Science.gov

Sample records for regulates sonic hedgehog

  1. Sonic Hedgehog regulates thymic epithelial cell differentiation.

    PubMed

    Saldaña, José Ignacio; Solanki, Anisha; Lau, Ching-In; Sahni, Hemant; Ross, Susan; Furmanski, Anna L; Ono, Masahiro; Holländer, Georg; Crompton, Tessa

    2016-04-01

    Sonic Hedgehog (Shh) is expressed in the thymus, where it regulates T cell development. Here we investigated the influence of Shh on thymic epithelial cell (TEC) development. Components of the Hedgehog (Hh) signalling pathway were expressed by TEC, and use of a Gli Binding Site-green fluorescence protein (GFP) transgenic reporter mouse demonstrated active Hh-dependent transcription in TEC in the foetal and adult thymus. Analysis of Shh-deficient foetal thymus organ cultures (FTOC) showed that Shh is required for normal TEC differentiation. Shh-deficient foetal thymus contained fewer TEC than wild type (WT), the proportion of medullary TEC was reduced relative to cortical TEC, and cell surface expression of MHC Class II molecules was increased on both cortical and medullary TEC populations. In contrast, the Gli3-deficient thymus, which shows increased Hh-dependent transcription in thymic stroma, had increased numbers of TEC, but decreased cell surface expression of MHC Class II molecules on both cortical and medullary TEC. Neutralisation of endogenous Hh proteins in WT FTOC led to a reduction in TEC numbers, and in the proportion of mature Aire-expressing medullary TEC, but an increase in cell surface expression of MHC Class II molecules on medullary TEC. Likewise, conditional deletion of Shh from TEC in the adult thymus resulted in alterations in TEC differentiation and consequent changes in T cell development. TEC numbers, and the proportion of mature Aire-expressing medullary TEC were reduced, and cell surface expression of MHC Class II molecules on medullary TEC was increased. Differentiation of mature CD4 and CD8 single positive thymocytes was increased, demonstrating the regulatory role of Shh production by TEC on T cell development. Treatment of human thymus explants with recombinant Shh or neutralising anti-Shh antibody indicated that the Hedgehog pathway is also involved in regulation of differentiation from DP to mature SP T cells in the human thymus. PMID

  2. Sonic Hedgehog regulates thymic epithelial cell differentiation

    PubMed Central

    Saldaña, José Ignacio; Solanki, Anisha; Lau, Ching-In; Sahni, Hemant; Ross, Susan; Furmanski, Anna L.; Ono, Masahiro; Holländer, Georg; Crompton, Tessa

    2016-01-01

    Sonic Hedgehog (Shh) is expressed in the thymus, where it regulates T cell development. Here we investigated the influence of Shh on thymic epithelial cell (TEC) development. Components of the Hedgehog (Hh) signalling pathway were expressed by TEC, and use of a Gli Binding Site-green fluorescence protein (GFP) transgenic reporter mouse demonstrated active Hh-dependent transcription in TEC in the foetal and adult thymus. Analysis of Shh-deficient foetal thymus organ cultures (FTOC) showed that Shh is required for normal TEC differentiation. Shh-deficient foetal thymus contained fewer TEC than wild type (WT), the proportion of medullary TEC was reduced relative to cortical TEC, and cell surface expression of MHC Class II molecules was increased on both cortical and medullary TEC populations. In contrast, the Gli3-deficient thymus, which shows increased Hh-dependent transcription in thymic stroma, had increased numbers of TEC, but decreased cell surface expression of MHC Class II molecules on both cortical and medullary TEC. Neutralisation of endogenous Hh proteins in WT FTOC led to a reduction in TEC numbers, and in the proportion of mature Aire-expressing medullary TEC, but an increase in cell surface expression of MHC Class II molecules on medullary TEC. Likewise, conditional deletion of Shh from TEC in the adult thymus resulted in alterations in TEC differentiation and consequent changes in T cell development. TEC numbers, and the proportion of mature Aire-expressing medullary TEC were reduced, and cell surface expression of MHC Class II molecules on medullary TEC was increased. Differentiation of mature CD4 and CD8 single positive thymocytes was increased, demonstrating the regulatory role of Shh production by TEC on T cell development. Treatment of human thymus explants with recombinant Shh or neutralising anti-Shh antibody indicated that the Hedgehog pathway is also involved in regulation of differentiation from DP to mature SP T cells in the human thymus. PMID

  3. Regulation of Thalamic Development by Sonic Hedgehog

    PubMed Central

    Epstein, Douglas J.

    2012-01-01

    The thalamus is strategically positioned within the caudal diencephalic area of the forebrain, between the mesencephalon and telencephalon. This location is important for unique aspects of thalamic function, to process and relay sensory and motor information to and from the cerebral cortex. How the thalamus comes to reside within this region of the central nervous system has been the subject of much investigation. Extracellular signals secreted from key locations both extrinsic and intrinsic to the thalamic primordium have recently been identified and shown to play important roles in the growth, regionalization, and specification of thalamic progenitors. One factor in particular, the secreted morphogen Sonic hedgehog (Shh), has been implicated in spatiotemporal and threshold models of thalamic development that differ from other areas of the CNS due, in large part, to its expression within two signaling centers, the basal plate and the zona limitans intrathalamica, a dorsally projecting spike that separates the thalamus from the subthalamic region. Shh signaling from these dual sources exhibit unique and overlapping functions in the control of thalamic progenitor identity and nuclei specification. This review will highlight recent advances in our understanding of Shh function during thalamic development, revealing similarities, and differences that exist between species. PMID:22529771

  4. Regulation of Patched by Sonic Hedgehog in the Developing Neural Tube

    NASA Astrophysics Data System (ADS)

    Marigo, Valeria; Tabin, Clifford J.

    1996-09-01

    Ventral cell fates in the central nervous system are induced by Sonic hedgehog, a homolog of hedgehog, a secreted Drosophila protein. In the central nervous system, Sonic hedgehog has been identified as the signal inducing floor plate, motor neurons, and dopaminergic neurons. Sonic hedgehog is also involved in the induction of ventral cell type in the developing somites. ptc is a key gene in the Drosophila hedgehog signaling pathway where it is involved in transducing the hedgehog signal and is also a transcriptional target of the signal. PTC, a vertebrate homolog of this Drosophila gene, is genetically downstream of Sonic hedgehog (Shh) in the limb bud. We analyze PTC expression during chicken neural and somite development and find it expressed in all regions of these tissues known to be responsive to Sonic hedgehog signal. As in the limb bud, ectopic expression of Sonic hedgehog leads to ectopic induction of PTC in the neural tube and paraxial mesoderm. This conservation of regulation allows us to use PTC as a marker for Sonic hedgehog response. The pattern of PTC expression suggests that Sonic hedgehog may play an inductive role in more dorsal regions of the neural tube than have been previously demonstrated. Examination of the pattern of PTC expression also suggests that PTC may act in a negative feedback loop to attenuate hedgehog signaling.

  5. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    SciTech Connect

    Lin, Yi-Ting; Ding, Jing-Ya; Li, Ming-Yang; Yeh, Tien-Shun; Wang, Tsu-Wei; Yu, Jenn-Yah

    2012-09-10

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap

  6. Dendrosomatic Sonic Hedgehog Signaling in Hippocampal Neurons Regulates Axon Elongation

    PubMed Central

    Petralia, Ronald S.; Ott, Carolyn; Wang, Ya-Xian; Lippincott-Schwartz, Jennifer; Mattson, Mark P.

    2015-01-01

    The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the transcription factor Gli1. The axon itself does not respond directly to Shh; instead, the Shh signal transduction originates from the somatodendritic region of the neurons and occurs in neurons with and without detectable primary cilia. Upon Shh stimulation, Smo localization to dendrites increases significantly. Shh pathway activation results in increased levels of profilin1 (Pfn1), an actin-binding protein. Mutations in Pfn1's actin-binding sites or reduction of Pfn1 eliminate the Shh-induced axon elongation. These findings indicate that Shh can regulate axon growth, which may be critical for development of hippocampal neurons. SIGNIFICANCE STATEMENT Although numerous signaling mechanisms have been identified that act directly on axons to regulate their outgrowth, it is not known whether signals transduced in dendrites may also affect axon outgrowth. We describe here a transcellular signaling pathway in embryonic hippocampal neurons in which activation of Sonic Hedgehog (Shh) receptors in dendrites stimulates axon growth. The pathway involves the dendritic-membrane-associated Shh signal transducer Smoothened (Smo) and the transcription factor Gli, which induces the expression of the gene encoding the actin-binding protein profilin 1. Our findings suggest scenarios in which stimulation of Shh in dendrites results in accelerated outgrowth of the axon, which therefore reaches its presumptive postsynaptic target cell more quickly. By this mechanism, Shh may play critical roles in the development of hippocampal neuronal circuits. PMID:26658865

  7. [Sonic Hedgehog signaling pathway and regulation of inner ear development].

    PubMed

    Chen, Zhi-Qiang; Han, Xin-Huan; Cao, Xin

    2013-09-01

    During inner ear development, Sonic Hedgehog (Shh) signaling pathway is involved in the ventral otic identity, cell fate determination of statoacoustic ganglion neurons and hair cell development. Shh protein, secreted from floor plate, antagonizes Wnt protein from roof plate, which refines and maintains dorsoventral axial patterning in the ear. Shh, served as a mitogen during neurogenesis, directly promotes the development of spiral ganglion neuron. After Shh signaling pathway is activated, Ngn1 is freed from Tbx1 repression. As a result, Shh indirectly upregulates the expression of Ngn1, thus regulating neurogenic patterning of inner ear. In addition, Shh regulates the differentiation of hair cells by influencing cell cycle of the progenitor cells located in the cochlea. The basal-to-apical wave of Shh decline ensures the normal devel- opment pattern of hair cells. It is confirmed by a quantity of researches conducted in both animals and patients with hereditary hearing impairment that abnormal Shh signaling results in aberrant transcription of target genes, disturbance of the proper development of inner ear, and human hearing impairment. In humans, diseases accompanied by hearing disorders caused by abnormal Shh signaling include Greig cephalopolysyndactyly syndrome (GCPS), Pallister-Hall syndrome (PHS), Waardenburg syndrome (WS) and medulloblastoma, etc. This review would provide a theoretical basis for further study of molecular mechanisms and clinical use of inner ear development. PMID:24400478

  8. Sonic hedgehog is a regulator of extracellular glutamate levels and epilepsy.

    PubMed

    Feng, Shengjie; Ma, Shaorong; Jia, Caixia; Su, Yujuan; Yang, Shenglian; Zhou, Kechun; Liu, Yani; Cheng, Ju; Lu, Dunguo; Fan, Liu; Wang, Yizheng

    2016-05-01

    Sonic hedgehog (Shh), both as a mitogen and as a morphogen, plays an important role in cell proliferation and differentiation during early development. Here, we show that Shh inhibits glutamate transporter activities in neurons, rapidly enhances extracellular glutamate levels, and affects the development of epilepsy. Shh is quickly released in response to epileptic, but not physiological, stimuli. Inhibition of neuronal glutamate transporters by Shh depends on heterotrimeric G protein subunit Gαi and enhances extracellular glutamate levels. Inhibiting Shh signaling greatly reduces epileptiform activities in both cell cultures and hippocampal slices. Moreover, pharmacological or genetic inhibition of Shh signaling markedly suppresses epileptic phenotypes in kindling or pilocarpine models. Our results suggest that Shh contributes to the development of epilepsy and suppression of its signaling prevents the development of the disease. Thus, Shh can act as a modulator of neuronal activity, rapidly regulating glutamate levels and promoting epilepsy. PMID:27113760

  9. Retinoic acid signaling regulates sonic hedgehog and bone morphogenetic protein signalings during genital tubercle development.

    PubMed

    Liu, Liqing; Suzuki, Kentaro; Nakagata, Naomi; Mihara, Kenichiro; Matsumaru, Daisuke; Ogino, Yukiko; Yashiro, Kenta; Hamada, Hiroshi; Liu, Zhonghua; Evans, Sylvia M; Mendelsohn, Cathy; Yamada, Gen

    2012-02-01

    Retinoic acid (RA) plays pivotal roles in organogenesis, and both excessive and reduced amounts of RA cause developmental abnormalities. Reproductive organs are susceptible to teratogen toxigenicity, and the genital tubercle (GT) is one such representative organ. The physiological function of endogenous RA signaling and the mechanisms of RA-induced teratogenicity are poorly understood during the GT development. The objective of this study is to understand the developmental and teratogenic roles of RA during GT development by analyzing genetically modified mouse models. We found dynamic patterns of gene expression for the RA-synthesizing enzyme, Raldh2, and for the RA-catabolizing enzyme, Cyp26b1, during GT development. Rarb, an indicator gene for RA signaling, starts its expression in the prospective corpus cavernosum penis and in the urethral plate epithelium (UE), which plays central roles during GT development. Excessive RA signaling in Cyp26b1(-/-) mutants leads to abnormal extents of cell proliferation and differentiation during GT development, and also upregulates expression of growth factor signalings. They include Sonic hedgehog (Shh) signaling and Bone morphogenetic protein (Bmp) signaling, which are expressed in the UE and its bilateral mesenchyme. RA signaling positively regulatesShh and Bmp4 expression during GT development as testified also by the experiment of RA administration and analyses of loss-of-function of RA signaling mutants. Thus, RA signaling is involved in the developmental cascade necessary for UE formation and GT development. PMID:22127979

  10. Extracellular and intracellular regulation of oligodendrocyte development: roles of Sonic hedgehog and expression of E proteins.

    PubMed

    Sussman, Caroline R; Davies, Jeannette E; Miller, Robert H

    2002-10-01

    Recent advances in understanding oligodendrocyte development have revealed the importance of both extra- and intracellular molecules in regulating the induction, survival, and proliferation of early oligodendrocyte progenitors. The signaling molecule Sonic hedgehog (Shh) is critical for normal development of oligodendrocytes, although the precise influences of Shh on cells of the oligodendrocyte lineage are unclear. The present study shows that Shh increased the number of oligodendrocyte precursors in both pure cultures of oligodendrocyte precursors and mixed cultures from embryonic rat spinal cord. In pure precursor cultures Shh increased cell survival. In mixed cultures, Shh increased both the survival and proliferation of oligodendrocyte precursors in a concentration dependent manner. One intracellular consequence of exposure to Shh is the activation of transcription factors in oligodendrocyte lineage cells, which are critical for oligodendrocyte development, helix-loop-helix (HLH) transcription factors, Olig1 and 2. In many cases, HLH proteins such as Olig1 and Olig2 heterodimerize with other HLH proteins, such as members of the E subfamily, which are critical regulators of cell proliferation and differentiation. Immature (A2B5(+)) and more mature (O4(+)) rat oligodendrocyte precursors in dissociated cell culture expressed Olig1 as well as E proteins, HEB and E2A. Similarly, cells bearing the morphology of oligodendrocyte precursors expressed both Olig1 and HEB or E2A. We propose that E2A and/or HEB, possibly in combination with Olig1 and 2, are critical components of oligodendrogenesis and may regulate cell survival, proliferation, and fate decisions in the oligodendrocyte lineage. PMID:12237843

  11. Sonic hedgehog signaling directly targets Hyaluronic Acid Synthase 2, an essential regulator of phalangeal joint patterning.

    PubMed

    Liu, Jiang; Li, Qiang; Kuehn, Michael R; Litingtung, Ying; Vokes, Steven A; Chiang, Chin

    2013-03-15

    Sonic hedgehog (Shh) signal, mediated by the Gli family of transcription factors, plays an essential role in the growth and patterning of the limb. Through analysis of the early limb bud transcriptome, we identified a posteriorly-enriched gene, Hyaluronic Acid Synthase 2 (Has2), which encodes a key enzyme for the synthesis of hyaluronan (HA), as a direct target of Gli transcriptional regulation during early mouse limb development. Has2 expression in the limb bud is lost in Shh null and expanded anteriorly in Gli3 mutants. We identified an ∼3kb Has2 promoter fragment that contains two strong Gli-binding consensus sequences, and mutation of either site abrogated the ability of Gli1 to activate Has2 promoter in a cell-based assay. Additionally, this promoter fragment is sufficient to direct expression of a reporter gene in the posterior limb mesenchyme. Chromatin immunoprecipitation of DNA-Gli3 protein complexes from limb buds indicated that Gli3 strongly binds to the Has2 promoter region, suggesting that Has2 is a direct transcriptional target of the Shh signaling pathway. We also showed that Has2 conditional mutant (Has2cko) hindlimbs display digit-specific patterning defects with longitudinally shifted phalangeal joints and impaired chondrogenesis. Has2cko limbs show less capacity for mesenchymal condensation with mislocalized distributions of chondroitin sulfate proteoglycans (CSPGs), aggrecan and link protein. Has2cko limb phenotype displays striking resemblance to mutants with defective chondroitin sulfation suggesting tight developmental control of HA on CSPG function. Together, our study identifies Has2 as a novel downstream target of Shh signaling required for joint patterning and chondrogenesis. PMID:23313125

  12. Sonic Hedgehog Signaling and VACTERL Association

    PubMed Central

    Ngan, E.S.-W.; Kim, K.-H.; Hui, C.-c.

    2013-01-01

    Hedgehog (Hh) signaling is vital for the patterning and organogenesis of almost every system. The specificity of these developmental processes is achieved through a tight spatio-temporal regulation of Hh signaling. Mice with defective Hh signal exhibit a wide spectrum of anomalies, including Vertebral defects, Anal atresia, Cardiovascular anomalies, Tracheoesophageal fistula, Renal dysplasia, and Limb defects, that resemble strikingly the phenotypes observed in VACTERL association in humans. In this review, we summarize our current understanding of mammalian Hh signaling and highlight the relevance of various mouse models for studying the etiology and pathogenesis of VACTERL association. In addition, recent advances in genetic study for unraveling the complexity of genetic inheritance of VACTERL and the implication of the Sonic hedgehog pathway in disease pathogenesis are also discussed. PMID:23653575

  13. Sonic hedgehog signaling regulates amygdalar neurogenesis and extinction of fear memory.

    PubMed

    Hung, Hui-Chi; Hsiao, Ya-Hsin; Gean, Po-Wu

    2015-10-01

    It is now recognized that neurogenesis occurs throughout life predominantly in the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the lateral ventricle. In the present study, we investigated the relationship between neurogenesis in the amygdala and extinction of fear memory. Mice received 15 tone-footshock pairings. Twenty-four hours after training, the mice were given 15 tone-alone trials (extinction training) once per day for 7 days. Two hours before extinction training, the mice were injected intraperitoneally with 5-bromo-3-deoxyuridine (BrdU). BrdU-positive and NeuN-positive cells were analyzed 52 days after the training. A group of mice that received tone-footshock pairings but no extinction training served as controls (FC+No-Ext). The number of BrdU(+)/NeuN(+) cells was significantly higher in the extinction (FC+Ext) than in the FC+No-Ext mice. Proliferation inhibitor methylazoxymethanol acetate (MAM) or DNA synthesis inhibitor cytosine arabinoside (Ara-C) reduced neurogenesis and retarded extinction. Silencing Sonic hedgehog (Shh) gene with short hairpin interfering RNA (shRNA) by means of a retrovirus expression system to knockdown Shh specifically in the mitotic neurons reduced neurogenesis and retarded extinction. By contrast, over-expression of Shh increased neurogenesis and facilitated extinction. These results suggest that amygdala neurogenesis and Shh signaling are involved in the extinction of fear memory. PMID:26271722

  14. A direct fate exclusion mechanism by Sonic hedgehog-regulated transcriptional repressors.

    PubMed

    Nishi, Yuichi; Zhang, Xiaoxiao; Jeong, Jieun; Peterson, Kevin A; Vedenko, Anastasia; Bulyk, Martha L; Hide, Winston A; McMahon, Andrew P

    2015-10-01

    Sonic hedgehog (Shh) signaling patterns the vertebrate spinal cord by activating a group of transcriptional repressors in distinct neural progenitors of somatic motor neuron and interneuron subtypes. To identify the action of this network, we performed a genome-wide analysis of the regulatory actions of three key ventral determinants in mammalian neural tube patterning: Nkx2.2, Nkx6.1 and Olig2. Previous studies have demonstrated that each factor acts predominantly as a transcriptional repressor, at least in part, to inhibit alternative progenitor fate choices. Here, we reveal broad and direct repression of multiple alternative fates as a general mechanism of repressor action. Additionally, the repressor network targets multiple Shh signaling components providing negative feedback to ongoing Shh signaling. Analysis of chromatin organization around Nkx2.2-, Nkx6.1- and Olig2-bound regions, together with co-analysis of engagement of the transcriptional activator Sox2, indicate that repressors bind to, and probably modulate the action of, neural enhancers. Together, the data suggest a model for neural progenitor specification downstream of Shh signaling, in which Nkx2.2 and Olig2 direct repression of alternative neural progenitor fate determinants, an action augmented by the overlapping activity of Nkx6.1 in each cell type. Integration of repressor and activator inputs, notably activator inputs mediated by Sox2, is probably a key mechanism in achieving cell type-specific transcriptional outcomes in mammalian neural progenitor fate specification. PMID:26293298

  15. Generation of reactive astrocytes from NG2 cells is regulated by sonic hedgehog.

    PubMed

    Honsa, Pavel; Valny, Martin; Kriska, Jan; Matuskova, Hana; Harantova, Lenka; Kirdajova, Denisa; Valihrach, Lukas; Androvic, Peter; Kubista, Mikael; Anderova, Miroslava

    2016-09-01

    NG2 cells, a fourth glial cell type in the adult mammalian central nervous system, produce oligodendrocytes in the healthy nervous tissue, and display wide differentiation potential under pathological conditions, where they could give rise to reactive astrocytes. The factors that control the differentiation of NG2 cells after focal cerebral ischemia (FCI) are largely unknown. Here, we used transgenic Cspg4-cre/Esr1/ROSA26Sortm14(CAG-tdTomato) mice, in which tamoxifen administration triggers the expression of red fluorescent protein (tomato) specifically in NG2 cells and cells derived therefrom. Differentiation potential (in vitro and in vivo) of tomato-positive NG2 cells from control or postischemic brains was determined using the immunohistochemistry, single cell RT-qPCR and patch-clamp method. The ischemic injury was induced by middle cerebral artery occlusion, a model of FCI. Using genetic fate-mapping method, we identified sonic hedgehog (Shh) as an important factor that influences differentiation of NG2 cells into astrocytes in vitro. We also manipulated Shh signaling in the adult mouse brain after FCI. Shh signaling activation significantly increased the number of astrocytes derived from NG2 cells in the glial scar around the ischemic lesion, while Shh signaling inhibition caused the opposite effect. Since Shh signaling modifications did not change the proliferation rate of NG2 cells, we can conclude that Shh has a direct influence on the differentiation of NG2 cells and therefore, on the formation and composition of a glial scar, which consequently affects the degree of the brain damage. GLIA 2016;64:1518-1531. PMID:27340757

  16. Inhibitors of Hedgehog acyltransferase block Sonic Hedgehog signaling.

    PubMed

    Petrova, Elissaveta; Rios-Esteves, Jessica; Ouerfelli, Ouathek; Glickman, J Fraser; Resh, Marilyn D

    2013-04-01

    Inhibition of Sonic hedgehog (Shh) signaling is of great clinical interest. Here we exploit Hedgehog acyltransferase (Hhat)-mediated Shh palmitoylation, a modification critical for Shh signaling, as a new target for Shh pathway inhibition. A target-oriented high-throughput screen was used to identify small-molecule inhibitors of Hhat. In cells, these Hhat inhibitors specifically block Shh palmitoylation and inhibit autocrine and paracrine Shh signaling. PMID:23416332

  17. Cell Division Mode Change Mediates the Regulation of Cerebellar Granule Neurogenesis Controlled by the Sonic Hedgehog Signaling

    PubMed Central

    Yang, Rong; Wang, Minglei; Wang, Jia; Huang, Xingxu; Yang, Ru; Gao, Wei-Qiang

    2015-01-01

    Summary Symmetric and asymmetric divisions are important for self-renewal and differentiation of stem cells during neurogenesis. Although cerebellar granule neurogenesis is controlled by sonic hedgehog (SHH) signaling, whether and how this process is mediated by regulation of cell division modes have not been determined. Here, using time-lapse imaging and cell culture from neuronal progenitor-specific and differentiated neuron-specific reporter mouse lines (Math1-GFP and Dcx-DsRed) and Patched+/− mice in which SHH signaling is activated, we find evidence for the existence of symmetric and asymmetric divisions that are closely associated with progenitor proliferation and differentiation. While activation of the SHH pathway enhances symmetric progenitor cell divisions, blockade of the SHH pathway reverses the cell division mode change in Math1-GFP;Dcx-DsRed;Patched+/− mice by promoting asymmetric divisions or terminal neuronal symmetric divisions. Thus, cell division mode change mediates the regulation of cerebellar granule neurogenesis controlled by SHH signaling. PMID:26527387

  18. miR-326 is downstream of Sonic hedgehog signaling and regulates the expression of Gli2 and smoothened.

    PubMed

    Jiang, Zhihua; Cushing, Leah; Ai, Xingbin; Lü, Jining

    2014-08-01

    Sonic hedgehog (Shh) is expressed and secreted from the embryonic lung epithelium and acts on the adjacent mesenchymal cells via its receptor Patched (Ptch)/Smoothened (Smo) and transcriptional effectors Gli proteins. Genetic studies showed that the Shh pathway plays critical roles in mouse lung development. However, little is known about microRNAs (miRNAs) downstream of Shh in embryonic lungs. Here we profiled miRNAs in embryonic lung cultures treated with cyclopamine, a specific Smo antagonist or with Smo agonist by next-generation of sequencing. We then performed functional screening to examine whether some of these miRNAs can modulate the induction of Gli-responsive luciferase by Shh treatment. These analyses revealed that expression of miR-326 and its host gene, Arrestin β1, is selectively enriched in embryonic lung mesenchymal cells and is specifically influenced by Shh activity. Furthermore, functional analyses showed that miR-326 acts as a negative modulator for Shh signaling by directly targeting Smo and Gli2. Together, these findings suggest a novel miR-326-negative feedback loop in regulating the activity of Shh signaling. PMID:24617895

  19. miR-326 Is Downstream of Sonic Hedgehog Signaling and Regulates the Expression of Gli2 and Smoothened

    PubMed Central

    Jiang, Zhihua; Cushing, Leah; Lü, Jining

    2014-01-01

    Sonic hedgehog (Shh) is expressed and secreted from the embryonic lung epithelium and acts on the adjacent mesenchymal cells via its receptor Patched (Ptch)/Smoothened (Smo) and transcriptional effectors Gli proteins. Genetic studies showed that the Shh pathway plays critical roles in mouse lung development. However, little is known about microRNAs (miRNAs) downstream of Shh in embryonic lungs. Here we profiled miRNAs in embryonic lung cultures treated with cyclopamine, a specific Smo antagonist or with Smo agonist by next-generation of sequencing. We then performed functional screening to examine whether some of these miRNAs can modulate the induction of Gli-responsive luciferase by Shh treatment. These analyses revealed that expression of miR-326 and its host gene, Arrestin β1, is selectively enriched in embryonic lung mesenchymal cells and is specifically influenced by Shh activity. Furthermore, functional analyses showed that miR-326 acts as a negative modulator for Shh signaling by directly targeting Smo and Gli2. Together, these findings suggest a novel miR-326–negative feedback loop in regulating the activity of Shh signaling. PMID:24617895

  20. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development.

    PubMed

    Perdigoto, Carolina N; Dauber, Katherine L; Bar, Carmit; Tsai, Pai-Chi; Valdes, Victor J; Cohen, Idan; Santoriello, Francis J; Zhao, Dejian; Zheng, Deyou; Hsu, Ya-Chieh; Ezhkova, Elena

    2016-07-01

    An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh) signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2) in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures. PMID:27414999

  1. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development

    PubMed Central

    Bar, Carmit; Tsai, Pai-Chi; Valdes, Victor J.; Cohen, Idan; Santoriello, Francis J.; Zhao, Dejian; Hsu, Ya-Chieh; Ezhkova, Elena

    2016-01-01

    An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh) signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2) in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures. PMID:27414999

  2. MYB Promotes Desmoplasia in Pancreatic Cancer through Direct Transcriptional Up-regulation and Cooperative Action of Sonic Hedgehog and Adrenomedullin.

