chestnut and hawthorn. Sesquiterpene emissions were observed in horse chestnut and hawthorn samples. Crabapple flowers were found to emit significant amounts of benzyl alcohol and benzaldehyde. Floral BVOC emissions were found to increase with temperature, generally exhibiting exponential temperature dependence. Changes in BVOC speciation during and after the flowering period were observed for every tree studied. Emission rates were significantly higher during the blooming compared to the vegetative state for crabapple and honey locust. Total normalized (30oC) monoterpene emissions from honey locust were 4.3 fold higher during flowering (5.26 μgC g-1h-1) than after flowering (1.23 μgC g-1h-1). The total normalized BVOC emission rate from crabapple (93 μgC g-1h-1) during the flowering period is of the same order as isoprene emissions from oak trees, which are among the highest BVOC emissions observed to date. These findings illustrate that during the relatively brief springtime flowering period, floral emissions constitute by far the most significant contribution to the BVOC flux from these

  13. Contribution of flowering trees to urban atmospheric biogenic volatile organic compound emissions

    NASA Astrophysics Data System (ADS)

    Baghi, R.; Helmig, D.; Guenther, A.; Duhl, T.; Daly, R.

    2012-03-01

    Emissions of biogenic volatile organic compounds (BVOC) from urban trees during and after blooming were measured during spring and early summer 2009 in Boulder, Colorado. Air samples were collected onto solid adsorbent cartridges from branch enclosures on the tree species crabapple, horse chestnut, honey locust, and hawthorn. These species constitute ~65 % of the insect-pollinated fraction of the flowering tree canopy (excluding catkin-producing trees) from the street area managed by the City of Boulder. Samples were analyzed for C10-C15 BVOC by thermal desorption and gas chromatography coupled to a flame ionization detector and a mass spectrometer (GC/FID/MS). Identified emissions and emission rates from these four tree species during the flowering phase were found to vary over a wide range. Monoterpene emissions were identified for honey locust, horse chestnut and hawthorn. Sesquiterpene emissions were observed in horse chestnut and hawthorn samples. Crabapple flowers were found to emit significant amounts of benzyl alcohol and benzaldehyde. Floral BVOC emissions increased with temperature, generally exhibiting exponential temperature dependence. Changes in BVOC speciation during and after the flowering period were observed for every tree studied. Emission rates were significantly higher during the blooming compared to the vegetative state for crabapple and honey locust. Total normalized (30 °C) monoterpene emissions from honey locust were higher during flowering (5.26 μg Cg-1 h-1) than after flowering (1.23 μg Cg-1 h-1). The total normalized BVOC emission rate from crabapple (93 μg Cg-1 h-1) during the flowering period is of the same order as isoprene emissions from oak trees, which are among the highest BVOC emissions observed from plants to date. These findings illustrate that during the relatively brief springtime flowering period, floral emissions constitute by far the most significant contribution to the BVOC flux from these tree species, some of which

  14. Forest Thinning Dramatically Enhances Ozone Flux due to Reactions With Elevated Emissions of Biogenic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Goldstein, A. H.; McKay, M.; Kurpius, M. R.; Schade, G. W.

    2003-12-01

    Forests are routinely managed for timber production and fire suppression by thinning and harvesting. The impact of these activities on biosphere-atmosphere exchange of reactive trace gases is profound, but has rarely been studied in the field. Here we present simultaneous observations of ozone and terpene fluxes before, during, and after pre-commercial thinning of a ponderosa pine plantation at Blodgett Forest (1300 m elevation on the western slope of the Sierra Nevada Mountains, CA). We previously reported that monoterpene emissions increased by an order of magnitude during and following forest thinning (Schade and Goldstein, GRL 2003). We also previously reported that half the daytime ozone flux to this ecosystem under normal summertime conditions (no disturbance) was due to gas-phase chemical loss, and we suggested that this ozone loss was occurring by reactions with biogenically emitted terpenes whose lifetime was short enough that they reacted before escaping the forest canopy (Kurpius and Goldstein, GRL 2003). Here we report that ozone loss was also dramatically enhanced during and following thinning, and we link these observations to confirm that the chemical ozone loss in the canopy was indeed due to reaction with biogenically emitted compounds whose emission was enhanced by disturbance. Based on the magnitudes of ozone flux due to chemical loss and the measured terpene fluxes, we infer that the emissions of previously undetected short-lived terpenes are approximately 15-20 times those of a-pinene during thinning, and 30-50 times those of a-pinene during summer and fall. Since a-pinene accounts for approximately 25% of the total monoterpenes we routinely measure with our automated in-situ GC instrumentation, we conclude that emissions of highly reactive terpenoid compounds could have been drastically under measured in previous field campaigns and that emissions of unidentified reactive terpenes could be 5-10 times larger than emissions of total terpenes

  15. Modelled and field measurements of biogenic hydrocarbon emissions from a Canadian deciduous forest

    NASA Astrophysics Data System (ADS)

    Fuentes, J. D.; Wang, D.; Den Hartog, G.; Neumann, H. H.; Dann, T. F.; Puckett, K. J.

    The Biogenic Emission Inventory System (BEIS) used by the United States Environmental Protection Agency (Lamb et al., 1993, Atmospheric Environment21, 1695-1705; Pierce and Waldruff, 1991, J. Air Waste Man. Ass.41, 937-941) was tested for its ability to provide realistic microclimate descriptions within a deciduous forest in Canada. The microclimate description within plant canopies is required because isoprene emission rates from plants are strongly influenced by foliage temperature and photosynthetically active radiation impinging on leaves while monoterpene emissions depend primarily on leaf temperature. Model microclimate results combined with plant emission rates and local biomass distribution were used to derive isoprene and α-pinene emissions from the deciduous forest canopy. In addition, modelled isoprene emission estimates were compared to measured emission rates at the leaf level. The current model formulation provides realistic microclimatic conditions for the forest crown where modelled and measured air and foliage temperature are within 3°C. However, the model provides inadequate microclimate characterizations in the lower canopy where estimated and measured foliage temperatures differ by as much as 10°C. This poor agreement may be partly due to improper model characterization of relative humidity and ambient temperature within the canopy. These uncertainties in estimated foliage temperature can lead to underestimates of hydrocarbon emission estimates of two-fold. Moreover, the model overestimates hydrocarbon emissions during the early part of the growing season and underestimates emissions during the middle and latter part of the growing season. These emission uncertainties arise because of the assumed constant biomass distribution of the forest and constant hydrocarbon emission rates throughout the season. The BEIS model, which is presently used in Canada to estimate inventories of hydrocarbon emissions from vegetation, underestimates emission

  16. The effects of fire on biogenic soil emissions of nitric oxide and nitrous oxide

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Cofer, Wesley R., III; Sebacher, Daniel I.; Boston, Penelope J.; Winstead, Edward L.; Sebacher, Shirley

    1988-01-01

    Measurements of biogenic soil emissions of nitric oxide (NO) and nitrous oxide (N2O) before and after a controlled burn conducted in a chaparral ecosystem on June 22, 1987, showed significantly enhanced emissions of both gases after the burn. Mean NO emissions from heavily burned and wetted (to simulate rainfall) sites exceeded 40 ng N/sq m s, and increase of 2 to 3 compared to preburn wetted site measurements. N2O emissions from burned and wetted sites ranged from 9 to 22 ng N/sq m s. Preburn N2O emissions from these wetted sites were all below the detection level of the instrumentation, indicating a flux below 2 ng N/sq m s. The flux of NO exceeded the N2O flux from burned wetted sites by factors ranging from 2.7 to 3.4. These measurements, coupled with preburn and postburn measurements of ammonium and nitrate in the soil of this chaparral ecosystem and measurements of NO and N2O emissions obtained under controlled laboratory conditions, suggest that the postfire enhancement of NO and N2O emissions is due to production of these gases by nitrifying bacteria.

  17. Eddy flux and leaf-level measurements of biogenic VOC emissions from mopane woodland of Botswana

    NASA Astrophysics Data System (ADS)

    Greenberg, J. P.; Guenther, A.; Harley, P.; Otter, L.; Veenendaal, E. M.; Hewitt, C. N.; James, A. E.; Owen, S. M.

    2003-07-01

    Biogenic volatile organic compound (BVOC) emissions were measured in a mopane woodland near Maun, Botswana in January-February 2001 as part of SAFARI 2000. This landscape is comprised of more than 95% of one woody plant species, Colophospermum mopane (Caesalpinaceae). Mopane woodlands extend over a broad area of southern Africa. A leaf cuvette technique was used to determine the emission capacities of the major vegetation and the temperature and light dependence of the emissions. In addition, relaxed eddy accumulation (REA) measurements of BVOC fluxes were made on a flux tower, where net CO2 emissions were also measured simultaneously. Large light-dependent emissions of terpenes (mostly α-pinene and D-limonene) were observed from the mopane woodland. The diurnal BVOC emissions were integrated and compared with the CO2 flux. Monoterpene flux exceeded 3000 μg C m-2 h-1 during the daytime period, comparable to isoprene fluxes and much higher than terpene fluxes measured in most areas. The terpene flux constituted approximately 25% of the diurnal net carbon exchange (CO2) during the experimental period. Other BVOC emissions may also contribute to the carbon exchange.

  18. Interspecific variation in leaf-level biogenic emissions of the Bambuseae

    NASA Astrophysics Data System (ADS)

    Melnychenko, Andrea Natalie

    Plants emit a diverse range of biogenic volatile organic compounds (BVOCs) into the atmosphere, of which isoprene is the most abundantly emitted. Isoprene significantly affects biological and atmospheric processes, but the range of isoprene and BVOCs present in bamboos has not been well characterized. In this thesis I explore the range of isoprene emission found in bamboos and relate it to plant morphological and physiological characteristics. In addition, I measure and relate the entire suite of BVOCs present in the bamboos to their fundamental isoprene emission rate. Interspecific variation in isoprene emission documented in a comprehensive survey of bamboos. Two groups of bamboo species were measured in the greenhouse and the field. Elevated photosynthetic rate was significantly correlated with isoprene emission. In the field, dark respiration rate was highest in bamboos that made the least amount of isoprene. The total BVOC suite was significantly influenced by whether or not leaf-level isoprene emission was present. I conclude that bamboos vary with regard to physiology, morphology, and total BVOC suite and that isoprene emission is correlated with these changes, and introduce the bamboos as a novel system for studying the impacts of isoprene emission.

  19. Biogenic Volatile Organic Compound Emissions in a Temperature Forest and a Bamboo Forest in China

    NASA Astrophysics Data System (ADS)

    Bai, Jianhui; Guenther, Alex; Turnipseed, Andrew; Duhl, Tiffany; Hao, Nan; van der A, Ronald; Yu, Shuquan; Wang, Bin

    2014-11-01

    Emission fluxes of Biogenic Volatile Organic compounds (BVOC), solar radiation (including global radiation, Photosynthetically Active Radiation (PAR), etc.), meteorological parameters were carried out in Changbai temperature forest during growing seasons of 2010 and 2011 and Linan subtropical bamboo forest from July 2012 to Jan. 2013 in China. A REA (Relaxed Eddy Accumulation) system was used to measure BVOC emissions on an above-canopy tower. Isoprene and monoterpenes showed obvious diurnal and seasonal variations in these two forests, their daily maxima occurred around noon. The average emission fluxes (mg m-2 h-1) were 0.889 for isoprene and 0.143 for monoterpene in Changbai temperate forest in 2011 growing season, 0.95 for isopreneor and 0.012 for monoterpene in Linan bamboo forest during the whole campaign. Based on PAR energy balance, empirical models of BVOC emissions in these temperate and subtropical forests were developed, the estimated emissions of isoprene and monoterpenes were in agreement with observations. Applying these empirical models, BVOC emissions in Changbai temperate forest during growing seasons and in Linan subtropical bamboo forest from July 2012 to Jan. 2013 were calculated. The relationships between surface measurements of BVOC emissions and HCHO vertical column densities retrieved from the satellite were found in these two forests.

  20. Model sensitivity to MACC anthropogenic and biogenic emissions: Global simulations and evaluation for reactive gases

    NASA Astrophysics Data System (ADS)

    Stein, O.; Schultz, M. G.; Bouarar, I.; Clark, H.; Katragkou, E.; Leitao, J.; Heil, A.

    2012-04-01

    , particularly during NH winter. Increasing the MACCity CO traffic emissions by a factor of 2.5 results in a much better representation of surface and satellite observations for most parts of the world. This points to a significant underestimation of traffic CO emissions in the MACCity emission inventory, which is potentially amplified by an unrealistic emission reduction 2000-2010 in the RCP8.5 scenario. Biogenic emissions used in MOZART for MACC come from the MEGANv3 emission database. We will also show the impact of using an alternative emission inventory for Europe (NATAIR) on reactive gases for the global scale.

  1. Widespread occurrence of bacterial thiol methyltransferases and the biogenic emission of methylated sulfur gases

    SciTech Connect

    Drotar, A.; Burton, G.A. Jr.; Tavernier, J.E.; Fall, R.

    1987-07-01

    A majority of heterotrophic bacteria isolated from soil, water, sediment, vegetation, and marine algae cultures methylated sulfide, producing methanethiol. This was demonstrated (i) with intact cells by measuring the emission of methanethiol with a sulfur-selective chemiluminescence detector, and (ii) in cell extracts by detection of sulfide-dependent thiol methyltransferase activity. Extracts of two Pseudomonas isolates were fractionated by gel-filtration and ion-exchange chromatography, and with sulfide as the substrate a single peak of thiol methyltransferase activity was seen in each case. Extracts of several bacterial strains also contained thiol methyltransferase activity with organic thiols as substrates. Thus, S-adenosylmethionine-dependent thiol methyltransferase activities are widespread in bacteria and may contribute to biogenic emissions of methylated sulfur gases and to the production of methyl thioethers.

  2. Widespread occurrence of bacterial thiol methyltransferases and the biogenic emission of methylated sulfur gases.

    PubMed Central

    Drotar, A; Burton, G A; Tavernier, J E; Fall, R

    1987-01-01

    A majority of heterotrophic bacteria isolated from soil, water, sediment, vegetation, and marine algae cultures methylated sulfide, producing methanethiol. This was demonstrated with intact cells by measuring the emission of methanethiol with a sulfur-selective chemiluminescence detector, and in cell extracts by detection of sulfide-dependent thiol methyltransferase activity. Extracts of two Pseudomonas isolates were fractionated by gel-filtration and ion-exchange chromatography, and with sulfide as the substrate a single peak of thiol methyltransferase activity was seen in each case. Extracts of several bacterial strains also contained thiol methyltransferase activity with organic thiols as substrates. Thus, S-adenosylmethionine-dependent thiol methyltransferase activities are widespread in bacteria and may contribute to biogenic emissions of methylated sulfur gases and to the production of methyl thioethers. PMID:3662509

  3. Current estimates of biogenic emissions from eucalypts uncertain for southeast Australia

    NASA Astrophysics Data System (ADS)

    Emmerson, Kathryn M.; Galbally, Ian E.; Guenther, Alex B.; Paton-Walsh, Clare; Guerette, Elise-Andree; Cope, Martin E.; Keywood, Melita D.; Lawson, Sarah J.; Molloy, Suzie B.; Dunne, Erin; Thatcher, Marcus; Karl, Thomas; Maleknia, Simin D.

    2016-06-01

    The biogenic emissions of isoprene and monoterpenes are one of the main drivers of atmospheric photochemistry, including oxidant and secondary organic aerosol production. In this paper, the emission rates of isoprene and monoterpenes from Australian vegetation are investigated for the first time using the Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGANv2.1); the CSIRO chemical transport model; and atmospheric observations of isoprene, monoterpenes and isoprene oxidation products (methacrolein and methyl vinyl ketone). Observations from four field campaigns during three different seasons are used, covering urban, coastal suburban and inland forest areas. The observed concentrations of isoprene and monoterpenes were of a broadly similar magnitude, which may indicate that southeast Australia holds an unusual position where neither chemical species dominates. The model results overestimate the observed atmospheric concentrations of isoprene (up to a factor of 6) and underestimate the monoterpene concentrations (up to a factor of 4). This may occur because the emission rates currently used in MEGANv2.1 for Australia are drawn mainly from young eucalypt trees (< 7 years), which may emit more isoprene than adult trees. There is no single increase/decrease factor for the emissions which suits all seasons and conditions studied. There is a need for further field measurements of in situ isoprene and monoterpene emission fluxes in Australia.

  4. Physical modelling of the transport of biogenic emissions in and above a finite forest area

    NASA Astrophysics Data System (ADS)

    Aubrun, S.; Leitl, B.; Schatzmann, M.

    2003-04-01

    This study takes part to the project “Emission and CHemical transformation of biogenic volatile Organic compounds: investigations in and above a mixed forest stand” (ECHO) funded by the German atmospheric research program AFO 2000. The contribution of Hamburg University is a better understanding of the transport of biogenic emissions in the atmospheric boundary layer influenced by a very rough environment as a finite forest area. The finite forest area surrounding the Research Centre of Jülich (Germany) was modelled to a scale of 1:300 and studied in the large boundary layer wind tunnel of the Meteorological institute of Hamburg University. The model of the forest must reproduce the resistance to the wind generated by this porous environment. Using rings of metallic mesh to represent some group of trees, some preliminary tests were carried out to find the arrangement of these rings that would provide the appropriate aerodynamic characteristics for a forest. The terrain which precedes the finite forest area, is characteristic of farmlands therefore the approaching flow in the wind tunnel was carefully designed to follow all the aerodynamic properties of a neutral atmospheric boundary layer, developed on a moderately rough surface (cf. VDI guideline 3783). Subsequently, some investigations consisting of dispersion measurements were carried out to reproduce the field tracer-gas experiments processed by the Research Centre of Jülich. The comparison was satisfying and guarantied the quality of the physical model. The constant flow conditions provided by a wind tunnel give the possibility to study the influence of the averaging time on the deduced statistical results. As a consequence, the project was able to directly contribute to quality assurance of field data since one can qualify the reliability and the representativeness of such short-term mean values (averaging time between 10 and 80 minutes). Combined field and laboratory data also provided a data set for

  5. Impacts of long- and short-term climate variability on terrestrial biogenic emissions and their influence on the remote tropical troposphere

    NASA Astrophysics Data System (ADS)

    Monks, S. A.; Arnold, S.; Guenther, A. B.; Emmons, L. K.; Carpenter, L.; Read, K.

    2013-12-01

    Terrestrial vegetation emits a wide range of biogenic volatile organic compounds (BVOC) into the atmosphere (~1150 TgC/yr), which accounts for ~90% of total VOC surface emissions. Emissions of BVOC are largely dependent on environmental factors such as sunlight and temperature, which makes them sensitive to both long-term and short-term changes in the climate system. ENSO is well-known to have global impacts on temperature and precipitation, and therefore has the potential to impact regional BVOC emissions on inter-annual time-scales. In addition to this, increased global mean temperatures and atmospheric carbon dioxide (CO2) concentrations over the past few decades may also have affected BVOC emissions. Once in the atmosphere, these compounds have the ability to influence global and regional atmospheric chemistry and climate through impacts on the hydroxyl radical, ozone, particulate matter and methane lifetime. We use the NCAR Community Land Model (CLM) coupled to the Model of Emissions of Gases and Aerosols from Nature (MEGANv2) to investigate both long-term changes and inter-annual variability of BVOC emissions over a 50-year period at regional and global spatial-scales. This is done by considering the impacts of increasing temperatures and CO2 concentrations on long-term emissions of BVOC separately, in addition to using the Multivariate ENSO Index (MEI) to investigate the regional response in emissions due to natural ENSO variability. Global composites of ENSO-positive and ENSO-negative phase emissions are then used to drive global atmospheric chemistry simulations using the NCAR Community Earth System Model (CESM). Through comparisons with 6 years of measurements from the Cape Verde observatory in the tropical Atlantic Ocean, we explore the role of inter-annual variability in terrestrial biogenic emissions in controlling the observed variability in methanol, acetone and acetaldehyde in the remote tropical atmosphere. By accounting for inter-annual changes in

  6. Area integrated emission of biogenic nitric oxide by Lagrangian dispersion modeling (LASAT): Milan oasis, Taklimakan desert (Xinjiang, PR China)

    NASA Astrophysics Data System (ADS)

    Badawy, M.; Wu, Z.; Behrendt, T.; Fechner, A. D.; Meixner, F. X.; Andreae, M. O.; Mamtimin, B.

    2012-04-01

    Today's knowledge of soil biogenic NO emission rates from arid and hyper-arid land is based on a total of about 20 experimental studies. Nevertheless, biogenic NO emissions even from non-managed arid and hyper-arid soils are significant and may range between 1-10 ng m-2 s-1 (in terms of nitrogen, if conditions for soil NO production are favourable (optimum soil moisture, high soil temperatures). Irrigated and fertilized oases, ranging about 3000 km long around the great Central Asian Taklimakan desert form the backbone of the agricultural output (80% of the Chinese cotton production) of the Xinjiang Uygur Autonomous Region (NW-China). Recent and future development of farmland and intensification of agriculture will definitely impact the regional soil NO emission and consequently the budget of nitrogen oxides and ozone. Up to today, only a few studies have preliminarily addressed soil biogenic NO emissions from the Taklimakan desert. In our contribution, we will focus on the quantification of the area integrated NO emission from the Milan oasis located on the most southern fringe of the Takalimkan desert (39.26° N, 88.91° E). At a first step, the 3D distribution of ambient NO concentration is calculated using a state-of-the-art commercially available dispersion model (LASAT 3.2, Lagrange Simulation of Aerosol-Transport). Performing the dispersion simulation, transport and turbulent diffusion are simulated for a group of representative "simulation particles" by means of a stochastic process (Lagrange simulation). Surface sources (individual cotton fields, Jujube orchards) are known: their geographical location as well as their areal extent, their stage of vegetation growth as well as irrigation and fertilization events and amounts, soil temperatures and soil water contents. This information is used to up-scale our results of field specific potential net NO emission, which has been parameterized in terms of soil temperature, soil water content, and soil nutrient

  7. Modelling the effect of soil moisture and organic matter degradation on biogenic NO emissions from soils in Sahel rangeland (Mali)

    NASA Astrophysics Data System (ADS)

    Delon, C.; Mougin, E.; Serça, D.; Grippa, M.; Hiernaux, P.; Diawara, M.; Galy-Lacaux, C.; Kergoat, L.

