Dimensional regularization in configuration space
Bollini, C.G. |; Giambiagi, J.J.
1996-05-01
Dimensional regularization is introduced in configuration space by Fourier transforming in {nu} dimensions the perturbative momentum space Green functions. For this transformation, the Bochner theorem is used; no extra parameters, such as those of Feynman or Bogoliubov and Shirkov, are needed for convolutions. The regularized causal functions in {ital x} space have {nu}-dependent moderated singularities at the origin. They can be multiplied together and Fourier transformed (Bochner) without divergence problems. The usual ultraviolet divergences appear as poles of the resultant analytic functions of {nu}. Several examples are discussed. {copyright} {ital 1996 The American Physical Society.}
Regular Decompositions for H(div) Spaces
Kolev, Tzanio; Vassilevski, Panayot
2012-01-01
We study regular decompositions for H(div) spaces. In particular, we show that such regular decompositions are closely related to a previously studied “inf-sup” condition for parameter-dependent Stokes problems, for which we provide an alternative, more direct, proof.
Semisupervised Support Vector Machines With Tangent Space Intrinsic Manifold Regularization.
Sun, Shiliang; Xie, Xijiong
2016-09-01
Semisupervised learning has been an active research topic in machine learning and data mining. One main reason is that labeling examples is expensive and time-consuming, while there are large numbers of unlabeled examples available in many practical problems. So far, Laplacian regularization has been widely used in semisupervised learning. In this paper, we propose a new regularization method called tangent space intrinsic manifold regularization. It is intrinsic to data manifold and favors linear functions on the manifold. Fundamental elements involved in the formulation of the regularization are local tangent space representations, which are estimated by local principal component analysis, and the connections that relate adjacent tangent spaces. Simultaneously, we explore its application to semisupervised classification and propose two new learning algorithms called tangent space intrinsic manifold regularized support vector machines (TiSVMs) and tangent space intrinsic manifold regularized twin SVMs (TiTSVMs). They effectively integrate the tangent space intrinsic manifold regularization consideration. The optimization of TiSVMs can be solved by a standard quadratic programming, while the optimization of TiTSVMs can be solved by a pair of standard quadratic programmings. The experimental results of semisupervised classification problems show the effectiveness of the proposed semisupervised learning algorithms. PMID:26277005
Metric and geometric quasiconformality in Ahlfors regular Loewner spaces
NASA Astrophysics Data System (ADS)
Tyson, Jeremy T.
Recent developments in geometry have highlighted the need for abstract formulations of the classical theory of quasiconformal mappings. We modify Pansu's generalized modulus to study quasiconformal geometry in spaces with metric and measure-theoretic properties sufficiently similar to Euclidean space. Our basic objects of study are locally compact metric spaces equipped with a Borel measure which is Ahlfors-David regular of dimension Q>1 , and satisfies the Loewner condition of Heinonen-Koskela. For homeomorphisms between open sets in two such spaces, we prove the equivalence of three conditions: a version of metric quasiconformality, local quasisymmetry and geometric quasiconformality. We derive from these results several corollaries. First, we show that the Loewner condition is a quasisymmetric invariant in locally compact Ahlfors regular spaces. Next, we show that a proper Q -regular Loewner space, Q>1 , is not quasiconformally equivalent to any subdomain. (In the Euclidean case, this result is due to Loewner.) Finally, we characterize products of snowflake curves up to quasisymmetric/bi-Lipschitz equivalence: two such products are bi-Lipschitz equivalent if and only if they are isometric and are quasisymmetrically equivalent if and only if they are conformally equivalent.
Couto, João; Grill, Warren M.
2016-01-01
Deep brain stimulation (DBS) is an established therapy for movement disorders, including tremor, dystonia, and Parkinson's disease, but the mechanisms of action are not well understood. Symptom suppression by DBS typically requires stimulation frequencies ≥100 Hz, but when the frequency is increased above ~2 kHz, the effectiveness in tremor suppression declines (Benabid et al., 1991). We sought to test the hypothesis that the decline in efficacy at high frequencies is associated with desynchronization of the activity generated within a population of stimulated neurons. Regularization of neuronal firing is strongly correlated with tremor suppression by DBS, and desynchronization would disrupt the regularization of neuronal activity. We implemented computational models of CNS axons with either deterministic or stochastic membrane dynamics, and quantified the response of populations of model nerve fibers to extracellular stimulation at different frequencies and amplitudes. As stimulation frequency was increased from 2 to 80 Hz the regularity of neuronal firing increased (as assessed with direct estimates of entropy), in accord with the clinical effects on tremor of increasing stimulation frequency (Kuncel et al., 2006). Further, at frequencies between 80 and 500 Hz, increasing the stimulation amplitude (i.e., the proportion of neurons activated by the stimulus) increased the regularity of neuronal activity across the population, in accord with the clinical effects on tremor of stimulation amplitude (Kuncel et al., 2007). However, at stimulation frequencies above 1 kHz the regularity of neuronal firing declined due to irregular patterns of action potential generation and conduction block. The reductions in neuronal regularity that occurred at high frequencies paralleled the previously reported decline in tremor reduction and may be responsible for the loss of efficacy of DBS at very high frequencies. This analysis provides further support for the hypothesis that
Regularity and predictability of human mobility in personal space.
Austin, Daniel; Cross, Robin M; Hayes, Tamara; Kaye, Jeffrey
2014-01-01
Fundamental laws governing human mobility have many important applications such as forecasting and controlling epidemics or optimizing transportation systems. These mobility patterns, studied in the context of out of home activity during travel or social interactions with observations recorded from cell phone use or diffusion of money, suggest that in extra-personal space humans follow a high degree of temporal and spatial regularity - most often in the form of time-independent universal scaling laws. Here we show that mobility patterns of older individuals in their home also show a high degree of predictability and regularity, although in a different way than has been reported for out-of-home mobility. Studying a data set of almost 15 million observations from 19 adults spanning up to 5 years of unobtrusive longitudinal home activity monitoring, we find that in-home mobility is not well represented by a universal scaling law, but that significant structure (predictability and regularity) is uncovered when explicitly accounting for contextual data in a model of in-home mobility. These results suggest that human mobility in personal space is highly stereotyped, and that monitoring discontinuities in routine room-level mobility patterns may provide an opportunity to predict individual human health and functional status or detect adverse events and trends. PMID:24587302
3D Building Adjustment Using Planar Half-Space Regularities
NASA Astrophysics Data System (ADS)
Wichmann, A.; Kada, M.
2014-08-01
The automatic reconstruction of 3D building models with complex roof shapes is still an active area of research. In this paper we present a novel approach for local and global regularization rules that integrate building knowledge to improve both the shape of the reconstructed building models and their accuracy. These rules are defined for the planar half-space representation of our models and emphasize the presence of symmetries, co-planarity, parallelism, and orthogonality. By not adjusting building features separately (e.g. ridges, eaves, etc.) we are able to handle more than one feature at a time without considering dependencies between different features. Additionally, we present a new method for reconstructing buildings with concave outlines using half-spaces that avoids the need to partition the models into smaller convex parts. We present both extensions in the context of a fully automatic feature-driven 3D building reconstruction approach where the whole process is suited for processing large urban areas with complex building roofs.
Mathematical strategies for filtering complex systems: Regularly spaced sparse observations
Harlim, J. Majda, A.J.
2008-05-01
Real time filtering of noisy turbulent signals through sparse observations on a regularly spaced mesh is a notoriously difficult and important prototype filtering problem. Simpler off-line test criteria are proposed here as guidelines for filter performance for these stiff multi-scale filtering problems in the context of linear stochastic partial differential equations with turbulent solutions. Filtering turbulent solutions of the stochastically forced dissipative advection equation through sparse observations is developed as a stringent test bed for filter performance with sparse regular observations. The standard ensemble transform Kalman filter (ETKF) has poor skill on the test bed and even suffers from filter divergence, surprisingly, at observable times with resonant mean forcing and a decaying energy spectrum in the partially observed signal. Systematic alternative filtering strategies are developed here including the Fourier Domain Kalman Filter (FDKF) and various reduced filters called Strongly Damped Approximate Filter (SDAF), Variance Strongly Damped Approximate Filter (VSDAF), and Reduced Fourier Domain Kalman Filter (RFDKF) which operate only on the primary Fourier modes associated with the sparse observation mesh while nevertheless, incorporating into the approximate filter various features of the interaction with the remaining modes. It is shown below that these much cheaper alternative filters have significant skill on the test bed of turbulent solutions which exceeds ETKF and in various regimes often exceeds FDKF, provided that the approximate filters are guided by the off-line test criteria. The skill of the various approximate filters depends on the energy spectrum of the turbulent signal and the observation time relative to the decorrelation time of the turbulence at a given spatial scale in a precise fashion elucidated here.
Effective regularity in modulation on gastric motility induced by different acupoint stimulation
Li, Yu-Qing; Zhu, Bing; Rong, Pei-Jing; Ben, Hui; Li, Yan-Hua
2006-01-01
AIM: To investigate whether manual acupuncture at representative acupoints in different parts of the body can modulate responses of gastric motility in rats and regular effects in different acupoint stimulation. METHODS: The gastric motor activity of rats was recorded by the intrapyloric balloon. The changes of gastric motility induced by the stimulation were compared with the background activity in intragastric pressure and/or waves of gastric contraction recorded before any stimulation. Morphological study was also conducted by observing the Evans dye extravasation in the skin after mustard oil injection into the intragastric mucous membrane to certify cutaneous innervations of blue dots related to gastric segmental innervations. RESULTS: In all six rats that received mustard oil injections into intragastric mucosa, small blue dots appeared in the skin over the whole abdomen, but mainly in peri-midline upper- and middle- abdomen and middle-back, a few in thigh and groin. It may speculate that cutaneous innervations of blue dots have the same distribution as gastric segmental innervations. Acu-stimulation in acupoints of head-neck, four limbs, upper chest-dorsum and lower-dorsum induced markedly augmentation of gastric motility (acupoints on head-neck such as St-2: n = 16, 105.19 ± 1.36 vs 112.25 ± 2.02 and St-3: n = 14, 101.5 ± 1.75 vs 109.36 ± 1.8; acupoints on limbs such as Sp-6: n = 19, 100.74 ± 1.54 vs 110.26 ± 3.88; St-32: n = 17, 103.59 ± 1.64 vs 108.24 ± 2.41; St-36: n = 16, 104.81 ± 1.72 vs 110.81 ± 2.74 and Li-11: n = 17, 106.47 ± 2.61 vs 114.77 ± 3.77, P < 0.05-0.001). Vigorous inhibitory regulations of gastric motility induced by acu-stimulation applied in acupoints on whole abdomen and middle-dorsum were significantly different as compared with the controls before acu-stimulation (abdomen acupoints such as Cv-12: n = 11, 109.36 ± 2.09 vs 101 ± 2.21; Cv-6: n = 18, 104.39 ± 1.42 vs 91.83 ± 3.22 and St-21: n = 12, 107 ± 2.97 vs 98.58
New properties of BK-spaces defined by using regular matrix of Fibonacci numbers
NASA Astrophysics Data System (ADS)
Ercan, Sinan; Bektaş, ćiǧdem A.
2016-06-01
In the present paper, we studied the new properties of BK-spaces which were defined using regular matrix of Fibonacci numbers in [1]. We computed alpha-, beta-, gamma- duals of these spaces and obtained Schauder basis. We also derived some topological properties of these spaces.
Visualization of Sound Waves Using Regularly Spaced Soap Films
ERIC Educational Resources Information Center
Elias, F.; Hutzler, S.; Ferreira, M. S.
2007-01-01
We describe a novel demonstration experiment for the visualization and measurement of standing sound waves in a tube. The tube is filled with equally spaced soap films whose thickness varies in response to the amplitude of the sound wave. The thickness variations are made visible based on optical interference. The distance between two antinodes is…
14 CFR 1259.201 - Types of Space Grant program and project awards-regular and special.
Code of Federal Regulations, 2010 CFR
2010-01-01
... awards-regular and special. 1259.201 Section 1259.201 Aeronautics and Space NATIONAL AERONAUTICS AND... Awards § 1259.201 Types of Space Grant program and project awards—regular and special. (a) A regular... cost if funded by another Federal entity. (b) A special Space Grant program or project award may...
Nuclear norm-regularized k-space-based parallel imaging reconstruction
NASA Astrophysics Data System (ADS)
Xu, Lin; Liu, Xiaoyun
2014-04-01
Parallel imaging reconstruction suffers from serious noise amplification at high accelerations that can be alleviated with regularization by imposing some prior information or constraints on image. Nevertheless, point-wise interpolation of missing k-space data restricts the use of prior information in k-space-based parallel imaging reconstructions like generalized auto-calibrating partial acquisitions (GRAPPA). In this study, a regularized k-space based parallel imaging reconstruction is presented. We first formulate the reconstruction of missing data within a patch as a linear inverse problem. Instead of exploiting prior information on image or its transform domain, the proposed method exploits the rank deficiency of structured matrix consisting of vectorized patches form entire k-space, which leads to a nuclear norm-regularized problem solved by the numeric algorithms iteratively. Brain imaging studies are performed, demonstrating that the proposed method is capable of mitigating noise at high accelerations in GRAPPA reconstruction.
NASA Astrophysics Data System (ADS)
Wang, Min
2016-04-01
This paper aims to establish the Tikhonov regularization method for generalized mixed variational inequalities in Banach spaces. For this purpose, we firstly prove a very general existence result for generalized mixed variational inequalities, provided that the mapping involved has the so-called mixed variational inequality property and satisfies a rather weak coercivity condition. Finally, we establish the Tikhonov regularization method for generalized mixed variational inequalities. Our findings extended the results for the generalized variational inequality problem (for short, GVIP(F, K)) in R^n spaces (He in Abstr Appl Anal, 2012) to the generalized mixed variational inequality problem (for short, GMVIP(F,φ , K) ) in reflexive Banach spaces. On the other hand, we generalized the corresponding results for the generalized mixed variational inequality problem (for short, GMVIP(F,φ ,K) ) in R^n spaces (Fu and He in J Sichuan Norm Univ (Nat Sci) 37:12-17, 2014) to reflexive Banach spaces.
NASA Astrophysics Data System (ADS)
Wang, Min
2016-04-01
This paper aims to establish the Tikhonov regularization method for generalized mixed variational inequalities in Banach spaces. For this purpose, we firstly prove a very general existence result for generalized mixed variational inequalities, provided that the mapping involved has the so-called mixed variational inequality property and satisfies a rather weak coercivity condition. Finally, we establish the Tikhonov regularization method for generalized mixed variational inequalities. Our findings extended the results for the generalized variational inequality problem (for short, GVIP(F, K)) in R^n spaces (He in Abstr Appl Anal, 2012) to the generalized mixed variational inequality problem (for short, GMVIP(F,φ K) ) in reflexive Banach spaces. On the other hand, we generalized the corresponding results for the generalized mixed variational inequality problem (for short, GMVIP(F,φ ,K) ) in R^n spaces (Fu and He in J Sichuan Norm Univ (Nat Sci) 37:12-17, 2014) to reflexive Banach spaces.
k-Regular maps into Euclidean spaces and the Borsuk-Boltyanskii problem
Bogatyi, S A
2002-02-28
The Borsuk-Boltyanskii problem is solved for odd k, that is, the minimum dimension of a Euclidean space is determined into which any n-dimensional polyhedron (compactum) can be k-regularly embedded. A new lower bound is obtained for even k.
Hanke-Raus heuristic rule for variational regularization in Banach spaces
NASA Astrophysics Data System (ADS)
Jin, Qinian
2016-08-01
We generalize the heuristic parameter choice rule of Hanke-Raus for quadratic regularization to general variational regularization for solving linear as well as nonlinear ill-posed inverse problems in Banach spaces. Under source conditions formulated as variational inequalities, we obtain a posteriori error estimates in term of the Bregman distance. By imposing certain conditions on the random noise, we establish four convergence results; one relies on the source conditions and the other three do not depend on any source conditions. Numerical results are presented to illustrate the performance.
Dimensional regularization of the path integral in curved space on an infinite time interval
NASA Astrophysics Data System (ADS)
Bastianelli, F.; Corradini, O.; van Nieuwenhuizen, P.
2000-09-01
We use dimensional regularization to evaluate quantum mechanical path integrals in arbitrary curved spaces on an infinite time interval. We perform 3-loop calculations in Riemann normal coordinates, and 2-loop calculations in general coordinates. It is shown that one only needs a covariant two-loop counterterm (VDR=ℏ2/8R) to obtain the same results as obtained earlier in other regularization schemes. It is also shown that the mass term needed in order to avoid infrared divergences explicitly breaks general covariance in the final result.
Radio stimulation and diagnostics of space plasmas
NASA Technical Reports Server (NTRS)
Lee, Min-Chang
1993-01-01
We have investigated the small-scale topside ionospheric plasma structures first observed at Millstone Hill, Massachusetts with the 440 MHz incoherent scatter radar. These small-scale obliquely propagating plasma modes occurring in the vicinity of the midlatitude ionospheric trough, have large radar cross-sections and narrow spectral widths. They have, until recently, been dismissed solely as hard target contamination of the incoherent scatter radar. The geophysical conditions associated with the ionospheric trough, such as the field-aligned current activity and steep plasma density gradients, suggest that these recently discovered small-scale topside ionospheric plasmas may also appear in the auroral and polar ionosphere. In fact, this speculation has been corroborated by the preliminary experiments and data analyses at Tromso, Norway and Sondrestromfjord, Greenland. The primary research results are highlighted. Described in Section 3 are the experiments conducted at Arecibo, Puerto Rico in the past summer for simulating the geophysical conditions of generating these topside ionospheric plasma structures. Recommendation for the future research is finally given. Attached as the appendix of this report are several chapters which present the detailed results of research in the concerned topside ionospheric clutter. Highlights of the research results include: (1) causes of the enhanced radar backscatter (ERB) phenomenon; (2) occurrence of the ERB phenomenon; (3) altitudes of the ERB phenomenon; (4) strength of the ERB returns; (5) range of altitudes of the ERB returns; (6) occurrence frequency of the ERB phenomenon; (7) Doppler effect of the ERB phenomenon; (8) persistency of the ERB; and (9) distinction between ERB phenomenon and space object signatures.
Zeta-function regularization approach to finite temperature effects in Kaluza-Klein space-times
Bytsenko, A.A. ); Vanzo, L.; Zerbini, S. )
1992-09-21
In the framework of heat-kernel approach to zeta-function regularization, in this paper the one-loop effective potential at finite temperature for scalar and spinor fields on Kaluza-Klein space-time of the form M[sup p] [times] M[sub c][sup n], where M[sup p] is p-dimensional Minkowski space-time is evaluated. In particular, when the compact manifold is M[sub c][sup n] = H[sup n]/[Gamma], the Selberg tracer formula associated with discrete torsion-free group [Gamma] of the n-dimensional Lobachevsky space H[sup n] is used. An explicit representation for the thermodynamic potential valid for arbitrary temperature is found. As a result a complete high temperature expansion is presented and the roles of zero modes and topological contributions is discussed.
NASA Astrophysics Data System (ADS)
Wichmann, A.; Jung, J.; Sohn, G.; Kada, M.; Ehlers, M.
2015-09-01
Recent approaches for the automatic reconstruction of 3D building models from airborne point cloud data integrate prior knowledge of roof shapes with the intention to improve the regularization of the resulting models without lessening the flexibility to generate all real-world occurring roof shapes. In this paper, we present a method to integrate building knowledge into the data-driven approach that uses binary space partitioning (BSP) for modeling the 3D building geometry. A retrospective regularization of polygons that emerge from the BSP tree is not without difficulty because it has to deal with the 2D BSP subdivision itself and the plane definitions of the resulting partition regions to ensure topological correctness. This is aggravated by the use of hyperplanes during the binary subdivision that often splits planar roof regions into several parts that are stored in different subtrees of the BSP tree. We therefore introduce the use of hyperpolylines in the generation of the BSP tree to avoid unnecessary spatial subdivisions, so that the spatial integrity of planar roof regions is better maintained. The hyperpolylines are shown to result from basic building roof knowledge that is extracted based on roof topology graphs. An adjustment of the underlying point segments ensures that the positions of the extracted hyperpolylines result in regularized 2D partitions as well as topologically correct 3D building models. The validity and limitations of the approach are demonstrated on real-world examples.
Effects of regular use of neuromuscular electrical stimulation on tissue health.
Bogie, Kath M; Triolo, Ronald J
2003-01-01
Changes in tissue health were monitored in a group of spinal cord injury (SCI) individuals with the use of an implanted neuromuscular electrical stimulation (NMES) system to provide standing and to facilitate standing transfers. Tissue health was evaluated through monitoring tissue oxygen levels in the ischial region along with measuring interface pressures at the seating support interface. Baseline assessments were done at study enrollment and repeated on completion of a conditioning exercise program. Serial assessments of tissue health were performed on eight NMES implant recipients. Unloaded tissue oxygen levels in the ischial region tended to increase after following the NMES exercise program for 8 weeks. Concurrently, pressure distributions at the seating support interface tended to change such that although the total pressure acting at the interface did not change, ischial region pressures showed a significant decrease. These changes indicate that chronic use of NMES has a quantifiable benefit on tissue health. PMID:15077659
A convergence rates result for an iteratively regularized Gauss-Newton-Halley method in Banach space
NASA Astrophysics Data System (ADS)
Kaltenbacher, B.
2015-01-01
The use of second order information on the forward operator often comes at a very moderate additional computational price in the context of parameter identification problems for differential equation models. On the other hand the use of general (non-Hilbert) Banach spaces has recently found much interest due to its usefulness in many applications. This motivates us to extend the second order method from Kaltenbacher (2014 Numer. Math. at press), (see also Hettlich and Rundell 2000 SIAM J. Numer. Anal. 37 587620) to a Banach space setting and analyze its convergence. We here show rates results for a particular source condition and different exponents in the formulation of Tikhonov regularization in each step. This includes a complementary result on the (first order) iteratively regularized Gauss-Newton method in case of a one-homogeneous data misfit term, which corresponds to exact penalization. The results clearly show the possible advantages of using second order information, which get most pronounced in this exact penalization case. Numerical simulations for an inverse source problem for a nonlinear elliptic PDE illustrate the theoretical findings.
NASA Astrophysics Data System (ADS)
Huber, Florian; Strehle, Dan; Schnauß, Jörg; Käs, Josef
2015-04-01
Biopolymer networks contribute mechanical integrity as well as functional organization to living cells. One of their major constituents, the protein actin, is present in a large variety of different network architectures, ranging from extensive networks to densely packed bundles. The shape of the network is directly linked to its mechanical properties and essential physiological functions. However, a profound understanding of architecture-determining mechanisms and their physical constraints remains elusive. We use experimental bottom-up systems to study the formation of confined actin networks by entropic forces. Experiments based on molecular crowding as well as counterion condensation reveal a generic tendency of homogeneous filament solutions to aggregate into regular actin bundle networks connected by aster-like centers. The network architecture is found to critically rely on network formation history. Starting from identical biochemical compositions, we observe drastic changes in network architecture as a consequence of initially biased filament orientation or mixing-induced perturbations. Our experiments suggest that the tendency to form regularly spaced bundle networks is a rather general feature of isotropic, homogeneous filament solutions subject to uniform attractive interactions. Due to the fundamental nature of the considered interactions, we expect that the investigated type of network formation further implies severe physical constraints for cytoskeleton self-organization on the more complex level of living cells.
Learning an L1-regularized Gaussian Bayesian network in the equivalence class space.
Vidaurre, Diego; Bielza, Concha; Larrañaga, Pedro
2010-10-01
Learning the structure of a graphical model from data is a common task in a wide range of practical applications. In this paper, we focus on Gaussian Bayesian networks, i.e., on continuous data and directed acyclic graphs with a joint probability density of all variables given by a Gaussian. We propose to work in an equivalence class search space, specifically using the k-greedy equivalence search algorithm. This, combined with regularization techniques to guide the structure search, can learn sparse networks close to the one that generated the data. We provide results on some synthetic networks and on modeling the gene network of the two biological pathways regulating the biosynthesis of isoprenoids for the Arabidopsis thaliana plant. PMID:20083459
Dias, Nuno Costa; de Gosson, Maurice; Luef, Franz; Prata, João Nuno
2011-01-01
The usual Weyl calculus is intimately associated with the choice of the standard symplectic structure on Rn⊕Rn. In this paper we will show that the replacement of this structure by an arbitrary symplectic structure leads to a pseudo-differential calculus of operators acting on functions or distributions defined, not on Rn but rather on Rn⊕Rn. These operators are intertwined with the standard Weyl pseudo-differential operators using an infinite family of partial isometries of L2(Rn)→L2(R2n) indexed by S(Rn). This allows us to obtain spectral and regularity results for our operators using Shubinʼs symbol classes and Feichtingerʼs modulation spaces. PMID:22158824
Regular structures of the lunar Orientale Basin: ring spacing and beads-like collars
NASA Astrophysics Data System (ADS)
Kochemasov, G. G.
2013-09-01
The NASA's GRAIL mission produced unprecedented detailed gravity maps of the lunar subsurface as its measurements (from very low orbits - 55 -23 kilometers) included some depths of the satellite (down to the core?). However, one might say that these maps have repeated in some aspects the principal gravity pattern acquired earlier by Clementine [1] and Kaguya missions (Fig. 3), which shows the surface densely "peppered" by evensized "craters" about 100 km in diameter. The wave planetology admits that many of them are of an impact origin but a bulk is due to an intersection of standing waves produced by the two elliptical orbit of the body (Fig. 2). The lunar community should realize that one of bases of the Moon's geology - crater size -frequency curve is of a complex nature. Impacts surely contribute to this curve but a significant part of it is due to ring structures of non-impact origin. Ring structures can be produced by an interference of standing inertiagravity waves of four directions (ortho- and diagonal) warping any rotating celestial body moving in an elliptical orbit (Fig. 2) [2]. Many ring structures observed on solid and gaseous planetary spheres are of such profound nature. They form regular grids of shoulder-to-shoulder even ring structures (Fig. 1-3). Their sizes depend on orbiting frequencies: the higher frequency- the smaller "rings", and vice versa. Satellites having two orbiting frequencies in the Solar system are particularly "peppered" with rings as a low frequency modulates a high one producing along with the main ring populations the side populations [3]. Recent MOONKAM lunar images (GRAIL mission) at the first time show so clearly intersecting planetary scale lineations (imprint of standing waves) producing chains and grids of ring features (Fig. 5-6; a theoretical model-Fig. 2). This wave woven pattern with spacing and beads has to be compared with a real gravity pattern of Fig. 1. Multi-ring spacing with the factor of √ 2 and collars
Plasma instabilities stimulated by HF transmitters in space
NASA Technical Reports Server (NTRS)
Benson, Robert F.; Vinas, Adolfo F.
1988-01-01
Diffuse incoherent signal returns are often observed on Alouette and ISIS topside ionograms in addition to coherent echoes of electromagnetic and electrostatic waves. These diffuse signals, which at times can be the dominant features on topside ionograms, have been attributed to sounder-induced temperature anisotropies which drive the Harris instability. Previous theoretical investigations were based on the electrostatic approximation to the dispersion equation. The present paper will present calculations indicating that when the electromagnetic terms are retained in the dispersion equation and when the sounder-stimulated perpendicular electron temperature approaches 1 keV, then the whistler mode can have a temporal growth rate larger than the electrostatic electron cyclotron harmonic wave mode central to the diffuse resonance problem. Present sounders lack the power and antenna lengths to generate whistler mode waves in this manner. In addition, such waves would have large group velocities and would quickly leave the vicinity of the sounder. Experiments to investigate the wave growth, propagation, and damping of such stimulated waves are planned for the 1990s using a highly flexible sounder on the Space Shuttle and a receiver on a subsatellite.
