Science.gov

Sample records for regular magnetic clouds

  1. Infrared radiative transfer through a regular array of cuboidal clouds

    NASA Technical Reports Server (NTRS)

    HARSHVARDHAN; Weinman, J. A.

    1981-01-01

    Infrared radiative transfer through a regular array of cuboidal clouds is studied and the interaction of the sides of the clouds with each other and the ground is considered. The theory is developed for black clouds and is extended to scattering clouds using a variable azimuth two-stream approximation. It is shown that geometrical considerations often dominate over the microphysical aspects of radiative transfer through the clouds. For example, the difference in simulated 10 micron brightness temperature between black isothermal cubic clouds and cubic clouds of optical depth 10, is less than 2 deg for zenith angles less than 50 deg for all cloud fractions when viewed parallel to the array. The results show that serious errors are made in flux and cooling rate computations if broken clouds are modeled as planiform. Radiances computed by the usual practice of area-weighting cloudy and clear sky radiances are in error by 2 to 8 K in brightness temperature for cubic clouds over a wide range of cloud fractions and zenith angles. It is also shown that the lapse rate does not markedly affect the exiting radiances for cuboidal clouds of unit aspect ratio and optical depth 10.

  2. Waves Within Magnetic Clouds

    NASA Astrophysics Data System (ADS)

    Siu Tapia, A. L.; Blanco-Cano, X.; Kajdic, P.; Aguilar-Rodriguez, E.; Russell, C. T.; Jian, L. K.; Luhmann, J. G.

    2013-05-01

    Complex events are formed by two or more large-scale structures which interact in the solar wind. Typical cases are interactions of: (i) a magnetic cloud/interplanetary coronal mass ejection (MC/ICME) with another MC/ICME transient; (ii) a MC/ICME embedded within a stream interaction region (SIR); and (iii) a MC/ICME followed by a fast stream. Using data from the STEREO mission during the years 2007-2011 we found 17 ICMEs forming complex events with an associated shock wave. All the ICMEs included in this study showed a smooth rotation of the magnetic field and low proton beta plasma, and were classified as MCs. We use magnetic field and plasma data to study the waves observed within these MCs. To determine wave characteristics we perform Power Spectra and Minimum Variance Analysis. We also analyze 10 MCs driving shocks which were not associated with complex events. We compare wave characteristics within the Magnetic Clouds forming Complex Events (MCCE), with those waves observed within the Magnetic Clouds that were isolated (IMC), i. e., not associated with complex events. Transverse and almost parallel propagating ion cyclotron waves were observed within both, MCCE and IMC. Compressive mirror mode waves were observed only within MCCE. Both modes can grow due to temperature anisotropy. Most of the mirror mode events found within MCCE are observed in regions with enhanced plasma beta. This is in agreement with kinetic theory, which predicts that mirror mode growth is favored by high plasma beta values. It is possible that the observed enhancements in plasma beta are due to compressions inside MCCE.

  3. Magnetic confinement of cosmic clouds

    NASA Technical Reports Server (NTRS)

    Azar, Michel; Thompson, W. B.

    1988-01-01

    The role of the magnetic field in the confinement or compression of interstellar gas clouds is reconsidered. The virial theorem for an isolated magnetized cloud in the presence of distant magnetic sources is reformulated in terms of moments of the internal and external currents, and an equilibrium condition is derived. This condition is applied to the interaction between isolated clouds for the simple- and artificial-case in which the field of each cloud is a dipole. With the simplest of statistical assumptions, the probability of any given cloud being compressed is calculated as about 10 percent, the magnetic field acting as a medium which transmits the kinetic pressure between clouds. Even when compression occurs the magnetic pressure 1/2 B-squared may decrease on leaving the cloud surface.

  4. Polytropic relationship in interplanetary magnetic clouds

    NASA Technical Reports Server (NTRS)

    Osherovich, V. A.; Farrugia, C. J.; Burlaga, L. F.; Lepping, R. P.; Fainberg, J.; Stone, R. G.

    1993-01-01

    High time-resolution data from the ISEE 3 and IMP 8 spacecraft are presented for the magnetic field and the proton and electron populations of a number of magnetic clouds, in order to investigate such clouds' thermodynamics and the relationship between their magnetic and thermodynamic structures. It is judged on the basis of these data that while the magnetic flield of the cloud expands, the ions are cooled. Hot electrons are trapped by the magnetic field in the magnetic cloud's core. These conditions are favorable for the generation of ion-acoustic waves.

  5. Study of an expanding magnetic cloud

    NASA Astrophysics Data System (ADS)

    Nakwacki, M. S.; Dasso, S.; Mandrini, C. H.; Démoulin, P.

    Magnetic Clouds (MCs) transport into the interplanetary medium the magnetic flux and helicity released in coronal mass ejections by the Sun. At 1 AU from the Sun, MCs are generally modelled as static flux ropes. However, the velocity profile of some MCs presents signatures of expansion. We analise here the magnetic structure of an expanding magnetic cloud observed by Wind spacecraft. We consider a dynamical model, based on a self-similar behaviour for the cloud radial velocity. We assume a free expansion for the cloud, and a cylindrical linear force free field (i.e., the Lundquist's field) as the initial condition for its magnetic configuration. We derive theoretical expressions for the magnetic flux across a surface perpendicular to the cloud axis, for the magnetic helicity and magnetic energy per unit length along the tube using the self-similar model. Finally, we compute these magntitudes with the fitted parameters. FULL TEXT IN SPANISH

  6. Magnetic clouds in the solar wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Klein, L.

    1980-01-01

    Two interplanetary magnetic clouds, characterized by anomalous magnetic field directions and unusually high magnetic field strengths with a scale of the order of 0.25 AU, are identified and described. As the clouds moved past a spacecraft located in the solar wind near Earth, the magnetic field direction changed by rotating approximately 180 deg nearly parallel to a plane which was essentially perpendicular to the ecliptic. The configuration of the magnetic field in the clouds might be that of a tightly wound cylindrical helix or a series of closed circular loops. One of the magnetic clouds was in a cold stream preceded by a shock, and it caused both a geomagnetic storm and a depression in the galactic cosmic ray intensity. No stream, geomagnetic storm, or large cosmic ray decrease was associated with the other magnetic cloud.

  7. Interplanetary magnetic clouds at 1 AU

    NASA Technical Reports Server (NTRS)

    Klein, L. W.; Burlaga, L. F.

    1981-01-01

    Magnetic clouds are defined as regions with a radial dimension approximately 0.25 AU (at 1 AU) in which the magnetic field strength is high and the magnetic field direction changes appreciably by means of rotation of one component of B nearly parallel to a plane. The magnetic field geometry in such a magnetic cloud is consistent with that of a magnetic loop, but it cannot be determined uniquely. Forty-five clouds were identified in interplanetary data obtained near Earth between 1967 and 1978; at least one cloud passed the Earth every three months. Three classes of clouds were identified, corresponding to the association of a cloud with a shock, a stream interface, or a CME. There are approximately equal numbers of clouds in each class, and the three types of clouds might be different manifestations of a coronal transient. The magnetic pressure inside the clouds is higher than the ion pressure and the sum is higher than the pressure of the material outside of the cloud.

  8. Interplanetary magnetic clouds: Topology and driving mechanism

    NASA Astrophysics Data System (ADS)

    Chen, James; Garren, David A.

    1993-11-01

    A model is developed to study the origin and propagation of magnetic clouds. Starting with an equilibrium current loop embedded in an ambient plasma consistent with the solar corona, magnetic energy is injected by increasing the loop current. This causes the loop to rise, propelling plasma and magnetic field away from the Sun. Using a simple model of the interplanetary medium, the subsequent dynamics of the loop is calculated to 1 AU and beyond. The macroscopic properties of the resulting structures at 1 AU closely resemble those of observed magnetic clouds. Thermal effects indicate that clouds remain magnetically connected to the Sun in order to yield observed temperatures near 1 AU.

  9. Global configuration of a magnetic cloud

    NASA Astrophysics Data System (ADS)

    Burlaga, L. F.; Lepping, R. P.; Jones, J. A.

    A magnetic cloud associated with a 2N flare on January 1, 1978 was observed by IMP-8, Helios A, Helios B, and Voyager 2. The variation of the magnetic field observed at each spacecraft is represented to good approximation by Lundquist's solution for a cylindrically symmetric force-free magnetic field with constant alpha. A least-squares fit of Lundquist's solution to the data from each spacecraft gives the local orientation of the axis of the magnetic cloud. The times of the estimated boundaries of the magnetic cloud at each spacecraft, together with the speeds of the boundaries and the spacecraft position, give the positions of the boundaries at a given time. From these results the magnetic cloud is determined to resemble a flux rope whose minor radius is approximately 0.15 AU at 1 AU, and whose radius of curvature at 1 AU is approximately 1/3 AU.

  10. Ionospheric Geo-effectiveness of Magnetic Clouds

    NASA Astrophysics Data System (ADS)

    Bronder, T. J.; Knipp, D. J.; Lynch, B.; Zurbuchen, T.; McHarg, M. G.; Chun, F. K.

    2002-12-01

    We present an analysis of the geo-effectiveness of magnetic clouds and the disturbed solar wind surrounding them. Estimates of the ionospheric Joule heating rates based on two ground magnetic indices and estimates of auroral zone particle heating from polar satellites will be combined to provide a summary of the total geomagnetic heating during magnetic cloud passage. Preliminary estimates suggest that intervals of magnetic cloud passage experience about 50 percent greater heating rates than intervals associated with the more general class of interplanetary coronal mass ejection. Heating rates for magnetic clouds are about four times greater than heating rates estimated for intervals of background slow solar wind flow. Preliminary work also indicates that magnetic clouds lying in the ecliptic plane (leading or trailing fields oriented N-S or S-N) have heating rates about 50 percent greater than clouds with leading or trailing fields perpendicular to the ecliptic plane. We will provide hourly heating profiles for more than 50 magnetic clouds passing the earth during the rise and peak of solar cycle 23.

  11. Exploring Regularities for Improving FAÇADE Reconstruction from Point Clouds

    NASA Astrophysics Data System (ADS)

    Zhou, K.; Gorte, B.; Zlatanova, S.

    2016-06-01

    (Semi)-automatic facade reconstruction from terrestrial LiDAR point clouds is often affected by both quality of point cloud itself and imperfectness of object recognition algorithms. In this paper, we employ regularities, which exist on façades, to mitigate these problems. For example, doors, windows and balconies often have orthogonal and parallel boundaries. Many windows are constructed with the same shape. They may be arranged at the same lines and distance intervals, so do different windows. By identifying regularities among objects with relatively poor quality, these can be applied to calibrate the objects and improve their quality. The paper focuses on the regularities among the windows, which is the majority of objects on the wall. Regularities are classified into three categories: within an individual window, among similar windows and among different windows. Nine cases are specified as a reference for exploration. A hierarchical clustering method is employed to identify and apply regularities in a feature space, where regularities can be identified from clusters. To find the corresponding features in the nine cases of regularities, two phases are distinguished for similar and different windows. In the first phase, ICP (iterative closest points) is used to identify groups of similar windows. The registered points and a number of transformation matrices are used to identify and apply regularities among similar windows. In the second phase, features are extracted from the boundaries of the different windows. When applying regularities by relocating windows, the connections, called chains, established among the similar windows in the first phase are preserved. To test the performance of the algorithms, two datasets from terrestrial LiDAR point clouds are used. Both show good effects on the reconstructed model, while still matching with original point cloud, preventing over or under-regularization.

  12. Charged scalar perturbations around a regular magnetic black hole

    NASA Astrophysics Data System (ADS)

    Huang, Yang; Liu, Dao-Jun

    2016-05-01

    We study charged scalar perturbations in the background of a regular magnetic black hole. In this case, the charged scalar perturbation does not result in superradiance. By using a careful time-domain analysis, we show that the charge of the scalar field can change the real part of the quasinormal frequency, but has little impact on the imaginary part of the quasinormal frequency and the behavior of the late-time tail. Therefore, the regular magnetic black hole may be stable under the perturbations of a charged scalar field at the linear level.

  13. ANCHORING MAGNETIC FIELD IN TURBULENT MOLECULAR CLOUDS

    SciTech Connect

    Li Huabai; Goodman, Alyssa; Darren Dowell, C.; Hildebrand, Roger; Novak, Giles

    2009-10-20

    One of the key problems in star formation research is to determine the role of magnetic fields. Starting from the atomic intercloud medium which has density n {sub H} approx 1 cm{sup -3}, gas must accumulate from a volume several hundred pc across in order to form a typical molecular cloud. Star formation usually occurs in cloud cores, which have linear sizes below 1 pc and densities n {sub H2} > 10{sup 5} cm{sup -3}. With current technologies, it is hard to probe magnetic fields at scales lying between the accumulation length and the size of cloud cores, a range corresponds to many levels of turbulent eddy cascade, and many orders of magnitude of density amplification. For field directions detected from the two extremes, however, we show here that a significant correlation is found. Comparing this result with molecular cloud simulations, only the sub-Alfvenic cases result in field orientations consistent with our observations.

  14. Comment on the polarity of magnetic clouds

    NASA Technical Reports Server (NTRS)

    Gonzalez, W. D.; Lee, L.-C.; Tsurutani, B. T.

    1990-01-01

    The initial description of magnetic clouds by Klein and Burlaga (1982) and the models that have been developed for their representation (e.g., by Goldstein, 1983) are examined. The results show that a definition of the cloud's polarity only in terms of the Bz component of the IMF is not always correct. It is suggested that, for the description polarities of quasi-transverse and quasi-parallel clouds, a combination of directions in the Bz and By components of the IMF should be used.

  15. Influence of magnetic clouds on cosmic ray intensity variations

    NASA Technical Reports Server (NTRS)

    Yadav, R. S.; Yadav, N. R.; BADRUDDIN; Agrawal, S. P.

    1985-01-01

    Neutron monitor data has been analyzed to study the nature of galactic cosmic ray transient modulation associated with three types of interplanetary magnetic clouds - clouds associated with shocks, stream interfaces and cold magnetic enhancements.

  16. Probing the magnetic topologies of magnetic clouds by means of solar energetic particles

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Reames, D. V.

    1991-01-01

    Solar energetic particles (SEPs) have been used as probes of magnetic cloud topologies. The rapid access of SEPs to the interiors of many clouds indicates that the cloud field lines extend back to the sun and hence are not plasmoids. The small modulation of galactic cosmic rays associated with clouds also suggests that the magnetic fields of clouds are not closed.

  17. Cosmic ray decreases and magnetic clouds

    NASA Technical Reports Server (NTRS)

    Cane, H. V.

    1993-01-01

    A study has been made of energetic particle data, obtained from IMP 8, in conjunction with solar wind field and plasma data at the times of reported magnetic clouds. It is shown that magnetic clouds can cause a depression of the cosmic ray flux but high fields are required. A depression of 3 percent in a neutron monitor requires a field of about 25 nT. Such high fields are found only in a subset of coronal ejecta. The principal cause for Forbush decreases associated with energetic shocks is probably turbulence in the postshock region, although some shocks will be followed by an ejecta with a high field. Each event is different. The lower-energy particles can help in identifying the dominant processes in individual events.

  18. Cosmic ray decreases and magnetic clouds

    NASA Technical Reports Server (NTRS)

    Cane, H. V.

    1992-01-01

    Energetic particle data, obtained from IMP 8, in conjunction with solar wind field and plasma data at the times of reported magnetic clouds was studied. It is shown that magnetic clouds can cause a depression of the cosmic ray flux but high fields are required. A depression of 3 percent in a neutron monitor requires a field of about 25 nT. Such high fields are found only in a subset of coronal ejecta. The principal cause for Forbush decreases associated with energetic shocks is probably turbulence in the post-shock region although some shocks will be followed by an ejecta with a high field. Each event is different. The lower energy particles can help in identifying the dominant processes in individual events.

  19. Magnetic Cloud Field Intensities and Solar Wind Velocities

    NASA Technical Reports Server (NTRS)

    Gonzalez, Walter D.; Clau de Gonzalez, Alicia D.; Tsurutani, Bruce T.; Arballo, John K.

    1997-01-01

    For the sets of magnetic clouds studied in this work we have shown that there is a general relationship between their magnetic fields strength and velocities. With a clear tendency that the faster the speed of the cloud the higher the magnetic field.

  20. Magnetic clouds, helicity conservation, and intrinsic scale flux ropes

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Rust, D. M.

    1995-01-01

    An intrinsic-scale flux-rope model for interplanetary magnetic clouds, incorporating conservation of magnetic helicity, flux and mass is found to adequately explain clouds' average thermodynamic and magnetic properties. In spite their continuous expansion as they balloon into interplanetary space, magnetic clouds maintain high temperatures. This is shown to be due to magnetic energy dissipation. The temperature of an expanding cloud is shown to pass through a maximum above its starting temperature if the initial plasma beta in the cloud is less than 2/3. Excess magnetic pressure inside the cloud is not an important driver of the expansion as it is almost balanced by the tension in the helical field lines. It is conservation of magnetic helicity and flux that requires that clouds expand radially as they move away from the Sun. Comparison with published data shows good agreement between measured cloud properties and theory. Parameters determined from theoretical fits to the data, when extended back to the Sun, are consistent with the origin of interplanetary magnetic clouds in solar filament eruptions. A possible extension of the heating mechanism discussed here to heating of the solar corona is discussed.

  1. A Global Magnetic Topology Model for Magnetic Clouds. III

    NASA Astrophysics Data System (ADS)

    Hidalgo, M. A.

    2014-03-01

    In two previous papers, we presented a global model for the analysis of magnetic clouds (MCs), where the three components of the magnetic field were fitted to the corresponding Geocentric Solar Ecliptic experimental data, obtaining reliable information, for example, about the orientation of these events in the interplanetary medium. That model, due to its non-force-free character, (∇p ≠ 0), could be extended to determine the plasma behavior. In the present work, we develop that extension, now including the plasma behavior inside the cloud through the analysis of the plasma pressure, and define a fitting procedure where the pressure and the magnetic field components are fitted simultaneously. After deducing the magnetic field topology and the current density components of the model, we calculate the expression of the pressure tensor and, in particular, its trace. In light of the results, we conclude that incorporating the plasma behavior in the analysis of the MCs can give us a better scenario in which to understand the physical mechanisms involved in the evolution of such magnetic structures in the interplanetary medium.

  2. A global magnetic topology model for magnetic clouds. III

    SciTech Connect

    Hidalgo, M. A.

    2014-03-20

    In two previous papers, we presented a global model for the analysis of magnetic clouds (MCs), where the three components of the magnetic field were fitted to the corresponding Geocentric Solar Ecliptic experimental data, obtaining reliable information, for example, about the orientation of these events in the interplanetary medium. That model, due to its non-force-free character, (∇p ≠ 0), could be extended to determine the plasma behavior. In the present work, we develop that extension, now including the plasma behavior inside the cloud through the analysis of the plasma pressure, and define a fitting procedure where the pressure and the magnetic field components are fitted simultaneously. After deducing the magnetic field topology and the current density components of the model, we calculate the expression of the pressure tensor and, in particular, its trace. In light of the results, we conclude that incorporating the plasma behavior in the analysis of the MCs can give us a better scenario in which to understand the physical mechanisms involved in the evolution of such magnetic structures in the interplanetary medium.

  3. Observations in the sheath region ahead of a magnetic cloud and in the dayside magnetosheath during magnetic cloud passage

    NASA Technical Reports Server (NTRS)

    Farrugia, C. J.; Fitzenreiter, R. J.; Burlaga, L. F.; Erkaev, N. V.; Osherovich, V. A.; Biernat, H. K.; Fazakerley, A.

    1994-01-01

    We present magnetic field and particle (protons and electrons) observations in the sheath region behind an interplanetary shock driven by a magnetic cloud, and in the magnetic cloud itself. We also discuss observations in the dayside terrestrial magnetosheath during cloud passage. We find that the region ahead of the cloud is in pressure balance. Further, throughout its extent (greater than 0.06 AU), the magnetic field strength is anticorrelated with the plasma density, with the latter decreasing steadily as the cloud is approached. This behavior is indicative of magnetic forces influencing the flow topology and highlights a large-scale breakdown of predictions based solely on gas dynamical considerations. We also study density structures inside the cloud which result in an undulating dynamic pressure being applied to the magnetopause causing it to oscillate with amplitudes of approximately 1-3 Re and period approximately 2h.

  4. Prominence material identified in magnetic cloud

    NASA Astrophysics Data System (ADS)

    Yao, Shuo; Marsch, E.; Tu, C.-Y.

    2010-03-01

    Coronal mass ejections (CMEs) often appear in coronagraph images as three-part structures composed of a leading bright front, a dark cavity and a bright core, which are believed to be associated with the sheath of compressed solar wind, the erupting magnetic flux rope and the cool and dense prominence plasma, respectively. However, a convincing identification of this three-part structure in the in-situ solar wind is extremely rare. Therefore, there still remains an open question as to what kind of signatures these three CME parts will reveal in the in situ data ([5]). Our work presents a clear identification of prominence material from in situ observations of the solar wind magnetic field and plasma parameters. The Helios 2 solar probe detected a magnetic cloud at 0.5 AU on 30 March 1976. In this event, we found a region with lower proton temperature and higher proton number density than outside, which is consistent with key features of a prominence as cold and dense solar material. During the same time we also found the occurrence of what possibly is He+, which is a special ion expected to occur only in prominence ejecta. Furthermore, the above observations were all made at a location related to the turning point of a bipolar structure of the interplanetary magnetic field, which is coincident with the notion that a solar prominence lies under the magnetic field lines of a bipolar region and is oriented along the neutral line. Furthermore, from our analysis of solar wind velocity distribution functions (VDFs) we can confirm by kinetic evidence that the plasma inside this special region is colder and more isotropic than outside. Above all, our observations circumstantially confirm the 3-part CME model as described in references [10] and [7].

  5. Energetic Particles Events inside Magnetic Clouds

    NASA Astrophysics Data System (ADS)

    Medina, Jose; Hidalgo, Miguel Angel; Blanco, Juan Jose; Rodriguez-Pacheco, Javier

    The effect of the magnetic topology of the Magnetic Clouds (MCs) over the energetic particle event (EPe) fluxes (0.5-100 MeV) have been simulated. In the data corresponding to the ion and electron fluxes, a depression after a strong maximum is observed when a EPe passes through a MC. Using our cross-section circular and elliptical MC models (Journal of Geophysical Research 107(1), doi:10.1029/2001JA900100 (2002) and Solar Physics 207(1), 187-198 (2002)) we have tried to explain that effect, understanding the importance of the topology of the MC. In sight of the results of the preliminary analysis we conclude that the magnitude of the magnetic field seems not to play a significant role but the helicoidal topology associated with topology of the MCs. This work has been supported by the Spanish Comisín Internacional de o Ciencia y Tecnoloǵ (CICYT), grant ESP2005-07290-C02-01 and ESP2006-08459. This work ıa is performed inside COST Action 724.

  6. Regular and chaotic precession of magnetization in magnetic films with a stripe domain structure

    NASA Astrophysics Data System (ADS)

    Shutyĭ, A. M.

    2008-12-01

    Based on a numerical solution of the equations of motion found over a wide range of frequencies of an alternating magnetic field, the nonlinear precession dynamics of magnetization are studied in thin-film structures of the (100) type with a stripe domain structure in a perpendicular bias field. The conditions are determined under which high-amplitude regular and chaotic dynamic regimes occur. Bifurcational variations in the precession of coupled magnetic moments and dynamic-bistability states are detected. The specific features of the spectrum of Lyapunov exponents and of time analogs of Poincaré cross sections of trajectories in chaotic regimes are considered.

  7. Automatic Extraction and Regularization of Building Outlines from Airborne LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Albers, Bastian; Kada, Martin; Wichmann, Andreas

    2016-06-01

    Building outlines are needed for various applications like urban planning, 3D city modelling and updating cadaster. Their automatic reconstruction, e.g. from airborne laser scanning data, as regularized shapes is therefore of high relevance. Today's airborne laser scanning technology can produce dense 3D point clouds with high accuracy, which makes it an eligible data source to reconstruct 2D building outlines or even 3D building models. In this paper, we propose an automatic building outline extraction and regularization method that implements a trade-off between enforcing strict shape restriction and allowing flexible angles using an energy minimization approach. The proposed procedure can be summarized for each building as follows: (1) an initial building outline is created from a given set of building points with the alpha shape algorithm; (2) a Hough transform is used to determine the main directions of the building and to extract line segments which are oriented accordingly; (3) the alpha shape boundary points are then repositioned to both follow these segments, but also to respect their original location, favoring long line segments and certain angles. The energy function that guides this trade-off is evaluated with the Viterbi algorithm.

  8. A GLOBAL MAGNETIC TOPOLOGY MODEL FOR MAGNETIC CLOUDS. II

    SciTech Connect

    Hidalgo, M. A.

    2013-04-01

    In the present work, we extensively used our analytical approach to the global magnetic field topology of magnetic clouds (MCs), introduced in a previous paper, in order to show its potential and to study its physical consistency. The model assumes toroidal topology with a non-uniform (variable maximum radius) cross-section along them. Moreover, it has a non-force-free character and also includes the expansion of its cross-section. As is shown, the model allows us, first, to analyze MC magnetic structures-determining their physical parameters-with a variety of magnetic field shapes, and second, to reconstruct their relative orientation in the interplanetary medium from the observations obtained by several spacecraft. Therefore, multipoint spacecraft observations give the opportunity to infer the structure of this large-scale magnetic flux rope structure in the solar wind. For these tasks, we use data from Helios (A and B), STEREO (A and B), and Advanced Composition Explorer. We show that the proposed analytical model can explain quite well the topology of several MCs in the interplanetary medium and is a good starting point for understanding the physical mechanisms under these phenomena.

  9. Evidence linking coronal mass ejections with interplanetary magnetic clouds

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.; Hildner, E.

    1983-01-01

    Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking; six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear; proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients.

  10. OH Zeeman Studies of Magnetic Field Strengths in Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Thompson, Kristen L.; Troland, Thomas H.; Heiles, Carl E.

    2016-01-01

    Although stars have long been known to form in the gravitational collapse of molecular clouds, the details of the formation process are not well understood. There are many questions surrounding the formation mechanism of the clouds and the timescales on which they collapse. Star formation within the Galaxy has been found to be extremely inefficient, with stars forming at only 1-3% of the expected rate. Multiple theories addressing this inefficiency have emerged, placing varying degrees of emphasis on the magnetic fields and turbulence within the interstellar medium. One major difference in leading theories is the strength of the magnetic fields permeating the clouds and the extent to which they can provide support against cloud collapse. One way to determine the effect of magnetic fields is to determine the ratio between the gravitational and magnetic energies, called the mass-to-flux ratio, within the clouds to determine whether they are magnetically subcritical or supercritical. Much work has been done to determine this ratio in the cores of molecular clouds, but little is currently known about the fields in the envelopes of the clouds where most of the mass resides. We present the results of an extensive observational survey aimed at characterizing the fields in molecular clouds as a whole. We use the Arecibo telescope to determine mass-to-flux ratios in clouds distributed throughout the sky via the Zeeman effect in 18 cm OH absorption lines. This statistical study provides magnetic field and mass-to-flux results for 41 clouds located along 22 lines-of-sight. We find the first evidence for subcritical molecular gas along individual lines-of-sight, and a statistical analysis suggests that the mass-to-flux ratio in the envelopes of molecular clouds is approximately critical overall.

  11. Multi-tube model for interplanetary magnetic clouds

    NASA Astrophysics Data System (ADS)

    Osherovich, Vladimir A.; Fainberg, J.; Stone, R. G.

    Measurements of the polytropic index γ inside a magnetic cloud showed that there are two non-equal tubes inside the cloud [Fainberg et al., 1996; Osherovich et al., 1997]. For both tubes, γ < 1, but each tube has its own polytrope. We test equilibrium solutions which are a superposition of solutions with cylindrical and helical symmetry [Krat and Osherovich, 1978] as a new paradigm for a multi-tube model. Comparison of magnetic and gas pressure profiles for these bounded MHD states with observations suggests that complex magnetic clouds can be viewed as multiple helices embedded in a cylindrically symmetric flux rope.

  12. A Global Magnetic Topology Model for Magnetic Clouds. IV.

    NASA Astrophysics Data System (ADS)

    Hidalgo, M. A.

    2016-05-01

    In the first paper of this series, we introduced a global topology model for the study of magnetic clouds (MCs), fitting it to the experimental magnetic field components and obtaining, for example, the orientation of the axis of the MCs in the interplanetary medium. In the third paper, we extended the model to include theoretical hydrostatic plasma pressure, also incorporating it in the fitting procedure. The present work is complementary to the previous ones, now incorporating the proton current density as deduced from the continuity equation. In particular, we are interested in the component of the proton current density parallel to the magnetic field lines of the MC, {\\boldsymbol{j}} \\parallel , because the perpendicular component is expected to have information similar to the plasma pressure. Under all of these conditions, our fitting procedure now involves simultaneous analysis of the three components of the magnetic field, the trace of the plasma pressure, and the parallel proton current density. This provides us with more information about the physical mechanisms taking place inside MCs, thus helping us to understand the propagation and evolution of these structures in the interplanetary medium.

  13. The heliospheric sector boundary as a distented magnetic cloud

    NASA Technical Reports Server (NTRS)

    Crooker, N. U.; Intriligator, D. S.

    1995-01-01

    A magnetic cloud was detected both near Earth and by Pioneer 11 located 43 deg east of Earth at 4.8 AU. The magnetic field within the cloud rotated smoothly from toward to away polarity, marking sector boundary passage. Interpreted as a flux rope, the cloud had a vertical axis, implying that its cylindrical cross-section in the ecliptic plane was distended along the sector boundary by at least 43, forming an extensive occlusion in the heliospheric current sheet. At 1 AU the cloud had plasma signatures typical of a fast coronal mass ejection with low temperature and a leading shock. In contrast, at 4.8 AU, only the cloud signature remained. Its radial dimension was the same at both locations, consistent with little expansion beyond 1 AU. Energetic particle data at 4.8 AU show high fluxes preceding the cloud but not extending forward to the corotating shock that marked entry into the interaction region containing the cloud. The streaming direction was antisunward, consistent with possible acceleration in a low-beta region of field line draping around the cloud's western (upstream) end. The fluxes dropped upon entry into the cloud and became essentially isotropic one third of the way through it. On the basis of sector boundary characteristics published in the past, we suggest that distended clouds may be common heliospheric current sheet occlusions.

  14. Spiral structures and regularities in magnetic field variations and auroras

    NASA Astrophysics Data System (ADS)

    Feldstein, Y. I.; Gromova, L. I.; Förster, M.; Levitin, A. E.

    2012-02-01

    The conception of spiral shaped precipitation regions, where solar corpuscles penetrate the upper atmosphere, was introduced into geophysics by C. Störmer and K. Birkeland at the beginning of the last century. Later, in the course of the XX-th century, spiral distributions were disclosed and studied in various geophysical phenomena. Most attention was devoted to spiral shapes in the analysis of regularities pertaining to the geomagnetic activity and auroras. We review the historical succession of perceptions about the number and positions of spiral shapes, that characterize the spatial-temporal distribution of magnetic disturbances. We describe the processes in the upper atmosphere, which are responsible for the appearance of spiral patterns. We considered the zones of maximal aurora frequency and of maximal particle precipitation intensity, as offered in the literature, in their connection with the spirals. We discuss the current system model, that is closely related to the spirals and that appears to be the source for geomagnetic field variations during magnetospheric substorms and storms. The currents in ionosphere and magnetosphere constitute together with field-aligned (along the geomagnetic field lines) currents (FACs) a common 3-D current system. At ionospheric heights, the westward and eastward electrojets represent characteristic elements of the current system. The westward electrojet covers the longitudinal range from the morning to the evening hours, while the eastward electrojet ranges from afternoon to near-midnight hours. The polar electrojet is positioned in the dayside sector at cusp latitudes. All these electrojets map along the magnetic field lines to certain plasma structures in the near-Earth space. The first spiral distribution of auroras was found based on observations in Antarctica for the nighttime-evening sector (N-spiral), and later in the nighttime-evening (N-spiral) and morning (M-spiral) sectors both in the Northern and Southern

  15. Simulation of Electron Cloud Multipacting in Solenoidal Magnetic Field

    SciTech Connect

    Novokhatski, A

    2004-01-27

    A simulation algorithm is based on a numerical solution of the Vlasov equation for the distribution function of an electron cloud density in a cylindrical vacuum chamber with solenoidal magnetic field. The algorithm takes into consideration space charge effects. This approach improves the simulation of multipacting effects as it is free of statistical fluctuations. Simulation studies were carried for the SLAC B-factory vacuum chamber for different bunch patterns and solenoidal field strength. Space charge and the magnetic field limit the maximum density of the electron cloud. Magnetic resonant damping of multipacting was found in special cases of positron beam parameters and magnetic field amplitude.

  16. Self-similar evolution of interplanetary magnetic clouds and Ulysses measurements of the polytropic index inside the cloud

    NASA Technical Reports Server (NTRS)

    Osherovich, Vladimir A.; Fainberg, J.; Stone, R. G.; MacDowall, R. J.; Berdichevsky, D.

    1997-01-01

    A self similar model for the expanding flux rope is developed for a magnetohydrodynamic model of interplanetary magnetic clouds. It is suggested that the dependence of the maximum magnetic field on the distance from the sun and the polytropic index gamma has the form B = r exp (-1/gamma), and that the ratio of the electron temperature to the proton temperature increases with distance from the sun. It is deduced that ion acoustic waves should be observed in the cloud. Both predictions were confirmed by Ulysses observations of a 1993 magnetic cloud. Measurements of gamma inside the cloud demonstrate sensitivity to the internal topology of the magnetic field in the cloud.

  17. Full particle orbit effects in regular and stochastic magnetic fields

    NASA Astrophysics Data System (ADS)

    Ogawa, Shun; Cambon, Benjamin; Leoncini, Xavier; Vittot, Michel; del Castillo-Negrete, Diego; Dif-Pradalier, Guilhem; Garbet, Xavier

    2016-07-01

    We present a numerical study of charged particle motion in a time-independent magnetic field in cylindrical geometry. The magnetic field model consists of an unperturbed reversed-shear (non-monotonic q-profile) helical part and a perturbation consisting of a superposition of modes. Contrary to most of the previous studies, the particle trajectories are computed by directly solving the full Lorentz force equations of motion in a six-dimensional phase space using a sixth-order, implicit, symplectic Gauss-Legendre method. The level of stochasticity in the particle orbits is diagnosed using averaged, effective Poincare sections. It is shown that when only one mode is present, the particle orbits can be stochastic even though the magnetic field line orbits are not stochastic (i.e., fully integrable). The lack of integrability of the particle orbits in this case is related to separatrix crossing and the breakdown of the global conservation of the magnetic moment. Some perturbation consisting of two modes creates resonance overlapping, leading to Hamiltonian chaos in magnetic field lines. Then, the particle orbits exhibit a nontrivial dynamics depending on their energy and pitch angle. It is shown that the regions where the particle motion is stochastic decrease as the energy increases. The non-monotonicity of the q-profile implies the existence of magnetic ITBs (internal transport barriers) which correspond to shearless flux surfaces located in the vicinity of the q-profile minimum. It is shown that depending on the energy, these magnetic ITBs might or might not confine particles. That is, magnetic ITBs act as an energy-dependent particle confinement filter. Magnetic field lines in reversed-shear configurations exhibit topological bifurcations (from homoclinic to heteroclinic) due to separatrix reconnection. We show that a similar but more complex scenario appears in the case of particle orbits that depend in a non-trivial way on the energy and pitch angle of the

  18. DISPERSION OF MAGNETIC FIELDS IN MOLECULAR CLOUDS. II

    SciTech Connect

    Houde, Martin; Chitsazzadeh, Shadi; Vaillancourt, John E.; Hildebrand, Roger H.; Kirby, Larry

    2009-12-01

    We expand our study on the dispersion of polarization angles in molecular clouds. We show how the effect of signal integration through the thickness of the cloud as well as across the area subtended by the telescope beam inherent to dust continuum measurements can be incorporated in our analysis to correctly account for its effect on the measured angular dispersion and inferred turbulent to large-scale magnetic field strength ratio. We further show how to evaluate the turbulent magnetic field correlation scale from polarization data of sufficient spatial resolution and high enough spatial sampling rate. We apply our results to the molecular cloud OMC-1, where we find a turbulent correlation length of delta approx 16 mpc, a turbulent to large-scale magnetic field strength ratio of approximately 0.5, and a plane-of-the-sky large-scale magnetic field strength of approximately 760 muG.

  19. Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields

    NASA Astrophysics Data System (ADS)

    Magnet, C.; Kuzhir, P.; Bossis, G.; Meunier, A.; Nave, S.; Zubarev, A.; Lomenech, C.; Bashtovoi, V.

    2014-03-01

    When a micron-sized magnetizable particle is introduced into a suspension of nanosized magnetic particles, the nanoparticles accumulate around the microparticle and form thick anisotropic clouds extended in the direction of the applied magnetic field. This phenomenon promotes colloidal stabilization of bimodal magnetic suspensions and allows efficient magnetic separation of nanoparticles used in bioanalysis and water purification. In the present work, the size and shape of nanoparticle clouds under the simultaneous action of an external uniform magnetic field and the flow have been studied in detail. In experiments, a dilute suspension of iron oxide nanoclusters (of a mean diameter of 60 nm) was pushed through a thin slit channel with the nickel microspheres (of a mean diameter of 50 μm) attached to the channel wall. The behavior of nanocluster clouds was observed in the steady state using an optical microscope. In the presence of strong enough flow, the size of the clouds monotonically decreases with increasing flow speed in both longitudinal and transverse magnetic fields. This is qualitatively explained by enhancement of hydrodynamic forces washing the nanoclusters away from the clouds. In the longitudinal field, the flow induces asymmetry of the front and the back clouds. To explain the flow and the field effects on the clouds, we have developed a simple model based on the balance of the stresses and particle fluxes on the cloud surface. This model, applied to the case of the magnetic field parallel to the flow, captures reasonably well the flow effect on the size and shape of the cloud and reveals that the only dimensionless parameter governing the cloud size is the ratio of hydrodynamic-to-magnetic forces—the Mason number. At strong magnetic interactions considered in the present work (dipolar coupling parameter α ≥2), the Brownian motion seems not to affect the cloud behavior.