    2014-08-01

    This work is an attempt to provide seasonal variation of biogenic NO emission fluxes in a sahelian rangeland in Mali (Agoufou, 15.34° N, 1.48° W) for years 2004, 2005, 2006, 2007 and 2008. Indeed, NO is one of the most important precursor for tropospheric ozone, and the contribution of the Sahel region in emitting NO is no more considered as negligible. The link between NO production in the soil and NO release to the atmosphere is investigated in this study, by taking into account vegetation litter production and degradation, microbial processes in the soil, emission fluxes, and environmental variables influencing these processes, using a coupled vegetation-litter decomposition-emission model. This model includes the Sahelian-Transpiration-Evaporation-Productivity (STEP) model for the simulation of herbaceous, tree leaf and fecal masses, the GENDEC model (GENeral DEComposition) for the simulation of the buried litter decomposition, and the NO emission model for the simulation of the NO flux to the atmosphere. Physical parameters (soil moisture and temperature, wind speed, sand percentage) which affect substrate diffusion and oxygen supply in the soil and influence the microbial activity, and biogeochemical parameters (pH and fertilization rate related to N content) are necessary to simulate the NO flux. The reliability of the simulated parameters is checked, in order to assess the robustness of the simulated NO flux. Simulated yearly average of NO flux ranges from 0.69 to 1.09 kg(N) ha-1 yr-1, and wet season average ranges from 1.16 to 2.08 kg(N) ha-1 yr-1. These results are in the same order as previous measurements made in several sites where the vegetation and the soil are comparable to the ones in Agoufou. This coupled vegetation-litter decomposition-emission model could be generalized at the scale of the Sahel region, and provide information where little data is available.

  8. Modelling the effect of soil moisture and organic matter degradation on biogenic NO emissions from soils in Sahel rangeland (Mali)

    NASA Astrophysics Data System (ADS)

    Delon, C.; Mougin, E.; Serça, D.; Grippa, M.; Hiernaux, P.; Diawara, M.; Galy-Lacaux, C.; Kergoat, L.

    2015-01-01

    This work is an attempt to provide seasonal variation of biogenic NO emission fluxes in a sahelian rangeland in Mali (Agoufou, 15.34° N, 1.48° W) for years 2004-2008. Indeed, NO is one of the most important precursor for tropospheric ozone, and the contribution of the Sahel region in emitting NO is no more considered as negligible. The link between NO production in the soil and NO release to the atmosphere is investigated in this study, by taking into account vegetation litter production and degradation, microbial processes in the soil, emission fluxes, and environmental variables influencing these processes, using a coupled vegetation-litter decomposition-emission model. This model includes the Sahelian-Transpiration-Evaporation-Productivity (STEP) model for the simulation of herbaceous, tree leaf and fecal masses, the GENDEC model (GENeral DEComposition) for the simulation of the buried litter decomposition and microbial dynamics, and the NO emission model (NOFlux) for the simulation of the NO release to the atmosphere. Physical parameters (soil moisture and temperature, wind speed, sand percentage) which affect substrate diffusion and oxygen supply in the soil and influence the microbial activity, and biogeochemical parameters (pH and fertilization rate related to N content) are necessary to simulate the NO flux. The reliability of the simulated parameters is checked, in order to assess the robustness of the simulated NO flux. Simulated yearly average of NO flux ranges from 0.66 to 0.96 kg(N) ha-1 yr-1, and wet season average ranges from 1.06 to 1.73 kg(N) ha-1 yr-1. These results are in the same order as previous measurements made in several sites where the vegetation and the soil are comparable to the ones in Agoufou. This coupled vegetation-litter decomposition-emission model could be generalized at the scale of the Sahel region, and provide information where little data is available.

  9. Emissions of Biogenic Volatile Organic Compounds and Observations of VOC Oxidation at Harvard Forest

    NASA Astrophysics Data System (ADS)

    McKinney, K. A.; Pho, T.; Vasta, A.; Lee, B. H.

    2009-12-01

    The contribution of biogenic volatile organic compounds (BVOCs) to oxidant concentrations and secondary organic aerosol (SOA) production in forested environments depends on the emission rates of these compounds. Recent findings have suggested that the emission rates of BVOCs and the range of species emitted could be larger than previously thought. In this study, Proton Transfer Reaction Mass Spectrometry (PTR-MS) was used to obtain fast (<1 Hz) measurements of the predominant BVOC species, including isoprene, monoterpenes, and oxygenated BVOCs, above the canopy at Harvard Forest (Petersham, MA) during the summers of 2005, 2007, and 2008. Together with vertical wind data, these measurements are used to determine fluxes of BVOCs out of the forest using the virtual disjunct eddy covariance method. Concentrations of additional VOCs, including methyl vinyl ketone + methacrolein and terpene oxidation products were also measured. Isoprene is the dominant emitted species, with peak emission rates and midday mixing ratios of ca. 4 mg isoprene m-2 h-1 and ca. 5 ppbv, respectively. Isoprene emission rates are expected to vary with temperature and radiation (PAR) levels, and are compared to standard emission algorithms based on these parameters. Interannual variability in isoprene emission rates is also observed, and contributing factors are explored. In contrast to isoprene, maximum monoterpene concentrations typically were less than 1 ppbv and occurred in the early evening, with a local minimum at midday. Monoterpene fluxes are about an order of magnitude smaller than those of isoprene. The amplitude of the flux diurnal cycle suggests monoterpene emissions at Harvard Forest may exhibit light dependence as well as temperature dependence. Fluxes of oxygenated VOCs, including methanol, acetone, methyl ethyl ketone, and oxygenated terpenes that have rarely been observed previously, are also reported, and the dependence of their emission rates on factors such as time of year

  10. Assembling a biogenic hydrocarbon emissions inventory for the SCOS97-NARSTO modeling domain

    SciTech Connect

    Benjamin, M.T.; Winer, A.M.; Karlik, J.; Campbell, S.; Jackson, B.; Lashgari, A.

    1998-12-31

    To assist in developing ozone control strategies for Southern California, the California Air Resources Board is developing a biogenic hydrocarbon (BHC) emissions inventory model for the SCOS97-NARSTO domain. The basis for this bottom-up model is SCOS97-NARSTO-specific landuse and landcover maps, leafmass constants, and BHC emission rates. In urban areas, landuse maps developed by the Southern California Association of Governments, San Diego Association of Governments, and other local governments are used while in natural areas, landcover and plant community databases produced by the GAP Analysis Project (GAP) are employed. Plant identities and canopy volumes for species in each landuse and landcover category are based on the most recent botanical field survey data. Where possible, experimentally determined leafmass constant and BHC emission rate measurements reported in the literature are used or, for those species where experimental data are not available, values are assigned based on taxonomic methods. A geographic information system is being used to integrate these databases, as well as the most recent environmental correction algorithms and canopy shading factors, to produce a spatially- and temporally-resolved BHC emission inventory suitable for input into the Urban Airshed Model.

  11. Influence of tree provenance on biogenic VOC emissions of Scots pine (Pinus sylvestris) stumps

    NASA Astrophysics Data System (ADS)

    Kivimäenpää, Minna; Magsarjav, Narantsetseg; Ghimire, Rajendra; Markkanen, Juha-Matti; Heijari, Juha; Vuorinen, Martti; Holopainen, Jarmo K.

    2012-12-01

    Resin-storing plant species such as conifer trees can release substantial amounts of volatile organic compounds (VOCs) into the atmosphere under stress circumstances that cause resin flow. Wounding can be induced by animals, pathogens, wind or direct mechanical damage e.g. during harvesting. In atmospheric modelling of biogenic VOCs, actively growing vegetation has been mostly considered as the source of emissions. Root systems and stumps of resin-storing conifer trees could constitute a significant store of resin after tree cutting. Therefore, we assessed the VOC emission rates from the cut surface of Scots pine stumps and estimated the average emission rates for an area with a density of 2000 stumps per ha. The experiment was conducted with trees of one Estonian and three Finnish Scots pine provenances covering a 1200 km gradient at a common garden established in central Finland in 1991. VOC emissions were dominated by monoterpenes and less than 0.1% of the total emission was sesquiterpenes. α-Pinene (7-92% of the total emissions) and 3-carene (0-76% of the total emissions) were the dominant monoterpenes. Proportions of α-pinene and camphene were significantly lower and proportions of 3-carene, sabinene, γ-terpinene and terpinolene higher in the southernmost Saaremaa provenance compared to the other provenances. Total terpene emission rates (standardised to +20 °C) from stumps varied from 27 to 1582 mg h-1 m-2 when measured within 2-3 h after tree cutting. Emission rates decreased rapidly to between 2 and 79 mg h-1 m-2 at 50 days after cutting. The estimated daily terpene emission rates on a hectare basis from freshly cut stumps at a cut tree density of 2000 per ha varied depending on provenance. Estimated emission ranges were 100-710 g ha-1 d-1 and 137-970 g ha-1 d-1 in 40 and in 60 year-old forest stands, respectively. Our result suggests that emission directly from stump surfaces could be a significant source of monoterpene emissions for a few weeks after

  12. IMPACTS OF CLIMATE CHANGE AND LAND COVER CHANGE ON BIOGENIC VOLATILE ORGANIC COMPOUNDS (BVOCS) EMISSIONS IN TEXAS

    EPA Science Inventory

    Significant amounts of vegetation and forests in eastern and central Texas are the source of substantial emissions of volatile organic compounds (VOCs) which, when mixed with nitrogen oxides from anthropogenic sources, can lead to ozone formation. The biogenic emis...

  13. BIOGENIC VOLATILE ORGANIC COMPOUND EMISSIONS (BVOCS) I. IDENTIFICATIONS FROM THREE CONTINENTAL SITES IN THE U.S.

    EPA Science Inventory

    Vegetation composition and biomass were surveyed for three specific sites in Atlanta, GA; near Rhinelander, WI; and near Hayden, CO. At each research site, emissions of biogenic volatile organic compounds (BVOCs) from the dominant vegetation species were sampled by enclosing bran...

  14. EMISSIONS OF BIOGENIC OXIDANT AND PM PRECURSORS: VERY HIGH REACTIVITY VOCS AND SURFACE LAYER CHEMISTRY ABOVE FORESTS

    EPA Science Inventory

    Biogenic emissions of volatile organic compounds (VOCs) -- chemicals emitted naturally by the green foliage of a forest, for example -- have been repeatedly shown to be important contributors to ozone pollution levels in many parts of the country. Recently, both the National Rese...

  15. MEASUREMENT OF OAK TREE DENSITY WITH LANDSAT TM DATA FOR ESTIMATING BIOGENIC ISOPRENE EMISSIONS IN TENNESSEE, USA

    EPA Science Inventory

    Isoprene emissions from oak trees in the eastern USA play an important role in tropospheric ozone pollution. Oak trees (Quercus) emit an order of magnitude more isoprene than most other emitting tree species and are by far the largest source of biogenic isoprene in the eastern US...

  16. MEASUREMENT OF OAK TREE DENSITY WITH LANDSAT TM DATA FOR ESTIMATING BIOGENIC ISOPRENE EMISSIONS IN TENNESSEE, USA: JOURNAL ARTICLE

    EPA Science Inventory

    JOURNAL NRMRL-RTP-P- 437 Baugh, W., Klinger, L., Guenther, A., and Geron*, C.D. Measurement of Oak Tree Density with Landsat TM Data for Estimating Biogenic Isoprene Emissions in Tennessee, USA. International Journal of Remote Sensing (Taylor and Francis) 22 (14):2793-2810 (2001)...

  17. Monitoring the dynamic emission of biogenic volatile organic compounds from Cryptomeria japonica by enclosure measurement

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Ya; Chang, Tzu-Cheng; Chen, Yu-Han; Chen, Ying-Ju; Cheng, Sen-Sung; Chang, Shang-Tzen

    2015-12-01

    Research on biogenic volatile organic compounds (BVOCs) emitted from trees is essential in the world since these BVOCs play an important role in the atmospheric process which may further influence on the air quality. However, little is known about BVOCs emitted from trees in the field in Taiwan. Hence, this study intends to establish an enclosure technique coupled with in situ sampling to facilitate the collection of BVOCs emitted from Cryptomeria japonica leaves. Furthermore, the emission model derived from the relationship between emission rate and temperature was applied to estimate the emission of BVOCs in the field. Results from GC-MS showed that the BVOCs emitted from intact leaves contain 14 monoterpenoids and 4 sesquiterpenoid. The emission rate of the major constituent, sabinene, was 0.42 μg h-1 g-1 around noon on September 11, 2013. Sabinene varies with the changing temperature inside the bag. These findings indicated that the enclosure technique can collect the BVOCs emitted from intact leaves and monitor the dynamic changes in emission. Two determinants, basal emission rate (at 30 °C) and β coefficient, of sabinene were further measured, and they were 1.29 μg h-1 g-1 and 0.18 °C-1, respectively. By using these two determinants and data of meteorology and forest resource, the emission of monoterpenes from C. japonica stand was estimated to be 1.13 mg m-2 h-1 in July in Xitou area. Taken together, the results provide valuable information for estimation of BVOCs from tree species in Taiwan for the first time.

  18. Urban stress-induced biogenic VOC emissions and SOA-forming potentials in Beijing

    NASA Astrophysics Data System (ADS)

    Ghirardo, Andrea; Xie, Junfei; Zheng, Xunhua; Wang, Yuesi; Grote, Rüdiger; Block, Katja; Wildt, Jürgen; Mentel, Thomas; Kiendler-Scharr, Astrid; Hallquist, Mattias; Butterbach-Bahl, Klaus; Schnitzler, Jörg-Peter

    2016-03-01

    Trees can significantly impact the urban air chemistry by the uptake and emission of reactive biogenic volatile organic compounds (BVOCs), which are involved in ozone and particle formation. Here we present the emission potentials of "constitutive" (cBVOCs) and "stress-induced" BVOCs (sBVOCs) from the dominant broadleaf woody plant species in the megacity of Beijing. Based on the municipal tree census and cuvette BVOC measurements on leaf level, we built an inventory of BVOC emissions, and assessed the potential impact of BVOCs on secondary organic aerosol (SOA) formation in 2005 and 2010, i.e., before and after realizing the large tree-planting program for the 2008 Olympic Games. We found that sBVOCs, such as fatty acid derivatives, benzenoids, and sesquiterpenes, constituted a significant fraction ( ˜ 40 %) of the total annual BVOC emissions, and we estimated that the overall annual BVOC budget may have doubled from ˜ 4.8 × 109 g C year-1 in 2005 to ˜ 10.3 × 109 g C year-1 in 2010 due to the increase in urban greening, while at the same time the emission of anthropogenic VOCs (AVOCs) decreased by 24 %. Based on the BVOC emission assessment, we estimated the biological impact on SOA mass formation potential in Beijing. Constitutive and stress-induced BVOCs might produce similar amounts of secondary aerosol in Beijing. However, the main contributors of SOA-mass formations originated from anthropogenic sources (> 90 %). This study demonstrates the general importance to include sBVOCs when studying BVOC emissions. Although the main problems regarding air quality in Beijing still originate from anthropogenic activities, the present survey suggests that in urban plantation programs, the selection of low-emitting plant species has some potential beneficial effects on urban air quality.

  19. A plant chamber system with downstream reaction chamber to study the effects of pollution on biogenic emissions.

    PubMed

    Timkovsky, J; Gankema, P; Pierik, R; Holzinger, R

    2014-01-01

    A system of two plant chambers and a downstream reaction chamber has been set up to investigate the emission of biogenic volatile organic compounds (BVOCs) and possible effects of pollutants such as ozone. The system can be used to compare BVOC emissions from two sets of differently treated plants, or to study the photochemistry of real plant emissions under polluted conditions without exposing the plants to pollutants. The main analytical tool is a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) which allows online monitoring of biogenic emissions and chemical degradation products. The identification of BVOCs and their oxidation products is aided by cryogenic trapping and subsequent in situ gas chromatographic analysis. PMID:25068256

  20. Estimate of biogenic VOC emissions in Japan and their effects on photochemical formation of ambient ozone and secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Chatani, Satoru; Matsunaga, Sou N.; Nakatsuka, Seiji

    2015-11-01

    A new gridded database has been developed to estimate the amount of isoprene, monoterpene, and sesquiterpene emitted from all the broadleaf and coniferous trees in Japan with the Model of Emissions of Gases and Aerosols from Nature (MEGAN). This database reflects the vegetation specific to Japan more accurately than existing ones. It estimates much lower isoprene emitted from other vegetation than trees, and higher sesquiterpene emissions mainly emitted from Cryptomeria japonica, which is the most abundant plant type in Japan. Changes in biogenic emissions result in the decrease in ambient ozone and increase in organic aerosol simulated by the air quality simulation over the Tokyo Metropolitan Area in Japan. Although newly estimated biogenic emissions contribute to a better model performance on overestimated ozone and underestimated organic aerosol, they are not a single solution to solve problems associated with the air quality simulation.

  1. Spatiotemporal variability of biogenic terpenoid emissions in Pearl River Delta, China, with high-resolution land-cover and meteorological data

    NASA Astrophysics Data System (ADS)

    Wang, Xuemei; Situ, Shuping; Guenther, Alex; Chen, Fei; Wu, Zhiyong; Xia, Beicheng; Wang, Tijian

    2011-04-01

    This study intended to provide 4-km gridded, hourly, year-long, regional estimates of terpenoid emissions in the Pearl River Delta (PRD), China. It combined Thematic Mapper images and local-survey data to characterize plant functional types, and used observed emission potential of biogenic volatile organic compounds (BVOC) from local plant species and high-resolution meteorological outputs from the MM5 model to constrain the MEGAN BVOC-emission model. The estimated annual emissions for isoprene, monoterpene and sesquiterpene are 95.55 × 106 kg C, 117.35 × 106 kg C and 9.77 × 106 kg C, respectively. The results show strong variabilities of terpenoid emissions spanning diurnal and seasonal time scales, which are mainly distributed in the remote areas (with more vegetation and less economic development) in PRD. Using MODIS PFTs data reduced terpenoid emissions by 27% in remote areas. Using MEGAN-model default emission factors led to a 24% increase in BVOC emission. The model errors of temperature and radiation in MM5 output were used to assess impacts of uncertainties in meteorological forcing on emissions: increasing (decreasing) temperature and downward shortwave radiation produces more (less) terpenoid emissions for July and January. Strong temporal variability of terpenoid emissions leads to enhanced ozone formation during midday in rural areas where the anthropogenic VOC emissions are limited.

  2. Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years

    NASA Astrophysics Data System (ADS)

    Sindelarova, K.; Granier, C.; Bouarar, I.; Guenther, A.; Tilmes, S.; Stavrakou, T.; Müller, J.-F.; Kuhn, U.; Stefani, P.; Knorr, W.

    2014-09-01

    The Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) together with the Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields were used to create a global emission data set of biogenic volatile organic compounds (BVOC) available on a monthly basis for the time period of 1980-2010. This data set, developed under the Monitoring Atmospheric Composition and Climate project (MACC), is called MEGAN-MACC. The model estimated mean annual total BVOC emission of 760 Tg (C) yr-1 consisting of isoprene (70%), monoterpenes (11%), methanol (6%), acetone (3%), sesquiterpenes (2.5%) and other BVOC species each contributing less than 2%. Several sensitivity model runs were performed to study the impact of different model input and model settings on isoprene estimates and resulted in differences of up to ±17% of the reference isoprene total. A greater impact was observed for a sensitivity run applying parameterization of soil moisture deficit that led to a 50% reduction of isoprene emissions on a global scale, most significantly in specific regions of Africa, South America and Australia. MEGAN-MACC estimates are comparable to results of previous studies. More detailed comparison with other isoprene inventories indicated significant spatial and temporal differences between the data sets especially for Australia, Southeast Asia and South America. MEGAN-MACC estimates of isoprene, α-pinene and group of monoterpenes showed a reasonable agreement with surface flux measurements at sites located in tropical forests in the Amazon and Malaysia. The model was able to capture the seasonal variation of isoprene emissions in the Amazon forest.

  3. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks

    NASA Astrophysics Data System (ADS)

    Mentel, Th. F.; Kleist, E.; Andres, S.; Maso, M. D.; Hohaus, T.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Uerlings, R.; Wahner, A.; Wildt, J.

    2013-03-01

    Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Secondary organic aerosols (SOA) comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOC) emitted by vegetation are a major source of SOA. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed SOA, and possibly their climatic effects. This raises questions whether stress-induced changes in SOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on SOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical SOA formation for infested plants in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify SOA formation. While sesquiterpenes, methyl salicylate, and C17-BVOC increase SOA yield, green leaf volatiles suppress SOA formation. By classifying emission types, stressors and SOA formation potential, we propose possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate-vegetation feedback mechanisms.

  4. Emissions of isoprenoids and oxygenated biogenic volatile organic compounds from a New England mixed forest

    NASA Astrophysics Data System (ADS)

    McKinney, K. A.; Lee, B. H.; Vasta, A.; Pho, T. V.; Munger, J. W.