Stimulated coherent emission from short electron bunches in free space
Robb, G.R.M.; Phelps, A.D.R.; Ginzburg, N.S.
1995-12-31
In previous papers stimulated coherent emission of short electron bunches (superradiance-SR) was considered in the frame of 1-D models. In the present work we study superradiance of an electron bunch which has a finite transverse size in the frame of a 2-D model. This model include effects of optical guiding as well as transverse electromagnetic energy escaping and diffraction. Using a nonstationary parabolic equation we described SR of a sheet shaped electron bunch in free space. It is shown that the radiation is composed of a sequence of e.m. pulses which are diffracted after escaping from the channel formed by the electron beam. This process is accompanied by a progressive increase of the electron efficiency. This enhancement is caused by the phenomenon of permanent self supporting resonance due to the variation of the radiation angle and frequency.
Hasegawa, Takanori; Yamaguchi, Rui; Nagasaki, Masao; Miyano, Satoru; Imoto, Seiya
2014-01-01
Comprehensive understanding of gene regulatory networks (GRNs) is a major challenge in the field of systems biology. Currently, there are two main approaches in GRN analysis using time-course observation data, namely an ordinary differential equation (ODE)-based approach and a statistical model-based approach. The ODE-based approach can generate complex dynamics of GRNs according to biologically validated nonlinear models. However, it cannot be applied to ten or more genes to simultaneously estimate system dynamics and regulatory relationships due to the computational difficulties. The statistical model-based approach uses highly abstract models to simply describe biological systems and to infer relationships among several hundreds of genes from the data. However, the high abstraction generates false regulations that are not permitted biologically. Thus, when dealing with several tens of genes of which the relationships are partially known, a method that can infer regulatory relationships based on a model with low abstraction and that can emulate the dynamics of ODE-based models while incorporating prior knowledge is urgently required. To accomplish this, we propose a method for inference of GRNs using a state space representation of a vector auto-regressive (VAR) model with L1 regularization. This method can estimate the dynamic behavior of genes based on linear time-series modeling constructed from an ODE-based model and can infer the regulatory structure among several tens of genes maximizing prediction ability for the observational data. Furthermore, the method is capable of incorporating various types of existing biological knowledge, e.g., drug kinetics and literature-recorded pathways. The effectiveness of the proposed method is shown through a comparison of simulation studies with several previous methods. For an application example, we evaluated mRNA expression profiles over time upon corticosteroid stimulation in rats, thus incorporating corticosteroid
NASA Astrophysics Data System (ADS)
Aketagawa, Masato; Honda, Hiroshi; Ishige, Masashi; Patamaporn, Chaikool
2007-02-01
A two-dimensional (2D) encoder with picometre resolution using multi-tunnelling-probes scanning tunnelling microscope (MTP-STM) as detector units and a regular crystalline lattice as a reference is proposed. In experiments to demonstrate the method, a highly oriented pyrolytic graphite (HOPG) crystal is utilized as the reference. The MTP-STM heads, which are set upon a sample stage, observe multi-points which satisfy some relationship on the HOPG crystalline surface on the sample stage, and the relative 2D displacement between the MTP-STM heads and the sample stage can be determined from the multi-current signals of the multi-points. Two unit lattice vectors on the HOPG crystalline surface with length and intersection angle of 0.246 nm and 60°, respectively, are utilized as 2D displacement references. 2D displacement of the sample stage on which the HOPG crystal is placed can be calculated using the linear sum of the two unit lattice vectors, derived from a linear operation of the multi-current signals. Displacement interpolation less than the lattice spacing of the HOPG crystal can also be performed. To determine the linear sum of the two unit vectors as the 2D displacement, the multi-points to be observed with the MTP-STM must be properly positioned according to the 2D atomic structure of the HOPG crystal. In the experiments, the proposed method is compared with a capacitance sensor whose resolution is improved to approximately 0.1 nm by limiting the sensor's bandwidth to 300 Hz. In order to obtain suitable multi-current signals of the properly positioned multi-points in semi-real-time, lateral dither modulations are applied to the STM probes. The results show that the proposed method has the capability to measure 2D lateral displacements with a resolution on the order of 10 pm with a maximum measurement speed of 100 nm s-1 or more.
NASA Astrophysics Data System (ADS)
Koroteev, A. A.; Popushina, E. S.; Samsonov, A. B.
2014-12-01
A constituent part of frameless devices for rejecting low-potential heat in cycles of new-generation space power plants is a collector of dispersed droplet sheet. Regularities of functioning of passive collectors characterized by the absence of moving parts are studied. Theoretical fundamentals and methods for mathematical and program implementation are developed for the problems of studying motion of films of liquid ultrahigh-vacuum working fluids in space over planar surfaces under conditions of localized mass injection. The physical regularities are revealed that characterize the flow evolution, the outer surface shape of the film, the dependence of its thickness on the initial velocity of motion, coolant temperature, and geometry of the collecting device. The relationships for shape and size of the droplet collector surface are found and parameters of the supporting film of the coolant are defined, whose application may ensure an overlap of collector throat by the film and the achievement of minimum permissible pressure of the recirculating coolant.
The geometric β-function in curved space-time under operator regularization
Agarwala, Susama
2015-06-15
In this paper, I compare the generators of the renormalization group flow, or the geometric β-functions, for dimensional regularization and operator regularization. I then extend the analysis to show that the geometric β-function for a scalar field theory on a closed compact Riemannian manifold is defined on the entire manifold. I then extend the analysis to find the generator of the renormalization group flow to conformally coupled scalar-field theories on the same manifolds. The geometric β-function in this case is not defined.
Paparo, M.; Benko, J. M.; Hareter, M.; Guzik, J. A.
2016-05-11
In this study, a sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT. We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequencesmore » (echelle ridges) were found in the 5–21 d–1 region where the pairs of the sequences are shifted (between 0.5 and 0.59 d–1) by twice the value of the estimated rotational splitting frequency (0.269 d–1). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d–1) are in better agreement with the sum of a possible 1.710 d–1 large separation and two or one times, respectively, the value of the rotational frequency.« less
NASA Astrophysics Data System (ADS)
Paparó, M.; Benkő, J. M.; Hareter, M.; Guzik, J. A.
2016-05-01
A sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT. We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequences (echelle ridges) were found in the 5–21 d‑1 region where the pairs of the sequences are shifted (between 0.5 and 0.59 d‑1) by twice the value of the estimated rotational splitting frequency (0.269 d‑1). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d‑1) are in better agreement with the sum of a possible 1.710 d‑1 large separation and two or one times, respectively, the value of the rotational frequency.
The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in low regularity Sobolev spaces
NASA Astrophysics Data System (ADS)
Cunha, Alysson; Pastor, Ademir
2016-08-01
In this paper we study the initial-value problem associated with the Benjamin-Ono-Zakharov-Kuznetsov equation. Such equation appears as a two-dimensional generalization of the Benjamin-Ono equation when transverse effects are included via weak dispersion of Zakharov-Kuznetsov type. We prove that the initial-value problem is locally well-posed in the usual L2 (R2)-based Sobolev spaces Hs (R2), s > 11 / 8, and in some weighted Sobolev spaces. To obtain our results, most of the arguments are accomplished taking into account the ones for the Benjamin-Ono equation.
On the space and time evolution of regular or irregular human heart or brain signals
NASA Astrophysics Data System (ADS)
Tuncay, Ç.
2009-01-01
A coupled map is suggested to investigate various spatial or temporal designs in biology: several cells (or tissues) in an organ are considered as connected to each other in terms of some molecular diffusions or electrical potential differences and so on. The biological systems (groups of cells) start from various initial conditions for spatial designs (or initial signals for temporal designs) and they evolve in time in terms of the mentioned interactions (connections) besides some individual feedings. The basic aim of the present contribution is to mimic various empirical data for the heart (in normal, quasi-stable, unstable and post operative physiological conditions) or brain (regular or irregular; for epilepsy) signals. The mentioned empirical data are borrowed from various works in the literature which are cited. The suggested model (to be used besides or instead of the artificial network models) involves simple mathematics and the related software is easy. The results may be considered as in good agreement with the mentioned real signals.
NASA Astrophysics Data System (ADS)
Cressie, N.; Wang, R.; Smyth, M.; Miller, C. E.
2016-05-01
Remote sensing of the atmosphere is typically achieved through measurements that are high-resolution radiance spectra. In this article, our goal is to characterize the first-moment and second-moment properties of the errors obtained when solving the regularized inverse problem associated with space-based atmospheric CO2 retrievals, specifically for the dry air mole fraction of CO2 in a column of the atmosphere. The problem of estimating (or retrieving) state variables is usually ill posed, leading to a solution based on regularization that is often called Optimal Estimation (OE). The difference between the estimated state and the true state is defined to be the retrieval error; error analysis for OE uses a linear approximation to the forward model, resulting in a calculation where the first moment of the retrieval error (the bias) is identically zero. This is inherently unrealistic and not seen in real or simulated retrievals. Nonzero bias is expected since the forward model of radiative transfer is strongly nonlinear in the atmospheric state. In this article, we extend and improve OE's error analysis based on a first-order, multivariate Taylor series expansion, by inducing the second-order terms in the expansion. Specifically, we approximate the bias through the second derivative of the forward model, which results in a formula involving the Hessian array. We propose a stable estimate of it, from which we obtain a second-order expression for the bias and the mean square prediction error of the retrieval.
NASA Astrophysics Data System (ADS)
van Enter, Aernout C. D.; Fernández, Roberto; Sokal, Alan D.
1993-09-01
We reconsider the conceptual foundations of the renormalization-group (RG) formalism, and prove some rigorous theorems on the regularity properties and possible pathologies of the RG map. Our main results apply to local (in position space) RG maps acting on systems of bounded spins (compact single-spin space). Regarding regularity, we show that the RG map, defined on a suitable space of interactions (=formal Hamiltonians), is always single-valued and Lipschitz continuous on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order phase transitions. On the pathological side, we make rigorous some arguments of Griffiths, Pearce, and Israel, and prove in several cases that the renormalized measure is not a Gibbs measure for any reasonable interaction. This means that the RG map is ill-defined, and that the conventional RG description of first-order phase transitions is not universally valid. For decimation or Kadanoff transformations applied to the Ising model in dimension d⩾3, these pathologies occur in a full neighborhood { β> β 0, ¦h¦< ɛ( β)} of the low-temperature part of the first-order phase-transition surface. For block-averaging transformations applied to the Ising model in dimension d⩾2, the pathologies occur at low temperatures for arbitrary magnetic field strength. Pathologies may also occur in the critical region for Ising models in dimension d⩾4. We discuss the heuristic and numerical evidence on RG pathologies in the light of our rigorous theorems. In addition, we discuss critically the concept of Gibbs measure, which is at the heart of present-day classical statistical mechanics. We provide a careful, and, we hope, pedagogical, overview of the theory of Gibbsian measures as well as (the less familiar) non-Gibbsian measures, emphasizing the distinction between these two objects and the possible occurrence of the latter in different physical situations. We give a rather complete catalogue of
Gaubin, Y.; Pianezzi, B.; Gasset, G.; Plannel, H.; Kovalev, E.E.
1986-06-01
The Artemia cyst, a gastrula in dormant state, is a very suitable material to investigate the individual effects of HZE cosmic particles. Monolayers of Artemia cysts, sandwiched with nuclear emulsions, flew aboard the Soviet biosatellite Cosmos 1129. The space flight stimulated the developmental capacity expressed by higher percentages of emergence, hatching, and alive nauplii at day 4-5. A greater mean life span was reported in Artemias developed from Artemia cysts hit by the cosmic heavy ions. On Earth, Artemia cysts were exposed to 1, 10, 100, 200 and 400 Gy of gamma (gamma) rays. A stimulating effect on developmental capacity was observed for 10 Gy; the mean life span was significantly increased for this dose. These results are discussed in comparison with previous investigations performed on Earth and in space.
NASA Astrophysics Data System (ADS)
Paparó, M.; Benkő, J. M.; Hareter, M.; Guzik, J. A.
2016-06-01
A sequence search method was developed for searching for regular frequency spacing in δ Scuti stars by visual inspection (VI) and algorithmic search. The sample contains 90 δ Scuti stars observed by CoRoT. An example is given to represent the VI. The algorithm (SSA) is described in detail. The data treatment of the CoRoT light curves, the criteria for frequency filtering, and the spacings derived by two methods (i.e., three approaches: VI, SSA, and FT) are given for each target. Echelle diagrams are presented for 77 targets for which at least one sequence of regular spacing was identified. Comparing the spacing and the shifts between pairs of echelle ridges revealed that at least one pair of echelle ridges is shifted to midway between the spacing for 22 stars. The estimated rotational frequencies compared to the shifts revealed rotationally split doublets, triplets, and multiplets not only for single frequencies, but for the complete echelle ridges in 31 δ Scuti stars. Using several possible assumptions for the origin of the spacings, we derived the large separation ({{Δ }}ν ) that are distributed along the mean density versus large separations relation derived from stellar models.
Paparo, M.; Benko, J. M.; Hareter, M.; Guzik, J. A.
2016-06-17
A sequence search method was developed for searching for regular frequency spacing in δ Scuti stars by visual inspection (VI) and algorithmic search. The sample contains 90 δ Scuti stars observed by CoRoT. An example is given to represent the VI. The algorithm (SSA) is described in detail. The data treatment of the CoRoT light curves, the criteria for frequency filtering, and the spacings derived by two methods (i.e., three approaches: VI, SSA, and FT) are given for each target. Echelle diagrams are presented for 77 targets for which at least one sequence of regular spacing was identified. Comparing the spacing and the shifts between pairs of echelle ridges revealed that at least one pair of echelle ridges is shifted to midway between the spacing for 22 stars. The estimated rotational frequencies compared to the shifts revealed rotationally split doublets, triplets, and multiplets not only for single frequencies, but for the complete echelle ridges in 31 δ Scuti stars. Furthermore, using several possible assumptions for the origin of the spacings, we derived the large separation (more » $${\\rm{\\Delta }}\
NASA Astrophysics Data System (ADS)
Scales, W. A.
2016-02-01
Investigation of stimulated radiation, commonly known as stimulated electromagnetic emissions (SEE), produced by the interaction of high-power, high-frequency HF radiowaves with the ionospheric plasma has been a vibrant area of research since the early 1980s. Substantial diagnostic information about ionospheric plasma characteristics, dynamics, and turbulence can be obtained from the frequency spectrum of the stimulated radiation. During the past several decades, so-called wideband SEE which exists in a frequency band of ±100 kHz or so of the transmit wave frequency (which is several MHz) has been investigated relatively thoroughly. Recent upgrades both in transmitter power and diagnostic receiver frequency sensitivity at major ionosphere interaction facilities in Alaska and Norway have allowed new breakthroughs in the ability to study a plethora of processes associated with the ionospheric plasma during these experiments. A primary advance is in observations of so-called narrowband SEE (NSEE) which exists roughly within ±1 kHz of the transmit wave frequency. An overview of several important new results associated with NSEE are discussed as well as implications to new diagnostics of space plasma physics occurring during ionospheric interaction experiments.
NASA Astrophysics Data System (ADS)
Tze, Chia-Hsiung
We present an alternative formulation of Polyakov’s regularization of Gauss’ integral formula for a single closed Feynman path. A key element in his proof of the D=3 fermi-bose transmutations induced by topological gauge fields, this regularization is linked here with the existence and properties of a nontrivial topological invariant for a closed space ribbon. This self-linking coefficient, an integer, is the sum of two differential characteristics of the ribbon, its twisting and writhing numbers. These invariants form the basis for a physical interpretation of our regularization. Their connection to Polyakov’s spinorization is discussed. We further generalize our construction to the self-linking, twisting and writhing of higher dimensional d=n (odd) submanifolds in D=(2n+1) space-time. Our comprehensive analysis intends to supplement Polyakov’s work as it identifies a natural path to its higher dimensional mathematical and physical generalizations. Combining the theorems of White on self-linking of manifolds and of Adams on nontrivial Hopf fibre bundles and the four composition-division algebras, we argue that besides Polyakov’s case where (d, D)=(1, 3) tied to complex numbers, the potentially interesting extensions are two chiral models with (d, D)=(3, 7) and (7, 15) uniquely linked to quaternions and octonions. In Memoriam Richard P. Feynman
Kumagai, Tomo'omi; Mudd, Ryan; Miyazawa, Yoshiyuki; Liu, Wen; Giambelluca, Thomas; Kobayashi, N.; Lim, Tiva Khan; Jomura, Mayuko; Matsumoto, Kazuho; Huang, Maoyi; Chen, Qi; Ziegler, Alan; Yin, Song
2013-09-10
We developed a soil-vegetation-atmosphere transfer (SVAT) model applicable to simulating CO2 and H2O fluxes from the canopies of rubber plantations, which are characterized by distinct canopy clumping produced by regular spacing of plantation trees. Rubber (Hevea brasiliensis Müll. Arg.) plantations, which are rapidly expanding into both climatically optimal and sub-optimal environments throughout mainland Southeast Asia, potentially change the partitioning of water, energy, and carbon at multiple scales, compared with traditional land covers it is replacing. Describing the biosphere-atmosphere exchange in rubber plantations via SVAT modeling is therefore essential to understanding the impacts on environmental processes. The regular spacing of plantation trees creates a peculiar canopy structure that is not well represented in most SVAT models, which generally assumes a non-uniform spacing of vegetation. Herein we develop a SVAT model applicable to rubber plantation and an evaluation method for its canopy structure, and examine how the peculiar canopy structure of rubber plantations affects canopy CO2 and H2O exchanges. Model results are compared with measurements collected at a field site in central Cambodia. Our findings suggest that it is crucial to account for intensive canopy clumping in order to reproduce observed rubber plantation fluxes. These results suggest a potentially optimal spacing of rubber trees to produce high productivity and water use efficiency.
ERIC Educational Resources Information Center
Stevenson, Blair
2015-01-01
This paper explores the use of video-stimulated recall as a reflective approach for supporting the development of third spaces in action research. The concept of third spaces is used as a conceptual descriptor of the specific intercultural context and relations between the researcher and participants present within the project. The paper…
One-carrier thermally stimulated currents and space-charge-limited currents in naphthalene crystals
NASA Astrophysics Data System (ADS)
Campos, M.; Mergulhão, S.
1980-03-01
Electron trapping in naphthalene is studied by analysis of the space-charge-limited and thermally stimulated currents as a function of applied voltage and temperature. The two methods are used on naphthalene single crystals, with continuous electron injection from a silver contact. The use of the two techniques allows a quantitative determination of the characteristics of deep and shallow traps. Three monomolecular current peaks were observed. Activation energies of 0.5, 0.79, and 1.1 eV, and cross sections of 8.8 × 10-20, 6.9 × 10-16, and 1.0 × 10-18 cm2, were calculated for the corresponding discrete trapping levels of the charge carriers. The behavior observed for space-charge-limited current was a current-voltage characteristic of a single set of traps, with an activation energy of 0.71 eV, and a cross section of 7.1 × 10-16 cm2. The results showed that the use of only space-charge-limited current is not good enough for a characterization of the traps of the material.
Alpha stimulation of the human parietal cortex attunes tactile perception to external space.
Ruzzoli, Manuela; Soto-Faraco, Salvador
2014-02-01
An intriguing question in neuroscience concerns how somatosensory events on the skin are represented in the human brain. Since Head and Holmes' [1] neuropsychological dissociation between localizing touch on the skin and localizing body parts in external space, touch is considered to operate in a variety of spatial reference frames [2]. At least two representations of space are in competition during orienting to touch: a somatotopic one, reflecting the organization of the somatosensory cortex (S1) [3], and a more abstract, external reference frame that factors postural changes in relation to body parts and/or external space [4, 5]. Previous transcranial magnetic stimulation (TMS) studies suggest that the posterior parietal cortex (PPC) plays a key role in supporting representations as well as orienting attention in an external reference frame [4, 6]. Here, we capitalized on the TMS entrainment approach [7, 8], targeting the intraparietal sulcus (IPS). We found that frequency-specific (10 Hz) tuning of the PPC induced spatially specific enhancement of tactile detection that was expressed in an external reference frame. This finding establishes a tight causal link between a concrete form of brain activity (10 Hz oscillation) and a specific type of spatial representation, revealing a fundamental property of how the parietal cortex encodes information. PMID:24440394
Perceptual Spaces Induced by Cochlear Implant All-Polar Stimulation Mode.
Marozeau, Jeremy; McKay, Colette M
2016-01-01
It has been argued that a main limitation of the cochlear implant is the spread of current induced by each electrode, which activates an inappropriately large range of sensory neurons. To reduce this spread, an alternative stimulation mode, the all-polar mode, was tested with five participants. It was designed to activate all the electrodes simultaneously with appropriate current levels and polarities to recruit narrower regions of auditory nerves at specific intracochlear electrode positions (denoted all-polar electrodes). In this study, the all-polar mode was compared with the current commercial stimulation mode: the monopolar mode. The participants were asked to judge the sound dissimilarity between pairs of two-electrode pulse-train stimuli that differed in the electrode positions and were presented in either monopolar or all-polar mode with pulses on the two electrodes presented either sequentially or simultaneously. The dissimilarity ratings were analyzed using a multidimensional scaling technique and three-dimensional stimulus perceptual spaces were produced. For all the conditions (mode and simultaneity), the first perceptual dimension was highly correlated with the position of the most apical activated electrode of the electrical stimulation and the second dimension with the position of the most basal electrode. In both sequential and simultaneous conditions, the monopolar and all-polar stimuli were significantly separated by a third dimension, which may indicate that all-polar stimuli have a perceptual quality that differs from monopolar stimuli. Overall, the results suggest that both modes might successfully represent spectral information in a sound processing strategy. PMID:27604784
NASA Astrophysics Data System (ADS)
Koshkin, Nikolay; Ryabov, Mikhail; Komendant, Volodymyr
Dynamics drag of low orbital artificial satellites as development indicators of a influence of space weather on the upper atmosphere of the Earth is considered. The investigated period which actuates: phases of decrease and a long minimum of the 23rd cycle of solar activity (2005-2008yy), increase phase and a maximum of the 24th cycle of activity (2009-2013yy). In dynamics of drags of all investigated artificial satellites effects as results of x-ray and ultra-violet radiation of high-power solar flares, fluxes of electrons and protons, coronal mass ejection (СМЕ) are distinctly shown. Influences of magnetic storms with the sudden and gradual beginning on dynamics of satellite's drag are investigated. The particular interest represents studying of the periods of common effects of radiation and magnetic storms influence. In the absence of extreme developments of space weather in character of artificial satellites drags various periodic wave processes are shown. Among them there are long-term variations of a geomagnetic field, the gravitational and thermal tidal phenomena in the upper atmosphere etc. The results of identification of the impact of these wave processes on the nature of the artificial satellites drag will be presented.
NASA Astrophysics Data System (ADS)
Forghan, B.; Takook, M. V.; Zarei, A.
2012-09-01
In this paper, the electron self-energy, photon self-energy and vertex functions are explicitly calculated in Krein space quantization including quantum metric fluctuation. The results are automatically regularized or finite. The magnetic anomaly and Lamb shift are also calculated in the one loop approximation in this method. Finally, the obtained results are compared to conventional QED results.
Geometry of spinor regularization
NASA Technical Reports Server (NTRS)
Hestenes, D.; Lounesto, P.
1983-01-01
The Kustaanheimo theory of spinor regularization is given a new formulation in terms of geometric algebra. The Kustaanheimo-Stiefel matrix and its subsidiary condition are put in a spinor form directly related to the geometry of the orbit in physical space. A physically significant alternative to the KS subsidiary condition is discussed. Derivations are carried out without using coordinates.
NASA Astrophysics Data System (ADS)
Zhang, Li; Dang, Bingrong; Li, Junxiong; Chen, Jinsong; Liu, Mei; Liu, Zhiheng; Zhang, Lixin
To monitor the response of live microbes in space radiation environment with high-energy charged particles, we carry out ground stimulation radiation experiments. Spores of Bacillus (CGMCC 1.1849) species are one of the model systems used for astro- and radiobiological studies. (12) C ion beams served as stimulated space radiation from 5gry, 10gry, 20gry, 40gry, to 80gry at a rate of 15gry/min Death rates are measured and mutant strains are isolated. Five representative strains are analyzed for their corresponding gene sequences, protein sequences and gene expression index of DNA repair system gene recA and recO. The statistic results showed the strains resistance to (12) C ion beams radiation is partially due to the increase of gene expression index of recA and recO. In conclusion, our research provide a surrogate system to monitor the live microbial response in resistant to space radiation environment.
Song, Tao; Cui, Li; Gaa, Kathleen; Feffer, Lori; Taulu, Samu; Lee, Roland R; Huang, Mingxiong
2009-12-01
Magnetoencephalography (MEG) has been successfully applied to presurgical epilepsy foci localization and brain functional mapping. Because the neuronal magnetic signals from the brain are extremely weak, MEG measurement requires both low environment noise and the subject/patient being free of artifact-generating metal objects. This strict requirement makes it hard for patients with vagus nerve stimulator, or other similar medical devices, to benefit from the presurgical MEG examinations. Therefore, an approach that can effectively reduce the environmental noise and faithfully recover the brain signals is highly desirable. We applied spatiotemporal signal space separation method, an advanced signal processing approach that can recover bio-magnetic signal from inside the MEG sensor helmet and suppress external disturbance from outside the helmet in empirical MEG measurements, on MEG recordings from normal control subjects and patients who has vagus nerve stimulator. The original MEG recordings were heavily contaminated, and the data could not be assessed. After applying temporal signal space separation, the strong external artifacts from outside the brain were successfully removed, and the neuronal signal from the human brain was faithfully recovered. Both of the goodness-of-fit and 95% confident limit volume confirmed the significant improvement after temporal signal space separation. Hence, temporal signal space separation makes presurgical MEG examinations possible for patients with implanted vagus nerve stimulator or similar medical devices. PMID:19952563
Johnson, Will L.; Jindrich, Devin L.; Zhong, Hui; Roy, Roland R.