  20. Regularities in temperature, magnetic field and pressure effect on the resistive properties of magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Polyakov, P. I.; Kucherenko, S. S.

    2002-08-01

    The influence of hydrostatic pressure, magnetic field and temperature on resistivity behaviour of bulk and film samples La 0.9Mn 1.1O 3 and La 0.56Ca 0.24Mn 1.2O 3 at action of magnetic field and temperature has been analysed. It is established that the maximum of magnetoresistive and the revealed baroresistive, magnetobaroresistive effects coincide at the same temperature Tpp. This temperature is equal to the "metal-semiconductor" phase transition temperature Tms. "Cooling" and "heating" effects of pressure and magnetic field have been revealed. A mutual correspondence of T- P- H (6.2 K, 1 kbar, 2.7 kOe) influence on polycrystalline sample La 0.9Mn 1.1O 3 resistivity has been determined. The linear change of Tms( P) and Tms( H) in La 0.9Mn 1.1O 3, La 0.56Ca 0.24Mn 1.2O 3 resistivity have been found. An importance of the regularities of elastic-deforming correspondence of T- H- P influence on magnetic, resistivity properties, phase transitions and effects was elucidated and explained. An alternating influence of T- H- P and its role in resistivity has been pointed. A correlation between structural, elastic and resistive properties is specified.

  1. Beam induced electron cloud resonances in dipole magnetic fields

    NASA Astrophysics Data System (ADS)

    Calvey, J. R.; Hartung, W.; Makita, J.; Venturini, M.

    2016-07-01

    The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple of bunch spacing. Both resonances have been studied directly in dipole fields using retarding field analyzers installed in the Cornell Electron Storage Ring. These measurements are supported by both analytical models and computer simulations.

  2. MAGNETIZED GAS IN THE SMITH HIGH VELOCITY CLOUD

    SciTech Connect

    Hill, Alex S.; McClure-Griffiths, Naomi M.; Mao, S. A.; Benjamin, Robert A.; Lockman, Felix J. E-mail: naomi.mcclure-griffiths@csiro.au E-mail: benjamir@uww.edu

    2013-11-01

    We report the first detection of magnetic fields associated with the Smith High Velocity Cloud. We use a catalog of Faraday rotation measures toward extragalactic radio sources behind the Smith Cloud, new H I observations from the Robert C. Byrd Green Bank Telescope, and a spectroscopic map of Hα from the Wisconsin H-Alpha Mapper Northern Sky Survey. There are enhancements in rotation measure (RM) of ≈100 rad m{sup –2} which are generally well correlated with decelerated Hα emission. We estimate a lower limit on the line-of-sight component of the field of ≈8 μG along a decelerated filament; this is a lower limit due to our assumptions about the geometry. No RM excess is evident in sightlines dominated by H I or Hα at the velocity of the Smith Cloud. The smooth Hα morphology of the emission at the Smith Cloud velocity suggests photoionization by the Galactic ionizing radiation field as the dominant ionization mechanism, while the filamentary morphology and high (≈1 Rayleigh) Hα intensity of the lower-velocity magnetized ionized gas suggests an ionization process associated with shocks due to interaction with the Galactic interstellar medium. The presence of the magnetic field may contribute to the survival of high velocity clouds like the Smith Cloud as they move from the Galactic halo to the disk. We expect these data to provide a test for magnetohydrodynamic simulations of infalling gas.

  3. Two Models of Magnetic Support for Photoevaporated Molecular Clouds

    SciTech Connect

    Ryutov, D; Kane, J; Mizuta, A; Pound, M; Remington, B

    2004-05-05

    The thermal pressure inside molecular clouds is insufficient for maintaining the pressure balance at an ablation front at the cloud surface illuminated by nearby UV stars. Most probably, the required stiffness is provided by the magnetic pressure. After surveying existing models of this type, we concentrate on two of them: the model of a quasi-homogeneous magnetic field and the recently proposed model of a ''magnetostatic turbulence''. We discuss observational consequences of the two models, in particular, the structure and the strength of the magnetic field inside the cloud and in the ionized outflow. We comment on the possible role of reconnection events and their observational signatures. We mention laboratory experiments where the most significant features of the models can be tested.

  4. Probing the magnetic topologies of magnetic clouds by means of solar energetic particles

    SciTech Connect

    Kahler, S.W. ); Reames, D.V. )

    1991-06-01

    Magnetic clouds are large (<0.25 AU) interplanetary regions with topologies consistent with those of magnetic loops. They are of interest because they may be an interplanetary signature of coronal mass ejections. Clouds have been identified in solar wind data by their magnetic properties and by the presence of bidirectional particle fluxes. Two possible closed magnetic topologies have been considered for clouds: (1) an elongated bottle with field lines rooted at both ends in the Sun and (2) a detached magnetic bubble or plasmoid consisting of closed field lines. The inferred topologies are also consistent with open field lines that converge beyond 1 AU. The authors have used solar energetic particles (SEPs) as probes of the cloud topologies. The rapid access of SEPs to the interiors of many clouds indicates that the cloud field lines extend back to the Sun and hence are not plasmoids. The small modulation of galactic cosmic rays associated with clouds also suggests that the magnetic fields of clouds are not closed.

  5. DISPERSION OF MAGNETIC FIELDS IN MOLECULAR CLOUDS. I

    SciTech Connect

    Hildebrand, Roger H.; Kirby, Larry; Dotson, Jessie L.; Houde, Martin; Vaillancourt, John E.

    2009-05-01

    We describe a method for determining the dispersion of magnetic field vectors about large-scale fields in turbulent molecular clouds. The method is designed to avoid inaccurate estimates of magnetohydrodynamic or turbulent dispersion-and help avoiding inaccurate estimates of field strengths-due to a large-scale, nonturbulent field structure when using the well known method of Chandrasekhar and Fermi. Our method also provides accurate, independent estimates of the turbulent to large-scale magnetic field strength ratio. We discuss applications to the molecular clouds OMC-1, M17, and DR21(Main)

  6. Collisions between Dark Matter Confined High Velocity Clouds and Magnetized Galactic Disks: The Smith Cloud

    NASA Astrophysics Data System (ADS)

    Galyardt, Jason; Shelton, Robin L.

    2016-01-01

    The Galaxy’s population of High Velocity Clouds (HVCs) may include a subpopulation that is confined by dark matter minihalos and falling toward the Galactic disk. We present the first magnetohydrodynamic simulational study of dark-matter-dominated HVCs colliding with a weakly magnetized galactic disk. Our HVCs have baryonic masses of 5 × 106M⊙ and dark matter minihalo masses of 0, 3 × 108, or 1 × 109 M⊙. They are modeled on the Smith Cloud, which is said to have collided with the disk 70 Myr ago. We find that, in all cases, the cloud’s collision with the galactic disk creates a hole in the disk, completely disperses the cloud, and forms a bubble-shaped structure on the far side of the disk. In contrast, when present, the dark matter minihalo continues unimpeded along its trajectory. Later, as the minihalo passes through the bubble structure and galactic halo, it accretes up to 6.0 × 105 M⊙ in baryonic material, depending on the strengths of the magnetic field and minihalo gravity. These simulations suggest that if the Smith Cloud is associated with a dark matter minihalo and collided with the Galactic disk, the minihalo has accreted the observed gas. However, if the Smith Cloud is dark-matter-free, it is on its first approach toward the disk. These simulations also suggest that the dark matter is most concentrated either at the head of the cloud or near the cloud, depending upon the strength of the magnetic field, a point that could inform indirect dark matter searches.

  7. The magnetic field of cloud 3 in L204

    SciTech Connect

    Cashman, Lauren R.; Clemens, D. P. E-mail: clemens@bu.edu

    2014-10-01

    The L204 dark cloud complex is a nearby filamentary structure in Ophiuchus North that has no signs of active star formation. Past studies show that L204 is interacting with the nearby runaway O star, ζ Oph, and hosts a magnetic field that is coherent across parsec-length scales. Near-infrared H-band (1.6 μm) linear polarization measurements were obtained for 3896 background stars across a 1° × 1.°5 region centered on the dense Cloud 3 in L204, using the Mimir near-infrared instrument on the 1.8 m Perkins Telescope. Analysis of these observations reveals both large-scale properties and small-scale changes in the magnetic field direction in Cloud 3. In the northern and western ζ Oph facing regions of the cloud, the magnetic field appears to be pushed up against the face of the cloud. This may indicate that the UV flux from ζ Oph has compressed the magnetic field on the western edge of L204. The plane-of-sky magnetic field strength is estimated to be ∼11-26 μG using the Chandrasekhar-Fermi method. The polarimetry data also reveal that the polarization efficiency (PE ≡ P {sub H}/A {sub V}) steadily decreases with distance from ζ Oph (–0.09% ± 0.03% mag{sup –1} pc{sup –1}). Additionally, power-law fits of PE versus A {sub V} for localized samples of probe stars show steeper negative indices with distance from ζ Oph. Both findings highlight the importance of external illumination, here from ζ Oph, in aligning dust grains to embedded magnetic fields.

  8. A Study of Magnetic Fields on Bright-Rimmed Clouds

    NASA Astrophysics Data System (ADS)

    Kusune, Takayoshi; Sugitani, Koji

    2015-08-01

    Bright-rimmed clouds (BRCs), which are located at periphery of HII regions, are considered to be potential sites for induced star formation by UV radiation from nearby massive stars. Many theorists have developed 2D/3D hydrodynamical models to understand dynamical evolution of such molecular clouds. Most simulations, however, did not always include the magnetic field effect, which is of importance in the astrophysics. This is because that there are few observation results examining the magnetic field configuration of BRCs in detail. In order to obtain information on magnetic field in and around BRCs, we have made near-infrared (JHKs) imaging polarimetry toward 24 BRCs showing strong interaction with HII region (Urquhart et al. 2009). We used the imaging polarimeter SIRPOL/SIRIUS (FOV ~7.7’ x 7.7’) mounted on IRSF 1.4 m telescope at the South African Astronomical Observatory.We found that polarization vectors, i.e., magnetic fields inside the clouds, follow the curved bright rim just behind the bright rim for almost all of the observed BRCs. Our investigation into the relation between the ambient magnetic field direction and the UV radiation direction suggests a following tendency. In the case that the ambient magnetic field is perpendicular to the direction of incident UV radiation, the clouds are likely to have bright rims with small curvatures. On the other hand, in the case that the ambient field is parallel to the UV radiation, they would have those with larger curvatures. In this presentation, we will present the physical quantities for these BRCs (i.e., magnetic field strength, the post shock pressure by the ionization front, etc.) as well as these morphological results.

  9. Anisotropic Formation of Magnetized Cores in Turbulent Clouds

    NASA Astrophysics Data System (ADS)

    Chen, Che-Yu; Ostriker, Eve C.

    2015-09-01

    In giant molecular clouds (GMCs), shocks driven by converging turbulent flows create high-density, strongly magnetized regions that are locally sheetlike. In previous work, we showed that within these layers, dense filaments and embedded self-gravitating cores form by gathering material along the magnetic field lines. Here, we extend the parameter space of our three-dimensional, turbulent MHD core formation simulations. We confirm the anisotropic core formation model we previously proposed and quantify the dependence of median core properties on the pre-shock inflow velocity and upstream magnetic field strength. Our results suggest that bound core properties are set by the total dynamic pressure (dominated by large-scale turbulence) and thermal sound speed cs in GMCs, independent of magnetic field strength. For models with a Mach number between 5 and 20, the median core masses and radii are comparable to the critical Bonnor-Ebert mass and radius defined using the dynamic pressure for Pext. Our results correspond to Mcore=1.2cs4 (G3ρ0v02)-1/2 and Rcore=0.34 cs2 (Gρ0v02)-1/2 for ρ0 and v0 the large-scale mean density and velocity. For our parameter range, the median Mcore 0.1-1M⊙, but a very high pressure cloud could have lower characteristic core mass. We find cores and filaments form simultaneously, and filament column densities are a factor of 2 greater than the surrounding cloud when cores first collapse. We also show that cores identified in our simulations have physical properties comparable to those observed in the Perseus cloud. Superthermal cores in our models are generally also magnetically supercritical, suggesting that the same may be true in observed clouds.

  10. Regular and chaotic dynamics of magnetization precession in ferrite-garnet films

    NASA Astrophysics Data System (ADS)

    Shutyĭ, Anatoliy M.; Sementsov, Dmitriy I.

    2009-03-01

    By numerically solving equations of motion and constructing the spectrum of Lyapunov exponents, nonlinear dynamics of uniformly precessing magnetization in (110) thin film structures with perpendicular magnetic bias is investigated over a wide frequency range of the alternating field. Bifurcational changes in magnetization precession and the states of dynamical bistability are discovered. Conditions for the realization of high-amplitude regular and chaotic dynamic regimes are revealed. The possibility of controlling those precession regimes by using external magnetic fields is shown. The features of time analogs of the Poincaré section of trajectories in the chaotic regimes are studied.

  11. MAGNETIC FIELDS IN HIGH-MASS INFRARED DARK CLOUDS

    SciTech Connect

    Pillai, T.; Kauffmann, J.; Tan, J. C.; Goldsmith, P. F.; Carey, S. J.; Menten, K. M.

    2015-01-20

    High-mass stars are cosmic engines known to dominate the energetics in the Milky Way and other galaxies. However, their formation is still not well understood. Massive, cold, dense clouds, often appearing as infrared dark clouds (IRDCs), are the nurseries of massive stars. No measurements of magnetic fields in IRDCs in a state prior to the onset of high-mass star formation (HMSF) have previously been available, and prevailing HMSF theories do not consider strong magnetic fields. Here, we report observations of magnetic fields in two of the most massive IRDCs in the Milky Way. We show that IRDCs G11.11–0.12 and G0.253+0.016 are strongly magnetized and that the strong magnetic field is as important as turbulence and gravity for HMSF. The main dense filament in G11.11–0.12 is perpendicular to the magnetic field, while the lower density filament merging onto the main filament is parallel to the magnetic field. The implied magnetic field is strong enough to suppress fragmentation sufficiently to allow HMSF. Other mechanisms reducing fragmentation, such as the entrapment of heating from young stars via high-mass surface densities, are not required to facilitate HMSF.

  12. Ionization-regulated star formation in magnetized molecular clouds

    NASA Astrophysics Data System (ADS)

    Pudritz, Ralph E.; Silk, Joseph

    1987-05-01

    The authors present a theory for the early evolution of contracting magnetized flattened clouds in molecular clouds which undergo magnetic braking and field slip (ambipolar diffusion). If magnetic torques are the means by which angular momentum is removed from disks, then accretion rates and protostellar masses depend on how efficient braking is with respect to field line slip and hence can depend sensitively on ionization conditions. The authors discuss homologously evolving structures and calculate the evolution of the disk rotation frequency, toroidal field, accretion velocity, accretion rate, and core mass. It is found that cores which accrete out of very weakly ionized pancakes may have their masses increased by factors of 5 - 10 by increasing the ionization rate of the material by a decade.

  13. Magnetic Field Structure of the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Magalhaes, A. M.; Margoniner, V. E.; Pereyra, A.; Rodrigues, C. V.; Coyne, G. V.

    1996-05-01

    We describe an on-going observational program to determine the magnetic field structure of the Small Magellanic Cloud (SMC). The project employs CCD images which allow the determination of the linear polarization of a large number of stars in each field. The data are being collected at the CTIO 1.5m telescope using a visitor polarimetry unit on the direct CCD camera. The data are been gathered mainly in the Northeast and Wing sections of the SMC. These regions have been presumably affected by past interactions with the Large Magellanic Cloud. Support by FAPESP, CNPq, CAPES and USP is gratefully acknowledged.

  14. Gas Dynamics and Magnetic Fields in Infrared Dark Clouds

    NASA Astrophysics Data System (ADS)

    Pillai, T.

    2016-05-01

    Almost two decades ago, the discovery of a handful of Infrared Dark Clouds (IRDCs) heralded a new avenue for exploring the elusive early phases of massive star formation (Egan et al. 1998). Since then tremendous progress has been made in our understanding of these clouds. It is now well established that IRDCs are ubiquitous and harbor a broad spectrum of star forming stages. Thus studies of star formation and IRDCs are intricately tied together. I summarize some of the recent progress in understanding the magnetic field structure and gas dynamics in IRDCs in the context of high-mass star formation formation.

  15. Regular nonminimal magnetic black holes in spacetimes with a cosmological constant

    NASA Astrophysics Data System (ADS)

    Balakin, Alexander B.; Lemos, José P. S.; Zayats, Alexei E.

    2016-01-01

    We consider new regular exact spherically symmetric solutions of a nonminimal Einstein-Yang-Mills theory with a cosmological constant and a gauge field of magnetic Wu-Yang type. The most interesting solutions found are black holes with metric and curvature invariants that are regular everywhere, i.e., regular black holes. We set up a classification of the solutions according to the number and type of horizons. The structure of these regular black holes is characterized by four specific features: a small cavity in the neighborhood of the center, a repulsion barrier off the small cavity, a distant equilibrium point, in which the metric function has a minimum, and a region of Newtonian attraction. Depending on the sign and value of the cosmological constant, the solutions are asymptotically de Sitter (dS), asymptotically flat, or asymptotically anti-de Sitter (AdS).

  16. PROBING PRIMORDIAL MAGNETIC FIELDS USING Ly{alpha} CLOUDS

    SciTech Connect

    Pandey, Kanhaiya L.; Sethi, Shiv K.

    2013-01-01

    From previous studies of the effect of primordial magnetic fields on early structure formation, we know that the presence of primordial magnetic fields during early structure formation could induce more perturbations at small scales (at present 1-10 h {sup -1} Mpc) as compared to the usual {Lambda}CDM theory. Matter power spectra over these scales are effectively probed by cosmological observables such as shear correlation and Ly{alpha} clouds. In this paper we discuss the implications of primordial magnetic fields on the distribution of Ly{alpha} clouds. We simulate the line-of-sight density fluctuation including the contribution coming from the primordial magnetic fields. We compute the evolution of Ly{alpha} opacity for this case and compare our theoretical estimates of Ly{alpha} opacity with the existing data to constrain the parameters of the primordial magnetic fields. We also discuss the case when the two density fields are correlated. Our analysis yields an upper bound of roughly 0.3-0.6 nG on the magnetic field strength for a range of nearly scale-invariant models, corresponding to a magnetic field power spectrum index n {approx_equal} -3.

  17. Magnetic Field Generation During the Collision of Narrow Plasma Clouds

    NASA Astrophysics Data System (ADS)

    Sakai, Jun-ichi; Kazimura, Yoshihiro; Haruki, Takayuki

    1999-06-01

    We investigate the dynamics of the collision of narrow plasma clouds,whose transverse dimension is on the order of the electron skin depth.A 2D3V (two dimensions in space and three dimensions in velocity space)particle-in-cell (PIC) collisionless relativistic code is used toshow the generation of a quasi-staticmagnetic field during the collision of narrow plasma clouds both inelectron-ion and electron-positron (pair) plasmas. The localizedstrong magnetic fluxes result in the generation of the charge separationwith complicated structures, which may be sources of electromagneticas well as Langmuir waves. We also present one applicationof this process, which occurs during coalescence of magnetic islandsin a current sheet of pair plasmas.

  18. Magnetic clouds in the Earth's magnetosheath: a statistical study

    NASA Astrophysics Data System (ADS)

    Turc, Lucile; Fontaine, Dominique; Kilpua, Emilia; Escoubet, Philippe

    2016-04-01

    Magnetic clouds (MCs) are highly geoeffective solar wind transients. In the interplanetary space, they possess a well-defined magnetic structure, characterised by an enhanced and smoothly rotating magnetic field. We examine here whether their magnetic structure is modified when they encounter the outer regions of the geospace, namely the bow shock and the magnetosheath. Significant changes in the magnetic structure of MCs could in turn affect the level of geomagnetic activity they induce in the near-Earth's space. In this work, we study 82 MCs during which spacecraft observations are available simultaneously in the solar wind and in the magnetosheath. The observations inside the magnetosheath are related to the bow shock properties using a magnetosheath model (Turc et al., 2014, Ann. Geophys.). We find that the variation of an MC's magnetic field orientation from the solar wind to the magnetosheath is directly related to the encountered shock configuration. The angle between the magnetic field in the magnetosheath and that in the solar wind shows a very good correlation with the ΘBn angle (between the upstream magnetic field and the normal to the shock's surface) encountered at the bow shock's crossing. Because of its importance for the geoeffectivity, we examine how the magnetic field North-South (Bz) component is modified across the bow shock. In some cases, we find that Bz reverses in the magnetosheath. The conditions during which such reversals occur are investigated and their implications in terms of the MCs' geoeffectivity are discussed.

  19. Molecular cloud formation in high-shear, magnetized colliding flows

    NASA Astrophysics Data System (ADS)

    Fogerty, E.; Frank, A.; Heitsch, F.; Carroll-Nellenback, J.; Haig, C.; Adams, M.

    2016-08-01

    The colliding flows (CF) model is a well-supported mechanism for generating molecular clouds. However, to-date most CF simulations have focused on the formation of clouds in the normal-shock layer between head-on colliding flows. We performed simulations of magnetized colliding flows that instead meet at an oblique-shock layer. Oblique shocks generate shear in the post-shock environment, and this shear creates inhospitable environments for star formation. As the degree of shear increases (i.e. the obliquity of the shock increases), we find that it takes longer for sink particles to form, they form in lower numbers, and they tend to be less massive. With regard to magnetic fields, we find that even a weak field stalls gravitational collapse within forming clouds. Additionally, an initially oblique collision interface tends to reorient over time in the presence of a magnetic field, so that it becomes normal to the oncoming flows. This was demonstrated by our most oblique shock interface, which became fully normal by the end of the simulation.

  20. Typical Profiles and Distributions of Plasma and Magnetic Field Parameters in Magnetic Clouds at 1 AU

    NASA Astrophysics Data System (ADS)

    Rodriguez, L.; Masías-Meza, J. J.; Dasso, S.; Démoulin, P.; Zhukov, A. N.; Gulisano, A. M.; Mierla, M.; Kilpua, E.; West, M.; Lacatus, D.; Paraschiv, A.; Janvier, M.

    2016-07-01

    Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs). They are important because of their simple internal magnetic field configuration, which resembles a magnetic flux rope, and because they represent one of the most geoeffective types of solar transients. In this study, we analyze their internal structure using a superposed epoch method on 63 events observed at L1 by the Advance Composition Explorer (ACE), between 1998 and 2006. In this way, we obtain an average profile for each plasma and magnetic field parameter at each point of the cloud. Furthermore, we take a fixed time-window upstream and downstream from the MC to also sample the regions preceding the cloud and the wake trailing it. We then perform a detailed analysis of the internal characteristics of the clouds and their surrounding solar wind environments. We find that the parameters studied are compatible with log-normal distribution functions. The plasma β and the level of fluctuations in the magnetic field vector are the best parameters to define the boundaries of MCs. We find that one third of the events shows a peak in plasma density close to the trailing edge of the flux ropes. We provide several possible explanations for this result and investigate if the density peak is of a solar origin (e.g. erupting prominence material) or formed during the magnetic cloud travel from the Sun to 1 AU. The most plausible explanation is the compression due to a fast overtaking flow, coming from a coronal hole located to the east of the solar source region of the magnetic cloud.

  1. Typical Profiles and Distributions of Plasma and Magnetic Field Parameters in Magnetic Clouds at 1 AU

    NASA Astrophysics Data System (ADS)

    Rodriguez, L.; Masías-Meza, J. J.; Dasso, S.; Démoulin, P.; Zhukov, A. N.; Gulisano, A. M.; Mierla, M.; Kilpua, E.; West, M.; Lacatus, D.; Paraschiv, A.; Janvier, M.

    2016-08-01

    Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs). They are important because of their simple internal magnetic field configuration, which resembles a magnetic flux rope, and because they represent one of the most geoeffective types of solar transients. In this study, we analyze their internal structure using a superposed epoch method on 63 events observed at L1 by the Advance Composition Explorer (ACE), between 1998 and 2006. In this way, we obtain an average profile for each plasma and magnetic field parameter at each point of the cloud. Furthermore, we take a fixed time-window upstream and downstream from the MC to also sample the regions preceding the cloud and the wake trailing it. We then perform a detailed analysis of the internal characteristics of the clouds and their surrounding solar wind environments. We find that the parameters studied are compatible with log-normal distribution functions. The plasma β and the level of fluctuations in the magnetic field vector are the best parameters to define the boundaries of MCs. We find that one third of the events shows a peak in plasma density close to the trailing edge of the flux ropes. We provide several possible explanations for this result and investigate if the density peak is of a solar origin ( e.g. erupting prominence material) or formed during the magnetic cloud travel from the Sun to 1 AU. The most plausible explanation is the compression due to a fast overtaking flow, coming from a coronal hole located to the east of the solar source region of the magnetic cloud.

  2. Solar energetic particles as probes of the structures of magnetic clouds

    NASA Astrophysics Data System (ADS)

    Kahler, S. W.; Reames, D. V.

    Two possible closed magnetic topologies are considered for clouds: an elongated bottle with field lines rooted at both ends in the sun and a magnetic bubble or plasmoid consisting of closed field lines. Solar energetic particles (SEPs) are used as probes of the cloud topologies. The rapid access of SEPs to clouds in many events indicates that the cloud field lines extend back to the sun.

  3. Solar energetic particles as probes of the structures of magnetic clouds

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Reames, D. V.

    1990-01-01

    Two possible closed magnetic topologies are considered for clouds: an elongated bottle with field lines rooted at both ends in the sun and a magnetic bubble or plasmoid consisting of closed field lines. Solar energetic particles (SEPs) are used as probes of the cloud topologies. The rapid access of SEPs to clouds in many events indicates that the cloud field lines extend back to the sun.

  4. Nonlinear amplification of Langmuir waves in a plasma with regular and random magnetic fields

    NASA Astrophysics Data System (ADS)

    Krivitskii, V. S.; Priadko, Iu. M.; Tsytovich, V. N.

    1990-07-01

    The nonlinear interaction of Langmuir waves in a turbulent plasma with random resonance magnetic fields in the presence of an external regular magnetic field is investigated analytically. In particular, attention is given to the possibility of Langmuir wave amplification using the plasma maser effect. The frequency and angle dependences of the amplification increment (attenuation decrement) of Langmuir waves are determined in the isotropic case and in the presence of anisotropy. For an anisotropic particle distribution function, the amplification increment of Langmuir waves may reach values of the order of the plasma frequency.

  5. Regular and chaotic dynamics of a chain of magnetic dipoles with moments of inertia

    SciTech Connect

    Shutyi, A. M.

    2009-05-15

    The nonlinear dynamic modes of a chain of coupled spherical bodies having dipole magnetic moments that are excited by a homogeneous ac magnetic field are studied using numerical analysis. Bifurcation diagrams are constructed and used to find conditions for the presence of several types of regular, chaotic, and quasi-periodic oscillations. The effect of the coupling of dipoles on the excited dynamics of the system is revealed. The specific features of the Poincare time sections are considered for the cases of synchronous chaos with antiphase synchronization and asynchronous chaos. The spectrum of Lyapunov exponents is calculated for the dynamic modes of an individual dipole.

  6. Formation of Magnetized Prestellar Cores in Turbulent Cloud

    NASA Astrophysics Data System (ADS)

    Chen, Che-Yu; Ostriker, Eve C.; Classy Team

    2015-01-01

    In GMCs, shocks in the turbulent flow create high-density regions, in which filaments grow and then fragment gravitationally into prestellar cores. This process is influenced by the cloud's magnetic field, which is also amplified during the shock. We showed in three-dimensional simulations that in typical GMC environments, the turbulence-compressed regions are strongly-magnetized sheet-like layers. Within these layers, dense filaments and embedded self-gravitating cores form via gathering material along the magnetic field lines. As a result of the preferred-direction mass collection, velocity gradients perpendicular to the filament major axis are a common feature seen in our simulations, which is in good agreement with the most recent results from CARMA Large Area Star Formation Survey (CLASSy). From our simulations, we identified hundreds of self-gravitating cores with masses, sizes, and mass-to-magnetic flux ratios comparable to observations. We found that core masses and sizes do not depend on the coupling strength between neutrals and ions, and ambipolar diffusion is not necessary to form low-mass supercritical cores. This is a result of anisotropic contraction along field lines, which can explain the fact that magnetically supercritical cores are commonly observed even in a strongly magnetized medium. We then confirmed the anisotropic core formation model by extending the parameter space of the three-dimensional, turbulent MHD core formation simulations, and quantified how the scalings of median core properties depend on the pre-shock inflow velocity and upstream magnetic field strength.

  7. Orientation Of Interplanetary Magnetic Clouds Associated With Filament Eruptions And Major Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Ye, P.; Zhou, G.; Wang, S.; Wang, J.

    2004-12-01

    As a major source of non-recurrent geomagnetic storms, more than half of magnetic clouds in the interplanetary medium are associated with filament eruptions [Subramanian and Dere, 2001]. The strength of south component of the magnetic field inside magnetic cloud and its duration are consider the very important factors in causing geomagnetic storm. Obviously, these factors are related to the orientation of magnetic cloud in terms of flux rope model. By investigating the observations of SOHO and ACE spacecraft from 2000 to 2003, the relationship between the orientation of interplanetary magnetic clouds which were associated with filament eruptions and major geomagnetic storms are studied. Two issues are discussed: (1) the effect of magnetic cloud's orientation on the intensity of geomagnetic storm, and (2) the possible factors in influencing the cloud's orientation. The results will be worked out.

  8. Formation of giant molecular clouds and helical magnetic fields by the Parker instability

    NASA Astrophysics Data System (ADS)

    Shibata, Kazunari; Matsumoto, Ryoji

    1991-10-01

    It is suggested that the Orion molecular cloud complex formed through the Parker instability (the buoyancy of a magnetic field entrained in matter) and that the helical filament found by Uchida et al. (1991) in the L1641 in the Orion cloud complex is the result of spinning gas falling along the magnetic field and twisting it. The twisted magnetic field, unlike a purely planar field, suppresses the Parker instability on small scales, allowing the generation of finite clouds rather than general turbulence.

  9. Interaction of a neutral cloud moving through a magnetized plasma

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.; Lu, G.

    1990-01-01

    Current collection by outgassing probes in motion relative to a magnetized plasma may be significantly affected by plasma processes that cause electron heating and cross field transport. Simulations of a neutral gas cloud moving across a static magnetic field are discussed. The authors treat a low-Beta plasma and use a 2-1/2 D electrostatic code linked with the authors' Plasma and Neutral Interaction Code (PANIC). This study emphasizes the understanding of the interface between the neutral gas cloud and the surrounding plasma where electrons are heated and can diffuse across field lines. When ionization or charge exchange collisions occur a sheath-like structure is formed at the surface of the neutral gas. In that region the crossfield component of the electric field causes the electron to E times B drift with a velocity of the order of the neutral gas velocity times the square root of the ion to electron mass ratio. In addition a diamagnetic drift of the electron occurs due to the number density and temperature inhomogeneity in the front. These drift currents excite the lower-hybrid waves with the wave k-vectors almost perpendicular to the neutral flow and magnetic field again resulting in electron heating. The thermal electron current is significantly enhanced due to this heating.

  10. Simulations of Supersonic Turbulence in Magnetized Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Kritsuk, Alexei; Ustyugov, S. D.; Norman, M. L.; Padoan, P.

    2009-01-01

    We report first results from three-dimensional numerical simulations of supersonic magnetohydrodynamic (MHD) turbulence with the Piecewise Parabolic Method on Local Stencil (PPML, Popov & Ustyugov 2008). PPML is a multi-dimensional higher-order Godunov scheme that preserves monotonicity of solutions in the vicinity of strong discontinuities, and maintains zero divergence of the magnetic field through a constrained transport approach. The method is very accurate, extremely low-dissipation, and perfectly stable for super-Alfv'enic turbulence, where many other MHD schemes experience difficulties. We solve the equations of ideal MHD in a periodic domain on Cartesian grids of up to 1024^3 points. Our models describe driven turbulence at Mach 10 and assume an isothermal equation of state to mimic the conditions in molecular clouds. We start with uniform gas density and uniform magnetic field aligned with one of the coordinate directions and apply large-scale solenoidal force to develop a saturated turbulent state in a statistical equilibrium. Depending on the initial field strength, B_0, a saturation is reached within three-to-six dynamical times of driving. We then collect the turbulence statistics and compare those for different models. As predicted by Kritsuk et al. (2007), for weak initial fields we get Kolmogorov spectra for the density-weighted velocities ρ^{1/3}u. With stronger fields, the spectra tend to get shallower, but the -5/3 scaling still appears to hold (even in these highly compressible, magnetized flows) for a combination of kinetic and magnetic variables constructed in the spirit of Politano & Pouquet (1998). We compare PDFs, structure functions, and power spectra from runs with different B_0 and discuss the signature of magnetic field in the statistical properties of molecular cloud turbulence and their role in overall flow dynamics. This research was partially supported by NSF grants AST0607675, AST0808184, and by NRAC allocation MCA07S014. We

  11. Geospace Response to a Slow Moving Unipolar Magnetic Cloud

    NASA Astrophysics Data System (ADS)

    Knipp, D. J.; Matsuo, T.; Kilcommons, L. M.; Anderson, B. J.; Korth, H.; Richmond, A. D.

    2013-12-01

    The passage at Earth of a unipolar, southward-directed magnetic cloud on 28-29 May 2010 provided a unique opportunity to investigate magnetosphere-ionosphere coupling in response to a slow-moving transient in the solar wind and the subsequent higher speed flow. Despite more than 8 hours of IMF Bz < -10 nT, the Dst Index did not intensify below -100 nT. However, there was an extraordinary 16-hour stretch with the AE index exceeding 500 nT throughout. We use magnetic perturbation data from the constellation of more than 70 Iridium satellites forming the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) and from four satellites of the Defense Meteorological Satellite Program to map the large-scale field-aligned currents during this interval. Of particular interest are: 1) the prolonged interval of AE index greater than 500 nT and 2) the dayside response to a full rotation of the interplanetary east-west (IMF By) component while the IMF is southward. During the magnetic cloud passage we are able to isolate the IMF By response without the intervening effects of solar wind pressure pulses or other IMF discontinuities. In addition to the unusual storm features, we discuss the "observational error" characteristics of the space-based magnetic field measurements incorporated into the data assimilation algorithm used in the field-aligned current mapping The independent satellite measurements allow us to quantify the uncertainty in the mapping procedure. We report on the spatial and temporal uncertainties.

  12. A comparative study among different regularization techniques for solving ill-posed magnetic inverse problem

    NASA Astrophysics Data System (ADS)

    Abdelazeem, Maha; Gobashy, Mohamed

    2015-04-01

    The magnetic inverse problem is, intrinsically, non-unique and its numerical solution is unstable. This means that any small perturbation in the data (noise) causes large variation in the solution. This ill-posedness is not only due to complex geological situations, but it may arise because of ill-conditioned kernel matrix. Procedures adopted to stabilize the inversion of ill-posed problem are called regularization, so the selection of regularization parameter is very important to invert the earth model causing the measured magnetic field. Two strategies are commonly used, techniques based on Tikhonov formula and techniques using the trust region sub-problem TRS and the controlling factor will be the radius of such region. In this study, the two categories are compared to examine the stability of solutions with noise. A MATLAB-based inversion code is implemented and tested on some synthetic total magnetic fields with different noise levels added to simulate real fields. The capability of such techniques have been further tested by applying it to real data.

  13. Magnetic Cloud Polarity and Geomagnetic Activities over Three Solar Cycles

    NASA Astrophysics Data System (ADS)

    Li, Y.; Luhmann, J.

    2006-12-01

    Interplanetary coronal mass ejections (ICMEs) that show fluxrope magnetic structures are named magnetic clouds (MCs). Majority of the MCs exhibit bipolar signature in their north-south component (Bz) in IMF measurements. The Bz component of a bipolar cloud is either NS (north first then turning south as the MC traverses the spacecraft) or SN. Studies show that the occurrence of these two types of MCs has some solar cycle dependence. However it appears to be a complex relationship as the switch between the two types of MCs is not concurrent with either the solar polar reversal or the time of the sunspot minimum when the new cycle sunspots start to appear. In this paper, we use ACE solar wind and IMF observations to obtain the most updated MC signatures and their temporal variation. In combination with our previously published results, we analyze MC polarity variations over the three solar cycles of 21, 22 and 23. Interpretations in terms of their solar sources will be attempted. On the other hand, the geomagnetic activities over the same solar cycles will be studied using geomagnetic indices. The geoeffectiveness of the MC will be evaluated in the aid of Dst indices.

  14. THE SUBMILLIMETER AND MILLIMETER EXCESS OF THE SMALL MAGELLANIC CLOUD: MAGNETIC DIPOLE EMISSION FROM MAGNETIC NANOPARTICLES?

    SciTech Connect

    Draine, B. T.; Hensley, Brandon

    2012-09-20

    The Small Magellanic Cloud (SMC) has surprisingly strong submillimeter- and millimeter-wavelength emission that is inconsistent with standard dust models, including those with emission from spinning dust. Here, we show that the emission from the SMC may be understood if the interstellar dust mixture includes magnetic nanoparticles, emitting magnetic dipole radiation resulting from thermal fluctuations in the magnetization. The magnetic grains can be metallic iron, magnetite Fe{sub 3}O{sub 4}, or maghemite {gamma}-Fe{sub 2}O{sub 3}. The required mass of iron is consistent with elemental abundance constraints. The magnetic dipole emission is predicted to be polarized orthogonally to the normal electric dipole radiation if the nanoparticles are inclusions in larger grains. We speculate that other low-metallicity galaxies may also have a large fraction of the interstellar Fe in magnetic materials.

  15. Energetic Electrons Associated with Magnetic Reconnection in the Magnetic Cloud Boundary Layer

    SciTech Connect

    Wang, Y.; Zhang, S. H.; Wei, F. S.; Feng, X. S.; Zuo, P. B.; Sun, T. R.