    2010-11-01

    Fluxes of biogenic volatile organic compounds, including isoprene, monoterpenes, and oxygenated VOCs measured above a mixed forest canopy in western Massachusetts during the 2005 and 2007 growing seasons are reported. Measurements were made using proton transfer reaction mass spectrometry (PTR-MS) and converted to fluxes using the disjunct eddy covariance technique. Isoprene was by far the predominant BVOC emitted at this site, with summer mid-day average fluxes of 5.3 and 4.4 mg m-2 h-1 in 2005 and 2007, respectively. In comparison, mid-day average fluxes of monoterpenes were 0.21 and 0.15 mg m-2 h-1 in each of these years. On short times scales (days), the diel pattern in emission rate compared well with a standard emission algorithm for isoprene. The general shape of the seasonal cycle and the observed decrease in isoprene emission rate in early September was, however, not well captured by the model. Monoterpene emission rates exhibited dependence on light as well as temperature, as determined from the improved fit to the observations obtained by including a light-dependent term in the model. The mid-day average flux of methanol from the canopy was 0.14 mg m-2 h-1 in 2005 and 0.19 mg m-2 h-1 in 2007, but the maximum flux was observed in spring (29 May 2007), when the flux reached 1.0 mg m-2 h-1. This observation is consistent with enhanced methanol production during leaf expansion. Summer mid-day fluxes of acetone were 0.15 mg m-2 h-1 during a short period in 2005, but only 0.03 mg m-2 h-1 averaged over 2007. Episodes of negative fluxes of oxygenated VOCs, particularly acetone, were observed periodically, especially in 2007. Thus, deposition within the canopy could help explain the low season-averaged flux of acetone in 2007. Fluxes of species of biogenic origin at mass-to-charge (m/z) ratios of 73 (0.05 mg m-2 h-1 in 2005; 0.03 mg m-2 h-1 in 2007) and 153 (5 μg m-2 h-1 in 2007), possibly corresponding to methyl ethyl ketone and an oxygenated terpene

  5. Emissions of isoprenoids and oxygenated biogenic volatile organic compounds from a New England mixed forest

    NASA Astrophysics Data System (ADS)

    McKinney, K. A.; Lee, B. H.; Vasta, A.; Pho, T. V.; Munger, J. W.

    2011-05-01

    Fluxes of biogenic volatile organic compounds, including isoprene, monoterpenes, and oxygenated VOCs measured above a mixed forest canopy in central Massachusetts during the 2005 and 2007 growing seasons are reported. Mixing ratios were measured using proton transfer reaction mass spectrometry (PTR-MS) and fluxes computed by the disjunct eddy covariance technique. Isoprene was by far the predominant BVOC emitted at this site, with summer mid-day average fluxes of 5.3 and 4.4 mg m-2 hr-1 in 2005 and 2007, respectively. In comparison, mid-day average fluxes of monoterpenes were 0.21 and 0.15 mg m-2 hr-1 in each of these years. On short times scales (days), the diel pattern in emission rate compared well with a standard emission algorithm for isoprene. The general shape of the seasonal cycle and the observed decrease in isoprene emission rate in early September was, however, not well captured by the model. Monoterpene emission rates exhibited dependence on light as well as temperature, as determined from the improved fit to the observations obtained by including a light-dependent term in the model. The mid-day average flux of methanol from the canopy was 0.14 mg m-2 hr-1 in 2005 and 0.19 mg m-2 hr-1 in 2007, but the maximum flux was observed in spring (29 May 2007), when the flux reached 1.0 mg m-2 hr-1. This observation is consistent with enhanced methanol production during leaf expansion. Summer mid-day fluxes of acetone were 0.15 mg m-2 hr-1 during a short period in 2005, but only 0.03 mg m-2 h-1 averaged over 2007. Episodes of negative fluxes of oxygenated VOCs, particularly acetone, were observed periodically, especially in 2007. Thus, deposition within the canopy could help explain the low season-averaged flux of acetone in 2007. Fluxes of species of biogenic origin at mass-to-charge (m/z) ratios of 73 (0.05 mg m-2 hr-1 in 2005; 0.03 mg m-2 hr-1 in 2007) and 153 (5 μg m-2 hr-1 in 2007), possibly corresponding to methyl ethyl ketone and an oxygenated terpene or

  6. Biogenic volatile organic compound emissions during BEARPEX 2009 measured by eddy covariance and flux-gradient similarity methods

    NASA Astrophysics Data System (ADS)

    Park, J.-H.; Fares, S.; Weber, R.; Goldstein, A. H.

    2012-09-01

    The Biosphere Effects on AeRosols and Photochemistry EXperiment (BEARPEX) took place in Blodgett Forest, a Ponderosa pine forest in the Sierra Nevada Mountains of California, during summer 2009. We deployed a Proton Transfer Reaction - Mass Spectrometer (PTR-MS) to measure fluxes and concentrations of biogenic volatile organic compounds (BVOCs). Eighteen ion species including the major BVOC expected at the site were measured sequentially at 5 heights to observe their vertical gradient from the forest floor to above the canopy. Fluxes of the 3 dominant BVOCs methanol, 2-Methyl-3-butene-2-ol (MBO), and monoterpenes, were measured above the canopy by the eddy covariance method. Canopy scale fluxes were also determined by the flux-gradient similarity method (K-theory). A universal K (Kuniv) was determined as the mean of individual K's calculated from the measured fluxes divided by vertical gradients for methanol, MBO, and monoterpenes. This Kuniv was then multiplied by the gradients of each observed ion species to compute their fluxes. The flux-gradient similarity method showed very good agreement with the Eddy Covariance method. Fluxes are presented for all measured species and compared to historical measurements from the same site, and used to test emission algorithms used to model fluxes at the regional scale. MBO was the dominant emission observed followed by methanol, monoterpenes, acetone, and acetaldehyde. The flux-gradient similarity method is shown to be a useful, and we recommend its use especially in experimental conditions when fast measurement of BVOC species is not available.

  7. Evidence of aqueous secondary organic aerosol formation from biogenic emissions in the North American Sonoran Desert

    PubMed Central

    Youn, Jong-Sang; Wang, Zhen; Wonaschütz, Anna; Arellano, Avelino; Betterton, Eric A.; Sorooshian, Armin

    2013-01-01

    This study examines the role of aqueous secondary organic aerosol formation in the North American Sonoran Desert as a result of intense solar radiation, enhanced moisture, and biogenic volatile organic compounds (BVOCs). The ratio of water-soluble organic carbon (WSOC) to organic carbon (OC) nearly doubles during the monsoon season relative to other seasons of the year. When normalized by mixing height, the WSOC enhancement during monsoon months relative to preceding dry months (May–June) exceeds that of sulfate by nearly a factor of 10. WSOC:OC and WSOC are most strongly correlated with moisture parameters, temperature, and concentrations of O3 and BVOCs. No positive relationship was identified between WSOC or WSOC:OC and anthropogenic tracers such as CO over a full year. This study points at the need for further work to understand the effect of BVOCs and moisture in altering aerosol properties in understudied desert regions. PMID:24115805

  8. Biogenic and Anthropogenic VOC Emissions over the Central and Southern U.S.: Results from Recent Airborne Field Campaigns (Invited)

    NASA Astrophysics Data System (ADS)

    Hornbrook, R. S.; Apel, E. C.; Riemer, D. D.; Hills, A. J.; Kaser, L.; Emmons, L. K.; Lamarque, J.; Blake, N. J.; Simpson, I. J.; Blake, D. R.; Karl, T.; Yuan, B.

    2013-12-01

    Over the last two years, the NCAR Trace Organic Gas Analyzer (TOGA), capable of quantifying over 50 individual gas-phase volatile organic compounds (VOCs), was deployed on two airborne field campaigns with flights over the central and southeast United States: Deep Convective Cloud and Chemistry (DC3), and Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks (NOMADSS). These studies provided opportunities to sample air masses dominated by individual emissions sources, including biomass burning, oil and gas extraction, biogenic activity, and marine emissions, as well as the impact of convection on recently emitted trace gases. Using observations of biogenic VOCs, including speciated monoterpenes, we will compare our findings with NCAR CESM CAM-chem model simulations using the MEGAN emissions inventory. Likewise, we will contrast our observations of anthropogenic VOCs over the continental U.S. to model simulations with anthropogenic inventories (e.g., NEI, EDGAR).

  9. Evaluation of Biogenic and Fire Emissions in a Global Chemistry Model with NOMADSS, DC3 and SEAC4RS observations

    NASA Astrophysics Data System (ADS)

    Emmons, L. K.; Wiedinmyer, C.; Park, M.; Kaser, L.; Apel, E. C.; Guenther, A. B.

    2014-12-01

    Numerous measurements of compounds produced by biogenic and fire emissions were made during several recent field campaigns in the southeast United States, providing a unique data set for emissions and chemical model evaluation. The NCAR Community Atmosphere Model with Chemistry (CAM-chem) is coupled to the Community Land Model (CLM), which includes the biogenic emissions model MEGAN-v2.1, allowing for online calculation of emissions from vegetation for 150 compounds. Simulations of CAM-chem for summers 2012 and 2013 are evaluated with the aircraft and ground-based observations from DC3, NOMADSS and SEAC4RS. Comparison of directly emitted biogenic species, such as isoprene, terpenes, methanol and acetone, are used to evaluate the MEGAN emissions. Evaluation of oxidation products, including methyl vinyl ketone (MVK), methacrolein, formaldehyde, and other oxygenated VOCs are used to test the model chemistry mechanism. In addition, several biomass burning inventories are used in the model, including FINN, QFED, and FLAMBE, and are compared for their impact on atmospheric composition and ozone production, and evaluated with the aircraft observations.

  10. Biogenic iodine emissions and identification of end-products in coastal ultrafine particles during nucleation bursts

    NASA Astrophysics Data System (ADS)

    MäKelä, J. M.; Hoffmann, T.; Holzke, C.; VäKevä, M.; Suni, T.; Mattila, T.; Aalto, P. P.; Tapper, U.; Kauppinen, E. I.; O'Dowd, C. D.

    2002-10-01

    Ultrafine particles sampled during new particle formation bursts observed in the coastal zone were studied with transmission electron microscopy (TEM) and elemental analysis using energy-dispersive X ray (EDX). It was observed that both iodine and sulphur were present in the new particles with diameter below 10 mn. Gaseous emissions of halogen compounds from seaweeds were also measured at the same location during low-tide particle nucleation episodes. Based on the presence of iodine in the particle phase during low-tide nucleation bursts, and the significant emission of iodine compounds from the seaweeds during these periods, it is apparent that part of the biogenic iodine species emitted from the seaweeds end up in the ultrafine particulate phase. It was not possible to quantitatively determine the iodine content in the particles; however, in most cases the relative contribution from iodine and sulphate was similar, while some cases indicated no sulphate. On larger sized particles the contribution of sulphate was significantly higher than iodine. It appears that the condensable species leading to the appearance of new particles in the coastal atmosphere is an iodine species. Whether or not this iodine species also participates in the nucleation of new stable clusters could not be completely verified.

  11. The effects of fire on biogenic emissions of methane and nitric oxide from wetlands

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Cofer, Wesley R., III; Sebacher, Daniel I.; Rhinehart, Robert P.; Winstead, Edward L.; Sebacher, Shirley; Hinkle, C. Ross; Schmalzer, Paul A.; Koller, Albert M., Jr.

    1990-01-01

    Enhanced emissions of methane (CH4) and nitric oxide (NO) were measured following three controlled burns in a Florida wetlands in 1987 and 1988. Wetlands are the major global source of methane resulting from metabolic activity of methanogenic bacteria. Methanogens require carbon dioxide, acetate, or formate for their growth and the metabolic production of methane. All three water-soluble compounds are produced in large concentrations during biomass burning. Postfire methane emissions exceeded 0.15 g CH 4/sq m per day. Preburn and postburn measurements of soil nutrients indicate significant postburn increases in soil ammonium, from 8.35 to 13.49 parts per million (ppm) in the upper 5 cm of the Juncus marsh and from 8.83 to 23.75 ppm in the upper 5 cm of the Spartina marsh. Soil nitrate concentrations were found to decrease in both marshes after the fire. These measurements indicate that the combustion products of biomass burning exert an important 'fertilizing' effect on the biosphere and on the biogenic production of environmentally significant atmospheric gases.

  12. Bidirectional exchange of biogenic volatiles with vegetation: emission sources, reactions, breakdown and deposition

    PubMed Central

    Niinemets, Ülo; Fares, Silvano; Harley, Peter; Jardine, Kolby J.

    2014-01-01

    Biogenic volatile organic compound (BVOC) emissions are widely modeled as inputs to atmospheric chemistry simulations. However, BVOC may interact with cellular structures and neighboring leaves in a complex manner during volatile diffusion from the sites of release to leaf boundary layer and during turbulent transport to the atmospheric boundary layer. Furthermore, recent observations demonstrate that the BVOC emissions are bidirectional, and uptake and deposition of BVOC and their oxidation products are the rule rather than the exception. This review summarizes current knowledge of within-leaf reactions of synthesized volatiles with reactive oxygen species (ROS), uptake, deposition and storage of volatiles and their oxidation products as driven by adsorption on leaf surface and solubilization and enzymatic detoxification inside leaves. The available evidence indicates that due to reactions with ROS and enzymatic metabolism, the BVOC gross production rates are much larger than previously thought. The degree to which volatiles react within leaves and can be potentially taken up by vegetation depends on compound reactivity, physicochemical characteristics, as well as their participation in leaf metabolism. We argue that future models should be based on the concept of bidirectional BVOC exchange and consider modification of BVOC sink/source strengths by within-leaf metabolism and storage. PMID:24635661

  13. Effect of crop development on biogenic emissions from plant populations grown in closed plant growth chambers

    NASA Technical Reports Server (NTRS)

    Batten, J. H.; Stutte, G. W.; Wheeler, R. M.

    1995-01-01

    The Biomass Production Chamber at John F. Kennedy Space Center is a closed plant growth chamber facility that can be used to monitor the level of biogenic emissions from large populations of plants throughout their entire growth cycle. The head space atmosphere of a 26-day-old lettuce (Lactuca sativa cv. Waldmann's Green) stand was repeatedly sampled and emissions identified and quantified using GC-mass spectrometry. Concentrations of dimethyl sulphide, carbon disulphide, alpha-pinene, furan and 2-methylfuran were not significantly different throughout the day; whereas, isoprene showed significant differences in concentration between samples collected in light and dark periods. Volatile organic compounds from the atmosphere of wheat (Triticum aestivum cv. Yecora Rojo) were analysed and quantified from planting to maturity. Volatile plant-derived compounds included 1-butanol, 2-ethyl-1-hexanol, nonanal, benzaldehyde, tetramethylurea, tetramethylthiourea, 2-methylfuran and 3-methylfuran. Concentrations of volatiles were determined during seedling establishment, vegetative growth, anthesis, grain fill and senescence and found to vary depending on the developmental stage. Atmospheric concentrations of benzaldehyde and nonanal were highest during anthesis, 2-methylfuran and 3-methylfuran concentrations were greatest during grain fill, and the concentration of the tetramethylurea peaked during senescence.

  14. Variation in biogenic volatile organic compound emission pattern of Fagus sylvatica L. due to aphid infection

    NASA Astrophysics Data System (ADS)

    Joó, É.; Van Langenhove, H.; Šimpraga, M.; Steppe, K.; Amelynck, C.; Schoon, N.; Müller, J.-F.; Dewulf, J.

    2010-01-01

    Volatile organic compounds (VOCs) have been the focus of interest to understand atmospheric processes and their consequences in formation of ozone or aerosol particles; therefore, VOCs contribute to climate change. In this study, biogenic VOCs (BVOCs) emitted from Fagus sylvatica L. trees were measured in a dynamic enclosure system. In total 18 compounds were identified: 11 monoterpenes (MT), an oxygenated MT, a homoterpene (C 14H 18), 3 sesquiterpenes (SQT), isoprene and methyl salicylate. The frequency distribution of the compounds was tested to determine a relation with the presence of the aphid Phyllaphis fagi L. It was found that linalool, (E)-β-ocimene, α-farnesene and a homoterpene identified as (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), were present in significantly more samples when infection was present on the trees. The observed emission spectrum from F. sylvatica L. shifted from MT to linalool, α-farnesene, (E)-β-ocimene and DMNT due to the aphid infection. Sabinene was quantitatively the most prevalent compound in both, non-infected and infected samples. In the presence of aphids α-farnesene and linalool became the second and third most important BVOC emitted. According to our investigation, the emission fingerprint is expected to be more complex than commonly presumed.

  15. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO 2 concentration data

    DOE PAGESBeta

    Ogle, Stephen; Davis, Kenneth J.; Lauvaux, Thomas; Schuh, Andrew E.; Cooley, Dan; West, Tristram O.; Heath, L.; Miles, Natasha; Richardson, S. J.; Breidt, F. Jay; et al

    2015-03-10

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country’s contribution to GHG concentrations in the atmosphere. Verification could include a variety of evidence, but arguably the most convincing verification would be confirmation of a change in GHG concentrations in the atmosphere that is consistent with reported emissions to the UNFCCC. We report here on a case study evaluating this option based on a prototype atmospheric CO2 measurement network deployed in the Mid-Continent Region of themore » conterminous United States. We found that the atmospheric CO2 measurement data did verify the accuracy of the emissions inventory within the confidence limits of the emissions estimates, suggesting that this technology could be further developed and deployed more widely in the future for verifying reported emissions.« less

  16. Biogenic volatile organic compound emissions during BEARPEX 2009 measured by eddy covariance and flux-gradient similarity methods

    NASA Astrophysics Data System (ADS)

    Park, J.-H.; Fares, S.; Weber, R.; Goldstein, A. H.

    2014-01-01

    The Biosphere Effects on AeRosols and Photochemistry EXperiment (BEARPEX) took place in Blodgett Forest, a Ponderosa pine forest in the Sierra Nevada of California, USA, during summer 2009. We deployed a proton transfer reaction-quadrupole mass spectrometer (PTR-QMS) to measure fluxes and concentrations of biogenic volatile organic compounds (BVOCs). Eighteen ion species, including the major BVOC expected at the site, were measured sequentially at 5 heights to observe their vertical gradient from the forest floor to above the canopy. Fluxes of the 3 dominant BVOCs methanol, 2-Methyl-3-butene-2-ol (MBO), and monoterpenes were measured above the canopy by the disjunct eddy covariance (EC) method. Canopy-scale fluxes were also determined by the flux-gradient similarity method (K-theory). A universal K (Kuniv) was determined as the mean of individual K's calculated from the measured fluxes divided by vertical gradients for methanol, MBO, and monoterpenes. This Kuniv was then multiplied by the gradients of each observed ion species to compute their fluxes. The flux-gradient similarity method showed very good agreement with the disjunct EC method. Fluxes are presented for all measured species and compared to historical measurements from the same site, and used to test emission algorithms used to model fluxes at the regional scale. MBO was the dominant emission observed, followed by methanol, monoterpenes, acetone, and acetaldehyde. The flux-gradient similarity method is shown to be tenable, and we recommend its use, especially in experimental conditions when fast measurement of BVOC species is not available.

  17. Multithermal emission in active regions

    NASA Astrophysics Data System (ADS)

    Del Zanna, Giulio

    High-resolution EUV observations from SDO/AIA, Hi-C and Hinode/EIS are used, together with updated new atomic data, to study the multi-thermal emission in active region structures. Previous observations are largely confirmed, with most structures being not co-spatial and having nearly isothermal cross-sections. Those at temperatures below 1 MK appear as nearly resolved but those at 1-3 MK are still largely unresolved even at the Hi-C resolution. Very little emission above 3 MK is present in quiescent active regions. Elemental abundances vary in different structures. The active region cores show FIP enhancements of about a factor of three. X-ray spectroscopy confirms the results of the EUV observations for the hot cores.

  18. Optimal recovery of regional carbon dioxide surface fluxes by data assimilation of anthropogenic and biogenic tracers

    NASA Astrophysics Data System (ADS)

    Campbell, Elliott

    Measurements of atmospheric carbon dioxide (CO2) have led to an understanding of the past and present CO2 trends at global scales. However, many of the processes that underlie the CO 2 fluxes are highly uncertain, especially at smaller spatial scales in the terrestrial biosphere. Our abilities to forecast climate change and manage the carbon cycle are reliant on an understanding of these underlying processes. In this dissertation, new steps were taken to understand the biogenic and anthropogenic processes based on analysis with an atmospheric transport model and simultaneous measurements of CO2 and other trace gases. The biogenic processes were addressed by developing an approach for quantifying photosynthesis and respiration surface fluxes using observations of CO 2 and carbonyl sulfide (COS). There is currently no reliable method for separating the influence of these gross biosphere fluxes on atmospheric CO2 concentrations. First, the plant sink for COS was quantified as a function of the CO2 photosynthesis uptake using the STEM transport model and measurements of COS and CO2 from the INTEX-NA campaign. Next, the STEM inversion model was modified for the simultaneous optimization of fluxes using COS and CO2 measurements and using only CO 2 measurements. The CO2-only inversion was found to be process blind, while the simultaneous COS/CO2 inversion was found to provide a unique estimate of the respiration and photosynthesis component fluxes. Further validation should be pursued with independent observations. The approach presented here is the first application of COS measurements for inferring information about the carbon cycle. Anthropogenic emissions were addressed by improving the estimate of the fossil fuel component of observed CO2 by using observed carbon monoxide (CO). Recent applications of the CO approach were based on simple approximations of non-fossil fuel influences on the measured CO such as sources from oxidation of volatile organic carbon species

  19. A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by ¹³CH₄.

    PubMed

    Schaefer, Hinrich; Mikaloff Fletcher, Sara E; Veidt, Cordelia; Lassey, Keith R; Brailsford, Gordon W; Bromley, Tony M; Dlugokencky, Edward J; Michel, Sylvia E; Miller, John B; Levin, Ingeborg; Lowe, Dave C; Martin, Ross J; Vaughn, Bruce H; White, James W C

    2016-04-01

    Between 1999 and 2006, a plateau interrupted the otherwise continuous increase of atmospheric methane concentration [CH4] since preindustrial times. Causes could be sink variability or a temporary reduction in industrial or climate-sensitive sources. We reconstructed the global history of [CH4] and its stable carbon isotopes from ice cores, archived air, and a global network of monitoring stations. A box-model analysis suggests that diminishing thermogenic emissions, probably from the fossil-fuel industry, and/or variations in the hydroxyl CH4 sink caused the [CH4] plateau. Thermogenic emissions did not resume to cause the renewed [CH4] rise after 2006, which contradicts emission inventories. Post-2006 source increases are predominantly biogenic, outside the Arctic, and arguably more consistent with agriculture than wetlands. If so, mitigating CH4 emissions must be balanced with the need for food production. PMID:26966190

  20. A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by 13CH4

    NASA Astrophysics Data System (ADS)

    Schaefer, Hinrich; Fletcher, Sara E. Mikaloff; Veidt, Cordelia; Lassey, Keith R.; Brailsford, Gordon W.; Bromley, Tony M.; Dlugokencky, Edward J.; Michel, Sylvia E.; Miller, John B.; Levin, Ingeborg; Lowe, Dave C.; Martin, Ross J.; Vaughn, Bruce H.; White, James W. C.