2011-01-01
A device to generate standing or locomotion through chronically placed electrodes has not been fully developed due in part to limitations of clinical experimentation and the high number of muscle activation inputs of the leg. We investigated the feasibility of functional electrical stimulation paradigms that minimize the input dimensions for controlling the limbs by stimulating at nerve fascicles, utilizing a model of the rat hindlimb which combined previously collected morphological data with muscle physiological parameters presented herein. As validation of the model we investigated the suitability of a lumped-parameter model for prediction of muscle activation during dynamic tasks. Using the validated model we found that the space of forces producible through activation of muscle groups sharing common nerve fascicles was nonlinearly dependent on the number of discrete muscle groups that could be individually activated (equivalently, the neuroanatomical level of activation). Seven commonly innervated muscle groups were sufficient to produce 78% of the force space producible through individual activation of the 42 modeled hindlimb muscles. This novel, neuroanatomically derived reduction in input dimension emphasizes the potential to simplify controllers for functional electrical stimulation to improve functional recovery after a neuromuscular injury. PMID:21244999
NASA Astrophysics Data System (ADS)
Lu, Jinying; Liu, Min; Pan, Yi; Li, Huasheng
We carried out whole-genome microarray to screen the transcript profile of Arabidopsis thaliana seedlings after three treatment: space microgravity condition( Seedlings grown in microgravity state of space flight of SIMBOX on Shenzhou-8), 1g centrifugal force in space(Seedlings grown in 1g centrifugal force state of space flight of SIMBOX on Shenzhou-8) and ground control. The result of microarray analysis is as followed: There were 368 genes significantly differentially expressed in space microgravity condition compared with that in 1g centrifuge space condition. Space radiation caused 246 genes significantly differentially expressed between seedlings in 1g centrifuge space condition and ground control. Space conditions (including microgravity and radiation) caused 621 genes significantly differentially expressed between seedlings in space microgravity condition and ground control. Microgravity and radiation as a single factor can cause plant gene expression change, but two factors synergism can produce some new effects on plant gene expression. The function of differential expression genes were analyst by bioinformatics, and we found the expression of genes related with stress were more different, such as the dehydration of protein (dehydrin Xero2) expression is up-regulated 57 times; low-temperature-induced protein expression is up-regulated in 49 times; heat shock protein expression is up-regulated 20 times; transcription factor DREB2A expression increase 25 times; protein phosphatase 2C expression is up-regulated 14 times; transcription factor NAM-like protein expression is up-regulated 13 times; cell wall metabolism related genes (xyloglucan, endo-1, 4-beta-D-glucanase) expression is down-regulated in 15 times. The results provide scientific data for the mechanism of space mutation.
Studies of plant gene expression and function stimulated by space microgravity
NASA Astrophysics Data System (ADS)
Lu, Jinying; Liu, Min; Li, Huasheng; Zhao, Hui
2016-07-01
One of the important questions in space biology is how plants respond to an outer space environment i.e., how genetic expression is altered in space microgravity. In this study, the transcriptome of Arabidopsis thaliana seedlings was analyzed as part of the Germany SIMBOX (Science in Microgravity Box) spaceflight experiment on Shenzhou 8. A gene chip was used to screen gene expression differences in Arabidopsis thaliana seedlings between microgravity and 1g centrifugal force in space. Microarray analysis revealed that 368 genes were differentially expressed. Gene Ontology (GO) analysis indicated that these genes were involved in the plant's response to stress, secondary metabolism, hormone metabolism, transcription, protein phosphorylation, lipid metabolism, transport and cell wall metabolism processes. Real time PCR was used to analyzed the miRNA expression including Arabidopsis miR160,miR161, miR394, miR402, miR403, and miR408. MiR408 was significantly upregulated. An overexpression vector of Arabidopsis miR408 was constructed and transferred to Arabidopsis plant. The roots of plants over expressing miR408 exhibited a slower reorientation upon gravistimulation in comparison with those of wild-type. This result indicated that miR408 could play a role in root gravitropic response.
Kabutoya, Tomoyuki; Imai, Yasushi; Watanabe, Hiroaki; Watanabe, Tomonori; Komori, Takahiro; Kario, Kazuomi
2016-01-01
A 48-year-old woman underwent cardiac resynchronization therapy defibrillator implantation. Coronary sinus (CS) venography showed only one adequate anterior branch for a left ventricular lead. We were able to introduce a quadripolar left ventricular lead (Medtronic 4398-88 cm) to the distal portion of the anterior branch. Although phrenic nerve stimulation (PNS) occurred due to distal bipolar pacing (distal 1-mid 2, with 21-mm distance) and proximal pacing (mid 3-proximal 4, distance 21mm), short-spaced bipolar pacing (mid 2-3, distance 1.3 mm) did not induce PNS until 9V pacing. Shared bipolar pacing from each left ventricular electrode (distal 1 to proximal 4) as cathode and a right ventricular (RV) coil as anode resulted in PNS by 3.0V at 0.4 ms. Although quadripolar pacing could avoid PNS by switching the pacing site (ie, from distal bipolar to proximal bipolar), it might not avoid PNS in cases where the phrenic nerve and CS branch are parallel and in close proximity. We found that even though the phrenic nerve and CS branch were parallel and close, short-spaced bipolar pacing could avoid PNS. In conclusion, short-spaced bipolar pacing selected by quadripolar pacing might be beneficial to avoid PNS when the implantable branch is limited. PMID:26742701
NASA Technical Reports Server (NTRS)
Baisch, F.; Beck, L.; Blomqvist, G.; Wolfram, G.; Drescher, J.; Rome, J. L.; Drummer, C.
2000-01-01
BACKGROUND: It is well known that space travel cause post-flight orthostatic hypotension and it was assumed that autonomic cardiovascular control deteriorates in space. Lower body negative pressure (LBNP) was used to assess autonomic function of the cardiovascular system. METHODS: LBNP tests were performed on six crew-members before and on the first days post-flight in a series of three space missions. Additionally, two of the subjects performed LBNP tests in-flight. LBNP mimics fluid distribution of upright posture in a gravity independent way. It causes an artificial sequestration of blood, reduces preload, and filtrates plasma into the lower part of the body. Fluid distribution was assessed by bioelectrical impedance and anthropometric measurements. RESULTS: Heart rate, blood pressure, and total peripheral resistance increased significantly during LBNP experiments in-flight. The decrease in stroke volume, the increased pooling of blood, and the increased filtration of plasma into the lower limbs during LBNP indicated that a plasma volume reduction and a deficit of the interstitial volume of lower limbs rather than a change in cardiovascular control was responsible for the in-flight response. Post-flight LBNP showed no signs of cardiovascular deterioration. The still more pronounced haemodynamic changes during LBNP reflected the expected behaviour of cardiovascular control faced with less intravascular volume. In-flight, the status of an intra-and extravascular fluid deficit increases sympathetic activity, the release of vasoactive substances and consequently blood pressure. Post-flight, blood pressure decreases significantly below pre-flight values after restoration of volume deficits. CONCLUSION: We conclude that the cardiovascular changes in-flight are a consequence of a fluid deficit rather than a consequence of changes in autonomic signal processing.
VLF wave stimulation by pulsed electron beams injected from the Space Shuttle
NASA Technical Reports Server (NTRS)
Reeves, G. D.; Banks, P. M.; Frazer-Smith, A. C.; Neubert, T.; Bush, R. I.
1988-01-01
Among the investigations conducted on the Space Shuttle flight STS-3 of March 1982 was an experiment in which a 1-keV, 100-mA electron gun was pulsed at 3.25 and 4.87 kHz. The resultant waves were measured with a broadband plasma wave receiver. At the time of flight the experimental setup was unique in that the electron beam was square wave modulated and that the Shuttle offered relatively long times for in situ measurements of the ionospheric plasma response to the VLF pulsing sequences. In addition to electromagnetic response at the pulsing frequencies the wave exhibited various spectral harmonics as well as the unexpected occurrence of 'satellite lines' around those harmonics. Both phenomena occurred with a variety of different characteristics for different pulsing sequences.
Simulated Space Radiation: Murine Skeletal Responses During Recovery and with Mechanical Stimulation
NASA Technical Reports Server (NTRS)
Shirazi-Fard, Yasaman; Zaragoza, Josergio; Schreurs, Ann-Sofie; Truong, Tiffany; Tahimic, Candice; Alwood, Joshua S.; Castillo, Alesha B.; Globus, R. K.
2016-01-01
Simulated space radiation at doses similar to those of solar particle events or a round-trip sojourn to Mars (1-2Gy) may cause skeletal tissue degradation and deplete stem/progenitor cell pools throughout the body. We hypothesized that simulated space radiation (SSR) causes late, time-dependent deficits in bone structure and bone cell function reflected by changes in gene expression in response to anabolic stimuli. We used a unique sequential dual ion exposure (proton and iron) for SSR to investigate time-dependence of responses in gene expression, cell function, and microarchitecture with respect to radiation and an anabolic stimulus of axial loading (AL). Male 16-wk C57BL6/J mice (n=120 total) were exposed to 0Gy (Sham, n=10), 56Fe (2Gy, positive control dose, n=10), or sequential ions for SSR (1Gy 1H/56Fe/1H, n=10) by total body irradiation (IR), and the tissues were harvested 2 or 6 mo. later. Further, to assess the response to anabolic stimuli, we subjected additional Sham-AL (n=15) and SSR-AL (n=15) groups to rest-inserted tibial axial loading (AL) starting at 1 and 5 months post-IR (-9N, 60 cycles/day, 3 days/wk, 4 wks). Exposure to 56Fe caused a significant reduction in cancellous bone volume fraction (BV/TV) compared to Sham (-34%) and SSR (-20%) in the proximal tibia metaphysis at 2-months post-IR; however BV/TV for SSR group was not different than Sham. Both 56Fe and SSR caused significant reduction in trabecular number (Tb.N) compared to Sham (-33% and -16%, respectively). Further, Tb.N for 56Fe (2Gy) was significantly lower than SSR (-21%). Ex vivo culture of marrow cells to assess growth and differentiation of osteoblast lineage cells 6 months post-IR showed that both 56Fe and SSR exposures significantly impaired colony formation compared to Sham (-66% and -54%, respectively), as well as nodule mineralization (-90% and -51%, respectively). Two-way analysis of variance showed that both mechanical loading and radiation reduced BV/TV, mechanical loading
Sidtis, John J.; Alken, Amy G.; Tagliati, Michele; Alterman, Ron; Van Lancker Sidtis, Diana
2016-01-01
Background: Stimulation of the subthalamic nuclei (STN) is an effective treatment for Parkinson’s disease, but complaints of speech difficulties after surgery have been difficult to quantify. Speech measures do not convincingly account for such reports. Objective: This study examined STN stimulation effects on vowel production, in order to probe whether DBS affects articulatory posturing. The objective was to compare positioning during the initiation phase with the steady prolongation phase by measuring vowel spaces for three “corner” vowels at these two time frames. Methods: Vowel space was measured over the initial 0.25 sec of sustained productions of high front (/i/), high back (/u/) and low vowels (/a/), and again during a 2 sec segment at the midpoint. Eight right-handed male subjects with bilateral STN stimulation and seven age-matched male controls were studied based on their participation in a larger study that included functional imaging. Mean values: age = 57±4.6 yrs; PD duration = 12.3±2.7 yrs; duration of DBS = 25.6±21.2 mos, and UPDRS III speech score = 1.6±0.7. STN subjects were studied off medication at their therapeutic DBS settings and again with their stimulators off, counter-balanced order. Results: Vowel space was larger in the initiation phase compared to the midpoint for both the control and the STN subjects off stimulation. With stimulation on, however, the initial vowel space was significantly reduced to the area measured at the mid-point. For the three vowels, the acoustics were differentially affected, in accordance with expected effects of front versus back position in the vocal tract. Conclusions: STN stimulation appears to constrain initial articulatory gestures for vowel production, raising the possibility that articulatory positions normally used in speech are similarly constrained. PMID:27003219
The Volume of the Regular Octahedron
ERIC Educational Resources Information Center
Trigg, Charles W.
1974-01-01
Five methods are given for computing the area of a regular octahedron. It is suggested that students first construct an octahedron as this will aid in space visualization. Six further extensions are left for the reader to try. (LS)
NASA Astrophysics Data System (ADS)
Grigoryan, E.; Almeida, E.; Domaratskaya, E.; Tairbekov, M.; Aleinikova, K.; Mitashov, V.
A study on space flight effect upon processes of regeneration is due to the necessity to know their characteristics in animals and human exposed to space and earth conditions shortly after flight Several experiments on the newts performed earlier aboard Russian biosatellites showed that the rate of organ and tissue regeneration in space was greater than that on the ground Space flight effect stimulating regeneration was enduring and apparent not only just after flight but long time later as well This observation found support in studies simulated physiological weightlessness by means of fast-rotating clinostat It was shown also that the higher rate of regeneration was associated with enhanced cell proliferation For instance we found that the number of cells in S-phase in regenerating tissues was significantly greater in space-flown animals than in the ground controls However it was unclear whether cell proliferation stimulation was induced by micro- g per se or by conditions of hyper- g during launching and re-adaptation on the earth Molecular mechanisms underlying the change also remained obscure These issues were addressed by the joint Russian-USA experiment Regeneration performed on Foton-M2 in 2005 In 16- day flight we used two well-known models of regeneration lens regeneration after lensectomy and tail regeneration after amputation in adult newts Pleurodeles walt Urodela In order to evaluate cell proliferative activity in time limits of microgravity influence the original method for in-flight delivering DNA precursor BrdU
NASA Technical Reports Server (NTRS)
Lackner, J. R.; Graybiel, A.
1986-01-01
The effect of gravity on the severity of the Coriolis-induced motion sickness was investigated in ten individuals subjected to high and low G-force phases of parabolic flight maneuvers using constant level Coriolis, cross-coupled angular acceleration stimulation. Using seven levels of severity in the diagnosis of motion sickness, it was found that the subjects were less susceptible at 0 G than at +2 Gz, and that the perceived intensity and provocativeness of Coriolis stimulation decreased in 0 G and increased in +2 Gz relative to the +1 Gz baseline values. The changes in the apparent intensity of Coriolis stimulation occur virtually immediately when the background gravitatioinertial force level is varied. These findings explain why the Skylab astronauts were refractory to motion sickness during Coriolis stimulation in-flight.
Regular FPGA based on regular fabric
NASA Astrophysics Data System (ADS)
Xun, Chen; Jianwen, Zhu; Minxuan, Zhang
2011-08-01
In the sub-wavelength regime, design for manufacturability (DFM) becomes increasingly important for field programmable gate arrays (FPGAs). In this paper, an automated tile generation flow targeting micro-regular fabric is reported. Using a publicly accessible, well-documented academic FPGA as a case study, we found that compared to the tile generators previously reported, our generated micro-regular tile incurs less than 10% area overhead, which could be potentially recovered by process window optimization, thanks to its superior printability. In addition, we demonstrate that on 45 nm technology, the generated FPGA tile reduces lithography induced process variation by 33%, and reduce probability of failure by 21.2%. If a further overhead of 10% area can be recovered by enhanced resolution, we can achieve the variation reduction of 93.8% and reduce the probability of failure by 16.2%.
Lee, Kuan H.; Huang, Yung-Jen; Grau, James W.
2016-01-01
How a stimulus impacts spinal cord function depends upon temporal relations. When intermittent noxious stimulation (shock) is applied and the interval between shock pulses is varied (unpredictable), it induces a lasting alteration that inhibits adaptive learning. If the same stimulus is applied in a temporally regular (predictable) manner, the capacity to learn is preserved and a protective/restorative effect is engaged that counters the adverse effect of variable stimulation. Sensitivity to temporal relations implies a capacity to encode time. This study explores how spinal neurons discriminate variable and fixed spaced stimulation. Communication with the brain was blocked by means of a spinal transection and adaptive capacity was tested using an instrumental learning task. In this task, subjects must learn to maintain a hind limb in a flexed position to minimize shock exposure. To evaluate the possibility that a distinct class of afferent fibers provide a sensory cue for regularity, we manipulated the temporal relation between shocks given to two dermatomes (leg and tail). Evidence for timing emerged when the stimuli were applied in a coherent manner across dermatomes, implying that a central (spinal) process detects regularity. Next, we show that fixed spaced stimulation has a restorative effect when half the physical stimuli are randomly omitted, as long as the stimuli remain in phase, suggesting that stimulus regularity is encoded by an internal oscillator Research suggests that the oscillator that drives the tempo of stepping depends upon neurons within the rostral lumbar (L1-L2) region. Disrupting communication with the L1-L2 tissue by means of a L3 transection eliminated the restorative effect of fixed spaced stimulation. Implications of the results for step training and rehabilitation after injury are discussed. PMID:26903830
Regular gravitational lagrangians
NASA Astrophysics Data System (ADS)
Dragon, Norbert
1992-02-01
The Einstein action with vanishing cosmological constant is for appropriate field content the unique local action which is regular at the fixed point of affine coordinate transformations. Imposing this regularity requirement one excludes also Wess-Zumino counterterms which trade gravitational anomalies for Lorentz anomalies. One has to expect dilatational and SL (D) anomalies. If these anomalies are absent and if the regularity of the quantum vertex functional can be controlled then Einstein gravity is renormalizable. On leave of absence from Institut für Theoretische Physik, Universität Hannover, W-3000 Hannover 1, FRG.
Regularized Structural Equation Modeling
Jacobucci, Ross; Grimm, Kevin J.; McArdle, John J.
2016-01-01
A new method is proposed that extends the use of regularization in both lasso and ridge regression to structural equation models. The method is termed regularized structural equation modeling (RegSEM). RegSEM penalizes specific parameters in structural equation models, with the goal of creating easier to understand and simpler models. Although regularization has gained wide adoption in regression, very little has transferred to models with latent variables. By adding penalties to specific parameters in a structural equation model, researchers have a high level of flexibility in reducing model complexity, overcoming poor fitting models, and the creation of models that are more likely to generalize to new samples. The proposed method was evaluated through a simulation study, two illustrative examples involving a measurement model, and one empirical example involving the structural part of the model to demonstrate RegSEM’s utility. PMID:27398019
Functional MRI Using Regularized Parallel Imaging Acquisition
Lin, Fa-Hsuan; Huang, Teng-Yi; Chen, Nan-Kuei; Wang, Fu-Nien; Stufflebeam, Steven M.; Belliveau, John W.; Wald, Lawrence L.; Kwong, Kenneth K.
2013-01-01
Parallel MRI techniques reconstruct full-FOV images from undersampled k-space data by using the uncorrelated information from RF array coil elements. One disadvantage of parallel MRI is that the image signal-to-noise ratio (SNR) is degraded because of the reduced data samples and the spatially correlated nature of multiple RF receivers. Regularization has been proposed to mitigate the SNR loss originating due to the latter reason. Since it is necessary to utilize static prior to regularization, the dynamic contrast-to-noise ratio (CNR) in parallel MRI will be affected. In this paper we investigate the CNR of regularized sensitivity encoding (SENSE) acquisitions. We propose to implement regularized parallel MRI acquisitions in functional MRI (fMRI) experiments by incorporating the prior from combined segmented echo-planar imaging (EPI) acquisition into SENSE reconstructions. We investigated the impact of regularization on the CNR by performing parametric simulations at various BOLD contrasts, acceleration rates, and sizes of the active brain areas. As quantified by receiver operating characteristic (ROC) analysis, the simulations suggest that the detection power of SENSE fMRI can be improved by regularized reconstructions, compared to unregularized reconstructions. Human motor and visual fMRI data acquired at different field strengths and array coils also demonstrate that regularized SENSE improves the detection of functionally active brain regions. PMID:16032694
Scaling behavior of regularized bosonic strings
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Makeenko, Y.
2016-03-01
We implement a proper-time UV regularization of the Nambu-Goto string, introducing an independent metric tensor and the corresponding Lagrange multiplier, and treating them in the mean-field approximation justified for long strings and/or when the dimension of space-time is large. We compute the regularized determinant of the 2D Laplacian for the closed string winding around a compact dimension, obtaining in this way the effective action, whose minimization determines the energy of the string ground state in the mean-field approximation. We discuss the existence of two scaling limits when the cutoff is taken to infinity. One scaling limit reproduces the results obtained by the hypercubic regularization of the Nambu-Goto string as well as by the use of the dynamical triangulation regularization of the Polyakov string. The other scaling limit reproduces the results obtained by canonical quantization of the Nambu-Goto string.
NASA Technical Reports Server (NTRS)
1971-01-01
A case study of knowledge contributions from the crew life support aspect of the manned space program is reported. The new information needed to be learned, the solutions developed, and the relation of new knowledge gained to earthly problems were investigated. Illustrations are given in the following categories: supplying atmosphere for spacecraft; providing carbon dioxide removal and recycling; providing contaminant control and removal; maintaining the body's thermal balance; protecting against the space hazards of decompression, radiation, and meteorites; minimizing fire and blast hazards; providing adequate light and conditions for adequate visual performance; providing mobility and work physiology; and providing adequate habitability.
ERIC Educational Resources Information Center
Lynch, Christopher O.
2010-01-01
This article presents a classroom activity that introduces students to the concept of themed space. Students learn to think critically about the spaces they encounter on a regular basis by analyzing existing spaces and by working in groups to create their own themed space. This exercise gives students the chance to see the relevance of critical…
Regularization methods for Nuclear Lattice Effective Field Theory
NASA Astrophysics Data System (ADS)
Klein, Nico; Lee, Dean; Liu, Weitao; Meißner, Ulf-G.
2015-07-01
We investigate Nuclear Lattice Effective Field Theory for the two-body system for several lattice spacings at lowest order in the pionless as well as in the pionful theory. We discuss issues of regularizations and predictions for the effective range expansion. In the pionless case, a simple Gaussian smearing allows to demonstrate lattice spacing independence over a wide range of lattice spacings. We show that regularization methods known from the continuum formulation are necessary as well as feasible for the pionful approach.
Pairing effect and misleading regularity
NASA Astrophysics Data System (ADS)
Al-Sayed, A.
2015-11-01
We study the nearest neighbor spacing distribution of energy levels of even-even nuclei classified according to their reduced electric quadrupole transition probability B (E2) ↑ using the available experimental data. We compare between Brody, and Abul-Magd distributions that extract the degree of chaoticity within nuclear dynamics. The results show that Abul-Magd parameter f can represents the chaotic behavior in more acceptable way than Brody, especially if a statistically significant study is desired. A smooth transition from chaos to order is observed as B (E2) ↑ increases. An apparent regularity was located at the second interval, namely: at 0.05 ≤ B (E2) < 0.1 in e2b2 units, and at 10 ≤ B (E2) < 15 in Weisskopf unit. Finally, the chaotic behavior parameterized in terms of B (E2) ↑ does not depend on the unit used.
NASA Technical Reports Server (NTRS)
Raitt, W. J.; Banks, P. M.; Denig, W. F.; Anderson, H. R.
1982-01-01
Interest in the interaction of electron beams with plasma generated by ionization caused by the primary electron beam was stimulated by the need to develop special vacuum tubes to operate in the kMHz frequency region. The experiments of Getty and Smullin (1963) indicated that the interaction of an energetic electron beam with its self-produced plasma resulted in the emission of wave energy over a wide range of frequencies associated with cyclotron and longitudinal plasma instabilities. This enhanced the thermal plasma density in the vicinity of the beam, and the term Beam-Plasma Discharge (BPD) was employed to described this phenomenon. The present investigation is concerned with some of the transient phenomena associated with wave emission during the beam switch-on and switch-off periods. Results are presented on the changes in electron energy spectra on a time scale of tens of milliseconds following beam switch-on. The results are discussed in terms of the beam plasma discharge phenomenon.
Regularized CT reconstruction on unstructured grid
NASA Astrophysics Data System (ADS)
Chen, Yun; Lu, Yao; Ma, Xiangyuan; Xu, Yuesheng
2016-04-01
Computed tomography (CT) is an ill-posed problem. Reconstruction on unstructured grid reduces the computational cost and alleviates the ill-posedness by decreasing the dimension of the solution space. However, there was no systematic study on edge-preserving regularization methods for CT reconstruction on unstructured grid. In this work, we propose a novel regularization method for CT reconstruction on unstructured grid, such as triangular or tetrahedral meshes generated from the initial images reconstructed via analysis reconstruction method (e.g., filtered back-projection). The proposed regularization method is modeled as a three-term optimization problem, containing a weighted least square fidelity term motivated by the simultaneous algebraic reconstruction technique (SART). The related cost function contains two non-differentiable terms, which bring difficulty to the development of the fast solver. A fixed-point proximity algorithm with SART is developed for solving the related optimization problem, and accelerating the convergence. Finally, we compare the regularized CT reconstruction method to SART with different regularization methods. Numerical experiments demonstrated that the proposed regularization method on unstructured grid is effective to suppress noise and preserve edge features.
Spinal cord stimulation is a treatment for pain that uses a mild electric current to block nerve impulses ... stretched into the space on top of your spinal cord. These wires will be connected to a small ...
Li, Shijun; Wang, Yi; Bin, Guangyu; Huang, Xiaoshan; Zhang, Dan; Liu, Gang; Lv, Yanwei; Gao, Xiaorong; Gao, Shangkai; Ma, Lin
2015-01-01
Background and objective: The relationship between EEG source signals and action-related visual and auditory stimulation is still not well-understood. The objective of this study was to identify EEG source signals and their associated action-related visual and auditory responses, especially independent components of EEG. Methods: A hand-moving-Hanoi video paradigm was used to study neural correlates of the action-related visual and auditory information processing determined by mu rhythm (8–12 Hz) in 16 healthy young subjects. Independent component analysis (ICA) was applied to identify separate EEG sources, and further computed in the frequency domain by applying-Fourier transform ICA (F-ICA). Results: F-ICA found more sensory stimuli-related independent components located within the sensorimotor region than ICA did. The total number of independent components of interest from F-ICA was 768, twice that of 384 from traditional time-domain ICA (p < 0.05). In the sensory-motor region C3 or C4, the total source signals intensity distribution values from all 14 subjects was 23.00 (Mean 1.64 ± 1.17) from F-ICA; which was more than the 10.5 (Mean 0.75 ± 0.62) from traditional time-domain ICA (p < 0.05). Furthermore, the intensity distribution of source signals in the C3 or C4 region was statistically significant between the ICA and F-ICA groups (strong 50 vs. 92%; weak 50 vs. 8% retrospectively; p < 0.05). In the Pz region, the total source signal intensity distribution from F-ICA was 12.50 (Mean 0.89 ± 0.53); although exceeding that of traditional time-domain ICA 8.20 (Mean 0.59 ± 0.48), the difference was not statistically significant (p > 0.05). Conclusions: These results support the hypothesis that mu rhythm was sensitive to detection of the cognitive expression, which could be reflected by the function in the parietal lobe sensory-motor region. The results of this study could potentially be applied into early diagnosis for those with visual and hearing
Gauge approach to gravitation and regular Big Bang theory
NASA Astrophysics Data System (ADS)
Minkevich, A. V.
2006-03-01
Field theoretical scheme of regular Big Bang in 4-dimensional physical space-time, built in the framework of gauge approach to gravitation, is discussed. Regular bouncing character of homogeneous isotropic cosmological models is ensured by gravitational repulsion effect at extreme conditions without quantum gravitational corrections. The most general properties of regular inflationary cosmological models are examined. Developing theory is valid, if energy density of gravitating matter is positive and energy dominance condition is fulfilled.
NASA Astrophysics Data System (ADS)
Larios, Adam; Titi, Edriss S.
2014-03-01
We prove existence, uniqueness, and higher-order global regularity of strong solutions to a particular Voigt-regularization of the three-dimensional inviscid resistive magnetohydrodynamic (MHD) equations. Specifically, the coupling of a resistive magnetic field to the Euler-Voigt model is introduced to form an inviscid regularization of the inviscid resistive MHD system. The results hold in both the whole space and in the context of periodic boundary conditions. Weak solutions for this regularized model are also considered, and proven to exist globally in time, but the question of uniqueness for weak solutions is still open. Furthermore, we show that the solutions of the Voigt regularized system converge, as the regularization parameter , to strong solutions of the original inviscid resistive MHD, on the corresponding time interval of existence of the latter. Moreover, we also establish a new criterion for blow-up of solutions to the original MHD system inspired by this Voigt regularization.
NASA Astrophysics Data System (ADS)
Larios, Adam; Titi, Edriss S.