    2010-11-05

    Here is reported in situ observation of energetic electrons ({approx}100-500 keV) associated with magnetic reconnection in the solar wind by the ACE and Wind spacecraft. The properties of this magnetic cloud driving reconnection and the associated energetic electron acceleration problem are discussed. Further analyses indicate that the electric field acceleration and Fermi-type mechanism are two fundamental elements in the electron acceleration processes and the trapping effect of the specific magnetic field configuration maintains the acceleration status that increases the totally gained energy.

  16. Energetic electrons associated with magnetic reconnection in the magnetic cloud boundary layer.

    PubMed

    Wang, Y; Wei, F S; Feng, X S; Zhang, S H; Zuo, P B; Sun, T R

    2010-11-01

    Here is reported in situ observation of energetic electrons (∼100-500 keV) associated with magnetic reconnection in the solar wind by the ACE and Wind spacecraft. The properties of this magnetic cloud driving reconnection and the associated energetic electron acceleration problem are discussed. Further analyses indicate that the electric field acceleration and Fermi-type mechanism are two fundamental elements in the electron acceleration processes and the trapping effect of the specific magnetic field configuration maintains the acceleration status that increases the totally gained energy. PMID:21231178

  17. Turbulence-induced disc formation in strongly magnetized cloud cores

    NASA Astrophysics Data System (ADS)

    Seifried, D.; Banerjee, R.; Pudritz, R. E.; Klessen, R. S.

    2013-07-01

    We present collapse simulations of strongly magnetized, turbulent molecular cloud cores with masses ranging from 2.6 to 1000 M⊙ in order to study the influence of the initial conditions on the turbulence-induced disc formation mechanism proposed recently by Seifried et al. We find that Keplerian discs are formed in all cases independently of the core mass, the strength of turbulence or the presence of global rotation. The discs appear within a few kyr after the formation of the protostar, are 50-150 au in size, and have masses between 0.05 and a few 0.1 M⊙. During the formation of the discs the mass-to-flux ratio stays well below the critical value of 10 for Keplerian disc formation. Hence, flux-loss alone cannot explain the formation of Keplerian discs. The formation of rotationally supported discs at such early phases is rather due to the disordered magnetic field structure and due to turbulent motions in the surroundings of the discs, two effects lowering the classical magnetic braking efficiency. Binary systems occurring in the discs are mainly formed via the disc capturing mechanism rather than via disc fragmentation, which is largely suppressed by the presence of magnetic fields.

  18. Observation of Magnetic Resonances in Electron Clouds in a Positron Storage Ring

    SciTech Connect

    Pivi, M.T.F.; Ng, J.S.T.; Cooper, F.; Kharakh, D.; King, F.; Kirby, R.E.; Kuekan, B.; Spencer, Cherrill M.; Raubenheimer, T.O.; Wang, L.F.; /SLAC

    2011-08-24

    The first experimental observation of magnetic resonances in electron clouds is reported. The resonance was observed as a modulation in cloud intensity for uncoated as well as TiN-coated aluminum surfaces in the positron storage ring of the PEP-II collider at SLAC. Electron clouds frequently arise in accelerators of positively charged particles, and severely impact the machines performance. The TiN coating was found to be an effective remedy, reducing the cloud intensity by three orders of magnitude.

  19. Ulysses observations of electron and proton components in a magnetic cloud and related wave activity

    NASA Technical Reports Server (NTRS)

    Osherovich, V. A.; Fainberg, J.; Stone, R. G.; MacDowall, R. J.; Phillips, J. L.; Balogh, A.

    1995-01-01

    In addition to a smooth rotation of the magnetic field vector, magnetic clouds have a low proton temperature T(sub p). Their expansion in the solar wind leads to depletion and therefore the ion component cools down. It has been shown recently that the electron component in magnetic clouds behaves differently: when the cloud expands, electron temperature Te anti correlates with density and therefore Te increases in the cloud, creating favorable conditions for the rise of ion-acoustic waves. For the magnetic cloud observed by Ulysses on June 10 - 12, 1993 at 4.64 AU at S 32.5 deg, we present observations for both electron and proton components and related plasma wave activity. Our results confirm the anti correlation between T(sub e) and electron density and also exhibit a high ratio of T(sub e)/T(sub P) in the cloud. Since Landau damping is not effective for T(sub e)/T(sub p) much greater than 1, Doppler shifted ion acoustic waves are expected in the cloud. Calculation of ion acoustic wave frequencies in the cloud and comparison with observed wave activity confirm this expectation. As in our previous work, we show that the electron component in the cloud obeys a polytropic law with gamma is less than 1 (gamma approximately equals 0.3-0.4). The dynamics of the magnetic cloud are determined to a large degree by the dominating electron pressure.

  20. Solar energetic particles inside magnetic clouds observed with the Wind spacecraft

    NASA Astrophysics Data System (ADS)

    Mazur, J. E.; Mason, G. M.; Dwyer, J. R.; von Rosenvinge, T. T.

    Solar energetic particles can be used to probe the structure of magnetic clouds. Since impulsive flare particles are accelerated within active regions, their presence inside a magnetic cloud implies that the cloud's magnetic field connects to an active region at the sun. We report on the fluxes and composition of low energy ions inside 13 magnetic clouds observed with instrumentation on the Wind spacecraft from November 1994 to February 1997. The STEP subsystem of the EPACT experiment on Wind resolves ³He and 4He and the most abundant heavy ion species from ∼20 keV/nucleon to ∼1 MeV/nucleon. Using STEP, we are able to measure the energetic particle composition in an energy range previously unexplored in the context of magnetic clouds. We find that when STEP measured significant ion fluxes inside a cloud, they were most likely from impulsive solar flares; this was the case in 4 events. We find that the 1/10/97 magnetic cloud decreased the interplanetary fluxes of ∼100 keV/nucleon ions by a factor of ∼10² this was probably because the cloud disconnected Wind from the interplanetary particle source beyond 1 AU. In contrast, we observed particles from several impulsive solar flares inside the 10/18/95 event with fluxes ∼10³ higher than the fluxes measured inside the 1/10/97 cloud.

  1. Predicting the magnetic structure of interplanetary magnetic clouds and their sheath regions: Space weather perspective

    NASA Astrophysics Data System (ADS)

    Kilpua, Emilia

    2016-04-01

    Magnetic clouds and their turbulent sheath regions drive the majority of intense space weather storms. The magnitude and the details of the magnetic storm (timing, affected current systems, response of the high energy radiation belt electron fluxes, etc.) depend strongly on the magnetic topology of the CME flux rope and whether the sheath region makes a significant contribution. Sheath regions are particularly geoeffective due to their large-amplitude magnetic field fluctuations and high Alfven Mach numbers, which may enhance solar wind - magnetospheric coupling efficiency. In this presentation I will present examples of space weather responses driven by different CME structures to demonstrate the necessity to develop detailed prediction models/scenarios for different magnetic field configurations and characteristics. The constraints for solar observations and models will be also discussed.

  2. Probing the magnetic topologies of magnetic clouds by means of solar energetic particles. (Reannouncement with new availability information)

    SciTech Connect

    Kahler, S.W.; Reames, D.V.

    1991-06-01

    Magnetic clouds are large (<0.25 AU) interplanetary regions with topologies consistent with those of magnetic loops. They are of interest because they may be an interplanetary signature of coronal mass ejections. Clouds have been identified in solar wind data by their magnetic properties and by the presence of bidirectional particle fluxes. Two possible closed magnetic topologies have been considered for clouds: (1) an elongated bottle with field lines rooted at both ends in the Sun and (2) a detached magnetic bubble or plasmoid consisting of closed field lines. The inferred topologies are also consistent with open field lines that converge beyond 1 AU. We have used solar energetic particles (SEPs) as probes of the cloud topologies. The rapid access of SEPs to the interiors of many clouds indicates that the cloud field lines extend back to the Sun and hence are not plasmoids. The small modulation of galactic cosmic rays associated with clouds also suggests that the magnetic fields of clouds are not closed.

  3. On the association of magnetic clouds with disappearing filaments. [interplanetary phenomena associated with coronal mass ejection

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.; Hildner, E.

    1986-01-01

    Evidence is presented that an interplanetary magnetic cloud preceding an interaction region, observed at earth on January 24, 1974, is associated with the eruptive filament of disparition brusque (DB) near central meridian on January 18. The DB was also associated with a long-decay soft X ray transient and a long-duration gradual-rise-and-fall radio burst. To assess whether magnetic clouds are generally associated with DBs, results from statistical testing of the relation of 33 magnetic clouds (and 33 control samples without magnetic clouds) to disappearing filaments near central meridian (approximately less than 45 deg central meridian distance) are presented. The hypothesis that magnetic cloud are the 1-AU counterparts of either eruptive filaments or the coronal mass ejections which probably accompany them is supported. The major result is that disappearing filaments occur more frequently on the days when magnetic clouds are launched than on control days, a result obtained with greater than 99 pct confidence. There is a suggestion that clouds following shocks, probably launched at times of solar flares, are not as strongly associated with disappearing filaments as are clouds launched less violently.

  4. DISPERSION OF MAGNETIC FIELDS IN MOLECULAR CLOUDS. III

    SciTech Connect

    Houde, Martin; Rao, Ramprasad; Vaillancourt, John E.; Hildebrand, Roger H.

    2011-06-01

    We apply our technique on the dispersion of magnetic fields in molecular clouds to high spatial resolution Submillimeter Array polarization data obtained for Orion KL in OMC-1, IRAS 16293, and NGC 1333 IRAS 4A. We show how one can take advantage of such high-resolution data to characterize the magnetized turbulence power spectrum in the inertial and dissipation ranges. For Orion KL we determine that in the inertial range the spectrum can be approximately fitted with a power law k{sup -(2.9{+-}0.9)} and we report a value of 9.9 mpc for {lambda}{sub AD}, the high spatial frequency cutoff presumably due to turbulent ambipolar diffusion. For the same parameters we have {approx}k{sup -(1.4{+-}0.4)} and a tentative value of {lambda}{sub AD} {approx_equal} 2.2 mpc for NGC 1333 IRAS 4A, and {approx}k{sup -(1.8{+-}0.3)} with an upper limit of {lambda}{sub AD} {approx}< 1.8 mpc for IRAS 16293. We also discuss the application of the technique to interferometry measurements and the effects of the inherent spatial filtering process on the interpretation of the results.

  5. Spatio-spectral regularization to improve magnetic resonance spectroscopic imaging quantification.

    PubMed

    Laruelo, Andrea; Chaari, Lotfi; Tourneret, Jean-Yves; Batatia, Hadj; Ken, Soléakhéna; Rowland, Ben; Ferrand, Régis; Laprie, Anne

    2016-07-01

    Magnetic resonance spectroscopic imaging (MRSI) is a non-invasive technique able to provide the spatial distribution of relevant biochemical compounds commonly used as biomarkers of disease. Information provided by MRSI can be used as a valuable insight for the diagnosis, treatment and follow-up of several diseases such as cancer or neurological disorders. Obtaining accurate metabolite concentrations from in vivo MRSI signals is a crucial requirement for the clinical utility of this technique. Despite the numerous publications on the topic, accurate quantification is still a challenging problem due to the low signal-to-noise ratio of the data, overlap of spectral lines and the presence of nuisance components. We propose a novel quantification method, which alleviates these limitations by exploiting a spatio-spectral regularization scheme. In contrast to previous methods, the regularization terms are not expressed directly on the parameters being sought, but on appropriate transformed domains. In order to quantify all signals simultaneously in the MRSI grid, while introducing prior information, a fast proximal optimization algorithm is proposed. Experiments on synthetic MRSI data demonstrate that the error in the estimated metabolite concentrations is reduced by a mean of 41% with the proposed scheme. Results on in vivo brain MRSI data show the benefit of the proposed approach, which is able to fit overlapping peaks correctly and to capture metabolites that are missed by single-voxel methods due to their lower concentrations. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27166741

  6. Regular flow reversals in Rayleigh-Bénard convection in a horizontal magnetic field.

    PubMed

    Tasaka, Yuji; Igaki, Kazuto; Yanagisawa, Takatoshi; Vogt, Tobias; Zuerner, Till; Eckert, Sven

    2016-04-01

    Magnetohydrodynamic Rayleigh-Bénard convection was studied experimentally using a liquid metal inside a box with a square horizontal cross section and aspect ratio of five. Systematic flow measurements were performed by means of ultrasonic velocity profiling that can capture time variations of instantaneous velocity profiles. Applying a horizontal magnetic field organizes the convective motion into a flow pattern of quasi-two-dimensional rolls arranged parallel to the magnetic field. The number of rolls has the tendency to decrease with increasing Rayleigh number Ra and to increase with increasing Chandrasekhar number Q. We explored convection regimes in a parameter range, at 2×10^{3}regular flow reversals in which five rolls periodically change the direction of their circulation with gradual skew of the roll axes can be considered as the most remarkable one. The regime appears around a range of Ra/Q=10, where irregular flow reversals were observed in Yanagisawa et al. We performed the proper orthogonal decomposition (POD) analysis on the spatiotemporal velocity distribution and detected that the regular flow reversals can be interpreted as a periodic emergence of a four-roll state in a dominant five-roll state. The POD analysis also provides the definition of the effective number of rolls as a more objective approach. PMID:27176392

  7. Regular flow reversals in Rayleigh-Bénard convection in a horizontal magnetic field

    NASA Astrophysics Data System (ADS)

    Tasaka, Yuji; Igaki, Kazuto; Yanagisawa, Takatoshi; Vogt, Tobias; Zuerner, Till; Eckert, Sven

    2016-04-01

    Magnetohydrodynamic Rayleigh-Bénard convection was studied experimentally using a liquid metal inside a box with a square horizontal cross section and aspect ratio of five. Systematic flow measurements were performed by means of ultrasonic velocity profiling that can capture time variations of instantaneous velocity profiles. Applying a horizontal magnetic field organizes the convective motion into a flow pattern of quasi-two-dimensional rolls arranged parallel to the magnetic field. The number of rolls has the tendency to decrease with increasing Rayleigh number Ra and to increase with increasing Chandrasekhar number Q . We explored convection regimes in a parameter range, at 2 ×103regular flow reversals in which five rolls periodically change the direction of their circulation with gradual skew of the roll axes can be considered as the most remarkable one. The regime appears around a range of Ra /Q =10 , where irregular flow reversals were observed in Yanagisawa et al. We performed the proper orthogonal decomposition (POD) analysis on the spatiotemporal velocity distribution and detected that the regular flow reversals can be interpreted as a periodic emergence of a four-roll state in a dominant five-roll state. The POD analysis also provides the definition of the effective number of rolls as a more objective approach.

  8. TRANSITION FROM REGULAR TO CHAOTIC CIRCULATION IN MAGNETIZED CORONAE NEAR COMPACT OBJECTS

    SciTech Connect

    Kopacek, O.; Karas, V.; Kovar, J.; StuchlIk, Z.

    2010-10-20

    Accretion onto black holes and compact stars brings material in a zone of strong gravitational and electromagnetic fields. We study dynamical properties of motion of electrically charged particles forming a highly diluted medium (a corona) in the regime of strong gravity and large-scale (ordered) magnetic field. We start our work from a system that allows regular motion, then we focus on the onset of chaos. To this end, we investigate the case of a rotating black hole immersed in a weak, asymptotically uniform magnetic field. We also consider a magnetic star, approximated by the Schwarzschild metric and a test magnetic field of a rotating dipole. These are two model examples of systems permitting energetically bound, off-equatorial motion of matter confined to the halo lobes that encircle the central body. Our approach allows us to address the question of whether the spin parameter of the black hole plays any major role in determining the degree of the chaoticness. To characterize the motion, we construct the recurrence plots (RPs) and we compare them with Poincare surfaces of section. We describe the RPs in terms of the recurrence quantification analysis, which allows us to identify the transition between different dynamical regimes. We demonstrate that this new technique is able to detect the chaos onset very efficiently and provide its quantitative measure. The chaos typically occurs when the conserved energy is raised to a sufficiently high level that allows the particles to traverse the equatorial plane. We find that the role of the black hole spin in setting the chaos is more complicated than initially thought.

  9. Diffusion of Magnetic Field and Removal of Magnetic Flux from Clouds Via Turbulent Reconnection

    NASA Astrophysics Data System (ADS)

    Santos-Lima, R.; Lazarian, A.; de Gouveia Dal Pino, E. M.; Cho, J.

    2010-05-01

    The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence reassures that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our three-dimensional MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e., without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our three-dimensional simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus, the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the

  10. Dynamics of Finite Dust Clouds in a Magnetized Anodic Plasma

    SciTech Connect

    Piel, A.; Pilch, I.; Trottenberg, T.; Koepke, M. E.

    2008-09-07

    The response to an external modulation voltage of small dust clouds confined in an anodic plasma is studied. Dust density waves are excited when the cloud is larger than a wavelength, whereas a sloshing and stretching motion is found for smaller clouds. The wave dispersion shows similarities with waveguide modes.

  11. EFFECTS OF MAGNETIC FIELD STRENGTH AND ORIENTATION ON MOLECULAR CLOUD FORMATION

    SciTech Connect

    Heitsch, Fabian; Hartmann, Lee W.; Stone, James M.

    2009-04-10

    We present a set of numerical simulations addressing the effects of magnetic field strength and orientation on the flow-driven formation of molecular clouds. Fields perpendicular to the flows sweeping up the cloud can efficiently prevent the formation of massive clouds but permit the buildup of cold, diffuse filaments. Fields aligned with the flows lead to substantial clouds, whose degree of fragmentation and turbulence strongly depends on the background field strength. Adding a random field component leads to a 'selection effect' for molecular cloud formation: high column densities are only reached at locations where the field component perpendicular to the flows is vanishing. Searching for signatures of colliding flows should focus on the diffuse, warm gas, since the cold gas phase making up the cloud will have lost the information about the original flow direction because the magnetic fields redistribute the kinetic energy of the inflows.

  12. The Evolution of Gas Clouds Falling in the Magnetized Galactic Halo: High-Velocity Clouds (HVCs) Originated in the Galactic Fountain

    NASA Astrophysics Data System (ADS)

    Kwak, Kyujin; Shelton, Robin L.; Raley, Elizabeth A.

    2009-07-01

    In the Galactic fountain scenario, supernovae and/or stellar winds propel material into the Galactic halo. As the material cools, it condenses into clouds. By using FLASH three-dimensional magnetohydrodynamic simulations, we model and study the dynamical evolution of these gas clouds after they form and begin to fall toward the Galactic plane. In our simulations, we assume that the gas clouds form at a height of z = 5 kpc above the Galactic midplane, then begin to fall from rest. We investigate how the cloud's evolution, dynamics, and interaction with the interstellar medium (ISM) are affected by the initial mass of the cloud. We find that clouds with sufficiently large initial densities (n >= 0.1 H atoms cm-3) accelerate sufficiently and maintain sufficiently large column densities as to be observed and identified as high-velocity clouds (HVCs) even if the ISM is weakly magnetized (1.3 μG). However, the ISM can provide noticeable resistance to the motion of a low-density cloud (n <= 0.01 H atoms cm-3) thus making it more probable that a low-density cloud will attain the speed of an intermediate-velocity cloud rather than the speed of an HVC. We also investigate the effects of various possible magnetic field configurations. As expected, the ISM's resistance is greatest when the magnetic field is strong and perpendicular to the motion of the cloud. The trajectory of the cloud is guided by the magnetic field lines in cases where the magnetic field is oriented diagonal to the Galactic plane. The model cloud simulations show that the interactions between the cloud and the ISM can be understood via analogy to the shock tube problem which involves shock and rarefaction waves. We also discuss accelerated ambient gas, streamers of material ablated from the clouds, and the cloud's evolution from a sphere-shaped to a disk- or cigar-shaped object.

  13. Magnetized color superconducting cold quark matter within the SU(2 ) f NJL model: A novel regularization scheme

    NASA Astrophysics Data System (ADS)

    Allen, P.; Grunfeld, A. G.; Scoccola, N. N.

    2015-10-01

    The influence of intense magnetic fields on the behavior of color superconducting cold quark matter is investigated using an SU(2 ) f Nambu-Jona-Lasinio-type model for which a novel regulation scheme is introduced. In such a scheme the contributions which are explicitly dependent on the magnetic field turn out to be finite and, thus, do not require to be regularized. As a result of this, nonphysical oscillations that might arise in the alternative regularization schemes previously used in the literature are naturally removed. In this way, a clearer interpretation of the physical oscillations is possible. The sensitivity of our results to the model parametrization is analyzed.

  14. Comparisons of Characteristics of Magnetic Clouds and Cloud-Like Structures During 1995-2012

    NASA Technical Reports Server (NTRS)

    Wu, Chin-Chun; Lepping, Ronald P.

    2015-01-01

    Using eighteen years (1995 - 2012) of solar wind plasma and magnetic field data (observed by the Wind spacecraft), solar activity (e.g. sunspot number: SSN), and the geomagnetic activity index (Dst), we have identified 168 magnetic clouds (MCs) and 197 magnetic cloud - like structures (MCLs), and we have made relevant comparisons. The following features are found during seven different periods (TP: Total period during 1995 - 2012, P1 and P2: first and second half period during 1995 - 2003 and 2004 - 2012, Q1 and Q2: quiet periods during 1995 - 1997 and 2007 - 2009, A1 and A2: active periods during 1998 - 2006 and 2010 - 2012). (1) During the total period the yearly occurrence frequency is 9.3 for MCs and 10.9 for MCLs. (2) In the quiet periods Q1 > Q1 and Q2 > Q2, but in the active periods A1 < A1 and A2 < A2. (3) The minimum Bz (Bzmin) inside of a MC is well correlated with the intensity of geomagnetic activity, Dstmin (minimum Dst found within a storm event) for MCs (with a Pearson correlation coefficient, c.c. = 0.75, and the fitting function is Dstmin = 0.90+7.78Bzmin), but Bzmin for MCLs is not well correlated with the Dst index (c.c. = 0.56, and the fitting function is Dstmin = -9.40+ 4.58 Bzmin). (4) MCs play a major role in producing geomagnetic storms: the absolute value of the average Dstmin (MC = -70 nT) for MCs associated geomagnetic storms is two times stronger than that for MCLs (MCL = -35 nT), due to the difference in the IMF (interplanetary magnetic field) strength. (5) The SSN is not correlated with MCs (TP, c.c. = 0.27), but is well associated with MCLs (TP, c.c. = 0.85). Note that the c.c. for SSN vs. P2 is higher than that for SSN vs. P2. (6) Averages of IMF, solar wind speed, and density inside of the MCs are higher than those inside of the MCLs. (7) The average of MC duration (approx. = 18.82 hours) is approx. = 20 % longer than the average of MCL

  15. Comparisons of Characteristics of Magnetic Clouds and Cloud-Like Structures During 1995 - 2012

    NASA Astrophysics Data System (ADS)

    Wu, Chin-Chun; Lepping, Ronald P.

    2015-04-01

    Using eighteen years (1995 - 2012) of solar wind plasma and magnetic field data (observed by the Wind spacecraft), solar activity ( e.g. sunspot number: SSN), and the geomagnetic-activity index (Dst), we have identified 168 magnetic clouds (MCs) and 197 magnetic-cloud-like structures (MCLs), and we have made relevant comparisons. The following features are found during seven different periods (TP: total period during 1995 - 2012, P1 and P2: first and second half-period during 1995 - 2003 and 2004 - 2012, Q1 and Q2: quiet periods during 1995 - 1997 and 2007 - 2009, A1 and A2: active periods during 1998 - 2006 and 2010 - 2012). (1) During the total period, the yearly occurrence frequency is 9.3 for MCs and 10.9 for MCLs. (2) In the quiet periods < N MCs>Q1 > < N MCLs>Q1 and < N MCs>Q2 > < N MCLs>Q2, but in the active periods < N MCs>A1 < < N MCLs>A1 and < N MCs>A2 < < N MCLs>A2. (3) The minimum Bz ( Bz min) inside of an MC is well correlated with the intensity of geomagnetic activity, Dstmin (minimum Dst found within a storm event) for MCs (with a Pearson correlation coefficient, , and the fitting function is Dstmin=0.90+7.78 Bz min), but Bz min for MCLs is not well correlated with the Dst index (, and the fitting function is Dstmin=-9.40+4.58 Bz min). (4) MCs play a major role in producing geomagnetic storms: the absolute value of the average Dstmin (MC=-70 nT) for MCs associated geomagnetic storms is twice as strong as that for MCLs (MCL=-35 nT) because of the difference in the IMF (interplanetary magnetic field) strength. (5) The SSN is uncorrelated with MCs (< N MCs>TP, ), but is well associated with MCLs (< N MCLs>TP, ). Note that the c.c. for SSN vs. < N MCs>P2 is higher than that for SSN vs. < N MCLs>P2. (6) Averages of IMF, solar wind speed, and density inside of the MCs are higher than those inside of the MCLs. (7) The average of MC duration (≈ 18.82 hours) is ≈ 20 % longer than the average of MCL duration (≈ 15.69 hours). (8) There are

  16. Zeroth order regular approximation approach to parity violating nuclear magnetic resonance shielding tensors.

    PubMed

    Nahrwold, Sophie; Berger, Robert

    2009-06-01

    In this paper, a quasirelativistic two-component zeroth order regular approximation (ZORA) density functional theory (DFT) approach to the calculation of parity violating (PV) resonance frequency differences between the nuclear magnetic resonance (NMR) spectra of enantiomers is presented and the systematics of PV NMR shielding constants in C(2)-symmetric dihydrogen dichalcogenides (H(2)X(2) with X=(17)O, (33)S, (77)Se, (125)Te, (209)Po) are investigated. The typical sin(2alpha)-like dependence of the PV NMR frequency splittings on the dihedral angle alpha is observed for the entire series. As for the scaling behavior of the effect with the nuclear charge Z of X, the previously reported Z(2.5+/-0.5) scaling in the nonrelativistic limit is reproduced and a scaling of approximately Z(3) for the paramagnetic and Z(5) for the spin-orbit coupling contribution to the frequency splitting is observed in the relativistic framework. The paramagnetic and spin-orbit coupling contributions are typically of opposite sign for the molecular structures studied herein and the maximum scaling of the total ZORA frequency splitting (i.e., the sum of the two contributions) is Z(3.9) for H(2)Po(2). Thus, an earlier claim for a spin-orbit coupling contribution scaling with up to Z(7) for H(2)Po(2) and the erratic dihedral angle dependence obtained for this compound within a four-component Dirac-Hartree-Fock-Coulomb study is not confirmed at the DFT level. The maximum NMR frequency splitting reported here is of the order of 10 mHz for certain clamped conformations of H(2)Po(2) inside a static magnetic field with magnetic flux density of 11.7 T. Frequency splittings of this size have been estimated to be detectable with present day NMR spectrometers. Thus, a NMR route toward molecular PV appears promising once suitable compounds have been identified. PMID:19508050

  17. Do the Legs of Magnetic Clouds Contain Twisted Flux-rope Magnetic Fields?

    NASA Astrophysics Data System (ADS)

    Owens, M. J.

    2016-02-01

    Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) characterized primarily by a smooth rotation in the magnetic field direction indicative of the presence of a magnetic flux rope. Energetic particle signatures suggest MC flux ropes remain magnetically connected to the Sun at both ends, leading to widely used model of global MC structure as an extended flux rope, with a loop-like axis stretching out from the Sun into the heliosphere and back to the Sun. The time of flight of energetic particles, however, suggests shorter magnetic field line lengths than such a continuous twisted flux rope would produce. In this study, two simple models are compared with observed flux rope axis orientations of 196 MCs to show that the flux rope structure is confined to the MC leading edge. The MC “legs,” which magnetically connect the flux rope to the Sun, are not recognizable as MCs and thus are unlikely to contain twisted flux rope fields. Spacecraft encounters with these non-flux rope legs may provide an explanation for the frequent observation of non-MC ICMEs.

  18. Propagation Characteristics of CMEs Associated Magnetic Clouds and Ejecta

    NASA Astrophysics Data System (ADS)

    Kim, Roksoon; Gopalswamy, N.; Cho, K.; Moon, Y.; Yashiro, S.

    2012-05-01

    We have investigated the characteristics of magnetic cloud (MC) and ejecta (EJ) associated coronal mass ejections (CMEs) based on the assumption that all CMEs have a flux rope structure. For this, we used 54 CMEs and their interplanetary counter parts (interplanetary CMEs: ICMEs) that constitute the list of events used by the NASA/LWS Coordinated Data Analysis Workshop (CDAW) on CME flux ropes. We considered the location, angular width, speed, and direction parameter, D, that quantifies the propagation direction of a CME. For the 54 CDAW events, we found several properties of the CMEs as follows: (1) the average value of D for the 23 MCs (0.62) is larger than that for the 31 EJs (0.49), which indicates that the MC-associated CMEs propagate more directly to the Earth than the EJ-associated CMEs; (2) comparison between the direction parameter and the source location shows that the majority of the MC-associated CMEs are ejected along the radial direction, while many of the EJ-associated CMEs are ejected non-radially; (3) the mean speed of MC-associated CMEs (946 km/s) is faster than that of EJ-associated CMEs (771 km/s). For seven very fast CMEs (> 1500 km/s), all CMEs with large D (> 0.4) are associated with MCs and the CMEs with small D are associated with EJs. On the basis of these results, we suggest that the CME trajectory essentially decides the observed ICME structure.

  19. An interplanetary magnetic cloud from the solar flare of November 22, 1977.

    NASA Astrophysics Data System (ADS)

    Ivanov, K. G.; Styazhkin, V. A.; Kharshiladze, A. F.

    1989-10-01

    Experimental profiles of Bx, By, and Bz, the components of the IMF, obtained by the Prognoz-6, ISEE-2, and IMP-8 satellites during their passage through a magnetic cloud from the powerful solar flare of November 22 are compared with the theoretical model of a force-free magnetic field of a diffusion pinch. It is found that qualitative agreement between theory and experiment occurs for the permissible configuration and kinematic characteristics of a circular cylinder approximating the cloud.

  20. Electron Velocity Distribution Function in Magnetic Clouds in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Nieves-Chinchil, Teresa; Vinas, Adolfo F.; Bale, Stuart D.

    2006-01-01

    We present a study of the kinetic properties of the electron velocity distribution functions within magnetic clouds, since they are the dominant thermal component. The study is based on high time resolution data from the GSFC WIND/SWE electron spectrometer and the Berkeley 3DP electron plasma instruments. Recent studies on magnetic clouds have shown observational evidence of anti-correlation between the total electron density and electron temperature, which suggest a polytrope law P(sub e) = alpha(Nu(sub e) (sup gamma)) for electrons with the constant gamma approximates 0.5 < 1. This anti-correlation and small polytropic gamma-values is interpreted in the context of the presence of highly non-Maxwellian electron distributions (i.e. non-thermal) within magnetic clouds. These works suggested that the non-thermal electrons can contribute as much as 50% of the total electron pressure within magnetic clouds. We have revisited some of the magnetic cloud events previously studied and attempted to quantify the nature of the non-thermal electrons by modeling the electron velocity distribution function using a kappa distribution function to characterize the kinetic non-thermal effects. If non-thermal tail effects are the source for the anti-correlation between the moment electron temperature and density and if the kappa distribution is a reasonable representative model of non-thermal effects, then the electron velocity distribution within magnetic clouds should show indication for small K-values when gamma < 1.

  1. Some Peculiar Properties of Magnetic Clouds as Observed by the WIND Spacecraft

    NASA Technical Reports Server (NTRS)

    Berdichevsky, D.; Lepping, R. P.; Szabo, A.; Burlaga, L. F.; Thompson, B. J.; Lazarus, A. J.; Steinburg, J. T.; Mariani, F.

    1999-01-01

    We aimed at understanding the common characteristics of magnetic clouds, relevant to solar-interplanetary connections, but exceptional ones were noted and are stressed here through a short compendium. The study is based on analyses of 28 good or better events (Out of 33 candidates) as identified in WIND magnetic field and plasma data. These cloud intervals are provided by WIND-MFI's Website under the URL (http://lepmfi.gsfc.nasa.gov/mfi/mag_cloud_publ.html#table). The period covered is from early 1995 to November 1998. A force free, cylindrically symmetric, magnetic field model has been applied to the field data in usually 1-hour averaged form for the cloud analyses. Some of the findings are: (1) one small duration event turned out to have an approximately normal size which was due to a distant almost "skimming" passage by the spacecraft; (2) One truly small event was observed, where 10 min averages had to be used in the model fitting; it had an excellent model fit and the usual properties of a magnetic cloud, except it possessed a small axial magnetic flux; (3) One cloud ha a dual axial-field-polarity, in the sense that the "core" had one polarity and the annular region around it had an opposite polarity. This event also satisfied the model and with a ve3ry good chi-squared value. Some others show a hint of this dual polarity; (4) The temporal distribution of occurrence clouds over the 4 years show a dip in 1996; (5) About 50 % of the clouds had upstream shocks; any others had upstream pressure pulses; (6) The overall average speed (390 km/s) of the best 28 events is less than the normally quoted for the average solar wind speed (420 km/s) The average of central cloud speed to the upstream solar wind speed was not much greater than one (1.08), even though many of these clouds were drivers of interplanetary shocks. Cloud expansion is partly the reason for the existence of upstream shocks; (7) The cloud axes often (about 50 % of the time) revealed reasonable

  2. Simultaneous observations of solar MeV particles in a magnetic cloud and in the earth's northern tail lobe - Implications for the global field line topology of magnetic clouds and for the entry of solar particles into the magnetosphere during cloud passage

    NASA Technical Reports Server (NTRS)

    Farrugia, C. J.; Richardson, I. G.; Burlaga, L. F.; Lepping, R. P.; Osherovich, V. A.

    1993-01-01

    Simultaneous ISEE 3 and IMP 8 spacecraft observations of magnetic fields and flow anisotropies of solar energetic protons and electrons during the passage of an interplanetary magnetic cloud show various particle signature differences at the two spacecraft. These differences are interpretable in terms of the magnetic line topology of the cloud, the connectivity of the cloud field lines to the solar surface, and the interconnection between the magnetic fields of the magnetic clouds and of the earth. These observations are consistent with a magnetic cloud model in which these mesoscale configurations are curved magnetic flux ropes attached at both ends to the sun's surface, extending out to 1 AU.

  3. The application of a priori structural information based regularization in image reconstruction in magnetic induction tomography

    NASA Astrophysics Data System (ADS)

    Dekdouk, B.; Ktistis, C.; Yin, W.; Armitage, D. W.; Peyton, A. J.

    2010-04-01

    Magnetic induction tomography (MIT) is a non-invasive contactless modality that could be capable of imaging the conductivity distribution of biological tissues. In this paper we consider the possibility of using absolute MIT voltage measurements for monitoring the progress of a peripheral hemorrhagic stroke in a human brain. The pathology is modelled as a local blood accumulation in the white matter. The solution of the MIT inverse problem is nonlinear and ill-posed and hence requires the use of a regularisation method. In this paper, we describe the construction and present the performance of a regularisation matrix based on a priori structural information of the head tissues obtained from a very recent MRI scan. The method takes the MRI scan as an initial state of the stroke and constructs a learning set containing the possible conductivity distributions of the current state of the stroke. This data is used to calculate an approximation of the covariance matrix and then a subspace is constructed using principal component analysis (PCA). It is shown by simulations the method is capable of producing a representative reconstruction of a stroke compared to smoothing Tikhonov regularization in a simplified model of the head.

  4. Collision of the Smith Cloud and its dark matter halo with the magnetized Galactic disk

    NASA Astrophysics Data System (ADS)

    Galyardt, Jason; Shelton, Robin L.

    2015-01-01

    The Smith Cloud is a massive High Velocity Cloud (HVC) that may have passed through the Milky Way disk in the recent past. Previous studies using hydrodynamic simulations suggest that a dark matter halo may have provided the confinement neccessary for the Smith Cloud to survive passage through the Galactic corona and disk. However, the models of the Galaxy that were used in these studies did not include a magnetic field, while magnetic fields are known to have confining properties. Other studies have shown that the Galactic magnetic field can inhibit mass exchange between the corona and the disk due to magnetic field compression. We extend upon these studies via FLASH magnetohydrodynamic simulations to consider the effects of a Galactic magnetic field on an infalling, dark matter confined HVC.

  5. Torus-Shaped Dust Clouds in Magnetized Anodic Plasmas

    SciTech Connect

    Pilch, I.; Reichstein, T.; Greiner, F.; Piel, A.

    2008-09-07

    The generation of a torus-shaped dust cloud in an anodic plasma is decribed. The confined dust particles perfom a rotational motion around the torus major axis. The structure of the cloud in dependence of the external parameters are observed and the rotation velocity of the particles was measured and compared with a simple estimate.

  6. Geo-effectiveness and radial dependence of magnetic cloud erosion by magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Lavraud, Benoit; Ruffenach, Alexis; Rouillard, Alexis P.; Kajdic, Primoz; Manchester, Ward B.; Lugaz, Noé

    2014-01-01

    flux erosion by magnetic reconnection occurs at the front of at least some magnetic clouds (MCs). We first investigate how erosion influences the geo-effectiveness of MCs in a general sense and using a south-north magnetic polarity MC observed on 18-20 October 1995. Although the magnetic shear at its front may not be known during propagation, measurements at 1 AU show signatures of local reconnection. Using a standard MC model, an empirical model of the geomagnetic response (Dst), and an observational estimate of the magnetic flux erosion, we find that the strength of the observed ensuing storm was ~30% lower than if no erosion had occurred. We then discuss the interplay between adiabatic compression and magnetic erosion at the front of MCs. We conclude that the most geo-effective configuration for a south-north polarity MC is to be preceded by a solar wind with southward IMF. This stems not only from the formation of a geo-effective sheath ahead of it but also from the adiabatic compression and reduced (or lack thereof) magnetic erosion which constructively conspire for the structure to be more geo-effective. Finally, assuming simple semiempirical and theoretical Alfvén speed profiles expected from expansion to 1 AU, we provide first-order estimates of the erosion process radial evolution. We find that the expected reconnection rates during propagation allow for significant erosion, on the order of those reported. Calculations also suggest that most of the erosion should occur in the inner heliosphere, and up to ~50% may yet occur beyond Mercury's orbit.