    2016-04-01

    Between 1999 and 2006, a plateau interrupted the otherwise continuous increase of atmospheric methane concentration [CH4] since preindustrial times. Causes could be sink variability or a temporary reduction in industrial or climate-sensitive sources. We reconstructed the global history of [CH4] and its stable carbon isotopes from ice cores, archived air, and a global network of monitoring stations. A box-model analysis suggests that diminishing thermogenic emissions, probably from the fossil-fuel industry, and/or variations in the hydroxyl CH4 sink caused the [CH4] plateau. Thermogenic emissions did not resume to cause the renewed [CH4] rise after 2006, which contradicts emission inventories. Post-2006 source increases are predominantly biogenic, outside the Arctic, and arguably more consistent with agriculture than wetlands. If so, mitigating CH4 emissions must be balanced with the need for food production.

  1. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.; Jiang, X.; Heald, C. L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L. K.; Wang, X.

    2012-06-01

    The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1) is a modeling framework for estimating fluxes of 147 biogenic compounds between terrestrial ecosystems and the atmosphere using simple mechanistic algorithms to account for the major known processes controlling biogenic emissions. It is available as an offline code and has also been coupled into land surface models and atmospheric chemistry models. MEGAN2.1 is an update from the previous versions including MEGAN2.0 for isoprene emissions and MEGAN2.04, which estimates emissions of 138 compounds. Isoprene comprises about half of the estimated total global biogenic volatile organic compound (BVOC) emission of 1 Pg (1000 Tg or 1015 g). Another 10 compounds including methanol, ethanol, acetaldehyde, acetone, α-pinene, β-pinene, t-β-ocimene, limonene, ethene, and propene together contribute another 30% of the estimated emission. An additional 20 compounds (mostly terpenoids) are associated with another 17% of the total emission with the remaining 3% distributed among 125 compounds. Emissions of 41 monoterpenes and 32 sesquiterpenes together comprise about 15% and 3%, respectively, of the total global BVOC emission. Tropical trees cover about 18% of the global land surface and are estimated to be responsible for 60% of terpenoid emissions and 48% of other VOC emissions. Other trees cover about the same area but are estimated to contribute only about 10% of total emissions. The magnitude of the emissions estimated with MEGAN2.1 are within the range of estimates reported using other approaches and much of the differences between reported values can be attributed to landcover and meteorological driving variables. The offline version of MEGAN2.1 source code and driving variables is available from http://acd.ucar.edu/~guenther/MEGAN/MEGAN.htm and the version integrated into the Community Land Model version 4 (CLM4) can

  2. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.; Jiang, X.; Heald, C. L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L. K.; Wang, X.

    2012-11-01

    The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1) is a modeling framework for estimating fluxes of biogenic compounds between terrestrial ecosystems and the atmosphere using simple mechanistic algorithms to account for the major known processes controlling biogenic emissions. It is available as an offline code and has also been coupled into land surface and atmospheric chemistry models. MEGAN2.1 is an update from the previous versions including MEGAN2.0, which was described for isoprene emissions by Guenther et al. (2006) and MEGAN2.02, which was described for monoterpene and sesquiterpene emissions by Sakulyanontvittaya et al. (2008). Isoprene comprises about half of the total global biogenic volatile organic compound (BVOC) emission of 1 Pg (1000 Tg or 1015 g) estimated using MEGAN2.1. Methanol, ethanol, acetaldehyde, acetone, α-pinene, β-pinene, t-β-ocimene, limonene, ethene, and propene together contribute another 30% of the MEGAN2.1 estimated emission. An additional 20 compounds (mostly terpenoids) are associated with the MEGAN2.1 estimates of another 17% of the total emission with the remaining 3% distributed among >100 compounds. Emissions of 41 monoterpenes and 32 sesquiterpenes together comprise about 15% and 3%, respectively, of the estimated total global BVOC emission. Tropical trees cover about 18% of the global land surface and are estimated to be responsible for ~80% of terpenoid emissions and ~50% of other VOC emissions. Other trees cover about the same area but are estimated to contribute only about 10% of total emissions. The magnitude of the emissions estimated with MEGAN2.1 are within the range of estimates reported using other approaches and much of the differences between reported values can be attributed to land cover and meteorological driving variables. The offline version of MEGAN2.1 source code and driving variables is available from

  3. Regional nitrogen oxides emission trends in East Asia observed from space

    NASA Astrophysics Data System (ADS)

    Mijling, B.; van der A, R. J.; Zhang, Q.

    2013-07-01

    Due to changing economic activity, emissions of air pollutants in East Asia change rapidly in space and time. Monthly emission estimates of nitrogen oxides derived from satellite observations provide valuable insight in the evolution of anthropogenic activity on a regional scale. We present the first results of a new emission estimation algorithm, specifically designed to use daily satellite observations of column concentrations for fast updates of emissions of short-lived atmospheric constituents on a~mesoscopic scale (~ 0.25° × 0.25°). The algorithm is used to construct a monthly NOx emission time series for 2007-2011 from tropospheric NO2 observations of GOME-2 for East Chinese provinces and surrounding countries. The new emission estimates correspond well with the bottom-up inventory of EDGAR v4.2, but are smaller than the inventories of INTEX-B and MEIC. They reveal a strong positive trend during 2007-2011 for almost all Chinese provinces, related to the country's economic development. We find a 41% increment of NOx emissions in East China during this period, which shows the need to update emission inventories in this region on a regular basis. Negative emission trends are found in Japan and South Korea, which can be attributed to a combined effect of local environmental policy and global economic crises. Analysis of seasonal variation distinguishes between regions with dominant anthropogenic or biogenic emissions. For regions with a mixed anthropogenic and biogenic signature, the opposite seasonality can be used for an estimation of the separate emission contributions. Finally, the non-local concentration/emission relationships calculated by the algorithm are used to quantify the direct effect of regional NOx emissions on tropospheric NO2 concentrations outside the region. For regions such as North Korea and Beijing province, a substantial part of the tropospheric NO2 originates from emissions elsewhere.

  4. Regional nitrogen oxides emission trends in East Asia observed from space

    NASA Astrophysics Data System (ADS)

    Mijling, B.; van der A, R. J.; Zhang, Q.

    2013-12-01

    Due to changing economic activity, emissions of air pollutants in East Asia are changing rapidly in space and time. Monthly emission estimates of nitrogen oxides derived from satellite observations provide valuable insight into the evolution of anthropogenic activity on a regional scale. We present the first results of a new emission estimation algorithm, specifically designed to use daily satellite observations of column concentrations for fast updates of emissions of short-lived atmospheric constituents on a mesoscopic scale (~ 0.25° × 0.25°). The algorithm is used to construct a monthly NOx emission time series for the period 2007-2011 from tropospheric NO2 observations of GOME-2 for East Chinese provinces and surrounding countries. The new emission estimates correspond well with the bottom-up inventory of EDGAR v4.2, but are smaller than the inventories of INTEX-B and MEIC. They reveal a strong positive trend during 2007-2011 for almost all Chinese provinces, related to the country's economic development. We find a 41% increment of NOx emissions in East China during this period, which shows the need to update emission inventories in this region on a regular basis. Negative emission trends are found in Japan and South Korea, which can be attributed to a combined effect of local environmental policy and global economic crises. Analysis of seasonal variation distinguishes between regions with dominant anthropogenic or biogenic emissions. For regions with a mixed anthropogenic and biogenic signature, the opposite seasonality can be used for an estimation of the separate emission contributions. Finally, the non-local concentration/emission relationships calculated by the algorithm are used to quantify the direct effect of regional NOx emissions on tropospheric NO2 concentrations outside the region. For regions such as North Korea and the Beijing municipality, a substantial part of the tropospheric NO2 originates from emissions elsewhere.

  5. Effect of land-use change and management on biogenic volatile organic compound emissions--selecting climate-smart cultivars.

    PubMed

    Rosenkranz, Maaria; Pugh, Thomas A M; Schnitzler, Jörg-Peter; Arneth, Almut

    2015-09-01

    Land-use change (LUC) has fundamentally altered the form and function of the terrestrial biosphere. Increasing human population, the drive for higher living standards and the potential challenges of mitigating and adapting to global environmental change mean that further changes in LUC are unavoidable. LUC has direct consequences on climate not only via emissions of greenhouse gases and changing the surface energy balance but also by affecting the emission of biogenic volatile organic compounds (BVOCs). Isoprenoids, which dominate global BVOC emissions, are highly reactive and strongly modify atmospheric composition. The effects of LUC on BVOC emissions and related atmospheric chemistry have been largely ignored so far. However, compared with natural ecosystems, most tree species used in bioenergy plantations are strong BVOC emitters, whereas intensively cultivated crops typically emit less BVOCs. Here, we summarize the current knowledge on LUC-driven BVOC emissions and how these might affect atmospheric composition and climate. We further discuss land management and plant-breeding strategies, which could be taken to move towards climate-friendly BVOC emissions while simultaneously maintaining or improving key ecosystem functions such as crop yield under a changing environment. PMID:25255900

  6. Emissions of biogenic volatile organic compounds and subsequent formation of secondary organic aerosols in a Larix kaempferi forest

    NASA Astrophysics Data System (ADS)

    Mochizuki, T.; Miyazaki, Y.; Ono, K.; Wada, R.; Takahashi, Y.; Saigusa, N.; Kawamura, K.; Tani, A.

    2015-04-01

    We conducted simultaneous measurements of concentrations and above-canopy fluxes of isoprene and α-pinene, along with their oxidation products in aerosols in a Larix kaempferi (Japanese larch) forest in summer 2012. Vertical profiles of isoprene showed the maximum concentration near the forest floor with a peak around noon, whereas oxidation products of isoprene, i.e., methacrolein (MACR) and methyl vinyl ketone (MVK), showed higher concentrations near the canopy level of the forest. The vertical profile suggests large emissions of isoprene near the forest floor, likely due to Dryopteris crassirhizoma (a fern species), and the subsequent reaction within the canopy. The concentrations of α-pinene also showed highest values near the forest floor with maximums in the early morning and late afternoon. The vertical profiles of α-pinene suggest its large emissions from soil and litter in addition to emissions from L. kaempferi leaves at the forest site. Isoprene and its oxidation products in aerosols exhibited similar diurnal variations within the forest canopy, providing evidence for secondary organic aerosol (SOA) formation via oxidation of isoprene most likely emitted from the forest floor. Although high abundance of α-pinene was observed in the morning, its oxidation products in aerosols showed peaks in daytime, due to a time lag between the emission and atmospheric reactions of α-pinene to form SOA. Positive matrix factorization (PMF) analysis indicated that anthropogenic influence is the most important factor contributing to the elevated concentrations of molecular oxidation products of isoprene- (> 64%) and α-pinene-derived SOA (> 57%). The combination of the measured fluxes and vertical profiles of biogenic volatile organic compounds (BVOCs) suggests that the inflow of anthropogenic precursors/aerosols likely enhanced the formation of both isoprene- and α-pinene-SOA within the forest canopy even when the BVOC flux was relatively low. This study highlights

  7. Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions

    PubMed Central

    Valolahti, Hanna; Kivimäenpää, Minna; Faubert, Patrick; Michelsen, Anders; Rinnan, Riikka

    2015-01-01

    Emissions of biogenic volatile organic compounds (BVOCs) have been earlier shown to be highly temperature sensitive in subarctic ecosystems. As these ecosystems experience rapidly advancing pronounced climate warming, we aimed to investigate how warming affects the BVOC emissions in the long term (up to 13 treatment years). We also aimed to assess whether the increased litterfall resulting from the vegetation changes in the warming subarctic would affect the emissions. The study was conducted in a field experiment with factorial open-top chamber warming and annual litter addition treatments on subarctic heath in Abisko, northern Sweden. After 11 and 13 treatment years, BVOCs were sampled from plant communities in the experimental plots using a push–pull enclosure technique and collection into adsorbent cartridges during the growing season and analyzed with gas chromatography–mass spectrometry. Plant species coverage in the plots was analyzed by the point intercept method. Warming by 2 °C caused a 2-fold increase in monoterpene and 5-fold increase in sesquiterpene emissions, averaged over all measurements. When the momentary effect of temperature was diminished by standardization of emissions to a fixed temperature, warming still had a significant effect suggesting that emissions were also indirectly increased. This indirect increase appeared to result from increased plant coverage and changes in vegetation composition. The litter addition treatment also caused significant increases in the emission rates of some BVOC groups, especially when combined with warming. The combined treatment had both the largest vegetation changes and the highest BVOC emissions. The increased emissions under litter addition were probably a result of a changed vegetation composition due to alleviated nutrient limitation and stimulated microbial production of BVOCs. We suggest that the changes in the subarctic vegetation composition induced by climate warming will be the major factor

  8. Biogenic halocarbons from coastal oceanic upwelling regions as tropospheric halogen source

    NASA Astrophysics Data System (ADS)

    Krüger, Kirstin; Fuhlbrügge, Steffen; Hepach, Helmke; Fiehn, Alina; Atlas, Elliot; Quack, Birgit

    2016-04-01

    Halogenated very short lived substances (VSLS) are naturally produced in the ocean and emitted to the atmosphere. Recently, oceanic upwelling regions in the tropical East Atlantic were identified as strong sources of brominated halocarbons to the troposphere. During a cruise of R/V METEOR in December 2012 the oceanic sources and emissions of various halogenated trace gases and their mixing ratios in the marine atmospheric boundary layer (MABL) were investigated above the Peruvian Upwelling for the first time. This study presents novel observations of the three VSLS bromoform, dibromomethane and methyl iodide together with high resolution meteorological measurements and Lagrangian transport modelling. Although relatively low oceanic emissions were observed, except for methyl iodide, surface atmospheric abundances were elevated. Radiosonde launches during the cruise revealed a low, stable MABL and a distinct trade inversion above acting both as strong barriers for convection and trace gas transport in this region. Significant correlations between observed atmospheric VSLS abundances, sea surface temperature, relative humidity and MABL height were found. We used a simple source-loss estimate to identify the contribution of oceanic emissions to observed atmospheric concentrations which revealed that the observed marine VSLS abundances were dominated by horizontal advection below the trade inversion. The observed VSLS variations can be explained by the low emissions and their accumulation under different MABL and trade inversion conditions. Finally, observations from a second Peruvian Upwelling cruise with R/V SONNE during El Nino in October 2015 will be compared to highlight the role of different El Nino Southern Oscillation conditions. This study confirms the importance of coastal oceanic upwelling and trade wind systems on creating effective transport barriers in the lowermost atmosphere controlling the distribution of VSLS abundances above coastal ocean upwelling

  9. Characterization of primary and secondary organic aerosols in Melbourne airshed: The influence of biogenic emissions, wood smoke and bushfires

    NASA Astrophysics Data System (ADS)

    Iinuma, Yoshiteru; Keywood, Melita; Herrmann, Hartmut

    2016-04-01

    Detailed chemical characterisation was performed for wintertime and summertime PM10 samples collected in Melbourne, Australia. The samples were analysed for marker compounds of biomass burning and biogenic secondary organic aerosol (SOA). The chemical analysis showed that the site was significantly influenced by the emissions from wintertime domestic wood combustion and summertime bushfires. Monosaccharide anhydrides were major primary biomass burning marker compounds found in the samples with the average concentrations of 439, 191, 57 and 3630 ngm-3 for winter 2004, winter 2005, summer 2005 and summer 2006, respectively. The highest concentration was determined during the summer 2006 bushfire season with the concentration of 15,400 ngm-3. Biomass burning originating SOA compounds detected in the samples include substituted nitrophenols, mainly 4-nitrocatechol (Mr 155), methyl-nitrocatechols (Mr 169) and dimethyl-nitrocatechols (Mr 183) with the sum concentrations as high as 115 ngm-3 for the wintertime samples and 770 ngm-3 for the bushfire influenced samples. In addition to this, elevated levels of biogenic SOA marker compounds were determined in the summertime samples influence by bushfire smoke. These marker compounds can be categorised into carboxylic acid marker compounds and heteroatomic organic acids containing nitrogen and sulfur. Carboxylic acid marker compounds can be largely attributed to oxidation products originating from 1,8-cineole, α-pinene and β-pinene that are main constituents of eucalyptus VOC emissions. Among those, diaterpenylic acid, terpenylic acid and daterebic acid were found at elevated levels in the bushfire influenced samples. Heteroatomic monoterpene SOA marker compounds (Mr 295, C10H17NO7S) were detected during both winter and summer periods. Especially high levels of these compounds were determined in the severe bushfire samples from summer 2006. Based on the results obtained from the chemical analysis and a macro tracer method

  10. Emissions of biogenic volatile organic compounds and subsequent formation of secondary organic aerosols in a Larix kaempferi forest

    NASA Astrophysics Data System (ADS)

    Mochizuki, T.; Miyazaki, Y.; Ono, K.; Wada, R.; Takahashi, Y.; Saigusa, N.; Kawamura, K.; Tani, A.

    2015-10-01

    We conducted simultaneous measurements of concentrations and above-canopy fluxes of isoprene and α-pinene, along with their oxidation products in aerosols in a Larix kaempferi (Japanese larch) forest in summer 2012. Vertical profiles of isoprene showed the maximum concentration near the forest floor with a peak around noon, whereas oxidation products of isoprene, i.e., methacrolein (MACR) and methyl vinyl ketone (MVK), showed higher concentrations near the canopy level of the forest. The vertical profile suggests large emissions of isoprene near the forest floor, likely due to Dryopteris crassirhizoma (a fern species), and the subsequent reaction within the canopy. The concentrations of α-pinene also showed highest values near the forest floor, with maximums in the early morning and late afternoon. The vertical profiles of α-pinene suggest its large emissions from soil and litter in addition to emissions from L. kaempferi leaves at the forest site. Isoprene and its oxidation products in aerosols exhibited similar diurnal variations within the forest canopy, providing evidence of secondary organic aerosol (SOA) formation via oxidation of isoprene most likely emitted from the forest floor. Although high abundance of α-pinene was observed in the morning, its oxidation products in aerosols showed peaks in daytime, due to a time lag between the emission and atmospheric reactions of α-pinene to form SOA. Positive matrix factorization (PMF) analysis indicated that anthropogenic influence is the most important factor contributing to the elevated concentrations of molecular oxidation products of isoprene- (> 64 %) and α-pinene-derived SOA (> 57 %). The combination of the measured fluxes and vertical profiles of biogenic volatile organic compounds (BVOCs) suggests that the inflow of anthropogenic precursors/aerosols likely enhanced the formation of both isoprene SOA and α-pinene SOA within the forest canopy even when the BVOC flux was relatively low. This study

  11. The impact of port emissions and marine biogenics on the single-particle chemistry of marine aerosol measured on board the R/V Atlantis during the CalNEX 2010 field campaign

    NASA Astrophysics Data System (ADS)

    Gaston, C. J.; Quinn, P.; Bates, T. S.; Prather, K. A.

    2010-12-01

    Marine environments are characterized by low particle concentrations and, as such, are sensitive to changes in particle number concentration and chemistry induced by biogenic and anthropogenic influences. Measurements of both gas phase and particle phase emissions on board the R/V Atlantis during the CalNEX 2010 field campaign provided an opportunity to examine the impact of anthropogenic and marine biogenic emissions on particle chemistry along the California coast. Real-time, single-particle measurements made using an aerosol time-of-flight mass spectrometer (ATOFMS) revealed the single-particle mixing state of the sampled marine aerosols. Submicron particles (0.2-1.0 um) containing organic carbon, elemental carbon mixed with organic carbon, and unique V-containing particles previously detected in port regions were prevalent throughout the Southern California coast; most of these particles were also associated with sulfate. Measurements made in the deep water channel near Sacramento, CA revealed dramatically different particle chemistry that was characterized by organic carbon and amines. Particles measured further away from the continent toward the open ocean were influenced by marine biological activity due to a phytoplankton bloom that was occurring off the California coast. During this sampling period, unique ocean-derived particles containing internal mixtures of Mg and organic carbon were detected in addition to unique particles containing elemental S ions, which were only detected at night. An aerosol generator used to bubble seawater in order to characterize primary emissions from the ocean confirmed that the Mg-organic carbon and S-containing particles were indeed emitted from the ocean. These measurements reveal the strong impact of both port emissions as well as marine biogenic emissions on aerosol chemistry along the California coast.

  12. Biogenic isoprene emission: Model evaluation in a southeastern United States bottomland deciduous forest

    NASA Astrophysics Data System (ADS)

    Geron, Christopher D.; Nie, Dalin; Arnts, Robert R.; Sharkey, Thomas D.; Singsaas, Eric L.; Vanderveer, Peter J.; Guenther, Alex; Sickles, Joe E.; Kleindienst, Tad E.

    1997-08-01

    Isoprene is usually the dominant natural volatile organic compound emission from forest ecosystems, especially those with a major broadleaf deciduous component. Here we report isoprene emission model performance versus leaf and canopy level isoprene emission measurements made at the Duke University Research Forest near Chapel Hill, North Carolina. Emission factors, light and temperature response, canopy environment models, foliar mass, leaf area, and canopy level isoprene emission were evaluated in the field and compared with model estimates. Model components performed reasonably well and generally yielded estimates within 20% of values measured at the site. However, measured emission factors were much higher in early summer following an unusually dry spring. These decreased later in the summer but remained higher than values currently used in emission models. There was also a pronounced decline in basal emission rates in lower portions of the canopy which could not be entirely explained by decreasing specific leaf weight. Foliar biomass estimates by genera using basal area ratios adjusted for crown form were in excellent agreement with values measured by litterfall. Overall, the stand level isoprene emissions determined by relaxed eddy accumulation techniques agreed reasonably well with those predicted by the model, although there is some evidence for underprediction at ambient temperatures approaching 30°C, and overprediction during October as the canopy foliage senesced. A "Big Leaf" model considers the canopy as a single multispecies layer and expresses isoprene emission as a function of leaf area rather than mass. This simple model performs nearly as well as the other biomass-based models. We speculate that seasonal water balance may impact isoprene emission. Possible improvements to the canopy environment model and other components are discussed.