2013-05-01
We prove existence, uniqueness, and higher-order global regularity of strong solutions to a particular Voigt-regularization of the three-dimensional inviscid resistive magnetohydrodynamic (MHD) equations. Specifically, the coupling of a resistive magnetic field to the Euler-Voigt model is introduced to form an inviscid regularization of the inviscid resistive MHD system. The results hold in both the whole space {{R}^3} and in the context of periodic boundary conditions. Weak solutions for this regularized model are also considered, and proven to exist globally in time, but the question of uniqueness for weak solutions is still open. Furthermore, we show that the solutions of the Voigt regularized system converge, as the regularization parameter {α → 0}, to strong solutions of the original inviscid resistive MHD, on the corresponding time interval of existence of the latter. Moreover, we also establish a new criterion for blow-up of solutions to the original MHD system inspired by this Voigt regularization.
ERIC Educational Resources Information Center
Web Feet K-8, 2001
2001-01-01
This annotated subject guide to Web sites and additional resources focuses on space and astronomy. Specifies age levels for resources that include Web sites, CD-ROMS and software, videos, books, audios, and magazines; offers professional resources; and presents a relevant class activity. (LRW)
Space station needs, attributes, and architectural options: Commercial opportunities in space
NASA Technical Reports Server (NTRS)
Wolbers, H. L., Jr.
1983-01-01
The roles of government and industry in the commercialization of space are examined and an approach for stimulating the interests of potential users is described. Several illustrative examples of potential commercial developments are presented. The role of manned space systems in space commercialization is discussed as well as some of the issues and opportunities that are likely to be encountered in the commercial exploitation of the unique characteristics of space. Results suggest that interest in space facilities can be found among a number of commercially oriented users. In order to develop and maintain the involvement of these potential users, however, space demonstrations are required, and commercial growth or evolution depends on the results of the initial in situ experience. Manned facilities are required for the conceptual research and development phases and for maintenance and servicing operations during production or operational missions. Space facilities must be easily accessible by dependable and regularly scheduled means.
Fast Image Reconstruction with L2-Regularization
Bilgic, Berkin; Chatnuntawech, Itthi; Fan, Audrey P.; Setsompop, Kawin; Cauley, Stephen F.; Wald, Lawrence L.; Adalsteinsson, Elfar
2014-01-01
Purpose We introduce L2-regularized reconstruction algorithms with closed-form solutions that achieve dramatic computational speed-up relative to state of the art L1- and L2-based iterative algorithms while maintaining similar image quality for various applications in MRI reconstruction. Materials and Methods We compare fast L2-based methods to state of the art algorithms employing iterative L1- and L2-regularization in numerical phantom and in vivo data in three applications; 1) Fast Quantitative Susceptibility Mapping (QSD), 2) Lipid artifact suppression in Magnetic Resonance Spectroscopic Imaging (MRSI), and 3) Diffusion Spectrum Imaging (DSI). In all cases, proposed L2-based methods are compared with the state of the art algorithms, and two to three orders of magnitude speed up is demonstrated with similar reconstruction quality. Results The closed-form solution developed for regularized QSM allows processing of a 3D volume under 5 seconds, the proposed lipid suppression algorithm takes under 1 second to reconstruct single-slice MRSI data, while the PCA based DSI algorithm estimates diffusion propagators from undersampled q-space for a single slice under 30 seconds, all running in Matlab using a standard workstation. Conclusion For the applications considered herein, closed-form L2-regularization can be a faster alternative to its iterative counterpart or L1-based iterative algorithms, without compromising image quality. PMID:24395184
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-02
... CORPORATION Regular Meeting AGENCY: Farm Credit System Insurance Corporation Board. SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). DATE AND TIME: The meeting of the Board will be held at the offices of the Farm Credit Administration in...
Regularly timed events amid chaos.
Blakely, Jonathan N; Cooper, Roy M; Corron, Ned J
2015-11-01
We show rigorously that the solutions of a class of chaotic oscillators are characterized by regularly timed events in which the derivative of the solution is instantaneously zero. The perfect regularity of these events is in stark contrast with the well-known unpredictability of chaos. We explore some consequences of these regularly timed events through experiments using chaotic electronic circuits. First, we show that a feedback loop can be implemented to phase lock the regularly timed events to a periodic external signal. In this arrangement the external signal regulates the timing of the chaotic signal but does not strictly lock its phase. That is, phase slips of the chaotic oscillation persist without disturbing timing of the regular events. Second, we couple the regularly timed events of one chaotic oscillator to those of another. A state of synchronization is observed where the oscillators exhibit synchronized regular events while their chaotic amplitudes and phases evolve independently. Finally, we add additional coupling to synchronize the amplitudes, as well, however in the opposite direction illustrating the independence of the amplitudes from the regularly timed events. PMID:26651759
Regularized Generalized Canonical Correlation Analysis
ERIC Educational Resources Information Center
Tenenhaus, Arthur; Tenenhaus, Michel
2011-01-01
Regularized generalized canonical correlation analysis (RGCCA) is a generalization of regularized canonical correlation analysis to three or more sets of variables. It constitutes a general framework for many multi-block data analysis methods. It combines the power of multi-block data analysis methods (maximization of well identified criteria) and…
Natural selection and mechanistic regularity.
DesAutels, Lane
2016-06-01
In this article, I address the question of whether natural selection operates regularly enough to qualify as a mechanism of the sort characterized by Machamer, Darden, and Craver (2000). Contrary to an influential critique by Skipper and Millstein (2005), I argue that natural selection can be seen to be regular enough to qualify as an MDC mechanism just fine-as long as we pay careful attention to some important distinctions regarding mechanistic regularity and abstraction. Specifically, I suggest that when we distinguish between process vs. product regularity, mechanism-internal vs. mechanism-external sources of irregularity, and abstract vs. concrete regularity, we can see that natural selection is only irregular in senses that are unthreatening to its status as an MDC mechanism. PMID:26921876
Cao, Guan
2014-01-01
Hippocampal long-term potentiation (LTP) is a model system for studying cellular mechanisms of learning and memory. Recent interest in mechanisms underlying the advantage of spaced over massed learning has prompted investigation into the effects of distributed episodes of LTP induction. The amount of LTP induced in hippocampal area CA1 by one train (1T) of theta-burst stimulation (TBS) in young Sprague-Dawley rats was further enhanced by additional bouts of 1T given at 1-h intervals. However, in young Long-Evans (LE) rats, 1T did not initially saturate LTP. Instead, a stronger LTP induction paradigm using eight trains of TBS (8T) induced saturated LTP in hippocampal slices from both young and adult LE rats as well as adult mice. The saturated LTP induced by 8T could be augmented by another episode of 8T following an interval of at least 90 min. The success rate across animals and slices in augmenting LTP by an additional episode of 8T increased significantly with longer intervals between the first and last episodes, ranging from 0% at 30- and 60-min intervals to 13–66% at 90- to 180-min intervals to 90–100% at 240-min intervals. Augmentation above initially saturated LTP was blocked by the N-methyl-d-aspartate (NMDA) glutamate receptor antagonist d-2-amino-5-phosphonovaleric acid (d-APV). These findings suggest that the strength of induction and interval between episodes of TBS, as well as the strain and age of the animal, are important components in the augmentation of LTP. PMID:25057146
Takano, Yoshio; Yoshimitsu, Kazuhiro; Omoto, Masayuki; Hashida, Ryuki; Tagawa, Yoshihiko; Inada, Tomohisa; Yamada, Shin; Ohshima, Hiroshi
2015-01-01
Background Musculoskeletal atrophy is one of the major problems of extended periods of exposure to weightlessness such as on the International Space Station (ISS). We developed the Hybrid Training System (HTS) to maintain an astronaut’s musculoskeletal system using an electrically stimulated antagonist to resist the volitional contraction of the agonist instead of gravity. The present study assessed the system’s orbital operation capability and utility, as well as its preventative effect on an astronaut’s musculoskeletal atrophy. Methods HTS was attached to the non-dominant arm of an astronaut staying on the ISS, and his dominant arm without HTS was established as the control (CTR). 10 sets of 10 reciprocal elbow curls were one training session, and 12 total sessions of training (3 times per week for 4 weeks) were performed. Pre and post flight ground based evaluations were performed by Biodex (muscle performance), MRI (muscle volume), and DXA (BMD, lean [muscle] mass, fat mass). Pre and post training inflight evaluations were performed by a hand held dynamometer (muscle force) and a measuring tape (upper arm circumference). Results The experiment was completed on schedule, and HTS functioned well without problems. Isokinetic elbow extension torque (Nm) changed -19.4% in HTS, and -21.7% in CTR. Isokinetic elbow flexion torque changed -23.7% in HTS, and there was no change in CTR. Total Work (Joule) of elbow extension changed -8.3% in HTS, and +0.3% in CTR. For elbow flexion it changed -23.3% in HTS and -32.6% in CTR. Average Power (Watts) of elbow extension changed +22.1% in HTS and -8.0% in CTR. For elbow flexion it changed -6.5% in HTS and -4.8% in CTR. Triceps muscle volume according to MRI changed +11.7% and that of biceps was +2.1% using HTS, however -0.1% and -0.4% respectively for CTR. BMD changed +4.6% in the HTS arm and -1.2% for CTR. Lean (muscle) mass of the arm changed only +10.6% in HTS. Fat mass changed -12.6% in HTS and -6.4% in CTR
Wavelet Regularization Per Nullspace Shuttle
NASA Astrophysics Data System (ADS)
Charléty, J.; Nolet, G.; Sigloch, K.; Voronin, S.; Loris, I.; Simons, F. J.; Daubechies, I.; Judd, S.
2010-12-01
Wavelet decomposition of models in an over-parameterized Earth and L1-norm minimization in wavelet space is a promising strategy to deal with the very heterogeneous data coverage in the Earth without sacrificing detail in the solution where this is resolved (see Loris et al., abstract this session). However, L1-norm minimizations are nonlinear, and pose problems of convergence speed when applied to large data sets. In an effort to speed up computations we investigate the application of the nullspace shuttle (Deal and Nolet, GJI 1996). The nullspace shuttle is a filter that adds components from the nullspace to the minimum norm solution so as to have the model satisfy additional conditions not imposed by the data. In our case, the nullspace shuttle projects the model on a truncated basis of wavelets. The convergence of this strategy is unproven, in contrast to algorithms using Landweber iteration or one of its variants, but initial computations using a very large data base give reason for optimism. We invert 430,554 P delay times measured by cross-correlation in different frequency windows. The data are dominated by observations with US Array, leading to a major discrepancy in the resolution beneath North America and the rest of the world. This is a subset of the data set inverted by Sigloch et al (Nature Geosci, 2008), excluding only a small number of ISC delays at short distance and all amplitude data. The model is a cubed Earth model with 3,637,248 voxels spanning mantle and crust, with a resolution everywhere better than 70 km, to which 1912 event corrections are added. In each iteration we determine the optimal solution by a least squares inversion with minimal damping, after which we regularize the model in wavelet space. We then compute the residual data vector (after an intermediate scaling step), and solve for a model correction until a satisfactory chi-square fit for the truncated model is obtained. We present our final results on convergence as well as a
NONCONVEX REGULARIZATION FOR SHAPE PRESERVATION
CHARTRAND, RICK
2007-01-16
The authors show that using a nonconvex penalty term to regularize image reconstruction can substantially improve the preservation of object shapes. The commonly-used total-variation regularization, {integral}|{del}u|, penalizes the length of the object edges. They show that {integral}|{del}u|{sup p}, 0 < p < 1, only penalizes edges of dimension at least 2-p, and thus finite-length edges not at all. We give numerical examples showing the resulting improvement in shape preservation.
Exploring the spectrum of regularized bosonic string theory
Ambjørn, J. Makeenko, Y.
2015-03-15
We implement a UV regularization of the bosonic string by truncating its mode expansion and keeping the regularized theory “as diffeomorphism invariant as possible.” We compute the regularized determinant of the 2d Laplacian for the closed string winding around a compact dimension, obtaining the effective action in this way. The minimization of the effective action reliably determines the energy of the string ground state for a long string and/or for a large number of space-time dimensions. We discuss the possibility of a scaling limit when the cutoff is taken to infinity.
Geometric continuum regularization of quantum field theory
Halpern, M.B. . Dept. of Physics)
1989-11-08
An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs.
Regular patterns stabilize auditory streams.
Bendixen, Alexandra; Denham, Susan L; Gyimesi, Kinga; Winkler, István
2010-12-01
The auditory system continuously parses the acoustic environment into auditory objects, usually representing separate sound sources. Sound sources typically show characteristic emission patterns. These regular temporal sound patterns are possible cues for distinguishing sound sources. The present study was designed to test whether regular patterns are used as cues for source distinction and to specify the role that detecting these regularities may play in the process of auditory stream segregation. Participants were presented with tone sequences, and they were asked to continuously indicate whether they perceived the tones in terms of a single coherent sequence of sounds (integrated) or as two concurrent sound streams (segregated). Unknown to the participant, in some stimulus conditions, regular patterns were present in one or both putative streams. In all stimulus conditions, participants' perception switched back and forth between the two sound organizations. Importantly, regular patterns occurring in either one or both streams prolonged the mean duration of two-stream percepts, whereas the duration of one-stream percepts was unaffected. These results suggest that temporal regularities are utilized in auditory scene analysis. It appears that the role of this cue lies in stabilizing streams once they have been formed on the basis of simpler acoustic cues. PMID:21218898
Extended Locus of Regular Nuclei
Amon, L.; Casten, R. F.
2007-04-23
A new family of IBM Hamiltonians, characterized by certain parameter values, was found about 15 years ago by Alhassid and Whelan to display almost regular dynamics, and yet these solutions to the IBM do not belong to any of the known dynamical symmetry limits (vibrational, rotational and {gamma} - unstable). Rather, they comprise an 'Arc of Regularity' cutting through the interior of the symmetry triangle from U(5) to SU(3) where suddenly there is a decrease in chaoticity and a significant increase in regularity. A few years ago, the first set of nuclei lying along this arc was discovered. The purpose of the present work is to search more broadly in the nuclear chart at all nuclei from Z = 40 - 100 for other examples of such 'regular' nuclei. Using a unique signature for such nuclei involving energy differences of certain excited states, we have identified an additional set of 12 nuclei lying near or along the arc. Some of these nuclei are known to have low-lying intruder states and therefore care must be taken, however, in judging their structure. The regularity exhibited by nuclei near the arc presumably reflects the validity or partial validity of some new, as yet unknown, quantum number describing these systems and giving the regularity found for them.
Discovering Structural Regularity in 3D Geometry
Pauly, Mark; Mitra, Niloy J.; Wallner, Johannes; Pottmann, Helmut; Guibas, Leonidas J.
2010-01-01
We introduce a computational framework for discovering regular or repeated geometric structures in 3D shapes. We describe and classify possible regular structures and present an effective algorithm for detecting such repeated geometric patterns in point- or mesh-based models. Our method assumes no prior knowledge of the geometry or spatial location of the individual elements that define the pattern. Structure discovery is made possible by a careful analysis of pairwise similarity transformations that reveals prominent lattice structures in a suitable model of transformation space. We introduce an optimization method for detecting such uniform grids specifically designed to deal with outliers and missing elements. This yields a robust algorithm that successfully discovers complex regular structures amidst clutter, noise, and missing geometry. The accuracy of the extracted generating transformations is further improved using a novel simultaneous registration method in the spatial domain. We demonstrate the effectiveness of our algorithm on a variety of examples and show applications to compression, model repair, and geometry synthesis. PMID:21170292
Regular language constrained sequence alignment revisited.
Kucherov, Gregory; Pinhas, Tamar; Ziv-Ukelson, Michal
2011-05-01
Imposing constraints in the form of a finite automaton or a regular expression is an effective way to incorporate additional a priori knowledge into sequence alignment procedures. With this motivation, the Regular Expression Constrained Sequence Alignment Problem was introduced, which proposed an O(n²t⁴) time and O(n²t²) space algorithm for solving it, where n is the length of the input strings and t is the number of states in the input non-deterministic automaton. A faster O(n²t³) time algorithm for the same problem was subsequently proposed. In this article, we further speed up the algorithms for Regular Language Constrained Sequence Alignment by reducing their worst case time complexity bound to O(n²t³)/log t). This is done by establishing an optimal bound on the size of Straight-Line Programs solving the maxima computation subproblem of the basic dynamic programming algorithm. We also study another solution based on a Steiner Tree computation. While it does not improve the worst case, our simulations show that both approaches are efficient in practice, especially when the input automata are dense. PMID:21554020
Regular surface layer of Azotobacter vinelandii.
Bingle, W H; Doran, J L; Page, W J
1984-01-01
Washing Azotobacter vinelandii UW1 with Burk buffer or heating cells at 42 degrees C exposed a regular surface layer which was effectively visualized by freeze-etch electron microscopy. This layer was composed of tetragonally arranged subunits separated by a center-to-center spacing of approximately 10 nm. Cells washed with distilled water to remove an acidic major outer membrane protein with a molecular weight of 65,000 did not possess the regular surface layer. This protein, designated the S protein, specifically reattached to the surface of distilled-water-washed cells in the presence of the divalent calcium, magnesium, strontium, or beryllium cations. All of these cations except beryllium supported reassembly of the S protein into a regular tetragonal array. Although the surface localization of the S protein has been demonstrated, radioiodination of exposed envelope proteins in whole cells did not confirm this. The labeling behavior of the S protein could be explained on the basis of varying accessibilities of different tyrosine residues to iodination. Images PMID:6735982
Sparse regularization for force identification using dictionaries
NASA Astrophysics Data System (ADS)
Qiao, Baijie; Zhang, Xingwu; Wang, Chenxi; Zhang, Hang; Chen, Xuefeng
2016-04-01
The classical function expansion method based on minimizing l2-norm of the response residual employs various basis functions to represent the unknown force. Its difficulty lies in determining the optimum number of basis functions. Considering the sparsity of force in the time domain or in other basis space, we develop a general sparse regularization method based on minimizing l1-norm of the coefficient vector of basis functions. The number of basis functions is adaptively determined by minimizing the number of nonzero components in the coefficient vector during the sparse regularization process. First, according to the profile of the unknown force, the dictionary composed of basis functions is determined. Second, a sparsity convex optimization model for force identification is constructed. Third, given the transfer function and the operational response, Sparse reconstruction by separable approximation (SpaRSA) is developed to solve the sparse regularization problem of force identification. Finally, experiments including identification of impact and harmonic forces are conducted on a cantilever thin plate structure to illustrate the effectiveness and applicability of SpaRSA. Besides the Dirac dictionary, other three sparse dictionaries including Db6 wavelets, Sym4 wavelets and cubic B-spline functions can also accurately identify both the single and double impact forces from highly noisy responses in a sparse representation frame. The discrete cosine functions can also successfully reconstruct the harmonic forces including the sinusoidal, square and triangular forces. Conversely, the traditional Tikhonov regularization method with the L-curve criterion fails to identify both the impact and harmonic forces in these cases.
Mixing of regular and chaotic orbits in beams
Courtlandt L. Bohn et al.
2002-09-04
Phase mixing of chaotic orbits exponentially distributes the orbits through their accessible phase space. This phenomenon, commonly called ''chaotic mixing'', stands in marked contrast to phase mixing of regular orbits which proceeds as a power law in time. It is inherently irreversible; hence, its associated e-folding time scale sets a condition on any process envisioned for emittance compensation. We numerically investigate phase mixing in the presence of space charge, distinguish between the evolution of regular and chaotic orbits, and discuss how phase mixing potentially influences macroscopic properties of high-brightness beams.
Regularization Analysis of SAR Superresolution
DELAURENTIS,JOHN M.; DICKEY,FRED M.
2002-04-01
Superresolution concepts offer the potential of resolution beyond the classical limit. This great promise has not generally been realized. In this study we investigate the potential application of superresolution concepts to synthetic aperture radar. The analytical basis for superresolution theory is discussed. In a previous report the application of the concept to synthetic aperture radar was investigated as an operator inversion problem. Generally, the operator inversion problem is ill posed. This work treats the problem from the standpoint of regularization. Both the operator inversion approach and the regularization approach show that the ability to superresolve SAR imagery is severely limited by system noise.
Regularized Generalized Structured Component Analysis
ERIC Educational Resources Information Center
Hwang, Heungsun
2009-01-01
Generalized structured component analysis (GSCA) has been proposed as a component-based approach to structural equation modeling. In practice, GSCA may suffer from multi-collinearity, i.e., high correlations among exogenous variables. GSCA has yet no remedy for this problem. Thus, a regularized extension of GSCA is proposed that integrates a ridge…
Rotations of the Regular Polyhedra
ERIC Educational Resources Information Center
Jones, MaryClara; Soto-Johnson, Hortensia
2006-01-01
The study of the rotational symmetries of the regular polyhedra is important in the classroom for many reasons. Besides giving the students an opportunity to visualize in three dimensions, it is also an opportunity to relate two-dimensional and three-dimensional concepts. For example, rotations in R[superscript 2] require a point and an angle of…
Academic Improvement through Regular Assessment
ERIC Educational Resources Information Center
Wolf, Patrick J.
2007-01-01
Media reports are rife with claims that students in the United States are overtested and that they and their education are suffering as result. Here I argue the opposite--that students would benefit in numerous ways from more frequent assessment, especially of diagnostic testing. The regular assessment of students serves critical educational and…
The Effect of Early Stimulation: The Problem of Focus in Developmental Stimulation.
ERIC Educational Resources Information Center
Fowler, William
Studies of the effect of environmental stimulation on an individual's development in either general or specific ability conclude that some specific stimulation should be introduced at an early age while a child is still malleable. An intense, persistent, and regular tutorial approach within the family encourages the development of a special talent…
NASA Technical Reports Server (NTRS)
1997-01-01
Under a Goddard Space Flight Center contract, Electrologic of America was able to refine the process of densely packing circuitry on personal computer boards, providing significant contributions to the closed-loop systems for the Remote Manipulator System Simulator. The microcircuitry work was then applied to the StimMaster FES Ergometer, an exercise device used to stimulate muscles suffering from paralysis. The electrical stimulation equipment was developed exclusively for V-Care Health Systems, Inc. Product still commercially available as of March 2002.
Sparsity regularization for parameter identification problems
NASA Astrophysics Data System (ADS)
Jin, Bangti; Maass, Peter
2012-12-01
The investigation of regularization schemes with sparsity promoting penalty terms has been one of the dominant topics in the field of inverse problems over the last years, and Tikhonov functionals with ℓp-penalty terms for 1 ⩽ p ⩽ 2 have been studied extensively. The first investigations focused on regularization properties of the minimizers of such functionals with linear operators and on iteration schemes for approximating the minimizers. These results were quickly transferred to nonlinear operator equations, including nonsmooth operators and more general function space settings. The latest results on regularization properties additionally assume a sparse representation of the true solution as well as generalized source conditions, which yield some surprising and optimal convergence rates. The regularization theory with ℓp sparsity constraints is relatively complete in this setting; see the first part of this review. In contrast, the development of efficient numerical schemes for approximating minimizers of Tikhonov functionals with sparsity constraints for nonlinear operators is still ongoing. The basic iterated soft shrinkage approach has been extended in several directions and semi-smooth Newton methods are becoming applicable in this field. In particular, the extension to more general non-convex, non-differentiable functionals by variational principles leads to a variety of generalized iteration schemes. We focus on such iteration schemes in the second part of this review. A major part of this survey is devoted to applying sparsity constrained regularization techniques to parameter identification problems for partial differential equations, which we regard as the prototypical setting for nonlinear inverse problems. Parameter identification problems exhibit different levels of complexity and we aim at characterizing a hierarchy of such problems. The operator defining these inverse problems is the parameter-to-state mapping. We first summarize some
Operator regularization and quantum gravity
NASA Astrophysics Data System (ADS)
Mann, R. B.; Tarasov, L.; Mckeon, D. G. C.; Steele, T.
1989-01-01
Operator regularization has been shown to be a symmetry preserving means of computing Green functions in gauge symmetric and supersymmetric theories which avoids the explicit occurrence of divergences. In this paper we examine how this technique can be applied to computing quantities in non-renormalizable theories in general and quantum gravity in particular. Specifically, we consider various processes to one- and two-loop order in φ4N theory for N > 4 for which the theory is non-renormalizable. We then apply operator regularization to determine the one-loop graviton correction to the spinor propagator. The effective action for quantum scalars in a background gravitational field is evaluated in operator regularization using both the weak-field method and the normal coordinate expansion. This latter case yields a new derivation of the Schwinger-de Witt expansion which avoids the use of recursion relations. Finally we consider quantum gravity coupled to scalar fields in n dimensions, evaluating those parts of the effective action that (in other methods) diverge as n → 4. We recover the same divergence structure as is found using dimensional regularization if n ≠ 4, but if n = 4 at the outset no divergence arises at any stage of the calculation. The non-renormalizability of such theories manifests itself in the scale-dependence at one-loop order of terms that do not appear in the original lagrangian. In all cases our regularization procedure does not break any invariances present in the theory and avoids the occurence of explicit divergences.
Temporal regularity in speech perception: Is regularity beneficial or deleterious?
Geiser, Eveline; Shattuck-Hufnagel, Stefanie
2012-01-01
Speech rhythm has been proposed to be of crucial importance for correct speech perception and language learning. This study investigated the influence of speech rhythm in second language processing. German pseudo-sentences were presented to participants in two conditions: ‘naturally regular speech rhythm’ and an ‘emphasized regular rhythm'. Nine expert English speakers with 3.5±1.6 years of German training repeated each sentence after hearing it once over headphones. Responses were transcribed using the International Phonetic Alphabet and analyzed for the number of correct, false and missing consonants as well as for consonant additions. The over-all number of correct reproductions of consonants did not differ between the two experimental conditions. However, speech rhythmicization significantly affected the serial position curve of correctly reproduced syllables. The results of this pilot study are consistent with the view that speech rhythm is important for speech perception. PMID:22701753
Distributional Stress Regularity: A Corpus Study
ERIC Educational Resources Information Center
Temperley, David
2009-01-01
The regularity of stress patterns in a language depends on "distributional stress regularity", which arises from the pattern of stressed and unstressed syllables, and "durational stress regularity", which arises from the timing of syllables. Here we focus on distributional regularity, which depends on three factors. "Lexical stress patterning"…
Adaptive regularization of earthquake slip distribution inversion
NASA Astrophysics Data System (ADS)
Wang, Chisheng; Ding, Xiaoli; Li, Qingquan; Shan, Xinjian; Zhu, Jiasong; Guo, Bo; Liu, Peng
2016-04-01
Regularization is a routine approach used in earthquake slip distribution inversion to avoid numerically abnormal solutions. To date, most slip inversion studies have imposed uniform regularization on all the fault patches. However, adaptive regularization, where each retrieved parameter is regularized differently, has exhibited better performances in other research fields such as image restoration. In this paper, we implement an investigation into adaptive regularization for earthquake slip distribution inversion. It is found that adaptive regularization can achieve a significantly smaller mean square error (MSE) than uniform regularization, if it is set properly. We propose an adaptive regularization method based on weighted total least squares (WTLS). This approach assumes that errors exist in both the regularization matrix and observation, and an iterative algorithm is used to solve the solution. A weight coefficient is used to balance the regularization matrix residual and the observation residual. An experiment using four slip patterns was carried out to validate the proposed method. The results show that the proposed regularization method can derive a smaller MSE than uniform regularization and resolution-based adaptive regularization, and the improvement in MSE is more significant for slip patterns with low-resolution slip patches. In this paper, we apply the proposed regularization method to study the slip distribution of the 2011 Mw 9.0 Tohoku earthquake. The retrieved slip distribution is less smooth and more detailed than the one retrieved with the uniform regularization method, and is closer to the existing slip model from joint inversion of the geodetic and seismic data.