  7. MAGNETIC FIELDS IN INTERSTELLAR CLOUDS FROM ZEEMAN OBSERVATIONS: INFERENCE OF TOTAL FIELD STRENGTHS BY BAYESIAN ANALYSIS

    SciTech Connect

    Crutcher, Richard M.; Wandelt, Benjamin; Heiles, Carl; Falgarone, Edith

    2010-12-10

    The only direct measurements of interstellar magnetic field strengths depend on the Zeeman effect, which samples the line-of-sight component B{sub z} of the magnetic vector. In this paper, we use a Bayesian approach to analyze the observed probability density function (PDF) of B{sub z} from Zeeman surveys of H I, OH, and CN spectral lines in order to infer a density-dependent stochastic model of the total field strength B in diffuse and molecular clouds. We find that at n < 300 cm{sup -3} (in the diffuse interstellar medium sampled by H I lines), B does not scale with density. This suggests that diffuse clouds are assembled by flows along magnetic field lines, which would increase the density but not the magnetic field strength. We further find strong evidence for B in molecular clouds being randomly distributed between very small values and a maximum that scales with volume density n as B {proportional_to} n {sup 0.65} for n>300 cm{sup -3}, with an uncertainty at the 50% level in the power-law exponent of about {+-}0.05. This break-point density could be interpreted as the average density at which parsec-scale clouds become self-gravitating. Both the uniform PDF of total field strengths and the scaling with density suggest that magnetic fields in molecular clouds are often too weak to dominate the star formation process. The stochasticity of the total field strength B implies that many fields are so weak that the mass/flux ratio in many clouds must be significantly supercritical. A two-thirds power law comes from isotropic contraction of gas too weakly magnetized for the magnetic field to affect the morphology of the collapse. On the other hand, our study does not rule out some clouds having strong magnetic fields with critical mass/flux ratios.

  8. Propagation Characteristics of CMEs Associated with Magnetic Clouds and Ejecta

    NASA Astrophysics Data System (ADS)

    Kim, R.-S.; Gopalswamy, N.; Cho, K.-S.; Moon, Y.-J.; Yashiro, S.

    2013-05-01

    We have investigated the characteristics of magnetic cloud (MC) and ejecta (EJ) associated coronal mass ejections (CMEs) based on the assumption that all CMEs have a flux rope structure. For this, we used 54 CMEs and their interplanetary counterparts (interplanetary CMEs: ICMEs) that constitute the list of events used by the NASA/LWS Coordinated Data Analysis Workshop (CDAW) on CME flux ropes. We considered the location, angular width, and speed as well as the direction parameter, D. The direction parameter quantifies the degree of asymmetry of the CME shape in coronagraph images, and shows how closely the CME propagation is directed to Earth. For the 54 CDAW events, we found the following properties of the CMEs: i) the average value of D for the 23 MCs (0.62) is larger than that for the 31 EJs (0.49), which indicates that the MC-associated CMEs propagate more directly toward the Earth than the EJ-associated CMEs; ii) comparison between the direction parameter and the source location shows that the majority of the MC-associated CMEs are ejected along the radial direction, while many of the EJ-associated CMEs are ejected non-radially; iii) the mean speed of MC-associated CMEs (946 km s-1) is faster than that of EJ-associated CMEs (771 km s-1). For seven very fast CMEs (≥ 1500 km s-1), all CMEs with large D (≥ 0.4) are associated with MCs and the CMEs with small D are associated with EJs. From the statistical analysis of CME parameters, we found the superiority of the direction parameter. Based on these results, we suggest that the CME trajectory essentially determines the observed ICME structure.

  9. A numerical study of the effects of ambipolar diffusion on the collapse of magnetic gas clouds

    NASA Technical Reports Server (NTRS)

    Black, D. C.; Scott, E. H.

    1982-01-01

    The gravitational collapse of isothermal, nonrotating magnetic gas clouds have been calculated numerically, including the effects of ambipolar diffusion. The fractional ionization in the clouds is approximated by a power-law function of the gas density, f = K/n to the q-power, where K and q are adjustable parameters. Eleven numerical experiments were run, and the results indicate that the asymptotic character of collapse is determined mainly by the value of q and is largely independent of the other parameters characterizing a cloud (e.g., K, cloud mass). In particular, there is nearly a one-to-one correspondence between q and the slope, x, of the central magnetic field strength-gas density relationship. If q is no more than 0.8, a cloud collapses asymptotically, as though the magnetic field were 'frozen' to the neutral matter. The magnetic field strength at the center of a collapsing cloud is strongly amplified during collapse even for values of q of about 1, despite extremely low values of fractional ionization. A discussion of the theoretical basis for this unexpected behavior is given. Possible implications of our results for the problems of magnetic braking of rotating protostars and star formation in general are also presented.

  10. New OH Zeeman Measurements of Magnetic Field Strengths in Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Bourke, Tyler L.; Myers, Philip C.; Robinson, Garry; Hyland, A. R.

    2001-06-01

    We present the results of a new survey of 23 molecular clouds for the Zeeman effect in OH undertaken with the Australia Telescope National Facility Parkes 64 m radio telescope and the National Radio Astronomy Observatory Green Bank 43 m radio telescope. The Zeeman effect was clearly detected in the cloud associated with the H II region RCW 38, with a field strength of 38+/-3 μG, and possibly detected in a cloud associated with the H II region RCW 57, with a field strength of -203+/-24 μG. The remaining 21 measurements give formal upper limits to the magnetic field strength, with typical 1 σ sensitivities less than 20 μG. For 22 of the molecular clouds we are also able to determine the column density of the gas in which we have made a sensitive search for the Zeeman effect. We combine these results with previous Zeeman studies of 29 molecular clouds, most of which were compiled by Crutcher, for a comparison of theoretical models with the data. This comparison implies that if the clouds can be modeled as initially spherical with uniform magnetic fields and densities that evolve to their final equilibrium state assuming flux freezing, then the typical cloud is magnetically supercritical, as was found by Crutcher. If the clouds can be modeled as highly flattened sheets threaded by uniform perpendicular fields, then the typical cloud is approximately magnetically critical, in agreement with Shu et al., but only if the true values of the field for the nondetections are close to the 3 σ upper limits. If instead these values are significantly lower (for example, similar to the 1 σ limits), then the typical cloud is generally magnetically supercritical. When all observations of the Zeeman effect are considered, the single-dish detection rate of the OH Zeeman effect is relatively low. This result may be due to low mean field strengths, but a more realistic explanation may be significant field structure within the beam. As an example, for clouds associated with H II

  11. Interplanetary magnetic cloud from the solar flare of Nov. 22, 1977

    NASA Astrophysics Data System (ADS)

    Ivanov, K. G.; Stiazhkin, V. A.; Kharshiladze, A. F.

    1989-04-01

    Attention is given to experimental Bx, By, and Bz profiles of the IMF measured by the Prognoz-6, ISEE-2, and IMP-8 satellites during the passage of a magnetic cloud from the intense solar flare of Nov. 22, 1977. These profiles are compared with a theoretical model of a force-free diffusion-pinch magnetic field.

  12. A study of the starless dark cloud LDN 1570: Distance, dust properties, and magnetic field geometry

    NASA Astrophysics Data System (ADS)

    Eswaraiah, C.; Maheswar, G.; Pandey, A. K.; Jose, J.; Ramaprakash, A. N.; Bhatt, H. C.

    2013-08-01

    Aims: We aim to map the magnetic field geometry and to study the dust properties of the starless cloud, L1570, using multi-wavelength optical polarimetry and photometry of the stars projected on the cloud. Methods: The direction of the magnetic field component parallel to the plane of the sky of a cloud can be obtained using polarimetry of the stars projected on and located behind the cloud. It is believed that the unpolarized light from the stars background to the cloud undergoes selective extinction while passing through non-spherical dust grains that are aligned with their minor axes parallel to the cloud magnetic field. The emerging light becomes partially plane polarized. The observed polarization vectors trace the direction of the projected magnetic field of the cloud. We made R-band imaging polarimetry of the stars projected on a cloud, L1570, to trace the magnetic field orientation. We also made multi-wavelength polarimetric and photometric observations to constrain the properties of dust in L1570. Results: We estimated a distance of 394 ± 70 pc to the cloud using 2MASS JHKs colors. Using the values of the Serkowski parameters, σ1, overlineɛ, λmax, and the position of the stars on the near-infrared color-color diagram, we identified 13 stars that could possibly have intrinsic polarization and/or rotation in their polarization angles. One star, 2MASS J06075075+1934177, which is a B4Ve spectral type, shows diffuse interstellar bands in the spectrum in addition to the Hα line in emission. There is an indication for slightly bigger dust grains toward L1570 on the basis of the dust grain size-indicators such as λmax and RV values. The magnetic field lines are found to be parallel to the cloud structures seen in the 250 μm images (also in the 8 μm and 12 μm shadow images) of L1570. Based on the magnetic field geometry, the cloud structure, and the complex velocity structure, we conclude that L1570 is in the process of formation due to the converging flow

  13. The Bastille Day Magnetic Clouds and Upstream Shocks: Near Earth Interplanetary Observations

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.; Berdichevsky, D. B.; Burlaga, L. F.; Lazarus, A. J.; Kasper, J.; Desch, M. D.; Wu, C.-C.; Reames, D. V.; Singer, H. J.; Singer, H. J.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    The energetic charged particle, interplanetary magnetic field, and plasma characteristics of the 'Bastille Day' shock and ejecta/magnetic cloud events at 1 AU occurring over the days 14-16 July 2000 are described. Profiles of MeV (WIND/LEMT) energetic ions help to organize the overall sequence of events from the solar source to 1 AU. Stressed are analyses of an outstanding magnetic cloud (MC2) starting late on 15 July and its upstream shock about 4 hours earlier in WIND magnetic field and plasma data. Also analyzed is a less certain, but likely, magnetic cloud (MC1) occurring early on 15 July; this was separated from MC2 by its upstream shock and many heliospheric current sheet (HCS) crossings. Other HCS crossings occurred throughout the 3-day period. Overall this dramatic series of interplanetary events caused a large multi-phase magnetic storm with min Dst lower than -300 nT. The very fast solar wind speed (greater than or equal to 1100 km/s) in and around the front of MC2 (for near average densities) was responsible for a very high solar wind ram pressure driving in the front of the magnetosphere to geocentric distances estimated to be as low as approx. 5 R(sub E), much lower than the geosynchronous orbit radius. This was consistent with magnetic field observations from two GOES satellites which indicated they were in the magnetosheath for extended times. A static force free field model is used to fit the two magnetic cloud profiles providing estimates of the clouds' physical and geometrical properties. MC2 was much larger than MCI, but their axes were nearly antiparallel, and their magnetic fields had the same left-handed helicity. MC2's axis and its upstream shock normal were very close to being perpendicular to each other, as might be expected if the cloud were driving the shock at the time of observation. The estimated axial magnetic flux carried by MC2 was 52 x 10(exp 20) Mx, which is about 5 times the typical magnetic flux estimated for other magnetic

  14. Radial Evolution of a Magnetic Cloud: MESSENGER, STEREO, and Venus Express Observations

    NASA Astrophysics Data System (ADS)

    Good, S. W.; Forsyth, R. J.; Raines, J. M.; Gershman, D. J.; Slavin, J. A.; Zurbuchen, T. H.

    2015-07-01

    The Solar Orbiter and Solar Probe Plus missions will provide observations of magnetic clouds closer to the Sun than ever before, and it will be good preparation for these missions to make full use of the most recent in situ data sets from the inner heliosphere—namely, those provided by MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and Venus Express—for magnetic cloud studies. We present observations of the same magnetic cloud made by MESSENGER at Mercury and later by Solar TErrestrial RElations Observatory-B (STEREO-B), while the spacecraft were radially aligned in 2011 November. Few such radial observations of magnetic clouds have been previously reported. Estimates of the solar wind speed at MESSENGER are also presented, calculated through the application of a previously established technique. The cloud's flux rope has been analyzed using force-free fitting; the rope diameter increased from 0.18 to 0.41 AU (corresponding to an {r}{{H}}0.94 dependence on heliocentric distance, rH), and the axial magnetic field strength dropped from 46.0 to 8.7 nT (an {r}{{H}}-1.84 dependence) between the spacecraft, clear indications of an expanding structure. The axial magnetic flux was ˜0.50 nT AU2 at both spacecraft, suggesting that the rope underwent no significant erosion through magnetic reconnection between MESSENGER and STEREO-B. Further, we estimate the change in the cloud's angular width by assuming helicity conservation. It has also been found that the rope axis rotated by 30° between the spacecraft to lie close to the solar equatorial plane at STEREO-B. Such a rotation, if it is a common feature of coronal mass ejection propagation, would have important implications for space weather forecasting.

  15. Evidence in Magnetic Clouds for Systematic Open Flux Transport on the Sun

    NASA Technical Reports Server (NTRS)

    Crooker, N. U.; Kahler, S. W.; Gosling, J. T.; Lepping, R. P.

    2008-01-01

    Most magnetic clouds encountered by spacecraft at 1 AU display a mix of unidirectional suprathermal electrons signaling open field lines and counterstreaming electrons signaling loops connected to the Sun at both ends. Assuming the open fields were originally loops that underwent interchange reconnection with open fields at the Sun, we determine the sense of connectedness of the open fields found in 72 of 97 magnetic clouds identified by the Wind spacecraft in order to obtain information on the location and sense of the reconnection and resulting flux transport at the Sun. The true polarity of the open fields in each magnetic cloud was determined from the direction of the suprathermal electron flow relative to the magnetic field direction. Results indicate that the polarity of all open fields within a given magnetic cloud is the same 89% of the time, implying that interchange reconnection at the Sun most often occurs in only one leg of a flux rope loop, thus transporting open flux in a single direction, from a coronal hole near that leg to the foot point of the opposite leg. This pattern is consistent with the view that interchange reconnection in coronal mass ejections systematically transports an amount of open flux sufficient to reverse the polarity of the heliospheric field through the course of the solar cycle. Using the same electron data, we also find that the fields encountered in magnetic clouds are only a third as likely to be locally inverted as not. While one might expect inversions to be equally as common as not in flux rope coils, consideration of the geometry of spacecraft trajectories relative to the modeled magnetic cloud axes leads us to conclude that the result is reasonable.

  16. Dst prediction for a period of high-density plasmas in magnetic clouds

    NASA Astrophysics Data System (ADS)

    Adachi, H.; Sakurai, T.

    We examine geomagnetic effects for high-density plasmas in magnetic clouds and their relationship to solar sources. It is well known that Bz component of interplanetary magnetic field plays an important role for estimation of Dst from solar wind parameters (Burton et al.1975). However, magnetic clouds frequently carry high-density plasmas, which are interpreted as the remnants of filament. In order to clarify their geomagnetic effects, we try to estimate Dst by adopting different methods introducing effects of solar wind parameters. In our estimation the most important point is laid on the sense of Dst variation rather than its magnitude. The most suitable estimation is obtained by setting up a threshold for plasma density, in which for a case of plasma density greater than 20 /cc the Fenrich and Luhmann (1998)'s formula should be used, while in the other cases the Burton's formula are adopted. In both estimations the O'Brien and McPherron (2000)'s ring current decay time is employed. Furthermore, we examine the solar origin corresponding to the magnetic clouds and then compared characteristic signatures of the magnetic cloud with those observed on the solar surface. As a result, we confirm that the magnetic structure of interplanetary flux rope is in good agreement with the structures of the magnetic neutral line near disappearing filaments and heliospheric current sheet (HCS). On the basis of these studies, we suggest that for the geomagnetic disturbance forecast, the effect of high-density plasmas carried with magnetic clouds should be taken into account of as well as that of interplanetary magnetic field.

  17. Using baryon octet magnetic moments and masses to fix the pion cloud contribution

    SciTech Connect

    Franz Gross, Gilberto Ramalho, Kazuo Tsushima

    2010-06-01

    Using SU(3) symmetry to constrain the $\\pi BB'$ couplings, assuming SU(3) breaking comes only from one-loop pion cloud contributions, and using the the covariant spectator theory to describe the photon coupling to the quark core, we show how the experimental masses and magnetic moments of the baryon octet can be used to set a model independent constraint on the strength of the pion cloud contributions to the octet, and hence the nucleon, form factors at $Q^2=0$.

  18. Magnetic field and plasma wave observations in a plasma cloud at Venus

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Luhmann, J. G.; Elphic, R. C.; Scarf, F. L.; Brace, L. H.

    1982-01-01

    Pioneer Venus magnetic field and plasma wave data are examined in a particularly clear example of a plasma cloud above the Venus ionosphere. The magnetic configuration is suggestive of acceleration of the plasma cloud by magnetic tension. If the plasma is at rest at the subsolar point, it could be accelerated to approximately 90 km/sec by the observed stress at the location of the measurement. This far exceeds the escape velocity and suggests that plasma clouds do form a significant loss mechanism for the Venus ionosphere but does not necessarily indicate that the plasma cloud is detached from the ionosphere proper. The plasma cloud is accompanied by strong plasma wave activity and is significantly hotter than the ionospheric plasma encountered later on the same pass. A loss rate of the order of 2 x 10 to the 25th ions/sec is estimated during this event. The geometry suggested by these observations is one of a ridge of dense cold plasma starting in the subsolar regions and flowing over the poles of the planet. Thus, these plasma clouds may be the planetary analog of cometary tail rays.

  19. Magnetic cloud erosion by magnetic reconnection: occurrence statistics, radial evolution and geo-effectiveness

    NASA Astrophysics Data System (ADS)

    Lavraud, B.; Ruffenach, A.; Farrugia, C. J.; Demoulin, P.; Dasso, S.; Sauvaud, J.; Rouillard, A.; Foullon, C.; Owens, M. J.; Savani, N.; Kajdic, P.; Manchester, W.; Lugaz, N.; Luhmann, J. G.

    2013-12-01

    We present results regarding the occurrence statistics of magnetic flux erosion due to magnetic reconnection at the front of all magnetic clouds (MC) observed near Earth during solar cycle 23. We show that the process commonly occurs. It often occurs in large amounts, and at both the front and back boundaries of MCs. The statistics of reconnection jets at these boundaries confirms the significance of the process even up to 1 AU. Indeed, we also estimate the radial evolution of this process based on simple models. We conclude that most of the erosion occurs within Mercury's orbit, but up to 50% of the erosion seen at 1 AU may occur beyond Mercury's orbit. Using a standard MC model and an empirical model of the Dst index we also study the impact of this process on MC geo-effectiveness. We conclude that the most geo-effective configuration for a south-north polarity MC is to be preceded by a slow solar wind with southward IMF. This stems not only from the formation of a geo-effective sheath region with southward IMF ahead of it, but also from the fact that adiabatic compression and reduced (or lack thereof) magnetic erosion constructively conspire for the structure to be more geo-effective. Future missions such as Bepi-Colombo, Solar Orbiter and Solar Probe Plus will be able to further quantify this process and determine its radial dependence. Multi-spacecraft observations would be particularly useful for understanding the large-scale 3D topology changes associated with this process.

  20. The resolved magnetic fields of the quiescent cloud GRSMC 45.60+0.30

    NASA Astrophysics Data System (ADS)

    Pavel, Michael D.; Marchwinski, Robert C.; Clemens, Dan P.

    2015-03-01

    Marchwinski et al. (2012) mapped the magnetic field strength across the quiescent cloud GRSMC 45.60+0.30 (shown in Figure 1 subtending 40x10 pc at a distance of 1.88 kpc) with the Chandrasekhar-Fermi method CF; Chandrasekhar & Fermi 1953) using near-infrared starlight polarimetry from the Galactic Plane Infrared Polarization Survey (Clemens et al. 2012a, b) and gas properties from the Galactic Ring Survey (Jackson et al. 2006). The large-scale magnetic field is oriented parallel to the gas-traced `spine' of the cloud. Seven `magnetic cores' with high magnetic field strength were identified and are coincident with peaks in the gas column density. Calculation of the mass-to-flux ratio (Crutcher 1999) shows that these cores are exclusively magnetically subcritical and that magnetostatic pressure can support them against gravitational collapse.

  1. Transverse deflection and dissipation of small plasma beams and clouds in magnetized media

    NASA Technical Reports Server (NTRS)

    Cheng, Andrew F.

    1987-01-01

    Propagation of a quasi-neutral plasma beam or cloud across a magnetic field is considered for the case where the transverse dimension of the beam or cloud is sufficiently small compared to ion gyroradii. This situation commonly arises for active experiments in near-earth space. Two mechanisms are presented for transverse deflection of a beam or cloud in the -v0 x B0 direction where v0 is the velocity relative to the ambient medium. In the first, asymmetric escape of ions from an electrically polarized beam or cloud causes transverse deflection by means of a rocket effect. The transverse deflection distance is estimated to be a few times the initial transverse dimension of the beam or cloud. Dissipation occurs within a few times the thermal ion transverse crossing time. In the second mechanism, asymmetric charging results from localized accumulation of incident ions from the ambient medium. This excess positive charge distorts electric equipotentials and drives electron Hall currents that maintain an asymmetric compressed magnetic field region. The asymmetry of the magnetic stress contributes to transverse deflection with the same sign as the rocket effect. The asymmetric magnetic field also focuses incident ions to yield the localized charge accumulation. These ideas are qualitatively consistent with observations of the Active Magnetospheric Particle Tracer Explorers artificial comet releases.

  2. Near-IR Imaging Polarimetry toward a Bright-rimmed Cloud: Magnetic Field in SFO 74

    NASA Astrophysics Data System (ADS)

    Kusune, Takayoshi; Sugitani, Koji; Miao, Jingqi; Tamura, Motohide; Sato, Yaeko; Kwon, Jungmi; Watanabe, Makoto; Nishiyama, Shogo; Nagayama, Takahiro; Sato, Shuji

    2015-01-01

    We have made near-infrared (JHK s) imaging polarimetry of a bright-rimmed cloud (SFO 74). The polarization vector maps clearly show that the magnetic field in the layer just behind the bright rim is running along the rim, quite different from its ambient magnetic field. The direction of the magnetic field just behind the tip rim is almost perpendicular to that of the incident UV radiation, and the magnetic field configuration appears to be symmetric as a whole with respect to the cloud symmetry axis. We estimated the column and number densities in the two regions (just inside and far inside the tip rim) and then derived the magnetic field strength, applying the Chandrasekhar-Fermi method. The estimated magnetic field strength just inside the tip rim, ~90 μG, is stronger than that far inside, ~30 μG. This suggests that the magnetic field strength just inside the tip rim is enhanced by the UV-radiation-induced shock. The shock increases the density within the top layer around the tip and thus increases the strength of the magnetic field. The magnetic pressure seems to be comparable to the turbulent one just inside the tip rim, implying a significant contribution of the magnetic field to the total internal pressure. The mass-to-flux ratio was estimated to be close to the critical value just inside the tip rim. We speculate that the flat-topped bright rim of SFO 74 could be formed by the magnetic field effect.

  3. Torus-shaped dust clouds trapped in a magnetized anodic plasma

    SciTech Connect

    Pilch, Iris; Reichstein, Torben; Piel, Alexander

    2008-10-15

    Dust particles confined in a magnetized anodic plasma can form a torus-shaped cloud with a dust-free region (void) in the center. Most of the dust particles perform a rotational motion about the major axis of the torus. The torus-shaped dust cloud and the velocity of the particles are studied by varying the external plasma parameters like magnetic field strength and rf-power of the source plasma. Two-dimensional potential contours are measured with an emissive probe. The results are used to discuss the force balance between electric field force and ion drag acting on the dust particles that determines the void size.

  4. A Comprehensive Automated 3D Approach for Building Extraction, Reconstruction, and Regularization from Airborne Laser Scanning Point Clouds

    PubMed Central

    Dorninger, Peter; Pfeifer, Norbert

    2008-01-01

    Three dimensional city models are necessary for supporting numerous management applications. For the determination of city models for visualization purposes, several standardized workflows do exist. They are either based on photogrammetry or on LiDAR or on a combination of both data acquisition techniques. However, the automated determination of reliable and highly accurate city models is still a challenging task, requiring a workflow comprising several processing steps. The most relevant are building detection, building outline generation, building modeling, and finally, building quality analysis. Commercial software tools for building modeling require, generally, a high degree of human interaction and most automated approaches described in literature stress the steps of such a workflow individually. In this article, we propose a comprehensive approach for automated determination of 3D city models from airborne acquired point cloud data. It is based on the assumption that individual buildings can be modeled properly by a composition of a set of planar faces. Hence, it is based on a reliable 3D segmentation algorithm, detecting planar faces in a point cloud. This segmentation is of crucial importance for the outline detection and for the modeling approach. We describe the theoretical background, the segmentation algorithm, the outline detection, and the modeling approach, and we present and discuss several actual projects.

  5. Magnetic field geometry of an unusual cometary cloud Gal 110-13

    NASA Astrophysics Data System (ADS)

    Neha, S.; Maheswar, G.; Soam, A.; Lee, C. W.; Tej, A.

    2016-04-01

    Aims: We carried out optical polarimetry of an isolated cloud, Gal 110-13, to map the plane-of-the-sky magnetic field geometry. The main aim of the study is to understand the most plausible mechanism responsible for the unusual cometary shape of the cloud in the context of its magnetic field geometry. Methods: When unpolarized starlight passes through the intervening interstellar dust grains that are aligned with their short axes parallel to the local magnetic field, it gets linearly polarized. The plane-of-the-sky magnetic field component can therefore be traced by doing polarization measurements of background stars projected on clouds. Because the light in the optical wavelength range is most efficiently polarized by the dust grains typically found in the outer layers of the molecular clouds, optical polarimetry enables us to trace the magnetic field geometry of the outer layers of the clouds. Results: We made R-band polarization measurements of 207 stars in the direction of Gal 110-13. The distance of Gal 110-13 was determined as ~450 ± 80 pc using our polarization and 2MASS near-infrared data. The foreground interstellar contribution was removed from the observed polarization values by observing a number of stars located in the vicinity of Gal 110-13 which has Hipparcos parallax measurements. The plane-of-the-sky magnetic field lines are found to be well ordered and aligned with the elongated structure of Gal 110-13. Using structure function analysis, we estimated the strength of the plane-of-the-sky component of the magnetic field as ~25 μG. Conclusions: Based on our results and comparing them with those from simulations, we conclude that compression by the ionization fronts from 10 Lac is the most plausible cause of the comet-like morphology of Gal 110-13 and of the initiation of subsequent star formation.

  6. Magnetic Fields in Star-Forming Clouds: How Can FIRST Contribute?

    NASA Astrophysics Data System (ADS)

    Matthews, B. C.; Wilson, C. D.; Fiege, J. D.

    2001-07-01

    The SCUBA polarimeter at the James Clerk Maxwell Telescope has been used to probe the magnetic field geometry within the OMC-3 region of the Integral Filament of Orion A, the Barnard 1 cloud in Perseus and the B2 core in the rho Ophiuchus dark cloud. In the submillimetre, polarized dust emission arises from rapidly spinning dust grains aligned by the local magnetic field. Although the polarized emission from each grain is orthogonal to the local field direction, a variation of the magnetic field orientation through the cloud can produce complex polarization patterns from which the field geometry cannot easily be determined without modelling. In each of the regions observed, the polarization patterns are inconsistent with strictly uniform or unidirectional magnetic fields on extended spatial scales. In each case, a decrease in polarization percentage is observed toward higher total intensities. In OMC-3, we have modelled the polarization pattern as arising from a bent filamentary cloud threaded by a helical magnetic field. The model is remarkably consistent with the polarization pattern observed.

  7. VLBA Provides Best Detail Yet of Star-Forming Cloud's Magnetic Field

    NASA Astrophysics Data System (ADS)

    2001-07-01

    Astronomers have used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope to do a very detailed map of the magnetic field within a star-forming cloud, an achievement that will help scientists unravel the mysterious first steps of the stellar birth process. "This study provides new and important data needed by theorists to understand how magnetic fields affect the early stages of star formation," said Anuj Sarma, an astronomer at the University of Illinois at Urbana-Champaign. Sarma worked with Thomas Troland of the University of Kentucky and Jonathan Romney of the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. Their research results were published in the Astrophysical Journal Letters. Stars are formed when gas in giant interstellar clouds collapses gravitationally. Magnetic fields are believed to support such gas clouds, helping them resist gravitational collapse, so the beginning stages of star formation arise from a complex interplay of the magnetic fields and gravity that is not yet well understood. "In order to understand how star formation gets started, we need to know in detail the structure of the magnetic fields in a star-forming cloud," Sarma said. "Our observations with the VLBA have provided one more big step in this direction," he added. The astronomers studied a cloud of molecular gas more than 5,000 light- years from Earth in a spiral arm of our own Milky Way Galaxy. The cloud, known as W3 IRS5, contains seven newly-formed stars. In addition, it contains a number of regions, somewhat smaller than the diameter of Earth's orbit, in which water vapor molecules act to amplify, or strengthen, radio emission. Such regions, called masers, are a radio- wave parallel to lasers, which amplify light. The scientists used the VLBA to make a detailed study of the radio waves coming from these maser regions in the gas cloud. They detected a phenomenon called the Zeeman effect, in which a very precise frequency

  8. Coronal Mass Ejections and Magnetic Clouds Modeled as MHD Bounded States

    NASA Astrophysics Data System (ADS)

    Fainberg, J.; Osherovich, V. A.

    2004-12-01

    Multiple loops can be seen in the solar corona before the onset of a coronal mass ejection (CME), during and after the event. We apply multi-toroidal configurations to model CMEs and their interplanetary counterparts - magnetic clouds. In the laboratory, plasma confinement is often achieved by conducting metal walls which introduce elastic forces to maintain equilibrium. Such walls, carrying electric surface currents, usually are taken as boundaries where the magnetic field is truncated to provide finite energy for the configuration. The idea of MHD bounded states as solutions with continuous magnetic field and finite magnetic energy was put forward in 1975 [1]. Such solutions describe a single toroid (ground state) and multiple toroids (excited states) [1],[2]. We analyze noncircular cross sections of such toroids and compare the components of the magnetic field vector with in situ observations in interplanetary magnetic clouds. We present Ulysses spacecraft observations in support of our multi-tube model for interplanetary magnetic clouds based on bounded state MHD configurations with axial and helical symmetry [3],[4]. The interaction of CMEs with the global coronal field will also be discussed. In our presentation, we stress the difference in boundary conditions for magnetic configurations in laboratory and space plasmas. [1] Osherovich, V.A., `On an equilibrium of an MHD config-uration with axial symmetry 1', Soln Dann, 5, p. 70, 1975. [2] Osherovich, V.A. and Lawrence, J.K., `Elaboration of the new magnetohydrostatic sunspot theory (Double return flux model)', Sol. Phys., 88, p. 117, 1983. [3] Krat, V.A. and Osherovich, V.A., `Note on the asymmetry of bipolar sunspot groups', Solar Phys., 59, pp. 43-47, 1978. [4] Osherovich, V.A., Fainberg, J. and Stone, R.G., `Multi-tube model for interplanetary magnetic clouds', Geophys. Res. L., 26(3), pp. 401-404, 1999.

  9. Analysis of 20 magnetic clouds at 1 AU during a solar minimum

    NASA Astrophysics Data System (ADS)

    Gulisano, A. M.; Dasso, S.; Mandrini, C. H.; Démoulin, P.

    We study 20 magnetic clouds, observed in situ by the spacecraft Wind, at the Lagrangian point L1, from 22 August, 1995, to 7 November, 1997. In previous works, assuming a cylindrical symmetry for the local magnetic configuration and a satellite trajectory crossing the axis of the cloud, we obtained their orientations using a minimum variance analysis. In this work we compute the orientations and magnetic configurations using a non-linear simultaneous fit of the geometric and physical parameters for a linear force-free model, including the possibility of a not null impact parameter. We quantify global magnitudes such as the relative magnetic helicity per unit length and compare the values found with both methods (minimum variance and the simultaneous fit). FULL TEXT IN SPANISH

  10. Trapping of Electron Cloud LLC/Cesrta Quadrupole and Sextupole Magnets

    SciTech Connect

    Wang, L; Pivi, M.; /SLAC

    2011-08-18

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D [1]. One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in CESRTA and ILC quadrupole and sextupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with a long lifetime in a quadrupole and sextupole magnet due to the mirror field trapping mechanism. We study the effects of magnet strength, bunch current, ante-chamber effect, bunch spacing effect and secondary emission yield (SEY) in great detail. The development of an electron cloud in magnets is the main concern where a weak solenoid field is not effective. Quadrupole and sextupole magnets have mirror field configurations which may trap electrons by the mirror field trapping mechanism [2]. Fig.1 shows the orbit of a trapped electron in a quadrupole magnet. The electron makes gyration motion (called transverse motion) and also moves along the field line (called longitudinal motion). At the mirror point (middle of the field line), there is a maximum longitudinal energy and minimum transverse energy. When the electron moves away from the mirror point, its longitudinal energy reduces and the transverse energy increases as the magnetic field increases. If the magnetic field is strong enough, the longitudinal energy becomes zero at one point and then the electron is turned back by the strong field. Note that the electrons are trapped in the region near the middle of the field lines. Although all quadrupole and sextupole magnets can trap electrons in principle, the trapping

  11. Typical and Unusual Properties of Magnetic Clouds during the WIND Era

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.; Berdichevsky, D.; Szabo, A.; Burlaga, L. F.; Thompson, B. J.; Mariani, F.; Lazarus, A. J.; Steinberg, J. T.

    1999-01-01

    A list of 33 magnetic clouds as identified in WIND magnetic field and plasma data has been compiled. The intervals for these events are provided as part of NASA/GSFC, WIND-MFI's Website under the URL http://lepmfi.qsfc.nasa.gov/mfi/mag_cloud publ.html#table The period covered in this study is from early 1995 to November 1998 which primarily occurs in the quiet part of the solar cycle. A force free, cylindrically symmetric, magnetic field model has been applied to the field data in 1-hour averaged form for all of these events (except one small event where 10 min avg's were used) and the resulting fit-parameters examined. Each event was provided a semi-quantitatively determined quality factor (excellent, good or poor). A set of 28 good or better cases, spanning a surprisingly large range of values for its various properties, was used for further analysis. These properties are, for example, durations, attitudes, sizes, asymmetries, axial field strengths, speeds, and relative impact parameters. They will be displayed and analyzed, along with some related derived quantities, with emphasis on typical vs unusual properties and on the magnetic fields magnetic clouds' relationships to the Sun and to upstream interplanetary shocks, where possible. For example, it is remarkable how narrowly distributed the speeds of these clouds are, and the overall average speed (390 techniques km/s) is less than that normally quoted for the average solar wind speed (420 km/s) despite the fact that many of these clouds are d"drivers" of interplanetary shocks. On average, a cloud appears to be a little less symmetric when the spacecraft is able to pass close to the cloud's axis as compared to a farther out passage. The average longitude and latitude (in GSE) of the axes of the clouds are 85 degrees and 8 degrees, respectively, with standard deviations near 40 degrees. Also, the half=yearly averaged axial magnetic flux has approximately tripled. almost monotonically, from about 6 to 17 X 10

  12. LONG-LIVED MAGNETIC-TENSION-DRIVEN MODES IN A MOLECULAR CLOUD

    SciTech Connect

    Basu, Shantanu; Dapp, Wolf B. E-mail: wdapp@uwo.c

    2010-06-10

    We calculate and analyze the longevity of magnetohydrodynamic (MHD) wave modes that occur in the plane of a magnetic thin sheet. Initial turbulent conditions applied to a magnetically subcritical cloud are shown to lead to relatively rapid energy decay if ambipolar diffusion is introduced at a level corresponding to partial ionization primarily by cosmic rays. However, in the flux-freezing limit, as may be applicable to photoionized molecular cloud envelopes, the turbulence persists at 'nonlinear' levels in comparison with the isothermal sound speed c {sub s}, with one-dimensional rms material motions in the range of {approx} 2 c {sub s}-5 c {sub s} for cloud sizes in the range of {approx} 2 pc-16 pc. These fluctuations persist indefinitely, maintaining a significant portion of the initial turbulent kinetic energy. We find the analytic explanation for these persistent fluctuations. They are magnetic-tension-driven modes associated with the interaction of the sheet with the external magnetic field. The phase speed of such modes is quite large, allowing residual motions to persist without dissipation in the flux-freezing limit, even as they are nonlinear with respect to the sound speed. We speculate that long-lived large-scale MHD modes such as these may provide the key to understanding observed supersonic motions in molecular clouds.

  13. Magnetohydrostatic equilibrium structure and mass of filamentary isothermal cloud threaded by lateral magnetic field

    SciTech Connect

    Tomisaka, Kohji

    2014-04-10

    Herschel observations have recently revealed that interstellar molecular clouds consist of many filaments. Polarization observations in optical and infrared wavelengths indicate that the magnetic field often runs perpendicular to the filament. In this article, we study the magnetohydrostatic configuration of isothermal gas in which the thermal pressure and the Lorentz force are balanced against the self-gravity, and the magnetic field is globally perpendicular to the axis of the filament. The model is controlled by three parameters: center-to-surface density ratio (ρ {sub c}/ρ {sub s}), plasma β of surrounding interstellar gas (β{sub 0}), and the radius of the hypothetical parent cloud normalized by the scale-height (R{sub 0}{sup ′}), although there remains freedom in how the mass is distributed against the magnetic flux (mass loading). In the case where R{sub 0}{sup ′} is small enough, the magnetic field plays a role in confining the gas. However, the magnetic field generally has the effect of supporting the cloud. There is a maximum line-mass (mass per unit length) above which the cloud is not supported against gravity. Compared with the maximum line-mass of a nonmagnetized cloud (2c{sub s}{sup 2}/G, where c{sub s} and G represent, respectively, the isothermal sound speed and the gravitational constant), that of the magnetized filament is larger than the nonmagnetized one. The maximum line-mass is numerically obtained as λ{sub max}≃0.24Φ{sub cl}/G{sup 1/2}+1.66c{sub s}{sup 2}/G, where Φ{sub cl} represents one half of the magnetic flux threading the filament per unit length. The maximum mass of the filamentary cloud is shown to be significantly affected by the magnetic field when the magnetic flux per unit length exceeds Φ{sub cl} ≳ 3 pc μG (c{sub s} /190 m s{sup –1}){sup 2}.

