Science.gov

Sample records for regional percent crop

  1. Modeling Regional Groundwater Implications of Biofuel Crop Production in the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Parish, A.; Kendall, A. D.; Basso, B.; Hyndman, D. W.

    2013-12-01

    In response to a growing call for renewable sources of energy that do not compete directly with food resources, the use of second-generation 'cellulosic' biofuel feedstocks has gained much attention in recent years. The push to advance the technologies that would make such a transformation possible is motivated by the United States Renewable Fuel Standard mandate to produce 36 billion gallons of biofuels by 2022, an increase of 334 percent from 2009. Many different crops, including maize, miscanthus, switchgrass, and poplar have shown promise as cellulosic feedstocks, and in an attempt to supply the needed biomass to meet the 2022 mandate, production of these crops have been on the rise. Yet little is known about the sustainability of large-scale conversion of land to cellulosic biofuel crop production; more research is needed to understand the effects that these crops will have on the quality and quantity of groundwater. This study presents a model scale-up approach to address three questions: What are the hydrologic and nutrient demands of the primary biofuel crops? Which biofuel crops are more water efficient in terms of demand verses energy produced? What are the types and availabilities of land to expand production of these biofuel crops? To answer these questions, we apply a point-based crop dynamics model in combination with a regional-scale hydrologic model, parameterized using stream discharge and chemistry data collected from two representative watersheds in Wisconsin. Approximately 17 stream sites in each watershed are selected for data collection for model parameterization, including stream discharge, nutrient concentrations, and basic chemical characteristics. We then use the System Approach to Land Use Sustainability (SALUS) model, which predicts crop growth under varying soil and climate conditions, to drive vegetation dynamics and groundwater transport of nutrients within the Integrated Landscape Hydrology Model (ILHM). ILHM predictions of stream

  2. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national

  3. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States

    NASA Astrophysics Data System (ADS)

    Prabhakara, Kusuma; Hively, W. Dean; McCarty, Gregory W.

    2015-07-01

    Winter cover crops are an essential part of managing nutrient and sediment losses from agricultural lands. Cover crops lessen sedimentation by reducing erosion, and the accumulation of nitrogen in aboveground biomass results in reduced nutrient runoff. Winter cover crops are planted in the fall and are usually terminated in early spring, making them susceptible to senescence, frost burn, and leaf yellowing due to wintertime conditions. This study sought to determine to what extent remote sensing indices are capable of accurately estimating the percent groundcover and biomass of winter cover crops, and to analyze under what critical ranges these relationships are strong and under which conditions they break down. Cover crop growth on six fields planted to barley, rye, ryegrass, triticale or wheat was measured over the 2012-2013 winter growing season. Data collection included spectral reflectance measurements, aboveground biomass, and percent groundcover. Ten vegetation indices were evaluated using surface reflectance data from a 16-band CROPSCAN sensor. Restricting analysis to sampling dates before the onset of prolonged freezing temperatures and leaf yellowing resulted in increased estimation accuracy. There was a strong relationship between the normalized difference vegetation index (NDVI) and percent groundcover (r2 = 0.93) suggesting that date restrictions effectively eliminate yellowing vegetation from analysis. The triangular vegetation index (TVI) was most accurate in estimating high ranges of biomass (r2 = 0.86), while NDVI did not experience a clustering of values in the low and medium biomass ranges but saturated in the higher range (>1500 kg/ha). The results of this study show that accounting for index saturation, senescence, and frost burn on leaves can greatly increase the accuracy of estimates of percent groundcover and biomass for winter cover crops.

  4. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States

    USGS Publications Warehouse

    Prabhakara, Kusuma; Hively, W. Dean; McCarty, Greg W.

    2015-01-01

    Winter cover crops are an essential part of managing nutrient and sediment losses from agricultural lands. Cover crops lessen sedimentation by reducing erosion, and the accumulation of nitrogen in aboveground biomass results in reduced nutrient runoff. Winter cover crops are planted in the fall and are usually terminated in early spring, making them susceptible to senescence, frost burn, and leaf yellowing due to wintertime conditions. This study sought to determine to what extent remote sensing indices are capable of accurately estimating the percent groundcover and biomass of winter cover crops, and to analyze under what critical ranges these relationships are strong and under which conditions they break down. Cover crop growth on six fields planted to barley, rye, ryegrass, triticale or wheat was measured over the 2012–2013 winter growing season. Data collection included spectral reflectance measurements, aboveground biomass, and percent groundcover. Ten vegetation indices were evaluated using surface reflectance data from a 16-band CROPSCAN sensor. Restricting analysis to sampling dates before the onset of prolonged freezing temperatures and leaf yellowing resulted in increased estimation accuracy. There was a strong relationship between the normalized difference vegetation index (NDVI) and percent groundcover (r2 = 0.93) suggesting that date restrictions effectively eliminate yellowing vegetation from analysis. The triangular vegetation index (TVI) was most accurate in estimating high ranges of biomass (r2 = 0.86), while NDVI did not experience a clustering of values in the low and medium biomass ranges but saturated in the higher range (>1500 kg/ha). The results of this study show that accounting for index saturation, senescence, and frost burn on leaves can greatly increase the accuracy of estimates of percent groundcover and biomass for winter cover crops.

  5. Regional variability of environmental effects of energy crop rotations

    NASA Astrophysics Data System (ADS)

    Prescher, Anne-Katrin; Peter, Christiane; Specka, Xenia; Willms, Matthias; Glemnitz, Michael

    2014-05-01

    The use of energy crops for bioenergy production is increasingly promoted by different frameworks and policies (ECCP, UNFCCC). Energy cropping decreases greenhouse gas emissions by replacing the use of fossil fuel. However, despite this, growing in monocultures energy crop rotations has low environmental benefit. It is broadly accepted consensus that sustainable energy cropping is only realizable by crop rotations which include several energy crop species. Four crop rotations consisting of species mixtures of C3, C4 and leguminous plants and their crop positions were tested to identify the environmental effect of energy cropping systems. The experimental design included four replicates per crop rotation each covering four cultivation years. The study took place at five sites across Germany covering a considerable range of soil types (loamy sand to silt loam), temperatures (7.5 ° C - 10.0 ° C) and precipitation (559 mm - 807 mm) which allow a regional comparison of crop rotation performance. Four indicators were used to characterize the environmental conditions: (1) greenhouse gas (GHG) emissions from the management actions; (2) change in humus carbon (Chum); (3) groundwater recharge (RGW) and (4) nitrogen dynamics. The indicators were derived by balance, by an empirical model and by a dynamic model, respectively, all based and calibrated on measured values. The results show that the crop rotation impact on environmental indicators varied between plant species mixtures and the crop positions, between sites and climate. Crop rotations with 100 % energy crops (including C4 plants) had negative influence on Chum, GHG emissions per area and RGW in comparison to the rotation of 50 % energy crops and 50 % cash crops, which were mainly due to the remaining straw on the field. However, the biogas yield of the latter rotation was smaller, thus GHG emissions per product were higher, pointing out the importance to distinguish between GHG emissions per product and per area

  6. Random Forests for Global and Regional Crop Yield Predictions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditional regression models have limitations when applied for predicting crop yield responses at multiple spatial scales. An alternative modeling method, Random Forest (RF) regression, was utilized to predict crop yield responses for wheat, maize, and potato at regional scales. This RF regressio...

  7. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Planting cover crops is an effective method to reduce both nitrogen leaching and sedimentation into waterways. Winter cover crops are planted post-harvest on corn and soybean fields to scavenge residual nitrogen that remains in the soil, and to meet soil erosion guidelines, providing positive water...

  8. Random Forests for Global and Regional Crop Yield Predictions

    PubMed Central

    Jeong, Jig Han; Resop, Jonathan P.; Mueller, Nathaniel D.; Fleisher, David H.; Yun, Kyungdahm; Butler, Ethan E.; Timlin, Dennis J.; Shim, Kyo-Moon; Gerber, James S.; Reddy, Vangimalla R.

    2016-01-01

    Accurate predictions of crop yield are critical for developing effective agricultural and food policies at the regional and global scales. We evaluated a machine-learning method, Random Forests (RF), for its ability to predict crop yield responses to climate and biophysical variables at global and regional scales in wheat, maize, and potato in comparison with multiple linear regressions (MLR) serving as a benchmark. We used crop yield data from various sources and regions for model training and testing: 1) gridded global wheat grain yield, 2) maize grain yield from US counties over thirty years, and 3) potato tuber and maize silage yield from the northeastern seaboard region. RF was found highly capable of predicting crop yields and outperformed MLR benchmarks in all performance statistics that were compared. For example, the root mean square errors (RMSE) ranged between 6 and 14% of the average observed yield with RF models in all test cases whereas these values ranged from 14% to 49% for MLR models. Our results show that RF is an effective and versatile machine-learning method for crop yield predictions at regional and global scales for its high accuracy and precision, ease of use, and utility in data analysis. RF may result in a loss of accuracy when predicting the extreme ends or responses beyond the boundaries of the training data. PMID:27257967

  9. Regional climate change mitigation with crops: context and assessment.

    PubMed

    Singarayer, J S; Davies-Barnard, T

    2012-09-13

    The intention of this review is to place crop albedo biogeoengineering in the wider picture of climate manipulation. Crop biogeoengineering is considered within the context of the long-term modification of the land surface for agriculture over several thousand years. Biogeoengineering is also critiqued in relation to other geoengineering schemes in terms of mitigation power and adherence to social principles for geoengineering. Although its impact is small and regional, crop biogeoengineering could be a useful and inexpensive component of an ensemble of geoengineering schemes to provide temperature mitigation. The method should not detrimentally affect food security and there may even be positive impacts on crop productivity, although more laboratory and field research is required in this area to understand the underlying mechanisms. PMID:22869800

  10. Regional uptake and release of crop carbon in the United States

    SciTech Connect

    West, Tristram O.; Bandaru, Vara Prasad; Branstetter, Marcia L.; Brandt, Craig C; Schuh, Andrew; Ogle, Stephan

    2011-01-01

    Carbon fixed by agricultural crops in the US creates regional CO(2) sinks where it is harvested and regional CO(2) sources where it is released back to the atmosphere. The quantity and location of these fluxes differ depending on the annual supply and demand of crop commodities. Data on the harvest of crop biomass, storage, import and export, and on the use of biomass for food, feed, fiber, and fuel were compiled to estimate an annual crop carbon budget for 2000 to 2008. With respect to US Farm Resource Regions, net sources of CO(2) associated with the consumption of crop commodities occurred in the Eastern Uplands, Southern Seaboard, and Fruitful Rim regions. Net sinks associated with the production of crop commodities occurred in the Heartland, Northern Great Plains, and Mississippi Portal regions. The national crop carbon budget was balanced to within 0.3 to 6.1% yr(-1) during the period of this analysis.

  11. A Centralized Regional Database for Winter Cover Crops in Annual Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops have the potential to reduce erosion, minimize losses of nitrogen and phosphorus, and increase soil carbon in annual cropping systems in the Midwest. Public support, however, for incentives to farmers to adopt cover crops is minimal. Therefore, development of location-specific rec...

  12. Regional scale crop mapping using multi-temporal satellite imagery

    NASA Astrophysics Data System (ADS)

    Kussul, N.; Skakun, S.; Shelestov, A.; Lavreniuk, M.; Yailymov, B.; Kussul, O.

    2015-04-01

    One of the problems in dealing with optical images for large territories (more than 10,000 sq. km) is the presence of clouds and shadows that result in having missing values in data sets. In this paper, a new approach to classification of multi-temporal optical satellite imagery with missing data due to clouds and shadows is proposed. First, self-organizing Kohonen maps (SOMs) are used to restore missing pixel values in a time series of satellite imagery. SOMs are trained for each spectral band separately using nonmissing values. Missing values are restored through a special procedure that substitutes input sample's missing components with neuron's weight coefficients. After missing data restoration, a supervised classification is performed for multi-temporal satellite images. An ensemble of neural networks, in particular multilayer perceptrons (MLPs), is proposed. Ensembling of neural networks is done by the technique of average committee, i.e. to calculate the average class probability over classifiers and select the class with the highest average posterior probability for the given input sample. The proposed approach is applied for regional scale crop classification using multi temporal Landsat-8 images for the JECAM test site in Ukraine in 2013. It is shown that ensemble of MLPs provides better performance than a single neural network in terms of overall classification accuracy, kappa coefficient, and producer's and user's accuracies for separate classes. The overall accuracy more than 85% is achieved. The obtained classification map is also validated through estimated crop areas and comparison to official statistics.

  13. GUIDANCE FOR STATISTICAL DETERMINATION OF APPROPRIATE PERCENT MINORITY AND PERCENT POVERTY DISTRIBUTIONAL CUTOFF VALUES USING CENSUS DATA FOR AND EPA REGION II ENVIRONMENTAL JUSTICE PROJECT

    EPA Science Inventory

    The purpose of this report is to assist Region H by providing a statistical analysis identifying the areas with minority and below poverty populations known as "Community of Concern" (COC). The aim was to find a cutoff value as a threshold to identify a COC using demographic data...

  14. Regional Uptake and Release of Crop Carbon in the United States

    SciTech Connect

    West, Tristram O.; Bandaru, Varaprasad; Brandt, Craig C.; Schuh, A.E.; Ogle, S.M.

    2011-08-03

    Carbon fixed by agricultural crops in the US creates regional CO2 sinks where it is harvested and regional CO2 sources where it is released back to the atmosphere. The quantity and location of these fluxes differ depending on the annual supply and demand of crop commodities. Data on the harvest of crop biomass, storage, import and export, and on the use of biomass for food, feed, fiber, and fuel were compiled to estimate an annual crop carbon budget for 2000 to 2008. Net sources of CO2 associated with the consumption of crop commodities occurred in the Eastern Uplands, Southern Seaboard, and Fruitful Rim regions. Net sinks associated with the production of crop commodities occurred in the Heartland, Northern Crescent, Northern Great Plains, and Mississippi Portal regions. The national crop carbon budget was balanced to within 0.7 to 6.6% yr-1 during the period of this analysis.

  15. Incorporating remote sensing data in crop model to monitor crop growth and predict yield in regional area

    NASA Astrophysics Data System (ADS)

    Guo, Jianmao; Lu, Weisong; Zhang, Guoping; Qian, Yonglan; Yu, Qiang; Zhang, Jiahua

    2006-12-01

    Accurate crop growth monitoring and yield predicting is very important to food security and agricultural sustainable development. Crop models can be forceful tools for monitoring crop growth status and predicting yield over homogeneous areas, however, their application to a larger spatial domains is hampered by lack of sufficient spatial information about model inputs, such as the value of some of their parameters and initial conditions, which may have great difference between regions even fields. The use of remote sensing data helps to overcome this problem. By incorporating remote sensing data into the WOFOST crop model (through LAI), it is possible to incorporate remote sensing variables (vegetation index) for each point of the spatial domain, and it is possible for this point to re-estimate new values of the parameters or initial conditions, to which the model is particularly sensitive. This paper describes the use of such a method on a local scale, for winter wheat, focusing on the parameters describing emergence and early crop growth. These processes vary greatly depending on the soil, climate and seedbed preparation, and affect yield significantly. The WOFOST crop model is calibrated under standard conditions and then evaluated under test conditions to which the emergence and early growth parameters of the WOFOST model are adjusted by incorporating remote sensing data. The inversion of the combined model allows us to accurately monitoring crop growth status and predicting yield on a regional scale.

  16. Noah-MP-CROP: an integrated atmosphere-crop-soil modeling system for regional agro-climatic assessments.

    NASA Astrophysics Data System (ADS)

    Liu, X.; Barlage, M. J.; Chen, F.; Niyogi, D. S.; Zhou, G.

    2014-12-01

    Cropland plays an important role in land-atmosphere interactions. Integrating advanced regional-scale crop-growth modeling capabilities into a land surface model (LSM) is not only crucial for assessing potential impacts of climate change and climate variability on crop yields, but also can help to improve the representation of crop-atmosphere interactions in the Weather Research and Forecasting (WRF) Model. Therefore, the objectives of developing Noah-MP-CROP are: 1) provide high-spatial and high-temporal resolution regional agro-climatic related products; 2) enhance the simulations of cropland surface-fluxes in the WRF model for numerical weather prediction and regional climate modeling. Noah-MP is a new-generation of LSM that uses multiple parameterizations for land hydrology and energy processes. In this study, we couple species-specific crop phenology and carbon allocation schemes with Noah-MP-based complex simulations of canopy photosynthesis and soil moisture. The Noah-MP-CROP can be executed at field-scales or grid-scales of different spatial resolution and it also can be applied at multiple temporal scales. The major agriculture-related outputs include: grain mass, leaf mass, leaf area index, crop yield, growth primary production, growing degree days, soil temperature, soil moisture, and evapotranspiration. The model also allows us to conduct different assessments by using either historical, real-time, short-term forecast or future projected weather input data. In this study, we focus on evaluating the Noah-MP-CROP for the regional agro-climatic assessments in the U.S. Corn Belt. Model simulations are conducted at both field-scale (Bondville, IL and Mead, NE) and grid-scale (4km-resolution). At both field sites, model outputs of crop yield (grain mass), leaf area index and surface fluxes show strong agreement with observations. Also incorporating crop-growth models in Noah-MP improves the simulated latent heat and sensible heat fluxes during the crop

  17. Potential supply and cost of biomass from energy crops in the TVA region

    SciTech Connect

    Graham, R.L.; Downing, M.E.

    1995-04-01

    The economic and supply structures of energy crop markets have not been established. Establishing the likely price and supply of energy crop biomass in a region is a complex task because biomass is not an established commodity as are oil, natural gas, and coal. In this study, the cost and supply of short-rotation woody crop (SRWC) and switchgrass biomass for the Tennessee Valley Authority (TVA) region-a 276-county area that includes portions of 11 states in the southeastern United States - are projected. Projected prices and quantities of biomass are assumed to be a function of the amount and quality of crop and pasture land available in a region, expected energy crop yields and production costs on differing soils and land types, and the profit that could be obtained from current conventional crop production on these same lands. Results include the supply curves of SRWC and switchgrass biomass that are projected to be available from the entire region, the amount and location of crop and pasture land that would be used, and the conventional agricultural crops that would be displaced as a function of energy crop production. Finally, the results of sensitivity analysis on the projected cost and supply of energy crop biomass are shown. In particular, the separate impacts of varying energy crop production costs and yields, and interest rates are examined.

  18. Using remote sensing and grid-based meteorological datasets for regional soybean crop yield prediction and crop monitoring

    NASA Astrophysics Data System (ADS)

    Mali, Preeti

    Regional crop yield estimations using crop models is a national priority due to its contributions to crop security assessment and food pricing policies. Many of these crop yield assessments are performed using time-consuming, intensive field surveys. This research was initiated to test the applicability of remote sensing and grid-based meteorological model data for providing improved and efficient predictive capabilities for crop bio-productivity. The soybean prediction model (Sinclair model) used in this research, requires daily data inputs to simulate yield which are temperature, precipitation, solar radiation, day length initialization of certain soil moisture parameters for each model run. The traditional meteorological datasets were compared with simulated South American Land Data Assimilation System (SALDAS) meteorological datasets for Sinclair model runs and for initializing soil moisture inputs. Considering the fact that grid-based meteorological data has the resolution of 1/8th of a degree, the estimations demonstrated a reasonable accuracy level and showed promise for increase in efficiency for regional level yield predictions. The research tested daily composited Normalized Difference Vegetation Index (NDVI) from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor (both AQUA and TERRA platform) and simulated Visible/Infrared Imager Radiometer Suite (VIIRS) sensor product (a new sensor planned to be launched in the near future) for crop growth and development based on phenological events. The AQUA and TERRA fusion based daily MODIS NDVI was utilized to develop a planting date estimation method. The results have shown that daily MODIS composited NDVI values have the capability for enhanced monitoring of soybean crop growth and development. The method was able to predict planting date within +/-3.4 days. A geoprocessing framework for extracting data from the grid data sources was developed. Overall, this study was able to demonstrate the utility of

  19. Winter cover crops impact on corn production in semiarid regions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops have been proposed as a technique to increase soil health. This study examined the impact of winter brassica cover crop cocktails grown after wheat (Triticum aestivum) on corn yields; corn yield losses due to water and N stress; soil bacteria to fungi ratios; mycorrhizal markers; and ge...

  20. Ozone phytotoxicity evaluation and prediction of crops production in tropical regions

    NASA Astrophysics Data System (ADS)

    Mohammed, Nurul Izma; Ramli, Nor Azam; Yahya, Ahmad Shukri

    2013-04-01

    Increasing ozone concentration in the atmosphere can threaten food security due to its effects on crop production. Since the 1980s, ozone has been believed to be the most damaging air pollutant to crops. In Malaysia, there is no index to indicate the reduction of crops due to the exposure of ozone. Therefore, this study aimed to identify the accumulated exposure over a threshold of X ppb (AOTX) indexes in assessing crop reduction in Malaysia. In European countries, crop response to ozone exposure is mostly expressed as AOT40. This study was designed to evaluate and predict crop reduction in tropical regions and in particular, the Malaysian climate, by adopting the AOT40 index method and modifying it based on Malaysian air quality and crop data. Nine AOTX indexes (AOT0, AOT5, AOT10, AOT15, AOT20, AOT25, AOT30, AOT40, and AOT50) were analyzed, crop responses tested and reduction in crops predicted. The results showed that the AOT50 resulted in the highest reduction in crops and the highest R2 value between the AOT50 and the crops reduction from the linear regression analysis. Hence, this study suggests that the AOT50 index is the most suitable index to estimate the potential ozone impact on crops in tropical regions. The result showed that the critical level for AOT50 index if the estimated crop reduction is 5% was 1336 ppb h. Additionally, the results indicated that the AOT40 index in Malaysia gave a minimum percentage of 6% crop reduction; as contrasted with the European guideline of 5% (due to differences in the climate e.g., average amount of sunshine).

  1. Regional crop productivity and greenhouse gas emissions from Swiss soils under organic farming

    NASA Astrophysics Data System (ADS)

    Lee, Juhwan; Necpalova, Magdalena; Six, Johan

    2016-04-01

    There is worldwide concern about the increase in atmospheric greenhouse gases (GHG) and their impact on climate change and food security. As a sustainable alternative, organic cropping in various forms has been promoted to minimize the environmental impacts of conventional practices. However, relatively little is known about the potential to reduce GHG emissions while maintaining crop productivity through the large-scale adoption of organic practices. Therefore, we simulated and compared regional crop production, soil organic carbon status, and net soil GHG emissions under organic and conventional practices. Grid-level (2.2 km by 2.2 km) simulation was performed using previously validated DailyDayCent by considering typical crop rotations. Regional model estimates are presented and discussed specifically with the focus on Swiss organic and conventional cropping systems, which differ by type and intensity of manuring, tillage, and cover crop.

  2. Satellite-based crop coefficient and regional water use estimates for Hawaiian sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water availability is a major limiting factor for sustainable production of potential biofuel crops in Maui, Hawaii. It is essential to improve regional, near-real time estimates of crop water use to facilitate optimal water management. Satellite remote-sensing offers multiple methods to estimate w...

  3. Effects of Climate Change on Regional Crop Production in Eastern Pennsylvania

    NASA Astrophysics Data System (ADS)

    Ross, S. T.; Mangan, J. M.

    2009-12-01

    Regional climate changes can significantly alter crop yields for agriculturally important areas. Berks County, PA, is an agrarian community whose crop production is typical of southeastern Pennsylvania, with corn as a major crop. Mean annual temperatures in Pennsylvania are predicted to increase by 4 degrees C and precipitation is expected to increase 5% by 2100. We examined changes in 20th Century Berks County crop yields, particularly corn, in response to yearly variations in temperature and precipitation. Crop yields for corn are predicted by models to increase up to a 29 degrees C threshold, beyond which yields will significantly decrease. This study quantifies the effects of recent climate change on Berks County crop production and predicts potential changes for the future. It is important to consider regional climate change effects if we are to fully understand the impacts of global change on food crop production. This study also incorporates anecdotal data from farmers to note their perceptions of crop productivity as related to environmental changes and to determine other factors that may affect farming practices and crop yields.

  4. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    NASA Astrophysics Data System (ADS)

    Porter, William C.; Rosenstiel, Todd N.; Guenther, Alex; Lamarque, Jean-Francois; Barsanti, Kelley

    2015-05-01

    An expected global increase in bioenergy-crop cultivation as an alternative to fossil fuels will have consequences on both global climate and local air quality through changes in biogenic emissions of volatile organic compounds (VOCs). While greenhouse gas emissions may be reduced through the substitution of next-generation bioenergy crops such as eucalyptus, giant reed, and switchgrass for fossil fuels, the choice of species has important ramifications for human health, potentially reducing the benefits of conversion due to increases in ozone (O3) and fine particulate matter (PM2.5) levels as a result of large changes in biogenic emissions. Using the Community Earth System Model we simulate the conversion of marginal and underutilized croplands worldwide to bioenergy crops under varying future anthropogenic emissions scenarios. A conservative global replacement using high VOC-emitting crop profiles leads to modeled population-weighted O3 increases of 5-27 ppb in India, 1-9 ppb in China, and 1-6 ppb in the United States, with peak PM2.5 increases of up to 2 μg m-3. We present a metric for the regional evaluation of candidate bioenergy crops, as well as results for the application of this metric to four representative emissions profiles using four replacement scales (10-100% maximum estimated available land). Finally, we assess the total health and climate impacts of biogenic emissions, finding that the negative consequences of using high-emitting crops could exceed 50% of the positive benefits of reduced fossil fuel emissions in value.

  5. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    SciTech Connect

    Porter, William C.; Rosenstiel, Todd N.; Guenther, Alex; Lamarque, Jean-Francois; Barsanti, Kelley

    2015-05-06

    An expected global increase in bioenergy-crop cultivation as an alternative to fossil fuels will have consequences on both global climate and local air quality through changes in biogenic emissions of volatile organic compounds (VOCs). While greenhouse gas emissions may be reduced through the substitution of next-generation bioenergy crops such as eucalyptus, giant reed, and switchgrass for fossil fuels, the choice of species has important ramifications for human health, potentially reducing the benefits of conversion due to increases in ozone (O₃) and fine particulate matter (PM₂̣₅) levels as a result of large changes in biogenic emissions. Using the Community Earth System Model we simulate the conversion of marginal and underutilized croplands worldwide to bioenergy crops under varying future anthropogenic emissions scenarios. A conservative global replacement using high VOC-emitting crop profiles leads to modeled population-weighted O₃ increases of 5–27 ppb in India, 1–9 ppb in China, and 1–6 ppb in the United States, with peak PM₂̣₅ increases of up to 2 μgm⁻³. We present a metric for the regional evaluation of candidate bioenergy crops, as well as results for the application of this metric to four representative emissions profiles using four replacement scales (10–100% maximum estimated available land). Finally, we assess the total health and climate impacts of biogenic emissions, finding that the negative consequences of using high-emitting crops could exceed 50% of the positive benefits of reduced fossil fuel emissions in value.

  6. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    DOE PAGESBeta

    Porter, William C.; Rosenstiel, Todd N.; Guenther, Alex; Lamarque, Jean-Francois; Barsanti, Kelley

    2015-05-06

    An expected global increase in bioenergy-crop cultivation as an alternative to fossil fuels will have consequences on both global climate and local air quality through changes in biogenic emissions of volatile organic compounds (VOCs). While greenhouse gas emissions may be reduced through the substitution of next-generation bioenergy crops such as eucalyptus, giant reed, and switchgrass for fossil fuels, the choice of species has important ramifications for human health, potentially reducing the benefits of conversion due to increases in ozone (O₃) and fine particulate matter (PM₂̣₅) levels as a result of large changes in biogenic emissions. Using the Community Earth Systemmore » Model we simulate the conversion of marginal and underutilized croplands worldwide to bioenergy crops under varying future anthropogenic emissions scenarios. A conservative global replacement using high VOC-emitting crop profiles leads to modeled population-weighted O₃ increases of 5–27 ppb in India, 1–9 ppb in China, and 1–6 ppb in the United States, with peak PM₂̣₅ increases of up to 2 μgm⁻³. We present a metric for the regional evaluation of candidate bioenergy crops, as well as results for the application of this metric to four representative emissions profiles using four replacement scales (10–100% maximum estimated available land). Finally, we assess the total health and climate impacts of biogenic emissions, finding that the negative consequences of using high-emitting crops could exceed 50% of the positive benefits of reduced fossil fuel emissions in value.« less

  7. Effects of double cropping on summer climate of the North China Plain and neighbouring regions

    NASA Astrophysics Data System (ADS)

    Jeong, S. J.

    2015-12-01

    The North China Plain (NCP) is one of the most important agricultural regions in Asia and produces up to 50% of the cereal consumed in China each year. To meet increasing food demands without expanding croplands, annual agricultural practice in much of the NCP has changed from single to double cropping. The impact of double cropping on the regional climate, through biophysical feedbacks caused by changes in land surface conditions, remains largely unknown. Here we show that observed surface air temperatures during the inter-cropping season (June and July) are 0.40 °C higher over double cropping regions (DCRs) than over single cropping regions (SCRs), with increases in the daily maximum temperature as large as 1.02 °C. Using regional climate modelling, we attribute the higher temperatures in DCRs to reduced evapotranspiration during the inter-cropping period. The higher surface temperatures in June and July affect low-level circulation and, in turn, rainfall associated with the East Asian monsoon over the NCP and neighbouring countries. These findings suggest that double cropping in the NCP can amplify the magnitude of summertime climate changes over East Asia.

  8. Can subsurface drip irrigation (SDI) be a competitive irrigation system in the Great Plains region for commodity crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface drip irrigation (SDI) as with all microirrigation systems is typically only used on crops with greater value. In the U.S. Great Plains region, the typical irrigated crops are the cereal and oil seed crops and cotton. These crops have less economic revenue than typical microirrigated cro...

  9. Multilayer-coated laminar grating with 16{percent} normal-incidence efficiency in the 150-{Angstrom} wavelength region

    SciTech Connect

    Seely, J. F.; Kowalski, M. P.; Cruddace, R. G.; Rife, J. C.; Osterried, K.; Kleineberg, U.; Menke, D. Hunter, W. R.

    1997-11-01

    We characterized a laminar grating with a Mo/Si multilayer coating by using synchrotron radiation and atomic force microscopy. The grating substitute had 2400 grooves/mm, 40-{Angstrom} groove depth, and 2080-{Angstrom} groove width. The microroughness of the grating substrate was 5 {Angstrom} rms. The multilayer coating was optimized to have peak normal-incidence reflectance at a wavelength near 150 {Angstrom}. For an angle of incidence of 10{degree} the peak grating efficiency was 16.3{percent} in the +1 order and 15.0{percent} in the {minus}1 order. The efficiency in the zero order was lower by a factor of 40 owing to the excellent matching of the groove depth and groove width to the wavelength of the incident radiation. By dividing the grating efficiencies by the measured reflectance of the multilayer coating, we obtained inferred groove efficiencies of 34{percent} and 32{percent} in the +1 and {minus}1 orders, respectively. {copyright} 1997 Optical Society of America

  10. Impacts of the Future Changes in Extreme Events on the Regional Crop Yield in Turkey

    NASA Astrophysics Data System (ADS)

    An, Nazan; Turp, M. Tufan; Ozturk, Tugba; Kurnaz, M. Levent

    2016-04-01

    The changes in extreme events caused by climate change have the greatest impact on agricultural sector specifically crop yield. Therefore, it requires a clear understanding of how extreme events affect the crop yield and how it causes high economic losses. In this research, we cover the relationship between extreme events and the crop yield in Turkey for the period of 2020 - 2045 with respect to 1980 - 2005. We focus on the role of those extreme event causing natural disasters on the regional crop yield. This research comprises 2 parts. In the first part, the projection is performed according to the business as usual scenario of IPCC, RCP8.5, via the RegCM4.4 in order to obtain extreme event indices required for the crop assessment. In the second part, the crop yield and the extreme event indices are combined by applying the econometric analysis in order to see the relationship between natural disasters and crop yield. The risks for crop yield caused by the extreme events are estimated and interpreted. This study aims to assess the effect of frequency of expected extreme events on the crop yield at the cropland of Turkey. This research has been supported by Boǧaziçi University Research Fund Grant Number 10421.

  11. Influence of ecohydrologic feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios

    NASA Astrophysics Data System (ADS)

    van Walsum, P. E. V.; Supit, I.

    2012-06-01

    Hydrologic climate change modelling is hampered by climate-dependent model parameterizations. To reduce this dependency, we extended the regional hydrologic modelling framework SIMGRO to host a two-way coupling between the soil moisture model MetaSWAP and the crop growth simulation model WOFOST, accounting for ecohydrologic feedbacks in terms of radiation fraction that reaches the soil, crop coefficient, interception fraction of rainfall, interception storage capacity, and root zone depth. Except for the last, these feedbacks are dependent on the leaf area index (LAI). The influence of regional groundwater on crop growth is included via a coupling to MODFLOW. Two versions of the MetaSWAP-WOFOST coupling were set up: one with exogenous vegetation parameters, the "static" model, and one with endogenous crop growth simulation, the "dynamic" model. Parameterization of the static and dynamic models ensured that for the current climate the simulated long-term averages of actual evapotranspiration are the same for both models. Simulations were made for two climate scenarios and two crops: grass and potato. In the dynamic model, higher temperatures in a warm year under the current climate resulted in accelerated crop development, and in the case of potato a shorter growing season, thus partly avoiding the late summer heat. The static model has a higher potential transpiration; depending on the available soil moisture, this translates to a higher actual transpiration. This difference between static and dynamic models is enlarged by climate change in combination with higher CO2 concentrations. Including the dynamic crop simulation gives for potato (and other annual arable land crops) systematically higher effects on the predicted recharge change due to climate change. Crop yields from soils with poor water retention capacities strongly depend on capillary rise if moisture supply from other sources is limited. Thus, including a crop simulation model in an integrated

  12. A generic probability based model to derive regional patterns of crops in time and space

    NASA Astrophysics Data System (ADS)

    Wattenbach, Martin; Luedtke, Stefan; Redweik, Richard; van Oijen, Marcel; Balkovic, Juraj; Reinds, Gert Jan

    2015-04-01

    Croplands are not only the key to human food supply, they also change the biophysical and biogeochemical properties of the land surface leading to changes in the water cycle, energy portioning, they influence soil erosion and substantially contribute to the amount of greenhouse gases entering the atmosphere. The effects of croplands on the environment depend on the type of crop and the associated management which both are related to the site conditions, economic boundary settings as well as preferences of individual farmers. The method described here is designed to predict the most probable crop to appear at a given location and time. The method uses statistical crop area information on NUTS2 level from EUROSTAT and the Common Agricultural Policy Regionalized Impact Model (CAPRI) as observation. These crops are then spatially disaggregated to the 1 x 1 km grid scale within the region, using the assumption that the probability of a crop appearing at a given location and a given year depends on a) the suitability of the land for the cultivation of the crop derived from the MARS Crop Yield Forecast System (MCYFS) and b) expert knowledge of agricultural practices. The latter includes knowledge concerning the feasibility of one crop following another (e.g. a late-maturing crop might leave too little time for the establishment of a winter cereal crop) and the need to combat weed infestations or crop diseases. The model is implemented in R and PostGIS. The quality of the generated crop sequences per grid cell is evaluated on the basis of the given statistics reported by the joint EU/CAPRI database. The assessment is given on NUTS2 level using per cent bias as a measure with a threshold of 15% as minimum quality. The results clearly indicates that crops with a large relative share within the administrative unit are not as error prone as crops that allocate only minor parts of the unit. However, still roughly 40% show an absolute per cent bias above the 15% threshold. This

  13. Energy crops: a new challenge for tropical regions

    SciTech Connect

    Alvim, P.D.T.; Alvim, R.