  13. Discovery of Widespread Biogenic Methane Emissions and Authigenic Carbonate Mound-like Structures at the Aquitaine Shelf (Bay of Biscay)

    NASA Astrophysics Data System (ADS)

    Dupré, S.; Loubrieu, B.; Scalabrin, C.; Ehrhold, A.; Gautier, E.; Ruffine, L.; Pierre, C.; Battani, A.; Le Bouffant, N.; Berger, L.

    2014-12-01

    Fishery acoustic surveys conducted in the Bay of Biscay (1998-2012) and dedicated to monitoring and predicting pelagic ecosystem evolution reveal numerous active seeps on the Aquitaine Shelf, east of the shelf break (Dupré et al. 2014). Seafloor and water column acoustic investigation with the use of ship-borne multibeam echosounder in 2013 (Gazcogne1 marine expedition) confirmed the presence of numerous (> 3000) persistent and widespread gas emission sites at water depths ranging from ~140 to 180 m. These fluid emissions are associated at the seafloor with high backscatter subcircular small-scale mounds, on average less than 2 m high and a few meters in diameter. Near-bottom visual observations and samplings were conducted with the ROV (Remotely Operated Vehicle) Victor (Gazcogne2 expedition). The whole mounds cover an area of ~200 km2 of the seabed, and are by-products of gas seepage, i.e. methane-derived authigenic carbonates. The spatial distribution of the seeps and related structures, based on water column acoustic gas flares and high backscatter seabed patches, appears to be relatively broad, with a North-South extension of ~80 km across the Parentis Basin and the Landes High, and a West-East extension along a few kilometers wide on the shelf, up to 8 km. Gas bubbles sampled at in situ conditions are principally composed of biogenic methane, possibly originated from Late Pleistocene deposits. The volume of methane emitted into the water column is abundant i) with an average gas flux varying locally from 0.035 to 0.37 Ln/min and ii) with regard to the time needed for the precipitation of the authigenic carbonates identified both at the seabed and in the upper most sedimentary column. The GAZCOGNE study is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project. ReferenceDupré, S., Berger, L., Le Bouffant, N., Scalabrin, C., and Bourillet, J.-F., 2014. Fluid emissions at the Aquitaine Shelf (Bay of

  14. Modeling Feedbacks between Biogenic Emissions and Air Chemistry from Site to Globe

    NASA Astrophysics Data System (ADS)

    Butler, T. M.; Grote, R.

    2014-12-01

    We present the implementation of a new model describing light dependent emission of volatile organic compounds (BVOC) that derives isoprenoid production directly from the electron transport potential and consumption from photosynthesis. Photosynthesis information requirements are designed to be met by many recent land-surface models that apply the Farquhar assimilation scheme, e.g. JULES or CLM. The new approach has the advantages that 1) the commonly observed decrease of (isoprene) emission with increasing CO2 air concentration is considered by the competition on energy between photosynthesis and emission processes, and 2) air pollution impacts may be considered as inducing emissions by activating emission enzymes as well as decreasing substrate supply from photosynthesis, and 3) many environmental drivers of BVOC emissions are implicitly considered in the description of plant photosynthesis and phenology, reducing the demand for species-specific emission parameters. We investigate the parameter sensitivity of the suggested model as well as the sensitivity of emissions to a range of environmental conditions with a particular focus on CO2 responses. We present evaluation at the site level and compare the model with other approaches. Finally, we demonstrate the implementation into a coupled global-air chemistry model and discuss the requirements to appropriately parameterize plant functional types.

  15. "Updates to Model Algorithms & Inputs for the Biogenic Emissions Inventory System (BEIS) Model"

    EPA Science Inventory

    We have developed new canopy emission algorithms and land use data for BEIS. Simulations with BEIS v3.4 and these updates in CMAQ v5.0.2 are compared these changes to the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and evaluated the simulations against observatio...

  16. Development and Evaluation of the Biogenic Emissions Inventory System (BEIS) Model v3.6

    EPA Science Inventory

    We have developed new canopy emission algorithms and land use data for BEIS v3.6. Simulations with BEIS v3.4 and BEIS v3.6 in CMAQ v5.0.2 are compared these changes to the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and evaluated the simulations against observati...

  17. Biogenic VOC emissions from fresh leaf mulch and wood chips of Grevillea robusta (Australian Silky Oak)

    NASA Astrophysics Data System (ADS)

    Fedele, Rosemary; Galbally, Ian E.; Porter, Nichola; Weeks, Ian A.

    The emissions of VOC from freshly cut and shredded Grevillea robusta (Australian Silky Oak) leaves and wood have been measured. The VOC emissions from fresh leaf mulch and wood chips lasted typically for 30 and 20 h respectively, and consisted primarily of ethanol, ( E)-2-hexenal, ( Z)-3-hexen-1-ol and acetaldehyde. The integrated emissions of the VOCs were 0.38±0.04 g kg -1 from leaf mulch, and 0.022±0.003 g kg -1 from wood chips. These emissions represent a source of VOCs in urban and rural air that has previously been unquantified and is currently unaccounted for. These VOCs from leaf mulch and wood chips will contribute to both urban photochemistry and secondary organic aerosol formation. Any CH 4 emissions from leaf mulch and wood chips were <1×10 -11 g g dry mass -1 s -1.

  18. Ozone reactivity of biogenic volatile organic compound (BVOC) emissions during the Southeast Oxidant and Aerosol Study (SOAS)

    NASA Astrophysics Data System (ADS)

    Park, J.; Guenther, A. B.; Helmig, D.

    2013-12-01

    Recent studies on atmospheric chemistry in the forest environment showed that the total reactivity by biogenic volatile organic compound (BVOC) emission is still not well understood. During summer 2013, an intensive field campaign (Southeast Oxidant and Aerosol Study - SOAS) took place in Alabama, U.S.A. In this study, an ozone reactivity measurement system (ORMS) was deployed for the direct determination of the reactivity of foliage emissions. The ORMS is a newly developed measurement approach, in which a known amount of ozone is added to the ozone-free air sample stream, with the ORMS measuring ozone concentration difference between before and after a glass flask flow tube reaction vessel (2-3 minutes of residence time). Emissions were also collected onto adsorbent cartridges to investigate the discrepancy between total ozone reactivity observation and reactivity calculated from identified BVOC. Leaf and canopy level experiments were conducted by deploying branch enclosures on the three dominant tree species at the site (i.e. liquidambar, white oak, loblolly pine) and by sampling ambient air above the forest canopy. For the branch enclosure experiments, BVOC emissions were sampled from a 70 L Teflon bag enclosure, purged with air scrubbed for ozone, nitrogen oxides. Each branch experiment was performed for 3-5 days to collect at least two full diurnal cycle data. In addition, BVOCs were sampled using glass tube cartridges for 2 hours during daytime and 3 - 4 hours at night. During the last week of campaign, the inlet for the ORMS was installed on the top of scaffolding tower (~30m height). The ozone loss in the reactor showed distinct diurnal cycle for all three tree species investigated, and ozone reactivity followed patterns of temperature and light intensity.

  19. The impact of biogenic carbon emissions on aerosol absorption inMexico City

    SciTech Connect

    Marley, N; Gaffney, J; Tackett, M J; Sturchio, N; Hearty, L; Martinez, N; Hardy, K D; Machany-Rivera, A; Guilderson, T P; MacMillan, A; Steelman, K

    2009-02-24

    In order to determine the wavelength dependence of atmospheric aerosol absorption in the Mexico City area, the absorption angstrom exponents (AAEs) were calculated from aerosol absorption measurements at seven wavelengths obtained with a seven-channel aethalometer during two field campaigns, the Mexico City Metropolitan Area study in April 2003 (MCMA 2003) and the Megacity Initiative: Local and Global Research Observations in March 2006 (MILAGRO). The AAEs varied from 0.76 to 1.56 in 2003 and from 0.54 to 1.52 in 2006. The AAE values determined in the afternoon were consistently higher than the corresponding morning values, suggesting the photochemical formation of absorbing secondary organic aerosols (SOA) in the afternoon. The AAE values were compared to stable and radiocarbon isotopic measurements of aerosol samples collected at the same time to determine the sources of the aerosol carbon. The fraction of modern carbon (fM) in the aerosol samples, as determined from {sup 14}C analysis, showed that 70% of the carbonaceous aerosols in Mexico City were from modern sources, indicating a significant impact from biomass burning during both field campaigns. The {sup 13}C/{sup 12}C ratios of the aerosol samples illustrate the significant impact of Yucatan forest fires (C-3 plants) in 2003 and local grass fires (C-4 plants) at site T1 in 2006. A direct comparison of the fM values, stable carbon isotope ratios, and calculated aerosol AAEs suggested that the wavelength dependence of the aerosol absorption was controlled by the biogenically derived aerosol components.

  20. A mineralogical characterization of biogenic calcium carbonates precipitated by heterotrophic bacteria isolated from cryophilic polar regions.

    PubMed

    Ronholm, J; Schumann, D; Sapers, H M; Izawa, M; Applin, D; Berg, B; Mann, P; Vali, H; Flemming, R L; Cloutis, E A; Whyte, L G

    2014-11-01

    Precipitation of calcium carbonate (CaCO3(s) ) can be driven by microbial activity. Here, a systematic approach is used to identify the morphological and mineralogical characteristics of CaCO3(s) precipitated during the heterotrophic growth of micro-organisms isolated from polar environments. Focus was placed on establishing mineralogical features that are common in bioliths formed during heterotrophic activity, while in parallel identifying features that are specific to bioliths precipitated by certain microbial phylotypes. Twenty microbial isolates that precipitated macroscopic CaCO3(s) when grown on B4 media supplemented with calcium acetate or calcium citrate were identified. A multimethod approach, including scanning electron microscopy, high-resolution transmission electron microscopy, and micro-X-ray diffraction (μ-XRD), was used to characterize CaCO3(s) precipitates. Scanning and transmission electron microscopy showed that complete CaCO3(s) crystal encrustation of Arthrobacter sp. cells was common, while encrustation of Rhodococcus sp. cells did not occur. Several euhedral and anhedral mineral formations including disphenoid-like epitaxial plates, rhomboid-like aggregates with epitaxial rhombs, and spherulite aggregates were observed. While phylotype could not be linked to specific mineral formations, isolates tended to precipitate either euhedral or anhedral minerals, but not both. Three anhydrous CaCO3(s) polymorphs (calcite, aragonite, and vaterite) were identified by μ-XRD, and calcite and aragonite were also identified based on TEM lattice-fringe d value measurements. The presence of certain polymorphs was not indicative of biogenic origin, although several mineralogical features such as crystal-encrusted bacterial cells, or casts of bacterial cells embedded in mesocrystals are an indication of biogenic origin. In addition, some features such as the formation of vaterite and bacterial entombment appear to be linked to certain phylotypes. Identifying

  1. Biogenic Volatile Organic Compound Emissions from Vegetation and Paper Mills in the Southeast United States during the SENEX (Southeast Nexus) Campaign in 2013

    NASA Astrophysics Data System (ADS)

    Warneke, C.; Trainer, M.; Graus, M.; Yuan, B.; Holloway, J. S.; Peischl, J.; Pollack, I. B.; Ryerson, T. B.; Kaser, L.; Guenther, A. B.; De Gouw, J. A.

    2014-12-01

    Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeast of the U.S. and rival those found in tropical forests. In addition, anthropogenic emissions are significant in the Southeast and photochemistry is rapid. The NOAA SENEX aircraft campaign took place in June-July 2013 in the southeast U.S. as part of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between these emissions to form secondary pollutants. The NOAA WP-3 aircraft conducted 20 research flights between May 27 and July 10, 2013 based out of Smyrna, TN. In this presentation we focus on the emissions of biogenic volatile organic compounds (VOCs). Various methods to determine emissions of isoprene and monoterpenes are investigated, e.g.: (1) emissions are determined by looking at the ambient mixing ratio, their lifetime and mixing volume, (2) eddy covariance or wavelet flux measurement techniques are tested, and (3) using the NCAR C-130 observations of isoprene fluxes, the correlations between fluxes and concentrations and variability to estimate fluxes from the P-3 data. The resulting emission flux estimates are compared with biogenic emission inventories. The forested Southeast US is heavily managed for large-scale wood and wood products production and therefore has a large density of pulp and paper mills, which are a source of monoterpenes and other VOCs that are typically thought to be biogenic. The significance of VOC emissions from point sources such as the paper mills and others are investigated.

  2. Emission measure distribution for diffuse regions in solar active regions

    SciTech Connect

    Subramanian, Srividya; Tripathi, Durgesh; Klimchuk, James A.; Mason, Helen E.

    2014-11-01

    Our knowledge of the diffuse emission that encompasses active regions is very limited. In this paper we investigate two off-limb active regions, namely, AR 10939 and AR 10961, to probe the underlying heating mechanisms. For this purpose, we have used spectral observations from Hinode/EIS and employed the emission measure (EM) technique to obtain the thermal structure of these diffuse regions. Our results show that the characteristic EM distributions of the diffuse emission regions peak at log T = 6.25 and the coolward slopes are in the range 1.4-3.3. This suggests that both low- as well as high-frequency nanoflare heating events are at work. Our results provide additional constraints on the properties of these diffuse emission regions and their contribution to the background/foreground when active region cores are observed on-disk.

  3. Development and Application of a Fast Chromatography Technique for Analysis of Biogenic Volatile Organic Compounds in Plant Emissions

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Yamazakii, S.; Kajii, Y. J.

    2011-12-01

    Biogenic volatile organic compounds (BVOCs) emitted from vegetation constitute the largest fraction (>90 %) of total global non-methane VOC supplied to the atmosphere, yet the chemical complexity of these emissions means that achieving comprehensive measurements of BVOCs, and in particular the less volatile terpenes, is not straightforward. As such, there is still significant uncertainty associated with the contribution of BVOCs to the tropospheric oxidation budget, and to atmospheric secondary organic aerosol (SOA) formation. The rate of BVOC emission from vegetation is regulated by environmental conditions such as light intensity and temperature, and thus can be highly variable, necessitating high time-resolution BVOC measurements. In addition, the numerous monoterpene and sesquiterpene isomers, which are indistinguishable by some analytical techniques, have greatly varying lifetimes with respect to atmospheric oxidants, and as such quantification of each individual isomer is fundamental to achieving a comprehensive characterisation of the impact of BVOCs upon the atmospheric oxidation capacity. However, established measurement techniques for these trace gases typically offer a trade-off between sample frequency and the level of speciation; detailed information regarding chemical composition may be obtained, but with reduced time resolution, or vice versa. We have developed a Fast-GC-FID technique for quantification of a range of monoterpene, sesquiterpene and oxygenated C10 BVOC isomers, which retains the separation capability of conventional gas chromatography, yet offers considerably improved sample frequency. Development of this system is ongoing, but currently a 20 m x 0.18 mm i.d resistively heated metal column is employed to achieve chromatographic separation of thirteen C10-C15 BVOCs, within a total cycle time of ~15 minutes. We present the instrument specifications and analytical capability, together with the first application of this Fast-GC technique

  4. Simultaneous field measurements of biogenic emissions of nitric oxide and nitrous oxide

    NASA Technical Reports Server (NTRS)

    Anderson, Iris Cofman; Levine, Joel S.

    1987-01-01

    Seasonal and diurnal emissions of NO and N2O from agricultural sites in Jamestown, Virginia and Boulder, Colorado are estimated in terms of soil temperature; percent moisture; and exchangeable nitrate, nitrite, and ammonium concentrations. The techniques and procedures used to analyze the soil parameters are described. The spatial and temporal variability of the NO and N2O emissions is studied. A correlation between NO fluxes in the Virginia sample and nitrate concentration, temperature, and percent moisture is detected, and NO fluxes for the Colorado site correspond with temperature and moisture. It is observed that the N2O emissions are only present when percent moisture approaches or exceeds the field capacity of the soil. The data suggest that NO is produced primarily by nitrification in aerobic soils, and N2O is formed by denitrification in anaerobic soils.

  5. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO 2 concentration data

    SciTech Connect

    Ogle, Stephen; Davis, Kenneth J.; Lauvaux, Thomas; Schuh, Andrew E.; Cooley, Dan; West, Tristram O.; Heath, L.; Miles, Natasha; Richardson, S. J.; Breidt, F. Jay; Smith, Jim; McCarty, Jessica L.; Gurney, Kevin R.; Tans, P. P.; Denning, Scott

    2015-03-10

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country’s contribution to GHG concentrations in the atmosphere. Verification could include a variety of evidence, but arguably the most convincing verification would be confirmation of a change in GHG concentrations in the atmosphere that is consistent with reported emissions to the UNFCCC. We report here on a case study evaluating this option based on a prototype atmospheric CO2 measurement network deployed in the Mid-Continent Region of the conterminous United States. We found that the atmospheric CO2 measurement data did verify the accuracy of the emissions inventory within the confidence limits of the emissions estimates, suggesting that this technology could be further developed and deployed more widely in the future for verifying reported emissions.

  6. Biogenic volatile organic compound emissions from nine tree species used in an urban tree-planting program

    NASA Astrophysics Data System (ADS)

    Curtis, A. J.; Helmig, D.; Baroch, C.; Daly, R.; Davis, S.

    2014-10-01

    The biogenic volatile organic compound (BVOC) emissions of nine urban tree species were studied to assess the air quality impacts from planting a large quantity of these trees in the City and County of Denver, Colorado, through the Mile High Million tree-planting initiative. The deciduous tree species studied were Sugar maple, Ohio buckeye, northern hackberry, Turkish hazelnut, London planetree, American basswood, Littleleaf linden, Valley Forge elm, and Japanese zelkova. These tree species were selected using the i-Tree Species Selector (itreetools.org). BVOC emissions from the selected tree species were investigated to evaluate the Species Selector data under the Colorado climate and environmental growing conditions. Individual tree species were subjected to branch enclosure experiments in which foliar emissions of BVOC were collected onto solid adsorbent cartridges. The cartridge samples were analyzed for monoterpenes (MT), sesquiterpenes (SQT), and other C10-C15 BVOC using thermal desorption-gas chromatography-flame ionization detection/mass spectroscopy (GC-FID/MS). Individual compounds and their emission rates (ER) were identified. MT were observed in all tree species, exhibiting the following total MT basal emission rates (BER; with a 1-σ lower bound, upper bound uncertainty window): Sugar maple, 0.07 (0.02, 0.11) μg g-1 h-1; London planetree, 0.15 (0.02, 0.27) μg g-1 h-1; northern hackberry, 0.33 (0.09, 0.57) μg g-1 h-1; Japanese zelkova, 0.42 (0.26, 0.58) μg g-1 h-1; Littleleaf linden, 0.71 (0.33, 1.09) μg g-1 h-1; Valley Forge elm, 0.96 (0.01, 1.92) μg g-1 h-1; Turkish hazelnut, 1.30 (0.32, 2.23) μg g-1 h-1; American basswood, 1.50 (0.40, 2.70) μg g-1 h-1; and Ohio buckeye, 6.61 (1.76, 11.47) μg g-1 h-1. SQT emissions were seen in five tree species with total SQT BER of: London planetree, 0.11 (0.01, 0.20) μg g-1 h-1; Japanese zelkova, 0.11 (0.05, 0.16) μg g-1 h-1; Littleleaf linden, 0.13 (0.06, 0.21) μg g-1 h-1; northern hackberry, 0.20 (0

  7. Fluid emissions at the Aquitaine Shelf (Bay of Biscay, France): A biogenic origin or the expression of hydrocarbon leakage?

    NASA Astrophysics Data System (ADS)

    Dupré, Stéphanie; Berger, Laurent; Le Bouffant, Naig; Scalabrin, Carla; Bourillet, Jean-François

    2014-10-01

    Fishery acoustic surveys conducted in the Bay of Biscay and dedicated to monitoring and predicting pelagic ecosystem evolution reveal numerous active seeps on the Aquitaine Shelf, east of the shelf break, at water depths ranging from 140 to 185 m. Some acoustic anomalies recorded in the water column with hull-mounted single and multibeam echosounders are clearly caused by fluid escape at the seabed, most likely gases. These fluid emissions are associated at the seafloor with high backscatter subcircular small-scale mounds, on average less than 2 m high and a few metres in diameter. Based on near-bottom video and acoustic surveys, these mounds are interpreted to be by-products of gas seepage, possibly methane-derived authigenic carbonates. The spatial distribution of the seeps and related structures, based on water column acoustic gas flares and high backscatter seabed patches, appears to be relatively broad, with a North-South extension of ~65 km across the Parentis Basin and the Landes High, and a West-East extension along a few kilometres wide on the shelf. The seepage activity seems persistent through time at the annual scale, with acoustic evidence dating back to 1998. The spatial distribution of the fluid emissions at the Aquitaine Shelf may suggest possible sedimentary and tectonic controls in relation with the Pyrenean compression phase. The nature and the origin of the emitted fluids and seafloor mounds are unknown. The gases may correspond to biogenic methane from Late Pleistocene deposits or to thermogenic gases originating from deeper, Jurassic-Cretaceous levels. The oil province of the Parentis Basin raises questions regarding possible genetic links to the petroleum system.

  8. REGIONAL AIR POLLUTION STUDY: HEAT EMISSION INVENTORY

    EPA Science Inventory

    As part of the St. Louis Regional Air Pollution Study (RAPS), a heat emission inventory has been assembled. Heat emissions to the atmosphere originate, directly or indirectly, from the combustion of fossil fuels (there are no nuclear plants in the St. Louis AQCR). With the except...

  9. Biogenic Volatile Organic Compound (BVOC) emissions from agricultural crop species: is guttation a possible source for methanol emissions following light/dark transition ?