Color correction optimization with hue regularization
NASA Astrophysics Data System (ADS)
Zhang, Heng; Liu, Huaping; Quan, Shuxue
2011-01-01
Previous work has suggested that observers are capable of judging the quality of an image without any knowledge of the original scene. When no reference is available, observers can extract the apparent objects in an image and compare them with the typical colors of similar objects recalled from their memories. Some generally agreed upon research results indicate that although perfect colorimetric rendering is not conspicuous and color errors can be well tolerated, the appropriate rendition of certain memory colors such as skin, grass, and sky is an important factor in the overall perceived image quality. These colors are appreciated in a fairly consistent manner and are memorized with slightly different hues and higher color saturation. The aim of color correction for a digital color pipeline is to transform the image data from a device dependent color space to a target color space, usually through a color correction matrix which in its most basic form is optimized through linear regressions between the two sets of data in two color spaces in the sense of minimized Euclidean color error. Unfortunately, this method could result in objectionable distortions if the color error biased certain colors undesirably. In this paper, we propose a color correction optimization method with preferred color reproduction in mind through hue regularization and present some experimental results.
Senova, Suhan; Hosomi, Koichi; Gurruchaga, Jean-Marc; Gouello, Gaëtane; Ouerchefani, Naoufel; Beaugendre, Yara; Lepetit, Hélène; Lefaucheur, Jean-Pascal; Badin, Romina Aron; Dauguet, Julien; Jan, Caroline; Hantraye, Philippe; Brugières, Pierre; Palfi, Stéphane
2016-08-01
OBJECTIVE Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established therapy for motor symptoms in patients with pharmacoresistant Parkinson's disease (PD). However, the procedure, which requires multimodal perioperative exploration such as imaging, electrophysiology, or clinical examination during macrostimulation to secure lead positioning, remains challenging because the STN cannot be reliably visualized using the gold standard, T2-weighted imaging (T2WI) at 1.5 T. Thus, there is a need to improve imaging tools to better visualize the STN, optimize DBS lead implantation, and enlarge DBS diffusion. METHODS Gradient-echo sequences such as those used in T2WI suffer from higher distortions at higher magnetic fields than spin-echo sequences. First, a spin-echo 3D SPACE (sampling perfection with application-optimized contrasts using different flip angle evolutions) FLAIR sequence at 3 T was designed, validated histologically in 2 nonhuman primates, and applied to 10 patients with PD; their data were clinically compared in a double-blind manner with those of a control group of 10 other patients with PD in whom STN targeting was performed using T2WI. RESULTS Overlap between the nonhuman primate STNs segmented on 3D-histological and on 3D-SPACE-FLAIR volumes was high for the 3 most anterior quarters (mean [± SD] Dice scores 0.73 ± 0.11, 0.74 ± 0.06, and 0.60 ± 0.09). STN limits determined by the 3D-SPACE-FLAIR sequence were more consistent with electrophysiological edges than those determined by T2WI (0.9 vs 1.4 mm, respectively). The imaging contrast of the STN on the 3D-SPACE-FLAIR sequence was 4 times higher (p < 0.05). Improvement in the Unified Parkinson's Disease Rating Scale Part III score (off medication, on stimulation) 12 months after the operation was higher for patients who underwent 3D-SPACE-FLAIR-guided implantation than for those in whom T2WI was used (62.2% vs 43.6%, respectively; p < 0.05). The total electrical energy
Kernelized Elastic Net Regularization: Generalization Bounds, and Sparse Recovery.
Feng, Yunlong; Lv, Shao-Gao; Hang, Hanyuan; Suykens, Johan A K
2016-03-01
Kernelized elastic net regularization (KENReg) is a kernelization of the well-known elastic net regularization (Zou & Hastie, 2005 ). The kernel in KENReg is not required to be a Mercer kernel since it learns from a kernelized dictionary in the coefficient space. Feng, Yang, Zhao, Lv, and Suykens ( 2014 ) showed that KENReg has some nice properties including stability, sparseness, and generalization. In this letter, we continue our study on KENReg by conducting a refined learning theory analysis. This letter makes the following three main contributions. First, we present refined error analysis on the generalization performance of KENReg. The main difficulty of analyzing the generalization error of KENReg lies in characterizing the population version of its empirical target function. We overcome this by introducing a weighted Banach space associated with the elastic net regularization. We are then able to conduct elaborated learning theory analysis and obtain fast convergence rates under proper complexity and regularity assumptions. Second, we study the sparse recovery problem in KENReg with fixed design and show that the kernelization may improve the sparse recovery ability compared to the classical elastic net regularization. Finally, we discuss the interplay among different properties of KENReg that include sparseness, stability, and generalization. We show that the stability of KENReg leads to generalization, and its sparseness confidence can be derived from generalization. Moreover, KENReg is stable and can be simultaneously sparse, which makes it attractive theoretically and practically. PMID:26735744
On Nonperiodic Euler Flows with Hölder Regularity
NASA Astrophysics Data System (ADS)
Isett, Philip; Oh, Sung-Jin
2016-08-01
In (Isett, Regularity in time along the coarse scale flow for the Euler equations, 2013), the first author proposed a strengthening of Onsager's conjecture on the failure of energy conservation for incompressible Euler flows with Hölder regularity not exceeding {1/3}. This stronger form of the conjecture implies that anomalous dissipation will fail for a generic Euler flow with regularity below the Onsager critical space {L_t^∞ B_{3,∞}^{1/3}} due to low regularity of the energy profile. This paper is the first and main paper in a series of two, the results of which may be viewed as first steps towards establishing the conjectured failure of energy regularity for generic solutions with Hölder exponent less than {1/5}. The main result of the present paper shows that any given smooth Euler flow can be perturbed in {C^{1/5-ɛ}_{t,x}} on any pre-compact subset of R× R^3 to violate energy conservation. Furthermore, the perturbed solution is no smoother than {C^{1/5-ɛ}_{t,x}}. As a corollary of this theorem, we show the existence of nonzero {C^{1/5-ɛ}_{t,x}} solutions to Euler with compact space-time support, generalizing previous work of the first author (Isett, Hölder continuous Euler flows in three dimensions with compact support in time, 2012) to the nonperiodic setting.
ERIC Educational Resources Information Center
International Children's Centre, Paris (France).
This set of documents consists of English, French, and Spanish translations of four pamphlets on infant stimulation. The pamphlets provide information designed for lay persons, educators and primary care personnel, academics and professionals, and for health administrators and family-planning organizations. The contents cover infant needs; infant…
Quantitative regularities in floodplain formation
NASA Astrophysics Data System (ADS)
Nevidimova, O.
2009-04-01
Quantitative regularities in floodplain formation Modern methods of the theory of complex systems allow to build mathematical models of complex systems where self-organizing processes are largely determined by nonlinear effects and feedback. However, there exist some factors that exert significant influence on the dynamics of geomorphosystems, but hardly can be adequately expressed in the language of mathematical models. Conceptual modeling allows us to overcome this difficulty. It is based on the methods of synergetic, which, together with the theory of dynamic systems and classical geomorphology, enable to display the dynamics of geomorphological systems. The most adequate for mathematical modeling of complex systems is the concept of model dynamics based on equilibrium. This concept is based on dynamic equilibrium, the tendency to which is observed in the evolution of all geomorphosystems. As an objective law, it is revealed in the evolution of fluvial relief in general, and in river channel processes in particular, demonstrating the ability of these systems to self-organization. Channel process is expressed in the formation of river reaches, rifts, meanders and floodplain. As floodplain is a periodically flooded surface during high waters, it naturally connects river channel with slopes, being one of boundary expressions of the water stream activity. Floodplain dynamics is inseparable from the channel dynamics. It is formed at simultaneous horizontal and vertical displacement of the river channel, that is at Y=Y(x, y), where х, y - horizontal and vertical coordinates, Y - floodplain height. When dу/dt=0 (for not lowering river channel), the river, being displaced in a horizontal plane, leaves behind a low surface, which flooding during high waters (total duration of flooding) changes from the maximum during the initial moment of time t0 to zero in the moment tn. In a similar manner changed is the total amount of accumulated material on the floodplain surface
Knowledge and regularity in planning
NASA Technical Reports Server (NTRS)
Allen, John A.; Langley, Pat; Matwin, Stan
1992-01-01
The field of planning has focused on several methods of using domain-specific knowledge. The three most common methods, use of search control, use of macro-operators, and analogy, are part of a continuum of techniques differing in the amount of reused plan information. This paper describes TALUS, a planner that exploits this continuum, and is used for comparing the relative utility of these methods. We present results showing how search control, macro-operators, and analogy are affected by domain regularity and the amount of stored knowledge.
RES: Regularized Stochastic BFGS Algorithm
NASA Astrophysics Data System (ADS)
Mokhtari, Aryan; Ribeiro, Alejandro
2014-12-01
RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.
Tessellating the Sphere with Regular Polygons
ERIC Educational Resources Information Center
Soto-Johnson, Hortensia; Bechthold, Dawn
2004-01-01
Tessellations in the Euclidean plane and regular polygons that tessellate the sphere are reviewed. The regular polygons that can possibly tesellate the sphere are spherical triangles, squares and pentagons.
A low-cost multichannel wireless neural stimulation system for freely roaming animals
NASA Astrophysics Data System (ADS)
Alam, Monzurul; Chen, Xi; Fernandez, Eduardo
2013-12-01
Objectives. Electrical stimulation of nerve tissue and recording of neural activity are the basis of many therapies and neural prostheses. Conventional stimulation systems have a number of practical limitations, especially in experiments involving freely roaming subjects. Our main objective was to develop a modular, versatile and inexpensive multichannel wireless system able to overcome some of these constraints. Approach. We have designed and implemented a new multichannel wireless neural stimulator based on commercial components. The system is small (2 cm × 4 cm × 0.5 cm) and light in weight (9 g) which allows it to be easily carried in a small backpack. To test and validate the performance and reliability of the whole system we conducted several bench tests and in vivo experiments. Main results. The performance and accuracy of the stimulator were comparable to commercial threaded systems. Stimulation sequences can be constructed on-the-fly with 251 selectable current levels (from 0 to 250 µA) with 1 µA step resolution. The pulse widths and intervals can be as long as 65 ms in 2 µs time resolution. The system covers approximately 10 m of transmission range in a regular laboratory environment and 100 m in free space (line of sight). Furthermore it provides great flexibility for experiments since it allows full control of the stimulator and the stimulation parameters in real time. When there is no stimulation, the device automatically goes into low-power sleep mode to preserve battery power. Significance. We introduce the design of a powerful multichannel wireless stimulator assembled from commercial components. Key features of the system are their reliability, robustness and small size. The system has a flexible design that can be modified straightforwardly to tailor it to any specific experimental need. Furthermore it can be effortlessly adapted for use with any kind of multielectrode arrays.
Wave dynamics of regular and chaotic rays
McDonald, S.W.
1983-09-01
In order to investigate general relationships between waves and rays in chaotic systems, I study the eigenfunctions and spectrum of a simple model, the two-dimensional Helmholtz equation in a stadium boundary, for which the rays are ergodic. Statistical measurements are performed so that the apparent randomness of the stadium modes can be quantitatively contrasted with the familiar regularities observed for the modes in a circular boundary (with integrable rays). The local spatial autocorrelation of the eigenfunctions is constructed in order to indirectly test theoretical predictions for the nature of the Wigner distribution corresponding to chaotic waves. A portion of the large-eigenvalue spectrum is computed and reported in an appendix; the probability distribution of successive level spacings is analyzed and compared with theoretical predictions. The two principal conclusions are: 1) waves associated with chaotic rays may exhibit randomly situated localized regions of high intensity; 2) the Wigner function for these waves may depart significantly from being uniformly distributed over the surface of constant frequency in the ray phase space.
Regular chemisorption of hydrogen on achiral single-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Bogdanova, D. A.; Bulyarskii, S. V.
2016-07-01
Regular chemisorption of hydrogen on achiral single-walled carbon nanotubes has been investigated with the use of AM1 quantum-chemical semiempirical method. It has been found that regular hydrogen chemisorption deforms nanotubes, in some cases leading to stable prismatic modifications. The dependence of the adsorption energy on the density of hydrogen coverage has been found. A procedure for determining the adsorption energy by the spectra of thermally stimulated desorption has been proposed.
Effect of regular and decaffeinated coffee on serum gastrin levels.
Acquaviva, F; DeFrancesco, A; Andriulli, A; Piantino, P; Arrigoni, A; Massarenti, P; Balzola, F
1986-04-01
We evaluated the hypothesis that the noncaffeine gastric acid stimulant effect of coffee might be by way of serum gastrin release. After 10 healthy volunteers drank 50 ml of coffee solution corresponding to one cup of home-made regular coffee containing 10 g of sugar and 240 mg/100 ml of caffeine, serum total gastrin levels peaked at 10 min and returned to basal values within 30 min; the response was of little significance (1.24 times the median basal value). Drinking 100 ml of sugared water (as control) resulted in occasional random elevations of serum gastrin which were not statistically significant. Drinking 100 ml of regular or decaffeinated coffee resulted in a prompt and lasting elevation of total gastrin; mean integrated outputs after regular or decaffeinated coffee were, respectively, 2.3 and 1.7 times the values in the control test. Regular and decaffeinated coffees share a strong gastrin-releasing property. Neither distension, osmolarity, calcium, nor amino acid content of the coffee solution can account for this property, which should be ascribed to some other unidentified ingredient. This property is at least partially lost during the process of caffeine removal. PMID:3745848
Some Cosine Relations and the Regular Heptagon
ERIC Educational Resources Information Center
Osler, Thomas J.; Heng, Phongthong
2007-01-01
The ancient Greek mathematicians sought to construct, by use of straight edge and compass only, all regular polygons. They had no difficulty with regular polygons having 3, 4, 5 and 6 sides, but the 7-sided heptagon eluded all their attempts. In this article, the authors discuss some cosine relations and the regular heptagon. (Contains 1 figure.)
Regular Pentagons and the Fibonacci Sequence.
ERIC Educational Resources Information Center
French, Doug
1989-01-01
Illustrates how to draw a regular pentagon. Shows the sequence of a succession of regular pentagons formed by extending the sides. Calculates the general formula of the Lucas and Fibonacci sequences. Presents a regular icosahedron as an example of the golden ratio. (YP)
22 CFR 120.39 - Regular employee.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Regular employee. 120.39 Section 120.39 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.39 Regular employee. (a) A regular employee means for purposes of this subchapter: (1) An...
22 CFR 120.39 - Regular employee.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Regular employee. 120.39 Section 120.39 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.39 Regular employee. (a) A regular employee means for purposes of this subchapter: (1) An...
22 CFR 120.39 - Regular employee.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Regular employee. 120.39 Section 120.39 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.39 Regular employee. (a) A regular employee means for purposes of this subchapter: (1) An...
Natural frequency of regular basins
NASA Astrophysics Data System (ADS)
Tjandra, Sugih S.; Pudjaprasetya, S. R.
2014-03-01
Similar to the vibration of a guitar string or an elastic membrane, water waves in an enclosed basin undergo standing oscillatory waves, also known as seiches. The resonant (eigen) periods of seiches are determined by water depth and geometry of the basin. For regular basins, explicit formulas are available. Resonance occurs when the dominant frequency of external force matches the eigen frequency of the basin. In this paper, we implement the conservative finite volume scheme to 2D shallow water equation to simulate resonance in closed basins. Further, we would like to use this scheme and utilizing energy spectra of the recorded signal to extract resonant periods of arbitrary basins. But here we first test the procedure for getting resonant periods of a square closed basin. The numerical resonant periods that we obtain are comparable with those from analytical formulas.
"Space, the Final Frontier"; Books on Space and Space Exploration.
ERIC Educational Resources Information Center
Jordan, Anne Devereaux
1997-01-01
Advocates play in a child's life. Describes how science fiction seizes the imaginations of young readers with its tales of the future and of outer space. Talks about various nonfiction books about space. Elaborates a workshop on books about space exploration. Gives 10 questions about stimulating student response. (PA)
Information fusion in regularized inversion of tomographic pumping tests
Bohling, G.C.
2008-01-01
In this chapter we investigate a simple approach to incorporating geophysical information into the analysis of tomographic pumping tests for characterization of the hydraulic conductivity (K) field in an aquifer. A number of authors have suggested a tomographic approach to the analysis of hydraulic tests in aquifers - essentially simultaneous analysis of multiple tests or stresses on the flow system - in order to improve the resolution of the estimated parameter fields. However, even with a large amount of hydraulic data in hand, the inverse problem is still plagued by non-uniqueness and ill-conditioning and the parameter space for the inversion needs to be constrained in some sensible fashion in order to obtain plausible estimates of aquifer properties. For seismic and radar tomography problems, the parameter space is often constrained through the application of regularization terms that impose penalties on deviations of the estimated parameters from a prior or background model, with the tradeoff between data fit and model norm explored through systematic analysis of results for different levels of weighting on the regularization terms. In this study we apply systematic regularized inversion to analysis of tomographic pumping tests in an alluvial aquifer, taking advantage of the steady-shape flow regime exhibited in these tests to expedite the inversion process. In addition, we explore the possibility of incorporating geophysical information into the inversion through a regularization term relating the estimated K distribution to ground penetrating radar velocity and attenuation distributions through a smoothing spline model. ?? 2008 Springer-Verlag Berlin Heidelberg.
QED in Krein Space Quantization
NASA Astrophysics Data System (ADS)
Zarei, A.; Forghan, B.; Takook, M. V.
2011-08-01
In this paper we consider the QED in Krein space quantization. We show that the theory is automatically regularized. The three primitive divergences integrals in usual QED are considered in Krein QED. The photon self energy, electron self energy and vertex function are calculated in this formalism. We show that these quantities are finite. The infrared and ultraviolet divergencies do not appear. We discuss that Krein space quantization is similar to Pauli-Villars regularization, so we have called it the "Krein regularization".
Partial Regularity for Holonomic Minimisers of Quasiconvex Functionals
NASA Astrophysics Data System (ADS)
Hopper, Christopher P.
2016-05-01
We prove partial regularity for local minimisers of certain strictly quasiconvex integral functionals, over a class of Sobolev mappings into a compact Riemannian manifold, to which such mappings are said to be holonomically constrained. Our approach uses the lifting of Sobolev mappings to the universal covering space, the connectedness of the covering space, an application of Ekeland's variational principle and a certain tangential A -harmonic approximation lemma obtained directly via a Lipschitz approximation argument. This allows regularity to be established directly on the level of the gradient. Several applications to variational problems in condensed matter physics with broken symmetries are also discussed, in particular those concerning the superfluidity of liquid helium-3 and nematic liquid crystals.
Reducing errors in the GRACE gravity solutions using regularization
NASA Astrophysics Data System (ADS)
Save, Himanshu; Bettadpur, Srinivas; Tapley, Byron D.
2012-09-01
solutions (RL04) from the Center for Space Research (CSR). Post-fit residual analysis shows that the regularized solutions fit the data to within the noise level of GRACE. A time series of filtered hydrological model is used to confirm that signal attenuation for basins in the Total Runoff Integrating Pathways (TRIP) database over 320 km radii is less than 1 cm equivalent water height RMS, which is within the noise level of GRACE.
On the regularizing effect for unbounded solutions of first-order Hamilton-Jacobi equations
NASA Astrophysics Data System (ADS)
Barles, Guy; Chasseigne, Emmanuel
2016-05-01
We give a simplified proof of regularizing effects for first-order Hamilton-Jacobi Equations of the form ut + H (x , t , Du) = 0 in RN × (0 , + ∞) in the case where the idea is to first estimate ut. As a consequence, we have a Lipschitz regularity in space and time for coercive Hamiltonians and, for hypo-elliptic Hamiltonians, we also have an Hölder regularizing effect in space following a result of L.C. Evans and M.R. James.
Energy Scaling Law for the Regular Cone
NASA Astrophysics Data System (ADS)
Olbermann, Heiner
2016-04-01
We consider a thin elastic sheet in the shape of a disk whose reference metric is that of a singular cone. That is, the reference metric is flat away from the center and has a defect there. We define a geometrically fully nonlinear free elastic energy and investigate the scaling behavior of this energy as the thickness h tends to 0. We work with two simplifying assumptions: Firstly, we think of the deformed sheet as an immersed 2-dimensional Riemannian manifold in Euclidean 3-space and assume that the exponential map at the origin (the center of the sheet) supplies a coordinate chart for the whole manifold. Secondly, the energy functional penalizes the difference between the induced metric and the reference metric in L^∞ (instead of, as is usual, in L^2). Under these assumptions, we show that the elastic energy per unit thickness of the regular cone in the leading order of h is given by C^*h^2|log h|, where the value of C^* is given explicitly.
Laplacian Regularized Low-Rank Representation and Its Applications.
Yin, Ming; Gao, Junbin; Lin, Zhouchen
2016-03-01
Low-rank representation (LRR) has recently attracted a great deal of attention due to its pleasing efficacy in exploring low-dimensional subspace structures embedded in data. For a given set of observed data corrupted with sparse errors, LRR aims at learning a lowest-rank representation of all data jointly. LRR has broad applications in pattern recognition, computer vision and signal processing. In the real world, data often reside on low-dimensional manifolds embedded in a high-dimensional ambient space. However, the LRR method does not take into account the non-linear geometric structures within data, thus the locality and similarity information among data may be missing in the learning process. To improve LRR in this regard, we propose a general Laplacian regularized low-rank representation framework for data representation where a hypergraph Laplacian regularizer can be readily introduced into, i.e., a Non-negative Sparse Hyper-Laplacian regularized LRR model (NSHLRR). By taking advantage of the graph regularizer, our proposed method not only can represent the global low-dimensional structures, but also capture the intrinsic non-linear geometric information in data. The extensive experimental results on image clustering, semi-supervised image classification and dimensionality reduction tasks demonstrate the effectiveness of the proposed method. PMID:27046494
Transport Code for Regular Triangular Geometry
Energy Science and Technology Software Center (ESTSC)
1993-06-09
DIAMANT2 solves the two-dimensional static multigroup neutron transport equation in planar regular triangular geometry. Both regular and adjoint, inhomogeneous and homogeneous problems subject to vacuum, reflective or input specified boundary flux conditions are solved. Anisotropy is allowed for the scattering source. Volume and surface sources are allowed for inhomogeneous problems.
12 CFR 725.3 - Regular membership.
Code of Federal Regulations, 2013 CFR
2013-01-01
... advances without approval of the NCUA Board for a period of six months after becoming a member. This subsection shall not apply to any credit union which becomes a Regular member of the Facility within six... member of the Facility at any time within six months prior to becoming a Regular member of the Facility....
Continuum regularization of quantum field theory
Bern, Z.
1986-04-01
Possible nonperturbative continuum regularization schemes for quantum field theory are discussed which are based upon the Langevin equation of Parisi and Wu. Breit, Gupta and Zaks made the first proposal for new gauge invariant nonperturbative regularization. The scheme is based on smearing in the ''fifth-time'' of the Langevin equation. An analysis of their stochastic regularization scheme for the case of scalar electrodynamics with the standard covariant gauge fixing is given. Their scheme is shown to preserve the masslessness of the photon and the tensor structure of the photon vacuum polarization at the one-loop level. Although stochastic regularization is viable in one-loop electrodynamics, two difficulties arise which, in general, ruins the scheme. One problem is that the superficial quadratic divergences force a bottomless action for the noise. Another difficulty is that stochastic regularization by fifth-time smearing is incompatible with Zwanziger's gauge fixing, which is the only known nonperturbaive covariant gauge fixing for nonabelian gauge theories. Finally, a successful covariant derivative scheme is discussed which avoids the difficulties encountered with the earlier stochastic regularization by fifth-time smearing. For QCD the regularized formulation is manifestly Lorentz invariant, gauge invariant, ghost free and finite to all orders. A vanishing gluon mass is explicitly verified at one loop. The method is designed to respect relevant symmetries, and is expected to provide suitable regularization for any theory of interest. Hopefully, the scheme will lend itself to nonperturbative analysis. 44 refs., 16 figs.
NASA Astrophysics Data System (ADS)
2013-07-01
Workshop: Getting the measure of space Conference: Respecting the evidence receives a great response Event: Communities meet to stimulate science in Wales Teachers: A day to polish up on A-level practicals Development: Exhilarating physics CPD day is a hit in London Lecture: The universe as a classroom
On regularizations of the Dirac delta distribution
NASA Astrophysics Data System (ADS)
Hosseini, Bamdad; Nigam, Nilima; Stockie, John M.
2016-01-01
In this article we consider regularizations of the Dirac delta distribution with applications to prototypical elliptic and hyperbolic partial differential equations (PDEs). We study the convergence of a sequence of distributions SH to a singular term S as a parameter H (associated with the support size of SH) shrinks to zero. We characterize this convergence in both the weak-* topology of distributions and a weighted Sobolev norm. These notions motivate a framework for constructing regularizations of the delta distribution that includes a large class of existing methods in the literature. This framework allows different regularizations to be compared. The convergence of solutions of PDEs with these regularized source terms is then studied in various topologies such as pointwise convergence on a deleted neighborhood and weighted Sobolev norms. We also examine the lack of symmetry in tensor product regularizations and effects of dissipative error in hyperbolic problems.
Temporal Prediction in lieu of Periodic Stimulation
Schroeder, Charles E.; Wyart, Valentin
2016-01-01
Predicting not only what will happen, but also when it will happen is extremely helpful for optimizing perception and action. Temporal predictions driven by periodic stimulation increase perceptual sensitivity and reduce response latencies. At the neurophysiological level, a single mechanism has been proposed to mediate this twofold behavioral improvement: the rhythmic entrainment of slow cortical oscillations to the stimulation rate. However, temporal regularities can occur in aperiodic contexts, suggesting that temporal predictions per se may be dissociable from entrainment to periodic sensory streams. We investigated this possibility in two behavioral experiments, asking human participants to detect near-threshold auditory tones embedded in streams whose temporal and spectral properties were manipulated. While our findings confirm that periodic stimulation reduces response latencies, in agreement with the hypothesis of a stimulus-driven entrainment of neural excitability, they further reveal that this motor facilitation can be dissociated from the enhancement of auditory sensitivity. Perceptual sensitivity improvement is unaffected by the nature of temporal regularities (periodic vs aperiodic), but contingent on the co-occurrence of a fulfilled spectral prediction. Altogether, the dissociation between predictability and periodicity demonstrates that distinct mechanisms flexibly and synergistically operate to facilitate perception and action. SIGNIFICANCE STATEMENT Temporal predictions are increasingly recognized as fundamental instruments for optimizing performance, enabling mammals to exploit regularities in the world. However, the notion of temporal predictions is often confounded with the idea of entrainment to periodic sensory inputs. At the behavioral level, it is also unclear whether perceptual sensitivity and reaction time improvements benefit the same way from temporal predictions and periodic stimulation. In two behavioral experiments on human
Ventricular capture by anodal pacemaker stimulation.