  14. Energetic ion observations in the magnetic cloud of 14-15 January 1988 and their implications for the magnetic field topology

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Farrugia, C. J.; Burlaga, L. F.

    1991-01-01

    On 14-15 January 1988, a magnetic cloud with a local field topology consistent with an east-west aligned cylindrical flux-rope and which formed the driver of an interplanetary shock passed the earth. Using 0.5-4 MeV/n ion data from the instrument on IMP 8, the paper addresses the question of whether or not magnetic field lines within the magnetic cloud were connected to the sun. An impulsive solar particle event was detected inside the magnetic cloud strongly suggesting that the field lines were rooted at the sun.

  15. Tracing the Magnetic Field Morphology of the Lupus I Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Franco, G. A. P.; Alves, F. O.

    2015-07-01

    Deep R-band CCD linear polarimetry collected for fields with lines of sight toward the Lupus I molecular cloud is used to investigate the properties of the magnetic field within this molecular cloud. The observed sample contains about 7000 stars, almost 2000 of them with a polarization signal-to-noise ratio larger than 5. These data cover almost the entire main molecular cloud and also sample two diffuse infrared patches in the neighborhood of Lupus I. The large-scale pattern of the plane-of-sky projection of the magnetic field is perpendicular to the main axis of Lupus I, but parallel to the two diffuse infrared patches. A detailed analysis of our polarization data combined with the Herschel/SPIRE 350 μm dust emission map shows that the principal filament of Lupus I is constituted by three main clumps that are acted on by magnetic fields that have different large-scale structural properties. These differences may be the reason for the observed distribution of pre- and protostellar objects along the molecular cloud and the cloud’s apparent evolutionary stage. On the other hand, assuming that the magnetic field is composed of large-scale and turbulent components, we find that the latter is rather similar in all three clumps. The estimated plane-of-sky component of the large-scale magnetic field ranges from about 70 to 200 μG in these clumps. The intensity increases toward the Galactic plane. The mass-to-magnetic flux ratio is much smaller than unity, implying that Lupus I is magnetically supported on large scales. Based on observations collected at the Observatório do Pico dos Dias, operated by Laboratório Nacional de Astrofísica (LNA/MCTI, Brazil).

  16. Temperature and phase-space density of a cold atom cloud in a quadrupole magnetic trap

    NASA Astrophysics Data System (ADS)

    Ram, S. P.; Mishra, S. R.; Tiwari, S. K.; Rawat, H. S.

    2014-08-01

    We present studies on modifications in the temperature, number density and phase-space density when a laser-cooled atom cloud from optical molasses is trapped in a quadrupole magnetic trap. Theoretically, for a given temperature and size of the cloud from the molasses, the phase-space density in the magnetic trap is shown first to increase with increasing magnetic field gradient and then to decrease with it after attaining a maximum value at an optimum value of the magnetic-field gradient. The experimentally-measured variation in the phase-space density in the magnetic trap with changing magnetic field gradient is shown to exhibit a similar trend. However, the experimentally-measured values of the number density and the phase-space density are much lower than the theoretically-predicted values. This is attributed to the experimentally-observed temperature in the magnetic trap being higher than the theoretically-predicted temperature. Nevertheless, these studies can be useful for setting a higher phase-space density in the trap by establishing an optimal value of the field gradient for a quadrupole magnetic trap.

  17. STEREO Observations of an SEP Event Injected Into Both Loop Legs of a Magnetic Cloud

    NASA Astrophysics Data System (ADS)

    Dresing, N.; Gomez-Herrero, R.; Heber, B.; Hidalgo, M. A. U.; Klassen, A.; Temmer, M.; Veronig, A.

    2015-12-01

    On 7 Nov 2013 STEREO B was embedded in a magnetic-cloud (MC) like structure when an SEP event occurred reaching both STEREO spacecraft. The bi-drectional near relativistic electron distribution observed by STEREO B reveals such timing and relative intensity characteristics suggesting that the SEPs were injected separately into both loop legs of the MC. Observations by the Nancay Radioheliograph (NRH) of two distinct radio sources at the same time further support the above scenario. In order to derive the 3D morphology and average speed of the CME close to the Sun, we use the graduated cylindrical shell model (GCS) which is applied to the white-light coronagraph observations by the STEREO spacecraft and SOHO. Furthermore, a global magnetic topology model for magnetic clouds is applied to the in-situ measurements of the magnetic field. Both models suggest that the MC is strongly inclined with respect to the ecliptic yielding a north/south orientation. The energetic electron observations are used to probe the structure of the magnetic cloud: We determine the electron path lengths along both loop legs of the structure to infer the amount of field line twist inside the MC. The resulting path lengths are around 50% longer than the estimated lengths of the loop legs of the MC itself suggesting that the amount of field line winding is moderate.

  18. The magnetic field of the Large Magellanic Cloud revealed through Faraday rotation.

    PubMed

    Gaensler, B M; Haverkorn, M; Staveley-Smith, L; Dickey, J M; McClure-Griffiths, N M; Dickel, J R; Wolleben, M

    2005-03-11

    We have measured the Faraday rotation toward a large sample of polarized radio sources behind the Large Magellanic Cloud (LMC) to determine the structure of this galaxy's magnetic field. The magnetic field of the LMC consists of a coherent axisymmetric spiral of field strength approximately 1 microgauss. Strong fluctuations in the magnetic field are also seen on small (<0.5 parsec) and large (approximately 100 parsecs) scales. The large bursts of recent star formation and supernova activity in the LMC argue against standard dynamo theory, adding to the growing evidence for rapid field amplification in galaxies. PMID:15761149

  19. Virial theorem analysis of the structure and stability of magnetized clouds

    NASA Technical Reports Server (NTRS)

    Zweibel, Ellen G.

    1990-01-01

    The tensor virial theorem is used to analyze the structure and stability of self-gravitating, magnetized spheroids surrounded by a low-density medium with pressure and magnetic field. Analytical expressions are developed for the effect of a weak field and calculate critical states when the effect of the field is arbitrarily strong, comparing the results with full magnetohydrostatic calculations. This analysis suggests that a magnetic field may prevent gravitational collapse but may also be destabilizing, depending on its degree of concentration within the cloud.

  20. Segmentation of Brain Tissues from Magnetic Resonance Images Using Adaptively Regularized Kernel-Based Fuzzy C-Means Clustering

    PubMed Central

    Wang, Changmiao; Jia, Fucang; Wu, Jianhuang; Li, Guanglin

    2015-01-01

    An adaptively regularized kernel-based fuzzy C-means clustering framework is proposed for segmentation of brain magnetic resonance images. The framework can be in the form of three algorithms for the local average grayscale being replaced by the grayscale of the average filter, median filter, and devised weighted images, respectively. The algorithms employ the heterogeneity of grayscales in the neighborhood and exploit this measure for local contextual information and replace the standard Euclidean distance with Gaussian radial basis kernel functions. The main advantages are adaptiveness to local context, enhanced robustness to preserve image details, independence of clustering parameters, and decreased computational costs. The algorithms have been validated against both synthetic and clinical magnetic resonance images with different types and levels of noises and compared with 6 recent soft clustering algorithms. Experimental results show that the proposed algorithms are superior in preserving image details and segmentation accuracy while maintaining a low computational complexity. PMID:26793269

  1. Segmentation of Brain Tissues from Magnetic Resonance Images Using Adaptively Regularized Kernel-Based Fuzzy C-Means Clustering.

    PubMed

    Elazab, Ahmed; Wang, Changmiao; Jia, Fucang; Wu, Jianhuang; Li, Guanglin; Hu, Qingmao

    2015-01-01

    An adaptively regularized kernel-based fuzzy C-means clustering framework is proposed for segmentation of brain magnetic resonance images. The framework can be in the form of three algorithms for the local average grayscale being replaced by the grayscale of the average filter, median filter, and devised weighted images, respectively. The algorithms employ the heterogeneity of grayscales in the neighborhood and exploit this measure for local contextual information and replace the standard Euclidean distance with Gaussian radial basis kernel functions. The main advantages are adaptiveness to local context, enhanced robustness to preserve image details, independence of clustering parameters, and decreased computational costs. The algorithms have been validated against both synthetic and clinical magnetic resonance images with different types and levels of noises and compared with 6 recent soft clustering algorithms. Experimental results show that the proposed algorithms are superior in preserving image details and segmentation accuracy while maintaining a low computational complexity. PMID:26793269

  2. Coronal mass ejections, magnetic clouds, and relativistic magnetospheric electron events: ISTP

    SciTech Connect

    Baker, D.N.; Pulkkinen, T.I.; Li, X.; Kanekal, S.G.; Blake, J.B.; Selesnick, R.S.; Henderson, M.G.; Reeves, G.D.; Spence, H.E.

    1998-08-01

    The role of high-speed solar wind streams in driving relativistic electron acceleration within the Earth{close_quote}s magnetosphere during solar activity minimum conditions has been well documented. The rising phase of the new solar activity cycle (cycle 23) commenced in 1996, and there have recently been a number of coronal mass ejections (CMEs) and related {open_quotes}magnetic clouds{close_quotes} at 1 AU. As these CME/cloud systems interact with the Earth{close_quote}s magnetosphere, some events produce substantial enhancements in the magnetospheric energetic particle population while others do not. This paper compares and contrasts relativistic electron signatures observed by the POLAR, SAMPEX, Highly Elliptical Orbit, and geostationary orbit spacecraft during two magnetic cloud events: May 27{endash}29, 1996, and January 10{endash}11, 1997. Sequences were observed in each case in which the interplanetary magnetic field was first strongly southward and then rotated northward. In both cases, there were large solar wind density enhancements toward the end of the cloud passage at 1 AU. Strong energetic electron acceleration was observed in the January event, but not in the May event. The relative geoeffectiveness for these two cases is assessed, and it is concluded that large induced electric fields ({partial_derivative}B/{partial_derivative}t) caused in situ acceleration of electrons throughout the outer radiation zone during the January 1997 event. {copyright} 1998 American Geophysical Union

  3. Magnetically Regulated Star Formation in Three Dimensions: The Case of the Taurus Molecular Cloud Complex

    NASA Astrophysics Data System (ADS)

    Nakamura, Fumitaka; Li, Zhi-Yun

    2008-11-01

    We carry out three-dimensional MHD simulations of star formation in turbulent, magnetized clouds, including ambipolar diffusion and feedback from protostellar outflows. The calculations focus on relatively diffuse clouds threaded by a strong magnetic field capable of resisting severe tangling by turbulent motions and retarding global gravitational contraction in the cross field direction. They are motivated by observations of the Taurus molecular cloud complex (and, to a lesser extent, Pipe Nebula), which shows an ordered large-scale magnetic field, as well as elongated condensations that are generally perpendicular to the large-scale field. We find that stars form in earnest in such clouds when enough material has settled gravitationally along the field lines that the mass-to-flux ratios of the condensations approach the critical value. Only a small fraction (of order 1% or less) of the nearly magnetically critical, condensed material is turned into stars per local free-fall time, however. The slow star formation takes place in condensations that are moderately supersonic; it is regulated primarily by magnetic fields, rather than turbulence. The quiescent condensations are surrounded by diffuse halos that are much more turbulent, as observed in the Taurus complex. Strong support for magnetic regulation of star formation in this complex comes from the extremely slow conversion of the already condensed, relatively quiescent C18O gas into stars, at a rate 2 orders of magnitude below the maximum, free-fall value. We analyze the properties of dense cores, including their mass spectrum, which resembles the stellar initial mass function.

  4. Using baryon octet magnetic moments and masses to fix the pion cloud contribution

    SciTech Connect

    Franz L. Gross; Ramalho, Gilberto T. F.; Tsushima, Kazuo

    2010-05-12

    In this study, using SU(3) symmetry to constrain the $\\pi BB'$ couplings, assuming SU(3) breaking comes only from one-loop pion cloud contributions, and using the the covariant spectator theory to describe the photon coupling to the quark core, we show how the experimental masses and magnetic moments of the baryon octet can be used to set a model independent constraint on the strength of the pion cloud contributions to the octet, and hence the nucleon, form factors at $Q^2=0$.

  5. Using baryon octet magnetic moments and masses to fix the pion cloud contribution

    DOE PAGESBeta

    Franz L. Gross; Ramalho, Gilberto T. F.; Tsushima, Kazuo

    2010-05-12

    In this study, using SU(3) symmetry to constrain themore » $$\\pi BB'$$ couplings, assuming SU(3) breaking comes only from one-loop pion cloud contributions, and using the the covariant spectator theory to describe the photon coupling to the quark core, we show how the experimental masses and magnetic moments of the baryon octet can be used to set a model independent constraint on the strength of the pion cloud contributions to the octet, and hence the nucleon, form factors at $Q^2=0$.« less

  6. NEAR-IR IMAGING POLARIMETRY TOWARD A BRIGHT-RIMMED CLOUD: MAGNETIC FIELD IN SFO 74

    SciTech Connect

    Kusune, Takayoshi; Sugitani, Koji; Miao, Jingqi; Tamura, Motohide; Kwon, Jungmi; Sato, Yaeko; Watanabe, Makoto; Nishiyama, Shogo; Nagayama, Takahiro; Sato, Shuji

    2015-01-01

    We have made near-infrared (JHK {sub s}) imaging polarimetry of a bright-rimmed cloud (SFO 74). The polarization vector maps clearly show that the magnetic field in the layer just behind the bright rim is running along the rim, quite different from its ambient magnetic field. The direction of the magnetic field just behind the tip rim is almost perpendicular to that of the incident UV radiation, and the magnetic field configuration appears to be symmetric as a whole with respect to the cloud symmetry axis. We estimated the column and number densities in the two regions (just inside and far inside the tip rim) and then derived the magnetic field strength, applying the Chandrasekhar-Fermi method. The estimated magnetic field strength just inside the tip rim, ∼90 μG, is stronger than that far inside, ∼30 μG. This suggests that the magnetic field strength just inside the tip rim is enhanced by the UV-radiation-induced shock. The shock increases the density within the top layer around the tip and thus increases the strength of the magnetic field. The magnetic pressure seems to be comparable to the turbulent one just inside the tip rim, implying a significant contribution of the magnetic field to the total internal pressure. The mass-to-flux ratio was estimated to be close to the critical value just inside the tip rim. We speculate that the flat-topped bright rim of SFO 74 could be formed by the magnetic field effect.

  7. Finite-time singularities and flow regularization in a hydromagnetic shell model at extreme magnetic Prandtl numbers

    NASA Astrophysics Data System (ADS)

    Nigro, G.; Carbone, V.

    2015-07-01

    Conventional surveys on the existence of singularities in fluid systems for vanishing dissipation have hitherto tried to infer some insight by searching for spatial features developing in asymptotic regimes. This approach has not yet produced a conclusive answer. One of the difficulties preventing us from getting a definitive answer is the limitations of direct numerical simulations which do not yet have a high enough resolution so far as to properly describe spatial fine structures in asymptotic regimes. In this paper, instead of searching for spatial details, we suggest seeking a principle, that would be able to discriminate between singular or not-singular behavior, among the integral and purely dynamical properties of a fluid system. We investigate the singularities developed by a hydromagnetic shell model during the magnetohydrodynamic turbulent cascade. Our results show that when the viscosity is equal to the magnetic diffusivity (unit magnetic Prandtl number) singularities appear in a finite time. A complex behavior is observed at extreme magnetic Prandtl numbers. In particular, the singularities persist in the limit of vanishing viscosity, while a complete regularization is observed in the limit of vanishing diffusivity. This dynamics is related to differences between the magnetic and the kinetic energy cascades towards small scales. Finally a comparison between the three-dimensional and the two-dimensional cases leads to conjecture that the existence of singularities may be related to the conservation of different ideal invariants.

  8. First MHD simulation of collapse and fragmentation of magnetized molecular cloud cores

    NASA Astrophysics Data System (ADS)

    Machida, Masahiro N.; Tomisaka, Kohji; Matsumoto, Tomoaki

    2004-02-01

    This is the first paper about fragmentation and mass outflow in molecular clouds by using three-dimensional magnetohydrodynamical (MHD) nested-grid simulations. The binary star formation process is studied, paying particular attention to the fragmentation of a rotating magnetized molecular cloud. We assume an isothermal rotating and magnetized cylindrical cloud in hydrostatic balance. Non-axisymmetric as well as axisymmetric perturbations are added to the initial state and the subsequent evolutions are studied. The evolution is characterized by three parameters: the amplitude of the non-axisymmetric perturbations, the rotation speed and the magnetic field strength. As a result, it is found that non-axisymmetry hardly evolves in the early phase, but begins to grow after the gas contracts and forms a thin disc. Disc formation is strongly promoted by the rotation speed and the magnetic field strength. There are two types of fragmentation: that from a ring and that from a bar. Thin adiabatic cores fragment if their thickness is less than 1/4 of the radius. For the fragments to survive, they should be formed in a heavily elongated barred core or a flat round disc. In the models showing fragmentation, outflows from respective fragments are found as well as those driven by the rotating bar or the disc.

  9. Experimental Investigation of Electron Cloud Containment in a Nonuniform Magnetic Field

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.

    1974-01-01

    Dense clouds of electrons were generated and studied in an axisymmetric, nonuniform magnetic field created by a short solenoid. The operation of the experiment was similar to that of a low-pressure (approximately 0.000001 Torr) magnetron discharge. Discharge current characteristics are presented as a function of pressure, magnetic field strength, voltage, and cathode end-plate location. The rotation of the electron cloud is determined from the frequency of diocotron waves. In the space charge saturated regime of operation, the cloud is found to rotate as a solid body with frequency close to V sub a/phi sub a where V sub a is the anode voltage and phi suba is the total magnetic flux. This result indicates that, in regions where electrons are present, the magnetic field lines are electrostatic equipotentials (E bar, B bar = 0). Equilibrium electron density distributions suggested by this conditions are integrated with respect to total ionizing power and are found consistent with measured discharge currents.

  10. Cone angle control of the interaction of magnetic clouds with the Earth's bow shock

    NASA Astrophysics Data System (ADS)

    Turc, L.; Escoubet, C. P.; Fontaine, D.; Kilpua, E. K. J.; Enestam, S.

    2016-05-01

    We study the interaction of magnetic clouds (MCs) with the near-Earth environment. Recent works suggest that the bow shock crossing may modify significantly the magnetic structure of an MC, and thus its ability to drive geomagnetic storms. This change is largely controlled by the bow shock configuration, which depends on the upstream interplanetary magnetic field (IMF) orientation. From the distribution of the magnetic field orientation in 152 Earth-impacting MCs, we determine for the first time the typical shock configuration during MC events. We find that 56% (6.3%) of the time, the subsolar bow shock configuration is exclusively quasi-perpendicular (quasi-parallel). The rest of the time, both configurations coexist. Furthermore, using a subset of 63 MCs observed simultaneously in the solar wind and in the dayside magnetosheath, we determine the magnitude of the magnetic field alteration, how it depends on the shock configuration, and how it relates to the IMF cone angle.

  11. Matching dust emission structures and magnetic field in high-latitude cloud L1642: comparing Herschel and Planck maps★

    NASA Astrophysics Data System (ADS)

    Malinen, J.; Montier, L.; Montillaud, J.; Juvela, M.; Ristorcelli, I.; Clark, S. E.; Berné, O.; Bernard, J.-Ph.; Pelkonen, V.-M.; Collins, D. C.

    2016-05-01

    The nearby cloud L1642 is one of only two known very high latitude (|b| > 30 deg) clouds actively forming stars. It is a rare example of star formation in isolated conditions, and can reveal important details of star formation in general, e.g., of the effect of magnetic fields. We compare Herschel dust emission structures and magnetic field orientation revealed by Planck polarization maps in L1642. The high-resolution (˜20″) Herschel data reveal a complex structure including a dense, compressed central clump, and low density striations. The Planck polarization data (at 10' resolution) reveal an ordered magnetic field pervading the cloud and aligned with the surrounding striations. There is a complex interplay between the cloud structure and large scale magnetic field. This suggests that the magnetic field is closely linked to the formation and evolution of the cloud. CO rotational emission confirms that the striations are connected with the main clumps and likely to contain material either falling into or flowing out of the clumps. There is a clear transition from aligned to perpendicular structures approximately at a column density of NH = 1.6 × 1021 cm-2. Comparing the Herschel maps with the Planck polarization maps shows the close connection between the magnetic field and cloud structure even in the finest details of the cloud.

  12. Matching dust emission structures and magnetic field in high-latitude cloud L1642: comparing Herschel and Planck maps★

    NASA Astrophysics Data System (ADS)

    Malinen, J.; Montier, L.; Montillaud, J.; Juvela, M.; Ristorcelli, I.; Clark, S. E.; Berné, O.; Bernard, J.-Ph.; Pelkonen, V.-M.; Collins, D. C.

    2016-08-01

    The nearby cloud L1642 is one of only two known very high latitude (|b| > 30 deg) clouds actively forming stars. It is a rare example of star formation in isolated conditions, and can reveal important details of star formation in general, e.g. of the effect of magnetic fields. We compare Herschel dust emission structures and magnetic field orientation revealed by Planck polarization maps in L1642. The high-resolution (˜20 arcsec) Herschel data reveal a complex structure including a dense, compressed central clump, and low-density striations. The Planck polarization data (at 10 arcmin resolution) reveal an ordered magnetic field pervading the cloud and aligned with the surrounding striations. There is a complex interplay between the cloud structure and large-scale magnetic field. This suggests that the magnetic field is closely linked to the formation and evolution of the cloud. CO rotational emission confirms that the striations are connected with the main clumps and likely to contain material either falling into or flowing out of the clumps. There is a clear transition from aligned to perpendicular structures approximately at a column density of NH = 1.6 × 1021 cm-2. Comparing the Herschel maps with the Planck polarization maps shows the close connection between the magnetic field and cloud structure even in the finest details of the cloud.

  13. Passive shimming of a superconducting magnet using the L1-norm regularized least square algorithm

    NASA Astrophysics Data System (ADS)

    Kong, Xia; Zhu, Minhua; Xia, Ling; Wang, Qiuliang; Li, Yi; Zhu, Xuchen; Liu, Feng; Crozier, Stuart

    2016-02-01

    The uniformity of the static magnetic field B0 is of prime importance for an MRI system. The passive shimming technique is usually applied to improve the uniformity of the static field by optimizing the layout of a series of steel shims. The steel pieces are fixed in the drawers in the inner bore of the superconducting magnet, and produce a magnetizing field in the imaging region to compensate for the inhomogeneity of the B0 field. In practice, the total mass of steel used for shimming should be minimized, in addition to the field uniformity requirement. This is because the presence of steel shims may introduce a thermal stability problem. The passive shimming procedure is typically realized using the linear programming (LP) method. The LP approach however, is generally slow and also has difficulty balancing the field quality and the total amount of steel for shimming. In this paper, we have developed a new algorithm that is better able to balance the dual constraints of field uniformity and the total mass of the shims. The least square method is used to minimize the magnetic field inhomogeneity over the imaging surface with the total mass of steel being controlled by an L1-norm based constraint. The proposed algorithm has been tested with practical field data, and the results show that, with similar computational cost and mass of shim material, the new algorithm achieves superior field uniformity (43% better for the test case) compared with the conventional linear programming approach.

  14. Low virial parameters in molecular clouds: Implications for high-mass star formation and magnetic fields

    SciTech Connect

    Kauffmann, Jens; Pillai, Thushara; Goldsmith, Paul F. E-mail: tpillai@astro.caltech.edu

    2013-12-20

    Whether or not molecular clouds and embedded cloud fragments are stable against collapse is of utmost importance for the study of the star formation process. Only 'supercritical' cloud fragments are able to collapse and form stars. The virial parameter α = M {sub vir}/M, which compares the virial mass to the actual mass, provides one way to gauge stability against collapse. Supercritical cloud fragments are characterized by α ≲ 2, as indicated by a comprehensive stability analysis considering perturbations in pressure and density gradients. Past research has suggested that virial parameters α ≳ 2 prevail in clouds. This would suggest that collapse toward star formation is a gradual and relatively slow process and that magnetic fields are not needed to explain the observed cloud structure. Here, we review a range of very recent observational studies that derive virial parameters <<2 and compile a catalog of 1325 virial parameter estimates. Low values of α are in particular observed for regions of high-mass star formation (HMSF). These observations may argue for a more rapid and violent evolution during collapse. This would enable 'competitive accretion' in HMSF, constrain some models of 'monolithic collapse', and might explain the absence of high-mass starless cores. Alternatively, the data could point at the presence of significant magnetic fields ∼1 mG at high gas densities. We examine to what extent the derived observational properties might be biased by observational or theoretical uncertainties. For a wide range of reasonable parameters, our conclusions appear to be robust with respect to such biases.

  15. A Radio and Optical Polarization Study of the Magnetic Field in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Mao, S. A.; Gaensler, B. M.; Stanimirović, S.; Haverkorn, M.; McClure-Griffiths, N. M.; Staveley-Smith, L.; Dickey, J. M.

    2008-12-01

    We present a study of the magnetic field of the Small Magellanic Cloud (SMC), carried out using radio Faraday rotation and optical starlight polarization data. Consistent negative rotation measures (RMs) across the SMC indicate that the line-of-sight magnetic field is directed uniformly away from us with a strength 0.19 +/- 0.06 μG. Applying the Chandrasekhar-Fermi method to starlight polarization data yields an ordered magnetic field in the plane of the sky of strength 1.6 +/- 0.4 μG oriented at a position angle 4°+/- 12°, measured counterclockwise from the great circle on the sky joining the SMC to the Large Magellanic Cloud (LMC). We construct a three-dimensional magnetic field model of the SMC, under the assumption that the RMs and starlight polarization probe the same underlying large-scale field. The vector defining the overall orientation of the SMC magnetic field shows a potential alignment with the vector joining the center of the SMC to the center of the LMC, suggesting the possibility of a "pan-Magellanic" magnetic field. A cosmic-ray-driven dynamo is the most viable explanation of the observed field geometry, but has difficulties accounting for the observed unidirectional field lines. A study of Faraday rotation through the Magellanic Bridge is needed to further test the pan-Magellanic field hypothesis.

  16. A Radio and Optical Polarization Study of the Magnetic Field in the Small Magellanic Cloud

    SciTech Connect

    Mao, S. A.; Gaensler, B. M.; Stanimirovic, S.; Haverkorn, M.; McClure-Griffiths, N. M.; Staveley-Smith, L.; Dickey, J. M.

    2008-12-01

    We present a study of the magnetic field of the Small Magellanic Cloud (SMC), carried out using radio Faraday rotation and optical starlight polarization data. Consistent negative rotation measures (RMs) across the SMC indicate that the line-of-sight magnetic field is directed uniformly away from us with a strength 0.19 {+-} 0.06 {mu}G. Applying the Chandrasekhar-Fermi method to starlight polarization data yields an ordered magnetic field in the plane of the sky of strength 1.6 {+-} 0.4 {mu}G oriented at a position angle 4deg {+-} 12deg , measured counterclockwise from the great circle on the sky joining the SMC to the Large Magellanic Cloud (LMC). We construct a three-dimensional magnetic field model of the SMC, under the assumption that the RMs and starlight polarization probe the same underlying large-scale field. The vector defining the overall orientation of the SMC magnetic field shows a potential alignment with the vector joining the center of the SMC to the center of the LMC, suggesting the possibility of a 'pan-Magellanic' magnetic field. A cosmic-ray-driven dynamo is the most viable explanation of the observed field geometry, but has difficulties accounting for the observed unidirectional field lines. A study of Faraday rotation through the Magellanic Bridge is needed to further test the pan-Magellanic field hypothesis.

  17. Correlation of electron path lengths observed in the highly wound outer region of magnetic clouds with the slab fraction of magnetic turbulence in the dissipation range

    SciTech Connect

    Tan, Lun C.; Shao, Xi; Reames, Donald V.; Ng, Chee K.; Wang, Linghua

    2014-05-10

    Three magnetic cloud events, in which solar impulsive electron events occurred in their outer region, are employed to investigate the difference of path lengths L {sub 0eIII} traveled by non-relativistic electrons from their release site near the Sun to the observer at 1 AU, where L {sub 0eIII} = v {sub l} × (t {sub l} – t {sub III}), v {sub l} and t {sub l} being the velocity and arrival time of electrons in the lowest energy channel (∼27 keV) of the Wind/3DP/SST sensor, respectively, and t {sub III} being the onset time of type III radio bursts. The deduced L {sub 0eIII} value ranges from 1.3 to 3.3 AU. Since a negligible interplanetary scattering level can be seen in both L {sub 0eIII} > 3 AU and ∼1.2 AU events, the difference in L {sub 0eIII} could be linked to the turbulence geometry (slab or two-dimensional) in the solar wind. By using the Wind/MFI magnetic field data with a time resolution of 92 ms, we examine the turbulence geometry in the dissipation range. In our examination, ∼6 minutes of sampled subintervals are used in order to improve time resolution. We have found that, in the transverse turbulence, the observed slab fraction is increased with an increasing L {sub 0eIII} value, reaching ∼100% in the L {sub 0eIII} > 3 AU event. Our observation implies that when only the slab spectral component exists, magnetic flux tubes (magnetic surfaces) are closed and regular for a very long distance along the transport route of particles.

  18. Detailed Magnetic Field Morphology of the Vela C Molecular Cloud from the BLASTPol 2012 flight

    NASA Astrophysics Data System (ADS)

    Fissel, Laura Marion; Ade, Peter; Angilè, Francesco E.; Ashton, Peter; Benton, Steven J.; Devlin, Mark J.; Dober, Bradley; Fukui, Yasuo; Galitzki, Nicholas B.; Gandilo, Natalie; Klein, Jeff; Korotkov, Andrei; Li, Zhi-Yun; Moncelsi, Lorenzo; Matthews, Tristan; nakamura, fumitaka; Barth Netterfield, Calvin; Novak, Giles; Pascale, Enzo; Poidevin, Frédérick; Savini, Giorgio; Pereira Santos, Fábio; Scott, Douglas; Shariff, Jamil; Soler, Juan Diego; Thomas, Nicholas; tucker, carole; Tucker, Gregory S.; Ward-Thompson, Derek

    2015-01-01

    In order to understand the role of magnetic fields in the process of star formation, we require detailed observations of field morphology on scales ranging from clouds to cores. However, ground based millimetre/submillimetre polarimetry is usually limited to small maps of relatively dense regions. BLASTPol, the Balloon-borne Large Aperture Sub-mm Telescope for Polarimetry, maps linear polarization at 250, 350 and 500 microns with arcminute resolution. Its high sensitivity and resolving power allow BLASTPol to bridge the gap in spatial scales between the polarization capabilities of Planck and ALMA.I will present early results from the second flight of BLASTPol, focusing on our observations of the Vela C molecular cloud, an early stage intermediate mass star forming region (d~700 pc). With thousands of independent measurements of magnetic field direction, this is the most detailed sub-mm polarization map of a GMC to date. The field we observe in this elongated cloud exhibits a coherent, large-scale ~ 90 degree bend between its high latitude and low latitude edges. I will discuss what we can learn about star formation in Vela C from the combination of BLASTPol polarization maps and velocity information from molecular line observations, and what the variation of polarization strength across the cloud can tell us about dust grain alignment in GMCs.

  19. Injection of solar energetic particles into both loop legs of a magnetic cloud

    NASA Astrophysics Data System (ADS)

    Dresing, N.; Gómez-Herrero, R.; Heber, B.; Hidalgo, M. A.; Klassen, A.; Temmer, M.; Veronig, A.

    2016-02-01

    Context. Each of the two Solar TErrestrial RElations Observatory (STEREO) spacecraft carries a Solar Electron and Proton Telescope (SEPT) which measures electrons and protons. Anisotropy observations are provided in four viewing directions: along the nominal magnetic field Parker spiral in the ecliptic towards the Sun (SUN) and away from the Sun (Anti-Sun/ASUN), and towards the north (NORTH) and south (SOUTH). The solar energetic particle (SEP) event on 7 November 2013 was observed by both STEREO spacecraft, which were longitudinally separated by 68° at that time. While STEREO A observed the expected characteristics of an SEP event at a well-connected position, STEREO B detected a very anisotropic bi-directional distribution of near-relativistic electrons and was situated inside a magnetic-cloud-like structure during the early phase of the event. Aims: We examine the source of the bi-directional SEP distribution at STEREO B. On the one hand this distribution could be caused by a double injection into both loop legs of the magnetic cloud (MC). On the other hand, a mirroring scenario where the incident beam is reflected in the opposite loop leg could be the reason. Furthermore, the energetic electron observations are used to probe the magnetic structure inside the magnetic cloud. Methods: We investigate in situ plasma and magnetic field observations and show that STEREO B was embedded in an MC-like structure ejected three days earlier on 4 November from the same active region. We apply a Graduated Cylindrical Shell (GCS) model to the coronagraph observations from three viewpoints as well as the Global Magnetic Cloud (GMC) model to the in situ measurements at STEREO B to determine the orientation and topology of the MC close to the Sun and at 1 AU. We also estimate the path lengths of the electrons propagating through the MC to estimate the amount of magnetic field line winding inside the structure. Results: The relative intensity and timing of the energetic electron

  20. Contraction and Fragmentation of Magnetized Rotating Clouds and Formation of Binary Systems

    NASA Astrophysics Data System (ADS)

    Tomisaka, Kohji; Machida, Masahiro N.; Matsumoto, Tomoaki

    2004-08-01

    Using three-dimensional (3D) magnetohydrodynamical (MHD) nested-grid simulations, the fragmentation of a rotating magnetized molecular cloud core is studied. An isothermal rotating magnetized cylindrical cloud in hydrostatic balance is considered. We studied non-axisymmetric evolution of the cloud. It is found that non-axisymmetry hardly evolves in the early phase, but it begins to grow after the gas contracts and forms a thin disk. The disk formation and thus growth of non-axisymmetric perturbation are strongly promoted by rotation and magnetic field strength. We found two types of fragmentations: fragmentation from a ring and that from a bar. These two types of fragmentations occur in thin adiabatic cores with the thickness being smaller than 1/4 of the radial size. For the fragments to survive, they should be formed in a heavily elongated barred core or a flat round disk. In the models showing fragmentation, outflows from respective fragments are found as well as that driven by the rotating bar or the disk.

  1. Multiple spacecraft flux rope modeling of the Bastille Day magnetic cloud

    NASA Astrophysics Data System (ADS)

    Mulligan, T.; Russell, C. T.; Anderson, B. J.; Acuna, M. H.

    The Bastille Day magnetic cloud in July 2000 occurred with NEAR in conjunction with the Earth at a radial distance of 1.76 AU and 1.9° from the Earth-Sun line. Propagation time from ACE at 0.99 AU to NEAR indicates the cloud did not decelerate significantly between the Earth and 1.76 AU. Using a non-force-free, kinematic flux rope model we find the rope contained 130 TWb of magnetic flux, was oriented with clock and cone angles of 50° and 83°, and had a radius of 0.25 AU at ACE. At NEAR its radius had expanded to 0.43 AU. Simultaneous modeling of ACE and NEAR data indicate the axial and poloidal magnetic fields vary as R-1.4 and R-1.2 where R is heliocentric distance. Magnetosheath thicknesses of 0.14 AU and 0.23 AU indicate the rope cross section is elongated normal to the cloud axis and the radial direction.

  2. Comparing Herschel dust emission structures, magnetic fields observed by Planck, and dynamics: high-latitude star forming cloud L1642

    NASA Astrophysics Data System (ADS)

    Malinen, Johanna

    2016-01-01

    The nearby high-latitude cloud L1642 is one of only two known very high latitude (|b| > 30 deg) clouds actively forming stars. This cloud is a rare example of star formation in isolated conditions, and can reveal important details of star formation in general, e.g., of the effect of magnetic fields. We compare Herschel dust emission structures and magnetic field orientation revealed by Planck polarization maps in L1642, and also combine these with dynamic information from molecular line observations. The high-resolution Herschel data reveal a complex structure including a dense, compressed central blob with elongated extensions, low density striations, "fishbone" like structures with a spine and perpendicular striations, and a spiraling "tail". The Planck polarization data reveal an ordered magnetic field that pervades the cloud and is aligned with the surrounding low density striations. We show that there is a complex interplay between the cloud structure and large scale magnetic fields revealed by Planck polarization data at 10' resolution. This suggests that the magnetic field is closely linked to the formation and evolution of the cloud. We see a clear transition from aligned to perpendicular structures approximately at a column density of NH = 2x10^21 cm-2. We conclude that Planck polarization data revealing the large scale magnetic field orientation can be very useful even when comparing to the finest structures in higher resolution data, e.g. Herschel at ~18" resolution.

  3. Energetic secondary electrons and the nonthermal galactic radio background - A probe of the magnetic field in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.; Brown, R. L.

    1978-01-01

    A previous analysis of the manifestations of charged-pion-decay secondary electrons in interstellar cloud material is extended to include those contributions to the Galactic radio and soft gamma-ray backgrounds that are directly attributable to energetic secondaries. The equilibrium distribution of secondary electrons in dense interstellar clouds is calculated, synchrotron emissivity from isolated interstellar clouds is examined, and it is shown how the value of the magnetic field in these clouds may be determined by observing the radio emission in their directions. The contribution that such clouds make to the integrated radio background is evaluated, and the Galactic distribution of bremsstrahlung gamma rays that arise from interactions of secondary electrons with thermal material in dense clouds is computed. The results indicate that a magnetic field of no more than 80 microgauss is characteristic of dense clouds and that the integrated synchrotron radiation from secondary electrons in interstellar clouds will contribute a significant fraction of the nonthermal brightness along the Galactic equator even if the mean cloud field is as low as 35 microgauss.

  4. Disc formation in turbulent cloud cores: is magnetic flux loss necessary to stop the magnetic braking catastrophe or not?

    NASA Astrophysics Data System (ADS)

    Santos-Lima, R.; de Gouveia Dal Pino, E. M.; Lazarian, A.