    1980-12-01

    Fuel production from plants on the basis of information drawn from the literature and from case studies conducted in Brazil is reviewed. Special reference is made to the production of charcoal, alcohol, and vegetable oils to replace gasoline and diesel fuel for internal-combustion engines. The potentialities and socio-economic implications of projects based on some efficient energy crops such as sugar cane, cassava, eucalyptus and oil palm are discussed. Attention is called to some plants which are considered promising sources of oil and hydrocarbons but have not yet been fully investigated from the agronomical and/or industrial point of view. 15 references.

  14. A generic probability based algorithm to derive regional patterns of crops in time and space

    NASA Astrophysics Data System (ADS)

    Wattenbach, Martin; Oijen, Marcel v.; Leip, Adrian; Hutchings, Nick; Balkovic, Juraj; Smith, Pete

    2013-04-01

    Croplands are not only the key to human food supply, they also change the biophysical and biogeochemical properties of the land surface leading to changes in the water cycle, energy partitioning, influence soil erosion and substantially contribute to the amount of greenhouse gases entering the atmosphere. The effects of croplands on the environment depend on the type of crop and the associated management which both are related to the site conditions, economic boundary settings as well as preferences of individual farmers. However, at a given point of time the pattern of crops in a landscape is not only determined by environmental and socioeconomic conditions but also by the compatibility to the crops which had been grown in the years before at the current field and its surrounding cropping area. The crop compatibility is driven by factors like pests and diseases, crop driven changes in soil structure and timing of cultivation steps. Given these effects of crops on the biochemical cycle and their interdependence with the mentioned boundary conditions, there is a demand in the regional and global modelling community to account for these regional patterns. Here we present a Bayesian crop distribution generator algorithm that is used to calculate the combined and conditional probability for a crop to appear in time and space using sparse and disparate information. The input information to define the most probable crop per year and grid cell is based on combined probabilities derived from the a crop transition matrix representing good agricultural practice, crop specific soil suitability derived from the European soil database and statistical information about harvested area from the Eurostat database. The reported Eurostat crop area also provides the target proportion to be matched by the algorithm on the level of administrative units (Nomenclature des Unités Territoriales Statistiques - NUTS). The algorithm is applied for the EU27 to derive regional spatial and

  15. Impacts of crop growth dynamics on soil quality at the regional scale

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2014-05-01

    Agricultural land use and in particular crop growth dynamics can greatly affect soil quality. Both the amount of soil lost from erosion by water and soil organic matter are key indicators for soil quality. The aim was to develop a modelling framework for quantifying the impacts of crop growth dynamics on soil quality at the regional scale with test case Flanders. A framework for modelling the impacts of crop growth on soil erosion and soil organic matter was developed by coupling the dynamic crop cover model REGCROP (Gobin, 2010) to the PESERA soil erosion model (Kirkby et al., 2009) and to the RothC carbon model (Coleman and Jenkinson, 1999). All three models are process-based, spatially distributed and intended as a regional diagnostic tool. A geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System). Crop allometric models were developed from variety trials to calculate crop residues for common crops in Flanders and subsequently derive stable organic matter fluxes to the soil. Results indicate that crop growth dynamics and crop rotations influence soil quality for a very large percentage. soil erosion mainly occurs in the southern part of Flanders, where silty to loamy soils and a hilly topography are responsible for soil loss rates of up to 40 t/ha. Parcels under maize, sugar beet and potatoes are most vulnerable to soil erosion. Crop residues of grain maize and winter wheat followed by catch crops contribute most to the total carbon sequestered in agricultural soils. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. This implies that agricultural policies that impact on agricultural land management influence soil quality for a large percentage. The coupled REGCROP-PESERA-ROTHC model allows for quantifying the impact of seasonal and year-to-year crop growth dynamics on soil quality. When coupled to a multi-annual crop

  16. Regional Disparities in the Beneficial Effects of Rising CO2 Emissions on Crop Water Productivity

    NASA Technical Reports Server (NTRS)

    Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Meuller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alex C.; Gerten, Dieter; Jones, James W.; Khabarov, Nikolay; Olin, Stefan; Schaphoff, Sibyll; Schmid, Erwin; Yang, Hong; Rosenzweig, Cynthia

    2016-01-01

    Rising atmospheric carbon dioxide concentrations are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated carbon dioxide and associated climate change projected for a high-end greenhouse gas emissions scenario. We find carbon dioxide effects increase global CWP by 10[0;47]%-27[7;37]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rain fed wheat). If realized in the fields, the effects of elevated carbon dioxide could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modeling the effects of rising carbon dioxide across crop and hydrological modeling communities.

  17. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity

    NASA Astrophysics Data System (ADS)

    Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Müller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alex C.; Gerten, Dieter; Jones, James W.; Khabarov, Nikolay; Olin, Stefan; Schaphoff, Sibyll; Schmid, Erwin; Yang, Hong; Rosenzweig, Cynthia

    2016-08-01

    Rising atmospheric CO2 concentrations ([CO2]) are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated [CO2] and associated climate change projected for a high-end greenhouse gas emissions scenario. We find CO2 effects increase global CWP by 10[047]%-27[737]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rainfed wheat). If realized in the fields, the effects of elevated [CO2] could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modelling the effects of rising [CO2] across crop and hydrological modelling communities.

  18. Crop growth and irrigation interact to influence surface fluxes in a regional climate-cropland model (WRF3.3-CLM4crop)

    NASA Astrophysics Data System (ADS)

    Lu, Yaqiong; Jin, Jiming; Kueppers, Lara M.

    2015-12-01

    In this study, we coupled Version 4.0 of the Community Land Model that includes crop growth and management (CLM4crop) into the Weather Research and Forecasting (WRF) model Version 3.3 to better represent interactions between climate and agriculture. We evaluated the performance of the coupled model (WRF3.3-CLM4crop) by comparing simulated crop growth and surface climate to multiple observational datasets across the continental United States. The results showed that although the model with dynamic crop growth overestimated leaf area index (LAI) and growing season length, interannual variability in peak LAI was improved relative to a model with prescribed crop LAI and growth period, which has no environmental sensitivity. Adding irrigation largely improved daily minimum temperature but the RMSE is still higher over irrigated land than non-irrigated land. Improvements in climate variables were limited by an overall model dry bias. However, with addition of an irrigation scheme, soil moisture and surface energy flux partitioning were largely improved at irrigated sites. Irrigation effects were sensitive to crop growth: the case with prescribed crop growth underestimated irrigation water use and effects on temperature and overestimated soil evaporation relative to the case with dynamic crop growth in moderately irrigated regions. We conclude that studies examining irrigation effects on weather and climate using coupled climate-land surface models should include dynamic crop growth and realistic irrigation schemes to better capture land surface effects in agricultural regions.

  19. Evaluation of the performance of SiBcrop model in predicting carbon fluxes and crop yields in the croplands of the US mid continental region

    NASA Astrophysics Data System (ADS)

    Lokupitiya, E.; Denning, S.; Paustian, K.; Corbin, K.; Baker, I.; Schaefer, K.

    2008-12-01

    The accurate representation of phenology, physiology, and major crop variables is important in the land- atmosphere carbon models being used to predict carbon and other exchanges of the man-made cropland ecosystems. We evaluated the performance of SiBcrop model (which is the Simple Biosphere model (SiB) with a new scheme for crop phenology and physiology) in predicting carbon exchanges of the US mid continental region which has several major crops. The use of the new phenology scheme within SiB remarkably improved the prediction of LAI and carbon fluxes for corn, soybean, and wheat crops as compared with the observed data at several Ameriflux eddy covariance flux tower sites with those crops. SiBcrop better predicted the onset and end of the growing season, harvest, interannual variability associated with crop rotation, day time carbon draw down, and day to day variability in the carbon exchanges. The model has been coupled with RAMS, the regional Atmospheric Modeling System (developed at Colorado State University), and the coupled SiBcrop-RAMS has predicted better carbon and other fluxes compared to the original SiB-RAMS. SiBcrop also predicted daily variation in biomass in different plant pools (i.e. roots, leaves, stems, and products). In this study, we further evaluated the performance of SiBcrop by comparing the yield estimates based on the grain/seed biomass at harvest predicted by SiBcrop for relevant major crops, against the county-level crop yields reported by the US National Agricultural Statistics Service (NASS). Initially, the model runs were based on crop maps scaled at 40 km resolution; the maps were used to derive the fraction of corn, soybean, and wheat at each grid cell across the US Mid Continental Intensive (MCI) region under the North American Carbon Program (NACP). The yield biomass carbon values (at harvest) predicted for each grid cell by SiBcrop were extrapolated to derive the county-level yield biomass carbon values, which were then

  20. NASA Earth Science Research Results for Improved Regional Crop Yield Prediction

    NASA Astrophysics Data System (ADS)

    Mali, P.; O'Hara, C. G.; Shrestha, B.; Sinclair, T. R.; G de Goncalves, L. G.; Salado Navarro, L. R.

    2007-12-01

    spatial and temporal resolution remote sensing datasets; improved time-series meteorological inputs required for crop growth models; and regional prediction capability through geo-processing-based yield modeling.

  1. Differential Impacts of Climate Change on Crops and Agricultural Regions in India

    NASA Astrophysics Data System (ADS)

    Sharma, A. N.

    2015-12-01

    As India's farmers and policymakers consider potential adaptation strategies to climate change, some questions loom large: - Which climate variables best explain the variability of crop yields? - How does the vulnerability of crop yields to climate vary regionally? - How are these risks likely to change in the future? While process-based crop modelling has started to answer many of these questions, we believe statistical approaches can complement these in improving our understanding of climate vulnerabilities and appropriate responses. We use yield data collected over three decades for more than ten food crops grown in India along with a variety of statistical approaches to answer the above questions. The ability of climate variables to explain yield variation varies greatly by crop and season, which is expected. Equally important, the ability of models to predict crop yields as well as their coefficients varies greatly by district even for districts which are relatively close to each other and similar in their agricultural practices. We believe these results encourage caution and nuance when making projections about climate impacts on crop yields in the future. Most studies about climate impacts on crop yields focus on a handful of major food crops. By extending our analysis to all the crops with long-term district level data in India as well as two growing seasons we gain a more comprehensive picture. Our results indicate that there is a great deal of variability even at relatively small scales, and that this must be taken into account if projections are to be made useful to policymakers.

  2. Sensitivity of simulated maize crop yields to regional climate in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Kim, S.; Myoung, B.; Stack, D.; Kim, J.; Hatzopoulos, N.; Kafatos, M.

    2013-12-01

    The sensitivity of maize yield to the regional climate in the Southwestern United States (SW US) has been investigated by using a crop-yield simulation model (APSIM) in conjunction with meteorological forcings (daily minimum and maximum temperature, precipitation, and radiation) from the North American Regional Reanalysis (NARR) dataset. The primary focus of this study is to look at the effects of interannual variations of atmospheric components on the crop productivity in the SW US over the 21-year period (1991 to 2011). First of all, characteristics and performance of APSIM was examined by comparing simulated maize yields with observed yields from United States Department of Agriculture (USDA) and the leaf-area index (LAI) from MODIS satellite data. Comparisons of the simulated maize yield with the available observations show that the crop model can reasonably reproduce observed maize yields. Sensitivity tests were performed to assess the relative contribution of each climate driver to regional crop yield. Sensitivity experiments show that potential crop production responds nonlinearly to climate drivers and the yield sensitivity varied among geographical locations depending on their mean climates. Lastly, a detailed analysis of both the spatial and temporal variations of each climate driver in the regions where maize is actually grown in three states (CA, AZ, and NV) in the SW US was performed.

  3. Monitoring rice cropping systems using China environment satellite data in Poyang Lake region

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jiang, Luguang; Feng, Zhiming

    Threshold method was utilized to discriminate rice cropping systems based on the noticeable variation of Normalized Difference Vegetation Index (NDVI) during key growth stages in Poyang Lake Region, China. This area is dominated by double- and single rice cropping systems which tend to change due to the frequent ecosystem management policies. We used a new satellite data from the CCD camera sensor with 30 m spatial resolution onboard the China Environmental Satellite HJ-1A and B. The HJ -1A/B with a better temporal resolution of four days provides more data options for effective and timely agriculture monitoring. The result showed that there is evident difference of NDVI between single and late rice during mid October when they are in different growth stages. The areas of single and late rice in 2011 were 2988.6 km2 and 3105.9 km2, respectively. Paddy field distribution map and local paddy rice calendar are requisite to move the threshold method into other multiple rice cropping regions. The study suggests that the China Environmental Satellite HJ-1A/B have the potential to rice cropping system in the double to triple rice cropping systems area. With many advantages of HJ-1A/B, like, finer spatial and temporal resolution, bigger imaging swath, it may make rice cropping system monitoring more feasible and operational.

  4. Influence of Climate Change on Damages to Crops Produced by Hail Events at Spanish Peninsular Region

    NASA Astrophysics Data System (ADS)

    Saa Requejo, A.; Tarquis, A. M.; García Moreno, R.; Gascó, G.; Burgaz, F.; Díaz Alvarez, M. C.

    2009-04-01

    Climate, often the most critical factor for the sustainability of agricultural systems, dictates which crops will grow in a region. Specific weather events, such as hail, will affect yield or quality of crops depending on the affected species, the temperatures reached and the timing of phenology. Predicting the occurrence of hailstorms is one of the most complicated tasks in weather forecasting because of the small area of land that is usually affected, and because of the short time hail events last. The importance of the study is related to the insurance of the different crops, since the damages are perceived as increasing during the last years, and consequently the amount of the economical compensations to crop producers. Under these conditions the State Agricultural Insurance Body of the Ministry of Environment and Rural and Marine Affairs were interested to know the extent of the new changing conditions to analyze the viability of the actual system and the potential future changes. The results demonstrate trend variability on damage risk to different crops produced by hail events at the Spanish peninsula. Meanwhile in some provinces show a negative trend in others are positive. However, all of them present several oscillations that questionate these trends. The research evaluated also the average minimum temperatures in summer for 405 weather stations over the peninsular region of Spain since 1981 until 2007, time in which crop insurance data can be verified. This study doesn't confirm the results obtained in France that relate hail damage registered with the average minimum temperatures.

  5. Drought Effects on Agricultural Yield: Comparison Across Regions and Crop Types

    NASA Astrophysics Data System (ADS)

    Daryanto, S.; Wang, L.; Jacinthe, P. A.

    2014-12-01

    Global agricultural production is dominated by rainfed agriculture, and is therefore prone to disruption from climate extreme weathers. These uncertainties become more problematic when considering the projection of increased drought frequency suggested by several climate models for various world regions. Curiously, few regional analyses of drought impact of food production have been attempted. We collated and analyzed data from the last 25 years to disentangle the effects of drought (i.e. timing, intensity and duration) on agricultural production in different eco-regions and with varying crop types. Our preliminary results suggested greater yield reduction in annual (-21.5%) than perennial plants (-16%), in C4 (-21%) compared to C3 crops (-17%), and when drought occurred during generative (i.e. flowering until maturity; -16.5%) than vegetative stage (-15.5%). Although drought caused similar amounts of yield reduction in both tropical and subtropical regions (i.e. -17%), it carries a greater food security risk in the tropics due to inherently low productivity (i.e. less than half than in the subtropical regions). Consequently, cultivating drought-resistant C3 perennial plants (e.g. sweet potato and cassava) in the tropics could prove a viable adaptive strategy to mitigate the effects of climate variability. In addition, these crops have limited input requirements, are well adapted to nutrient-poor Oxisols and Ultisols of the tropics, and generally outyield cereal crops in the region. Our analysis is ongoing and needs to take into account agronomic traits (e.g. water requirement), as well as the energy and nutritional values (e.g. protein, minerals) of alternative crops. Our results could inform the selection and development of new cultivars for the drought-prone regions of the world.

  6. Rice Crop Monitoring by Earth Observation Data in the Asian Region

    NASA Astrophysics Data System (ADS)

    Oyoshi, K.; Sobue, S.; Tomiyama, N.; Okumura, T.; Rakwatin, P.

    2012-12-01

    Food security is a critical issue for the international community. In June 2011, the meeting of G20 agriculture ministers was held to discuss global food security and they agreed on an "Action Plan on Food Price Volatility and Agriculture". This plan includes a GEO Global Agricultural Monitoring (GEO-GLAM) initiative which utilizes remote sensing to improve projections of crop production and weather forecasting. Hence, satellite remote sensing is expected to contribute national, regional and global food security through the systematic and efficient collection of food security related information such as agro-meteorological condition, crop growth or yield estimation. Food security related information is utilized to take mitigation strategies or policies to manage food shortages or trading, and ensure food security. Especially in Asia, rice is the most important cereal crop because Asian countries are responsible for approximately 90% of the world rice productions and consumptions. There- fore, Asian countries are expected to contribute GLAM through the construction of rice crop monitoring system. We demonstrated the estimation of rice production, the crop phenology monitoring by Earth Observation (EO) data. The aim of this study is to establish a prototype system designed to provide paddy rice area and yield estimation. Generally, crop yield estimation is consist of two components, cultivated area and yield per area. The cultivated areas of paddy field are detected by the seasonal pattern of SAR data over paddy field. This means paddy field is filled with water just before planting rice, then covered by dense vegetation in growing season. The paddy filed map was derived from the seasonal Advanced Land Observation Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) data with a simple threshold method. Then, to estimate rice productivity, we applied a simple rice crop model. The input data to the model are physical and chemical properties of

  7. Remote Estimation of Gross Primary Production in Crops at Field and Regional Levels

    NASA Astrophysics Data System (ADS)

    Gitelson, A. A.; Vina, A.; Verma, S. B.; Rundquist, D. C.

    2007-12-01

    Accurate estimation of spatially distributed CO2 fluxes is of great importance for regional and global studies of carbon balance. We have found that in irrigated and rainfed crops (maize and soybean), GPP is closely related to total crop chlorophyll content. The finding allowed development of a new technique for remote estimation of crop chlorophyll specifically for assessing gross primary production. The technique is based on reflectance in two spectral channels: the near-infrared and either the green or the red-edge. The technique provided accurate estimations of daily GPP in both crops. Validation using independent datasets for irrigated and rainfed maize and soybean documented the robustness of the technique. We report also about applying the developed technique for GPP retrieval from data acquired by both an airborne imaging spectrometer (AISA-Eagle) and Landsat ETM+. The Chlorophyll Index, retrieved from Landsat ETM+ data, was found to be an accurate surrogate measure for daily crop GPP with a root mean square error of GPP prediction of less than 1.58 g C m-2d-1 in a GPP range of 1.88 g C m-2d-1 to 23.1 g C m-2d-1. These results suggest new possibilities for analyzing the spatio-temporal variation of the GPP of crops using not only the extensive archive of Landsat Thematic Mapper imagery acquired since the early 1980s but also the 500-m/pixel data currently being acquired by MODIS.

  8. Regional modelling of nitrate leaching from Swiss organic and conventional cropping systems under climate change

    NASA Astrophysics Data System (ADS)

    Calitri, Francesca; Necpalova, Magdalena; Lee, Juhwan; Zaccone, Claudio; Spiess, Ernst; Herrera, Juan; Six, Johan

    2016-04-01

    Organic cropping systems have been promoted as a sustainable alternative to minimize the environmental impacts of conventional practices. Relatively little is known about the potential to reduce NO3-N leaching through the large-scale adoption of organic practices. Moreover, the potential to mitigate NO3-N leaching and thus the N pollution under future climate change through organic farming remain unknown and highly uncertain. Here, we compared regional NO3-N leaching from organic and conventional cropping systems in Switzerland using a terrestrial biogeochemical process-based model DayCent. The objectives of this study are 1) to calibrate and evaluate the model for NO3-N leaching measured under various management practices from three experiments at two sites in Switzerland; 2) to estimate regional NO3-N leaching patterns and their spatial uncertainty in conventional and organic cropping systems (with and without cover crops) for future climate change scenario A1B; 3) to explore the sensitivity of NO3-N leaching to changes in soil and climate variables; and 4) to assess the nitrogen use efficiency for conventional and organic cropping systems with and without cover crops under climate change. The data for model calibration/evaluation were derived from field experiments conducted in Liebefeld (canton Bern) and Eschikon (canton Zürich). These experiments evaluated effects of various cover crops and N fertilizer inputs on NO3-N leaching. The preliminary results suggest that the model was able to explain 50 to 83% of the inter-annual variability in the measured soil drainage (RMSE from 12.32 to 16.89 cm y-1). The annual NO3-N leaching was also simulated satisfactory (RMSE = 3.94 to 6.38 g N m-2 y-1), although the model had difficulty to reproduce the inter-annual variability in the NO3-N leaching losses correctly (R2 = 0.11 to 0.35). Future climate datasets (2010-2099) from the 10 regional climate models (RCM) were used in the simulations. Regional NO3-N leaching

  9. Development of Crop Yield Estimation Method by Applying Seasonal Climate Prediction in Asia-Pacific Region

    NASA Astrophysics Data System (ADS)

    Shin, Y.; Lee, E.

    2015-12-01

    Under the influence of recent climate change, abnormal weather condition such as floods and droughts has issued frequently all over the world. The occurrence of abnormal weather in major crop production areas leads to soaring world grain prices because it influence the reduction of crop yield. Development of crop yield estimation method is important means to accommodate the global food crisis caused by abnormal weather. However, due to problems with the reliability of the seasonal climate prediction, application research on agricultural productivity has not been much progress yet. In this study, it is an object to develop long-term crop yield estimation method in major crop production countries worldwide using multi seasonal climate prediction data collected by APEC Climate Center. There are 6-month lead seasonal predictions produced by six state-of-the-art global coupled ocean-atmosphere models(MSC_CANCM3, MSC_CANCM4, NASA, NCEP, PNU, POAMA). First of all, we produce a customized climate data through temporal and spatial downscaling methods for use as a climatic input data to the global scale crop model. Next, we evaluate the uncertainty of climate prediction by applying multi seasonal climate prediction in the crop model. Because rice is the most important staple food crop in the Asia-Pacific region, we assess the reliability of the rice yields using seasonal climate prediction for main rice production countries. RMSE(Root Mean Squire Error) and TCC(Temporal Correlation Coefficient) analysis is performed in Asia-Pacific countries, major 14 rice production countries, to evaluate the reliability of the rice yield according to the climate prediction models. We compare the rice yield data obtained from FAOSTAT and estimated using the seasonal climate prediction data in Asia-Pacific countries. In addition, we show that the reliability of seasonal climate prediction according to the climate models in Asia-Pacific countries where rice cultivation is being carried out.

  10. Soil N cycling and phenols accumulation under continuous rice cropping in the Grand Prairie region, Arkansas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil C stocks in the Grand Prairie region of eastern Arkansas have declined under the prevalent two-year rotation of rice (Orzya sativa L.) soybean (Glycine max (L.) Merr.). Continuous rice cropping could promote soil C sequestration, but in previous work continuous rice averaged 19% less grain yiel...

  11. MODELING THE IMPACT OF OZONE X DROUGHT INTERACTIONS ON REGIONAL CROP YIELDS (JOURNAL VERSION)

    EPA Science Inventory

    The influence of soil moisture stress on crop sensitivity to O3 was evaluated for corn, cotton, soybean, and wheat grown in the United States by using yield forecasting models to estimate the influence of soil moisture deficits on regional yield and a previously developed model t...

  12. Combining explanatory crop models with geospatial data for regional analyses of crop yield using field-scale modeling units

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop models are computational tools used for predicting crop yield and natural resource requirements and are frequently used to evaluate different climate or management scenarios at a specific site. However, problems involving land use or climate change would benefit from conducting crop simulation...

  13. Past and present trends of agricultural production and crop residues available for removal in the Mid-American Region

    SciTech Connect

    Posselius, J.H. Jr.

    1981-09-01

    This report consists of two separate studies. Part I discusses past and present trends of agricultural production in the MASEC region, while Part II emphasizes crop residues available for removal in the MASEC region. Part I analyzes agricultural crop and livestock production levels and trends by crop and livestock type on a state level basis. The resource base is divided into three main categories: starch crops, sugar crops, and livestock. The term starch crops refers to crops which are currently grown in significant acreage in the North Central region, such as: barley, beans, corn, oats, rice, rye, grain sorghum, sunflowers, and wheat. The term sugar crops refers to; sugar beets and sweet sorghum, and the term livestock refers to; cattle, dairy, hogs, chickens, and turkeys. The states that comprise the North Central region includes; Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin. Part II estimates the amount of crop residue available for removal in the MASEC region by crop type, on a county and state level basis. Wind and water erosion are considered as are nutrient losses and the net energy aspects of residue removal.

  14. Influence of feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios

    NASA Astrophysics Data System (ADS)

    van Walsum, P. E. V.

    2011-11-01

    Climate change impact modelling of hydrologic responses is hampered by climate-dependent model parameterizations. Reducing this dependency was one of the goals of extending the regional hydrologic modelling system SIMGRO with a two-way coupling to the crop growth simulation model WOFOST. The coupling includes feedbacks to the hydrologic model in terms of the root zone depth, soil cover, leaf area index, interception storage capacity, crop height and crop factor. For investigating whether such feedbacks lead to significantly different simulation results, two versions of the model coupling were set up for a test region: one with exogenous vegetation parameters, the "static" model, and one with endogenous simulation of the crop growth, the "dynamic" model WOFOST. The used parameterization methods of the static/dynamic vegetation models ensure that for the current climate the simulated long-term average of the actual evapotranspiration is the same for both models. Simulations were made for two climate scenarios. Owing to the higher temperatures in combination with a higher CO2-concentration of the atmosphere, a forward time shift of the crop development is simulated in the dynamic model; the used arable land crop, potatoes, also shows a shortening of the growing season. For this crop, a significant reduction of the potential transpiration is simulated compared to the static model, in the example by 15% in a warm, dry year. In consequence, the simulated crop water stress (the unit minus the relative transpiration) is lower when the dynamic model is used; also the simulated increase of crop water stress due to climate change is lower; in the example, the simulated increase is 15 percentage points less (of 55) than when a static model is used. The static/dynamic models also simulate different absolute values of the transpiration. The difference is most pronounced for potatoes at locations with ample moisture supply; this supply can either come from storage release of a

  15. Assessment of energy crops alternative to maize for biogas production in the Greater Region.

    PubMed

    Mayer, Frédéric; Gerin, Patrick A; Noo, Anaïs; Lemaigre, Sébastien; Stilmant, Didier; Schmit, Thomas; Leclech, Nathael; Ruelle, Luc; Gennen, Jerome; von Francken-Welz, Herbert; Foucart, Guy; Flammang, Jos; Weyland, Marc; Delfosse, Philippe

    2014-08-01

    The biomethane yield of various energy crops, selected among potential alternatives to maize in the Greater Region, was assessed. The biomass yield, the volatile solids (VS) content and the biochemical methane potential (BMP) were measured to calculate the biomethane yield per hectare of all plant species. For all species, the dry matter biomass yield and the VS content were the main factors that influence, respectively, the biomethane yield and the BMP. Both values were predicted with good accuracy by linear regressions using the biomass yield and the VS as independent variable. The perennial crop miscanthus appeared to be the most promising alternative to maize when harvested as green matter in autumn and ensiled. Miscanthus reached a biomethane yield of 5.5 ± 1 × 10(3)m(3)ha(-1) during the second year after the establishment, as compared to 5.3 ± 1 × 10(3)m(3)ha(-1) for maize under similar crop conditions. PMID:24929279

  16. Improving plot- and regional-scale crop models for simulating impacts of climate variability and extremes

    NASA Astrophysics Data System (ADS)

    Tao, F.; Rötter, R.

    2013-12-01

    Many studies on global climate report that climate variability is increasing with more frequent and intense extreme events1. There are quite large uncertainties from both the plot- and regional-scale models in simulating impacts of climate variability and extremes on crop development, growth and productivity2,3. One key to reducing the uncertainties is better exploitation of experimental data to eliminate crop model deficiencies and develop better algorithms that more adequately capture the impacts of extreme events, such as high temperature and drought, on crop performance4,5. In the present study, in a first step, the inter-annual variability in wheat yield and climate from 1971 to 2012 in Finland was investigated. Using statistical approaches the impacts of climate variability and extremes on wheat growth and productivity were quantified. In a second step, a plot-scale model, WOFOST6, and a regional-scale crop model, MCWLA7, were calibrated and validated, and applied to simulate wheat growth and yield variability from 1971-2012. Next, the estimated impacts of high temperature stress, cold damage, and drought stress on crop growth and productivity based on the statistical approaches, and on crop simulation models WOFOST and MCWLA were compared. Then, the impact mechanisms of climate extremes on crop growth and productivity in the WOFOST model and MCWLA model were identified, and subsequently, the various algorithm and impact functions were fitted against the long-term crop trial data. Finally, the impact mechanisms, algorithms and functions in WOFOST model and MCWLA model were improved to better simulate the impacts of climate variability and extremes, particularly high temperature stress, cold damage and drought stress for location-specific and large area climate impact assessments. Our studies provide a good example of how to improve, in parallel, the plot- and regional-scale models for simulating impacts of climate variability and extremes, as needed for

  17. A New Satellite Measurement Capability for Assessing Damage to Crops from Regional Scale Ozone Pollution

    NASA Astrophysics Data System (ADS)

    Fishman, J. J.; Creilson, J. K.; Parker, P. A.; Ainsworth, E. A.; Vining, G. G.; Szarka, J. L.

    2009-05-01

    High concentrations of ground-level ozone are frequently measured over farmland regions in many parts of the world. Since laboratory data show that ozone can significantly impact crop productivity if levels above a threshold concentration are reached, there is a consensus that crop yield should be impacted now and that the effects will become even more detrimental as global background concentrations continue to rise, as suggested by the latest IPCC report. Using the long-term record of tropospheric ozone derived from satellite measurements (http://asd-www.larc.nasa.gov/TOR/data.html), we present a methodology that can be used to assess the impact of regional ozone pollution on crop productivity. In this study, we use soybean crop yield data during a 5-year period over the Midwest of the United States and analyze the results using multiple linear regression statistical models. The results are consistent with findings using conventional ground-based measurements and with results obtained from an open-air experimental facility SoyFACE (Soybean Free Air Concentration Enrichment) in central Illinois. Our analysis suggests that the cost to the farmers globally is substantial, and supports other studies that calculate an economic loss to the farming community of more than 10 billion dollars annually.

  18. Effective crop evapotranspiration measurement using time-domain reflectometry technique in a sub-humid region

    NASA Astrophysics Data System (ADS)

    Srivastava, R. K.; Panda, R. K.; Halder, Debjani

    2016-06-01

    The primary objective of this study was to evaluate the performance of the time-domain reflectometry (TDR) technique for daily evapotranspiration estimation of peanut and maize crop in a sub-humid region. Four independent methods were used to estimate crop evapotranspiration (ETc), namely, soil water balance budgeting approach, energy balance approach—(Bowen ratio), empirical methods approach, and Pan evaporation method. The soil water balance budgeting approach utilized the soil moisture measurement by gravimetric and TDR method. The empirical evapotranspiration methods such as combination approach (FAO-56 Penman-Monteith and Penman), temperature-based approach (Hargreaves-Samani), and radiation-based approach (Priestley-Taylor, Turc, Abetw) were used to estimate the reference evapotranspiration (ET0). The daily ETc determined by the FAO-56 Penman-Monteith, Priestley-Taylor, Turc, Pan evaporation, and Bowen ratio were found to be at par with the ET values derived from the soil water balance budget; while the methods Abetw, Penman, and Hargreaves-Samani were not found to be ideal for the determination of ETc. The study illustrates the in situ applicability of the TDR method in order to make it possible for a user to choose the best way for the optimum water consumption for a given crop in a sub-humid region. The study suggests that the FAO-56 Penman-Monteith, Turc, and Priestley-Taylor can be used for the determination of crop ETc using TDR in comparison to soil water balance budget.

  19. Using simulation and data envelopment analysis to evaluate Iraqi regions in producing strategic crops

    NASA Astrophysics Data System (ADS)

    Chaloob, Ibrahim Z.; Ramli, Razamin; Nawawi, Mohd Kamal Mohd

    2014-12-01

    Productivity of the agriculture sector in Iraq has yet to reach an acceptable level. In this paper, we introduce a practical method to help manage Iraqi agriculture sector to control resources and increase production to meet the modern century requirements of good crops. These important resources are identified as water, fertilizer, natural fertilizer, pesticides and labour. The current agricultural patterns in Iraq affect the strategic crops cultivation in the country and lessen agricultural production to some life-threatening limits. Data Envelopment Analysis (DEA), which is a non-parametric tool, is proposed to identify solutions that can maximize farmers' net benefit making an optimal use of the five resources. This model also improves optimal mix of the resources. In reference to the production of each one of the three strategic crops in Iraq, the DEA model is used to find the efficiency of one region among four others in its agriculture sector, with the main problem being the constraint in the number of lands available in the situation. Hence, the simulation technique is used to generate additional regions to the four main regions adopted. This is to resolve the constriction of DEA when the decision making unit is less than the number of variables (outputs and inputs). The result is expected to show the efficiency of each of the evaluated region.