Occhetta, Eraldo; Bortnik, Miriam; Marino, Paolo
2006-05-01
This report describes the case of an 86-year-old male with syncopal paroxysmal 2:1 atrioventricular block and a single chamber VVI pacemaker programmed to bipolar sensing and unipolar pacing. After recurrence of syncope, a complete loss of ventricular capture with regular ventricular sensing was observed on ECG; fluoroscopic examination suggested perforation of the right ventricle by the helix of the implanted screw-in lead. Reprogramming the pacemaker to bipolar pacing/sensing resulted in regular ventricular capture and sensing, suggesting effective anodal stimulation from the ring electrode permitting complete non-invasive palliation. PMID:16636000
Fine-granularity and spatially-adaptive regularization for projection-based image deblurring.
Li, Xin
2011-04-01
This paper studies two classes of regularization strategies to achieve an improved tradeoff between image recovery and noise suppression in projection-based image deblurring. The first is based on a simple fact that r-times Landweber iteration leads to a fixed level of regularization, which allows us to achieve fine-granularity control of projection-based iterative deblurring by varying the value r. The regularization behavior is explained by using the theory of Lagrangian multiplier for variational schemes. The second class of regularization strategy is based on the observation that various regularized filters can be viewed as nonexpansive mappings in the metric space. A deeper understanding about different regularization filters can be gained by probing into their asymptotic behavior--the fixed point of nonexpansive mappings. By making an analogy to the states of matter in statistical physics, we can observe that different image structures (smooth regions, regular edges and textures) correspond to different fixed points of nonexpansive mappings when the temperature(regularization) parameter varies. Such an analogy motivates us to propose a deterministic annealing based approach toward spatial adaptation in projection-based image deblurring. Significant performance improvements over the current state-of-the-art schemes have been observed in our experiments, which substantiates the effectiveness of the proposed regularization strategies. PMID:20876018
Advanced stimulation technology program helps zero in the optimum frac treatment
Saunders, B.
1995-08-01
The Gas Research Institute (GRI) has initiated the Advanced Stimulation Technology (AST) program to ensure that successful stimulation technologies developed in previous GRI programs are available to the petroleum industry and are used regularly. The AST program focuses on benefits analysis, real-time fracture treatment evaluation, and understanding critical concepts in fracture stimulation.
Sawakuchi, G. O.; Yukihara, E. G.; McKeever, S. W. S.; Benton, E. R.; Gaza, R.; Uchihori, Y.; Yasuda, N.; Kitamura, H.
2008-12-15
This article presents a comprehensive characterization of the thermoluminescence (TL) and optically stimulated luminescence (OSL) relative luminescence efficiencies of carbon-doped aluminum (Al{sub 2}O{sub 3}:C) for heavy charged particles (HCPs) with atomic numbers ranging from 1 (proton) to 54 (xenon) and energies ranging from 7 to 1000 MeV/u, and investigates the dependence of the Al{sub 2}O{sub 3}:C response on experimental conditions. Relative luminescence efficiency values are presented for 19 primary charge/energy combinations, plus 31 additional charge/energy combinations obtained by introducing absorbers in the primary beam. Our results show that for energies of hundreds of MeV/u the data can be described by a single curve of relative luminescence efficiency versus linear energy transfer (LET). This information is needed to compensate for the reduced OSL efficiency to high-LET particles in such applications as space dosimetry. For lower energies, the relative luminescence efficiency as function of LET cannot be described by a single curve; instead, it separates into different components corresponding to different particles. We also present data on the low-LET dose response of Al{sub 2}O{sub 3}:C, measured under the same experimental conditions in which the relative luminescence efficiencies to HCPs were obtained, providing information relevant to future theoretical investigations of HCP energy deposition and luminescence production in Al{sub 2}O{sub 3}:C.
14 CFR 121.487 - Flight time limitations: Pilots not regularly assigned.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Pilots not regularly assigned. 121.487 Section 121.487 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight...
14 CFR 121.487 - Flight time limitations: Pilots not regularly assigned.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Pilots not regularly assigned. 121.487 Section 121.487 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight...
14 CFR 121.487 - Flight time limitations: Pilots not regularly assigned.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Pilots not regularly assigned. 121.487 Section 121.487 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight...
Analysis of regularizing properties of nonlinear electrodynamics in the Einstein-Born-Infeld theory
Denisov, V. I. Sokolov, V. A.
2011-12-15
New regularizing manifestations of the Einstein-Born-Infeld theory for a massive charged force center in the space-time are considered. The properties of isotropic geodesics in this space are analyzed. It is shown that the charge may exceed the maximum possible charge in the Reissner-Nordstroem solution; the possibility of eliminating one of the metric horizons is also noted.
Quantitative regularities in floodplain formation
NASA Astrophysics Data System (ADS)
Nevidimova, O.
2009-04-01
Quantitative regularities in floodplain formation Modern methods of the theory of complex systems allow to build mathematical models of complex systems where self-organizing processes are largely determined by nonlinear effects and feedback. However, there exist some factors that exert significant influence on the dynamics of geomorphosystems, but hardly can be adequately expressed in the language of mathematical models. Conceptual modeling allows us to overcome this difficulty. It is based on the methods of synergetic, which, together with the theory of dynamic systems and classical geomorphology, enable to display the dynamics of geomorphological systems. The most adequate for mathematical modeling of complex systems is the concept of model dynamics based on equilibrium. This concept is based on dynamic equilibrium, the tendency to which is observed in the evolution of all geomorphosystems. As an objective law, it is revealed in the evolution of fluvial relief in general, and in river channel processes in particular, demonstrating the ability of these systems to self-organization. Channel process is expressed in the formation of river reaches, rifts, meanders and floodplain. As floodplain is a periodically flooded surface during high waters, it naturally connects river channel with slopes, being one of boundary expressions of the water stream activity. Floodplain dynamics is inseparable from the channel dynamics. It is formed at simultaneous horizontal and vertical displacement of the river channel, that is at Y=Y(x, y), where х, y - horizontal and vertical coordinates, Y - floodplain height. When dу/dt=0 (for not lowering river channel), the river, being displaced in a horizontal plane, leaves behind a low surface, which flooding during high waters (total duration of flooding) changes from the maximum during the initial moment of time t0 to zero in the moment tn. In a similar manner changed is the total amount of accumulated material on the floodplain surface
NASA Technical Reports Server (NTRS)
Davis, Jeffrey R.
2006-01-01
This abstract covers a one hour presentation on Space Exploration. The audience is elementary students; therefore there are few words on the slides, mostly pictures of living and working in space. The presentation opens with a few slides describing a day in the life of a space explorer. It begins with a launch, discussions of day-night cycles, eating, exercising, housekeeping, EVA, relaxation, and sleeping. The next section of the presentation shows photos of astronauts performing experiments on the ISS. Yokomi Elementary School launched this fall with the most advanced educational technology tools available in schools today. The science and technology magnet school is equipped with interactive white boards, digital projectors, integrated sound systems and several computers for use by teachers and students. The only elementary school in Fresno Unified with a science focus also houses dedicated science classrooms equipped specifically for elementary students to experience hands-on science instruction in addition to the regular elementary curriculum.
Weak Gravitational Lensing from Regular Bardeen Black Holes
NASA Astrophysics Data System (ADS)
Ghaffarnejad, Hossein; niad, Hassan
2016-03-01
In this article we study weak gravitational lensing of regular Bardeen black hole which has scalar charge g and mass m. We investigate the angular position and magnification of non-relativistic images in two cases depending on the presence or absence of photon sphere. Defining dimensionless charge parameter q= {g}/{2m} we seek to disappear photon sphere in the case of |q|>{24√5}/{125} for which the space time metric encounters strongly with naked singularities. We specify the basic parameters of lensing in terms of scalar charge by using the perturbative method and found that the parity of images is different in two cases: (a) The strongly naked singularities is present in the space time. (b) singularity of space time is weak or is eliminated (the black hole lens).
Continuum regularization of gauge theory with fermions
Chan, H.S.
1987-03-01
The continuum regularization program is discussed in the case of d-dimensional gauge theory coupled to fermions in an arbitrary representation. Two physically equivalent formulations are given. First, a Grassmann formulation is presented, which is based on the two-noise Langevin equations of Sakita, Ishikawa and Alfaro and Gavela. Second, a non-Grassmann formulation is obtained by regularized integration of the matter fields within the regularized Grassmann system. Explicit perturbation expansions are studied in both formulations, and considerable simplification is found in the integrated non-Grassmann formalism.
Oseledets Regularity Functions for Anosov Flows
NASA Astrophysics Data System (ADS)
Simić, Slobodan N.
2011-07-01
Oseledets regularity functions quantify the deviation of the growth associated with a dynamical system along its Lyapunov bundles from the corresponding uniform exponential growth. The precise degree of regularity of these functions is unknown. We show that for every invariant Lyapunov bundle of a volume preserving Anosov flow on a closed smooth Riemannian manifold, the corresponding Oseledets regularity functions are in L p ( m), for some p > 0, where m is the probability measure defined by the volume form. We prove an analogous result for essentially bounded cocycles over volume preserving Anosov flows.
Partitioning of regular computation on multiprocessor systems
NASA Technical Reports Server (NTRS)
Lee, Fung Fung
1988-01-01
Problem partitioning of regular computation over two dimensional meshes on multiprocessor systems is examined. The regular computation model considered involves repetitive evaluation of values at each mesh point with local communication. The computational workload and the communication pattern are the same at each mesh point. The regular computation model arises in numerical solutions of partial differential equations and simulations of cellular automata. Given a communication pattern, a systematic way to generate a family of partitions is presented. The influence of various partitioning schemes on performance is compared on the basis of computation to communication ratio.
Regular biorthogonal pairs and pseudo-bosonic operators
NASA Astrophysics Data System (ADS)
Inoue, H.; Takakura, M.
2016-08-01
The first purpose of this paper is to show a method of constructing a regular biorthogonal pair based on the commutation rule: ab - ba = I for a pair of operators a and b acting on a Hilbert space H with inner product (ṡ| ṡ ). Here, sequences {ϕn} and {ψn} in a Hilbert space H are biorthogonal if (ϕn|ψm) = δnm, n, m = 0, 1, …, and they are regular if both Dϕ ≡ Span{ϕn} and Dψ ≡ Span{ψn} are dense in H . Indeed, the assumptions to construct the regular biorthogonal pair coincide with the definition of pseudo-bosons as originally given in F. Bagarello ["Pseudobosons, Riesz bases, and coherent states," J. Math. Phys. 51, 023531 (2010)]. Furthermore, we study the connections between the pseudo-bosonic operators a, b, a†, b† and the pseudo-bosonic operators defined by a regular biorthogonal pair ({ϕn}, {ψn}) and an ONB e of H in H. Inoue ["General theory of regular biorthogonal pairs and its physical applications," e-print arXiv:math-ph/1604.01967]. The second purpose is to define and study the notion of D -pseudo-bosons in F. Bagarello ["More mathematics for pseudo-bosons," J. Math. Phys. 54, 063512 (2013)] and F. Bagarello ["From self-adjoint to non self-adjoint harmonic oscillators: Physical consequences and mathematical pitfalls," Phys. Rev. A 88, 032120 (2013)] and give a method of constructing D -pseudo-bosons on some steps. Then it is shown that for any ONB e = {en} in H and any operators T and T-1 in L † ( D ) , we may construct operators A and B satisfying D -pseudo bosons, where D is a dense subspace in a Hilbert space H and L † ( D ) the set of all linear operators T from D to D such that T * D ⊂ D , where T* is the adjoint of T. Finally, we give some physical examples of D -pseudo-bosons based on standard bosons by the method of constructing D -pseudo-bosons stated above.
Nonminimal black holes with regular electric field
NASA Astrophysics Data System (ADS)
Balakin, Alexander B.; Zayats, Alexei E.
2015-05-01
We discuss the problem of identification of coupling constants, which describe interactions between photons and spacetime curvature, using exact regular solutions to the extended equations of the nonminimal Einstein-Maxwell theory. We argue the idea that three nonminimal coupling constants in this theory can be reduced to the single guiding parameter, which plays the role of nonminimal radius. We base our consideration on two examples of exact solutions obtained earlier in our works: the first of them describes a nonminimal spherically symmetric object (star or black hole) with regular radial electric field; the second example represents a nonminimal Dirac-type object (monopole or black hole) with regular metric. We demonstrate that one of the inflexion points of the regular metric function identifies a specific nonminimal radius, thus marking the domain of dominance of nonminimal interactions.
Regular Exercise May Boost Prostate Cancer Survival
... nih.gov/medlineplus/news/fullstory_158374.html Regular Exercise May Boost Prostate Cancer Survival Study found that ... HealthDay News) -- Sticking to a moderate or intense exercise regimen may improve a man's odds of surviving ...
Regular Exercise: Antidote for Deadly Diseases?
... https://medlineplus.gov/news/fullstory_160326.html Regular Exercise: Antidote for Deadly Diseases? High levels of physical ... Aug. 9, 2016 (HealthDay News) -- Getting lots of exercise may reduce your risk for five common diseases, ...
Parallelization of irregularly coupled regular meshes
NASA Technical Reports Server (NTRS)
Chase, Craig; Crowley, Kay; Saltz, Joel; Reeves, Anthony
1992-01-01
Regular meshes are frequently used for modeling physical phenomena on both serial and parallel computers. One advantage of regular meshes is that efficient discretization schemes can be implemented in a straight forward manner. However, geometrically-complex objects, such as aircraft, cannot be easily described using a single regular mesh. Multiple interacting regular meshes are frequently used to describe complex geometries. Each mesh models a subregion of the physical domain. The meshes, or subdomains, can be processed in parallel, with periodic updates carried out to move information between the coupled meshes. In many cases, there are a relatively small number (one to a few dozen) subdomains, so that each subdomain may also be partitioned among several processors. We outline a composite run-time/compile-time approach for supporting these problems efficiently on distributed-memory machines. These methods are described in the context of a multiblock fluid dynamics problem developed at LaRC.
Blind Poissonian images deconvolution with framelet regularization.
Fang, Houzhang; Yan, Luxin; Liu, Hai; Chang, Yi
2013-02-15
We propose a maximum a posteriori blind Poissonian images deconvolution approach with framelet regularization for the image and total variation (TV) regularization for the point spread function. Compared with the TV based methods, our algorithm not only suppresses noise effectively but also recovers edges and detailed information. Moreover, the split Bregman method is exploited to solve the resulting minimization problem. Comparative results on both simulated and real images are reported. PMID:23455078
Myeloperoxidase Stimulates Neutrophil Degranulation.
Grigorieva, D V; Gorudko, I V; Sokolov, A V; Kostevich, V A; Vasilyev, V B; Cherenkevich, S N; Panasenko, O M
2016-08-01
Myeloperoxidase, heme enzyme of azurophilic granules in neutrophils, is released into the extracellular space in the inflammation foci. In neutrophils, it stimulates a dose-dependent release of lactoferrin (a protein of specific granules), lysozyme (a protein of specific and azurophilic granules), and elastase (a protein of azurophilic granules). 4-Aminobenzoic acid hydrazide, a potent inhibitor of peroxidase activity of myeloperoxidase, produced no effect on neutrophil degranulation. Using signal transduction inhibitors (genistein, methoxyverapamil, wortmannin, and NiCl2), we demonstrated that myeloperoxidase-induced degranulation of neutrophils resulted from enzyme interaction with the plasma membrane and depends on activation of tyrosine kinases, phosphatidylinositol 3-kinases (PI3K), and calcium signaling. Myeloperoxidase modified by oxidative/halogenation stress (chlorinated and monomeric forms of the enzyme) lost the potency to activate neutrophil degranulation. PMID:27597056
Continuum regularization of quantum field theory
Bern, Z.
1986-01-01
Breit, Gupta, and Zaks made the first proposal for new gauge invariant nonperturbative regularization. The scheme is based on smearing in the fifth-time of the Langevin equation. An analysis of their stochastic regularization scheme for the case of scalar electrodynamics with the standard covariant gauge fixing is given. Their scheme is shown to preserve the masslessness of the photon and the tensor structure of the photon vacuum polarization at the one-loop level. Although stochastic regularization is viable in one-loop electrodynamics, difficulties arise which, in general, ruins the scheme. A successful covariant derivative scheme is discussed which avoids the difficulties encountered with the earlier stochastic regularization by fifth-time smearing. For QCD the regularized formulation is manifestly Lorentz invariant, gauge invariant, ghost free and finite to all orders. A vanishing gluon mass is explicitly verified at one loop. The method is designed to respect relevant symmetries, and is expected to provide suitable regularization for any theory of interest.
On the low regularity of the Benney-Lin equation
NASA Astrophysics Data System (ADS)
Chen, Wengu; Li, Junfeng
2008-03-01
We consider the low regularity of the Benney-Lin equation ut+uux+uxxx+[beta](uxx+uxxxx)+[eta]uxxxxx=0. We established the global well posedness for the initial value problem of Benney-Lin equation in the Sobolev spaces for 0[greater-or-equal, slanted]s>-2, improving the well-posedness result of Biagioni and Linares [H.A. Biaginoi, F. Linares, On the Benney-Lin and Kawahara equation, J. Math. Anal. Appl. 211 (1997) 131-152]. For s<-2 we also prove some ill-posedness issues.
Usual Source of Care in Preventive Service Use: A Regular Doctor versus a Regular Site
Xu, K Tom
2002-01-01
Objective To compare the effects of having a regular doctor and having a regular site on five preventive services, controlling for the endogeneity of having a usual source of care. Data Source The Medical Expenditure Panel Survey 1996 conducted by the Agency for Healthcare Research and Quality and the National Center for Health Statistics. Study Design Mammograms, pap smears, blood pressure checkups, cholesterol level checkups, and flu shots were examined. A modified behavioral model framework was presented, which controlled for the endogeneity of having a usual source of care. Based on this framework, a two-equation empirical model was established to predict the probabilities of having a regular doctor and having a regular site, and use of each type of preventive service. Principal Findings Having a regular doctor was found to have a greater impact than having a regular site on discretional preventive services, such as blood pressure and cholesterol level checkups. No statistically significant differences were found between the effects a having a regular doctor and having a regular site on the use of flu shots, pap smears, and mammograms. Among the five preventive services, having a usual source of care had the greatest impact on cholesterol level checkups and pap smears. Conclusions Promoting a stable physician–patient relationship can improve patients’ timely receipt of clinical prevention. For certain preventive services, having a regular doctor is more effective than having a regular site. PMID:12546284
Manifold regularized non-negative matrix factorization with label information
NASA Astrophysics Data System (ADS)
Li, Huirong; Zhang, Jiangshe; Wang, Changpeng; Liu, Junmin
2016-03-01
Non-negative matrix factorization (NMF) as a popular technique for finding parts-based, linear representations of non-negative data has been successfully applied in a wide range of applications, such as feature learning, dictionary learning, and dimensionality reduction. However, both the local manifold regularization of data and the discriminative information of the available label have not been taken into account together in NMF. We propose a new semisupervised matrix decomposition method, called manifold regularized non-negative matrix factorization (MRNMF) with label information, which incorporates the manifold regularization and the label information into the NMF to improve the performance of NMF in clustering tasks. We encode the local geometrical structure of the data space by constructing a nearest neighbor graph and enhance the discriminative ability of different classes by effectively using the label information. Experimental comparisons with the state-of-the-art methods on theCOIL20, PIE, Extended Yale B, and MNIST databases demonstrate the effectiveness of MRNMF.
3D harmonic phase tracking with anatomical regularization.
Zhou, Yitian; Bernard, Olivier; Saloux, Eric; Manrique, Alain; Allain, Pascal; Makram-Ebeid, Sherif; De Craene, Mathieu
2015-12-01
This paper presents a novel algorithm that extends HARP to handle 3D tagged MRI images. HARP results were regularized by an original regularization framework defined in an anatomical space of coordinates. In the meantime, myocardium incompressibility was integrated in order to correct the radial strain which is reported to be more challenging to recover. Both the tracking and regularization of LV displacements were done on a volumetric mesh to be computationally efficient. Also, a window-weighted regression method was extended to cardiac motion tracking which helps maintain a low complexity even at finer scales. On healthy volunteers, the tracking accuracy was found to be as accurate as the best candidates of a recent benchmark. Strain accuracy was evaluated on synthetic data, showing low bias and strain errors under 5% (excluding outliers) for longitudinal and circumferential strains, while the second and third quartiles of the radial strain errors are in the (-5%,5%) range. In clinical data, strain dispersion was shown to correlate with the extent of transmural fibrosis. Also, reduced deformation values were found inside infarcted segments. PMID:26363844
Channeling power across ecological systems: social regularities in community organizing.
Christens, Brian D; Inzeo, Paula Tran; Faust, Victoria
2014-06-01
Relational and social network perspectives provide opportunities for more holistic conceptualizations of phenomena of interest in community psychology, including power and empowerment. In this article, we apply these tools to build on multilevel frameworks of empowerment by proposing that networks of relationships between individuals constitute the connective spaces between ecological systems. Drawing on an example of a model for grassroots community organizing practiced by WISDOM—a statewide federation supporting local community organizing initiatives in Wisconsin—we identify social regularities (i.e., relational and temporal patterns) that promote empowerment and the development and exercise of social power through building and altering relational ties. Through an emphasis on listening-focused one-to-one meetings, reflection, and social analysis, WISDOM organizing initiatives construct and reinforce social regularities that develop social power in the organizing initiatives and advance psychological empowerment among participant leaders in organizing. These patterns are established by organizationally driven brokerage and mobilization of interpersonal ties, some of which span ecological systems.Hence, elements of these power-focused social regularities can be conceptualized as cross-system channels through which micro-level empowerment processes feed into macro-level exercise of social power, and vice versa. We describe examples of these channels in action, and offer recommendations for theory and design of future action research [corrected] . PMID:24398621
Regularity vs genericity in the perception of collinearity.
Feldman, J
1996-01-01
The perception of collinearity is investigated, with the focus on the minimal case of three dots. As suggested previously, from the standpoint of probabilistic inference, the observer must classify each dot triplet as having arisen either from a one-dimensional curvilinear process or from a two-dimensional patch. The normative distributions of triplets arising from these two classes are unavailable to the observer, and are in fact somewhat counterintuitive. Hence in order to classify triplets, the observer invents distributions for each of the two opposed types, 'regular' (collinear) triplets and 'generic' (ie not regular) triplets. The collinear prototype is centered at 0 degree (ie perfectly straight), whereas the generic prototype, contrary to the normative statistics, is centered at 120 degrees away from straight-apparently because this is the point most distant in triplet space from straight and thus creates the maximum possible contrast between the two prototypes. By default, these two processes are assumed to be equiprobable in the environment. An experiment designed to investigate how subjects' judgments are affected by conspicuous environmental deviations from this assumption is reported. The results suggest that observers react by elevating or depressing the expected probability of the generic prototype relative to the regular one, leaving the prototype structure otherwise intact. PMID:8804096
Improvements in GRACE Gravity Fields Using Regularization
NASA Astrophysics Data System (ADS)
Save, H.; Bettadpur, S.; Tapley, B. D.
2008-12-01
The unconstrained global gravity field models derived from GRACE are susceptible to systematic errors that show up as broad "stripes" aligned in a North-South direction on the global maps of mass flux. These errors are believed to be a consequence of both systematic and random errors in the data that are amplified by the nature of the gravity field inverse problem. These errors impede scientific exploitation of the GRACE data products, and limit the realizable spatial resolution of the GRACE global gravity fields in certain regions. We use regularization techniques to reduce these "stripe" errors in the gravity field products. The regularization criteria are designed such that there is no attenuation of the signal and that the solutions fit the observations as well as an unconstrained solution. We have used a computationally inexpensive method, normally referred to as "L-ribbon", to find the regularization parameter. This paper discusses the characteristics and statistics of a 5-year time-series of regularized gravity field solutions. The solutions show markedly reduced stripes, are of uniformly good quality over time, and leave little or no systematic observation residuals, which is a frequent consequence of signal suppression from regularization. Up to degree 14, the signal in regularized solution shows correlation greater than 0.8 with the un-regularized CSR Release-04 solutions. Signals from large-amplitude and small-spatial extent events - such as the Great Sumatra Andaman Earthquake of 2004 - are visible in the global solutions without using special post-facto error reduction techniques employed previously in the literature. Hydrological signals as small as 5 cm water-layer equivalent in the small river basins, like Indus and Nile for example, are clearly evident, in contrast to noisy estimates from RL04. The residual variability over the oceans relative to a seasonal fit is small except at higher latitudes, and is evident without the need for de-striping or
Oxygen saturation resolution influences regularity measurements.
Garde, Ainara; Karlen, Walter; Dehkordi, Parastoo; Ansermino, J Mark; Dumont, Guy A
2014-01-01
The measurement of regularity in the oxygen saturation (SpO(2)) signal has been suggested for use in identifying subjects with sleep disordered breathing (SDB). Previous work has shown that children with SDB have lower SpO(2) regularity than subjects without SDB (NonSDB). Regularity was measured using non-linear methods like approximate entropy (ApEn), sample entropy (SamEn) and Lempel-Ziv (LZ) complexity. Different manufacturer's pulse oximeters provide SpO(2) at various resolutions and the effect of this resolution difference on SpO(2) regularity, has not been studied. To investigate this effect, we used the SpO(2) signal of children with and without SDB, recorded from the Phone Oximeter (0.1% resolution) and the same SpO(2) signal rounded to the nearest integer (artificial 1% resolution). To further validate the effect of rounding, we also used the SpO(2) signal (1% resolution) recorded simultaneously from polysomnography (PSG), as a control signal. We estimated SpO(2) regularity by computing the ApEn, SamEn and LZ complexity, using a 5-min sliding window and showed that different resolutions provided significantly different results. The regularity calculated using 0.1% SpO(2) resolution provided no significant differences between SDB and NonSDB. However, the artificial 1% resolution SpO(2) provided significant differences between SDB and NonSDB, showing a more random SpO(2) pattern (lower SpO(2) regularity) in SDB children, as suggested in the past. Similar results were obtained with the SpO(2) recorded from PSG (1% resolution), which further validated that this SpO(2) regularity change was due to the rounding effect. Therefore, the SpO(2) resolution has a great influence in regularity measurements like ApEn, SamEn and LZ complexity that should be considered when studying the SpO(2) pattern in children with SDB. PMID:25570437
Modified sparse regularization for electrical impedance tomography.
Fan, Wenru; Wang, Huaxiang; Xue, Qian; Cui, Ziqiang; Sun, Benyuan; Wang, Qi
2016-03-01
Electrical impedance tomography (EIT) aims to estimate the electrical properties at the interior of an object from current-voltage measurements on its boundary. It has been widely investigated due to its advantages of low cost, non-radiation, non-invasiveness, and high speed. Image reconstruction of EIT is a nonlinear and ill-posed inverse problem. Therefore, regularization techniques like Tikhonov regularization are used to solve the inverse problem. A sparse regularization based on L1 norm exhibits superiority in preserving boundary information at sharp changes or discontinuous areas in the image. However, the limitation of sparse regularization lies in the time consumption for solving the problem. In order to further improve the calculation speed of sparse regularization, a modified method based on separable approximation algorithm is proposed by using adaptive step-size and preconditioning technique. Both simulation and experimental results show the effectiveness of the proposed method in improving the image quality and real-time performance in the presence of different noise intensities and conductivity contrasts. PMID:27036798
Assessment of regularization techniques for electrocardiographic imaging
Milanič, Matija; Jazbinšek, Vojko; MacLeod, Robert S.; Brooks, Dana H.; Hren, Rok
2014-01-01
A widely used approach to solving the inverse problem in electrocardiography involves computing potentials on the epicardium from measured electrocardiograms (ECGs) on the torso surface. The main challenge of solving this electrocardiographic imaging (ECGI) problem lies in its intrinsic ill-posedness. While many regularization techniques have been developed to control wild oscillations of the solution, the choice of proper regularization methods for obtaining clinically acceptable solutions is still a subject of ongoing research. However there has been little rigorous comparison across methods proposed by different groups. This study systematically compared various regularization techniques for solving the ECGI problem under a unified simulation framework, consisting of both 1) progressively more complex idealized source models (from single dipole to triplet of dipoles), and 2) an electrolytic human torso tank containing a live canine heart, with the cardiac source being modeled by potentials measured on a cylindrical cage placed around the heart. We tested 13 different regularization techniques to solve the inverse problem of recovering epicardial potentials, and found that non-quadratic methods (total variation algorithms) and first-order and second-order Tikhonov regularizations outperformed other methodologies and resulted in similar average reconstruction errors. PMID:24369741
C1,1 regularity for degenerate elliptic obstacle problems
NASA Astrophysics Data System (ADS)
Daskalopoulos, Panagiota; Feehan, Paul M. N.
