Science.gov

Sample records for regulate neural development

  1. Mitochondria: Major Regulators of Neural Development.

    PubMed

    Xavier, Joana M; Rodrigues, Cecília M P; Solá, Susana

    2016-08-01

    Mitochondria are organelles derived from primitive symbiosis between archeon ancestors and prokaryotic α-proteobacteria species, which lost the capacity of synthetizing most proteins encoded the bacterial DNA, along the evolutionary process of eukaryotes. Nowadays, mitochondria are constituted by small circular mitochondrial DNA of 16 kb, responsible for the control of several proteins, including polypeptides of the electron transport chain. Throughout evolution, these organelles acquired the capacity of regulating energy production and metabolism, thus becoming central modulators of cell fate. In fact, mitochondria are crucial for a variety of cellular processes, including adenosine triphosphate production by oxidative phosphorylation, intracellular Ca(2+) homeostasis, generation of reactive oxygen species, and also cellular specialization in a variety of tissues that ultimately relies on specific mitochondrial specialization and maturation. In this review, we discuss recent evidence extending the importance of mitochondrial function and energy metabolism to the context of neuronal development and adult neurogenesis. PMID:25948649

  2. Neurotrophin regulation of neural circuit development and function.

    PubMed

    Park, Hyungju; Poo, Mu-ming

    2013-01-01

    Brain-derived neurotrophic factor (BDNF)--a member of a small family of secreted proteins that includes nerve growth factor, neurotrophin 3 and neurotrophin 4--has emerged as a key regulator of neural circuit development and function. The expression, secretion and actions of BDNF are directly controlled by neural activity, and secreted BDNF is capable of mediating many activity-dependent processes in the mammalian brain, including neuronal differentiation and growth, synapse formation and plasticity, and higher cognitive functions. This Review summarizes some of the recent progress in understanding the cellular and molecular mechanisms underlying neurotrophin regulation of neural circuits. The focus of the article is on BDNF, as this is the most widely expressed and studied neurotrophin in the mammalian brain. PMID:23254191

  3. Genes regulated by Kctd15 in the developing neural crest

    PubMed Central

    Wong, Thomas Chi Bun; Rebbert, Martha; Wang, Chengdong; Chen, Xiongfong; Heffer, Alison; Zarelli, Valeria E.; Dawid, Igor B.; Zhao, Hui

    2016-01-01

    Neural crest (NC) development is controlled precisely by a regulatory network with multiple signaling pathways and the involvement of many genes. The integration and coordination of these factors are still incompletely understood. Overexpression of Wnt3a and the BMP antagonist Chordin in animal cap cells from Xenopus blastulae induces a large number of NC specific genes. We previously suggested that Potassium Channel Tetramerization Domain containing 15 (Kctd15) regulates NC formation by affecting Wnt signaling and the activity of transcription factor AP-2. In order to advance understanding of the function of Kctd15 during NC development, we performed DNA microarray assays in explants injected with Wnt3a and Chordin, and identify genes that are affected by overexpression of Kctd15. Among many genes identified we chose Duf domain containing protein 1(ddcp1), Platelet-Derived Growth Factor Receptor a (pdgfra), Complement factor properdin (cfp), Zinc Finger SWIM-Type Containing 5 (zswim5), and complement component 3 (C3) to examine their expression by whole mount in situ hybridization. Our work points to a possible role for Kctd15 in the regulation of NC formation and other steps in embryonic development. PMID:27389986

  4. Discovery of transcription factors and other candidate regulators of neural crest development

    PubMed Central

    Adams, MS; Gammill, LS; Bronner-Fraser, M

    2011-01-01

    Neural crest cells migrate long distances and form divergent derivatives in vertebrate embryos. Despite previous efforts to identify genes upregulated in neural crest populations, transcription factors have proved to be elusive due to relatively low expression levels and often transient expression. We screened newly induced neural crest cells for early target genes with the aim of identifying transcriptional regulators and other developmentally important genes. This yielded numerous candidate regulators, including fourteen transcription factors, many of which were not previously associated with neural crest development. Quantitative real-time PCR confirmed upregulation of several transcription factors in newly induced neural crest populations in vitro. In a secondary screen by in situ hybridization, we verified the expression of >100 genes in the neural crest. We note that several of the transcription factors and other genes from the screen are expressed in other migratory cell populations and have been implicated in diverse forms of cancer. PMID:18351660

  5. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation

    SciTech Connect

    Wang, Guang; Li, Yan; Wang, Xiao-yu; Han, Zhe; Chuai, Manli; Wang, Li-jing; Ho Lee, Kenneth Ka; Geng, Jian-guo; Yang, Xuesong

    2013-05-01

    Formation of the neural tube is the morphological hallmark for development of the embryonic central nervous system (CNS). Therefore, neural tube development is a crucial step in the neurulation process. Slit/Robo signaling was initially identified as a chemo-repellent that regulated axon growth cone elongation, but its role in controlling neural tube development is currently unknown. To address this issue, we investigated Slit/Robo1 signaling in the development of chick neCollege of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH, UKural tube and transgenic mice over-expressing Slit2. We disrupted Slit/Robo1 signaling by injecting R5 monoclonal antibodies into HH10 neural tubes to block the Robo1 receptor. This inhibited the normal development of the ventral body curvature and caused the spinal cord to curl up into a S-shape. Next, Slit/Robo1 signaling on one half-side of the chick embryo neural tube was disturbed by electroporation in ovo. We found that the morphology of the neural tube was dramatically abnormal after we interfered with Slit/Robo1 signaling. Furthermore, we established that silencing Robo1 inhibited cell proliferation while over-expressing Robo1 enhanced cell proliferation. We also investigated the effects of altering Slit/Robo1 expression on Sonic Hedgehog (Shh) and Pax7 expression in the developing neural tube. We demonstrated that over-expressing Robo1 down-regulated Shh expression in the ventral neural tube and resulted in the production of fewer HNK-1{sup +} migrating neural crest cells (NCCs). In addition, Robo1 over-expression enhanced Pax7 expression in the dorsal neural tube and increased the number of Slug{sup +} pre-migratory NCCs. Conversely, silencing Robo1 expression resulted in an enhanced Shh expression and more HNK-1{sup +} migrating NCCs but reduced Pax7 expression and fewer Slug{sup +} pre-migratory NCCs were observed. In conclusion, we propose that Slit/Robo1 signaling is involved in regulating neural tube

  6. Hnrpab regulates neural development and neuron cell survival after glutamate stimulation

    PubMed Central

    Sinnamon, John R.; Waddell, Catherine B.; Nik, Sara; Chen, Emily I.; Czaplinski, Kevin

    2012-01-01

    The molecular mechanisms that govern the timing and fate of neural stem-cell differentiation toward the distinct neural lineages of the nervous system are not well defined. The contribution of post-transcriptional regulation of gene expression to neural stem-cell maintenance and differentiation, in particular, remains inadequately characterized. The RNA-binding protein Hnrpab is highly expressed in developing nervous tissue and in neurogenic regions of the adult brain, but its role in neural development and function is unknown. We raised a mouse that lacks Hnrpab expression to define what role, if any, Hnrpab plays during mouse neural development. We performed a genome-wide quantitative analysis of protein expression within the hippocampus of newborn mice to demonstrate significantly altered gene expression in mice lacking Hnrpab relative to Hnrpab-expressing littermates. The proteins affected suggested an altered pattern of neural development and also unexpectedly indicated altered glutamate signaling. We demonstrate that Hnrpab−/− neural stem and progenitor cells undergo altered differentiation patterns in culture, and mature Hnrpab−/− neurons demonstrate increased sensitivity to glutamate-induced excitotoxicity. We also demonstrate that Hnrpab nucleocytoplasmic distribution in primary neurons is regulated by developmental stage. PMID:22332140

  7. Mesodermal expression of integrin α5β1 regulates neural crest development and cardiovascular morphogenesis

    PubMed Central

    Liang, Dong; Wang, Xia; Mittal, Ashok; Dhiman, Sonam; Hou, Shuan-Yu; Degenhardt, Karl; Astrof, Sophie

    2014-01-01

    Integrin α5-null embryos die in mid-gestation from severe defects in cardiovascular morphogenesis, which stem from defective development of the neural crest, heart and vasculature. To investigate the role of integrin α5β1 in cardiovascular development, we used the Mesp1Cre knock-in strain of mice to ablate integrin α5 in the anterior mesoderm, which gives rise to all of the cardiac and many of the vascular and muscle lineages in the anterior portion of the embryo. Surprisingly, we found that mutant embryos displayed numerous defects related to the abnormal development of the neural crest such as cleft palate, ventricular septal defect, abnormal development of hypoglossal nerves, and defective remodeling of the aortic arch arteries. We found that defects in arch artery remodeling stem from the role of mesodermal integrin α5β1 in neural crest proliferation and differentiation into vascular smooth muscle cells, while proliferation of pharyngeal mesoderm and differentiation of mesodermal derivatives into vascular smooth muscle cells was not defective. Taken together our studies demonstrate a requisite role for mesodermal integrin α5β1 in signaling between the mesoderm and the neural crest, thereby regulating neural crest-dependent morphogenesis of essential embryonic structures. PMID:25242040

  8. Amigo Adhesion Protein Regulates Development of Neural Circuits in Zebrafish Brain*

    PubMed Central

    Zhao, Xiang; Kuja-Panula, Juha; Sundvik, Maria; Chen, Yu-Chia; Aho, Vilma; Peltola, Marjaana A.; Porkka-Heiskanen, Tarja; Panula, Pertti; Rauvala, Heikki

    2014-01-01

    The Amigo protein family consists of three transmembrane proteins characterized by six leucine-rich repeat domains and one immunoglobulin-like domain in their extracellular moieties. Previous in vitro studies have suggested a role as homophilic adhesion molecules in brain neurons, but the in vivo functions remain unknown. Here we have cloned all three zebrafish amigos and show that amigo1 is the predominant family member expressed during nervous system development in zebrafish. Knockdown of amigo1 expression using morpholino oligonucleotides impairs the formation of fasciculated tracts in early fiber scaffolds of brain. A similar defect in fiber tract development is caused by mRNA-mediated expression of the Amigo1 ectodomain that inhibits adhesion mediated by the full-length protein. Analysis of differentiated neural circuits reveals defects in the catecholaminergic system. At the behavioral level, the disturbed formation of neural circuitry is reflected in enhanced locomotor activity and in the inability of the larvae to perform normal escape responses. We suggest that Amigo1 is essential for the development of neural circuits of zebrafish, where its mechanism involves homophilic interactions within the developing fiber tracts and regulation of the Kv2.1 potassium channel to form functional neural circuitry that controls locomotion. PMID:24904058

  9. Regulation of Patched by Sonic Hedgehog in the Developing Neural Tube

    NASA Astrophysics Data System (ADS)

    Marigo, Valeria; Tabin, Clifford J.

    1996-09-01

    Ventral cell fates in the central nervous system are induced by Sonic hedgehog, a homolog of hedgehog, a secreted Drosophila protein. In the central nervous system, Sonic hedgehog has been identified as the signal inducing floor plate, motor neurons, and dopaminergic neurons. Sonic hedgehog is also involved in the induction of ventral cell type in the developing somites. ptc is a key gene in the Drosophila hedgehog signaling pathway where it is involved in transducing the hedgehog signal and is also a transcriptional target of the signal. PTC, a vertebrate homolog of this Drosophila gene, is genetically downstream of Sonic hedgehog (Shh) in the limb bud. We analyze PTC expression during chicken neural and somite development and find it expressed in all regions of these tissues known to be responsive to Sonic hedgehog signal. As in the limb bud, ectopic expression of Sonic hedgehog leads to ectopic induction of PTC in the neural tube and paraxial mesoderm. This conservation of regulation allows us to use PTC as a marker for Sonic hedgehog response. The pattern of PTC expression suggests that Sonic hedgehog may play an inductive role in more dorsal regions of the neural tube than have been previously demonstrated. Examination of the pattern of PTC expression also suggests that PTC may act in a negative feedback loop to attenuate hedgehog signaling.

  10. CBP regulates the differentiation of interneurons from ventral forebrain neural precursors during murine development.

    PubMed

    Tsui, David; Voronova, Anastassia; Gallagher, Denis; Kaplan, David R; Miller, Freda D; Wang, Jing

    2014-01-15

    The mechanisms that regulate appropriate genesis and differentiation of interneurons in the developing mammalian brain are of significant interest not only because interneurons play key roles in the establishment of neural circuitry, but also because when they are deficient, this can cause epilepsy. In this regard, one genetic syndrome that is associated with deficits in neural development and epilepsy is Rubinstein-Taybi Syndrome (RTS), where the transcriptional activator and histone acetyltransferase CBP is mutated and haploinsufficient. Here, we have asked whether CBP is necessary for the appropriate genesis and differentiation of interneurons in the murine forebrain, since this could provide an explanation for the epilepsy that is associated with RTS. We show that CBP is expressed in neural precursors within the embryonic medial ganglionic eminence (MGE), an area that generates the vast majority of interneurons for the cortex. Using primary cultures of MGE precursors, we show that knockdown of CBP causes deficits in differentiation of these precursors into interneurons and oligodendrocytes, and that overexpression of CBP is by itself sufficient to enhance interneuron genesis. Moreover, we show that levels of the neurotransmitter synthesis enzyme GAD67, which is expressed in inhibitory interneurons, are decreased in the dorsal and ventral forebrain of neonatal CBP(+/-) mice, indicating that CBP plays a role in regulating interneuron development in vivo. Thus, CBP normally acts to ensure the differentiation of appropriate numbers of forebrain interneurons, and when its levels are decreased, this causes deficits in interneuron development, providing a potential explanation for the epilepsy seen in individuals with RTS. PMID:24247009

  11. Epigenetic regulation of the neural transcriptome and alcohol interference during development

    PubMed Central

    Resendiz, Marisol; Mason, Stephen; Lo, Chiao-Ling; Zhou, Feng C.

    2014-01-01

    Alcohol intoxicated cells broadly alter their metabolites – among them methyl and acetic acid can alter the DNA and histone epigenetic codes. Together with the promiscuous effect of alcohol on enzyme activities (including DNA methyltransferases) and the downstream effect on microRNA and transposable elements, alcohol is well placed to affect intrinsic transcriptional programs of developing cells. Considering that the developmental consequences of early alcohol exposure so profoundly affect neural systems, it is not unfounded to reason that alcohol exploits transcriptional regulators to challenge canonical gene expression and in effect, intrinsic developmental pathways to achieve widespread damage in the developing nervous system. To fully evaluate the role of epigenetic regulation in alcohol-related developmental disease, it is important to first gather the targets of epigenetic players in neurodevelopmental models. Here, we attempt to review the cellular and genomic windows of opportunity for alcohol to act on intrinsic neurodevelopmental programs. We also discuss some established targets of fetal alcohol exposure and propose pathways for future study. Overall, this review hopes to illustrate the known epigenetic program and its alterations in normal neural stem cell development and further, aims to depict how alcohol, through neuroepigenetics, may lead to neurodevelopmental deficits observed in fetal alcohol spectrum disorders. PMID:25206361

  12. Zebrafish heart development is regulated via glutaredoxin 2 dependent migration and survival of neural crest cells

    PubMed Central

    Berndt, Carsten; Poschmann, Gereon; Stühler, Kai; Holmgren, Arne; Bräutigam, Lars

    2014-01-01

    Glutaredoxin 2 is a vertebrate specific oxidoreductase of the thioredoxin family of proteins modulating the intracellular thiol pool. Thereby, glutaredoxin 2 is important for specific redox signaling and regulates embryonic development of brain and vasculature via reversible oxidative posttranslational thiol modifications. Here, we describe that glutaredoxin 2 is also required for successful heart formation. Knock-down of glutaredoxin 2 in zebrafish embryos inhibits the invasion of cardiac neural crest cells into the primary heart field. This leads to impaired heart looping and subsequent obstructed blood flow. Glutaredoxin 2 specificity of the observed phenotype was confirmed by rescue experiments. Active site variants of glutaredoxin 2 revealed that the (de)-glutathionylation activity is required for proper heart formation. Our data suggest that actin might be one target during glutaredoxin 2 regulated cardiac neural crest cell migration and embryonic heart development. In summary, this work represents further evidence for the general importance of redox signaling in embryonic development and highlights additionally the importance of glutaredoxin 2 during embryogenesis. PMID:24944912

  13. Jarid1b targets genes regulating development and is involved in neural differentiation

    PubMed Central

    Schmitz, Sandra U; Albert, Mareike; Malatesta, Martina; Morey, Lluis; Johansen, Jens V; Bak, Mads; Tommerup, Niels; Abarrategui, Iratxe; Helin, Kristian

    2011-01-01

    H3K4 methylation is associated with active transcription and in combination with H3K27me3 thought to keep genes regulating development in a poised state. The contribution of enzymes regulating trimethylation of lysine 4 at histone 3 (H3K4me3) levels to embryonic stem cell (ESC) self-renewal and differentiation is just starting to emerge. Here, we show that the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) is dispensable for ESC self-renewal, but essential for ESC differentiation along the neural lineage. By genome-wide location analysis, we demonstrate that Jarid1b localizes predominantly to transcription start sites of genes encoding developmental regulators, of which more than half are also bound by Polycomb group proteins. Virtually all Jarid1b target genes are associated with H3K4me3 and depletion of Jarid1b in ESCs leads to a global increase of H3K4me3 levels. During neural differentiation, Jarid1b-depleted ESCs fail to efficiently silence lineage-inappropriate genes, specifically stem and germ cell genes. Our results delineate an essential role for Jarid1b-mediated transcriptional control during ESC differentiation. PMID:22020125

  14. Identification of novel Hoxa1 downstream targets regulating hindbrain, neural crest and inner ear development

    PubMed Central

    Makki, Nadja; Capecchi, Mario R.

    2011-01-01

    Hoxgenes play a crucial role during embryonic patterning and organogenesis. Of the 39 Hox genes, Hoxa1 is the first to be expressed during embryogenesis and the only anterior Hox gene linked to a human syndrome. Hoxa1 is necessary for proper development of the brainstem, inner ear and heart in humans and mice; however, almost nothing is known about the molecular downstream targets through which it exerts its function. To gain insight into the transcriptional network regulated by this protein, we performed microarray analysis on tissue microdissected from the prospective rhombomere 3–5 region of Hoxa1 null and wild type embryos. Due to the very early and transient expression of this gene, dissections were performed on early somite stage embryos during an eight-hour time window of development. Our array yielded a list of around 300 genes differentially expressed between the two samples. Many of the identified genes play a role in a specific developmental or cellular process. Some of the validated targets regulate early neural crest induction and specification. Interestingly, three of these genes, Zic1, Hnf1b and Foxd3, were down-regulated in the posterior hindbrain, where cardiac neural crest cells arise, which pattern the outflow tract of the heart. Other targets are necessary for early inner ear development, e.g. Pax8 and Fgfr3 or are expressed in specific hindbrain neurons regulating respiration, e.g. Lhx5. These findings allow us to propose a model where Hoxa1 acts in a genetic cascade upstream of genes controlling specific aspects of embryonic development, thereby providing insight into possible mechanisms underlying the human HoxA1-syndrome. PMID:21784065

  15. Endocytic recycling protein EHD1 regulates primary cilia morphogenesis and SHH signaling during neural tube development

    PubMed Central

    Bhattacharyya, Sohinee; Rainey, Mark A; Arya, Priyanka; Dutta, Samikshan; George, Manju; Storck, Matthew D.; McComb, Rodney D.; Muirhead, David; Todd, Gordon L.; Gould, Karen; Datta, Kaustubh; Waes, Janee Gelineau-van; Band, Vimla; Band, Hamid

    2016-01-01

    Members of the four-member C-terminal EPS15-Homology Domain-containing (EHD) protein family play crucial roles in endocytic recycling of cell surface receptors from endosomes to the plasma membrane. In this study, we show that Ehd1 gene knockout in mice on a predominantly B6 background is embryonic lethal. Ehd1-null embryos die at mid-gestation with a failure to complete key developmental processes including neural tube closure, axial turning and patterning of the neural tube. We found that Ehd1-null embryos display short and stubby cilia on the developing neuroepithelium at embryonic day 9.5 (E9.5). Loss of EHD1 also deregulates the ciliary SHH signaling with Ehd1-null embryos displaying features indicative of increased SHH signaling, including a significant downregulation in the formation of the GLI3 repressor and increase in the ventral neuronal markers specified by SHH. Using Ehd1-null MEFS we found that EHD1 protein co-localizes with the SHH receptor Smoothened in the primary cilia upon ligand stimulation. Under the same conditions, EHD1 was shown to co-traffic with Smoothened into the developing primary cilia and we identify EHD1 as a direct binding partner of Smoothened. Overall, our studies identify the endocytic recycling regulator EHD1 as a novel regulator of the primary cilium-associated trafficking of Smoothened and Hedgehog signaling. PMID:26884322

  16. Validation and regulation of medical neural networks.

    PubMed

    Rodvold, D M

    2001-01-01

    Using artificial neural networks (ANNs) in medical applications can be challenging because of the often-experimental nature of ANN construction and the "black box" label that is frequently attached to them. In the US, medical neural networks are regulated by the Food and Drug Administration. This article briefly discusses the documented FDA policy on neural networks and the various levels of formal acceptance that neural network development groups might pursue. To assist medical neural network developers in creating robust and verifiable software, this paper provides a development process model targeted specifically to ANNs for critical applications. PMID:11790274

  17. miR-430 regulates oriented cell division during neural tube development in zebrafish.

    PubMed

    Takacs, Carter M; Giraldez, Antonio J

    2016-01-15

    MicroRNAs have emerged as critical regulators of gene expression. Originally shown to regulate developmental timing, microRNAs have since been implicated in a wide range of cellular functions including cell identity, migration and signaling. miRNA-430, the earliest expressed microRNA during zebrafish embryogenesis, is required to undergo morphogenesis and has previously been shown to regulate maternal mRNA clearance, Nodal signaling, and germ cell migration. The functions of miR-430 in brain morphogenesis, however, remain unclear. Herein we find that miR-430 instructs oriented cell divisions in the neural rod required for neural midline formation. Loss of miR-430 function results in mitotic spindle misorientation in the neural rod, failed neuroepithelial integration after cell division, and ectopic cell accumulation in the dorsal neural tube. We propose that miR-430, independently of canonical apicobasal and planar cell polarity (PCP) pathways, coordinates the stereotypical cell divisions that instruct neural tube morphogenesis. PMID:26658217

  18. Snail Coordinately Regulates Downstream Pathways to Control Multiple Aspects of Mammalian Neural Precursor Development

    PubMed Central

    Zander, Mark A.; Burns, Sarah E.; Yang, Guang; Kaplan, David R.

    2014-01-01

    The Snail transcription factor plays a key role in regulating diverse developmental processes but is not thought to play a role in mammalian neural precursors. Here, we have examined radial glial precursor cells of the embryonic murine cortex and demonstrate that Snail regulates their survival, self-renewal, and differentiation into intermediate progenitors and neurons via two distinct and separable target pathways. First, Snail promotes cell survival by antagonizing a p53-dependent death pathway because coincident p53 knockdown rescues survival deficits caused by Snail knockdown. Second, we show that the cell cycle phosphatase Cdc25b is regulated by Snail in radial precursors and that Cdc25b coexpression is sufficient to rescue the decreased radial precursor proliferation and differentiation observed upon Snail knockdown. Thus, Snail acts via p53 and Cdc25b to coordinately regulate multiple aspects of mammalian embryonic neural precursor biology. PMID:24719096

  19. Receptor Tyrosine Kinase Signaling: Regulating Neural Crest Development One Phosphate at a Time

    PubMed Central

    Fantauzzo, Katherine A.; Soriano, Philippe

    2015-01-01

    Receptor tyrosine kinases (RTKs) bind to a subset of growth factors on the surface of cells and elicit responses with broad roles in developmental and postnatal cellular processes. Receptors in this subclass consist of an extracellular ligand-binding domain, a single transmembrane domain, and an intracellular domain harboring a catalytic tyrosine kinase and regulatory sequences that are phosphorylated either by the receptor itself or various interacting proteins. Once activated, RTKs bind signaling molecules and recruit effector proteins to mediate downstream cellular responses through various intracellular signaling pathways. In this chapter, we will highlight the role of a subset of RTK families in regulating the activity of neural crest cells (NCCs) and the development of their derivatives in mammalian systems. NCCs are migratory, multipotent cells that can be subdivided into four axial populations, cranial, cardiac, vagal and trunk. These cells migrate throughout the vertebrate embryo along defined pathways and give rise to unique cell types and structures. Interestingly, individual RTK families often have specific functions in a subpopulation of NCCs that contribute to the diversity of these cells and their derivatives in the mammalian embryo. We will additionally discuss current methods used to investigate RTK signaling, including genetic, biochemical, large-scale proteomic and biosensor approaches, which can be applied to study intracellular signaling pathways active downstream of this receptor subclass during NCC development. PMID:25662260

  20. Epigenetic regulation of early neural fate commitment.

    PubMed

    Qiao, Yunbo; Yang, Xianfa; Jing, Naihe

    2016-04-01

    Early neural fate commitment is a key process in neural development and establishment of the central nervous system, and this process is tightly controlled by extrinsic signals, intrinsic factors, and epigenetic regulation. Here, we summarize the main findings regarding the regulatory network of epigenetic mechanisms that play important roles during early neural fate determination and embryonic development, including histone modifications, chromatin remodeling, DNA modifications, and RNA-level regulation. These regulatory mechanisms coordinate to play essential roles in silencing of pluripotency genes and activating key neurodevelopmental genes during cell fate commitment at DNA, histone, chromatin, and RNA levels. Moreover, we discuss the relationship between epigenetic regulation, signaling pathways, and intrinsic factors during early neural fate specification. PMID:26801220

  1. Role of Neurotrophins in the Development and Function of Neural Circuits that Regulate Energy Homeostasis

    PubMed Central

    Fargali, Samira; Sadahiro, Masato; Jiang, Cheng; Frick, Amy L.; Indall, Tricia; Cogliani, Valeria; Welagen, Jelle; Lin, Wei-jye; Salton, Stephen R.

    2012-01-01

    Members of the neurotrophin family, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5), and other neurotrophic growth factors such as ciliary neurotrophic factor (CNTF) and artemin, regulate peripheral and central nervous system development and function. A subset of the neurotrophin-dependent pathways in the hypothalamus, brainstem, and spinal cord, and those that project via the sympathetic nervous system to peripheral metabolic tissues including brown and white adipose tissue (BAT and WAT), muscle and liver, regulate feeding, energy storage, and energy expenditure. We briefly review the role that neurotrophic growth factors play in energy balance, as regulators of neuronal survival and differentiation, neurogenesis, and circuit formation and function, and as inducers of critical gene products that control energy homeostasis. PMID:22581449

  2. Temporal coherency between receptor expression, neural activity and AP-1-dependent transcription regulates Drosophila motoneuron dendrite development

    PubMed Central

    Vonhoff, Fernando; Kuehn, Claudia; Blumenstock, Sonja; Sanyal, Subhabrata; Duch, Carsten

    2013-01-01

    Neural activity has profound effects on the development of dendritic structure. Mechanisms that link neural activity to nuclear gene expression include activity-regulated factors, such as CREB, Crest or Mef2, as well as activity-regulated immediate-early genes, such as fos and jun. This study investigates the role of the transcriptional regulator AP-1, a Fos-Jun heterodimer, in activity-dependent dendritic structure development. We combine genetic manipulation, imaging and quantitative dendritic architecture analysis in a Drosophila single neuron model, the individually identified motoneuron MN5. First, Dα7 nicotinic acetylcholine receptors (nAChRs) and AP-1 are required for normal MN5 dendritic growth. Second, AP-1 functions downstream of activity during MN5 dendritic growth. Third, using a newly engineered AP-1 reporter we demonstrate that AP-1 transcriptional activity is downstream of Dα7 nAChRs and Calcium/calmodulin-dependent protein kinase II (CaMKII) signaling. Fourth, AP-1 can have opposite effects on dendritic development, depending on the timing of activation. Enhancing excitability or AP-1 activity after MN5 cholinergic synapses and primary dendrites have formed causes dendritic branching, whereas premature AP-1 expression or induced activity prior to excitatory synapse formation disrupts dendritic growth. Finally, AP-1 transcriptional activity and dendritic growth are affected by MN5 firing only during development but not in the adult. Our results highlight the importance of timing in the growth and plasticity of neuronal dendrites by defining a developmental period of activity-dependent AP-1 induction that is temporally locked to cholinergic synapse formation and dendritic refinement, thus significantly refining prior models derived from chronic expression studies. PMID:23293292

  3. MiRNA-128 regulates the proliferation and neurogenesis of neural precursors by targeting PCM1 in the developing cortex

    PubMed Central

    Zhang, Wei; Kim, Paul Jong; Chen, Zhongcan; Lokman, Hidayat; Qiu, Lifeng; Zhang, Ke; Rozen, Steven George; Tan, Eng King; Je, Hyunsoo Shawn; Zeng, Li

    2016-01-01

    During the development, tight regulation of the expansion of neural progenitor cells (NPCs) and their differentiation into neurons is crucial for normal cortical formation and function. In this study, we demonstrate that microRNA (miR)-128 regulates the proliferation and differentiation of NPCs by repressing pericentriolar material 1 (PCM1). Specifically, overexpression of miR-128 reduced NPC proliferation but promoted NPC differentiation into neurons both in vivo and in vitro. In contrast, the reduction of endogenous miR-128 elicited the opposite effects. Overexpression of miR-128 suppressed the translation of PCM1, and knockdown of endogenous PCM1 phenocopied the observed effects of miR-128 overexpression. Furthermore, concomitant overexpression of PCM1 and miR-128 in NPCs rescued the phenotype associated with miR-128 overexpression, enhancing neurogenesis but inhibiting proliferation, both in vitro and in utero. Taken together, these results demonstrate a novel mechanism by which miR-128 regulates the proliferation and differentiation of NPCs in the developing neocortex. DOI: http://dx.doi.org/10.7554/eLife.11324.001 PMID:26883496

  4. Neural Regulation of Mucosal Function

    PubMed Central

    Baraniuk, James N.

    2009-01-01

    Nociceptive, parasympathetic and sympathetic nerves play critical roles in regulating glandular, vascular and other processes in airway mucosa. These functions are vital for cleaning and humidifying ambient air before it is inhaled into the lungs. Recent identification of subsets of nociceptive nerves has tipped the donkey cart of dogma and led to the discovery of new receptor and ion channel families that respond to culinary odorants (“aromatherapy”), inhaled irritants, temperature and other “humors”; a new interpretation of airway nociceptive nerve axon responses; and an understanding of the neural plasticity induced by inflammation and different neurotrophic factors. PMID:17707667

  5. S-phase duration is the main target of cell cycle regulation in neural progenitors of developing ferret neocortex.

    PubMed

    Turrero García, Miguel; Chang, YoonJeung; Arai, Yoko; Huttner, Wieland B

    2016-02-15

    The evolutionary expansion of the neocortex primarily reflects increases in abundance and proliferative capacity of cortical progenitors and in the length of the neurogenic period during development. Cell cycle parameters of neocortical progenitors are an important determinant of cortical development. The ferret (Mustela putorius furo), a gyrencephalic mammal, has gained increasing importance as a model for studying corticogenesis. Here, we have studied the abundance, proliferation, and cell cycle parameters of different neural progenitor types, defined by their differential expression of the transcription factors Pax6 and Tbr2, in the various germinal zones of developing ferret neocortex. We focused our analyses on postnatal day 1, a late stage of cortical neurogenesis when upper-layer neurons are produced. Based on cumulative 5-ethynyl-2'-deoxyuridine (EdU) labeling as well as Ki67 and proliferating cell nuclear antigen (PCNA) immunofluorescence, we determined the duration of the various cell cycle phases of the different neocortical progenitor subpopulations. Ferret neocortical progenitors were found to exhibit longer cell cycles than those of rodents and little variation in the duration of G1 among distinct progenitor types, also in contrast to rodents. Remarkably, the main difference in cell cycle parameters among the various progenitor types was the duration of S-phase, which became shorter as progenitors progressively changed transcription factor expression from patterns characteristic of self-renewal to those of neuron production. Hence, S-phase duration emerges as major target of cell cycle regulation in cortical progenitors of this gyrencephalic mammal. PMID:25963823

  6. prdm1a regulates sox10 and islet1 in the development of neural crest and Rohon-Beard sensory neurons

    PubMed Central

    Olesnicky, Eugenia; Hernandez-Lagunas, Laura; Artinger, Kristin Bruk

    2010-01-01

    Summary The PR domain containing 1a, with ZNF domain factor, gene (prdm1a) plays an integral role in the development of a number of different cell types during vertebrate embryogenesis, including neural crest cells, Rohon-Beard (RB) sensory neurons and the cranial neural crest-derived craniofacial skeletal elements. To better understand how Prdm1a regulates the development of various cell types in zebrafish, we performed a microarray analysis comparing wild type and prdm1a mutant embryos and identified a number of genes with altered expression in the absence of prdm1a. Rescue analysis determined that two of these, sox10 and islet1, lie downstream of Prdm1a in the development of neural crest cells and Rohon-Beard neurons, respectively. In addition, we identified a number of other novel downstream targets of Prdm1a that may be important for the development of diverse tissues during zebrafish embryogenesis. PMID:20836130

  7. Neural circuits: Interacting interneurons regulate fear learning.

    PubMed

    Ozawa, Takaaki; Johansen, Joshua P

    2014-08-01

    A recent study has found that, during associative fear learning, different sensory stimuli activate subsets of inhibitory interneurons in distinct ways to dynamically regulate glutamatergic neural activity and behavioral memory formation. PMID:25093560

  8. PAX transcription factors in neural crest development.

    PubMed

    Monsoro-Burq, Anne H

    2015-08-01

    The nine vertebrate PAX transcription factors (PAX1-PAX9) play essential roles during early development and organogenesis. Pax genes were identified in vertebrates using their homology with the Drosophila melanogaster paired gene DNA-binding domain. PAX1-9 functions are largely conserved throughout vertebrate evolution, in particular during central nervous system and neural crest development. The neural crest is a vertebrate invention, which gives rise to numerous derivatives during organogenesis, including neurons and glia of the peripheral nervous system, craniofacial skeleton and mesenchyme, the heart outflow tract, endocrine and pigment cells. Human and mouse spontaneous mutations as well as experimental analyses have evidenced the critical and diverse functions of PAX factors during neural crest development. Recent studies have highlighted the role of PAX3 and PAX7 in neural crest induction. Additionally, several PAX proteins - PAX1, 3, 7, 9 - regulate cell proliferation, migration and determination in multiple neural crest-derived lineages, such as cardiac, sensory, and enteric neural crest, pigment cells, glia, craniofacial skeleton and teeth, or in organs developing in close relationship with the neural crest such as the thymus and parathyroids. The diverse PAX molecular functions during neural crest formation rely on fine-tuned modulations of their transcriptional transactivation properties. These modulations are generated by multiple means, such as different roles for the various isoforms (formed by alternative splicing), or posttranslational modifications which alter protein-DNA binding, or carefully orchestrated protein-protein interactions with various co-factors which control PAX proteins activity. Understanding these regulations is the key to decipher the versatile roles of PAX transcription factors in neural crest development, differentiation and disease. PMID:26410165

  9. Neural network regulation driven by autonomous neural firings

    NASA Astrophysics Data System (ADS)

    Cho, Myoung Won

    2016-07-01

    Biological neurons naturally fire spontaneously due to the existence of a noisy current. Such autonomous firings may provide a driving force for network formation because synaptic connections can be modified due to neural firings. Here, we study the effect of autonomous firings on network formation. For the temporally asymmetric Hebbian learning, bidirectional connections lose their balance easily and become unidirectional ones. Defining the difference between reciprocal connections as new variables, we could express the learning dynamics as if Ising model spins interact with each other in magnetism. We present a theoretical method to estimate the interaction between the new variables in a neural system. We apply the method to some network systems and find some tendencies of autonomous neural network regulation.

  10. A Nonsynonymous Mutation in the Transcriptional Regulator lbh Is Associated with Cichlid Craniofacial Adaptation and Neural Crest Cell Development

    PubMed Central

    Powder, Kara E.; Cousin, Hélène; McLinden, Gretchen P.; Craig Albertson, R.

    2014-01-01

    Since the time of Darwin, biologists have sought to understand the origins and maintenance of life’s diversity of form. However, the nature of the exact DNA mutations and molecular mechanisms that result in morphological differences between species remains unclear. Here, we characterize a nonsynonymous mutation in a transcriptional coactivator, limb bud and heart homolog (lbh), which is associated with adaptive variation in the lower jaw of cichlid fishes. Using both zebrafish and Xenopus, we demonstrate that lbh mediates migration of cranial neural crest cells, the cellular source of the craniofacial skeleton. A single amino acid change that is alternatively fixed in cichlids with differing facial morphologies results in discrete shifts in migration patterns of this multipotent cell type that are consistent with both embryological and adult craniofacial phenotypes. Among animals, this polymorphism in lbh represents a rare example of a coding change that is associated with continuous morphological variation. This work offers novel insights into the development and evolution of the craniofacial skeleton, underscores the evolutionary potential of neural crest cells, and extends our understanding of the genetic nature of mutations that underlie divergence in complex phenotypes. PMID:25234704

  11. Neural regulation of hematopoiesis, inflammation and cancer

    PubMed Central

    Hanoun, Maher; Maryanovich, Maria; Arnal-Estapé, Anna; Frenette, Paul S.

    2015-01-01

    Although the function of the autonomic nervous system (ANS) in mediating the “flight-or-fight” response was recognized decades ago, the crucial role of peripheral innervation in regulating cell behavior and response to the microenvironment has only recently emerged. In the hematopoietic system, the ANS regulates stem cell niche homeostasis, regeneration and fine-tunes the inflammatory response. Additionally, emerging data suggest that cancer cells take advantage of innervating neural circuitry to promote their progression. These new discoveries outline the need to redesign therapeutic strategies to target this underappreciated stromal constituent. Here, we review the importance of neural signaling in hematopoietic homeostasis, inflammation and cancer. PMID:25905810

  12. Regulation of cell surface protease matriptase by HAI2 is essential for placental development, neural tube closure and embryonic survival in mice

    PubMed Central

    Szabo, Roman; Hobson, John P.; Christoph, Kristina; Kosa, Peter; List, Karin; Bugge, Thomas H.