    PubMed

    Bhardwaj, Arun; Srivastava, Sanjeev K; Singh, Seema; Tyagi, Nikhil; Arora, Sumit; Carter, James E; Khushman, Moh'd; Singh, Ajay P

    2016-07-29

    Extensive desmoplasia is a prominent pathological characteristic of pancreatic cancer (PC) that not only impacts tumor development, but therapeutic outcome as well. Recently, we demonstrated a novel role of MYB, an oncogenic transcription factor, in PC growth and metastasis. Here we studied its effect on pancreatic tumor histopathology and associated molecular and biological mechanisms. Tumor-xenografts derived from orthotopic-inoculation of MYB-overexpressing PC cells exhibited far-greater desmoplasia in histological analyses compared with those derived from MYB-silenced PC cells. These findings were further confirmed by immunostaining of tumor-xenograft sections with collagen-I, fibronectin (major extracellular-matrix proteins), and α-SMA (well-characterized marker of myofibroblasts or activated pancreatic stellate cells (PSCs)). Likewise, MYB-overexpressing PC cells provided significantly greater growth benefit to PSCs in a co-culture system as compared with the MYB-silenced cells. Interrogation of deep-sequencing data from MYB-overexpressing versus -silenced PC cells identified Sonic-hedgehog (SHH) and Adrenomedullin (ADM) as two differentially-expressed genes among others, which encode for secretory ligands involved in tumor-stromal cross-talk. In-silico analyses predicted putative MYB-binding sites in SHH and ADM promoters, which was later confirmed by chromatin-immunoprecipitation. A cooperative role of SHH and ADM in growth promotion of PSCs was confirmed in co-culture by using their specific-inhibitors and exogenous recombinant-proteins. Importantly, while SHH acted exclusively in a paracrine fashion on PSCs and influenced the growth of PC cells only indirectly, ADM could directly impact the growth of both PC cells and PSCs. In summary, we identified MYB as novel regulator of pancreatic tumor desmoplasia, which is suggestive of its diverse roles in PC pathobiology. PMID:27246849

  3. Sonic hedgehog patterning during cerebellar development.

    PubMed

    De Luca, Annarita; Cerrato, Valentina; Fucà, Elisa; Parmigiani, Elena; Buffo, Annalisa; Leto, Ketty

    2016-01-01

    The morphogenic factor sonic hedgehog (Shh) actively orchestrates many aspects of cerebellar development and maturation. During embryogenesis, Shh signaling is active in the ventricular germinal zone (VZ) and represents an essential signal for proliferation of VZ-derived progenitors. Later, Shh secreted by Purkinje cells sustains the amplification of postnatal neurogenic niches: the external granular layer and the prospective white matter, where excitatory granule cells and inhibitory interneurons are produced, respectively. Moreover, Shh signaling affects Bergmann glial differentiation and promotes cerebellar foliation during development. Here we review the most relevant functions of Shh during cerebellar ontogenesis, underlying its role in physiological and pathological conditions. PMID:26499980

  4. Sonic hedgehog: restricted expression and limb dysmorphologies.

    PubMed

    Hill, Robert E; Heaney, Simon J H; Lettice, Laura A

    2003-01-01

    Sonic hedgehog, SHH, is required for patterning the limb. The array of skeletal elements that compose the hands and feet, and the ordered arrangement of these bones to form the pattern of fingers and toes are dependent on SHH. The mechanism of action of SHH in the limb is not fully understood; however, an aspect that appears to be important is the localized, asymmetric expression of Shh. Shh is expressed in the posterior margin of the limb bud in a region defined as the zone of polarizing activity (ZPA). Analysis of mouse mutants which have polydactyly (extra toes) shows that asymmetric expression of Shh is lost due to the appearance of an ectopic domain of expression in the anterior limb margin. One such polydactylous mouse mutant, sasquatch (Ssq), maps to the corresponding chromosomal region of the human condition pre-axial polydactyly (PPD) and thus represents a model for this condition. The mutation responsible for Ssq is located 1 Mb away from the Shh gene; however, the mutation disrupts a long-range cis-acting regulator of Shh expression. By inference, human pre-axial polydactyly results from a similar disruption of Shh expression. Other human congenital abnormalities also map near the pre-axial polydactyly locus, suggesting a major chromosomal region for limb dysmorphologies. The distinct phenotypes range from loss of all bones of the hands and feet to syndactyly of the soft tissue and fusion of the digits. We discuss the role played by Shh expression in mouse mutant phenotypes and the human limb dysmorphologies. PMID:12587915

  5. Sonic hedgehog: restricted expression and limb dysmorphologies

    PubMed Central

    Hill, Robert E; Heaney, Simon JH; Lettice, Laura A

    2003-01-01

    Sonic hedgehog, SHH, is required for patterning the limb. The array of skeletal elements that compose the hands and feet, and the ordered arrangement of these bones to form the pattern of fingers and toes are dependent on SHH. The mechanism of action of SHH in the limb is not fully understood; however, an aspect that appears to be important is the localized, asymmetric expression of Shh. Shh is expressed in the posterior margin of the limb bud in a region defined as the zone of polarizing activity (ZPA). Analysis of mouse mutants which have polydactyly (extra toes) shows that asymmetric expression of Shh is lost due to the appearance of an ectopic domain of expression in the anterior limb margin. One such polydactylous mouse mutant, sasquatch (Ssq), maps to the corresponding chromosomal region of the human condition pre-axial polydactyly (PPD) and thus represents a model for this condition. The mutation responsible for Ssq is located 1 Mb away from the Shh gene; however, the mutation disrupts a long-range cis-acting regulator of Shh expression. By inference, human pre-axial polydactyly results from a similar disruption of Shh expression. Other human congenital abnormalities also map near the pre-axial polydactyly locus, suggesting a major chromosomal region for limb dysmorphologies. The distinct phenotypes range from loss of all bones of the hands and feet to syndactyly of the soft tissue and fusion of the digits. We discuss the role played by Shh expression in mouse mutant phenotypes and the human limb dysmorphologies. PMID:12587915

  6. The regulation of tooth morphogenesis is associated with epithelial cell proliferation and the expression of Sonic hedgehog through epithelial-mesenchymal interactions

    SciTech Connect

    Ishida, Kentaro; Murofushi, Mayumi; Nakao, Kazuhisa; Morita, Ritsuko; Ogawa, Miho; Tsuji, Takashi

    2011-02-18

    Research highlights: {yields} Bioengineered teeth regulated the contact area of epithelium and mesenchyme. {yields} The crown width is regulated by the contact area of the epithelium and mesenchyme. {yields} This regulation is associated with cell proliferation and Sonic hedgehog expression. {yields} The cusp number is correlated with the crown width of the bioengineered tooth. {yields} Cell proliferation and Shh expression areas regulate the tooth morphogenesis. -- Abstract: Ectodermal organs, such as the tooth, salivary gland, hair, and mammary gland, develop through reciprocal epithelial-mesenchymal interactions. Tooth morphologies are defined by the crown width and tooth length (macro-morphologies), and by the number and locations of the cusp and roots (micro-morphologies). In our current study, we report that the crown width of a bioengineered molar tooth, which was reconstructed using dissociated epithelial and mesenchymal cells via an organ germ method, can be regulated by the contact area between epithelial and mesenchymal cell layers. We further show that this is associated with cell proliferation and Sonic hedgehog (Shh) expression in the inner enamel epithelium after the germ stage has formed a secondary enamel knot. We also demonstrate that the cusp number is significantly correlated with the crown width of the bioengineered tooth. These findings suggest that the tooth micro-morphology, i.e. the cusp formation, is regulated after the tooth width, or macro-morphology, is determined. These findings also suggest that the spatiotemporal patterning of cell proliferation and the Shh expression areas in the epithelium regulate the crown width and cusp formation of the developing tooth.

  7. Developmental pathways: Sonic hedgehog-Patched-GLI.

    PubMed Central

    Walterhouse, D O; Yoon, J W; Iannaccone, P M

    1999-01-01

    Developmental pathways are networks of genes that act coordinately to establish the body plan. Disruptions of genes in one pathway can have effects in related pathways and may result in serious dysmorphogenesis or cancer. Environmental exposures can be associated with poor pregnancy outcomes, including dysmorphic offspring or children with a variety of diseases. An important goal of environmental science should be reduction of these poor outcomes. This will require an understanding of the genes affected by specific exposures and the consequence of alterations in these genes or their products, which in turn will require an understanding of the pathways critical in development. The ligand Sonic hedgehog, the receptors Patched and Smoothened, and the GLI family of transcription factors represent one such pathway. This pathway illustrates several operating principles important in the consideration of developmental consequences of environmental exposures to toxins. Images Figure 1 Figure 2 PMID:10064544

  8. Probing extracellular Sonic hedgehog in neurons

    PubMed Central

    Eitan, Erez; Petralia, Ronald S.; Wang, Ya-Xian; Indig, Fred E.; Mattson, Mark P.

    2016-01-01

    ABSTRACT The bioactivity of Sonic hedgehog (Shh) depends on specific lipid modifications; a palmitate at its N-terminus and a cholesterol at its C-terminus. This dual-lipid modification makes Shh molecules lipophilic, which prevents them from diffusing freely in extracellular space. Multiple lines of evidence indicate that Shh proteins are carried by various forms of extracellular vesicles (EVs). It also has been shown, for instance, that in some tissues Shh proteins are transported to neighboring cells directly via filopodia. We have previously reported that Shh proteins are expressed in hippocampal neurons. In this study we show that, in the hippocampus and cerebellum of postnatal day (P)2 rats, Shh is mostly found near or on the membrane surface of small neurites or filopodia. We also examined cultured hippocampal neurons where we observed noticeable and widespread Shh-immunolabeled vesicles located outside neurons. Through immunoelectron microscopy and biochemical analysis, we find Shh-containing EVs with a wide range of sizes. Unlike robust Shh activity in EVs isolated from cells overexpressing an N-terminal Shh fragment construct, we did not detect measurable Shh activity in EVs purified from the medium of cultured hippocampal neurons. These results suggest the complexity of the transcellular Shh signaling mechanisms in neurons. PMID:27387534

  9. Probing extracellular Sonic hedgehog in neurons.

    PubMed

    Eitan, Erez; Petralia, Ronald S; Wang, Ya-Xian; Indig, Fred E; Mattson, Mark P; Yao, Pamela J

    2016-01-01

    The bioactivity of Sonic hedgehog (Shh) depends on specific lipid modifications; a palmitate at its N-terminus and a cholesterol at its C-terminus. This dual-lipid modification makes Shh molecules lipophilic, which prevents them from diffusing freely in extracellular space. Multiple lines of evidence indicate that Shh proteins are carried by various forms of extracellular vesicles (EVs). It also has been shown, for instance, that in some tissues Shh proteins are transported to neighboring cells directly via filopodia. We have previously reported that Shh proteins are expressed in hippocampal neurons. In this study we show that, in the hippocampus and cerebellum of postnatal day (P)2 rats, Shh is mostly found near or on the membrane surface of small neurites or filopodia. We also examined cultured hippocampal neurons where we observed noticeable and widespread Shh-immunolabeled vesicles located outside neurons. Through immunoelectron microscopy and biochemical analysis, we find Shh-containing EVs with a wide range of sizes. Unlike robust Shh activity in EVs isolated from cells overexpressing an N-terminal Shh fragment construct, we did not detect measurable Shh activity in EVs purified from the medium of cultured hippocampal neurons. These results suggest the complexity of the transcellular Shh signaling mechanisms in neurons. PMID:27387534

  10. Mouse hitchhiker mutants have spina bifida, dorso-ventral patterning defects and polydactyly: identification of Tulp3 as a novel negative regulator of the Sonic hedgehog pathway

    PubMed Central

    Patterson, Victoria L.; Damrau, Christine; Paudyal, Anju; Reeve, Benjamin; Grimes, Daniel T.; Stewart, Michelle E.; Williams, Debbie J.; Siggers, Pam; Greenfield, Andy; Murdoch, Jennifer N.

    2009-01-01

    The mammalian Sonic hedgehog (Shh) signalling pathway is essential for embryonic development and the patterning of multiple organs. Disruption or activation of Shh signalling leads to multiple birth defects, including holoprosencephaly, neural tube defects and polydactyly, and in adults results in tumours of the skin or central nervous system. Genetic approaches with model organisms continue to identify novel components of the pathway, including key molecules that function as positive or negative regulators of Shh signalling. Data presented here define Tulp3 as a novel negative regulator of the Shh pathway. We have identified a new mouse mutant that is a strongly hypomorphic allele of Tulp3 and which exhibits expansion of ventral markers in the caudal spinal cord, as well as neural tube defects and preaxial polydactyly, consistent with increased Shh signalling. We demonstrate that Tulp3 acts genetically downstream of Shh and Smoothened (Smo) in neural tube patterning and exhibits a genetic interaction with Gli3 in limb development. We show that Tulp3 does not appear to alter expression or processing of Gli3, and we demonstrate that transcriptional regulation of other negative regulators (Rab23, Fkbp8, Thm1, Sufu and PKA) is not affected. We discuss the possible mechanism of action of Tulp3 in Shh-mediated signalling in light of these new data. PMID:19223390

  11. Sonic hedgehog (Shh) regulates the expression of angiogenic growth factors in oxygen-glucose-deprived astrocytes by mediating the nuclear receptor NR2F2.

    PubMed

    Li, Yanan; Xia, Yuanpeng; Wang, Yong; Mao, Ling; Gao, Yuan; He, Quanwei; Huang, Ming; Chen, Shengcai; Hu, Bo

    2013-06-01

    Sonic hedgehog (Shh) has been found to regulate the angiogenic growth factor such as VEGF, Ang-1, and Ang-2 during ischemic insults, but the underlying mechanism is not fully understood. In this study, we employed oxygen-glucose deprivation (OGD) in astrocytes to mimic the ischemia in vitro. We found that OGD could induce the expressions of VEGF, Ang-1, and Ang-2, with the expression of Shh signaling components increased. Moreover, inhibiting the Shh signaling pathway with 5EI, a specific antibody, could decrease the expressions of VEGF, Ang-1, and Ang-2. Furthermore, the administration of exogenous Shh could induce the expressions of VEGF, Ang-1, and Ang-2 in astrocytes. The results of silencing Gli-1, or NR2F2, exhibited that exogenous Shh could regulate the expressions of VEGF, Ang-1, and Ang-2 in astrocytes by activating the NR2F2, but not the Gli-1. These results suggested that Shh could regulate the angiogenic growth factor after ischemic insults in astrocytes, and the regulation was partially mediated by the NR2F2. PMID:23378030

  12. Sonic Hedgehog Signaling in the Lung. From Development to Disease

    PubMed Central

    Joyner, Alexandra L.; Loomis, Cynthia A.; Munger, John S.

    2015-01-01

    Over the past two decades, the secreted protein sonic hedgehog (SHH) has emerged as a critical morphogen during embryonic lung development, regulating the interaction between epithelial and mesenchymal cell populations in the airway and alveolar compartments. There is increasing evidence that the SHH pathway is active in adult lung diseases such as pulmonary fibrosis, asthma, chronic obstructive pulmonary disease, and lung cancer, which raises two questions: (1) What role does SHH signaling play in these diseases? and (2) Is it a primary driver of the disease or a response (perhaps beneficial) to the primary disturbance? In this review we aim to fill the gap between the well-studied period of embryonic lung development and the adult diseased lung by reviewing the hedgehog (HH) pathway during the postnatal period and in adult uninjured and injured lungs. We elucidate the similarities and differences in the epithelial–mesenchymal interplay during the fibrosis response to injury in lung compared with other organs and present a critical appraisal of tools and agents available to evaluate HH signaling. PMID:25068457

  13. The Role of Sonic Hedgehog Reemergence During Gastric Cancer

    PubMed Central

    Martin, Jason; Donnelly, Jessica M.; Houghton, JeanMarie

    2016-01-01

    Sonic Hedgehog (Shh) signaling has been extensively studied for its role in developmental biology and cancer biology. The association between Shh and cancer development in general is well established but the functional role of Shh in the development and progression of gastric cancer specifically is largely unknown. Bone marrow-derived stem cells, specifically mesenchymal stem cells (MSCs) infiltrate and engraft into the gastric mucosa in response to the chronic inflammatory environment of Helicobacter infection. In this review, MSC infiltration and changes in the cytokine and cellular profiles of later-stage chronic environments will be tied into their interactions with the Shh pathway. We will discuss how these changes shape tumorigenesis and tumor progression in the gastric mucosa. The current review focuses on the Shh signaling pathway and its role in the development of gastric cancer, specifically in response to Helicobacter pylori infection. We follow with an in-depth discussion of the regulation of the Hedgehog pathway during acute and chronic gastric inflammation with a focus on signaling within the MSC compartment. PMID:20437100

  14. MicroRNA-602 and microRNA-608 regulate sonic hedgehog expression via target sites in the coding region in human chondrocytes

    PubMed Central

    Akhtar, Nahid; Makki, Mohammad Shahidul; Haqqi, Tariq M.

    2015-01-01

    Objective Hedgehog(Hh) signaling has recently been associated with cartilage degradation in osteoarthritis(OA). As interleukin-1β(IL-1β) is a critical mediator of OA pathogenesis, here we determined whether IL-1β induces the expression of sonic hedgehog(SHH) and its regulation by microRNAs in human chondrocytes. Methods SHH protein expression in human OA-cartilage and in an animal model of OA was determined by immunohistochemistry and immunofluorescence respectively. Gene and protein expression in IL-1β or SHH-stimulated chondrocytes was determined by TaqMan assays and immunoblotting respectively. Effect of overexpression of miR-602 and miR-608 or their anatgomirs on SHH expression was evaluated by transient transfections of human chondrocytes and HEK-293 cells. Role of signaling pathways was evaluated using small molecule inhibitors. Binding of miRNAs with the putative “seed sequence” in the SHH mRNA was validated with a SHH luciferase reporter assay. Results Expression of SHH, PTCH-1, GLI-1, HHIP, MMP-13, and COL10A1 was high in damaged OAcartilage. Expression of SHH was inversely correlated with the expression of miR-608 in damaged cartilage and in IL-1β-stimulated chondrocytes. Transfection with miR-608 or miR-602 mimics inhibited the reporter activity and mutation of the miRNAs “seed sequences” abolished the repression of reporter activity. Overexpression of miR-602 or miR-608 inhibited the expression of SHH mRNA and protein and this was abrogated by antagomirs. Stimulation with SHH-protein up-regulated the MMP-13 expression and inhibition of Hh signaling blocked MMP-13 expression in OA chondrocytes. Conclusions miR-602 and miR-608 are important regulators of SHH expression in chondrocytes and their suppression by IL-1β may contribute to the enhanced expression of SHH and MMP-13 in OA. PMID:25385442

  15. Cloning and bioinformatical analysis of the N-terminus of the sonic hedgehog gene.

    PubMed

    Zhang, Yi; Zhao, Shu; Dong, Weiren; He, Suifen; Wang, Haihong; Zhang, Lihua; Tang, Yinjuan; Guo, Jiasong; Guo, Suiqun

    2013-01-25

    The sonic hedgehog protein not only plays a key role in early embryonic development, but also has essential effects on the adult nervous system, including neural stem cell proliferation, differentiation, migration and neuronal axon guidance. The N-terminal fragment of sonic hedgehog is the key functional element in this process. Therefore, this study aimed to clone and analyze the N-terminal fragment of the sonic hedgehog gene. Total RNA was extracted from the notochord of a Sprague-Dawley rat at embryonic day 9 and the N-terminal fragment of sonic hedgehog was amplified by nested reverse transcription-PCR. The N-terminal fragment of the sonic hedgehog gene was successfully cloned. The secondary and tertiary structures of the N-terminal fragment of the sonic hedgehog protein were predicted using Jpred and Phyre online. PMID:25206596

  16. Targeting the sonic hedgehog pathway in keratocystic odontogenic tumor.

    PubMed

    Ren, Changchun; Amm, Hope M; DeVilliers, Patricia; Wu, Yixin; Deatherage, Joseph R; Liu, Zhongyu; MacDougall, Mary

    2012-08-01

    Keratocystic odontogenic tumors (KCOT) may occur sporadically or associated with the nevoid basal cell carcinoma syndrome. It is a benign aggressive tumor of odontogenic epithelial origin with a high rate of recurrence. A primary human keratocystic odontogenic tumor cell population, KCOT-1, has been established from a tumor explant culture. The KCOT-1 cells were characterized by growth rate, gene expression profiles of major tooth enamel matrix proteins (EMPs), amelogenin (AMELX), enamelin (ENAM), ameloblastin (AMBN), amelotin (AMTN), tumor-related proteins enamelysin (MMP-20), kallikrein-4 (KLK-4), and odontogenic ameloblast-associated protein (ODAM) using quantitative real-time reverse transcription-polymerase chain reaction. Cytokeratin 14 (CK14) was examined by immunohistochemistry. In addition, expression of the members of the sonic hedgehog (SHH) pathway, SHH, patched (PTCH-1), smoothened (SMO), GLI-1, and GLI-2 and of the NOTCH signaling pathway, NOTCH-1, NOTCH-2, NOTCH-3, JAG-2 (Jagged-2), and Delta-like-1 (DLL-1) were evaluated. KCOT-1 cells were treated with SMO antagonist cyclopamine. We found that cyclopamine significantly arrested the growth of KCOT-1 cells in a dose-dependent manner and that the effects of cyclopamine were abolished by adding SHH protein. The protein expression of the SHH pathway was down-regulated by cyclopamine, further confirming that cyclopamine inhibits the SHH signaling pathway; SHH down-regulation correlated with the down-regulation of the NOTCH signaling pathway as well. In conclusion, using an established KCOT-1 cell population, we characterized the gene expression profiles related to the EMPs, SHH, and NOTCH signaling pathway and confirmed that cyclopamine significantly arrested the growth of KCOT-1 cells and may be a viable agent as a novel therapeutic. PMID:22679015

  17. Notochord repression of endodermal Sonic hedgehog permits pancreas development

    PubMed Central

    Hebrok, Matthias; Kim, Seung K.; Melton, Douglas A.

    1998-01-01

    Notochord signals to the endoderm are required for development of the chick dorsal pancreas. Sonic hedgehog (SHH) is normally absent from pancreatic endoderm, and we provide evidence that notochord, in contrast to its effects on adjacent neuroectoderm where SHH expression is induced, represses SHH expression in adjacent nascent pancreatic endoderm. We identify activin-βB and FGF2 as notochord factors that can repress endodermal SHH and thereby permit expression of pancreas genes including Pdx1 and insulin. Endoderm treatment with antibodies that block hedgehog activity also results in pancreatic gene expression. Prevention of SHH expression in prepancreatic dorsal endoderm by intercellular signals, like activin and FGF, may be critical for permitting early steps of chick pancreatic development. PMID:9620856

  18. Sonic Hedgehog Signalling Pathway and Ameloblastoma - A Review.

    PubMed

    Mishra, Pallavi; Panda, Abikshyeet; Bandyopadhyay, Alokenath; Kumar, Harish; Mohiddin, Gouse

    2015-11-01

    Ameloblastoma is a benign but aggressive odontogenic neoplasm arising from odontogenic epithelium. Many theories have been proposed to explain the pathogenesis of ameloblatoma. Numerous signalling pathways have been implicated to be associated in the development and progression of this neoplasm. Studies have found association of various signalling molecules of Sonic Hedgehog Pathway, namely SHH, PTCH1, SMO, Gli 1, Gli 2, Gli 3, with ameloblastoma. Knowledge about this pathway will help us to understand the nature and behaviour of this neoplasm. This will open the door towards new treatment modalities. PMID:26674664

  19. Sonic Hedgehog Signalling Pathway and Ameloblastoma – A Review

    PubMed Central

    Mishra, Pallavi; Bandyopadhyay, Alokenath; Kumar, Harish; Mohiddin, Gouse

    2015-01-01

    Ameloblastoma is a benign but aggressive odontogenic neoplasm arising from odontogenic epithelium. Many theories have been proposed to explain the pathogenesis of ameloblatoma. Numerous signalling pathways have been implicated to be associated in the development and progression of this neoplasm. Studies have found association of various signalling molecules of Sonic Hedgehog Pathway, namely SHH, PTCH1, SMO, Gli 1, Gli 2, Gli 3, with ameloblastoma. Knowledge about this pathway will help us to understand the nature and behaviour of this neoplasm. This will open the door towards new treatment modalities. PMID:26674664

  20. Purkinje cell maturation participates in the control of oligodendrocyte differentiation: role of sonic hedgehog and vitronectin.

    PubMed

    Bouslama-Oueghlani, Lamia; Wehrlé, Rosine; Doulazmi, Mohamed; Chen, Xiao Ru; Jaudon, Fanny; Lemaigre-Dubreuil, Yolande; Rivals, Isabelle; Sotelo, Constantino; Dusart, Isabelle

    2012-01-01

    Oligodendrocyte differentiation is temporally regulated during development by multiple factors. Here, we investigated whether the timing of oligodendrocyte differentiation might be controlled by neuronal differentiation in cerebellar organotypic cultures. In these cultures, the slices taken from newborn mice show very few oligodendrocytes during the first week of culture (immature slices) whereas their number increases importantly during the second week (mature slices). First, we showed that mature cerebellar slices or their conditioned media stimulated oligodendrocyte differentiation in immature slices thus demonstrating the existence of diffusible factors controlling oligodendrocyte differentiation. Using conditioned media from different models of slice culture in which the number of Purkinje cells varies drastically, we showed that the effects of these differentiating factors were proportional to the number of Purkinje cells. To identify these diffusible factors, we first performed a transcriptome analysis with an Affymetrix array for cerebellar cortex and then real-time quantitative PCR on mRNAs extracted from fluorescent flow cytometry sorted (FACS) Purkinje cells of L7-GFP transgenic mice at different ages. These analyses revealed that during postnatal maturation, Purkinje cells down-regulate Sonic Hedgehog and up-regulate vitronectin. Then, we showed that Sonic Hedgehog stimulates the proliferation of oligodendrocyte precursor cells and inhibits their differentiation. In contrast, vitronectin stimulates oligodendrocyte differentiation, whereas its inhibition with blocking antibodies abolishes the conditioned media effects. Altogether, these results suggest that Purkinje cells participate in controlling the timing of oligodendrocyte differentiation in the cerebellum through the developmentally regulated expression of diffusible molecules such as Sonic Hedgehog and vitronectin. PMID:23155445

  1. Purkinje Cell Maturation Participates in the Control of Oligodendrocyte Differentiation: Role of Sonic Hedgehog and Vitronectin

    PubMed Central

    Bouslama-Oueghlani, Lamia; Wehrlé, Rosine; Doulazmi, Mohamed; Chen, Xiao Ru; Jaudon, Fanny; Lemaigre-Dubreuil, Yolande; Rivals, Isabelle; Sotelo, Constantino; Dusart, Isabelle

    2012-01-01

    Oligodendrocyte differentiation is temporally regulated during development by multiple factors. Here, we investigated whether the timing of oligodendrocyte differentiation might be controlled by neuronal differentiation in cerebellar organotypic cultures. In these cultures, the slices taken from newborn mice show very few oligodendrocytes during the first week of culture (immature slices) whereas their number increases importantly during the second week (mature slices). First, we showed that mature cerebellar slices or their conditioned media stimulated oligodendrocyte differentiation in immature slices thus demonstrating the existence of diffusible factors controlling oligodendrocyte differentiation. Using conditioned media from different models of slice culture in which the number of Purkinje cells varies drastically, we showed that the effects of these differentiating factors were proportional to the number of Purkinje cells. To identify these diffusible factors, we first performed a transcriptome analysis with an Affymetrix array for cerebellar cortex and then real-time quantitative PCR on mRNAs extracted from fluorescent flow cytometry sorted (FACS) Purkinje cells of L7-GFP transgenic mice at different ages. These analyses revealed that during postnatal maturation, Purkinje cells down-regulate Sonic Hedgehog and up-regulate vitronectin. Then, we showed that Sonic Hedgehog stimulates the proliferation of oligodendrocyte precursor cells and inhibits their differentiation. In contrast, vitronectin stimulates oligodendrocyte differentiation, whereas its inhibition with blocking antibodies abolishes the conditioned media effects. Altogether, these results suggest that Purkinje cells participate in controlling the timing of oligodendrocyte differentiation in the cerebellum through the developmentally regulated expression of diffusible molecules such as Sonic Hedgehog and vitronectin. PMID:23155445

  2. Sonic hedgehog signaling in Basal cell nevus syndrome.

    PubMed

    Athar, Mohammad; Li, Changzhao; Kim, Arianna L; Spiegelman, Vladimir S; Bickers, David R

    2014-09-15

    The hedgehog (Hh) signaling pathway is considered to be a major signal transduction pathway during embryonic development, but it usually shuts down after birth. Aberrant Sonic hedgehog (Shh) activation during adulthood leads to neoplastic growth. Basal cell carcinoma (BCC) of the skin is driven by this pathway. Here, we summarize information related to the pathogenesis of this neoplasm, discuss pathways that crosstalk with Shh signaling, and the importance of the primary cilium in this neoplastic process. The identification of the basic/translational components of Shh signaling has led to the discovery of potential mechanism-driven druggable targets and subsequent clinical trials have confirmed their remarkable efficacy in treating BCCs, particularly in patients with nevoid BCC syndrome (NBCCS), an autosomal dominant disorder in which patients inherit a germline mutation in the tumor-suppressor gene Patched (Ptch). Patients with NBCCS develop dozens to hundreds of BCCs due to derepression of the downstream G-protein-coupled receptor Smoothened (SMO). Ptch mutations permit transposition of SMO to the primary cilium followed by enhanced expression of transcription factors Glis that drive cell proliferation and tumor growth. Clinical trials with the SMO inhibitor, vismodegib, showed remarkable efficacy in patients with NBCCS, which finally led to its FDA approval in 2012. PMID:25172843

  3. Involvement of the Sonic hedgehog gene in chick feather formation.

    PubMed

    Nohno, T; Kawakami, Y; Ohuchi, H; Fujiwara, A; Yoshioka, H; Noji, S

    1995-01-01

    To elucidate the molecular mechanisms of chick feather formation, we observed expression patterns of the Sonic hedgehog (Shh) gene, which is one of the vertebrate homologs of the Drosophila segment polarity gene, hedgehog, and encodes a signaling molecule functioning in limb pattern formation and motor neuron induction. We found that the Shh gene is also expressed in the apical region of the feather placodes and then in nine to eleven longitudinal stripes along feather filaments. The stripe was found to correspond to one of the outer marginal zones of each barb ridge, termed the zone of Shh expression. No significant expression signal was detected in the scale bud of developing legs. Thus, Shh is likely to function as an epithelial signaling molecule in epithelio-mesenchymal interaction during feather formation. Furthermore, since genes of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-4 (FGF-4) are coexpressed with Shh during feather formation as observed in limb morphogenesis, interactions among FGF-4, Shh and BMP-2 may be involved in formation of feather filaments and barbs in a similar fashion as elucidated in limb pattern formation. PMID:7818537

  4. Neurons diversify astrocytes in the adult brain through sonic hedgehog signaling.

    PubMed

    Farmer, W Todd; Abrahamsson, Therése; Chierzi, Sabrina; Lui, Christopher; Zaelzer, Cristian; Jones, Emma V; Bally, Blandine Ponroy; Chen, Gary G; Théroux, Jean-Francois; Peng, Jimmy; Bourque, Charles W; Charron, Frédéric; Ernst, Carl; Sjöström, P Jesper; Murai, Keith K

    2016-02-19

    Astrocytes are specialized and heterogeneous cells that contribute to central nervous system function and homeostasis. However, the mechanisms that create and maintain differences among astrocytes and allow them to fulfill particular physiological roles remain poorly defined. We reveal that neurons actively determine the features of astrocytes in the healthy adult brain and define a role for neuron-derived sonic hedgehog (Shh) in regulating the molecular and functional profile of astrocytes. Thus, the molecular and physiological program of astrocytes is not hardwired during development but, rather, depends on cues from neurons that drive and sustain their specialized properties. PMID:26912893

  5. Functional characterization of sonic hedgehog mutations associated with holoprosencephaly.

    PubMed

    Traiffort, Elisabeth; Dubourg, Christèle; Faure, Hélène; Rognan, Didier; Odent, Sylvie; Durou, Marie-Renée; David, Véronique; Ruat, Martial

    2004-10-01

    Mutations of the developmental gene Sonic hedgehog (SHH) and alterations of SHH signaling have been associated with holoprosencephaly (HPE), a rare disorder characterized by a large spectrum of brain and craniofacial anomalies. Based on the crystal structure of mouse N-terminal and Drosophila C-terminal hedgehog proteins, we have developed three-dimensional models of the corresponding human proteins (SHH-N, SHH-C) that have allowed us to identify within these two domains crucial regions associated with HPE missense mutations. We have further characterized the functional consequences linked to 11 of these mutations. In transfected HEK293 cells, the production of the active SHH-N fragment was dramatically impaired for eight mutants (W117R, W117G, H140P, T150R, C183F, L271P, I354T, A383T). The supernatants from these cell cultures showed no significant SHH-signaling activity in a reporter cell-based assay. Two mutants (G31R, D222N) were associated with a lower production of SHH-N and signaling activity. Finally, one mutant harboring the A226T mutation displays an activity comparable with the wild-type protein. This work demonstrates that most of the HPE-associated SHH mutations analyzed have a deleterious effect on the availability of SHH-N and its biological activity. However, because of the lack of correlation between genotype and phenotype for SHH-associated mutations, our study suggests that other factors intervene in the development of the spectrum of HPE anomalies. PMID:15292211

  6. Foretinib is effective therapy for metastatic sonic hedgehog medulloblastoma.

    PubMed

    Faria, Claudia C; Golbourn, Brian J; Dubuc, Adrian M; Remke, Marc; Diaz, Roberto J; Agnihotri, Sameer; Luck, Amanda; Sabha, Nesrin; Olsen, Samantha; Wu, Xiaochong; Garzia, Livia; Ramaswamy, Vijay; Mack, Stephen C; Wang, Xin; Leadley, Michael; Reynaud, Denis; Ermini, Leonardo; Post, Martin; Northcott, Paul A; Pfister, Stefan M; Croul, Sidney E; Kool, Marcel; Korshunov, Andrey; Smith, Christian A; Taylor, Michael D; Rutka, James T

    2015-01-01

    Medulloblastoma is the most common malignant pediatric brain tumor, with metastases present at diagnosis conferring a poor prognosis. Mechanisms of dissemination are poorly understood and metastatic lesions are genetically divergent from the matched primary tumor. Effective and less toxic therapies that target both compartments have yet to be identified. Here, we report that the analysis of several large nonoverlapping cohorts of patients with medulloblastoma reveals MET kinase as a marker of sonic hedgehog (SHH)-driven medulloblastoma. Immunohistochemical analysis of phosphorylated, active MET kinase in an independent patient cohort confirmed its correlation with increased tumor relapse and poor survival, suggesting that patients with SHH medulloblastoma may benefit from MET-targeted therapy. In support of this hypothesis, we found that the approved MET inhibitor foretinib could suppress MET activation, decrease tumor cell proliferation, and induce apoptosis in SHH medulloblastomas in vitro and in vivo. Foretinib penetrated the blood-brain barrier and was effective in both the primary and metastatic tumor compartments. In established mouse xenograft or transgenic models of metastatic SHH medulloblastoma, foretinib administration reduced the growth of the primary tumor, decreased the incidence of metastases, and increased host survival. Taken together, our results provide a strong rationale to clinically evaluate foretinib as an effective therapy for patients with SHH-driven medulloblastoma. PMID:25391241

  7. Anorectal Malformations Caused by Defects in Sonic Hedgehog Signaling

    PubMed Central

    Mo, Rong; Kim, Jae Hong; Zhang, Jianrong; Chiang, Chin; Hui, Chi-chung; Kim, Peter C. W.