    2013-03-01

    Recent numerical analysis of Keplerian disc formation in turbulent, magnetized cloud cores by Santos-Lima et al. demonstrated that reconnection diffusion is an efficient process to remove the magnetic flux excess during the buildup of a rotationally supported disc. This process is induced by fast reconnection of the magnetic fields in a turbulent flow. In a similar numerical study, Seifried et al. concluded that reconnection diffusion or any other non-ideal magnetohydrodynamic effects would not be necessary and turbulence shear alone would provide a natural way to build up a rotating disc without requiring magnetic flux loss. Their conclusion was based on the fact that the mean mass-to-flux ratio (μ) evaluated over a spherical region with a radius much larger than the disc is nearly constant in their models. In this paper, we compare the two sets of simulations and show that this averaging over large scales can mask significant real increases of μ in the inner regions where the disc is built up. We demonstrate that turbulence-induced reconnection diffusion of the magnetic field happens in the initial stages of the disc formation in the turbulent envelope material that is accreting. Our analysis is suggestive that reconnection diffusion is present in both sets of simulations and provides a simple solution for the `magnetic braking catastrophe' which is discussed in the literature in relation to the formation of protostellar accretion discs.

  5. COLLAPSE AND FRAGMENTATION OF MAGNETIC MOLECULAR CLOUD CORES WITH THE ENZO AMR MHD CODE. I. UNIFORM DENSITY SPHERES

    SciTech Connect

    Boss, Alan P.; Keiser, Sandra A.

    2013-02-20

    Magnetic fields are important contributors to the dynamics of collapsing molecular cloud cores, and can have a major effect on whether collapse results in a single protostar or fragmentation into a binary or multiple protostar system. New models are presented of the collapse of magnetic cloud cores using the adaptive mesh refinement code Enzo2.0. The code was used to calculate the ideal magnetohydrodynamics (MHD) of initially spherical, uniform density, and rotation clouds with density perturbations, i.e., the Boss and Bodenheimer standard isothermal test case for three-dimensional (3D) hydrodynamics codes. After first verifying that Enzo reproduces the binary fragmentation expected for the non-magnetic test case, a large set of models was computed with varied initial magnetic field strengths and directions with respect to the cloud core axis of rotation (parallel or perpendicular), density perturbation amplitudes, and equations of state. Three significantly different outcomes resulted: (1) contraction without sustained collapse, forming a denser cloud core; (2) collapse to form a single protostar with significant spiral arms; and (3) collapse and fragmentation into binary or multiple protostar systems, with multiple spiral arms. Comparisons are also made with previous MHD calculations of similar clouds with a barotropic equations of state. These results for the collapse of initially uniform density spheres illustrate the central importance of both magnetic field direction and field strength for determining the outcome of dynamic protostellar collapse.

  6. Observations of galactic magnetic fields

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    Magnetic fields are enchored in gas clouds. Field lines are tangled in spiral arms, but highly regular between the arms. The similarity of pitch angles between gaseous and magnetic arms suggests a coupling between the density wave and the magnetic wave. Observations of large-scale patterns in Faraday rotation favour a dynamo origin of the regular fields. Fields in barred galaxies do not reveal the strong shearing shocks observed in the cold gas, but swing smoothly from the upstream region into the bar. Magnetic fields are important for the dynamcis of gas clouds, for the formation of spiral structures, bars and halos, and for mass and angular momentum transport in central regions.

  7. Rigid-body rotation of an electron cloud in divergent magnetic fields

    SciTech Connect

    Fruchtman, A.; Gueroult, R.; Fisch, N. J.

    2013-07-10

    For a given voltage across a divergent poloidal magnetic field, two electric potential distributions, each supported by a rigid-rotor electron cloud rotating with a different frequency, are found analytically. The two rotation frequencies correspond to the slow and fast rotation frequencies known in uniform plasma. Due to the centrifugal force, the equipotential surfaces, that correspond to the two electric potential distributions, diverge more than the magnetic surfaces do, the equipotential surfaces in the fast mode diverge largely in particular. The departure of the equipotential surfaces from the magnetic field surfaces may have a significant focusing effect on the ions accelerated by the electric field. Furthermore, the focusing effect could be important for laboratory plasma accelerators as well as for collimation of astrophysical jets.

  8. Rigid-body rotation of an electron cloud in divergent magnetic fields

    DOE PAGESBeta

    Fruchtman, A.; Gueroult, R.; Fisch, N. J.

    2013-07-10

    For a given voltage across a divergent poloidal magnetic field, two electric potential distributions, each supported by a rigid-rotor electron cloud rotating with a different frequency, are found analytically. The two rotation frequencies correspond to the slow and fast rotation frequencies known in uniform plasma. Due to the centrifugal force, the equipotential surfaces, that correspond to the two electric potential distributions, diverge more than the magnetic surfaces do, the equipotential surfaces in the fast mode diverge largely in particular. The departure of the equipotential surfaces from the magnetic field surfaces may have a significant focusing effect on the ions acceleratedmore » by the electric field. Furthermore, the focusing effect could be important for laboratory plasma accelerators as well as for collimation of astrophysical jets.« less

  9. On the magnetic fields of Be/X-ray pulsars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Ikhsanov, N. R.; Mereghetti, S.

    2015-12-01

    We explore the possibility of explaining the properties of the Be/X-ray pulsars observed in the Small Magellanic Cloud (SMC) within the magnetic levitation accretion scenario. This implies that their X-ray emission is powered by a wind-fed accretion on to a neutron star (NS) which captures matter from a magnetized stellar wind. The NS in this case is accreting matter from a non-Keplerian magnetically levitating disc which is surrounding its magnetosphere. This allows us to explain the observed periods of the pulsars in terms of spin equilibrium without the need of invoking dipole magnetic fields outside the usual range ˜1011-1013 G inferred from cyclotron features of Galactic high-mass X-ray binaries. We find that the equilibrium period of a NS, under certain conditions, depends strongly on the magnetization of the stellar wind of its massive companion and, correspondingly, on the magnetic field of the massive companion itself. This may help to explain why similar NSs in binaries with similar properties rotate with different periods yielding a large scatter of periods of the accretion-powered pulsar observed in SMC and our galaxy.

  10. Collapse and fragmentation of magnetic molecular cloud cores with the Enzo AMR MHD code. II. Prolate and oblate cores

    SciTech Connect

    Boss, Alan P.; Keiser, Sandra A.

    2014-10-10

    We present the results of a large suite of three-dimensional models of the collapse of magnetic molecular cloud cores using the adaptive mesh refinement code Enzo2.2 in the ideal magnetohydrodynamics approximation. The cloud cores are initially either prolate or oblate, centrally condensed clouds with masses of 1.73 or 2.73 M {sub ☉}, respectively. The radial density profiles are Gaussian, with central densities 20 times higher than boundary densities. A barotropic equation of state is used to represent the transition from low density isothermal phases, to high density optically thick phases. The initial magnetic field strength ranges from 6.3 to 100 μG, corresponding to clouds that are strongly to marginally supercritical, respectively, in terms of the mass to magnetic flux ratio. The magnetic field is initially uniform and aligned with the clouds' rotation axes, with initial ratios of rotational to gravitational energy ranging from 10{sup –4} to 0.1. Two significantly different outcomes for collapse result: (1) formation of single protostars with spiral arms, and (2) fragmentation into multiple protostar systems. The transition between these two outcomes depends primarily on the initial magnetic field strength, with fragmentation occurring for mass to flux ratios greater than about 14 times the critical ratio for prolate clouds. Oblate clouds typically fragment into several times more clumps than prolate clouds. Multiple, rather than binary, system formation is the general rule in either case, suggesting that binary stars are primarily the result of the orbital dissolution of multiple protostar systems.

  11. MULTI-SCALE ANALYSIS OF MAGNETIC FIELDS IN FILAMENTARY MOLECULAR CLOUDS IN ORION A

    SciTech Connect

    Poidevin, Frederick; Bastien, P.; Jones, T. J. E-mail: Bastien@astro.umontreal.ca

    2011-11-10

    New visible and K-band polarization measurements of stars surrounding molecular clouds in Orion A and stars in the Becklin-Neugebauer (BN) vicinity are presented. Our results confirm that magnetic fields located inside the Orion A molecular clouds and in their close neighborhood are spatially connected. On and around the BN object, we measured the angular offsets between the K-band polarization data and available submillimeter (submm) data. We find high values of the polarization degree, P{sub K} , and of the optical depth, {tau}{sub K}, close to an angular offset position of 90 Degree-Sign whereas lower values of P{sub K} and {tau}{sub K} are observed for smaller angular offsets. We interpret these results as evidence for the presence of various magnetic field components toward lines of sight in the vicinity of BN. On a larger scale, we measured the distribution of angular offsets between available H-band polarization data and the same submm data set. Here we find an increase of (P{sub H}) with angular offset, which we interpret as a rotation of the magnetic field by {approx}< 60 Degree-Sign . This trend generalizes previous results on small scales toward and around lines of sight to BN and is consistent with a twist of the magnetic field on a larger scale toward OMC-1. A comparison of our results with several other studies suggests that a two-component magnetic field, perhaps helical, could be wrapping the OMC-1 filament.

  12. Electron Cloud Generation And Trapping in a Quadrupole Magnet at the Los Alamos PSR

    SciTech Connect

    Macek, R.J.; Browman, A.A.; Ledford, J.E.; Borden, M.J.; O'Hara, J.F.; McCrady, R.C.; Rybarcyk, L.J.; Spickermann, T.; Zaugg, T.J.; Pivi, M.T.F.; /SLAC

    2007-11-14

    A diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies with this diagnostic show that the electron flux striking the wall in the quadrupole is comparable to or larger than in an adjacent drift. In addition, the trapped electron signal, obtained using the sweeping feature of diagnostic, was larger than expected and decayed very slowly with an exponential time constant of 50 to 100 {micro}s. Experimental results were also obtained which suggest that a significant fraction of the electrons observed in the adjacent drift space were seeded by electrons ejected from the quadrupole.

  13. Relativistic nuclear magnetic resonance J-coupling with ultrasoft pseudopotentials and the zeroth-order regular approximation

    NASA Astrophysics Data System (ADS)

    Green, Timothy F. G.; Yates, Jonathan R.

    2014-06-01

    We present a method for the first-principles calculation of nuclear magnetic resonance (NMR) J-coupling in extended systems using state-of-the-art ultrasoft pseudopotentials and including scalar-relativistic effects. The use of ultrasoft pseudopotentials is allowed by extending the projector augmented wave (PAW) method of Joyce et al. [J. Chem. Phys. 127, 204107 (2007)]. We benchmark it against existing local-orbital quantum chemical calculations and experiments for small molecules containing light elements, with good agreement. Scalar-relativistic effects are included at the zeroth-order regular approximation level of theory and benchmarked against existing local-orbital quantum chemical calculations and experiments for a number of small molecules containing the heavy row six elements W, Pt, Hg, Tl, and Pb, with good agreement. Finally, 1J(P-Ag) and 2J(P-Ag-P) couplings are calculated in some larger molecular crystals and compared against solid-state NMR experiments. Some remarks are also made as to improving the numerical stability of dipole perturbations using PAW.

  14. Relativistic nuclear magnetic resonance J-coupling with ultrasoft pseudopotentials and the zeroth-order regular approximation

    SciTech Connect

    Green, Timothy F. G. Yates, Jonathan R.

    2014-06-21

    We present a method for the first-principles calculation of nuclear magnetic resonance (NMR) J-coupling in extended systems using state-of-the-art ultrasoft pseudopotentials and including scalar-relativistic effects. The use of ultrasoft pseudopotentials is allowed by extending the projector augmented wave (PAW) method of Joyce et al. [J. Chem. Phys. 127, 204107 (2007)]. We benchmark it against existing local-orbital quantum chemical calculations and experiments for small molecules containing light elements, with good agreement. Scalar-relativistic effects are included at the zeroth-order regular approximation level of theory and benchmarked against existing local-orbital quantum chemical calculations and experiments for a number of small molecules containing the heavy row six elements W, Pt, Hg, Tl, and Pb, with good agreement. Finally, {sup 1}J(P-Ag) and {sup 2}J(P-Ag-P) couplings are calculated in some larger molecular crystals and compared against solid-state NMR experiments. Some remarks are also made as to improving the numerical stability of dipole perturbations using PAW.

  15. Use of Incident and Reflected Solar Particle Beams to Trace the Topology of Magnetic Clouds

    NASA Astrophysics Data System (ADS)

    Tan, Lun C.; Malandraki, Olga E.; Reames, Donald V.; Ng, Chee K.; Wang, Linghua; Dorrian, Gareth

    2012-05-01

    Occasionally, large solar energetic particle (SEP) events occur inside magnetic clouds (MCs). In this work, the onset time analysis, the peak intensity analysis, and the decay phase analysis of SEPs are used to investigate two large SEP events inside MCs: the 1998 May 2 and 2002 April 21 events. The onset time analysis of non-relativistic electrons and ~MeV nucleon-1 heavy ions shows the stability of the magnetic loop structure during a period of a few hours in the events examined. The joint analysis of pitch-angle distributions and peak intensities of electrons exhibits that, depending on the particle pitch angle observed at 1 AU, in the April event the reflection point of particles may be distributed along a wide spatial range, implying that the magnetic loop is a magnetic bottle connected to the Sun with both legs. In contrast, in the May event particle reflection occurs abruptly at the magnetic mirror formed by a compressed field enhancement behind the interplanetary shock, consistent with its open field line topology.

  16. Use of incident and reflected solar particle beams to trace the topology of magnetic clouds

    NASA Astrophysics Data System (ADS)

    Malandraki, O.; Tan, L.; Reames, D.; Ng, C.; Wang, L.; Dorrian, G.

    2012-04-01

    Occasionally, large solar energetic particle (SEP) events occur inside magnetic clouds (MCs). In this work the onset time analysis, the peak intensity analysis, and the decay phase analysis of SEPs are used to investigate two large SEP events inside MCs: the 1998 May 2 and 2002 April 21 events. The onset time analysis of non-relativistic electrons and ~MeVnucleon-1 heavy ions exhibits the stability of the magnetic loop structure during a period of a few hours in the events examined. The joint analysis of pitch-angle distributions (PADs) and peak intensities of electrons indicates that in the April event the reflected particles with nearly zero pitch-angle at 1 AU could reach the vicinity of the Sun, implying that the magnetic loop was a magnetic bottle connected to the Sun with both legs. In contrast, in the May event the magnetic mirror was formed by a compressed field enhancement behind the interplanetary shock driven by a preceding coronal mass ejection, being consistent with its open field line topology. We have also measured the anisotropy characteristic of SEPs in the solar wind frame. At the MC boundary the PADs of both non-relativistic electrons and ~MeVnucleon-1 heavy ions are nearly isotropic, suggesting a diffusive transport environment of SEPs there. This work has received funding from the European Commission FP7 Project COMESEP (263252)

  17. USE OF INCIDENT AND REFLECTED SOLAR PARTICLE BEAMS TO TRACE THE TOPOLOGY OF MAGNETIC CLOUDS

    SciTech Connect

    Tan, Lun C.; Malandraki, Olga E.; Dorrian, Gareth; Reames, Donald V.; Ng, Chee K.; Wang Linghua

    2012-05-10

    Occasionally, large solar energetic particle (SEP) events occur inside magnetic clouds (MCs). In this work, the onset time analysis, the peak intensity analysis, and the decay phase analysis of SEPs are used to investigate two large SEP events inside MCs: the 1998 May 2 and 2002 April 21 events. The onset time analysis of non-relativistic electrons and {approx}MeV nucleon{sup -1} heavy ions shows the stability of the magnetic loop structure during a period of a few hours in the events examined. The joint analysis of pitch-angle distributions and peak intensities of electrons exhibits that, depending on the particle pitch angle observed at 1 AU, in the April event the reflection point of particles may be distributed along a wide spatial range, implying that the magnetic loop is a magnetic bottle connected to the Sun with both legs. In contrast, in the May event particle reflection occurs abruptly at the magnetic mirror formed by a compressed field enhancement behind the interplanetary shock, consistent with its open field line topology.

  18. Comparison of Magnetic Properties in a Magnetic Cloud and Its Solar Source on 2013 April 11–14

    NASA Astrophysics Data System (ADS)

    Vemareddy, P.; Möstl, C.; Amerstorfer, T.; Mishra, W.; Farrugia, C.; Leitner, M.

    2016-09-01

    In the context of the Sun–Earth connection of coronal mass ejections and magnetic flux ropes (MFRs), we studied the solar active region (AR) and the magnetic properties of magnetic cloud (MC) event during 2013 April 14–15. We use in situ observations from the Advanced Composition Explorer and source AR measurements from the Solar Dynamics Observatory. The MCs magnetic structure is reconstructed from the Grad–Shafranov method, which reveals a northern component of the axial field with left handed helicity. The MC invariant axis is highly inclined to the ecliptic plane pointing northward and is rotated by 117° with respect to the source region PIL. The net axial flux and current in the MC are comparatively higher than from the source region. Linear force-free alpha distribution (10‑7–10‑6 m‑1) at the sigmoid leg matches the range of twist number in the MC of 1–2 au MFR. The MFR is nonlinear force-free with decreasing twist from the axis (9 turns/au) toward the edge. Therefore, a Gold–Hoyle (GH) configuration, assuming a constant twist, is more consistent with the MC structure than the Lundquist configuration of increasing twist from the axis to boundary. As an indication of that, the GH configuration yields a better fitting to the global trend of in situ magnetic field components, in terms of rms, than the Lundquist model. These cylindrical configurations improved the MC fitting results when the effect of self-similar expansion of MFR was considered. For such twisting behavior, this study suggests an alternative fitting procedure to better characterize the MC magnetic structure and its source region links.

  19. Kinetic and Structural Evolution of Self-gravitating, Magnetized Clouds: 2.5-dimensional Simulations of Decaying Turbulence

    NASA Astrophysics Data System (ADS)

    Ostriker, Eve C.; Gammie, Charles F.; Stone, James M.

    1999-03-01

    The molecular component of the Galaxy is comprised of turbulent, magnetized clouds, many of which are self-gravitating and form stars. To develop an understanding of how these clouds' kinetic and structural evolution may depend on their level of turbulence, mean magnetization, and degree of self-gravity, we perform a survey of direct numerical MHD simulations in which three parameters are independently varied. Our simulations consist of solutions to the time-dependent MHD equations on a two-dimensional grid with periodic boundary conditions; an additional ``half'' dimension is also incorporated as dependent variables in the third Cartesian direction. Two of our survey parameters, the mean magnetization parameter β≡c2sound/v2Alfven and the Jeans number nJ≡Lcloud/LJeans, allow us to model clouds that either meet or fail conditions for magneto-Jeans stability and magnetic criticality. Our third survey parameter, the sonic Mach number M≡σvelocity/csound, allows us to initiate turbulence of either sub- or super-Alfvénic amplitude; we employ an isothermal equation of state throughout. We evaluate the times for each cloud model to become gravitationally bound and measure each model's kinetic energy loss over the fluid-flow crossing time. We compare the evolution of density and magnetic field structural morphology and quantify the differences in the density contrast generated by internal stresses for models of differing mean magnetization. We find that the values of β and nJ, but not the initial Mach number M, determine the time for cloud gravitational binding and collapse: for mean cloud density nH2=100 cm-3, unmagnetized models collapse after ~5 Myr, and magnetically supercritical models generally collapse after 5-10 Myr (although the smallest magneto-Jeans stable clouds survive gravitational collapse until t~15 Myr), while magnetically subcritical clouds remain uncollapsed over the entire simulations; these cloud collapse times scale with the mean density as

  20. Electron Cloud Generation and Trapping in a Quadrupole Magnet at the Los Alamos Proton Storage Ring

    SciTech Connect

    Macek, Robert J.; Browman, Andrew A.; Ledford, John E.; Borden, Michael J.; O'Hara, James F.; McCrady, Rodney C.; Rybarcyk, Lawrence J.; Spickermann, Thomas; Zaugg, Thomas J.; Pivi, Mauro T.F.; /SLAC

    2008-03-17

    Recent beam physics studies on the two-stream e-p instability at the LANL proton storage ring (PSR) have focused on the role of the electron cloud generated in quadrupole magnets where primary electrons, which seed beam-induced multipacting, are expected to be largest due to grazing angle losses from the beam halo. A new diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies using this diagnostic show that the 'prompt' electron flux striking the wall in a quadrupole is comparable to the prompt signal in the adjacent drift space. In addition, the 'swept' electron signal, obtained using the sweeping feature of the diagnostic after the beam was extracted from the ring, was larger than expected and decayed slowly with an exponential time constant of 50 to 100 {micro}s. Other measurements include the cumulative energy spectra of prompt electrons and the variation of both prompt and swept electron signals with beam intensity. Experimental results were also obtained which suggest that a good fraction of the electrons observed in the adjacent drift space for the typical beam conditions in the 2006 run cycle were seeded by electrons ejected from the quadrupole.

  1. Mixed micelle cloud point-magnetic dispersive μ-solid phase extraction of doxazosin and alfuzosin.

    PubMed

    Gao, Nannan; Wu, Hao; Chang, Yafen; Guo, Xiaozhen; Zhang, Lizhen; Du, Liming; Fu, Yunlong

    2015-01-01

    Mixed micelle cloud point extraction (MM-CPE) combined with magnetic dispersive μ-solid phase extraction (MD-μ-SPE) has been developed as a new approach for the extraction of doxazosin (DOX) and alfuzosin (ALF) prior to fluorescence analysis. The mixed micelle anionic surfactant sodium dodecyl sulfate and non-ionic polyoxyethylene(7.5)nonylphenylether was used as the extraction solvent in MM-CPE, and diatomite bonding Fe₃O₄ magnetic nanoparticles were used as the adsorbent in MD-μ-SPE. The method was based on MM-CPE of DOX and ALF in the surfactant-rich phase. Magnetic materials were used to retrieve the surfactant-rich phase, which easily separated from the aqueous phase under magnetic field. At optimum conditions, a linear relationship between DOX and ALF was obtained in the range of 5-300 ng mL(-1), and the limits of detection were 0.21 and 0.16 ng mL(-1), respectively. The proposed method was successfully applied for the determination of the drugs in pharmaceutical preparations, urine samples, and plasma samples. PMID:24995413

  2. A Circular-cylindrical Flux-rope Analytical Model for Magnetic Clouds

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, T.; Linton, M. G.; Hidalgo, M. A.; Vourlidas, A.; Savani, N. P.; Szabo, A.; Farrugia, C.; Yu, W.

    2016-05-01

    We present an analytical model to describe magnetic flux-rope topologies. When these structures are observed embedded in Interplanetary Coronal Mass Ejections (ICMEs) with a depressed proton temperature, they are called Magnetic Clouds (MCs). Our model extends the circular-cylindrical concept of Hidalgo et al. by introducing a general form for the radial dependence of the current density. This generalization provides information on the force distribution inside the flux rope in addition to the usual parameters of MC geometrical information and orientation. The generalized model provides flexibility for implementation in 3D MHD simulations. Here, we evaluate its performance in the reconstruction of MCs in in situ observations. Four Earth-directed ICME events, observed by the Wind spacecraft, are used to validate the technique. The events are selected from the ICME Wind list with the magnetic obstacle boundaries chosen consistently with the magnetic field and plasma in situ observations and with a new parameter (EPP, the Electron Pitch angle distribution Parameter) which quantifies the bidirectionally of the plasma electrons. The goodness of the fit is evaluated with a single correlation parameter to enable comparative analysis of the events. In general, at first glance, the model fits the selected events very well. However, a detailed analysis of events with signatures of significant compression indicates the need to explore geometries other than the circular-cylindrical. An extension of our current modeling framework to account for such non-circular CMEs will be presented in a forthcoming publication.

  3. Circular-cylindrical flux-rope analytical model for Magnetic Clouds

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, Teresa; Linton, Mark; Hidalgo, Miguel A.; Vourlidas, Angelos; Savani, Neel P.; Szabo, Adam; Farrugia, Charlie; Yu, Wenyuan

    2016-05-01

    We present an analytical model to describe magnetic flux-rope topologies. When these structures are observed embedded in Interplanetary Coronal Mass Ejections (ICMEs) with a depressed proton temperature, they are called Magnetic Clouds ( MCs). The model extends the circular-cylindrical concept of Hidalgo et al. (2000) by introducing a general form for the radial dependence of the current density. This generalization provides information on the force distribution inside the flux rope in addition to the usual parameters of MC geometrical information and orientation.The generalized model provides flexibility for implementation in 3D MHD simulations. Here, we evaluate its performance in the reconstruction of MCs in in-situ observations. Four Earth directed ICME events, observed by the Wind spacecraft, are used to validate the technique. The events are selected from the ICME Wind list with the magnetic obstacle boundaries chosen consistently with the magnetic fi eld and plasma in situ observations and with a new parameter (EPP, Electron Pitch angle distribution Parameter) which quantifies the bidirectionally of theplasma electrons. The goodness of the fit is evaluated with a single correlation parameter to enable comparative analysis of the events. In general, at first glance, the model fits the selected events very well. However, a detailed analysis of events with signatures of significant compression indicates the need to explore geometries other than the circular-cylindrical.

  4. Solar Sources and Geospace Consequences of Interplanetary Magnetic Clouds Observed During Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Akiyama, S.; Yashiro, S.; Michalek, G.; Lepping, R. P.

    2007-01-01

    We present results of a statistical investigation of 99 magnetic clouds (MCs) observed during 1995-2005. The MC-associated coronal mass ejections (CMEs) are faster and wider on the average and originate within +/-30deg from the solar disk center. The solar sources of MCs also followed the butterfly diagram. The correlation between the magnetic field strength and speed of MCs was found to be valid over a much wider range of speeds. The number of south-north (SN) MCs was dominant and decreased with solar cycle, while the number of north-south (NS) MCs increased confirming the odd-cycle behavior. Two-thirds of MCs were geoeffective; the Dst index was highly correlated with speed and magnetic field in MCs as well as their product. Many (55%) fully northward (FN) MCs were geoeffective solely due to their sheaths. The non-geoeffective MCs were slower (average speed approx. 382 km/s), had a weaker southward magnetic field (average approx. -5.2nT), and occurred mostly during the rise phase of the solar activity cycle.

  5. The collective gyration of a heavy ion cloud in a magnetized plasma

    NASA Technical Reports Server (NTRS)

    Brenning, N.; Swenson, C.; Kelley, M. C.; Providakes, J.; Torbert, R.

    1990-01-01

    In both the ionospheric barium injection experiments CRIT 1 and CRIT 2, a long duration oscillation was seen with a frequency close to the gyro frequency of barium and a time duration of about one second. A model for the phenomena which was proposed for the CRIT 1 experiment is compared to the results from CRIT 2 which made a much more complete set of measurements. The model follows the motion of a low Beta ion cloud through a larger ambient plasma. The internal field of the model is close to antiparallel to the injection direction v sub i but slightly tilted towards the self polarization direction E sub p = -V sub i by B. As the ions move across the magnetic field, the space charge is continuously neutralized by magnetic field aligned electron currents from the ambient ionosphere, drawn by the divergence in the perpendicular electric field. These currents give a perturbation of the magnetic field related to the electric field perturbation by Delta E/Delta B approximately equal to V sub A. The model predictions agree quite well with the observed vector directions, field strengths, and decay times of the electric and magnetic fields in CRIT 2. The possibility to extend the model to the active region, where the ions are produces in this type of self-ionizing injection experiments, is discussed.

  6. Mid-Infrared Spectropolarimetry of Molecular Cloud Sources: Magnetic Fields and Dust Properties

    NASA Astrophysics Data System (ADS)

    Wright, Christopher Mathew

    1994-12-01

    One of the earliest phases of the star formation process is the bipolar outflow. It is not presently understood how the outflow is generated, but a number of theories propose that a dynamically important magnetic field, embedded in the disk and acting in concert with rotation, is able to tap the gravitational potential well of the star plus disk system to drive material off the disk surface. Spectropolarimetric observations between 8 and 13 micrometers provide information on the chemical and physical nature of dust grains, as well as on the direction of the transverse (to the line-of-sight) component of an aligning magnetic field. In this thesis, such observations toward a selection of mainly high mass young stellar objects (YSO's) are presented. The field directions inferred from the polarization position angle are compared with the axes of disks and bipolar outflows associated with the sources. A strong correlation is found such that the field tends to lie in the plane of the disk, thereby providing support for the magnetic pressure mechanism for bipolar outflows. The observed field directions are also compared with the interstellar field configuration determined from optical polarization of field stars and obtained from the literature. Two distributions are observed, one in which the difference between the position angles of the two fields is less than 30 deg, and the other for which the difference is greater than 30 deg. The existence of the second group implies that the evolution of the YSO has a significant perturbing effect on its ambient magnetic field. Together with the disk field finding, the results are discussed in terms of the initial collapse phase of the molecular cloud in which the YSO is embedded, specifically whether the cloud was supercritical or subcritical. For instance, for two high mass objects, AFGL 2591 and AFGL 989, and one low mass object, SVS13, the source and interstellar fields, and interstellar field and disk major axes, are inclined

  7. EFFECTS OF MAGNETIC FIELD AND FAR-ULTRAVIOLET RADIATION ON THE STRUCTURES OF BRIGHT-RIMMED CLOUDS

    SciTech Connect

    Motoyama, Kazutaka; Umemoto, Tomofumi; Shang, Hsien; Hasegawa, Tatsuhiko

    2013-03-20

    The bright-rimmed cloud SFO 22 was observed with the 45 m telescope of Nobeyama Radio Observatory in the {sup 12}CO (J = 1-0), {sup 13}CO (J = 1-0), and C{sup 18}O (J = 1-0) lines, where well-developed head-tail structure and small line widths were found. Such features were predicted by radiation-driven implosion models, suggesting that SFO 22 may be in a quasi-stationary equilibrium state. We compare the observed properties with those from numerical models of a photoevaporating cloud, which include effects of magnetic pressure and heating due to strong far-ultraviolet (FUV) radiation from an exciting star. The magnetic pressure may play a more important role in the density structures of bright-rimmed clouds than the thermal pressure that is enhanced by the FUV radiation. The FUV radiation can heat the cloud surface to near 30 K; however, its effect is not enough to reproduce the observed density structure of SFO 22. An initial magnetic field of 5 {mu}G in our numerical models produces the best agreement with the observations, and its direction can affect the structures of bright-rimmed clouds.

  8. Magnetized interstellar molecular clouds - I. Comparison between simulations and Zeeman observations

    NASA Astrophysics Data System (ADS)

    Li, Pak Shing; McKee, Christopher F.; Klein, Richard I.

    2015-09-01

    The most accurate measurements of magnetic fields in star-forming gas are based on the Zeeman observations analysed by Crutcher et al. We show that their finding that the 3D magnetic field scales approximately as density0.65 can also be obtained from analysis of the observed line-of-sight fields. We present two large-scale adaptive-mesh-refinement magnetohydrodynamic simulations of several thousand M⊙ of turbulent, isothermal, self-gravitating gas, one with a strong initial magnetic field (Alfvén Mach number M_A,0=1) and one with a weak initial field (M_A,0=10). We construct samples of the 100 most massive clumps in each simulation and show that they exhibit a power-law relation between field strength and density (bar{n}_H) in excellent agreement with the observed one. Our results imply that the average field in molecular clumps in the interstellar medium (ISM) is < B_tot(bar{n}_H) > ≈ 42 bar{n}_{H, 4}^{0.65} μ G. Furthermore, the median value of the ratio of the line-of-sight field to density0.65 in the simulations is within a factor of about (1.3, 1.7) of the observed value for the strong- and weak-field cases, respectively. The median value of the mass-to-flux ratio, normalized to the critical value, is 70 per cent of the line-of-sight value. This is larger than the 50 per cent usually cited for spherical clouds because the actual mass-to-flux ratio depends on the volume-weighted field, whereas the observed one depends on the mass-weighted field. Our results indicate that the typical molecular clump in the ISM is significantly supercritical (˜ factor of 3). The results of our strong-field model are in very good quantitative agreement with the observations of Li et al., which show a strong correlation in field orientation between small and large scales. Because there is a negligible correlation in the weak-field model, we conclude that molecular clouds form from strongly magnetized (although magnetically supercritical) gas, in agreement with the conclusion

  9. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. II. Consideration of perturbations in the metric operator

    NASA Astrophysics Data System (ADS)

    Maeda, H.; Ootani, Y.; Fukui, H.

    2007-05-01

    A previous relativistic shielding calculation theory based on the regular approximation to the normalized elimination of the small component approach is improved by the inclusion of the magnetic interaction term contained in the metric operator. In order to consider effects of the metric perturbation, the self-consistent perturbation theory is used for the case of perturbation-dependent overlap integrals. The calculation results show that the second-order regular approximation results obtained for the isotropic shielding constants of halogen nuclei are well improved by the inclusion of the metric perturbation to reproduce the fully relativistic four-component Dirac-Hartree-Fock results. However, it is shown that the metric perturbation hardly or does not affect the anisotropy of the halogen shielding tensors and the proton magnetic shieldings.

  10. 3D hybrid simulations of the interaction of a magnetic cloud with a bow shock

    NASA Astrophysics Data System (ADS)

    Turc, L.; Fontaine, D.; Savoini, P.; Modolo, R.

    2015-08-01

    In this paper, we investigate the interaction of a magnetic cloud (MC) with a planetary bow shock using hybrid simulations. It is the first time to our knowledge that this interaction is studied using kinetic simulations which include self-consistently both the ion foreshock and the shock wave dynamics. We show that when the shock is in a quasi-perpendicular configuration, the MC's magnetic structure in the magnetosheath remains similar to that in the solar wind, whereas it is strongly altered downstream of a quasi-parallel shock. The latter can result in a reversal of the magnetic field north-south component in some parts of the magnetosheath. We also investigate how the MC affects in turn the outer parts of the planetary environment, i.e., from the foreshock to the magnetopause. We find the following: (i) The decrease of the Alfvén Mach number at the MC's arrival causes an attenuation of the foreshock region because of the weakening of the bow shock. (ii) The foreshock moves along the bow shock's surface, following the rotation of the MC's magnetic field. (iii) Owing to the low plasma beta, asymmetric flows arise inside the magnetosheath, due to the magnetic tension force which accelerates the particles in some parts of the magnetosheath and slows them down in others. (iv) The quasi-parallel region forms a depression in the shock's surface. Other deformations of the magnetopause and the bow shock are also highlighted. All these effects can contribute to significantly modify the solar wind/magnetosphere coupling during MC events.

  11. The collective gyration of a heavy ion cloud in a magnetized plasma. [in earth ionosphere

    NASA Technical Reports Server (NTRS)

    Brenning, N.; Swenson, C.; Kelley, M. C.; Providakes, J.; Torbert, R.

    1992-01-01

    Results are reported from the ionospheric barium injection experiments CRIT I and CRIT II, during both of which a long-duration oscillation was observed with a frequency close to the gyrofrequency of barium and a time duration of about 1 sec. A model for the phenomenon which was proposed for CRIT I is compared to the results from CRIT II, which made a much more complete set of measurements. The model follows the motion of a low-beta ion cloud through a larger ambient plasma. As the ions move across the magnetic field, the space charge is continuously neutralized by magnetic-field aligned electron currents from the ambient ionosphere, drawn by the divergence in the perpendicular electric field. These currents yield a perturbation of the magnetic field related to the electric perturbation by Delta-E/Delta-B is approximately equal to V sub A. The possibility of extending the model to the active region, where the ions are produced in this type of self-ionizing injection experiments, is discussed.

  12. A model for the behaviour of the Solar Energetic Particle Events inside Magnetic Clouds

    NASA Astrophysics Data System (ADS)

    Medina, J.; Hidalgo, M. A.

    2006-12-01

    The modulation effects of the solar ejecta over the solar energetic particle event SEPe fluxes (0,5-100 MeV) provided by solar flares have recently been highlighted. Especially important is the behaviour of these fluxes inside MCs where, in spite of the low magnetic field intensities of these interplanetary structures (about 30 nT), a decrease in the population of the energetic particles is observed. In the present work it is shown a simple theoretical model we have developed to analyse the behaviour of those fluxes inside the magnetic clouds (MCs) using, as a starting point, our previous magnetic field model for MCs. The experimental data from ACE, GOES, SAMPEX, SOHO, Ulysses and WIND satellites are presented, both from MC coincident with SEPe and not coincident. This work has been supported by the Spanish Comisión Internacional de Ciencia y Tecnología (CICYT), grant ESP2005-07290-C02-01 and ESP2006-08459 and Madrid Autonomous Community / University of Alcala grant CAM-UAH 2005/007. This work is performed inside COST Action 724.

  13. Planck intermediate results. XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chiang, H. C.; Christensen, P. R.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falceta-Gonçalves, D.; Falgarone, E.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Guillet, V.; Harrison, D. L.; Helou, G.; Hennebelle, P.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Netterfield, C. B.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Soler, J. D.; Stolyarov, V.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Ysard, N.; Yvon, D.; Zonca, A.

    2016-02-01

    Within ten nearby (d < 450 pc) Gould belt molecular clouds we evaluate statistically the relative orientation between the magnetic field projected on the plane of sky, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the gas column density structures, quantified by the gradient of the column density, NH. The selected regions, covering several degrees in size, are analysed at an effective angular resolution of 10' FWHM, thus sampling physical scales from 0.4 to 40 pc in the nearest cloud. The column densities in the selected regions range from NH≈ 1021 to1023 cm-2, and hence they correspond to the bulk of the molecular clouds. The relative orientation is evaluated pixel by pixel and analysed in bins of column density using the novel statistical tool called "histogram of relative orientations". Throughout this study, we assume that the polarized emission observed by Planck at 353 GHz is representative of the projected morphology of the magnetic field in each region, i.e., we assume a constant dust grain alignment efficiency, independent of the local environment. Within most clouds we find that the relative orientation changes progressively with increasing NH, from mostly parallel or having no preferred orientation to mostly perpendicular. In simulations of magnetohydrodynamic turbulence in molecular clouds this trend in relative orientation is a signature of Alfvénic or sub-Alfvénic turbulence, implying that the magnetic field is significant for the gas dynamics at the scales probed by Planck. We compare the deduced magnetic field strength with estimates we obtain from other methods and discuss the implications of the Planck observations for the general picture of molecular cloud formation and evolution.

  14. Properties and geoeffectiveness of magnetic clouds during solar cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Yashiro, S.; Xie, H.; Akiyama, S.; Mäkelä, P.