    2009-01-01

    Summary Hypomorphic mutations in the human SPINT2 gene cause a broad spectrum of abnormalities in organogenesis, including organ and digit duplications, atresia, fistulas, hypertelorism, cleft palate and hamartoma. SPINT2 encodes the transmembrane serine protease inhibitor HAI2 (placental bikunin), and the severe developmental effects of decreased HAI2 activity can be hypothesized to be a consequence of excess pericellular proteolytic activity. Indeed, we show here that HAI2 is a potent regulator of protease-guided cellular responses, including motogenic activity and transepithelial resistance of epithelial monolayers. Furthermore, we show that inhibition of the transmembrane serine protease matriptase (encoded by St14) is an essential function of HAI2 during tissue morphogenesis. Genetic inactivation of the mouse Spint2 gene led to defects in neural tube closure, abnormal placental labyrinth development associated with loss of epithelial cell polarity, and embryonic demise. Developmental defects observed in HAI2-deficient mice were caused by unregulated matriptase activity, as both placental development and embryonic survival in HAI2-deficient embryos were completely restored by the simultaneous genetic inactivation of matriptase. However, neural tube defects were detected in HAI2-deficient mice even in the absence of matriptase, although at lower frequency, indicating that the inhibition of additional serine protease(s) by HAI2 is required to complete neural development. Finally, by genetic complementation analysis, we uncovered a unique and complex functional interaction between HAI2 and the related HAI1 in the regulation of matriptase activity during development. This study indicates that unregulated matriptase-dependent cell surface proteolysis can cause a diverse array of abnormalities in mammalian development. PMID:19592578

  13. NKCC1 knockdown decreases neuron production through GABA(A)-regulated neural progenitor proliferation and delays dendrite development.

    PubMed

    Young, Stephanie Z; Taylor, M Morgan; Wu, Sharon; Ikeda-Matsuo, Yuri; Kubera, Cathryn; Bordey, Angélique

    2012-09-26

    Signaling through GABA(A) receptors controls neural progenitor cell (NPC) development in vitro and is altered in schizophrenic and autistic individuals. However, the in vivo function of GABA(A) signaling on neural stem cell proliferation, and ultimately neurogenesis, remains unknown. To examine GABA(A) function in vivo, we electroporated plasmids encoding short-hairpin (sh) RNA against the Na-K-2Cl cotransporter NKCC1 (shNKCC1) in NPCs of the neonatal subventricular zone in mice to reduce GABA(A)-induced depolarization. Reduced GABA(A) depolarization identified by a loss of GABA(A)-induced calcium responses in most electroporated NPCs led to a 70% decrease in the number of proliferative Ki67(+) NPCs and a 60% reduction in newborn neuron density. Premature loss of GABA(A) depolarization in newborn neurons resulted in truncated dendritic arborization at the time of synaptic integration. However, by 6 weeks the dendritic tree had partially recovered and displayed a small, albeit significant, decrease in dendritic complexity but not total dendritic length. To further examine GABA(A) function on NPCs, we treated animals with a GABA(A) allosteric agonist, pentobarbital. Enhancement of GABA(A) activity in NPCs increased the number of proliferative NPCs by 60%. Combining shNKCC1 and pentobarbital prevented the shNKCC1 and the pentobarbital effects on NPC proliferation, suggesting that these manipulations affected NPCs through GABA(A) receptors. Thus, dysregulation in GABA(A) depolarizing activity delayed dendritic development and reduced NPC proliferation resulting in decreased neuronal density. PMID:23015452

  14. Regulation of the neural niche by the soluble molecule Akhirin.

    PubMed

    Acharjee, Uzzal Kumar; Felemban, Athary Abdulhaleem; Riyadh, Asrafuzzaman M; Ohta, Kunimasa

    2016-06-01

    Though the adult central nervous system has been considered a comparatively static tissue with little turnover, it is well established today that new neural cells are generated throughout life. Neural stem/progenitor cells (NS/PCs) can self-renew and generate all types of neural cells. The proliferation of NS/PCs, and differentiation and fate determination of PCs are regulated by extrinsic factors such as growth factors, neurotrophins, and morphogens. Although several extrinsic factors that influence neurogenesis have already been reported, little is known about the role of soluble molecules in neural niche regulation. In this review, we will introduce the soluble molecule Akhirin and discuss its role in the eye and spinal cord during development. PMID:27134067

  15. Calcineurin Signaling Regulates Neural Induction Through Antagonizing the BMP Pathway

    PubMed Central

    Cho, Ahryon; Deng, Suhua; Chen, Lei; Miller, Erik; Wernig, Marius; Graef, Isabella A

    2014-01-01

    Summary Development of the nervous system begins with neural induction, which is controlled by complex signaling networks functioning in concert with one another. Fine-tuning of the bone morphogenetic protein (BMP) pathway is essential for neural induction in the developing embryo. However, the molecular mechanisms by which cells integrate the signaling pathways that contribute to neural induction have remained unclear. We find that neural induction is dependent on the Ca2+-activated phosphatase calcineurin (CaN). FGF-regulated Ca2+ entry activates CaN, which directly and specifically dephosphorylates BMP-regulated Smad1/5 proteins. Genetic and biochemical analyses revealed that CaN adjusts the strength and transcriptional output of BMP signaling and that a reduction of CaN activity leads to an increase of Smad1/5-regulated transcription. As a result, FGF-activated CaN signaling opposes BMP signaling during gastrulation, thereby promoting neural induction and the development of anterior structures. PMID:24698271

  16. Serotonin regulates mouse cranial neural crest migration.

    PubMed Central

    Moiseiwitsch, J R; Lauder, J M

    1995-01-01

    Serotonergic agents (uptake inhibitors, receptor ligands) cause significant craniofacial malformations in cultured mouse embryos suggesting that 5-hydroxytryptamine (serotonin) (5-HT) may be an important regulator of craniofacial development. To determine whether serotonergic regulation of cell migration might underly some of these effects, cranial neural crest (NC) explants from embryonic day 9 (E9) (plug day = E1) mouse embryos or dissociated mandibular mesenchyme cells (derived from NC) from E12 embryos were placed in a modified Boyden chamber to measure effects of serotonergic agents on cell migration. A dose-dependent effect of 5-HT on the migration of highly motile cranial NC cells was demonstrated, such that low concentrations of 5-HT stimulated migration, whereas this effect was progressively lost as the dose of 5-HT was increased. In contrast, most concentrations of 5-HT inhibited migration of less motile, mandibular mesenchyme cells. To investigate the possible involvement of specific 5-HT receptors in the stimulation of NC migration, several 5-HT subtype-selective antagonists were used to block the effects of the most stimulatory dose of 5-HT (0.01 microM). Only NAN-190 (a 5-HT1A antagonist) inhibited the effect of 5-HT, suggesting involvement of this receptor. Further evidence was obtained by using immunohistochemistry with 5-HT receptor antibodies, which revealed expression of the 5-HT1A receptor but not other subtypes by migrating NC cells in both embryos and cranial NC explants. These results suggest that by activating appropriate receptors 5-HT may regulate migration of cranial NC cells and their mesenchymal derivatives in the mouse embryo. Images Fig. 1 Fig. 2 Fig. 3 PMID:7638165

  17. Neural representation of emotion regulation goals.

    PubMed

    Morawetz, Carmen; Bode, Stefan; Baudewig, Juergen; Jacobs, Arthur M; Heekeren, Hauke R

    2016-02-01

    The use of top-down cognitive control mechanisms to regulate emotional responses as circumstances change is critical for mental and physical health. Several theoretical models of emotion regulation have been postulated; it remains unclear, however, in which brain regions emotion regulation goals (e.g., the downregulation of fear) are represented. Here, we examined the neural mechanisms of regulating emotion using fMRI and identified brain regions representing reappraisal goals. Using a multimethodological analysis approach, combining standard activation-based and pattern-information analyses, we identified a distributed network of lateral frontal, temporal, and parietal regions implicated in reappraisal and within it, a core system that represents reappraisal goals in an abstract, stimulus-independent fashion. Within this core system, the neural pattern-separability in a subset of regions including the left inferior frontal gyrus, middle temporal gyrus, and inferior parietal lobe was related to the success in emotion regulation. Those brain regions might link the prefrontal control regions with the subcortical affective regions. Given the strong association of this subsystem with inner speech functions and semantic memory, we conclude that those cognitive mechanisms may be used for orchestrating emotion regulation. Hum Brain Mapp 37:600-620, 2016. © 2015 Wiley Periodicals, Inc. PMID:26537018

  18. Neural-Network-Development Program

    NASA Technical Reports Server (NTRS)

    Phillips, Todd A.

    1993-01-01

    NETS, software tool for development and evaluation of neural networks, provides simulation of neural-network algorithms plus computing environment for development of such algorithms. Uses back-propagation learning method for all of networks it creates. Enables user to customize patterns of connections between layers of network. Also provides features for saving, during learning process, values of weights, providing more-precise control over learning process. Written in ANSI standard C language. Machine-independent version (MSC-21588) includes only code for command-line-interface version of NETS 3.0.

  19. Hypothalamic neural circuits regulating maternal responsiveness toward infants.

    PubMed

    Numan, Michael

    2006-12-01

    A theoretical neural model is developed, along with supportive evidence, to explain how the medial preoptic area (MPOA) of the hypothalamus can regulate maternal responsiveness toward infant-related stimuli. It is proposed that efferents from a hormone-primed MPOA (a) depress a central aversion system (composed of neural circuits between the amygdala, medial hypothalamus, and midbrain) so that novel infant stimuli do not activate defensive or avoidance behavior and (b) excite the mesolimbic dopamine system so that active, voluntary maternal responses are promoted. The effects of oxytocin and maternal experience are included in the model, and the specificity of MPOA effects are discussed. The model may be relevant to the mechanisms through which other hypothalamic nuclei regulate other basic motivational states. In addition, aspects of the model may define a core neural circuitry for maternal behavior in mammals. PMID:17099111

  20. miR-381 Regulates Neural Stem Cell Proliferation and Differentiation via Regulating Hes1 Expression

    PubMed Central

    Liu, Baoquan; Yang, Chunxiao; Nie, Xuedan; Wang, Xiaokun; Zheng, Jiaolin; Wang, Yue; Zhu, Yulan

    2015-01-01

    Neural stem cells are self-renewing, multipotent and undifferentiated precursors that retain the capacity for differentiation into both glial (astrocytes and oligodendrocytes) and neuronal lineages. Neural stem cells offer cell-based therapies for neurological disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease and spinal cord injuries. However, their cellular behavior is poorly understood. MicroRNAs (miRNAs) are a class of small noncoding RNAs involved in cell development, proliferation and differentiation through regulating gene expression at post-transcriptional level. The role of miR–381 in the development of neural stem cells remains unknown. In this study, we showed that overexpression of miR–381 promoted neural stem cells proliferation. It induced the neural stem cells differentiation to neurons and inhibited their differentiation to astrocytes. Furthermore, we identified HES1 as a direct target of miR–381 in neural stem cells. Moreover, re-expression of HES1 impaired miR-381-induced promotion of neural stem cells proliferation and induce neural stem cells differentiation to neurons. In conclusion, miR–381 played important role in neural stem cells proliferation and differentiation. PMID:26431046

  1. Signaling mechanisms regulating adult neural stem cells and neurogenesis

    PubMed Central

    Faigle, Roland; Song, Hongjun

    2012-01-01

    Background Adult neurogenesis occurs throughout life in discrete regions of the mammalian brain and is tightly regulated via both extrinsic environmental influences and intrinsic genetic factors. In recent years, several crucial signaling pathways have been identified in regulating self-renewal, proliferation, and differentiation of neural stem cells, as well as migration and functional integration of developing neurons in the adult brain. Scope of review Here we review our current understanding of signaling mechanisms, including Wnt, notch, sonic hedgehog, growth and neurotrophic factors, bone morphogenetic proteins, neurotransmitters, transcription factors, and epigenetic modulators, and crosstalk between these signaling pathways in the regulation of adult neurogenesis. We also highlight emerging principles in the vastly growing field of adult neural stem cell biology and neural plasticity. Major conclusions Recent methodological advances have enabled the field to identify signaling mechanisms that fine-tune and coordinate neurogenesis in the adult brain, leading to a better characterization of both cell-intrinsic and environmental cues defining the neurogenic niche. Significant questions related to niche cell identity and underlying regulatory mechanisms remain to be fully addressed and will be the focus of future studies. General significance A full understanding of the role and function of individual signaling pathways in regulating neural stem cells and generation and integration of newborn neurons in the adult brain may lead to targeted new therapies for neurological diseases in humans. PMID:22982587

  2. Self-regulation via neural simulation.

    PubMed

    Gilead, Michael; Boccagno, Chelsea; Silverman, Melanie; Hassin, Ran R; Weber, Jochen; Ochsner, Kevin N

    2016-09-01

    Can taking the perspective of other people modify our own affective responses to stimuli? To address this question, we examined the neurobiological mechanisms supporting the ability to take another person's perspective and thereby emotionally experience the world as they would. We measured participants' neural activity as they attempted to predict the emotional responses of two individuals that differed in terms of their proneness to experience negative affect. Results showed that behavioral and neural signatures of negative affect (amygdala activity and a distributed multivoxel pattern reflecting affective negativity) simulated the presumed affective state of the target person. Furthermore, the anterior medial prefrontal cortex (mPFC)-a region implicated in mental state inference-exhibited a perspective-dependent pattern of connectivity with the amygdala, and the multivoxel pattern of activity within the mPFC differentiated between the two targets. We discuss the implications of these findings for research on perspective-taking and self-regulation. PMID:27551094

  3. MicroRNA-dependent Genetic Networks During Neural Development

    PubMed Central

    Abernathy, Daniel G.; Yoo, Andrew S.

    2014-01-01

    The development of the structurally and functionally diverse mammalian nervous system requires the integration of numerous levels of gene regulation. Accumulating evidence suggests that microRNAs are key mediators of genetic networks during neural development. Importantly, microRNAs are found to regulate both feedback and feedforward loops during neural development leading to large changes in gene expression. These repressive interactions provide an additional mechanism that facilitates the establishment of complexity within the nervous system. Here, we review studies that have enabled the identification of brain-enriched microRNAs and discuss how genetic networks in neural development depend on microRNAs. PMID:24865244

  4. CDK7 and miR-210 Co-regulate Cell-Cycle Progression of Neural Progenitors in the Developing Neocortex.

    PubMed

    Abdullah, Aisha I; Zhang, Haijun; Nie, Yanzhen; Tang, Wei; Sun, Tao

    2016-07-12

    The molecular mechanisms regulating neural progenitor (NP) proliferation are fundamental in establishing the cytoarchitecture of the mammalian neocortex. The rate of cell-cycle progression and a fine-tuned balance between cell-cycle re-entry and exit determine the numbers of both NPs and neurons as well as postmitotic neuronal laminar distribution in the cortical wall. Here, we demonstrate that the microRNA (miRNA) miR-210 is required for normal mouse NP cell-cycle progression. Overexpression of miR-210 promotes premature cell-cycle exit and terminal differentiation in NPs, resulting in an increase in early-born postmitotic neurons. Conversely, miR-210 knockdown promotes an increase in the radial glial cell population and delayed differentiation, resulting in an increase in late-born postmitotic neurons. Moreover, the cyclin-dependent kinase CDK7 is regulated by miR-210 and is necessary for normal NP cell-cycle progression. Our findings demonstrate that miRNAs are essential for normal NP proliferation and cell-cycle progress during neocortical development. PMID:27411104

  5. Aebp2 as an epigenetic regulator for neural crest cells.

    PubMed

    Kim, Hana; Kang, Keunsoo; Ekram, Muhammad B; Roh, Tae-Young; Kim, Joomyeong

    2011-01-01

    Aebp2 is a potential targeting protein for the mammalian Polycomb Repression Complex 2 (PRC2). We generated a mutant mouse line disrupting the transcription of Aebp2 to investigate its in vivo roles. Aebp2-mutant homozygotes were embryonic lethal while heterozygotes survived to adulthood with fertility. In developing mouse embryos, Aebp2 is expressed mainly within cells of neural crest origin. In addition, many heterozygotes display a set of phenotypes, enlarged colon and hypopigmentation, similar to those observed in human patients with Hirschsprung's disease and Waardenburg syndrome. These phenotypes are usually caused by the absence of the neural crest-derived ganglia in hindguts and melanocytes. ChIP analyses demonstrated that the majority of the genes involved in the migration and development process of neural crest cells are downstream target genes of AEBP2 and PRC2. Furthermore, expression analyses confirmed that some of these genes are indeed affected in the Aebp2 heterozygotes. Taken together, these results suggest that Aebp2 may regulate the migration and development of the neural crest cells through the PRC2-mediated epigenetic mechanism. PMID:21949878

  6. Ulk4 Regulates Neural Stem Cell Pool.

    PubMed

    Liu, Min; Guan, Zhenlong; Shen, Qin; Flinter, Frances; Domínguez, Laura; Ahn, Joo Wook; Collier, David A; O'Brien, Timothy; Shen, Sanbing

    2016-09-01

    The size of neural stem cell (NSC) pool at birth determines the starting point of adult neurogenesis. Aberrant neurogenesis is associated with major mental illness, in which ULK4 is proposed as a rare risk factor. Little is known about factors regulating the NSC pool, or function of the ULK4. Here, we showed that Ulk4(tm1a/tm1a) mice displayed a dramatically reduced NSC pool at birth. Ulk4 was expressed in a cell cycle-dependent manner and peaked in G2/M phases. Targeted disruption of the Ulk4 perturbed mid-neurogenesis and significantly reduced cerebral cortex in postnatal mice. Pathway analyses of dysregulated genes in Ulk4(tm1a/tm1a) mice revealed Ulk4 as a key regulator of cell cycle and NSC proliferation, partially through regulation of the Wnt signaling. In addition, we identified hemizygous deletion of ULK4 gene in 1.2/1,000 patients with pleiotropic symptoms including severe language delay and learning difficulties. ULK4, therefore, may significantly contribute to neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Stem Cells 2016;34:2318-2331. PMID:27300315

  7. Ancestral network module regulating prdm1 expression in the lamprey neural plate border

    PubMed Central

    Nikitina, Natalya; Tong, Leslie; Bronner-Fraser, Marianne

    2012-01-01

    prdm1 is an important transcriptional regulator that plays diverse roles during development of a wide variety of vertebrate and invertebrate species. prdm1 is required for neural crest specification in zebrafish, but not in mouse embryos. The role of this gene in neural crest formation in other species has not been examined, and its regulation during embryonic development is poorly understood. Here, we investigate the expression pattern, function and the upstream regulatory inputs into prdm1 during lamprey neural crest development. prdm1 is strongly expressed in the lamprey neural plate border, suggesting a conserved ancestral role of this gene in the neural crest formation. We found that lamprey neural plate border expression of prdm1 is activated by Ap-2 and Msx, but is independent of Pax3/7 and Zic. PMID:21932309

  8. TOX3 regulates neural progenitor identity.

    PubMed

    Sahu, Sanjeeb Kumar; Fritz, Alina; Tiwari, Neha; Kovacs, Zsuzsa; Pouya, Alireza; Wüllner, Verena; Bora, Pablo; Schacht, Teresa; Baumgart, Jan; Peron, Sophie; Berninger, Benedikt; Tiwari, Vijay K; Methner, Axel

    2016-07-01

    The human genomic locus for the transcription factor TOX3 has been implicated in susceptibility to restless legs syndrome and breast cancer in genome-wide association studies, but the physiological role of TOX3 remains largely unknown. We found Tox3 to be predominantly expressed in the developing mouse brain with a peak at embryonic day E14 where it co-localizes with the neural stem and progenitor markers Nestin and Sox2 in radial glia of the ventricular zone and intermediate progenitors of the subventricular zone. Tox3 is also expressed in neural progenitor cells obtained from the ganglionic eminence of E15 mice that express Nestin, and it specifically binds the Nestin promoter in chromatin immunoprecipitation assays. In line with this, over-expression of Tox3 increased Nestin promoter activity, which was cooperatively enhanced by treatment with the stem cell self-renewal promoting Notch ligand Jagged and repressed by pharmacological inhibition of Notch signaling. Knockdown of Tox3 in the subventricular zone of E12.5 mouse embryos by in utero electroporation of Tox3 shRNA revealed a reduced Nestin expression and decreased proliferation at E14 and a reduced migration to the cortical plate in E16 embryos in electroporated cells. Together, these results argue for a role of Tox3 in the development of the nervous system. PMID:27080130

  9. A possible neural cascade involving the photoneuroendocrine system (PNES) responsible for regulating gonadal development in an avian species, Gallus gallus.

    PubMed

    Li, Hongyan; Kuenzel, Wayne J

    2008-08-15

    Neurons located in the lateral septal organ (LSO) and medial basal hypothalamus (MBH) have been proposed to be encephalic photoreceptors (EPRs), which sense photoperiodic time and initiate avian gonadal development. Controversy continues regarding the location of EPRs serving the PNES and their signal transduction pathway. Using quantitative real-time RT-PCR we determined activation of key genes following prolonged light periods and sulfamethethazine (compound known to advance light-induced testes development) in 21-day old chicks. Earliest activation occurred in genes of vasoactive intestinal polypeptide (VIP) and type 6 phosphodiesterase beta subunit (PDE-6 beta) in the LSO at 4 and 6h, respectively, after onset of light and sulfamethazine intake. In contrast, no change was detected in the MBH during the first 8h of that treatment. Thereafter, significant increases in gonadotropin releasing hormone (GnRH-1) and VIP receptor (VIPR) mRNA transcripts were detected in the bed nucleus of the pallial commissure (NCPa). Hours later, activation of all four genes (VIP, PDE-6 beta, GnRH-1, VIPR) were induced solely by photostimulation. Deiodinase 2 and tyrosine hydroxylase in the MBH did not show increased gene expression until 12h of photostimulation. Prolactin mRNA transcripts showed significant increases at 4h due to SMZ intake and at 24, 36 and 48 h due to long-day photoperiodic effects. Data suggest that VIP neurons in the LSO may serve as EPRs and utilize PDE, present in the phototransduction cascade of known photoreceptors. Additionally, VIP released from the LSO may modulate GnRH-1 neurons in the NCPa via VIP receptors by increasing GnRH-1 gene expression. PMID:18598849

  10. Cardiovascular Development and the Colonizing Cardiac Neural Crest Lineage

    PubMed Central

    Snider, Paige; Olaopa, Michael; Firulli, Anthony B.

    2008-01-01

    Although it is well established that transgenic manipulation of mammalian neural crest-related gene expression and microsurgical removal of premigratory chicken and Xenopus embryonic cardiac neural crest progenitors results in a wide spectrum of both structural and functional congenital heart defects, the actual functional mechanism of the cardiac neural crest cells within the heart is poorly understood. Neural crest cell migration and appropriate colonization of the pharyngeal arches and outflow tract septum is thought to be highly dependent on genes that regulate cell-autonomous polarized movement (i.e., gap junctions, cadherins, and noncanonical Wnt1 pathway regulators). Once the migratory cardiac neural crest subpopulation finally reaches the heart, they have traditionally been thought to participate in septation of the common outflow tract into separate aortic and pulmonary arteries. However, several studies have suggested these colonizing neural crest cells may also play additional unexpected roles during cardiovascular development and may even contribute to a crest-derived stem cell population. Studies in both mice and chick suggest they can also enter the heart from the venous inflow as well as the usual arterial outflow region, and may contribute to the adult semilunar and atrioventricular valves as well as part of the cardiac conduction system. Furthermore, although they are not usually thought to give rise to the cardiomyocyte lineage, neural crest cells in the zebrafish (Danio rerio) can contribute to the myocardium and may have different functions in a species-dependent context. Intriguingly, both ablation of chick and Xenopus premigratory neural crest cells, and a transgenic deletion of mouse neural crest cell migration or disruption of the normal mammalian neural crest gene expression profiles, disrupts ventral myocardial function and/or cardiomyocyte proliferation. Combined, this suggests that either the cardiac neural crest secrete factor/s that

  11. microRNA regulation of neural precursor self-renewal and differentiation

    PubMed Central

    Hudish, Laura I; Appel, Bruce

    2014-01-01

    During early stages of development of the vertebrate central nervous system, neural precursors divide symmetrically to produce new precursors, thereby expanding the precursor population. During middle stages of neural development, precursors switch to an asymmetric division pattern whereby each mitosis produces one new precursor and one cell that differentiates as a neuron or glial cell. At late stages of development, most precursors stop dividing and terminally differentiate. Par complex proteins are associated with the apical membrane of neural precursors and promote precursor self-renewal. How Par proteins are down regulated to bring precursor self-renewal to an end has not been known. Our investigations of zebrafish neural development revealed that the microRNA miR-219 negatively regulates apical Par proteins, thereby promoting cessation of neural precursor division and driving terminal differentiation.

  12. Neural Circuitry of Impaired Emotion Regulation in Substance Use Disorders.

    PubMed

    Wilcox, Claire E; Pommy, Jessica M; Adinoff, Bryon

    2016-04-01

    Impaired emotion regulation contributes to the development and severity of substance use disorders (substance disorders). This review summarizes the literature on alterations in emotion regulation neural circuitry in substance disorders, particularly in relation to disorders of negative affect (without substance disorder), and it presents promising areas of future research. Emotion regulation paradigms during functional magnetic resonance imaging are conceptualized into four dimensions: affect intensity and reactivity, affective modulation, cognitive modulation, and behavioral control. The neural circuitry associated with impaired emotion regulation is compared in individuals with and without substance disorders, with a focus on amygdala, insula, and prefrontal cortex activation and their functional and structural connectivity. Hypoactivation of the rostral anterior cingulate cortex/ventromedial prefrontal cortex (rACC/vmPFC) is the most consistent finding across studies, dimensions, and clinical populations (individuals with and without substance disorders). The same pattern is evident for regions in the cognitive control network (anterior cingulate and dorsal and ventrolateral prefrontal cortices) during cognitive modulation and behavioral control. These congruent findings are possibly related to attenuated functional and/or structural connectivity between the amygdala and insula and between the rACC/vmPFC and cognitive control network. Although increased amygdala and insula activation is associated with impaired emotion regulation in individuals without substance disorders, it is not consistently observed in substance disorders. Emotion regulation disturbances in substance disorders may therefore stem from impairments in prefrontal functioning, rather than excessive reactivity to emotional stimuli. Treatments for emotion regulation in individuals without substance disorders that normalize prefrontal functioning may offer greater efficacy for substance disorders

  13. Neural Circuitry of Impaired Emotion Regulation in Substance Use Disorders

    PubMed Central

    Wilcox, Claire E.; Pommy, Jessica M.; Adinoff, Bryon

    2016-01-01

    Impaired emotion regulation contributes to the development and severity of substance use disorders (substance disorders). This review summarizes the literature on alterations in emotion regulation neural circuitry in substance disorders, particularly in relation to disorders of negative affect (without substance disorder), and it presents promising areas of future research. Emotion regulation paradigms during functional magnetic resonance imaging are conceptualized into four dimensions: affect intensity and reactivity, affective modulation, cognitive modulation, and behavioral control. The neural circuitry associated with impaired emotion regulation is compared in individuals with and without substance disorders, with a focus on amygdala, insula, and prefrontal cortex activation and their functional and structural connectivity. Hypoactivation of the rostral anterior cingulate cortex/ventromedial prefrontal cortex (rACC/vmPFC) is the most consistent finding across studies, dimensions, and clinical populations (individuals with and without substance disorders). The same pattern is evident for regions in the cognitive control network (anterior cingulate and dorsal and ventrolateral prefrontal cortices) during cognitive modulation and behavioral control. These congruent findings are possibly related to attenuated functional and/or structural connectivity between the amygdala and insula and between the rACC/vmPFC and cognitive control network. Although increased amygdala and insula activation is associated with impaired emotion regulation in individuals without substance disorders, it is not consistently observed in substance disorders. Emotion regulation disturbances in substance disorders may therefore stem from impairments in prefrontal functioning, rather than excessive reactivity to emotional stimuli. Treatments for emotion regulation in individuals without substance disorders that normalize prefrontal functioning may offer greater efficacy for substance disorders

  14. Functions of noncoding RNAs in neural development and neurological diseases

    PubMed Central

    Bian, Shan; Sun, Tao

    2011-01-01

    The development of the central nervous system (CNS) relies on precisely orchestrated gene expression regulation. Dysregualtion of both genetic and environmental factors can affect proper CNS development and results in neurological diseases. Recent studies have shown that similar to protein coding genes, noncoding RNA molecules have a significant impact on normal CNS development and on causes and progression of human neurological disorders. In this review, we have highlighted discoveries of functions of noncoding RNAs, in particular microRNAs and long noncoding RNAs, in neural development and neurological diseases. Emerging evidence has shown that microRNAs play an essential role in many aspects of neural development, such as proliferation of neural stem cells and progenitors, neuronal differentiation, maturation and synaptogenesis. Misregulation of microRNAs is associated with some mental disorders and neurodegeneration diseases. In addition, long noncoding RNAs are found to play a role in neural development by regulating expression of protein coding genes. Therefore, examining noncoding RNA-mediated gene regulations has revealed novel mechanisms of neural development and provided new insights into the etiology of human neurological diseases. PMID:21969146

  15. Roles of Wnt proteins in neural development and maintenance

    PubMed Central

    Patapoutian, Ardem; Reichardt, Louis F

    2013-01-01

    Many constituents of Wnt signaling pathways are expressed in the developing and mature nervous systems. Recent work has shown that Wnt signaling controls initial formation of the neural plate and many subsequent patterning decisions in the embryonic nervous system, including formation of the neural crest. Wnt signaling continues to be important at later stages of development. Wnts have been shown to regulate the anatomy of the neuronal cytoskeleton and the differentiation of synapses in the cerebellum. Wnt signaling has been demonstrated to regulate apoptosis and may participate in degenerative processes leading to cell death in the aging brain. PMID:10851180

  16. SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos.

    PubMed

    Wu, Mary Y; Ramel, Marie-Christine; Howell, Michael; Hill, Caroline S

    2011-01-01

    Bone morphogenetic protein (BMP) gradients provide positional information to direct cell fate specification, such as patterning of the vertebrate ectoderm into neural, neural crest, and epidermal tissues, with precise borders segregating these domains. However, little is known about how BMP activity is regulated spatially and temporally during vertebrate development to contribute to embryonic patterning, and more specifically to neural crest formation. Through a large-scale in vivo functional screen in Xenopus for neural crest fate, we identified an essential regulator of BMP activity, SNW1. SNW1 is a nuclear protein known to regulate gene expression. Using antisense morpholinos to deplete SNW1 protein in both Xenopus and zebrafish embryos, we demonstrate that dorsally expressed SNW1 is required for neural crest specification, and this is independent of mesoderm formation and gastrulation morphogenetic movements. By exploiting a combination of immunostaining for phosphorylated Smad1 in Xenopus embryos and a BMP-dependent reporter transgenic zebrafish line, we show that SNW1 regulates a specific domain of BMP activity in the dorsal ectoderm at the neural plate border at post-gastrula stages. We use double in situ hybridizations and immunofluorescence to show how this domain of BMP activity is spatially positioned relative to the neural crest domain and that of SNW1 expression. Further in vivo and in vitro assays using cell culture and tissue explants allow us to conclude that SNW1 acts upstream of the BMP receptors. Finally, we show that the requirement of SNW1 for neural crest specification is through its ability to regulate BMP activity, as we demonstrate that targeted overexpression of BMP to the neural plate border is sufficient to restore neural crest formation in Xenopus SNW1 morphants. We conclude that through its ability to regulate a specific domain of BMP activity in the vertebrate embryo, SNW1 is a critical regulator of neural plate border formation and

  17. Neural Network Development Tool (NETS)

    NASA Technical Reports Server (NTRS)

    Baffes, Paul T.

    1990-01-01

    Artificial neural networks formed from hundreds or thousands of simulated neurons, connected in manner similar to that in human brain. Such network models learning behavior. Using NETS involves translating problem to be solved into input/output pairs, designing network configuration, and training network. Written in C.

  18. Neural stem cells and regulation of cell number.

    PubMed

    Sommer, Lukas; Rao, Mahendra

    2002-01-01

    Normal CNS development involves the sequential differentiation of multipotent stem cells. Alteration of the numbers of stem cells, their self-renewal ability, or their proliferative capacity will have major effects on the appropriate development of the nervous system. In this review, we discuss different mechanisms that regulate neural stem cell differentiation. Proliferation signals and cell cycle regulators may regulate cell kinetics or total number of cell divisions. Loss of trophic support and cytokine receptor activation may differentially contribute to the induction of cell death at specific stages of development. Signaling from differentiated progeny or asymmetric distribution of specific molecules may alter the self-renewal characteristics of stem cells. We conclude that the final decision of a cell to self-renew, differentiate or remain quiescent is dependent on an integration of multiple signaling pathways and at each instant will depend on cell density, metabolic state, ligand availability, type and levels of receptor expression, and downstream cross-talk between distinct signaling pathways. PMID:11897403

  19. Neural networks for combined control of capacitor banks and voltage regulators in distribution systems

    SciTech Connect

    Gu, Z.; Rizy, D.T.

    1996-02-01

    A neural network for controlling shunt capacitor banks and feeder voltage regulators in electric distribution systems is presented. The objective of the neural controller is to minimize total I{sup 2}R losses and maintain all bus voltages within standard limits. The performance of the neural network for different input selections and training data is discussed and compared. Two different input selections are tried, one using the previous control states of the capacitors and regulator along with measured line flows and voltage which is equivalent to having feedback and the other with measured line flows and voltage without previous control settings. The results indicate that the neural net controller with feedback can outperform the one without. Also, proper selection of a training data set that adequately covers the operating space of the distribution system is important for achieving satisfactory performance with the neural controller. The neural controller is tested on a radially configured distribution system with 30 buses, 5 switchable capacitor banks an d one nine tap line regulator to demonstrate the performance characteristics associated with these principles. Monte Carlo simulations show that a carefully designed and relatively compact neural network with a small but carefully developed training set can perform quite well under slight and extreme variation of loading conditions.

  20. Neural networks for combined control of capacitor banks and voltage regulators in distribution systems

    SciTech Connect

    Gu, Z.; Rizy, D.T.

    1996-10-01

    A neural network for controlling shunt capacitor banks and feeder voltage regulators in electric distribution systems is presented. The objective of the neural controller is to minimize total I{sup 2}R losses and maintain all bus voltages within standard limits. The performance of the neural network for different input selections and training data is discussed and compared. Two different input selections are tried, one using the previous control states of the capacitors and regulator along with measured line flows and voltage which is equivalent to having feedback and the other with measured line flows and voltage without previous control settings. The results indicate that the neural net controller with feedback can outperform the one without. Also, proper selection of a training data set that adequately covers the operating space of the distribution system is important for achieving satisfactory performance with the neural controller. The neural controller is tested on a radially configured distribution system with 30 buses, 5 switchable capacitor banks and a nine tap line regulator to demonstrate the performance characteristics associated with these principles. Monte Carlo simulations show that a carefully designed and relatively compact neural network with a small but carefully developed training set can perform quite well under slight and extreme variation of loading conditions.

  1. Neural Crest Development in Fetal Alcohol Syndrome

    PubMed Central

    Smith, Susan M.; Garic, Ana; Flentke, George R.; Berres, Mark E.