  20. Evaluating regional water scarcity: Irrigated crop water budgets for groundwater management in the Wisconsin Central Sands

    NASA Astrophysics Data System (ADS)

    Nocco, M. A.; Kucharik, C. J.; Kraft, G.

    2013-12-01

    Regional water scarcity dilemmas between agricultural and aquatic land users pervade the humid northern lake states of Wisconsin, Minnesota, and Michigan, where agricultural irrigation relies on groundwater drawn from shallow aquifers. As these aquifers have strong connectivity to surface waters, irrigation lowers water levels in lakes and wetlands and reduces stream discharges. Irrigation expansion has cultivated a 60-year water scarcity dilemma in The Wisconsin Central Sands, the largest irrigated region in the humid northern lake states, dedicated to potato, maize, and processing vegetable production. Irrigation has depleted Wisconsin Central Sands surface waters, lowering levels in some lakes by over 2 m and drying some coldwater trout streams. Aquatic ecosystems, property values, and recreational uses in some surface waters have been devastated. While the causal link between pumping and surface water stress is established, understanding crop-mediated processes, such as the timing and magnitude of groundwater consumption by evapotranspiration (ET) and groundwater recharge, will be useful in management of groundwater, irrigated cropping systems, and surface water health. Previous modeling and field efforts have compared irrigated crop water use to a natural reference condition on a net annual basis. As a result, we presently understand that for irrigated potatoes and maize, the average annual ET is greater and therefore, the average annual recharge is less than rainfed row crops, grasslands, and both coniferous and deciduous forests. However, we have a limited understanding of the magnitude and timing of ET and recharge from irrigated cropping systems on shorter time scales that proceed with the annual cropping cycle (i.e. planting, full canopy, harvest, residue cover). We seek to understand the spatiotemporal variability of crop water budgets and associated water scarcity in the Wisconsin Central Sands through detailed measurements of drainage (potential

  1. Assimilation of remote sensing data into crop growth model to improve the estimation of regional winter wheat yield

    NASA Astrophysics Data System (ADS)

    Liu, Chaoshun; Gao, Wei; Liu, Pudong; Sun, Zhibin

    2014-10-01

    Accurate regional crop growth monitoring and yield prediction is very critical for the national food security assessment and sustainable development of agriculture, especially for China, which has the largest population in the world. Remote sensing data and crop growth model have been successfully used in the crop production prediction. However, both of them have inherent limitation and uncertainty. The data assimilation method which combines crop growth model and remotely sensed data has been proven to be the most effective method in regional yield estimation. The aim of this paper is to improve the estimation of regional winter wheat yield of crop growth model by using data assimilation schemes with Ensemble Kalman Filter (EnKF) algorithm. WOrld FOod STudies (WOFOST) crop growth model was chosen as the crop growth model which was calibrated and validated by the field measured data. MODIS Leaf Area Index (LAI) values were used as remote sensing observations to adjust the LAI simulated by the WOFOST model based on EnKF. The results illustrate that the EnKF algorithm has significantly improved the regional winter wheat yield estimates over the WOFOST simulation without assimilation in both potential and water-limited modes. Although this study clearly implies that the assimilation of the remotely sensed data into crop growth model with EnKF algorithm has the potential to improve the prediction of regional crop yield and has great potential in agricultural applications, high resolution meteorological data and detailed crop field management are necessary to reach a high accuracy of regional crop yield estimation.

  2. Developing High-resolution Soil Database for Regional Crop Modeling in East Africa

    NASA Astrophysics Data System (ADS)

    Han, E.; Ines, A. V. M.

    2014-12-01

    The most readily available soil data for regional crop modeling in Africa is the World Inventory of Soil Emission potentials (WISE) dataset, which has 1125 soil profiles for the world, but does not extensively cover countries Ethiopia, Kenya, Uganda and Tanzania in East Africa. Another dataset available is the HC27 (Harvest Choice by IFPRI) in a gridded format (10km) but composed of generic soil profiles based on only three criteria (texture, rooting depth, and organic carbon content). In this paper, we present a development and application of a high-resolution (1km), gridded soil database for regional crop modeling in East Africa. Basic soil information is extracted from Africa Soil Information Service (AfSIS), which provides essential soil properties (bulk density, soil organic carbon, soil PH and percentages of sand, silt and clay) for 6 different standardized soil layers (5, 15, 30, 60, 100 and 200 cm) in 1km resolution. Soil hydraulic properties (e.g., field capacity and wilting point) are derived from the AfSIS soil dataset using well-proven pedo-transfer functions and are customized for DSSAT-CSM soil data requirements. The crop model is used to evaluate crop yield forecasts using the new high resolution soil database and compared with WISE and HC27. In this paper we will present also the results of DSSAT loosely coupled with a hydrologic model (VIC) to assimilate root-zone soil moisture. Creating a grid-based soil database, which provides a consistent soil input for two different models (DSSAT and VIC) is a critical part of this work. The created soil database is expected to contribute to future applications of DSSAT crop simulation in East Africa where food security is highly vulnerable.

  3. Crop specific LAI retrieval using optical and radar satellite data for regional crop growth monitoring and modelling

    NASA Astrophysics Data System (ADS)

    Guissard, Vincent; Lucau-Danila, Cozmin; Defourny, Pierre

    2005-10-01

    After a review of the current state of the art in LAI retrieval with optical and radar remote sensing data, this study investigates the capabilities of satellite remote sensing imagery in operational crop growth monitoring. This study demonstrated that the availability of an extensive crop field delineation database (like existing for the entire Belgian country) is of crucial in interest in order to retrieve crop specific information. LAI remote sensing retrieval was achieved during the year 2003 on a large Belgian agricultural area (4500 km2) for Sugar beet, Winter wheat and Maize crops. In order to increase the monitoring temporal frequency, an integration of SPOT-HRV, ENVISAT-MERIS and ERS2-SAR sensors was carried out, with a good level of accordance. The retrieval results were compatible with the concurrent field measurements as well as with the outputs given by the WOFOST crop growth model.

  4. The interactive effects of soil transplant into colder regions and cropping on soil microbiology and biogeochemistry.

    PubMed

    Liu, Shanshan; Wang, Feng; Xue, Kai; Sun, Bo; Zhang, Yuguang; He, Zhili; Van Nostrand, Joy D; Zhou, Jizhong; Yang, Yunfeng

    2015-03-01

    Soil transplant into warmer regions has been shown to alter soil microbiology. In contrast, little is known about the effects of soil transplant into colder regions, albeit that climate cooling has solicited attention in recent years. To address this question, we transplanted bare fallow soil over large transects from southern China (subtropical climate zone) to central (warm temperate climate zone) and northern China (cold temperate climate zone). After an adaptation period of 4 years, soil nitrogen components, microbial biomass and community structures were altered. However, the effects of soil transplant on microbial communities were dampened by maize cropping, unveiling a negative interaction between cropping and transplant. Further statistical analyses with Canonical correspondence analysis and Mantel tests unveiled annual average temperature, relative humidity, aboveground biomass, soil pH and NH4 (+) -N content as environmental attributes closely correlated with microbial functional structures. In addition, average abundances of amoA-AOA (ammonia-oxidizing archaea) and amoA-AOB (ammonia-oxidizing bacteria) genes were significantly (P < 0.05) correlated with soil nitrification capacity, hence both AOA and AOB contributed to the soil functional process of nitrification. These results suggested that the soil nitrogen cycle was intimately linked with microbial community structure, and both were subjected to disturbance by soil transplant to colder regions and plant cropping. PMID:24548455

  5. Advances in regional crop yield estimation over the United States using satellite remote sensing data

    NASA Astrophysics Data System (ADS)

    Johnson, D. M.; Dorn, M. F.; Crawford, C.

    2015-12-01

    Since the dawn of earth observation imagery, particularly from systems like Landsat and the Advanced Very High Resolution Radiometer, there has been an overarching desire to regionally estimate crop production remotely. Research efforts integrating space-based imagery into yield models to achieve this need have indeed paralleled these systems through the years, yet development of a truly useful crop production monitoring system has been arguably mediocre in coming. As a result, relatively few organizations have yet to operationalize the concept, and this is most acute in regions of the globe where there are not even alternative sources of crop production data being collected. However, the National Agricultural Statistics Service (NASS) has continued to push for this type of data source as a means to complement its long-standing, traditional crop production survey efforts which are financially costly to the government and create undue respondent burden on farmers. Corn and soybeans, the two largest field crops in the United States, have been the focus of satellite-based production monitoring by NASS for the past decade. Data from the Moderate Resolution Imaging Spectroradiometer (MODIS) has been seen as the most pragmatic input source for modeling yields primarily based on its daily revisit capabilities and reasonable ground sample resolution. The research methods presented here will be broad but provides a summary of what is useful and adoptable with satellite imagery in terms of crop yield estimation. Corn and soybeans will be of particular focus but other major staple crops like wheat and rice will also be presented. NASS will demonstrate that while MODIS provides a slew of vegetation related products, the traditional normalized difference vegetation index (NDVI) is still ideal. Results using land surface temperature products, also generated from MODIS, will also be shown. Beyond the MODIS data itself, NASS research has also focused efforts on understanding a

  6. Modeling regional crop yield and irrigation demand using SMAP type of soil moisture data

    NASA Astrophysics Data System (ADS)

    El Sharif, H. A.; Wang, J.; Georgakakos, A. P.; Bras, R. L.

    2013-12-01

    Agricultural models, such as Decision Support System for Agrotechnology Transfer - Cropping Systems Model (DSSAT-CSM) (Tsuji, et al., 1994), have been developed to predict the yield of various crops at field and regional scales. The model simulations of crop yields provide essential information for water resources management. One key input of the agricultural models is soil moisture. So far there are no observed soil moisture data covering the entire US with adequate time (daily) and space (1 km or less) resolutions preferred for model simulation of crop yields. Spatially and temporally downscaled data from the upcoming Soil Moisture Active Passive (SMAP) mission can fill this data gap through the generation of fine resolution soil moisture maps that can be incorporated into DSSAT-CSM model. This study will explore the impact downscaled remotely-sensed soil moisture data can have on agricultural model forecasts of agricultural yield and irrigation demand using synthetically generated data sets exhibiting statistical characteristics (uncertainty) similar to the upcoming SMAP products. It is expected that incorporating this data into agricultural model will prove especially useful for cases in which soil water conductivity characteristics and/or precipitation amount at a specific site of interest are not fully known; furthermore, a proposed Bayesian analysis is expected to generate a soil moisture sequence that reduces the uncertainty in modeled yield and irrigation demand compared to using downscaled remotely-sensed soil moisture or precipitation data alone. References Tsuji, G., Uehara, G., and Balas, S. (1994). DSSAT V3, University of Hawaii, Honolulu.

  7. Capturing field-scale variability in crop performance across a regional-scale climosequence

    NASA Astrophysics Data System (ADS)

    Brooks, E. S.; Poggio, M.; Anderson, T. R.; Gasch, C.; Yourek, M. A.; Ward, N. K.; Magney, T. S.; Brown, D. J.; Huggins, D. R.

    2014-12-01

    With the increasing availability of variable rate technology for applying fertilizers and other agrichemicals in dryland agricultural production systems there is a growing need to better capture and understand the processes driving field scale variability in crop yield and soil water. This need for a better understanding of field scale variability has led to the recent designation of the R. J. Cook Agronomy Farm (CAF) (Pullman, WA, USA) as a United States Department of Agriculture Long-Term Agro-Ecosystem Research (LTAR) site. Field scale variability at the CAF is closely monitored using extensive environmental sensor networks and intensive hand sampling. As investigating land-soil-water dynamics at CAF is essential for improving precision agriculture, transferring this knowledge across the regional-scale climosequence is challenging. In this study we describe the hydropedologic functioning of the CAF in relation to five extensively instrumented field sites located within 50 km in the same climatic region. The formation of restrictive argillic soil horizons in the wetter, cooler eastern edge of the region results in the development of extensive perched water tables, surface saturation, and surface runoff, whereas excess water is not an issue in the warmer, drier, western edge of the region. Similarly, crop and tillage management varies across the region as well. We discuss the implications of these regional differences on field scale management decisions and demonstrate how we are using proximal soil sensing and remote sensing imagery to better understand and capture field scale variability at a particular field site.

  8. Single and dual crop coefficients and crop evapotranspiration for wheat and maize in a semi-arid region

    NASA Astrophysics Data System (ADS)

    Shahrokhnia, M. H.; Sepaskhah, A. R.

    2013-11-01

    In this study, weighing lysimeters were used to investigate the daily crop coefficient and evapotranspiration of wheat and maize in the Fars province, Iran. The locally calibrated Food and Agriculture Organization (FAO) Penman-Monteith equation was used to calculate the reference crop evapotranspiration (ETo). Micro-lysimetry was used to measure soil evaporation ( E). Transpiration ( T) was estimated by the difference between crop evapotranspiration (ETc) and E. The single crop coefficient ( K c) was calculated by the ratio of ETc to ETo. Furthermore, the dual crop coefficient is composed of the soil evaporation coefficient ( K e) and the basal crop coefficients ( K cb) calculated from the ratio of E and T to ETo, respectively. The maximum measured evapotranspiration rate for wheat was 9.9 mm day-1 and for maize was 10 mm day-1. The total evaporation from the soil surface was about 30 % of the total wheat ETc and 29.8 % of total maize ETc. The single crop coefficient ( K c) values for the initial, mid-, and end-season growth stages of maize were 0.48, 1.40, and 0.31 and those of wheat were 0.77, 1.35, and 0.26, respectively. The measured K c values for the initial and mid-season stages were different from the FAO recommended values. Therefore, the FAO standard equation for K c-mid was calibrated locally for wheat and maize. The K cb values for the initial, mid-, and end-season growth stages were 0.23, 1.14, and 0.13 for wheat and 0.10, 1.07, and 0.06 for maize, respectively. Furthermore, the FAO procedure for single crop coefficient showed better predictions on a daily basis, although the dual crop coefficient method was more accurate on seasonal scale.

  9. LONG-TERM AGRONOMIC PERFORMANCE OF ORGANIC AND CONVENTIONAL FIELD CROPS IN THE MID-ATLANTIC REGION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite increasing interest in organic grain crop production among farmers, government agencies and other stakeholders, there is little information on expected crop yields and production challenges in organic grain production, especially in Coastal Plain soils of the mid-Atlantic region. The USDA-AR...

  10. LONG-TERM AGRONOMIC PERFORMANCE OF ORGANIC AND CONVENTIONAL FIELD CROPS IN THE MID-ATLANTIC REGION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite increasing interest in organic grain crop production among farmers, government agencies and others, there is little information on expected crop yields and production challenges in organic grain production, especially in Coastal Plain soils of the mid-Atlantic region. The USDA-ARS Beltsville...

  11. Alternative Crop Rotations in the Semi-arid Central Great Plains Region: How Much Fallow? Evaluating the Economics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The traditional crop production system in the semi-arid Central Great Plains Region (CGPR) of the U.S.A. is winter wheat (Triticum aestivum L.)-summer fallow (WF) or one crop every two years. This system is not a long-term sustainable dryland system. It is conducive to soil degradation and provide...

  12. Conservation tillage issues: cover crop-based organic rotational no-till grain production in the mid-atlantic region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic producers in the mid-Atlantic region are interested in reducing tillage, labor, and time requirements for grain production. Cover crop-based organic rotational no-till grain production is one approach to accomplishing these goals. Advancements in a system for planting crops into a mat of cov...

  13. Assessment of Impacts of Climate Variability on Crop Yield over the Terai Region of Nepal

    NASA Astrophysics Data System (ADS)

    Subedi, S.; Acharya, A.

    2015-12-01

    Agricultural sector in Nepal which alone contributes about 42 % of the total GDP have a huge influence on national economy. This sector is very much susceptible to climate change. This study is emphasized on Terai region (situated at an altitude of 60m to 300m) of Nepal which investigates the impacts of climate variability on various stages of cropping (paddy) periods such as transplant, maturity and harvest. The climate variables namely temperature and rainfall are used to explore the relationship between climate and paddy yields based on 30 years of historical observed data. Observed monthly rainfall and temperature data are collected from the department of hydrology and meteorology, and paddy yield data are collected from the Ministry of Agricultural Development. A correlation analysis will be carried out between the backward difference filtered climate parameters and the backward difference filtered rice yield. This study will also analyze average monthly and annual rainfall, and, min, max and mean temperature during the period of 1981-2010 based on 15 synoptic stations of Nepal. This study will visualize rainfall and temperature distribution over Nepal, and also evaluate the effect of change in rainfall and temperature in the paddy yield. While evaluating the impacts of climate on crop yield, this study will not consider the impact of irrigation in crop yield. The major results, climate distribution and its local/regional impacts on agriculture, could be utilized by planners, decision makers, and climate and agricultural scientists as a basis in formulating/implementing future plans, policies and projects.

  14. Water Stress & Biomass Monitoring and SWAP Modeling of Irrigated Crops in Saratov Region of Russia

    NASA Astrophysics Data System (ADS)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2016-04-01

    results of analyzing water stress during growing season of 2012 and yielded biomass of crops three types of crops alfalfa, corn and soya irrigated by sprinkling machines at left bank of Volga River at Saratov Region of Russia are presented and analyzed. For that a combination of data received from satellite, local meteorological station and farmers as well as SWAP model was used. Analyze of data sets of monitored water deficit of each crop averaged for irrigation period was done by linear regression with yielded biomass values. Following analyze of effectiveness of irrigation water application was done by SWAP agrohydrological model.

  15. Evaluation of crop yield simulations in the SE USA using the NARCCAP regional climate models

    NASA Astrophysics Data System (ADS)

    Cocke, S.; Shin, D. W.; Baigorria, G. A.; Romero, C. C.

    2015-12-01

    We integrate climate projections, crop modeling systems and economic assessment to develop a tool for studying and assessing agricultural production in the southeast United States. This integrated framework will enable us to assess the potential impact of future climate variability and trend on the production of economically-valuable crops in the southeast United States where weather/climate has major effects on agricultural yields. Optimally weighted multi-model ensemble (MME) approaches are used in order to improve the projection of future regional crop yield. This research will enhance the current knowledge of linking climate and process models, with an economic evaluation, as a demonstration of an approach that can be applied for other settings, problems, etc. The current maize/peanut/cotton yields and the future yield projections over the southeast US were obtained using (a) observed COOP data (1971-2010), (b) a reanalysis (NCEP R2), and (c) the NARCCAP (CMIP3) ensemble data for irrigated and non-irrigated conditions with 7 to 8 different planting dates (potential adaptation options). We found that the future yield amounts over the southeast US are generally decreased in the NARCCAP runs.

  16. Senescing grass crops as regional sources of reactive volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Karl, T.; Harren, F.; Warneke, C.; de Gouw, J.; Grayless, C.; Fall, R.

    2005-08-01

    Grass crop species, rice and sorghum, that are widely grown in the southeastern Texas region were analyzed for release of biogenic volatile organic compounds (VOCs) in simulated leaf-drying/senescence experiments. VOC release was measured by both online proton transfer reaction mass spectrometry (PTR-MS) and proton transfer ion trap mass spectrometry (PIT-MS) methods, and it was demonstrated that these two grass crops release a large variety of oxygenated VOCs upon drying under laboratory conditions primarily from leaves and not from stems. VOC release from paddy rice varieties was much greater than from sorghum, and major VOCs identified by gas chromatography PTR-MS included methanol, acetaldehyde, acetone, n-pentanal, methyl propanal, hexenol, hexanal, cis-3-hexenal, and trans-2-hexenal. The latter four VOCs, all C6 compounds known to be formed in wounded leaves, were the major volatiles released from drying rice leaves; smaller but substantial amounts of acetaldehyde were observed in all drying experiments. Online detection of VOCs using PIT-MS gave results comparable to those obtained with PTR-MS, and use of PIT-MS with collision-induced dissociation of trapped ions allowed unambiguous determination of the ratios of cis- and trans-hexenals during different phases of drying. As rice is one of the largest harvested crops on a global scale, it is conceivable that during rice senescence releases of biogenic VOCs, especially the reactive C6 wound VOCs, may contribute to an imbalance in regional atmospheric oxidant formation during peak summer/fall ozone formation periods. A county-by-county estimate of the integrated emissions of reactive biogenic VOCs from sorghum and rice production in Texas suggests that these releases are orders of magnitude lower than anthropogenic VOCs in urban areas but also that VOC emissions from rice in southeastern coastal Texas may need to be included in regional air quality assessments during periods of extensive harvesting.

  17. Comparison of Alternative Crop Phenology Detection Algorithms using MODIS NDVI Time Series Data in US Corn Belt Region

    NASA Astrophysics Data System (ADS)

    Lee, J.; Hong, S. Y.; Kang, S.

    2015-12-01

    Predicting crop phenology is important for understanding of crop development and growth processes and improving the accuracy of crop model. Remote sensing offers a feasible tool for monitoring spatio-temporal patterns of crop phenology in region and continental scales. Various methods have developed to determine the timing of crop phenological stages using spectral vegetation indices (i.e. NDVI and EVI) derived from satellite data. In our study, it was compared four alternative detection methods to identify crop phenological stages (i.e. the emergence and harvesting date) using high quality NDVI time series data derived from MODIS. In threshold method assumes the emergence and harvesting date when NDVI values exceed and decreases down to a given threshold, respectively. Two kind of threshold values were applied for NDVI and it increment for eight days. The other two methods use a logistic fitting model and inflection points on fitted curve, respectively. It was compared the four methods for corn and soybean, respectively. For validation, three kinds of datasets were utilized: AmeriFlux biological data of planting and harvest dates, and emergence date estimated from growing degree days (AGDDs) at flux tower sites, and state-level USDA Crop Progress Report (CPR). All methods showed substantial uncertainty but the threshold method showed relatively better agreement against with both site- and state-level data for soybean phenology. For better NDVI-based regional estimation of crop phenology, factors of uncertainty were examined and discussed in this study.

  18. Regional Climate Implications of Large-scale Cultivation of Biofuel Crops

    NASA Astrophysics Data System (ADS)

    Rowe, C. M.; Oglesby, R. J.; Hays, C. J.; van Etten, A. R.

    2008-12-01

    Conversion from corn-based ethanol to cellulosic ethanol has the potential to dramatically alter the production of biofuels in the United States and could result in large-scale changes in the agricultural landscape of vast areas of the country. Regions currently dominated by corn production could see widespread planting of switchgrass and other fast-growing, water-efficient sources of cellulose biomass. An often overlooked side effect of these land-cover changes could be a significant alteration of the energy fluxes between the land surface and the atmosphere with profound local, regional, and continental impacts on the climate system. Changes in the surface energy balance result primarily from differences in the seasonality of transpiration from corn versus switchgrass and could be enhanced as a result of a reduced need for irrigation of switchgrass in areas where corn can be produced only under irrigation. Preliminary modeling results using a simple "bucket" land surface model coupled to the WRF mesoscale model have demonstrated increases in summertime average daily maximum temperature of up to 4° C, smaller increases of up to 2° C in nighttime minimum temperatures and reductions in precipitation by up to 25% when corn was changed to switchgrass over the central United States. Improved parameterization of biofuel crops in more sophisticated land surface models will allow us to refine these preliminary estimates and assess the impacts of large-scale conversion to cellulosic biofuel crops, relative to greenhouse gas induced regional climate change.

  19. The effect of crop rotation on pesticide leaching in a regional pesticide risk assessment.

    PubMed

    Balderacchi, Matteo; Di Guardo, Andrea; Vischetti, Costantino; Trevisan, Marco

    2008-11-01

    New modeling approaches that include the use of GIS are under development in order to allow a more realistic assessment of environmental contamination by pesticides. This paper reports a regional GIS-based risk assessment using a software tool able to simulate complex and real crop rotations at the regional scale. A single pesticide leaching assessment has been done. The mean annual pesticide concentration in leachate has been analyzed using both stochastic and deterministic approaches. The outputs of these simulations were mapped over the sampling locations of the regional pesticide monitoring program, demonstrating that GIS-based risk assessment can be used to establish new monitoring programs. A multiple pesticide leaching assessment for analyzing the risk related to pest control strategies in six different maize-based rotations has been carried out. Additive toxic units approach has been used. Crop rotation allows to mediate the risk related to pesticide use because forces the use of different compounds with different fate and toxicology properties. PMID:19031893

  20. The Teaching of Percent.

    ERIC Educational Resources Information Center

    Szymanski, T.

    1998-01-01

    Proposes looking at the percent symbol (%) as an operator, which means to divide any number in front of it by 100. Stresses the importance of using correct words to describe the numbers generated in percent calculations. Explains how to (1) calculate percent using equivalent fractions; (2) divide fraction numerators by denominators, retaining the…

  1. Agronomic responses to late-seeded cover crops in a semiarid region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensification of cropping systems in the Great Plains beyond annual cropping practices may be limited by inadequate precipitation, short growing seasons, and highly variable climatic conditions. Inclusion of cover crops in dryland cropping systems may serve as an effective intensification strateg...

  2. Sensitivity analysis of an explanatory crop model at the regional scale using geospatial data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Explanatory, or process-based, crop models are computational tools that have been developed for a wide range of applications, such as optimizing crop production and simulating the effects of climate change. Crop models rely on a diverse set of input variables for predicting outcomes such as crop yie...

  3. Perchlorate exposure from food crops produced in the lower Colorado River region.

    PubMed

    Sanchez, Charles A; Barraj, Leila M; Blount, Benjamin C; Scrafford, Carolyn G; Valentin-Blasini, Liza; Smith, Kimberly M; Krieger, Robert I

    2009-05-01

    The Colorado River shows low levels of perchlorate derived from aerospace- and defense-related fuel industries once located near the Las Vegas Wash. At sufficiently high dosages perchlorate can disrupt thyroid function by inhibiting uptake of iodide. The Colorado River is the primary source of irrigation water for most food crops grown in Southern California and Southwestern Arizona. The objective of this study was to evaluate potential perchlorate exposure from food crops produced in the lower Colorado River region (LCRR). The major food commodities produced in the region were sampled and perchlorate levels were determined by ion chromatography followed by detection using either conductivity or tandem mass spectrometry, depending on analyte levels. The Monte Carlo module of the Dietary Exposure Evaluation Model (DEEM) was used to derive an estimate of the 2-day average perchlorate intakes. Data were derived assuming that individuals residing in the LCRR get their fruits and vegetables from within the LCRR as well as from other areas in the United States, or assuming individuals living in the LCRR get their fruits and vegetables from the LCRR only. Perchlorate exposure estimates derived in this study are comparable to exploratory estimates by the US Food and Drug Administration. For infants and children, over 50% of the estimated perchlorate exposure was from milk. The relative impact of vegetables and fruit toward perchlorate exposure increased by age through adulthood. Cumulative perchlorate exposure estimates based on this hypothetical analysis could approach or exceed the NAS reference dose (RfD) for some population groups as drinking water levels exceeded 6 microg/l. However, few individuals are exposed to perchlorate in drinking water at levels above 4 microg/l in the United States and very few would be exposed to perchlorate levels exceeding the RfD, whether consuming food crops from within or outside the LCRR. PMID:18506207

  4. Chat (Catha edulis): a socio economic crop in Harar Region, Eastern Ethiopia.

    PubMed

    Kandari, Laxman S; Yadav, Hiranmai R; Thakur, Ashok K; Kandari, Tripti

    2014-01-01

    Chat (Catha edulis) is an important perennial crop and its leaves are chewed for a stimulating effect. It is widely cultivated in the Ethiopian highlands of Oromia region and is figured as Ethiopia's second largest foreign exchange earner. Its cultivation accounts for about 70% of farmer's income in the study area. The common effect of its consumption leads to insomnia, a condition that the users sometimes try to overcome with sedatives or alcohol. The present study is an attempt to survey and assess the impact of crop on the community. It has been observed to implicate health problems, reduces savings and nutritional standards of the family members. The chat yields in the area ranges from 1500-1800 kg/ha through monoculture. During the study, the average monthly income of the family practicing chat cultivation was from Birr 8, 533.00 to 13, 166.00 kg/ha per year in Baate and Genede cultivating areas. When the average cost per/ha was rupees 60/kg. The present study shows that during the recent past, leaf consumption has increased significantly. Chat growers are not only producers but also traders and consumers. Its consumption has become a widespread habit from secondary schools. Highest number of consumers was found to be among drivers followed by students and shopkeepers. The consumption of the plant is not considered a taboo but on contrary a status symbol in the region. It has no legal or moral implications and is considered as a part of custom and habit of local people. High value cash crop like vegetables and orchard fruits needs to be used as a replacement for chat which could be a regular source of income to farmers. Alternative sources of income for farmers needs to be scientifically worked out and proposed keeping in view the proportion of agricultural land reserved under chat cultivation and to increase the production of food grains being produced. PMID:25332879

  5. Assessment tools for fuzzy clustered regions of interest for site-specific crop management

    NASA Astrophysics Data System (ADS)

    Meyer, George E.; Camargo Neto, Joao; Jones, David D.

    2004-03-01

    Fuzzy excess green (ExG) crisp indices and clustering algorithms such as the Gustafson-Kessel (GK) have been successfully used for unsupervised classification of hidden and prominent regions of interest (ROI"s), namely green plants in crop color images against bare clay soil, corn residue and wheat residue, typical of the Great Plains. Each process can be enhanced with Zadeh (Z) and Gath-Geva (GG) fuzzy enhancement techniques. Enhanced indices and clusters can be then sorted by final degree of fuzziness, and recombined into labeled, false-color class images, which can be used as templates for further shape and textural analyses. ROI"s with the lowest degree of fuzziness were consistently found to be plant clusters according to foveated or prominence of the region size within the image. Clustering performance according to partition densities and hyper volume was also evaluated. These latter measures can be used to select the number of clusters and evaluate the computational time needed to find plant ROI"s with complex backgrounds under different lighting conditions. Enhanced GK clustering methods have performed very well and have identified plants in bare soil, corn residue plants , and wheat straw plants, well into the high 90 percentages, depending on plant age category and the relative proportion of plant size within the image. Improved clustering algorithms with textural finger printing could be potentially useful for unsupervised remote sensing, mapping, crop management, weed, and pest control for precision agriculture.

  6. Old Dog New Tricks: Use of Point-based Crop Models in Grid-based Regional Assessment of Crop Management Technologies Impact on Future Food Security

    NASA Astrophysics Data System (ADS)

    Koo, J.; Wood, S.; Cenacchi, N.; Fisher, M.; Cox, C.

    2012-12-01

    HarvestChoice (harvestchoice.org) generates knowledge products to guide strategic investments to improve the productivity and profitability of smallholder farming systems in sub-Saharan Africa (SSA). A keynote component of the HarvestChoice analytical framework is a grid-based overlay of SSA - a cropping simulation platform powered by process-based, crop models. Calibrated around the best available representation of cropping production systems in SSA, the simulation platform engages the DSSAT Crop Systems Model with the CENTURY Soil Organic Matter model (DSSAT-CENTURY) and provides a virtual experimentation module with which to explore the impact of a range of technological, managerial and environmental metrics on future crop productivity and profitability, as well as input use. For each of 5 (or 30) arc-minute grid cells in SSA, a stack of model input underlies it: datasets that cover soil properties and fertility, historic and future climate scenarios and farmers' management practices; all compiled from analyses of existing global and regional databases and consultations with other CGIAR centers. Running a simulation model is not always straightforward, especially when certain cropping systems or management practices are not even practiced by resource-poor farmers yet (e.g., precision agriculture) or they were never included in the existing simulation framework (e.g., water harvesting). In such cases, we used DSSAT-CENTURY as a function to iteratively estimate relative responses of cropping systems to technology-driven changes in water and nutrient balances compared to zero-adoption by farmers, while adjusting model input parameters to best mimic farmers' implementation of technologies in the field. We then fed the results of the simulation into to the economic and food trade model framework, IMPACT, to assess the potential implications on future food security. The outputs of the overall simulation analyses are packaged as a web-accessible database and published

  7. Historical development of crop-related water footprints and inter-regional virtual water flows within China

    NASA Astrophysics Data System (ADS)

    Zhuo, La; Mekonnen, Mesfin M.; Hoekstra, Arjen Y.

    2015-04-01

    China is facing water-related challenges, including an uneven distribution of water resources, both temporally and spatially, and an increasing competition over the limited water resources among different sectors. This issue has been widely researched and was finally included into the National Plan 2011 (the 2011 No. 1 Document by the State Council of China). However, there is still lack of information on how population growth and rapid urbanization have affected the water resources in China over the last decades. The current study aims at investigating (i) the intra-annual variation of green and blue water footprints (WFs) of crop production in China over the period 1978-2009 at a spatial resolution of 5 by 5 arc-minute; (ii) the yearly virtual water (VW) balances of 31 provinces within China, related water savings for the country, as well as the VW flows among eight economic regions resulting from inter-regional crop trade over the same period; and (iii) the development of the WF related to crop consumption by Chinese consumers. Results show that, over the period 1978-2009, the total WF related to crop production within China increased by only 4%), but regional changes were significant. From the 1980s to the 2000s, the shift of the cropping centre from the South to the North resulted in an increase of about 16% in the blue WF and 19% in the green WF in the North and a reduction of the blue and green WF in the South by 11% and 3%, respectively. China as a whole was a net virtual water importer related to crop trade, thus saving domestic water resources. China's inter-regional crop trade generated a blue water 'loss' annually by transferring crops from provinces with relatively low crop water productivity to provinces with relatively high productivity. Over the decades, the original VW flow from the South coastal region to the Northeast was reversed. Rice was the all-time dominant crop in the inter-regional VW flows (accounting for 34% in 2009), followed by wheat

  8. Meaning of percent sunshine

    SciTech Connect

    Sands, J.

    1983-05-01

    The meaning of the term percent of possible sunshine is discussed. The Percent of Possible Sunshine (POPS) is published monthly with annual summaries by the National Climatic Data Center (NCDC) for 168 locations, and is a measure of how long the sun shines, not how much sunshine there is. The weakness of the POPS as a serious indicator of solar performance is pointed out.