    NASA Astrophysics Data System (ADS)

    Mozaffar, Ahsan; Amelynck, Crist; Bachy, Aurélie; Digrado, Anthony; Delaplace, Pierre; du Jardin, Patrick; Fauconnier, Marie-Laure; Schoon, Niels; Aubinet, Marc; Heinesch, Bernard

    2015-04-01

    In the framework of the CROSTVOC (CROp STress VOC) project, the exchange of biogenic volatile organic compounds (BVOCs) between two important agricultural crop species, maize and winter wheat, and the atmosphere has recently been measured during an entire growing season by using the eddy covariance technique. Because of the co-variation of BVOC emission drivers in field conditions, laboratory studies were initiated in an environmental chamber in order to disentangle the responses of the emissions to variations of the individual environmental parameters (such as PPFD and temperature) and to diverse abiotic stress factors. Young plants were enclosed in transparent all-Teflon dynamic enclosures (cuvettes) through which BVOC-free and RH-controlled air was sent. BVOC enriched air was subsequently sampled from the plant cuvettes and an empty cuvette (background) and analyzed for BVOCs in a high sensitivity Proton Transfer Reaction Mass Spectrometer (hs-PTR-MS) and for CO2 in a LI-7000 non-dispersive IR gas analyzer. Emissions were monitored at constant temperature (25 °C) and at a stepwise varying PPFD pattern (0-650 µmol m-2 s-1). For maize plants, sudden light/dark transitions at the end of the photoperiod were accompanied by prompt and considerable increases in methanol (m/z 33) and water vapor (m/z 39) emissions. Moreover, guttation droplets appeared on the sides and the tips of the leaves within a few minutes after light/dark transition. Therefore the assumption has been raised that methanol is also coming out with guttation fluid from the leaves. Consequently, guttation fluid was collected from young maize and wheat plants, injected in an empty enclosure and sampled by PTR-MS. Methanol and a large number of other compounds were observed from guttation fluid. Recent studies have shown that guttation from agricultural crops frequently occurs in field conditions. Further research is required to find out the source strength of methanol emissions by this guttation

  10. AN APPROACH TO A UNIFIED PROCESS-BASED REGIONAL EMISSION FLUX MODELING PLATFORM

    EPA Science Inventory

    The trend towards episodic modeling of environmentally-dependent emissions is increasing, with models available or under development for dust, ammonia, biogenic volatile organic compounds, soil nitrous oxide, pesticides, sea salt, and chloride, mercury, and wildfire emissions. T...

  11. Chemical characterization of biogenic secondary organic aerosol generated from plant emissions under baseline and stressed conditions: inter- and intra-species variability for six coniferous species

    NASA Astrophysics Data System (ADS)

    Faiola, C. L.; Wen, M.; VanReken, T. M.

    2015-04-01

    The largest global source of secondary organic aerosol (SOA) in the atmosphere is derived from the oxidation of biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. Alterations to the biogenic volatile organic compound (BVOC) profile could impact the characteristics of the SOA formed from those emissions. This study investigated the impacts of one global change stressor, increased herbivory, on the composition of SOA derived from real plant emissions. Herbivory was simulated via application of methyl jasmonate (MeJA), a proxy compound. Experiments were repeated under pre- and post-treatment conditions for six different coniferous plant types. Volatile organic compounds (VOCs) emitted from the plants were oxidized to form SOA via dark ozone-initiated chemistry. The SOA chemical composition was measured using a Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS). The aerosol mass spectra of pre-treatment biogenic SOA from all plant types tended to be similar with correlations usually greater than or equal to 0.90. The presence of a stressor produced characteristic differences in the SOA mass spectra. Specifically, the following m/z were identified as a possible biogenic stress AMS marker with the corresponding HR ion(s) shown in parentheses: m/z 31 (CH3O+), m/z 58 (C2H2O2+, C3H6O+), m/z 29 (C2H5+), m/z 57 (C3H5O+), m/z 59 (C2H3O2+, C3H7O+), m/z 71 (C3H3O2+, C4H7O+), and m/z 83 (C5H7O+). The first aerosol mass spectrum of SOA generated from the oxidation of the plant stress hormone, MeJA, is also presented. Elemental analysis results demonstrated an O : C range of baseline biogenic SOA between 0.3 and 0.47. The O : C of standard MeJA SOA was 0.52. Results presented here could be used to help identify a biogenic plant stress marker in ambient data sets collected in forest environments.

  12. Chemical characterization of biogenic SOA generated from plant emissions under baseline and stressed conditions: inter- and intra-species variability for six coniferous species

    NASA Astrophysics Data System (ADS)

    Faiola, C. L.; Wen, M.; VanReken, T. M.

    2014-10-01

    The largest global source of secondary organic aerosol in the atmosphere is derived from the oxidation of biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. Alterations to the biogenic VOC profile could impact the characteristics of the SOA formed from those emissions. This study investigated the impacts of one global change stressor, increased herbivory, on the composition of SOA derived from real plant emissions. Herbivory was simulated via application of methyl jasmonate, a proxy compound. Experiments were repeated under pre- and post-treatment conditions for six different coniferous plant types. VOCs emitted from the plants were oxidized to form SOA via dark ozone-initiated chemistry. The SOA particle size distribution and chemical composition were measured using a scanning mobility particle sizer (SMPS) and Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS), respectively. The aerosol mass spectra of pre-treatment biogenic SOA from all plant types tended to be similar with correlations usually greater than or equal to 0.90. The presence of a stressor produced characteristic differences in the SOA mass spectra. Specifically, the following m/z were identified as a possible biogenic stress AMS marker with the corresponding HR ion(s) shown in parentheses: m/z 31 (CH3O+), m/z 58 (C2H2O2+, C3H6O+) m/z 29 (C2H5+), m/z 57 (C3H5O+), m/z 59 (C2H3O2+, C3H7O+), m/z 71 (C3H3O2+, C4H7O+), and m/z 83 (C5H7O+). The first aerosol mass spectrum of SOA generated from the oxidation of the plant stress hormone, methyl jasmonate, is also presented. Elemental analysis results demonstrated an O:C range of baseline biogenic SOA between 0.3-0.47. The O:C of standard methyl jasmonate SOA was 0.52. Results presented here could be used to help identify a biogenic plant stress marker in ambient datasets collected in forest environments.

  13. Chemical characterization of biogenic SOA generated from plant emissions under baseline and stressed conditions: inter- and intra-species variability for six coniferous species

    DOE PAGESBeta

    Faiola, C. L.; Wen, M.; VanReken, T. M.

    2014-10-01

    The largest global source of secondary organic aerosol in the atmosphere is derived from the oxidation of biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. Alterations to the biogenic VOC profile could impact the characteristics of the SOA formed from those emissions. This study investigated the impacts of one global change stressor, increased herbivory, on the composition of SOA derived from real plant emissions. Herbivory was simulated via application of methyl jasmonate, a proxy compound. Experiments were repeated under pre- and post-treatment conditions for six differentmore » coniferous plant types. VOCs emitted from the plants were oxidized to form SOA via dark ozone-initiated chemistry. The SOA particle size distribution and chemical composition were measured using a scanning mobility particle sizer (SMPS) and Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS), respectively. The aerosol mass spectra of pre-treatment biogenic SOA from all plant types tended to be similar with correlations usually greater than or equal to 0.90. The presence of a stressor produced characteristic differences in the SOA mass spectra. Specifically, the following m/z were identified as a possible biogenic stress AMS marker with the corresponding HR ion(s) shown in parentheses: m/z 31 (CH3O+), m/z 58 (C2H2O2+, C3H6O+) m/z 29 (C2H5+), m/z 57 (C3H5O+), m/z 59 (C2H3O2+, C3H7O+), m/z 71 (C3H3O2+, C4H7O+), and m/z 83 (C5H7O+). The first aerosol mass spectrum of SOA generated from the oxidation of the plant stress hormone, methyl jasmonate, is also presented. Elemental analysis results demonstrated an O:C range of baseline biogenic SOA between 0.3–0.47. The O:C of standard methyl jasmonate SOA was 0.52. Results presented here could be used to help identify a biogenic plant stress marker in ambient datasets collected in forest environments.« less

  14. Chemical characterization of biogenic secondary organic aerosol generated from plant emissions under baseline and stressed conditions: inter- and intra-species variability for six coniferous species

    DOE PAGESBeta

    Faiola, C. L.; Wen, M.; VanReken, T. M.

    2015-04-01

    The largest global source of secondary organic aerosol (SOA) in the atmosphere is derived from the oxidation of biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. Alterations to the biogenic volatile organic compound (BVOC) profile could impact the characteristics of the SOA formed from those emissions. This study investigated the impacts of one global change stressor, increased herbivory, on the composition of SOA derived from real plant emissions. Herbivory was simulated via application of methyl jasmonate (MeJA), a proxy compound. Experiments were repeated under pre- andmore » post-treatment conditions for six different coniferous plant types. Volatile organic compounds (VOCs) emitted from the plants were oxidized to form SOA via dark ozone-initiated chemistry. The SOA chemical composition was measured using a Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS). The aerosol mass spectra of pre-treatment biogenic SOA from all plant types tended to be similar with correlations usually greater than or equal to 0.90. The presence of a stressor produced characteristic differences in the SOA mass spectra. Specifically, the following m/z were identified as a possible biogenic stress AMS marker with the corresponding HR ion(s) shown in parentheses: m/z 31 (CH3O+), m/z 58 (C2H2O2+, C3H6O+), m/z 29 (C2H5+), m/z 57 (C3H5O+), m/z 59 (C2H3O2+, C3H7O+), m/z 71 (C3H3O2+, C4H7O+), and m/z 83 (C5H7O+). The first aerosol mass spectrum of SOA generated from the oxidation of the plant stress hormone, MeJA, is also presented. Elemental analysis results demonstrated an O : C range of baseline biogenic SOA between 0.3 and 0.47. The O : C of standard MeJA SOA was 0.52. Results presented here could be used to help identify a biogenic plant stress marker in ambient data sets collected in forest environments.« less

  15. BIOGENIC VOLATILE ORGANIC COMPOUND EMISSIONS (BVOCS) II. LANDSCAPE FLUX POTENTIALS FROM THREE CONTINENTAL SITES IN THE U.S.

    EPA Science Inventory

    Landscape flux potentials for biogenic volatile organic compounds (BVOCs) were derived for three ecosystems in the continental U. S. (Fernbank Forest, Atlanta, GA; Willow Creek, Rhinelander, WI; Temple Ridge, CO). Analytical data from branch enclosure measurements reported in a ...

  16. Spatial analysis on China's regional air pollutants and CO2 emissions: emission pattern and regional disparity

    NASA Astrophysics Data System (ADS)

    Dong, Liang; Liang, Hanwei

    2014-08-01

    China has suffered from serious air pollution and CO2 emission. Challenges of emission reduction policy not only come from technology advancement, but also generate from the fact that, China has pronounced disparity between regions, in geographical and socioeconomic. How to deal with regional disparity is important to achieve the reduction target effectively and efficiently. This research conducts a spatial analysis on the emission patterns of three air pollutants named SO2, NOx and PM2.5, and CO2, in China's 30 provinces, applied with spatial auto-correlation and multi regression modeling. We further analyze the regional disparity and inequity issues with the approach of Lorenz curve and Gini coefficient. Results highlight that: there is evident cluster effect for the regional air pollutants and CO2 emissions. While emission amount increases from western regions to eastern regions, the emission per GDP is in inverse trend. The Lorenz curve shows an even larger unequal distribution of GDP/emissions than GDP/capita in 30 regions. Certain middle and western regions suffers from a higher emission with lower GDP, which reveal the critical issue of emission leakage. Future policy making to address such regional disparity is critical so as to promote the emission control policy under the “equity and efficiency” principle.

  17. Biogenic emissions of volatile organic compounds from gorse (Ulex europaeus): Diurnal emission fluxes at Kelling Heath, England

    NASA Astrophysics Data System (ADS)

    Cao, X.-L.; Boissard, C.; Juan, A. J.; Hewitt, C. N.; Gallagher, M.

    1997-08-01

    Volatile organic compound (VOC) emission fluxes from Gorse (Ulex europaeus) were measured during May 30-31, 1995 at Kelling Heath in eastern England by using bag enclosure and gradient methods simultaneously. The enclosure measurements were made from branches at different stages of physiological development (flowering, after flowering, and mixed). Isoprene was found to represent 90% of the total VOC emissions, and its emission rates fluctuated from 6 ng (g dwt)-1 h-1 in the early morning to about 9700 ng(g dwt)-1 h-1 at midday. Averaged emission rates standardized to 20°C were 1625, 2120, and 3700 ng (g dwt)-1 h-1 for the new grown, "mixed," and flowering branch, respectively. Trans-ocimene and α-pinene were the main monoterpenes emitted and represented, on average, 47.6% and 36.9% of the total monoterpenes. Other monoterpenes, camphene, sabinene, β-pinene, myrcene, limonene and γ-terpinene, were positively identified but together represented less than 1.5% of the total VOC emissions from gorse. Maximum isoprene concentrations in air at the site were measured around midday at 2 m (174 parts per trillion by volume, or pptv) and 6 m (149 pptv), and minimum concentrations were measured during the night (8 pptv at both heights). Mean daytime α-pinene air concentrations of 141 and 60 pptv at 2 and 6 m height were determined, but trans-ocimene concentrations were less than the analytical detection limit (4 pptv), suggesting rapid chemical removal of this compound from air. The isoprene fluxes calculated by the micrometeorological gradient method showed a pattern similar to that of those calculated by the enclosure method, with isoprene emission rates maximum at midday (100 μg m-2 h-1) and not detectable during the nighttime. Assessment of the fraction of the site covered by gorse plants enabled an extrapolation of emission fluxes from the enclosure measurements. When averaged over the 2 day experiment, isoprene fluxes of 29.8 and 27.8 μg m-2 h-1 were obtained from

  18. REGIONAL AIR POLLUTION STUDY, EMISSION INVENTORY SUMMARIZATION

    EPA Science Inventory

    As part of the Regional Air Pollution Study (RAPS), data for an air pollution emission inventory are summarized for point and area sources in the St. Louis Air Quality Control Region. Data for point sources were collected for criteria and noncriteria pollutants, hydrocarbons, sul...

  19. Biogenic volatile organic compounds (BVOCs) emission of Scots pine under drought stress - a 13CO2 labeling study to determine de novo and pool emissions under different treatments

    NASA Astrophysics Data System (ADS)

    Lüpke, M.

    2015-12-01

    Plants emit biogenic volatile organic compounds (BVOCs) to e.g. communicate and to defend herbivores. Yet BVOCs also impact atmospheric chemistry processes, and lead to e.g. the built up of secondary organic aerosols. Abiotic stresses, such as drought, however highly influence plant physiology and subsequently BVOCs emission rates. In this study, we investigated the effect of drought stress on BVOCs emission rates of Scots pine trees, a de novo and pool emitter, under controlled climate chamber conditions within a dynamic enclosure system consisting of four plant chambers. Isotopic labeling with 13CO2 was used to detect which ratio of emissions of BVOCs derives from actual synthesis and from storage organs under different treatments. Additionally, the synthesis rate of the BVOCs synthesis can be determined. The experiment consisted of two campaigns (July 2015 and August 2015) of two control and two treated trees respectively in four controlled dynamic chambers simultaneously. Each campaign lasted for around 21 days and can be split into five phases: adaptation, control, dry-out, drought- and re-watering phase. The actual drought phase lasted around five days. During the campaigns two samples of BVOCs emissions were sampled per day and night on thermal desorption tubes and analyzed by a gas chromatograph coupled with a mass spectrometer and a flame ionization detector. Additionally, gas exchange of water and CO2, soil moisture, as well as leaf and chamber temperature was monitored continuously. 13CO2 labeling was performed simultaneously in all chambers during the phases control, drought and re-watering for five hours respectively. During the 13CO2 labeling four BVOCs emission samples per chamber were taken to identify the labeling rate on emitted BVOCs. First results show a decrease of BVOCs emissions during the drought phase and a recovery of emission after re-watering, as well as different strength of reduction of single compounds. The degree of labeling with 13

  20. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: determination of specific emission rates for thirty-one tree species.

    PubMed

    Aydin, Yagmur Meltem; Yaman, Baris; Koca, Husnu; Dasdemir, Okan; Kara, Melik; Altiok, Hasan; Dumanoglu, Yetkin; Bayram, Abdurrahman; Tolunay, Doganay; Odabasi, Mustafa; Elbir, Tolga

    2014-08-15

    Normalized biogenic volatile organic compound (BVOC) emission rates for thirty one tree species that cover the 98% of national forested areas in Turkey were determined. Field samplings were performed at fourteen different forested areas in Turkey using a specific dynamic enclosure system. The selected branches of tree species were enclosed in a chamber consisted of a transparent Nalofan bag. The air-flows were sampled from both inlet and outlet of the chamber by Tenax-filled sorbent tubes during photosynthesis of trees under the presence of sunlight. Several environmental parameters (temperature, humidity, photosynthetically active radiation-PAR, and CO2) were continuously monitored inside and outside the enclosure chamber during the samplings. Collected samples were analyzed using a gas chromatography mass spectrometry (GC/MS) system equipped with a thermal desorber (TD). Sixty five BVOCs classified in five major groups (isoprene, monoterpenes, sesquiterpenes, oxygenated sesquiterpenes, and other oxygenated compounds) were analyzed. Emission rates were determined by normalization to standard conditions (1000 μmol/m(2)s PAR and 30 °C temperature for isoprene and 30 °C temperature for the remaining compounds). In agreement with the literature, isoprene was mostly emitted by broad-leaved trees while coniferous species mainly emitted monoterpenes. Several tree species such as Sweet Chestnut, Silver Lime, and European Alder had higher monoterpene emissions although they are broad-leaved species. High isoprene emissions were also observed for a few coniferous species such as Nordmann Fir and Oriental Spruce. The highest normalized total BVOC emission rate of 27.1 μg/gh was observed for Oriental Plane while South European Flowering Ash was the weakest BVOC emitter with a total normalized emission rate of 0.031 μg/gh. Monoterpene emissions of broad-leaved species mainly consisted of sabinene, limonene and trans-beta-ocimene, while alpha-pinene, beta-pinene and beta

  1. Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: results from CARES

    SciTech Connect

    Setyan, Ari; Zhang, Qi; Merkel, M.; Knighton, Walter B.; Sun, Y.; Song, Chen; Shilling, John E.; Onasch, Timothy B.; Herndon, Scott C.; Worsnop, Douglas R.; Fast, Jerome D.; Zaveri, Rahul A.; Berg, Larry K.; Wiedensohler, A.; Flowers, B. A.; Dubey, Manvendra K.; Subramanian, R.

    2012-09-11

    The Carbonaceous Aerosols and Radiative Effects Study (CARES) took place in the Sacramento Valley of California in summer 2010. We present results obtained at Cool, CA, the T1 site of the project ({approx}40 km downwind of urban emissions from Sacramento), where we deployed an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) in parallel with complementary instrumentation to characterize the sources and processes of submicron particles (PM1). Cool is located at the foothill of the Sierra Nevada Mountains, where intense biogenic emissions are periodically mixed with urban outflow transported by daytime southwesterly winds from the Sacramento metropolitan area. The particle mass loading was low (3.0 {micro}gm{sup -3} on average) and dominated by organics (80% of the PM1 mass) followed by sulfate (9.9 %). Organics and sulfate appeared to be externally mixed, as suggested by their different time series (r2 = 0.13) and size distributions. Sulfate showed a bimodal distribution with a droplet mode peaking at {approx}400nm in vacuum aerodynamic diameter (Dva), and a condensation mode at {approx}150 nm, while organics generally displayed a broad distribution in 60-600nm (Dva). New particle formation and growth events were observed almost every day, emphasizing the roles of organics and sulfate in new particle growth, especially that of organics. The organic aerosol (OA) had a nominal formula of C{sub 1}H{sub 1.38}N{sub 0.004}O{sub 0.44}, thus an average organic mass-to-carbon (OM/OC) ratio of 1.70. Two different oxygenated OA (OOA, 90% of total OA mass) and a hydrocarbon-like OA (HOA, 10 %) were identified by Positive matrix factorization (PMF) of the high resolution mass spectra. The more oxidized MO-OOA (O/C = 0.54) corresponded to secondary OA (SOA) primarily influenced by biogenic emissions, while the less oxidized LO-OOA (O/C = 0.42) corresponded to SOA associated with urban transport. The HOA factor corresponded to primary emissions mainly

  2. The Effects of Drought on Predictions of Air Quality in Texas: Vegetation and Biogenic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    McDonald-Buller, E.; Huang, L.; McGaughey, G.; Kimura, Y.; Allen, D.

    2014-12-01

    Biogenic hydrocarbons, primarily isoprene and monoterpenes, are important precursors for tropospheric ozone and secondary organic aerosol formation. Annual biogenic emissions in Texas ranked first within the continental United States in the 2011 National Emission Inventory. In recent years, the effects of drought in Texas have been among the most severe in the southern United States; during 2011, more than 80% of the state was under exceptional drought. Understanding the effects of drought on vegetation and biogenic emissions is important as the state concurrently faces requirements to achieve and maintain attainment with the National Ambient Air Quality Standard (NAAQS) for ozone in several large metropolitan areas. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) has been utilized extensively for the estimation of biogenic emissions on global and regional scales. This research investigates the interannual variability in leaf area index and isoprene and monoterpene emissions estimates from MEGAN in eastern Texas climate regions with diverse climatology and land cover. In MEGAN, the adjustment to emissions from a standardized set of environmental conditions is determined using a multiplication of individual activity factors for leaf age, soil moisture, and the canopy environment. The research also interprets and quantifies differences in environmental activity factors between years with extreme to exceptional drought and average to above average precipitation in eastern Texas and identifies influences on biogenic emissions estimates from MEGAN.

  3. Biogenic sulphur emissions and inferred non-sea-salt-sulphate cloud condensation nuclei in and around Antarctica

    NASA Astrophysics Data System (ADS)

    O'Dowd, Colin D.; Lowe, Jason A.; Smith, Michael H.; Davison, Brian; Hewitt, C. Nicholas; Harrison, Roy M.