    2016-01-01

    Fetal alcohol spectrum disorder (FASD) is a leading cause of neurodevelopmental disability. Some affected individuals possess distinctive craniofacial deficits, but many more lack overt facial changes. An understanding of the mechanisms underlying these deficits would inform their diagnostic utility. Our understanding of these mechanisms is challenged because ethanol lacks a single receptor when redirecting cellular activity. This review summarizes our current understanding of how ethanol alters neural crest development. Ample evidence shows that ethanol causes the “classic” fetal alcohol syndrome (FAS) face (short palpebral fissures, elongated upper lip, deficient philtrum) because it suppresses prechordal plate outgrowth, thereby reducing neuroectoderm and neural crest induction and causing holoprosencephaly. Prenatal alcohol exposure (PAE) at premigratory stages elicits a different facial appearance, indicating FASD may represent a spectrum of facial outcomes. PAE at this premigratory period initiates a calcium transient that activates CaMKII and destabilizes transcriptionally active β-catenin, thereby initiating apoptosis within neural crest populations. Contributing to neural crest vulnerability are their low antioxidant responses. Ethanol-treated neural crest produce reactive oxygen species, and free radical scavengers attenuate their production and prevent apoptosis. Ethanol also significantly impairs neural crest migration, causing cytoskeletal rearrangements that destabilize focal adhesion formation; their directional migratory capacity is also lost. Genetic factors further modify vulnerability to ethanol-induced craniofacial dysmorphology, and include genes important for neural crest development including shh signaling, PDFGA, vangl2, and ribosomal biogenesis. Because facial and brain development are mechanistically and functionally linked, research into ethanol’s effects on neural crest also informs our understanding of ethanol’s CNS pathologies

  2. Neural crest development in fetal alcohol syndrome.

    PubMed

    Smith, Susan M; Garic, Ana; Flentke, George R; Berres, Mark E

    2014-09-01

    Fetal alcohol spectrum disorder (FASD) is a leading cause of neurodevelopmental disability. Some affected individuals possess distinctive craniofacial deficits, but many more lack overt facial changes. An understanding of the mechanisms underlying these deficits would inform their diagnostic utility. Our understanding of these mechanisms is challenged because ethanol lacks a single receptor when redirecting cellular activity. This review summarizes our current understanding of how ethanol alters neural crest development. Ample evidence shows that ethanol causes the "classic" fetal alcohol syndrome (FAS) face (short palpebral fissures, elongated upper lip, deficient philtrum) because it suppresses prechordal plate outgrowth, thereby reducing neuroectoderm and neural crest induction and causing holoprosencephaly. Prenatal alcohol exposure (PAE) at premigratory stages elicits a different facial appearance, indicating FASD may represent a spectrum of facial outcomes. PAE at this premigratory period initiates a calcium transient that activates CaMKII and destabilizes transcriptionally active β-catenin, thereby initiating apoptosis within neural crest populations. Contributing to neural crest vulnerability are their low antioxidant responses. Ethanol-treated neural crest produce reactive oxygen species and free radical scavengers attenuate their production and prevent apoptosis. Ethanol also significantly impairs neural crest migration, causing cytoskeletal rearrangements that destabilize focal adhesion formation; their directional migratory capacity is also lost. Genetic factors further modify vulnerability to ethanol-induced craniofacial dysmorphology and include genes important for neural crest development, including shh signaling, PDFGA, vangl2, and ribosomal biogenesis. Because facial and brain development are mechanistically and functionally linked, research into ethanol's effects on neural crest also informs our understanding of ethanol's CNS pathologies. PMID

  3. Genetics and development of neural tube defects.

    PubMed

    Copp, Andrew J; Greene, Nicholas D E

    2010-01-01

    Congenital defects of neural tube closure (neural tube defects; NTDs) are among the commonest and most severe disorders of the fetus and newborn. Disturbance of any of the sequential events of embryonic neurulation produce NTDs, with the phenotype (eg anencephaly, spina bifida) varying depending on the region of neural tube that remains open. While mutation of > 200 genes is known to cause NTDs in mice, the pattern of occurrence in humans suggests a multifactorial polygenic or oligogenic aetiology. This emphasizes the importance of gene-gene and gene-environment interactions in the origins of these defects. A number of cell biological functions are essential for neural tube closure, with defects of the cytoskeleton, cell cycle and molecular regulation of cell viability prominent among the mouse NTD mutants. Many transcriptional regulators and proteins that affect chromatin structure are also required for neural tube closure, although the downstream molecular pathways regulated by these proteins is unknown. Some key signalling pathways for NTDs have been identified: over-activation of sonic hedgehog signalling and loss of function in the planar cell polarity (non-canonical Wnt) pathway are potent causes of NTD, with requirements also for retinoid and inositol signalling. Folic acid supplementation is an effective method for primary prevention of a proportion of NTDs in both humans and mice, although the embryonic mechanism of folate action remains unclear. Folic acid-resistant cases can be prevented by inositol supplementation in mice, raising the possibility that this could lead to an additional preventive strategy for human NTDs in future. PMID:19918803

  4. Neural differentiation and synaptogenesis in retinal development.

    PubMed

    Fan, Wen-Juan; Li, Xue; Yao, Huan-Ling; Deng, Jie-Xin; Liu, Hong-Liang; Cui, Zhan-Jun; Wang, Qiang; Wu, Ping; Deng, Jin-Bo

    2016-02-01

    To investigate the pattern of neural differentiation and synaptogenesis in the mouse retina, immunolabeling, BrdU assay and transmission electron microscopy were used. We show that the neuroblastic cell layer is the germinal zone for neural differentiation and retinal lamination. Ganglion cells differentiated initially at embryonic day 13 (E13), and at E18 horizontal cells appeared in the neuroblastic cell layer. Neural stem cells in the outer neuroblastic cell layer differentiated into photoreceptor cells as early as postnatal day 0 (P0), and neural stem cells in the inner neuroblastic cell layer differentiated into bipolar cells at P7. Synapses in the retina were mainly located in the outer and inner plexiform layers. At P7, synaptophysin immunostaining appeared in presynaptic terminals in the outer and inner plexiform layers with button-like structures. After P14, presynaptic buttons were concentrated in outer and inner plexiform layers with strong staining. These data indicate that neural differentiation and synaptogenesis in the retina play important roles in the formation of retinal neural circuitry. Our study showed that the period before P14, especially between P0 and P14, represents a critical period during retinal development. Mouse eye opening occurs during that period, suggesting that cell differentiation and synaptic formation lead to the attainment of visual function. PMID:27073386

  5. Neural differentiation and synaptogenesis in retinal development

    PubMed Central

    Fan, Wen-juan; Li, Xue; Yao, Huan-ling; Deng, Jie-xin; Liu, Hong-liang; Cui, Zhan-jun; Wang, Qiang; Wu, Ping; Deng, Jin-bo

    2016-01-01

    To investigate the pattern of neural differentiation and synaptogenesis in the mouse retina, immunolabeling, BrdU assay and transmission electron microscopy were used. We show that the neuroblastic cell layer is the germinal zone for neural differentiation and retinal lamination. Ganglion cells differentiated initially at embryonic day 13 (E13), and at E18 horizontal cells appeared in the neuroblastic cell layer. Neural stem cells in the outer neuroblastic cell layer differentiated into photoreceptor cells as early as postnatal day 0 (P0), and neural stem cells in the inner neuroblastic cell layer differentiated into bipolar cells at P7. Synapses in the retina were mainly located in the outer and inner plexiform layers. At P7, synaptophysin immunostaining appeared in presynaptic terminals in the outer and inner plexiform layers with button-like structures. After P14, presynaptic buttons were concentrated in outer and inner plexiform layers with strong staining. These data indicate that neural differentiation and synaptogenesis in the retina play important roles in the formation of retinal neural circuitry. Our study showed that the period before P14, especially between P0 and P14, represents a critical period during retinal development. Mouse eye opening occurs during that period, suggesting that cell differentiation and synaptic formation lead to the attainment of visual function. PMID:27073386

  6. A dynamic code of dorsal neural tube genes regulates the segregation between neurogenic and melanogenic neural crest cells

    PubMed Central

    Nitzan, Erez; Krispin, Shlomo; Pfaltzgraff, Elise R.; Klar, Avihu; Labosky, Patricia A.; Kalcheim, Chaya

    2013-01-01

    Understanding when and how multipotent progenitors segregate into diverse fates is a key question during embryonic development. The neural crest (NC) is an exemplary model system with which to investigate the dynamics of progenitor cell specification, as it generates a multitude of derivatives. Based on ‘in ovo’ lineage analysis, we previously suggested an early fate restriction of premigratory trunk NC to generate neural versus melanogenic fates, yet the timing of fate segregation and the underlying mechanisms remained unknown. Analysis of progenitors expressing a Foxd3 reporter reveals that prospective melanoblasts downregulate Foxd3 and have already segregated from neural lineages before emigration. When this downregulation is prevented, late-emigrating avian precursors fail to upregulate the melanogenic markers Mitf and MC/1 and the guidance receptor Ednrb2, generating instead glial cells that express P0 and Fabp. In this context, Foxd3 lies downstream of Snail2 and Sox9, constituting a minimal network upstream of Mitf and Ednrb2 to link melanogenic specification with migration. Consistent with the gain-of-function data in avians, loss of Foxd3 function in mouse NC results in ectopic melanogenesis in the dorsal tube and sensory ganglia. Altogether, Foxd3 is part of a dynamically expressed gene network that is necessary and sufficient to regulate fate decisions in premigratory NC. Their timely downregulation in the dorsal neural tube is thus necessary for the switch between neural and melanocytic phases of NC development. PMID:23615280

  7. Barratt Impulsivity and Neural Regulation of Physiological Arousal

    PubMed Central

    Zhang, Sheng; Hu, Sien; Hu, Jianping; Wu, Po-Lun; Chao, Herta H.; Li, Chiang-shan R.

    2015-01-01

    Background Theories of personality have posited an increased arousal response to external stimulation in impulsive individuals. However, there is a dearth of studies addressing the neural basis of this association. Methods We recorded skin conductance in 26 individuals who were assessed with Barratt Impulsivity Scale (BIS-11) and performed a stop signal task during functional magnetic resonance imaging. Imaging data were processed and modeled with Statistical Parametric Mapping. We used linear regressions to examine correlations between impulsivity and skin conductance response (SCR) to salient events, identify the neural substrates of arousal regulation, and examine the relationship between the regulatory mechanism and impulsivity. Results Across subjects, higher impulsivity is associated with greater SCR to stop trials. Activity of the ventromedial prefrontal cortex (vmPFC) negatively correlated to and Granger caused skin conductance time course. Furthermore, higher impulsivity is associated with a lesser strength of Granger causality of vmPFC activity on skin conductance, consistent with diminished control of physiological arousal to external stimulation. When men (n = 14) and women (n = 12) were examined separately, however, there was evidence suggesting association between impulsivity and vmPFC regulation of arousal only in women. Conclusions Together, these findings confirmed the link between Barratt impulsivity and heightened arousal to salient stimuli in both genders and suggested the neural bases of altered regulation of arousal in impulsive women. More research is needed to explore the neural processes of arousal regulation in impulsive individuals and in clinical conditions that implicate poor impulse control. PMID:26079873

  8. Neural Mechanisms of Emotion Regulation in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Richey, J. Anthony; Damiano, Cara R.; Sabatino, Antoinette; Rittenberg, Alison; Petty, Chris; Bizzell, Josh; Voyvodic, James; Heller, Aaron S.; Coffman, Marika C.; Smoski, Moria; Davidson, Richard J.; Dichter, Gabriel S.

    2015-01-01

    Autism spectrum disorder (ASD) is characterized by high rates of comorbid internalizing and externalizing disorders. One mechanistic account of these comorbidities is that ASD is characterized by impaired emotion regulation (ER) that results in deficits modulating emotional responses. We assessed neural activation during cognitive reappraisal of…

  9. Spatiotemporal integration of developmental cues in neural development

    PubMed Central

    Borodinsky, Laura N.; Belgacem, Yesser H.; Swapna, Immani; Visina, Olesya; Balashova, Olga A.; Sequerra, Eduardo B.; Tu, Michelle K.; Levin, Jacqueline B.; Spencer, Kira A.; Castro, Patricio A.; Hamilton, Andrew M.; Shim, Sangwoo

    2014-01-01

    Nervous system development relies on the generation of neurons, their differentiation and establishment of synaptic connections. These events exhibit remarkable plasticity and are regulated by many developmental cues. Here we review the mechanisms of three classes of these cues: morphogenetic proteins, electrical activity and the environment. We focus on second messenger dynamics and their role as integrators of the action of diverse cues, enabling plasticity in the process of neural development. PMID:25484201

  10. Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation.

    PubMed

    Plank, Jennifer L; Mundell, Nathan A; Frist, Audrey Y; LeGrone, Alison W; Kim, Thomas; Musser, Melissa A; Walter, Teagan J; Labosky, Patricia A

    2011-01-15

    Interactions between cells from the ectoderm and mesoderm influence development of the endodermally-derived pancreas. While much is known about how mesoderm regulates pancreatic development, relatively little is understood about how and when the ectodermally-derived neural crest regulates pancreatic development and specifically, beta cell maturation. A previous study demonstrated that signals from the neural crest regulate beta cell proliferation and ultimately, beta cell mass. Here, we expand on that work to describe timing of neural crest arrival at the developing pancreatic bud and extend our knowledge of the non-cell autonomous role for neural crest derivatives in the process of beta cell maturation. We demonstrated that murine neural crest entered the pancreatic mesenchyme between the 26 and 27 somite stages (approximately 10.0 dpc) and became intermingled with pancreatic progenitors as the epithelium branched into the surrounding mesenchyme. Using a neural crest-specific deletion of the Forkhead transcription factor Foxd3, we ablated neural crest cells that migrate to the pancreatic primordium. Consistent with previous data, in the absence of Foxd3, and therefore the absence of neural crest cells, proliferation of insulin-expressing cells and insulin-positive area are increased. Analysis of endocrine cell gene expression in the absence of neural crest demonstrated that, although the number of insulin-expressing cells was increased, beta cell maturation was significantly impaired. Decreased MafA and Pdx1 expression illustrated the defect in beta cell maturation; we discovered that without neural crest, there was a reduction in the percentage of insulin-positive cells that co-expressed Glut2 and Pdx1 compared to controls. In addition, transmission electron microscopy analyses revealed decreased numbers of characteristic insulin granules and the presence of abnormal granules in insulin-expressing cells from mutant embryos. Together, these data demonstrate that

  11. Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation

    PubMed Central

    Plank, Jennifer L.; Mundell, Nathan A.; Frist, Audrey Y.; LeGrone, Alison W.; Kim, Thomas; Musser, Melissa A.; Walter, Teagan J.; Labosky, Patricia A.

    2010-01-01

    Interactions between cells from the ectoderm and mesoderm influence development of the endodermally-derived pancreas. While much is known about how mesoderm regulates pancreatic development, relatively little is understood about how and when the ectodermally-derived neural crest regulates pancreatic development and specifically, beta cell maturation. A previous study demonstrated that signals from the neural crest regulate beta cell proliferation and ultimately, beta cell mass. Here, we expand on that work to describe timing of neural crest arrival at the developing pancreatic bud and extend our knowledge of the non-cell autonomous role for neural crest derivatives in the process of beta cell maturation. We demonstrated that murine neural crest entered the pancreatic mesenchyme between the 26 and 27 somite stages (approximately 10.0 dpc) and became intermingled with pancreatic progenitors as the epithelium branched into the surrounding mesenchyme. Using a neural crest-specific deletion of the Forkhead transcription factor Foxd3, we ablated neural crest cells that migrate to the pancreatic primordium. Consistent with previous data, in the absence of Foxd3, and therefore the absence of neural crest cells, proliferation of Insulin-expressing cells and Insulin-positive area are increased. Analysis of endocrine cell gene expression in the absence of neural crest demonstrated that, although the number of Insulin-expressing cells was increased, beta cell maturation was significantly impaired. Decreased MafA and Pdx1 expression illustrated the defect in beta cell maturation; we discovered that without neural crest, there was a reduction in the percentage of Insulin-positive cells that co-expressed Glut2 and Pdx1 compared to controls. In addition, transmission electron microscopy analyses revealed decreased numbers of characteristic Insulin granules and the presence of abnormal granules in Insulin-expressing cells from mutant embryos. Together, these data demonstrate that

  12. Specification of neural cell fate and regulation of neural stem cell proliferation by microRNAs

    PubMed Central

    Pham, Jacqueline T; Gallicano, G Ian

    2012-01-01

    In the approximately 20 years since microRNAs (miRNAs) were first characterized, they have been shown to play important roles in diverse physiologic functions, particularly those requiring coordinated changes in networks of signaling pathways. The ability of miRNAs to silence expression of multiple gene targets hints at complex connections that research has only begun to elucidate. The nervous system, particularly the brain, and its progenitor cells offer opportunities to examine miRNA function due to the myriad different cell types, numerous functionally distinct regions, and fluidly dynamic connections between them. This review aims to summarize current understanding of miRNA regulation in neurodevelopment, beginning with miRNAs that establish a general neural fate in cells. Particular attention is given to miR-124, the most abundant brain-specific miRNA, along with its key regulators and targets as an example of the potentially far-reaching effects of miRNAs. These modulators and mediators enable miRNAs to subtly calibrate cellular proliferation and differentiation. To better understand their mechanisms of action, miRNA profiles in distinct populations and regions of cells have been examined as well as miRNAs that regulate proliferation of stem cells, a process marked by dramatic morphological shifts in response to temporally subtle and refined shifts in gene expression. To tease out the complex interactions of miRNAs and stem cells more accurately, future studies will require more sensitive methods of assessing miRNA expression and more rigorous models of miRNA pathways. Thorough characterization of similarities and differences in specific miRNAs’ effects in different species is vital to developing better disease models and therapeutics using miRNAs. PMID:23671807

  13. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    PubMed Central

    Hurst, Jillian H; Mumaw, Jennifer; Machacek, David W; Sturkie, Carla; Callihan, Phillip; Stice, Steve L; Hooks, Shelley B

    2008-01-01

    Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP) cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA) and Sphingosine-1-phosphate (S1P) receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR)- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors. PMID:19077254

  14. Encoding and decoding time in neural development.

    PubMed

    Toma, Kenichi; Wang, Tien-Cheng; Hanashima, Carina

    2016-01-01

    The development of a multicellular organism involves time-dependent changes in molecular and cellular states; therefore 'time' is an indispensable mathematical parameter of ontogenesis. Regardless of their inextricable relationship, there is a limited number of events for which the output of developmental phenomena primarily uses temporal cues that are generated through multilevel interactions between molecules, cells, and tissues. In this review, we focus on neural stem cells, which serve as a faithful decoder of temporal cues to transmit biological information and generate specific output in the developing nervous system. We further explore the identity of the temporal information that is encoded in neural development, and how this information is decoded into various cellular fate decisions. PMID:26748623

  15. The Evolution and Development of Neural Superposition

    PubMed Central

    Agi, Egemen; Langen, Marion; Altschuler, Steven J.; Wu, Lani F.; Zimmermann, Timo

    2014-01-01

    Visual systems have a rich history as model systems for the discovery and understanding of basic principles underlying neuronal connectivity. The compound eyes of insects consist of up to thousands of small unit eyes that are connected by photoreceptor axons to set up a visual map in the brain. The photoreceptor axon terminals thereby represent neighboring points seen in the environment in neighboring synaptic units in the brain. Neural superposition is a special case of such a wiring principle, where photoreceptors from different unit eyes that receive the same input converge upon the same synaptic units in the brain. This wiring principle is remarkable, because each photoreceptor in a single unit eye receives different input and each individual axon, among thousands others in the brain, must be sorted together with those few axons that have the same input. Key aspects of neural superposition have been described as early as 1907. Since then neuroscientists, evolutionary and developmental biologists have been fascinated by how such a complicated wiring principle could evolve, how it is genetically encoded, and how it is developmentally realized. In this review article, we will discuss current ideas about the evolutionary origin and developmental program of neural superposition. Our goal is to identify in what way the special case of neural superposition can help us answer more general questions about the evolution and development of genetically “hard-wired” synaptic connectivity in the brain. PMID:24912630

  16. A neural basis for melanocortin-4 receptor regulated appetite

    PubMed Central

    Garfield, Alastair S.; Li, Chia; Madara, Joseph C.; Shah, Bhavik P.; Webber, Emily; Steger, Jennifer S.; Campbell, John N.; Gavrilova, Oksana; Lee, Charlotte E.; Olson, David P.; Elmquist, Joel K.; Tannous, Bakhos A.; Krashes, Michael J.; Lowell, Bradford B.

    2015-01-01

    Pro-opiomelanocortin (POMC)- and agouti-related peptide (AgRP)-expressing neurons are oppositely regulated by caloric depletion and co-ordinately stimulate and inhibit homeostatic satiety, respectively. This bimodality is principally underscored by the antagonistic actions of these ligands at downstream melanocortin-4 receptors (MC4R) within the paraventricular nucleus of the hypothalamus. Although this population is critical to energy balance the underlying neural circuitry remains unknown. Enabled by mice expressing Cre-recombinase in MC4R neurons, we demonstrate bidirectional control of feeding following real-time activation and inhibition of PVHMC4R neurons and further identify these cells as a functional exponent of ARCAgRP neuron-driven hunger. Moreover, we reveal this function to be mediated by a PVHMC4R→lateral parabrachial nucleus (LPBN) pathway. Activation of this circuit encodes positive valence, but only in calorically depleted mice. Thus, the satiating and appetitive nature of PVHMC4R→LPBN neurons supports the principles of drive reduction and highlights this circuit as a promising target for anti-obesity drug development. PMID:25915476

  17. Low Density Lipoprotein Receptor Related Proteins as Regulators of Neural Stem and Progenitor Cell Function

    PubMed Central

    Landowski, Lila M.; Young, Kaylene M.

    2016-01-01

    The central nervous system (CNS) is a highly organised structure. Many signalling systems work in concert to ensure that neural stem cells are appropriately directed to generate progenitor cells, which in turn mature into functional cell types including projection neurons, interneurons, astrocytes, and oligodendrocytes. Herein we explore the role of the low density lipoprotein (LDL) receptor family, in particular family members LRP1 and LRP2, in regulating the behaviour of neural stem and progenitor cells during development and adulthood. The ability of LRP1 and LRP2 to bind a diverse and extensive range of ligands, regulate ligand endocytosis, recruit nonreceptor tyrosine kinases for direct signal transduction and signal in conjunction with other receptors, enables them to modulate many crucial neural cell functions. PMID:26949399

  18. Syndecan 4 interacts genetically with Vangl2 to regulate neural tube closure and planar cell polarity

    PubMed Central

    Escobedo, Noelia; Contreras, Osvaldo; Muñoz, Rosana; Farías, Marjorie; Carrasco, Héctor; Hill, Charlotte; Tran, Uyen; Pryor, Sophie E.; Wessely, Oliver; Copp, Andrew J.; Larraín, Juan

    2013-01-01

    Syndecan 4 (Sdc4) is a cell-surface heparan sulfate proteoglycan (HSPG) that regulates gastrulation, neural tube closure and directed neural crest migration in Xenopus development. To determine whether Sdc4 participates in Wnt/PCP signaling during mouse development, we evaluated a possible interaction between a null mutation of Sdc4 and the loop-tail allele of Vangl2. Sdc4 is expressed in multiple tissues, but particularly in the non-neural ectoderm, hindgut and otic vesicles. Sdc4;Vangl2Lp compound mutant mice have defective spinal neural tube closure, disrupted orientation of the stereocilia bundles in the cochlea and delayed wound healing, demonstrating a strong genetic interaction. In Xenopus, co-injection of suboptimal amounts of Sdc4 and Vangl2 morpholinos resulted in a significantly greater proportion of embryos with defective neural tube closure than each individual morpholino alone. To probe the mechanism of this interaction, we overexpressed or knocked down Vangl2 function in HEK293 cells. The Sdc4 and Vangl2 proteins colocalize, and Vangl2, particularly the Vangl2Lp mutant form, diminishes Sdc4 protein levels. Conversely, Vangl2 knockdown enhances Sdc4 protein levels. Overall HSPG steady-state levels were regulated by Vangl2, suggesting a molecular mechanism for the genetic interaction in which Vangl2Lp/+ enhances the Sdc4-null phenotype. This could be mediated via heparan sulfate residues, as Vangl2Lp/+ embryos fail to initiate neural tube closure and develop craniorachischisis (usually seen only in Vangl2Lp/Lp) when cultured in the presence of chlorate, a sulfation inhibitor. These results demonstrate that Sdc4 can participate in the Wnt/PCP pathway, unveiling its importance during neural tube closure in mammalian embryos. PMID:23760952

  19. Making an effort to feel positive: insecure attachment in infancy predicts the neural underpinnings of emotion regulation in adulthood

    PubMed Central

    Moutsiana, Christina; Fearon, Pasco; Murray, Lynne; Cooper, Peter; Goodyer, Ian; Johnstone, Tom; Halligan, Sarah

    2014-01-01

    Background Animal research indicates that the neural substrates of emotion regulation may be persistently altered by early environmental exposures. If similar processes operate in human development then this is significant, as the capacity to regulate emotional states is fundamental to human adaptation. Methods We utilised a 22-year longitudinal study to examine the influence of early infant attachment to the mother, a key marker of early experience, on neural regulation of emotional states in young adults. Infant attachment status was measured via objective assessment at 18-months, and the neural underpinnings of the active regulation of affect were studied using fMRI at age 22 years. Results Infant attachment status at 18-months predicted neural responding during the regulation of positive affect 20-years later. Specifically, while attempting to up-regulate positive emotions, adults who had been insecurely versus securely attached as infants showed greater activation in prefrontal regions involved in cognitive control and reduced co-activation of nucleus accumbens with prefrontal cortex, consistent with relative inefficiency in the neural regulation of positive affect. Conclusions Disturbances in the mother–infant relationship may persistently alter the neural circuitry of emotion regulation, with potential implications for adjustment in adulthood. PMID:24397574

  20. Role of emergent neural activity in visual map development.

    PubMed

    Ackman, James B; Crair, Michael C

    2014-02-01

    The initial structural and functional development of visual circuits in reptiles, birds, and mammals happens independent of sensory experience. After eye opening, visual experience further refines and elaborates circuits that are critical for normal visual function. Innate genetic programs that code for gradients of molecules provide gross positional information for developing nerve cells, yet much of the cytoarchitectural complexity and synaptogenesis of neurons depends on calcium influx, neurotransmitter release, and neural activity before the onset of vision. In fact, specific spatiotemporal patterns of neural activity, or 'retinal waves', emerge amidst the development of the earliest connections made between excitable cells in the developing eye. These patterns of spontaneous activity, which have been observed in all amniote retinae examined to date, may be an evolved adaptation for species with long gestational periods before the onset of functional vision, imparting an informational robustness and redundancy to guide development of visual maps across the nervous system. Recent experiments indicate that retinal waves play a crucial role in the development of interconnections between different parts of the visual system, suggesting that these spontaneous patterns serve as a template-matching mechanism to prepare higher-order visually associative circuits for the onset of visuomotor learning and behavior. Key questions for future studies include determining the exact sources and nature of spontaneous activity during development, characterizing the interactions between neural activity and transcriptional gene regulation, and understanding the extent of circuit connectivity governed by retinal waves within and between sensory-motor systems. PMID:24492092

  1. Transcriptional regulation of cranial sensory placode development.

    PubMed

    Moody, Sally A; LaMantia, Anthony-Samuel

    2015-01-01

    Cranial sensory placodes derive from discrete patches of the head ectoderm and give rise to numerous sensory structures. During gastrulation, a specialized "neural border zone" forms around the neural plate in response to interactions between the neural and nonneural ectoderm and signals from adjacent mesodermal and/or endodermal tissues. This zone subsequently gives rise to two distinct precursor populations of the peripheral nervous system: the neural crest and the preplacodal ectoderm (PPE). The PPE is a common field from which all cranial sensory placodes arise (adenohypophyseal, olfactory, lens, trigeminal, epibranchial, otic). Members of the Six family of transcription factors are major regulators of PPE specification, in partnership with cofactor proteins such as Eya. Six gene activity also maintains tissue boundaries between the PPE, neural crest, and epidermis by repressing genes that specify the fates of those adjacent ectodermally derived domains. As the embryo acquires anterior-posterior identity, the PPE becomes transcriptionally regionalized, and it subsequently becomes subdivided into specific placodes with distinct developmental fates in response to signaling from adjacent tissues. Each placode is characterized by a unique transcriptional program that leads to the differentiation of highly specialized cells, such as neurosecretory cells, sensory receptor cells, chemosensory neurons, peripheral glia, and supporting cells. In this review, we summarize the transcriptional and signaling factors that regulate key steps of placode development, influence subsequent sensory neuron specification, and discuss what is known about mutations in some of the essential PPE genes that underlie human congenital syndromes. PMID:25662264

  2. The neural correlates of emotion regulation by implementation intentions.

    PubMed

    Hallam, Glyn P; Webb, Thomas L; Sheeran, Paschal; Miles, Eleanor; Wilkinson, Iain D; Hunter, Michael D; Barker, Anthony T; Woodruff, Peter W R; Totterdell, Peter; Lindquist, Kristen A; Farrow, Tom F D

    2015-01-01

    Several studies have investigated the neural basis of effortful emotion regulation (ER) but the neural basis of automatic ER has been less comprehensively explored. The present study investigated the neural basis of automatic ER supported by 'implementation intentions'. 40 healthy participants underwent fMRI while viewing emotion-eliciting images and used either a previously-taught effortful ER strategy, in the form of a goal intention (e.g., try to take a detached perspective), or a more automatic ER strategy, in the form of an implementation intention (e.g., "If I see something disgusting, then I will think these are just pixels on the screen!"), to regulate their emotional response. Whereas goal intention ER strategies were associated with activation of brain areas previously reported to be involved in effortful ER (including dorsolateral prefrontal cortex), ER strategies based on an implementation intention strategy were associated with activation of right inferior frontal gyrus and ventro-parietal cortex, which may reflect the attentional control processes automatically captured by the cue for action contained within the implementation intention. Goal intentions were also associated with less effective modulation of left amygdala, supporting the increased efficacy of ER under implementation intention instructions, which showed coupling of orbitofrontal cortex and amygdala. The findings support previous behavioural studies in suggesting that forming an implementation intention enables people to enact goal-directed responses with less effort and more efficiency. PMID:25798822

  3. The Neural Correlates of Emotion Regulation by Implementation Intentions

    PubMed Central

    Hallam, Glyn P.; Webb, Thomas L.; Sheeran, Paschal; Miles, Eleanor; Wilkinson, Iain D.; Hunter, Michael D.; Barker, Anthony T.; Woodruff, Peter W. R.; Totterdell, Peter; Lindquist, Kristen A.; Farrow, Tom F. D.

    2015-01-01

    Several studies have investigated the neural basis of effortful emotion regulation (ER) but the neural basis of automatic ER has been less comprehensively explored. The present study investigated the neural basis of automatic ER supported by ‘implementation intentions’. 40 healthy participants underwent fMRI while viewing emotion-eliciting images and used either a previously-taught effortful ER strategy, in the form of a goal intention (e.g., try to take a detached perspective), or a more automatic ER strategy, in the form of an implementation intention (e.g., “If I see something disgusting, then I will think these are just pixels on the screen!”), to regulate their emotional response. Whereas goal intention ER strategies were associated with activation of brain areas previously reported to be involved in effortful ER (including dorsolateral prefrontal cortex), ER strategies based on an implementation intention strategy were associated with activation of right inferior frontal gyrus and ventro-parietal cortex, which may reflect the attentional control processes automatically captured by the cue for action contained within the implementation intention. Goal intentions were also associated with less effective modulation of left amygdala, supporting the increased efficacy of ER under implementation intention instructions, which showed coupling of orbitofrontal cortex and amygdala. The findings support previous behavioural studies in suggesting that forming an implementation intention enables people to enact goal-directed responses with less effort and more efficiency. PMID:25798822

  4. SoxD Transcription Factors: Multifaceted Players of Neural Development

    PubMed Central

    Ji, Eun Hye; Kim, Jaesang

    2016-01-01

    SoxD transcription factor subfamily includes three members, Sox5, Sox6, and Sox13. Like other Sox genes, they contain the High-Mobility-Group (HMG) box as the DNA binding domain but in addition feature the subgroup-specific leucine zipper motif. SoxD genes are expressed in diverse cell types in multiple organs during embryogenesis and in adulthood. Among the cells expressing them are those present in the developing nervous system including neural stem (or progenitor) cells as well as differentiating neurons and oligodendrocytes. SoxD transcription factors do not contain distinct activator or repressor domain, and they are believed to function in modulation of other transcription factors in promoter-specific manners. This brief review article will attempt to summarize the latest studies on the function of SoxD genes in embryogenesis with a particular emphasis on the regulation of neural development. PMID:27426080

  5. Regulation of neural stem cells by choroid plexus cells population.

    PubMed

    Roballo, Kelly C S; Gonçalves, Natalia J N; Pieri, Naira C G; Souza, Aline F; Andrade, André F C; Ambrósio, Carlos E

    2016-07-28

    The choroid plexus is a tissue on the central nervous system responsible for producing cerebrospinal fluid, maintaining homeostasis and neural stem cells support; though, all of its functions still unclear. This study aimed to demonstrate the niches of choroid plexus cells for a better understanding of the cell types and functions, using the porcine as the animal model. The collected material was analyzed by histology, immunohistochemistry, and cell culture. The cell culture was characterizated by immunocytochemistry and flow cytometry. Our results showed OCT-4, TUBIII, Nestin, CD45, CD73, CD90 positive expression and GFAP, CD105 negative expression, also methylene blue histological staining confirmed the presence of telocytes cells. We realized that the choroid plexus is a unique and incomparable tissue with different niches of cells as pluripotent, hematopoietic, neuronal progenitors and telocyte cells, which provide its complexity, differentiated functionality and responsibility on brain balance and neural stem cells regulation. PMID:27181512

  6. Development of programmable artificial neural networks

    NASA Technical Reports Server (NTRS)

    Meade, Andrew J.

    1993-01-01

    Conventionally programmed digital computers can process numbers with great speed and precision, but do not easily recognize patterns or imprecise or contradictory data. Instead of being programmed in the conventional sense, artificial neural networks are capable of self-learning through exposure to repeated examples. However, the training of an ANN can be a time consuming and unpredictable process. A general method is being developed to mate the adaptability of the ANN with the speed and precision of the digital computer. This method was successful in building feedforward networks that can approximate functions and their partial derivatives from examples in a single iteration. The general method also allows the formation of feedforward networks that can approximate the solution to nonlinear ordinary and partial differential equations to desired accuracy without the need of examples. It is believed that continued research will produce artificial neural networks that can be used with confidence in practical scientific computing and engineering applications.

  7. Regulation of proliferation and histone acetylation in embryonic neural precursors by CREB/CREM signaling

    PubMed Central

    Parlato, Rosanna; Mandl, Claudia; Hölzl-Wenig, Gabriele; Liss, Birgit; Tucker, Kerry L; Ciccolini, Francesca

    2014-01-01

    The transcription factor CREB (cAMP-response element binding protein) regulates differentiation, migration, survival and activity-dependent gene expression in the developing and mature nervous system. However, its specific role in the proliferation of embryonic neural progenitors is still not completely understood. Here we investigated how CREB regulates proliferation of mouse embryonic neural progenitors by a conditional mutant lacking Creb gene in neural progenitors. In parallel, we explored possible compensatory effects by the genetic ablation of another member of the same gene family, the cAMP-responsive element modulator (Crem). We show that CREB loss differentially impaired the proliferation, clonogenic potential and self-renewal of precursors derived from the ganglionic eminence (GE), in comparison to those derived from the cortex. This phenotype was associated with a specific reduction of histone acetylation in the GE of CREB mutant mice, and this reduction was rescued in vivo by inhibition of histone deacetylation. These observations indicate that the impaired proliferation could be caused by a reduced acetyltransferase activity in Creb conditional knock-out mice. These findings support a crucial role of CREB in controlling embryonic neurogenesis and propose a novel mechanism by which CREB regulates embryonic neural development.

  8. Smad4 is required to regulate the fate of cranial neural crest cells

    PubMed Central

    Ko, Seung O; Chung, Il Hyuk; Xu, Xun; Oka, Shoji; Zhao, Hu; Cho, Eui Sic; Deng, Chuxia; Chai, Yang

    2009-01-01

    Smad4 is the central mediator for TGF-β/BMP signals, which are involved in regulating cranial neural crest (CNC) cell formation, migration, proliferation and fate determination. It is unclear whether TGF-β/BMP signals utilize Smad-dependent or –independent pathways to control the development of CNC cells. To investigate the functional significance of Smad4 in regulating CNC cells, we generated mice with neural crest specific inactivation of the Smad4 gene. Our study shows that Smad4 is not required for the migration of CNC cells, but is required in neural crest cells for the development of the cardiac outflow tract. Smad4 is essential in mediating BMP signaling in the CNC-derived ectomesenchyme during early stages of tooth development because conditional inactivation of Smad4 in neural crest derived cells results in incisor and molar development arrested at the dental lamina stage. Furthermore, Smad-mediated TGF-β/BMP signaling controls the homeobox gene patterning of oral/aboral and proximal/distal domains within the first branchial arch. At the cellular level, a Smad4-mediated downstream target gene(s) is required for the survival of CNC cells in the proximal domain of the first branchial arch. Smad4 mutant mice show underdevelopment of the first branchial arch and midline fusion defects. Taken together, our data show that TGF-β/BMP signals rely on Smad-dependent pathways in the ectomesenchyme to mediate epithelial-mesenchymal interactions that control craniofacial organogenesis. PMID:17964566

  9. BMP receptor IA is required in mammalian neural crest cells for development of the cardiac outflow tract and ventricular myocardium

    PubMed Central

    Stottmann, Rolf W.; Choi, Murim; Mishina, Yuji; Meyers, Erik N.; Klingensmith, John

    2010-01-01

    Summary The neural crest is a multipotent, migratory cell population arising from the border of the neural and surface ectoderm. In mouse, the initial migratory neural crest cells occur at the five-somite stage. Bone morphogenetic proteins (BMPs), particularly BMP2 and BMP4, have been implicated as regulators of neural crest cell induction, maintenance, migration, differentiation and survival. Mouse has three known BMP2/4 type I receptors, of which Bmpr1a is expressed in the neural tube sufficiently early to be involved in neural crest development from the outset; however, earlier roles in other domains obscure its requirement in the neural crest. We have ablated Bmpr1a specifically in the neural crest, beginning at the five-somite stage. We find that most aspects of neural crest development occur normally; suggesting that BMPRIA is unnecessary for many aspects of early neural crest biology. However, mutant embryos display a shortened cardiac outflow tract with defective septation, a process known to require neural crest cells and to be essential for perinatal viability. Surprisingly, these embryos die in mid-gestation from acute heart failure, with reduced proliferation of ventricular myocardium. The myocardial defect may involve reduced BMP signaling in a novel, minor population of neural crest derivatives in the epicardium, a known source of ventricular myocardial proliferation signals. These results demonstrate that BMP2/4 signaling in mammalian neural crest derivatives is essential for outflow tract development and may regulate a crucial proliferation signal for the ventricular myocardium. PMID:15073157

  10. Transcriptional regulation of cranial sensory placode development

    PubMed Central

    Moody, Sally A.; LaMantia, Anthony-Samuel

    2015-01-01

    Cranial sensory placodes derive from discrete patches of the head ectoderm, and give rise to numerous sensory structures. During gastrulation, a specialized “neural border zone” forms around the neural plate in response to interactions between the neural and non-neural ectoderm and signals from adjacent mesodermal and/or endodermal tissues. This zone subsequently gives rise to two distinct precursor populations of the peripheral nervous system: the neural crest and the pre-placodal ectoderm (PPE). The PPE is a common field from which all cranial sensory placodes arise (adenohypophyseal, olfactory, lens, trigeminal, epibranchial, otic). Members of the Six family of transcription factors are major regulators of PPE specification, in partnership with co-factor proteins such as Eya. Six gene activity also maintains tissue boundaries between the PPE, neural crest and epidermis by repressing genes that specify the fates of those adjacent ectodermally-derived domains. As the embryo acquires anterior-posterior identity, the PPE becomes transcriptionally regionalized, and it subsequently subdivides into specific placodes with distinct developmental fates in response to signaling from adjacent tissues. Each placode is characterized by a unique transcriptional program that leads to the differentiation of highly specialized cells, such as neurosecretory cells, somatic sensory receptor cells, chemosensory neurons, peripheral glia and supporting cells. In this review, we summarize the transcriptional and signaling factors that regulate key steps of placode development, influence subsequent sensory neuron specification, and discuss what is known about mutations in some of the essential PPE genes that underlie human congenital syndromes. PMID:25662264

  11. Ataxin-1 regulates proliferation of hippocampal neural precursors.

    PubMed

    Asher, M; Johnson, A; Zecevic, B; Pease, D; Cvetanovic, M

    2016-05-13

    Polyglutamine expansion in the protein ATAXIN-1 (ATXN1) causes spinocerebellar ataxia type 1 (SCA1), an inherited neurodegenerative disease characterized by motor deficits, cognitive impairment and depression. Although ubiquitously expressed, mutant ATXN1 causes neurodegeneration primarily in the cerebellum, which is responsible for the observed motor deficits. The role of ATXN1 outside of the cerebellum and the causes of cognitive deficits and depression in SCA1 are less understood. In this study, we demonstrate a novel role of ATXN1 in the hippocampus as a regulator of adult neurogenesis. Adult hippocampal neurogenesis is the process of generating new hippocampal neurons and is linked to cognition and mood. We found that loss of ATXN1 causes a decrease in hippocampal neurogenesis in ATXN1 null (Atxn1(-/-)) mice. This decrease was caused by reduced proliferation of neural precursors in the hippocampus of Atxn1(-/-) mice, and persisted even when Atxn1(-/-) hippocampal neural precursors were removed from their natural environment and grown in vitro, suggesting that ATXN1 affects proliferation in a cell-autonomous manner. Moreover, expression of ATXN1 with a pathological polyglutamine (polyQ) expansion in wild-type neural precursor cells inhibited their proliferation. Our data establish a novel role for ATXN1 in the hippocampus as an intrinsic regulator of precursor cell proliferation, and suggest a mechanism by which polyQ expansion and loss of ATXN1 affect hippocampal function, potentially contributing to cognitive deficits and depression. These results indicate that while depletion of ATXN1 is a promising therapeutic approach to treat the cerebellar aspects of SCA1, this approach should be employed with caution given the potential for side effects on hippocampal function with loss of wild-type ATXN1. PMID:26876606

  12. Neural correlates of conscious self-regulation of emotion.

    PubMed

    Beauregard, M; Lévesque, J; Bourgouin, P

    2001-09-15

    A fundamental question about the relationship between cognition and emotion concerns the neural substrate underlying emotional self-regulation. To address this issue, brain activation was measured in normal male subjects while they either responded in a normal manner to erotic film excerpts or voluntarily attempted to inhibit the sexual arousal induced by viewing erotic stimuli. Results demonstrated that the sexual arousal experienced, in response to the erotic film excerpts, was associated with activation in "limbic" and paralimbic structures, such as the right amygdala, right anterior temporal pole, and hypothalamus. In addition, the attempted inhibition of the sexual arousal generated by viewing the erotic stimuli was associated with activation of the right superior frontal gyrus and right anterior cingulate gyrus. No activation was found in limbic areas. These findings reinforce the view that emotional self-regulation is normally implemented by a neural circuit comprising various prefrontal regions and subcortical limbic structures. They also suggest that humans have the capacity to influence the electrochemical dynamics of their brains, by voluntarily changing the nature of the mind processes unfolding in the psychological space. PMID:11549754

  13. Making an Effort to Feel Positive: Insecure Attachment in Infancy Predicts the Neural Underpinnings of Emotion Regulation in Adulthood

    ERIC Educational Resources Information Center

    Moutsiana, Christina; Fearon, Pasco; Murray, Lynne; Cooper, Peter; Goodyer, Ian; Johnstone, Tom; Halligan, Sarah

    2014-01-01

    Background: Animal research indicates that the neural substrates of emotion regulation may be persistently altered by early environmental exposures. If similar processes operate in human development then this is significant, as the capacity to regulate emotional states is fundamental to human adaptation. Methods: We utilised a 22-year longitudinal…

  14. Regulation of cell protrusions by small GTPases during fusion of the neural folds

    PubMed Central

    Rolo, Ana; Savery, Dawn; Escuin, Sarah; de Castro, Sandra C; Armer, Hannah EJ; Munro, Peter MG; Molè, Matteo A; Greene, Nicholas DE; Copp, Andrew J

    2016-01-01

    Epithelial fusion is a crucial process in embryonic development, and its failure underlies several clinically important birth defects. For example, failure of neural fold fusion during neurulation leads to open neural tube defects including spina bifida. Using mouse embryos, we show that cell protrusions emanating from the apposed neural fold tips, at the interface between the neuroepithelium and the surface ectoderm, are required for completion of neural tube closure. By genetically ablating the cytoskeletal regulators Rac1 or Cdc42 in the dorsal neuroepithelium, or in the surface ectoderm, we show that these protrusions originate from surface ectodermal cells and that Rac1 is necessary for the formation of membrane ruffles which typify late closure stages, whereas Cdc42 is required for the predominance of filopodia in early neurulation. This study provides evidence for the essential role and molecular regulation of membrane protrusions prior to fusion of a key organ primordium in mammalian development. DOI: http://dx.doi.org/10.7554/eLife.13273.001 PMID:27114066

  15. Development of nanowire arrays for neural probe

    NASA Astrophysics Data System (ADS)

    Abraham, Jose K.; Xie, Jining; Varadan, Vijay K.