    2001-01-01

    Anorectal malformations are a common clinical problem affecting the development of the distal hindgut in infants. The spectrum of anorectal malformations ranges from the mildly stenotic anus to imperforate anus with a fistula between the urinary and intestinal tracts to the most severe form, persistent cloaca. The etiology, embryology, and pathogenesis of anorectal malformations are poorly understood and controversial. Sonic hedgehog (Shh) is an endoderm-derived signaling molecule that induces mesodermal gene expression in the chick hindgut. However, the role of Shh signaling in mammalian hindgut development is unknown. Here, we show that mutant mice with various defects in the Shh signaling pathway exhibit a spectrum of distal hindgut defects mimicking human anorectal malformations. Shh null-mutant mice display persistent cloaca. Mutant mice lacking Gli2 or Gli3, two zinc finger transcription factors involved in Shh signaling, respectively, exhibit imperforate anus with recto-urethral fistula and anal stenosis. Furthermore, persistent cloaca is also observed in Gli2−/−;Gli3+/−, Gli2+/−;Gli3−/−, and Gli2−/−;Gli3−/− mice demonstrating a gene dose-dependent effect. Therefore, Shh signaling is essential for normal development of the distal hindgut in mice and mutations affecting Shh signaling produce a spectrum of anorectal malformations that may reveal new insights into their human disease equivalents. PMID:11485934

  8. Sonic Hedgehog Promotes Cementoblastic Differentiation via Activating the BMP Pathways.

    PubMed

    Bae, Won-Jung; Auh, Q-Schick; Lim, Hyun-Chang; Kim, Gyu-Tae; Kim, Hyun-Soo; Kim, Eun-Cheol

    2016-10-01

    Although sonic hedgehog (SHH), an essential molecule in embryogenesis and organogenesis, stimulates proliferation of human periodontal ligament (PDL) stem cells, the effects of recombinant human SHH (rh-SHH) on osteoblastic differentiation are unclear. To reveal the role of SHH in periodontal regeneration, expression of SHH in mouse periodontal tissues and its effects on the osteoblastic/cementoblastic differentiation in human cementoblasts were investigated. SHH is immunolocalized to differentiating cementoblasts, PDL cells, and osteoblasts of the developing mouse periodontium. Addition of rh-SHH increased cell growth, ALP activity, and mineralization nodule formation, and upregulated mRNA expression of osteoblastic and cementoblastic markers. The osteoblastic/cementoblastic differentiation of rh-SHH was abolished by the SHH inhibitor cyclopamine (Cy) and the BMP antagonist noggin. rh-SHH increased the expression of BMP-2 and -4 mRNA, as well as levels of phosphorylated Akt, ERK, p38, and JNK, and of MAPK and NF-κB activation, which were reversed by noggin, Cy, and BMP-2 siRNA. Collectively, this study is the first to demonstrate that SHH can promote cell growth and cell osteoblastic/cementoblastic differentiation via BMP pathway. Thus, SHH plays important roles in the development of periodontal tissue, and might represent a new therapeutic target for periodontitis and periodontal regeneration. PMID:27289556

  9. Anorectal malformations caused by defects in sonic hedgehog signaling.

    PubMed

    Mo, R; Kim, J H; Zhang, J; Chiang, C; Hui, C C; Kim, P C

    2001-08-01

    Anorectal malformations are a common clinical problem affecting the development of the distal hindgut in infants. The spectrum of anorectal malformations ranges from the mildly stenotic anus to imperforate anus with a fistula between the urinary and intestinal tracts to the most severe form, persistent cloaca. The etiology, embryology, and pathogenesis of anorectal malformations are poorly understood and controversial. Sonic hedgehog (Shh) is an endoderm-derived signaling molecule that induces mesodermal gene expression in the chick hindgut. However, the role of Shh signaling in mammalian hindgut development is unknown. Here, we show that mutant mice with various defects in the Shh signaling pathway exhibit a spectrum of distal hindgut defects mimicking human anorectal malformations. Shh null-mutant mice display persistent cloaca. Mutant mice lacking Gli2 or Gli3, two zinc finger transcription factors involved in Shh signaling, respectively, exhibit imperforate anus with recto-urethral fistula and anal stenosis. Furthermore, persistent cloaca is also observed in Gli2(-/-);Gli3(+/-), Gli2(+/-);Gli3(-/-), and Gli2(-/-);Gli3(-/-) mice demonstrating a gene dose-dependent effect. Therefore, Shh signaling is essential for normal development of the distal hindgut in mice and mutations affecting Shh signaling produce a spectrum of anorectal malformations that may reveal new insights into their human disease equivalents. PMID:11485934

  10. Mesencephalic basolateral domain specification is dependent on Sonic Hedgehog.

    PubMed

    Martinez-Lopez, Jesus E; Moreno-Bravo, Juan A; Madrigal, M Pilar; Martinez, Salvador; Puelles, Eduardo

    2015-01-01

    In the study of central nervous system morphogenesis, the identification of new molecular markers allows us to identify domains along the antero-posterior and dorso-ventral (DV) axes. In the past years, the alar and basal plates of the midbrain have been divided into different domains. The precise location of the alar-basal boundary is still under discussion. We have identified Barhl1, Nhlh1 and Six3 as appropriate molecular markers to the adjacent domains of this transition. The description of their expression patterns and the contribution to the different mesencephalic populations corroborated their role in the specification of these domains. We studied the influence of Sonic Hedgehog on these markers and therefore on the specification of these territories. The lack of this morphogen produced severe alterations in the expression pattern of Barhl1 and Nhlh1 with consequent misspecification of the basolateral (BL) domain. Six3 expression was apparently unaffected, however its distribution changed leading to altered basal domains. In this study we confirmed the localization of the alar-basal boundary dorsal to the BL domain and demonstrated that the development of the BL domain highly depends on Shh. PMID:25741244

  11. Mesencephalic basolateral domain specification is dependent on Sonic Hedgehog

    PubMed Central

    Martinez-Lopez, Jesus E.; Moreno-Bravo, Juan A.; Madrigal, M. Pilar; Martinez, Salvador; Puelles, Eduardo

    2015-01-01

    In the study of central nervous system morphogenesis, the identification of new molecular markers allows us to identify domains along the antero-posterior and dorso-ventral (DV) axes. In the past years, the alar and basal plates of the midbrain have been divided into different domains. The precise location of the alar-basal boundary is still under discussion. We have identified Barhl1, Nhlh1 and Six3 as appropriate molecular markers to the adjacent domains of this transition. The description of their expression patterns and the contribution to the different mesencephalic populations corroborated their role in the specification of these domains. We studied the influence of Sonic Hedgehog on these markers and therefore on the specification of these territories. The lack of this morphogen produced severe alterations in the expression pattern of Barhl1 and Nhlh1 with consequent misspecification of the basolateral (BL) domain. Six3 expression was apparently unaffected, however its distribution changed leading to altered basal domains. In this study we confirmed the localization of the alar-basal boundary dorsal to the BL domain and demonstrated that the development of the BL domain highly depends on Shh. PMID:25741244

  12. Ontogenetic Expression of Sonic Hedgehog in the Chicken Subpallium

    PubMed Central

    Bardet, Sylvia M.; Ferran, José L. E.; Sanchez-Arrones, Luisa; Puelles, Luis

    2010-01-01

    Sonic hedgehog (SHH) is a secreted signaling factor that is implicated in the molecular patterning of the central nervous system (CNS), somites, and limbs in vertebrates. SHH has a crucial role in the generation of ventral cell types along the entire rostrocaudal axis of the neural tube. It is secreted early in development by the axial mesoderm (prechordal plate and notochord) and the overlying ventral neural tube. Recent studies clarified the impact of SHH signaling mechanisms on dorsoventral patterning of the spinal cord, but the corresponding phenomena in the rostral forebrain are slightly different and more complex. This notably involves separate Shh expression in the preoptic part of the forebrain alar plate, as well as in the hypothalamic floor and basal plates. The present work includes a detailed spatiotemporal description of the singular alar Shh expression pattern in the rostral preoptic forebrain of chick embryos, comparing it with FoxG1, Dlx5, Nkx2.1, and Nkx2.2 mRNA expression at diverse stages of development. As a result of this mapping, we report a subdivision of the preoptic region in dorsal and ventral zones; only the dorsal part shows Shh expression. The positive area impinges as well upon a median septocommissural preoptic domain. Our study strongly suggests tangential migration of Shh-positive cells from the preoptic region into other subpallial domains, particularly into the pallidal mantle and the intermediate septum. PMID:20700498

  13. Genetic drivers of metastatic dissemination in sonic hedgehog medulloblastoma.

    PubMed

    Jenkins, Noah C; Kalra, Ricky R; Dubuc, Adrian; Sivakumar, Walavan; Pedone, Carolyn A; Wu, Xiaochong; Taylor, Michael D; Fults, Daniel W

    2014-01-01

    Leptomeningeal dissemination (LMD), the metastatic spread of tumor cells via the cerebrospinal fluid to the brain and spinal cord, is an ominous prognostic sign for patients with the pediatric brain tumor medulloblastoma. The need to reduce the risk of LMD has driven the development of aggressive treatment regimens, which cause disabling neurotoxic side effects in long-term survivors. Transposon-mediated mutagenesis studies in mice have revealed numerous candidate metastasis genes. Understanding how these genes drive LMD will require functional assessment using in vivo and cell culture models of medulloblastoma. We analyzed two genes that were sites of frequent transposon insertion and highly expressed in human medulloblastomas: Arnt (aryl hydrocarbon receptor nuclear translocator) and Gdi2 (GDP dissociation inhibitor 2). Here we show that ectopic expression of Arnt and Gdi2 promoted LMD in mice bearing Sonic hedgehog (Shh)-induced medulloblastomas. We overexpressed Arnt and Gdi2 in a human medulloblastoma cell line (DAOY) and an immortalized, nontransformed cell line derived from mouse granule neuron precursors (SHH-NPD) and quantified migration, invasiveness, and anchorage-independent growth, cell traits that are associated with metastatic competence in carcinomas. In SHH-NPD cells. Arnt and Gdi2 stimulated all three traits. In DAOY cells, Arnt had the same effects, but Gdi2 stimulated invasiveness only. These results support a mechanism whereby Arnt and Gdi2 cause cells to detach from the primary tumor mass by increasing cell motility and invasiveness. By conferring to tumor cells the ability to proliferate without surface attachment, Arnt and Gdi2 favor the formation of stable colonies of cells capable of seeding the leptomeninges. PMID:25059231

  14. Differential developmental strategies by Sonic hedgehog in thalamus and hypothalamus.

    PubMed

    Zhang, Yuanfeng; Alvarez-Bolado, Gonzalo

    2016-09-01

    The traditional concept of diencephalon (thalamus plus hypothalamus) and with it the entire traditional subdivision of the developing neural tube are being challenged by novel insights obtained by mapping the expression of key developmental genes. A model in which the hypothalamus is placed in the most rostral portion of the neural tube, followed caudally by a diencephalon formed by prethalamus, thalamus and pretectum has been proposed. The adult thalamus and hypothalamus are quite unlike each other in connectivity and functions. Here we review work on the role of the secreted morphogen protein Sonic hedgehog (Shh) in the developing diencephalon and hypothalamic region to show how different these two regions are also from this point of view. Shh from the prechordal plate (PCP) induces and patterns the hypothalamus but there is no evidence that this role is fulfilled by a morphogen gradient. Later, the hypothalamic primordium itself expresses Shh and a large part of the hypothalamus belongs to the Shh lineage, including the ventral domains. Neural Shh is necessary to complete the specification (lateral hypothalamus), differentiation and growth of the hypothalamus. Although Gli2A is the major effector of Shh in this region, hypothalamic specification also depends on the suppression of Gli3R by Shh secreted by the PCP as well as the neuroepithelium. The thalamus is patterned by an Shh morphogen gradient originated in the ZLI following similar mechanisms to those in the spinal cord. The thalamus itself does not belong to the Shh lineage. Gli2A is necessary for appropriate growth and specification of the thalamic nuclei, to the exception of the medial and intralaminar groups (limbic-related), whose development depends on Gli3R. Beyond specification and patterning, the scarce data available about cell sorting and aggregation in these two regions shows key differences between them as well. In summary, not only expression patterns but also developmental mechanisms support

  15. Sonic hedgehog gene therapy increases the ability of the dystrophic skeletal muscle to regenerate after injury.

    PubMed

    Piccioni, A; Gaetani, E; Palladino, M; Gatto, I; Smith, R C; Neri, V; Marcantoni, M; Giarretta, I; Silver, M; Straino, S; Capogrossi, M; Landolfi, R; Pola, R

    2014-04-01

    The Hedgehog (Hh) pathway is a crucial regulator of muscle development during embryogenesis. We have previously demonstrated that Sonic hedgehog (Shh) regulates postnatal myogenesis in the adult skeletal muscle both directly, by acting on muscle satellite cells, and indirectly, by promoting the production of growth factors from interstitial fibroblasts. Here, we show that in mdx mice, the murine equivalent of Duchenne muscular dystrophy in humans, progression of the dystrophic pathology corresponds to progressive inhibition of the Hh signaling pathway in the skeletal muscle. We also show that the upregulation of the Hh pathway in response to injury and during regeneration is significantly impaired in mdx muscle. Shh treatment increases the proliferative potential of satellite cells isolated from the muscles of mdx mice. This treatment also increases the production of proregenerative factors, such as insulin-like growth factor-1 and vascular endothelial growth factor, from fibroblasts isolated from the muscle of mdx mice. In vivo, overexpression of the Hh pathway using a plasmid encoding the human Shh gene promotes successful regeneration after injury in terms of increased number of proliferating myogenic cells and newly formed myofibers, as well as enhanced vascularization and decreased fibrosis. PMID:24572787

  16. Sonic hedgehog promotes stem-cell potential of Mueller glia in the mammalian retina

    SciTech Connect

    Wan Jin; Zheng Hua; Xiao Honglei; She Zhenjue; Zhou Guomin

    2007-11-16

    Mueller glia have been demonstrated to display stem-cell properties after retinal damage. Here, we report this potential can be regulated by Sonic hedgehog (Shh) signaling. Shh can stimulate proliferation of Mueller glia through its receptor and target gene expressed on them, furthermore, Shh-treated Mueller glia are induced to dedifferentiate by expressing progenitor-specific markers, and then adopt cell fate of rod photoreceptor. Inhibition of signaling by cyclopamine inhibits proliferation and dedifferentiation. Intraocular injection of Shh promotes Mueller glia activation in the photoreceptor-damaged retina, Shh also enhances neurogenic potential by producing more rhodopsin-positive photoreceptors from Mueller glia-derived cells. Together, these results provide evidences that Mueller glia act as potential stem cells in mammalian retina, Shh may have therapeutic effects on these cells for promoting the regeneration of retinal neurons.

  17. Notch Activity Modulates the Responsiveness of Neural Progenitors to Sonic Hedgehog Signaling

    PubMed Central

    Kong, Jennifer H.; Yang, Linlin; Dessaud, Eric; Chuang, Katherine; Moore, Destaye M.; Rohatgi, Rajat; Briscoe, James; Novitch, Bennett G.

    2015-01-01

    Summary Throughout the developing nervous system, neural stem and progenitor cells give rise to diverse classes of neurons and glia in a spatially and temporally coordinated manner. In the ventral spinal cord, much of this diversity emerges through the morphogen actions of Sonic hedgehog (Shh). Interpretation of the Shh gradient depends on both the amount of ligand and duration of exposure, but the mechanisms permitting prolonged responses to Shh are not well understood. We demonstrate that Notch signaling plays an essential role in this process, enabling neural progenitors to attain sufficiently high levels of Shh pathway activity needed to direct the ventral-most cell fates. Notch activity regulates subcellular localization of the Shh receptor Patched1, gating the translocation of the key effector Smoothened to primary cilia and its downstream signaling activities. These data reveal an unexpected role for Notch shaping the interpretation of the Shh morphogen gradient and influencing cell fate determination. PMID:25936505

  18. Sonic Hedgehog in pancreatic cancer: From bench to bedside, then back to the bench

    PubMed Central

    Rosow, David E.; Liss, Andrew S.; Strobel, Oliver; Fritz, Stefan; Bausch, Dirk; Valsangkar, Nakul P.; Alsina, Janivette; Kulemann, Birte; Park, Joo Kyung; Yamaguchi, Junpei; LaFemina, Jennifer; Thayer, Sarah P.

    2013-01-01

    Developmental genes are known to regulate cell proliferation, migration, and differentiation; thus, it comes as no surprise that the misregulation of developmental genes plays an important role in the biology of human cancers. One such pathway that has received an increasing amount of attention for its function in carcinogenesis is the Hedgehog (Hh) pathway. Initially the domain of developmental biologists, the Hh pathway and one of its ligands, Sonic Hedgehog (Shh), have been shown to play an important role in body planning and organ development, particularly in the foregut endoderm. Their importance in human disease became known to cancer biologists when germline mutations that resulted in the unregulated activity of the Hh pathway were found to cause basal cell carcinoma and medulloblastoma. Since then, misexpression of the Hh pathway has been shown to play an important role in many other cancers, including those of the pancreas. In many institutions, investigators are targeting misexpression of the Hh pathway in clinical trials, but there is still much fundamental knowledge to be gained about this pathway that can shape its clinical utility. This review will outline the evolution of our understanding of this pathway as it relates to the pancreas, as well as how the Hh pathway came to be a high-priority target for treatment. PMID:22770959

  19. Sonic Hedgehog: A Good Gene Gone Bad? Detection and Treatment of Genetic Abnormalities.

    ERIC Educational Resources Information Center

    Yaich, Lauren E.

    2001-01-01

    Presents a case of a baby born with the genetic condition holoprosencephaly in which students explore the "Sonic hedgehog" gene, signal transduction, and the ethics of body and tissue donation. Presents a two-part assignment that features students writing an informed consent document that explains the science behind this congenital abnormality,…

  20. Identification of a family of fatty acid-speciated Sonic Hedgehog proteins, whose members display differential biological properties

    PubMed Central

    Houel, Stephane; Rodgriguez-Blanco, Jezabel; Singh, Samer; Schilling, Neal; J.Capobianco, Anthony; Ahn, Natalie G.; Robbins, David J.

    2015-01-01

    SUMMARY Hedgehog (HH) proteins are proteolytically processed into a biologically active form, which is covalently modified by cholesterol and palmitate. However, most studies of HH biogenesis have characterized protein from cells in which HH is over-expressed. We purified Sonic Hedgehog (SHH) from cells expressing physiologically relevant levels, and showed that it was more potent than SHH isolated from over-expressing cells. Furthermore, the SHH in our preparations were modified with a diverse spectrum of fatty acids on their amino-termini, and this spectrum of fatty acids varied dramatically depending on the growth conditions of the cells. The fatty acid composition of SHH affected its trafficking to lipid rafts, as well as its potency. Our results suggest that HH proteins exist as a family of diverse lipid-speciated proteins, which might be altered in different physiological and pathological contexts to regulate distinct properties of HH proteins. PMID:25732819

  1. Targeting of sonic hedgehog-Gli signaling: A potential therapeutic target for patients with breast cancer

    PubMed Central

    Song, Lingqin; Wang, Weifeng; Liu, Di; Zhao, Yang; He, Jianjun; Wang, Xijing; Dai, Zhijun; Zhang, Huimin; Li, Xiao

    2016-01-01

    Breast cancer is the most common malignant cancer among women. The Hedgehog (Hh) signaling pathway serves a key role in malignant cancer cell growth and migration. However, little is known with regard to the specific function of the Hh signaling pathway in human breast cancer. The current study investigated the specific role of Hh signaling in the human breast cancer cell line MDA-MB-231. Expression of components of Shh-Gli signaling, as well as the Gli-responsive genes B-cell lymphoma 2 (Bcl-2) and cyclin D1, were investigated in MDA-MB-231 cells using western blotting. The effects of Shh-Gli signaling on MDA-MB-231 proliferation were analyzed by MTT assay. The role of E-cadherin in the epithelial-mesenchymal transition process was determined by western blot while matrix metalloproteinase (MMP)-9/MMP-2 secretion was studied by enzyme-linked immunosorbent assay. The results indicated that Shh-Gli signaling was activated in MDA-MB-231 cells, significantly enhancing cell viability. Overexpression of Gli positively regulated the transcription of Bcl-2 and cyclin D1 thereby regulating MDA-MB-231 cell proliferation and survival. Treatment of MDA-MB-231 cells with human sonic hedgehog, n-terminus for 72 h significantly reduced E-cadherin protein levels and enhanced secretion of MMP-9 and MMP-2. These findings suggest that Shh-Gli signaling is significantly activated in human breast cancer cells, and is accompanied by enhanced cell viability, proliferation and migration capacities. PMID:27446389

  2. Sonic hedgehog controls enteric nervous system development by patterning the extracellular matrix.

    PubMed

    Nagy, Nandor; Barad, Csilla; Graham, Hannah K; Hotta, Ryo; Cheng, Lily S; Fejszak, Nora; Goldstein, Allan M

    2016-01-15

    The enteric nervous system (ENS) develops from neural crest cells that migrate along the intestine, differentiate into neurons and glia, and pattern into two plexuses within the gut wall. Inductive interactions between epithelium and mesenchyme regulate gut development, but the influence of these interactions on ENS development is unknown. Epithelial-mesenchymal recombinations were constructed using avian hindgut mesenchyme and non-intestinal epithelium from the bursa of Fabricius. These recombinations led to abnormally large and ectopically positioned ganglia. We hypothesized that sonic hedgehog (Shh), a secreted intestinal epithelial protein not expressed in the bursa, mediates this effect. Inhibition of Shh signaling, by addition of cyclopamine or a function-blocking antibody, resulted in large, ectopic ganglia adjacent to the epithelium. Shh overexpression, achieved in ovo using Shh-encoding retrovirus and in organ culture using recombinant protein, led to intestinal aganglionosis. Shh strongly induced the expression of versican and collagen type IX, whereas cyclopamine reduced expression of these chondroitin sulfate proteoglycans that are known to be inhibitory to neural crest cell migration. Shh also inhibited enteric neural crest-derived cell (ENCC) proliferation, promoted neuronal differentiation, and reduced expression of Gdnf, a key regulator of ENS formation. Ptc1 and Ptc2 were not expressed by ENCCs, and migration of isolated ENCCs was not inhibited by Shh protein. These results suggest that epithelial-derived Shh acts indirectly on the developing ENS by regulating the composition of the intestinal microenvironment. PMID:26674309

  3. Sonic hedgehog-responsive lipoxygenases and cyclooxygenase-2 modulate Dectin-1-induced inflammatory cytokines.

    PubMed

    Karnam, Anupama; Holla, Sahana; Balaji, Kithiganahalli Narayanaswamy

    2015-12-01

    Immune responses during fungal infections are predominately mediated by 5/15-lipoxygenases (LO)- or cyclooxygenase (COX)-2-catalysed bioactive eicosanoid metabolites like leukotrienes, lipoxins and prostaglandins. Although few host mediators of fungi-triggered eicosanoid production have been established, the molecular mechanism of expression and regulation of 5-LO, 15-LO and COX-2 are not well-defined. Here, we demonstrate that, macrophages infected with representative fungi Candida albicans, Aspergillus flavus or Aspergillus fumigatus or those treated with Curdlan, a selective agonist of pattern recognition receptor for fungi Dectin-1, displays increased expression of 5-LO, 15-LO and COX-2. Interestingly, Dectin-1-responsive Syk pathway activates mTOR-sonic hedgehog (SHH) signaling cascade to stimulate the expression of these lipid metabolizing enzymes. Loss-of-function analysis of the identified intermediaries indicates that while Syk-mTOR-SHH pathway-induced 5-LO and 15-LO suppressed the Dectin-1-responsive pro-inflammatory signature cytokines like TNF-α, IL-1β and IL-12, Syk-mTOR-SHH-induced COX-2 positively regulated these cytokines. Dectin-1-stimulated IL-6, however, is dependent on 5-LO, 15-LO and COX-2 activity. Together, the current study establishes Dectin-1-arbitrated host mediators that direct the differential regulation of immune responses during fungal infections and thus are potential candidates of therapeutic intervention. PMID:26432261

  4. Quiescent sox2(+) cells drive hierarchical growth and relapse in sonic hedgehog subgroup medulloblastoma.

    PubMed

    Vanner, Robert J; Remke, Marc; Gallo, Marco; Selvadurai, Hayden J; Coutinho, Fiona; Lee, Lilian; Kushida, Michelle; Head, Renee; Morrissy, Sorana; Zhu, Xueming; Aviv, Tzvi; Voisin, Veronique; Clarke, Ian D; Li, Yisu; Mungall, Andrew J; Moore, Richard A; Ma, Yussanne; Jones, Steven J M; Marra, Marco A; Malkin, David; Northcott, Paul A; Kool, Marcel; Pfister, Stefan M; Bader, Gary; Hochedlinger, Konrad; Korshunov, Andrey; Taylor, Michael D; Dirks, Peter B

    2014-07-14

    Functional heterogeneity within tumors presents a significant therapeutic challenge. Here we show that quiescent, therapy-resistant Sox2(+) cells propagate sonic hedgehog subgroup medulloblastoma by a mechanism that mirrors a neurogenic program. Rare Sox2(+) cells produce rapidly cycling doublecortin(+) progenitors that, together with their postmitotic progeny expressing NeuN, comprise tumor bulk. Sox2(+) cells are enriched following anti-mitotic chemotherapy and Smoothened inhibition, creating a reservoir for tumor regrowth. Lineage traces from Sox2(+) cells increase following treatment, suggesting that this population is responsible for relapse. Targeting Sox2(+) cells with the antineoplastic mithramycin abrogated tumor growth. Addressing functional heterogeneity and eliminating Sox2(+) cells presents a promising therapeutic paradigm for treatment of sonic hedgehog subgroup medulloblastoma. PMID:24954133

  5. RACK1 Promotes Non-small-cell Lung Cancer Tumorigenicity through Activating Sonic Hedgehog Signaling Pathway*

    PubMed Central

    Shi, Shuo; Deng, Yue-Zhen; Zhao, Jiang-Sha; Ji, Xiao-Dan; Shi, Jun; Feng, Yu-Xiong; Li, Guo; Li, Jing-Jing; Zhu, Di; Koeffler, H. Phillip; Zhao, Yun; Xie, Dong

    2012-01-01

    Non-small-cell lung cancer (NSCLC) is a deadly disease due to lack of effective diagnosis biomarker and therapeutic target. Much effort has been made in defining gene defects in NSCLC, but its full molecular pathogenesis remains unexplored. Here, we found RACK1 (receptor of activated kinase 1) was elevated in most NSCLC, and its expression level correlated with key pathological characteristics including tumor differentiation, stage, and metastasis. In addition, RACK1 activated sonic hedgehog signaling pathway by interacting with and activating Smoothened to mediate Gli1-dependent transcription in NSCLC cells. And silencing RACK1 dramatically inhibited in vivo tumor growth and metastasis by blocking the sonic hedgehog signaling pathway. These results suggest that RACK1 represents a new promising diagnosis biomarker and therapeutic target for NSCLC. PMID:22262830

  6. Quiescent Sox2+ Cells Drive Hierarchical Growth and Relapse in Sonic Hedgehog Subgroup Medulloblastoma

    PubMed Central

    Vanner, Robert J.; Remke, Marc; Gallo, Marco; Selvadurai, Hayden J.; Coutinho, Fiona; Lee, Lilian; Kushida, Michelle; Head, Renee; Morrissy, Sorana; Zhu, Xueming; Aviv, Tzvi; Voisin, Veronique; Clarke, Ian D.; Li, Yisu; Mungall, Andrew J.; Moore, Richard A.; Ma, Yussanne; Jones, Steven J.M.; Marra, Marco A.; Malkin, David; Northcott, Paul A.; Kool, Marcel; Pfister, Stefan M.; Bader, Gary; Hochedlinger, Konrad; Korshunov, Andrey; Taylor, Michael D.; Dirks, Peter B.