    1997-06-01

    Accumulation mode aerosol properties and biogenic sulphur emissions over the South Atlantic and Antarctic Oceans are examined. Two contrasting air masses, polar and maritime, each possessing distinct aerosol properties, were encountered during the summer months. By examining aerosol volatile properties, polar air masses arriving from the Antarctic continent were shown to consist primarily Of H2SO4 in the accumulation mode size range, with inferred NH+4 to SO=4 molar ratios close to zero. By comparison, air masses of temperate maritime origin were significantly neutralized with molar ratios of ≈1. These results suggest a deficit of ammonia in polar air masses compared with that in maritime air masses. Dimethyl sulphide (DMS) exhibited no correlation with its putative aerosol oxidation products, although spatial coherence in atmospheric concentrations of DMS, methane sulphonic acid (MSA), and non-sea-salt (nss)-sulphate mass was observed. Volatility analysis, used to infer nss-sulphate cloud condensation nuclei (nss-sCCN) active at a supersaturation of ≈0.2%, indicates that nss-sCCN mass and number concentration were best correlated with MSA mass (r≈0.63). Aerosol volatility identified the presence of MSA in submicron non-sea-salt aerosol; however, its contribution to the aerosol mass was small relative to the contribution of sulphuric acid and ammonium bisulphate/sulphate aerosol. The marine sulphur cycle appears strongly coupled to the sea-salt cycle with, typically, 80-90% of nss-sulphate thought to be internally mixed with sea-salt aerosol. During the austral Summer of 1992/1993, a period of strong biological productivity in the Weddell Sea and sub-Antarctic Ocean, particularly during ice-melt, the cruise-average DMS flux of 61 μg m-2 d-1 corresponded to a very modest average nss-sCCN concentration of 21 cm-3. Observed peak values of DMS flux and inferred nss-CCN concentrations during the cruise were 477 μg m-2 d-1 and 64 cm-3, respectively. Events of new

  4. Quantifying Marine Emissions of Biogenic Volatile Organic Compounds Using Laboratory Measurements of Plankton Monocultures and Field Samples

    NASA Astrophysics Data System (ADS)

    Sabolis, A. W.; Meskhidze, N.; Kamykowski, D.; Reed, R. E.

    2010-12-01

    Marine biogenic volatile organic compounds (BVOCs) have been suggested to contribute significant portion of the organic carbon present in ocean atmosphere. In this study emission rates of 40 different hydrocarbons are quantified for lab-grown non-axenic phytoplankton monocultures and ambient samples from the Pamlico-Neuse Estuary, NC. The outcome of environmental conditions on production of BVOCs was examined for different light and temperature conditions. These different regimes are considered proxies for physiological stress-induced effects observed in natural ecosystems. The samples were incubated in a climate controlled room; they were then transferred to smaller volumes (200 ml) for analysis. BVOCs accumulated in the water and headspace above the water were measured by bubbling hydrocarbon-free gas mixture through the sample and passing the gas stream through a gas chromatography/mass spectrometry system equipped with a sample pre-concentrator. Inside the pre-concentrator, the compounds were trapped on a sorbent material, heated, and flushed into the GC-MS column. The pre-concentrator/GC-MS system gave at least 1000 times magnification of the sample concentrations, allowing detection of low ppt levels of hydrocarbons. Here we report results for lab-grown diatoms Thalassiosira weissflogii and Thalassiosira pseudonana, prymnesiophyte Pleurochrysis carterae, and dinoflagellates Karina brevis and Procentrum minimum, as well as field samples. To make results widely usable, all the emissions are normalized to Chlorophyll-a (Chl-a) concentration and cell counts. Our results show that diatoms had the highest isoprene production rate of 2.8 μmol (g Chl-a)-1 h-1 with ranges between 1.4 and 3.6 μmol (g Chl-a)-1 h-1 at light levels between 90 and 900 μE m-2 s-1, respectively. The prymnesiophyte and dinoflagellate species had isoprene production rates of 1.3±0.4 μmol (g Chl-a)-1 h-1 with a similar light dependency as diatoms. Field samples had comparable isoprene

  5. EMISSIONS OF BIOGENIC OXIDANT AND PM PRECURSORS- VERY HIGH REACTIVITY VOCS AND SURFACE LAYER CHEMISTRY ABOVE FORESTS

    EPA Science Inventory

    Recent analysis of ambient fine particulate matter (PM2.5) has found that significant portions of the organic matter contained therein are of biogenic origin. Radiocarbon (C-14) measurements of the bulk organic matter in fine particles collected near Nashville, TN, found that 40...

  6. Integrating Source Apportionment Tracers into a Bottom-up Inventory of Methane Emissions in the Barnett Shale Hydraulic Fracturing Region.

    PubMed

    Townsend-Small, Amy; Marrero, Josette E; Lyon, David R; Simpson, Isobel J; Meinardi, Simone; Blake, Donald R

    2015-07-01

    A growing dependence on natural gas for energy may exacerbate emissions of the greenhouse gas methane (CH4). Identifying fingerprints of these emissions is critical to our understanding of potential impacts. Here, we compare stable isotopic and alkane ratio tracers of natural gas, agricultural, and urban CH4 sources in the Barnett Shale hydraulic fracturing region near Fort Worth, Texas. Thermogenic and biogenic sources were compositionally distinct, and emissions from oil wells were enriched in alkanes and isotopically depleted relative to natural gas wells. Emissions from natural gas production varied in δ(13)C and alkane ratio composition, with δD-CH4 representing the most consistent tracer of natural gas sources. We integrated our data into a bottom-up inventory of CH4 for the region, resulting in an inventory of ethane (C2H6) sources for comparison to top-down estimates of CH4 and C2H6 emissions. Methane emissions in the Barnett are a complex mixture of urban, agricultural, and fossil fuel sources, which makes source apportionment challenging. For example, spatial heterogeneity in gas composition and high C2H6/CH4 ratios in emissions from conventional oil production add uncertainty to top-down models of source apportionment. Future top-down studies may benefit from the addition of δD-CH4 to distinguish thermogenic and biogenic sources. PMID:26148556

  7. Grid-based versus big region approach for inverting CO emissions using Measurement of Pollution in the Troposphere (MOPITT) data

    NASA Astrophysics Data System (ADS)

    Stavrakou, T.; Müller, J.-F.

    2006-08-01

    The CO columns retrieved by the Measurement of Pollution in the Troposphere (MOPITT) satellite instrument between May 2000 and April 2001 are used together with the Intermediate Model for the Annual and Global Evolution of Species (IMAGES) global chemistry transport model and its adjoint to provide top-down estimates for anthropogenic, biomass burning, and biogenic CO emissions on the global scale, as well as for the biogenic volatile organic compounds (VOC) fluxes, whose oxidation constitutes a major indirect CO source. For this purpose, the big region and grid-based Bayesian inversion methods are presented and compared. In the former setup, the monthly emissions over large geographical regions are quantified. In the grid-based setup, the fluxes are optimized at the spatial resolution of the model and on a monthly basis. Source-specific spatiotemporal correlations among errors on the prior emissions are introduced in order to better constrain the inversion problem. Both inversion techniques bring the model columns much closer to the measurements at all latitudes, but the grid-based analysis achieves a higher reduction of the overall model/data bias. Further comparisons with observed mixing ratios at NOAA Climate Monitoring and Diagnostics Laboratory and Global Atmosphere Watch sites, as well as with airborne measurements are also presented. The inferred emission estimates are weakly dependent on the prior errors and correlations. Our best estimate for the global CO source amounts to 2900 Tg CO/yr in both inversion approaches, about 5% higher than the prior. The global anthropogenic emission estimate is 18% larger than the prior, with the biggest increase for east Asia and a substantial decrease in south Asia. The vegetation fire emission estimates decrease as well, from the prior 467 Tg CO/yr to 450 Tg CO/yr in the grid-based solution and 434 Tg CO/yr in the monthly big region setup, mainly due to a significant reduction of African savanna fire emissions. The

  8. Regional emissions of air pollutants in China.

    SciTech Connect

    Streets, D. G.

    1998-10-05

    As part of the China-MAP program, sponsored by the US National Aeronautics and Space Administration, regional inventories of air pollutants emitted in China are being characterized, in order that the atmospheric chemistry over China can be more fully understood and the resulting ambient concentrations in Chinese cities and the deposition levels to Chinese ecosystems be determined with better confidence. In addition, the contributions of greenhouse gases from China and of acidic aerosols that counteract global warming are being quantified. This paper presents preliminary estimates of the emissions of some of the major air pollutants in China: sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), carbon monoxide (CO), and black carbon (C). Emissions are estimated for each of the 27 regions of China included in the RAINS-Asia simulation model and are subsequently distributed to a 1{degree} x 1{degree} grid using appropriate disaggregation factors. Emissions from all sectors of the Chinese economy are considered, including the combustion of biofuels in rural homes. Emissions from larger power plants are calculated individually and allocated to the grid accordingly. Data for the period 1990-1995 are being developed, as well as projections for the future under alternative assumptions about economic growth and environmental control.

  9. Differential controls by climate and physiology over the emission rates of biogenic volatile organic compounds from mature trees in a semi-arid pine forest.

    PubMed

    Eller, Allyson S D; Young, Lindsay L; Trowbridge, Amy M; Monson, Russell K

    2016-02-01

    Drought has the potential to influence the emission of biogenic volatile organic compounds (BVOCs) from forests and thus affect the oxidative capacity of the atmosphere. Our understanding of these influences is limited, in part, by a lack of field observations on mature trees and the small number of BVOCs monitored. We studied 50- to 60-year-old Pinus ponderosa trees in a semi-arid forest that experience early summer drought followed by late-summer monsoon rains, and observed emissions for five BVOCs-monoterpenes, methylbutenol, methanol, acetaldehyde and acetone. We also constructed a throughfall-interception experiment to create "wetter" and "drier" plots. Generally, trees in drier plots exhibited reduced sap flow, photosynthesis, and stomatal conductances, while BVOC emission rates were unaffected by the artificial drought treatments. During the natural, early summer drought, a physiological threshold appeared to be crossed when photosynthesis ≅2 μmol m(-2) s(-1) and conductance ≅0.02 mol m(-2) s(-1). Below this threshold, BVOC emissions are correlated with leaf physiology (photosynthesis and conductance) while BVOC emissions are not correlated with other physicochemical factors (e.g., compound volatility and tissue BVOC concentration) that have been shown in past studies to influence emissions. The proportional loss of C to BVOC emission was highest during the drought primarily due to reduced CO2 assimilation. It appears that seasonal drought changes the relations among BVOC emissions, photosynthesis and conductance. When drought is relaxed, BVOC emission rates are explained mostly by seasonal temperature, but when seasonal drought is maximal, photosynthesis and conductance-the physiological processes which best explain BVOC emission rates-decline, possibly indicating a more direct role of physiology in controlling BVOC emission. PMID:26515962

  10. Effect of vegetation removal and water table drawdown on the non-methane biogenic volatile organic compound emissions in boreal peatland microcosms

    NASA Astrophysics Data System (ADS)

    Faubert, Patrick; Tiiva, Päivi; Rinnan, Åsmund; Räty, Sanna; Holopainen, Jarmo K.; Holopainen, Toini; Rinnan, Riikka

    2010-11-01

    Biogenic volatile organic compound (BVOC) emissions are important in the global atmospheric chemistry and their feedbacks to global warming are uncertain. Global warming is expected to trigger vegetation changes and water table drawdown in boreal peatlands, such changes have only been investigated on isoprene emission but never on other BVOCs. We aimed at distinguishing the BVOCs released from vascular plants, mosses and peat in hummocks (dry microsites) and hollows (wet microsites) of boreal peatland microcosms maintained in growth chambers. We also assessed the effect of water table drawdown (-20 cm) on the BVOC emissions in hollow microcosms. BVOC emissions were measured from peat samples underneath the moss surface after the 7-week-long experiment to investigate whether the potential effects of vegetation and water table drawdown were shown. BVOCs were sampled using a conventional chamber method, collected on adsorbent and analyzed with GC-MS. In hummock microcosms, vascular plants increased the monoterpene emissions compared with the treatment where all above-ground vegetation was removed while no effect was detected on the sesquiterpenes, other reactive VOCs (ORVOCs) and other VOCs. Peat layer from underneath the surface with intact vegetation had the highest sesquiterpene emissions. In hollow microcosms, intact vegetation had the highest sesquiterpene emissions. Water table drawdown decreased monoterpene and other VOC emissions. Specific compounds could be closely associated to the natural/lowered water tables. Peat layer from underneath the surface of hollows with intact vegetation had the highest emissions of monoterpenes, sesquiterpenes and ORVOCs whereas water table drawdown decreased those emissions. The results suggest that global warming would change the BVOC emission mixtures from boreal peatlands following changes in vegetation composition and water table drawdown.

  11. Contrasting winter and summer VOC mixing ratios at a forest site in the Western Mediterranean Basin: the effect of local biogenic emissions

    NASA Astrophysics Data System (ADS)

    Seco, R.; Peñuelas, J.; Filella, I.; Llusià, J.; Molowny-Horas, R.; Schallhart, S.; Metzger, A.; Müller, M.; Hansel, A.

    2011-12-01

    Atmospheric volatile organic compounds (VOCs) are involved in ozone and aerosol generation, thus having implications for air quality and climate. VOCs and their emissions by vegetation also have important ecological roles as they can protect plants from stresses and act as communication cues between plants and between plants and animals. In spite of these key environmental and biological roles, the reports on seasonal and daily VOC mixing ratios in the literature for Mediterranean natural environments are scarce. We conducted seasonal (winter and summer) measurements of VOC mixing ratios in an elevated (720 m a.s.l.) holm oak Mediterranean forest site near the metropolitan area of Barcelona (NE Iberian Peninsula). Methanol was the most abundant compound among all the VOCs measured in both seasons. While aromatic VOCs showed almost no seasonal variability, short-chain oxygenated VOCs presented higher mixing ratios in summer, presumably due to greater emission by vegetation and increased photochemistry, both enhanced by the high temperatures and solar radiation in summer. Isoprenoid VOCs showed the biggest seasonal change in mixing ratios: they increased by one order of magnitude in summer, as a result of the vegetation's greater physiological activity and emission rates. The maximum diurnal concentrations of ozone increased in summer too, most likely due to more intense photochemical activity and the higher levels of VOCs in the air. The daily variation of VOC mixing ratios was mainly governed by the wind regime of the mountain, as the majority of the VOC species analyzed followed a very similar diel cycle. Mountain and sea breezes that develop after sunrise advect polluted air masses to the mountain. These polluted air masses had previously passed over the urban and industrial areas surrounding the Barcelona metropolitan area, where they were enriched in NOx and in VOCs of biotic and abiotic origin. Moreover, these polluted air masses receive additional biogenic

  12. Contrasting winter and summer VOC mixing ratios at a forest site in the Western Mediterranean Basin: the effect of local biogenic emissions

    NASA Astrophysics Data System (ADS)

    Seco, R.; Peñuelas, J.; Filella, I.; Llusià, J.; Molowny-Horas, R.; Schallhart, S.; Metzger, A.; Müller, M.; Hansel, A.

    2011-07-01

    Atmospheric volatile organic compounds (VOCs) are involved in ozone and aerosol generation, thus having implications for air quality and climate. VOCs and their emissions by vegetation also have important ecological roles as they can protect plants from stresses and act as communication cues between plants and between plants and animals. In spite of these key environmental and biological roles, the reports on seasonal and daily VOC mixing ratios in the literature for Mediterranean natural environments are scarce. We conducted seasonal (winter and summer) measurements of VOC mixing ratios in an elevated (720 m a.s.l.) holm oak Mediterranean forest site near the metropolitan area of Barcelona (NE Iberian peninsula). Methanol was the most abundant compound among all the VOCs measured in both seasons. While aromatic VOCs showed almost no seasonal variability, short-chain oxygenated VOCs presented higher mixing ratios in summer, presumably due to greater emission by vegetation and increased photochemistry, both enhanced by the high temperatures and solar radiation in summer. Isoprenoid VOCs showed the biggest seasonal change in mixing ratios: they increased by one order of magnitude in summer, as a result of the vegetation's greater physiological activity and emission rates. The maximum diurnal concentrations of ozone increased in summer too, most likely due to more intense photochemical activity and the higher levels of VOCs in the air. The daily variation of VOC mixing ratios was mainly governed by the wind regime of the mountain, as the majority of the VOC species analyzed followed a very similar diel cycle. Mountain and sea breezes that develop after sunrise advect polluted air masses to the mountain. These polluted air masses had previously passed over the urban and industrial areas surrounding the Barcelona metropolitan area, where they were enriched in NOx and in VOCs of biotic and abiotic origin. Moreover, these polluted air masses receive additional biogenic

  13. A pre-processor of trace gases and aerosols emission fields for regional and global atmospheric chemistry models

    NASA Astrophysics Data System (ADS)

    Freitas, S. R.; Longo, K. M.; Alonso, M. F.; Pirre, M.; Marecal, V.; Grell, G.; Stockler, R.; Mello, R. F.; Sánchez Gácita, M.

    2010-06-01

    The pre-processor PREP-CHEM-SRC presented in the paper is a comprehensive tool aiming at preparing emissions fields of trace gases and aerosols for use in regional or global transport models. The emissions considered are urban/industrial, biogenic, biomass burning, volcanic, biofuel use and burning from agricultural waste sources from most recent databases or from satellite fire detections for biomass burning. A plumerise model is used to derive the height of smoke emissions from satellite fire products. The pre-processor provides emission fields interpolated onto the transport model grid. Several map projections can be chosen. The way to include these emissions in transport models is also detailed. The pre-processor is coded using Fortran 90 and C and is driven by a namelist allowing the user to choose the type of emissions and the database.

  14. The influence of temperature and aerosol acidity on biogenic secondary organic aerosol tracers: Observations at a rural site in the central Pearl River Delta region, South China

    NASA Astrophysics Data System (ADS)

    Ding, Xiang; Wang, Xin-Ming; Zheng, Mei

    2011-02-01

    At a rural site in the central Pearl River Delta (PRD) region in south China, fine particle (PM 2.5) samples were collected during fall-winter 2007 to measure biogenic secondary organic aerosol (SOA) tracers, including isoprene SOA tracers (3-methyl-2,3,4-trihydroxy-1-butene, 2-methylglyceric acid, 2-methylthreitol and 2-methylerythritol), α-pinene SOA tracers ( cis-pinonic acid, pinic acid, 3-methyl-1,2,3-butanetricarboxylic acid, 3-hydroxyglutaric acid and 3-hydroxy-4,4-dimethylglutaric acid) and a sesquiterpene SOA tracer (β-caryophyllinic acid). The isoprene-, α-pinene- and sesquiterpene-SOA tracers averaged 30.8 ± 15.9, 6.61 ± 4.39, and 0.54 ± 0.56 ng m -3, respectively; and 2-methyltetrols (sum of 2-methylthreitol and 2-methylerythritol, 27.6 ± 15.1 ng m -3) and cis-pinonic acid (3.60 ± 3.76 ng m -3) were the dominant isoprene- and α-pinene-SOA tracers, respectively. 2-Methyltetrols exhibited significantly positive correlations ( p < 0.05) with ambient temperature, probably resulting from the enhanced isoprene emission strength and tracer formation rate under higher temperature. The significantly positive correlation ( p < 0.05) between 2-methyltetrols and the estimated aerosol acidity with a slope of 59.4 ± 13.4 ng m -3 per μmol [H +] m -3 reflected the enhancement of isoprene SOA formation by aerosol acidity, and acid-catalyzed heterogeneous reaction was probably the major formation pathway for 2-methyltetrols in the PRD region. 2-Methylglyceric acid showed poor correlations with both temperature and aerosol acidity. The α-pinene SOA tracers showed poor correlations with temperature, probably due to the counteraction between temperature effects on the precursor emission/tracer formation and gas/particle partitioning. Among the α-pinene SOA tracers, only cis-pinonic acid and pinic acid exhibited significant correlations with aerosol acidity with slopes of -11.7 ± 3.7 and -2.2 ± 0.8 ng m -3 per μmol [H +] m -3, respectively. The negative

  15. Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species

    NASA Astrophysics Data System (ADS)

    König, Georg; Brunda, Monika; Puxbaum, Hans; Hewitt, C. Nicholas; Duckham, S. Craig; Rudolph, Jochen

    Emission rates of more than 50 individual VOCs were determined for eight plant species and three different types of grass land typical for natural deciduous and agricultural vegetation in Austria. In addition to the emissions of isoprene and monoterpenes, 33 biogenic oxygenated volatile organic compounds (BOVOCs) were detected. Of these, 2-methyl-l-propanol, 1-butanal, 2-butanal, 1-pentanol, 3-pentanol, 1-hexanol, 6-methyl-5-hepten-2-one, butanal and ethylhexylacetate were observed for the first time as plant emissions. In terms of prevalence of one of the groups of emitted VOCs (isoprene, terpenes, BOVOCs) the grain plants wheat and rye, grape, oilseed rape and the decidous trees hombeam and birch could be classified as "BOVOC"-emitters. For the grass plots examined, BOVOCs and terpenes appear to be of equal importance. The emission rates of the total assigned organic plant emissions ranged from 0.01 μ g -1 h -1 for wheat to 0.8 μg g -1 h -1 for oak (based on dry leaf weight). Intercomparison with available data from other studies show that our emission rates are rather at the lower end of reported ranges. The influence of the stage of growth was examined for rye, rape (comparing emissions of blossoming and nonblossoming plants) and for grape (with and without fruit). Emission rate differences for different stages of growth varied from nondetectable for blossoming and nonblossoming rye to a factor of six for the grape with fruits vs grape without fruits (emission rate based on dry leaf weight). The major decidous tree in Austria (beech) is a terpene emitter, with the contribution of BOVOCs below 5% of the total assigned emissions of 0.2 μg g -1 h -1 for the investigations of 20°C.

  16. Diel Variation of Biogenic Volatile Organic Compound Emissions--A field Study in the Sub, Low and High Arctic on the Effect of Temperature and Light.