  9. Using Different Spatial Scales of Climate Data for Regional Climate Impact Assessment: Effect on Crop Modeling Analysis

    NASA Astrophysics Data System (ADS)

    Mereu, V.; Gallo, A.; Trabucco, A.; Montesarchio, M.; Mercogliano, P.; Spano, D.

    2015-12-01

    The high vulnerability of the agricultural sector to climate conditions causes serious concern regarding climate change impacts on crop development and production, particularly in vulnerable areas like the Mediterranean Basin. Crop simulation models are the most common tools applied for the assessment of such impacts on crop development and yields, both at local and regional scales. However, the use of these models in regional impact studies requires spatial input data for weather, soil, management, etc, whose resolution could affect simulation results. Indeed, the uncertainty in projecting climate change impacts on crop phenology and yield at the regional scale is affected not only by the uncertainty related to climate models and scenarios, but also by the downscaling methods and the resolution of climate data. The aim of this study was the evaluation of the effects of spatial resolutions of climate projections in estimating maturity date and grain yield for different varieties of durum wheat, common wheat and maize in Italy. The simulations were carried out using the CSM-CERES-Wheat and CSM-CERES-Maize crop models included in the DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, parameterized and evaluated in different experimental sites located in Italy. Dynamically downscaled climate data at different resolutions and different RCP scenarios were used as input in the crop models. A spatial platform, DSSAT-CSM based, developed in R programming language was applied to perform the simulation of maturity date and grain yield for durum wheat, common wheat and maize in each grid cell. Results, analyzed at the national and regional level, will be discussed.

  10. Vegetation dynamics using AVHRR/NDVI: Regional climate, carbon dioxide fertilization and crop yield relations

    NASA Astrophysics Data System (ADS)

    Lim, Chai Kyung

    Vegetation Anomaly Index (VAI), which is not influenced by vegetation type and is almost perfectly correlated with spatially averaged NDVI over any eco-region. Finally, we examined a possibility of utilizing NDVI to forecast crop yield and crop market price. We found that National Agricultural Statistics Service (MASS) corn yield estimate for Iowa and August NDVI averaged over the selected counties of Iowa are fairly well correlated for the past two decades. The Iowa corn market price is better correlated with NASS yield estimate than the average August NDVI over the counties; however, the correlation is more stable with NDVI than the NASS estimates, which indicates a great possibility of utilizing NDVI to forecast crop related access by USDA.

  11. Technology targeting for sustainable intensification of crop production in the Delta region of Bangladesh

    NASA Astrophysics Data System (ADS)

    Schulthess, U.; Krupnik, T. J.; Ahmed, Z. U.; McDonald, A. J.

    2015-04-01

    Remote sensing data are nowadays being acquired within short intervals and made available at a low cost or for free. This opens up opportunities for new remote sensing applications, such as the characterization of entire regions to identify most suitable areas for technology targeting. Increasing population growth and changing dietary habits in South Asia call for higher cereal production to ensure future food security. In the Delta area of Bangladesh, surface water is considered to be available in quantities large enough to support intensification by adding an irrigated dry season crop. Fuel-efficient, low lift axial flow pumps have shown to be suitable to carry water to fields that are within a buffer of four hundred meters of the rivers. However, information on how and where to target surface water irrigation efforts is currently lacking. We describe the opportunities and constraints encountered in developing a procedure to identify cropland for which axial flow pumps could be successfully deployed upon in a 43'000 km2 area. First, we isolated cropland and waterways using Landsat 5 and 7 scenes using image segmentation followed by classification with the random forest algorithm. Based on Landsat 7 and 8 scenes, we extracted maximum dry season enhanced vegetation index (EVI) values, which we classified into fallow, low-, and high-intensity cropland for the last three years. Last, we investigated the potential for surface water irrigation on fallow and low-intensity land by applying a cropping risk matrix to address the twin threats of soil and water salinity. Our analysis indicates that there are at least 20,000 ha of fallow land under the low-risk category, while more than 100,000 ha of low-intensity cropland can be brought into intensified production. This information will aid in technology targeting for the efficient deployment of surface water irrigation as a tool for intensification.

  12. Percents Can Make Sense

    ERIC Educational Resources Information Center

    Zambo, Ron

    2008-01-01

    This article describes instructional activities designed to help students develop an understanding of the multiple relationships between fractions and percents and unit price as they develop their mental-math abilities. (Contains 4 figures.)

  13. Multistage depressed collector with efficiency of 90 to 94 percent for operation of a dual-mode traveling wave tube in the linear region

    NASA Technical Reports Server (NTRS)

    Ramins, P.; Fox, T. A.

    1980-01-01

    An axisymmetric, multistage, depressed collector of fixed geometric design was evaluated in conjunction with an octave bandwidth, dual mode traveling wave tube (TWT). The TWT was operated over a wide range of conditions to simulate different applications. The collector performance was optimized (within the constraint of fixed geometric design) over the range of TWT operating conditions covered. For operation of the TWT in the linear, low distortion range, 90 percent and greater collector efficiencies were obtained leading to TWT overall efficiencies of 20 to 35 percent, as compared with 2 to 5 percent with an undepressed collector. With collectors of this efficiency and minimized beam interception losses, it becomes practical to design dual mode TWT's such that the low mode can represent operation well below saturation. Consequently, the required pulse up in beam current can be reduced or eliminated, and this mitigates beam control and dual mode TWT circuit design problems. For operation of the dual mode TWT at saturation, average collector efficiencies in excess of 85 percent were obtained for both the low and high modes across an octave bandwidth, leading to a three to fourfold increase in the TWT overall efficiency.

  14. HISTORICAL ANALYSIS OF THE RELATIONSHIP OF STREAMFLOW FLASHINESS WITH POPULATION DENSITY, IMPERVIOUSNESS, AND PERCENT URBAN LAND COVER IN THE MID-ATLANTIC REGION

    EPA Science Inventory

    Methods: This study is an examination of the relationship between stream flashiness and watershed-scale estimates of percent imperviousness, degree of urban development, and population density for 150 watersheds with long-term USGS National Water Information System (NWIS) histori...

  15. HISTORICAL ANALYSIS OF THE RELATIONSHIP OF STREAMFLOW FLASHINESS WITH POPULATION DENSITY, IMPERVIOUSNESS, AND PERCENT URBAN LAND COVER IN THE MID-ATLANTIC REGION (1)

    EPA Science Inventory

    Historical US Census population data was used to estimate population density for 1930-2000 and satellite imagery from circa 1973, 1992, and 2001 was used to estimate the degree of urban development and the percent imperviousness (for 1992 and 2001) for a set of 150 small (< 13...

  16. Regional-scale yield simulations using crop and climate models: assessing uncertainties, sensitivity to temperature and adaptation options

    NASA Astrophysics Data System (ADS)

    Challinor, A. J.

    2010-12-01

    Recent progress in assessing the impacts of climate variability and change on crops using multiple regional-scale simulations of crop and climate (i.e. ensembles) is presented. Simulations for India and China used perturbed responses to elevated carbon dioxide constrained using observations from FACE studies and controlled environments. Simulations with crop parameter sets representing existing and potential future adapted varieties were also carried out. The results for India are compared to sensitivity tests on two other crop models. For China, a parallel approach used socio-economic data to account for autonomous farmer adaptation. Results for the USA analysed cardinal temperatures under a range of local warming scenarios for 2711 varieties of spring wheat. The results are as follows: 1. Quantifying and reducing uncertainty. The relative contribution of uncertainty in crop and climate simulation to the total uncertainty in projected yield changes is examined. The observational constraints from FACE and controlled environment studies are shown to be the likely critical factor in maintaining relatively low crop parameter uncertainty. Without these constraints, crop simulation uncertainty in a doubled CO2 environment would likely be greater than uncertainty in simulating climate. However, consensus across crop models in India varied across different biophysical processes. 2. The response of yield to changes in local mean temperature was examined and compared to that found in the literature. No consistent response to temperature change was found across studies. 3. Implications for adaptation. China. The simulations of spring wheat in China show the relative importance of tolerance to water and heat stress in avoiding future crop failures. The greatest potential for reducing the number of harvests less than one standard deviation below the baseline mean yield value comes from alleviating water stress; the greatest potential for reducing harvests less than two

  17. Crop identification for the delineation of irrigated regions under scarce data conditions: a new approach based on chaos theory

    NASA Astrophysics Data System (ADS)

    Mangiarotti, S.; Muddu, S.; Sharma, A. K.; Corgne, S.; Ruiz, L.; Hubert-Moy, L.

    2015-12-01

    Groundwater is one of the main water reservoirs used for irrigation in regions of scarce water resources. For this reason, crop irrigation is expected to have a direct influence on this reservoir. To understand the time evolution of the groundwater table and its storage changes, it is important to delineate irrigated crops, whose evaporative demand is relatively higher. Such delineation may be performed based on classical classification approaches using optical remote sensing. However, it remains a difficult problem in regions where plots do not exceed a few hectares and exhibit a very heterogeneous pattern with multiple crops. This difficulty is emphasized in South India where two or three months of cloudy conditions during the monsoon period can hide crop growth during the year. An alternative approach is introduced here that takes advantage of such scarce signal. Ten different crops are considered in the present study. A bank of crop models is first established based on the global modeling technique [1]. These models are then tested using original time series (from which models were obtained) in order to evaluate the information that can be deduced from these models in an inverse approach. The approach is then tested on an independent data set and is finally applied to a large ensemble of 10,000 time series of plot data extracted from the Berambadi catchment (AMBHAS site) part of the Kabini River basin CZO, South India. Results show that despite the important two-month gap in satellite observations in the visible band, interpolated vegetation index remains an interesting indicator for identification of crops in South India. [1] S. Mangiarotti, R. Coudret, L. Drapeau, & L. Jarlan, Polynomial search and global modeling: Two algorithms for modeling chaos, Phys. Rev. E, 86(4), 046205 (2012).

  18. Dryland cropping systems influence microbial biomass and enzyme activities in a sandy soil in a semiarid region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In dryland ecosystems, crop establishment is not always guaranteed because precipitation may not be sufficient at planting. Sandy soils under dryland agriculture in the Texas High Plains region of USA have extremely low organic matter (OM) content (< 1%) and thus, hold low water and nutrients to su...

  19. Effects of gully erosion and gully filling on soil depth and crop production in the black soil region, northeast China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gully erosion has affected the crop yield in the black soil region of China and become a potential threat to Chan’s food security. This paper aimed to quantify the effects of gully erosion on soil depth and soybean yield. An ephemeral gully (74 m) and a classic gully (52 m) connected at the gully’s ...

  20. Long-term economic performance of organic and conventional field crops in the mid-Atlantic region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in organic grain production is increasing in the United States but there is limited information regarding the economic performance of organic grain and forage production in the mid-Atlantic region. We present the results from enterprise budget analyses for individual crops and for complete...

  1. Regional hybrid broccoli trials provide a means to further breeding efforts of this increasingly important vegetable crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A Coordinated Agricultural Project (CAP) entitled “Establishing an Eastern Broccoli Industry” is funded under the Specialty Crop Research Initiative (SCRI), and a primary component of the project is a system of regional hybrid broccoli trials conducted along the eastern seaboard. Hybrids currently ...

  2. Water use, crop coefficients, and irrigation management criteria for camelina production in arid regions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Camelina sativa (L.) Crantz is an oilseed crop touted as being suitable for production in the arid southwestern USA. However, because any significant development of the crop has been limited to cooler, rain-fed climate-areas, information and guidance for managing irrigated-camelina are lacking. This...

  3. Crop monoculture rather than agriculture reduces the spatial turnover of soil bacterial communities at a regional scale.

    PubMed

    Figuerola, Eva L M; Guerrero, Leandro D; Türkowsky, Dominique; Wall, Luis G; Erijman, Leonardo

    2015-03-01

    The goal of this study was to investigate the spatial turnover of soil bacterial communities in response to environmental changes introduced by the practices of soybean monoculture or crop rotations, relative to grassland soils. Amplicon sequencing of the 16S rRNA gene was used to analyse bacterial diversity in producer fields through three successive cropping cycles within one and a half years, across a regional scale of the Argentinean Pampas. Unlike local diversity, which was not significantly affected by land use type, agricultural management had a strong influence on β-diversity patterns. Distributions of pairwise distances between all soils samples under soybean monoculture had significantly lower β-diversity and narrower breadth compared with distributions of pairwise distances between soils managed with crop rotation. Interestingly, good agricultural practices had similar degree of β-diversity as natural grasslands. The higher phylogenetic relatedness of bacterial communities in soils under monoculture across the region was likely determined by the observed loss of endemic species, and affected mostly to phyla with low regional diversity, such as Acidobacteria, Verrucomicrobia and the candidates phyla SPAM and WS3. These results suggest that the implementation of good agricultural practices, including crop rotation, may be critical for the long-term conservation of soil biodiversity. PMID:24803003

  4. [Spatiotemporal characteristics of reference crop evapotranspiration in inland river basins of Hexi region].

    PubMed

    Lü, Xiao-Dong; Wang, He-ling; Ma, Zhong-ming

    2010-12-01

    Based on the 1961-2008 daily observation data from 17 meteorological stations in the inland river basins in Hexi region, the daily reference crop evapotranspiration (ET0) in the basins was computed by Penman-Monteith equation, and the spatiotemporal characteristics of seasonal and annual ET0 were studied by GIS and IDW inverse-distance spatial interpolation. In 1961-2008, the mean annual ET0 (700-1330 mm) increased gradually from southeast to northwest across the basins. The high value of mean annual ET0 in Shule River basin and Heihe River basin declined significantly (P < 0.05), with the climatic trend rate ranged from -53 to -10 mm (10 a)(-1), while the low value of mean annual ET0 in Shiyang River basin ascended slightly. The ET0 in the basins had a significant annual fluctuation, which centralized in Linze and decreased toward northwest and southeast. The ET0 in summer and autumn contributed most of a year, and the highest value of ET0 all the year round always appeared in Shule River basin. The climatic trend rate was in the order of summer > spring > autumn > winter. Wind speed and maximum temperature were the primary factors affecting the ET0 in the basins. Furthermore, wind speed was the predominant factor of downward trend of ET0 in Shule and Heihe basins, while maximum temperature and sunshine hours played an important role in the upward trend of ET0 in Shiyang basin. PMID:21443004

  5. Can Crop Models Simulate the ENSO Impacts on Regional Corn Yield in U.s. Corn Belt?

    NASA Astrophysics Data System (ADS)

    Niyogi, D. S.; Liu, X.; Andresen, J.; Jain, A. K.; Kumar, A.; Kellner, O.; Elias, A.

    2013-12-01

    In this paper, we seek to answer two questions: 1. Whether climate variability/ ENSO events impact the corn yield in U.S. Corn Belt?; and 2.Can crop models capture these impacts?. First, we evaluated the relationships between ENSO events and regional corn yield in the U.S Corn Belt, by taking data from 18 representative crop reporting districts for a 30 year period (1981-2010). These data were compiled as part of a large multiscale NIFA project titled U2U that aims at making Climate Information Useful to Usable. We clustered the data for different ENSO phases and performed statistical analysis to understand the impacts on corn yield. The detrended observed data indicate that El Niño events have positive impact on corn yields while La Niña events have slightly negative impact. These results are statistically significant at 0.05 level. To investigate whether crop models can capture the impacts of El Niño / La Niña; we compared the yields from three different crop models of varying complexity (Hybrid Maize; DSSAT; and ISAM) with default/ common agronomic and onsite meteorological input. Simulated yields show similar pattern as seen in the observed data: higher yield for El Niño years, and lower yields for the La Niña years. However, we also found MAE (Mean absolute error) of simulations in El Niño years are higher than for the La Niña years and Neutral years. To understand whether the performance can be enhanced by providing regional climatology, hydroclimatological, or agronomic information - we conducted additional experiments with the Hybrid Maize models involving- (i) use of onsite versus regional reanalysis data - the hypothesis being that even if the onsite data may have limited ENSO signature; the reanalysis data will have a much stronger ENSO feedback embedded within; (ii) use of actual planting date versus the default value used in the crop models - to understand if the year to year agronomic practice might influence or improve the response to capture

  6. Assimilation of Downscaled SMOS Soil Moisture for Quantifying Drought Impacts on Crop Yield in Agricultural Regions in Brazil

    NASA Astrophysics Data System (ADS)

    Chakrabarti, S.; Bongiovanni, T. E.; Judge, J.; Principe, J. C.; Fraisse, C.

    2013-12-01

    Reliable soil moisture (SM) information in the root zone (RZSM) is critical for quantification of agricultural drought impacts on crop yields and for recommending management and adaptation strategies for crop management, commodity trading and food security.The recently launched European Space Agency-Soil Moisture and Ocean Salinity (ESA-SMOS) and the near-future National Aeronautics and Space Administration-Soil Moisture Active Passive (NASA-SMAP) missions provide SM at unprecedented spatial resolutions of 10-25 km, but these resolutions are still too coarse for agricultural applications in heterogeneous landscapes, making downscaling a necessity. This downscaled near-surface SM can be merged with crop growth models in a data assimilation framework to provide optimal estimates of RZSM and crop yield. The objectives of the study include: 1) to implement a novel downscalingalgorithm based on the Information theoretical learning principlesto downscale SMOS soil moisture at 25 km to 1km in the Brazilian La Plata Basin region and2) to assimilate the 1km-soil moisture in the crop model for a normal and a drought year to understand the impact on crop yield. In this study, a novel downscaling algorithm based on the Principle of Relevant Information (PRI) was applied to in-situ and remotely sensed precipitation, SM, land surface temperature and leaf area index in the Brazilian Lower La Plata region in South America. An Ensemble Kalman Filter (EnKF) based assimilation algorithm was used to assimilate the downscaled soil moisture to update both states and parameters. The downscaled soil moisture for two growing seasons in2010-2011 and 2011-2012 was assimilated into the Decision Support System for Agrotechnology Transfer (DSSAT) Cropping System Model over 161 km2 rain-fed region in the Brazilian LPB regionto improve the estimates of soybean yield. The first season experienced normal precipitation, while the second season was impacted by drought. Assimilation improved yield

  7. Emissions of oxygenated volatile organic compounds from open crop burning in Yangtze River Delta region, China

    NASA Astrophysics Data System (ADS)

    Tanimoto, H.; Kudo, S.; Pan, X.; Inomata, S.; Saito, S.; Kanaya, Y.; Wang, Z.

    2013-12-01

    Measurements of volatile organic compounds (VOCs) were made by gas chromatography/flame ionization detection/mass spectrometry (GC/FID/MS) and proton transfer reaction-mass spectrometry (PTR-MS) at Rudong, a rural area of Central East China in June 2010. During the campaign we identified several plumes originated from open biomass burning by the simultaneous enhancements of carbon monoxide and acetonitrile. Based on positive matrix factorization (PMF) analysis, the contribution of biomass burning was in the range from 60 to 80% for the plumes. We found that oxygenated VOCs were predominant for these events. The emission ratios of OVOCs to CO for open crop burnings derived in this work were found to be high. Combined with the updated CO emissions of 12.7 Tg per year from crop burning, we estimated OVOC emissions from crop burning can be about 1.2 Tg per year, accounting for substantial amount of VOCs emitted from crop burning.

  8. Sunflower: a potential alternate crop for the cooler regions of Idaho

    SciTech Connect

    Auld, D.L.; Murray, G.A.; O'Keeffe, L.E.; Lee, G.A.

    1981-02-01

    The first commercial production of the dark hulled, oil bearing sunflower was in 1968. By 1979, more than seven million acres of this crop were grown in the United States. The availability of large export markets for both the unprocessed seed and the refined oil has encouraged this rapid expansion. This article gives the latest research information on sunflower production in the cooler crop production areas of Idaho.

  9. Linking agricultural crop management and air quality models for regional to national-scale nitrogen assessments

    NASA Astrophysics Data System (ADS)

    Cooter, E. J.; Bash, J. O.; Benson, V.; Ran, L.

    2012-10-01

    While nitrogen (N) is an essential element for life, human population growth and demands for energy, transportation and food can lead to excess nitrogen in the environment. A modeling framework is described and implemented to promote a more integrated, process-based and system-level approach to the estimation of ammonia (NH3) emissions which result from the application of inorganic nitrogen fertilizers to agricultural soils in the United States. The United States Department of Agriculture (USDA) Environmental Policy Integrated Climate (EPIC) model is used to simulate plant demand-driven fertilizer applications to commercial cropland throughout the continental US. This information is coupled with a process-based air quality model to produce continental-scale NH3 emission estimates. Regional cropland NH3 emissions are driven by the timing and amount of inorganic NH3 fertilizer applied, soil processes, local meteorology, and ambient air concentrations. Initial fertilizer application often occurs when crops are planted. A state-level evaluation of EPIC-simulated, cumulative planted area compares well with similar USDA reported estimates. EPIC-annual, inorganic fertilizer application amounts also agree well with reported spatial patterns produced by others, but domain-wide the EPIC values are biased about 6% low. Preliminary application of the integrated fertilizer application and air quality modeling system produces a modified geospatial pattern of seasonal NH3 emissions that improves current simulations of observed atmospheric particle nitrate concentrations. This modeling framework provides a more dynamic, flexible, and spatially and temporally resolved estimate of NH3 emissions than previous factor-based NH3 inventories, and will facilitate evaluation of alternative nitrogen and air quality policy and adaptation strategies associated with future climate and land use changes.

  10. Linking agricultural crop management and air quality models for regional to national-scale nitrogen assessments

    NASA Astrophysics Data System (ADS)

    Cooter, E. J.; Bash, J. O.; Benson, V.; Ran, L.

    2012-05-01

    While nitrogen (N) is an essential element for life, human population growth and demands for energy, transportation and food can lead to excess nitrogen in the environment. A modeling framework is described and implemented, to promote a more integrated, process-based and system-level approach to the estimation of ammonia (NH3) emissions resulting from the application of inorganic nitrogen fertilizers to agricultural soils in the United States. The United States Department of Agriculture (USDA) Environmental Policy Integrated Climate (EPIC) model is used to simulate plant demand-driven fertilizer applications to commercial cropland throughout the continental US. This information is coupled with a process-based air quality model to produce continental-scale NH3 emission estimates. Regional cropland NH3 emissions are driven by the timing and amount of fertilizer applied, local meteorology, and ambient air concentrations. An evaluation of EPIC-simulated crop management activities associated with fertilizer application at planting compared with similar USDA state-level event estimates shows temporally progressive spatial patterns that agree well with one another. EPIC annual inorganic fertilizer application amounts also agree well with reported spatial patterns produced by others, but domain-wide the EPIC values are biased about 6 % low. Preliminary application of the integrated fertilizer application and air quality modeling system produces a modified geospatial pattern of seasonal NH3 emissions that improves current simulations of observed atmospheric nitrate concentrations. This modeling framework provides a more dynamic, flexible, and spatially and temporally resolved estimate of NH3 emissions than previous factor-based NH3 inventories, and will facilitate evaluation of alternative nitrogen and air quality policy and adaptation strategies associated with future climate and land use changes.

  11. Characteristics of heavy metal transfer and their influencing factors in different soil-crop systems of the industrialization region, China.

    PubMed

    Chen, Hongyan; Yuan, Xuyin; Li, Tianyuan; Hu, Sun; Ji, Junfeng; Wang, Cheng

    2016-04-01

    Soil heavy metals and their bioaccumulation in agricultural products have attracted widespread concerns, yet the transfer and accumulation characteristics of heavy metals in different soil-crop systems was rarely investigated. Soil and crop samples were collected from the typical agricultural areas in the Yangtze River Delta region, China. The concentrations of Cu, Pb, Zn, Cd and Hg in the soils, roots and grains of rice (Oryza Sativa L.), wheat (Triticum L.) and canola (Brassica napus L.) were determined in this study. Transfer ability of heavy metals in soil-rice system was stronger than those in soil-wheat and soil-canola systems. The wheat showed a strong capacity to transfer Zn, Cu and Cd from root to the grain while canola presented a restricting effect to the intake of Cu and Cd. Soil pH and total organic matter were major factors influencing metal transfer from soil to rice, whereas soil Al2O3 contents presented a negative effect on heavy metal mobility in wheat and canola cultivation systems. The concentration of Zn and Cd in crop grains could well predicted according to the stepwise multiple linear regression models, which could help to quantitatively evaluate the ecologic risk of heavy metal accumulation in crops in the study area. PMID:26771531

  12. National and Regional Scale Rice Crop Monitoring in Asia with the RIICE and PRISM Projects: From Research to Operation

    NASA Astrophysics Data System (ADS)

    Nelson, A.; Quicho, E. D.; Maunahan, A. A.; Setiyono, T. D.; Raviz, J. V.; Rala, A. B.; Laborte, A. G.; Holecz, F.; Collivignarelli, F.; Gatti, L.; Barbieri, M.; Mabalay, M. R. O.; De Dios, J. L.; Quilang, E. J. P.

    2015-12-01

    In recent years, remote sensing based mapping and monitoring of the rice crop have been demonstrated in many pilot studies and research sites - mainly in Asia - using both optical and SAR sensors and ground based observations. These efforts have been partly driven by the high demand for more timely, more detailed and more accurate information on the rice crop for applications in both public and private sector, such as food security policy, crop and land management, infrastructure investment and crop insurance. The basic premise being that better access to better information leads to eventual benefits for both producers and consumers through better investment and management at all levels. To realise these benefits means scaling up this work to national and regional levels. This presentation summarises the progress of two related projects in Asia: RIICE (Remote Sensing-based Information and Insurance in emerging Economies) and PRISM (Philippine Rice Information SysteM) that are making the transition from research to operation with the support of national governments and international donors. The presentation focuses on the technology, the partnerships, the achievements and the challenges in embedding both the capacity and the technology for remote sensing based monitoring of rice in countries in South and South East Asia. We highlight several aspects which are essential for a successful transition to a sustainable operational status and lessons learned in each country where the two projects have been operating.

  13. Exploiting MODIS Observation Geometry To Identify Crop Specific Time Series For Regional Agriculture Monitoring

    NASA Astrophysics Data System (ADS)

    Duveiller, Gregory; Lopez-Lozano, Raul

    2013-12-01

    Due to its spatial resolution, the MODIS instrument offers much potential to monitor specific crops from space. However, only some time series fall adequately in the target crop specific fields while others straddle across different land uses, which consequently dilutes the signal. According to the daily change in orbit, the MODIS observation footprint changes considerably from one day to the next, sampling the vicinity of the grid cell. This study proposes a method to identify which time series are suitable based on the temporal signal-to-noise ratio (SNR) of such daily observations, which are acquired with different observation geometries. The approach is demonstrated over a 30 by 30 km study site in South Dakota (USA) where the time series with high SNR are classified in an unsupervised way into clusters almost exclusively composed of crop specific time series.

  14. Modeling of groundwater draft based on satellite-derived crop acreage estimation over an arid region of northwest India

    NASA Astrophysics Data System (ADS)

    Bhadra, Bidyut Kumar; Kumar, Sanjay; Paliwal, Rakesh; Jeyaseelan, A. T.

    2016-06-01

    Over-exploitation of groundwater for agricultural crops puts stress on the sustainability of natural resources in the arid region of Rajasthan state, India. Hydrogeological study of groundwater levels of the study area during the pre-monsoon (May to June), post-monsoon (October to November) and post-irrigation (February to March) seasons of 2004-2005 to 2011-2012 shows a steady decline of groundwater levels at the rate of 1.28-1.68 m/year, mainly due to excessive groundwater draft for irrigation. Due to the low density of the groundwater observation-well network in the study area, assessment of groundwater draft, and thus groundwater resource management, becomes a difficult task. To overcome the situation, a linear groundwater draft model (LGDM) has been developed based on the empirical relationship between satellite-derived crop acreage and the observed groundwater draft for the year 2003-2004. The model has been validated for a decade, during three year-long intervals (2005-2006, 2008-2009 and 2011-2012) using groundwater draft, estimated through a discharge factor method. Further, the estimated draft was validated through observed pumping data from random sampled villages (2011-2012). The results suggest that the developed LGDM model provides a good alternative to the estimation of groundwater draft based on satellite-based crop area in the absence of groundwater observation wells in arid regions of northwest India.

  15. Regional and national significance of biological nitrogen fixation by crops in the United States

    EPA Science Inventory

    Background/Questions/Methods Biological nitrogen fixation by crops (C-BNF) represents one of the largest anthropogenic inputs of reactive nitrogen (N) to land surfaces around the world. In the United States (US), existing estimates of C-BNF are uncertain because of incomplete o...

  16. Conservation of Socioculturally Important Local Crop Biodiversity in the Oromia Region of Ethiopia: A Case Study

    NASA Astrophysics Data System (ADS)

    Balemie, Kebu; Singh, Ranjay K.

    2012-09-01

    In this study, we surveyed diversity in a range of local crops in the Lume and Gimbichu districts of Ethiopia, together with the knowledge of local people regarding crop uses, socio-economic importance, conservation, management and existing threats. Data were collected using semistructured interviews and participant observation. The study identified 28 farmers' varieties of 12 crop species. Among these, wheat ( Triticum turgidum) and tef ( Eragrostis tef) have high intra-specific diversity, with 9 and 6 varieties respectively. Self-seed supply or seed saving was the main (80 %) source of seeds for replanting. Agronomic performance (yield and pest resistance), market demand, nutritional and use diversity attributes of the crop varieties were highlighted as important criteria for making decisions regarding planting and maintenance. Over 74 % of the informants grow a combination of "improved" and farmers' varieties. Of the farmers' varieties, the most obvious decline and/or loss was reported for wheat varieties. Introduction of improved wheat varieties, pest infestation, shortage of land, low yield performance and climate variability were identified as the principal factors contributing to this loss or decline. Appropriate interventions for future conservation and sustainable use of farmers' varieties were suggested.

  17. Conservation of socioculturally important local crop biodiversity in the Oromia region of Ethiopia: a case study.

    PubMed

    Balemie, Kebu; Singh, Ranjay K

    2012-09-01

    In this study, we surveyed diversity in a range of local crops in the Lume and Gimbichu districts of Ethiopia, together with the knowledge of local people regarding crop uses, socio-economic importance, conservation, management and existing threats. Data were collected using semistructured interviews and participant observation. The study identified 28 farmers' varieties of 12 crop species. Among these, wheat (Triticum turgidum) and tef (Eragrostis tef) have high intra-specific diversity, with 9 and 6 varieties respectively. Self-seed supply or seed saving was the main (80 %) source of seeds for replanting. Agronomic performance (yield and pest resistance), market demand, nutritional and use diversity attributes of the crop varieties were highlighted as important criteria for making decisions regarding planting and maintenance. Over 74 % of the informants grow a combination of "improved" and farmers' varieties. Of the farmers' varieties, the most obvious decline and/or loss was reported for wheat varieties. Introduction of improved wheat varieties, pest infestation, shortage of land, low yield performance and climate variability were identified as the principal factors contributing to this loss or decline. Appropriate interventions for future conservation and sustainable use of farmers' varieties were suggested. PMID:22729809

  18. Responses of Enzyme Activities in Sandy Soils to Cropping System Changes in a Semiarid Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sandy soils in the semi-arid Southern High Plains of the United States are inherently low organic matter, and when agricultural practices such as intensively tilled, low-residue cropping (e.g., monoculture cotton) are practiced, soil of organic matter becomes further depleted. Although alternative ...

  19. Region and field level distributions of aster yellows phytoplasma in small grains crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aster yellows (AY), a disease of small grain crops caused by aster yellows phytoplasma (AYp), produces disease symptoms similar to barley yellow dwarf (BYD). From 2003 to 2005, small grain production fields in Minnesota and North Dakota were surveyed to determine the incidences of AY and BYD. In-fie...

  20. Regional testing of energycane (Saccharum spp) genotypes as a potential bioenergy crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane (Saccharum spp.) has been a cash crop in the Deep South since 1795, but the area of production has been limited by its lack of cold hardiness. Energycanes are complex hybrids derived from crosses of domestic sugarcane varieties and S. spontaneum (a cold-hardy relative). They are typicall...

  1. Insecticide use and crop selection in regions with high GM adoption rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    South Dakota has recently experienced a significant increase in the proportion of acres treated with insecticide. Unfortunately, data on insecticide usage by crop at the county level is not available. The following case study seeks to uncover the reasons for this increase by analyzing county-leve...

  2. Carbon Dynamics of Bioenergy Cropping Systems Compared to Conventional Cotton Cropping Systems in the Southern Cotton Belt Region of the U.S.

    NASA Astrophysics Data System (ADS)

    Rajan, N.; Sharma, S.; Casey, K.; Maas, S. J.

    2015-12-01

    We are facing an unprecedented challenge in securing America's energy future. To address this challenge, increased biofuel crop production is needed. Second-generation biofuels are made from the by-products of intensive agriculture or from less-intensive agriculture on more marginal lands. The Southwestern U.S. Cotton Belt can play a significant role in this effort through a change from more conventional crops (like continuous cotton) to second-generation biofuel feedstocks (biomass sorghum and perennial grasses). We have established eddy covariance flux towers in producer fields in the Southern High Plains region. Among the four land uses compared, the net carbon uptake was the highest for the biomass sorghum field. During the year 2014, the biomass sorghum field gained approximately 672 gC m-2y-1. The next highest carbon uptake was recorded for the Old World Bluestem grass field, which was approximately 301 gC m-2y-1. The dominant land use in the region is cotton. While the forage sorghum and grass fields acted as net carbon sinks, the irrigated cotton field acted as a net carbon source to the atmosphere during the same period. The irrigated cotton field exhibited a net carbon loss of approximately 246 gC m-2y-1. In contrast, the dryland cotton field acted as a net carbon sink, with a total uptake of approximately 58 g C m-2y-1. The net primary production of the irrigated cotton field was higher than that of the dryland cotton field, yet the irrigated field was a significant carbon source to the atmosphere. This was due to conventional tillage practices combined with irrigation which enhanced the ecosystem respiration significantly compared to the dryland field. In 2014, an early spring cold front caused poor germination of seeds in the majority of the cotton fields in the region, including the eddy covariance site. This site was re-planted on 9 June, which shortened the growing season for cotton. This was also a contributing factor to this field being a net

  3. Energy balances of bioenergy crops (Miscanthus, maize, rapeseed) and their CO2-mitigation potential on a regional farm scale

    NASA Astrophysics Data System (ADS)

    Felten, D.; Emmerling, C.