    2005-05-01

    It is already established that functional electrical stimulation is an effective way to restore many functions of the brain in disabled individuals. The electrical stimulation can be done by using an array of electrodes. Neural probes stimulate or sense the biopotentials mainly through the exposed metal sites. These sites should be smaller relative to the spatial potential distribution so that any potential averaging in the sensing area can be avoided. At the same time, the decrease in size of these sensing sites is limited due to the increase in impedance levels and the thermal noise while decreasing its size. It is known that current density in a planar electrode is not uniform and a higher current density can be observer around the perimeter of the electrodes. Electrical measurements conducted on many nanotubes and nanowires have already proved that it could be possible to use for current density applications and the drawbacks of the present design in neural probes can be overcome by incorporating many nanotechnology solutions. In this paper we present the design and development of nanowire arrays for the neural probe for the multisite contact which has the ability to collect and analyze isolated single unit activity. An array of vertically grown nanowires is used as contact site and many of such arrays can be used for stimulating as well as recording sites. The nanolevel interaction and wireless communication solution can extend to applications involving the treatment of many neurological disorders including Parkinson"s disease, Alzheimer"s disease, spinal injuries and the treatment of blindness and paralyzed patients with minimal or no invasive surgical procedures.

  16. Neural Correlates of Automatic Mood Regulation in Girls at High Risk for Depression

    PubMed Central

    Joormann, Jutta; Cooney, Rebecca E.; Henry, Melissa L.; Gotlib, Ian H.

    2012-01-01

    Daughters of depressed mothers are at significantly elevated risk for developing a depressive disorder themselves. We have little understanding, however, of the specific factors that contribute to this risk. The ability to regulate negative affect effectively is critical to emotional and physical health and may play an important role in influencing risk for depression. We examined whether never-disordered daughters whose mothers have experienced recurrent episodes of depression during their daughters’ lifetime differ from never-disordered daughters of never-disordered mothers in their patterns of neural activation during a negative mood induction and during automatic mood regulation. Sad mood was induced in daughters through the use of film clips; daughters then recalled positive autobiographical memories, a procedure shown previously to repair negative affect. During the mood induction, high-risk girls exhibited greater activation than did low-risk daughters in brain areas that have frequently been implicated in the experience of negative affect, including the amygdala and ventrolateral prefrontal cortex. In contrast, during automatic mood regulation, low-risk daughters exhibited greater activation than did their high-risk counterparts in brain areas that have frequently been associated with top-down regulation of emotion, including the dorsolateral prefrontal cortex and dorsal anterior cingulate cortex. These findings indicate that girls at high and low risk for depression differ in their patterns of neural activation both while experiencing, and while repairing negative affect, and suggest that anomalies in neural functioning precede the onset of a depressive episode. PMID:21895344

  17. Neural regulation of cancer: from mechanobiology to inflammation.

    PubMed

    Kim, Tae-Hyung; Rowat, Amy C; Sloan, Erica K

    2016-05-01

    Despite recent progress in cancer research, the exact nature of malignant transformation and its progression is still not fully understood. Particularly metastasis, which accounts for most cancer death, is a very complex process, and new treatment strategies require a more comprehensive understanding of underlying regulatory mechanisms. Recently, the sympathetic nervous system (SNS) has been implicated in cancer progression and beta-blockers have been identified as a novel strategy to limit metastasis. This review discusses evidence that SNS signaling regulates metastasis by modulating the physical characteristics of tumor cells, tumor-associated immune cells and the extracellular matrix (ECM). Altered mechanotype is an emerging hallmark of cancer cells that is linked to invasive phenotype and treatment resistance. Mechanotype also influences crosstalk between tumor cells and their environment, and may thus have a critical role in cancer progression. First, we discuss how neural signaling regulates metastasis and how SNS signaling regulates both biochemical and mechanical properties of tumor cells, immune cells and the ECM. We then review our current knowledge of the mechanobiology of cancer with a focus on metastasis. Next, we discuss links between SNS activity and tumor-associated inflammation, the mechanical properties of immune cells, and how the physical properties of the ECM regulate cancer and metastasis. Finally, we discuss the potential for clinical translation of our knowledge of cancer mechanobiology to improve diagnosis and treatment. PMID:27350878

  18. Neural regulation of cancer: from mechanobiology to inflammation

    PubMed Central

    Kim, Tae-Hyung; Rowat, Amy C; Sloan, Erica K

    2016-01-01

    Despite recent progress in cancer research, the exact nature of malignant transformation and its progression is still not fully understood. Particularly metastasis, which accounts for most cancer death, is a very complex process, and new treatment strategies require a more comprehensive understanding of underlying regulatory mechanisms. Recently, the sympathetic nervous system (SNS) has been implicated in cancer progression and beta-blockers have been identified as a novel strategy to limit metastasis. This review discusses evidence that SNS signaling regulates metastasis by modulating the physical characteristics of tumor cells, tumor-associated immune cells and the extracellular matrix (ECM). Altered mechanotype is an emerging hallmark of cancer cells that is linked to invasive phenotype and treatment resistance. Mechanotype also influences crosstalk between tumor cells and their environment, and may thus have a critical role in cancer progression. First, we discuss how neural signaling regulates metastasis and how SNS signaling regulates both biochemical and mechanical properties of tumor cells, immune cells and the ECM. We then review our current knowledge of the mechanobiology of cancer with a focus on metastasis. Next, we discuss links between SNS activity and tumor-associated inflammation, the mechanical properties of immune cells, and how the physical properties of the ECM regulate cancer and metastasis. Finally, we discuss the potential for clinical translation of our knowledge of cancer mechanobiology to improve diagnosis and treatment. PMID:27350878

  19. Sea urchin neural development and the metazoan paradigm of neurogenesis.

    PubMed

    Burke, Robert D; Moller, Daniel J; Krupke, Oliver A; Taylor, Valerie J

    2014-03-01

    Summary:Urchin embryos continue to prove useful as a means of studying embryonic signaling and gene regulatory networks, which together control early development. Recent progress in understanding the molecular mechanisms underlying the patterning of ectoderm has renewed interest in urchin neurogenesis. We have employed an emerging model of neurogenesis that appears to be broadly shared by metazoans as a framework for this review. We use the model to provide context and summarize what is known about neurogenesis in urchin embryos. We review morphological features of the differentiation phase of neurogenesis and summarize current understanding of neural specification and regulation of proneural networks. Delta-Notch signaling is a common feature of metazoan neurogenesis that produces committed progenitors and it appears to be a critical phase of neurogenesis in urchin embryos. Descriptions of the differentiation phase of neurogenesis indicate a stereotypic sequence of neural differentiation and patterns of axonal growth. Features of neural differentiation are consistent with localized signals guiding growth cones with trophic, adhesive, and tropic cues. Urchins are a facile, postgenomic model with the potential of revealing many shared and derived features of deuterostome neurogenesis. PMID:25368883

  20. Dscam-Mediated Cell Recognition Regulates Neural Circuit Formation

    PubMed Central

    Hattori, Daisuke; Millard, S. Sean; Wojtowicz, Woj M.; Zipursky, S. Lawrence

    2009-01-01

    The Dscam family of immunoglobulin cell surface proteins mediates recognition events between neurons that play an essential role in the establishment of neural circuits. The Drosophila Dscam1 locus encodes tens of thousands of cell surface proteins via alternative splicing. These isoforms exhibit exquisite isoform-specific binding in vitro that mediates homophilic repulsion in vivo. These properties provide the molecular basis for self-avoidance, an essential developmental mechanism that allows axonal and dendritic processes to uniformly cover their synaptic fields. In a mechanistically similar fashion, homophilic repulsion mediated by Drosophila Dscam2 prevents processes from the same class of cells from occupying overlapping synaptic fields through a process called tiling. Genetic studies in the mouse visual system support the view that vertebrate DSCAM also promotes both self-avoidance and tiling. By contrast, DSCAM and DSCAM-L promote layer-specific targeting in the chick visual system, presumably through promoting homophilic adhesion. The fly and mouse studies underscore the importance of homophilic repulsion in regulating neural circuit assembly, whereas the chick studies suggest that DSCA Mproteins may mediate a variety of different recognition events during wiring in a context-dependent fashion. PMID:18837673

  1. Endothelial cells regulate neural crest and second heart field morphogenesis

    PubMed Central

    Milgrom-Hoffman, Michal; Michailovici, Inbal; Ferrara, Napoleone; Zelzer, Elazar; Tzahor, Eldad

    2014-01-01

    ABSTRACT Cardiac and craniofacial developmental programs are intricately linked during early embryogenesis, which is also reflected by a high frequency of birth defects affecting both regions. The molecular nature of the crosstalk between mesoderm and neural crest progenitors and the involvement of endothelial cells within the cardio–craniofacial field are largely unclear. Here we show in the mouse that genetic ablation of vascular endothelial growth factor receptor 2 (Flk1) in the mesoderm results in early embryonic lethality, severe deformation of the cardio–craniofacial field, lack of endothelial cells and a poorly formed vascular system. We provide evidence that endothelial cells are required for migration and survival of cranial neural crest cells and consequently for the deployment of second heart field progenitors into the cardiac outflow tract. Insights into the molecular mechanisms reveal marked reduction in Transforming growth factor beta 1 (Tgfb1) along with changes in the extracellular matrix (ECM) composition. Our collective findings in both mouse and avian models suggest that endothelial cells coordinate cardio–craniofacial morphogenesis, in part via a conserved signaling circuit regulating ECM remodeling by Tgfb1. PMID:24996922

  2. The epigenetic factor Kmt2a/Mll1 regulates neural progenitor proliferation and neuronal and glial differentiation.

    PubMed

    Huang, Yin-Cheng; Shih, Hung-Yu; Lin, Sheng-Jia; Chiu, Ching-Chi; Ma, Tsu-Lin; Yeh, Tu-Hsueh; Cheng, Yi-Chuan

    2015-05-01

    Multiple epigenetic factors play a critical role in cell proliferation and differentiation. However, their function in embryogenesis, especially in neural development, is currently unclear. The Trithorax group (TrxG) homolog KMT2A (MLL1) is an important epigenetic regulator during development and has an especially well-defined role in hematopoiesis. Translocation and aberrant expression of KMT2A is often observed in many tumors, indicating its proto-oncogenic character. Here, we show that Kmt2a was essential for neural development in zebrafish embryos. Disrupting the expression of Kmt2a using morpholino antisense oligonucleotides and a dominant-negative variant resulted in neurogenic phenotypes, including downregulated proliferation of neural progenitors, premature differentiation of neurons, and impaired gliogenesis. This study therefore revealed a novel function of Kmt2a in cell proliferation and differentiation, providing further insight into the function of TrxG proteins in neural development and brain tumors. PMID:25284327

  3. Effects of Spaceflight on Drosophila Neural Development

    NASA Technical Reports Server (NTRS)

    Keshishian, Haig S.

    1997-01-01

    The major goal from the animal side, however, has been achieved, namely to develop Drosophila lines where we can assay individual neuromuscular endings directly without dissection. This was achieved by means of using the GAL4-UAS system, where we have succeeded in establishing stocks of flies where the key neuromuscular connections can be assayed directly in undissected larvae by means of the expression of endogenously fluorescent reporters in the specific motor endings. The green fluorescent protein (GFP) as a reporter allows scoring of neural anatomy en-masse in whole mount using fluorescent microscopy without the need for either dissection or specific labeling. Two stocks have been developed. The first, which we developed first, uses the S65T mutant form, which has a dramatically brighter expression than the native protein. This animal will use GAL4 drivers with expression under the control of the elav gene, and which will ensure expression in all neurons of the embryo and larva. The second transgenic animal we have developed is of a novel kind, and makes use of dicistronic design, so that two copies of the protein will be expressed per insert. We have also developed a tricistronic form, but this has not yet been transformed into flies, and we do not imagine that this third line will be ready in time for the flight.

  4. Insulin-like factor regulates neural induction through an IGF1 receptor-independent mechanism

    PubMed Central

    Haramoto, Yoshikazu; Takahashi, Shuji; Oshima, Tomomi; Onuma, Yasuko; Ito, Yuzuru; Asashima, Makoto

    2015-01-01

    Insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) signalling is required for normal embryonic growth and development. Previous reports indicated that the IGF/IGF1R/MAPK pathway contributes to neural induction and the IGF/IGF1R/PI3K/Akt pathway to eye development. Here, we report the isolation of insulin3 encoding a novel insulin-like ligand involved in neural induction. Insulin3 has a similar structure to pro-insulin and mature IGF ligands, but cannot activate the IGF1 receptor. However, similar to IGFs, Insulin3 induced the gene expression of an anterior neural marker, otx2, and enlarged anterior head structures by inhibiting Wnt signalling. Insulin3 are predominantly localised to the endoplasmic reticulum when otx2 is induced by insulin3. Insulin3 reduced extracellular Wnts and cell surface localised Lrp6. These results suggest that Insulin3 is a novel cell-autonomous inhibitor of Wnt signalling. This study provides the first evidence that an insulin-like factor regulates neural induction through an IGF1R-independent mechanism. PMID:26112133

  5. YAP regulates neural progenitor cell number via the TEA domain transcription factor

    PubMed Central

    Cao, Xinwei; Pfaff, Samuel L.; Gage, Fred H.

    2008-01-01

    Tight control of cell proliferation is essential for proper growth during development and for tissue homeostasis in mature animals. The evolutionarily conserved Hippo pathway restrains proliferation through a kinase cascade that culminates in the inhibition of the transcriptional coactivator YAP. Unphosphorylated YAP activates genes involved in cell proliferation and survival by interacting with a DNA-binding factor. Here we show that during vertebrate neural tube development, the TEA domain transcription factor (TEAD) is the cognate DNA-binding partner of YAP. YAP and TEAD gain of function causes marked expansion of the neural progenitor population, partly owing to their ability to promote cell cycle progression by inducing cyclin D1 and to inhibit differentiation by suppressing NeuroM. Their loss of function results in increased apoptosis, whereas repressing their target genes leads to premature neuronal differentiation. Inhibiting the upstream kinases of the Hippo pathway also causes neural progenitor overproliferation. Thus, the Hippo pathway plays critical roles in regulating neural progenitor cell number by affecting proliferation, fate choice, and cell survival. PMID:19015275

  6. An FGF3-BMP Signaling Axis Regulates Caudal Neural Tube Closure, Neural Crest Specification and Anterior-Posterior Axis Extension

    PubMed Central

    Anderson, Matthew J.; Schimmang, Thomas; Lewandoski, Mark

    2016-01-01

    During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM). Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3-BMP signaling axis is

  7. An FGF3-BMP Signaling Axis Regulates Caudal Neural Tube Closure, Neural Crest Specification and Anterior-Posterior Axis Extension.

    PubMed

    Anderson, Matthew J; Schimmang, Thomas; Lewandoski, Mark

    2016-05-01

    During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM). Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3-BMP signaling axis is

  8. Histamine up-regulates fibroblast growth factor receptor 1 and increases FOXP2 neurons in cultured neural precursors by histamine type 1 receptor activation: conceivable role of histamine in neurogenesis during cortical development in vivo

    PubMed Central

    2013-01-01

    Background During rat development, histamine (HA) is one of the first neuroactive molecules to appear in the brain, reaching its maximal value at embryonic day 14, a period when neurogenesis of deep layers is occurring in the cerebral cortex, suggesting a role of this amine in neuronal specification. We previously reported, using high-density cerebrocortical neural precursor cultures, that micromolar HA enhanced the effect of fibroblast growth factor (FGF)-2 on proliferation, and that HA increased neuronal differentiation, due to HA type 1 receptor (H1R) activation. Results Clonal experiments performed here showed that HA decreased colony size and caused a significant increase in the percentage of clones containing mature neurons through H1R stimulation. In proliferating precursors, we studied whether HA activates G protein-coupled receptors linked to intracellular calcium increases. Neural cells presented an increase in cytoplasmic calcium even in the absence of extracellular calcium, a response mediated by H1R. Since FGF receptors (FGFRs) are known to be key players in cell proliferation and differentiation, we determined whether HA modifies the expression of FGFRs1-4 by using RT-PCR. An important transcriptional increase in FGFR1 was elicited after H1R activation. We also tested whether HA promotes differentiation specifically to neurons with molecular markers of different cortical layers by immunocytochemistry. HA caused significant increases in cells expressing the deep layer neuronal marker FOXP2; this induction of FOXP2-positive neurons elicited by HA was blocked by the H1R antagonist chlorpheniramine in vitro. Finally, we found a notable decrease in FOXP2+ cortical neurons in vivo, when chlorpheniramine was infused in the cerebral ventricles through intrauterine injection. Conclusion These results show that HA, by activating H1R, has a neurogenic effect in clonal conditions and suggest that intracellular calcium elevation and transcriptional up-regulation

  9. Neural Regulation of Pancreatic Cancer: A Novel Target for Intervention

    PubMed Central

    Chang, Aeson; Kim-Fuchs, Corina; Le, Caroline P.; Hollande, Frédéric; Sloan, Erica K.

    2015-01-01

    The tumor microenvironment is known to play a pivotal role in driving cancer progression and governing response to therapy. This is of significance in pancreatic cancer where the unique pancreatic tumor microenvironment, characterized by its pronounced desmoplasia and fibrosis, drives early stages of tumor progression and dissemination, and contributes to its associated low survival rates. Several molecular factors that regulate interactions between pancreatic tumors and their surrounding stroma are beginning to be identified. Yet broader physiological factors that influence these interactions remain unclear. Here, we discuss a series of preclinical and mechanistic studies that highlight the important role chronic stress plays as a physiological regulator of neural-tumor interactions in driving the progression of pancreatic cancer. These studies propose several approaches to target stress signaling via the β-adrenergic signaling pathway in order to slow pancreatic tumor growth and metastasis. They also provide evidence to support the use of β-blockers as a novel therapeutic intervention to complement current clinical strategies to improve cancer outcome in patients with pancreatic cancer. PMID:26193320

  10. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation.

    PubMed

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias; Ponimaskin, Evgeni; Dityatev, Alexander

    2016-09-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  11. Early development of the neural plate, neural crest and facial region of marsupials

    PubMed Central

    SMITH, KATHLEEN K.

    2001-01-01

    Marsupial mammals have a distinctive reproductive strategy. The young are born after an exceptionally short period of organogenesis and are consequently extremely altricial. Yet because they must be functionally independent in an essentially embryonic condition, the marsupial neonate exhibits a unique suite of adaptations. In particular, certain bones of the facial region, most cranial musculature and a few additional structures are accelerated in their development. In contrast, central nervous system structures, especially the forebrain, are markedly premature at birth, resembling an embryonic d 11 or 12 mouse. This review examines the developmental processes that are modified to produce these evolutionary changes. The focus is on the early development of the neural plate, neural crest and facial region in the marsupial, Monodelphis domestica, compared with patterns reported for rodents. Neural crest begins differentiation and migration at the neural plate stage, which results in large accumulations of neural crest in the facial region at an early stage of development. The early accumulation of neural crest provides the material for the accelerated development of oral and facial structures. The first arch region is massive in the early embryo, and the development of the olfactory placode and frontonasal region is advanced relative to the forebrain region. The development of the forebrain is delayed in marsupials relative to the hindbrain or facial region. These observations illustrate how development may be modified to produce evolutionary changes that distinguish taxa. Further, they suggest that development is not necessarily highly conserved, but instead may be quite plastic. PMID:11523813

  12. Bone Morphogenetic Protein 4 Signalling in Neural Stem and Progenitor Cells during Development and after Injury

    PubMed Central

    Cole, Alistair E.; Murray, Simon S.; Xiao, Junhua

    2016-01-01

    Substantial progress has been made in identifying the extracellular signalling pathways that regulate neural stem and precursor cell biology in the central nervous system (CNS). The bone morphogenetic proteins (BMPs), in particular BMP4, are key players regulating neuronal and glial cell development from neural precursor cells in the embryonic, postnatal, and injured CNS. Here we review recent studies on BMP4 signalling in the generation of neurons, astrocytes, and oligodendroglial cells in the CNS. We also discuss putative mechanisms that BMP4 may utilise to influence glial cell development following CNS injury and highlight some questions for further research. PMID:27293450

  13. Regulating the High: Cognitive and Neural Processes Underlying Positive Emotion Regulation in Bipolar I Disorder

    PubMed Central

    Park, Jiyoung; Ayduk, Özlem; O'Donnell, Lisa; Chun, Jinsoo; Gruber, June; Kamali, Masoud; McInnis, Melvin; Deldin, Patricia; Kross, Ethan

    2015-01-01

    Although it is well established that Bipolar Disorder (BD) is characterized by excessive positive emotionality, the cognitive and neural processes that underlie such responses are unclear. We addressed this issue by examining the role that an emotion regulatory process called self-distancing plays in two potentially different BD phenotypes—BD with vs. without a history of psychosis—and healthy individuals. Participants reflected on a positive autobiographical memory and then rated their level of spontaneous self-distancing. Neurophysiological activity was continuously monitored using electroencephalogram. As predicted, participants with BD who have a history of psychosis spontaneously self-distanced less and displayed greater neurophysiological signs of positive emotional reactivity compared to the other two groups. These findings shed light on the cognitive and neural mechanisms underlying excessive positive emotionality in BD. They also suggest that individuals with BD who have a history of psychosis may represent a distinct clinical phenotype characterized by dysfunctional emotion regulation. PMID:26719819

  14. Regulation of Nematostella neural progenitors by SoxB, Notch and bHLH genes.

    PubMed

    Richards, Gemma Sian; Rentzsch, Fabian

    2015-10-01

    Notch signalling, SoxB and Group A bHLH 'proneural' genes are conserved regulators of the neurogenic program in many bilaterians. However, the ancestry of their functions and interactions is not well understood. We address this question in the sea anemone Nematostella vectensis, a representative of the Cnidaria, the sister clade to the Bilateria. It has previously been found that the SoxB orthologue NvSoxB(2) is expressed in neural progenitor cells (NPCs) in Nematostella and promotes the development of both neurons and nematocytes, whereas Notch signalling has been implicated in the negative regulation of neurons and the positive regulation of nematocytes. Here, we clarify the role of Notch by reporting that inhibition of Notch signalling increases the numbers of both neurons and nematocytes, as well as increasing the number of NvSoxB(2)-expressing cells. This suggests that Notch restricts neurogenesis by limiting the generation of NPCs. We then characterise NvAth-like (Atonal/Neurogenin family) as a positive regulator of neurogenesis that is co-expressed with NvSoxB(2) in a subset of dividing NPCs, while we find that NvAshA (Achaete-scute family) and NvSoxB(2) are co-expressed in non-dividing cells only. Reciprocal knockdown experiments reveal a mutual requirement for NvSoxB(2) and NvAth-like in neural differentiation; however, the primary expression of each gene is independent of the other. Together, these data demonstrate that Notch signalling and NvSoxB(2) regulate Nematostella neural progenitors via parallel yet interacting mechanisms; with different aspects of these interactions being shared with Drosophila and/or vertebrate neurogenesis. PMID:26443634

  15. Development of the neural network algorithm projecting system Neural Architecture and its application in combining medical expert systems

    NASA Astrophysics Data System (ADS)

    Timofeew, Sergey; Eliseev, Vladimir; Tcherkassov, Oleg; Birukow, Valentin; Orbachevskyi, Leonid; Shamsutdinov, Uriy

    1998-04-01

    Some problems of creation of medical expert systems and the ways of their overcoming using artificial neural networks are discussed. The instrumental system for projecting neural network algorithms `Neural Architector', developed by the authors, is described. It allows to perform effective modeling of artificial neural networks and to analyze their work. The example of the application of the `Neural Architector' system in composing an expert system for diagnostics of pulmonological diseases is shown.

  16. Advances in Artificial Neural Networks - Methodological Development and Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...

  17. Neural commitment of human pluripotent stem cells under defined conditions recapitulates neural development and generates patient-specific neural cells.

    PubMed

    Fernandes, Tiago G; Duarte, Sofia T; Ghazvini, Mehrnaz; Gaspar, Cláudia; Santos, Diana C; Porteira, Ana R; Rodrigues, Gonçalo M C; Haupt, Simone; Rombo, Diogo M; Armstrong, Judith; Sebastião, Ana M; Gribnau, Joost; Garcia-Cazorla, Àngels; Brüstle, Oliver; Henrique, Domingos; Cabral, Joaquim M S; Diogo, Maria Margarida

    2015-10-01

    Standardization of culture methods for human pluripotent stem cell (PSC) neural differentiation can greatly contribute to the development of novel clinical advancements through the comprehension of neurodevelopmental diseases. Here, we report an approach that reproduces neural commitment from human induced pluripotent stem cells using dual-SMAD inhibition under defined conditions in a vitronectin-based monolayer system. By employing this method it was possible to obtain neurons derived from both control and Rett syndrome patients' pluripotent cells. During differentiation mutated cells displayed alterations in the number of neuronal projections, and production of Tuj1 and MAP2-positive neurons. Although investigation of a broader number of patients would be required, these observations are in accordance with previous studies showing impaired differentiation of these cells. Consequently, our experimental methodology was proved useful not only for the generation of neural cells, but also made possible to compare neural differentiation behavior of different cell lines under defined culture conditions. This study thus expects to contribute with an optimized approach to study the neural commitment of human PSCs, and to produce patient-specific neural cells that can be used to gain a better understanding of disease mechanisms. PMID:26123315

  18. Compassion-based emotion regulation up-regulates experienced positive affect and associated neural networks.

    PubMed

    Engen, Haakon G; Singer, Tania

    2015-09-01

    Emotion regulation research has primarily focused on techniques that attenuate or modulate the impact of emotional stimuli. Recent evidence suggests that this mode regulation can be problematic in the context of regulation of emotion elicited by the suffering of others, resulting in reduced emotional connectedness. Here, we investigated the effects of an alternative emotion regulation technique based on the up-regulation of positive affect via Compassion-meditation on experiential and neural affective responses to depictions of individuals in distress, and compared these with the established emotion regulation strategy of Reappraisal. Using fMRI, we scanned 15 expert practitioners of Compassion-meditation either passively viewing, or using Compassion-meditation or Reappraisal to modulate their emotional reactions to film clips depicting people in distress. Both strategies effectively, but differentially regulated experienced affect, with Compassion primarily increasing positive and Reappraisal primarily decreasing negative affect. Imaging results showed that Compassion, relative to both passive-viewing and Reappraisal increased activation in regions involved in affiliation, positive affect and reward processing including ventral striatum and medial orbitfrontal cortex. This network was shown to be active prior to stimulus presentation, suggesting that the regulatory mechanism of Compassion is the stimulus-independent endogenous generation of positive affect. PMID:25698699

  19. FGF signaling transforms non-neural ectoderm into neural crest.

    PubMed

    Yardley, Nathan; García-Castro, Martín I

    2012-12-15

    The neural crest arises at the border between the neural plate and the adjacent non-neural ectoderm. It has been suggested that both neural and non-neural ectoderm can contribute to the neural crest. Several studies have examined the molecular mechanisms that regulate neural crest induction in neuralized tissues or the neural plate border. Here, using the chick as a model system, we address the molecular mechanisms by which non-neural ectoderm generates neural crest. We report that in response to FGF the non-neural ectoderm can ectopically express several early neural crest markers (Pax7, Msx1, Dlx5, Sox9, FoxD3, Snail2, and Sox10). Importantly this response to FGF signaling can occur without inducing ectopic mesodermal tissues. Furthermore, the non-neural ectoderm responds to FGF by expressing the prospective neural marker Sox3, but it does not express definitive markers of neural or anterior neural (Sox2 and Otx2) tissues. These results suggest that the non-neural ectoderm can launch the neural crest program in the absence of mesoderm, without acquiring definitive neural character. Finally, we report that prior to the upregulation of these neural crest markers, the non-neural ectoderm upregulates both BMP and Wnt molecules in response to FGF. Our results provide the first effort to understand the molecular events leading to neural crest development via the non-neural ectoderm in amniotes and present a distinct response to FGF signaling. PMID:23000357

  20. Neural network of cognitive emotion regulation--an ALE meta-analysis and MACM analysis.

    PubMed

    Kohn, N; Eickhoff, S B; Scheller, M; Laird, A R; Fox, P T; Habel, U

    2014-02-15

    Cognitive regulation of emotions is a fundamental prerequisite for intact social functioning which impacts on both well being and psychopathology. The neural underpinnings of this process have been studied intensively in recent years, without, however, a general consensus. We here quantitatively summarize the published literature on cognitive emotion regulation using activation likelihood estimation in fMRI and PET (23 studies/479 subjects). In addition, we assessed the particular functional contribution of identified regions and their interactions using quantitative functional inference and meta-analytic connectivity modeling, respectively. In doing so, we developed a model for the core brain network involved in emotion regulation of emotional reactivity. According to this, the superior temporal gyrus, angular gyrus and (pre) supplementary motor area should be involved in execution of regulation initiated by frontal areas. The dorsolateral prefrontal cortex may be related to regulation of cognitive processes such as attention, while the ventrolateral prefrontal cortex may not necessarily reflect the regulatory process per se, but signals salience and therefore the need to regulate. We also identified a cluster in the anterior middle cingulate cortex as a region, which is anatomically and functionally in an ideal position to influence behavior and subcortical structures related to affect generation. Hence this area may play a central, integrative role in emotion regulation. By focusing on regions commonly active across multiple studies, this proposed model should provide important a priori information for the assessment of dysregulated emotion regulation in psychiatric disorders. PMID:24220041

  1. Endogenous microglia regulate development of embryonic cortical precursor cells.

    PubMed

    Antony, Joseph M; Paquin, Annie; Nutt, Stephen L; Kaplan, David R; Miller, Freda D

    2011-03-01

    Microglia play important roles in the damaged or degenerating adult nervous system. However, the role of microglia in embryonic brain development is still largely uncharacterized. Here we show that microglia are present in regions of the developing brain that contain neural precursors from E11 onward. To determine whether these microglia are important for neural precursor maintenance or self-renewal, we cultured embryonic neural precursors from the cortex of PU.1(-/-) mice, which we show lack resident microglia during embryogenesis. Cell survival and neurogenesis were similar in cultures from PU.1(-/-) vs. PU.1(+/+) mice, but precursor proliferation and astrogenesis were both reduced. Cortical precursors depleted of microglia also displayed decreased precursor proliferation and astrogenesis, and these deficits could be rescued when microglia were added back to the cultures. Moreover, when the number of microglia present in cortical precursor cultures was increased above normal levels, astrogenesis but not neurogenesis was increased. Together these results demonstrate that microglia present within the embryonic neural precursor niche can regulate neural precursor development and suggest that alterations in microglial number as a consequence of genetic or pathological events could perturb neural development by directly affecting embryonic neural precursors. PMID:21259316

  2. TLX: A Master Regulator for Neural Stem Cell Maintenance and Neurogenesis

    PubMed Central

    Islam, Mohammed M.; Zhang, Chun-Li

    2014-01-01

    The orphan nuclear receptor TLX, also known as NR2E1, is an essential regulator of neural stem cell (NSC) self-renewal, maintenance, and neurogenesis. In vertebrates, TLX is specifically localized to the neurogenic regions of the forebrain and retina throughout development and adulthood. TLX regulates the expression of genes involved in multiple pathways, such as the cell cycle, DNA replication, and cell adhesion. These roles are primarily performed through the transcriptional repression or activation of downstream target genes. Emerging evidence suggests the misregulation of TLX might play a role in the onset and progression of human neurological disorders making this factor an ideal therapeutic target. Here, we review the current understanding of TLX function, expression, regulation, and activity significant to NSC maintenance, adult neurogenesis, and brain plasticity. PMID:24930777

  3. Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3

    PubMed Central

    Nitzan, Erez; Pfaltzgraff, Elise R.; Labosky, Patricia A.; Kalcheim, Chaya

    2013-01-01

    Skin melanocytes arise from two sources: either directly from neural crest progenitors or indirectly from neural crest-derived Schwann cell precursors after colonization of peripheral nerves. The relationship between these two melanocyte populations and the factors controlling their specification remains poorly understood. Direct lineage tracing reveals that neural crest and Schwann cell progenitor-derived melanocytes are differentially restricted to the epaxial and hypaxial body domains, respectively. Furthermore, although both populations are initially part of the Foxd3 lineage, hypaxial melanocytes lose Foxd3 at late stages upon separation from the nerve, whereas we recently found that epaxial melanocytes segregate earlier from Foxd3-positive neural progenitors while still residing in the dorsal neural tube. Gain- and loss-of-function experiments in avians and mice, respectively, reveal that Foxd3 is both sufficient and necessary for regulating the balance between melanocyte and Schwann cell development. In addition, Foxd3 is also sufficient to regulate the switch between neuronal and glial fates in sensory ganglia. Together, we propose that differential fate acquisition of neural crest-derived cells depends on their progressive segregation from the Foxd3-positive lineage. PMID:23858437

  4. Filamin a regulates neural progenitor proliferation and cortical size through Wee1-dependent Cdk1 phosphorylation.

    PubMed

    Lian, Gewei; Lu, Jie; Hu, Jianjun; Zhang, Jingping; Cross, Sally H; Ferland, Russell J; Sheen, Volney L

    2012-05-30

    Cytoskeleton-associated proteins play key roles not only in regulating cell morphology and migration but also in proliferation. Mutations in the cytoskeleton-associated gene filamin A (FlnA) cause the human disorder periventricular heterotopia (PH). PH is a disorder of neural stem cell development that is characterized by disruption of progenitors along the ventricular epithelium and subsequent formation of ectopic neuronal nodules. FlnA-dependent regulation of cytoskeletal dynamics is thought to direct neural progenitor migration and proliferation. Here we show that embryonic FlnA-null mice exhibited a reduction in brain size and decline in neural progenitor numbers over time. The drop in the progenitor population was not attributable to cell death or changes in premature differentiation, but to prolonged cell cycle duration. Suppression of FlnA led to prolongation of the entire cell cycle length, principally in M phase. FlnA loss impaired degradation of cyclin B1-related proteins, thereby delaying the onset and progression through mitosis. We found that the cdk1 kinase Wee1 bound FlnA, demonstrated increased expression levels after loss of FlnA function, and was associated with increased phosphorylation of cdk1. Phosphorylation of cdk1 inhibited activation of the anaphase promoting complex degradation system, which was responsible for cyclin B1 degradation and progression through mitosis. Collectively, our results demonstrate a molecular mechanism whereby FlnA loss impaired G2 to M phase entry, leading to cell cycle prolongation, compromised neural progenitor proliferation, and reduced brain size. PMID:22649246

  5. Cell polarity pathways converge and extend to regulate neural tube closure.

    PubMed

    Zohn, Irene E; Chesnutt, Catherine R; Niswander, Lee

    2003-09-01

    Neural tube defects, such as spinabifida, craniorachischisis and anencephaly, are some of the most common birth defects in humans. Recent studies in mouse model systems suggest that craniorachischisis is associated with mutations in genes that regulate cell polarity. Using Xenopus as a model system, Wallingford and Harland have now shed light on the mechanism by which these pathways affect neural tube closure. PMID:12946622

  6. What is the Ultimate Goal in Neural Regulation of Cardiovascular Function?

    ERIC Educational Resources Information Center

    Prakash, E. S.; Madanmohan; Pal, Gopal Krushna

    2004-01-01

    We used the following multiple-choice question after a series of lectures in cardiovascular physiology in the first year of an undergraduate medical curriculum (n = 66) to assess whether students had understood the neural regulation of cardiovascular function. In health, neural cardiovascular mechanisms are geared toward maintaining A) cardiac…

  7. Taurine Induces Proliferation of Neural Stem Cells and Synapse Development in the Developing Mouse Brain

    PubMed Central

    Shivaraj, Mattu Chetana; Marcy, Guillaume; Low, Guoliang; Ryu, Jae Ryun; Zhao, Xianfeng; Rosales, Francisco J.; Goh, Eyleen L. K.

    2012-01-01

    Taurine is a sulfur-containing amino acid present in high concentrations in mammalian tissues. It has been implicated in several processes involving brain development and neurotransmission. However, the role of taurine in hippocampal neurogenesis during brain development is still unknown. Here we show that taurine regulates neural progenitor cell (NPC) proliferation in the dentate gyrus of the developing brain as well as in cultured early postnatal (P5) hippocampal progenitor cells and hippocampal slices derived from P5 mice brains. Taurine increased cell proliferation without having a significant effect on neural differentiation both in cultured P5 NPCs as well as cultured hippocampal slices and in vivo. Expression level analysis of synaptic proteins revealed that taurine increases the expression of Synapsin 1 and PSD 95. We also found that taurine stimulates the phosphorylation of ERK1/2 indicating a possible role of the ERK pathway in mediating the changes that we observed, especially in proliferation. Taken together, our results demonstrate a role for taurine in neural stem/progenitor cell proliferation in developing brain and suggest the involvement of the ERK1/2 pathways in mediating these actions. Our study also shows that taurine influences the levels of proteins associated with synapse development. This is the first evidence showing the effect of taurine on early postnatal neuronal development using a combination of in vitro, ex-vivo and in vivo systems. PMID:22916184

  8. Neural Mechanisms of Emotion Regulation in Childhood Anxiety

    ERIC Educational Resources Information Center

    Hum, Kathryn M.; Manassis, Katharina; Lewis, Marc D.