2016-03-01
The Heston stochastic volatility process is a degenerate diffusion process where the degeneracy in the diffusion coefficient is proportional to the square root of the distance to the boundary of the half-plane. The generator of this process with killing, called the elliptic Heston operator, is a second-order, degenerate-elliptic partial differential operator, where the degeneracy in the operator symbol is proportional to the distance to the boundary of the half-plane. In mathematical finance, solutions to the obstacle problem for the elliptic Heston operator correspond to value functions for perpetual American-style options on the underlying asset. With the aid of weighted Sobolev spaces and weighted Hölder spaces, we establish the optimal C 1 , 1 regularity (up to the boundary of the half-plane) for solutions to obstacle problems for the elliptic Heston operator when the obstacle functions are sufficiently smooth.
Characteristics of density currents over regular and irregular rough surfaces
NASA Astrophysics Data System (ADS)
Bhaganagar, K.
2013-12-01
Direct numerical simulation is used as a tool to understand the effect of surface roughness on the propagation of density currents. Simulations have been performed for lock-exchange flow with gate separating the dense and the lighter fluid. As the lock is released the dense fluid collapses with the lighter fluid on the top, resulting in formation of horizontally evolving density current. The talk will focus on the fundamental differences between the propagation of the density current over regular and irregular rough surfaces. The flow statistics and the flow structures are discussed. The results have revealed the spacing between the roughness elements is an important factor in classifying the density currents. The empirical relations of the front velocity and location for the dense and sparse roughness have been evaluated in terms of the roughness height, spacing between the elements and the initial amount of lock fluid. DNS results for a dense current flowing over a (a) smooth and (b) rough bottom with egg-carton roughness elements in a regular configuration. In these simulations the lock-exchange box is located in the middle of the channel and has two gates which allow two dense currents to be generated, one moving to the right and one to the left side of the channel. Note how the dense current interface presents smaller structures when over a rough bottom (right).
Perturbations in a regular bouncing universe
Battefeld, T.J.; Geshnizjani, G.
2006-03-15
We consider a simple toy model of a regular bouncing universe. The bounce is caused by an extra timelike dimension, which leads to a sign flip of the {rho}{sup 2} term in the effective four dimensional Randall Sundrum-like description. We find a wide class of possible bounces: big bang avoiding ones for regular matter content, and big rip avoiding ones for phantom matter. Focusing on radiation as the matter content, we discuss the evolution of scalar, vector and tensor perturbations. We compute a spectral index of n{sub s}=-1 for scalar perturbations and a deep blue index for tensor perturbations after invoking vacuum initial conditions, ruling out such a model as a realistic one. We also find that the spectrum (evaluated at Hubble crossing) is sensitive to the bounce. We conclude that it is challenging, but not impossible, for cyclic/ekpyrotic models to succeed, if one can find a regularized version.
Shadow of rotating regular black holes
NASA Astrophysics Data System (ADS)
Abdujabbarov, Ahmadjon; Amir, Muhammed; Ahmedov, Bobomurat; Ghosh, Sushant G.
2016-05-01
We study the shadows cast by the different types of rotating regular black holes viz. Ayón-Beato-García (ABG), Hayward, and Bardeen. These black holes have in addition to the total mass (M ) and rotation parameter (a ), different parameters as electric charge (Q ), deviation parameter (g ), and magnetic charge (g*). Interestingly, the size of the shadow is affected by these parameters in addition to the rotation parameter. We found that the radius of the shadow in each case decreases monotonically, and the distortion parameter increases when the values of these parameters increase. A comparison with the standard Kerr case is also investigated. We have also studied the influence of the plasma environment around regular black holes to discuss its shadow. The presence of the plasma affects the apparent size of the regular black hole's shadow to be increased due to two effects: (i) gravitational redshift of the photons and (ii) radial dependence of plasma density.
Strong regularizing effect of integrable systems
Zhou, Xin
1997-11-01
Many time evolution problems have the so-called strong regularization effect, that is, with any irregular initial data, as soon as becomes greater than 0, the solution becomes C{sup {infinity}} for both spacial and temporal variables. This paper studies 1 x 1 dimension integrable systems for such regularizing effect. In the work by Sachs, Kappler [S][K], (see also earlier works [KFJ] and [Ka]), strong regularizing effect is proved for KdV with rapidly decaying irregular initial data, using the inverse scattering method. There are two equivalent Gel`fand-Levitan-Marchenko (GLM) equations associated to an inverse scattering problem, one is normalized at x = {infinity} and another at x = {infinity}. The method of [S][K] relies on the fact that the KdV waves propagate only in one direction and therefore one of the two GLM equations remains normalized and can be differentiated infinitely many times. 15 refs.
Regularized image recovery in scattering media.
Schechner, Yoav Y; Averbuch, Yuval
2007-09-01
When imaging in scattering media, visibility degrades as objects become more distant. Visibility can be significantly restored by computer vision methods that account for physical processes occurring during image formation. Nevertheless, such recovery is prone to noise amplification in pixels corresponding to distant objects, where the medium transmittance is low. We present an adaptive filtering approach that counters the above problems: while significantly improving visibility relative to raw images, it inhibits noise amplification. Essentially, the recovery formulation is regularized, where the regularization adapts to the spatially varying medium transmittance. Thus, this regularization does not blur close objects. We demonstrate the approach in atmospheric and underwater experiments, based on an automatic method for determining the medium transmittance. PMID:17627052
Regular transport dynamics produce chaotic travel times.
Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Johnson, Neil F; Toledo, Benjamín; Valdivia, Juan Alejandro
2014-06-01
In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge even when the route is empty and straight, stops and lights are equidistant and regular, and loading times are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a single object following Newton's laws of motion in a regularized one-dimensional system. PMID:25019866
[Why regular physical activity favors longevity].
Pentimone, F; Del Corso, L
1998-06-01
Regular physical exercise is useful at all ages. In the elderly, even a gentle exercise programme consisting of walking, bicycling, playing golf if performed constantly increases longevity by preventing the onset of the main diseases or alleviating the handicaps they may have caused. Cardiovascular diseases, which represent the main cause of death in the elderly, and osteoporosis, a disabling disease potentially capable of shortening life expectancy, benefit from physical exercise which if performed regularly well before the start of old age may help to prevent them. Over the past few years there has been growing evidence of the concrete protection offered against neoplasia and even the ageing process itself. PMID:9739351
Learning with regularizers in multilayer neural networks
NASA Astrophysics Data System (ADS)
Saad, David; Rattray, Magnus
1998-02-01
We study the effect of regularization in an on-line gradient-descent learning scenario for a general two-layer student network with an arbitrary number of hidden units. Training examples are randomly drawn input vectors labeled by a two-layer teacher network with an arbitrary number of hidden units that may be corrupted by Gaussian output noise. We examine the effect of weight decay regularization on the dynamical evolution of the order parameters and generalization error in various phases of the learning process, in both noiseless and noisy scenarios.
Demosaicing as the problem of regularization
NASA Astrophysics Data System (ADS)
Kunina, Irina; Volkov, Aleksey; Gladilin, Sergey; Nikolaev, Dmitry
2015-12-01
Demosaicing is the process of reconstruction of a full-color image from Bayer mosaic, which is used in digital cameras for image formation. This problem is usually considered as an interpolation problem. In this paper, we propose to consider the demosaicing problem as a problem of solving an underdetermined system of algebraic equations using regularization methods. We consider regularization with standard l1/2-, l1 -, l2- norms and their effect on quality image reconstruction. The experimental results showed that the proposed technique can both be used in existing methods and become the base for new ones
REGULAR VERSUS DIFFUSIVE PHOTOSPHERIC FLUX CANCELLATION
Litvinenko, Yuri E.
2011-04-20
Observations of photospheric flux cancellation on the Sun imply that cancellation can be a diffusive rather than regular process. A criterion is derived, which quantifies the parameter range in which diffusive photospheric cancellation should occur. Numerical estimates show that regular cancellation models should be expected to give a quantitatively accurate description of photospheric cancellation. The estimates rely on a recently suggested scaling for a turbulent magnetic diffusivity, which is consistent with the diffusivity measurements on spatial scales varying by almost two orders of magnitude. Application of the turbulent diffusivity to large-scale dispersal of the photospheric magnetic flux is discussed.
Exploring Regularities for Improving FAÇADE Reconstruction from Point Clouds
NASA Astrophysics Data System (ADS)
Zhou, K.; Gorte, B.; Zlatanova, S.
2016-06-01
(Semi)-automatic facade reconstruction from terrestrial LiDAR point clouds is often affected by both quality of point cloud itself and imperfectness of object recognition algorithms. In this paper, we employ regularities, which exist on façades, to mitigate these problems. For example, doors, windows and balconies often have orthogonal and parallel boundaries. Many windows are constructed with the same shape. They may be arranged at the same lines and distance intervals, so do different windows. By identifying regularities among objects with relatively poor quality, these can be applied to calibrate the objects and improve their quality. The paper focuses on the regularities among the windows, which is the majority of objects on the wall. Regularities are classified into three categories: within an individual window, among similar windows and among different windows. Nine cases are specified as a reference for exploration. A hierarchical clustering method is employed to identify and apply regularities in a feature space, where regularities can be identified from clusters. To find the corresponding features in the nine cases of regularities, two phases are distinguished for similar and different windows. In the first phase, ICP (iterative closest points) is used to identify groups of similar windows. The registered points and a number of transformation matrices are used to identify and apply regularities among similar windows. In the second phase, features are extracted from the boundaries of the different windows. When applying regularities by relocating windows, the connections, called chains, established among the similar windows in the first phase are preserved. To test the performance of the algorithms, two datasets from terrestrial LiDAR point clouds are used. Both show good effects on the reconstructed model, while still matching with original point cloud, preventing over or under-regularization.
NASA Astrophysics Data System (ADS)
Sumin, M. I.
2015-06-01
A parametric nonlinear programming problem in a metric space with an operator equality constraint in a Hilbert space is studied assuming that its lower semicontinuous value function at a chosen individual parameter value has certain subdifferentiability properties in the sense of nonlinear (nonsmooth) analysis. Such subdifferentiability can be understood as the existence of a proximal subgradient or a Fréchet subdifferential. In other words, an individual problem has a corresponding generalized Kuhn-Tucker vector. Under this assumption, a stable sequential Kuhn-Tucker theorem in nondifferential iterative form is proved and discussed in terms of minimizing sequences on the basis of the dual regularization method. This theorem provides necessary and sufficient conditions for the stable construction of a minimizing approximate solution in the sense of Warga in the considered problem, whose initial data can be approximately specified. A substantial difference of the proved theorem from its classical same-named analogue is that the former takes into account the possible instability of the problem in the case of perturbed initial data and, as a consequence, allows for the inherited instability of classical optimality conditions. This theorem can be treated as a regularized generalization of the classical Uzawa algorithm to nonlinear programming problems. Finally, the theorem is applied to the "simplest" nonlinear optimal control problem, namely, to a time-optimal control problem.
Bedoin, Nathalie; Brisseau, Lucie; Molinier, Pauline; Roch, Didier; Tillmann, Barbara
2016-01-01
Children with developmental language disorders have been shown to be also impaired in rhythm and meter perception. Temporal processing and its link to language processing can be understood within the dynamic attending theory. An external stimulus can stimulate internal oscillators, which orient attention over time and drive speech signal segmentation to provide benefits for syntax processing, which is impaired in various patient populations. For children with Specific Language Impairment (SLI) and dyslexia, previous research has shown the influence of an external rhythmic stimulation on subsequent language processing by comparing the influence of a temporally regular musical prime to that of a temporally irregular prime. Here we tested whether the observed rhythmic stimulation effect is indeed due to a benefit provided by the regular musical prime (rather than a cost subsequent to the temporally irregular prime). Sixteen children with SLI and 16 age-matched controls listened to either a regular musical prime sequence or an environmental sound scene (without temporal regularities in event occurrence; i.e., referred to as "baseline condition") followed by grammatically correct and incorrect sentences. They were required to perform grammaticality judgments for each auditorily presented sentence. Results revealed that performance for the grammaticality judgments was better after the regular prime sequences than after the baseline sequences. Our findings are interpreted in the theoretical framework of the dynamic attending theory (Jones, 1976) and the temporal sampling (oscillatory) framework for developmental language disorders (Goswami, 2011). Furthermore, they encourage the use of rhythmic structures (even in non-verbal materials) to boost linguistic structure processing and outline perspectives for rehabilitation. PMID:27378833
Bedoin, Nathalie; Brisseau, Lucie; Molinier, Pauline; Roch, Didier; Tillmann, Barbara
2016-01-01
Children with developmental language disorders have been shown to be also impaired in rhythm and meter perception. Temporal processing and its link to language processing can be understood within the dynamic attending theory. An external stimulus can stimulate internal oscillators, which orient attention over time and drive speech signal segmentation to provide benefits for syntax processing, which is impaired in various patient populations. For children with Specific Language Impairment (SLI) and dyslexia, previous research has shown the influence of an external rhythmic stimulation on subsequent language processing by comparing the influence of a temporally regular musical prime to that of a temporally irregular prime. Here we tested whether the observed rhythmic stimulation effect is indeed due to a benefit provided by the regular musical prime (rather than a cost subsequent to the temporally irregular prime). Sixteen children with SLI and 16 age-matched controls listened to either a regular musical prime sequence or an environmental sound scene (without temporal regularities in event occurrence; i.e., referred to as “baseline condition”) followed by grammatically correct and incorrect sentences. They were required to perform grammaticality judgments for each auditorily presented sentence. Results revealed that performance for the grammaticality judgments was better after the regular prime sequences than after the baseline sequences. Our findings are interpreted in the theoretical framework of the dynamic attending theory (Jones, 1976) and the temporal sampling (oscillatory) framework for developmental language disorders (Goswami, 2011). Furthermore, they encourage the use of rhythmic structures (even in non-verbal materials) to boost linguistic structure processing and outline perspectives for rehabilitation. PMID:27378833
Optical Stimulation of Neurons
Thompson, Alexander C.; Stoddart, Paul R.; Jansen, E. Duco
2014-01-01
Our capacity to interface with the nervous system remains overwhelmingly reliant on electrical stimulation devices, such as electrode arrays and cuff electrodes that can stimulate both central and peripheral nervous systems. However, electrical stimulation has to deal with multiple challenges, including selectivity, spatial resolution, mechanical stability, implant-induced injury and the subsequent inflammatory response. Optical stimulation techniques may avoid some of these challenges by providing more selective stimulation, higher spatial resolution and reduced invasiveness of the device, while also avoiding the electrical artefacts that complicate recordings of electrically stimulated neuronal activity. This review explores the current status of optical stimulation techniques, including optogenetic methods, photoactive molecule approaches and infrared neural stimulation, together with emerging techniques such as hybrid optical-electrical stimulation, nanoparticle enhanced stimulation and optoelectric methods. Infrared neural stimulation is particularly emphasised, due to the potential for direct activation of neural tissue by infrared light, as opposed to techniques that rely on the introduction of exogenous light responsive materials. However, infrared neural stimulation remains imperfectly understood, and techniques for accurately delivering light are still under development. While the various techniques reviewed here confirm the overall feasibility of optical stimulation, a number of challenges remain to be overcome before they can deliver their full potential. PMID:26322269
Weakly regular T2-symmetric spacetimes. The future causal geometry of Gowdy spacetimes
NASA Astrophysics Data System (ADS)
LeFloch, Philippe G.; Smulevici, Jacques
2016-01-01
We investigate the future asymptotic behavior of Gowdy spacetimes on T3, when the metric satisfies weak regularity conditions, so that the metric coefficients (in suitable coordinates) are only in the Sobolev space H1 or have even weaker regularity. The authors recently introduced this class of spacetimes in the broader context of T2-symmetric spacetimes and established the existence of a global foliation by spacelike hypersurfaces when the time function is chosen to be the area of the surfaces of symmetry. In the present paper, we identify the global causal geometry of these spacetimes and, in particular, establish that weakly regular Gowdy spacetimes are future timelike geodesically complete. This result extends a theorem by Ringström for metrics with sufficiently high regularity. We emphasize that our proof of the energy decay is based on an energy functional inspired by the Gowdy-to-Ernst transformation. In order to establish the geodesic completeness property, we prove a higher regularity property concerning the metric coefficients along timelike curves and we provide a novel analysis of the geodesic equation for Gowdy spacetimes, which does not require high-order regularity estimates. Even when sufficient regularity is assumed, our proof provides an alternative and shorter proof of the energy decay and of the geodesic completeness property for Gowdy spacetimes.
Dyslexia in Regular Orthographies: Manifestation and Causation
ERIC Educational Resources Information Center
Wimmer, Heinz; Schurz, Matthias
2010-01-01
This article summarizes our research on the manifestation of dyslexia in German and on cognitive deficits, which may account for the severe reading speed deficit and the poor orthographic spelling performance that characterize dyslexia in regular orthographies. An only limited causal role of phonological deficits (phonological awareness,…
Starting flow in regular polygonal ducts
NASA Astrophysics Data System (ADS)
Wang, C. Y.
2016-06-01
The starting flows in regular polygonal ducts of S = 3, 4, 5, 6, 8 sides are determined by the method of eigenfunction superposition. The necessary S-fold symmetric eigenfunctions and eigenvalues of the Helmholtz equation are found either exactly or by boundary point match. The results show the starting time is governed by the first eigenvalue.
28 CFR 540.44 - Regular visitors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PERSONS IN THE COMMUNITY Visiting Regulations § 540.44 Regular visitors. An inmate desiring to have... ordinarily will be extended to friends and associates having an established relationship with the inmate... of the institution. Exceptions to the prior relationship rule may be made, particularly for...
Regular Classroom Teachers' Perceptions of Mainstreaming Effects.
ERIC Educational Resources Information Center
Ringlaben, Ravic P.; Price, Jay R.
To assess regular classroom teachers' perceptions of mainstreaming, a 22 item questionnaire was completed by 117 teachers (K through 12). Among results were that nearly half of the Ss indicated a lack of preparation for implementing mainstreaming; 47% tended to be very willing to accept aminstreamed students; 42% said mainstreaming was working…
Regularizing cosmological singularities by varying physical constants
Dąbrowski, Mariusz P.; Marosek, Konrad E-mail: k.marosek@wmf.univ.szczecin.pl
2013-02-01
Varying physical constant cosmologies were claimed to solve standard cosmological problems such as the horizon, the flatness and the Λ-problem. In this paper, we suggest yet another possible application of these theories: solving the singularity problem. By specifying some examples we show that various cosmological singularities may be regularized provided the physical constants evolve in time in an appropriate way.
12 CFR 725.3 - Regular membership.
Code of Federal Regulations, 2014 CFR
2014-01-01
... and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS NATIONAL CREDIT UNION ADMINISTRATION CENTRAL LIQUIDITY FACILITY § 725.3 Regular membership. (a) A natural person credit... the credit union's paid-in and unimpaired capital and surplus, as determined in accordance with §...
12 CFR 725.3 - Regular membership.
Code of Federal Regulations, 2011 CFR
2011-01-01
... and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS NATIONAL CREDIT UNION ADMINISTRATION CENTRAL LIQUIDITY FACILITY § 725.3 Regular membership. (a) A natural person credit... the credit union's paid-in and unimpaired capital and surplus, as determined in accordance with §...
12 CFR 725.3 - Regular membership.
Code of Federal Regulations, 2010 CFR
2010-01-01
... and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS NATIONAL CREDIT UNION ADMINISTRATION CENTRAL LIQUIDITY FACILITY § 725.3 Regular membership. (a) A natural person credit... the credit union's paid-in and unimpaired capital and surplus, as determined in accordance with §...
12 CFR 725.3 - Regular membership.
Code of Federal Regulations, 2012 CFR
2012-01-01
... and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS NATIONAL CREDIT UNION ADMINISTRATION CENTRAL LIQUIDITY FACILITY § 725.3 Regular membership. (a) A natural person credit... the credit union's paid-in and unimpaired capital and surplus, as determined in accordance with §...
Commitment and Dependence Upon Regular Running.
ERIC Educational Resources Information Center
Sachs, Michael L.; Pargman, David
The linear relationship between intellectual commitment to running and psychobiological dependence upon running is examined. A sample of 540 regular runners (running frequency greater than three days per week for the past year for the majority) was surveyed with a questionnaire. Measures of commitment and dependence on running, as well as…
RBOOST: RIEMANNIAN DISTANCE BASED REGULARIZED BOOSTING.
Liu, Meizhu; Vemuri, Baba C
2011-03-30
Boosting is a versatile machine learning technique that has numerous applications including but not limited to image processing, computer vision, data mining etc. It is based on the premise that the classification performance of a set of weak learners can be boosted by some weighted combination of them. There have been a number of boosting methods proposed in the literature, such as the AdaBoost, LPBoost, SoftBoost and their variations. However, the learning update strategies used in these methods usually lead to overfitting and instabilities in the classification accuracy. Improved boosting methods via regularization can overcome such difficulties. In this paper, we propose a Riemannian distance regularized LPBoost, dubbed RBoost. RBoost uses Riemannian distance between two square-root densities (in closed form) - used to represent the distribution over the training data and the classification error respectively - to regularize the error distribution in an iterative update formula. Since this distance is in closed form, RBoost requires much less computational cost compared to other regularized Boosting algorithms. We present several experimental results depicting the performance of our algorithm in comparison to recently published methods, LP-Boost and CAVIAR, on a variety of datasets including the publicly available OASIS database, a home grown Epilepsy database and the well known UCI repository. Results depict that the RBoost algorithm performs better than the competing methods in terms of accuracy and efficiency. PMID:21927643
Generalisation of Regular and Irregular Morphological Patterns.
ERIC Educational Resources Information Center
Prasada, Sandeep; and Pinker, Steven
1993-01-01
When it comes to explaining English verbs' patterns of regular and irregular generalization, single-network theories have difficulty with the former, rule-only theories with the latter process. Linguistic and psycholinguistic evidence, based on observation during experiments and simulations in morphological pattern generation, independently call…
Observing Special and Regular Education Classrooms.
ERIC Educational Resources Information Center
Hersh, Susan B.
The paper describes an observation instrument originally developed as a research tool to assess both the special setting and the regular classroom. The instrument can also be used in determining appropriate placement for students with learning disabilities and for programming the transfer of skills learned in the special setting to the regular…
Handicapped Children in the Regular Classroom.
ERIC Educational Resources Information Center
Fountain Valley School District, CA.
Reported was a project in which 60 educable mentally retarded (EMR) and 30 educationally handicapped (EH) elementary school students were placed in regular classrooms to determine whether they could be effectively educated in those settings. Effective education was defined in terms of improvement in reading, mathematics, student and teacher…
Exploring the structural regularities in networks
NASA Astrophysics Data System (ADS)
Shen, Hua-Wei; Cheng, Xue-Qi; Guo, Jia-Feng
2011-11-01
In this paper, we consider the problem of exploring structural regularities of networks by dividing the nodes of a network into groups such that the members of each group have similar patterns of connections to other groups. Specifically, we propose a general statistical model to describe network structure. In this model, a group is viewed as a hidden or unobserved quantity and it is learned by fitting the observed network data using the expectation-maximization algorithm. Compared with existing models, the most prominent strength of our model is the high flexibility. This strength enables it to possess the advantages of existing models and to overcome their shortcomings in a unified way. As a result, not only can broad types of structure be detected without prior knowledge of the type of intrinsic regularities existing in the target network, but also the type of identified structure can be directly learned from the network. Moreover, by differentiating outgoing edges from incoming edges, our model can detect several types of structural regularities beyond competing models. Tests on a number of real world and artificial networks demonstrate that our model outperforms the state-of-the-art model in shedding light on the structural regularities of networks, including the overlapping community structure, multipartite structure, and several other types of structure, which are beyond the capability of existing models.
Regularities in Spearman's Law of Diminishing Returns.
ERIC Educational Resources Information Center
Jensen, Arthur R.
2003-01-01
Examined the assumption that Spearman's law acts unsystematically and approximately uniformly for various subtests of cognitive ability in an IQ test battery when high- and low-ability IQ groups are selected. Data from national standardization samples for Wechsler adult and child IQ tests affirm regularities in Spearman's "Law of Diminishing…
ACTH (cosyntropin) stimulation test
... The ACTH stimulation test measures how well the adrenal glands respond to adrenocorticotropic hormone ( ACTH ). ACTH is a ... produced in the pituitary gland that stimulates the adrenal glands to release a hormone called cortisol. How the ...
Learning regular expressions for clinical text classification
Bui, Duy Duc An; Zeng-Treitler, Qing
2014-01-01
Objectives Natural language processing (NLP) applications typically use regular expressions that have been developed manually by human experts. Our goal is to automate both the creation and utilization of regular expressions in text classification. Methods We designed a novel regular expression discovery (RED) algorithm and implemented two text classifiers based on RED. The RED+ALIGN classifier combines RED with an alignment algorithm, and RED+SVM combines RED with a support vector machine (SVM) classifier. Two clinical datasets were used for testing and evaluation: the SMOKE dataset, containing 1091 text snippets describing smoking status; and the PAIN dataset, containing 702 snippets describing pain status. We performed 10-fold cross-validation to calculate accuracy, precision, recall, and F-measure metrics. In the evaluation, an SVM classifier was trained as the control. Results The two RED classifiers achieved 80.9–83.0% in overall accuracy on the two datasets, which is 1.3–3% higher than SVM's accuracy (p<0.001). Similarly, small but consistent improvements have been observed in precision, recall, and F-measure when RED classifiers are compared with SVM alone. More significantly, RED+ALIGN correctly classified many instances that were misclassified by the SVM classifier (8.1–10.3% of the total instances and 43.8–53.0% of SVM's misclassifications). Conclusions Machine-generated regular expressions can be effectively used in clinical text classification. The regular expression-based classifier can be combined with other classifiers, like SVM, to improve classification performance. PMID:24578357
NASA Astrophysics Data System (ADS)
Lanteri, Henri; Roche, Muriel; Cuevas, Olga; Aime, Claude
1999-12-01
We propose regularized versions of Maximum Likelihood algorithms for Poisson process with non-negativity constraint. For such process, the best-known (non- regularized) algorithm is that of Richardson-Lucy, extensively used for astronomical applications. Regularization is necessary to prevent an amplification of the noise during the iterative reconstruction; this can be done either by limiting the iteration number or by introducing a penalty term. In this Communication, we focus our attention on the explicit regularization using Tikhonov (Identity and Laplacian operator) or entropy terms (Kullback-Leibler and Csiszar divergences). The algorithms are established from the Kuhn-Tucker first order optimality conditions for the minimization of the Lagrange function and from the method of successive substitutions. The algorithms may be written in a `product form'. Numerical illustrations are given for simulated images corrupted by photon noise. The effects of the regularization are shown in the Fourier plane. The tests we have made indicate that a noticeable improvement of the results may be obtained for some of these explicitly regularized algorithms. We also show that a comparison with a Wiener filter can give the optimal regularizing conditions (operator and strength).