    2012-04-01

    Increasing cultivation of energy crops in agriculture reveals the progressive substitution of fossil fuels, such as crude oil or brown coal. For the future development of renewable resources, the efficiency of different cropping systems will be crucial, as energy crops differ in terms of the energy needed for crop cultivation and refinement and the respective energy yield, e.g. per area. Here, balancing is certainly the most suitable method for the assessment of cropping system efficiency, contrasting energy inputs with energy outputs and the related CO2 emissions with potential CO2 credits due to substitution of fossil fuels, respectively. The aim of the present study was to calculate both energy and CO2 balances for rapeseed and maize, representing the recently most often cultivated energy crops in Germany, on a regional farm scale. Furthermore, special emphasis was made on perennial Miscanthus x giganteus, which is commonly used as a solid fuel for combustion. This C4-grass is of increasing interest due to its high yield potential accompanied by low requirements for soil tillage, weed control, and fertilization as well as long cultivation periods up to 25 years. In contrast to more general approaches, balances were calculated with local data from commercial farms. The site-specific consumption of diesel fuel was calculated using an online-based calculator, developed by the German Association for Technology and Structures in Agriculture (KTBL). By balancing each of the aforementioned cropping systems, our research focused on (i) the quantification of energy gains and CO2 savings due to fossil fuel substitution and (ii) the assessment of energy efficiency, expressed as the ratio of energy output to input. The energy input was highest for maize sites (33.8 GJ ha-1 yr-1), followed by rapeseed (18.2 GJ ha-1 yr-1), and Miscanthus (1.1 GJ ha-1 yr-1); corresponding energy yields were 129.5 GJ ha-1 yr-1 (maize), 83.6 GJ ha-1 yr-1 (rapeseed), and 259.7 GJ ha-1 yr-1

  4. Assessment of crop productivity over intensively managed agriculture regions in India and Australia using solar-induced fluorescence remote sensing data

    NASA Astrophysics Data System (ADS)

    Devadas, R.; Huete, A. R.; Patel, N. R.; Padalia, H.; Restrepo-Coupe, N.; Kuruvilla, A.

    2015-12-01

    Satellite based estimation of solar-induced terrestrial fluorescence (SIF) is considered to be a direct measure of photosynthetic functional status of the vegetation. Prior studies have shown SIF to more accurately retrieve the productivity of intensively managed croplands, as in the U.S. corn belt. In this study, we assessed and compared agricultural productivity over two intensive crop production regions in Australia and India using SIF data, traditional spectral measures, and crop yield data. Regional level wheat yield data were obtained for the Indo-Gangetic Plains (IGP) in India and the Murray Darling Basin (MDB) in Australia for analyses with GOME-2 SIF satellite and MODIS VI measurements, and gross primary productivity from flux towers. We investigated the importance of integrating traditional meteorological parameters and ground based data with time-series vegetation indices for scaling of SIF to obtain robust yield prediction models for application across years and continents. This study further explored the relationship of inter annual variations in crop phenology metrics through SIF retrievals and its relationship with crop yields. The IGP study region showed systematic cycles of double cropping. MDB region on the other hand showed cycles of pronounced winter cropping and a weaker and variable second cropping over the analysis period. For various winter wheat crop seasons in IGP, from 2007 to 2012, SIF explained and accounted between 48 to 74 per cent of the variations in regional wheat yields. Similar results were obtained in the case of MDB also, however, the relationship between SIF and yield estimates was weaker (R2 = 0.44). SIF measurements, as a surrogate of crop productivity, were considerably higher over the highly productive IGP region in almost all the years considered. The SIF data shows immense potential for modelling agricultural productivity, particularly as the resolution of SIF retrievals continues to improve.

  5. Modeling the Climate Change Adaptation of Crop Production using Irrigation over Water-Limited Region

    NASA Astrophysics Data System (ADS)

    Okada, M.; Iizumi, T.; Sakurai, G.; Sakai, T.; Yokozawa, M.

    2014-12-01

    Replacing rainfed cropping system by irrigated one is assumed to be an effective measure for climate change adaptation in agriculture. However, in many agricultural impact assessments, future irrigation scenarios are externally given and do not consider the space-time varying available agricultural water under changing climate and land use. For these reason, this study aimed to (1) develop a crop-river coupled model that can simultaneously simulate crop growth and yield over a river watershed, river discharge and their dynamic interactions by embedded a large-area crop model, PRYSBI-2 [Sakurai et al., 2014] into a hydrologic model, H08 [Hanasaki et al., 2008]; (2) apply the developed coupled model to the Songhua River watershed in Northeast China and evaluate the model's performance by comparing the historical model simulations outputs; (3) assess the effects of adaption measure expanding irrigated area under climate change. The modeled year-to-year variations in soil moisture were comparable to the reference with the Pearson's correlation coefficient (r) of 0.75 (p<0.001) and root-mean-square error (RMSE) of 13 %. The modeled river discharge accurately matched with the observation data with the r of 0.83 (p<0.01) and RMSE of 22 %. And the modeled soybean yields were quantitatively comparable to the reference with the r of 0.66 (p<0.001) and RMSE of 21 %. We made simulations to project the changes of potential soybean production under climate change scenarios and irrigation area expanding scenarios. It was projected that the soybean production effectively increase until the irrigated area has been increased 5 times compared to around the year 2000. However, the more increase in the irrigated area would bring significant reduction of the increase rate in soybean production due to depletion of available agricultural water resources.

  6. Impact of Climate Change on Sugarcane Crop at Regional Scale: A Study with Remote Sensing and GIS

    NASA Astrophysics Data System (ADS)

    Shruti, Y.; Gouda, K. C.; P P, N. R.; Bhat, N.

    2014-12-01

    This study investigates the effect of climate on the growth and yield of sugarcane at the Bagalkot region of Karnataka state in India which generally famous for the sugarcane production in the country. In the present study climate parameters like rainfall, temperature, solar radiation, soil moisture, humidity etc. observed from multi-source observations like remote sensing satellite, NCEP reanalysis, India Meteorological Department (IMD) observations etc. are used to analyze the climate change over the study region in terms of the climatology, inter annual variability and trend analysis of the climate parameters at long term scale. There is a signature of increasing trend in temperature and decreasing trend in the seasonal monsoon rainfall. Impact of drought years on the sugarcane crop has been determined. To quantify the climate change the Land use Land cover (LULC) classification of the region is carried out and the relative changes in different LULC classes are discussed, which shows the agriculture is being decreased in 14 years of the analysis. Then to know the impact of climate parameters and on the sugarcane crop production, the correlation analysis of the climate parameters and sugarcane yield are presented using the real observation and which clearly showed the solar radiation is highly correlated with the sugarcane production compared to other climate parameters (Figure 1). The satellite derived NDVI is used to compute the NDVI Grand Growth Period [∑NDVI(GGP)] and the correlation of it with sugarcane crop yield for the period 2000-2013 and the empirical relation is derived, which can be implemented in future with some weather forecasting models like General Circulation Model (GCM) for the prediction of the sugarcane yield in advance.

  7. DNA Barcoding Simplifies Environmental Risk Assessment of Genetically Modified Crops in Biodiverse Regions

    PubMed Central

    Nzeduru, Chinyere V.; Ronca, Sandra; Wilkinson, Mike J.

    2012-01-01

    Transgenes encoding for insecticidal crystal (Cry) proteins from the soil-dwelling bacterium Bacillus Thuringiensis have been widely introduced into Genetically Modified (GM) crops to confer protection against insect pests. Concern that these transgenes may also harm beneficial or otherwise valued insects (so-called Non Target Organisms, NTOs) represents a major element of the Environmental Risk Assessments (ERAs) used by all countries prior to commercial release. Compiling a comprehensive list of potentially susceptible NTOs is therefore a necessary part of an ERA for any Cry toxin-containing GM crop. In partly-characterised and biodiverse countries, NTO identification is slowed by the need for taxonomic expertise and time to enable morphological identifications. This limitation represents a potentially serious barrier to timely adoption of GM technology in some developing countries. We consider Bt Cry1A cowpea (Vigna unguiculata) in Nigeria as an exemplar to demonstrate how COI barcoding can provide a simple and cost-effective means of addressing this problem. Over a period of eight weeks, we collected 163 insects from cowpea flowers across the agroecological and geographic range of the crop in Nigeria. These individuals included 32 Operational Taxonomic Units (OTUs) spanning four Orders and that could mostly be assigned to genus or species level. They included 12 Lepidopterans and two Coleopterans (both potentially sensitive to different groups of Cry proteins). Thus, barcode-assisted diagnoses were highly harmonised across groups (typically to genus or species level) and so were insensitive to expertise or knowledge gaps. Decisively, the entire study was completed within four months at a cost of less than 10,000 US$. The broader implications of the findings for food security and the capacity for safe adoption of GM technology are briefly explored. PMID:22567120

  8. DNA barcoding simplifies environmental risk assessment of genetically modified crops in biodiverse regions.

    PubMed

    Nzeduru, Chinyere V; Ronca, Sandra; Wilkinson, Mike J

    2012-01-01

    Transgenes encoding for insecticidal crystal (Cry) proteins from the soil-dwelling bacterium Bacillus Thuringiensis have been widely introduced into Genetically Modified (GM) crops to confer protection against insect pests. Concern that these transgenes may also harm beneficial or otherwise valued insects (so-called Non Target Organisms, NTOs) represents a major element of the Environmental Risk Assessments (ERAs) used by all countries prior to commercial release. Compiling a comprehensive list of potentially susceptible NTOs is therefore a necessary part of an ERA for any Cry toxin-containing GM crop. In partly-characterised and biodiverse countries, NTO identification is slowed by the need for taxonomic expertise and time to enable morphological identifications. This limitation represents a potentially serious barrier to timely adoption of GM technology in some developing countries. We consider Bt Cry1A cowpea (Vigna unguiculata) in Nigeria as an exemplar to demonstrate how COI barcoding can provide a simple and cost-effective means of addressing this problem. Over a period of eight weeks, we collected 163 insects from cowpea flowers across the agroecological and geographic range of the crop in Nigeria. These individuals included 32 Operational Taxonomic Units (OTUs) spanning four Orders and that could mostly be assigned to genus or species level. They included 12 Lepidopterans and two Coleopterans (both potentially sensitive to different groups of Cry proteins). Thus, barcode-assisted diagnoses were highly harmonised across groups (typically to genus or species level) and so were insensitive to expertise or knowledge gaps. Decisively, the entire study was completed within four months at a cost of less than 10,000 US$. The broader implications of the findings for food security and the capacity for safe adoption of GM technology are briefly explored. PMID:22567120

  9. Analyses of rainfall using probability distribution and Markov chain models for crop planning in Daspalla region in Odisha, India

    NASA Astrophysics Data System (ADS)

    Mandal, K. G.; Padhi, J.; Kumar, A.; Ghosh, S.; Panda, D. K.; Mohanty, R. K.; Raychaudhuri, M.

    2015-08-01

    Rainfed agriculture plays and will continue to play a dominant role in providing food and livelihoods for an increasing world population. Rainfall analyses are helpful for proper crop planning under changing environment in any region. Therefore, in this paper, an attempt has been made to analyse 16 years of rainfall (1995-2010) at the Daspalla region in Odisha, eastern India for prediction using six probability distribution functions, forecasting the probable date of onset and withdrawal of monsoon, occurrence of dry spells by using Markov chain model and finally crop planning for the region. For prediction of monsoon and post-monsoon rainfall, log Pearson type III and Gumbel distribution were the best-fit probability distribution functions. The earliest and most delayed week of the onset of rainy season was the 20th standard meteorological week (SMW) (14th-20th May) and 25th SMW (18th-24th June), respectively. Similarly, the earliest and most delayed week of withdrawal of rainfall was the 39th SMW (24th-30th September) and 47th SMW (19th-25th November), respectively. The longest and shortest length of rainy season was 26 and 17 weeks, respectively. The chances of occurrence of dry spells are high from the 1st-22nd SMW and again the 42nd SMW to the end of the year. The probability of weeks (23rd-40th SMW) remaining wet varies between 62 and 100 % for the region. Results obtained through this analysis would be utilised for agricultural planning and mitigation of dry spells at the Daspalla region in Odisha, India.

  10. Simulation of crop evapotranspiration and crop coefficient in weighing lysimeters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate quantification of crop evapotranspiration (ET) is critical in optimizing irrigation water productivity, especially, in the semiarid regions of the world where limited rainfall is supplemented by irrigation for profitable crop production. In this context, cropping system models are potential...

  11. Soil organic carbon dynamics and crop yield for different crop rotations in a degraded ferruginous tropical soil in a semi-arid region: a simulation approach.

    PubMed

    Soler, C M Tojo; Bado, V B; Traore, K; Bostick, W McNair; Jones, J W; Hoogenboom, G

    2011-10-01

    In recent years, simulation models have been used as a complementary tool for research and for quantifying soil carbon sequestration under widely varying conditions. This has improved the understanding and prediction of soil organic carbon (SOC) dynamics and crop yield responses to soil and climate conditions and crop management scenarios. The goal of the present study was to estimate the changes in SOC for different cropping systems in West Africa using a simulation model. A crop rotation experiment conducted in Farakô-Ba, Burkina Faso was used to evaluate the performance of the cropping system model (CSM) of the Decision Support System for Agrotechnology Transfer (DSSAT) for simulating yield of different crops. Eight crop rotations that included cotton, sorghum, peanut, maize and fallow, and three different management scenarios, one without N (control), one with chemical fertilizer (N) and one with manure applications, were studied. The CSM was able to simulate the yield trends of various crops, with inconsistencies for a few years. The simulated SOC increased slightly across the years for the sorghum-fallow rotation with manure application. However, SOC decreased for all other rotations except for the continuous fallow (native grassland), in which the SOC remained stable. The model simulated SOC for the continuous fallow system with a high degree of accuracy normalized root mean square error (RMSE)=0·001, while for the other crop rotations the simulated SOC values were generally within the standard deviation (s.d.) range of the observed data. The crop rotations that included a supplemental N-fertilizer or manure application showed an increase in the average simulated aboveground biomass for all crops. The incorporation of this biomass into the soil after harvest reduced the loss of SOC. In the present study, the observed SOC data were used for characterization of production systems with different SOC dynamics. Following careful evaluation of the CSM with

  12. Soil organic carbon dynamics and crop yield for different crop rotations in a degraded ferruginous tropical soil in a semi-arid region: a simulation approach

    PubMed Central

    SOLER, C. M. TOJO; BADO, V. B.; TRAORE, K.; BOSTICK, W. MCNAIR; JONES, J. W.; HOOGENBOOM, G.

    2011-01-01

    SUMMARY In recent years, simulation models have been used as a complementary tool for research and for quantifying soil carbon sequestration under widely varying conditions. This has improved the understanding and prediction of soil organic carbon (SOC) dynamics and crop yield responses to soil and climate conditions and crop management scenarios. The goal of the present study was to estimate the changes in SOC for different cropping systems in West Africa using a simulation model. A crop rotation experiment conducted in Farakô-Ba, Burkina Faso was used to evaluate the performance of the cropping system model (CSM) of the Decision Support System for Agrotechnology Transfer (DSSAT) for simulating yield of different crops. Eight crop rotations that included cotton, sorghum, peanut, maize and fallow, and three different management scenarios, one without N (control), one with chemical fertilizer (N) and one with manure applications, were studied. The CSM was able to simulate the yield trends of various crops, with inconsistencies for a few years. The simulated SOC increased slightly across the years for the sorghum–fallow rotation with manure application. However, SOC decreased for all other rotations except for the continuous fallow (native grassland), in which the SOC remained stable. The model simulated SOC for the continuous fallow system with a high degree of accuracy normalized root mean square error (RMSE)=0·001, while for the other crop rotations the simulated SOC values were generally within the standard deviation (s.d.) range of the observed data. The crop rotations that included a supplemental N-fertilizer or manure application showed an increase in the average simulated aboveground biomass for all crops. The incorporation of this biomass into the soil after harvest reduced the loss of SOC. In the present study, the observed SOC data were used for characterization of production systems with different SOC dynamics. Following careful evaluation of the CSM

  13. Consistent rainy season changes predicted from Regional Climate Models ensembles indicate threats to crop production in West Africa

    NASA Astrophysics Data System (ADS)

    Wisser, D.; Sylla, M. B.; Ibrahim, B.

    2014-12-01

    Agricultural production in West Africa is extremely vulnerable to precipitation change and variability. Designing adaptation options to anticipate these changes in precipitation requires robust predicting future climate conditions. Output from Global Circulation Models (GCMs) is too coarse to be used directly to assess regional and high order statistics changes. We use output from a set of Regional Climate Models that dynamically downscale CMIP5 GCMs and analyze mid-century changes in the characteristics of precipitation in West Africa over cropland areas. For each RCM/GCM combinations, we compared predicted precipitation for the period 2035-2065 under the RCP 8.5 scenario with its historical reconstruction of 1975-2005. The mean changes emerging from an analysis of the ensemble of 15 RCM/GCM combinations suggest moderate (~3%) increases in annual precipitation,a very consistent delay in the onset of the rainy season (1 to 4 days from South to North) and no consistent change in the ending of the rainy season. This illustrates a general shortening of the rainy season. An analysis of dry spells (periods of consecutive days with less than 5 mm) for a durations of between 5 and 15 days revealed an increased probability of experiencing longer dry spells during the rainy season in the future climate, coupled with a general intensification of precipitation. This finding was consistent across all models. Our analysis promotes regional prioritization of adaptation measures to the changes in precipitation characteristics that could potentially have detrimental effects on crop yields while also affecting water resources management, species distribution, and others sectors. Increased storage of water, in combination with supplemental irrigation can be an important mechanism for adapting to the effects for regional precipitation changes on crop yield.

  14. Increased number of crop types over France in the ISBA-A-gs land surface model : does it improve the regional simulation of LAI ?

    NASA Astrophysics Data System (ADS)

    lafont, Sebastien; Calvet, Alina; Carrer, Dominque; Delire, Christine; Calvet, Jean-Christophe; Alkama, ramdane

    2013-04-01

    Land surface models have at first been designed to represent natural vegetation classified in broad Plant Functional Type (PFT). A better description of the agricultural land is needed to enlarge the accuracy of the model (especially at high resolution) and their range of application (land use studies, climate change...). For example in temperate region, the C3 crops have two different seasonal cycles with a peak LAI in spring or in summer depending on sowing date. A larger number of agricultural PFT have been recently introduced in the ISBA-A-gs land surface model within the SURFEX modelling platform. The SURFEX modelling platform is used in a wide range of applications either in coupled mode or in off-line mode (driven by meteorological forcing). The number of agricultural PFT have been increased from 3 (C3 crops, C4 crops, irrigated C4 crops) to 8 (C3 winter crops, and C3 summer crops both irrigated or not; C4 crops; C4 irrigated crops). The objective is not to implement a full agronomic model but to introduce simple parametrisation which account for the broad differences between these classes. For example summer C3 crops have a prescribed emergence date parameter that differentiate them from winter C3 crops. The irrigation introduced in an earlier version of ISBA-A-gs is based on a simple empirical model based on threshold of soil moisture. We will test the new version of the model over France in a configuration close to the one used by the GEOLAND2 Land Carbon project. The simulations are performed with the high resolution meteorological forcing (8km) SAFRAN over a period of 20 years. We compare the simulated LAI over France with the GEOLAND2 LAI product derived project from the SPOT/VEGETATION sensor. Finally, we discuss the improvement in seasonal cycle and inter-annual variability bring by the new PFTs.

  15. Organochlorine pesticide exposure among agricultural workers in Colombian regions with illegal crops: an exploration in a hidden and dangerous world.

    PubMed

    Varona, Marcela Eugenia; Díaz-Criollo, Sonia M; Lancheros-Bernal, Angélica R; Murcia-Orjuela, Alix M; Henao-Londoño, Gloria L; Idrovo, Alvaro Javier

    2010-12-01

    A previous study suggested that banned organochlorine pesticides were being used to protect illegal crops from pests. The study herein explored the exposure of individuals living in a region with such crops. Samples from 99 individuals were collected during 2005 and 2006 and organochlorine pesticides were quantified using chromatography in serum samples. We detected heptachlor (72.73%), 4,4-DDE (19.19%), aldrin (15.15%), γ-chlordane (12.12%), dieldrin (11.11%), α-chlordane (10,10%), α-endosulfan (8.08%), endosulfan (6.06%), β-endosulfan (5.05%), oxychlordane (3.03%), 4,4-DDT (3.03%), and 2,4-DDT (2.02%). Heptachlor had a skewed and negative distribution (median: 8.69 ng/l and maximum: 43.8 ng/l). A two-dimensional biplot suggested that mixtures present were endosulfan/4,4-DDT, aldrin/γ-chlordane, and oxychlordane/β-endosulfan/dieldrin. We did not identify variables associated with exposure levels. These data suggest that banned organochlorine pesticides are used. This is an example of research in a war context, where the problems related with pesticides are complex, and their implications go beyond a toxicological or epidemiological viewpoint. PMID:21161802

  16. Using Landsat 8 Image Time Series for Crop Mapping in a Region of Cerrado, Brazil

    NASA Astrophysics Data System (ADS)

    Bendini, H.; Sanches, I. D.; Körting, T. S.; Fonseca, L. M. G.; Luiz, A. J. B.; Formaggio, A. R.

    2016-06-01

    The objective of this research is to classify agricultural land use in a region of the Cerrado (Brazilian Savanna) biome using a time series of Enhanced Vegetation Index (EVI) from Landsat 8 OLI. Phenological metrics extracted from EVI time series, a Random Forest algorithm and data mining techniques are used in the process of classification. The area of study is a region in the Cerrado in a region of the municipality of Casa Branca, São Paulo state, Brazil. The results are encouraging and demonstrate the potential of phenological parameters obtained from time series of OLI vegetation indices for agricultural land use classification.

  17. Assessing regional crop water demand using a satellite-based combination equation with a land surface temperature component

    NASA Astrophysics Data System (ADS)

    Moyano, Maria Carmen; Garcia, Monica; Tornos, Lucia; Recuero, Laura; Palacios-Orueta, Alicia; Juana, Luis

    2015-04-01

    Quantification of daily evapotranspiration at regional levels is fundamental for improving agricultural and hydrological management, especially in water-scarce and climatic change vulnerable regions, like the Mediterranean basin. Regional estimates of daily crop evapotranspiration (ET) have been historically based on combination equations, such as Penman-Monteith or Priestley-Taylor, forced with weather-data inputs. However, the requirements for long term in-situ data, limit the application of such traditional approaches and algorithms using satellite-data without field calibrations bridge this gap by estimating long-term ET at the pixel level from local to global scales. Land surface temperature is a key variable tracking land surface moisture status. However, it has not been included in satellite ET approaches based on combination equations. In this study, a land surface temperature component was used to estimate soil surface conductance based on an apparent thermal inertia index. A process-based model was applied to estimate surface energy fluxes including daily ET based on a modified version of the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) model at 1km pixel resolution during a chrono-sequence spanning for more than a decade (2002-2013). The thermal-PT-JPL model was forced with vegetation, albedo, reflectance and temperature products from the Moderate-resolution Imaging Spectroradiometer (MODIS) from both Aqua and Terra satellites. The study region, B-XII Irrigation District of the Lower Guadalquivir, is one of the largest irrigated areas in Spain but it has scarce in-situ micrometeorological or eddy covariance data. The final aim of this study is to evaluate the thermal version of PT-JPL model versus a lumped hydrological model to assess crop evapotranspiration deficits and long-term water consumption trends in the area. The results showed that the thermal-PT-JPL model is a suitable and simple tool requiring only air temperature and incoming solar

  18. Using satellite remote sensing and hydrologic modeling to improve understanding of crop management and agricultural water use at regional to global scales

    NASA Astrophysics Data System (ADS)

    Salmon, Jessica Meghan

    water balance model in combination with the data sets described above to characterize the sensitivity of agricultural water use in Asia to crop management. Results indicate that water use in Asia depends strongly on both irrigation and crop management, and that previous studies underestimate agricultural water use in this region. These results support policy development focused on improving the resilience of agricultural systems in Asia.

  19. Capturing Crop Response to Climate and Management Variability in Models: Evaluation Using FLUXNET Data with Applications at the Regional Scale

    NASA Astrophysics Data System (ADS)

    Twine, T. E.; Kucharik, C. J.

    2009-12-01

    Dynamic global vegetation models (DGVMs) simulate the response of ecosystems to environmental drivers at multiple time scales (e.g., a fast response to diurnal variations in radiation and a slower response to interannual variations in climate). Until recently, these models only represented natural ecosystems, which neglected the approximately 30% of Earth’s land surface covered by managed ecosystems. We have incorporated the representation of four major crops of the United States (i.e., maize, soybean, spring wheat, and winter wheat) into the Agro-IBIS DGVM and have tested the model at the site level and regional scale. Here we present results of an evaluation of carbon, energy, and water fluxes from a multi-year simulation of maize and soybean at FLUXNET sites in Minnesota and Illinois. These two sites are not only located along a climate gradient, allowing evaluation of model sensitivity to climate variation, they also have different land use histories and are currently under different tillage management. As an application of the model at the regional scale, we examined the relationship of temperature and precipitation trends to net primary productivity (NPP) changes from 1982-2002 over both natural and managed ecosystems across the central and eastern U.S. In order to isolate the vegetation growth response to climate trends, we minimized the representation of management for agroecosystems and forested ecosystems by removing nitrogen stress and irrigation from the model. Maize had the largest NPP trend of 6.43 g C m-2 yr-2, followed by soybean, spring wheat, deciduous forest, then grassland. Winter wheat had a trend of -0.64 g C m-2 yr-2 and evergreen needleleaf forest had a negligible NPP trend. We found that 19% of maize and 11% of soybean NPP trends could be explained by temperature trends while 23% of corn and 44% of soybean trends could be explained by precipitation trends. Our results provide further evidence supporting observational results that suggest

  20. Percents Are Not Natural Numbers

    ERIC Educational Resources Information Center

    Jacobs, Jennifer A.

    2013-01-01

    Adults are prone to treating percents, one representational format of rational numbers, as novel cases of natural number. This suggests that percent values are not differentiated from natural numbers; a conceptual shift from the natural numbers to the rational numbers has not yet occurred. This is most surprising, considering people are inundated…

  1. Inspiration: One Percent and Rising

    ERIC Educational Resources Information Center

    Walling, Donovan R.

    2009-01-01

    Inventor Thomas Edison once famously declared, "Genius is one percent inspiration and ninety-nine percent perspiration." If that's the case, then the students the author witnessed at the International Student Media Festival (ISMF) last November in Orlando, Florida, are geniuses and more. The students in the ISMF pre-conference workshop had much to…

  2. Mapping rice cropping systems using Landsat-derived Renormalized Index of Normalized Difference Vegetation Index (RNDVI) in the Poyang Lake Region, China

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jiang, Luguang; Feng, Zhiming; Sheldon, Sage; Xiao, Xiangming

    2016-06-01

    Mapping rice cropping systems with optical imagery in multiple cropping regions is challenging due to cloud contamination and data availability; development of a phenology-based algorithm with a reduced data demand is essential. In this study, the Landsat-derived Renormalized Index of Normalized Difference Vegetation Index (RNDVI) was proposed based on two temporal windows in which the NDVI values of single and early (or late) rice display inverse changes, and then applied to discriminate rice cropping systems. The Poyang Lake Region (PLR), characterized by a typical cropping system of single cropping rice (SCR, or single rice) and double cropping rice (DCR, including early rice and late rice), was selected as a testing area. The results showed that NDVI data derived from Landsat time-series at eight to sixteen days captures the temporal development of paddy rice. There are two key phenological stages during the overlapping growth period in which the NDVI values of SCR and DCR change inversely, namely the ripening phase of early rice and the growing phase of single rice as well as the ripening stage of single rice and the growing stage of late rice. NDVI derived from scenes in two temporal windows, specifically early August and early October, was used to construct the RNDVI for discriminating rice cropping systems in the polder area of the PLR, China. Comparison with ground truth data indicates high classification accuracy. The RNDVI approach highlights the inverse variations of NDVI values due to the difference of rice growth between two temporal windows. This makes the discrimination of rice cropping systems straightforward as it only needs to distinguish whether the candidate rice type is in the period of growth (RNDVI<0) or senescence (RNDVI>0).

  3. Suitability of cotton as an alternative crop in the Ogallala Aquifer Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Renewed interest in cotton (Gossypium hirsutum L.) production in the Ogallala Aquifer Region can be linked to development of early maturing varieties, rising energy costs, and declining water levels in the Ogallala Aquifer. In this study, the heat unit based, county-wide exceedance probability curve...

  4. DISEASE EPIDEMIOLOGY ON CEREAL CROPS IN THE EUROPEAN REGION OF RUSSIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Six leading grain producing regions (North-Caucasian, Central-Chernozemny, Central, Povolzhsky, Ural and Volgo-Viatsky) of Russia account for 75% of total production. Diseases surveys were conducted in the tillering, flag leaf, and maturing stages. Additional information was received from the Federa...

  5. Incorporating Medium-Range Weather Forecasts in Seasonal Crop Scenarios over the Greater Horn of Africa to Support National/Regional/Local Decision Makers

    NASA Astrophysics Data System (ADS)

    Shukla, S.; Husak, G. J.; Funk, C. C.; Verdin, J. P.

    2015-12-01

    The USAID's Famine Early Warning Systems Network (FEWS NET) provides seasonal assessments of crop conditions over the Greater Horn of Africa (GHA) and other food insecure regions. These assessments and current livelihood, nutrition, market conditions and conflicts are used to generate food security scenarios that help national, regional and local decision makers target their resources and mitigate socio-economic losses. Among the various tools that FEWS NET uses is the FAO's Water Requirement Satisfaction Index (WRSI). The WRSI is a simple yet powerful crop assessment model that incorporates current moisture conditions (at the time of the issuance of forecast), precipitation scenarios, potential evapotranspiration and crop parameters to categorize crop conditions into different classes ranging from "failure" to "very good". The WRSI tool has been shown to have a good agreement with local crop yields in the GHA region. At present, the precipitation scenarios used to drive the WRSI are based on either a climatological forecast (that assigns equal chances of occurrence to all possible scenarios and has no skill over the forecast period) or a sea-surface temperature anomaly based scenario (which at best have skill at the seasonal scale). In both cases, the scenarios fail to capture the skill that can be attained by initial atmospheric conditions (i.e., medium-range weather forecasts). During the middle of a cropping season, when a week or two of poor rains can have a devastating effect, two weeks worth of skillful precipitation forecasts could improve the skill of the crop scenarios. With this working hypothesis, we examine the value of incorporating medium-range weather forecasts in improving the skill of crop scenarios in the GHA region. We use the NCEP's Global Ensemble Forecast system (GEFS) weather forecasts and examine the skill of crop scenarios generated using the GEFS weather forecasts with respect to the scenarios based solely on the climatological forecast

  6. Actual evapotranspiration for a reference crop within measured and future changing climate periods in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Katerji, Nader; Rana, Gianfranco; Ferrara, Rossana Monica

    2016-05-01

    The study compares two formulas for calculating the daily evapotranspiration ET0 for a reference crop. The first formula was proposed by Allen et al. (AL), while the second one was proposed by Katerji and Perrier with the addition of the carbon dioxide (CO2) effect on evapotranspiration (KP). The study analyses the impact of the calculation by the two formulas on the irrigation requirement (IR). Both formulas are based on the Penman-Monteith equation but adopt different approaches for parameterising the canopy resistance r c . In the AL formula, r c is assumed constant and not sensitive to climate change, whereas in the KP formula, r c is first parameterised as a function of climatic variables, then ET0 is corrected for the air CO2 concentration. The two formulas were compared in two periods. The first period involves data from two sites in the Mediterranean region within a measured climate change period (1981-2006) when all the input climatic variables were measured. The second period (2070-2100) involves data from a future climate change period at one site when the input climatic variables were forecasted for two future climate scenarios (A2 and B2). The annual cumulated values of ET0 calculated by the AL formula are systematically lower than those determined by the KP formula. The differences between the ET0 estimation with the AL and KP formulas have a strong impact on the determination of the IR for the reference crop. In fact, for the two periods, the annual values of IR when ET0 is calculated by the AL formula are systematically lower than those calculated by the KP formula. For the actual measured climate change period, this reduction varied from 26 to 28 %, while for the future climate change period, it varied based on the scenario from 16 % (A2) to 20 % (B2).