    2013-01-01

    Background: The present study was designed to examine the cortical processes that mediate cognitive regulation in response to emotion-eliciting stimuli in anxious children. Methods: Electroencephalographic (EEG) activity was recorded from clinically anxious children ("n" = 29) and typically developing children ("n" = 34).…

  9. Misexpression of BRE gene in the developing chick neural tube affects neurulation and somitogenesis

    PubMed Central

    Wang, Guang; Li, Yan; Wang, Xiao-Yu; Chuai, Manli; Yeuk-Hon Chan, John; Lei, Jian; Münsterberg, Andrea; Lee, Kenneth Ka Ho; Yang, Xuesong

    2015-01-01

    The brain and reproductive expression (BRE) gene is expressed in numerous adult tissues and especially in the nervous and reproductive systems. However, little is known about BRE expression in the developing embryo or about its role in embryonic development. In this study, we used in situ hybridization to reveal the spatiotemporal expression pattern for BRE in chick embryo during development. To determine the importance of BRE in neurogenesis, we overexpressed BRE and also silenced BRE expression specifically in the neural tube. We established that overexpressing BRE in the neural tube indirectly accelerated Pax7+ somite development and directly increased HNK-1+ neural crest cell (NCC) migration and TuJ-1+ neurite outgrowth. These altered morphogenetic processes were associated with changes in the cell cycle of NCCs and neural tube cells. The inverse effect was obtained when BRE expression was silenced in the neural tube. We also determined that BMP4 and Shh expression in the neural tube was affected by misexpression of BRE. This provides a possible mechanism for how altering BRE expression was able to affect somitogenesis, neurogenesis, and NCC migration. In summary, our results demonstrate that BRE plays an important role in regulating neurogenesis and indirectly somite differentiation during early chick embryo development. PMID:25568339

  10. Neural compensation mechanisms to regulate motor output during physical fatigue.

    PubMed

    Tanaka, Masaaki; Watanabe, Yasuyoshi

    2011-06-13

    Central fatigue refers to a progressive decline in the ability to activate muscles voluntarily. Although the neural mechanisms of central inhibition of the motor area during physical fatigue have been widely investigated, mechanisms supporting motor output during fatigue remain to be clarified. In this study, the compensation mechanisms to regulate physical fatigue were examined using a 160-channel whole-head-type magnetoencephalographic (MEG) system. The study group consisted of nine right-handed healthy participants. After enrollment, participants performed a fatigue-inducing physical task session in which they performed repetitive grips of the right hand at maximal voluntary contraction levels every second. Before and after the session, imagery of maximum grips of the right hand was performed for evaluation with MEG. Although beta-band event-related desynchronization (ERD) level of the motor movement-evoked magnetic field in the left sensorimotor area showed a trend toward reduction after the fatigue session, the ERD level of the motor movement-evoked magnetic field in the right sensorimotor area was increased after the session. The ERD level in the prefrontal area was increased after the fatigue-inducing session. The ERD level in the left sensorimotor area was positively associated with that in the right sensorimotor area after the fatigue-inducing task session. In addition, ERD levels in the left and right sensorimotor areas had trends toward positive correlations with that in the prefrontal area. These results suggest that the ipsilateral sensorimotor and prefrontal areas are brain regions associated with compensation mechanisms to support motor output under the condition of physical fatigue. PMID:21550592

  11. Pubertal development and regulation.

    PubMed

    Abreu, Ana Paula; Kaiser, Ursula B

    2016-03-01

    Puberty marks the end of childhood and is a period when individuals undergo physiological and psychological changes to achieve sexual maturation and fertility. The hypothalamic-pituitary-gonadal axis controls puberty and reproduction and is tightly regulated by a complex network of excitatory and inhibitory factors. This axis is active in the embryonic and early postnatal stages of life and is subsequently restrained during childhood, and its reactivation culminates in puberty initiation. The mechanisms underlying this reactivation are not completely known. The age of puberty onset varies between individuals and the timing of puberty initiation is associated with several health outcomes in adult life. In this Series paper, we discuss pubertal markers, epidemiological trends of puberty initiation over time, and the mechanisms whereby genetic, metabolic, and other factors control secretion of gonadotropin-releasing hormone to determine initiation of puberty. PMID:26852256

  12. Adolescent nicotine induces persisting changes in development of neural connectivity.

    PubMed

    Smith, Robert F; McDonald, Craig G; Bergstrom, Hadley C; Ehlinger, Daniel G; Brielmaier, Jennifer M

    2015-08-01

    Adolescent nicotine induces persisting changes in development of neural connectivity. A large number of brain changes occur during adolescence as the CNS matures. These changes suggest that the adolescent brain may still be susceptible to developmental alterations by substances which impact its growth. Here we review recent studies on adolescent nicotine which show that the adolescent brain is differentially sensitive to nicotine-induced alterations in dendritic elaboration, in several brain areas associated with processing reinforcement and emotion, specifically including nucleus accumbens, medial prefrontal cortex, basolateral amygdala, bed nucleus of the stria terminalis, and dentate gyrus. Both sensitivity to nicotine, and specific areas responding to nicotine, differ between adolescent and adult rats, and dendritic changes in response to adolescent nicotine persist into adulthood. Areas sensitive to, and not sensitive to, structural remodeling induced by adolescent nicotine suggest that the remodeling generally corresponds to the extended amygdala. Evidence suggests that dendritic remodeling is accompanied by persisting changes in synaptic connectivity. Modeling, electrophysiological, neurochemical, and behavioral data are consistent with the implication of our anatomical studies showing that adolescent nicotine induces persisting changes in neural connectivity. Emerging data thus suggest that early adolescence is a period when nicotine consumption, presumably mediated by nicotine-elicited changes in patterns of synaptic activity, can sculpt late brain development, with consequent effects on synaptic interconnection patterns and behavior regulation. Adolescent nicotine may induce a more addiction-prone phenotype, and the structures altered by nicotine also subserve some emotional and cognitive functions, which may also be altered. We suggest that dendritic elaboration and associated changes are mediated by activity-dependent synaptogenesis, acting in part

  13. The epigenetic switches for neural development and psychiatric disorders.

    PubMed

    Lv, Jingwen; Xin, Yongjuan; Zhou, Wenhao; Qiu, Zilong

    2013-07-20

    The most remarkable feature of the nervous system is that the development and functions of the brain are largely reshaped by postnatal experiences, in joint with genetic landscapes. The nature vs. nurture argument reminds us that both genetic and epigenetic information is indispensable for the normal function of the brain. The epigenetic regulatory mechanisms in the central nervous system have been revealed over last a decade. Moreover, the mutations of epigenetic modulator genes have been shown to be implicated in neuropsychiatric disorders, such as autism spectrum disorders. The epigenetic study has initiated in the neuroscience field for a relative short period of time. In this review, we will summarize recent discoveries about epigenetic regulation on neural development, synaptic plasticity, learning and memory, as well as neuropsychiatric disorders. Although the comprehensive view of how epigenetic regulation contributes to the function of the brain is still not completed, the notion that brain, the most complicated organ of organisms, is profoundly shaped by epigenetic switches is widely accepted. PMID:23876774

  14. A Src-Tks5 Pathway Is Required for Neural Crest Cell Migration during Embryonic Development

    PubMed Central

    Murphy, Danielle A.; Tsai, Jeff H.; Kawakami, Yasuhiko; Maurer, Jochen; Stewart, Rodney A.; Izpisúa-Belmonte, Juan Carlos; Courtneidge, Sara A.

    2011-01-01

    In the adult organism, cell migration is required for physiological processes such as angiogenesis and immune surveillance, as well as pathological events such as tumor metastasis. The adaptor protein and Src substrate Tks5 is necessary for cancer cell migration through extracellular matrix in vitro and tumorigenicity in vivo. However, a role for Tks5 during embryonic development, where cell migration is essential, has not been examined. We used morpholinos to reduce Tks5 expression in zebrafish embryos, and observed developmental defects, most prominently in neural crest-derived tissues such as craniofacial structures and pigmentation. The Tks5 morphant phenotype was rescued by expression of mammalian Tks5, but not by a variant of Tks5 in which the Src phosphorylation sites have been mutated. We further evaluated the role of Tks5 in neural crest cells and neural crest-derived tissues and found that loss of Tks5 impaired their ventral migration. Inhibition of Src family kinases also led to abnormal ventral patterning of neural crest cells and their derivatives. We confirmed that these effects were likely to be cell autonomous by shRNA-mediated knockdown of Tks5 in a murine neural crest stem cell line. Tks5 was required for neural crest cell migration in vitro, and both Src and Tks5 were required for the formation of actin-rich structures with similarity to podosomes. Additionally, we observed that neural crest cells formed Src-Tks5-dependent cell protrusions in 3-D culture conditions and in vivo. These results reveal an important and novel role for the Src-Tks5 pathway in neural crest cell migration during embryonic development. Furthermore, our data suggests that this pathway regulates neural crest cell migration through the generation of actin-rich pro-migratory structures, implying that similar mechanisms are used to control cell migration during embryogenesis and cancer metastasis. PMID:21799874

  15. The development of the neural crest in the human

    PubMed Central

    O’Rahilly, Ronan; Müller, Fabiola

    2007-01-01

    The first systematic account of the neural crest in the human has been prepared after an investigation of 185 serially sectioned staged embryos, aided by graphic reconstructions. As many as fourteen named topographical subdivisions of the crest were identified and eight of them give origin to ganglia (Table 2). Significant findings in the human include the following. (1) An indication of mesencephalic neural crest is discernible already at stage 9, and trigeminal, facial, and postotic components can be detected at stage 10. (2) Crest was not observed at the level of diencephalon 2. Although pre-otic crest from the neural folds is at first continuous (stage 10), crest-free zones are soon observable (stage 11) in Rh.1, 3, and 5. (3) Emigration of cranial neural crest from the neural folds at the neurosomatic junction begins before closure of the rostral neuropore, and later crest cells do not accumulate above the neural tube. (4) The trigeminal, facial, glossopharyngeal and vagal ganglia, which develop from crest that emigrates before the neural folds have fused, continue to receive contributions from the roof plate of the neural tube after fusion of the folds. (5) The nasal crest and the terminalis-vomeronasal complex are the last components of the cranial crest to appear (at stage 13) and they persist longer. (6) The optic, mesencephalic, isthmic, accessory, and hypoglossal crest do not form ganglia. Cervical ganglion 1 is separated early from the neural crest and is not a Froriep ganglion. (7) The cranial ganglia derived from neural crest show a specific relationship to individual neuromeres, and rhombomeres are better landmarks than the otic primordium, which descends during stages 9–14. (8) Epipharyngeal placodes of the pharyngeal arches contribute to cranial ganglia, although that of arch 1 is not typical. (9) The neural crest from rhombomeres 6 and 7 that migrates to pharyngeal arch 3 and from there rostrad to the truncus arteriosus at stage 12 is identified

  16. Quantum neural networks: Current status and prospects for development

    NASA Astrophysics Data System (ADS)

    Altaisky, M. V.; Kaputkina, N. E.; Krylov, V. A.

    2014-11-01

    The idea of quantum artificial neural networks, first formulated in [34], unites the artificial neural network concept with the quantum computation paradigm. Quantum artificial neural networks were first systematically considered in the PhD thesis by T. Menneer (1998). Based on the works of Menneer and Narayanan [42, 43], Kouda, Matsui, and Nishimura [35, 36], Altaisky [2, 68], Zhou [67], and others, quantum-inspired learning algorithms for neural networks were developed, and are now used in various training programs and computer games [29, 30]. The first practically realizable scaled hardware-implemented model of the quantum artificial neural network is obtained by D-Wave Systems, Inc. [33]. It is a quantum Hopfield network implemented on the basis of superconducting quantum interference devices (SQUIDs). In this work we analyze possibilities and underlying principles of an alternative way to implement quantum neural networks on the basis of quantum dots. A possibility of using quantum neural network algorithms in automated control systems, associative memory devices, and in modeling biological and social networks is examined.

  17. Adapting for endocytosis: roles for endocytic sorting adaptors in directing neural development

    PubMed Central

    Yap, Chan Choo; Winckler, Bettina

    2015-01-01

    Proper cortical development depends on the orchestrated actions of a multitude of guidance receptors and adhesion molecules and their downstream signaling. The levels of these receptors on the surface and their precise locations can greatly affect guidance outcomes. Trafficking of receptors to a particular surface locale and removal by endocytosis thus feed crucially into the final guidance outcomes. In addition, endocytosis of receptors can affect downstream signaling (both quantitatively and qualitatively) and regulated endocytosis of guidance receptors is thus an important component of ensuring proper neural development. We will discuss the cell biology of regulated endocytosis and the impact on neural development. We focus our discussion on endocytic accessory proteins (EAPs) (such as numb and disabled) and how they regulate endocytosis and subsequent post-endocytic trafficking of their cognate receptors (such as Notch, TrkB, β-APP, VLDLR, and ApoER2). PMID:25904845

  18. Early regulative ability of the neuroepithelium to form cardiac neural crest

    PubMed Central

    Ezin, Akouavi M.; Sechrist, John W.; Zah, Angela; Bronner, Marianne; Fraser, Scott E.

    2010-01-01

    The cardiac neural crest (arising from the level of hindbrain rhombomeres 6–8) contributes to the septation of the cardiac outflow tract and the formation of aortic arches. Removal of this population after neural tube closure results in severe septation defects in the chick, reminiscent of human birth defects. Because neural crest cells from other axial levels have regenerative capacity, we asked whether the cardiac neural crest might also regenerate at early stages in a manner that declines with time. Accordingly, we find that ablation of presumptive cardiac crest at stage 7, as the neural folds elevate, results in reformation of migrating cardiac neural crest by stage 13. Fate mapping reveals that the new population derives largely from the neuroepithelium ventral and rostral to the ablation. The stage of ablation dictates the competence of residual tissue to regulate and regenerate, as this capacity is lost by stage 9, consistent with previous reports. These findings suggest that there is a temporal window during which the presumptive cardiac neural crest has the capacity to regulate and regenerate, but this regenerative ability is lost earlier than in other neural crest populations. PMID:21047505

  19. Chromatin Remodeling Inactivates Activity Genes and Regulates Neural Coding

    PubMed Central

    Hill, Kelly K.; Hemberg, Martin; Reddy, Naveen C.; Cho, Ha Y.; Guthrie, Arden N.; Oldenborg, Anna; Heiney, Shane A.; Ohmae, Shogo; Medina, Javier F.; Holy, Timothy E.; Bonni, Azad

    2016-01-01

    Activity-dependent transcription influences neuronal connectivity, but the roles and mechanisms of inactivation of activity-dependent genes have remained poorly understood. Genome-wide analyses in the mouse cerebellum revealed that the nucleosome remodeling and deacetylase (NuRD) complex deposits the histone variant H2A.z at promoters of activity-dependent genes, thereby triggering their inactivation. Purification of translating mRNAs from synchronously developing granule neurons (Sync-TRAP) showed that conditional knockout of the core NuRD subunit Chd4 impairs inactivation of activity-dependent genes when neurons undergo dendrite pruning. Chd4 knockout or expression of NuRD-regulated activity genes impairs dendrite pruning. Imaging of behaving mice revealed hyperresponsivity of granule neurons to sensorimotor stimuli upon Chd4 knockout. Our findings define an epigenetic mechanism that inactivates activity-dependent transcription and regulates dendrite patterning and sensorimotor encoding in the brain. PMID:27418512

  20. REN: a novel, developmentally regulated gene that promotes neural cell differentiation.

    PubMed

    Gallo, Rita; Zazzeroni, Francesca; Alesse, Edoardo; Mincione, Claudia; Borello, Ugo; Buanne, Pasquale; D'Eugenio, Roberta; Mackay, Andrew R; Argenti, Beatrice; Gradini, Roberto; Russo, Matteo A; Maroder, Marella; Cossu, Giulio; Frati, Luigi; Screpanti, Isabella; Gulino, Alberto

    2002-08-19

    Expansion and fate choice of pluripotent stem cells along the neuroectodermal lineage is regulated by a number of signals, including EGF, retinoic acid, and NGF, which also control the proliferation and differentiation of central nervous system (CNS) and peripheral nervous system (PNS) neural progenitor cells. We report here the identification of a novel gene, REN, upregulated by neurogenic signals (retinoic acid, EGF, and NGF) in pluripotent embryonal stem (ES) cells and neural progenitor cell lines in association with neurotypic differentiation. Consistent with a role in neural promotion, REN overexpression induced neuronal differentiation as well as growth arrest and p27Kip1 expression in CNS and PNS neural progenitor cell lines, and its inhibition impaired retinoic acid induction of neurogenin-1 and NeuroD expression. REN expression is developmentally regulated, initially detected in the neural fold epithelium of the mouse embryo during gastrulation, and subsequently throughout the ventral neural tube, the outer layer of the ventricular encephalic neuroepithelium and in neural crest derivatives including dorsal root ganglia. We propose that REN represents a novel component of the neurogenic signaling cascade induced by retinoic acid, EGF, and NGF, and is both a marker and a regulator of neuronal differentiation. PMID:12186855

  1. Nuclear Factor One B regulates neural stem cell differentiation and axonal projection of corticofugal neurons

    PubMed Central

    Betancourt, Jennifer; Katzman, Sol; Chen, Bin

    2014-01-01

    During development of the cerebral cortex, neural stem cells divide to expand the progenitor pool and generate basal progenitors, outer radial glia and cortical neurons. As these newly born neurons differentiate, they must properly migrate toward their final destination in the cortical plate, project axons to appropriate targets, and develop dendrites. However, a complete understanding of the precise genetic mechanisms regulating these steps is lacking. Here we show that a member of the nuclear factor one (NFI) family of transcription factors, NFIB, is essential for many of these processes in mice. We performed a detailed analysis of NFIB expression during cortical development, and investigated defects in cortical neurogenesis, neuronal migration and differentiation in NfiB−/− brains. We found that NFIB is strongly expressed in radial glia and corticofugal neurons throughout cortical development. However, in NfiB−/− cortices, radial glia failed to generate outer radial glia, subsequently resulting in a loss of late basal progenitors. In addition, corticofugal neurons showed a severe loss of axonal projections, while late-born cortical neurons displayed defects in migration and ectopically expressed the early-born neuronal marker, CTIP2. Furthermore, gene expression analysis, by RNA-sequencing, revealed a misexpression of genes that regulate the cell cycle, neuronal differentiation and migration in NfiB−/− brains. Together these results demonstrate the critical functions of NFIB in regulating cortical development. PMID:23749646

  2. Regulators of gene expression in Enteric Neural Crest Cells are putative Hirschsprung disease genes.

    PubMed

    Schriemer, Duco; Sribudiani, Yunia; IJpma, Arne; Natarajan, Dipa; MacKenzie, Katherine C; Metzger, Marco; Binder, Ellen; Burns, Alan J; Thapar, Nikhil; Hofstra, Robert M W; Eggen, Bart J L

    2016-08-01

    The enteric nervous system (ENS) is required for peristalsis of the gut and is derived from Enteric Neural Crest Cells (ENCCs). During ENS development, the RET receptor tyrosine kinase plays a critical role in the proliferation and survival of ENCCs, their migration along the developing gut, and differentiation into enteric neurons. Mutations in RET and its ligand GDNF cause Hirschsprung disease (HSCR), a complex genetic disorder in which ENCCs fail to colonize variable lengths of the distal bowel. To identify key regulators of ENCCs and the pathways underlying RET signaling, gene expression profiles of untreated and GDNF-treated ENCCs from E14.5 mouse embryos were generated. ENCCs express genes that are involved in both early and late neuronal development, whereas GDNF treatment induced neuronal maturation. Predicted regulators of gene expression in ENCCs include the known HSCR genes Ret and Sox10, as well as Bdnf, App and Mapk10. The regulatory overlap and functional interactions between these genes were used to construct a regulatory network that is underlying ENS development and connects to known HSCR genes. In addition, the adenosine receptor A2a (Adora2a) and neuropeptide Y receptor Y2 (Npy2r) were identified as possible regulators of terminal neuronal differentiation in GDNF-treated ENCCs. The human orthologue of Npy2r maps to the HSCR susceptibility locus 4q31.3-q32.3, suggesting a role for NPY2R both in ENS development and in HSCR. PMID:27266404

  3. Molecular control of brain size: Regulators of neural stem cell life, death and beyond

    SciTech Connect

    Joseph, Bertrand; Hermanson, Ola

    2010-05-01

    The proper development of the brain and other organs depends on multiple parameters, including strictly controlled expansion of specific progenitor pools. The regulation of such expansion events includes enzymatic activities that govern the correct number of specific cells to be generated via an orchestrated control of cell proliferation, cell cycle exit, differentiation, cell death etc. Certain proteins in turn exert direct control of these enzymatic activities and thus progenitor pool expansion and organ size. The members of the Cip/Kip family (p21Cip1/p27Kip1/p57Kip2) are well-known regulators of cell cycle exit that interact with and inhibit the activity of cyclin-CDK complexes, whereas members of the p53/p63/p73 family are traditionally associated with regulation of cell death. It has however become clear that the roles for these proteins are not as clear-cut as initially thought. In this review, we discuss the roles for proteins of the Cip/Kip and p53/p63/p73 families in the regulation of cell cycle control, differentiation, and death of neural stem cells. We suggest that these proteins act as molecular interfaces, or 'pilots', to assure the correct assembly of protein complexes with enzymatic activities at the right place at the right time, thereby regulating essential decisions in multiple cellular events.

  4. p73 regulates maintenance of neural stem cell

    SciTech Connect

    Agostini, Massimiliano; Tucci, Paola; Biochemistry Laboratory, IDI-IRCCS, C Chen, Hailan; Knight, Richard A.; Bano, Daniele; Nicotera, Pierluigi; McKeon, Frank; Melino, Gerry; Biochemistry Laboratory, IDI-IRCCS, C/O University of Rome 'Tor Vergata', 00133 Rome

    2010-12-03

    Research highlights: {yields} TAp73 is expressed in neural stem cells and its expression increases following their differentiation. {yields} Neural stem cells from p73 null mice have a reduced proliferative potential. {yields} p73-deficient neural stem cells show reduced expression of members of the Sox-2 and Notch gene families. {yields} Neurogenic areas are reduced in the brains of embryonic and adult p73-/- mice. -- Abstract: p73, a member of the p53 family, is a transcription factor that plays a key role in many biological processes. In the present study, we show that TAp73 is expressed in neural stem cells (NSC) and its expression increases following their differentiation. NSC from p73 null mice have a reduced proliferative potential, together with reduced expression of members of the Sox-2 and Notch gene families known to be important for NSC proliferation. In parallel with this in vitro data, the width of the neurogenic areas was reduced in the brains of embryonic and adult p73-/- mice. These data suggest that p73, and in particular TAp73, is important for maintenance of the NSC pool.

  5. Mutuality and the social regulation of neural threat responding

    PubMed Central

    Coan, James A.; Kasle, Shelley; Jackson, Alice; Schaefer, Hillary S.; Davidson, Richard J.

    2014-01-01

    Recent studies have shown that the presence of a caring relational partner can attenuate neural responses to threat. Here we report reanalyzed data from Coan, Schaefer, and Davidson (2006), investigating the role of relational mutuality in the neural response to threat. Mutuality reflects the degree to which couple members show mutual interest in the sharing of internal feelings, thoughts, aspirations, and joys – a vital form of responsiveness in attachment relationships. We predicted that wives who were high (versus low) in perceived mutuality, and who attended the study session with their husbands, would show reduced neural threat reactivity in response to mild electric shocks. We also explored whether this effect would depend on physical contact (handholding). As predicted, we observed that higher mutuality scores corresponded with decreased neural threat responding in the right dorsolateral prefrontal cortex and supplementary motor cortex. These effects were independent of hand-holding condition. These findings suggest that higher perceived mutuality corresponds with decreased self-regulatory effort and attenuated preparatory motor activity in response to threat cues, even in the absence of direct physical contact with social resources. PMID:23547803

  6. Growth and splitting of neural sequences in songbird vocal development

    PubMed Central

    Okubo, Tatsuo S.; Mackevicius, Emily L.; Payne, Hannah L.; Lynch, Galen F.; Fee, Michale S.

    2015-01-01

    Neural sequences are a fundamental feature of brain dynamics underlying diverse behaviors, but the mechanisms by which they develop during learning remain unknown. Songbirds learn vocalizations composed of syllables; in adult birds, each syllable is produced by a different sequence of action potential bursts in the premotor cortical area HVC. Here we carried out recordings of large populations of HVC neurons in singing juvenile birds throughout learning to examine the emergence of neural sequences. Early in vocal development, HVC neurons begin producing rhythmic bursts, temporally locked to a ‘prototype’ syllable. Different neurons are active at different latencies relative to syllable onset to form a continuous sequence. Through development, as new syllables emerge from the prototype syllable, initially highly overlapping burst sequences become increasingly distinct. We propose a mechanistic model in which multiple neural sequences can emerge from the growth and splitting of a common precursor sequence. PMID:26618871

  7. Morphogenic role for acetylcholinesterase in axonal outgrowth during neural development.

    PubMed Central

    Bigbee, J W; Sharma, K V; Gupta, J J; Dupree, J L

    1999-01-01

    Acetylcholinesterase (AChE) is the enzyme that hydrolyzes the neurotransmitter acetylcholine at cholinergic synapses and neuromuscular junctions. However, results from our laboratory and others indicate that AChE has an extrasynaptic, noncholinergic role during neural development. This article is a review of our findings demonstrating the morphogenic role of AChE, using a neuronal cell culture model. We also discuss how these data suggest that AChE has a cell adhesive function during neural development. These results could have additional significance as AChE is the target enzyme of agricultural organophosphate and carbamate pesticides as well as the commonly used household organophosphate chlorpyrifos (Dursban). Prenatal exposure to these agents could have adverse effects on neural development by interfering with the morphogenic function of AChE. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 PMID:10229710

  8. Growth and splitting of neural sequences in songbird vocal development.

    PubMed

    Okubo, Tatsuo S; Mackevicius, Emily L; Payne, Hannah L; Lynch, Galen F; Fee, Michale S

    2015-12-17

    Neural sequences are a fundamental feature of brain dynamics underlying diverse behaviours, but the mechanisms by which they develop during learning remain unknown. Songbirds learn vocalizations composed of syllables; in adult birds, each syllable is produced by a different sequence of action potential bursts in the premotor cortical area HVC. Here we carried out recordings of large populations of HVC neurons in singing juvenile birds throughout learning to examine the emergence of neural sequences. Early in vocal development, HVC neurons begin producing rhythmic bursts, temporally locked to a 'prototype' syllable. Different neurons are active at different latencies relative to syllable onset to form a continuous sequence. Through development, as new syllables emerge from the prototype syllable, initially highly overlapping burst sequences become increasingly distinct. We propose a mechanistic model in which multiple neural sequences can emerge from the growth and splitting of a common precursor sequence. PMID:26618871

  9. An overview on development of neural network technology

    NASA Technical Reports Server (NTRS)

    Lin, Chun-Shin

    1993-01-01

    The study has been to obtain a bird's-eye view of the current neural network technology and the neural network research activities in NASA. The purpose was two fold. One was to provide a reference document for NASA researchers who want to apply neural network techniques to solve their problems. Another one was to report out survey results regarding NASA research activities and provide a view on what NASA is doing, what potential difficulty exists and what NASA can/should do. In a ten week study period, we interviewed ten neural network researchers in the Langley Research Center and sent out 36 survey forms to researchers at the Johnson Space Center, Lewis Research Center, Ames Research Center and Jet Propulsion Laboratory. We also sent out 60 similar forms to educators and corporation researchers to collect general opinions regarding this field. Twenty-eight survey forms, 11 from NASA researchers and 17 from outside, were returned. Survey results were reported in our final report. In the final report, we first provided an overview on the neural network technology. We reviewed ten neural network structures, discussed the applications in five major areas, and compared the analog, digital and hybrid electronic implementation of neural networks. In the second part, we summarized known NASA neural network research studies and reported the results of the questionnaire survey. Survey results show that most studies are still in the development and feasibility study stage. We compared the techniques, application areas, researchers' opinions on this technology, and many aspects between NASA and non-NASA groups. We also summarized their opinions on difficulties encountered. Applications are considered the top research priority by most researchers. Hardware development and learning algorithm improvement are the next. The lack of financial and management support is among the difficulties in research study. All researchers agree that the use of neural networks could result in

  10. FRL-1, a member of the EGF-CFC family, is essential for neural differentiation in Xenopus early development.

    PubMed

    Yabe, Shin-Ichiro; Tanegashima, Kousuke; Haramoto, Yoshikazu; Takahashi, Shuji; Fujii, Tomoyuki; Kozuma, Siro; Taketani, Yuji; Asashima, Makoto

    2003-05-01

    Recent studies indicate an essential role for the EGF-CFC family in vertebrate development, particularly in the regulation of nodal signaling. Biochemical evidence suggests that EGF-CFC genes can also activate certain cellular responses independently of nodal signaling. Here, we show that FRL-1, a Xenopus EGF-CFC gene, suppresses BMP signaling to regulate an early step in neural induction. Overexpression of FRL-1 in animal caps induced the early neural markers zic3, soxD and Xngnr-1, but not the pan-mesodermal marker Xbra or the dorsal mesodermal marker chordin. Furthermore, overexpression of FRL-1 suppressed the expression of the BMP-responsive genes, Xvent-1 and Xmsx-1, which are expressed in animal caps and induced by overexpressed BMP-4. Conversely, loss of function analysis using morpholino-antisense oligonucleotides against FRL-1 (FRL-1MO) showed that FRL-1 is required for neural development. FRL-1MO-injected embryos lacked neural structures but contained mesodermal tissue. It was suggested previously that expression of early neural genes that mark the start of neuralization is activated in the presumptive neuroectoderm of gastrulae. FRL-1MO also inhibited the expression of these genes in dorsal ectoderm, but did not affect the expression of chordin, which acts as a neural inducer from dorsal mesoderm. FRL-1MO also inhibited the expression of neural markers that were induced by chordin in animal caps, suggesting that FRL-1 enables the response to neural inducing signals in ectoderm. Furthermore, we showed that the activation of mitogen-activated protein kinase by FRL-1 is required for neural induction and BMP inhibition. Together, these results suggest that FRL-1 is essential in the establishment of the neural induction response. PMID:12668622

  11. The EJC component Magoh regulates proliferation and expansion of neural crest-derived melanocytes.

    PubMed

    Silver, Debra L; Leeds, Karen E; Hwang, Hun-Way; Miller, Emily E; Pavan, William J

    2013-03-15

    Melanoblasts are a population of neural crest-derived cells that generate the pigment-producing cells of our body. Defective melanoblast development and function underlies many disorders including Waardenburg syndrome and melanoma. Understanding the genetic regulation of melanoblast development will help elucidate the etiology of these and other neurocristopathies. Here we demonstrate that Magoh, a component of the exon junction complex, is required for normal melanoblast development. Magoh haploinsufficient mice are hypopigmented and exhibit robust genetic interactions with the transcription factor, Sox10. These phenotypes are caused by a marked reduction in melanoblast number beginning at mid-embryogenesis. Strikingly, while Magoh haploinsufficiency severely reduces epidermal melanoblasts, it does not significantly affect the number of dermal melanoblasts. These data indicate Magoh impacts melanoblast development by disproportionately affecting expansion of epidermal melanoblast populations. We probed the cellular basis for melanoblast reduction and discovered that Magoh mutant melanoblasts do not undergo increased apoptosis, but instead are arrested in mitosis. Mitotic arrest is evident in both Magoh haploinsufficient embryos and in Magoh siRNA treated melanoma cell lines. Together our findings indicate that Magoh-regulated proliferation of melanoblasts in the dermis may be critical for production of epidermally-bound melanoblasts. Our results point to a central role for Magoh in melanocyte development. PMID:23333945

  12. The neural milieu of the developing choroid plexus: neural stem cells, neurons and innervation.

    PubMed

    Prasongchean, Weerapong; Vernay, Bertrand; Asgarian, Zeinab; Jannatul, Nahin; Ferretti, Patrizia

    2015-01-01

    The choroid plexus produces cerebrospinal fluid and plays an important role in brain homeostasis both pre and postnatally. In vitro studies have suggested that cells from adult choroid plexus have stem/progenitor cell-like properties. Our initial aim was to investigate whether such a cell population is present in vivo during development of the choroid plexus, focusing mainly on the chick choroid plexus. Cells expressing neural markers were indeed present in the choroid plexus of chick and also those of rodent and human embryos, both within their epithelium and mesenchyme. ß3-tubulin-positive cells with neuronal morphology could be detected as early as at E8 in chick choroid plexus and their morphological complexity increased with development. Whole mount immunochemistry demonstrated the presence of neurons throughout choroid plexus development and they appeared to be mainly catecholaminergic, as indicated by tyrosine-hydroxylase reactivity. The presence of cells co-labeling for BrdU and the neuroblast marker, doublecortin, in organotypic choroid plexus cultures supported the hypothesis that neurogenesis can occur from neural precursors within the developing choroid plexus. Furthermore, we found that extrinsic innervation is present in the developing choroid plexus, unlike previously suggested. Altogether, our data are consistent with the presence of neural progenitors within the choroid plexus, suggest that at least some of the choroid plexus neurons are born locally, and show for the first time that choroid plexus innervation occurs prenatally. Hence, we propose the existence of a complex neural regulatory network within the developing choroid plexus that may play a crucial role in modulating its function during development as well as throughout life. PMID:25873856

  13. The Interleukin 3 Gene (IL3) Contributes to Human Brain Volume Variation by Regulating Proliferation and Survival of Neural Progenitors

    PubMed Central

    Huang, Liang; Nho, Kwangsik; Deng, Min; Chen, Qiang; Weinberger, Daniel R.; Vasquez, Alejandro Arias; Rijpkema, Mark; Mattay, Venkata S.; Saykin, Andrew J.; Shen, Li; Fernández, Guillén; Franke, Barbara; Chen, Jing-chun; Chen, Xiang-ning; Wang, Jin-kai; Xiao, Xiao; Qi, Xue-bin; Xiang, Kun; Peng, Ying-Mei; Cao, Xiang-yu; Li, Yi; Shi, Xiao-dong; Gan, Lin; Su, Bing

    2012-01-01

    One of the most significant evolutionary changes underlying the highly developed cognitive abilities of humans is the greatly enlarged brain volume. In addition to being far greater than in most other species, the volume of the human brain exhibits extensive variation and distinct sexual dimorphism in the general population. However, little is known about the genetic mechanisms underlying normal variation as well as the observed sex difference in human brain volume. Here we show that interleukin-3 (IL3) is strongly associated with brain volume variation in four genetically divergent populations. We identified a sequence polymorphism (rs31480) in the IL3 promoter which alters the expression of IL3 by affecting the binding affinity of transcription factor SP1. Further analysis indicated that IL3 and its receptors are continuously expressed in the developing mouse brain, reaching highest levels at postnatal day 1–4. Furthermore, we found IL3 receptor alpha (IL3RA) was mainly expressed in neural progenitors and neurons, and IL3 could promote proliferation and survival of the neural progenitors. The expression level of IL3 thus played pivotal roles in the expansion and maintenance of the neural progenitor pool and the number of surviving neurons. Moreover, we found that IL3 activated both estrogen receptors, but estrogen didn’t directly regulate the expression of IL3. Our results demonstrate that genetic variation in the IL3 promoter regulates human brain volume and reveals novel roles of IL3 in regulating brain development. PMID:23226269

  14. Functional regulation of FoxO1 in neural stem cell differentiation.

    PubMed

    Kim, D-Y; Hwang, I; Muller, F L; Paik, J-H

    2015-12-01

    Forkhead transcription factor family O (FoxO) maintains adult stem cell reserves by supporting their long-term proliferative potential. MicroRNAs (miRs) regulate neuronal stem/progenitor cell (NSPC) proliferation and differentiation during neural development by controlling the expression of a specific set of target genes. In the neurogenic subventricular zone, FoxO1 is specifically expressed in NSPCs and is no longer detected during the transition to neuroblast stage, forming an inverse correlation with miR-9 expression. The 3'-untranslated region of FoxO1 contains a conserved target sequence of miR-9 and FoxO1 expression is coordinated in concert with miR-9 during neuronal differentiation. Our study demonstrates that FoxO1 contributes to NSPC fate decision through its cooperation with the Notch signaling pathway. PMID:26470727

  15. Cyfip1 Regulates Presynaptic Activity during Development

    PubMed Central

    Hsiao, Kuangfu; Harony-Nicolas, Hala; Buxbaum, Joseph D.