    2015-11-01

    We report on a study that compares the properties of magnetic clouds (MCs) during the first 73 months of solar cycles 23 and 24 in order to understand the weak geomagnetic activity in cycle 24. We find that the number of MCs did not decline in cycle 24, although the average sunspot number is known to have declined by ~40%. Despite the large number of MCs, their geoeffectiveness in cycle 24 was very low. The average Dst index in the sheath and cloud portions in cycle 24 was -33 nT and -23 nT, compared to -66 nT and -55 nT, respectively, in cycle 23. One of the key outcomes of this investigation is that the reduction in the strength of geomagnetic storms as measured by the Dst index is a direct consequence of the reduction in the factor VBz (the product of the MC speed and the out-of-the-ecliptic component of the MC magnetic field). The reduction in MC-to-ambient total pressure in cycle 24 is compensated for by the reduction in the mean MC speed, resulting in the constancy of the dimensionless expansion rate at 1 AU. However, the MC size in cycle 24 was significantly smaller, which can be traced to the anomalous expansion of coronal mass ejections near the Sun reported by Gopalswamy et al. (2014a). One of the consequences of the anomalous expansion seems to be the larger heliocentric distance where the pressure balance between the CME flux ropes and the ambient medium occurs in cycle 24.

  15. Probing the role of the magnetic field in the formation of structure in molecular clouds with Planck

    NASA Astrophysics Data System (ADS)

    Diego Soler, Juan

    2015-08-01

    The Planck observations of intensity and polarization of thermal emission from Galactic dust over the whole sky, and down to scales that probe the interiors of nearby molecular clouds, constitute an unprecedented data set for the study of the morphology of the magnetic field.Within ten nearby (d < 450 pc) Gould Belt molecular clouds we evaluate statistically the relative orientation between the magnetic field projected on the plane of sky, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the gas column density structures, quantified by the gradient of the column density, NH. The relative orientation is evaluated pixel by pixel and analyzed in bins of column density using the novel statistical tool called "Histogram of Relative Orientations".Within most clouds we find that the relative orientation changes progressively with increasing NH, from preferentially parallel or having no preferred orientation to preferentially perpendicular.In simulations of magnetohydrodynamic turbulence in molecular clouds this trend in relative orientation is a signature of Alfvénic or sub-Alfvénic turbulence, implying that the magnetic field is significant for the gas dynamics at the scales probed by Planck.We compare the deduced plane-of-the-sky magnetic field strength with estimates we obtain from the Davis-Chandrasekhar-Fermi method and with the line-of-sight magnetic field strengths derived from Zeeman splitting observations towards some of the studied regions.Finally, we discuss the implications of the Planck observations for the general picture of molecular cloud formation and evolution.This work is presented on behalf of the Planck Collaboration.

  16. Remote Numerical Simulations of the Interaction of High Velocity Clouds with Random Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Santillan, Alfredo; Hernandez--Cervantes, Liliana; Gonzalez--Ponce, Alejandro; Kim, Jongsoo

    The numerical simulations associated with the interaction of High Velocity Clouds (HVC) with the Magnetized Galactic Interstellar Medium (ISM) are a powerful tool to describe the evolution of the interaction of these objects in our Galaxy. In this work we present a new project referred to as Theoretical Virtual i Observatories. It is oriented toward to perform numerical simulations in real time through a Web page. This is a powerful astrophysical computational tool that consists of an intuitive graphical user interface (GUI) and a database produced by numerical calculations. In this Website the user can make use of the existing numerical simulations from the database or run a new simulation introducing initial conditions such as temperatures, densities, velocities, and magnetic field intensities for both the ISM and HVC. The prototype is programmed using Linux, Apache, MySQL, and PHP (LAMP), based on the open source philosophy. All simulations were performed with the MHD code ZEUS-3D, which solves the ideal MHD equations by finite differences on a fixed Eulerian mesh. Finally, we present typical results that can be obtained with this tool.

  17. The Structure of Magnetic Clouds in the Inner Heliosphere: An Approach Through Grad-Shafranov Reconstruction

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Farrugia, C. J.; Osherovich, V. A.; Moestl, C.; Qiu, J.; Sonnerup, B. U.

    2011-12-01

    Magnetic Clouds (MCs), as a subset of Interplanetary Coronal Mass Ejections (ICMEs), are commonly observed in space. They have been extensively studied with respect to their origin at the Sun, their propagation, and their structures in the inner heliosphere between Sun and Earth. A method, based on the in-situ spacecraft measurements across such structures and the Grad-Shafranov (GS) equation, has been developed and widely used to derive their 2.5D cross-section from the single-spacecraft magnetic field and plasma data. We provide a brief review of the GS reconstruction of MC structures and its applications to various spacecraft mission data and Sun-Solar System Connection science. We then report the recent progress on the application of GS method to the MC structures by examining the effect of (1) inclusion of electron temperature (pressure), since Te is often >> Tp in these configurations, and (2) a locally torus-shape geometry of the MC flux rope, as opposed to the commonly assumed straight-cylinder geometry. Case studies will be presented to illustrate our results.

  18. Relationships Among Geomagnetic Storms, Interplanetary Shocks, Magnetic Clouds, and Sunspot Number During 1995 - 2012

    NASA Astrophysics Data System (ADS)

    Wu, Chin-Chun; Lepping, Ronald P.

    2016-01-01

    During 1995 - 2012, the Wind spacecraft has recorded 168 magnetic clouds (MCs), 197 magnetic cloud-like structures (MCLs), and 358 interplanetary (IP) shocks. Ninety-four MCs and 56 MCLs had upstream shock waves. The following features are found: i) The averages of the solar wind speed, interplanetary magnetic field (IMF), duration (< Δ t >), the minimum of B_{min}, and intensity of the associated geomagnetic storm/activity (Dst_{min}) for MCs with upstream shock waves (MC_{shock}) are higher (or stronger) than those averages for the MCs without upstream shock waves (MC_{no-shock}). ii) The average < Δ t > of MC_{shock} events ({≈} 19.8 h) is 9 % longer than that for MC_{no-shock} events ({≈} 17.6 h). iii) For the MC_{shock} events, the average duration of the sheath (<Δ t_{sheath}>) is 12.1 h. These findings could be very useful for space weather predictions, i.e. IP shocks driven by MCs are expected to arrive at Wind (or at 1 AU) about 12 h ahead of the front of the MCs on average. iv) The occurrence frequency of IP shocks is well associated with sunspot number (SSN). The average intensity of geomagnetic storms measured by < Dst_{min}> for MC_{shock} and MC_{no-shock} events is -102 and -31 nT, respectively. The average values < {Dst}_{min} > are -78, -70, and -35 nT for the 358 IP shocks, 168 MCs, and 197 MCLs, respectively. These results imply that IP shocks, when they occur with MCs/MCLs, must play an important role in the strength of geomagnetic storms. We speculate about the reason for this. Yearly occurrence frequencies of MC_{shock} and IP shocks are well correlated with solar activity ( e.g., SSN). Choosing the correct Dst_{min} estimating formula for predicting the intensity of MC-associated geomagnetic storms is crucial for space weather predictions.

  19. Formation of Dense Clumps/Cores in Infrared Dark Clouds and Their Magnetic Field Properties from AMR MHD Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Li, Pak Shing; Klein, Richard I.

    2014-07-01

    Massive infrared dark clouds (IRDCs) are believed to be the precursors to star clusters and massive stars (e.g. Bergin & Tafalla 2007). The supersonic turbulent nature of molecular clouds in the presence of magnetic fields poses a great challenge in understanding the structure and dynamics of molecular clouds and the star formation therein (e.g. Falgarone et al. 2008, Crutcher et al. 2010, Peretto & Fuller 2010, Hernandez & Tan 2011, Harcar et al. 2013, Kainulainen & Tan 2013). We perform two high resolution ideal MHD AMR simulations with supersonically driven turbulence on the formation of massive infrared dark clouds, using our radiative-MHD AMR code ORION2 (P.S. Li, et al. 2012), to reveal the complex 3D filamentary structure and the subsequent formation of dense clumps and cores inside the dark clouds. The two models differ only in field strength, with one model having an initial field 10 times as strong as the other. The magnetic properties of the clumps from the two models are compared with the Zeeman observations summarized in Crutcher et al. (2010). Our dense clumps exhibit a power-law relation between magnetic field strength and density similar to the observations. Despite the order of magnitude difference in initial field strength, with the magnetic field enhancement and fragmentation as the result of turbulence, the magnetic properties of clumps in the weak field model are remarkably similar to those in the strong field model, except for a clear difference in the magnetic field orientation with respect to the global mean field direction. The almost random orientation of the weak field simulation is inconsistent with the observation of the field orientation on large and small scales by H.-b. Li, et al. (2009). I will briefly summarize the physical properties of the filamentary dark clouds in the simulations and report a detailed comparison of the magnetic properties of dense clumps in the simulations with the Zeeman observations. We have continued the

  20. Swift J045106.8-694803: a highly magnetized neutron star in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Klus, H.; Bartlett, E. S.; Bird, A. J.; Coe, M.; Corbet, R. H. D.; Udalski, A.

    2013-02-01

    We report the analysis of a highly magnetized neutron star in the Large Magellanic Cloud (LMC). The high-mass X-ray binary pulsar Swift J045106.8-694803 has been observed with Swift X-ray telescope (XRT) in 2008, the Rossi X-ray Timing Explorer (RXTE) in 2011 and the X-ray Multi-Mirror Mission-Newton (XMM-Newton) in 2012. The change in spin period over these four years indicates a spin-up rate of -5.01 ± 0.06 s yr-1, amongst the highest observed for an accreting pulsar. This spin-up rate can be accounted for using Ghosh & Lamb accretion theory assuming it has a magnetic field of (1.2 ± 0.20.7) × 1014 G. This is over the quantum critical field value. There are very few accreting pulsars with such high surface magnetic fields and this is the first of which to be discovered in the LMC. The large spin-up rate is consistent with Swift Burst Alert Telescope (BAT) observations which show that Swift J045106.8-694803 has had a consistently high X-ray luminosity for at least five years. Optical spectra have been used to classify the optical counterpart of Swift J045106.8-694803 as a B0-1 III-V star and a possible orbital period of 21.631 ± 0.005 d has been found from Massive Compact Halo Object (MACHO) optical photometry.

  1. Interplanetary Charged Dust Magnetic Clouds Striking the Magnetosphere: Coordinated Space-based and Ground-based Observations

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Chi, Peter; Lai, Hairong

    In general, asteroids, meteoroids and dust do not interact with the plasma structures in the solar system, but after a collision between fast moving bodies the debris cloud contains nanoscale dust particles that are charged and behave like heavy ions. Dusty magnetic clouds are then accelerated to the solar wind speed. While they pose no threat to spacecraft because of the particle size, the coherency imposed by the magnetization of the cloud allows the cloud to interact with the Earth’s magnetosphere as well as the plasma in the immediate vicinity of the cloud. We call these clouds Interplanetary Field Enhancements (IFEs). These IFEs are a unique class of interplanetary field structures that feature cusp-shaped increases and decreases in the interplanetary magnetic field and a thin current sheet. The occurrence of IFEs is attributed to the interaction between the solar wind and dust particles produced in inter-bolide collisions. Previous spacecraft observations have confirmed that IFEs move with the solar wind. When IFEs strike the magnetosphere, they may distort the magnetosphere in several possible ways, such as producing a small indentation, a large scale compression, or a glancing blow. In any event if the IFE is slowed by the magnetosphere, the compression of the Earth’s field should be seen in the ground-based magnetic records that are continuously recorded. Thus it is important to understand the magnetospheric response to IFE arrival. In this study, we investigate the IFE structure observed by spacecraft upstream of the magnetosphere and the induced magnetic field perturbations observed by networks of ground magnetometers, including the THEMIS, CARISMA, McMAC arrays in North America and the IMAGE array in Europe. We find that, in a well-observed IFE event on December 24, 2006, all ground magnetometer stations observed an impulse at approximately 1217 UT when the IFE was expected to arrive at the Earth’s magnetopause. These ground stations spread across

  2. Galactic Cosmic Ray Intensity Response to Interplanetary Coronal Mass Ejections/Magnetic Clouds in 1995-2009

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2011-01-01

    We summarize the response of the galactic cosmic ray (CGR) intensity to the passage of the more than 300 interplanetary coronal mass ejections (ICMEs) and their associated shocks that passed the Earth during 1995-2009, a period that encompasses the whole of Solar Cycle 23. In approx.80% of cases, the GCR intensity decreased during the passage of these structures, i.e., a "Forbush decrease" occurred, while in approx.10% there was no significant change. In the remaining cases, the GCR intensity increased. Where there was an intensity decrease, minimum intensity was observed inside the ICME in approx.90% of these events. The observations confirm the role of both post-shock regions and ICMEs in the generation of these decreases, consistent with many previous studies, but contrary to the conclusion of Reames, Kahler, and Tylka (Astrophys. 1. Lett. 700, L199, 2009) who, from examining a subset of ICMEs with flux-rope-like magnetic fields (magnetic clouds) argued that these are "open structures" that allow free access of particles including GCRs to their interior. In fact, we find that magnetic clouds are more likely to participate in the deepest GCR decreases than ICMEs that are not magnetic clouds.

  3. Spatial and Temporal Energy Characterization of Precipitating Electrons for the January 10th, 1997 Magnetic Cloud Event

    NASA Technical Reports Server (NTRS)

    Spann, J. F., Jr.; Germany, G. A.; Brittnacher, M. J.; Parks, G. K.; Elsen, R.

    1997-01-01

    The January 10-11, 1997 magnetic cloud event provided a rare opportunity to study auroral energy deposition under varying but intense IMF conditions. The Wind spacecraft located about 100 RE upstream monitored the IMF and plasma parameters during the passing of the cloud. The Polar Ultraviolet Imager (UVI) observed the aurora[ precipitation during the first encounter of the cloud with Earth's magnetosphere and during several subsequent substorm events. The UVI has the unique capability of measuring the energy flux and characteristic energy of the precipitating electrons through the use of narrow band filters that distinguish short and long wavelength molecular nitrogen emissions. The spatial and temporal characteristics of the precipitating electron energy will be discussed beginning with the inception of the event at the Earth early January 1 Oth and continuing through the subsidence of auroral activity on January 11th.

  4. Krein regularization of QED

    NASA Astrophysics Data System (ADS)

    Forghan, B.; Takook, M. V.; Zarei, A.

    2012-09-01

    In this paper, the electron self-energy, photon self-energy and vertex functions are explicitly calculated in Krein space quantization including quantum metric fluctuation. The results are automatically regularized or finite. The magnetic anomaly and Lamb shift are also calculated in the one loop approximation in this method. Finally, the obtained results are compared to conventional QED results.

  5. Optimization of Regularization Parameters in Compressed Sensing of Magnetic Resonance Angiography: Can Statistical Image Metrics Mimic Radiologists' Perception?

    PubMed Central

    Akasaka, Thai; Fujimoto, Koji; Yamamoto, Takayuki; Okada, Tomohisa; Fushumi, Yasutaka; Yamamoto, Akira; Tanaka, Toshiyuki; Togashi, Kaori

    2016-01-01

    In Compressed Sensing (CS) of MRI, optimization of the regularization parameters is not a trivial task. We aimed to establish a method that could determine the optimal weights for regularization parameters in CS of time-of-flight MR angiography (TOF-MRA) by comparing various image metrics with radiologists’ visual evaluation. TOF-MRA of a healthy volunteer was scanned using a 3T-MR system. Images were reconstructed by CS from retrospectively under-sampled data by varying the weights for the L1 norm of wavelet coefficients and that of total variation. The reconstructed images were evaluated both quantitatively by statistical image metrics including structural similarity (SSIM), scale invariant feature transform (SIFT) and contrast-to-noise ratio (CNR), and qualitatively by radiologists’ scoring. The results of quantitative metrics and qualitative scorings were compared. SSIM and SIFT in conjunction with brain masks and CNR of artery-to-parenchyma correlated very well with radiologists’ visual evaluation. By carefully selecting a region to measure, we have shown that statistical image metrics can reflect radiologists’ visual evaluation, thus enabling an appropriate optimization of regularization parameters for CS. PMID:26744843

  6. Propagation and Evolution of Interplanetary Magnetic Clouds: Global Simulations and Comparisons with Observations

    NASA Astrophysics Data System (ADS)

    Riley, P.; Ben-Nun, M.; Linker, J.; Torok, T.; Lionello, R.; Downs, C.

    2014-12-01

    In this talk, we explore the evolution of interplanetary coronal mass ejections (ICMEs), and fast magnetic clouds (MCs) in particular. We address three specific issues. First, What are the large-scale forces acting on ejecta as they travel from the Sun to 1 AU through a realistic ambient solar wind, and how does they affect the large-scale structure of the event? Second, what are the dominant waves/shocks associated with fast ICMEs? And third, how are the properties of ICMEs different during cycle 24 than during the previous cycle? To accomplish these objectives, we employ a variety of numerical approaches, including global resistive MHD models that incorporate realistic energy transport processes. We also compare and contrast model results with both remote solar and in-situ measurements of ICMEs at 1 AU and elsewhere, including the so-called ``Bastille Day'' event of July 14, 2000, and the more recent ``extreme ICME'' observed by STEREO-A on July 23, 2012.

  7. Selection Effects in Identifying Magnetic Clouds and the Importance of the Closest Approach Parameter

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.; Wu, Chin-Chun

    2010-01-01

    This study is motivated by the unusually low number of magnetic clouds (MCs) that are strictly identified within interplanetary coronal mass ejections (ICMEs), as observed at 1 AU; this is usually estimated to be around 30% or lower. But a looser definition of MCs may significantly increase this percentage. Another motivation is the unexpected shape of the occurrence distribution of the observers' "closest approach distances" (measured from a MC's axis, and called CA) which drops off somewhat rapidly as |CA| (in % of MC radius) approaches 100%, based on earlier studies. We suggest, for various geometrical and physical reasons, that the |CA|-distribution should be somewhere between a uniform one and the one actually observed, and therefore the 30% estimate should be higher. So we ask, When there is a failure to identify a MC within an ICME, is it occasionally due to a large |CA| passage, making MC identification more difficult, i.e., is it due to an event selection effect? In attempting to answer this question we examine WIND data to obtain an accurate distribution of the number of MCs vs. |CA| distance, whether the event is ICME-related or not, where initially a large number of cases (N=98) are considered. This gives a frequence distribution that is far from uniform, confirming earlier studies. This along with the fact that there are many ICME identification-parameters that do not depend on |CA| suggest that, indeed an MC event selection effect may explain at least part of the low ratio of (No. MCs)/(No. ICMEs). We also show that there is an acceptable geometrical and physical consistency in the relationships for both average "normalized" magnetic field intensity change and field direction change vs. |CA| within a MC, suggesting that our estimates of |CA|, B(sub 0) (magnetic field intensity on the axis), and choice of a proper "cloud coordinate" system (all needed in the analysis) are acceptably accurate. Therefore the MC fitting model (Lepping et al., 1990) is

  8. Dust Properties and Magnetic Fields in MSX Infrared-Dark Clouds

    NASA Astrophysics Data System (ADS)

    Carey, S. J.; Feldman, P. A.; Redman, R. O.; Egan, M. P.; Mizuno, D.; Kuchar, T.; Price, S.

    1999-12-01

    The Midcourse Space Experiment (MSX) infrared-dark clouds (IRDCs) are a population of a few thousand molecular cores that have been identified by their substantial mid-infrared (8-25 μ m) extinctions in the MSX Galactic Plane survey images (Egan et al. 1998, ApJL, 494, L199). Subsequent observations have revealed IRDCs to contain cold (T < 15 K), dense (n 106 cm-3) molecular gas (Carey et al. 1998, ApJ, 508, 721). The IRDCs are distributed along spiral arms and are located near but do not contain star formation tracers such as HII regions and H2O maser emission. Continuum maps at 450 and 850 μ m taken with SCUBA on the JCMT reveal bright knots of emission within the envelope of emission associated with the IRDCs. Many IRDCs are filamentary in nature. The bright emission knots have HCO+ and CO line profiles indicative of outflow and/or infall with several sources exhibiting the blue-red asymmetry characteristic of infall. The IRDCs appear to be large, cold molecular cores in the earliest stages of star formation. We present a detailed comparison of the extinction at 8 μ m derived from the soon-to-be released MSX Galactic Plane survey images ( 18'' resolution) to the 450/850 μ m emission (14'' resolution). The morphologies of the submillimeter emission and mid-infrared extinction are in good agreement. From the comparison, we will determine the dust column density and constrain dust temperature and emissivity. In addition, we present very recent polarimetric imaging of IRDCs at 850 μ m. A relatively high degree of polarization at 850 μ m is seen, suggesting that a well-ordered magnetic field may be present within most IRDCs. In general, the magnetic fields thread the filaments with a more complicated structure near the embedded sources. We will examine the structure of the magnetic field and the star formation properties of IRDCs using the mid-infrared and submillimeter images, submillimeter polarimetry and CO and HCO+ line maps.

  9. Reconnection Remnants in the Magnetic Cloud of October 18-19, 1995: A Shock, Monochromatic Wave, Heat Flux Dropout and Energetic Ion Beam

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Szabo, A.; Farrell, W.; Slavin, J. A.; Lepping, R. P.; Fitzenreiter, R.; Thompson, B.; Hamilton, D. C.; Gloeckler, G.; Ho, G. C.

    2000-01-01

    Evidence is presented that the WIND spacecraft observed particle and field signatures on October 18-19, 1995 due to reconnection near the footpoints of a magnetic cloud (i.e., between 1 and 5 solar radii). These signatures include: (1) an internal shock traveling approximately along the axis of the magnetic cloud, (2) a simple compression of the magnetic field consistent with the footpoint magnetic fields being thrust outwards at speeds much greater than the solar wind speed, (3) an electron heat flux dropout occurring within minutes of the shock indicating a topological change resulting from disconnection from the solar surface, (4) a very cold 5 keV proton beam and (5) an associated monochromatic wave. We expect that, given observations of enough magnetic clouds, Wind and other spacecraft will see signatures similar to the ones reported here indicating reconnection. However, these observations require the spacecraft to be fortuitously positioned to observe the passing shock and other signatures and will therefore be associated with only a small fraction of magnetic clouds. Consistent with this, a few magnetic clouds observed by Wind have been found to possess internal shock waves.

  10. Effect of surface conductivity on the peak magnetic field radiated by first return strokes in cloud-to-ground lightning

    NASA Technical Reports Server (NTRS)

    Tyahla, Lori J.; Lopez, Raul E.

    1994-01-01

    The effect of surface conductivity on the peak magnetic field radiated by the first return stroke in cloud-to-ground lightning was investigated by comparing the peak magnetic fields from return strokes that struck water with those that struck land. The data were obtained from a network of three gated, wideband magnetic direction finders (DFs) at the NASA Kennedy Space Center during the summer of 1985. Two geographical areas that were equidistant from two of the direction finders were compared where the flash distances ranged from approximately 40 to 60 km. An unbiased data set was obtained by correcting site errors, equalizing differences in sensor gain, eliminating directional biases in DF triggering, and keeping differences in signal attenuation over the two surfaces to a minimum. When a statistical analysis was performed on the frequency distributions of the signal amplitudes, there was no statistically significant difference in the peak amplitudes of first return strokes over land (lambda = 8.2 x 10(exp -3) mho/m) and over water (lambda = 4 mho/m). Therefore we infer that the conductivity of the underlying surface does not significantly affect the magnitude of the peak magnetic field, and hence the peak current, in the first return stroke of a cloud-to-ground lightning flash.

  11. Low-frequency waves within isolated magnetic clouds and complex structures: STEREO observations

    NASA Astrophysics Data System (ADS)

    Siu-Tapia, A.; Blanco-Cano, X.; Kajdic, P.; Aguilar-Rodriguez, E.; Russell, C. T.; Jian, L. K.; Luhmann, J. G.

    2015-04-01

    Complex Structures (CSs) formed by the interaction of magnetic cloud (MC)-like structures with other transients (e.g., another MC, a stream interaction region, or a fast stream of solar wind) were frequently observed in the interplanetary space by STEREO spacecraft during the solar minimum 23 and the rising phase of the solar cycle 24. Here we report the presence of low-frequency waves (LFWs) inside some isolated MCs (IMCs) and inside the CSs observed by STEREO during such period (2007-2011). It is important to study in detail the properties of waves in space plasmas since particle distribution functions can be modified by wave-particle interactions. We compare wave characteristics within IMCs with those waves observed inside CSs. Both left-handed (LH) and right-handed (RH), near-circularly polarized, transverse and almost parallel-propagating LFWs (around the proton cyclotron frequency) were sporadically observed inside both IMCs and CSs. In contrast, compressive mirror-mode waves (MMs) were observed only within CSs. We studied local plasma conditions inside the IMCs and CSs to gain insight about wave origin: most of the MMs within CSs were observed in regions with enhanced plasma beta (β>1) the majority of the LH waves were found in low beta plasmas (β<1), and the RH waves were predominantly observed at moderate betas (0.4<β≤2). These observations are in agreement with linear kinetic theory predictions for the growth of the mirror, the LH ion cyclotron, and the RH ion firehose instability, respectively. It is possible that the waves were generated locally inside the IMCs and CSs via temperature anisotropies. The plasma beta enhancements that were frequently observed inside the CSs may be the result of compressions and heating taking place inside the interacting structures.

  12. Arrival time of solar eruptive CMEs associated with ICMEs of magnetic cloud and ejecta

    NASA Astrophysics Data System (ADS)

    Shanmugaraju, A.; Syed Ibrahim, M.; Moon, Y.-J.; Kasro Lourdhina, K.; Dharanya, M.

    2015-05-01

    The Coronal Mass Ejection (CME) is an eruptive event in which magnetic plasma is ejected from the Sun into space through the solar corona. We considered a set of 51 Interplanetary Coronal Mass Ejections (ICMEs) listed by Kim et al. (Solar Phys. 184:77, 2013) from Coordinated Data Analysis Workshop (CDAW, Gopalswamy et al. in Astrophys. J. 710:1111, 2010). Among the 51 events, 22 events are classified as Magnetic Clouds (MC) and 29 events are classified as Ejecta (EJ) where the MC and EJ are subsets of ICMEs. We have analyzed the physical properties of CMEs and ICMEs associated with MC and EJ, and correlated them with the CME's transit time/arrival time from the Sun to the Earth. Main aims of the present study are to examine (a) dependence of transit time on the properties of CMEs and ICMEs, and (b) differences between MC and EJ. It is found that CME's initial speed decides the transit time which is in support of the known results in literature. Apart from this, some important results from the present study are: (i) transit time predicted using an empirical relation obtained in the present work is found comparable with the observations (correlation coefficient=0.70). (ii) The transit time of MC and EJ-associated CMEs ranges from 20 to 120 hours and IP acceleration lies between -10 m/s2 to 5 m/s2. (iii) There are certain differences between MC and EJ such as: (a) Ejecta takes slightly more time to travel and only 30 % of them are accelerated in the interplanetary medium. Whereas, MC takes less time to travel and nearly 50 % of them are accelerated, (b) The correlations of IP acceleration and speed with transit time are higher for MC than that of EJ, (c) A weak relationship between the deflection and transit time is found for MC, but it is absent in the case of EJ and (d) Only EJ-type CMEs have wider range of direction parameter and acceleration. Further, we checked the solar wind speed as another parameter has any influence on CME acceleration and it shows that there

  13. Characterization of a double flux-rope magnetic cloud observed by ACE spacecraft on August 19-21, 1998

    NASA Astrophysics Data System (ADS)

    Ojeda González, A.; Mendes, O.; Domingues Oliveira, M.; Moestl, C.; Farrugia, C. J.; Gonzalez, W. D.

    2013-05-01

    Investigations have studied MC cases of double flux rope configuration with apparent asymmetry. Grad-Shafranov reconstruction technique allows deriving the local magnetic structure from data of a single spacecraft. The results obtained show two cylindrical flux ropes next to each other, where a single X point forms between them. In all possible combinations of two bipolar MCs, the magnetic field between them is antiparallel in eight cases SWN-SWN, SWN-SEN, SEN-SWN, SEN-SEN, NWS-NWS, NWS-NES, NES-NWS, NES-NWS. If clouds are under magnetic coupling, reconnection evidences are expected from the interaction between them. In this work, we examine the event that occurred at Aug. 19-21, 1998 using solar wind measurements collected by ACE. In Fig. 1 a) presents the recovered cross-section of the two bipolar MCs (SEN-SWN). The black contour lines show the transverse magnetic field lines (calculated as the contours of the magnetic potential function A(x,y)), and the colors show the axial magnetic field Bz distribution. The yellow arrows along y=0 denote measured transverse magnetic field vectors, direction and magnitude measurements at ACE utilized as initial input into the numerical solver. The green arrows are residual velocities in the deHoffmann-Teller frame at ACE. The spacecraft crosses the X point and observes the exact moment of the magnetic reconnection, from 0.13 to 0.15 AU in x axis. In the opposite corners of the X point, the magnetic fields are antiparallel (see yellow arrows in this region). The residual velocity (green arrow in y=0) in the deHoffmann-Teller frame at ACE is perpendicular to the magnetic field line in the reconnection region. In principle, it is possible to adjust a two-dimension model considering the most common separator reconnection, in which four separate magnetic domains exchange magnetic field lines. In Fig. 1 b), the cross-section through four magnetic domains undergoing separator reconnection is represented. The green array in the top

  14. On the alignment of Classical T Tauri stars with the magnetic field in the Taurus-Auriga molecular cloud

    NASA Astrophysics Data System (ADS)

    Ménard, F.; Duchêne, G.

    2004-10-01

    In this paper we readdress the issue of the alignment of Classical T Tauri stars (CTTS) with the magnetic field in the Taurus-Auriga molecular cloud. Previous studies have claimed that the jet axis of active young stellar objects (YSO), projected in the plane of the sky, is aligned preferentially along the projected direction of the local magnetic field. We re-examine this issue in view of the numerous high angular resolution images of circumstellar disks and micro-jets now available. The images show that T Tauri stars as a group are oriented randomly with respect to the local magnetic field, contrary to previous claims. This indicates that the magnetic field may play a lesser role in the final stages of collapse of an individual prestellar core than previously envisioned. The current database also suggests that a subsample of CTTS with resolved disks but without observations of bright and extended outflows have a tendency to align perpendicularly to the magnetic field. We discuss the possibility that this may trace a less favorable topology, e.g., quadrupolar, for the magnetic field in the inner disk, resulting in a weaker collimated outflow.

  15. Magnetospheric Response to the Arrival of the Shock Wave in Front of the Magnetic Cloud of January 10, 1997

    NASA Technical Reports Server (NTRS)

    Wuest, M.; Huddleston, M. M.; Burch, J. L.; Dempsey, D. L.; Craven, P. D.; Chandler, M. O.; Spann, J. F.; Peterson, W. K.; Collin, H. L.; Lennartsson, W.

    1999-01-01

    We are Studying the magnetic cloud event of January 6 - 11, 1997. Specifically, we have investigated the response of the magnetosphere to the shock wave in front of the magnetic cloud on January 10, 1997 using data from WIND, GEOTAIL and POLAR spacecraft as well as ground magnetometer data. The WIND spacecraft, which was located as about 104 Re upstream from the Earth (85.1, -55.2, -22.1) Re(sub GSM), observed the arrival of the shock wave front at 0050 UT. Geotail was located at the equatorial magnetopause (approx. 8.7 Re, 10.7 MLT, -7.46 MLAT), while POLAR was located in the northern dawn sector above the auroral zone at 8.4 Re, 6.1 MLT and 61.1 MLAT. A magnetic signature was nearly simultaneously observed at about 0104 UT at the POLAR and Geotail spacecraft. The Geotail spacecraft entered from the magnetosphere into the magnetosheath. Particle density increases were observed on WIND and Geotail, but not on POLAR. Two instruments on the Polar spacecraft (TIDE and TIMAS) actually observed a slight reduction in energy, density and temperature. The UV aurora shows a dawnside intensification. The shock wave did not cause an auroral substorm and therefore was not geoeffective.

  16. The (non-)variability of magnetic chemically peculiar candidates in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Paunzen, E.; Mikulášek, Z.; Poleski, R.; Krtička, J.; Netopil, M.; Zejda, M.

    2013-08-01

    Context. The galactic magnetic chemically peculiar (mCP) stars of the upper main sequence are well known as periodic spectral and light variables. The observed variability is obviously caused by the uneven distribution of overabundant chemical elements on the surfaces of rigidly rotating stars. The mechanism causing the clustering of some chemical elements into disparate structures on mCP stars has not been fully understood up to now. The observations of light changes of mCP candidates recently revealed in the nearby Large Magellanic Cloud (LMC) should provide us with information about their rotational periods and about the distribution of optically active elements on mCP stars born in other galaxies. Aims: We queried for photometry at the Optical Gravitational Lensing Experiment (OGLE)-III survey of published mCP candidates selected because of the presence of the characteristic λ5200 Å flux depression. In total, the intersection of both sources resulted in twelve stars. For these objects and two control stars, we searched for a periodic variability. Methods: We performed our own and standard periodogram time series analyses of all available data. The final results are, amongst others, the frequency of the maximum peak and the bootstrap probability of its reality. Results: We detected that only two mCP candidates, 190.1 1581 and 190.1 15527, may show some weak rotationally modulated light variations with periods of 1.23 and 0.49 days; however, the 49% and 32% probabilities of their reality are not very satisfying. The variability of the other 10 mCP candidates is too low to be detectable by their V and I OGLE photometry. Conclusions: The relatively low amplitude variability of the studied LMC mCP candidates sample can be explained by the absence of photometric spots of overabundant optically active chemical elements. The unexpected LMC mCPs behaviour is probably caused by different conditions during the star formation in the LMC and the Galaxy. Figures 11-22 are

  17. Multi-Physics Feedback Simulations with Realistic Initial Conditions of the Formation of Star Clusters: From Large Scale Magnetized Clouds to Turbulent Clumps to Cores to Stars

    NASA Astrophysics Data System (ADS)

    Klein, R. I.; Li, P.; McKee, C. F.

    2015-10-01

    Multi-physics zoom-in adaptive mesh refinement simulations with feedback and realistic initial conditions, starting from large scale turbulent molecular clouds through the formation of clumps and cores to the formation os stellar clusters are presented. I give a summary of results at the different scales undergoing gravitational collapse from cloud to core to cluster formation. Detailed comparisons with observations are made at each stage of the simulations. In particular, properties of the magnetized clumps are compared with recent observations of Crutcher et al. 2010 and Crutcher 2012 and the magnetic field orientation in cloud clumps relative to the global mean field of the inter-cloud medium (Li et al. 2009). The Initial Mass Function (IMF) obtained is compared with the Chabrier IMF and the protostellar mass function of the cluster is compared with different theories.

  18. Regularly scheduled, day-time, slow-onset 60 Hz electric and magnetic field exposure does not depress serum melatonin concentration in nonhuman primates

    SciTech Connect

    Rogers, W.R.; Smith, H.D.; Orr, J.L.; Reiter, R.J.; Barlow-Walden, L.

    1995-12-31

    Experiments conducted with laboratory rodents indicate that exposure to 60 Hz electric fields or magnetic fields can suppress nocturnal melatonin concentrations in pineal gland and blood. In three experiments employing three field-exposed and three sham-exposed nonhuman primates, each implanted with an indwelling venous cannula to allow repeated blood sampling, the authors studied the effects of either 6 kV/m and 50 {micro}T (0.5 G) or 30 kV/m and 100 {micro}T (1.0 G) on serum melatonin patterns. The fields were ramped on and off slowly, so that no transients occurred. Extensive quality control for the melatonin assay, computerized control and monitoring of field intensities, and consistent exposure protocols were used. No changes in nocturnal serum melatonin concentration resulted from 6 weeks of day-time exposure with slow field onset/offset and a highly regular exposure protocol. These results indicate that, under the conditions tested, day-time exposure to 60 Hz electric and magnetic fields in combination does not result in melatonin suppression in primates.

  19. The Fraction of Interplanetary Coronal Mass Ejections That Are Magnetic Clouds: Evidence for a Solar Cycle Variation

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2004-01-01

    "Magnetic clouds" (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) characterized by enhanced magnetic fields with an organized rotation in direction, and low plasma beta. Though intensely studied, MCs only constitute a fraction of all the ICMEs that are detected in the solar wind. A comprehensive survey of ICMEs in the near- Earth solar wind during the ascending, maximum and early declining phases of solar cycle 23 in 1996 - 2003 shows that the MC fraction varies with the phase of the solar cycle, from approximately 100% (though with low statistics) at solar minimum to approximately 15% at solar maximum. A similar trend is evident in near-Earth observations during solar cycles 20 - 21, while Helios 1/2 spacecraft observations at 0.3 - 1.0 AU show a weaker trend and larger MC fraction.

  20. Reconstruction of the 2007 May 22 Magnetic Cloud: How Much Can We Trust the Flux-Rope Geometry of CMEs?

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Luhmann, J. G.; Huttunen, K. E. J.; Lin, R. P.; Bale, S. D.; Russell, C. T.; Galvin, A. B.

    2008-04-01

    Coronal mass ejections (CMEs) are often assumed to be magnetic flux ropes, but direct proof has been lacking. A key feature, resulting from the translational symmetry of a flux rope, is that the total transverse pressure as well as the axial magnetic field has the same functional form over the vector potential along any crossing of the flux rope. We test this feature (and hence the flux-rope structure) by reconstructing the 2007 May 22 magnetic cloud (MC) observed at STEREO B, Wind/ACE, and possibly STEREO A with the Grad-Shafranov (GS) method. The model output from reconstruction at STEREO B agrees fairly well with the magnetic field and thermal pressure observed at ACE/Wind; the separation between STEREO B and ACE/Wind is about 0.06 AU, almost half of the MC radial width. For the first time, we reproduce observations at one spacecraft with data from another well-separated spacecraft, which provides compelling evidence for the flux-rope geometry and is of importance for understanding CME initiation and propagation. We also discuss the global configuration of the MC at different spacecraft on the basis of the reconstruction results.

  1. Wind Magnetic Clouds for 2010-2012: Model Parameter Fittings, Associated Shock Waves, and Comparisons to Earlier Periods

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.; Wu, C.-C.; Berdichevsky, D. B.; Szabo, A.