  7. Assessing Biofuel Crop Invasiveness: A Case Study

    PubMed Central

    Buddenhagen, Christopher Evan; Chimera, Charles; Clifford, Patti

    2009-01-01

    Background There is widespread interest in biofuel crops as a solution to the world's energy needs, particularly in light of concerns over greenhouse-gas emissions. Despite reservations about their adverse environmental impacts, no attempt has been made to quantify actual, relative or potential invasiveness of terrestrial biofuel crops at an appropriate regional or international scale, and their planting continues to be largely unregulated. Methodology/Principal Findings Using a widely accepted weed risk assessment system, we analyzed a comprehensive list of regionally suitable biofuel crops to show that seventy percent have a high risk of becoming invasive versus one-quarter of non-biofuel plant species and are two to four times more likely to establish wild populations locally or be invasive in Hawaii or in other locations with a similar climate. Conclusions/Significance Because of climatic and ecological similarities, predictions of biofuel crop invasiveness in Hawaii are applicable to other vulnerable island and subtropical ecosystems worldwide. We demonstrate the utility of an accessible and scientifically proven risk assessment protocol that allows users to predict if introduced species will become invasive in their region of interest. Other evidence supports the contention that propagule pressure created by extensive plantings will exacerbate invasions, a scenario expected with large-scale biofuel crop cultivation. Proactive measures, such as risk assessments, should be employed to predict invasion risks, which could then be mitigated via implementation of appropriate planting policies and adoption of the “polluter-pays” principle. PMID:19384412

  8. Crop and agrotechnology influence on CO2 emission in case of representative agrolandscapes of Moscow region, RF

    NASA Astrophysics Data System (ADS)

    Mazirov, Ilya; Vasenev, Ivan; Valentini, Riccardo

    2013-04-01

    Agroecosystems have a very important role in the regional balance of greenhouse gases (GHG). However, the volume of existing data on the different crops and agrotechnologies influence on the GHG emission sharply varies. The European territory of Russia (ETR) is one of regions with strong deficit of this information. At the same time ETR is characterized by high heterogeneity of soil cover patterns, land-use technologies and land agroecological quality. Our research has been done in the fields of Precision farming experiment of Russian Timiryazev State Agrarian University (RTSAU) that soil cover and landscape patterns are typical for Moscow region of RF. The investigated fields include four 1-ha plots with winter wheat and potatoes with versions of traditional tillage and no-till. Each key plot comprises the representative sites for analysis the autotrophic and heterotrophic respiration, and control ones. Carbon dioxide fluxes have been weekly measured in June - September 2012, by the portable infrared system gas analyzer LI-COR LI-6400XT. The carried out research has shown the crop strong influence on the soil CO2 emission. In case of field with winter wheat in June - August it was in 1.5-2.5 times higher (2,93 μmol m-2 s-1) than in potatoes one. The maximum difference has been fixed at the first half of August after the wheat harvest. July is characterize by gradual decrease soil carbon dioxide emission from 1.56 μmol m-2 s-1 to 1.06 μmol m-2 s-1. Comparative analysis of the model sites with differentiation of the autotrophic and heterotrophic respiration showed the absolute dominance of microorganism contribution: 1.56 μmol m-2 s-1 (76.3% of the total respiration). It is especially important that no-till sites have CO2 "microbial" emission in 24.8% less the traditional tillage ones. The carried out in June-September comparative analysis of investigated sites with forest control ones has shown the following set with increasing soil CO2 emission: "winter wheat

  9. Agricultural production and groundwater depletion under climate variability in India - Results from a regional scale crop modeling approach

    NASA Astrophysics Data System (ADS)

    Siegfried, T. U.; Sobolowski, S.; Fishman, R.; Vasquez, V.; Raj, P.; Narula, K. K.; Modi, V.; Lall, U.

    2009-12-01

    In India, recent declines in national food security may point to systemic deficiencies of agricultural production. Over the past decade and in the face of declining public investments in irrigation projects, the growth of production has increasingly become reliant on the allocation of large volumes of groundwater in an unsustainable manner. As a result, shallow as well as deep fossil groundwater resources are increasingly depleted and the buffer that mitigates negative impacts on production in case of Monsoonal dry-spells / drought conditions is lost. In the face of future climate and food supply uncertainty, it is vital that the connections between climate variability, unsustainable irrigation practices and their impacts on regional scale agricultural production be quantified and better understood. In our analysis, we focus on rice production in the Telengana region in Andhra Pradesh, which is characterized by a semi-arid tropical climate that is driven by the bimodal seasonality of the south-western monsoon. Traditionally, agricultural production of rice was constrained by precipitation variations during the wet season (Kharif). However, the advent of inexpensive pump technology in the 1970's, coupled with governmentally subsidized electricity has allowed year-round rice production. Thus, the Monsoon rains must not only drive wet season production but must also sufficiently recharge groundwater in order to support dry season production. Observed Production time series are characterized by non-stationarity and heteroscedasticity. Using a subset of eight districts, a non-linear Gaussian Process regression model is developed and yearly crop production is modeled at the district level over 48 years. We show that interannual climate variations, in the form of the monsoon rains, play a significant role in determining the area of land set aside for dry season planting and thus affect total yearly production. The results suggest that a non-linear Bayesian regression

  10. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region

    PubMed Central

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M.; McCarty, Gregory W.; Hively, W. Dean; Lang, Megan W.

    2016-01-01

    The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  11. Characterization of atmospheric aerosols for organic tarry matter and combustible matter during crop residue burning and non-crop residue burning months in Northwestern region of India

    NASA Astrophysics Data System (ADS)

    Singh, Nirankar; Agarwal, Ravinder; Awasthi, Amit; Gupta, Prabhat K.; Mittal, Susheel K.

    2010-03-01

    Aerosol (total suspended particulate) samples collected at three diverse locations (urban-commercial, semi-urban and rural-agricultural) in Patiala, India were analyzed for loss on ignition (LOI) and organic tarry matter (OTM) content in ambient air during crop residue burning (CRB) episodes and non-crop residue burning (NCRB) months in 2006-2007. Results showed high levels of LOI and OTM during wheat and rice crop residue-burning periods at all the sites. Higher levels were obtained during rice crop residue-burning period as compared to the wheat residue-burning period. At semi-urban site, LOI varied between 53 ± 36 μg m -3 and 257 ± 14 μg m -3 constituting 38-78% (w/w) part of the aerosols whereas levels of OTM varied between 0.98 ± 0.11 μg m -3 and 7.93 ± 2.76 μg m -3 comprising 0.42-3.28% (w/w) fraction. At rural-agricultural area site, levels of LOI varied between 86 ± 40 μg m -3 and 293 ± 70 μg m -3 comprising 27-84% (w/w), whereas OTM levels varied between 1.31 ± 0.64 μg m -3 and 10.09 ± 6.56 μg m -3 constituting 0.83-2.42% (w/w) fraction of the aerosols. At urban-cum-commercial site, levels of LOI and OTM varied between 48 ± 23 μg m -3 and 281 ± 152 μg m -3 and 2.53 ± 1.23 μg m -3 and 17.40 ± 8.50 μg m -3, constituting 24-62% (w/w) part of the aerosols, respectively. Results also indicated that OTM and LOI were integral parts of aerosols and their concentrations were influenced by the crop residue burning practices with incorporated effect of vehicular activities in Patiala.

  12. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region.

    PubMed

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M; McCarty, Gregory W; Hively, W Dean; Lang, Megan W

    2016-01-01

    The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  13. Development of estimation method for crop yield using MODIS satellite imagery data and process-based model for corn and soybean in US Corn-Belt region

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kang, S.; Jang, K.; Ko, J.; Hong, S.

    2012-12-01

    . For the case of 280 DOY, Crop yield estimation showed better accuracy for soybean at county level. Though the case of 200 DOY resulted in less accuracy (i.e. 20% mean bias), it provides a useful tool for early forecasting of crop yield. We improved the spatial accuracy of estimated crop yield at county level by developing county-specific crop conversion coefficient. Our results indicate that the aboveground crop biomass can be estimated successfully with the simple LUE and respiration models combined with MODIS data and then, county-specific conversion coefficient can be different with each other across different counties. Hence, applying region-specific conversion coefficient is necessary to estimate crop yield with better accuracy.

  14. Viruses occurring in onion crop in amasya province, the major onion producing region in Turkey.

    PubMed

    Sevik, Mehmet Ali; Akcura, Cemile

    2013-06-01

    Amasya is the greatest onion producing area in Turkey. Onion fields from Amasya region were surveyed for virus diseases in 2009-2011 and tested for the presence of the most important onion viruses such as Onion yellow dwarf virus (OYDV), Iris yellow spot virus (IYSV), Leek yellow stripe virus (LYSV), Shallot latent virus (SLV) and Garlic common latent virus (GCLV). The presence of virus diseases and their identification was ascertained through symptom observation in the fields, sap transmission to hosts, and DAS-ELISA. Based on the ELSA results, 57 out of 332 samples (17.16 %) were infected with viruses. The results showed that the highest infection was caused by OYDV (12.33 %) followed by LYSV (3.60 %). Only 1.19 % of the samples were infected with SLV, but none of the samples were found to be infected for GCLV and IYSV. PMID:24426263

  15. Long-term soil microbial community and enzyme activity responses to an integrated cropping-livestock system in a semi-arid region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water availability is a significant factor limiting agriculture in many semiarid or arid regions of the world. This study is part of a larger project to develop and evaluate integrated crop and livestock systems that reduce dependence on underground water while optimizing cotton (Gossypium hirsutum)...

  16. Effect of cropping system on composition of the Rhizoctonia populations recovered from canola and lupin in a winter rainfall region of South Africa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia spp. are important pathogens of a broad range of crop plants that are economically important to the farm economy of the Western Cape region of South Africa. However, there is little information concerning the identity and relative importance of these fungal pathogens, and the effect of ...

  17. Biological and Molecular Variability of Alfalfa mosaic virus Affecting Alfalfa Crop in Riyadh Region.

    PubMed

    Al-Saleh, Mohammed A; Amer, Mahmoud A

    2013-12-01

    In 2011-2012, sixty nine samples were collected from alfalfa plants showing viral infection symptoms in Riyadh region. Mechanical inoculation with sap prepared from two collected samples out of twenty five possitive for Alfalfa mosaic virus (AMV) by ELISA were produced systemic mosaic on Vigna unguiculata and Nicotiana tabacum, local lesion on Chenopodium amaranticolor and C. quinoa. Vicia faba indicator plants that induce mosaic and mottle with AMV-Sagir isolate and no infection with AMV-Wadi aldawasser isolate. Approximately 700-bp was formed by RT-PCR using AMV coat protein specific primer. Samples from infected alfalfa gave positive results, while healthy plant gave negative result using dot blot hybridization assay. The nucleotide sequences of the Saudi isolates were compared with corresponding viral nucleotide sequences reported in GenBank. The obtained results showed that the AMV from Australia, Brazil, Puglia and China had the highest similarity with AMV-Sajer isolate. While, the AMV from Spain and New Zealaland had the lowest similarity with AMV-Sajer and Wadi aldawasser isolates. The data obtained in this study has been deposited in the GenBank under the accession numbers KC434083 and KC434084 for AMV-Sajer and AMV- Wadialdawasser respectively. This is the first report regarding the gnetic make up of AMV in Saudi Arabia. PMID:25288969

  18. Fourteen Years of Diverse Annual No-Till Cropping in Washington’s Winter Wheat – Summer Fallow Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have completed the 14th year of a cropping systems experiment to evaluate diverse annual (i.e., no summer fallow) cropping systems using no-till as an alternative to tillage-intensive winter wheat (Triticum aestivum L.) – summer fallow (WW-SF). Soft white and hard white classes of winter and spri...

  19. Long-term Annual No-Till Cropping in Washington’s Winter Wheat – Summer Fallow Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tillage-based winter wheat – summer fallow (WW-SF) cropping system has dominated dryland farming in the Pacific Northwest for 125 years. We conducted a large-scale multidisciplinary 8-year study of annual no-till cropping systems as an alternative to WW-SF. Soft white and hard white classes of w...

  20. Cover crops and vegetable rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmers have long known that winter cover crops can decrease soil erosion, increase soil organic matter and fertility, and provide a beneficial impact on the following crop, but it is not always known which cover crop will provide the best results for a specific region and cropping system. Research...

  1. Regional estimation of soil C stocks and CO2 emissions as influenced by cropping systems and soil type

    NASA Astrophysics Data System (ADS)

    Farina, Roberta; Marchetti, Alessandro; Di Bene, Claudia

    2015-04-01

    Soil organic matter (SOM) is of crucial importance for agricultural soil quality and fertility. At global level soil contains about three times the carbon stored in the vegetation and about twice that present in the atmosphere. Soil could act as source and sink of carbon, influencing the balance of CO2 concentration and consequently the global climate. The sink/source ratio depends on many factors that encompass climate, soil characteristics and different land management practices. Thus, the relatively large gross exchange of GHGs between atmosphere and soils and the significant stocks of carbon in soils, may have significant impact on climate and on soil quality. To quantify the dynamics of C induced by land cover change and the spatial and temporal dynamics of C sources and sinks at regional and, potentially, at national and global scales, we propose a methodology, based on a bio-physical model combined with a spatial explicit database to estimate C stock changes and emissions/removals. The study has been conducted in a pilot region in Italy (Apulia, Foggia province), considering the typical cropping systems of the area, namely rainfed cereals, tomato, vineyard and olives. For this purpose, the model RothC10N (Farina et al., 2013), that simulates soil C dynamics, has been modified to work directly in batch using data of climate, soil (over 290 georeferenced soil profiles), annual agriculture land use (1200 observations) The C inputs from crops have been estimated using statistics and data from literature. The model was run to equilibrium for each point of soil, in order to make all the data homogeneous in terms of time. The obtained data were interpolate with geostatisical procedures, obtaining a set of 30x30 km grid with the initial soil C. The new layer produced, together with soil and land use layers, were used for a long-term run (12 years). Results showed that olive groves and vineyards were able to stock a considerable amount of C (from 0.4 to 1.5 t ha-1 y

  2. Assessing the Potentialities of FORMOSAT-2 Data for Water and Crop Monitoring at Small Regional Scale in South-Eastern France

    PubMed Central

    Courault, Dominique; Bsaibes, Aline; Kpemlie, Emmanuel; Hadria, Rachid; Hagolle, Olivier; Marloie, Olivier; Hanocq, Jean-F.; Olioso, Albert; Bertrand, Nadine; Desfonds, Véronique

    2008-01-01

    Water monitoring at the scale of a small agricultural region is a key point to insure a good crop development particularly in South-Eastern France, where extreme climatic conditions result in long dry periods in spring and summer with very sparse precipitation events, corresponding to a crucial period of crop development. Remote sensing with the increasing imagery resolution is a useful tool to provide information on plant water status over various temporal and spatial scales. The current study focussed on assessing the potentialities of FORMOSAT-2 data, characterized by high spatial (8m pixel) and temporal resolutions (1-3 day/time revisit), to improve crop modeling and spatial estimation of the main land properties. Thirty cloud free images were acquired from March to October 2006 over a small region called Crau-Camargue in SE France, while numerous ground measurements were performed simultaneously over various crop types. We have compared two models simulating energy transfers between soil, vegetation and atmosphere: SEBAL and PBLs. Maps of evapotranspiration were analyzed according to the agricultural practices at field scale. These practices were well identified from FORMOSAT-2 images, which provided accurate input surface parameters to the SVAT models.

  3. Rapid Prototyping of NASA's Solar and Meteorological Data For Regional Level Modeling of Agricultural and Bio-fuel Crop Phenology and Yield Potential

    NASA Astrophysics Data System (ADS)

    Hoell, J. M.; Stackhouse, P. W.; Eckman, R. S.

    2006-12-01

    Global demand for food, feedstock and bio-fuel crops is expanding rapidly due to population growth, increasing consumption of these products (especially in developing countries), and more recently skyrocketing use of these crops to produce ethanol as a bio-fuel. As a result, there are growing concerns, both in the US and world wide, about the ability to meet the projected demand for agricultural/bio-fuel crops without expanding production areas into environmentally sensitive regions. Concurrently, there are increasing concerns over the negative impact of global warming on crop yields. Accurate ecophysiological crop models have been developed for many of the food and bio-fuel crops and serve as the back-bone in sophisticated Decision Support Systems (DSS). These DSS's are increasingly being used to address the balance between the need to increase production/efficiency and environmental concerns, as well as the impact of global warming on crop production. Realistic application of these agricultural DSS's requires accurate environmental data on time scales ranging from hours to decades. To date only sparse surface measurements are used that typically do not measure solar irradiance. NASA's Prediction of Worldwide Energy Resource (POWER) project, which has as one of its objectives the development of data products for agricultural applications, currently provides a climatological data base of meteorological parameters and surface solar energy fluxes on a global 1-degree latitude by 1- degree longitude grid. NASA is also developing capabilities to produce near-real time data sets specifically designed for application by agricultural DSS's. In this presentation, we discuss the development of 1-degree global data products which combine the climatological data in the POWER project archive (http://earth-www.larc.nasa.gov/power), near real time (2 to 3 day lag) meteorological data from the Goddard Earth Observing System (GEOS) quick-look products, and global solar energy

  4. Early-season crop area estimates for winter crops in NE Australia using MODIS satellite imagery

    NASA Astrophysics Data System (ADS)

    Potgieter, A. B.; Apan, A.; Hammer, G.; Dunn, P.

    To date, industry and crop forecasters have had a good idea of the potential crop yield for a specific season, but early-season information on crop area for a shire or region has been mostly unavailable. The question of "how early and with what accuracy?" area estimates can be determined using multi-temporal Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index (EVI) imagery was investigated in this paper. The study was conducted for two shires in Queensland, Australia for the 2003 and 2004 seasons, and focused on deriving total winter crop area estimates (including wheat, barley and chickpea). A simple metric ( ΔE), which measures the green-up rate of the crop canopy, was derived. Using the unsupervised k-means classification algorithm, the accumulated difference of two consecutive images (one month apart) for three EVI threshold cut-offs ( ΔEi, where i=250, 500 and 750) at monthly intervals from April to October was calculated. July showed the highest pixel accuracy with percent correctly classified for all thresholds of 94% and 98% for 2003 and 2004, respectively. The differences in accuracy between the three cut-offs were minimal and the T500 threshold was selected as the preferred cut-off to avoid measuring too small or too large fluctuations in the differential EVI values. When compared to the aggregated shire data (surveyed) on crop area across shires and seasons, average percent differences for the ΔE for July and August ranged from -19% to 9%. To capture most of the variability in green-up within a region, the average ΔE of July and August was used for the early-season prediction of total winter crop area estimates. This resulted in high accuracy (R 2=0.96; RMSE = 3157 ha) for predicting the total winter crop from 2000 to 2004 across both shires. This result indicated that this simple multi-temporal remote sensing approach could be used with confidence in early-season crop area prediction at least one to two months ahead of

  5. Regional Approaches to Climate Change (REACCH) in the Inland Pacific Northwest: Micrometeorological Measurements of Nitrous Oxide Fluxes over a Wheat Cropping System

    NASA Astrophysics Data System (ADS)

    Lamb, B. K.; Waldo, S.; Chi, J.; Pressley, S. N.; Allwine, G.; O'Keeffe, P.; Huggins, D. R.; Pan, W.; Stockle, C.; Uberuaga, D.

    2012-12-01

    It is becoming increasingly important to investigate the relationship between global climate and agriculture in the face of ongoing climate change and the need to feed a growing global population. The REgional Approaches to Climate CHange (REACCH) USDA project is focused on Inland Pacific Northwest cereal cropping systems with an overarching goal to develop strategies for regional agriculture to mitigate and adapt to climate change. An important component of REACCH is to establish a baseline of greenhouse gas (GHG) fluxes for current and alternate management practices. While cropping systems have the potential to sequester carbon in the soils, they are a net source of nitrous oxide (N2O), a greenhouse gas with three hundred times the warming potential of CO2. We report here initial micrometeorological flux measurements of N2O over a high rainfall, annual cropping system under no-tillage management. The measurements were collected from three-meter eddy covariance towers. Each tower is equipped with a sonic anemometer and peripheral meteorological instruments. Closed-path cavity ring down spectroscopy instruments were used to measure N2O fluxes via two techniques: eddy covariance and the modified Bowen ratio gradient method. The flux data from the two techniques are compared to each other and also to enclosure chamber measurements to determine viability and the range of uncertainty in the measurements. They are also analyzed for patterns associated with management events and meteorological conditions.

  6. Agricultural Policy Environmental eXtender simulation of three adjacent row-crop watersheds in the claypan region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Policy Environmental Extender (APEX) model can simulate crop yields, and pollutant loadings in whole farms or small watersheds with variety of management practices. The study objectives were to identify sensitive parameters and parameterize, calibrate and validate the APEX model fo...

  7. A thermal-based remote sensing modelling system for estimating crop water use and stress from field to regional scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal-infrared remote sensing of land surface temperature provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition. A thermal-based scheme, called the Two-Source Energy Balance (TSEB) model, solves for the soil/substrate and canopy temp...

  8. Current SWD IPM tactics and their practical implementation in fruit crops across different regions around the world

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since its first detection in 2008, the spotted wing drosophila (SWD), Drosophila suzukii, has emerged as an important invasive insect pest in North America and Europe. The highly polyphagous fly is a major threat to many economically important small fruit crops including cherries and berries. It i...

  9. Using the RZWQM to Simulate the Fate of Nitrogen in Field Soil - Crop Environment in the Mediterranean Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water and Nitrogen (N) balances in agricultural systems are important for evaluating management effects on environmental quality. This paper presents an evaluation of the Root Zone Water Quality Model (RZWQM) for assessing the fate of N in the soil-crop environment at the field scale in Portugal und...

  10. Recent NPGS coordinated expeditions in the Trans-Caucasus Region to collect wild relatives of temperate fruit and nut crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Agricultural Research Service-managed National Plant Germplasm System (NPGS) coordinated several germplasm expeditions in the trans-Caucasus countries of Armenia, Azerbaijan, and Georgia beginning in 2001. One of the goals was to preserve valuable wild relatives of crop species ex situ at g...

  11. Tracing organic and inorganic pollution sources of agricultural crops and water resources in Güzelhisar Basin of the Aegean Region - Turkey

    NASA Astrophysics Data System (ADS)

    Czarnecki, Sezin; Colak Esetlili, Bihter; Esetlili, Tolga; Tepecik, Mahmut; Anac, Dilek; Düring, Rolf-Alexander

    2014-05-01

    The study area Güzelhisar Basin is 6 km far from the city Aliaga, Aegean Region in Turkey which represents a rather industrialized area having five large iron and steel factories, but also areas of agriculture. Steel industry in Aliaga is causing metal pollution. Around Güzelhisar Basin and nearby, the dominant crop fields are cotton, maize, vegetables, olive trees and vineyards. Güzelhisar stream and dam water is used for irrigation of the agricultural land. Due to contamination from metal industry in Aliaga, organic farming is not allowed in this region. Industrial activities in the region present a threat on sustainable agriculture. The region is a multi-impacted area in terms of several pollutant sources affecting soil and water quality. The overall objective of the project is to trace back plant nutrients (N, P, K, Ca, Mg, Na, Fe, Mn, Zn, Cu, and B), hazardous substances (i. e. persistent organic pollutants), radionuclides (40K, 232Th, 226Ra/238U), and metal contents (As, Cd, Cr, Co, Cu, Hg, Mn, Ni, Pb, and Zn) by examining the soils, agricultural crops and natural plants from Güzelhisar Basin and water and sediments from Güzelhisar stream and dam. Spatial distribution of pollution will be evaluated by regionalization methods. For this, an advanced analytical methodology will be applied which provides an understanding of sources and occurrence of the respective substances of concern. An innovative multi-tracer approach comprising organic and inorganic marker substances, will identify and quantitatively assess sources and their impact on water pollution and the pollutant pathways in this agricultural crop production system.

  12. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978-2008).

    PubMed

    Zhuo, La; Mekonnen, Mesfin M; Hoekstra, Arjen Y

    2016-05-01

    Previous studies into the relation between human consumption and indirect water resources use have unveiled the remote connections in virtual water (VW) trade networks, which show how communities externalize their water footprint (WF) to places far beyond their own region, but little has been done to understand variability in time. This study quantifies the effect of inter-annual variability of consumption, production, trade and climate on WF and VW trade, using China over the period 1978-2008 as a case study. Evapotranspiration, crop yields and green and blue WFs of crops are estimated at a 5 × 5 arc-minute resolution for 22 crops, for each year in the study period, thus accounting for climate variability. The results show that crop yield improvements during the study period helped to reduce the national average WF of crop consumption per capita by 23%, with a decreasing contribution to the total from cereals and increasing contribution from oil crops. The total consumptive WFs of national crop consumption and crop production, however, grew by 6% and 7%, respectively. By 2008, 28% of total water consumption in crop fields in China served the production of crops for export to other regions and, on average, 35% of the crop-related WF of a Chinese consumer was outside its own province. Historically, the net VW within China was from the water-rich South to the water-scarce North, but intensifying North-to-South crop trade reversed the net VW flow since 2000, which amounted 6% of North's WF of crop production in 2008. South China thus gradually became dependent on food supply from the water-scarce North. Besides, during the whole study period, China's domestic inter-regional VW flows went dominantly from areas with a relatively large to areas with a relatively small blue WF per unit of crop, which in 2008 resulted in a trade-related blue water loss of 7% of the national total blue WF of crop production. The case of China shows that domestic trade, as governed by

  13. Crop Coefficients of Some Selected Crops of Andhra Pradesh

    NASA Astrophysics Data System (ADS)

    Reddy, K. Chandrasekhar; Arunajyothy, S.; Mallikarjuna, P.

    2015-06-01

    Precise information on crop coefficients for estimating crop evapotranspiration (ETc) for regional scale irrigation planning is a major impediment in many regions. Crop coefficients suggested based on lysimeter data by earlier investigators have to be locally calibrated to account for the differences in the crop canopy under given climatic conditions. In the present study crop coefficients were derived based on reference crop evapotranspiration (ET0) estimated from Penman-Monteith equation and lysimeter measured ETc for groundnut, paddy, tobacco, sugarcane and castor crops at Tirupati, Nellore, Rajahmundry, Anakapalli and Rajendranagar centers of Andhra Pradesh respectively. Crop coefficients derived were compared with those recommended by FAO-56. The mean crop coefficients at different stages of growth were significantly different from those of FAO-56 curve though a similar trend was observed. A third order polynomial crop coefficient model has therefore been developed as a function of time (days after sowing the crop) for deriving suitable crop coefficients. The crop coefficient models suggested may be adopted to estimate crop evapotranspiration in the study area with reasonable degree of accuracy.

  14. Using Imaging Spectrometry to Identify Crops in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Shivers, S.; Roberts, D. A.

    2015-12-01

    With a growing global population, limited resources and a changing climate, understanding and monitoring the distribution of our food and water resources is essential to their sustainability. Regional food yield estimates and water resource accounting are dependent upon accurate agricultural records. Crop mapping provides farmers, managers, and policymakers the information necessary to anticipate annual food supplies and water demands by better understanding the distribution of species. While on the ground crop accounting usually happens yearly at the county level and requires significant time and labor inputs, remote sensing has the potential to map crops and monitor their health over a greater spatial area with more frequent time intervals. Specifically, imaging spectrometers have the capability to produce imagery at high spectral and spatial resolutions, which may allow for differentiation of crops at the field-level scale. In this research 14 crop species and soil were classified in Kern County, California using canonical discriminant analysis (CDA) and Multiple Endmember Spectral Mixture Analysis (MESMA) on airborne visible/infrared imaging spectrometer (AVIRIS) imagery from June 2013. Imagery was then degraded to Landsat spectral resolution and reclassified for comparison. Results with the AVIRIS imagery show an overall accuracy of 69.0% using MESMA and 89.4% using CDA with nine out of fourteen crop species showing user and producer errors under ten percent. Lower accuracy was found for OLI data. This research illustrates great potential for field-level crop mapping with imaging spectrometry.

  15. Regional heavy metal pollution in crops by integrating physiological function variability with spatio-temporal stability using multi-temporal thermal remote sensing

    NASA Astrophysics Data System (ADS)

    Liu, Meiling; Liu, Xiangnan; Zhang, Biyao; Ding, Chao

    2016-09-01

    Heavy metal stress in crops is characterized by stability in space and time, which differs from other stressors that are typically more transient (e.g., drought, pests/diseases, and mismanagement). The objective of this study is to assess regional heavy metal stress in rice by integrating physiological function variability with spatio-temporal stability based on multi-temporal thermal infrared (TIR) remote sensing images. The field in which the experiment was conducted is located in Zhuzhou City, Hunan Province, China. HJ-1B images and in-situ measured data were collected from rice growing in heavy metal contaminated soils. A stress index (SI) was devised as an indicator for the degree of heavy metal stress of the rice in different growth stages, and a time-spectrum feature space (TSFS) model was used to determine rice heavy metal stress levels. The results indicate that (i) SI is a good indicator of rice damage caused by heavy metal stress. Minimum values of SI occur in rice subject to high pollution, followed by larger SI with medium pollution and maximum SI for low pollution, for the same growth stage. (ii) SI shows some variation for different growth stages of rice, and the minimum SI occurs at the flowering stage. (iii) The TSFS model is successful at identifying rice heavy metal stress, and stress levels in rice stabilized regardless of the model being applied in the two different years. This study suggests that regional heavy metal stress in crops can be accurately detected using TIR technology, if a sensitive indicator of crop physiological function impairment is used and an effective model is selected. A combination of spectrum and spatio-temporal information appears to be a very promising method for monitoring crops with various stressors.

  16. Diversity of culturable Gram-negative bacteria isolated from irrigation water of two rice crop regions in Southern Brazil.

    PubMed

    Reche, Maria Helena Lima Ribeiro; Reali, Catiusca; Pittol, Michele; de Athayde Saul, Danilo; Macedo, Vera Regina Mussoi; Valiati, Victor Hugo; Machado, Vilmar; Fiuza, Lidia Mariana

    2016-06-01

    In this study, we assessed the diversity of Gram-negative bacteria found in water used for irrigation of rice crops in two growing areas of southern Brazil. Samples were collected from the main irrigation channel and field drain area. Twenty-two bacterial species were found in Cachoeirinha and 28 in Camaquã. In both areas, the most frequent bacterial families were Enterobacteriaceae and Aeromonadaceae. Differences in microbial diversity were observed in both study areas. Thirty-five Gram-negative species were identified; however, only 15 were common in both locations. In addition, there were found pathogenic and drug-resistant species, such as Acinetobacter sp., Brucella spp., and Chryseobacterium meningosepticum. This study demonstrates the existence of a number of pathogenic species in aquatic ecosystems analyzed in three consecutive crop years, especially water used for rice production. PMID:27197729

  17. Water Quality and Toxic Element Effects on Isohumic Soil Properties and Crops in Semi-arid Regions.

    PubMed

    Azouzi, Rim; Charef, Abdelkrim; Ayed, Lamia

    2015-06-01

    Treated wastewater (TWW) and freshwater used separately or within the same agricultural soil is a key element in soil parameter evolution, soil-plant pollution and crop yields. The long-term application of TWW increased CaCO3, P, N, K, TOC, metal contents, pH and salinity in isohumic soil in semi-arid and arid climates. Also, it was found that using freshwater after TWW within the same land leached soil compounds and pollutants. Consequently, a clear decline of salinity, pH, macronutrient and pollutant concentrations occured. Therefore, the economic profitability in topsoil decreased. TWW contributed to crop production increase, despite high fertilizer and metal concentrations in TWW and soil. Also, no toxic metal trace was detected in cultivated plants despite soil pollution. Occasional rainwater removed the stable part of fertilizers in topsoil and slightly improved plant development. PMID:25661007

  18. Annual crop type classification of the U.S. Great Plains for 2000 to 2011

    USGS Publications Warehouse

    Howard, Daniel M.; Wylie, Bruce K.

    2014-01-01

    The purpose of this study was to increase the spatial and temporal availability of crop classification data. In this study, nearly 16.2 million crop observation points were used in the training of the US Great Plains classification tree crop type model (CTM). Each observation point was further defined by weekly Normalized Difference Vegetation Index, annual climate, and a number of other biogeophysical environmental characteristics. This study accounted for the most prevalent crop types in the region, including, corn, soybeans, winter wheat, spring wheat, cotton, sorghum, and alfalfa. Annual CTM crop maps of the US Great Plains were created for 2000 to 2011 at a spatial resolution of 250 meters. The CTM achieved an 87 percent classification success rate on 1.8 million observation points that were withheld from model training. Product validation was performed on greater than 15,000 county records with a coefficient of determination of R2 = 0.76.

  19. Characterisation of caecum and crop microbiota of Indian indigenous chicken targeting multiple hypervariable regions within 16S rRNA gene.

    PubMed

    Saxena, S; Saxena, V K; Tomar, S; Sapcota, D; Gonmei, G

    2016-06-01

    A comparative analysis of caecum and crop microbiota of chick, grower and adult stages of Indian indigenous chickens was conducted to investigate the role of the microbiota of the gastrointestinal tract, which play an important role in host performance, health and immunity. High-throughput Illumina sequencing was performed for V3, V4 and V4-V6 hypervariable regions of the 16S rRNA gene. M5RNA and M5NR databases under MG-RAST were used for metagenomic datasets annotation. In the crop, Firmicutes (~78%) and Proteobacteria (~16%) were the predominant phyla whereas in the caecum, Firmicutes (~50%), Bacteroidetes (~29%) and Actinobacteria (~10%) were predominant. The Shannon-Wiener diversity index suggested that sample richness and diversity increased as the chicken aged. For the first time, the presence of Lactobacillus species such as L. frumenti, L. antri, L. mucosae in the chicken crop along with Kineococcus radiotolerans, Desulfohalobium retbaense and L. jensenii in the caecum are reported. Many of these bacterial species have been found to be involved in immune response modulation and disease prevention in pigs and humans. The gut microbiome of the indigenous chicken was enriched with microbes having probiotic potential which might be essential for their adaptability. PMID:26962896

  20. [Effects of inter-row economic crop planting on soil moisture in a rain-fed jujube orchard in loess hilly region, China].

    PubMed

    Ling, Qiang; Zhao, Xi-ning; Gao, Xiao-dong; Li, Lu-sheng; Li, Hong-chen; Sun, Wen-hao

    2016-02-01

    Soil moisture variation in dryland sloping jujube. orchard was investigated after introducing two economic crops, i.e., feed Brassica napus (JR) and Hemerocallis fulva (JH) planted between jujube rows. Jujube tree without inter-row crop was set as control (CK). The results showed that mean soil moisture for JR and JH in the 0-180 cm soil layer increased by 6.2% and 10.1% compared with CK, respectively. Soil moisture changed mainly in the 0-60 cm soil layer in growth stage of Jujube trees. Soil moisture in JR and JH treatments significantly increased in the 0-60 cm soil layer, which could meet the demand in water resource of jujube plantation. The water consumption of jujube trees also mainly concentrated in the 0-60 cm soil layer. There was a significant decay exponential relationship between the soil moisture in the 0-20 cm layer and the drought duration after rainfall. During the 18-day dry period after rain, the soil moisture contents of JR and JH were apparently higher than that of CK. In conclusion, the jujube-crop intercropping system improved the soil moisture condition. It was an effective measure to overcome the seasonal drought in jujube orchards on the loess hilly region. PMID:27396124

  1. Global crop production forecasting: An analysis of the data system problems and their solutions

    NASA Technical Reports Server (NTRS)

    Neiers, J.; Graf, H.

    1978-01-01

    Data related problems in the acquisition and use of satellite data necessary for operational forecasting of global crop production are considered for the purpose of establishing a measurable baseline. For data acquisition the world was divided into 37 crop regions in 22 countries. These regions represent approximately 95 percent of the total world production of the selected crops of interest, i.e., wheat, corn, soybeans, and rice. Targets were assigned to each region. Limited time periods during which data could be taken (windows) were assigned to each target. Each target was assigned to a cloud region. The DSDS was used to measure the success of obtaining data for each target during the specified windows for the regional cloud conditions and the specific alternatives being analyzed. The results of this study suggest several approaches for an operational system that will perform satisfactorily with two LANDSAT type satellites.