    2016-01-01

    Copy number variations encompassing the gene encoding Cyfip1 have been associated with a variety of human diseases, including autism and schizophrenia. Here we show that juvenile mice hemizygous for Cyfip1 have altered presynaptic function, enhanced protein translation, and increased levels of F-actin. In developing hippocampus, reduced Cyfip1 levels serve to decrease paired pulse facilitation and increase miniature EPSC frequency without a change in amplitude. Higher-resolution examination shows these changes to be caused primarily by an increase in presynaptic terminal size and enhanced vesicle release probability. Short hairpin-mediated knockdown of Cyfip1 coupled with expression of mutant Cyfip1 proteins indicates that the presynaptic alterations are caused by dysregulation of the WAVE regulatory complex. Such dysregulation occurs downstream of Rac1 as acute exposure to Rac1 inhibitors rescues presynaptic responses in culture and in hippocampal slices. The data serve to highlight an early and essential role for Cyfip1 in the generation of normally functioning synapses and suggest a means by which changes in Cyfip1 levels could impact the generation of neural networks and contribute to abnormal and maladaptive behaviors. SIGNIFICANCE STATEMENT Several developmental brain disorders have been associated with gene duplications and deletions that serve to increase or decrease levels of encoded proteins. Cyfip1 is one such protein, but the role it plays in brain development is poorly understood. We asked whether decreased Cyfip1 levels altered the function of developing synapses. The data show that synapses with reduced Cyfip1 are larger and release neurotransmitter more rapidly. These effects are due to Cyfip1's role in actin polymerization and are reversed by expression of a Cyfip1 mutant protein retaining actin regulatory function or by inhibiting Rac1. Thus, Cyfip1 has a more prominent early role regulating presynaptic activity during a stage of development when

  16. A neural circuit mechanism for regulating vocal variability during song learning in zebra finches

    PubMed Central

    Garst-Orozco, Jonathan; Babadi, Baktash; Ölveczky, Bence P

    2014-01-01

    Motor skill learning is characterized by improved performance and reduced motor variability. The neural mechanisms that couple skill level and variability, however, are not known. The zebra finch, a songbird, presents a unique opportunity to address this question because production of learned song and induction of vocal variability are instantiated in distinct circuits that converge on a motor cortex analogue controlling vocal output. To probe the interplay between learning and variability, we made intracellular recordings from neurons in this area, characterizing how their inputs from the functionally distinct pathways change throughout song development. We found that inputs that drive stereotyped song-patterns are strengthened and pruned, while inputs that induce variability remain unchanged. A simple network model showed that strengthening and pruning of action-specific connections reduces the sensitivity of motor control circuits to variable input and neural ‘noise’. This identifies a simple and general mechanism for learning-related regulation of motor variability. DOI: http://dx.doi.org/10.7554/eLife.03697.001 PMID:25497835

  17. FGF-receptor signalling controls neural cell diversity in the zebrafish hindbrain by regulating olig2 and sox9.

    PubMed

    Esain, Virginie; Postlethwait, John H; Charnay, Patrick; Ghislain, Julien

    2010-01-01

    The mechanisms underlying the generation of neural cell diversity are the subject of intense investigation, which has highlighted the involvement of different signalling molecules including Shh, BMP and Wnt. By contrast, relatively little is known about FGF in this process. In this report we identify an FGF-receptor-dependent pathway in zebrafish hindbrain neural progenitors that give rise to somatic motoneurons, oligodendrocyte progenitors and differentiating astroglia. Using a combination of chemical and genetic approaches to conditionally inactivate FGF-receptor signalling, we investigate the role of this pathway. We show that FGF-receptor signalling is not essential for the survival or maintenance of hindbrain neural progenitors but controls their fate by coordinately regulating key transcription factors. First, by cooperating with Shh, FGF-receptor signalling controls the expression of olig2, a patterning gene essential for the specification of somatic motoneurons and oligodendrocytes. Second, FGF-receptor signalling controls the development of both oligodendrocyte progenitors and astroglia through the regulation of sox9, a gliogenic transcription factor the function of which we show to be conserved in the zebrafish hindbrain. Overall, for the first time in vivo, our results reveal a mechanism of FGF in the control of neural cell diversity. PMID:20023158

  18. TRIM32-dependent transcription in adult neural progenitor cells regulates neuronal differentiation.

    PubMed

    Hillje, A-L; Pavlou, M A S; Beckmann, E; Worlitzer, M M A; Bahnassawy, L; Lewejohann, L; Palm, T; Schwamborn, J C

    2013-01-01

    In the adult mammalian brain, neural stem cells in the subventricular zone continuously generate new neurons for the olfactory bulb. Cell fate commitment in these adult neural stem cells is regulated by cell fate-determining proteins. Here, we show that the cell fate-determinant TRIM32 is upregulated during differentiation of adult neural stem cells into olfactory bulb neurons. We further demonstrate that TRIM32 is necessary for the correct induction of neuronal differentiation in these cells. In the absence of TRIM32, neuroblasts differentiate slower and show gene expression profiles that are characteristic of immature cells. Interestingly, TRIM32 deficiency induces more neural progenitor cell proliferation and less cell death. Both effects accumulate in an overproduction of adult-generated olfactory bulb neurons of TRIM32 knockout mice. These results highlight the function of the cell fate-determinant TRIM32 for a balanced activity of the adult neurogenesis process. PMID:24357807

  19. POU domain factors in neural development.

    PubMed

    Schonemann, M D; Ryan, A K; Erkman, L; McEvilly, R J; Bermingham, J; Rosenfeld, M G

    1998-01-01

    Transcription factors serve critical roles in the progressive development of general body plan, organ commitment, and finally, specific cell types. Comparison of the biological roles of a series of individual members within a family permits some generalizations to be made regarding the developmental events that are likely to be regulated by a particular class of transcription factors. Here, we evidence that the developmental functions of the family of transcription factors characterized by the POU DNA binding motif exerts roles in mammalian development. The POU domain family of transcription factors was defined following the observation that the products of three mammalian genes, Pit-1, Oct-1, and Oct-2, and the protein encoded by the C. elegans gene unc-86, shared a region of homology, known as the POU domain. The POU domain is a bipartite DNA binding domain, consisting of two highly conserved regions, tethered by a variable linker. The approximately 75 amino acid N-terminal region was called the POU-specific domain and the C-terminal 60 amino acid region, the POU-homeodomain. High-affinity site-specific DNA binding by POU domain transcription factors requires both the POU-specific and the POU-homeodomain. Resolution of the crystal structures of Oct-1 and Pit-1 POU domains bound to DNA as a monomer and homodimer, respectively, confirmed several of the in vitro findings regarding interactions of this bipartite DNA binding domain with DNA and has provided important information regarding the flexibility and versatility of POU domain proteins. Overall the crystal structure of a monomer of the Oct-1 POU domain bound to the octamer element was similar to that predicted by the NMR solution structures of the POU-specific domain and the POU-homeodomain in isolation, with the POU-specific domain consists of four alpha helices, with the second and third helices forming a structure similar to the helix-turn-helix motif of the lambda and 434 repressors; several of the DNA base

  20. A Constructive Neural-Network Approach to Modeling Psychological Development

    ERIC Educational Resources Information Center

    Shultz, Thomas R.

    2012-01-01

    This article reviews a particular computational modeling approach to the study of psychological development--that of constructive neural networks. This approach is applied to a variety of developmental domains and issues, including Piagetian tasks, shift learning, language acquisition, number comparison, habituation of visual attention, concept…

  1. Development Switch in Neural Circuitry Underlying Odor-Malaise Learning

    ERIC Educational Resources Information Center

    Lunday, Lauren; Miner, Cathrine; Roth, Tania L.; Sullivan, Regina M.; Shionoya, Kiseko; Moriceau, Stephanie

    2006-01-01

    Fetal and infant rats can learn to avoid odors paired with illness before development of brain areas supporting this learning in adults, suggesting an alternate learning circuit. Here we begin to document the transition from the infant to adult neural circuit underlying odor-malaise avoidance learning using LiCl (0.3 M; 1% of body weight, ip) and…

  2. Inducible regulation of GDNF expression in human neural stem cells.

    PubMed

    Wang, ShuYan; Ren, Ping; Guan, YunQian; Zou, ChunLin; Fu, LinLin; Zhang, Yu

    2013-01-01

    Glial cell derived neurotrophic factor (GDNF) holds promises for treating neurodegenerative diseases such as Parkinson's disease. Human neural stem cells (hNSCs) have proved to be a suitable cell delivery vehicle for the safe and efficient introduction of GDNF into the brain. In this study, we used hNSCs-infected with a lentivirus encoding GDNF and the hygromycin resistance gene as such vehicles. A modified tetracycline operator 7 (tetO7) was inserted into a region upstream of the EF1-α promoter to drive GDNF expression. After hygromycin selection, hNSCs were infected with a lentivirus encoding a KRAB-tetracycline repressor fusion protein (TTS). TTS bound to tetO7 and suppressed the expression of GDNF in hNSCs. Upon administration of doxycycline (Dox) the TTS-tetO7 complex separated and the expression of GDNF resumed. The hNSCs infected with GDNF expressed the neural stem cell specific markers, nestin and sox2, and exhibited no significant change in proliferation rate. However, the rate of apoptosis in hNSCs expressing GDNF was lower compared with normal NSCs in response to actinomycin treatment. Furthermore, a higher percentage of Tuj-1 positive cells were obtained from GDNF-producing NSCs under conditions that induced differentiation compared to control NSCs. The inducible expression of GDNF in hNSCs may provide a system for the controllable delivery of GDNF in patients with neurodegenerative diseases. PMID:23269553

  3. Function of Armcx3 and Armc10/SVH Genes in the Regulation of Progenitor Proliferation and Neural Differentiation in the Chicken Spinal Cord

    PubMed Central

    Mirra, Serena; Ulloa, Fausto; Gutierrez-Vallejo, Irene; Martì, Elisa; Soriano, Eduardo

    2016-01-01

    The eutherian X-chromosome specific family of Armcx genes has been described as originating by retrotransposition from Armc10/SVH, a single Arm-containing somatic gene. Armcx3 and Armc10/SVH are characterized by high expression in the central nervous system and they play an important role in the regulation of mitochondrial distribution and transport in neurons. In addition, Armcx/Arm10 genes have several Armadillo repeats in their sequence. In this study we address the potential role of this gene family in neural development by using the chick neural tube as a model. We show that Armc10/SVH is expressed in the chicken spinal cord, and knocking-down Armc10/SVH by sh-RNAi electroporation in spinal cord reduces proliferation of neural precursor cells (NPCs). Moreover, we analyzed the effects of murine Armcx3 and Armc10 overexpression, showing that both proteins regulate progenitor proliferation, while Armcx3 overexpression also specifically controls neural maturation. We show that the phenotypes found following Armcx3 overexpression require its mitochondrial localization, suggesting a novel link between mitochondrial dynamics and regulation of neural development. Furthermore, we found that both Armcx3 and Armc10 may act as inhibitors of Wnt-β-catenin signaling. Our results highlight both common and differential functions of Armcx/Armc10 genes in neural development in the spinal cord. PMID:26973462

  4. Function of Armcx3 and Armc10/SVH Genes in the Regulation of Progenitor Proliferation and Neural Differentiation in the Chicken Spinal Cord.

    PubMed

    Mirra, Serena; Ulloa, Fausto; Gutierrez-Vallejo, Irene; Martì, Elisa; Soriano, Eduardo

    2016-01-01

    The eutherian X-chromosome specific family of Armcx genes has been described as originating by retrotransposition from Armc10/SVH, a single Arm-containing somatic gene. Armcx3 and Armc10/SVH are characterized by high expression in the central nervous system and they play an important role in the regulation of mitochondrial distribution and transport in neurons. In addition, Armcx/Arm10 genes have several Armadillo repeats in their sequence. In this study we address the potential role of this gene family in neural development by using the chick neural tube as a model. We show that Armc10/SVH is expressed in the chicken spinal cord, and knocking-down Armc10/SVH by sh-RNAi electroporation in spinal cord reduces proliferation of neural precursor cells (NPCs). Moreover, we analyzed the effects of murine Armcx3 and Armc10 overexpression, showing that both proteins regulate progenitor proliferation, while Armcx3 overexpression also specifically controls neural maturation. We show that the phenotypes found following Armcx3 overexpression require its mitochondrial localization, suggesting a novel link between mitochondrial dynamics and regulation of neural development. Furthermore, we found that both Armcx3 and Armc10 may act as inhibitors of Wnt-β-catenin signaling. Our results highlight both common and differential functions of Armcx/Armc10 genes in neural development in the spinal cord. PMID:26973462

  5. Regulation of transcription factors by nitric oxide in neurons and in neural-derived tumor cells.

    PubMed

    Contestabile, Antonio

    2008-04-01

    Nitric oxide (NO), a diffusible molecule acting as an intercellular and intracellular messenger in many tissues, plays multiple roles in the nervous system. In addition to regulating proliferation, survival and differentiation of neurons, NO is also involved in synaptic activity, neural plasticity and memory formation. Long-lasting effects of NO, a simple and unstable molecule, occur through regulation of transcription factors and modulation of gene expression. cAMP-response-element-binding (CREB) protein is an important transcription factor that regulates the expression of several genes involved in survival and neuroprotection as well as in synaptic plasticity and memory formation. Nitric oxide promotes survival and differentiation of neural cells, both activating through cGMP signaling CREB phosphorylation-dependent transcriptional activity and promoting S-nitrosylation of nuclear proteins that favor CREB binding to its promoters on target genes. Among oncogenic transcription factors, N-Myc is important in neurogenesis and in regulating proliferation of neural-derived tumor cells, such as neuroblastomas and medulloblastomas. Nitric oxide negatively regulates the proliferation of neuronal precursors, as well as the proliferation of neuroblastoma cells, by downregulating N-Myc expression through cGMP signaling. Other oncogenic transcription factors, such as c-fos and c-jun, zinc-finger transcription factors, such as egr-1, and NF-kappaB are regulated by NO signaling in cGMP-dependent way or through nitrosative conformational changes. The present survey of how NO signaling influences neural cells through regulation of transcription factors allows us to predict that better knowledge of these interactions will provide a better understanding of the physiological role of NO in the nervous system in order to conceive novel therapies for neural-derived tumors. PMID:18308460

  6. Matrix metalloproteinases in neural development: a phylogenetically diverse perspective

    PubMed Central

    Small, Christopher D.; Crawford, Bryan D.

    2016-01-01

    The matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases originally characterized as secreted proteases responsible for degrading extracellular matrix proteins. Their canonical role in matrix remodelling is of significant importance in neural development and regeneration, but emerging roles for MMPs, especially in signal transduction pathways, are also of obvious importance in a neural context. Misregulation of MMP activity is a hallmark of many neuropathologies, and members of every branch of the MMP family have been implicated in aspects of neural development and disease. However, while extraordinary research efforts have been made to elucidate the molecular mechanisms involving MMPs, methodological constraints and complexities of the research models have impeded progress. Here we discuss the current state of our understanding of the roles of MMPs in neural development using recent examples and advocate a phylogenetically diverse approach to MMP research as a means to both circumvent the challenges associated with specific model organisms, and to provide a broader evolutionary context from which to synthesize an understanding of the underlying biology. PMID:27127457

  7. Genetic Regulation of Prostate Development

    PubMed Central

    Meeks, Joshua; Schaeffer, Edward M

    2011-01-01

    Prostatic development is a dynamic process in which basic mechanisms of epithelial outgrowth and epithelial-mesenchymal interaction are initiated by androgens and androgen receptor signaling. Even in adulthood, the prostate's function remains tightly regulated by androgens--without them, pathologic diseases including hyperplastic and malignant growth which together plague nearly 50% of aging males does not occur. Unraveling the etiology of these pathologic processes is a complex and important goal. In fact, many insights into these processes have come from an intimate understanding of the complex signaling networks that regulate physiologic prostatic growth in development. This review aims to highlight important key molecules such as Nkx3.1, sonic hedgehog and Sox9 as well as key signaling pathways including the Fibroblast growth factor and Wnt pathways. These molecules and pathways are critical for prostate development with both know and postulated roles in prostatic pathology. PMID:20930191

  8. Elongator Protein 3 (Elp3) stabilizes Snail1 and regulates neural crest migration in Xenopus

    PubMed Central

    Yang, Xiangcai; Li, Jiejing; Zeng, Wanli; Li, Chaocui; Mao, Bingyu

    2016-01-01

    Elongator protein 3 (Elp3) is the enzymatic unit of the elongator protein complex, a histone acetyltransferase complex involved in transcriptional elongation. It has long been shown to play an important role in cell migration; however, the underlying mechanism is unknown. Here, we showed that Elp3 is expressed in pre-migratory and migrating neural crest cells in Xenopus embryos, and knockdown of Elp3 inhibited neural crest cell migration. Interestingly, Elp3 binds Snail1 through its zinc-finger domain and inhibits its ubiquitination by β-Trcp without interfering with the Snail1/Trcp interaction. We showed evidence that Elp3-mediated stabilization of Snail1 was likely involved in the activation of N-cadherin in neural crest cells to regulate their migratory ability. Our findings provide a new mechanism for the function of Elp3 in cell migration through stabilizing Snail1, a master regulator of cell motility. PMID:27189455

  9. Regulation of Compound Leaf Development

    PubMed Central

    Wang, Yuan; Chen, Rujin

    2013-01-01

    Leaf morphology is one of the most variable, yet inheritable, traits in the plant kingdom. How plants develop a variety of forms and shapes is a major biological question. Here, we discuss some recent progress in understanding the development of compound or dissected leaves in model species, such as tomato (Solanum lycopersicum), Cardamine hirsuta and Medicago truncatula, with an emphasis on recent discoveries in legumes. We also discuss progress in gene regulations and hormonal actions in compound leaf development. These studies facilitate our understanding of the underlying regulatory mechanisms and put forward a prospective in compound leaf studies. PMID:27135488

  10. Canonical Wnt activity regulates trunk neural crest delamination linking BMP/noggin signaling with G1/S transition.

    PubMed

    Burstyn-Cohen, Tal; Stanleigh, Jonathan; Sela-Donenfeld, Dalit; Kalcheim, Chaya

    2004-11-01

    Delamination of premigratory neural crest cells depends on a balance between BMP/noggin and on successful G1/S transition. Here, we report that BMP regulates G1/S transition and consequent crest delamination through canonical Wnt signaling. Noggin overexpression inhibits G1/S transition and blocking G1/S abrogates BMP-induced delamination; moreover, transcription of Wnt1 is stimulated by BMP and by the developing somites, which concomitantly inhibit noggin production. Interfering with beta-catenin and LEF/TCF inhibits G1/S transition, neural crest delamination and transcription of various BMP-dependent genes, which include Cad6B, Pax3 and Msx1, but not that of Slug, Sox9 or FoxD3. Hence, we propose that developing somites inhibit noggin transcription in the dorsal tube, resulting in activation of BMP and consequent Wnt1 production. Canonical Wnt signaling in turn stimulates G1/S transition and generation of neural crest cell motility independently of its proposed role in earlier neural crest specification. PMID:15456730

  11. Neural Networks Involved in Voluntary and Involuntary Vocal Pitch Regulation in Experienced Singers

    ERIC Educational Resources Information Center

    Zarate, Jean Mary; Wood, Sean; Zatorre, Robert J.

    2010-01-01

    In an fMRI experiment, we tested experienced singers with singing tasks to investigate neural correlates of voluntary and involuntary vocal pitch regulation. We shifted the pitch of auditory feedback (plus or minus 25 or 200 cents), and singers either: (1) ignored the shift and maintained their vocal pitch or (2) changed their vocal pitch to…

  12. Amyloid precursor protein and neural development.

    PubMed

    Nicolas, Maya; Hassan, Bassem A

    2014-07-01

    Interest in the amyloid precursor protein (APP) has increased in recent years due to its involvement in Alzheimer's disease. Since its molecular cloning, significant genetic and biochemical work has focused on the role of APP in the pathogenesis of this disease. Thus far, however, these studies have failed to deliver successful therapies. This suggests that understanding the basic biology of APP and its physiological role during development might be a crucial missing link for a better comprehension of Alzheimer's disease. Here, we present an overview of some of the key studies performed in various model organisms that have revealed roles for APP at different stages of neuronal development. PMID:24961795

  13. In vitro clonal analysis of mouse neural crest development.

    PubMed

    Ito, K; Morita, T; Sieber-Blum, M

    1993-06-01

    Analysis of lineage segregation during mammalian neural crest development has not been sufficiently performed due to technical difficulties. In the present study, therefore, we established a clonal culture system of mouse neural crest cells in order to analyze developmental potentials of individual neural crest cells and their patterns of lineage segregation. 12-O-Tetradecanoylphorbol-13-acetate (TPA) and cholera toxin (CT) were applied to culture medium to trigger melanogenic differentiation of mouse neural crest cells. Three morphologically distinct types of clones were observed. (1) "Pigmented clones" consisted of melanocytes only, suggesting that the clone-forming cells were committed to the melanogenic lineage. These clones were observed only in the presence of TPA and CT. The proportion of this type of clone (8%) was much lower than that of the equivalent type of clone in quail trunk neural crest (40-60%; Sieber-Blum and Cohen, 1980, Dev. Biol. 80, 96-106). It therefore appears that the segregation pattern to the melanogenic lineage during mouse neural crest development in vitro differs quantitatively from that in the quail. (2) "Mixed clones" consisted of pigmented and unpigmented cells. Like pigmented clones, they were observed only in the presence of TPA and CT. The clones contained up to four types of cells: melanocytes, S100-positive cells (Schwann cells or melanogenic precursor cells), serotonin (5-HT)-positive autonomic neuron-like cells, and substance P (SP)-immunoreactive sensory neuron-like cells. Thus, at least some mixed clone-forming cells are pluripotent. (3) Two classes of "unpigmented clones" were observed that consisted of unpigmented cells only. These clones developed in the presence and absence of TPA and CT. Unpigmented clones in one class contained up to three types of cells as well as other, as yet unidentified cells: S100-, 5-HT-, and SP-positive cells. This observation suggests that at least some of these clones originate from cells

  14. Neural Development Under Conditions of Spaceflight

    NASA Technical Reports Server (NTRS)

    Kosik, Kenneth S.; Steward, Oswald; Temple, Meredith D.; Denslow, Maria J.

    2003-01-01

    One of the key tasks the developing brain must learn is how to navigate within the environment. This skill depends on the brain's ability to establish memories of places and things in the environment so that it can form cognitive maps. Earth's gravity defines the plane of orientation of the spatial environment in which animals navigate, and cognitive maps are based on this plane of orientation. Given that experience during early development plays a key role in the development of other aspects of brain function, experience in a gravitational environment is likely to be essential for the proper organization of brain regions mediating learning and memory of spatial information. Since the hippocampus is the brain region responsible for cognitive mapping abilities, this study evaluated the development of hippocampal structure and function in rats that spent part of their early development in microgravity. Litters of male and female Sprague-Dawley rats were launched into space aboard the Space Shuttle Columbia on either postnatal day eight (P8) or 14 (P14) and remained in space for 16 days. Upon return to Earth, the rats were tested for their ability to remember spatial information and navigate using a variety of tests (the Morris water maze, a modified radial arm maze, and an open field apparatus). These rats were then tested physiologically to determine whether they exhibited normal synaptic plasticity in the hippocampus. In a separate group of rats (flight and controls), the hippocampus was analyzed using anatomical, molecular biological, and biochemical techniques immediately postlanding. There were remarkably few differences between the flight groups and their Earth-bound controls in either the navigation and spatial memory tasks or activity-induced synaptic plasticity. Microscopic and immunocytochemical analyses of the brain also did not reveal differences between flight animals and ground-based controls. These data suggest that, within the developmental window

  15. Theoretical models of neural circuit development.

    PubMed

    Simpson, Hugh D; Mortimer, Duncan; Goodhill, Geoffrey J

    2009-01-01

    Proper wiring up of the nervous system is critical to the development of organisms capable of complex and adaptable behaviors. Besides the many experimental advances in determining the cellular and molecular machinery that carries out this remarkable task precisely and robustly, theoretical approaches have also proven to be useful tools in analyzing this machinery. A quantitative understanding of these processes can allow us to make predictions, test hypotheses, and appraise established concepts in a new light. Three areas that have been fruitful in this regard are axon guidance, retinotectal mapping, and activity-dependent development. This chapter reviews some of the contributions made by mathematical modeling in these areas, illustrated by important examples of models in each section. For axon guidance, we discuss models of how growth cones respond to their environment, and how this environment can place constraints on growth cone behavior. Retinotectal mapping looks at computational models for how topography can be generated in populations of neurons based on molecular gradients and other mechanisms such as competition. In activity-dependent development, we discuss theoretical approaches largely based on Hebbian synaptic plasticity rules, and how they can generate maps in the visual cortex very similar to those seen in vivo. We show how theoretical approaches have substantially contributed to the advancement of developmental neuroscience, and discuss future directions for mathematical modeling in the field. PMID:19427515

  16. mRNA-Seq and MicroRNA-Seq Whole-Transcriptome Analyses of Rhesus Monkey Embryonic Stem Cell Neural Differentiation Revealed the Potential Regulators of Rosette Neural Stem Cells

    PubMed Central

    Zhao, Yuqi; Ji, Shuang; Wang, Jinkai; Huang, Jingfei; Zheng, Ping

    2014-01-01

    Rosette neural stem cells (R-NSCs) represent early stage of neural development and possess full neural differentiation and regionalization capacities. R-NSCs are considered as stem cells of neural lineage and have important implications in the study of neurogenesis and cell replacement therapy. However, the molecules regulating their functional properties remain largely unknown. Rhesus monkey is an ideal model to study human neural degenerative diseases and plays intermediate translational roles as therapeutic strategies evolved from rodent systems to human clinical applications. In this study, we derived R-NSCs from rhesus monkey embryonic stem cells (ESCs) and systematically investigated the unique expressions of mRNAs, microRNAs (miRNAs), and signalling pathways by genome-wide comparison of the mRNA and miRNA profilings of ESCs, R-NSCs at early (R-NSCP1) and late (R-NSCP6) passages, and neural progenitor cells. Apart from the R-NSCP1-specific protein-coding genes and miRNAs, we identified several pathways including Hedgehog and Wnt highly activated in R-NSCP1. The possible regulatory interactions among the miRNAs, protein-coding genes, and signalling pathways were proposed. Besides, many genes with alternative splicing switch were identified at R-NSCP1. These data provided valuable resource to understand the regulation of early neurogenesis and to better manipulate the R-NSCs for cell replacement therapy. PMID:24939742

  17. Priming the Cellular Glycocalyx for Neural Development

    PubMed Central

    2015-01-01

    Glycans are important contributors to the development and function of the nervous system with enormous potential as therapeutic targets. However, a general lack of tools for tailoring the presentation of specific glycan structures on the surfaces of cells has left them largely unexplored in the biomedical context. In this Viewpoint, we briefly summarize the distinct challenges and complexities of the Glycome. We also highlight an emerging concept of cell surface engineering using synthetic nanoscale mimetics of native glycoconjugates to harness some of the unique biology of glycans, with an eye toward advancing stem cell-based neuroregenerative therapies. PMID:25210831

  18. A Robust Single Primate Neuroepithelial Cell Clonal Expansion System for Neural Tube Development and Disease Studies

    PubMed Central

    Zhu, Xiaoqing; Li, Bo; Ai, Zongyong; Xiang, Zheng; Zhang, Kunshang; Qiu, Xiaoyan; Chen, Yongchang; Li, Yuemin; Rizak, Joshua D.; Niu, Yuyu; Hu, Xintian; Sun, Yi Eve; Ji, Weizhi; Li, Tianqing

    2015-01-01

    Summary Developing a model of primate neural tube (NT) development is important to promote many NT disorder studies in model organisms. Here, we report a robust and stable system to allow for clonal expansion of single monkey neuroepithelial stem cells (NESCs) to develop into miniature NT-like structures. Single NESCs can produce functional neurons in vitro, survive, and extensively regenerate neuron axons in monkey brain. NT formation and NESC maintenance depend on high metabolism activity and Wnt signaling. NESCs are regionally restricted to a telencephalic fate. Moreover, single NESCs can turn into radial glial progenitors (RGPCs). The transition is accurately regulated by Wnt signaling through regulation of Notch signaling and adhesion molecules. Finally, using the “NESC-TO-NTs” system, we model the functions of folic acid (FA) on NT closure and demonstrate that FA can regulate multiple mechanisms to prevent NT defects. Our system is ideal for studying NT development and diseases. PMID:26584544

  19. A Robust Single Primate Neuroepithelial Cell Clonal Expansion System for Neural Tube Development and Disease Studies.

    PubMed

    Zhu, Xiaoqing; Li, Bo; Ai, Zongyong; Xiang, Zheng; Zhang, Kunshang; Qiu, Xiaoyan; Chen, Yongchang; Li, Yuemin; Rizak, Joshua D; Niu, Yuyu; Hu, Xintian; Sun, Yi Eve; Ji, Weizhi; Li, Tianqing

    2016-02-01

    Developing a model of primate neural tube (NT) development is important to promote many NT disorder studies in model organisms. Here, we report a robust and stable system to allow for clonal expansion of single monkey neuroepithelial stem cells (NESCs) to develop into miniature NT-like structures. Single NESCs can produce functional neurons in vitro, survive, and extensively regenerate neuron axons in monkey brain. NT formation and NESC maintenance depend on high metabolism activity and Wnt signaling. NESCs are regionally restricted to a telencephalic fate. Moreover, single NESCs can turn into radial glial progenitors (RGPCs). The transition is accurately regulated by Wnt signaling through regulation of Notch signaling and adhesion molecules. Finally, using the "NESC-TO-NTs" system, we model the functions of folic acid (FA) on NT closure and demonstrate that FA can regulate multiple mechanisms to prevent NT defects. Our system is ideal for studying NT development and diseases. PMID:26584544

  20. Effect of gravity on vestibular neural development

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Tomko, D. L.

    1998-01-01

    The timing, molecular basis, and morphophysiological and behavioral consequences of the interaction between external environment and the internal genetic pool that shapes the nervous system over a lifetime remain important questions in basic neuroscientific research. Space station offers the opportunity to study this interaction over several life cycles in a variety of organisms. This short review considers past work in altered gravity, particularly on the vestibular system, as the basis for proposing future research on space station, and discusses the equipment necessary to achieve goals. It is stressed that, in keeping with the international investment being made in this research endeavor, both the questions asked and the technologies to be developed should be bold. Advantage must be taken of this unique research environment to expand the frontiers of neuroscience. Copyright 1998 Published by Elsevier Science B.V.

  1. Development of common neural representations for distinct numerical problems

    PubMed Central

    Chang, Ting-Ting; Rosenberg-Lee, Miriam; Metcalfe, Arron W. S.; Chen, Tianwen; Menon, Vinod

    2015-01-01

    How the brain develops representations for abstract cognitive problems is a major unaddressed question in neuroscience. Here we tackle this fundamental question using arithmetic problem solving, a cognitive domain important for the development of mathematical reasoning. We first examined whether adults demonstrate common neural representations for addition and subtraction problems, two complementary arithmetic operations that manipulate the same quantities. We then examined how the common neural representations for the two problem types change with development. Whole-brain multivoxel representational similarity (MRS) analysis was conducted to examine common coding of addition and subtraction problems in children and adults. We found that adults exhibited significant levels of MRS between the two problem types, not only in the intra-parietal sulcus (IPS) region of the posterior parietal cortex (PPC), but also in ventral temporal-occipital, anterior temporal and dorsolateral prefrontal cortices. Relative to adults, children showed significantly reduced levels of MRS in these same regions. In contrast, no brain areas showed significantly greater MRS between problem types in children. Our findings provide novel evidence that the emergence of arithmetic problem solving skills from childhood to adulthood is characterized by maturation of common neural representations between distinct numerical operations, and involve distributed brain regions important for representing and manipulating numerical quantity. More broadly, our findings demonstrate that representational analysis provides a powerful approach for uncovering fundamental mechanisms by which children develop proficiencies that are a hallmark of human cognition. PMID:26160287

  2. Redox Regulation of Plant Development

    PubMed Central

    Considine, Michael J.

    2014-01-01

    Abstract Significance: We provide a conceptual framework for the interactions between the cellular redox signaling hub and the phytohormone signaling network that controls plant growth and development to maximize plant productivity under stress-free situations, while limiting growth and altering development on exposure to stress. Recent Advances: Enhanced cellular oxidation plays a key role in the regulation of plant growth and stress responses. Oxidative signals or cycles of oxidation and reduction are crucial for the alleviation of dormancy and quiescence, activating the cell cycle and triggering genetic and epigenetic control that underpin growth and differentiation responses to changing environmental conditions. Critical Issues: The redox signaling hub interfaces directly with the phytohormone network in the synergistic control of growth and its modulation in response to environmental stress, but a few components have been identified. Accumulating evidence points to a complex interplay of phytohormone and redox controls that operate at multiple levels. For simplicity, we focus here on redox-dependent processes that control root growth and development and bud burst. Future Directions: The multiple roles of reactive oxygen species in the control of plant growth and development have been identified, but increasing emphasis should now be placed on the functions of redox-regulated proteins, along with the central roles of reductants such as NAD(P)H, thioredoxins, glutathione, glutaredoxins, peroxiredoxins, ascorbate, and reduced ferredoxin in the regulation of the genetic and epigenetic factors that modulate the growth and vigor of crop plants, particularly within an agricultural context. Antioxid. Redox Signal. 21, 1305–1326. PMID:24180689

  3. Imaging neural development in embryonic and larval sea urchins.

    PubMed

    Krupke, Oliver; Yaguchi, Shunsuke; Yaguchi, Junko; Burke, Robert D

    2014-01-01

    Imaging is a critical tool in neuroscience, and our understanding of the structure and function of sea urchin nervous systems owes much to this approach. In particular, studies of neural development have been facilitated by methods that enable the accurate identification of specific types of neurons. Here we describe methods that have been successfully employed to study neural development in sea urchin embryos. Altering gene expression in part of an embryo is facilitated by injection of reagents into individual blastomeres, which enables studies of cell autonomous effects and single embryo rescue experiments. The simultaneous localization of an in situ RNA hybridization probe and a cell type specific antigen has enabled studies of gene expression in specific types of neurons. Fixatives and antibodies can be capricious; thus, we provide data on preservation of antigens with commonly used fixatives and buffers. PMID:24567212

  4. Application of neural computing in pharmaceutical product development.

    PubMed

    Hussain, A S; Yu, X Q; Johnson, R D

    1991-10-01

    Neural computing technology is capable of solving problems involving complex pattern recognition. This technology is applied here to pharmaceutical product development. The most commonly used computational algorithm, the delta back-propagation network, was utilized to recognize the complex relationship between the formulation variables and the in vitro drug release parameters for a hydrophilic matrix capsule system. This new computational technique was also compared with the response surface methodology (RSM). Artificial neural network (ANN) analysis was able to predict the response values for a series of validation experiments more precisely than RSM. ANN may offer an alternative to RSM because it allows for the development of a system that can incorporate literature and experimental data to solve common problems in the pharmaceutical industry. PMID:1796042

  5. Extracellular matrix and its receptors in Drosophila neural development

    PubMed Central

    Broadie, Kendal; Baumgartner, Stefan; Prokop, Andreas

    2011-01-01

    Extracellular matrix (ECM) and matrix receptors are intimately involved in most biological processes. The ECM plays fundamental developmental and physiological roles in health and disease, including processes underlying the development, maintenance and regeneration of the nervous system. To understand the principles of ECM-mediated functions in the nervous system, genetic model organisms like Drosophila provide simple, malleable and powerful experimental platforms. This article provides an overview of ECM proteins and receptors in Drosophila. It then focuses on their roles during three progressive phases of neural development: 1) neural progenitor proliferation, 2) axonal growth and pathfinding and 3) synapse formation and function. Each section highlights known ECM and ECM-receptor components and recent studies done in mutant conditions to reveal their in vivo functions, all illustrating the enormous opportunities provided when merging work on the nervous system with systematic research into ECM-related gene functions. PMID:21688401

  6. Design development of a neural network-based telemetry monitor

    NASA Technical Reports Server (NTRS)

    Lembeck, Michael F.

    1992-01-01

    This paper identifies the requirements and describes an architectural framework for an artificial neural network-based system that is capable of fulfilling monitoring and control requirements of future aerospace missions. Incorporated into this framework are a newly developed training algorithm and the concept of cooperative network architectures. The feasibility of such an approach is demonstrated for its ability to identify faults in low frequency waveforms.

  7. Co-opting functions of cholinesterases in neural, limb and stem cell development.

    PubMed

    Vogel-Hopker, Astrid; Sperling, Laura E; Layer, Paul G

    2012-02-01

    Acetylcholinesterase (AChE) is a most remarkable protein, not only because it is one of the fastest enzymes in nature, but also since it appears in many molecular forms and is regulated by elaborate genetic networks. As revealed by sensitive histochemical procedures, AChE is expressed specifically in many tissues during development and in many mature organisms, as well as in healthy and diseased states. Therefore it is not surprising that there has been a long-standing search for additional, "non-classical" functions of cholinesterases (ChEs). In principle, AChE could either act nonenzymatically, e.g. exerting cell adhesive roles, or, alternatively, it could work within the frame of classic cholinergic systems, but in non-neural tissues. AChE might be considered a highly co-opting protein, since possibly it combines such various functions within one molecule. By presenting four different developmental cases, we here review i) the expression of ChEs in the neural tube and their close relation to cell proliferation and differentiation, ii) that AChE expression reflects a polycentric brain development, iii) the retina as a model for AChE functioning in neural network formation, and iv) nonneural ChEs in limb development and mature bones. Also, possible roles of AChE in neuritic growth and of cholinergic regulations in stem cells are briefly outlined. PMID:21933123

  8. NrCAM-regulating neural systems and addiction-related behaviors.

    PubMed

    Ishiguro, Hiroki; Hall, Frank S; Horiuchi, Yasue; Sakurai, Takeshi; Hishimoto, Akitoyo; Grumet, Martin; Uhl, George R; Onaivi, Emmanuel S; Arinami, Tadao

    2014-05-01

    We have previously shown that a haplotype associated with decreased NrCAM expression in brain is protective against addiction vulnerability for polysubstance abuse in humans and that Nrcam knockout mice do not develop conditioned place preferences for morphine, cocaine or amphetamine. In order to gain insight into NrCAM involvement in addiction vulnerability, which may involve specific neural circuits underlying behavioral characteristics relevant to addiction, we evaluated several behavioral phenotypes in Nrcam knockout mice. Consistent with a potential general reduction in motivational function, Nrcam knockout mice demonstrated less curiosity for novel objects and for an unfamiliar conspecific, showed also less anxiety in the zero maze. Nrcam heterozygote knockout mice reduced alcohol preference and buried fewer marbles in home cage. These observations provide further support for a role of NrCAM in substance abuse including alcoholism vulnerability, possibly through its effects on behavioral traits that may affect addiction vulnerability, including novelty seeking, obsessive compulsion and responses to aversive or anxiety-provoking stimuli. Additionally, in order to prove glutamate homeostasis hypothesis of addiction, we analyzed glutamatergic molecules regulated by NRCAM expression. Glutaminase appears to be involved in NrCAM-related molecular pathway in two different tissues from human and mouse. An inhibitor of the enzyme, prolyl-leucyl-glycinamide, treatment produced, at least, some of the phenotypes of mice shown in alcohol preference and in anxiety-like behavior. Thus, NrCAM could affect addiction-related behaviors via at least partially modulation of some glutamatergic pathways and neural function in brain. PMID:22780223

  9. Sall1 regulates cortical neurogenesis and laminar fate specification in mice: implications for neural abnormalities in Townes-Brocks syndrome

    PubMed Central

    Harrison, Susan J.; Nishinakamura, Ryuichi; Jones, Kevin R.; Monaghan, A. Paula

    2012-01-01

    SUMMARY Progenitor cells in the cerebral cortex undergo dynamic cellular and molecular changes during development. Sall1 is a putative transcription factor that is highly expressed in progenitor cells during development. In humans, the autosomal dominant developmental disorder Townes-Brocks syndrome (TBS) is associated with mutations of the SALL1 gene. TBS is characterized by renal, anal, limb and auditory abnormalities. Although neural deficits have not been recognized as a diagnostic characteristic of the disease, ∼10% of patients exhibit neural or behavioral abnormalities. We demonstrate that, in addition to being expressed in peripheral organs, Sall1 is robustly expressed in progenitor cells of the central nervous system in mice. Both classical- and conditional-knockout mouse studies indicate that the cerebral cortex is particularly sensitive to loss of Sall1. In the absence of Sall1, both the surface area and depth of the cerebral cortex were decreased at embryonic day 18.5 (E18.5). These deficiencies are associated with changes in progenitor cell properties during development. In early cortical progenitor cells, Sall1 promotes proliferative over neurogenic division, whereas, at later developmental stages, Sall1 regulates the production and differentiation of intermediate progenitor cells. Furthermore, Sall1 influences the temporal specification of cortical laminae. These findings present novel insights into the function of Sall1 in the developing mouse cortex and provide avenues for future research into potential neural deficits in individuals with TBS. PMID:22228756

  10. Development of Methodologies for IV and V of Neural Networks

    NASA Technical Reports Server (NTRS)

    Taylor, Brian; Darrah, Marjorie

    2003-01-01

    Non-deterministic systems often rely upon neural network (NN) technology to "lean" to manage flight systems under controlled conditions using carefully chosen training sets. How can these adaptive systems be certified to ensure that they will become increasingly efficient and behave appropriately in real-time situations? The bulk of Independent Verification and Validation (IV&V) research of non-deterministic software control systems such as Adaptive Flight Controllers (AFC's) addresses NNs in well-behaved and constrained environments such as simulations and strict process control. However, neither substantive research, nor effective IV&V techniques have been found to address AFC's learning in real-time and adapting to live flight conditions. Adaptive flight control systems offer good extensibility into commercial aviation as well as military aviation and transportation. Consequently, this area of IV&V represents an area of growing interest and urgency. ISR proposes to further the current body of knowledge to meet two objectives: Research the current IV&V methods and assess where these methods may be applied toward a methodology for the V&V of Neural Network; and identify effective methods for IV&V of NNs that learn in real-time, including developing a prototype test bed for IV&V of AFC's. Currently. no practical method exists. lSR will meet these objectives through the tasks identified and described below. First, ISR will conduct a literature review of current IV&V technology. TO do this, ISR will collect the existing body of research on IV&V of non-deterministic systems and neural network. ISR will also develop the framework for disseminating this information through specialized training. This effort will focus on developing NASA's capability to conduct IV&V of neural network systems and to provide training to meet the increasing need for IV&V expertise in such systems.