    2015-01-01

    SUMMARY Functional heterogeneity within tumors presents a significant therapeutic challenge. Here we show that quiescent, therapy-resistant Sox2+ cells propagate sonic hedgehog subgroup medulloblastoma by a mechanism that mirrors a neurogenic program. Rare Sox2+ cells produce rapidly cycling doublecortin+ progenitors that, together with their postmitotic progeny expressing NeuN, comprise tumor bulk. Sox2+ cells are enriched following anti-mitotic chemotherapy and Smoothened inhibition, creating a reservoir for tumor regrowth. Lineage traces from Sox2+ cells increase following treatment, suggesting that this population is responsible for relapse. Targeting Sox2+ cells with the antineoplastic mithramycin abrogated tumor growth. Addressing functional heterogeneity and eliminating Sox2+ cells presents a promising therapeutic paradigm for treatment of sonic hedgehog subgroup medulloblastoma. PMID:24954133

  7. Sonic hedgehog functions upstream of disrupted-in-schizophrenia 1 (disc1): implications for mental illness.

    PubMed

    Boyd, Penelope J; Cunliffe, Vincent T; Roy, Sudipto; Wood, Jonathan D

    2015-01-01

    DISRUPTED-IN-SCHIZOPHRENIA (DISC1) has been one of the most intensively studied genetic risk factors for mental illness since it was discovered through positional mapping of a translocation breakpoint in a large Scottish family where a balanced chromosomal translocation was found to segregate with schizophrenia and affective disorders. While the evidence for it being central to disease pathogenesis in the original Scottish family is compelling, recent genome-wide association studies have not found evidence for common variants at the DISC1 locus being associated with schizophrenia in the wider population. It may therefore be the case that DISC1 provides an indication of biological pathways that are central to mental health issues and functional studies have shown that it functions in multiple signalling pathways. However, there is little information regarding factors that function upstream of DISC1 to regulate its expression and function. We herein demonstrate that Sonic hedgehog (Shh) signalling promotes expression of disc1 in the zebrafish brain. Expression of disc1 is lost in smoothened mutants that have a complete loss of Shh signal transduction, and elevated in patched mutants which have constitutive activation of Shh signalling. We previously demonstrated that disc1 knockdown has a dramatic effect on the specification of oligodendrocyte precursor cells (OPC) in the hindbrain and Shh signalling is known to be essential for the specification of these cells. We show that disc1 is prominently expressed in olig2-positive midline progenitor cells that are absent in smo mutants, while cyclopamine treatment blocks disc1 expression in these cells and mimics the effect of disc1 knock down on OPC specification. Various features of a number of psychiatric conditions could potentially arise through aberrant Hedgehog signalling. We therefore suggest that altered Shh signalling may be an important neurodevelopmental factor in the pathobiology of mental illness. PMID:26405049

  8. Sonic hedgehog functions upstream of disrupted-in-schizophrenia 1 (disc1): implications for mental illness

    PubMed Central

    Boyd, Penelope J.; Cunliffe, Vincent T.; Roy, Sudipto; Wood, Jonathan D.

    2015-01-01

    ABSTRACT DISRUPTED-IN-SCHIZOPHRENIA (DISC1) has been one of the most intensively studied genetic risk factors for mental illness since it was discovered through positional mapping of a translocation breakpoint in a large Scottish family where a balanced chromosomal translocation was found to segregate with schizophrenia and affective disorders. While the evidence for it being central to disease pathogenesis in the original Scottish family is compelling, recent genome-wide association studies have not found evidence for common variants at the DISC1 locus being associated with schizophrenia in the wider population. It may therefore be the case that DISC1 provides an indication of biological pathways that are central to mental health issues and functional studies have shown that it functions in multiple signalling pathways. However, there is little information regarding factors that function upstream of DISC1 to regulate its expression and function. We herein demonstrate that Sonic hedgehog (Shh) signalling promotes expression of disc1 in the zebrafish brain. Expression of disc1 is lost in smoothened mutants that have a complete loss of Shh signal transduction, and elevated in patched mutants which have constitutive activation of Shh signalling. We previously demonstrated that disc1 knockdown has a dramatic effect on the specification of oligodendrocyte precursor cells (OPC) in the hindbrain and Shh signalling is known to be essential for the specification of these cells. We show that disc1 is prominently expressed in olig2-positive midline progenitor cells that are absent in smo mutants, while cyclopamine treatment blocks disc1 expression in these cells and mimics the effect of disc1 knock down on OPC specification. Various features of a number of psychiatric conditions could potentially arise through aberrant Hedgehog signalling. We therefore suggest that altered Shh signalling may be an important neurodevelopmental factor in the pathobiology of mental illness. PMID

  9. Primary cilium and sonic hedgehog signaling during neural tube patterning: role of GPCRs and second messengers.

    PubMed

    Pal, Kasturi; Mukhopadhyay, Saikat

    2015-04-01

    The ventral neural tube in vertebrates is patterned by a gradient of sonic hedgehog (Shh) secreted from the notochord and floor plate. Forward genetic screens first pointed to the role of the primary cilium in ventral neural tube patterning. Further research has shown that most components of the Shh pathway localize to or shuttle through the primary cilium. In the absence of Shh, the bifunctional Gli transcription factors are proteolytically processed into repressor forms in a protein kinase A (PKA)- and cilium-dependent manner. Recent work suggests that the orphan G-protein-coupled receptor (GPCR) Gpr161 localizes to cilia, and functions as a negative regulator of Shh signaling by determining Gli processing via cAMP signaling. The primary cilium also functions as a signaling compartment for calcium in the Shh pathway. A better understanding of the role of the cilium as a signaling compartment, and the interplay of second messenger systems that regulate PKA activation and Gli amplification during signaling is critical for deciphering the role of Shh during development, neuronal differentiation, and tumorigenesis. PMID:24863049

  10. Exogenous Sonic hedgehog modulates the pool of GABAergic interneurons during cerebellar development.

    PubMed

    De Luca, A; Parmigiani, E; Tosatto, G; Martire, S; Hoshino, M; Buffo, A; Leto, K; Rossi, F

    2015-04-01

    All cerebellar GABAergic interneurons were derived from a common pool of precursor cells residing in the embryonic ventricular zone (VZ) and migrating in the prospective white matter (PWM) after birth, where both intrinsic and extrinsic factors contribute to regulate their amplification. Among the environmental factors, we focused on Sonic hedgehog (Shh), a morphogen well known to regulate neural progenitor cell proliferation. We asked if and how exogenous Shh treatment affects the lineage of cerebellar GABAergic interneurons. To address these issues, exogenous Shh was administered to embryonic and postnatal organotypic slices. We found that Shh is able to expand the pool of interneuron progenitors residing in the embryonic epithelium and in the postnatal PWM. In particular, Shh signalling pathway was highly mitogenic at early developmental stages of interneuron production, whereas its effect decreased after the first postnatal week. Gene expression analysis of sorted cells and in situ hybridization further showed that immature interneurons express both the Shh receptor patched and the Shh target gene Gli1. Thus, within the interneuron lineage, Shh might exert regulatory functions also in postmitotic cells. On the whole, our data enlighten the role of Shh during cerebellar maturation and further broaden our knowledge on the amplification mechanisms of the interneuron progenitor pool. PMID:25245619

  11. Multiphasic and tissue-specific roles of sonic hedgehog in cloacal septation and external genitalia development

    PubMed Central

    Seifert, Ashley W.; Bouldin, Cortney M.; Choi, Kyung-Suk; Harfe, Brian D.; Cohn, Martin J.

    2009-01-01

    Malformations of the external genitalia are among the most common congenital anomalies in humans. The urogenital and anorectal sinuses develop from the embryonic cloaca, and the penis and clitoris develop from the genital tubercle. Within the genital tubercle, the endodermally derived urethral epithelium functions as an organizer and expresses sonic hedgehog (Shh). Shh knockout mice lack external genitalia and have a persistent cloaca. This identified an early requirement for Shh, but precluded analysis of its later role in the genital tubercle. We conducted temporally controlled deletions of Shh and report that Shh is required continuously through the onset of sexual differentiation. Shh function is divisible into two temporal phases; an anogenital phase, during which Shh regulates outgrowth and patterning of the genital tubercle and septation of the cloaca, and a later external genital phase, during which Shh regulates urethral tube closure. Disruption of Shh function during the anogenital phase causes coordinated anorectal and genitourinary malformations, whereas inactivation during the external genital phase causes hypospadias. Shh directs cloacal septation by promoting cell proliferation in adjacent urorectal septum mesenchyme. Additionally, conditional inactivation of smoothened in the genital ectoderm and cloacal/urethral endoderm shows that the ectoderm is a direct target of Shh and is required for urethral tube closure, highlighting a novel role for genital ectoderm in urethragenesis. Identification of the stages during which disruption of Shh results in either isolated or coordinated malformations of anorectal and external genital organs provides a new tool for investigating the etiology of anogenital malformations in humans. PMID:19906862

  12. Identification of sonic hedgehog as a candidate gene responsible for the polydactylous mouse mutant Sasquatch.

    PubMed

    Sharpe, J; Lettice, L; Hecksher-Sorensen, J; Fox, M; Hill, R; Krumlauf, R

    1999-01-28

    The mouse mutants of the hemimelia-luxate group (lx, lu, lst, Dh, Xt, and the more recently identified Hx, Xpl and Rim4; [1] [2] [3] [4] [5]) have in common preaxial polydactyly and longbone abnormalities. Associated with the duplication of digits are changes in the regulation of development of the anterior limb bud resulting in ectopic expression of signalling components such as Sonic hedgehog (Shh) and fibroblast growth factor-4 (Fgf4), but little is known about the molecular causes of this misregulation. We generated, by a transgene insertion event, a new member of this group of mutants, Sasquatch (Ssq), which disrupted aspects of both anteroposterior (AP) and dorsoventral (DV) patterning. The mutant displayed preaxial polydactyly in the hindlimbs of heterozygous embryos, and in both hindlimbs and forelimbs of homozygotes. The Shh, Fgf4, Fgf8, Hoxd12 and Hoxd13 genes were all ectopically expressed in the anterior region of affected limb buds. The insertion site was found to lie close to the Shh locus. Furthermore, expression from the transgene reporter has come under the control of a regulatory element that directs a pattern mirroring the endogenous expression pattern of Shh in limbs. In abnormal limbs, both Shh and the reporter were ectopically induced in the anterior region, whereas in normal limbs the reporter and Shh were restricted to the zone of polarising activity (ZPA). These data strongly suggest that Ssq is caused by direct interference with the cis regulation of the Shh gene. PMID:10021368

  13. Cholesterol and its derivatives in Sonic Hedgehog signaling and Cancer

    PubMed Central

    Riobo, Natalia A.

    2012-01-01

    The connection between the Hedgehog pathway and cholesterol has been recognized since the early days that shaped our current understanding of this unique pathway. Cholesterol and related lipids are intricately linked to HH signaling: from the role of cholesterol in HH biosynthesis to the modulation of HH signal reception and transduction by other sterols, passing by the phylogenetic relationships among many components of the HH pathway that resemble or contain lipid-binding domains. Here I review the connections between HH signaling, cholesterol and its derivatives and analyze the potential implications for HH-dependent cancers. PMID:22832232

  14. Detection of Canonical Hedgehog Signaling in Breast Cancer by 131-Iodine-Labeled Derivatives of the Sonic Hedgehog Protein

    PubMed Central

    Sims-Mourtada, Jennifer; Yang, David; Tworowska, Izabela; Larson, Richard; Smith, Daniel; Tsao, Ning; Opdenaker, Lynn; Mourtada, Firas; Woodward, Wendy

    2012-01-01

    Activation of hedgehog (HH) pathway signaling is observed in many tumors. Due to a feedback loop, the HH receptor Patched (PTCH-1) is overexpressed in tumors with activated HH signaling. Therefore, we sought to radiolabel the PTCH-1 ligand sonic (SHH) for detection of cancer cells with canonical HH activity. Receptor binding of 131I-SHH was increased in cell lines with high HH pathway activation. Our findings also show that PTCH-1 receptor expression is decreased upon treatment with HH signaling inhibitors, and receptor binding of 131I-SHH is significantly decreased following treatment with cyclopamine. In vivo imaging and biodistribution studies revealed significant accumulation of 131I-SHH within tumor tissue as compared to normal organs. Tumor-to-muscle ratios were approximately 8 : 1 at 5 hours, while tumor to blood and tumor to bone were 2 : 1 and 5 : 1, respectively. Significant uptake was also observed in liver and gastrointestinal tissue. These studies show that 131I-SHH is capable of in vivo detection of breast tumors with high HH signaling. We further demonstrate that the hedgehog receptor PTCH-1 is downregulated upon treatment with hedgehog inhibitors. Our data suggests that radiolabeled SHH derivatives may provide a method to determine response to SHH-targeted therapies. PMID:22811598

  15. Mutations of the Sonic Hedgehog Pathway Underlie Hypothalamic Hamartoma with Gelastic Epilepsy.

    PubMed

    Hildebrand, Michael S; Griffin, Nicole G; Damiano, John A; Cops, Elisa J; Burgess, Rosemary; Ozturk, Ezgi; Jones, Nigel C; Leventer, Richard J; Freeman, Jeremy L; Harvey, A Simon; Sadleir, Lynette G; Scheffer, Ingrid E; Major, Heather; Darbro, Benjamin W; Allen, Andrew S; Goldstein, David B; Kerrigan, John F; Berkovic, Samuel F; Heinzen, Erin L

    2016-08-01

    Hypothalamic hamartoma (HH) with gelastic epilepsy is a well-recognized drug-resistant epilepsy syndrome of early life.(1) Surgical resection allows limited access to the small deep-seated lesions that cause the disease. Here, we report the results of a search for somatic mutations in paired hamartoma- and leukocyte-derived DNA samples from 38 individuals which we conducted by using whole-exome sequencing (WES), chromosomal microarray (CMA), and targeted resequencing (TRS) of candidate genes. Somatic mutations were identified in genes involving regulation of the sonic hedgehog (Shh) pathway in 14/38 individuals (37%). Three individuals had somatic mutations in PRKACA, which encodes a cAMP-dependent protein kinase that acts as a repressor protein in the Shh pathway, and four subjects had somatic mutations in GLI3, an Shh pathway gene associated with HH. In seven other individuals, we identified two recurrent and three single brain-tissue-specific, large copy-number or loss-of-heterozygosity (LOH) variants involving multiple Shh genes, as well as other genes without an obvious biological link to the Shh pathway. The Shh pathway genes in these large somatic lesions include the ligand itself (SHH and IHH), the receptor SMO, and several other Shh downstream pathway members, including CREBBP and GLI2. Taken together, our data implicate perturbation of the Shh pathway in at least 37% of individuals with the HH epilepsy syndrome, consistent with the concept of a developmental pathway brain disease. PMID:27453577

  16. Sonic hedgehog multimerization: a self-organizing event driven by post-translational modifications?

    PubMed

    Koleva, Mirella V; Rothery, Stephen; Spitaler, Martin; Neil, Mark A A; Magee, Anthony I

    2015-01-01

    Sonic hedgehog (Shh) is a morphogen active during vertebrate development and tissue homeostasis in adulthood. Dysregulation of the Shh signalling pathway is known to incite carcinogenesis. Due to the highly lipophilic nature of this protein imparted by two post-translational modifications, Shh's method of transit through the aqueous extracellular milieu has been a long-standing conundrum, prompting the proposition of numerous hypotheses to explain the manner of its displacement from the surface of the producing cell. Detection of high molecular-weight complexes of Shh in the intercellular environment has indicated that the protein achieves this by accumulating into multimeric structures prior to release from producing cells. The mechanism of assembly of the multimers, however, has hitherto remained mysterious and contentious. Here, with the aid of high-resolution optical imaging and post-translational modification mutants of Shh, we show that the C-terminal cholesterol and the N-terminal palmitate adducts contribute to the assembly of large multimers and regulate their shape. Moreover, we show that small Shh multimers are produced in the absence of any lipid modifications. Based on an assessment of the distribution of various dimensional characteristics of individual Shh clusters, in parallel with deductions about the kinetics of release of the protein from the producing cells, we conclude that multimerization is driven by self-assembly underpinned by the law of mass action. We speculate that the lipid modifications augment the size of the multimolecular complexes through prolonging their association with the exoplasmic membrane. PMID:26312641

  17. Survivin as a therapeutic target in Sonic hedgehog-driven medulloblastoma.

    PubMed

    Brun, S N; Markant, S L; Esparza, L A; Garcia, G; Terry, D; Huang, J-M; Pavlyukov, M S; Li, X-N; Grant, G A; Crawford, J R; Levy, M L; Conway, E M; Smith, L H; Nakano, I; Berezov, A; Greene, M I; Wang, Q; Wechsler-Reya, R J

    2015-07-01

    Medulloblastoma (MB) is a highly malignant brain tumor that occurs primarily in children. Although surgery, radiation and high-dose chemotherapy have led to increased survival, many MB patients still die from their disease, and patients who survive suffer severe long-term side effects as a consequence of treatment. Thus, more effective and less toxic therapies for MB are critically important. Development of such therapies depends in part on identification of genes that are necessary for growth and survival of tumor cells. Survivin is an inhibitor of apoptosis protein that regulates cell cycle progression and resistance to apoptosis, is frequently expressed in human MB and when expressed at high levels predicts poor clinical outcome. Therefore, we hypothesized that Survivin may have a critical role in growth and survival of MB cells and that targeting it may enhance MB therapy. Here we show that Survivin is overexpressed in tumors from patched (Ptch) mutant mice, a model of Sonic hedgehog (SHH)-driven MB. Genetic deletion of survivin in Ptch mutant tumor cells significantly inhibits proliferation and causes cell cycle arrest. Treatment with small-molecule antagonists of Survivin impairs proliferation and survival of both murine and human MB cells. Finally, Survivin antagonists impede growth of MB cells in vivo. These studies highlight the importance of Survivin in SHH-driven MB, and suggest that it may represent a novel therapeutic target in patients with this disease. PMID:25241898

  18. Sonic hedgehog signalling in neurons of adult ventrolateral nucleus tractus solitarius.

    PubMed

    Pascual, Olivier; Traiffort, Elisabeth; Baker, Darren P; Galdes, Alphonse; Ruat, Martial; Champagnat, Jean

    2005-07-01

    The transmembrane receptor Patched (Ptc) mediates the action of the diffusing factor Sonic hedgehog (Shh), which is implicated in establishing morphogenetic gradients during embryonic development. Whereas alteration of Ptc function is associated with developmental abnormalities and brain tumors, its functional activity and roles in the adult brain have yet to be elucidated. Here we describe the complementary pattern of Shh and Ptc expression in the rat dorsal vagal motor nucleus and the ventrolateral nucleus tractus solitarius (vNTS), respectively. Those two interconnected structures regulate the cardiorespiratory function during hypoxia. Bath application of a subnanomolar concentration of aminoterminal Shh protein (ShhN) to a slice preparation of the vNTS induces a rapid decrease in neuronal firing followed by a bursting activity that propagates in the neuronal network. Intracellular current injections show that bursts result from an action on the neuronal membrane electro-responsiveness. Both inhibiting and bursting effects are blocked by the monoclonal Shh antibody 5E1 and may require the Ptc binding site of ShhN. Thus, ShhN acting on specific neuronal sites controls electrophysiological properties of differentiated neurons of the vNTS. We speculate on a retrocontrol of cardiorespiratory signals in the vNTS, by Shh generated in dorsal vagal motoneurons. PMID:16045492

  19. Developmental hypothyroidism abolishes bilateral differences in sonic hedgehog gene control in the rat hippocampal dentate gyrus.

    PubMed

    Tanaka, Takeshi; Wang, Liyun; Kimura, Masayuki; Abe, Hajime; Mizukami, Sayaka; Yoshida, Toshinori; Shibutani, Makoto

    2015-03-01

    Both developmental and adult-stage hypothyroidism disrupt rat hippocampal neurogenesis. We previously showed that exposing mouse offspring to manganese permanently disrupts hippocampal neurogenesis and abolishes the asymmetric distribution of cells expressing Mid1, a molecule regulated by sonic hedgehog (Shh) signaling. The present study examined the involvement of Shh signaling on the disruption of hippocampal neurogenesis in rats with hypothyroidism. Pregnant rats were treated with methimazole (MMI) at 0 or 200 ppm in the drinking water from gestation day 10-21 days after delivery (developmental hypothyroidism). Adult male rats were treated with MMI in the same manner from postnatal day (PND) 46 to PND 77 (adult-stage hypothyroidism). Developmental hypothyroidism reduced the number of Mid1(+) cells within the subgranular zone of the dentate gyrus of offspring on PND 21, and consequently abolished the normal asymmetric predominance of Mid1(+) cells on the right side through the adult stage. In control animals, Shh was expressed in a subpopulation of hilar neurons, showing asymmetric distribution with left side predominance on PND 21; however, this asymmetry did not continue through the adult stage. Developmental hypothyroidism increased Shh(+) neurons bilaterally and abolished the asymmetric distribution pattern on PND 21. Adult hypothyroidism also disrupted the asymmetric distribution of Mid1(+) cells but did not affect the distribution of Shh(+) hilar neurons. The results suggest that the hippocampal neurogenesis disruption seen in hypothyroidism involves changes in asymmetric Shh(+) neuron distribution in developmental hypothyroidism and altered Mid1 expression in both developmental and adult-stage hypothyroidism. PMID:25539664

  20. Targeting the Sonic Hedgehog Signaling Pathway: Review of Smoothened and GLI Inhibitors

    PubMed Central

    Rimkus, Tadas K.; Carpenter, Richard L.; Qasem, Shadi; Chan, Michael; Lo, Hui-Wen

    2016-01-01

    The sonic hedgehog (Shh) signaling pathway is a major regulator of cell differentiation, cell proliferation, and tissue polarity. Aberrant activation of the Shh pathway has been shown in a variety of human cancers, including, basal cell carcinoma, malignant gliomas, medulloblastoma, leukemias, and cancers of the breast, lung, pancreas, and prostate. Tumorigenesis, tumor progression and therapeutic response have all been shown to be impacted by the Shh signaling pathway. Downstream effectors of the Shh pathway include smoothened (SMO) and glioma-associated oncogene homolog (GLI) family of zinc finger transcription factors. Both are regarded as important targets for cancer therapeutics. While most efforts have been devoted towards pharmacologically targeting SMO, developing GLI-targeted approach has its merit because of the fact that GLI proteins can be activated by both Shh ligand-dependent and -independent mechanisms. To date, two SMO inhibitors (LDE225/Sonidegib and GDC-0449/Vismodegib) have received FDA approval for treating basal cell carcinoma while many clinical trials are being conducted to evaluate the efficacy of this exciting class of targeted therapy in a variety of cancers. In this review, we provide an overview of the biology of the Shh pathway and then detail the current landscape of the Shh-SMO-GLI pathway inhibitors including those in preclinical studies and clinical trials. PMID:26891329

  1. The p53 inhibitor MDM2 facilitates Sonic Hedgehog-mediated tumorigenesis and influences cerebellar foliation.

    PubMed

    Malek, Reem; Matta, Jennifer; Taylor, Natalie; Perry, Mary Ellen; Mendrysa, Susan M

    2011-01-01

    Disruption of cerebellar granular neuronal precursor (GNP) maturation can result in defects in motor coordination and learning, or in medulloblastoma, the most common childhood brain tumor. The Sonic Hedgehog (Shh) pathway is important for GNP proliferation; however, the factors regulating the extent and timing of GNP proliferation, as well as GNP differentiation and migration are poorly understood. The p53 tumor suppressor has been shown to negatively regulate the activity of the Shh effector, Gli1, in neural stem cells; however, the contribution of p53 to the regulation of Shh signaling in GNPs during cerebellar development has not been determined. Here, we exploited a hypomorphic allele of Mdm2 (Mdm2(puro)), which encodes a critical negative regulator of p53, to alter the level of wild-type MDM2 and p53 in vivo. We report that mice with reduced levels of MDM2 and increased levels of p53 have small cerebella with shortened folia, reminiscent of deficient Shh signaling. Indeed, Shh signaling in Mdm2-deficient GNPs is attenuated, concomitant with decreased expression of the Shh transducers, Gli1 and Gli2. We also find that Shh stimulation of GNPs promotes MDM2 accumulation and enhances phosphorylation at serine 166, a modification known to increase MDM2-p53 binding. Significantly, loss of MDM2 in Ptch1(+/-) mice, a model for Shh-mediated human medulloblastoma, impedes cerebellar tumorigenesis. Together, these results place MDM2 at a major nexus between the p53 and Shh signaling pathways in GNPs, with key roles in cerebellar development, GNP survival, cerebellar foliation, and MB tumorigenesis. PMID:21437245

  2. Neogenin1 is a Sonic Hedgehog target in medulloblastoma and is necessary for cell cycle progression.

    PubMed

    Milla, Luis A; Arros, Andrea; Espinoza, Natalie; Remke, Marc; Kool, Marcel; Taylor, Michael D; Pfister, Stefan M; Wainwright, Brandon J; Palma, Verónica

    2014-01-01

    The canonical Sonic Hedgehog (Shh)/Gli pathway plays multiples roles during central nervous system (CNS) development. To elucidate the molecular repertoire of Shh mediators, we have recently described novel transcriptional targets in response to Shh pathway modulation. Among them, we were able to identify Neogenin1 (Neo1), a death dependence receptor, as a new direct Shh downstream regulator in neural precursor proliferation. As appropriate Shh signaling is required for cerebellar growth and alterations cause Shh-driven medulloblastoma (MB), here we have addressed the role of the Shh/Neogenin1 interaction in the context of cerebellar development and cancer. We demonstrate that the Shh pathway regulates Neogenin1 expression in mouse models that recapitulate the Shh MB subtype. We show that the canonical Shh pathway directly regulates the Neo1 gene acting through an upstream sequence in its promoter both in vitro and in vivo in granule neuron precursor cells. We also identified and characterized a functional Gli-binding site in the first intron of the human NEO1 gene. Gene expression profiling of more than 300 MB shows that NEO1 is indeed upregulated in SHH tumors compared to the other MB subgroups. Finally, we provide evidence that NEO1 is necessary for cell cycle progression in a human MB cell line, because a loss of function of NEO1 arrests cells in the G2/M phase. Taken together, these results highlight Neogenin1 as a novel downstream effector of the Shh pathway in MB and a possible therapeutic target. PMID:23775842

  3. Role of Sonic Hedgehog (Shh) Signaling in Bladder Cancer Stemness and Tumorigenesis.

    PubMed

    Syed, Islam S; Pedram, Akbari; Farhat, Walid A

    2016-02-01

    Sonic hedgehog (Shh) signaling pathway has emerged as a critical component of bladder development, cancer initiation, and progression. While the role of Shh signaling in bladder development is well documented, its role in bladder cancer progression is uncertain. Additionally, epithelial-to-mesenchymal transition (EMT) has been identified to promote bladder cancer progression in the initial stages and also contribute to drug resistance in the later stage and ultimately metastasis. We speculate that epithelial-to-mesenchymal transitions (EMT) and Shh fuel the carcinogenesis process. This review presents the most recent studies focusing on the role of Shh signaling in bladder cancer progression. PMID:26757905

  4. Solitary median maxillary central incisor syndrome: clinical case with a novel mutation of sonic hedgehog.

    PubMed

    Garavelli, Livia; Zanacca, C; Caselli, G; Banchini, G; Dubourg, C; David, V; Odent, S; Gurrieri, F; Neri, G

    2004-05-15

    Solitary median maxillary central incisor (SMMCI) is a rare dental anomaly. It is usually considered as a minor manifestation of holoprosencephaly (HPE). Some reported families had severe cases of HPE in some members and SMMCI in others. Mutations of Sonic Hedgehog (SHH) have been documented in these families. SMMCI has also been found as an isolated finding or together with other anomalies such as microcephaly, short stature, endocrine pathology, and choanal atresia. We describe a patient with SMMCI and a novel SHH mutation: Val332Ala. PMID:15103725

  5. Not so Fast: Co-Requirements for Sonic Hedgehog Induced Brain Tumorigenesis

    PubMed Central

    Ward, Stacey A.; Rubin, Joshua B.