    PubMed

    Lindwall, Frida; Faubert, Patrick; Rinnan, Riikka

    2015-01-01

    Many hours of sunlight in the midnight sun period suggest that significant amounts of biogenic volatile organic compounds (BVOCs) may be released from arctic ecosystems during night-time. However, the emissions from these ecosystems are rarely studied and limited to point measurements during daytime. We measured BVOC emissions during 24-hour periods in the field using a push-pull chamber technique and collection of volatiles in adsorbent cartridges followed by analysis with gas chromatography-mass spectrometry. Five different arctic vegetation communities were examined: high arctic heaths dominated by Salix arctica and Cassiope tetragona, low arctic heaths dominated by Salix glauca and Betula nana and a subarctic peatland dominated by the moss Warnstorfia exannulata and the sedge Eriophorum russeolum. We also addressed how climate warming affects the 24-hour emission and how the daytime emissions respond to sudden darkness. The emissions from the high arctic sites were lowest and had a strong diel variation with almost no emissions during night-time. The low arctic sites as well as the subarctic site had a more stable release of BVOCs during the 24-hour period with night-time emissions in the same range as those during the day. These results warn against overlooking the night period when considering arctic emissions. During the day, the quantity of BVOCs and the number of different compounds emitted was higher under ambient light than in darkness. The monoterpenes α-fenchene, α-phellandrene, 3-carene and α-terpinene as well as isoprene were absent in dark measurements during the day. Warming by open top chambers increased the emission rates both in the high and low arctic sites, forewarning higher emissions in a future warmer climate in the Arctic. PMID:25897519

  17. Diel Variation of Biogenic Volatile Organic Compound Emissions- A field Study in the Sub, Low and High Arctic on the Effect of Temperature and Light

    PubMed Central

    Lindwall, Frida; Faubert, Patrick; Rinnan, Riikka

    2015-01-01

    Many hours of sunlight in the midnight sun period suggest that significant amounts of biogenic volatile organic compounds (BVOCs) may be released from arctic ecosystems during night-time. However, the emissions from these ecosystems are rarely studied and limited to point measurements during daytime. We measured BVOC emissions during 24-hour periods in the field using a push-pull chamber technique and collection of volatiles in adsorbent cartridges followed by analysis with gas chromatography- mass spectrometry. Five different arctic vegetation communities were examined: high arctic heaths dominated by Salix arctica and Cassiope tetragona, low arctic heaths dominated by Salix glauca and Betula nana and a subarctic peatland dominated by the moss Warnstorfia exannulata and the sedge Eriophorum russeolum. We also addressed how climate warming affects the 24-hour emission and how the daytime emissions respond to sudden darkness. The emissions from the high arctic sites were lowest and had a strong diel variation with almost no emissions during night-time. The low arctic sites as well as the subarctic site had a more stable release of BVOCs during the 24-hour period with night-time emissions in the same range as those during the day. These results warn against overlooking the night period when considering arctic emissions. During the day, the quantity of BVOCs and the number of different compounds emitted was higher under ambient light than in darkness. The monoterpenes α-fenchene, α -phellandrene, 3-carene and α-terpinene as well as isoprene were absent in dark measurements during the day. Warming by open top chambers increased the emission rates both in the high and low arctic sites, forewarning higher emissions in a future warmer climate in the Arctic. PMID:25897519

  18. Isoprene Emission Factors for Subtropical Street Trees for Regional Air Quality Modeling.

    PubMed

    Dunn-Johnston, Kristina A; Kreuzwieser, Jürgen; Hirabayashi, Satoshi; Plant, Lyndal; Rennenberg, Heinz; Schmidt, Susanne

    2016-01-01

    Evaluating the environmental benefits and consequences of urban trees supports their sustainable management in cities. Models such as i-Tree Eco enable decision-making by quantifying effects associated with particular tree species. Of specific concern are emissions of biogenic volatile organic compounds, particularly isoprene, that contribute to the formation of photochemical smog and ground level ozone. Few studies have quantified these potential disservices of urban trees, and current models predominantly use emissions data from trees that differ from those in our target region of subtropical Australia. The present study aimed (i) to quantify isoprene emission rates of three tree species that together represent 16% of the inventoried street trees in the target region; (ii) to evaluate outputs of the i-Tree Eco model using species-specific versus currently used, generic isoprene emission rates; and (iii) to evaluate the findings in the context of regional air quality. Isoprene emission rates of (Myrtaceae) and (Proteaceae) were 2.61 and 2.06 µg g dry leaf weight h, respectively, whereas (Sapindaceae) was a nonisoprene emitter. We substituted the generic isoprene emission rates with these three empirical values in i-Tree Eco, resulting in a 182 kg yr (97%) reduction in isoprene emissions, totaling 6284 kg yr when extrapolated to the target region. From these results we conclude that care has to be taken when using generic isoprene emission factors for urban tree models. We recommend that emissions be quantified for commonly planted trees, allowing decision-makers to select tree species with the greatest overall benefit for the urban environment. PMID:26828179

  19. EMISSION, FATE, AND CONTRIBUTION OF BIOGENIC VOLATILE ORGANIC COMPOUNDS TO ORGANIC AEROSOL FORMATION IN THE PRESENCE OF ANTHROPOGENIC POLLUTION: MEASUREMENTS AND MODELING DURING SOAS

    EPA Science Inventory

    The primary deliverable products will be measurements of VOC emission and deposition on spatial and temporal scales that are optimal for evaluating and improving regional models. Outcomes will include approaches for quantifying VOC emission uncertainties and identifying missing V...

  20. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    NASA Astrophysics Data System (ADS)

    Porter, William C.; Rosenstiel, Todd N.; Guenther, Alex; Lamarque, Jean-Francois; Barsanti, Kelley

    2015-05-01

    An expected global increase in bioenergy-crop cultivation as an alternative to fossil fuels will have consequences on both global climate and local air quality through changes in biogenic emissions of volatile organic compounds (VOCs). While greenhouse gas emissions may be reduced through the substitution of next-generation bioenergy crops such as eucalyptus, giant reed, and switchgrass for fossil fuels, the choice of species has important ramifications for human health, potentially reducing the benefits of conversion due to increases in ozone (O3) and fine particulate matter (PM2.5) levels as a result of large changes in biogenic emissions. Using the Community Earth System Model we simulate the conversion of marginal and underutilized croplands worldwide to bioenergy crops under varying future anthropogenic emissions scenarios. A conservative global replacement using high VOC-emitting crop profiles leads to modeled population-weighted O3 increases of 5-27 ppb in India, 1-9 ppb in China, and 1-6 ppb in the United States, with peak PM2.5 increases of up to 2 μg m-3. We present a metric for the regional evaluation of candidate bioenergy crops, as well as results for the application of this metric to four representative emissions profiles using four replacement scales (10-100% maximum estimated available land). Finally, we assess the total health and climate impacts of biogenic emissions, finding that the negative consequences of using high-emitting crops could exceed 50% of the positive benefits of reduced fossil fuel emissions in value.

  1. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    SciTech Connect

    Porter, William C.; Rosenstiel, Todd N.; Guenther, Alex; Lamarque, Jean-Francois; Barsanti, Kelley

    2015-05-06

    An expected global increase in bioenergy-crop cultivation as an alternative to fossil fuels will have consequences on both global climate and local air quality through changes in biogenic emissions of volatile organic compounds (VOCs). While greenhouse gas emissions may be reduced through the substitution of next-generation bioenergy crops such as eucalyptus, giant reed, and switchgrass for fossil fuels, the choice of species has important ramifications for human health, potentially reducing the benefits of conversion due to increases in ozone (O₃) and fine particulate matter (PM₂̣₅) levels as a result of large changes in biogenic emissions. Using the Community Earth System Model we simulate the conversion of marginal and underutilized croplands worldwide to bioenergy crops under varying future anthropogenic emissions scenarios. A conservative global replacement using high VOC-emitting crop profiles leads to modeled population-weighted O₃ increases of 5–27 ppb in India, 1–9 ppb in China, and 1–6 ppb in the United States, with peak PM₂̣₅ increases of up to 2 μgm⁻³. We present a metric for the regional evaluation of candidate bioenergy crops, as well as results for the application of this metric to four representative emissions profiles using four replacement scales (10–100% maximum estimated available land). Finally, we assess the total health and climate impacts of biogenic emissions, finding that the negative consequences of using high-emitting crops could exceed 50% of the positive benefits of reduced fossil fuel emissions in value.

  2. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    DOE PAGESBeta

    Porter, William C.; Rosenstiel, Todd N.; Guenther, Alex; Lamarque, Jean-Francois; Barsanti, Kelley

    2015-05-06

    An expected global increase in bioenergy-crop cultivation as an alternative to fossil fuels will have consequences on both global climate and local air quality through changes in biogenic emissions of volatile organic compounds (VOCs). While greenhouse gas emissions may be reduced through the substitution of next-generation bioenergy crops such as eucalyptus, giant reed, and switchgrass for fossil fuels, the choice of species has important ramifications for human health, potentially reducing the benefits of conversion due to increases in ozone (O₃) and fine particulate matter (PM₂̣₅) levels as a result of large changes in biogenic emissions. Using the Community Earth Systemmore » Model we simulate the conversion of marginal and underutilized croplands worldwide to bioenergy crops under varying future anthropogenic emissions scenarios. A conservative global replacement using high VOC-emitting crop profiles leads to modeled population-weighted O₃ increases of 5–27 ppb in India, 1–9 ppb in China, and 1–6 ppb in the United States, with peak PM₂̣₅ increases of up to 2 μgm⁻³. We present a metric for the regional evaluation of candidate bioenergy crops, as well as results for the application of this metric to four representative emissions profiles using four replacement scales (10–100% maximum estimated available land). Finally, we assess the total health and climate impacts of biogenic emissions, finding that the negative consequences of using high-emitting crops could exceed 50% of the positive benefits of reduced fossil fuel emissions in value.« less

  3. Molecular emission in regions of star formation

    NASA Astrophysics Data System (ADS)

    Gusdorf, Antoine

    2008-11-01

    Recent observations show that young stars being formed eject matter at several tens of kilometers per second, in the form of 'jets' that impact the matter whose collapse is at the origin of the formation of the star. The supersonic impact between this jet and the parent interstellar cloud of the star generates a shock front, in the form of a bow-shock, which propagates in the collapsing interstellar gas, and also an inverse shock that propagates along the jet itself. The structure of these shocks depends on their velocity as well as on the physical properties of the gas in which they propagate, and specially on the value of the local magnetic field. Numerical MagnetoHydroDynamical simulations of the propagation of such shocks are a way to constrain the physical and chemical properties of the gas in which molecular lines are emitted. Interstellar shocks are modelled, both in stationary and non stationary ways, and grids of models are built for various ranges of input, preshock parameters (shock velocity, preshock density, magnetic field, and shock age for non stationary models). The case of molecular hydrogen is investigated first. Because of its particular importance (due to its large density and crucial role as a gas coolant or as a collision partner for molecular species), its level populations are solved within the shock code, as well as its population transfer. The shock wave modifies the chemical composition of the gas, partially or totally dissociating the molecular hydrogen, which is the main coolant of the gas. In the regions where molecular hydrogen still remains, H2 is collisionally excited, generating rovibrational and purely rotational transitions emission. These emissions are actually observed, from the ground in Infrared region, by ISO (Infrared Space Observatory) and Spitzer satellites. Excitation diagrams are used to compare the models with existing observations in the L1157 outflow around a young, Class 0 proto-star, confirming that non

  4. Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia

    SciTech Connect

    Flores, J. M.; Washenfelder, Rebecca; Adler, Gabriela; Lee, H-J; Segev, Lior; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey; Brown, Steven; Rudich, Yinon

    2014-05-14

    Atmospheric absorption by brown carbon aerosol may play an important role in global radiative forcing. Brown carbon arises from both primary and secondary sources, but the mechanisms and reactions for the latter are highly uncertain. One proposed mechanism is the reaction of ammonia or amino acids with carbonyl products in secondary organic aerosol (SOA). We generated SOA in situ by reacting biogenic alkenes (α-pinene, limonene, and α-humulene) with excess ozone, humidifying the resulting aerosol, and reacting the humidified aerosol with gaseous ammonia. We determined the complex refractive indices (RI) in the 360 – 420 nm range for these aerosols using broadband cavity enhanced spectroscopy (BBCES). The average real part (n) of the measured spectral range of the NH3-aged α-pinene SOA increased from n = 1.50 (±0.01) for the unreacted SOA to n = 1.57 (± 0.01) after a 1.5h exposure to 1.9 ppm NH3; whereas,the imaginary component (k) remained below k < 0.001 (± 0.002). For the limonene and α-humulene SOA the real part did not change significantly, and we observed a small change in the imaginary component of the RI. The imaginary component increased from k = 0.0 to an average k= 0.029 (± 0.021) for α-humulene SOA, and from k < 0.001 (± 0.002) to an average k = 0.032 (±0.019) for limonene SOA after a 1.5 h exposure to 1.3 and 1.9 ppm of NH3, respectively. Collected filter samples of the aged and unreacted α-pinene SOA and limonene SOA were analyzed off-line with nanospray desorption electrospray ionization high resolution mass spectrometry (nano-DESI/HR-MS), and in-situ with a Time-of-Fligh Aerosol Mass Spectrometer, confirming that the SOA reacted and that various nitrogen-containing reaction products formed. If we assume that NH3 aging reactions scale linearly with time and concentration, then a 1.5 h reaction with 1 ppm NH3 in the laboratory is equivalent to 24 h reaction with 63 ppbv NH3, indicating that the observed aerosol absorption will be limited

  5. Stress-induced biogenic VOC emissions from typical European tree species, their impact on secondary organic aerosol formation and possible climate feedbacks

    NASA Astrophysics Data System (ADS)

    Kleist, E.; Mentel, T. F.; Andres, S.; Dal Maso, M.; Hohaus, T.; Kindler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Uerlings, R.; Wahner, A.; Wildt, J.

    2011-12-01

    Biogenic volatile organic compounds (BVOC) are precursors of secondary organic aerosols (SOA), which can scatter and absorb radiation. BVOC therefore indirectly impact the Earth's climate. Earth's climate is projected to change, possibly putting and vegetation under stress due to intensive heat and drought periods. Such stress situations will alter BVOC emissions that may induce feedbacks between vegetation and climate change. The main aim of our study is to determine whether such effect exists. A first step was to determine the impacts of drought and heat on BVOC emissions and subsequent SOA formation. Experiments were performed in the Juelich plant atmosphere chamber. Pine and Spruce were taken as representatives for species exhibiting storage organs for monoterpenes (MT). Beech and Birch were used as species with MT emissions closely coupled to CO2 uptake. The plants were stored under well-defined conditions of temperature and light intensity. Heat stress was induced by increasing the chamber temperature; drought stress was induced by not irrigating the plants. A fraction of the air leaving the plant chamber was fed into a reaction chamber where SOA formation was induced by OH-initiated oxidation. During stress situations the plants' BVOC emissions changed significantly. As a general feature we found that combined heat and drought stress increased MT emissions from conifers but decreased MT emissions from the broadleaf species. The former was attributed to a heat-induced breakdown of storage organs. The latter was attributed to a general breakdown of biosynthetic activity. SOA formation potentials were changed together with the MT emissions. The decrease in SOA formation potential due to the decrease of MT emissions from broadleaf species was amplified by additional emissions of green leaf volatiles (GLV). Obviously, GLV can suppress SOA formation by suppressing OH concentrations. GLV were also emitted from the conifers under heat stress. However the

  6. Contribution of Natural and Anthropogenic Emissions to Smog in Bogotá

    NASA Astrophysics Data System (ADS)

    Henderson, B. H.

    2015-12-01

    Bogotá Colombia is an emerging mega-city whose geographic orientation creates an interesting dynamic between regional biogenic and local anthropogenic emissions. Bogotá's metropolitan area has over 13 million inhabitants all above 2,600 meters, where the anthropogenic emissions are concentrated. Because of the high elevation, density of development, and low temperatures, the local biogenic emissions are relatively small contributors to the total VOC. The surrounding area has a much lower altitude and over 5 times higher average biogenic emission fluxes. This work characterizes the interaction between local anthropogenic emissions and surrounding biogenic emissions. The simulated photochemical environment shows clear urban/rural interfaces. Ozone concentrations are higher in the surrounding region and show titration around the boundary of Bogotá. We use chemical indicators to define the identify the extent of interaction and apportion ozone and photochemically produced secondary aerosols. We also examine the roles of proposed regulation on interaction between biogenic and anthropogenic emissions. In Bogotá local and regional emissions exert clearly distinct influences, but also interesting confluences. The combination of regional biogenic emissions and local anthropogenic emissions creates an ideal case study for biogenic/anthropogenic interaction. Our results show strong NOx inhibition now that must be considered in the future. We also show that secondary aerosols from biogenic sources are also inhibited in our modeling system.

  7. Separating methane emissions from biogenic sources and natural gas by vertical column enhancements of ammonia, ethane, and methane in the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Chiu, R.; Volkamer, R. M.; Blumenstock, T.; Hase, F.; Hannigan, J. W.; Kille, N.; Frey, M.; Kumar Sha, M.; Orphal, J.

    2015-12-01

    Methane sources in the Colorado Front Range include biogenic sources from cattle feedlots and natural gas operations. Although numerous studies have measured methane emissions, there remains significant uncertainty regarding the relative contributions of these various methane emission sources. Here we present data from a March 2015 field campaign that deployed two Bruker EM27 Sun Fourier Transform Spectrometers (FTS) and the University of Colorado Solar Occultation Flux (CU-SOF) FTS in Eaton, Colorado; the former were used to measure enhancements in the methane vertical column densities (VCD), while the latter was used to measure ethane and ammonia VCDs. A third EM27 FTS was deployed to a background site in Westminster, Colorado which was far removed from cattle and petroleum operations. Northerly winds make possible the determination of methane VCD column enhancement from Westminster to Eaton. All instruments were compared during several background days at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado. This presentation explores the potential of methane source attribution using ammonia as a tracer for feedlot emissions and ethane as a tracer for petroleum emissions.

  8. Evaluation of toluene exposure via drinking water on levels of regional brain biogenic monoamines and their metabolites in CD-1 mice

    SciTech Connect

    Hsieh, G.C.; Sharma, R.P.; Parker, R.D.; Coulombe, R.A. Jr. )

    1990-10-01

    Toluene, a potentially neurotoxic substance, is found in trace amounts in groundwater. Adult male CD-1 mice were continuously fed drinking water ad libitum containing 0, 17, 80, and 405 mg/liter toluene. After a 28-day treatment, animals were tested for endogenous levels of the biogenic monoamines norepinephrine (NE), dopamine (DA), and serotonin (5-HT) and their respective metabolites, 3-methoxy-4-hydroxymandelic acid (VMA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA), in six discrete brain regions. The maximum toluene-induced increases of biogenic amines and their metabolites generally occurred at a toluene concentration of 80 mg/liter. In the hypothalamus, a major NE-containing compartment, the concentrations of NE significantly increased by 51, 63, and 34% in groups dosed with 17, 80, and 405 mg/liter, respectively. Significant increases of NE were also observed in the medulla oblongata and midbrain. Concomitantly, concentrations of VMA increased in various brain regions. Concentrations of DA were significantly higher in the corpus striatum and hypothalamus. Alterations in levels of DA metabolites, DOPAC and HVA, were marginal. Toluene significantly increased concentrations of 5-HT in all dissected brain regions, except cerebellum, and increased the 5-HIAA levels in the hypothalamus, corpus striatum, and cerebral cortex.

  9. Molecular Hydrogen Line Emission from Photodissociation Regions

    NASA Astrophysics Data System (ADS)

    Chrysostomou, Antonio

    1993-01-01

    The work presented in this thesis is dedicated to the study of the physical properties of photodissociation regions (PDRs), the surface layers of molecular clouds which are irradiated by ultraviolet radiation. The structure of PDRs is investigated with the development of an anlytical model which incorporates the essential heating and cooling mechanisms in a PDR. The main parameters in the model are the density and the incident ulttraviolet radiation field (G0) impinging on the surface which dissociates the molecules in the PDR. It is demonstrated that when the ratio (n / G0) is high (> 100 cm-3) the attenuation of ultraviolet photons is dominated by H2 self shielding, which brings the Hi/H2 transition zone close to the surface of the cloud (Av < 1). When the ratio is of order unity then the attenuation of ultraviolet photons is dominated by dust grains in the PDR. In this case, the Hi / H2 transition zone occurs at a depth of Av ~2-3. Images of the PDR in the northern bar of M17 show that there is a spatial coincidence, accurate to ~1 arcsec, of the H2 and 3.28 micron emission regions (the 3.28 micron emission being a tracer of the hot edge of the PDR delineated by the Hii / Hi transition) placing a lower limit to the density in the clumps of 105 cm-3. This coincidence is also observed in other PDR sources (eg. NGC 2023) and can be readily explained if the sources are clumpy. It is not clear in the northern bar of M17, where G0 ~104, whether shielding by dust or H2 molecules is dominated the attenuation of ultraviolet photons. A uniform, high density PDR model is sufficient to reproduce the observed H2 line intensity, however the images clearly reveal structures at the 2 arcsec level suggesting that a clumpy model is a realistic solution. Long slit K band spectroscopy measurements were taken in the northern bar of M17, where up to 16 H2 lines were identified. Analysis of the data suggests that the emission can only be explained if the H2 molecules are being excited

  10. An Investigation of Biogenic Trace Gas Emissions from the Southern Ocean: Impact on Boundary Layer Marine Composition and on the Distant Antarctic Plateau Atmosphere

    NASA Astrophysics Data System (ADS)

    Davis, D. D.; Neff, W.; Wang, Y.; Zeng, T.; Slusher, D.; Bradshaw, J.; Stickel, R.; Nicovitch, M.

    2008-12-01

    During the last ten years chemical measurements at the South Pole as well as over extended regions of the larger plateau have revealed the presences of a chemically unique boundary layer (BL) atmosphere. Unique in that it has been shown to have a very large chemical oxidizing capacity. This has been reflected in summertime concentration measurements of the hydroxyl radical that average between 2 to 3 x 10(6) molec/cm(3). These new findings make quite evident that the Antarctic plateau (geographically the size of continental USA) must now be viewed as much more than a chemical graveyard where species transported to its surface from a multitude of SH sources are simply buried in ice. In fact, during the Austral spring, summer, and fall months, chemical elements arriving at the plateau may in many cases be further oxidized before burial and in still other cases oxidized even after burial. To be presented are several previously unreported observations of biogenic gases measured both over the Southern Ocean and on the plateau, some of which span all seasons of the year. Of particular significance will be regional modeling results that suggest that the concentration levels and chemical forms that these biogenic gases appear upon reaching the plateau depend not only on the productivity of the Southern Ocean and the seas surrounding Antarctica, but also on at least two additional factors. These include the efficiency of the transport process (e.g., as influenced by the sea ice extent) and the chemical oxidizing capacity of the Antarctic plateau's BL atmosphere.