  11. The DLK signalling pathway--a double-edged sword in neural development and regeneration.

    PubMed

    Tedeschi, Andrea; Bradke, Frank

    2013-07-01

    Dual leucine zipper kinase (DLK), a mitogen-activated protein kinase kinase kinase, controls axon growth, apoptosis and neuron degeneration during neural development, as well as neurodegeneration after various insults to the adult nervous system. Interestingly, recent studies have also highlighted a role of DLK in promoting axon regeneration in diverse model systems. Invertebrates and vertebrates, cold- and warm-blooded animals, as well as central and peripheral mammalian nervous systems all differ in their ability to regenerate injured axons. Here, we discuss how DLK-dependent signalling regulates apparently contradictory functions during neural development and regeneration in different species. In addition, we outline strategies to fine-tune DLK function, either alone or together with other approaches, to promote axon regeneration in the adult mammalian central nervous system. PMID:23681442

  12. Hox Genes: Choreographers in Neural Development, Architects of Circuit Organization

    PubMed Central

    Philippidou, Polyxeni; Dasen, Jeremy S.

    2013-01-01

    Summary The neural circuits governing vital behaviors, such as respiration and locomotion, are comprised of discrete neuronal populations residing within the brainstem and spinal cord. Work over the past decade has provided a fairly comprehensive understanding of the developmental pathways that determine the identity of major neuronal classes within the neural tube. However, the steps through which neurons acquire the subtype diversities necessary for their incorporation into a particular circuit are still poorly defined. Studies on the specification of motor neurons indicate that the large family of Hox transcription factors has a key role in generating the subtypes required for selective muscle innervation. There is also emerging evidence that Hox genes function in multiple neuronal classes to shape synaptic specificity during development, suggesting a broader role in circuit assembly. This review highlights the functions and mechanisms of Hox gene networks, and their multifaceted roles during neuronal specification and connectivity. PMID:24094100

  13. Development-on-chip: in vitro neural tube patterning with a microfluidic device.

    PubMed

    Demers, Christopher J; Soundararajan, Prabakaran; Chennampally, Phaneendra; Cox, Gregory A; Briscoe, James; Collins, Scott D; Smith, Rosemary L

    2016-06-01

    Embryogenesis is a highly regulated process in which the precise spatial and temporal release of soluble cues directs differentiation of multipotent stem cells into discrete populations of specialized adult cell types. In the spinal cord, neural progenitor cells are directed to differentiate into adult neurons through the action of mediators released from nearby organizing centers, such as the floor plate and paraxial mesoderm. These signals combine to create spatiotemporal diffusional landscapes that precisely regulate the development of the central nervous system (CNS). Currently, in vivo and ex vivo studies of these signaling factors present some inherent ambiguity. In vitro methods are preferred for their enhanced experimental clarity but often lack the technical sophistication required for biological realism. In this article, we present a versatile microfluidic platform capable of mimicking the spatial and temporal chemical environments found in vivo during neural tube development. Simultaneous opposing and/or orthogonal gradients of developmental morphogens can be maintained, resulting in neural tube patterning analogous to that observed in vivo. PMID:27246712

  14. Development-on-chip: in vitro neural tube patterning with a microfluidic device

    PubMed Central

    Soundararajan, Prabakaran; Chennampally, Phaneendra; Cox, Gregory A.

    2016-01-01

    Embryogenesis is a highly regulated process in which the precise spatial and temporal release of soluble cues directs differentiation of multipotent stem cells into discrete populations of specialized adult cell types. In the spinal cord, neural progenitor cells are directed to differentiate into adult neurons through the action of mediators released from nearby organizing centers, such as the floor plate and paraxial mesoderm. These signals combine to create spatiotemporal diffusional landscapes that precisely regulate the development of the central nervous system (CNS). Currently, in vivo and ex vivo studies of these signaling factors present some inherent ambiguity. In vitro methods are preferred for their enhanced experimental clarity but often lack the technical sophistication required for biological realism. In this article, we present a versatile microfluidic platform capable of mimicking the spatial and temporal chemical environments found in vivo during neural tube development. Simultaneous opposing and/or orthogonal gradients of developmental morphogens can be maintained, resulting in neural tube patterning analogous to that observed in vivo. PMID:27246712

  15. Incidental regulation of attraction: The neural basis of the derogation of attractive alternatives in romantic relationships

    PubMed Central

    Meyer, Meghan L.; Berkman, Elliot T.; Karremans, Johan C.; Lieberman, Matthew D.

    2011-01-01

    Although a great deal of research addresses the neural basis of deliberate and intentional emotion-regulation strategies, less attention has been paid to the neural mechanisms involved in implicit forms of emotion regulation. Behavioural research suggests that romantically involved participants implicitly derogate the attractiveness of alternative partners, and the present study sought to examine the neural basis of this effect. Romantically committed participants in the present study were scanned with functional magnetic resonance imaging (fMRI) while indicating whether they would consider each of a series of attractive (or unattractive) opposite-sex others as a hypothetical dating partner both while under cognitive load and no cognitive load. Successful derogation of attractive others during the no cognitive load compared to the cognitive load trials corresponded with increased activation in the ventrolateral prefrontal cortex (VLPFC) and posterior dorsomedial prefrontal cortex (pDMPFC), and decreased activation in the ventral striatum, a pattern similar to those reported in deliberate emotion-regulation studies. Activation in the VLPFC and pDMPFC was not significant in the cognitive load condition, indicating that while the derogation effect may be implicit, it nonetheless requires cognitive resources. Additionally, activation in the right VLPFC correlated with participants’ level of relationship investment. These findings suggest that the RVLPFC may play a particularly important role in implicitly regulating the emotions that threaten the stability of a romantic relationship. PMID:21432689

  16. Incidental regulation of attraction: the neural basis of the derogation of attractive alternatives in romantic relationships.

    PubMed

    Meyer, Meghan L; Berkman, Elliot T; Karremans, Johan C; Lieberman, Matthew D

    2011-04-01

    Although a great deal of research addresses the neural basis of deliberate and intentional emotion-regulation strategies, less attention has been paid to the neural mechanisms involved in implicit forms of emotion regulation. Behavioural research suggests that romantically involved participants implicitly derogate the attractiveness of alternative partners, and the present study sought to examine the neural basis of this effect. Romantically committed participants in the present study were scanned with functional magnetic resonance imaging (fMRI) while indicating whether they would consider each of a series of attractive (or unattractive) opposite-sex others as a hypothetical dating partner both while under cognitive load and no cognitive load. Successful derogation of attractive others during the no cognitive load compared to the cognitive load trials corresponded with increased activation in the ventrolateral prefrontal cortex (VLPFC) and posterior dorsomedial prefrontal cortex (pDMPFC), and decreased activation in the ventral striatum, a pattern similar to those reported in deliberate emotion-regulation studies. Activation in the VLPFC and pDMPFC was not significant in the cognitive load condition, indicating that while the derogation effect may be implicit, it nonetheless requires cognitive resources. Additionally, activation in the right VLPFC correlated with participants' level of relationship investment. These findings suggest that the RVLPFC may play a particularly important role in implicitly regulating the emotions that threaten the stability of a romantic relationship. PMID:21432689

  17. Neural Correlates of Mothers' Hypothalamic-Pituitary-Adrenal Regulation with Their Infants

    PubMed Central

    Laurent, Heidemarie K.; Stevens, Alexander; Ablow, Jennifer C.

    2011-01-01

    Background Neural correlates of stress regulation via the hypothalamic-pituitary-adrenal (HPA) axis have been identified, but little is known about how these apply to real-world interpersonal stress contexts such as mother-infant interaction. We extended stress regulation research by examining maternal neural activation to infant cry related to HPA regulation with their infants. Methods Twenty-two primiparous mothers listened to their own 18-month infant's cry sound, unfamiliar infant cry, and control sound during fMRI scanning. Salivary cortisol was collected at four timepoints in a separate session involving the Strange Situation stressor. Cortisol trajectories were modeled using hierarchical linear modeling, and trajectory terms were used to predict neural response to own infant cry. Results Mothers who showed less HPA reactivity – indexed by trajectory curvature, rather than level – showed increased activation to their infant's cry relative to control sound across limbic/paralimbic and prefrontal circuits. These included periaqueductal gray, right insula, and bilateral orbitofrontal cortex, as well as anterior cingulate-medial prefrontal cortex. Activations overlapped to some extent with previous HPA regulation findings, and converged more extensively with circuits identified in other maternal response paradigms. Conclusions Maternal stress regulation involves both circuits found across stressor types (i.e., prefrontal) and areas unique to the mother-infant relationship (i.e., limbic/paralimbic). The shape of mothers' HPA response trajectory was more important than the level of such response in defining stress-related neural correlates. Future research should consider dimensions of the stress context and of physiological trajectories to define stress-regulatory circuits. PMID:21783177

  18. Molecular regulation of kidney development

    PubMed Central

    Chai, Ok-Hee; Song, Chang-Ho; Park, Sung-Kwang

    2013-01-01

    Genetically engineered mice have provided much information about gene function in the field of developmental biology. Recently, conditional gene targeting using the Cre/loxP system has been developed to control the cell type and timing of the target gene expression. The increase in number of kidney-specific Cre mice allows for the analysis of phenotypes that cannot be addressed by conventional gene targeting. The mammalian kidney is a vital organ that plays a critical homeostatic role in the regulation of body fluid composition and excretion of waste products. The interactions between epithelial and mesenchymal cells are very critical events in the field of developmental biology, especially renal development. Kidney development is a complex process, requiring inductive interactions between epithelial and mesenchymal cells that eventually lead to the growth and differentiation of multiple highly specialized stromal, vascular, and epithelial cell types. Through the use of genetically engineered mouse models, the molecular bases for many of the events in the developing kidney have been identified. Defective morphogenesis may result in clinical phenotypes that range from complete renal agenesis to diseases such as hypertension that exist in the setting of grossly normal kidneys. In this review, we focus on the growth and transcription factors that define kidney progenitor cell populations, initiate ureteric bud branching, induce nephron formation within the metanephric mesenchyme, and differentiate stromal and vascular progenitors in the metanephric mesenchyme. PMID:23560233

  19. Regulated proteolysis in bacterial development

    PubMed Central

    Konovalova, Anna; Søgaard-Andersen, Lotte; Kroos, Lee

    2013-01-01

    Bacteria use proteases to control three types of events temporally and spatially during processes of morphological development. These events are destruction of regulatory proteins, activation of regulatory proteins, and production of signals. While some of these events are entirely cytoplasmic, others involve intramembrane proteolysis of a substrate, trans-membrane signaling, or secretion. In some cases, multiple proteolytic events are organized into pathways, e.g., turnover of a regulatory protein activates a protease that generates a signal. We review well-studied and emerging examples, and identify recurring themes and important questions for future research. We focus primarily on paradigms learned from studies of model organisms, but we note connections to regulated proteolytic events that govern bacterial adaptation, biofilm formation and disassembly, and pathogenesis. PMID:24354618

  20. Identification and molecular regulation of neural stem cells in the olfactory epithelium

    SciTech Connect

    Beites, Crestina L.; Kawauchi, Shimako; Crocker, Candice E.; Calof, Anne L. . E-mail: alcalof@uci.edu

    2005-06-10

    The sensory neurons that subserve olfaction, olfactory receptor neurons (ORNs), are regenerated throughout life, making the neuroepithelium in which they reside [the olfactory epithelium (OE)] an excellent model for studying how intrinsic and extrinsic factors regulate stem cell dynamics and neurogenesis during development and regeneration. Numerous studies indicate that transcription factors and signaling molecules together regulate generation of ORNs from stem and progenitor cells during development, and work on regenerative neurogenesis indicates that these same factors may operate at postnatal ages as well. This review describes our current knowledge of the identity of the OE neural stem cell; the different cell types that are thought to be the progeny (directly or indirectly) of this stem cell; and the factors that influence cell differentiation in the OE neuronal lineage. We review data suggesting that (1) the ORN lineage contains three distinct proliferating cell types-a stem cell and two populations of transit amplifying cells; (2) in established OE, these three cell types are present within the basal cell compartment of the epithelium; and (3) the stem cell that gives rise ultimately to ORNs may also generate two glial cell types of the primary olfactory pathway: sustentacular cells (SUS), which lie within OE proper; and olfactory ensheathing cells (OEC), which envelope the olfactory nerve. In addition, we describe factors that are both made by and found within the microenvironment of OE stem and progenitor cells, and which exert crucial growth regulatory effects on these cells. Thus, as with other regenerating tissues, the basis of regeneration in the OE appears be a population of stem cells, which resides within a microenvironment (niche) consisting of factors crucial for maintenance of its capacity for proliferation and differentiation.

  1. Nutritional regulation of root development.

    PubMed

    Ruiz Herrera, León Francisco; Shane, Michael W; López-Bucio, José

    2015-01-01

    Mineral nutrients such as nitrogen (N), phosphorus (P), and iron (Fe) are essential for plant growth, development, and reproduction. Adequate provision of nutrients via the root system impacts greatly on shoot biomass and plant productivity and is therefore of crucial importance for agriculture. Nutrients are taken up at the root surface in ionic form, which is mediated by specific transport proteins. Noteworthy, root tips are able to sense the local and internal concentrations of nutrients to adjust growth and developmental processes, and ultimately, to increase or decrease the exploratory capacity of the root system. Recently, important progress has been achieved in identifying the mechanisms of nutrient sensing in wild- and cultivated species, including Arabidopsis, bean, maize, rice, lupin as well as in members of the Proteaceae and Cyperaceae families, which develop highly sophisticated root clusters as adaptations to survive in soils with very low fertility. Major findings include identification of transporter proteins and transcription factors regulating nutrient sensing, miRNAs as mobile signals and peptides as repressors of lateral root development under heterogeneous nutrient supply. Understanding the roles played by N, P, and Fe in gene expression and biochemical characterization of proteins involved in root developmental responses to homogeneous or heterogeneous N and P sources has gained additional interest due to its potential for improving fertilizer acquisition efficiency in crops. PMID:25760021

  2. Doublesex Regulates the Connectivity of a Neural Circuit Controlling Drosophila Male Courtship Song.

    PubMed

    Shirangi, Troy R; Wong, Allan M; Truman, James W; Stern, David L

    2016-06-20

    It is unclear how regulatory genes establish neural circuits that compose sex-specific behaviors. The Drosophila melanogaster male courtship song provides a powerful model to study this problem. Courting males vibrate a wing to sing bouts of pulses and hums, called pulse and sine song, respectively. We report the discovery of male-specific thoracic interneurons-the TN1A neurons-that are required specifically for sine song. The TN1A neurons can drive the activity of a sex-non-specific wing motoneuron, hg1, which is also required for sine song. The male-specific connection between the TN1A neurons and the hg1 motoneuron is regulated by the sexual differentiation gene doublesex. We find that doublesex is required in the TN1A neurons during development to increase the density of the TN1A arbors that interact with dendrites of the hg1 motoneuron. Our findings demonstrate how a sexual differentiation gene can build a sex-specific circuit motif by modulating neuronal arborization. PMID:27326931

  3. Actin capping protein CAPZB regulates cell morphology, differentiation, and neural crest migration in craniofacial morphogenesis†.

    PubMed

    Mukherjee, Kusumika; Ishii, Kana; Pillalamarri, Vamsee; Kammin, Tammy; Atkin, Joan F; Hickey, Scott E; Xi, Qiongchao J; Zepeda, Cinthya J; Gusella, James F; Talkowski, Michael E; Morton, Cynthia C; Maas, Richard L; Liao, Eric C

    2016-04-01

    CAPZB is an actin-capping protein that caps the growing end of F-actin and modulates the cytoskeleton and tethers actin filaments to the Z-line of the sarcomere in muscles. Whole-genome sequencing was performed on a subject with micrognathia, cleft palate and hypotonia that harbored a de novo, balanced chromosomal translocation that disrupts the CAPZB gene. The function of capzb was analyzed in the zebrafish model. capzb(-/-) mutants exhibit both craniofacial and muscle defects that recapitulate the phenotypes observed in the human subject. Loss of capzb affects cell morphology, differentiation and neural crest migration. Differentiation of both myogenic stem cells and neural crest cells requires capzb. During palate morphogenesis, defective cranial neural crest cell migration in capzb(-/-) mutants results in loss of the median cell population, creating a cleft phenotype. capzb is also required for trunk neural crest migration, as evident from melanophores disorganization in capzb(-/-) mutants. In addition, capzb over-expression results in embryonic lethality. Therefore, proper capzb dosage is important during embryogenesis, and regulates both cell behavior and tissue morphogenesis. PMID:26758871

  4. Meis3 is required for neural crest invasion of the gut during zebrafish enteric nervous system development.

    PubMed

    Uribe, Rosa A; Bronner, Marianne E

    2015-11-01

    During development, vagal neural crest cells fated to contribute to the enteric nervous system migrate ventrally away from the neural tube toward and along the primitive gut. The molecular mechanisms that regulate their early migration en route to and entry into the gut remain elusive. Here we show that the transcription factor meis3 is expressed along vagal neural crest pathways. Meis3 loss of function results in a reduction in migration efficiency, cell number, and the mitotic activity of neural crest cells in the vicinity of the gut but has no effect on neural crest or gut specification. Later, during enteric nervous system differentiation, Meis3-depleted embryos exhibit colonic aganglionosis, a disorder in which the hindgut is devoid of neurons. Accordingly, the expression of Shh pathway components, previously shown to have a role in the etiology of Hirschsprung's disease, was misregulated within the gut after loss of Meis3. Taken together, these findings support a model in which Meis3 is required for neural crest proliferation, migration into, and colonization of the gut such that its loss leads to severe defects in enteric nervous system development. PMID:26354419

  5. Meis3 is required for neural crest invasion of the gut during zebrafish enteric nervous system development

    PubMed Central

    Uribe, Rosa A.; Bronner, Marianne E.

    2015-01-01

    During development, vagal neural crest cells fated to contribute to the enteric nervous system migrate ventrally away from the neural tube toward and along the primitive gut. The molecular mechanisms that regulate their early migration en route to and entry into the gut remain elusive. Here we show that the transcription factor meis3 is expressed along vagal neural crest pathways. Meis3 loss of function results in a reduction in migration efficiency, cell number, and the mitotic activity of neural crest cells in the vicinity of the gut but has no effect on neural crest or gut specification. Later, during enteric nervous system differentiation, Meis3-depleted embryos exhibit colonic aganglionosis, a disorder in which the hindgut is devoid of neurons. Accordingly, the expression of Shh pathway components, previously shown to have a role in the etiology of Hirschsprung’s disease, was misregulated within the gut after loss of Meis3. Taken together, these findings support a model in which Meis3 is required for neural crest proliferation, migration into, and colonization of the gut such that its loss leads to severe defects in enteric nervous system development. PMID:26354419

  6. Lin28 promotes the proliferative capacity of neural progenitor cells in brain development

    PubMed Central

    Yang, Mei; Yang, Si-Lu; Herrlinger, Stephanie; Liang, Chen; Dzieciatkowska, Monika; Hansen, Kirk C.; Desai, Ridham; Nagy, Andras; Niswander, Lee; Moss, Eric G.; Chen, Jian-Fu

    2015-01-01

    Neural progenitor cells (NPCs) have distinct proliferation capacities at different stages of brain development. Lin28 is an RNA-binding protein with two homologs in mice: Lin28a and Lin28b. Here we show that Lin28a/b are enriched in early NPCs and their expression declines during neural differentiation. Lin28a single-knockout mice show reduced NPC proliferation, enhanced cell cycle exit and a smaller brain, whereas mice lacking both Lin28a alleles and one Lin28b allele display similar but more severe phenotypes. Ectopic expression of Lin28a in mice results in increased NPC proliferation, NPC numbers and brain size. Mechanistically, Lin28a physically and functionally interacts with Imp1 (Igf2bp1) and regulates Igf2-mTOR signaling. The function of Lin28a/b in NPCs could be attributed, at least in part, to the regulation of their mRNA targets that encode Igf1r and Hmga2. Thus, Lin28a and Lin28b have overlapping functions in temporally regulating NPC proliferation during early brain development. PMID:25922525

  7. Olig1 expression pattern in neural cells during rat spinal cord development

    PubMed Central

    Qi, Qi; Zhang, Yuxin; Shen, Lin; Wang, Rui; Zhou, Jiansheng; Lü, Hezuo; Hu, Jianguo

    2016-01-01

    Purpose Our purpose was to systematically investigate the expression pattern and role of Olig1 in neural cells during rat spinal cord development. Animals and methods Spinal cord tissues were dissected from Sprague–Dawley rats at embryonic day 14.5 (E14.5) and E18.5, postnatal day 0 (P0), P3, P7, postnatal 2 weeks (P2W), P4W, and adults (more than 2 months after birth), respectively. The expression of Olig1 was determined by Western blot and immunostaining. To observe expression of Olig1 in different neural cell types, a double immunohistochemical staining was performed using antibodies against Olig1 with O4, β-tubulin, glial fibrillary acidic protein (GFAP), and myelin basic protein, respectively. Results The expression of Olig1 protein shows a significant level change in rat spinal cord at different developmental time points. Starting with E14.5, the expression gradually increased and peaked at E18.5. Olig1 decreased gradually from P3 and reached its lowest level on P7. However, interestingly, the Olig1 expression increased again from P2W, until adulthood. Olig1 was coexpressed with O4-positive oligodendrocyte progenitor cells (OPCs) and β-tubulin-positive neurons at all time points during development. Olig1 was also coexpressed transiently with GFAP-positive astrocytes at only E14.5. Olig1 was localized in the cytoplasm of O4- and β-tubulin-positive cells during the period from E14.5 to adult. Conclusion The expression of Olig1 in OPCs and neurons at all time points during development and in astrocytes at E14.5 suggests that Olig1 may play an important role in the generation and maturation of specific neural cells during development of spinal cord. Our results contribute to understanding the mechanism underlying developmental regulation of neural cells by Olig1. PMID:27143892

  8. Simulated apoptosis/neurogenesis regulates learning and memory capabilities of adaptive neural networks.

    PubMed

    Chambers, R Andrew; Potenza, Marc N; Hoffman, Ralph E; Miranker, Willard

    2004-04-01

    Characterization of neuronal death and neurogenesis in the adult brain of birds, humans, and other mammals raises the possibility that neuronal turnover represents a special form of neuroplasticity associated with stress responses, cognition, and the pathophysiology and treatment of psychiatric disorders. Multilayer neural network models capable of learning alphabetic character representations via incremental synaptic connection strength changes were used to assess additional learning and memory effects incurred by simulation of coordinated apoptotic and neurogenic events in the middle layer. Using a consistent incremental learning capability across all neurons and experimental conditions, increasing the number of middle layer neurons undergoing turnover increased network learning capacity for new information, and increased forgetting of old information. Simulations also showed that specific patterns of neural turnover based on individual neuronal connection characteristics, or the temporal-spatial pattern of neurons chosen for turnover during new learning impacts new learning performance. These simulations predict that apoptotic and neurogenic events could act together to produce specific learning and memory effects beyond those provided by ongoing mechanisms of connection plasticity in neuronal populations. Regulation of rates as well as patterns of neuronal turnover may serve an important function in tuning the informatic properties of plastic networks according to novel informational demands. Analogous regulation in the hippocampus may provide for adaptive cognitive and emotional responses to novel and stressful contexts, or operate suboptimally as a basis for psychiatric disorders. The implications of these elementary simulations for future biological and neural modeling research on apoptosis and neurogenesis are discussed. PMID:14702022

  9. Nuclear receptor NR5A2 controls neural stem cell fate decisions during development

    PubMed Central

    Stergiopoulos, Athanasios; Politis, Panagiotis K.

    2016-01-01

    The enormous complexity of mammalian central nervous system (CNS) is generated by highly synchronized actions of diverse factors and signalling molecules in neural stem/progenitor cells (NSCs). However, the molecular mechanisms that integrate extrinsic and intrinsic signals to control proliferation versus differentiation decisions of NSCs are not well-understood. Here we identify nuclear receptor NR5A2 as a central node in these regulatory networks and key player in neural development. Overexpression and loss-of-function experiments in primary NSCs and mouse embryos suggest that NR5A2 synchronizes cell-cycle exit with induction of neurogenesis and inhibition of astrogliogenesis by direct regulatory effects on Ink4/Arf locus, Prox1, a downstream target of proneural genes, as well as Notch1 and JAK/STAT signalling pathways. Upstream of NR5a2, proneural genes, as well as Notch1 and JAK/STAT pathways control NR5a2 endogenous expression. Collectively, these observations render NR5A2 a critical regulator of neural development and target gene for NSC-based treatments of CNS-related diseases. PMID:27447294

  10. Neural correlates of socioeconomic status in the developing human brain.

    PubMed

    Noble, Kimberly G; Houston, Suzanne M; Kan, Eric; Sowell, Elizabeth R

    2012-07-01

    Socioeconomic disparities in childhood are associated with remarkable differences in cognitive and socio-emotional development during a time when dramatic changes are occurring in the brain. Yet, the neurobiological pathways through which socioeconomic status (SES) shapes development remain poorly understood. Behavioral evidence suggests that language, memory, social-emotional processing, and cognitive control exhibit relatively large differences across SES. Here we investigated whether volumetric differences could be observed across SES in several neural regions that support these skills. In a sample of 60 socioeconomically diverse children, highly significant SES differences in regional brain volume were observed in the hippocampus and the amygdala. In addition, SES × age interactions were observed in the left superior temporal gyrus and left inferior frontal gyrus, suggesting increasing SES differences with age in these regions. These results were not explained by differences in gender, race or IQ. Likely mechanisms include differences in the home linguistic environment and exposure to stress, which may serve as targets for intervention at a time of high neural plasticity. PMID:22709401

  11. Odd-skipped related-1 controls neural crest chondrogenesis during tongue development

    PubMed Central

    Liu, Han; Lan, Yu; Xu, Jingyue; Chang, Ching-Fang; Brugmann, Samantha A.; Jiang, Rulang

    2013-01-01

    The tongue is a critical element of the feeding system in tetrapod animals for their successful adaptation to terrestrial life. Whereas the oral part of the mammalian tongue contains soft tissues only, the avian tongue has an internal skeleton extending to the anterior tip. The mechanisms underlying the evolutionary divergence in tongue skeleton formation are completely unknown. We show here that the odd-skipped related-1 (Osr1) transcription factor is expressed throughout the neural crest-derived tongue mesenchyme in mouse, but not in chick, embryos during early tongue morphogenesis. Neural crest-specific inactivation of Osr1 resulted in formation of an ectopic cartilage in the mouse tongue, reminiscent in shape and developmental ontogeny of the anterior tongue cartilage in chick. SRY-box containing gene-9 (Sox9), the master regulator of chondrogenesis, is widely expressed in the nascent tongue mesenchyme at the onset of tongue morphogenesis but its expression is dramatically down-regulated concomitant with activation of Osr1 expression in the developing mouse tongue. In Osr1 mutant mouse embryos, expression of Sox9 persisted in the developing tongue mesenchyme where chondrogenesis is subsequently activated to form the ectopic cartilage. Furthermore, we show that Osr1 binds to the Sox9 gene promoter and that overexpression of Osr1 suppressed expression of endogenous Sox9 mRNAs and Sox9 promoter-driven reporter. These data indicate that Osr1 normally prevents chondrogenesis in the mammalian tongue through repression of Sox9 expression and suggest that changes in regulation of Osr1 expression in the neural crest-derived tongue mesenchyme underlie the evolutionary divergence of birds from other vertebrates in tongue morphogenesis. PMID:24167250

  12. Odd-skipped related-1 controls neural crest chondrogenesis during tongue development.

    PubMed

    Liu, Han; Lan, Yu; Xu, Jingyue; Chang, Ching-Fang; Brugmann, Samantha A; Jiang, Rulang

    2013-11-12

    The tongue is a critical element of the feeding system in tetrapod animals for their successful adaptation to terrestrial life. Whereas the oral part of the mammalian tongue contains soft tissues only, the avian tongue has an internal skeleton extending to the anterior tip. The mechanisms underlying the evolutionary divergence in tongue skeleton formation are completely unknown. We show here that the odd-skipped related-1 (Osr1) transcription factor is expressed throughout the neural crest-derived tongue mesenchyme in mouse, but not in chick, embryos during early tongue morphogenesis. Neural crest-specific inactivation of Osr1 resulted in formation of an ectopic cartilage in the mouse tongue, reminiscent in shape and developmental ontogeny of the anterior tongue cartilage in chick. SRY-box containing gene-9 (Sox9), the master regulator of chondrogenesis, is widely expressed in the nascent tongue mesenchyme at the onset of tongue morphogenesis but its expression is dramatically down-regulated concomitant with activation of Osr1 expression in the developing mouse tongue. In Osr1 mutant mouse embryos, expression of Sox9 persisted in the developing tongue mesenchyme where chondrogenesis is subsequently activated to form the ectopic cartilage. Furthermore, we show that Osr1 binds to the Sox9 gene promoter and that overexpression of Osr1 suppressed expression of endogenous Sox9 mRNAs and Sox9 promoter-driven reporter. These data indicate that Osr1 normally prevents chondrogenesis in the mammalian tongue through repression of Sox9 expression and suggest that changes in regulation of Osr1 expression in the neural crest-derived tongue mesenchyme underlie the evolutionary divergence of birds from other vertebrates in tongue morphogenesis. PMID:24167250

  13. Neural crest and placode contributions to olfactory development.

    PubMed

    Suzuki, Jun; Osumi, Noriko

    2015-01-01

    Olfaction is the sense of smell that influences many primitive behaviors for survival, e.g., feeding, reproduction, social interaction, and fear response. The olfactory system is an evolutionarily ancient sensory system and composed of the olfactory epithelium (OE), the olfactory bulb (OB), and the olfactory cortex. The OE gives rise to olfactory receptor neurons (ORNs), i.e., primary sensory receptor cells whose axons project directly to the OB. The ORNs are unique in the way that they are continuously replaced during physiological turnover or following injury throughout life. In the OE, horizontal basal cells, i.e., flat and quiescent cells attached to the basal lamina, are now thought to be tissue stem cells. Although OE cells, especially ORNs, were hypothesized to be derived from the olfactory placode (OP), recent genetic fate-mapping studies using Cre reporter mice indicate a dual origin, i.e., the OP and neural crest (NC), of the olfactory system. The NC is a transient embryonic tissue that is formed between the dorsal neuroepithelium and epidermis. Neural crest cells (NCCs) are multipotent cells that migrate into various target tissues and differentiate into various cell types, including neurons and glia of the peripheral nervous system, cranial cartilage and bone, and melanocytes. Recent studies have revealed that neural crest-derived cells (NCDCs) are widely distributed in adult tissues, and that a subset of NCDCs still possesses NCC-like multipotency. Here, we review classical and recent studies of the olfactory system, especially focusing on the contribution of the NC and OP to the OE development. PMID:25662265

  14. Impaired regulation of emotion: neural correlates of reappraisal and distraction in bipolar disorder and unaffected relatives

    PubMed Central

    Kanske, P; Schönfelder, S; Forneck, J; Wessa, M

    2015-01-01

    Deficient emotion regulation has been proposed as a crucial pathological mechanism in bipolar disorder (BD). We therefore investigated emotion regulation impairments in BD, the related neural underpinnings and their etiological relevance for the disorder. Twenty-two euthymic patients with bipolar-I disorder and 17 unaffected first-degree relatives of BD-I patients, as well as two groups of healthy gender-, age- and education-matched controls (N=22/17, respectively) were included. Participants underwent functional magnetic resonance imaging while applying two different emotion regulation techniques, reappraisal and distraction, when presented with emotional images. BD patients and relatives showed impaired downregulation of amygdala activity during reappraisal, but not during distraction, when compared with controls. This deficit was correlated with the habitual use of reappraisal. The negative connectivity of amygdala and orbitofrontal cortex (OFC) observed during reappraisal in controls was reversed in BD patients and relatives. There were no significant differences between BD patients and relatives. As being observed in BD patients and unaffected relatives, deficits in emotion regulation through reappraisal may represent heritable neurobiological abnormalities underlying BD. The neural mechanisms include impaired control of amygdala reactivity to emotional stimuli and dysfunctional connectivity of the amygdala to regulatory control regions in the OFC. These are, thus, important aspects of the neurobiological basis of increased vulnerability for BD. PMID:25603413

  15. Visualization and Manipulation of Neural Activity in the Developing Vertebrate Nervous System

    PubMed Central

    Zhang, Jiayi; Ackman, James B.; Dhande, Onkar S.; Crair, Michael C.

    2011-01-01

    Neural activity during vertebrate development has been unambiguously shown to play a critical role in sculpting circuit formation and function. Patterned neural activity in various parts of the developing nervous system is thought to modulate neurite outgrowth, axon targeting, and synapse refinement. The nature and role of patterned neural activity during development has been classically studied with in vitro preparations using pharmacological manipulations. In this review we discuss newly available and developing molecular–genetic tools for the visualization and manipulation of neural activity patterns specifically during development. PMID:22121343

  16. Magnesium regulates neural stem cell proliferation in the mouse hippocampus by altering mitochondrial function.

    PubMed

    Jia, Shanshan; Mou, Chengzhi; Ma, Yihe; Han, Ruijie; Li, Xue

    2016-04-01

    In the adult brain, neural stem cells from the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the cortex progress through the following five developmental stages: radial glia-like cells, neural progenitor cells, neuroblasts, immature neurons, and mature neurons. These developmental stages are linked to both neuronal microenvironments and energy metabolism. Neurogenesis is restricted and has been demonstrated to arise from tissue microenvironments. We determined that magnesium, a key nutrient in cellular energy metabolism, affects neural stem cell (NSC) proliferation in cells derived from the embryonic hippocampus by influencing mitochondrial function. Densities of proliferating cells and NSCs both showed their highest values at 0.8 mM [Mg(2+) ]o , whereas lower proliferation rates were observed at 0.4 and 1.4 mM [Mg(2+) ]o . The numbers and sizes of the neurospheres reached the maximum at 0.8 mM [Mg(2+) ]o and were weaker under both low (0.4 mM) and high (1.4 mM) concentrations of magnesium. In vitro experimental evidence demonstrates that extracellular magnesium regulates the number of cultured hippocampal NSCs, affecting both magnesium homeostasis and mitochondrial function. Our findings indicate that the effect of [Mg(2+) ]o on NSC proliferation may lie downstream of alterations in mitochondrial function because mitochondrial membrane potential was highest in the NSCs in the moderate [Mg(2+) ]o (0.8 mM) group and lower in both the low (0.4 mM) and high (1.4 mM) [Mg(2+) ]o groups. Overall, these findings demonstrate a new function for magnesium in the brain in the regulation of hippocampal neural stem cells: affecting their cellular energy metabolism. PMID:26634890

  17. Reciprocal Regulation between Bifunctional miR-9/9(∗) and its Transcriptional Modulator Notch in Human Neural Stem Cell Self-Renewal and Differentiation.

    PubMed

    Roese-Koerner, Beate; Stappert, Laura; Berger, Thomas; Braun, Nils Christian; Veltel, Monika; Jungverdorben, Johannes; Evert, Bernd O; Peitz, Michael; Borghese, Lodovica; Brüstle, Oliver

    2016-08-01

    Tight regulation of the balance between self-renewal and differentiation of neural stem cells is crucial to assure proper neural development. In this context, Notch signaling is a well-known promoter of stemness. In contrast, the bifunctional brain-enriched microRNA miR-9/9(∗) has been implicated in promoting neuronal differentiation. Therefore, we set out to explore the role of both regulators in human neural stem cells. We found that miR-9/9(∗) decreases Notch activity by targeting NOTCH2 and HES1, resulting in an enhanced differentiation. Vice versa, expression levels of miR-9/9(∗) depend on the activation status of Notch signaling. While Notch inhibits differentiation of neural stem cells, it also induces miR-9/9(∗) via recruitment of the Notch intracellular domain (NICD)/RBPj transcriptional complex to the miR-9/9(∗)_2 genomic locus. Thus, our data reveal a mutual interaction between bifunctional miR-9/9(∗) and the Notch signaling cascade, calibrating the delicate balance between self-renewal and differentiation of human neural stem cells. PMID:27426040

  18. Vertebrate Neural Stem Cells: Development, Plasticity, and Regeneration.

    PubMed

    Shimazaki, Takuya

    2016-03-25

    Natural recovery from disease and damage in the adult mammalian central nervous system (CNS) is limited compared with that in lower vertebrate species, including fish and salamanders. Species-specific differences in the plasticity of the CNS reflect these differences in regenerative capacity. Despite numerous extensive studies in the field of CNS regeneration, our understanding of the molecular mechanisms determining the regenerative capacity of the CNS is still relatively poor. The discovery of adult neural stem cells (aNSCs) in mammals, including humans, in the early 1990s has opened up new possibilities for the treatment of CNS disorders via self-regeneration through the mobilization of these cells. However, we now know that aNSCs in mammals are not plastic enough to induce significant regeneration. In contrast, aNSCs in some regenerative species have been found to be as highly plastic as early embryonic neural stem cells (NSCs). We must expand our knowledge of NSCs and of regenerative processes in lower vertebrates in an effort to develop effective regenerative treatments for damaged CNS in humans. PMID:26853878

  19. A Software Package for Neural Network Applications Development

    NASA Technical Reports Server (NTRS)

    Baran, Robert H.

    1993-01-01

    Original Backprop (Version 1.2) is an MS-DOS package of four stand-alone C-language programs that enable users to develop neural network solutions to a variety of practical problems. Original Backprop generates three-layer, feed-forward (series-coupled) networks which map fixed-length input vectors into fixed length output vectors through an intermediate (hidden) layer of binary threshold units. Version 1.2 can handle up to 200 input vectors at a time, each having up to 128 real-valued components. The first subprogram, TSET, appends a number (up to 16) of classification bits to each input, thus creating a training set of input output pairs. The second subprogram, BACKPROP, creates a trilayer network to do the prescribed mapping and modifies the weights of its connections incrementally until the training set is leaned. The learning algorithm is the 'back-propagating error correction procedures first described by F. Rosenblatt in 1961. The third subprogram, VIEWNET, lets the trained network be examined, tested, and 'pruned' (by the deletion of unnecessary hidden units). The fourth subprogram, DONET, makes a TSR routine by which the finished product of the neural net design-and-training exercise can be consulted under other MS-DOS applications.