    2015-01-01

    The Sonic hedgehog (Shh) pathway plays an integral role in cellular proliferation during normal brain development and also drives growth in a variety of cancers including brain cancer. Clinical trials of Shh pathway inhibitors for brain tumors have yielded disappointing results, indicating a more nuanced role for Shh signaling. We postulate that Shh signaling does not work alone but requires co-activation of other signaling pathways for tumorigenesis and stem cell maintenance. This review will focus on the interplay between the Shh pathway and these pathways to promote tumor growth in brain tumors, presenting opportunities for the study of combinatorial therapies. PMID:26258793

  6. Bridging the gap: heparan sulfate and Scube2 assemble Sonic hedgehog release complexes at the surface of producing cells

    PubMed Central

    Jakobs, P.; Schulz, P.; Ortmann, C.; Schürmann, S.; Exner, S.; Rebollido-Rios, R.; Dreier, R.; Seidler, D. G.; Grobe, K.

    2016-01-01

    Decision making in cellular ensembles requires the dynamic release of signaling molecules from the producing cells into the extracellular compartment. One important example of molecules that require regulated release in order to signal over several cell diameters is the Hedgehog (Hh) family, because all Hhs are synthesized as dual-lipidated proteins that firmly tether to the outer membrane leaflet of the cell that produces them. Factors for the release of the vertebrate Hh family member Sonic Hedgehog (Shh) include cell-surface sheddases that remove the lipidated terminal peptides, as well as the soluble glycoprotein Scube2 that cell-nonautonomously enhances this process. This raises the question of how soluble Scube2 is recruited to cell-bound Shh substrates to regulate their turnover. We hypothesized that heparan sulfate (HS) proteoglycans (HSPGs) on the producing cell surface may play this role. In this work, we confirm that HSPGs enrich Scube2 at the surface of Shh-producing cells and that Scube2-regulated proteolytic Shh processing and release depends on specific HS. This finding indicates that HSPGs act as cell-surface assembly and storage platforms for Shh substrates and for protein factors required for their release, making HSPGs critical decision makers for Scube2-dependent Shh signaling from the surface of producing cells. PMID:27199253

  7. Bridging the gap: heparan sulfate and Scube2 assemble Sonic hedgehog release complexes at the surface of producing cells.

    PubMed

    Jakobs, P; Schulz, P; Ortmann, C; Schürmann, S; Exner, S; Rebollido-Rios, R; Dreier, R; Seidler, D G; Grobe, K

    2016-01-01

    Decision making in cellular ensembles requires the dynamic release of signaling molecules from the producing cells into the extracellular compartment. One important example of molecules that require regulated release in order to signal over several cell diameters is the Hedgehog (Hh) family, because all Hhs are synthesized as dual-lipidated proteins that firmly tether to the outer membrane leaflet of the cell that produces them. Factors for the release of the vertebrate Hh family member Sonic Hedgehog (Shh) include cell-surface sheddases that remove the lipidated terminal peptides, as well as the soluble glycoprotein Scube2 that cell-nonautonomously enhances this process. This raises the question of how soluble Scube2 is recruited to cell-bound Shh substrates to regulate their turnover. We hypothesized that heparan sulfate (HS) proteoglycans (HSPGs) on the producing cell surface may play this role. In this work, we confirm that HSPGs enrich Scube2 at the surface of Shh-producing cells and that Scube2-regulated proteolytic Shh processing and release depends on specific HS. This finding indicates that HSPGs act as cell-surface assembly and storage platforms for Shh substrates and for protein factors required for their release, making HSPGs critical decision makers for Scube2-dependent Shh signaling from the surface of producing cells. PMID:27199253

  8. Gli1 mediates lung cancer cell proliferation and Sonic Hedgehog-dependent mesenchymal cell activation.

    PubMed

    Bermudez, Olga; Hennen, Elisabeth; Koch, Ina; Lindner, Michael; Eickelberg, Oliver

    2013-01-01

    Non-Small-Cell-Lung-Cancer (NSCLC) represents approximately 85% of all lung cancers and remains poorly understood. While signaling pathways operative during organ development, including Sonic Hedgehog (Shh) and associated Gli transcription factors (Gli1-3), have recently been found to be reactivated in NSCLC, their functional role remains unclear. Here, we hypothesized that Shh/Gli1-3 could mediate NSCLC autonomous proliferation and epithelial/stromal signaling in the tumoral tissue. In this context, we have investigated the activity of Shh/Gli1-3 signaling in NSCLC in both, cancer and stromal cells. We report here that inhibition of Shh signaling induces a significant decrease in the proliferation of NSCLC cells. This effect is mediated by Gli1 and Gli2, but not Gli3, through regulation of cyclin D1 and cyclin D2 expression. While exogenous Shh was unable to induce signaling in either A549 lung adenocarcinoma or H520 lung squamous carcinoma cells, both cells were found to secrete Shh ligand, which induced fibroblast proliferation, survival, migration, invasion, and collagen synthesis. Furthermore, Shh secreted by NSCLC mediates the production of proangiogenic and metastatic factors in lung fibroblasts. Our results thus provide evidence that Shh plays an important role in mediating epithelial/mesenchymal crosstalk in NSCLC. While autonomous Gli activity controls NSCLC proliferation, increased Shh expression by NSCLC is associated with fibroblast activation in tumor-associated stroma. Our study highlights the relevance of studying stromal-associated cells in the context of NSCLC regarding new prognosis and therapeutic options. PMID:23667589

  9. Crosstalks between cytokines and Sonic Hedgehog in Helicobacter pylori infection: a mathematical model.

    PubMed

    Marwaha, Shruti; Schumacher, Michael A; Zavros, Yana; Eghbalnia, Hamid R

    2014-01-01

    Helicobacter pylori infection of gastric tissue results in an immune response dominated by Th1 cytokines and has also been linked with dysregulation of Sonic Hedgehog (SHH) signaling pathway in gastric tissue. However, since interactions between the cytokines and SHH during H. pylori infection are not well understood, any mechanistic understanding achieved through interpretation of the statistical analysis of experimental results in the context of currently known circuit must be carefully scrutinized. Here, we use mathematical modeling aided by restraints of experimental data to evaluate the consistency between experimental results and temporal behavior of H. pylori activated cytokine circuit model. Statistical analysis of qPCR data from uninfected and H. pylori infected wild-type and parietal cell-specific SHH knockout (PC-SHHKO) mice for day 7 and 180 indicate significant changes that suggest role of SHH in cytokine regulation. The experimentally observed changes are further investigated using a mathematical model that examines dynamic crosstalks among pro-inflammatory (IL1β, IL-12, IFNγ, MIP-2) cytokines, anti-inflammatory (IL-10) cytokines and SHH during H. pylori infection. Response analysis of the resulting model demonstrates that circuitry, as currently known, is inadequate for explaining of the experimental observations; suggesting the need for additional specific regulatory interactions. A key advantage of a computational model is the ability to propose putative circuit models for in-silico experimentation. We use this approach to propose a parsimonious model that incorporates crosstalks between NFĸB, SHH, IL-1β and IL-10, resulting in a feedback loop capable of exhibiting cyclic behavior. Separately, we show that analysis of an independent time-series GEO microarray data for IL-1β, IFNγ and IL-10 in mock and H. pylori infected mice further supports the proposed hypothesis that these cytokines may follow a cyclic trend. Predictions from the in

  10. The Acid-Secreting Parietal Cell as an Endocrine Source of Sonic Hedgehog During Gastric Repair

    PubMed Central

    Engevik, Amy C.; Feng, Rui; Yang, Li

    2013-01-01

    Sonic Hedgehog (Shh) has been shown to regulate wound healing in various tissues. Despite its known function in tissue regeneration, the role of Shh secreted from the gastric epithelium during tissue repair in the stomach remains unknown. Here we tested the hypothesis that Shh secreted from the acid-secreting parietal cell is a fundamental circulating factor that drives gastric repair. A mouse model expressing a parietal cell-specific deletion of Shh (PC-ShhKO) was generated using animals bearing loxP sites flanking exon 2 of the Shh gene (Shhflx/flx) and mice expressing a Cre transgene under the control of the H+,K+-ATPase β-subunit promoter. Shhflx/flx, the H+,K+-ATPase β-subunit promoter, and C57BL/6 mice served as controls. Ulcers were induced via acetic acid injury. At 1, 2, 3, 4, 5, and 7 days after the ulcer induction, gastric tissue and blood samples were collected. Parabiosis experiments were used to establish the effect of circulating Shh on ulcer repair. Control mice exhibited an increased expression of Shh in the gastric tissue and plasma that correlated with the repair of injury within 7 days after surgery. PC-ShhKO mice showed a loss of ulcer repair and reduced Shh tissue and plasma concentrations. In a parabiosis experiment whereby a control mouse was paired with a PC-ShhKO littermate and both animals subjected to gastric injury, a significant increase in the circulating Shh was measured in both parabionts. Elevated circulating Shh concentrations correlated with the repair of gastric ulcers in the PC-ShhKO parabionts. Therefore, the acid-secreting parietal cell within the stomach acts as an endocrine source of Shh during repair. PMID:24092639

  11. Gli1 Mediates Lung Cancer Cell Proliferation and Sonic Hedgehog-Dependent Mesenchymal Cell Activation

    PubMed Central

    Bermudez, Olga; Hennen, Elisabeth; Koch, Ina; Lindner, Michael; Eickelberg, Oliver

    2013-01-01

    Non-Small-Cell-Lung-Cancer (NSCLC) represents approximately 85% of all lung cancers and remains poorly understood. While signaling pathways operative during organ development, including Sonic Hedgehog (Shh) and associated Gli transcription factors (Gli1-3), have recently been found to be reactivated in NSCLC, their functional role remains unclear. Here, we hypothesized that Shh/Gli1-3 could mediate NSCLC autonomous proliferation and epithelial/stromal signaling in the tumoral tissue. In this context, we have investigated the activity of Shh/Gli1-3 signaling in NSCLC in both, cancer and stromal cells. We report here that inhibition of Shh signaling induces a significant decrease in the proliferation of NSCLC cells. This effect is mediated by Gli1 and Gli2, but not Gli3, through regulation of cyclin D1 and cyclin D2 expression. While exogenous Shh was unable to induce signaling in either A549 lung adenocarcinoma or H520 lung squamous carcinoma cells, both cells were found to secrete Shh ligand, which induced fibroblast proliferation, survival, migration, invasion, and collagen synthesis. Furthermore, Shh secreted by NSCLC mediates the production of proangiogenic and metastatic factors in lung fibroblasts. Our results thus provide evidence that Shh plays an important role in mediating epithelial/mesenchymal crosstalk in NSCLC. While autonomous Gli activity controls NSCLC proliferation, increased Shh expression by NSCLC is associated with fibroblast activation in tumor-associated stroma. Our study highlights the relevance of studying stromal-associated cells in the context of NSCLC regarding new prognosis and therapeutic options. PMID:23667589

  12. Mesocortical Dopamine Phenotypes in Mice Lacking the Sonic Hedgehog Receptor Cdon

    PubMed Central

    Grant, Alanna; Meti, Nicholas; Adye-White, Lauren; Rioux, Veronique

    2016-01-01

    Abstract Motivated behaviors and many psychopathologies typically involve changes in dopamine release from the projections of the ventral tegmental area (VTA) and/or the substantia nigra pars compacta (SNc). The morphogen Sonic Hedgehog (Shh) specifies fates of midbrain dopamine neurons, but VTA-specific effects of Shh signaling are also being uncovered. In this study, we assessed the role of the Shh receptor Cdon in the development of VTA and SNc dopamine neurons. We find that Cdon is expressed in the proliferating progenitor zone of the embryonic ventral midbrain and that the number of proliferating cells in this region is increased in mouse Cdon−/− embryos. Consistent with a role of Shh in the regulation of neuronal proliferation in this region, we find that the number of tyrosine hydroxylase (TH)-positive neurons is increased in the VTA of Cdon−/− mice at birth and that this effect endures into adulthood. In contrast, the number of TH-positive neurons in the SNc is not altered in Cdon−/− mice at either age. Moreover, adult Cdon−/− mice have a greater number of medial prefrontal cortex (mPFC) dopamine presynaptic sites, and increased baseline concentrations of dopamine and dopamine metabolites selectively in this region. Finally, consistent with increased dopamine function in the mPFC, we find that adult Cdon−/− mice fail to exhibit behavioral plasticity upon repeated amphetamine treatment. Based on these data, we suggest that Cdon plays an important role encoding the diversity of dopamine neurons in the midbrain, influencing both the development of the mesocortical dopamine pathway and behavioral outputs that involve this neural circuitry. PMID:27419218

  13. Mesocortical Dopamine Phenotypes in Mice Lacking the Sonic Hedgehog Receptor Cdon.

    PubMed

    Verwey, Michael; Grant, Alanna; Meti, Nicholas; Adye-White, Lauren; Torres-Berrío, Angelica; Rioux, Veronique; Lévesque, Martin; Charron, Frederic; Flores, Cecilia

    2016-01-01

    Motivated behaviors and many psychopathologies typically involve changes in dopamine release from the projections of the ventral tegmental area (VTA) and/or the substantia nigra pars compacta (SNc). The morphogen Sonic Hedgehog (Shh) specifies fates of midbrain dopamine neurons, but VTA-specific effects of Shh signaling are also being uncovered. In this study, we assessed the role of the Shh receptor Cdon in the development of VTA and SNc dopamine neurons. We find that Cdon is expressed in the proliferating progenitor zone of the embryonic ventral midbrain and that the number of proliferating cells in this region is increased in mouse Cdon(-/-) embryos. Consistent with a role of Shh in the regulation of neuronal proliferation in this region, we find that the number of tyrosine hydroxylase (TH)-positive neurons is increased in the VTA of Cdon(-/-) mice at birth and that this effect endures into adulthood. In contrast, the number of TH-positive neurons in the SNc is not altered in Cdon(-/-) mice at either age. Moreover, adult Cdon(-/-) mice have a greater number of medial prefrontal cortex (mPFC) dopamine presynaptic sites, and increased baseline concentrations of dopamine and dopamine metabolites selectively in this region. Finally, consistent with increased dopamine function in the mPFC, we find that adult Cdon(-/-) mice fail to exhibit behavioral plasticity upon repeated amphetamine treatment. Based on these data, we suggest that Cdon plays an important role encoding the diversity of dopamine neurons in the midbrain, influencing both the development of the mesocortical dopamine pathway and behavioral outputs that involve this neural circuitry. PMID:27419218

  14. Crosstalks between Cytokines and Sonic Hedgehog in Helicobacter pylori Infection: A Mathematical Model

    PubMed Central

    Marwaha, Shruti; Schumacher, Michael A.; Zavros, Yana; Eghbalnia, Hamid R.

    2014-01-01

    Helicobacter pylori infection of gastric tissue results in an immune response dominated by Th1 cytokines and has also been linked with dysregulation of Sonic Hedgehog (SHH) signaling pathway in gastric tissue. However, since interactions between the cytokines and SHH during H. pylori infection are not well understood, any mechanistic understanding achieved through interpretation of the statistical analysis of experimental results in the context of currently known circuit must be carefully scrutinized. Here, we use mathematical modeling aided by restraints of experimental data to evaluate the consistency between experimental results and temporal behavior of H. pylori activated cytokine circuit model. Statistical analysis of qPCR data from uninfected and H. pylori infected wild-type and parietal cell-specific SHH knockout (PC-SHHKO) mice for day 7 and 180 indicate significant changes that suggest role of SHH in cytokine regulation. The experimentally observed changes are further investigated using a mathematical model that examines dynamic crosstalks among pro-inflammatory (IL1β, IL-12, IFNγ, MIP-2) cytokines, anti-inflammatory (IL-10) cytokines and SHH during H. pylori infection. Response analysis of the resulting model demonstrates that circuitry, as currently known, is inadequate for explaining of the experimental observations; suggesting the need for additional specific regulatory interactions. A key advantage of a computational model is the ability to propose putative circuit models for in-silico experimentation. We use this approach to propose a parsimonious model that incorporates crosstalks between NFĸB, SHH, IL-1β and IL-10, resulting in a feedback loop capable of exhibiting cyclic behavior. Separately, we show that analysis of an independent time-series GEO microarray data for IL-1β, IFNγ and IL-10 in mock and H. pylori infected mice further supports the proposed hypothesis that these cytokines may follow a cyclic trend. Predictions from the in

  15. Sonic hedgehog derived from human pancreatic cancer cells augments angiogenic function of endothelial progenitor cells.

    PubMed

    Yamazaki, Madoka; Nakamura, Kazumasa; Mizukami, Yusuke; Ii, Masaaki; Sasajima, Junpei; Sugiyama, Yoshiaki; Nishikawa, Tomoya; Nakano, Yasuhiro; Yanagawa, Nobuyuki; Sato, Kazuya; Maemoto, Atsuo; Tanno, Satoshi; Okumura, Toshikatsu; Karasaki, Hidenori; Kono, Toru; Fujiya, Mikihiro; Ashida, Toshifumi; Chung, Daniel C; Kohgo, Yutaka

    2008-06-01

    Hedgehog signaling is important in the pathogenesis of pancreatic cancer. Several recent observations suggest the involvement of sonic hedgehog (SHH) in postnatal neovascularization. We identified a novel role for SHH in tumor-associated angiogenesis in pancreatic cancer. Immunohistochemical analysis revealed that patched homolog 1 (PTCH1), both a receptor for and transcriptional target of hedgehog signaling, was expressed in a small fraction of endothelial cells within pancreatic cancer, but not in normal pancreatic tissue. When endothelial progenitor cells (EPC) isolated from human peripheral blood were cultured with supernatant from SHH-transfected 293 cells or pancreatic cancer cells, mRNA levels of vascular endothelial growth factor (VEGF), stromal cell-derived factor-1 and angiopoietin-1 were significantly increased, whereas no such induction was observed in human umbilical vein endothelial cell (HUVEC) and human dermal microvascular endothelial cell (HMVEC). HUVEC tube formation was stimulated when cocultured with EPC, and preconditioning EPC with supernatant from KP-1 N pancreatic cancer cells highly expressing SHH significantly enhanced the effect. The effect was partially attenuated by specific inhibition of SHH with cyclopamine or a neutralizing antibody. These findings suggest that tumor-derived SHH can induce angiogenesis, and this is mediated by its effects on EPC specifically. Targeting SHH would be a novel therapeutic approach that can inhibit not only proliferation of cancer cells but also EPC-mediated angiogenesis. PMID:18422746

  16. Sonic hedgehog lineage in the mouse hypothalamus: from progenitor domains to hypothalamic regions

    PubMed Central

    2012-01-01

    Background The hypothalamus is a brain region with essential functions for homeostasis and energy metabolism, and alterations of its development can contribute to pathological conditions in the adult, like hypertension, diabetes or obesity. However, due to the anatomical complexity of the hypothalamus, its development is not well understood. Sonic hedgehog (Shh) is a key developmental regulator gene expressed in a dynamic pattern in hypothalamic progenitor cells. To obtain insight into hypothalamic organization, we used genetic inducible fate mapping (GIFM) to map the lineages derived from Shh-expressing progenitor domains onto the four rostrocaudally arranged hypothalamic regions: preoptic, anterior, tuberal and mammillary. Results Shh-expressing progenitors labeled at an early stage (before embryonic day (E)9.5) contribute neurons and astrocytes to a large caudal area including the mammillary and posterior tuberal regions as well as tanycytes (specialized median eminence glia). Progenitors labeled at later stages (after E9.5) give rise to neurons and astrocytes of the entire tuberal region and in particular the ventromedial nucleus, but not to cells in the mammillary region and median eminence. At this stage, an additional Shh-expressing domain appears in the preoptic area and contributes mostly astrocytes to the hypothalamus. Shh-expressing progenitors do not contribute to the anterior region at any stage. Finally, we show a gradual shift from neurogenesis to gliogenesis, so that progenitors expressing Shh after E12.5 generate almost exclusively hypothalamic astrocytes. Conclusions We define a fate map of the hypothalamus, based on the dynamic expression of Shh in the hypothalamic progenitor zones. We provide evidence that the large neurogenic Shh-expressing progenitor domains of the ventral diencephalon are continuous with those of the midbrain. We demonstrate that the four classical transverse zones of the hypothalamus have clearly defined progenitor domains

  17. Sonic Hedgehog promotes proliferation of Notch-dependent monociliated choroid plexus tumour cells.

    PubMed

    Li, Li; Grausam, Katie B; Wang, Jun; Lun, Melody P; Ohli, Jasmin; Lidov, Hart G W; Calicchio, Monica L; Zeng, Erliang; Salisbury, Jeffrey L; Wechsler-Reya, Robert J; Lehtinen, Maria K; Schüller, Ulrich; Zhao, Haotian

    2016-04-01

    Aberrant Notch signalling has been linked to many cancers including choroid plexus (CP) tumours, a group of rare and predominantly paediatric brain neoplasms. We developed animal models of CP tumours, by inducing sustained expression of Notch1, that recapitulate properties of human CP tumours with aberrant NOTCH signalling. Whole-transcriptome and functional analyses showed that tumour cell proliferation is associated with Sonic Hedgehog (Shh) in the tumour microenvironment. Unlike CP epithelial cells, which have multiple primary cilia, tumour cells possess a solitary primary cilium as a result of Notch-mediated suppression of multiciliate differentiation. A Shh-driven signalling cascade in the primary cilium occurs in tumour cells but not in epithelial cells. Lineage studies show that CP tumours arise from monociliated progenitors in the roof plate characterized by elevated Notch signalling. Abnormal SHH signalling and distinct ciliogenesis are detected in human CP tumours, suggesting the SHH pathway and cilia differentiation as potential therapeutic avenues. PMID:26999738

  18. Sonic hedgehog is required for the assembly and remodeling of branchial arch blood vessels.

    PubMed

    Kolesová, Hana; Roelink, Henk; Grim, Milos

    2008-07-01

    Sonic hedgehog (Shh) is a morphogen involved in many developmental processes. Injection of cells (5E1) that produce a Shh-blocking antibody causes an attenuation of the Shh response, and this causes vascular malformations and impaired remodeling characterized by hemorrhages and protrusions of the anterior cardinal vein and outflow tract, delayed fusion of the dorsal aortae, impaired branching of the internal carotid artery, and delayed remodeling of the aortic arches. Distribution of smooth muscle cells in the vessel wall is unchanged. In 5E1-injected embryos, we also observed impaired assembly of endothelial cells into vascular tubes, particularly in the sixth branchial arch, around the anterior cardinal vein and around the dorsal aorta. In 5E1-treated embryos, increased numbers of macrophage-like cells, apoptotic cells, and a decreased level of proliferation were observed in head mesenchyme. Together, these observations show that Shh signaling is required at multiple stages for proper vessel formation and remodeling. PMID:18570256

  19. Gene Regulatory Logic for Reading the Sonic Hedgehog Signaling Gradient in the Vertebrate Neural Tube

    PubMed Central

    Balaskas, Nikolaos; Ribeiro, Ana; Panovska, Jasmina; Dessaud, Eric; Sasai, Noriaki; Page, Karen M.; Briscoe, James; Ribes, Vanessa

    2012-01-01

    Summary Secreted signals, known as morphogens, provide the positional information that organizes gene expression and cellular differentiation in many developing tissues. In the vertebrate neural tube, Sonic Hedgehog (Shh) acts as a morphogen to control the pattern of neuronal subtype specification. Using an in vivo reporter of Shh signaling, mouse genetics, and systems modeling, we show that a spatially and temporally changing gradient of Shh signaling is interpreted by the regulatory logic of a downstream transcriptional network. The design of the network, which links three transcription factors to Shh signaling, is responsible for differential spatial and temporal gene expression. In addition, the network renders cells insensitive to fluctuations in signaling and confers hysteresis—memory of the signal. Our findings reveal that morphogen interpretation is an emergent property of the architecture of a transcriptional network that provides robustness and reliability to tissue patterning. PMID:22265416

  20. Stage-specific effects of sonic hedgehog expression in the epidermis.

    PubMed

    Morgan, B A; Orkin, R W; Noramly, S; Perez, A

    1998-09-01

    Sonic hedgehog (Shh) is expressed in the ectoderm of the forming hair follicle and feather bud during normal development. However, inappropriate activation of the Shh signal transduction cascade in human epidermis can cause basal cell carcinoma. Here we show that during normal development of avian skin, Shh is first expressed only after the responsiveness to this protein has been suppressed in most of the surrounding ectodermal cells. Forced expression of Shh in avian skin prior to this time causes a disorganized ectodermal proliferation. However, as skin begins to differentiate, the forced expression of Shh causes feather bud formation. Subsequently, expression of Shh in interfollicular epidermis has little or no morphological effect. Restricted responsiveness to Shh in developing skin has functional consequences for morphogenesis and may have important implications for cutaneous pathologies as well. PMID:9733569

  1. Sonic Hedgehog functions by localizing the region of proliferation in early developing feather buds.

    PubMed

    McKinnell, Iain W; Turmaine, Mark; Patel, Ketan

    2004-08-01

    Feathers are formed following a series of reciprocal signals between the epithelium and the mesenchyme. Initially, the formation of a dense dermis leads to the induction of a placode in the overlying ectoderm. The ectoderm subsequently signals back to the dermis to promote cell division. Sonic Hedgehog (Shh) is a secreted protein expressed in the ectoderm that has previously been implicated in mitogenic and morphogenetic processes throughout feather bud development. We therefore interfered with Shh signaling during early feather bud development and observed a dramatic change in feather form and prominence. Surprisingly, outgrowth did occur and was manifest as irregular, fused, and ectopic feather domains at both molecular and morphological levels. Experiments with Di-I and BrdU indicated that this effect was at least in part caused by the dispersal of previously aggregated proliferating dermal cells. We propose that Shh maintains bud development by localizing the dermal feather progenitors. PMID:15242792

  2. Sonic hedgehog and Wnt: antagonists in morphogenesis but collaborators in axon guidance

    PubMed Central

    Avilés, Evelyn C.; Wilson, Nicole H.; Stoeckli, Esther T.

    2013-01-01

    As indicated by their name, morphogens were first identified for their role in the formation of tissues early in development. Secreted from a source, they spread through the tissue to form gradients by which they affect the differentiation of precursor cells in a concentration-dependent manner. In this context, the antagonistic roles of the morphogens of the Wnt family and Sonic hedgehog (Shh) in the specification of cell types along the dorso-ventral axis of the neural tube have been studied in detail. However, more recently, morphogens have been demonstrated to act well beyond the early stages of nervous system development, as additional roles of morphogen gradients in vertebrate neural circuit formation have been identified. Both Wnt and Shh affect neural circuit formation at several stages by their influence on neurite extension, axon pathfinding and synapse formation. In this review, we will summarize the mechanisms of morphogen function during axon guidance in the vertebrate nervous system. PMID:23772206

  3. The Role of Sonic Hedgehog Signaling in Osteoclastogenesis and Jaw Bone Destruction

    PubMed Central

    Shimo, Tsuyoshi; Matsumoto, Kenichi; Takabatake, Kiyofumi; Aoyama, Eriko; Takebe, Yuichiro; Ibaragi, Soichiro; Okui, Tatsuo; Kurio, Naito; Takada, Hiroyuki; Obata, Kyoichi; Pang, Pai; Iwamoto, Masahiro; Nagatsuka, Hitoshi; Sasaki, Akira

    2016-01-01

    Sonic hedgehog (SHH) and its signaling have been identified in several human cancers, and increased levels of its expression appear to correlate with disease progression and metastasis. However, the role of SHH in bone destruction associated with oral squamous cell carcinomas is still unclear. In this study we analyzed SHH expression and the role played by SHH signaling in gingival carcinoma-induced jawbone destruction. From an analysis of surgically resected lower gingival squamous cell carcinoma mandible samples, we found that SHH was highly expressed in tumor cells that had invaded the bone matrix. On the other hand, the hedgehog receptor Patched and the signaling molecule Gli-2 were highly expressed in the osteoclasts and the progenitor cells. SHH stimulated osteoclast formation and pit formation in the presence of the receptor activator for nuclear factor-κB ligand (RANKL) in CD11b+ mouse bone marrow cells. SHH upregulated phosphorylation of ERK1/2 and p38 MAPK, NFATc1, tartrate-resistant acid phosphatase (TRAP), and Cathepsin K expression in RAW264.7 cells. Our results suggest that tumor-derived SHH stimulated the osteoclast formation and bone resorption in the tumor jawbone microenvironment. PMID:27007126

  4. Sonic hedgehog shedding results in functional activation of the solubilized protein.

    PubMed

    Ohlig, Stefanie; Farshi, Pershang; Pickhinke, Ute; van den Boom, Johannes; Höing, Susanne; Jakuschev, Stanislav; Hoffmann, Daniel; Dreier, Rita; Schöler, Hans R; Dierker, Tabea; Bordych, Christian; Grobe, Kay

    2011-06-14

    All Hedgehog (Hh) proteins are released from producing cells despite being synthesized as N- and C-terminally lipidated, membrane-tethered molecules. Thus, a cellular mechanism is needed for Hh solubilization. We previously suggested that a disintegrin and metalloprotease (ADAM)-mediated shedding of Sonic hedgehog (ShhNp) from its lipidated N and C termini results in protein solubilization. This finding, however, seemed at odds with the established role of N-terminal palmitoylation for ShhNp signaling activity. We now resolve this paradox by showing that N-palmitoylation of ShhNp N-terminal peptides is required for their proteolytic removal during solubilization. These peptides otherwise block ShhNp zinc coordination sites required for ShhNp binding to its receptor Patched (Ptc), explaining the essential yet indirect role of N-palmitoylation for ShhNp function. We suggest a functional model in which membrane-tethered multimeric ShhNp is at least partially autoinhibited in trans but is processed into fully active, soluble multimers upon palmitoylation-dependent cleavage of inhibitory N-terminal peptides. PMID:21664575

  5. Using mechanistic Bayesian networks to identify downstream targets of the Sonic Hedgehog pathway

    PubMed Central

    2009-01-01

    Background The topology of a biological pathway provides clues as to how a pathway operates, but rationally using this topology information with observed gene expression data remains a challenge. Results We introduce a new general-purpose analytic method called Mechanistic Bayesian Networks (MBNs) that allows for the integration of gene expression data and known constraints within a signal or regulatory pathway to predict new downstream pathway targets. The MBN framework is implemented in an open-source Bayesian network learning package, the Python Environment for Bayesian Learning (PEBL). We demonstrate how MBNs can be used by modeling the early steps of the sonic hedgehog pathway using gene expression data from different developmental stages and genetic backgrounds in mouse. Using the MBN approach we are able to automatically identify many of the known downstream targets of the hedgehog pathway such as Gas1 and Gli1, along with a short list of likely targets such as Mig12. Conclusions The MBN approach shown here can easily be extended to other pathways and data types to yield a more mechanistic framework for learning genetic regulatory models. PMID:20021670

  6. Gas1 is a modifier for holoprosencephaly and genetically interacts with sonic hedgehog

    PubMed Central

    Seppala, Maisa; Depew, Michael J.; Martinelli, David C.; Fan, Chen-Ming; Sharpe, Paul T.; Cobourne, Martyn T.