On the Regularity Set and Angular Integrability for the Navier-Stokes Equation
NASA Astrophysics Data System (ADS)
D'Ancona, Piero; Lucà, Renato
2016-09-01
We investigate the size of the regular set for suitable weak solutions of the Navier-Stokes equation, in the sense of Caffarelli-Kohn-Nirenberg (Commun Pure Appl Math 35:771-831, 1982). We consider initial data in weighted Lebesgue spaces with mixed radial-angular integrability, and we prove that the regular set increases if the data have higher angular integrability, invading the whole half space {\\{t > 0\\}} in an appropriate limit. In particular, we obtain that if the {L2} norm with weight {|x|^{-frac12}} of the data tends to 0, the regular set invades {\\{t > 0\\}}; this result improves Theorem D of Caffarelli et al. (Commun Pure Appl Math 35:771-831, 1982).
42 CFR 61.3 - Purpose of regular fellowships.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Purpose of regular fellowships. 61.3 Section 61.3 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.3 Purpose of regular fellowships. Regular fellowships...
42 CFR 61.3 - Purpose of regular fellowships.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Purpose of regular fellowships. 61.3 Section 61.3 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.3 Purpose of regular fellowships. Regular fellowships...
42 CFR 61.3 - Purpose of regular fellowships.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 1 2014-10-01 2014-10-01 false Purpose of regular fellowships. 61.3 Section 61.3 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.3 Purpose of regular fellowships. Regular fellowships...
42 CFR 61.3 - Purpose of regular fellowships.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 1 2012-10-01 2012-10-01 false Purpose of regular fellowships. 61.3 Section 61.3 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.3 Purpose of regular fellowships. Regular fellowships...
42 CFR 61.3 - Purpose of regular fellowships.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 1 2013-10-01 2013-10-01 false Purpose of regular fellowships. 61.3 Section 61.3 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.3 Purpose of regular fellowships. Regular fellowships...
14 CFR 121.487 - Flight time limitations: Pilots not regularly assigned.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Pilots not... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Flag Operations § 121.487 Flight time limitations: Pilots not regularly assigned. (a) Except...
14 CFR 121.487 - Flight time limitations: Pilots not regularly assigned.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Pilots not... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Flag Operations § 121.487 Flight time limitations: Pilots not regularly assigned. (a) Except...
ERIC Educational Resources Information Center
Turk-Browne, Nicholas B.; Scholl, Brian J.; Chun, Marvin M.; Johnson, Marcia K.
2009-01-01
Our environment contains regularities distributed in space and time that can be detected by way of statistical learning. This unsupervised learning occurs without intent or awareness, but little is known about how it relates to other types of learning, how it affects perceptual processing, and how quickly it can occur. Here we use fMRI during…
Convex nonnegative matrix factorization with manifold regularization.
Hu, Wenjun; Choi, Kup-Sze; Wang, Peiliang; Jiang, Yunliang; Wang, Shitong
2015-03-01
Nonnegative Matrix Factorization (NMF) has been extensively applied in many areas, including computer vision, pattern recognition, text mining, and signal processing. However, nonnegative entries are usually required for the data matrix in NMF, which limits its application. Besides, while the basis and encoding vectors obtained by NMF can represent the original data in low dimension, the representations do not always reflect the intrinsic geometric structure embedded in the data. Motivated by manifold learning and Convex NMF (CNMF), we propose a novel matrix factorization method called Graph Regularized and Convex Nonnegative Matrix Factorization (GCNMF) by introducing a graph regularized term into CNMF. The proposed matrix factorization technique not only inherits the intrinsic low-dimensional manifold structure, but also allows the processing of mixed-sign data matrix. Clustering experiments on nonnegative and mixed-sign real-world data sets are conducted to demonstrate the effectiveness of the proposed method. PMID:25523040
Modeling Regular Replacement for String Constraint Solving
NASA Technical Reports Server (NTRS)
Fu, Xiang; Li, Chung-Chih
2010-01-01
Bugs in user input sanitation of software systems often lead to vulnerabilities. Among them many are caused by improper use of regular replacement. This paper presents a precise modeling of various semantics of regular substitution, such as the declarative, finite, greedy, and reluctant, using finite state transducers (FST). By projecting an FST to its input/output tapes, we are able to solve atomic string constraints, which can be applied to both the forward and backward image computation in model checking and symbolic execution of text processing programs. We report several interesting discoveries, e.g., certain fragments of the general problem can be handled using less expressive deterministic FST. A compact representation of FST is implemented in SUSHI, a string constraint solver. It is applied to detecting vulnerabilities in web applications
Generalized Higher Degree Total Variation (HDTV) Regularization
Hu, Yue; Ongie, Greg; Ramani, Sathish; Jacob, Mathews
2015-01-01
We introduce a family of novel image regularization penalties called generalized higher degree total variation (HDTV). These penalties further extend our previously introduced HDTV penalties, which generalize the popular total variation (TV) penalty to incorporate higher degree image derivatives. We show that many of the proposed second degree extensions of TV are special cases or are closely approximated by a generalized HDTV penalty. Additionally, we propose a novel fast alternating minimization algorithm for solving image recovery problems with HDTV and generalized HDTV regularization. The new algorithm enjoys a ten-fold speed up compared to the iteratively reweighted majorize minimize algorithm proposed in a previous work. Numerical experiments on 3D magnetic resonance images and 3D microscopy images show that HDTV and generalized HDTV improve the image quality significantly compared with TV. PMID:24710832
Charged fermions tunneling from regular black holes
Sharif, M. Javed, W.
2012-11-15
We study Hawking radiation of charged fermions as a tunneling process from charged regular black holes, i.e., the Bardeen and ABGB black holes. For this purpose, we apply the semiclassical WKB approximation to the general covariant Dirac equation for charged particles and evaluate the tunneling probabilities. We recover the Hawking temperature corresponding to these charged regular black holes. Further, we consider the back-reaction effects of the emitted spin particles from black holes and calculate their corresponding quantum corrections to the radiation spectrum. We find that this radiation spectrum is not purely thermal due to the energy and charge conservation but has some corrections. In the absence of charge, e = 0, our results are consistent with those already present in the literature.
A regular version of Smilansky model
Barseghyan, Diana; Exner, Pavel
2014-04-15
We discuss a modification of Smilansky model in which a singular potential “channel” is replaced by a regular, below unbounded potential which shrinks as it becomes deeper. We demonstrate that, similarly to the original model, such a system exhibits a spectral transition with respect to the coupling constant, and determine the critical value above which a new spectral branch opens. The result is generalized to situations with multiple potential “channels.”.
A regularization approach to hydrofacies delineation
Wohlberg, Brendt; Tartakovsky, Daniel
2009-01-01
We consider an inverse problem of identifying complex internal structures of composite (geological) materials from sparse measurements of system parameters and system states. Two conceptual frameworks for identifying internal boundaries between constitutive materials in a composite are considered. A sequential approach relies on support vector machines, nearest neighbor classifiers, or geostatistics to reconstruct boundaries from measurements of system parameters and then uses system states data to refine the reconstruction. A joint approach inverts the two data sets simultaneously by employing a regularization approach.
Optical tomography by means of regularized MLEM
NASA Astrophysics Data System (ADS)
Majer, Charles L.; Urbanek, Tina; Peter, Jörg
2015-09-01
To solve the inverse problem involved in fluorescence mediated tomography a regularized maximum likelihood expectation maximization (MLEM) reconstruction strategy is proposed. This technique has recently been applied to reconstruct galaxy clusters in astronomy and is adopted here. The MLEM algorithm is implemented as Richardson-Lucy (RL) scheme and includes entropic regularization and a floating default prior. Hence, the strategy is very robust against measurement noise and also avoids converging into noise patterns. Normalized Gaussian filtering with fixed standard deviation is applied for the floating default kernel. The reconstruction strategy is investigated using the XFM-2 homogeneous mouse phantom (Caliper LifeSciences Inc., Hopkinton, MA) with known optical properties. Prior to optical imaging, X-ray CT tomographic data of the phantom were acquire to provide structural context. Phantom inclusions were fit with various fluorochrome inclusions (Cy5.5) for which optical data at 60 projections over 360 degree have been acquired, respectively. Fluorochrome excitation has been accomplished by scanning laser point illumination in transmission mode (laser opposite to camera). Following data acquisition, a 3D triangulated mesh is derived from the reconstructed CT data which is then matched with the various optical projection images through 2D linear interpolation, correlation and Fourier transformation in order to assess translational and rotational deviations between the optical and CT imaging systems. Preliminary results indicate that the proposed regularized MLEM algorithm, when driven with a constant initial condition, yields reconstructed images that tend to be smoother in comparison to classical MLEM without regularization. Once the floating default prior is included this bias was significantly reduced.
Weighted power counting and chiral dimensional regularization
NASA Astrophysics Data System (ADS)
Anselmi, Damiano
2014-06-01
We define a modified dimensional-regularization technique that overcomes several difficulties of the ordinary technique, and is specially designed to work efficiently in chiral and parity violating quantum field theories, in arbitrary dimensions greater than 2. When the dimension of spacetime is continued to complex values, spinors, vectors and tensors keep the components they have in the physical dimension; therefore, the γ matrices are the standard ones. Propagators are regularized with the help of evanescent higher-derivative kinetic terms, which are of the Majorana type in the case of chiral fermions. If the new terms are organized in a clever way, weighted power counting provides an efficient control on the renormalization of the theory, and allows us to show that the resulting chiral dimensional regularization is consistent to all orders. The new technique considerably simplifies the proofs of properties that hold to all orders, and makes them suitable to be generalized to wider classes of models. Typical examples are the renormalizability of chiral gauge theories and the Adler-Bardeen theorem. The difficulty of explicit computations, on the other hand, may increase.
Regularization Parameter Selections via Generalized Information Criterion
Zhang, Yiyun; Li, Runze; Tsai, Chih-Ling
2009-01-01
We apply the nonconcave penalized likelihood approach to obtain variable selections as well as shrinkage estimators. This approach relies heavily on the choice of regularization parameter, which controls the model complexity. In this paper, we propose employing the generalized information criterion (GIC), encompassing the commonly used Akaike information criterion (AIC) and Bayesian information criterion (BIC), for selecting the regularization parameter. Our proposal makes a connection between the classical variable selection criteria and the regularization parameter selections for the nonconcave penalized likelihood approaches. We show that the BIC-type selector enables identification of the true model consistently, and the resulting estimator possesses the oracle property in the terminology of Fan and Li (2001). In contrast, however, the AIC-type selector tends to overfit with positive probability. We further show that the AIC-type selector is asymptotically loss efficient, while the BIC-type selector is not. Our simulation results confirm these theoretical findings, and an empirical example is presented. Some technical proofs are given in the online supplementary material. PMID:20676354
Regularity theory for general stable operators
NASA Astrophysics Data System (ADS)
Ros-Oton, Xavier; Serra, Joaquim
2016-06-01
We establish sharp regularity estimates for solutions to Lu = f in Ω ⊂Rn, L being the generator of any stable and symmetric Lévy process. Such nonlocal operators L depend on a finite measure on S n - 1, called the spectral measure. First, we study the interior regularity of solutions to Lu = f in B1. We prove that if f is Cα then u belong to C α + 2 s whenever α + 2 s is not an integer. In case f ∈L∞, we show that the solution u is C2s when s ≠ 1 / 2, and C 2 s - ɛ for all ɛ > 0 when s = 1 / 2. Then, we study the boundary regularity of solutions to Lu = f in Ω, u = 0 in Rn ∖ Ω, in C 1 , 1 domains Ω. We show that solutions u satisfy u /ds ∈C s - ɛ (Ω ‾) for all ɛ > 0, where d is the distance to ∂Ω. Finally, we show that our results are sharp by constructing two counterexamples.
Automatic detection of regularly repeating vocalizations
NASA Astrophysics Data System (ADS)
Mellinger, David
2005-09-01
Many animal species produce repetitive sounds at regular intervals. This regularity can be used for automatic recognition of the sounds, providing improved detection at a given signal-to-noise ratio. Here, the detection of sperm whale sounds is examined. Sperm whales produce highly repetitive ``regular clicks'' at periods of about 0.2-2 s, and faster click trains in certain behavioral contexts. The following detection procedure was tested: a spectrogram was computed; values within a certain frequency band were summed; time windowing was applied; each windowed segment was autocorrelated; and the maximum of the autocorrelation within a certain periodicity range was chosen. This procedure was tested on sets of recordings containing sperm whale sounds and interfering sounds, both low-frequency recordings from autonomous hydrophones and high-frequency ones from towed hydrophone arrays. An optimization procedure iteratively varies detection parameters (spectrogram frame length and frequency range, window length, periodicity range, etc.). Performance of various sets of parameters was measured by setting a standard level of allowable missed calls, and the resulting optimium parameters are described. Performance is also compared to that of a neural network trained using the data sets. The method is also demonstrated for sounds of blue whales, minke whales, and seismic airguns. [Funding from ONR.
Regularities and symmetries in atomic structure and spectra
NASA Astrophysics Data System (ADS)
Pain, Jean-Christophe
2013-09-01
The use of statistical methods for the description of complex quantum systems was primarily motivated by the failure of a line-by-line interpretation of atomic spectra. Such methods reveal regularities and trends in the distributions of levels and lines. In the past, much attention was paid to the distribution of energy levels (Wigner surmise, random-matrix model…). However, information about the distribution of the lines (energy and strength) is lacking. Thirty years ago, Learner found empirically an unexpected law: the logarithm of the number of lines whose intensities lie between 2kI0 and 2k+1I0, I0 being a reference intensity and k an integer, is a decreasing linear function of k. In the present work, the fractal nature of such an intriguing regularity is outlined and a calculation of its fractal dimension is proposed. Other peculiarities are also presented, such as the fact that the distribution of line strengths follows Benford's law of anomalous numbers, the existence of additional selection rules (PH coupling), the symmetry with respect to a quarter of the subshell in the spin-adapted space (LL coupling) and the odd-even staggering in the distribution of quantum numbers, pointed out by Bauche and Cossé.
Mesoscopic Higher Regularity and Subadditivity in Elliptic Homogenization
NASA Astrophysics Data System (ADS)
Armstrong, Scott; Kuusi, Tuomo; Mourrat, Jean-Christophe
2016-05-01
We introduce a new method for obtaining quantitative results in stochastic homogenization for linear elliptic equations in divergence form. Unlike previous works on the topic, our method does not use concentration inequalities (such as Poincaré or logarithmic Sobolev inequalities in the probability space) and relies instead on a higher (C k , k ≥ 1) regularity theory for solutions of the heterogeneous equation, which is valid on length scales larger than a certain specified mesoscopic scale. This regularity theory, which is of independent interest, allows us to, in effect, localize the dependence of the solutions on the coefficients and thereby accelerate the rate of convergence of the expected energy of the cell problem by a bootstrap argument. The fluctuations of the energy are then tightly controlled using subadditivity. The convergence of the energy gives control of the scaling of the spatial averages of gradients and fluxes (that is, it quantifies the weak convergence of these quantities), which yields, by a new "multiscale" Poincaré inequality, quantitative estimates on the sublinearity of the corrector.
Temporal Prediction in lieu of Periodic Stimulation.
Morillon, Benjamin; Schroeder, Charles E; Wyart, Valentin; Arnal, Luc H
2016-02-24
Predicting not only what will happen, but also when it will happen is extremely helpful for optimizing perception and action. Temporal predictions driven by periodic stimulation increase perceptual sensitivity and reduce response latencies. At the neurophysiological level, a single mechanism has been proposed to mediate this twofold behavioral improvement: the rhythmic entrainment of slow cortical oscillations to the stimulation rate. However, temporal regularities can occur in aperiodic contexts, suggesting that temporal predictions per se may be dissociable from entrainment to periodic sensory streams. We investigated this possibility in two behavioral experiments, asking human participants to detect near-threshold auditory tones embedded in streams whose temporal and spectral properties were manipulated. While our findings confirm that periodic stimulation reduces response latencies, in agreement with the hypothesis of a stimulus-driven entrainment of neural excitability, they further reveal that this motor facilitation can be dissociated from the enhancement of auditory sensitivity. Perceptual sensitivity improvement is unaffected by the nature of temporal regularities (periodic vs aperiodic), but contingent on the co-occurrence of a fulfilled spectral prediction. Altogether, the dissociation between predictability and periodicity demonstrates that distinct mechanisms flexibly and synergistically operate to facilitate perception and action. PMID:26911682
NASA Astrophysics Data System (ADS)
Goehlich, Robert A.; Rücker, Udo
2005-01-01
It is believed that a potential means for further significant reduction of the recurrent launch cost, which results also in a stimulation of launch rates of small satellites, is to make the launcher reusable, to increase its reliability and to make it suitable for new markets such as mass space tourism. Therefore, not only launching small satellites with expendable rockets on non-regular flights but also with reusable rockets on regular flights should be considered for the long term. However, developing, producing and operating reusable rockets require a fundamental change in the current "business as usual" philosophy. Under current conditions, it might not be possible to develop, to produce or to operate a reusable vehicle fleet economically. The favorite philosophy is based on "smart business" processes adapted by the authors using cost engineering techniques. In the following paper, major strategies for reducing costs are discussed, which are applied for a representative program proposal.
Transportation concepts for space industrialization
NASA Technical Reports Server (NTRS)
Murphy, J. T.
1977-01-01
Space shuttle and heavy lift launch vehicle concepts are described with attention to transportation cost trends. Chemical (LOX/LH2), nuclear, and electric propulsion systems are considered. Suggested space shuttle projects include the support of manned geosynchronous missions and the transfer of bulk cargo and large-delicate space structures from fabrication/assembly orbits to their operational locations. It is thought that development of the space shuttle will stimulate interest in space industrialization.
The effect of regularization on the reconstruction of ACAR data
NASA Astrophysics Data System (ADS)
Weber, J. A.; Ceeh, H.; Hugenschmidt, C.; Leitner, M.; Böni, P.
2014-04-01
The Fermi surface, i.e. the two-dimensional surface separating occupied and unoccupied states in k-space, is the defining property of a metal. Full information about its shape is mandatory for identifying nesting vectors or for validating band structure calculations. With the angular correlation of positron-electron annihilation radiation (ACAR) it is easy to get projections of the Fermi surface. Nevertheless it is claimed to be inexact compared to more common methods like the determination based on quantum oscillations or angle-resolved photoemission spectroscopy. In this article we will present a method for reconstructing the Fermi surface from projections with statistically correct data treatment which is able to increase accuracy by introducing different types of regularization.
Chiral Thirring–Wess model with Faddeevian regularization
Rahaman, Anisur
2015-03-15
Replacing vector type of interaction of the Thirring–Wess model by the chiral type a new model is presented which is termed here as chiral Thirring–Wess model. Ambiguity parameters of regularization are so chosen that the model falls into the Faddeevian class. The resulting Faddeevian class of model in general does not possess Lorentz invariance. However we can exploit the arbitrariness admissible in the ambiguity parameters to relate the quantum mechanically generated ambiguity parameters with the classical parameter involved in the masslike term of the gauge field which helps to maintain physical Lorentz invariance instead of the absence of manifestly Lorentz covariance of the model. The phase space structure and the theoretical spectrum of this class of model have been determined through Dirac’s method of quantization of constraint system.
Changes in brain gray matter due to repetitive painful stimulation.
Teutsch, S; Herken, W; Bingel, U; Schoell, E; May, A
2008-08-15
Using functional imaging, we recently investigated how repeated painful stimulation over several days is processed, perceived and modulated in the healthy human brain. Considering that activation-dependent brain plasticity in humans on a structural level has already been demonstrated in adults, we were interested in whether repeated painful stimulation may lead to structural changes of the brain. 14 healthy subjects were stimulated daily with a 20 min pain paradigm for 8 consecutive days, using structural MRI performed on days 1, 8, 22 and again after 1 year. Using voxel based morphometry, we are able to show that repeated painful stimulation resulted in a substantial increase of gray matter in pain transmitting areas, including mid-cingulate and somatosensory cortex. These changes are stimulation dependent, i.e. they recede after the regular nociceptive input is stopped. This data raises some interesting questions regarding structural plasticity of the brain concerning the experience of both acute and chronic pain. PMID:18582579
Analysis of regularized inversion of data corrupted by white Gaussian noise
NASA Astrophysics Data System (ADS)
Kekkonen, Hanne; Lassas, Matti; Siltanen, Samuli
2014-04-01
Tikhonov regularization is studied in the case of linear pseudodifferential operator as the forward map and additive white Gaussian noise as the measurement error. The measurement model for an unknown function u(x) is \\begin{eqnarray*} m(x) = Au(x) + \\delta \\varepsilon (x), \\end{eqnarray*} where δ > 0 is the noise magnitude. If ɛ was an L2-function, Tikhonov regularization gives an estimate \\begin{eqnarray*} T_\\alpha (m) = \\mathop {{arg\\, min}}_{u\\in H^r} \\big \\lbrace \\Vert A u-m\\Vert _{L^2}^2+ \\alpha \\Vert u\\Vert _{H^r}^2 \\big \\rbrace \\end{eqnarray*} for u where α = α(δ) is the regularization parameter. Here penalization of the Sobolev norm \\Vert u\\Vert _{H^r} covers the cases of standard Tikhonov regularization (r = 0) and first derivative penalty (r = 1). Realizations of white Gaussian noise are almost never in L2, but do belong to Hs with probability one if s < 0 is small enough. A modification of Tikhonov regularization theory is presented, covering the case of white Gaussian measurement noise. Furthermore, the convergence of regularized reconstructions to the correct solution as δ → 0 is proven in appropriate function spaces using microlocal analysis. The convergence of the related finite-dimensional problems to the infinite-dimensional problem is also analysed.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Science, Space and Technology.
Views on ways the U.S. tax code might be used to stimulate investment in research and development were presented at this hearing. Witnesses represented industry and universities and included experts on how tax policy impacts scientific research and development. The document contains testimonies and supporting documentation from the following…
Effectiveness of sensory stimulation on tactile extinction.
Nico, D
1999-07-01
Eleven brain-damaged patients with extinction were asked to report double tactile stimuli before, during, and after optokinetic stimulation and transcutaneous electrical stimulation of the posterior neck region. The goal of the study was to test whether tactile extinction is sensitive to these experimental manipulations in order to better understand the nature of the disorder. Both of these sensory stimulations are known to be effective in modulating only higher-order (cognitive) disorders of spatial coding, such as visual hemineglect, deficit of position sense, hemianesthesia, etc. When applied to the side contralateral to the cerebral lesion, both optokinetic and transcutaneous electrical stimulation significantly affected patients' performances, increasing the amount of detections of contralesional double stimuli. A tendency towards worse performance was observed when sensory stimulation was applied to the ipsilesional side. The reported effectiveness in reducing tactile extinction suggests that the deficit can not be fully ascribed to a peripheral sensory disorder and that it reflects damage to a higher-order cognitive function involved in contralesional space representation or in the deployment of attention to that side of space. The nature of the close relationship between extinction and hemineglect is also discussed from the point of view of extinction as a deficit of space coding. PMID:10424416
Keeley, Patrick W.; Reese, Benjamin E.
2014-01-01
Retinal neurons are often arranged as non-random distributions called “mosaics,” as their somata minimize proximity to neighboring cells of the same type. The horizontal cells serve as an example of such a mosaic, but little is known about the developmental mechanisms that underlie their patterning. To identify genes involved in this process, we have used three different spatial statistics to assess the patterning of the horizontal cell mosaic across a panel of genetically distinct recombinant inbred strains. To avoid the confounding effect of cell density, which varies twofold across these different strains, we computed the “real/random regularity ratio,” expressing the regularity of a mosaic relative to a randomly distributed simulation of similarly sized cells. To test whether this latter statistic better reflects the variation in biological processes that contribute to horizontal cell spacing, we subsequently compared the genomic linkage for each of these two traits, the regularity index, and the real/random regularity ratio, each computed from the distribution of nearest neighbor (NN) distances and from the Voronoi domain (VD) areas. Finally, we compared each of these analyses with another index of patterning, the packing factor. Variation in the regularity indexes, as well as their real/random regularity ratios, and the packing factor, mapped quantitative trait loci to the distal ends of Chromosomes 1 and 14. For the NN and VD analyses, we found that the degree of linkage was greater when using the real/random regularity ratio rather than the respective regularity index. Using informatic resources, we narrowed the list of prospective genes positioned at these two intervals to a small collection of six genes that warrant further investigation to determine their potential role in shaping the patterning of the horizontal cell mosaic. PMID:25374512
Park, Taryn M; Haning, William F
2016-07-01
Compared with other illicit substances, stimulants are not commonly used by adolescents; however, they represent a serious concern regarding substance use among youths. This article uses methamphetamine as a model for stimulant use in adolescents; cocaine and prescription stimulants are also mentioned. Methamphetamine use among adolescents and young adults is a serious health concern with potentially long-term physical, cognitive, and psychiatric consequences. Brain development and the effects of misusing stimulants align such that usage in adolescents can more dangerous than during adulthood. It seems helpful to keep in mind the differences between adolescents and young adults when implementing interventions. PMID:27338967
Spectral action with zeta function regularization
NASA Astrophysics Data System (ADS)
Kurkov, Maxim A.; Lizzi, Fedele; Sakellariadou, Mairi; Watcharangkool, Apimook
2015-03-01
In this paper we propose a novel definition of the bosonic spectral action using zeta function regularization, in order to address the issues of renormalizability and spectral dimensions. We compare the zeta spectral action with the usual (cutoff-based) spectral action and discuss its origin and predictive power, stressing the importance of the issue of the three dimensionful fundamental constants, namely the cosmological constant, the Higgs vacuum expectation value, and the gravitational constant. We emphasize the fundamental role of the neutrino Majorana mass term for the structure of the bosonic action.
Multichannel image regularization using anisotropic geodesic filtering
Grazzini, Jacopo A
2010-01-01
This paper extends a recent image-dependent regularization approach introduced in aiming at edge-preserving smoothing. For that purpose, geodesic distances equipped with a Riemannian metric need to be estimated in local neighbourhoods. By deriving an appropriate metric from the gradient structure tensor, the associated geodesic paths are constrained to follow salient features in images. Following, we design a generalized anisotropic geodesic filter; incorporating not only a measure of the edge strength, like in the original method, but also further directional information about the image structures. The proposed filter is particularly efficient at smoothing heterogeneous areas while preserving relevant structures in multichannel images.
Promoting regular physical activity in pulmonary rehabilitation.
Garcia-Aymerich, Judith; Pitta, Fabio
2014-06-01
Patients with chronic respiratory diseases are usually physically inactive, which is an important negative prognostic factor. Therefore, promoting regular physical activity is of key importance in reducing morbidity and mortality and improving the quality of life in this population. A current challenge to pulmonary rehabilitation is the need to develop strategies that induce or facilitate the enhancement of daily levels of physical activity. Because exercise training alone, despite improving exercise capacity, does not consistently generate similar improvements in physical activity in daily life, there is also a need to develop behavioral interventions that help to promote activity. PMID:24874131