    2015-01-01

    We fitted the parameters of magnetic clouds (MCs) as identified in the Wind spacecraft data from early 2010 to the end of 2012 using the model of Lepping, Jones, and Burlaga (J. Geophys. Res. 95, 1195, 1990). The interval contains 48 MCs and 39 magnetic cloud-like (MCL) events. This work is a continuation of MC model fittings of the earlier Wind sets, including those in a recent publication, which covers 2007 to 2009. This period (2010 - 2012) mainly covers the maximum portion of Solar Cycle 24. Between the previous and current interval, we document 5.7 years of MCs observations. For this interval, the occurrence frequency of MCs markedly increased in the last third of the time. In addition, over approximately the last six years, the MC type (i.e. the profile of the magnetic-field direction within an MC, such as North-to-South, South-to-North, all South) dramatically evolved to mainly North-to-South types when compared to earlier years. Furthermore, this evolution of MC type is consistent with global solar magnetic-field changes predicted by Bothmer and Rust (Coronal Mass Ejections, 139, 1997). Model fit parameters for the MCs are listed for 2010 - 2012. For the 5.7 year interval, the observed MCs are found to be slower, weaker in estimated axial magnetic-field intensity, and shorter in duration than those of the earlier 12.3 years, yielding much lower axial magnetic-field fluxes. For about the first half of this 5.7 year period, i.e. up to the end of 2009, there were very few associated MC-driven shock waves (distinctly fewer than the long-term average of about 50 % of MCs). But since 2010, such driven shocks have increased markedly, reflecting similar statistics as the long-term averages. We estimate that 56 % of the total observed MCs have upstream shocks when the full interval of 1995 - 2012 is considered. However, only 28 % of the total number of MCLs have driven shocks over the same period. Some interplanetary shocks during the 2010 - 2012 interval are seen

  2. Origins of Giant Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Ostriker, E. C.; Kim, W.-T.

    2004-12-01

    The material in giant molecular clouds (GMCs) constitutes a large proportion of the Milky Way's ISM, and determining how cloud-formation processes affect the properties and spatial distribution of GMCs is important to understanding the structure of the Milky Way. Understanding the formation of GMCs is also key to theories of galactic evolution because it represents the first stage in the overall process of star formation. Several lines of evidence point to a need for relatively rapid GMC formation via coherent dynamical instabilities, and both Parker- and Jeans- type modes have been proposed as potential cloud-forming mechanisms. Recent numerical simulations have investigated these instabilities directly, using spatially-localized models of the interstellar medium that self-consistently incorporate rotational shear, self-gravity, and magnetic fields, as well as the effects of stellar spiral arms. These models have demonstrated that condensation via gravitational instability, aided by magnetic torques, is the most likely candidate for explaining the formation of GMCs. The models have also shown that spiral arm ``spurs'' -- clearly seen as regular projections from dust lanes in at least one external galaxy -- may originate as magneto-gravitational instabilities of the ISM within the dense portions of stellar spiral arms. This raises the interesting possibility that spur structures with similar dynamical origins could potentially be present in the Milky Way as well.

  3. The Distribution of Cloud to Ground Lightning Strike Intensities and Associated Magnetic Inductance Fields Near the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Burns, Lee; Decker, Ryan

    2005-01-01

    Lightning strike location and peak current are monitored operationally in the Kennedy Space Center (KSC) Cape Canaveral Air Force Station (CCAFS) area by the Cloud to Ground Lightning Surveillance System (CGLSS). The present study compiles ten years worth of CGLSS data into a database of near strikes. Using shuffle launch platform LP39A as a convenient central point, all strikes recorded within a 20-mile radius for the period of record O R ) from January 1, 1993 to December 31,2002 were included in the subset database. Histograms and cumulative probability curves are produced for both strike intensity (peak current, in kA) and the corresponding magnetic inductance fields (in A/m). Results for the full POR have application to launch operations lightning monitoring and post-strike test procedures.

  4. Differences in generation of magnetic storms driven by magnetic clouds, ejecta, sheath region before ICME and CIR

    NASA Astrophysics Data System (ADS)

    Nikolaeva, Nadezhda; Yermolaev, Yuri; Lodkina, Irina

    2016-07-01

    We investigate the efficiency of main phase storm generation by different solar wind (SW) streams when using 12 functions coupling (FC) various interplanetary parameters with magnetospheric state. By using our Catalog of Solar Wind Phenomena [Yermolaev et al., 2009] created on the basis of the OMNI database for 1976-2000, we selected the magnetic storms with Dst ≤ -50 nT for which interplanetary sources were following: MC (10 storms); Ejecta (31 storms); Sheath (21 storms); CIRs (31magnetic storms). To compare the interplanetary drivers we estimate an efficiency of magnetic storm generation by type of solar wind stream with using 12 coupling functions. We obtained that in average Sheath has more large efficiency of the magnetic storm generation and MC has more low efficiency in agreement with our previous results which show that by using a modification of formula by Burton et al. [1975] for connection of interplanetary conditions with Dst and Dst* indices the efficiency of storm generation by Sheath and CIR was ~50% higher than generation by ICME [Nikolaeva et al., 2013; 2015]. The most part of FCs has sufficiently high correlation coefficients. In particular the highest values of coefficients (~ 0.5 up to 0.63) are observed for Sheath- driven storms. In a small part of FCs with low coefficients it is necessary to increase the number of magnetic storms to increase the statistical significance of results. The reliability of the obtained data and possible reasons of divergences for various FCs and various SW types require further researches. The authors are grateful for the opportunity to use the OMNI database. This work was supported by the Russian Foundation for Basic Research, project 16-02-00125, and by Program of Presidium of the Russian Academy of Sciences. References: Nikolaeva, N. S., Y. I. Yermolaev, and I. G. Lodkina (2013), Modeling of Dst-index temporal profile on the main phase of the magnetic storms generated by different types of solar wind, Cosmic

  5. Induced core formation time in subcritical magnetic clouds by large-scale trans-Alfvénic flows

    SciTech Connect

    Kudoh, Takahiro; Basu, Shantanu E-mail: basu@uwo.ca

    2014-10-20

    We clarify the mechanism of accelerated core formation by large-scale nonlinear flows in subcritical magnetic clouds by finding a semi-analytical formula for the core formation time and describing the physical processes that lead to them. Recent numerical simulations show that nonlinear flows induce rapid ambipolar diffusion that leads to localized supercritical regions that can collapse. Here, we employ non-ideal magnetohydrodynamic simulations including ambipolar diffusion for gravitationally stratified sheets threaded by vertical magnetic fields. One of the horizontal dimensions is eliminated, resulting in a simpler two-dimensional simulation that can clarify the basic process of accelerated core formation. A parameter study of simulations shows that the core formation time is inversely proportional to the square of the flow speed when the flow speed is greater than the Alfvén speed. We find a semi-analytical formula that explains this numerical result. The formula also predicts that the core formation time is about three times shorter than that with no turbulence, when the turbulent speed is comparable to the Alfvén speed.

  6. A Statistical Study of the Average Iron Charge State Distributions inside Magnetic Clouds for Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Song, H. Q.; Zhong, Z.; Chen, Y.; Zhang, J.; Cheng, X.; Zhao, L.; Hu, Q.; Li, G.

    2016-06-01

    Magnetic clouds (MCs) are the interplanetary counterparts of coronal magnetic flux ropes. They can provide valuable information regarding flux rope characteristics at their eruption stage in the corona, which is unable to be explored in situ at present. In this paper, we make a comprehensive survey of the average iron charge-state (< Q> {Fe}) distributions inside 96 MCs for solar cycle 23 using Advanced Composition Explorer (ACE) data. Since the < Q> {Fe} in the solar wind are typically around 9+ to 11+, the Fe charge state is defined as being high when the < Q> {Fe} is larger than 12+, which implies the existence of a considerable amount of Fe ions with high charge states (e.g., ≥16+). The statistical results show that the < Q> {Fe} distributions of 92 (∼96%) MCs can be classified into four groups with different characteristics. In group A (11 MCs), the < Q> {Fe} shows a bi-modal distribution with both peaks being higher than 12+. Group B (4 MCs) presents a unimodal distribution of < Q> {Fe}, with its peak being higher than 12+. In groups C (29 MCs) and D (48 MCs), the < Q> {Fe} remains higher and lower than 12+ throughout ACE’s passage through the MC, respectively. Possible explanations of these distributions are discussed.

  7. Dispersion of Magnetic Fields in Molecular Clouds. IV. Analysis of Interferometry Data

    NASA Astrophysics Data System (ADS)

    Houde, Martin; Hull, Charles L. H.; Plambeck, Richard L.; Vaillancourt, John E.; Hildebrand, Roger H.

    2016-03-01

    We expand on the dispersion analysis of polarimetry maps toward applications to interferometry data. We show how the filtering of low spatial frequencies can be accounted for within the idealized Gaussian turbulence model, initially introduced for single-dish data analysis, to recover reliable estimates for correlation lengths of magnetized turbulence, as well as magnetic field strengths (plane-of-the-sky component) using the Davis-Chandrasekhar-Fermi method. We apply our updated technique to TADPOL/CARMA data obtained on W3(OH), W3 Main, and DR21(OH). For W3(OH), our analysis yields a turbulence correlation length δ ≃ 19 mpc, a ratio of turbulent-to-total magnetic energy < {B}{{t}}2> /< {B}2> ≃ 0.58, and a magnetic field strength {B}0˜ 1.1 {mG}; for W3 Main δ ≃ 22 mpc, < {B}{{t}}2> /< {B}2> ≃ 0.74, and {B}0˜ 0.7 {mG}; while for DR21(OH) δ ≃ 12 mpc, < {B}{{t}}2> /< {B}2> ≃ 0.70, and {B}0˜ 1.2 {mG}.

  8. Chandra Observations of a Young Embedded Magnetic B Star in the p Ophiuchus Cloud

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Imanishi, Kensuke

    2002-01-01

    This paper reports the analysis of two Chandra X-ray observations of the young magnetic B star rho Ophiuchus S1. X-ray emission from the star was detected in both observations. The average flux is almost the same in both, but during each observation the flux shows significant time variations by a factor of two on timescales of 20-40 ksec. Each spectrum can be fit by either an absorbed power law model with a photon index of approx. -3 or a thin-thermal plasma model with a temperature of approx. 2 keV and an extremely low metal abundance (approx. less than 0.1 solar). The spectrum of the first observation has an apparent line feature at about 6.8 keV, which likely corresponds to highly ionized iron K alpha. In contrast, the spectrum of the second observation shows an anomalous edge absorption component at E approx. 1 keV. The continuum emission and log (L(sub X)/L(sub bol)) approx. -6 are similar to those of young intermediate-mass stars (Herbig Ae/Be stars) although the presence of the magnetic field inferred from the detection of non-thermal radio emission has drawn an analogy between rho Ophiuchus S1 and magnetic chemically peculiar (MCP) stars. If the X-ray emission is thermal, the highest plasma temperature observed is too high to be explained by the conventional theories of magnetic stars, and favors some kind of magnetic dynamo activity, while if the emission is nonthermal, it might be related to mass infall. The 6.8 keV line and 4 keV edge features are marginal but they give important information near the stellar body if they are real. Their physical interpretation is discussed.

  9. FORMATION OF MASSIVE MOLECULAR CLOUD CORES BY CLOUD-CLOUD COLLISION

    SciTech Connect

    Inoue, Tsuyoshi; Fukui, Yasuo

    2013-09-10

    Recent observations of molecular clouds around rich massive star clusters including NGC 3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by cloud-cloud collision. We find that the massive molecular cloud cores have large effective Jeans mass owing to the enhancement of the magnetic field strength by shock compression and turbulence in the compressed layer. Our results predict that massive molecular cloud cores formed by the cloud-cloud collision are filamentary and threaded by magnetic fields perpendicular to the filament.

  10. Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness: 2. Oblique collision

    NASA Astrophysics Data System (ADS)

    Xiong, Ming; Zheng, Huinan; Wang, Shui

    2009-11-01

    The numerical studies of the interplanetary coupling between multiple magnetic clouds (MCs) are continued by a 2.5-dimensional ideal magnetohydrodynamic (MHD) model in the heliospheric meridional plane. The interplanetary direct collision (DC)/oblique collision (OC) between both MCs results from their same/different initial propagation orientations. Here the OC is explored in contrast to the results of the DC. Both the slow MC1 and fast MC2 are consequently injected from the different heliospheric latitudes to form a compound stream during the interplanetary propagation. The MC1 and MC2 undergo contrary deflections during the process of oblique collision. Their deflection angles of ∣δ$\\theta$1∣ and ∣δ$\\theta$2∣ continuously increase until both MC-driven shock fronts are merged into a stronger compound one. The ∣δ$\\theta$1∣, ∣δ$\\theta$2∣, and total deflection angle Δ$\\theta$ (Δ$\\theta$ = ∣δ$\\theta$1∣ + ∣δ$\\theta$2∣) reach their corresponding maxima when the initial eruptions of both MCs are at an appropriate angular difference. Moreover, with the increase of MC2's initial speed, the OC becomes more intense, and the enhancement of δ$\\theta$1 is much more sensitive to δ$\\theta$2. The ∣δ$\\theta$1∣ is generally far less than the ∣δ$\\theta$2∣, and the unusual case of ∣δ$\\theta$1∣ $\\simeq$ ∣δ$\\theta$2∣ only occurs for an extremely violent OC. But because of the elasticity of the MC body to buffer the collision, this deflection would gradually approach an asymptotic degree. As a result, the opposite deflection between the two MCs, together with the inherent magnetic elasticity of each MC, could efficiently relieve the external compression for the OC in the interplanetary space. Such a deflection effect for the OC case is essentially absent for the DC case. Therefore, besides the magnetic elasticity, magnetic helicity, and reciprocal compression, the deflection due to the OC should be considered for the

  11. The interaction of a magnetic cloud with the Earth - Ionospheric convection in the Northern and Southern Hemispheres for a wide range of quasi-steady interplanetary magnetic field conditions

    NASA Technical Reports Server (NTRS)

    Freeman, M. P.; Farrugia, C. J.; Burlaga, L. F.; Hairston, M. R.; Greenspan, M. E.; Ruohoniemi, J. M.; Lepping, R. P.

    1993-01-01

    Observations are presented of the ionospheric convection in cross sections of the polar cap and auroral zone as part of the study of the interaction of the Earth's magnetosphere with the magnetic cloud of January 13-15, 1988. For strongly northward IMF, the convection in the Southern Hemisphere is characterized by a two-cell convection pattern comfined to high latitudes with sunward flow over the pole. The strength of the flows is comparable to that later seen under southward IMF. Superimposed on this convection pattern there are clear dawn-dusk asymmetries associated with a one-cell convection component whose sense depends on the polarity of the magnetic cloud's large east-west magnetic field component. When the cloud's magnetic field turns southward, the convection is characterized by a two-cell pattern extending to lower latitude with antisunward flow over the pole. There is no evident interhemispheric difference in the structure and strength of the convection. Superimposed dawn-dusk asymmetries in the flow patterns are observed which are only in part attributable to the east-west component of the magnetic field.

  12. Erratum to "Solar Sources and Geospace Consequences of Interplanetary Magnetic Clouds Observed During Solar Cycle 23-Paper 1" [J. Atmos. Sol.-Terr. Phys. 70(2-4) (2008) 245-253

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Akiyama, S.; Yashiro, S.; Michalek, G.; Lepping, R. P.

    2009-01-01

    One of the figures (Fig. 4) in "Solar sources and geospace consequences of interplanetary magnetic Clouds observed during solar cycle 23 -- Paper 1" by Gopalswamy et al. (2008, JASTP, Vol. 70, Issues 2-4, February 2008, pp. 245-253) is incorrect because of a software error in t he routine that was used to make the plot. The source positions of various magnetic cloud (MC) types are therefore not plotted correctly.

  13. Transport and entry of plasma clouds/jets across transverse magnetic discontinuities: Three-dimensional electromagnetic particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Voitcu, Gabriel; Echim, Marius

    2016-05-01

    In this paper we use three-dimensional electromagnetic particle-in-cell simulations to investigate the interaction of a small Larmor radius plasma cloud/jet with a transverse nonuniform magnetic field typical to a tangential discontinuity in a parallel geometry. The simulation setup corresponds to an idealized, yet relevant, magnetospheric configuration likely to be observed at the magnetopause during northward orientation of the interplanetary magnetic field. The numerical simulations are adapted to study the kinetic effects and their role on the transport and entry of localized plasma jets similar to those identified inside the Earth's magnetosheath propagating toward the magnetopause. The simulations reveal the formation of a perpendicular polarization electric field inside the main bulk of the plasma cloud that enables its forward transport and entry across the transverse magnetic field. The jet is able to penetrate the transition region when the height of the magnetic barrier does not exceed a certain critical threshold. Otherwise, the forward transport along the injection direction is stopped before full penetration of the magnetopause. Moreover, the jet is pushed back and simultaneously deflected in the perpendicular plane to the magnetic field. Our simulations evidence physical processes advocated previously by the theoretical model of impulsive penetration and revealed in laboratory experiments.

  14. Lack of relationship between geoeffectiveness and orientations of magnetic clouds with bipolar Bz and unipolar southward Bz

    NASA Astrophysics Data System (ADS)

    Teh, W.-L.; Abdullah, M.; Hasbi, A. M.

    2015-09-01

    In this study, 38 magnetic clouds (MCs) that caused significant geomagnetic storms (the minimum SYM-H, SHmin, ≤-50 nT) are examined, in which 17 MCs were unipolar Bz in south (S-type) and 21 MCs were bipolar Bz (north-to-south, NS-type, or south-to-north, SN-type). For S-type MC, inclination angle of the axis of the MC, |θ|, is ≥45°, while |θ|<45° for bipolar MC. This paper aims to address a question: is the intensity of a MC-driven storm correlated with the orientations of bipolar and S-type MCs? Our results demonstrate that there is no direct and significant relationship between geoeffectiveness and orientations of bipolar and S-type MCs. In other words, there is no MC preference (bipolar or S-type MC) to regulate the SHmin of the storm. On the whole, the SHmin is found to strongly correlate with southward field Bz (cc=0.96) and with the y component of the solar wind convective electric field (cc=-0.91) but to weakly correlate with solar wind speed (cc=-0.65). This result is consistent with previous studies by Wu and Lepping (2002), J. Geophys. Res. 107 (A10), 1314. doi:10.1029/2001JA000161. By separating MC-driven storms by size into moderate (-100 nTcloud's southward field Bz and the y component of the electric field, regardless of whether the MC is bipolar or S-type. Also, the ambient solar wind structure (e.g., shock) ahead of MC may play a role in regulating the storm's intensity.

  15. Yearly Comparison of Magnetic Cloud Parameters, Sunspot Number, and Interplanetary Quantities for the First 18 Years of the Wind Mission

    NASA Astrophysics Data System (ADS)

    Lepping, R. P.; Wu, C.-C.; Berdichevsky, D. B.

    2015-02-01

    In the scalar part of this study, we determine various statistical relationships between estimated magnetic cloud (MC) model fit-parameters and sunspot number (SSN) for the interval defined by the Wind mission, i.e., early 1995 until the end of 2012, all in terms of yearly averages. The MC-fitting model used is that of Lepping, Jones, and Burlaga ( J. Geophys. Res. 95, 11957 - 11965, 1990). We also statistically compare the MC fit-parameters and other derived MC quantities [ e.g., axial magnetic flux (ΦO) and total axial current density ( J O)] with some associated ambient interplanetary quantities (including the interplanetary magnetic field ( B IMF), proton number density ( N P), and others). Some of the main findings are that the minimum SSN is nearly simultaneous with the minimum in the number of MCs per year ( N MC), which occurs in 2008. There are various fluctuations in N MC and the MC model-fit quality ( Q') throughout the mission, but the last four years (2009 - 2012) are markedly different from the others; Q' is low and N MC is large over these four years. N MC is especially large for 2012. The linear correlation coefficient (c.c.≈0.75) between the SSN and each of the three quantities J O, MC diameter (2 R O), and B IMF, is moderately high, but none of the MC parameters track the SSN well in the sense defined in this article. However, there is good statistical tracking among the following: MC axial field, B IMF, 2 R O, average MC speed ( V MC), and yearly average solar wind speed ( V SW) with relatively high c.c.s among most of these. From the start of the mission until late 2005, J O gradually increases, with a slight violation in 2003, but then a dramatic decrease (by more than a factor of five) occurs to an almost steady and low value of ≈ 3 μA km-2 until the end of the interval of interest, i.e., lasting for at least seven years. This tends to split the overall 18-year interval into two phases with a separator at

  16. Search Cloud

    MedlinePlus

    ... this page: https://medlineplus.gov/cloud.html Search Cloud To use the sharing features on this page, ... Top 110 zoster vaccine Share the MedlinePlus search cloud with your users by embedding our search cloud ...

  17. Search Cloud

    MedlinePlus

    ... www.nlm.nih.gov/medlineplus/cloud.html Search Cloud To use the sharing features on this page, please enable JavaScript. Share the MedlinePlus search cloud with your users by embedding our search cloud ...

  18. Magnetohydrodynamic simulation of the interaction between interplanetary strong shock and magnetic cloud and its consequent geoeffectiveness: 2. Oblique collision

    NASA Astrophysics Data System (ADS)

    Xiong, Ming; Zheng, Huinan; Wang, Yuming; Wang, Shui

    2006-11-01

    Numerical studies of the interplanetary "shock overtaking magnetic cloud (MC)" event are continued by a 2.5-dimensional magnetohydrodynamic (MHD) model in heliospheric meridional plane. Interplanetary direct collision (DC)/oblique collision (OC) between an MC and a shock results from their same/different initial propagation orientations. For radially erupted MC and shock in solar corona, the orientations are only determined respectively by their heliographic locations. OC is investigated in contrast with the results in DC (Xiong, 2006). The shock front behaves as a smooth arc. The cannibalized part of MC is highly compressed by the shock front along its normal. As the shock propagates gradually into the preceding MC body, the most violent interaction is transferred sideways with an accompanying significant narrowing of the MC's angular width. The opposite deflections of MC body and shock aphelion in OC occur simultaneously through the process of the shock penetrating the MC. After the shock's passage, the MC is restored to its oblate morphology. With the decrease of MC-shock commencement interval, the shock front at 1 AU traverses MC body and is responsible for the same change trend of the latitude of the greatest geoeffectiveness of MC-shock compound. Regardless of shock orientation, shock penetration location regarding the maximum geoeffectiveness is right at MC core on the condition of very strong shock intensity. An appropriate angular difference between the initial eruption of an MC and an overtaking shock leads to the maximum deflection of the MC body. The larger the shock intensity is, the greater is the deflection angle. The interaction of MCs with other disturbances could be a cause of deflected propagation of interplanetary coronal mass ejection (ICME).

  19. The Magnetic Field of the L1544 Starless Dark Cloud, Traced Using Near-Infrared Background Starlight

    NASA Astrophysics Data System (ADS)

    Clemens, Dan P.; Goldsmith, Paul; Tassis, Konstantinos

    2016-06-01

    What roles do interstellar magnetic fields play in star formation processes? We have studied the B-field of L1544, a dark cloud with a starless dense core showing active gas infall, and located only 140 pc away in Taurus, via deep near-infrared (NIR) imaging polarimetry with the Mimir instrument. We find the B-field orientations in the plane of the sky change significantly at L1544, mimicking its shape and extent. The elongated spine of L1544 is also where the dispersion of NIR linear polarization position angles is smallest, suggesting strengthening of the B-field. Archival WISE, SCUPOL, Herschel, and Planck data were analyzed to characterize dust extinction and emission across L1544 and the field around it. Three-dimensional modeling, constrained through matching two-dimensional integrated model properties to observed dust distributions, led us to develop maps of effective gas mass densities and non-thermal gas velocity dispersions. These were combined with the NIR polarimetry, under the Chandrasekhar & Fermi (1953) approach, to yield a map of B-field strength across the entire 400 sq-arcmin region surveyed. The trends of B-field strength with gas volume density, mass-to-flux ratio with radius, and plane-of-sky B-field strengths with Zeeman-traced line-of-sight B-field strengths were found and compared to previous published work to establish the role of B-fields in L1544. We find field strengths in the 3 - 30 uG range, quite similar to the OH Zeeman values found by Crutcher et al. (2009) for L1544.This work was partially supported by grants to Boston University from NSF (AST-0907790, 1412269) and NASA (NNX15AE51G).

  20. Multiple, Distant (40 deg) in situ Observations of a Magnetic Cloud and a Corotating Interaction Region Complex

    NASA Astrophysics Data System (ADS)

    Farrugia, C. J.; Berdichevsky, D. B.; Moestl, C.; Galvin, A. B.; Leitner, M.; Popecki, M.; Simunac, K. D.; Opitz, A.; Lavraud, B.; Ogilvie, K.; Veronig, A.; Temmer, M.; Luhmann, J. G.; Sauvaud, J.

    2010-12-01

    We report a comprehensive analysis of in situ observations made by Wind and the STEREO probes (STA, STB) of a complex interaction between a magnetic cloud (MC) and a corotating interaction region (CIR) occurring near the heliospheric current sheet (HCS) on November 19-21, 2007. The probes were separated by 0.7 AU (~40 deg) with a spread in heliographic latitudes (4.8, 2.2, and -0.4 deg for STB, Wind and STA, respectively). We employ data from the MFI, SWE and 3DP instruments on Wind, and the PLASTIC and IMPACT suites on STEREO. STB, located east of Earth, observed a forward shock followed by signatures of a MC. The MC took the role of the HCS in that the polarity of the interplanetary magnetic field (IMF) on exit was the reverse of that on entry. A passage through a plasma sheet is observed. Along the Sun-Earth line Wind observed a stream interface (SI) between a forward and a reverse shock. A MC, compressed by the CIR, was entrained in this. STA, located 20 deg to the west of Earth, saw a MC which was not preceded by a shock. A SI trailed the transient. The shocks are examined using various methods and from this it is concluded that the forward shock at Wind - but not at STB - was driven by the MC. Examining the MC by Grad-Shafranov reconstruction, we find evidence of a double-flux rope structure at Wind and STA and possibly also at STB. The orientations are at variance with the notion of a large-scale flux tube being observed at the three spacecraft. We find consistency of this with the directional properties of the solar wind "strahl" electrons. We examine aspects of the geomagnetic response and find a double-dip storm corresponding to the two interplanetary triggers. The minimum Dst phase was prolonged and the geoffects were intensified due to the interaction. We conclude that while the formation of compound streams is a common feature of interplanetary space, understanding their components when CIRs are involved is a complicated matter needing numerical

  1. Multiple, distant (40°) in situ observations of a magnetic cloud and a corotating interaction region complex

    NASA Astrophysics Data System (ADS)

    Farrugia, C. J.; Berdichevsky, D. B.; Möstl, C.; Galvin, A. B.; Leitner, M.; Popecki, M. A.; Simunac, K. D. C.; Opitz, A.; Lavraud, B.; Ogilvie, K. W.; Veronig, A. M.; Temmer, M.; Luhmann, J. G.; Sauvaud, J. A.

    2011-06-01

    We report a comprehensive analysis of in situ observations made by Wind and the STEREO probes (STA, STB) of a complex interaction between a magnetic cloud (MC) and a corotating interaction region (CIR) occurring near the heliospheric current sheet (HCS) on November 19-21, 2007. The probes were separated by 0.7 AU (˜40∘) with a spread in heliographic latitudes (4.8,° 2.2,° and -0.4,° for STB, Wind and STA, respectively). We employ data from the MFI, SWE and 3DP instruments on Wind, and the PLASTIC and IMPACT suites on STEREO. STB, located east of Earth, observed a forward shock followed by signatures of a MC. The MC took the role of the HCS in that the polarity of the interplanetary magnetic field (IMF) on exit was the reverse of that on entry. A passage through a plasma sheet was observed. Along the Sun-Earth line Wind observed a stream interface (SI) between a forward and a reverse shock. A MC, compressed by the CIR, was entrained in this. STA, located 20° to the west of Earth, saw a MC which was not preceded by a shock. A SI trailed the transient. The shocks are examined using various methods and from this it is concluded that the forward shock at Wind—but not at STB—was driven by the MC. Examining the MC by Grad-Shafranov reconstruction, we find evidence of a double-flux rope structure at Wind and STA and possibly also at STB. The orientations are at variance with the notion of a large-scale flux tube being observed at the three spacecraft. We find consistency of this with the directional properties of the solar wind "strahl" electrons. We examine aspects of the geomagnetic response and find a double-dip storm corresponding to the two interplanetary triggers. The minimum Dst phase was prolonged and the geoeffects were intensified due to the interaction. We conclude that while the formation of compound streams is a common feature of interplanetary space, understanding their components when CIRs are involved is a complicated matter needing numerical

  2. Magnetic Clouds at/near the 2007 - 2009 Solar Minimum: Frequency of Occurrence and Some Unusual Properties

    NASA Technical Reports Server (NTRS)

    Lepping. R. P.; Wu, C.-C.; Berdichevsky, D. B.; Szabo, A.

    2011-01-01

    Magnetic clouds (MCs) have been identified for the period 2007 2009 (at/near the recent solar minimum) from Wind data, then confirmed through MC parameter fitting using a force-free model. A dramatic increase in the frequency of occurrence of these events took place from the two early years of 2007 (with five MCs) and 2008 (one MC) compared to 2009 (12 MCs). This pattern approximately mirrors the occurrence-frequency profile that was observed over a three-year interval 12 years earlier, with eight events in 1995, four in 1996, and 17 in 1997, but decreased overall by a factor of 0.62 in number. However, the average estimated axial field strength taken over all of the 18 events of 2007 - 2009 (called the "recent period" here) was only 11.0 nT, whereas |BO| for the 29 events of 1995 - 1997 (called the "earlier period" ) was 16.5 nT. This 33% average drop in |BO| is more or less consistent with the decreased three-year average interplanetary magnetic field intensity between these two periods, which shows a 23% drop. In the earlier period, the MCs were clearly of mixed types but predominantly of the South-to-North type, whereas those in the recent period are almost exclusively the North-to-South type; this change is consistent with global solar field changes predicted by Bothmer and Rust (Geophys. Monogr. Ser. 99, 139, 1997). As we have argued in earlier work (Lepping and Wu, J. Geophys. Res. 112, A10103, 2007), this change should make it possible to carry out (accurate short-term) magnetic storm forecasting by predicting the latter part of an MC from the earlier part, using a good MC parameter-fitting model with real-time data from a spacecraft at L1, for example. The recent set s average duration is 15.2 hours, which is a 27% decrease compared to that of the earlier set, which had an average duration of 20.9 hours. In fact, all physical aspects of the recent MC set are shown to drop with respect to the earlier set; e.g., as well as the average internal magnetic field

  3. Mesoscale cloud phenomena observed by LANDSAT

    NASA Technical Reports Server (NTRS)

    Ormsby, J. P.

    1977-01-01

    Examples of certain mesoscale cloud features - jet cirrus, eddies/vortices, cloud banding, and wave clouds - were collected from LANDSAT imagery and placed into Mason's four groups of causes of cloud formation based on the mechanism of vertical motion which produces condensation. These groups are as follows: (1) layer clouds formed by widespread regular ascent; (2) layer clouds caused by irregular stirring motions; (3) convective clouds; and (4) clouds formed by orographic disturbances. These mechanisms explain general cloud formation. Once formed, other forces may play a role in the deformation of a cloud or cloud mass into unusual and unique meso- and microscale patterns. Each example presented is followed by a brief discussion describing the synoptic situation, and some inference into the formation and occurrence of the more salient features. No major attempt was made to discuss in detail the meteorological and topographic interplay producing these mesoscale features.

  4. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. III. Introduction of gauge-including atomic orbitals and a finite-size nuclear model

    NASA Astrophysics Data System (ADS)

    Hamaya, S.; Maeda, H.; Funaki, M.; Fukui, H.

    2008-12-01

    The relativistic calculation of nuclear magnetic shielding tensors in hydrogen halides is performed using the second-order regular approximation to the normalized elimination of the small component (SORA-NESC) method with the inclusion of the perturbation terms from the metric operator. This computational scheme is denoted as SORA-Met. The SORA-Met calculation yields anisotropies, Δσ =σ∥-σ⊥, for the halogen nuclei in hydrogen halides that are too small. In the NESC theory, the small component of the spinor is combined to the large component via the operator σ⃗ṡπ⃗U/2c, in which π⃗=p⃗+A⃗, U is a nonunitary transformation operator, and c ≅137.036 a.u. is the velocity of light. The operator U depends on the vector potential A⃗ (i.e., the magnetic perturbations in the system) with the leading order c-2 and the magnetic perturbation terms of U contribute to the Hamiltonian and metric operators of the system in the leading order c-4. It is shown that the small Δσ for halogen nuclei found in our previous studies is related to the neglect of the U(0,1) perturbation operator of U, which is independent of the external magnetic field and of the first order with respect to the nuclear magnetic dipole moment. Introduction of gauge-including atomic orbitals and a finite-size nuclear model is also discussed.

  5. Artist's Rendering of Multiple Whirlpools in a Sodium Gas Cloud

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image depicts the formation of multiple whirlpools in a sodium gas cloud. Scientists who cooled the cloud and made it spin created the whirlpools in a Massachusetts Institute of Technology laboratory, as part of NASA-funded research. This process is similar to a phenomenon called starquakes that appear as glitches in the rotation of pulsars in space. MIT's Wolgang Ketterle and his colleagues, who conducted the research under a grant from the Biological and Physical Research Program through NASA's Jet Propulsion Laboratory, Pasadena, Calif., cooled the sodium gas to less than one millionth of a degree above absolute zero (-273 Celsius or -460 Fahrenheit). At such extreme cold, the gas cloud converts to a peculiar form of matter called Bose-Einstein condensate, as predicted by Albert Einstein and Satyendra Bose of India in 1927. No physical container can hold such ultra-cold matter, so Ketterle's team used magnets to keep the cloud in place. They then used a laser beam to make the gas cloud spin, a process Ketterle compares to stroking a ping-pong ball with a feather until it starts spirning. The spinning sodium gas cloud, whose volume was one- millionth of a cubic centimeter, much smaller than a raindrop, developed a regular pattern of more than 100 whirlpools.

  6. On Regularity Criteria for the 2D Generalized MHD System

    NASA Astrophysics Data System (ADS)

    Jiang, Zaihong; Wang, Yanan; Zhou, Yong

    2016-06-01

    This paper deals with the problem of regularity criteria for the 2D generalized MHD system with fractional dissipative terms {-Λ^{2α}u} for the velocity field and {-Λ^{2β}b} for the magnetic field respectively. Various regularity criteria are established to guarantee smoothness of solutions. It turns out that our regularity criteria imply previous global existence results naturally.

  7. Regular FPGA based on regular fabric

    NASA Astrophysics Data System (ADS)

    Xun, Chen; Jianwen, Zhu; Minxuan, Zhang

    2011-08-01

    In the sub-wavelength regime, design for manufacturability (DFM) becomes increasingly important for field programmable gate arrays (FPGAs). In this paper, an automated tile generation flow targeting micro-regular fabric is reported. Using a publicly accessible, well-documented academic FPGA as a case study, we found that compared to the tile generators previously reported, our generated micro-regular tile incurs less than 10% area overhead, which could be potentially recovered by process window optimization, thanks to its superior printability. In addition, we demonstrate that on 45 nm technology, the generated FPGA tile reduces lithography induced process variation by 33%, and reduce probability of failure by 21.2%. If a further overhead of 10% area can be recovered by enhanced resolution, we can achieve the variation reduction of 93.8% and reduce the probability of failure by 16.2%.

  8. Scalar relativistic computations of nuclear magnetic shielding and g-shifts with the zeroth-order regular approximation and range-separated hybrid density functionals

    SciTech Connect

    Aquino, Fredy W.; Govind, Niranjan; Autschbach, Jochen

    2011-10-01

    Density functional theory (DFT) calculations of NMR chemical shifts and molecular g-tensors with Gaussian-type orbitals are implemented via second-order energy derivatives within the scalar relativistic zeroth order regular approximation (ZORA) framework. Nonhybrid functionals, standard (global) hybrids, and range-separated (Coulomb-attenuated, long-range corrected) hybrid functionals are tested. Origin invariance of the results is ensured by use of gauge-including atomic orbital (GIAO) basis functions. The new implementation in the NWChem quantum chemistry package is verified by calculations of nuclear shielding constants for the heavy atoms in HX (X=F, Cl, Br, I, At) and H2X (X = O, S, Se, Te, Po), and Te chemical shifts in a number of tellurium compounds. The basis set and functional dependence of g-shifts is investigated for 14 radicals with light and heavy atoms. The problem of accurately predicting F NMR shielding in UF6-nCln, n = 1 to 6, is revisited. The results are sensitive to approximations in the density functionals, indicating a delicate balance of DFT self-interaction vs. correlation. For the uranium halides, the results with the range-separated functionals are mixed.

  9. REGULAR VERSUS DIFFUSIVE PHOTOSPHERIC FLUX CANCELLATION

    SciTech Connect

    Litvinenko, Yuri E.

    2011-04-20

    Observations of photospheric flux cancellation on the Sun imply that cancellation can be a diffusive rather than regular process. A criterion is derived, which quantifies the parameter range in which diffusive photospheric cancellation should occur. Numerical estimates show that regular cancellation models should be expected to give a quantitatively accurate description of photospheric cancellation. The estimates rely on a recently suggested scaling for a turbulent magnetic diffusivity, which is consistent with the diffusivity measurements on spatial scales varying by almost two orders of magnitude. Application of the turbulent diffusivity to large-scale dispersal of the photospheric magnetic flux is discussed.

  10. Regular gravitational lagrangians

    NASA Astrophysics Data System (ADS)

    Dragon, Norbert

    1992-02-01

    The Einstein action with vanishing cosmological constant is for appropriate field content the unique local action which is regular at the fixed point of affine coordinate transformations. Imposing this regularity requirement one excludes also Wess-Zumino counterterms which trade gravitational anomalies for Lorentz anomalies. One has to expect dilatational and SL (D) anomalies. If these anomalies are absent and if the regularity of the quantum vertex functional can be controlled then Einstein gravity is renormalizable. On leave of absence from Institut für Theoretische Physik, Universität Hannover, W-3000 Hannover 1, FRG.