    2007-01-01

    Holoprosencephaly (HPE) is a clinically heterogeneous developmental anomaly affecting the CNS and face, in which the embryonic forebrain fails to divide into distinct halves. Numerous genetic loci and environmental factors are implicated in HPE, but mutation in the sonic hedgehog (Shh) gene is an established cause in both humans and mice. As growth arrest–specific 1 (Gas1) encodes a membrane glycoprotein previously identified as a Shh antagonist in the somite, we analyzed the craniofacial phenotype of mice harboring a targeted Gas1 deletion. Gas1–/– mice exhibited microform HPE, including midfacial hypoplasia, premaxillary incisor fusion, and cleft palate, in addition to severe ear defects; however, gross integrity of the forebrain remained intact. These defects were associated with partial loss of Shh signaling in cells at a distance from the source of transcription, suggesting that Gas1 can potentiate hedgehog signaling in the early face. Loss of a single Shh allele in a Gas1–/– background significantly exacerbated the midline craniofacial phenotype, providing genetic evidence that Shh and Gas1 interact. As human GAS1 maps to chromosome 9q21.3–q22, a region previously associated with nonsyndromic cleft palate and congenital deafness, our results establish GAS1 as a potential locus for several human craniofacial malformations. PMID:17525797

  7. The Role of Sonic Hedgehog Signaling in Osteoclastogenesis and Jaw Bone Destruction.

    PubMed

    Shimo, Tsuyoshi; Matsumoto, Kenichi; Takabatake, Kiyofumi; Aoyama, Eriko; Takebe, Yuichiro; Ibaragi, Soichiro; Okui, Tatsuo; Kurio, Naito; Takada, Hiroyuki; Obata, Kyoichi; Pang, Pai; Iwamoto, Masahiro; Nagatsuka, Hitoshi; Sasaki, Akira

    2016-01-01

    Sonic hedgehog (SHH) and its signaling have been identified in several human cancers, and increased levels of its expression appear to correlate with disease progression and metastasis. However, the role of SHH in bone destruction associated with oral squamous cell carcinomas is still unclear. In this study we analyzed SHH expression and the role played by SHH signaling in gingival carcinoma-induced jawbone destruction. From an analysis of surgically resected lower gingival squamous cell carcinoma mandible samples, we found that SHH was highly expressed in tumor cells that had invaded the bone matrix. On the other hand, the hedgehog receptor Patched and the signaling molecule Gli-2 were highly expressed in the osteoclasts and the progenitor cells. SHH stimulated osteoclast formation and pit formation in the presence of the receptor activator for nuclear factor-κB ligand (RANKL) in CD11b+ mouse bone marrow cells. SHH upregulated phosphorylation of ERK1/2 and p38 MAPK, NFATc1, tartrate-resistant acid phosphatase (TRAP), and Cathepsin K expression in RAW264.7 cells. Our results suggest that tumor-derived SHH stimulated the osteoclast formation and bone resorption in the tumor jawbone microenvironment. PMID:27007126

  8. Holoprosencephaly in RSH/Smith-Lemli-Opitz syndrome: Does abnormal cholesterol metabolism affect the function of sonic hedgehog?

    SciTech Connect

    Kelley, R.I.; Roessler, E.; Muenke, M.

    1996-12-30

    The RAH/Smith-Lemli-Opitz syndrome (RAH/SLOS) is an autosomal recessive malformation syndrome associated with increased levels of 7-dehydrocholesterol (7-DHC) and a defect of cholesterol biosynthesis at the level of 3{beta}-hydroxy-steroid-{Delta}{sup 7}-reductase (7-DHC reductase). Because rats exposed to inhibitors of 7-DHC reductase during development have a high frequency of holoprosencephaly (HPE), we have undertaken a search for biochemical evidence of RSH/SLOS and other possible defects of sterol metabolism among patients with various forms of HPE. We describe 4 patients, one with semilobar HPE and three others with less complete forms of the HPE sequence, in whom we have made a biochemical diagnosis of RAH/SLOS. The clinical and biochemical spectrum of these and other patients with RAH/SLOS suggests a role of abnormal sterol metabolism in the pathogenesis of their malformations. The association of HPE and RAH/SLOS is discussed in light of the recent discoveries that mutations in the embryonic patterning gene, Sonic Hedgehog (SHH), can cause HPE in humans and that the sonic hedgehog protein product undergoes autoproteolysis to form a cholesterol-modified active product. These clinical, biochemical, and molecular studies suggest that HPE and other malformations in SLOS may be caused by incomplete or abnormal modification of the sonic hedgehog protein and, possibly, other patterning proteins of the hedgehog class, a hypothesis testable in somatic cell systems. 37 refs., 1 fig.

  9. Regulation of Hedgehog signaling by ubiquitination

    PubMed Central

    Hsia, Elaine Y. C.; Gui, Yirui; Zheng, Xiaoyan

    2015-01-01

    The Hedgehog (Hh) signaling pathway plays crucial roles both in embryonic development and in adult stem cell function. The timing, duration and location of Hh signaling activity need to be tightly controlled. Abnormalities of Hh signal transduction lead to birth defects or malignant tumors. Recent data point to ubiquitination-related posttranslational modifications of several key Hh pathway components as an important mechanism of regulation of the Hh pathway. Here we review how ubiquitination regulates the localization, stability and activity of the key Hh signaling components. PMID:26366162

  10. DS-03SONIC HEDGEHOG ANTAGONISTS POTENTLY INDUCE APOPTOSIS IN THE CEREBELLAR EXTERNAL GRANULE LAYER: IMPLICATIONS FOR MEDULLOBLASTOMA TREATMENT

    PubMed Central

    Noguchi, Kevin; Cabrera, Omar; Swiney, Brant; Smith, Julie; Farber, Nuri

    2014-01-01

    There is a great interest in Hedgehog signaling both for its role in cerebellar development and medulloblastoma (MB) treatment. The cerebellum maintains its own proliferative layer called the external granule layer (EGL) that produces over 90% of its neurons. During development, the established dogma views Hedgehog signaling as a robust mitogenic stimulator of EGL proliferation. However, in other regions of the body, Hedgehog stimulation acts as a survival signal by potently inducing NPC apoptosis when signaling is lost. In this manner, the sonic hedgehog ligand's concentration gradient determines NPC survival or death thereby morphologically sculpting the developing nervous system. Therefore, we tested whether Hedgehog signaling also acts as a survival signal in the EGL by administering several Hedgehog antagonists (vismodegib, cyclopamine, and jervine). Remarkably, we found all Hedgehog antagonists (HAs) potently induced EGL apoptosis within a few hours of administration. This suggests a large portion of the HAs' anti-proliferative effects are due to the apoptotic loss of a large number of EGL NPCs. This research may also have important implications for MB formation and treatment. There is convincing evidence that EGL neural progenitor cells (NPCs) can be the tumor initiating cells for MBs (the most common malignant brain tumor in children). Therefore, we examined if HAs can also produce apoptosis in Patched mice which exhibit constitutive Hedgehog stimulation and are prone to MB formation. We found HA administration also potently increased apoptosis in both EGL NPCs and preneoplasms. This may have important implications for the treatment of MBs with HAs. For example, apoptosis involves signaling mechanisms distinct from proliferation that may need to be disabled for malignant transformation. In addition, the requirement for Hedgehog signaling may prevent metastasis by killing tumor cells as they spread to regions where such signaling is absent.

  11. Transcriptional Regulation of Graded Hedgehog Signaling

    PubMed Central

    Falkenstein, Kristin N.; Vokes, Steven A.

    2014-01-01

    The Hedgehog (Hh) pathway plays conserved roles in regulating a diverse spectrum of developmental processes. In some developmental contexts, a gradient of Hh protein specifies multiple cell types in a dose-dependent fashion, thereby acting as a morphogen. Hh signaling ultimately acts on the transcriptional level through GLI proteins. In the presence of Hh signaling full length GLI proteins act as transcriptional activators of target genes. Conversely, in the absence of Hh, GLI proteins act as transcriptional repressors. This review will highlight mechanisms contributing to how graded Hh signaling might translate to differential GLI activity and be interpreted into distinct transcriptional responses. PMID:24862856

  12. The sonic hedgehog signaling pathway stimulates anaplastic thyroid cancer cell motility and invasiveness by activating Akt and c-Met

    PubMed Central

    Williamson, Ashley J.; Doscas, Michelle E.; Ye, Jin; Heiden, Katherine B.; Xing, Mingzhao; Li, Yi; Prinz, Richard A.; Xu, Xiulong

    2016-01-01

    The sonic hedgehog (Shh) pathway is highly activated in thyroid neoplasms and promotes thyroid cancer stem-like cell phenotype, but whether the Shh pathway regulates thyroid tumor cell motility and invasiveness remains unknown. Here, we report that the motility and invasiveness of two anaplastic thyroid tumor cell lines, KAT-18 and SW1736, were inhibited by two inhibitors of the Shh pathway (cyclopamine and GANT61). Consistently, the cell motility and invasiveness was decreased by Shh and Gli1 knockdown, and was increased by Gli1 overexpression in KAT-18 cells. Mechanistic studies revealed that Akt and c-Met phosphorylation was decreased by a Gli1 inhibitor and by Shh and Gli1 knockdown, but was increased by Gli1 overexpression. LY294002, a PI-3 kinase inhibitor, and a c-Met inhibitor inhibited the motility and invasiveness of Gli1-transfected KAT-18 cells more effectively than the vector-transfected cells. Knockdown of Snail, a transcription factor regulated by the Shh pathway, led to decreased cell motility and invasiveness in KAT-18 and SW1736 cells. However, key epithelial-to-mesenchymal transition (EMT) markers including E-cadherin and vimentin as well as Slug were not affected by cyclopamine and GANT61 in either SW1736 or WRO82, a well differentiated follicular thyroid carcinoma cell line. Our data suggest that the Shh pathway-stimulated thyroid tumor cell motility and invasiveness is largely mediated by AKT and c-Met activation with little involvement of EMT. PMID:26859575

  13. Transposon mutagenesis with coat color genotyping identifies an essential role for Skor2 in sonic hedgehog signaling and cerebellum development.

    PubMed

    Wang, Baiping; Harrison, Wilbur; Overbeek, Paul A; Zheng, Hui

    2011-10-01

    Correct development of the cerebellum requires coordinated sonic hedgehog (Shh) signaling from Purkinje to granule cells. How Shh expression is regulated in Purkinje cells is poorly understood. Using a novel tyrosinase minigene-tagged Sleeping Beauty transposon-mediated mutagenesis, which allows for coat color-based genotyping, we created mice in which the Ski/Sno family transcriptional co-repressor 2 (Skor2) gene is deleted. Loss of Skor2 leads to defective Purkinje cell development, a severe reduction of granule cell proliferation and a malformed cerebellum. Skor2 is specifically expressed in Purkinje cells in the brain, where it is required for proper expression of Shh. Skor2 overexpression suppresses BMP signaling in an HDAC-dependent manner and stimulates Shh promoter activity, suggesting that Skor2 represses BMP signaling to activate Shh expression. Our study identifies an essential function for Skor2 as a novel transcriptional regulator in Purkinje cells that acts upstream of Shh during cerebellum development. PMID:21937600

  14. The sonic hedgehog signaling pathway stimulates anaplastic thyroid cancer cell motility and invasiveness by activating Akt and c-Met.

    PubMed

    Williamson, Ashley J; Doscas, Michelle E; Ye, Jin; Heiden, Katherine B; Xing, Mingzhao; Li, Yi; Prinz, Richard A; Xu, Xiulong

    2016-03-01

    The sonic hedgehog (Shh) pathway is highly activated in thyroid neoplasms and promotes thyroid cancer stem-like cell phenotype, but whether the Shh pathway regulates thyroid tumor cell motility and invasiveness remains unknown. Here, we report that the motility and invasiveness of two anaplastic thyroid tumor cell lines, KAT-18 and SW1736, were inhibited by two inhibitors of the Shh pathway (cyclopamine and GANT61). Consistently, the cell motility and invasiveness was decreased by Shh and Gli1 knockdown, and was increased by Gli1 overexpression in KAT-18 cells. Mechanistic studies revealed that Akt and c-Met phosphorylation was decreased by a Gli1 inhibitor and by Shh and Gli1 knockdown, but was increased by Gli1 overexpression. LY294002, a PI-3 kinase inhibitor, and a c-Met inhibitor inhibited the motility and invasiveness of Gli1-transfected KAT-18 cells more effectively than the vector-transfected cells. Knockdown of Snail, a transcription factor regulated by the Shh pathway, led to decreased cell motility and invasiveness in KAT-18 and SW1736 cells. However, key epithelial-to-mesenchymal transition (EMT) markers including E-cadherin and vimentin as well as Slug were not affected by cyclopamine and GANT61 in either SW1736 or WRO82, a well differentiated follicular thyroid carcinoma cell line. Our data suggest that the Shh pathway-stimulated thyroid tumor cell motility and invasiveness is largely mediated by AKT and c-Met activation with little involvement of EMT. PMID:26859575

  15. Transposon mutagenesis with coat color genotyping identifies an essential role for Skor2 in sonic hedgehog signaling and cerebellum development

    PubMed Central

    Wang, Baiping; Harrison, Wilbur; Overbeek, Paul A.; Zheng, Hui

    2011-01-01

    Correct development of the cerebellum requires coordinated sonic hedgehog (Shh) signaling from Purkinje to granule cells. How Shh expression is regulated in Purkinje cells is poorly understood. Using a novel tyrosinase minigene-tagged Sleeping Beauty transposon-mediated mutagenesis, which allows for coat color-based genotyping, we created mice in which the Ski/Sno family transcriptional co-repressor 2 (Skor2) gene is deleted. Loss of Skor2 leads to defective Purkinje cell development, a severe reduction of granule cell proliferation and a malformed cerebellum. Skor2 is specifically expressed in Purkinje cells in the brain, where it is required for proper expression of Shh. Skor2 overexpression suppresses BMP signaling in an HDAC-dependent manner and stimulates Shh promoter activity, suggesting that Skor2 represses BMP signaling to activate Shh expression. Our study identifies an essential function for Skor2 as a novel transcriptional regulator in Purkinje cells that acts upstream of Shh during cerebellum development. PMID:21937600

  16. Forward genetics uncovers Transmembrane protein 107 as a novel factor required for ciliogenesis and Sonic Hedgehog signaling

    PubMed Central

    Christopher, Kasey J.; Wang, Baolin; Kong, Yong; Weatherbee, Scott D.

    2012-01-01

    Cilia are dynamic organelles that are essential for a vast array of developmental patterning events, including left-right specification, skeletal formation, neural development, and organogenesis. Despite recent advances in understanding cilia form and function, many key ciliogenesis components have yet to be identified. By using a forward genetics approach, we isolated a novel mutant allele (schlei) of the mouse Transmembrane protein 107 (Tmem107) gene, which we show here is critical for cilia formation and embryonic patterning. Tmem107 is required for normal Sonic hedgehog (Shh) signaling in the neural tube and acts in combination with Gli2 and Gli3 to pattern ventral and intermediate neuronal cell types. schlei mutants also form extra digits, and we demonstrate that Tmem107 acts in the Shh pathway to determine digit number, but not identity, by regulating a subset of Shh target genes. Phenotypically, schlei mutants share several features with other cilia mutants; however, spatial restriction of mutant phenotypes and lack of left-right patterning defects in schlei animals suggest differential requirements for Tmem107 in cilia formation in distinct tissues. Also, in contrast to mutants with complete loss of cilia, schlei mutants retain some function of both Gli activator and repressor forms. Together, these studies identify a previously unknown regulator of ciliogenesis and provide insight into how ciliary factors affect Shh signaling and cilia biogenesis in distinct tissues. PMID:22698544

  17. The G protein Gαs acts as a tumor suppressor in sonic hedgehog signaling-driven tumorigenesis.

    PubMed

    Rao, Rohit; Salloum, Ralph; Xin, Mei; Lu, Q Richard

    2016-05-18

    G protein-coupled receptors (GPCRs) are critical players in tumor growth and progression. The redundant roles of GPCRs in tumor development confound effective treatment; therefore, targeting a single common signaling component downstream of these receptors may be efficacious. GPCRs transmit signals through heterotrimeric G proteins composed of Gα and Gβγ subunits. Hyperactive Gαs signaling can mediate tumor progression in some tissues; however, recent work in medulloblastoma and basal cell carcinoma revealed that Gαs can also function as a tumor suppressor in neoplasms derived from ectoderm cells including neural and epidermal stem/progenitor cells. In these stem-cell compartments, signaling through Gαs suppresses self-renewal by inhibiting the Sonic Hedgehog (SHH) and Hippo pathways. The loss of GNAS, which encodes Gαs, leads to activation of these pathways, over-proliferation of progenitor cells, and tumor formation. Gαs activates the cAMP-dependent protein kinase A (PKA) signaling pathway and inhibits activation of SHH effectors Smoothened-Gli. In addition, Gαs-cAMP-PKA activation negatively regulates the Hippo pathway by blocking the NF2-LATS1/2-Yap signaling. In this review, we will address the novel function of the signaling network regulated by Gαs in suppression of SHH-driven tumorigenesis and the therapeutic approaches that can be envisioned to harness this pathway to inhibit tumor growth and progression. PMID:27052725

  18. Sonic Hedgehog Has a Dual Effect on the Growth of Retinal Ganglion Axons Depending on Its Concentration

    PubMed Central

    Kolpak, Adrianne; Zhang, Jinhua; Bao, Zheng-Zheng

    2006-01-01

    The stereotypical projection of retinal ganglion cell (RGC) axons to the optic disc has served as a good model system for studying axon guidance. By both in vitro and in vivo experiments, we show that a secreted molecule, Sonic hedgehog (Shh), may play a critical role in the process. It is expressed in a dynamic pattern in the ganglion cell layer with a relatively higher expression in the center of the retina. Through gel culture and stripe assays, we show that Shh has a dual effect on RGC axonal growth, acting as a positive factor at low concentrations and a negative factor at high concentrations. Results from time-lapse video microscopic and stripe assay experiments further suggest that the effects of Shh on axons are not likely attributable to indirect transcriptional regulation by Shh. Overexpression of Shh protein or inhibition of Shh function inside the retina resulted in a complete loss of centrally directed projection of RGC axons, suggesting that precise regulation of Shh level inside the retina is critical for the projection of RGC axons to the optic disc. PMID:15800198

  19. Smoothened regulation in response to Hedgehog stimulation

    PubMed Central

    Jiang, Kai; Jia, Jianhang

    2016-01-01

    The Hedgehog (Hh) signaling pathway play critical roles in embryonic development and adult tissue homeostasis. A critical step in Hh signal transduction is how Hh receptor Patched (Ptc) inhibits the atypical G protein-coupled receptor Smoothened (Smo) in the absence of Hh and how this inhibition is release by Hh stimulation. It is unlikely that Ptc inhibits Smo by direct interaction. Here we discuss how Hh regulates the phosphorylation and ubiquitination of Smo, leading to cell surface and ciliary accumulation of Smo in Drosophila and vertebrate cells, respectively. In addition, we discuss how PI(4)P phospholipid acts in between Ptc and Smo to regulate Smo phosphorylation and activation in response to Hh stimulation. PMID:26973699

  20. The sonic hedgehog-induced type 3 deiodinase facilitates tumorigenesis of basal cell carcinoma by reducing Gli2 inactivation.

    PubMed

    Luongo, Cristina; Ambrosio, Raffaele; Salzano, Salvatore; Dlugosz, Andrzej A; Missero, Caterina; Dentice, Monica

    2014-06-01

    Thyroid hormone (TH) is an important regulator of growth, development, and metabolism. Most of the active TH T3 is generated by peripheral TH metabolism mediated by the iodothyronine deiodinases. Type 3 deiodinase (D3) inactivates T3 via specific deiodination reactions. It is an oncofetal protein frequently expressed in neoplastic tissues and is a direct target of the sonic hedgehog (Shh) pathway in basal cell carcinomas (BCCs). However, the molecular mechanisms triggered by T3 in BCC are still mostly unrevealed. Here, we demonstrate that D3 action is critical in the proliferation and survival of BCC cells. D3 depletion or T3 treatment induce apoptosis of BCC cells and attenuate Shh signaling. This is achieved through a direct impairment of Gli2 protein stability by T3. T3 induces protein kinase A, which in turn destabilizes Gli2 protein via its C-terminal degron. Finally, in a mouse model of BCC, T3-topical treatment significantly reduces tumor growth. These results demonstrate the existence of a previously unrecognized cross talk between TH and Gli2 oncogene, providing functional and mechanistic evidence of the involvement of TH metabolism in Shh-induced cancer. TH-mediated Gli2 inactivation would be beneficial for therapeutically purposes, because the inhibition of Shh-Gli2 signaling is an attractive target for several anticancer drugs, currently in clinical trials. PMID:24693967

  1. Platelet-derived growth factor-A and sonic hedgehog signaling direct lung fibroblast precursors during alveolar septal formation.

    PubMed

    McGowan, Stephen E; McCoy, Diann M

    2013-08-01

    Alveolar septal formation is required to support the respiration of growing mammals; in humans effacement of the alveolar surface and impaired gas exchange are critical features of emphysema and pulmonary fibrosis. Platelet-derived growth factor-A (PDGF-A) and its receptor PDGF-receptor-α (PDGFRα) are required for secondary septal elongation in mice during postnatal days 4 through 12 and they regulate the proliferation and septal location of interstitial fibroblasts. We examined lung fibroblasts (LF) to learn whether PDGFRα expression distinguished a population of precursor cells, with enhanced proliferative and migratory capabilities. We identified a subpopulation of LF that expresses sonic hedgehog (Shh) and stem cell antigen-1 (Sca1). PDGF-A and Shh both increased cytokinesis and chemotaxis in vitro, but through different mechanisms. In primary LF cultures, Shh signaled exclusively through a noncanonical pathway involving generation of Rac1-GTP, whereas both the canonical and noncanonical pathways were used by the Mlg neonatal mouse LF cell line. LF preferentially oriented their primary cilia toward their anterior pole during migration. Furthermore, a larger proportion of PDGFRα-expressing LF, which are more abundant at the septal tips, bore primary cilia compared with other alveolar cells. In pulmonary emphysema, destroyed alveolar septa do not regenerate, in part because cells fail to assume a configuration that allows efficient gas exchange. Better understanding how LF are positioned during alveolar development could identify signaling pathways, which promote alveolar septal regeneration. PMID:23748534

  2. Sonic hedgehog protein signals not as a hydrolytic enzyme but as an apparent ligand for Patched

    PubMed Central

    Fuse, Naoyuki; Maiti, Tapan; Wang, Baolin; Porter, Jeffery A.; Hall, Traci M. Tanaka; Leahy, Daniel J.; Beachy, Philip A.

    1999-01-01

    The amino-terminal signaling domain of the Sonic hedgehog secreted protein (Shh-N), which derives from the Shh precursor through an autoprocessing reaction mediated by the carboxyl-terminal domain, executes multiple functions in embryonic tissue patterning, including induction of ventral and suppression of dorsal cell types in the developing neural tube. An apparent catalytic site within Shh-N is suggested by structural homology to a bacterial carboxypeptidase. We demonstrate here that alteration of residues presumed to be critical for a hydrolytic activity does not cause a loss of inductive activity, thus ruling out catalysis by Shh-N as a requirement for signaling. We favor the alternative, that Shh-N functions primarily as a ligand for the putative receptor Patched (Ptc). This possibility is supported by new evidence for direct binding of Shh-N to Ptc and by a strong correlation between the affinity of Ptc-binding and the signaling potency of Shh-N protein variants carrying alterations of conserved residues in a particular region of the protein surface. These results together suggest that direct Shh-N binding to Ptc is a critical event in transduction of the Shh-N signal. PMID:10500113

  3. Sonic Hedgehog Mutations Identified in Holoprosencephaly Patients Can Act in a Dominant Negative Manner

    PubMed Central

    Singh, Samer; Tokhunts, Robert; Baubet, Valerie; Goetz, John A.; Huang, Zhen Jane; Schilling, Neal S.; Black, Kendall E.; MacKenzie, Todd A.; Dahmane, Nadia; Robbins, David J.

    2009-01-01

    Sonic Hedgehog (SHH) plays an important instructional role in vertebrate development, as exemplified by the numerous developmental disorders that occur when the SHH pathway is disrupted. Mutations in the SHH gene are the most common cause of sporadic and inherited Holoprosencephaly (HPE), a developmental disorder that is characterized by defective prosencephalon development. SHH HPE mutations provide a unique opportunity to better understand SHH biogenesis and signaling, and to decipher its role in the development of HPE. Here, we analyzed a panel of SHH HPE missense mutations that encode changes in the amino-terminal active domain of SHH. Our results show that SHH HPE mutations affect SHH biogenesis and signaling at multiple steps, which broadly results in low levels of protein expression, defective processing of SHH into its active form and protein with reduced activity. Additionally, we found that some inactive SHH proteins were able to modulate the activity of wt SHH in a dominant negative manner, both in vitro and in vivo. These findings show for the first time the susceptibility of SHH driven developmental processes to perturbations by low-activity forms of SHH. In conclusion, we demonstrate that SHH mutations found in HPE patients affect distinct steps of SHH biogenesis to attenuate SHH activity to different levels, and suggest that these variable levels of SHH activity might contribute to some of the phenotypic variation found in HPE patients. PMID:19057928

  4. Hedyotis diffusa Willd extract suppresses Sonic hedgehog signaling leading to the inhibition of colorectal cancer angiogenesis.

    PubMed

    Lin, Jiumao; Wei, Lihui; Shen, Aling; Cai, Qiaoyan; Xu, Wei; Li, Huang; Zhan, Youzhi; Hong, Zhenfeng; Peng, Jun

    2013-02-01

    Sonic hedgehog (SHH) signaling pathway promotes the process of angiogenesis, contributing to the growth and progression of many human malignancies including colorectal cancer (CRC), which therefore has become a promising target for cancer chemotherapy. Hedyotis diffusa Willd (HDW), as a well-known traditional Chinese herbal medicine, has long been used in China for the clinic treatment of various cancers. Recently, we reported that HDW can inhibit colorectal cancer growth in vivo and in vitro via suppression of the STAT3 pathway. In addition, we demonstrated the anti-angiogenic activity of HDW in vitro. To further elucidate the mechanism of the tumoricidal activity of HDW, by using a CRC mouse xenograft model we evaluated the in vivo effect of the ethanol extract of HDW (EEHDW) on tumor angiogenesis, and investigated the underlying molecular mechanisms. We found that EEHDW could significantly reduce intratumoral microvessel density (MVD), indicating its activity of antitumor angiogenesis in vivo. EEHDW suppressed the activation of SHH signaling in CRC xenograft tumors since it significantly decreased the expression of key mediators of SHH pathway. EEHDW treatment inhibited the expression of the critical SHH signaling target gene VEGF-A as well as its specific receptor VEGFR2. Taken together, we propose for the first time that Hedyotis diffusa Willd inhibits colorectal cancer growth in vivo via inhibition of SHH-mediated tumor angiogenesis. PMID:23291612

  5. [Sonic hedgehog (SHH) promotes the proliferation of synovial fibroblasts of rats with collagen-induced arthritis].

    PubMed

    Li, Hui; Qin, Suping; Sun, Dexu; Pan, Wei; Li, Xiangyang; Kong, Fanyun; Zhen, Kuiyang; Tang, Renxian

    2016-05-01

    Objective To investigate the effect of sonic hedgehog (SHH) on the proliferation of synovial fibroblasts (SFs). Methods The serum samples were collected from 30 rheumatoid arthritis (RA) patients, 30 systemic lupus erythematosus (SLE) patients, 30 ankylosing spondylitis (AS) patients and 30 healthy subjects. The concentrations of serum SHH were detected by ELISA. Collagen induced arthritis (CIA) were developed by type 2 collagen in Sprague-Dawley rats. The SFs were isolated from knee synovial tissues of CIA rats, and then identified by the detection of vimentin by immunofluorescence technique. Before and 72 hours after blocking SHH-glioma-associated oncogene 1 (Gli-1) signaling pathway with GANT61, the expression level of SHH in SFs was detected by Western blotting, and the proliferation of SFs was examined with CCK-8 assay. Results The level of serum SHH in the RA patients was remarkably higher than that in the SLE, AS patients and the healthy controls. In the CIA rats, the expression of SHH in SFs in vitro was higher than that in the healthy control rats. After 72-hour treatment of GANT61 to block SHH-Gli-1 signaling pathway, the expression level of SHH protein in SFs from CIA rats was reduced, and meanwhile the proliferation of the SFs was inhibited. Conclusion SHH plays an important role in the proliferation of SFs and could be used as a potential therapeutic target for RA. PMID:27126942

  6. Sonic hedgehog and neurotrophin-3 increase oligodendrocyte numbers and myelination after spinal cord injury

    PubMed Central

    Goodman, Ashley G.; Kukushliev, Todor V.; Hassani, Donna M.; Cummings, Brian J.; Anderson, Aileen J.; Shea, Lonnie D.