  20. Ongoing neural development of affective theory of mind in adolescence

    PubMed Central

    Weigelt, Sarah; Döhnel, Katrin; Smolka, Michael N.; Kliegel, Matthias

    2014-01-01

    Affective Theory of Mind (ToM), an important aspect of ToM, involves the understanding of affective mental states. This ability is critical in the developmental phase of adolescence, which is often related with socio-emotional problems. Using a developmentally sensitive behavioral task in combination with functional magnetic resonance imaging, the present study investigated the neural development of affective ToM throughout adolescence. Eighteen adolescent (ages 12–14 years) and 18 young adult women (aged 19–25 years) were scanned while evaluating complex affective mental states depicted by actors in video clips. The ventromedial prefrontal cortex (vmPFC) showed significantly stronger activation in adolescents in comparison to adults in the affective ToM condition. Current results indicate that the vmPFC might be involved in the development of affective ToM processing in adolescence. PMID:23716712

  1. Ongoing neural development of affective theory of mind in adolescence.

    PubMed

    Vetter, Nora C; Weigelt, Sarah; Döhnel, Katrin; Smolka, Michael N; Kliegel, Matthias

    2014-07-01

    Affective Theory of Mind (ToM), an important aspect of ToM, involves the understanding of affective mental states. This ability is critical in the developmental phase of adolescence, which is often related with socio-emotional problems. Using a developmentally sensitive behavioral task in combination with functional magnetic resonance imaging, the present study investigated the neural development of affective ToM throughout adolescence. Eighteen adolescent (ages 12-14 years) and 18 young adult women (aged 19-25 years) were scanned while evaluating complex affective mental states depicted by actors in video clips. The ventromedial prefrontal cortex (vmPFC) showed significantly stronger activation in adolescents in comparison to adults in the affective ToM condition. Current results indicate that the vmPFC might be involved in the development of affective ToM processing in adolescence. PMID:23716712

  2. The Connections Between Neural Crest Development and Neuroblastoma

    PubMed Central

    Jiang, Manrong; Stanke, Jennifer; Lahti, Jill M.

    2013-01-01

    Neuroblastoma (NB), the most common extracranial solid tumor in childhood, is an extremely heterogeneous disease both biologically and clinically. Although significant progress has been made in identifying molecular and genetic markers for NB, this disease remains an enigmatic challenge. Since NB is thought to be an embryonal tumor that is derived from precursor cells of the peripheral (sympathetic) nervous system, understanding the development of normal sympathetic nervous system may highlight abnormal events that contribute to NB initiation. Therefore, this review focuses on the development of the peripheral trunk neural crest, the current understanding of how developmental factors may contribute to NB and on recent advances in the identification of important genetic lesions and signaling pathways involved in NB tumorigenesis and metastasis. Finally, we discuss how future advances in identification of molecular alterations in NB may lead to more effective, less toxic therapies, and improve the prognosis for NB patients. PMID:21295685

  3. Translational regulation of NeuroD1 expression by FMRP: involvement in glutamatergic neuronal differentiation of cultured rat primary neural progenitor cells.

    PubMed

    Jeon, Se Jin; Kim, Ji-Woon; Kim, Ki Chan; Han, So Min; Go, Hyo Sang; Seo, Jung Eun; Choi, Chang Soon; Ryu, Jong Hoon; Shin, Chan Young; Song, Mi-Ryoung

    2014-03-01

    Fragile X mental retardation protein (FMRP) is encoded by Fmr1 gene in which mutation is known to cause fragile X syndrome characterized by mental impairment and other psychiatric symptoms similar to autism spectrum disorders. FMRP plays important roles in cellular mRNA biology such as transport, stability, and translation as an RNA-binding protein. In the present study, we identified potential role of FMRP in the neural differentiation, using cortical neural progenitor cells from Sprague-Dawley rat. We newly found NeuroD1, an essential regulator of glutamatergic neuronal differentiation, as a new mRNA target interacting with FMRP in co-immunoprecipitation experiments. We also identified FMRP as a regulator of neuronal differentiation by modulating NeuroD1 expression. Down-regulation of FMRP by siRNA also increased NeuroD1 expression along with increased pre- and post-synaptic development of glutamatergic neuron, as evidenced by Western blot and immunocytochemistry. On the contrary, cells harboring FMRP over-expression construct showed decreased NeuroD1 expression. Treatment of cultured neural precursor cells with a histone deacetylase inhibitor, valproic acid known as an inducer of hyper-glutamatergic neuronal differentiation, down-regulated the expression of FMRP, and induced NeuroD1 expression. Our study suggests that modulation of FMRP expression regulates neuronal differentiation by interaction with its binding target mRNA, and provides an example of the gene and environmental interaction regulating glutamatergic neuronal differentiation. PMID:24338128

  4. The neural correlates of regulating another person's emotions: an exploratory fMRI study.

    PubMed

    Hallam, Glyn P; Webb, Thomas L; Sheeran, Paschal; Miles, Eleanor; Niven, Karen; Wilkinson, Iain D; Hunter, Michael D; Woodruff, Peter W R; Totterdell, Peter; Farrow, Tom F D

    2014-01-01

    Studies investigating the neurophysiological basis of intrapersonal emotion regulation (control of one's own emotional experience) report that the frontal cortex exerts a modulatory effect on limbic structures such as the amygdala and insula. However, no imaging study to date has examined the neurophysiological processes involved in interpersonal emotion regulation, where the goal is explicitly to regulate another person's emotion. Twenty healthy participants (10 males) underwent fMRI while regulating their own or another person's emotions. Intrapersonal and interpersonal emotion regulation tasks recruited an overlapping network of brain regions including bilateral lateral frontal cortex, pre-supplementary motor area, and left temporo-parietal junction. Activations unique to the interpersonal condition suggest that both affective (emotional simulation) and cognitive (mentalizing) aspects of empathy may be involved in the process of interpersonal emotion regulation. These findings provide an initial insight into the neural correlates of regulating another person's emotions and may be relevant to understanding mental health issues that involve problems with social interaction. PMID:24936178

  5. The neural correlates of regulating another person's emotions: an exploratory fMRI study

    PubMed Central

    Hallam, Glyn P.; Webb, Thomas L.; Sheeran, Paschal; Miles, Eleanor; Niven, Karen; Wilkinson, Iain D.; Hunter, Michael D.; Woodruff, Peter W. R.; Totterdell, Peter; Farrow, Tom F. D.

    2014-01-01

    Studies investigating the neurophysiological basis of intrapersonal emotion regulation (control of one's own emotional experience) report that the frontal cortex exerts a modulatory effect on limbic structures such as the amygdala and insula. However, no imaging study to date has examined the neurophysiological processes involved in interpersonal emotion regulation, where the goal is explicitly to regulate another person's emotion. Twenty healthy participants (10 males) underwent fMRI while regulating their own or another person's emotions. Intrapersonal and interpersonal emotion regulation tasks recruited an overlapping network of brain regions including bilateral lateral frontal cortex, pre-supplementary motor area, and left temporo-parietal junction. Activations unique to the interpersonal condition suggest that both affective (emotional simulation) and cognitive (mentalizing) aspects of empathy may be involved in the process of interpersonal emotion regulation. These findings provide an initial insight into the neural correlates of regulating another person's emotions and may be relevant to understanding mental health issues that involve problems with social interaction. PMID:24936178

  6. Negative regulation of microRNA-132 in expression of synaptic proteins in neuronal differentiation of embryonic neural stem cells.

    PubMed

    Yoshimura, Aya; Numakawa, Tadahiro; Odaka, Haruki; Adachi, Naoki; Tamai, Yoshitaka; Kunugi, Hiroshi

    2016-07-01

    MicroRNAs (miRs) play important roles in neuronal differentiation, maturation, and synaptic function in the central nervous system. They have also been suggested to be implicated in the pathogenesis of neurodegenerative and psychiatric diseases. Although miR-132 is one of the well-studied brain-specific miRs, which regulates synaptic structure and function in the postnatal brain, its function in the prenatal brain is still unclear. Here, we investigated miR-132 function during differentiation of rat embryonic neural stem cells (eNSCs). We found that miR-132 expression significantly increased during the fetal rat brain development and neural differentiation of eNSCs in vitro. Furthermore, miR-132 expression was increased during differentiation through MAPK/ERK1/2 pathway. Inhibition of ERK1/2 activation resulted in increased levels of synaptic proteins including PSD-95, GluR1 and synapsin I. Silencing of miR-132 also increased PSD-95 and GluR1. Considering that miR-132 increases synaptic proteins in differentiated cortical neurons, our result shows a novel function of miR-132 as a negative regulator for synaptic maturation in the neuronal differentiation of eNSCs. PMID:27131735

  7. Control your anger! The neural basis of aggression regulation in response to negative social feedback.

    PubMed

    Achterberg, Michelle; van Duijvenvoorde, Anna C K; Bakermans-Kranenburg, Marian J; Crone, Eveline A

    2016-05-01

    Negative social feedback often generates aggressive feelings and behavior. Prior studies have investigated the neural basis of negative social feedback, but the underlying neural mechanisms of aggression regulation following negative social feedback remain largely undiscovered. In the current study, participants viewed pictures of peers with feedback (positive, neutral or negative) to the participant's personal profile. Next, participants responded to the peer feedback by pressing a button, thereby producing a loud noise toward the peer, as an index of aggression. Behavioral analyses showed that negative feedback led to more aggression (longer noise blasts). Conjunction neuroimaging analyses revealed that both positive and negative feedback were associated with increased activity in the medial prefrontal cortex (PFC) and bilateral insula. In addition, more activation in the right dorsal lateral PFC (dlPFC) during negative feedback vs neutral feedback was associated with shorter noise blasts in response to negative social feedback, suggesting a potential role of dlPFC in aggression regulation, or top-down control over affective impulsive actions. This study demonstrates a role of the dlPFC in the regulation of aggressive social behavior. PMID:26755768

  8. Enhanced emotion regulation capacity and its neural substrates in those exposed to moderate childhood adversity

    PubMed Central

    Schweizer, Susanne; Walsh, Nicholas D.; Stretton, Jason; Dunn, Valerie J.; Goodyer, Ian M.; Dalgleish, Tim

    2016-01-01

    Individuals exposed to childhood adversities (CA) present with emotion regulation (ER) difficulties in later life, which have been identified as risk and maintenance factors for psychopathologies. However, it is unclear if CA negatively impacts on ER capacity per se or whether observed regulation difficulties are a function of the challenging circumstances in which ER is being deployed. In this longitudinal study, we aimed to clarify this association by investigating the behavioral and neural effects of exposure to common moderate CA (mCA) on a laboratory measure of ER capacity in late adolescence/young adulthood. Our population-derived samples of adolescents/young adults (N = 53) were administered a film-based ER-task during functional magnetic resonance imaging that allowed evaluation of ER across mCA-exposure. mCA-exposure was associated with enhanced ER capacity over both positive and negative affect. At the neural level, the better ER of negative material in those exposed to mCA was associated with reduced recruitment of ER-related brain regions, including the prefrontal cortex and temporal gyrus. In addition mCA-exposure was associated with a greater down-regulation of the amygdala during ER of negative material. The implications of these findings for our understanding of the effects of mCA on the emergence of resilience in adolescence are discussed. PMID:26341903

  9. Enhanced emotion regulation capacity and its neural substrates in those exposed to moderate childhood adversity.

    PubMed

    Schweizer, Susanne; Walsh, Nicholas D; Stretton, Jason; Dunn, Valerie J; Goodyer, Ian M; Dalgleish, Tim

    2016-02-01

    Individuals exposed to childhood adversities (CA) present with emotion regulation (ER) difficulties in later life, which have been identified as risk and maintenance factors for psychopathologies. However, it is unclear if CA negatively impacts on ER capacity per se or whether observed regulation difficulties are a function of the challenging circumstances in which ER is being deployed. In this longitudinal study, we aimed to clarify this association by investigating the behavioral and neural effects of exposure to common moderate CA (mCA) on a laboratory measure of ER capacity in late adolescence/young adulthood. Our population-derived samples of adolescents/young adults (N = 53) were administered a film-based ER-task during functional magnetic resonance imaging that allowed evaluation of ER across mCA-exposure. mCA-exposure was associated with enhanced ER capacity over both positive and negative affect. At the neural level, the better ER of negative material in those exposed to mCA was associated with reduced recruitment of ER-related brain regions, including the prefrontal cortex and temporal gyrus. In addition mCA-exposure was associated with a greater down-regulation of the amygdala during ER of negative material. The implications of these findings for our understanding of the effects of mCA on the emergence of resilience in adolescence are discussed. PMID:26341903

  10. Operational point of neural cardiovascular regulation in humans up to 6 months in space.

    PubMed

    Verheyden, B; Liu, J; Beckers, F; Aubert, A E

    2010-03-01

    Entering weightlessness affects central circulation in humans by enhancing venous return and cardiac output. We tested whether the operational point of neural cardiovascular regulation in space sets accordingly to adopt a level close to that found in the ground-based horizontal position. Heart rate (HR), finger blood and brachial blood pressure (BP), and respiratory frequency were collected in 11 astronauts from nine space missions. Recordings were made in supine and standing positions at least 10 days before launch and during spaceflight (days 5-19, 45-67, 77-116, 146-180). Cross-correlation analyses of HR and systolic BP were used to measure three complementary aspects of cardiac baroreflex modulation: 1) baroreflex sensitivity, 2) number of effective baroreflex estimates, and 3) baroreflex time delay. A fixed breathing protocol was performed to measure respiratory sinus arrhythmia and low-frequency power of systolic BP variability. We found that HR and mean arterial pressure did not differ from preflight supine values for up to 6 mo in space. Respiration frequency tended to decrease during prolonged spaceflight. Concerning neural markers of cardiovascular regulation, we observed in-flight adaptations toward homeostatic conditions similar to those found in the ground-based supine position. Surprisingly, this was not the case for baroreflex time delay distribution, which had somewhat longer latencies in space. Except for this finding, our results confirm that the operational point of neural cardiovascular regulation in space sets to a level close to that of an Earth-based supine position. This adaptation level suggests that circulation is chronically relaxed for at least 6 mo in space. PMID:20075261

  11. Neural peptidase endothelin-converting enzyme 1 regulates endothelin 1–induced pruritus

    PubMed Central

    Kido-Nakahara, Makiko; Buddenkotte, Jörg; Kempkes, Cordula; Ikoma, Akihiko; Cevikbas, Ferda; Akiyama, Tasuku; Nunes, Frank; Seeliger, Stephan; Hasdemir, Burcu; Mess, Christian; Buhl, Timo; Sulk, Mathias; Müller, Frank-Ulrich; Metze, Dieter; Bunnett, Nigel W.; Bhargava, Aditi; Carstens, Earl; Furue, Masutaka; Steinhoff, Martin

    2014-01-01

    In humans, pruritus (itch) is a common but poorly understood symptom in numerous skin and systemic diseases. Endothelin 1 (ET-1) evokes histamine-independent pruritus in mammals through activation of its cognate G protein–coupled receptor endothelin A receptor (ETAR). Here, we have identified neural endothelin–converting enzyme 1 (ECE-1) as a key regulator of ET-1–induced pruritus and neural signaling of itch. We show here that ETAR, ET-1, and ECE-1 are expressed and colocalize in murine dorsal root ganglia (DRG) neurons and human skin nerves. In murine DRG neurons, ET-1 induced internalization of ETAR within ECE-1–containing endosomes. ECE-1 inhibition slowed ETAR recycling yet prolonged ET-1–induced activation of ERK1/2, but not p38. In a murine itch model, ET-1–induced scratching behavior was substantially augmented by pharmacological ECE-1 inhibition and abrogated by treatment with an ERK1/2 inhibitor. Using iontophoresis, we demonstrated that ET-1 is a potent, partially histamine-independent pruritogen in humans. Immunohistochemical evaluation of skin from prurigo nodularis patients confirmed an upregulation of the ET-1/ETAR/ECE-1/ERK1/2 axis in patients with chronic itch. Together, our data identify the neural peptidase ECE-1 as a negative regulator of itch on sensory nerves by directly regulating ET-1–induced pruritus in humans and mice. Furthermore, these results implicate the ET-1/ECE-1/ERK1/2 pathway as a therapeutic target to treat pruritus in humans. PMID:24812665

  12. Central Neural Regulation of Brown Adipose Tissue Thermogenesis and Energy Expenditure

    PubMed Central

    Tupone, Domenico

    2014-01-01

    SUMMARY Thermogenesis, the production of heat energy, is the specific, neurally-regulated, metabolic function of brown adipose tissue (BAT) and contributes to the maintenance of body temperature during cold exposure and to the elevated core temperature during several behavioral states, including wakefulness, the acute phase response (fever), and stress. BAT energy expenditure requires metabolic fuel availability and contributes to energy balance. This review summarizes the functional organization and neurochemical influences within the CNS networks governing the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolically-driven alterations in BAT thermogenesis and energy expenditure that contribute to overall energy homeostasis. PMID:24630813

  13. Yap and Taz play a crucial role in neural crest-derived craniofacial development.

    PubMed

    Wang, Jun; Xiao, Yang; Hsu, Chih-Wei; Martinez-Traverso, Idaliz M; Zhang, Min; Bai, Yan; Ishii, Mamoru; Maxson, Robert E; Olson, Eric N; Dickinson, Mary E; Wythe, Joshua D; Martin, James F

    2016-02-01

    The role of the Hippo signaling pathway in cranial neural crest (CNC) development is poorly understood. We used the Wnt1(Cre) and Wnt1(Cre2SOR) drivers to conditionally ablate both Yap and Taz in the CNC of mice. When using either Cre driver, Yap and Taz deficiency in the CNC resulted in enlarged, hemorrhaging branchial arch blood vessels and hydrocephalus. However, Wnt1(Cre2SOR) mutants had an open cranial neural tube phenotype that was not evident in Wnt1(Cre) mutants. In O9-1 CNC cells, the loss of Yap impaired smooth muscle cell differentiation. RNA-sequencing data indicated that Yap and Taz regulate genes encoding Fox transcription factors, specifically Foxc1. Proliferation was reduced in the branchial arch mesenchyme of Yap and Taz CNC conditional knockout (CKO) embryos. Moreover, Yap and Taz CKO embryos had cerebellar aplasia similar to Dandy-Walker spectrum malformations observed in human patients and mouse embryos with mutations in Foxc1. In embryos and O9-1 cells deficient for Yap and Taz, Foxc1 expression was significantly reduced. Analysis of Foxc1 regulatory regions revealed a conserved recognition element for the Yap and Taz DNA binding co-factor Tead. ChIP-PCR experiments supported the conclusion that Foxc1 is directly regulated by the Yap-Tead complex. Our findings uncover important roles for Yap and Taz in CNC diversification and development. PMID:26718006

  14. Functional genomics identifies neural stem cell sub-type expression profiles and genes regulating neuroblast homeostasis

    PubMed Central

    Carney, Travis D.; Miller, Michael R.; Robinson, Kristin J.; Bayraktar, Omer A.; Osterhout, Jessica A.; Doe, Chris Q.

    2014-01-01

    The Drosophila larval central brain contains about 10,000 differentiated neurons and 200 scattered neural progenitors (neuroblasts), which can be further subdivided into ~95 type I neuroblasts and eight type II neuroblasts per brain lobe. Only type II neuroblasts generate self-renewing intermediate neural progenitors (INPs), and consequently each contributes more neurons to the brain, including much of the central complex. We characterized six different mutant genotypes that lead to expansion of neuroblast numbers; some preferentially expand type II or type I neuroblasts. Transcriptional profiling of larval brains from these mutant genotypes versus wild-type allowed us to identify small clusters of transcripts enriched in type II or type I neuroblasts, and we validated these clusters by gene expression analysis. Unexpectedly, only a few genes were found to be differentially expressed between type I/II neuroblasts, suggesting that these genes play a large role in establishing the different cell types. We also identified a large group of genes predicted to be expressed in all neuroblasts but not neurons. We performed a neuroblast-specific, RNAi-based functional screen and identified 84 genes that are required to maintain proper neuroblast numbers; all have conserved mammalian orthologs. These genes are excellent candidates for regulating neural progenitor self-renewal in Drosophila and mammals. PMID:22061480

  15. Molecular Evolution of Drosophila Germline Stem Cell and Neural Stem Cell Regulating Genes

    PubMed Central

    Choi, Jae Young; Aquadro, Charles F.

    2015-01-01

    Here, we study the molecular evolution of a near complete set of genes that had functional evidence in the regulation of the Drosophila germline and neural stem cell. Some of these genes have previously been shown to be rapidly evolving by positive selection raising the possibility that stem cell genes as a group have elevated signatures of positive selection. Using recent Drosophila comparative genome sequences and population genomic sequences of Drosophila melanogaster, we have investigated both long- and short-term evolution occurring across these two different stem cell systems, and compared them with a carefully chosen random set of genes to represent the background rate of evolution. Our results showed an excess of genes with evidence of a recent selective sweep in both germline and neural stem cells in D. melanogaster. However compared with their control genes, both stem cell systems had no significant excess of genes with long-term recurrent positive selection in D. melanogaster, or across orthologous sequences from the melanogaster group. The evidence of long-term positive selection was limited to a subset of genes with specific functions in both the germline and neural stem cell system. PMID:26507797

  16. Neural Regulation of Lacrimal Gland Secretory Processes: Relevance in Dry Eye Diseases

    PubMed Central

    Dartt, Darlene A.

    2013-01-01

    The lacrimal gland is the major contributor to the aqueous layer of the tear film which consists of water, electrolytes and proteins. The amount and composition of this layer is critical for the health, maintenance, and protection of the cells of the cornea and conjunctiva (the ocular surface). Small changes in the concentration of tear electrolytes have been correlated with dry eye syndrome. While the mechanisms of secretion of water, electrolytes and proteins from the lacrimal gland differ, all three are under tight neural control. This allows for a rapid response to meet the needs of the cells of the ocular surface in response to environmental conditions. The neural response consists of the activation of the afferent sensory nerves in the cornea and conjunctiva to stimulate efferent parasympathetic and sympathetic nerves that innervate the lacrimal gland. Neurotransmitters are released from the stimulated parasympathetic and sympathetic nerves that cause secretion of water, electrolytes, and proteins from the lacrimal gland and onto the ocular surface. This review focuses on the neural regulation of lacrimal gland secretion under normal and dry eye conditions. PMID:19376264

  17. The effects of allostatic load on neural systems subserving motivation, mood regulation, and social affiliation.

    PubMed

    Beauchaine, Theodore P; Neuhaus, Emily; Zalewski, Maureen; Crowell, Sheila E; Potapova, Natalia

    2011-11-01

    The term allostasis, which is defined as stability through change, has been invoked repeatedly by developmental psychopathologists to describe long-lasting and in some cases permanent functional alterations in limbic-hypothalamic-pituitary-adrenal axis responding following recurrent and/or prolonged exposure to stress. Increasingly, allostatic load models have also been invoked to describe psychological sequelae of abuse, neglect, and other forms of maltreatment. In contrast, neural adaptations to stress, including those incurred by monoamine systems implicated in (a) mood and emotion regulation, (b) behavioral approach, and (c) social affiliation and attachment, are usually not included in models of allostasis. Rather, structural and functional alterations in these systems, which are exquisitely sensitive to prolonged stress exposure, are usually explained as stress mediators, neural plasticity, and/or programming effects. Considering these mechanisms as distinct from allostasis is somewhat artificial given overlapping functions and intricate coregulation of monoamines and the limbic-hypothalamic-pituitary-adrenal axis. It also fractionates literatures that should be mutually informative. In this article, we describe structural and functional alterations in serotonergic, dopaminergic, and noradrenergic neural systems following both acute and prolonged exposure to stress. Through increases in behavioral impulsivity, trait anxiety, mood and emotion dysregulation, and asociality, alterations in monoamine functioning have profound effects on personality, attachment relationships, and the emergence of psychopathology. PMID:22018077

  18. Xenopus ADAM19 is involved in neural, neural crest and muscle development

    PubMed Central

    Neuner, Russell; Cousin, Hélène; McCusker, Catherine; Coyne, Michael; Alfandari, Dominique

    2009-01-01

    ADAM19 is a member of the meltrin subfamily of ADAM metalloproteases. In Xenopus, ADAM19 is present as a maternal transcript. Zygotic expression starts during gastrulation and is apparent in the dorsal blastopore lip. ADAM19 expression through neurulation and tailbud formation becomes enriched in dorsal structures such as the neural tube, the notochord and the somites. Using morpholino knock-down, we show that a reduction of ADAM19 protein in gastrula stage embryos results in a decrease of Brachyury expression in the notochord concomitant with an increase in the dorsal markers, Goosecoid and Chordin. These changes in gene expression are accompanied by a decrease in phosphorylated AKT, a downstream target of the EGF signaling pathway, and occur while the blastopore closes at the same rate as the control embryos. During neurulation and tailbud formation, ADAM19 knock-down induces a reduction of the neural markers N-tubulin and NRP1 but not Sox2. In the somitic mesoderm, the expression of MLC is also decreased while MyoD is not. ADAM19 knockdown also reduces neural crest markers prior to cell migration. Neural crest induction is also decreased in embryos treated with an EGF receptor inhibitor suggesting that this pathway is necessary for neural crest cell induction. Using targeted knockdown of ADAM19 we show that the reduction of neural and neural crest markers is cell autonomous and that the migration if the cranial neural crest is perturbed. We further show that ADAM19 protein reduction affects somite organization, reduces 12–101 expression and perturbs fibronectin localization at the intersomitic boundary. PMID:19027850

  19. PERSPECTIVE: Consideration of user priorities when developing neural prosthetics

    NASA Astrophysics Data System (ADS)

    Anderson, Kim D.

    2009-10-01

    For too long there has been separation of basic science, biomedical engineering, clinical science and the people these disciplines are serving. A key ingredient to understanding the real-life consequences of many neurologic disorders that produce physical disabilities, such as spinal cord injury, is to obtain valuable information from the individuals that are actually living with the disorders everyday. This information can be obtained in an objective and usable format, which can then be used to direct biomedical research in a manner that is meaningful to the intended beneficiaries. In particular, the field of neural prosthetics for spinal cord injury can make great strides if user input is obtained throughout the stages of development. Presented here is the perspective of a scientist who also has 20 years of experience living with a cervical spinal cord injury.

  20. Epithelial–Mesenchymal Transitions during Neural Crest and Somite Development

    PubMed Central

    Kalcheim, Chaya

    2015-01-01

    Epithelial-to-mesenchymal transition (EMT) is a central process during embryonic development that affects selected progenitor cells of all three germ layers. In addition to driving the onset of cellular migrations and subsequent tissue morphogenesis, the dynamic conversions of epithelium into mesenchyme and vice-versa are intimately associated with the segregation of homogeneous precursors into distinct fates. The neural crest and somites, progenitors of the peripheral nervous system and of skeletal tissues, respectively, beautifully illustrate the significance of EMT to the above processes. Ongoing studies progressively elucidate the gene networks underlying EMT in each system, highlighting the similarities and differences between them. Knowledge of the mechanistic logic of this normal ontogenetic process should provide important insights to the understanding of pathological conditions such as cancer metastasis, which shares some common molecular themes. PMID:26712793

  1. Acquiring neural signals for developing a perception and cognition model

    NASA Astrophysics Data System (ADS)

    Li, Wei; Li, Yunyi; Chen, Genshe; Shen, Dan; Blasch, Erik; Pham, Khanh; Lynch, Robert

    2012-06-01

    The understanding of how humans process information, determine salience, and combine seemingly unrelated information is essential to automated processing of large amounts of information that is partially relevant, or of unknown relevance. Recent neurological science research in human perception, and in information science regarding contextbased modeling, provides us with a theoretical basis for using a bottom-up approach for automating the management of large amounts of information in ways directly useful for human operators. However, integration of human intelligence into a game theoretic framework for dynamic and adaptive decision support needs a perception and cognition model. For the purpose of cognitive modeling, we present a brain-computer-interface (BCI) based humanoid robot system to acquire brainwaves during human mental activities of imagining a humanoid robot-walking behavior. We use the neural signals to investigate relationships between complex humanoid robot behaviors and human mental activities for developing the perception and cognition model. The BCI system consists of a data acquisition unit with an electroencephalograph (EEG), a humanoid robot, and a charge couple CCD camera. An EEG electrode cup acquires brainwaves from the skin surface on scalp. The humanoid robot has 20 degrees of freedom (DOFs); 12 DOFs located on hips, knees, and ankles for humanoid robot walking, 6 DOFs on shoulders and arms for arms motion, and 2 DOFs for head yaw and pitch motion. The CCD camera takes video clips of the human subject's hand postures to identify mental activities that are correlated to the robot-walking behaviors. We use the neural signals to investigate relationships between complex humanoid robot behaviors and human mental activities for developing the perception and cognition model.

  2. CBP histone acetyltransferase activity regulates embryonic neural differentiation in the normal and Rubinstein-Taybi syndrome brain.

    PubMed

    Wang, Jing; Weaver, Ian C G; Gauthier-Fisher, Andrée; Wang, Haoran; He, Ling; Yeomans, John; Wondisford, Frederic; Kaplan, David R; Miller, Freda D

    2010-01-19

    Increasing evidence indicates that epigenetic changes regulate cell genesis. Here, we ask about neural precursors, focusing on CREB binding protein (CBP), a histone acetyltransferase that, when haploinsufficient, causes Rubinstein-Taybi syndrome (RTS), a genetic disorder with cognitive dysfunction. We show that neonatal cbp(+/-) mice are behaviorally impaired, displaying perturbed vocalization behavior. cbp haploinsufficiency or genetic knockdown with siRNAs inhibited differentiation of embryonic cortical precursors into all three neural lineages, coincident with decreased CBP binding and histone acetylation at promoters of neuronal and glial genes. Inhibition of histone deacetylation rescued these deficits. Moreover, CBP phosphorylation by atypical protein kinase C zeta was necessary for histone acetylation at neural gene promoters and appropriate differentiation. These data support a model in which environmental cues regulate CBP activity and histone acetylation to control neural precursor competency to differentiate, and indicate that cbp haploinsufficiency disrupts this mechanism, thereby likely causing cognitive dysfunction in RTS. PMID:20152182

  3. Analysis of the developing neural system using an in vitro model by Raman spectroscopy.

    PubMed

    Hashimoto, Kosuke; Kudoh, Suguru N; Sato, Hidetoshi

    2015-04-01

    We developed an in vitro model of early neural cell development. The maturation of a normal neural cell was studied in vitro using Raman spectroscopy for 120 days. The Raman spectra datasets were analyzed by principal component analysis (PCA) to investigate the relationship between maturation stages and molecular composition changes in neural cells. According to the PCA, the Raman spectra datasets can be classified into four larger groups. Previous electrophysiological studies have suggested that a normal neural cell goes through three maturation states. The groups we observed by Raman analysis showed good agreement with the electrophysiological results, except with the addition of a fourth state. The results demonstrated that Raman analysis was powerful to investigate the daily changes in molecular composition of the growing neural cell. This in vitro model system may be useful for future studies of the effects of endocrine disrupters in the developing early neural system. PMID:25610999

  4. Neural Regulation of Cardiovascular Response to Exercise: Role of Central Command and Peripheral Afferents

    PubMed Central

    Nobrega, Antonio C. L.; O'Leary, Donal; Silva, Bruno Moreira; Piepoli, Massimo F.; Crisafulli, Antonio

    2014-01-01

    During dynamic exercise, mechanisms controlling the cardiovascular apparatus operate to provide adequate oxygen to fulfill metabolic demand of exercising muscles and to guarantee metabolic end-products washout. Moreover, arterial blood pressure is regulated to maintain adequate perfusion of the vital organs without excessive pressure variations. The autonomic nervous system adjustments are characterized by a parasympathetic withdrawal and a sympathetic activation. In this review, we briefly summarize neural reflexes operating during dynamic exercise. The main focus of the present review will be on the central command, the arterial baroreflex and chemoreflex, and the exercise pressure reflex. The regulation and integration of these reflexes operating during dynamic exercise and their possible role in the pathophysiology of some cardiovascular diseases are also discussed. PMID:24818143

  5. Neural crest deletion of Dlx3 leads to major dentin defects through down-regulation of Dspp.

    PubMed

    Duverger, Olivier; Zah, Angela; Isaac, Juliane; Sun, Hong-Wei; Bartels, Anne K; Lian, Jane B; Berdal, Ariane; Hwang, Joonsung; Morasso, Maria I

    2012-04-01

    During development, Dlx3 is expressed in ectodermal appendages such as hair and teeth. Thus far, the evidence that Dlx3 plays a crucial role in tooth development comes from reports showing that autosomal dominant mutations in DLX3 result in severe enamel and dentin defects leading to abscesses and infections. However, the normal function of DLX3 in odontogenesis remains unknown. Here, we use a mouse model to demonstrate that the absence of Dlx3 in the neural crest results in major impairment of odontoblast differentiation and dentin production. Mutant mice develop brittle teeth with hypoplastic dentin and molars with an enlarged pulp chamber and underdeveloped roots. Using this mouse model, we found that dentin sialophosphoprotein (Dspp), a major component of the dentin matrix, is strongly down-regulated in odontoblasts lacking Dlx3. Using ChIP-seq, we further demonstrate the direct binding of Dlx3 to the Dspp promoter in vivo. Luciferase reporter assays determined that Dlx3 positively regulates Dspp expression. This establishes a regulatory pathway where the transcription factor Dlx3 is essential in dentin formation by directly regulating a crucial matrix protein. PMID:22351765

  6. Neural Crest Deletion of Dlx3 Leads to Major Dentin Defects through Down-regulation of Dspp*

    PubMed Central

    Duverger, Olivier; Zah, Angela; Isaac, Juliane; Sun, Hong-Wei; Bartels, Anne K.; Lian, Jane B.; Berdal, Ariane; Hwang, Joonsung; Morasso, Maria I.

    2012-01-01

    During development, Dlx3 is expressed in ectodermal appendages such as hair and teeth. Thus far, the evidence that Dlx3 plays a crucial role in tooth development comes from reports showing that autosomal dominant mutations in DLX3 result in severe enamel and dentin defects leading to abscesses and infections. However, the normal function of DLX3 in odontogenesis remains unknown. Here, we use a mouse model to demonstrate that the absence of Dlx3 in the neural crest results in major impairment of odontoblast differentiation and dentin production. Mutant mice develop brittle teeth with hypoplastic dentin and molars with an enlarged pulp chamber and underdeveloped roots. Using this mouse model, we found that dentin sialophosphoprotein (Dspp), a major component of the dentin matrix, is strongly down-regulated in odontoblasts lacking Dlx3. Using ChIP-seq, we further demonstrate the direct binding of Dlx3 to the Dspp promoter in vivo. Luciferase reporter assays determined that Dlx3 positively regulates Dspp expression. This establishes a regulatory pathway where the transcription factor Dlx3 is essential in dentin formation by directly regulating a crucial matrix protein. PMID:22351765

  7. Prototype to product—developing a commercially viable neural prosthesis

    NASA Astrophysics Data System (ADS)

    Seligman, Peter

    2009-12-01

    The Cochlear implant or 'Bionic ear' is a device that enables people who do not get sufficient benefit from a hearing aid to communicate with the hearing world. The Cochlear implant is not an amplifier, but a device that electrically stimulates the auditory nerve in a way that crudely mimics normal hearing, thus providing a hearing percept. Many recipients are able to understand running speech without the help of lipreading. Cochlear implants have reached a stage of maturity where there are now 170 000 recipients implanted worldwide. The commercial development of these devices has occurred over the last 30 years. This development has been multidisciplinary, including audiologists, engineers, both mechanical and electrical, histologists, materials scientists, physiologists, surgeons and speech pathologists. This paper will trace the development of the device we have today, from the engineering perspective. The special challenges of designing an active device that will work in the human body for a lifetime will be outlined. These challenges include biocompatibility, extreme reliability, safety, patient fitting and surgical issues. It is emphasized that the successful development of a neural prosthesis requires the partnership of academia and industry.

  8. The Development of Animal Behavior: From Lorenz to Neural Nets

    NASA Astrophysics Data System (ADS)

    Bolhuis, Johan J.

    In the study of behavioral development both causal and functional approaches have been used, and they often overlap. The concept of ontogenetic adaptations suggests that each developmental phase involves unique adaptations to the environment of the developing animal. The functional concept of optimal outbreeding has led to further experimental evidence and theoretical models concerning the role of sexual imprinting in the evolutionary process of sexual selection. From a causal perspective it has been proposed that behavioral ontogeny involves the development of various kinds of perceptual, motor, and central mechanisms and the formation of connections among them. This framework has been tested for a number of complex behavior systems such as hunger and dustbathing. Imprinting is often seen as a model system for behavioral development in general. Recent advances in imprinting research have been the result of an interdisciplinary effort involving ethology, neuroscience, and experimental psychology, with a continual interplay between these approaches. The imprinting results are consistent with Lorenz' early intuitive suggestions and are also reflected in the architecture of recent neural net models.

  9. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor

    PubMed Central

    Paonessa, Francesco; Criscuolo, Stefania; Sacchetti, Silvio; Amoroso, Davide; Scarongella, Helena; Pecoraro Bisogni, Federico; Carminati, Emanuele; Pruzzo, Giacomo; Maragliano, Luca; Cesca, Fabrizia; Benfenati, Fabio

    2016-01-01

    Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light–oxygen–voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na+-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na+ currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases. PMID:26699507

  10. Neural reflex regulation of systemic inflammation: potential new targets for sepsis therapy

    PubMed Central

    Fernandez, Ricardo; Nardocci, Gino; Navarro, Cristina; Reyes, Edison P.; Acuña-Castillo, Claudio; Cortes, Paula P.

    2014-01-01

    Sepsis progresses to multiple organ dysfunction due to the uncontrolled release of inflammatory mediators, and a growing body of evidence shows that neural signals play a significant role in modulating the immune response. Thus, similar toall other physiological systems, the immune system is both connected to and regulated by the central nervous system. The efferent arc consists of the activation of the hypothalamic–pituitary–adrenal axis, sympathetic activation, the cholinergic anti-inflammatory reflex, and the local release of physiological neuromodulators. Immunosensory activity is centered on the production of pro-inflammatory cytokines, signals that are conveyed to the brain through different pathways. The activation of peripheral sensory nerves, i.e., vagal paraganglia by the vagus nerve, and carotid body (CB) chemoreceptors by the carotid/sinus nerve are broadly discussed here. Despite cytokine receptor expression in vagal afferent fibers, pro-inflammatory cytokines have no significant effect on vagus nerve activity. Thus, the CB may be the source of immunosensory inputs and incoming neural signals and, in fact, sense inflammatory mediators, playing a protective role during sepsis. Considering that CB stimulation increases sympathetic activity and adrenal glucocorticoids release, the electrical stimulation of arterial chemoreceptors may be suitable therapeutic approach for regulating systemic inflammation. PMID:25566088