  2. Assessing crop-specific impacts of extremely wet (2007) and dry (2003) conditions in France on regional maize and wheat yields

    NASA Astrophysics Data System (ADS)

    van der Velde, Marijn

    2010-05-01

    Extreme weather conditions can strongly affect agricultural production. In France, crop yields were greatly influenced by drought and heat stress in 2003 and by extremely wet conditions in 2007. Both maize and wheat yield where historically low in 2003, in contrast to 2007 when wheat yields were lower and maize yields were higher than long-term averages. Even though maize yield loss was lower in regions with higher maize irrigation percentages; yield loss was still very considerable. Remotely sensed (AMSR-E) JJA soil moisture related significantly to reported regional crop yield for 2002-2007. The spatial correlation between JJA soil moisture and wheat yield anomalies was positive in dry 2003 and negative in wet 2007. Biweekly soil moisture correlated positively from the first half of June until the second half of July in 2003. In 2007, the relation was negative the first half of June until the second half of August. An analysis with a spatial version (10 by 10 km) of the EPIC crop growth model was used to infer causal relations between rainfall, soil moisture and rainfed wheat and rainfed and irrigated maize yield. The negative impacts of the 2003 heat wave and drought on wheat yield were captured by the model, while negative damages to yield due to excessive wetness in 2007 were not. Modelling suggests that regional drought mitigation increased with increasing maize irrigation percentages from 0 to 40%. At higher irrigation percentages the compensating effect of irrigation was small. The above average maize yields in 2007 were reproduced by the model, but the below average wheat yields were not. The model overestimation of wheat yield in 2007 may be due to a misrepresentation of the impact of wet conditions on plant physiological processes, or due to the incapacity of the model to represent determining factors such as lodging and unfavourable harvesting conditions. Strenghts and limitations of this regional assessment will be discussed. Extreme events affect

  3. Cover Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are great tools to improve soil quality and health, and great tools to increase carbon sequestration. They are nutrient management tools that can help scavenge nitrate, cycle nitrogen to the following crop, mine NO3 from groundwater, and increase nitrogen use efficiency of cropping syste...

  4. Impact of the spatial resolution of climatic data and soil physical properties on regional corn yield predictions using the STICS crop model

    NASA Astrophysics Data System (ADS)

    Jégo, Guillaume; Pattey, Elizabeth; Mesbah, S. Morteza; Liu, Jiangui; Duchesne, Isabelle

    2015-09-01

    The assimilation of Earth observation (EO) data into crop models has proven to be an efficient way to improve yield prediction at a regional scale by estimating key unknown crop management practices. However, the efficiency of prediction depends on the uncertainty associated with the data provided to crop models, particularly climatic data and soil physical properties. In this study, the performance of the STICS (Simulateur mulTIdisciplinaire pour les Cultures Standard) crop model for predicting corn yield after assimilation of leaf area index derived from EO data was evaluated under different scenarios. The scenarios were designed to examine the impact of using fine-resolution soil physical properties, as well as the impact of using climatic data from either one or four weather stations across the region of interest. The results indicate that when only one weather station was used, the average annual yield by producer was predicted well (absolute error <5%), but the spatial variability lacked accuracy (root mean square error = 1.3 t ha-1). The model root mean square error for yield prediction was highly correlated with the distance between the weather stations and the fields, for distances smaller than 10 km, and reached 0.5 t ha-1 for a 5-km distance when fine-resolution soil properties were used. When four weather stations were used, no significant improvement in model performance was observed. This was because of a marginal decrease (30%) in the average distance between fields and weather stations (from 10 to 7 km). However, the yield predictions were improved by approximately 15% with fine-resolution soil properties regardless of the number of weather stations used. The impact of the uncertainty associated with the EO-derived soil textures and the impact of alterations in rainfall distribution were also evaluated. A variation of about 10% in any of the soil physical textures resulted in a change in dry yield of 0.4 t ha-1. Changes in rainfall distribution

  5. Errors and uncertainties introduced by a regional climate model in climate impact assessments: example of crop yield simulations in West Africa

    NASA Astrophysics Data System (ADS)

    Ramarohetra, Johanna; Pohl, Benjamin; Sultan, Benjamin

    2015-12-01

    The challenge of estimating the potential impacts of climate change has led to an increasing use of dynamical downscaling to produce fine spatial-scale climate projections for impact assessments. In this work, we analyze if and to what extent the bias in the simulated crop yield can be reduced by using the Weather Research and Forecasting (WRF) regional climate model to downscale ERA-Interim (European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis) rainfall and radiation data. Then, we evaluate the uncertainties resulting from both the choice of the physical parameterizations of the WRF model and its internal variability. Impact assessments were performed at two sites in Sub-Saharan Africa and by using two crop models to simulate Niger pearl millet and Benin maize yields. We find that the use of the WRF model to downscale ERA-Interim climate data generally reduces the bias in the simulated crop yield, yet this reduction in bias strongly depends on the choices in the model setup. Among the physical parameterizations considered, we show that the choice of the land surface model (LSM) is of primary importance. When there is no coupling with a LSM, or when the LSM is too simplistic, the simulated precipitation and then the simulated yield are null, or respectively very low; therefore, coupling with a LSM is necessary. The convective scheme is the second most influential scheme for yield simulation, followed by the shortwave radiation scheme. The uncertainties related to the internal variability of the WRF model are also significant and reach up to 30% of the simulated yields. These results suggest that regional models need to be used more carefully in order to improve the reliability of impact assessments.

  6. Emissions of nonmethane volatile organic compounds from open crop residue burning in the Yangtze River Delta region, China

    NASA Astrophysics Data System (ADS)

    Kudo, Shinji; Tanimoto, Hiroshi; Inomata, Satoshi; Saito, Shinji; Pan, Xiaole; Kanaya, Yugo; Taketani, Fumikazu; Wang, Zifa; Chen, Hongyan; Dong, Huabin; Zhang, Meigen; Yamaji, Kazuyo

    2014-06-01

    Open crop residue burning is one of the major sources of air pollutants including the precursors of photooxidants like ozone and secondary organic aerosol. We made measurements of trace gases including nonmethane volatile organic compounds (NMVOCs) in a rural area in central East China in June 2010. During the campaign, we identified six biomass burning events in total through the simultaneous enhancement of carbon monoxide and acetonitrile. Four cases represented fresh plumes (<2 h after emission), and two cases represented aged plumes (>3 h after emission), as determined by photochemical age. While we were not able to quantify formic acid, we identified an enhancement of major oxygenated volatile organic compounds (OVOCs) as well as low molecular alkanes and alkenes, and aromatic hydrocarbons in these plumes. The observed normalized excess mixing ratios (NEMRs) of OVOCs and alkenes showed dependence on air mass age, even in fresh smoke plumes, supporting the view that these species are rapidly produced and destructed, respectively, during plume evolution. Based on the NEMR data in the fresh plumes, we calculated the emission factors (EFs) of individual NMVOC. The comparison to previous reports suggests that the EFs of formaldehyde and acetic acid have been overestimated, while those of alkenes have been underestimated. Finally, we suggest that open burning of wheat residue in China releases about 0.34 Tg NMVOCs annually. If we applied the same EFs to all crops, the annual NMVOC emissions would be 2.33 Tg. The EFs of speciated NMVOCs can be used to improve the existing inventories.

  7. Beyond Marbles: Percent Change and Social Justice

    ERIC Educational Resources Information Center

    Denny, Flannery

    2013-01-01

    In the author's eighth year of teaching, she hit a wall teaching percent change. Percent change is one of the few calculations taught in math classes that shows up regularly in the media, and one that she often does in her head to make sense of the world around her. Despite this, she had been teaching percent change using textbook problems about…

  8. Association of shifting populations in the root zone microbiome of millet with enhanced crop productivity in the Sahel region (Africa).

    PubMed

    Debenport, Spencer J; Assigbetse, Komi; Bayala, Roger; Chapuis-Lardy, Lydie; Dick, Richard P; McSpadden Gardener, Brian B

    2015-04-01

    This study characterized specific changes in the millet root zone microbiome stimulated by long-term woody-shrub intercropping at different sites in Senegal. At the two study sites, intercropping with woody shrubs and shrub residue resulted in a significant increase in millet [Pennisetum glaucum (L.) R. Br.] yield (P < 0.05) and associated patterns of increased diversity in both bacterial and fungal communities in the root zone of the crop. Across four experiments, operational taxonomic units (OTUs) belonging to Chitinophaga were consistently significantly (P < 0.001) enriched in the intercropped samples, and "Candidatus Koribacter" was consistently significantly enriched in samples where millet was grown alone. Those OTUs belonging to Chitinophaga were enriched more than 30-fold in residue-amended samples and formed a distinct subgroup from all OTUs detected in the genus. Additionally, OTUs belonging to 8 fungal genera (Aspergillus, Coniella, Epicoccum, Fusarium, Gibberella, Lasiodiplodia, Penicillium, and Phoma) were significantly (P < 0.005) enriched in all experiments at all sites in intercropped samples. The OTUs of four genera (Epicoccum, Fusarium, Gibberella, and Haematonectria) were consistently enriched at sites where millet was grown alone. Those enriched OTUs in intercropped samples showed consistently large-magnitude differences, ranging from 30- to 1,000-fold increases in abundance. Consistently enriched OTUs in intercropped samples in the genera Aspergillus, Fusarium, and Penicillium also formed phylogenetically distinct subgroups. These results suggest that the intercropping system used here can influence the recruitment of potentially beneficial microorganisms to the root zone of millet and aid subsistence farmers in producing higher-yielding crops. PMID:25681183

  9. Crop evapotranspiration-based irrigation management during the growing season in the arid region of northwestern China.

    PubMed

    Chang, Xuexiang; Zhao, Wenzhi; Zeng, Fanjiang

    2015-11-01

    In arid northwestern China, water shortages have triggered recent regulations affecting irrigation water use in desert-oasis agricultural systems. In order to determine the actual water demand of various crops and to develop standards for the rational use of water resources, we analyzed meteorological data from the Fukang desert ecosystem observation and experiment station (FKD), the Cele desert-grassland ecosystem observation and research station (CLD), and the Linze Inland River Basin Comprehensive Research Station (LZD), which all belong to the Chinese Ecosystem Research Network. We researched crop evapotranspiration (ETc) using the water balance method, the FAO-56 Penman-Monteith method, the Priestley-Taylor method, and the Hargreaves method, during the growing seasons of 2005 through 2009. Results indicate substantial differences in ETc, depending on the method used. At the CLD, the ETc from the soil water balance, FAO-56 Penman-Monteith, Priestley-Taylor, and Hargreaves methods were 1150.3±380.8, 783.7±33.6, 1018.3±22.1, and 611.2±23.3 mm, respectively; at the FKD, the corresponding results were 861.0±67.0, 834.2±83.9, 1453.5±47.1, and 1061.0±38.2 mm, respectively; and at the LZD, 823.4±110.4, 726.0±0.4, 722.3±29.4, and 1208.6±79.1 mm, respectively. The FAO-56 Penman-Monteith method provided a fairly good estimation of E Tc compared with the Priestley-Taylor and Hargreaves methods. PMID:26497559

  10. Salicornia as a crop plant in temperate regions: selection of genetically characterized ecotypes and optimization of their cultivation conditions

    PubMed Central

    Singh, Devesh; Buhmann, Anne K.; Flowers, Tim J.; Seal, Charlotte E.; Papenbrock, Jutta

    2014-01-01

    Rising sea levels and salinization of groundwater due to global climate change result in fast-dwindling sources of freshwater. Therefore, it is important to find alternatives to grow food crops and vegetables. Halophytes are naturally evolved salt-tolerant plants that are adapted to grow in environments that inhibit the growth of most glycophytic crop plants substantially. Members of the Salicornioideae are promising candidates for saline agriculture due to their high tolerance to salinity. Our aim was to develop genetically characterized lines of Salicornia and Sarcocornia for further breeding and to determine optimal cultivation conditions. To obtain a large and diverse genetic pool, seeds were collected from different countries and ecological conditions. The external transcribed spacer (ETS) sequence of 62 Salicornia and Sarcocornia accessions was analysed: ETS sequence data showed a clear distinction between the two genera and between different Salicornia taxa. However, in some cases the ETS was not sufficiently variable to resolve morphologically distinct species. For the determination of optimal cultivation conditions, experiments on germination, seedling establishment and growth to a harvestable size were performed using different accessions of Salicornia spp. Experiments revealed that the percentage germination was greatest at lower salinities and with temperatures of 20/10 °C (day/night). Salicornia spp. produced more harvestable biomass in hydroponic culture than in sand culture, but the nutrient concentration requires optimization as hydroponically grown plants showed symptoms of stress. Salicornia ramosissima produced more harvestable biomass than Salicornia dolichostachya in artificial sea water containing 257 mM NaCl. Based on preliminary tests on ease of cultivation, gain in biomass, morphology and taste, S. dolichostachya was investigated in more detail, and the optimal salinity for seedling establishment was found to be 100 mM. Harvesting of S

  11. Association of Shifting Populations in the Root Zone Microbiome of Millet with Enhanced Crop Productivity in the Sahel Region (Africa)

    PubMed Central

    Assigbetse, Komi; Bayala, Roger; Chapuis-Lardy, Lydie; Dick, Richard P.; McSpadden Gardener, Brian B.

    2015-01-01

    This study characterized specific changes in the millet root zone microbiome stimulated by long-term woody-shrub intercropping at different sites in Senegal. At the two study sites, intercropping with woody shrubs and shrub residue resulted in a significant increase in millet [Pennisetum glaucum (L.) R. Br.] yield (P < 0.05) and associated patterns of increased diversity in both bacterial and fungal communities in the root zone of the crop. Across four experiments, operational taxonomic units (OTUs) belonging to Chitinophaga were consistently significantly (P < 0.001) enriched in the intercropped samples, and “Candidatus Koribacter” was consistently significantly enriched in samples where millet was grown alone. Those OTUs belonging to Chitinophaga were enriched more than 30-fold in residue-amended samples and formed a distinct subgroup from all OTUs detected in the genus. Additionally, OTUs belonging to 8 fungal genera (Aspergillus, Coniella, Epicoccum, Fusarium, Gibberella, Lasiodiplodia, Penicillium, and Phoma) were significantly (P < 0.005) enriched in all experiments at all sites in intercropped samples. The OTUs of four genera (Epicoccum, Fusarium, Gibberella, and Haematonectria) were consistently enriched at sites where millet was grown alone. Those enriched OTUs in intercropped samples showed consistently large-magnitude differences, ranging from 30- to 1,000-fold increases in abundance. Consistently enriched OTUs in intercropped samples in the genera Aspergillus, Fusarium, and Penicillium also formed phylogenetically distinct subgroups. These results suggest that the intercropping system used here can influence the recruitment of potentially beneficial microorganisms to the root zone of millet and aid subsistence farmers in producing higher-yielding crops. PMID:25681183

  12. Microbial contamination of vegetable crop and soil profile in arid regions under controlled application of domestic wastewater

    PubMed Central

    Balkhair, Khaled S.

    2015-01-01

    Increasing lack of potable water in arid countries leads to the use of treated wastewater for crop production. However, the use of inappropriate irrigation practices could result in a serious contamination risk to plants, soils, and groundwater with sewage water. This research was initiated in view to the increasing danger of vegetable crops and groundwater contamination with pathogenic bacteria due to wastewater land application. The research was designed to study: (1) the effect of treated wastewater irrigation on the yield and microbial contamination of the radish plant under field conditions; (2) contamination of the agricultural soil profile with fecal coliform bacteria. Effluent from a domestic wastewater treatment plant (100%) in Jeddah city, Saudi Arabia, was diluted to 80% and 40% with the groundwater of the experimental site constituting three different water qualities plus groundwater as control. Radish plant was grown in two consecutive seasons under two drip irrigation systems and four irrigation water qualities. Upon harvesting, plant weight per ha, total bacterial, fecal coliform, fecal streptococci were detected per 100 g of dry matter and compared with the control. The soil profile was also sampled at an equal distance of 3 cm from soil surface for fecal coliform detection. The results indicated that the yield increased significantly under the subsurface irrigation system and the control water quality compared to surface irrigation system and other water qualities. There was a considerable drop in the count of all bacteria species under the subsurface irrigation system compared to surface irrigation. The bacterial count/g of the plant shoot system increased as the percentage of wastewater in the irrigation water increased. Most of the fecal coliform bacteria were deposited in the first few centimeters below the column inlet and the profile exponentially decreased with increasing depth. PMID:26858571

  13. Microbial contamination of vegetable crop and soil profile in arid regions under controlled application of domestic wastewater.

    PubMed

    Balkhair, Khaled S

    2016-01-01

    Increasing lack of potable water in arid countries leads to the use of treated wastewater for crop production. However, the use of inappropriate irrigation practices could result in a serious contamination risk to plants, soils, and groundwater with sewage water. This research was initiated in view to the increasing danger of vegetable crops and groundwater contamination with pathogenic bacteria due to wastewater land application. The research was designed to study: (1) the effect of treated wastewater irrigation on the yield and microbial contamination of the radish plant under field conditions; (2) contamination of the agricultural soil profile with fecal coliform bacteria. Effluent from a domestic wastewater treatment plant (100%) in Jeddah city, Saudi Arabia, was diluted to 80% and 40% with the groundwater of the experimental site constituting three different water qualities plus groundwater as control. Radish plant was grown in two consecutive seasons under two drip irrigation systems and four irrigation water qualities. Upon harvesting, plant weight per ha, total bacterial, fecal coliform, fecal streptococci were detected per 100 g of dry matter and compared with the control. The soil profile was also sampled at an equal distance of 3 cm from soil surface for fecal coliform detection. The results indicated that the yield increased significantly under the subsurface irrigation system and the control water quality compared to surface irrigation system and other water qualities. There was a considerable drop in the count of all bacteria species under the subsurface irrigation system compared to surface irrigation. The bacterial count/g of the plant shoot system increased as the percentage of wastewater in the irrigation water increased. Most of the fecal coliform bacteria were deposited in the first few centimeters below the column inlet and the profile exponentially decreased with increasing depth. PMID:26858571

  14. Discrimination of weeds in brassica crops using optical spectral reflectance and leaf texture analysis

    NASA Astrophysics Data System (ADS)

    Favier, John F.; Ross, David W.; Tsheko, R.; Kennedy, Duncan D.; Muir, Andrew Y.; Fleming, John

    1999-01-01

    Optical spectral reflectance and image analysis techniques were investigated as possible solutions to discriminate crop and weed plants. The range of pants included two brassica crop species, a cereal crop and eight weed species. Spectral signatures were obtained form optical reflectance measurement taken with a spectrophotometer in reflectance mode in the region between 700 and 1350 nm. Algorithms were developed based on multivariate statistical analysis of the plant reflectance spectra. By minimizing wavebands of interest for certain crop/weed combinations, better than 95 percent discrimination accuracy was obtained for only two or three waveband measures. Using filters at these wavebands it was possible to easily segregate corp from weed plants in images. Discrimination on the basis of leaf texture was investigated using textural signatures for whole leaves derived from a gray level co-occurrence matrix of nearest- neighbor pixel intensity. Textural features of leaves were expressed in the form of feature vectors comprising nine textural parameters extracted from the co-occurrence matrix. A numerical Bayesian classifier was used to classify leaves based on minimum distance between a mean feature vector determined form a training set and the test feature vector. A mean discrimination accuracy of 90 percent was achieved between al plant species and almost 100 percent separation was achieved between the crop and weeds. The results show that a combination of spectral imaging and texture analysis may provide a robust method of discrimination with potential for real time application.

  15. Inoculation with arbuscular mycorrhizae does not improve 137Cs uptake in crops grown in the Chernobyl region.

    PubMed

    Vinichuk, M; Mårtensson, A; Rosén, K

    2013-12-01

    Methods for cleaning up radioactive contaminated soils are urgently needed. In this study we investigated whether the use of arbuscular mycorrhizal (AM) fungi can improve (137)Cs uptake by crops. Barley, cucumber, perennial ryegrass, and sunflower were inoculated with AM fungi and grown in low-level radionuclide contaminated soils in a field experiment 70 km southwest of Chernobyl, Ukraine, during two successive years (2009-2010). Roots of barley, cucumber and sunflower plants were slightly or moderately infected with AM fungus and root infection frequency was negatively or non-correlated with (137)Cs uptake by plants. Roots of ryegrass were moderately infected with AM fungus and infection frequency was moderately correlated with (137)Cs uptake by ryegrass. The application of AM fungi to soil in situ did not enhance radionuclide plant uptake or biomass. The responsiveness of host plants and AM fungus combination to (137)Cs uptake varied depending on the soil, although mycorrhization of soil in the field was conditional and did not facilitate the uptake of radiocesium. The total amount of (137)Cs uptake by plants growing on inoculated soil was equal to amounts in plant cultivated on non-inoculated soil. Thus, the use of AM fungi in situ for bioremediation of soil contaminated with a low concentration of (137)Cs could not be recommended. PMID:23933082

  16. Assimilation of MODIS-derived LAI by radiative transfer modelling to crop growth simulation model for rice crop monitoring and yield estimation in the Mekong delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Nguyen, H.; de Bie, K.; Verhoef, W.

    2014-12-01

    Successful monitoring of rice crops and estimation of its yields in Mekong delta provide vital information to government agencies, rice production stakeholders and insurance companies in making their decisions and plans to establish solutions to protect rice smallholders from the risks involved. Remote sensing-based information promises a cost-effective way to observe rice crop growth in the largest rice producing region of Vietnam. For an extensive rice cultivation region as the Mekong delta, the use of divergence statistic to extract information from long-term or hypertemporal optical remote sensing NDVI profile to map rice cropping patterns has shown a high degree of success. The result map provides accurate information on where rice grew, when it was seeded and harvested, how many time it was cultivated every year. In addition, by using 8-day MODIS TERRA surface reflectance in Soil-Leaf-Canopy (SLC) radiative transfer model, 70 percent variation of seasonal rice LAI values was able to capture, making it useful to be assimilated into a rice crop growth simulation model (ORYZA 2000) to estimate the regional rice production in the season of 2008-2009. Tested results from 56 rice fields located in different rice cropping patterns showed that yields estimated using ORYZA2000 can explain 83 percent variation of field measured yields. However, simulated yields by ORYZA 2000 were used to overestimate by the model since some of model parameters could not be recalibrated due to the lack of field experiment data. This suggest that in the future, in order to gain a better results of rice crop monitoring and yield estimation, apart from improving the estimation of MODIS -derived LAIs by using SLC, calibrating crop growth simulation's parameter have to be taken into account.

  17. United States benefits of improved worldwide wheat crop information from a LANDSAT system

    NASA Technical Reports Server (NTRS)

    Heiss, K. P.; Sand, F.; Seidel, A.; Warner, D.; Sheflin, N.; Bhattacharyya, R.; Andrews, J.

    1975-01-01

    The value of worldwide information improvements on wheat crops, promised by LANDSAT, is measured in the context of world wheat markets. These benefits are based on current LANDSAT technical goals and assume that information is made available to all (United States and other countries) at the same time. A detailed empirical sample demonstration of the effect of improved information is given; the history of wheat commodity prices for 1971-72 is reconstructed and the price changes from improved vs. historical information are compared. The improved crop forecasting from a LANDSAT system assumed include wheat crop estimates of 90 percent accuracy for each major wheat producing region. Accurate, objective worldwide wheat crop information using space systems may have a very stabilizing influence on world commodity markets, in part making possible the establishment of long-term, stable trade relationships.

  18. Crop residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues [e.g., corn (Zea mays) stover and small grain straw] are sometimes excluded when discussing cellulosic energy crops per se, but because of the vast area upon which they are grown and their current role in the development of cellulosic energy systems. This chapter focuses on current cor...

  19. Crop Biotechnology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of crop biotechnology on outcomes of agricultural practices and economics is readily evidenced by the escalating acreage of genetically engineered crops, all occurring in a relatively short time span. Until the mid 1990s, virtually no acreage was planted with commercial genetically mo...

  20. Genepool of Wild Populations of Forage and Grain Legume Crops of Northwest and Central Regions of Russia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An international plant collection expedition to the northwest and central regions of Russia was undertaken in 2007 to collect seed of wild-growing perennial grass and legume species that have potential for forage and turf applications. These collections are of interest in breeding and selection pro...

  1. Replacing fallow with continuous cropping reduces crop water productivity of semiarid wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water supply frequently limits crop yield in semiarid cropping systems; water deficits can restrict yields in drought-affected subhumid regions. In semiarid wheat (Triticum aestivumL.)-based cropping systems, replacing an uncropped fallow period with a crop can increase precipitation use efficiency ...

  2. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia.

    PubMed

    Balkhair, Khaled S; Ashraf, Muhammad Aqeel

    2016-01-01

    Wastewater irrigated fields can cause potential contamination with heavy metals to soil and groundwater, thus pose a threat to human beings . The current study was designed to investigate the potential human health risks associated with the consumption of okra vegetable crop contaminated with toxic heavy metals. The crop was grown on a soil irrigated with treated wastewater in the western region of Saudi Arabia during 2010 and 2011. The monitored heavy metals included Cd, Cr, Cu, Pb and Zn for their bioaccumulation factors to provide baseline data regarding environmental safety and the suitability of sewage irrigation in the future. The pollution load index (PLI), enrichment factor (EF) and contamination factor (CF) of these metals were calculated. The pollution load index of the studied soils indicated their level of metal contamination. The concentrations of Ni, Pb, Cd and Cr in the edible portions were above the safe limit in 90%, 28%, 83% and 63% of the samples, respectively. The heavy metals in the edible portions were as follows: Cr > Zn > Ni > Cd > Mn > Pb > Cu > Fe. The Health Risk Index (HRI) was >1 indicating a potential health risk. The EF values designated an enhanced bio-contamination compared to other reports from Saudi Arabia and other countries around the world. The results indicated a potential pathway of human exposure to slow poisoning by heavy metals due to the indirect utilization of vegetables grown on heavy metal-contaminated soil that was irrigated by contaminated water sources. The okra tested was not safe for human use, especially for direct consumption by human beings. The irrigation source was identified as the source of the soil pollution in this study. PMID:26858563

  3. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia

    PubMed Central

    Balkhair, Khaled S.; Ashraf, Muhammad Aqeel

    2015-01-01

    Wastewater irrigated fields can cause potential contamination with heavy metals to soil and groundwater, thus pose a threat to human beings . The current study was designed to investigate the potential human health risks associated with the consumption of okra vegetable crop contaminated with toxic heavy metals. The crop was grown on a soil irrigated with treated wastewater in the western region of Saudi Arabia during 2010 and 2011. The monitored heavy metals included Cd, Cr, Cu, Pb and Zn for their bioaccumulation factors to provide baseline data regarding environmental safety and the suitability of sewage irrigation in the future. The pollution load index (PLI), enrichment factor (EF) and contamination factor (CF) of these metals were calculated. The pollution load index of the studied soils indicated their level of metal contamination. The concentrations of Ni, Pb, Cd and Cr in the edible portions were above the safe limit in 90%, 28%, 83% and 63% of the samples, respectively. The heavy metals in the edible portions were as follows: Cr > Zn > Ni > Cd > Mn > Pb > Cu > Fe. The Health Risk Index (HRI) was >1 indicating a potential health risk. The EF values designated an enhanced bio-contamination compared to other reports from Saudi Arabia and other countries around the world. The results indicated a potential pathway of human exposure to slow poisoning by heavy metals due to the indirect utilization of vegetables grown on heavy metal-contaminated soil that was irrigated by contaminated water sources. The okra tested was not safe for human use, especially for direct consumption by human beings. The irrigation source was identified as the source of the soil pollution in this study. PMID:26858563

  4. Breathing 100 percent oxygen compared with 50 percent oxygen:50 percent nitrogen reduces altitude-induced venous gas emboli

    NASA Technical Reports Server (NTRS)

    Webb, James T.; Pilmanis, Andrew A.

    1993-01-01

    The study investigates effects of 40 zero-prebreathe decompressions of male subjects to 8.3-6.8 psia for 6 h while they were breathing 100 percent oxygen and performing moderate exercise. No decompression sickness (DCS) symptoms were observed. Severe venous gas emboli (VGE) were not detected at 8.3 psia, but were present during 10, 20, and 40 percent of the exposures at 7.8, 7.3, and 6.8 psia, respectively. Zero-prebreathe decompression while breathing 100 percent oxygen results in significantly lower VGE and DCS risk levels than while breathing a 50:50 mix. It is shown that 7.3 psia EVA pressure suits with 100 percent oxygen should be safer than 8.3 psia suits with a 50:50 mix.

  5. Economic optimal nitrogen application rates for rice cropping in the Taihu Lake region of China: taking account of negative externalities

    NASA Astrophysics Data System (ADS)

    Xia, Y.; Yan, X.

    2011-07-01

    Nitrogen application rates (NARs) is often overestimated over the rice (Oryza sativa L.) growing season in the Taihu Lake region of China. This is largely because only individual nitrogen (N) losses are taken into account, or the inventory flows of reactive N have been limited solely to the farming process when evaluating environmental and economic effects of N fertilizer. Since N can permeate the ecosystem in numerous forms commencing from the acquisition of raw material, through manufacturing and use, to final losses in the farming process (e.g., N2O, NH3, NO3- leaching, etc.), the costs incurred also accumulate and should be taken into account if economically-optimal N rates (EONRs) are to be established. This study integrates important material and energy flows resulting from N use into a rice agricultural inventory that constitutes the hub of the life-cycle assessment (LCA) method. An economic evaluation is used to determine an environmental and economic NAR for the Taihu Lake region. The analysis reveals that production and exploitation processes consume the largest proportion of resources, accounting for 77.2 % and 22.3 % of total resources, respectively. Regarding environmental impact, global warming creates the highest cost with contributions stemming mostly from fertilizer production and raw material exploitation processes. Farming process incurs the biggest environmental impact of the three environmental impact categories considered, whereas transportation has a much smaller effect. When taking account of resource consumption and environmental cost, the marginal benefit of 1 kg rice would decrease from 2.4 to only 1.01 yuan. Accordingly, our current EONR has been evaluated at 185 kg N ha-1 for a single rice-growing season. This could enhance profitability, as well as reduce the N losses associated with rice growing.

  6. GEOGLAM Crop Monitor Assessment Tool: Developing Monthly Crop Condition Assessments

    NASA Astrophysics Data System (ADS)

    McGaughey, K.; Becker Reshef, I.; Barker, B.; Humber, M. L.; Nordling, J.; Justice, C. O.; Deshayes, M.

    2014-12-01

    The Group on Earth Observations (GEO) developed the Global Agricultural Monitoring initiative (GEOGLAM) to improve existing agricultural information through a network of international partnerships, data sharing, and operational research. This presentation will discuss the Crop Monitor component of GEOGLAM, which provides the Agricultural Market Information System (AMIS) with an international, multi-source, and transparent consensus assessment of crop growing conditions, status, and agro-climatic conditions likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soybean) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type. This presentation will focus on the building of international networks, data collection, and data dissemination.

  7. Generating a Crop Rotation Dataset for the U.S and its Application in Inferring Land Use Change Induced Wetland Losses in the Prairie Pothole Region

    NASA Astrophysics Data System (ADS)

    Sahajpal, R.; Zhang, X.; Izaurralde, R. C.; Hurtt, G. C.

    2013-12-01

    Agricultural management practices plays a major role in the global fluxes of greenhouse gases, soil carbon sequestration and production of ecosystem services. A key component of these practices are the crop rotations selected by the farmer. Here, we present an algorithm to create a crop rotation dataset for the U.S and demonstrate the tradeoffs between the number and accuracy of rotations comprising a state. To generate the rotations, we use the USDA Cropland Data Layer (CDL) available for the entire U.S at a resolution of 30 m from 2010 to 2012. Several studies have generated rotations simply by merging several years of CDL data, resulting in thousands of rotations per state. Alternatively, they tend to aggregate the rotations into a few predefined categories. This over simplification can lead to erroneous acreage values impacting both biogeochemical model estimates and land use change studies. Our algorithm uses the edit distance metric to combine similar rotations to obtain a product which retains the accuracy of CDL while minimizing the number of rotations. We find that 180 unique rotations are needed to represent the entire U.S with an accuracy exceeding 80% when compared to the underlying CDL datasets for rotations from 2010 to 2012. For the agriculturally important and diverse Western corn belt, the number of rotations needed to represent each state with an accuracy exceeding 90% when compared to the CDL dataset, ranges from 3 unique rotations for Iowa to more than 50 for North Dakota. As an application of the dataset, we examine the findings of Wright and Wimberly (1), who reported in a recent issue of PNAS that recent grassland conversion to corn and soybean cropping (GRCS) from 2006 to 2011 in the Prairie Pothole Region (PPR) is concentrated in the vicinity of wetlands. Their analysis implicitly assumes that all wetlands affected by GRCS in the PPR existed in or after 2006. However, the areal extent of wetlands was based on National Wetland Inventory maps

  8. Future generation energy crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although cropping systems in the Midwest that emphasize corn (Zea mays), soybean (Glycine max), and wheat (Triticum aestivum) are some of the most highly productive in the US, the growing lack of agricultural diversity in this region threatens to jeopardize long-term sustainability. Added to this co...

  9. An evaluation of 10 percent and 20 percent benzocaine gels in patients with acute toothaches

    PubMed Central

    Hersh, Elliot V.; Ciancio, Sebastian G.; Kuperstein, Arthur S.; Stoopler, Eric T.; Moore, Paul A.; Boynes, Sean G.; Levine, Steven C.; Casamassimo, Paul; Leyva, Rina; Mathew, Tanya; Shibly, Othman; Creighton, Paul; Jeffers, Gary E.; Corby, Patricia M.A.; Turetzky, Stanley N.; Papas, Athena; Wallen, Jillian; Idzik-Starr, Cynthia; Gordon, Sharon M.