    2014-01-01

    Spinal cord injury (SCI) results in loss of sensory and motor function below the level of injury and has limited available therapies. Multiple channel bridges have been investigated as a means to create a permissive environment for regeneration, with channels supporting axonal growth through the injury. Bridges support robust axon growth with myelination of the axons, and herein we investigated the cell types that are myelinating the axons and whether trophic factors can enhance myelination. Lentivirus encoding for neurotrophin-3 (NT3), sonic hedgehog (SHH) and the combination of these factors was delivered from bridges implanted into a lateral hemisection defect at T9/T10 in mice, and the response of endogenous progenitor cells within the spinal cord was investigated. Relative to control, the localized sustained expression of these factors significantly increased growth of regenerating axons into the bridge and enhanced axon myelination 8 weeks after injury. SHH decreased Sox2+ cells and increased Olig2+ cells, whereas NT3 alone or in combination with SHH enhanced GFAP+ and Olig2+ cells relative to control. For delivery of lentivirus encoding for either factor, we identified cells at various stages of differentiation along the oligodendrocyte lineage (e.g., O4+, GalC+). Expression of NT3 enhanced myelination primarily by infiltrating Schwann cells, whereas SHH over-expression substantially increased myelination by oligodendrocytes. Gene delivery represents a promising tool to direct activation and differentiation of endogenous progenitor cells for applications in regenerative medicine. PMID:24873988

  7. Anti-apoptotic role of Sonic hedgehog protein at the early stages of nervous system organogenesis.

    PubMed

    Charrier, J B; Lapointe, F; Le Douarin, N M; Teillet, M A

    2001-10-01

    In vertebrates the neural tube, like most of the embryonic organs, shows discreet areas of programmed cell death at several stages during development. In the chick embryo, cell death is dramatically increased in the developing nervous system and other tissues when the midline cells, notochord and floor plate, are prevented from forming by excision of the axial-paraxial hinge (APH), i.e. caudal Hensen's node and rostral primitive streak, at the 6-somite stage ( Charrier, J. B., Teillet, M.-A., Lapointe, F. and Le Douarin, N. M. (1999). Development 126, 4771-4783). In this paper we demonstrate that one day after APH excision, when dramatic apoptosis is already present in the neural tube, the latter can be rescued from death by grafting a notochord or a floor plate fragment in its vicinity. The neural tube can also be recovered by transplanting it into a stage-matched chick embryo having one of these structures. In addition, cells engineered to produce Sonic hedgehog protein (SHH) can mimic the effect of the notochord and floor plate cells in in situ grafts and transplantation experiments. SHH can thus counteract a built-in cell death program and thereby contribute to organ morphogenesis, in particular in the central nervous system. PMID:11641224

  8. Gas1 is a receptor for sonic hedgehog to repel enteric axons.

    PubMed

    Jin, Shiying; Martinelli, David C; Zheng, Xiaobin; Tessier-Lavigne, Marc; Fan, Chen-Ming

    2015-01-01

    The myenteric plexus of the enteric nervous system controls the movement of smooth muscles in the gastrointestinal system. They extend their axons between two peripheral smooth muscle layers to form a tubular meshwork arborizing the gut wall. How a tubular axonal meshwork becomes established without invading centrally toward the gut epithelium has not been addressed. We provide evidence here that sonic hedgehog (Shh) secreted from the gut epithelium prevents central projections of enteric axons, thereby forcing their peripheral tubular distribution. Exclusion of enteric central projections by Shh requires its binding partner growth arrest specific gene 1 (Gas1) and its signaling component smoothened (Smo) in enteric neurons. Using enteric neurons differentiated from neurospheres in vitro, we show that enteric axon growth is not inhibited by Shh. Rather, when Shh is presented as a point source, enteric axons turn away from it in a Gas1-dependent manner. Of the Gαi proteins that can couple with Smo, G protein α Z (Gnaz) is found in enteric axons. Knockdown and dominant negative inhibition of Gnaz dampen the axon-repulsive response to Shh, and Gnaz mutant intestines contain centrally projected enteric axons. Together, our data uncover a previously unsuspected mechanism underlying development of centrifugal tubular organization and identify a previously unidentified effector of Shh in axon guidance. PMID:25535338

  9. Anti-apoptotic role of the sonic hedgehog signaling pathway in the proliferation of ameloblastoma

    PubMed Central

    KANDA, SHIORI; MITSUYASU, TAKESHI; NAKAO, YU; KAWANO, SHINTARO; GOTO, YUICHI; MATSUBARA, RYOTA; NAKAMURA, SEIJI

    2013-01-01

    Sonic hedgehog (SHH) signaling pathway is crucial to growth and patterning during organogenesis. Aberrant activation of the SHH signaling pathway can result in tumor formation. We examined the expression of SHH signaling molecules and investigated the involvement of the SHH pathway in the proliferation of ameloblastoma, the most common benign tumor of the jaws. We used immunohistochemistry on ameloblastoma specimens and immunocytochemistry and reverse transcription-PCR on the ameloblastoma cell line AM-1. We also used the inhibitors of SHH signaling, SHH neutralizing antibody and cyclopamine, to assess the effects of SHH on the proliferation of AM-1 cells. We detected expression of SHH, patched, GLI1, GLI2 and GLI3 in the ameloblastoma specimens and AM-1 cells. The proliferation of these cells was significantly inhibited in the presence of SHH neutralizing antibody or cyclopamine; this was confirmed by BrdU incorporation assays. Furthermore, in the presence of SHH neutralizing antibody, nuclear translocation of GLI1 and GLI2 was abolished, apoptosis was induced, BCL-2 expression decreased and BAX expression increased. Our results suggest that the SHH signaling pathway is constitutively active in ameloblastoma and plays an anti-apoptotic role in the proliferation of ameloblastoma cells through autocrine loop stimulation. PMID:23835807

  10. Sonic hedgehog initiates cochlear hair cell regeneration through downregulation of retinoblastoma protein

    SciTech Connect

    Lu, Na; Chen, Yan; Wang, Zhengmin; Chen, Guoling; Lin, Qin; Chen, Zheng-Yi; Li, Huawei

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer Shh activation in neonatal cochleae enhances sensory cell proliferation. Black-Right-Pointing-Pointer Proliferating supporting cells can transdifferentiate into hair cells. Black-Right-Pointing-Pointer Shh promotes proliferation by transiently modulating pRb activity. Black-Right-Pointing-Pointer Shh inhibits pRb by inhibiting transcription and increasing phosphorylation of pRb. -- Abstract: Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We show that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration.

  11. May Sonic Hedgehog proteins be markers for malignancy in uterine smooth muscle tumors?

    PubMed

    Garcia, Natalia; Bozzini, Nilo; Baiocchi, Glauco; da Cunha, Isabela Werneck; Maciel, Gustavo Arantes; Soares Junior, José Maria; Soares, Fernando Augusto; Baracat, Edmund Chada; Carvalho, Katia Candido

    2016-04-01

    Several studies have demonstrated that the Sonic Hedgehog signaling pathway (SHH) plays an important role in tumorigenesis and cellular differentiation. We analyzed the protein expression of SHH pathway components and evaluated whether their profile could be useful for the diagnosis, prognosis, or prediction of the risk of malignancy for uterine smooth muscle tumors (USMTs). A total of 176 samples (20 myometrium, 119 variants of leiomyoma, and 37 leiomyosarcoma) were evaluated for the protein expression of the SHH signaling components, HHIP1 (SHH inhibitor), and BMP4 (SHH target) by immunohistochemistry. Western blot analysis was performed to verify the specificity of the antibodies. We grouped leiomyoma samples into conventional leiomyomas and unusual leiomyomas that comprise atypical, cellular, mitotically active leiomyomas and uterine smooth muscle tumors of uncertain malignant potential. Immunohistochemical analysis showed that SMO, SUFU, GLI1, GLI3, and BMP4 expression gradually increased depending on to the histologic tissue type. The protein expression of SMO, SUFU, and GLI1 was increased in unusual leiomyoma and leiomyosarcoma samples compared to normal myometrium. The inhibitor HHIP1 showed higher expression in myometrium, whereas only negative or basal expression of SMO, SUFU, GLI1, and GLI3 was detected in these samples. Strong expression of SHH was associated with poorer overall survival. Our data suggest that the expression of SHH proteins can be useful for evaluating the potential risk of malignancy for USMTs. Moreover, GLI1 and SMO may serve as future therapeutic targets for women with USMTs. PMID:26997437

  12. Sonic hedgehog stimulates neurite outgrowth in a mechanical stretch model of reactive-astrogliosis

    PubMed Central

    Berretta, Antonio; Gowing, Emma K.; Jasoni, Christine L.; Clarkson, Andrew N.

    2016-01-01

    Although recovery following a stroke is limited, undamaged neurons under the right conditions can establish new connections and take on-board lost functions. Sonic hedgehog (Shh) signaling is integral for developmental axon growth, but its role after injury has not been fully examined. To investigate the effects of Shh on neuronal sprouting after injury, we used an in vitro model of glial scar, whereby cortical astrocytes were mechanically traumatized to mimic reactive astrogliosis observed after stroke. This mechanical trauma impaired neurite outgrowth from post-natal cortical neurons plated on top of reactive astrocytes. Addition of Shh to the media, however, resulted in a concentration-dependent increase in neurite outgrowth. This response was inhibited by cyclopamine and activated by oxysterol 20(S)-hydroxycholesterol, both of which modulate the activity of the Shh co-receptor Smoothened (Smo), demonstrating that Shh-mediated neurite outgrowth is Smo-dependent. In addition, neurite outgrowth was not associated with an increase in Gli-1 transcription, but could be inhibited by PP2, a selective inhibitor of Src family kinases. These results demonstrate that neurons exposed to the neurite growth inhibitory environment associated with a glial scar can be stimulated by Shh, with signaling occurring through a non-canonical pathway, to overcome this suppression and stimulate neurite outgrowth. PMID:26902390

  13. Sonic hedgehog signaling promotes growth of oral squamous cell carcinoma cells associated with bone destruction.

    PubMed

    Honami, Tatsuki; Shimo, Tsuyoshi; Okui, Tatsuo; Kurio, Naito; Hassan, Nur Mohammad Monsur; Iwamoto, Masahiro; Sasaki, Akira

    2012-01-01

    Sonic hedgehog (Shh) and its signaling have been identified in several human cancers, and increased levels of its expression appear to correlate with disease progression and metastasis. However, the role of Shh in bone destruction associated with oral squamous cell carcinomas, which frequently invade the maxilla or the mandible, is still unclear. In this study we show that the use of siRNA for Shh to block SHH secreted by SAS oral squamous cell carcinoma cells suppressed the tumor growth and tumor angiogenesis of subcutaneous SAS xenografts in vivo. Moreover, blockade of Shh in SAS cells decreased tumor growth and osteoclast number in a tibial metaphysis mouse model. Significantly, we clearly show that SHH stimulated osteoclast formation in a co-culture system consisting of murine bone stromal ST2 cells and murine CD11b(+) bone marrow cells. These findings suggest that Shh signaling is a potential target for the treatment of oral squamous cell carcinoma associated with bone destruction. PMID:21945071

  14. GATA4 and GATA6 regulate pancreatic endoderm identity through inhibition of hedgehog signaling.

    PubMed

    Xuan, Shouhong; Sussel, Lori

    2016-03-01

    GATA4 and GATA6 are zinc finger transcription factors that have important functions in several mesodermal and endodermal organs, including heart, liver and pancreas. In humans, heterozygous mutations of either factor are associated with pancreatic agenesis; however, homozygous deletion of both Gata4 and Gata6 is necessary to disrupt pancreas development in mice. In this study, we demonstrate that arrested pancreatic development in Gata4(fl/fl); Gata6(fl/fl); Pdx1:Cre (pDKO) embryos is accompanied by the transition of ventral and dorsal pancreatic fates into intestinal or stomach lineages, respectively. These results indicate that GATA4 and GATA6 play essential roles in maintaining pancreas identity by regulating foregut endodermal fates. Remarkably, pancreatic anlagen derived from pDKO embryos also display a dramatic upregulation of hedgehog pathway components, which are normally absent from the presumptive pancreatic endoderm. Consistent with the erroneous activation of hedgehog signaling, we demonstrate that GATA4 and GATA6 are able to repress transcription through the sonic hedgehog (Shh) endoderm-specific enhancer MACS1 and that GATA-binding sites within this enhancer are necessary for this repressive activity. These studies establish the importance of GATA4/6-mediated inhibition of hedgehog signaling as a major mechanism regulating pancreatic endoderm specification during patterning of the gut tube. PMID:26932670

  15. Sonic hedgehog promotes somitic chondrogenesis by altering the cellular response to BMP signaling

    PubMed Central

    Murtaugh, L. Charles; Chyung, Jay H.; Lassar, Andrew B.

    1999-01-01

    Previous work has indicated that signals from the floor plate and notochord promote chondrogenesis of the somitic mesoderm. These tissues, acting through the secreted signaling molecule Sonic hedgehog (Shh), appear to be critical for the formation of the sclerotome. Later steps in the differentiation of sclerotome into cartilage may be independent of the influence of these axial tissues. Although the signals involved in these later steps have not yet been pinpointed, there is substantial evidence that the analogous stages of limb bud chondrogenesis require bone morphogenetic protein (BMP) signaling. We show here that presomitic mesoderm (psm) cultured in the presence of Shh will differentiate into cartilage, and that the later stages of this differentiation process specifically depend on BMP signaling. We find that Shh not only acts in collaboration with BMPs to induce cartilage, but that it changes the competence of target cells to respond to BMPs. In the absence of Shh, BMP administration induces lateral plate gene expression in cultured psm. After exposure to Shh, BMP signaling no longer induces expression of lateral plate markers but now induces robust chondrogenesis in cultured psm. Shh signals are required only transiently for somitic chondrogenesis in vitro, and act to provide a window of competence during which time BMP signals can induce chondrogenic differentiation. Our findings suggest that chondrogenesis of somitic tissues can be divided into two separate phases: Shh-mediated generation of precursor cells, which are competent to initiate chondrogenesis in response to BMP signaling, and later exposure to BMPs, which act to trigger chondrogenic differentiation. PMID:9925646

  16. Molecular therapy targeting Sonic hedgehog and hepatocyte growth factor signaling in a mouse model of medulloblastoma.

    PubMed

    Coon, Valerie; Laukert, Tamara; Pedone, Carolyn A; Laterra, John; Kim, K Jin; Fults, Daniel W

    2010-09-01

    The use of genetically engineered mice has provided insights into the molecular pathogenesis of the pediatric brain tumor medulloblastoma and revealed promising therapeutic targets. Ectopic expression of Sonic hedgehog (Shh) in cerebellar neural progenitor cells induces medulloblastomas in mice, and coexpression of hepatocyte growth factor (HGF) enhances Shh-induced tumor formation. To determine whether Shh + HGF-driven medulloblastomas were responsive to Shh signaling blockade and whether treatment response could be enhanced by combination therapy targeting both HGF and Shh signaling pathways, we carried out a survival study in mice. We induced medulloblastomas by retrovirus-mediated expression of Shh and HGF, after which we treated the mice systemically with (a) HGF-neutralizing monoclonal antibody L2G7, (b) Shh signaling inhibitor cyclopamine, (c) Shh-neutralizing monoclonal antibody 5E1, (d) L2G7 + cyclopamine, or (e) L2G7 + 5E1. We report that monotherapy targeting either HGF signaling or Shh signaling prolonged survival and that anti-HGF therapy had a more durable response than Shh-targeted therapy. The effect of L2G7 + 5E1 combination therapy on cumulative survival was equivalent to that of L2G7 monotherapy and that of L2G7 + cyclopamine therapy was worse. The principal mechanism by which Shh- and HGF-targeted therapies inhibited tumor growth was a potent apoptotic death response in tumor cells, supplemented by a weaker suppressive effect on proliferation. Our observation that combination therapy either failed to improve or even reduced survival in mice bearing Shh + HGF-induced medulloblastomas compared with monotherapy underscores the importance of preclinical testing of molecular-targeted therapies in animal models of tumors in which the targeted pathways are known to be active. PMID:20807782

  17. Molecular Therapy Targeting Sonic Hedgehog and Hepatocyte Growth Factor Signaling in a Mouse Model of Medulloblastoma

    PubMed Central

    Coon, Valerie; Laukert, Tamara; Pedone, Carolyn A.; Laterra, John; Kim, K. Jin; Fults, Daniel W.

    2010-01-01

    The use of genetically engineered mice has provided insights into the molecular pathogenesis of the pediatric brain tumor medulloblastoma and revealed promising therapeutic targets. Ectopic expression of Sonic Hedgehog (Shh) in cerebellar neural progenitor cells induces medulloblastomas in mice, and coexpression of hepatocyte growth factor (HGF) enhances Shh-induced tumor formation. To determine whether Shh+HGF–driven medulloblastomas were responsive to Shh signaling blockade and whether treatment response could be enhanced by combination therapy targeting both HGF and Shh signaling pathways, we carried out a survival study in mice. We induced medulloblastomas by retrovirus-mediated expression of Shh and HGF, after which we treated the mice systemically with (a) HGF-neutralizing monoclonal antibody L2G7, (b) Shh signaling inhibitor cyclopamine, (c) Shh-neutralizing monoclonal antibody 5E1, (d) L2G7+cyclopamine, or (e) L2G7+5E1. We report that monotherapy targeting either HGF signaling or Shh signaling prolonged survival and that anti-HGF therapy had a more durable response than Shh-targeted therapy. The effect of L2G7+5E1 combination therapy on cumulative survival was equivalent to that of L2G7 monotherapy and that of L2G7+cyclopamine therapy was worse. The principal mechanism by which Shh- and HGF-targeted therapies inhibited tumor growth was a potent apoptotic death response in tumor cells, supplemented by a weaker suppressive effect on proliferation. Our observation that combination therapy either failed to improve or even reduced survival in mice bearing Shh+HGF induced medulloblastomas compared with monotherapy underscores the importance of preclinical testing of molecular-targeted therapies in animal models of tumors in which the targeted pathways are known to be active. PMID:20807782

  18. Differential Expression of Sonic Hedgehog Protein in Human Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma.

    PubMed

    Al-Bahrani, Redha; Nagamori, Seishi; Leng, Roger; Petryk, Anna; Sergi, Consolato

    2015-09-01

    Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (CCA) are the two most common primary liver malignancies in adult patients. The molecular mechanisms underlying the pathogenesis of HCC and CCA are still poorly understood. Sonic hedgehog (SHH) signaling plays an essential role during mammalian development, i.e., promoting organ growth, tissue differentiation, and cell polarity. The upregulation of SHH has been observed during carcinogenesis, including colorectal carcinoma. Our aim was to investigate the expression pattern of SHH in HCC and CCA. We investigated 40 malignant tumors of the liver, including 21 HCC and 19 of intrahepatic CCA cases by immunohistochemistry (IHC) using a polyclonal antibody against SHH and Avidin-Biotin Complex method. We also investigated the co-localization of SHH and Bone morphogenetic protein 4 (BMP4) in CCA using indirect double IHC. Moreover, we examined whether SHH is expressed in two HCC cell lines HepG2 and HuH-7 and three CCA cell lines OZ, HuCCT1 and HuH28. We found that SHH was expressed in 15 out of 21 cases (71.4 %) of HCC and 100 % of CCA cases by immunohistochemistry. SHH expression showed a positive trend in liver tumors (HCC, CCA) with high grade (G2-G3). SHH localized to the epithelial cells, while BMP4 was expressed in the stromal cells in CCA by double IHC. However, both HCC and CCA cell lines showed SHH expression by Western blot analysis. In conclusion, SHH seems to be an interesting marker of de-differentiation in liver tumors and the simultaneous epithelial-mesenchymal expression may be an intriguing prompt to investigate cross-talks between SHH and BMP4. PMID:25740074

  19. Metformin exerts anticancer effects through the inhibition of the Sonic hedgehog signaling pathway in breast cancer.

    PubMed

    Fan, Cong; Wang, Yunshan; Liu, Ziming; Sun, Ying; Wang, Xiuwen; Wei, Guangwei; Wei, Junmin

    2015-07-01

    Metformin, a widely prescribed antidiabetic drug, has previously been shown to lower the risk of certain types of cancer, including that of breast cancer, and to improve prognosis. Its anticancer effects, which are mediated by the activation of AMP-activated protein kinase (AMPK), have become notable. The Sonic hedgehog (Shh) signaling pathway is involved in changes in mammary ducts and malignant transformation. The aim of the present study was to elucidate the role of the Shh pathway in mediating the anticancer effects of metformin and the correlation between AMPK and the Shh pathway. We investigated the effectiveness of metformin in inhibiting the proliferation, migration, invasion and stemness of breast cancer cells in vitro using RNA extraction and reverse transcription‑polymerase chain reaction (RT-PCR), western blot analysis, cell proliferation assay, scratch-wound assay (cell migration assay), cell invasion assay, mammosphere culture and flow cytometry. In in vivo experiments, a tumor xenograft model was used to detect the effects of metformin on cancer cell proliferation. The results revealed that the treatment of breast cancer cells with metformin led to the inhibition of the Shh signaling pathway. Importantly, metformin inhibited recombinant human Shh (rhShh)‑induced cell migration, invasion, and stemness, and impaired cell proliferation both in vitro and in vivo. Furthermore, the small interfering RNA (siRNA)‑mediated downregulation of AMPK reversed the inhibitory effects of metformin on rhShh‑induced Gli-1 expression and stemness. Our findings identified a role of the Shh signaling pathway in the anticancer effects of metformin in breast cancer. Furthermore, we revealed that the metformin-mediated inhibition of the Shh signaling pathway may be dependent on AMPK. PMID:25999130

  20. Sonic hedgehog is a chemotactic neural crest cell guide that is perturbed by ethanol exposure.

    PubMed

    Tolosa, Ezequiel J; Fernández-Zapico, Martín E; Battiato, Natalia L; Rovasio, Roberto A

    2016-01-01

    Our aim was to understand the involvement of Sonic hedgehog (Shh) morphogen in the oriented distribution of neural crest cells (NCCs) toward the optic vesicle and to look for potential disorders of this guiding mechanism after ethanol exposure. In vitro directional analysis showed the chemotactic response of NCCs up Shh gradients and to notochord co-cultures (Shh source) or to their conditioned medium, a response inhibited by anti-Shh antibody, receptor inhibitor cyclopamine and anti-Smo morpholino (MO). Expression of the Ptch-Smo receptor complex on in vitro NCCs was also shown. In whole embryos, the expression of Shh mRNA and protein was seen in the ocular region, and of Ptch, Smo and Gli/Sufu system on cephalic NCCs. Anti-Smo MO or Ptch-mutated plasmid (Ptch1(Δloop2)) impaired cephalic NCC migration/distribution, with fewer cells invading the optic region and with higher cell density at the homolateral mesencephalic level. Beads embedded with cyclopamine (Smo-blocking) or Shh (ectopic signal) supported the role of Shh as an in vivo guide molecule for cephalic NCCs. Ethanol exposure perturbed in vitro and in vivo NCC migration. Early stage embryos treated with ethanol, in a model reproducing Fetal Alcohol Syndrome, showed later disruptions of craniofacial development associated with abnormal in situ expression of Shh morphogen. The results show the Shh/Ptch/Smo-dependent migration of NCCs toward the optic vesicle, with the support of specific inactivation with genetic and pharmacological tools. They also help to understand mechanisms of accurate distribution of embryonic cells and of their perturbation by a commonly consumed teratogen, and demonstrate, in addition to its other known developmental functions, a new biological activity of cellular guidance for Shh. PMID:26979762

  1. Sonic hedgehog-mediated epithelial-mesenchymal transition in renal tubulointerstitial fibrosis.

    PubMed

    Bai, Yongheng; Lu, Hong; Lin, Chengcheng; Xu, Yaya; Hu, Dannü; Liang, Yong; Hong, Weilong; Chen, Bicheng

    2016-05-01

    The sonic hedgehog (SHH) signaling pathway plays a critical role in embryonic development, tissue regeneration and organogenesis. The activation of SHH signaling produces profibrogenic effects in various tissues, such as the liver and the biliary ducts. However, the role of SHH signaling in renal fibrogenesis remains to be elucidated. For this purpose, in the present study, we evaluated the hypothesis that activated SHH signaling promotes the acquisition of a myofibroblastic phenotype through the epithelial-mesenchymal transition (EMT), resulting in renal interstitial fibrosis (RIF). Kidney samples from rats subjected to unilateral or bilateral ureteral obstruction exhibited the enhanced expression of SHH-pathway proteins, mesenchymal markers and the decreased expression of epithelial markers. Overactive SHH signaling as well as tubular EMT and RIF in the obstructed kidneys were inhibited by recanalization of the ureter. In vitro, SHH signaling was activated during EMT induction and extracellular matrix (ECM) deposition was observed in transforming growth factor-β1 (TGF-β1)-treated renal tubular epithelial cells [RTECs; NRK-52E cell line]. Exogenous SHH activated SHH signaling and resulted in the upregulated expression of mesenchymal genes, the profibrogenic cytokine TGF-β1, and the downregulated expression of epithelial markers. The blockade of SHH signaling with cyclopamine abolished SHH-mediated EMT as well as the acquisition of a myofibroblastic phenotype, and decreased TGF-β1 expression and ECM production. Thus, taken together, these findings demonstrate that the activation of the SHH signaling pathway promotes the induction of EMT and renal tubulointerstitial fibrosis. The pharmacological inhibition of SHH signaling may potentially be of therapeutic value in the management of fibrotic kidney diseases. PMID:27035418

  2. Changes in expression and secretion patterns of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway molecules during murine neural stem/progenitor cell differentiation in vitro☆

    PubMed Central

    Lu, Jiang; Lu, Kehuan; Li, Dongsheng

    2012-01-01

    In the present study, we investigated the dynamic expression of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway related factors in the process of in vitro hippocampal neural stem/progenitor cell differentiation from embryonic Sprague-Dawley rats or embryonic Kunming species mice, using fluorescent quantitative reverse transcription-PCR and western blot analyses. Results demonstrated that the dynamic expression of fibroblast growth factor 8 was similar to fibroblast growth factor receptor 1 expression but not to other fibroblast growth factor receptors. Enzyme-linked immunosorbent assay demonstrated that fibroblast growth factor 8 and Sonic Hedgehog signaling pathway protein factors were secreted by neural cells into the intercellular niche. Our experimental findings indicate that fibroblast growth factor 8 and Sonic Hedgehog expression may be related to the differentiation of neural stem/progenitor cells. PMID:25624789

  3. Nicotine induces self-renewal of pancreatic cancer stem cells via neurotransmitter-driven activation of sonic hedgehog signalling.

    PubMed

    Al-Wadei, Mohammed H; Banerjee, Jheelam; Al-Wadei, Hussein A N; Schuller, Hildegard M

    2016-01-01

    A small subpopulation of pancreatic cancer cells with characteristics of stem cells drive tumour initiation, progression and metastasis. A better understanding of the regulation of cancer stem cells may lead to more effective cancer prevention and therapy. We have shown that the proliferation and migration of pancreatic cancer cell lines is activated by the nicotinic receptor-mediated release of stress neurotransmitters, responses reversed by γ-aminobutyric acid (GABA). However, the observed cancer inhibiting effects of GABA will only succeed clinically if GABA inhibits pancreatic cancer stem cells (PCSCs) in addition to the more differentiated cancer cells that comprise the majority of cancer tissues and cell lines. Using PCSCs isolated from two pancreatic cancer patients by cell sorting and by spheroid formation assay from pancreatic cancer cell line Panc-1, we tested the hypothesis that nicotine induces the self-renewal of PCSCs. Nicotinic acetylcholine receptors (nAChRs) α3, α4, α5 and α7 were expressed and chronic exposure to nicotine increased the protein expression of these receptors. Immunoassays showed that PCSCs produced the stress neurotransmitters epinephrine and norepinephrine and the inhibitory neurotransmitter GABA. Chronic nicotine significantly increased the production of stress neurotransmitters and sonic hedgehog (SHH) while inducing Gli1 protein and decreasing GABA. GABA treatment inhibited the induction of SHH and Gli1. Spheroid formation and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide assays showed significant nicotine-induced increases in self renewal and cell proliferation, responses blocked by GABA. Our data suggest that nicotine increases the SHH-mediated malignant potential of PCSCs and that GABA prevents these effects. PMID:26689865

  4. Hedgehog pathway regulators influence cervical cancer cell proliferation, survival and migration

    SciTech Connect

    Samarzija, Ivana; Beard, Peter

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer Unknown cellular mutations complement papillomavirus-induced carcinogenesis. Black-Right-Pointing-Pointer Hedgehog pathway components are expressed by cervical cancer cells. Black-Right-Pointing-Pointer Hedgehog pathway activators and inhibitors regulate cervical cancer cell biology. Black-Right-Pointing-Pointer Cell immortalization by papillomavirus and activation of Hedgehog are independent. -- Abstract: Human papillomavirus (HPV) infection is considered to be a primary hit that causes cervical cancer. However, infection with this agent, although needed, is not sufficient for a cancer to develop. Additional cellular changes are required to complement the action of HPV, but the precise nature of these changes is not clear. Here, we studied the function of the Hedgehog (Hh) signaling pathway in cervical cancer. The Hh pathway can have a role in a number of cancers, including those of liver, lung and digestive tract. We found that components of the Hh pathway are expressed in several cervical cancer cell lines, indicating that there could exists an autocrine Hh signaling loop in these cells. Inhibition of Hh signaling reduces proliferation and survival of the cervical cancer cells and induces their apoptosis as seen by the up-regulation of the pro-apoptotic protein cleaved caspase 3. Our results indicate that Hh signaling is not induced directly by HPV-encoded proteins but rather that Hh-activating mutations are selected in cells initially immortalized by HPV. Sonic Hedgehog (Shh) ligand induces proliferation and promotes migration of the cervical cancer cells studied. Together, these results indicate pro-survival and protective roles of an activated Hh signaling pathway in cervical cancer-derived cells, and suggest that inhibition of this pathway may be a therapeutic option in fighting cervical cancer.