    2013-01-01

    Background The authors evaluated the efficacy and tolerability of 10 percent and 20 percent benzocaine gels compared with those of a vehicle (placebo) gel for the temporary relief of toothache pain. They also assessed the compliance with the label dose administration directions on the part of participants with toothache pain. Methods Under double-masked conditions, 576 participants self-applied study gel to an open tooth cavity and surrounding oral tissues. Participants evaluated their pain intensity and pain relief for 120 minutes. The authors determined the amount of gel the participants applied. Results The responders’ rates (the primary efficacy parameter), defined as the percentage of participants who had an improvement in pain intensity as exhibited by a pain score reduction of at least one unit on the dental pain scale from baseline for two consecutive assessments any time between the five- and 20-minute points, were 87.3 percent, 80.7 percent and 70.4 percent, respectively, for 20 percent benzocaine gel, 10 percent benzocaine gel and vehicle gel. Both benzocaine gels were significantly (P ≤ .05) better than vehicle gel; the 20 percent benzocaine gel also was significantly (P ≤ .05) better than the 10 percent benzocaine gel. The mean amount of gel applied was 235.6 milligrams, with 88.2 percent of participants applying 400 mg or less. Conclusions Both 10 percent and 20 percent benzocaine gels were more efficacious than the vehicle gel, and the 20 percent benzocaine gel was more efficacious than the 10 percent benzocaine gel. All treatments were well tolerated by participants. Practical Implications Patients can use 10 percent and 20 percent benzocaine gels to temporarily treat toothache pain safely. PMID:23633700

  10. Agricultural crops and soil treatment impacts on the daily and seasonal dynamics of CO2 fluxes in the field agroecosystems at the Central region of Russia

    NASA Astrophysics Data System (ADS)

    Mazirov, Ilya; Vasenev, Ivan; Meshalkina, Joulia; Yaroslavtsev, Alexis; Berezovskiy, Egor; Djancharov, Turmusbek

    2015-04-01

    very useful for verification the current regional assessments of the organic C balances, investigated crops' C-footprint calculations and better understanding the soil organic matter dynamics in these soils with different crops and farming practices.

  11. Percent solids measurement using Coriolis technology

    SciTech Connect

    Smith, S.; Schietinger, M.

    1995-12-31

    In many industrial processes, measurement of percent solids is vital to product quality. Percent solids values are most often derived form measurement of density, specific gravity and refractive index. In the lab and in the process, measurement methods range from nuclear and refractometer to vibrating tube. For on-line measurement, Coriolis technology, a vibrating tube approach, is playing a more significant role. Coriolis technology is best known for the performance and benefits it provides for direct mass flow measurement. This discussion focuses on Coriolis technology as an option for percent solids measurement and its ability to provide real-time data for controlling the process, maintaining consistency, improving quality, and controlling costs. The combined abilities of a Coriolis mass flowmeter to provide direct mass flow and percent solids information simultaneously provides real-time control that is unattainable with any other single technology.

  12. 40 CFR 264.276 - Food-chain crops.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Food-chain crops. 264.276 Section 264... Treatment § 264.276 Food-chain crops. The Regional Administrator may allow the growth of food-chain crops in... Regional Administrator will specify in the facility permit the specific food-chain crops which may be...

  13. 40 CFR 264.276 - Food-chain crops.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Food-chain crops. 264.276 Section 264... Treatment § 264.276 Food-chain crops. The Regional Administrator may allow the growth of food-chain crops in... Regional Administrator will specify in the facility permit the specific food-chain crops which may be...

  14. 40 CFR 264.276 - Food-chain crops.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Food-chain crops. 264.276 Section 264... Treatment § 264.276 Food-chain crops. The Regional Administrator may allow the growth of food-chain crops in... Regional Administrator will specify in the facility permit the specific food-chain crops which may be...

  15. 40 CFR 264.276 - Food-chain crops.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Food-chain crops. 264.276 Section 264... Treatment § 264.276 Food-chain crops. The Regional Administrator may allow the growth of food-chain crops in... Regional Administrator will specify in the facility permit the specific food-chain crops which may be...

  16. 40 CFR 264.276 - Food-chain crops.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Food-chain crops. 264.276 Section 264... Treatment § 264.276 Food-chain crops. The Regional Administrator may allow the growth of food-chain crops in... Regional Administrator will specify in the facility permit the specific food-chain crops which may be...

  17. Potential use of MODIS imagery for operational crop yield assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monitoring crop condition and yields at regional scales remains a challenge. Ground-based sampling for assessment of crop yields at regional and national scales require enormous resources. Crop yield simulation models have shown great success in predicting crop yields at field and small scales; how...

  18. 7 CFR 760.634 - SURE guarantee for value loss crops.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false SURE guarantee for value loss crops. 760.634 Section... Payments Program § 760.634 SURE guarantee for value loss crops. (a) The SURE guarantee for value loss crops... otherwise specified. (1) For each insurable crop on the farm, 115 percent of the product obtained...

  19. Sunflower crop

    SciTech Connect

    Beard, B.H.

    1981-05-01

    A review of the sunflower as a major commercial crop, including its history, cultivation, hybridization and uses. It is grown principally for its oil which is high in polyunsaturated fatty acids and used in a variety of foods. Recently it has been tested in diesel engines and a high protein meal is produced from the seed residues.

  20. Food security: crops for people not for cars.

    PubMed

    Kullander, Sven

    2010-05-01

    Humankind is currently faced with the huge challenge of securing a sustainable energy supply and biofuels constitute one of the major options. However, the commercially traded edible crops are barely sufficient to meet food demand of the present world population. Certain regions, for example EU-27, do not even have a sufficient indigenous crop production. Of this follows that motor biofuels based on edible crops should be avoided. To replace more than some percent of the fossil motor fuels, non-edible biomass-rest products and wastes-should instead be considered for conversion to biofuels. In this way, about 10% of the current fossil fuels can be replaced. Feeding a world population expected to grow by some 50% during the next 50 years will be a major challenge. For environmental reasons it seems that agricultural land cannot be expanded very much, maybe not at all. The solution to the increasing food demand seems therefore to be using the present crop production more efficiently and increasing output from present agricultural land, maintaining biodiversity and climate stability within reasonable limits. In the future, agriculture will need more energy and more water irrigation. Food production is, however, already very energy demanding, requiring several times more externally provided energy than the energy content of the food itself. A sufficient energy supply will be a key issue for the future farming! PMID:20701181

  1. Ammonia volatilization from crop residues and frozen green manure crops

    NASA Astrophysics Data System (ADS)

    de Ruijter, F. J.; Huijsmans, J. F. M.; Rutgers, B.

    2010-09-01

    Agricultural systems can lose substantial amounts of nitrogen (N). To protect the environment, the European Union (EU) has adopted several directives that set goals to limit N losses. National Emission Ceilings (NEC) are prescribed in the NEC directive for nitrogen oxides and ammonia. Crop residues may contribute to ammonia volatilization, but sufficient information on their contribution to the national ammonia volatilization is lacking. Experiments were carried out with the aim to assess the ammonia volatilization of crop residues left on the soil surface or incorporated into the soil under the conditions met in practice in the Netherlands during late autumn and winter. Ammonia emission from residues of broccoli, leek, sugar beet, cut grass, fodder radish (fresh and frozen) and yellow mustard (frozen) was studied during two winter seasons using volatilization chambers. Residues were either placed on top of soil or mixed with soil. Mixing residues with soil gave insignificant ammonia volatilization, whereas volatilization was 5-16 percent of the N content of residues when placed on top of soil. Ammonia volatilization started after at least 4 days. Total ammonia volatilization was related to C/N-ratio and N concentration of the plant material. After 37 days, cumulative ammonia volatilization was negligible from plant material with N concentration below 2 percent, and was 10 percent of the N content of plant material with 4 percent N. These observations can be explained by decomposition of plant material by micro-organisms. After an initial built up of the microbial population, NH 4+ that is not needed for their own growth is released and can easily emit as NH 3 at the soil surface. The results of the experiments were used to estimate the contribution of crop residues to ammonia volatilization in the Netherlands. Crop residues of arable crops and residues of pasture topping may contribute more than 3 million kg NH 3-N to the national ammonia volatilization of the

  2. Miscanthus Establishment and Overwintering in the Midwest USA: A Regional Modeling Study of Crop Residue Management on Critical Minimum Soil Temperatures

    PubMed Central

    Kucharik, Christopher J.; VanLoocke, Andy; Lenters, John D.; Motew, Melissa M.

    2013-01-01

    Miscanthus is an intriguing cellulosic bioenergy feedstock because its aboveground productivity is high for low amounts of agrochemical inputs, but soil temperatures below −3.5°C could threaten successful cultivation in temperate regions. We used a combination of observed soil temperatures and the Agro-IBIS model to investigate how strategic residue management could reduce the risk of rhizome threatening soil temperatures. This objective was addressed using a historical (1978–2007) reconstruction of extreme minimum 10 cm soil temperatures experienced across the Midwest US and model sensitivity studies that quantified the impact of crop residue on soil temperatures. At observation sites and for simulations that had bare soil, two critical soil temperature thresholds (50% rhizome winterkill at −3.5°C and −6.0°C for different Miscanthus genotypes) were reached at rhizome planting depth (10 cm) over large geographic areas. The coldest average annual extreme 10 cm soil temperatures were between −8°C to −11°C across North Dakota, South Dakota, and Minnesota. Large portions of the region experienced 10 cm soil temperatures below −3.5°C in 75% or greater for all years, and portions of North and South Dakota, Minnesota, and Wisconsin experienced soil temperatures below −6.0°C in 50–60% of all years. For simulated management options that established varied thicknesses (1–5 cm) of miscanthus straw following harvest, extreme minimum soil temperatures increased by 2.5°C to 6°C compared to bare soil, with the greatest warming associated with thicker residue layers. While the likelihood of 10 cm soil temperatures reaching −3.5°C was greatly reduced with 2–5 cm of surface residue, portions of the Dakotas, Nebraska, Minnesota, and Wisconsin still experienced temperatures colder than −3.5°C in 50–80% of all years. Nonetheless, strategic residue management could help increase the likelihood of overwintering of miscanthus rhizomes in the first

  3. Estimating a percent reduction in load

    NASA Astrophysics Data System (ADS)

    Millard, Steven P.

    This article extends the work of Cohn et al. [1989] on estimating constituent loads to the problem of estimating a percent reduction in load. Three estimators are considered: the maximum likelihood (MLE), a ``bias-corrected'' maximum likelihood (BCMLE), and the minimum variance unbiased (MVUE). In terms of root-mean-square error, both the MVUE and BCMLE are superior to the MLE, and for the cases considered here there is no appreciable difference between the MVUE and the BCMLE. The BCMLE is constructed from quantities computed by most regression packages and is therefore simpler to compute than the MVUE (which involves approximating an infinite series). All three estimators are applied to a case study in which an agricultural tax in the Everglades agricultural area is tied to an observed percent reduction in phosphorus load. For typical hydrological data, very large sample sizes (of the order of 100 observations each in the baseline period and after) are required to estimate a percent reduction in load with reasonable precision.

  4. Crop Rotation in Row Crop Production Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop rotation is a system of growing different kinds of crops in recurrent succession on the same land. Thus, in the strictest sense, crop rotation is more than just changing crops from year to year based on current economic situations. Rather, it is a long-term plan for soil and farm management. Cr...

  5. Seed fates in crop-wild hybrid sunflower: crop allele and maternal effects.

    PubMed

    Pace, Brian A; Alexander, Helen M; Emry, Jason D; Mercer, Kristin L

    2015-02-01

    Domestication has resulted in selection upon seed traits found in wild populations, yet crop-wild hybrids retain some aspects of both parental phenotypes. Seed fates of germination, dormancy, and mortality can influence the success of crop allele introgression in crop-wild hybrid zones, especially if crop alleles or crop-imparted seed coverings result in out-of-season germination. We performed a seed burial experiment using crop, wild, and diverse hybrid sunflower (Helianthus annuus) cross types to test how a cross type's maternal parent and nuclear genetic composition might affect its fate under field conditions. We observed higher maladaptive fall germination in the crop- and F1- produced seeds than wild-produced seeds and, due to an interaction with percent crop alleles, fall germination was higher for cross types with more crop-like nuclear genetics. By spring, crop-produced cross types had the highest overwintering mortality, primarily due to higher fall germination. Early spring germination was identical across maternal types, but germination continued for F1-produced seeds. In conclusion, the more wild-like the maternal parent or the less proportion of the cross type's genome contributed by the crop, the greater likelihood a seed will remain ungerminated than die. Wild-like dormancy may facilitate introgression through future recruitment from the soil seed bank. PMID:25685189

  6. Long-term soil microbial community and enzyme activity responses to an integrated cropping-livestock system in a semi-arid region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study is part of a larger long-term project to develop and evaluate integrated crop and livestock systems in order to reduce dependence on underground water sources by optimizing cotton (Gossypium hirsutum) production in the Texas High Plains of U.S. Microbial communities and activities were e...

  7. Global Warming Potential of Organic and Conventional Grain Cropping Systems in the mid-Atlantic Region of the U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The global warming potential (GWP) of a cropping system is the balance between the net exchange of the greenhouse gases CO2, N2O and CH4 that result from on-farm practices and the production and transport of inputs. We report here on GWP calculations for no-till (NT), chisel till (CT) and organic (O...

  8. Origins of food crops connect countries worldwide

    PubMed Central

    Achicanoy, Harold A.; Bjorkman, Anne D.; Navarro-Racines, Carlos; Guarino, Luigi; Flores-Palacios, Ximena; Engels, Johannes M. M.; Wiersema, John H.; Dempewolf, Hannes; Sotelo, Steven; Ramírez-Villegas, Julian; Castañeda-Álvarez, Nora P.; Fowler, Cary; Jarvis, Andy; Rieseberg, Loren H.; Struik, Paul C.

    2016-01-01

    Research into the origins of food plants has led to the recognition that specific geographical regions around the world have been of particular importance to the development of agricultural crops. Yet the relative contributions of these different regions in the context of current food systems have not been quantified. Here we determine the origins (‘primary regions of diversity’) of the crops comprising the food supplies and agricultural production of countries worldwide. We estimate the degree to which countries use crops from regions of diversity other than their own (‘foreign crops’), and quantify changes in this usage over the past 50 years. Countries are highly interconnected with regard to primary regions of diversity of the crops they cultivate and/or consume. Foreign crops are extensively used in food supplies (68.7% of national food supplies as a global mean are derived from foreign crops) and production systems (69.3% of crops grown are foreign). Foreign crop usage has increased significantly over the past 50 years, including in countries with high indigenous crop diversity. The results provide a novel perspective on the ongoing globalization of food systems worldwide, and bolster evidence for the importance of international collaboration on genetic resource conservation and exchange.

  9. Impact of climate change and adaptation strategies on crop production in Nigeria

    NASA Astrophysics Data System (ADS)

    Mereu, V.; Gallo, A.; Carboni, G.; Spano, D.

    2012-04-01

    The vulnerability of agricultural to climate change is of particular interest to policy makers because the high social and economical importance of agriculture sector in Nigeria, which contributes approximately 40 percent to total GDP and support 70 percent of the population. It is necessary to investigate the potential climate change impacts in order to identify specific agricultural sectors and Agro-Ecological Zones that will be more vulnerable to changes in climatic conditions and implement and develop the most appropriate policies to cope with these changes. In this framework, this study aimed to assess the climate change impacts on Nigerian agricultural sector and to explore some of potential adaptation strategies for the most important crops in the food basket of the Country. The analysis was made using the DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5. Crop simulation models included in DSSAT are tools that allows to simulate physiological process of crop growth, development and production, by combining genetic crop characteristics and environmental (soil and weather) conditions. In this analysis, for each selected crop, the models included into DSSAT-CSM software were ran, after a calibration phase, to evaluate climate change impacts on crop production. The climate data used for the analysis are derived by the Regional Circulation Model COSMO-CLM, from 1971 to 2065, at 8 km of spatial resolution. The RCM model output were "perturbed" with 10 Global Climate Models in order to have a wide variety of possible climate projections for impact analysis. Multiple combinations of soils and climate conditions, crop management and varieties were considered for each Agro-Ecological Zone of Nigeria. The climate impact assessment was made by comparing the yield obtained with the climate data for the present period and the yield obtainable under future changed climate conditions. The models ran by keeping

  10. Relating United States crop land use to natural resources and climate change

    SciTech Connect

    Flores-Mendoza, F.J.; Hubbard, K.G.

    1995-02-01

    Crop production depends not only on the yield but also on the area harvested. The yield response to climate change has been widely examined, but the sensitivity of crop land use to hypothetical climate change has not been examined directly. Crop land-use regression models for estimating crop area indices (CAIs)-the percent of land used for corn, soybean, wheat, and sorghum production-are presented. Inputs to the models include available water-holding capacity of the soil, percent of land available for rain-fed agricultural production, annual precipitation, and annual temperature. The total variance of CAI explained by the models ranged from 78% from wheat to 87% for sorghum, and the root-mean-square errors ranged from 1.74% for sorghum to 4.24% for corn. The introduction of additional climatic variables to the models did not significantly improve their performance. The crop land-use models were used to predict the CAI for every crop reporting district in the United States for the current climatic condition and for possible future climate change scenarios (various combinations of temperature and precipitation changes over a range of -3{degrees} to +6{degrees}C and -20% to +20% respectively). The magnitude of climatic warming suggested by GCMs (GISS and GFDL) is from 3.5{degrees} to 5.9{degrees}C for regions of the United States. For this magnitude of warming, the model suggests corn and soybean production areas may decline while wheat and sorghum production areas may expand. If the warming is accompanied by a decrease in annual precipitation from 1% to 10%, then the areas used for corn and soybean production could decrease by as much as 20% and 40%, respectively. The area for sorghum and wheat under these conditions would increase by as much as 80% and 70%, respectively; the exact amount depending strongly on the change in precipitation. 15 refs., 6 figs.

  11. How I Love My 80 Percenters

    NASA Technical Reports Server (NTRS)

    Maturo, Anthony J.

    2002-01-01

    Don't ever take your support staff for granted. By support staff, I mean the people in personnel, logistics, and finance; the ones who can make things happen with a phone call or a signature, or by the same token frustrate you to no end by their inaction; these are people you must depend on. I've spent a lot of time thinking about how to cultivate relationships with my support staff that work to the advantage of both of us. The most important thing that have learned working with people, any people--and I will tell you how I learned this in a minute--is there are some folks you just can't motivate, so forget it, don't try; others you certainly can with a little psychology and some effort; and the best of the bunch, what I call the 80 percenters, you don't need to motivate because they're already on the team and performing beautifully. The ones you can't change are rocks. Face up to it, and just kick them out of your way. I have a reputation with the people who don't want to perform or be part of the team. They don't come near me. If someone's a rock, I pick up on it right away, and I will walk around him or her to find someone better. The ones who can be motivated I take time to nurture. I consider them my projects. A lot of times these wannabes are people who want to help but don't know how. Listen, you can work with them. Lots of people in organizations have the mindset that all that matters are the regulations. God forbid if you ever work outside those regulations. They've got one foot on that regulation and they're holding it tight like a baby holds a blanket. What you're looking for is that first sign that their minds are opening. Usually you hear it in their vocabulary. What used to sound like "We can't do that ... the regulations won't allow it ... we have never done this before," well, suddenly that changes to "We have options ... let's take a look at the options ... let me research this and get back to you." The 80 percenters you want to nurture too, but

  12. Investigation of Effectiveness of a Wing Equipped with a 50-percent-chord Sliding Flap, a 30-percent-chord Slotted Flap, and a 30-percent-chord Slat in Deflecting Propeller Slipstreams Downward for Vertical Take-off

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E

    1957-01-01

    Results are presented of an investigation of the effectiveness of a wing equipped with a 50-percent-chord sliding flap and a 30-percent-chord slotted flap in deflecting a propeller slipstream downward for vertical take-off. Tests were conducted at zero forward speed in a large room and included the effects of flap deflection, proximity to the ground, a leading-edge slat, and end plates. A turning angle of about 70 degrees and a resultant force of about 100 percent of the thrust were achieved near the ground. Out of the ground-effect region, the turning angle was also about 70 degrees but the resultant force was reduced to about 86 percent of the thrust.

  13. Hydroponic Crop Production using Recycled Nutrients from Inedible Crop Residues

    NASA Technical Reports Server (NTRS)

    Garland, Jay L.; Mackowiak, Cheryl L.; Sager, John C.

    1993-01-01

    The coupling of plant growth and waste recycling systems is an important step toward the development of bioregenerative life support systems. This research examined the effectiveness of two alternative methods for recycling nutrients from the inedible fraction (residue) of candidate crops in a bioregenerative system as follows: (1) extraction in water, or leaching, and (2) combustion at 550 C, with subsequent reconstitution of the ash in acid. The effectiveness of the different methods was evaluated by (1) comparing the percent recovery of nutrients, and (2) measuring short- and long-term plant growth in hydroponic solutions, based on recycled nutrients.

  14. Uncertainties in Predicting Rice Yield by Current Crop Models Under a Wide Range of Climatic Conditions

    NASA Technical Reports Server (NTRS)

    Li, Tao; Hasegawa, Toshihiro; Yin, Xinyou; Zhu, Yan; Boote, Kenneth; Adam, Myriam; Bregaglio, Simone; Buis, Samuel; Confalonieri, Roberto; Fumoto, Tamon; Gaydon, Donald; Marcaida, Manuel, III; Nakagawa, Hiroshi; Oriol, Philippe; Ruane, Alex C.; Ruget, Francoise; Singh, Balwinder; Singh, Upendra; Tang, Liang; Tao, Fulu; Wilkens, Paul; Yoshida, Hiroe; Zhang, Zhao; Bouman, Bas

    2014-01-01

    Predicting rice (Oryza sativa) productivity under future climates is important for global food security. Ecophysiological crop models in combination with climate model outputs are commonly used in yield prediction, but uncertainties associated with crop models remain largely unquantified. We evaluated 13 rice models against multi-year experimental yield data at four sites with diverse climatic conditions in Asia and examined whether different modeling approaches on major physiological processes attribute to the uncertainties of prediction to field measured yields and to the uncertainties of sensitivity to changes in temperature and CO2 concentration [CO2]. We also examined whether a use of an ensemble of crop models can reduce the uncertainties. Individual models did not consistently reproduce both experimental and regional yields well, and uncertainty was larger at the warmest and coolest sites. The variation in yield projections was larger among crop models than variation resulting from 16 global climate model-based scenarios. However, the mean of predictions of all crop models reproduced experimental data, with an uncertainty of less than 10 percent of measured yields. Using an ensemble of eight models calibrated only for phenology or five models calibrated in detail resulted in the uncertainty equivalent to that of the measured yield in well-controlled agronomic field experiments. Sensitivity analysis indicates the necessity to improve the accuracy in predicting both biomass and harvest index in response to increasing [CO2] and temperature.

  15. Simulating Stochastic Crop Management in Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction -- Crop simulation models are uniquely suitable for examining long term crop responses to environmental variability due to changes in climate or other factors. Long-term studies typically emphasize variability related to weather conditions; certain weather-dependent cropping practices m...

  16. 7 CFR 760.817 - Quality losses for 2005, 2006, and 2007 crops.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS 2005-2007 Crop Disaster Program § 760..., assistance will be made available to participants determined eligible under this section for crop quality losses of 25 percent or greater of the value that all affected production of the crop would have had...

  17. 7 CFR 760.817 - Quality losses for 2005, 2006, and 2007 crops.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS 2005-2007 Crop Disaster Program § 760..., assistance will be made available to participants determined eligible under this section for crop quality losses of 25 percent or greater of the value that all affected production of the crop would have had...

  18. Priorities for worldwide remote sensing of agricultural crops

    NASA Technical Reports Server (NTRS)

    Bowker, D. E.

    1985-01-01

    The world's crops are ranked according to total harvested area, and comparisons are made among major world regions of differences in crops produced. The eight leading world crops are wheat, rice, corn, barley, millet, soybeans, sorghum, and cotton. Regionally, millet and sorghum are most important in Africa, wheat is the most extensively grown crop in north-central America, Europe, USSR, and Oceania; corn is the dominant crop in South America; and rice is the most extensively grown crop in Asia. Agriculture in the USA is considered in more detail to show the national economic impact of variations in value per hectare among crops. On the world scene, the cereals are the most important crops, but locally, such crops as tobacco can play a dominant role.

  19. Drought and arthropod pests of crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water deficit can make otherwise arable regions less, or nonarable, from lack of life-sustaining water and it can also affect the extent to which crops are afflicted by arthropod pests. The effects of drought on host plant availability and nutrititive value influence arthropod pests of crops in a v...

  20. Crop Management Strategies for Low Water Availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The High Plains is a temperate semi-arid region with highly variable rainfall. Extended periods of drought are common. In general, crop management strategies attempt to maximize the total water available to the crop and to maximize transpiration by minimizing soil evaporation. Summer fallow, the pra...

  1. Origins of food crops connect countries worldwide.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop genetic diversity is concentrated within specific geographic regions worldwide. While access to this diversity is critical to continued increases in agricultural productivity, the geopolitical significance of the geography of crop diversity has not been quantified. We assess the degree to which...

  2. Smoking Behavior and the Tobacco Crop.

    ERIC Educational Resources Information Center

    Wilson, Richard W.; Higgins, C. Wayne

    1984-01-01

    The influence of the physical and economic presence of tobacco crops on smoking behavior and related attitudes of students in tobacco-raising regions was measured by a Tobacco Crop Intensity variable. Implications for government agricultural and educational policy are discussed. (Author/DF)

  3. Adverse weather impacts on arable cropping systems

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2016-04-01

    Damages due to extreme or adverse weather strongly depend on crop type, crop stage, soil conditions and management. The impact is largest during the sensitive periods of the farming calendar, and requires a modelling approach to capture the interactions between the crop, its environment and the occurrence of the meteorological event. The hypothesis is that extreme and adverse weather events can be quantified and subsequently incorporated in current crop models. Since crop development is driven by thermal time and photoperiod, a regional crop model was used to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. Risk profiles and associated return levels were obtained by fitting generalized extreme value distributions to block maxima for air humidity, water balance and temperature variables. The risk profiles were subsequently confronted with yields and yield losses for the major arable crops in Belgium, notably winter wheat, winter barley, winter oilseed rape, sugar beet, potato and maize at the field (farm records) to regional scale (statistics). The average daily vapour pressure deficit (VPD) and reference evapotranspiration (ET0) during the growing season is significantly lower (p < 0.001) and has a higher variability before 1988 than after 1988. Distribution patterns of VPD and ET0 have relevant impacts on crop yields. The response to rising temperatures depends on the crop's capability to condition its microenvironment. Crops short of water close their stomata, lose their evaporative cooling potential and ultimately become susceptible to heat stress. Effects of heat stress therefore have to be combined with moisture availability such as the precipitation deficit or the soil water balance. Risks of combined heat and moisture deficit stress appear during the summer. These risks are subsequently related to crop damage. The methodology of defining

  4. Crop emergence date determination from spectral data

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.

    1980-01-01

    Estimating the emergence of a given crop, such as wheat or barley, is proposed using an analytic method which relies on the hypothesis that in the region (lambda = 0.70-1.35 microns) a given crop, after emergence, has a unique spectral profile in time. If the crop emerges early or late, relative to a reference standard determined for a given segment, the profile is displaced but has the same shape. Therefore, given the crop specific constants of the reference profile and a sufficient number of Landsat observations of reflectivity at specific times, the emergence date of a field can be determined.

  5. Environmental enhancement using short-rotation woody crops and perennial grasses as alternative agricultural crops

    SciTech Connect

    Tolbert, V.R.; Schiller, A.

    1995-12-31

    Short-rotation woody crops and perennial grasses are grown as biomass feedstocks for energy and fiber. When replacing traditional row crops on similar lands, these alternative crops can provide multiple environmental benefits in addition to enhancing rural economies and providing valuable feedstock resources. The Department of Energy is supporting research to address how these crops can provide environmental benefits to soil, water and native wildlife species in addition to providing bioenergy feedstocks. Research is underway to address the potential for biomass crops to provide soil conservation and water quality improvements in crop settings. Replacement of traditional erosive row crops with biomass crops on marginal lands and establishment of biomass plantations as filter strips adjacent to streams and wetlands are being studied. The habitat value of different biomass crops for selected wildlife species is also under study. To date, these studies have shown that in comparison with row crops biomass plantings of both grass and tree crops increased biodiversity of birds; however, the habitat value of tree plantations is not equivalent to natural forests. The effects on native wildlife of establishing multiple plantations across a landscape are being studied. Combining findings on wildlife use of individual plantations with information on the cumulative effects of multiple plantations on wildlife populations can provide guidance for establishing and managing biomass crops to enhance biodiversity while providing biomass feedstocks. Data from site-specific environmental studies can provide input for evaluation of the probable effects of large-scale plantings at both landscape and regional levels of resolution.

  6. Papaya: environment and crop physiology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Papaya (Carica papaya L.) is a principal horticultural crop of tropical and subtropical regions. Knowledge of how papaya responds to environmental factors provides a scientific basis for the development of management strategies to optimize fruit yield and quality. A better understanding of genotyp...

  7. Priority regions for research on dryland cereals and legumes

    PubMed Central

    Hyman, Glenn; Barona, Elizabeth; Biradar, Chandrashekhar; Guevara, Edward; Dixon, John; Beebe, Steve; Castano, Silvia Elena; Alabi, Tunrayo; Gumma, Murali Krishna; Sivasankar, Shoba; Rivera, Ovidio; Espinosa, Herlin; Cardona, Jorge

    2016-01-01

    Dryland cereals and legumes  are important crops in farming systems across the world.  Yet they are frequently neglected among the priorities for international agricultural research and development, often due to lack of information on their magnitude and extent. Given what we know about the global distribution of dryland cereals and legumes, what regions should be high priority for research and development to improve livelihoods and food security? This research evaluated the geographic dimensions of these crops and the farming systems where they are found worldwide. The study employed geographic information science and data to assess the key farming systems and regions for these crops. Dryland cereal and legume crops should be given high priority in 18 farming systems worldwide, where their cultivated area comprises more than 160 million ha. These regions include the dryer areas of South Asia, West and East Africa, the Middle East and North Africa, Central America and other parts of Asia. These regions are prone to drought and heat stress, have limiting soil constraints, make up half of the global population and account for 60 percent of the global poor and malnourished. The dryland cereal and legume crops and farming systems merit more research and development attention to improve productivity and address development problems. This project developed an open access dataset and information resource that provides the basis for future analysis of the geographic dimensions of dryland cereals and legumes. PMID:27303632

  8. Priority regions for research on dryland cereals and legumes.

    PubMed

    Hyman, Glenn; Barona, Elizabeth; Biradar, Chandrashekhar; Guevara, Edward; Dixon, John; Beebe, Steve; Castano, Silvia Elena; Alabi, Tunrayo; Gumma, Murali Krishna; Sivasankar, Shoba; Rivera, Ovidio; Espinosa, Herlin; Cardona, Jorge

    2016-01-01

    Dryland cereals and legumes  are important crops in farming systems across the world.  Yet they are frequently neglected among the priorities for international agricultural research and development, often due to lack of information on their magnitude and extent. Given what we know about the global distribution of dryland cereals and legumes, what regions should be high priority for research and development to improve livelihoods and food security? This research evaluated the geographic dimensions of these crops and the farming systems where they are found worldwide. The study employed geographic information science and data to assess the key farming systems and regions for these crops. Dryland cereal and legume crops should be given high priority in 18 farming systems worldwide, where their cultivated area comprises more than 160 million ha. These regions include the dryer areas of South Asia, West and East Africa, the Middle East and North Africa, Central America and other parts of Asia. These regions are prone to drought and heat stress, have limiting soil constraints, make up half of the global population and account for 60 percent of the global poor and malnourished. The dryland cereal and legume crops and farming systems merit more research and development attention to improve productivity and address development problems. This project developed an open access dataset and information resource that provides the basis for future analysis of the geographic dimensions of dryland cereals and legumes. PMID:27303632

  9. Decomposing global crop yield variability

    NASA Astrophysics Data System (ADS)

    Ben-Ari, Tamara; Makowski, David

    2014-11-01

    Recent food crises have highlighted the need to better understand the between-year variability of agricultural production. Although increasing future production seems necessary, the globalization of commodity markets suggests that the food system would also benefit from enhanced supplies stability through a reduction in the year-to-year variability. Here, we develop an analytical expression decomposing global crop yield interannual variability into three informative components that quantify how evenly are croplands distributed in the world, the proportion of cultivated areas allocated to regions of above or below average variability and the covariation between yields in distinct world regions. This decomposition is used to identify drivers of interannual yield variations for four major crops (i.e., maize, rice, soybean and wheat) over the period 1961-2012. We show that maize production is fairly spread but marked by one prominent region with high levels of crop yield interannual variability (which encompasses the North American corn belt in the USA, and Canada). In contrast, global rice yields have a small variability because, although spatially concentrated, much of the production is located in regions of below-average variability (i.e., South, Eastern and South Eastern Asia). Because of these contrasted land use allocations, an even cultivated land distribution across regions would reduce global maize yield variance, but increase the variance of global yield rice. Intermediate results are obtained for soybean and wheat for which croplands are mainly located in regions with close-to-average variability. At the scale of large world regions, we find that covariances of regional yields have a negligible contribution to global yield variance. The proposed decomposition could be applied at any spatial and time scales, including the yearly time step. By addressing global crop production stability (or lack thereof) our results contribute to the understanding of a key

  10. Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production

    SciTech Connect

    Chameides, W.L.; Kasibhatla, P.S. ); Yienger, J.; Levy, H. II )

    1994-04-01

    Three regions of the northern mid-latitudes, the continental-scale metro-agro-plexes, presently dominate global industrial and agricultural productivity. Although these regions cover only 23 percent of the Earth's continents, they account for most of the world's commercial energy consumption, fertilizer use, food-crop production, and food exports. They also account for more than half of the world's atmospheric nitrogen oxide (NO[sub x]) emissions and, as a result, are prone to ground-level ozone (O[sub 3]) pollution during the summer months. On the basis of a global simulation of atmospheric reactive nitrogen compounds, it is estimated that about 10 to 35 percent of the world's grain production may occur in parts of these regions where ozone pollution may reduce crop yields. Exposure to yield-reducing ozone pollution may triple by 2025 if rising anthropogenic NO[sub x] emissions are not abated.