  5. The buccohypophyseal canal is an ancestral vertebrate trait maintained by modulation in sonic hedgehog signaling

    PubMed Central

    2013-01-01

    Background The pituitary gland is formed by the juxtaposition of two tissues: neuroectoderm arising from the basal diencephalon, and oral epithelium, which invaginates towards the central nervous system from the roof of the mouth. The oral invagination that reaches the brain from the mouth is referred to as Rathke’s pouch, with the tip forming the adenohypophysis and the stalk disappearing after the earliest stages of development. In tetrapods, formation of the cranial base establishes a definitive barrier between the pituitary and oral cavity; however, numerous extinct and extant vertebrate species retain an open buccohypophyseal canal in adulthood, a vestige of the stalk of Rathke’s pouch. Little is currently known about the formation and function of this structure. Here we have investigated molecular mechanisms driving the formation of the buccohypophyseal canal and their evolutionary significance. Results We show that Rathke’s pouch is located at a boundary region delineated by endoderm, neural crest-derived oral mesenchyme and the anterior limit of the notochord, using CD1, R26R-Sox17-Cre and R26R-Wnt1-Cre mouse lines. As revealed by synchrotron X-ray microtomography after iodine staining in mouse embryos, the pouch has a lobulated three-dimensional structure that embraces the descending diencephalon during pituitary formation. Polarisfl/fl; Wnt1-Cre, Ofd1-/- and Kif3a-/- primary cilia mouse mutants have abnormal sonic hedgehog (Shh) signaling and all present with malformations of the anterior pituitary gland and midline structures of the anterior cranial base. Changes in the expressions of Shh downstream genes are confirmed in Gas1-/- mice. From an evolutionary perspective, persistence of the buccohypophyseal canal is a basal character for all vertebrates and its maintenance in several groups is related to a specific morphology of the midline that can be related to modulation in Shh signaling. Conclusion These results provide insight into a poorly

  6. Sonic Hedgehog Signaling Protects Human Hepatocellular Carcinoma Cells Against Ionizing Radiation in an Autocrine Manner

    SciTech Connect

    Chen, Yu-Jen; Lin, Chin-Ping; Hsu, Ming-Ling; Shieh, Hui-Ru; Chao, Nicholas K.; Chao, K.S. Clifford

    2011-07-01

    Purpose: Sonic hedgehog (Shh) signaling is critical to embryogenesis and resistance to chemotherapy. We aimed to examine the role of Shh signaling in the response to radiation of human hepatocellular carcinoma (HCC) cells. Methods and Materials: Response to ionizing radiation therapy (RT) was evaluated by clonogenic assay. Quantitative RT-polymerase chain reaction for patched-1 (PTCH-1) expression was performed. Cytosolic accumulation of Shh and nuclear translocation of Gli-1 were assessed by immunofluorescence. Gli-1 knockdown was done by RNA interference (RNAi). Immunoprecipitation was performed to detect Shh ligand in conditioned medium. Immunofluorescent stain for {gamma}-H2AX was used as an index of DNA double strand breaks (DSB). Expression of proteins related to DNA damage repair was assessed by Western blotting. Results: We found that Shh ligand could protect human HCC HA22T and Sk-Hep1 cells against RT. In HA22T cells, Shh ligand activated the Shh signaling with upregulation of Shh, PTCH-1, and Gli-1 expression. The nuclear translocation of Gli-1 further supports the activation of Gli-1. The radioprotection by Shh ligand was partly blocked by Shh antibody neutralization and was abolished by Gli-1 RNAi, suggesting a critical role of Shh signaling in radiation resistance. Furthermore, we noted that soluble factors secreted into conditioned medium, either constitutively or responding to radiation, by HA22T or Sk-Hep1 cells protected subsequent culturing cells against RT. Immunoprecipitation shows the presence of Shh peptide in conditioned medium. Intriguingly, antibody neutralization of Shh ligand or knockdown of Gli-1 reversed the radioprotective effect of conditioned medium. Furthermore, Shh ligand reduced the RT-induced phosphorylation of checkpoint kinase 1 and impaired the repair of DNA DSB. Conclusions: Activation of Shh signaling protects HCC cells against ionizing radiation in an autocrine manner. Impairment of DNA damage repair might involve

  7. Involvement of the sonic hedgehog, patched 1 and bmp2 genes in patterning of the zebrafish dermal fin rays.

    PubMed

    Laforest, L; Brown, C W; Poleo, G; Géraudie, J; Tada, M; Ekker, M; Akimenko, M A

    1998-11-01

    The signaling molecule encoded by Sonic hedgehog (shh) participates in the patterning of several embryonic structures including limbs. During early fin development in zebrafish, a subset of cells in the posterior margin of pectoral fin buds express shh. We have shown that regulation of shh in pectoral fin buds is consistent with a role in mediating the activity of a structure analogous to the zone of polarizing activity (ZPA) (Akimenko and Ekker (1995) Dev. Biol. 170, 243-247). During growth of the bony rays of both paired and unpaired fins, and during fin regeneration, there does not seem to be a region equivalent to the ZPA and one would predict that shh would play a different role, if any, during these processes specific to fish fins. We have examined the expression of shh in the developing fins of 4-week old larvae and in regenerating fins of adults. A subset of cells in the basal layer of the epidermis in close proximity to the newly formed dermal bone structures of the fin rays, the lepidotrichia, express shh, and ptc1 which is thought to encode the receptor of the SHH signal. The expression domain of ptc1 is broader than that of shh and adjacent blastemal cells releasing the dermal bone matrix also express ptc1. Further observations indicate that the bmp2 gene, in addition to being expressed in the same cells of the basal layer of the epidermis as shh, is also expressed in a subset of the ptc1-expressing cells of the blastema. Amputations of caudal fins immediately after the first branching point of the lepidotrichia, and global administration of all-trans-retinoic acid, two procedures known to cause fusion of adjacent rays, result in a transient decrease in the expression of shh, ptc1 and bmp2. The effects of retinoic acid on shh expression occur within minutes after the onset of treatment suggesting direct regulation of shh by retinoic acid. These observations suggest a role for shh, ptc1 and bmp2 in patterning of the dermoskeleton of developing and

  8. Sonic hedgehog (Shh) signaling promotes tumorigenicity and stemness via activation of epithelial-to-mesenchymal transition (EMT) in bladder cancer.

    PubMed

    Islam, S S; Mokhtari, R B; Noman, A S; Uddin, M; Rahman, M Z; Azadi, M A; Zlotta, A; van der Kwast, T; Yeger, H; Farhat, W A

    2016-05-01

    Activation of the sonic hedgehog (Shh) signaling pathway controls tumorigenesis in a variety of cancers. Here, we show a role for Shh signaling in the promotion of epithelial-to-mesenchymal transition (EMT), tumorigenicity, and stemness in the bladder cancer. EMT induction was assessed by the decreased expression of E-cadherin and ZO-1 and increased expression of N-cadherin. The induced EMT was associated with increased cell motility, invasiveness, and clonogenicity. These progression relevant behaviors were attenuated by treatment with Hh inhibitors cyclopamine and GDC-0449, and after knockdown by Shh-siRNA, and led to reversal of the EMT phenotype. The results with HTB-9 were confirmed using a second bladder cancer cell line, BFTC905 (DM). In a xenograft mouse model TGF-β1 treated HTB-9 cells exhibited enhanced tumor growth. Although normal bladder epithelial cells could also undergo EMT and upregulate Shh with TGF-β1 they did not exhibit tumorigenicity. The TGF-β1 treated HTB-9 xenografts showed strong evidence for a switch to a more stem cell like phenotype, with functional activation of CD133, Sox2, Nanog, and Oct4. The bladder cancer specific stem cell markers CK5 and CK14 were upregulated in the TGF-β1 treated xenograft tumor samples, while CD44 remained unchanged in both treated and untreated tumors. Immunohistochemical analysis of 22 primary human bladder tumors indicated that Shh expression was positively correlated with tumor grade and stage. Elevated expression of Ki-67, Shh, Gli2, and N-cadherin were observed in the high grade and stage human bladder tumor samples, and conversely, the downregulation of these genes were observed in the low grade and stage tumor samples. Collectively, this study indicates that TGF-β1-induced Shh may regulate EMT and tumorigenicity in bladder cancer. Our studies reveal that the TGF-β1 induction of EMT and Shh is cell type context dependent. Thus, targeting the Shh pathway could be clinically beneficial in the

  9. Brown adipocyte differentiation is regulated by hedgehog signaling during development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During development, brown fat tissue arises from mesenchymal precursor cells under the control of signaling networks that are not yet well understood. The Hedgehog (Hh) signaling pathway is one of the major signaling pathways that regulate mesenchymal cell fate. However, whether the Hh pathway contr...

  10. Serotonin Regulates Calcium Homeostasis in Lactation by Epigenetic Activation of Hedgehog Signaling

    PubMed Central

    Laporta, Jimena; Keil, Kimberly P.; Weaver, Samantha R.; Cronick, Callyssa M.; Prichard, Austin P.; Crenshaw, Thomas D.; Heyne, Galen W.; Vezina, Chad M.; Lipinski, Robert J.

    2014-01-01

    Calcium homeostasis during lactation is critical for maternal and neonatal health. We previously showed that nonneuronal/peripheral serotonin [5-hydroxytryptamine (5-HT)] causes the lactating mammary gland to synthesize and secrete PTHrP in an acute fashion. Here, using a mouse model, we found that genetic inactivation of tryptophan hydroxylase 1 (Tph1), which catalyzes the rate-limiting step in peripheral 5-HT synthesis, reduced circulating and mammary PTHrP expression, osteoclast activity, and maternal circulating calcium concentrations during the transition from pregnancy to lactation. Tph1 inactivation also reduced sonic hedgehog signaling in the mammary gland during lactation. Each of these deficiencies was rescued by daily injections of 5-hydroxy-L-tryptophan (an immediate precursor of 5-HT) to Tph1-deficient dams. We used immortalized mouse embryonic fibroblasts to demonstrate that 5-HT induces PTHrP through a sonic hedgehog-dependent signal transduction mechanism. We also found that 5-HT altered DNA methylation of the Shh gene locus, leading to transcriptional initiation at an alternate start site and formation of a variant transcript in mouse embryonic fibroblasts in vitro and in mammary tissue in vivo. These results support a new paradigm of 5-HT-mediated Shh regulation involving DNA methylation remodeling and promoter switching. In addition to having immediate implications for lactation biology, identification and characterization of a novel functional regulatory relationship between nonneuronal 5-HT, hedgehog signaling, and PTHrP offers new avenues for the study of these important factors in development and disease. PMID:25192038

  11. YB-1 is elevated in medulloblastoma and drives proliferation in Sonic hedgehog-dependent cerebellar granule neuron progenitor cells and medulloblastoma cells.

    PubMed

    Dey, A; Robitaille, M; Remke, M; Maier, C; Malhotra, A; Gregorieff, A; Wrana, J L; Taylor, M D; Angers, S; Kenney, A M

    2016-08-11

    Postnatal proliferation of cerebellar granule neuron precursors (CGNPs), proposed cells of origin for the SHH-associated subgroup of medulloblastoma, is driven by Sonic hedgehog (Shh) and insulin-like growth factor (IGF) in the developing cerebellum. Shh induces the oncogene Yes-associated protein (YAP), which drives IGF2 expression in CGNPs and mouse Shh-associated medulloblastomas. To determine how IGF2 expression is regulated downstream of YAP, we carried out an unbiased screen for transcriptional regulators bound to IGF2 promoters. We report that Y-box binding protein-1 (YB-1), an onco-protein regulating transcription and translation, binds to IGF2 promoter P3. We observed that YB-1 is upregulated across human medulloblastoma subclasses as well as in other varieties of pediatric brain tumors. Utilizing the cerebellar progenitor model for the Shh subgroup of medulloblastoma in mice, we show for the first time that YB-1 is induced by Shh in CGNPs. Its expression is YAP-dependent and it is required for IGF2 expression in CGNPs. Finally, both gain-of function and loss-of-function experiments reveal that YB-1 activity is required for sustaining CGNP and medulloblastoma cell (MBC) proliferation. Collectively, our findings describe a novel role for YB-1 in driving proliferation in the developing cerebellum and MBCs and they identify the SHH:YAP:YB1:IGF2 axis as a powerful target for therapeutic intervention in medulloblastomas. PMID:26725322

  12. Regulation of Hedgehog Signalling Inside and Outside the Cell

    PubMed Central

    Ramsbottom, Simon A.; Pownall, Mary E.

    2016-01-01

    The hedgehog (Hh) signalling pathway is conserved throughout metazoans and plays an important regulatory role in both embryonic development and adult homeostasis. Many levels of regulation exist that control the release, reception, and interpretation of the hedgehog signal. The fatty nature of the Shh ligand means that it tends to associate tightly with the cell membrane, and yet it is known to act as a morphogen that diffuses to elicit pattern formation. Heparan sulfate proteoglycans (HSPGs) play a major role in the regulation of Hh distribution outside the cell. Inside the cell, the primary cilium provides an important hub for processing the Hh signal in vertebrates. This review will summarise the current understanding of how the Hh pathway is regulated from ligand production, release, and diffusion, through to signal reception and intracellular transduction. PMID:27547735

  13. Sonic hedgehog stimulates glycolysis and proliferation of breast cancer cells: Modulation of PFKFB3 activation

    SciTech Connect

    Ge, Xin; Lyu, Pengwei; Gu, Yuanting; Li, Lin; Li, Jingruo; Wang, Yan; Zhang, Linfeng; Fu, Chao; Cao, Zhang

    2015-08-28

    Sonic hesgehog (Shh) signaling has been reported to play an essential role in cancer progression. The mechanism of Shh involved in breast cancer carcinogenesis remains unclear. The present study sought to explore whether Shh signaling could regulate the glycolytic metabolism in breast cancers. Overexpression of the smoothed (Smo) and Gli-1 was found in human primary breast cancers. The expressions of Shh and Gli-1 correlated significantly with tumor size and tumor stage. In vitro, human recombinant Shh (rShh) triggered Smo and Gli-1 expression, promoted glucose utilization and lactate production, and accelerated cell proliferation in MCF-7 and MDA-MB-231 cells. Notably, rShh did not alter 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) expression but augmented PFKFB3 phosphorylation on ser{sup 461}, along with elevated fructose-2,6-bisphosphate (F2,6BP) generation by MCF-7 and MDA-MB-231 cells. This effect could be dampened by Smo siRNA but not by Gli-1 siRNA. In addition, our data showed the upregulated expressions of MAPK by rShh and elevatory PFKFB3 phosphorylation by p38/MAPK activated kinase (MK2). In conclusion, our study characterized a novel role of Shh in promoting glycolysis and proliferation of breast cancer cells via PFKFB3 phosphorylation, which was mediated by Smo and p38/MK2. - Highlights: • Overexpression of Smo and Gli-1 was found in human primary breast cancers. • Shh promoted glucose utilization, lactate production, and cell proliferation. • Shh did not alter PFKFB3 expression but augmented PFKFB3 phosphorylation on ser461. • Shh acts on PFKFB3 phosphorylation via Smo and p38 MAPK/MK2.

  14. Concerted actions of ameliorated colitis, aberrant crypt foci inhibition and 15-hydroxyprostaglandin dehydrogenase induction by sonic hedgehog inhibitor led to prevention of colitis-associated cancer.

    PubMed

    Kangwan, Napapan; Kim, Yoon-Jae; Han, Young-Min; Jeong, Migyeong; Park, Jong-Min; Hahm, Ki-Baik

    2016-03-15

    The sonic hedgehog (Shh) signaling has been known to contribute to carcinogenesis in organ, where hedgehog exerted organogenesis and in cancers, which are developed based on mutagenic inflammation. Therefore, colitis-associated cancer (CAC) can be a good model to prove whether Shh inhibitors can be applied to prevent, as the efforts to discover potent anti-inflammatory agent are active to prevent CAC. Here, under the hypothesis that Shh inhibitors can prevent CAC, mouse model was generated to develop CAC by azoxymethane (AOM)-initiated, dextran sodium sulfate-promoted carcinogenesis. Shh inhibitors, cerulenin and itraconazole were treated by oral gavage and the mice were sacrificed at early phase of 3 weeks and late phase of 16 weeks. Compared to control group, the number of aberrant crypt foci at 3 weeks and tumor incidence at 16 weeks were all significantly decreased with Shh inhibitor. Significant attenuations of macrophage infiltration accompanied with significant decreases of IL-6, COX-2, STAT3 and NF-κB as well as significant ameliorations of β-catenin nuclear translocation, cyclin D1 and CDK4 were imposed with Shh inhibitors. Especially, CAC was accompanied with significant cancellation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), but their levels were significantly preserved with Shh inhibitors. Among inflammatory mediators, significantly decreased levels of IL-6 and TNF-α, regulated with repressed NF-κb and STAT3, were prominent with Shh inhibitor, whereas significant inductions of apoptosis were noted with Shh inhibitors. In conclusion, Shh inhibitors significantly prevented CAC covering either ameliorating oncogenic inflammation or suppressing tumor proliferation, especially supported with significant inhibition of IL-6 and STAT3 signaling, 15-PGDH preservation and apoptosis induction. PMID:26476372

  15. Sonic hedgehog signalling inhibits palatogenesis and arrests tooth development in a mouse model of the nevoid basal cell carcinoma syndrome.

    PubMed

    Cobourne, Martyn T; Xavier, Guilherme M; Depew, Michael; Hagan, Louise; Sealby, Jane; Webster, Zoe; Sharpe, Paul T

    2009-07-01

    Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant or spontaneous disorder characterized by multiple cutaneous basal cell carcinomas, odontogenic keratocysts, skeletal anomalies and facial dysmorphology, including cleft lip and palate. Causative mutations for NBCCS occur in the PTCH1 gene on chromosome 9q22.3-q31, which encodes the principle receptor for the Hedgehog signalling pathway. We have investigated the molecular basis of craniofacial defects seen in NBCCS using a transgenic mouse model expressing Shh in basal epithelium under a Keratin-14 promoter. These mice have an absence of flat bones within the skull vault, hypertelorism, open-bite malocclusion, cleft palate and arrested tooth development. Significantly, increased Hedgehog signal transduction in these mice can influence cell fate within the craniofacial region. In medial edge epithelium of the palate, Shh activity prevents apoptosis and subsequent palatal shelf fusion. In contrast, high levels of Shh in odontogenic epithelium arrests tooth development at the bud stage, secondary to a lack of cell proliferation in this region. These findings illustrate the importance of appropriately regulated Hedgehog signalling during early craniofacial development and demonstrate that oro-facial clefting and hypodontia seen in NBCCS can occur as a direct consequence of increased Shh signal activity within embryonic epithelial tissues. PMID:19394325

  16. Regulator of G-protein signaling - 5 (RGS5) is a novel repressor of hedgehog signaling.

    PubMed

    Mahoney, William M; Gunaje, Jagadambika; Daum, Guenter; Dong, Xiu Rong; Majesky, Mark W

    2013-01-01

    Hedgehog (Hh) signaling plays fundamental roles in morphogenesis, tissue repair, and human disease. Initiation of Hh signaling is controlled by the interaction of two multipass membrane proteins, patched (Ptc) and smoothened (Smo). Recent studies identify Smo as a G-protein coupled receptor (GPCR)-like protein that signals through large G-protein complexes which contain the Gαi subunit. We hypothesize Regulator of G-Protein Signaling (RGS) proteins, and specifically RGS5, are endogenous repressors of Hh signaling via their ability to act as GTPase activating proteins (GAPs) for GTP-bound Gαi, downstream of Smo. In support of this hypothesis, we demonstrate that RGS5 over-expression inhibits sonic hedgehog (Shh)-mediated signaling and osteogenesis in C3H10T1/2 cells. Conversely, signaling is potentiated by siRNA-mediated knock-down of RGS5 expression, but not RGS4 expression. Furthermore, using immuohistochemical analysis and co-immunoprecipitation (Co-IP), we demonstrate that RGS5 is present with Smo in primary cilia. This organelle is required for canonical Hh signaling in mammalian cells, and RGS5 is found in a physical complex with Smo in these cells. We therefore conclude that RGS5 is an endogenous regulator of Hh-mediated signaling and that RGS proteins are potential targets for novel therapeutics in Hh-mediated diseases. PMID:23637832

  17. Characterization of the human oncogene SCL/TAL1 interrupting locus (Stil) mediated Sonic hedgehog (Shh) signaling transduction in proliferating mammalian dopaminergic neurons.

    PubMed

    Sun, Lei; Carr, Aprell L; Li, Ping; Lee, Jessica; McGregor, Mary; Li, Lei

    2014-07-11

    The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in all vertebrate species. In humans, the expression of Stil is involved in cancer cell survival, apoptosis and proliferation. In this research, we investigated the roles of Stil expression in cell proliferation of mammalian dopaminergic (DA) PC12 cells. Stil functions through the Sonic hedgehog (Shh) signal transduction pathway. Co-immunoprecipitation tests revealed that STIL interacts with Shh downstream components, which include SUFU and GLI1. By examining the expression of Stil, Gli1, CyclinD2 (cell-cycle marker) and PCNA (proliferating cell nuclear antigen), we found that up-regulation of Stil expression (transfection with overexpression plasmids) increased Shh signaling transduction and PC12 cell proliferation, whereas down-regulation of Stil expression (by shRNA) inhibited Shh signaling transduction, and thereby decreased PC12 cell proliferation. Transient transfection of PC12 cells with Stil knockdown or overexpression plasmids did not affect PC12 cell neural differentiation, further indicating the specific roles of Stil in cell proliferation. The results from this research suggest that Stil may serve as a bio-marker for neurological diseases involved in DA neurons, such as Parkinson's disease. PMID:24853807

  18. Characterization of the human oncogene SCL/TAL1 interrupting locus (Stil) mediated Sonic hedgehog (Shh) signaling transduction in proliferating mammalian dopaminergic neurons

    SciTech Connect

    Sun, Lei; Carr, Aprell L.; Li, Ping; Lee, Jessica; McGregor, Mary; Li, Lei

    2014-07-11

    Highlights: • Stil is a human oncogene that is conserved in vertebrate species. • Stil functions in the Shh pathway in mammalian cells. • The expression of Stil is required for mammalian dopaminergic cell proliferation. - Abstract: The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in all vertebrate species. In humans, the expression of Stil is involved in cancer cell survival, apoptosis and proliferation. In this research, we investigated the roles of Stil expression in cell proliferation of mammalian dopaminergic (DA) PC12 cells. Stil functions through the Sonic hedgehog (Shh) signal transduction pathway. Co-immunoprecipitation tests revealed that STIL interacts with Shh downstream components, which include SUFU and GLI1. By examining the expression of Stil, Gli1, CyclinD2 (cell-cycle marker) and PCNA (proliferating cell nuclear antigen), we found that up-regulation of Stil expression (transfection with overexpression plasmids) increased Shh signaling transduction and PC12 cell proliferation, whereas down-regulation of Stil expression (by shRNA) inhibited Shh signaling transduction, and thereby decreased PC12 cell proliferation. Transient transfection of PC12 cells with Stil knockdown or overexpression plasmids did not affect PC12 cell neural differentiation, further indicating the specific roles of Stil in cell proliferation. The results from this research suggest that Stil may serve as a bio-marker for neurological diseases involved in DA neurons, such as Parkinson’s disease.

  19. Intracellular calcium-release and protein kinase C-activation stimulate sonic hedgehog gene expression during gastric acid secretion

    PubMed Central

    El-Zaatari, Mohamad; Zavros, Yana; Tessier, Art; Waghray, Meghna; Lentz, Steve; Gumucio, Deborah; Todisco, Andrea; Merchant, Juanita L.

    2010-01-01

    Introduction Hypochlorhydria during Helicobacter pylori infection inhibits gastric Shh expression. We investigated whether acid-secretory mechanisms regulate Shh gene expression through Ca2+i-dependent protein kinase C (PKC) or cAMP-dependent protein kinase A (PKA)-activation. Method We blocked Hedgehog signaling by transgenically overexpressing a secreted form of the Hedgehog interacting protein-1 (sHip-1), a natural inhibitor of hedgehog ligands, which induced hypochlorhydria. Gadolinium, EGTA+BAPTA, PKC-overexpressing adenoviruses, and PKC-inhibitors were used to modulate Ca2+i-release, PKC-activity and Shh gene expression in primary gastric cell, organ, and AGS cell line cultures. PKA hyperactivity was induced in the H+/K+-β-cholera-toxin overexpressing mice (Ctox). Results Mice that expressed sHip-1 had lower levels of gastric acid (hypochlorhydria), reduced production of somatostatin, and increased gastrin gene expression. Hypochlorhydria in these mice repressed Shh gene expression, similar to the levels obtained with omeprazole treatment of wild-type mice. However, Shh expression was also repressed in the hyperchlorhydric Ctox model with elevated cAMP, suggesting that the regulation of Shh was not solely acid-dependent, but pertained to specific acid-stimulatory signaling pathways. Based on previous reports that Ca2+i-release also stimulates acid secretion in parietal cells, we showed that gadolinium-, thapsigargin- and carbachol-mediated release of Ca2+i induced Shh expression. Ca2+-chelation with BAPTA+EGTA reduced Shh expression. Overexpression of PKC-α, -β and -δ (but not PKC-ε) induced Shh gene expression. In addition, phorbol esters induced a Shh-regulated reporter gene. Conclusion Secretagogues that stimulate gastric acid secretion induce Shh gene expression through increased Ca2+i-release and PKC activation. Shh might be the ligand transducing changes in gastric acidity to the regulation of G-cell secretion of gastrin. PMID:20816837

  20. Mycobacteria-responsive sonic hedgehog signaling mediates programmed death-ligand 1- and prostaglandin E2-induced regulatory T cell expansion.

    PubMed

    Holla, Sahana; Stephen-Victor, Emmanuel; Prakhar, Praveen; Sharma, Meenu; Saha, Chaitrali; Udupa, Vibha; Kaveri, Srinivas V; Bayry, Jagadeesh; Balaji, Kithiganahalli Narayanaswamy

    2016-01-01

    CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) are exploited by mycobacteria to subvert the protective host immune responses. The Treg expansion in the periphery requires signaling by professional antigen presenting cells and in particularly dendritic cells (DC). However, precise molecular mechanisms by which mycobacteria instruct Treg expansion via DCs are not established. Here we demonstrate that mycobacteria-responsive sonic hedgehog (SHH) signaling in human DCs leads to programmed death ligand-1 (PD-L1) expression and cyclooxygenase (COX)-2-catalyzed prostaglandin E2 (PGE2) that orchestrate mycobacterial infection-induced expansion of Tregs. While SHH-responsive transcription factor GLI1 directly arbitrated COX-2 transcription, specific microRNAs, miR-324-5p and miR-338-5p, which target PD-L1 were downregulated by SHH signaling. Further, counter-regulatory roles of SHH and NOTCH1 signaling during mycobacterial-infection of human DCs was also evident. Together, our results establish that Mycobacterium directs a fine-balance of host signaling pathways and molecular regulators in human DCs to expand Tregs that favour immune evasion of the pathogen. PMID:27080341

  1. Mycobacteria-responsive sonic hedgehog signaling mediates programmed death-ligand 1- and prostaglandin E2-induced regulatory T cell expansion

    PubMed Central

    Holla, Sahana; Stephen-Victor, Emmanuel; Prakhar, Praveen; Sharma, Meenu; Saha, Chaitrali; Udupa, Vibha; Kaveri, Srinivas V.; Bayry, Jagadeesh; Balaji, Kithiganahalli Narayanaswamy

    2016-01-01

    CD4+CD25+FoxP3+ regulatory T cells (Tregs) are exploited by mycobacteria to subvert the protective host immune responses. The Treg expansion in the periphery requires signaling by professional antigen presenting cells and in particularly dendritic cells (DC). However, precise molecular mechanisms by which mycobacteria instruct Treg expansion via DCs are not established. Here we demonstrate that mycobacteria-responsive sonic hedgehog (SHH) signaling in human DCs leads to programmed death ligand-1 (PD-L1) expression and cyclooxygenase (COX)-2-catalyzed prostaglandin E2 (PGE2) that orchestrate mycobacterial infection-induced expansion of Tregs. While SHH-responsive transcription factor GLI1 directly arbitrated COX-2 transcription, specific microRNAs, miR-324-5p and miR-338-5p, which target PD-L1 were downregulated by SHH signaling. Further, counter-regulatory roles of SHH and NOTCH1 signaling during mycobacterial-infection of human DCs was also evident. Together, our results establish that Mycobacterium directs a fine-balance of host signaling pathways and molecular regulators in human DCs to expand Tregs that favour immune evasion of the pathogen. PMID:27080341

  2. Lycium barbarum Polysaccharides Protect against Trimethyltin Chloride-Induced Apoptosis via Sonic Hedgehog and PI3K/Akt Signaling Pathways in Mouse Neuro-2a Cells

    PubMed Central

    Zhao, Wanyun; Pan, Xiaoqi; Li, Tao; Zhang, Changchun; Shi, Nian

    2016-01-01

    Trimethyltin chloride (TMT) is a classic neurotoxicant that can cause severe neurodegenerative diseases. Some signaling pathways involving cell death play pivotal roles in the central nervous system. In this study, the role of Sonic Hedgehog (Shh) and PI3K/Akt pathways in TMT-induced apoptosis and protective effect of Lycium barbarum polysaccharides (LBP) on mouse neuro-2a (N2a) cells were investigated. Results showed that TMT treatment significantly enhanced apoptosis, upregulated proapoptotic Bax, downregulated antiapoptotic Bcl-2 expression, and increased caspase-3 activity in a dose-dependent manner in N2a cells. TMT induced oxidative stress in cells, performing reactive oxygen species (ROS) and malondialdehyde (MDA) excessive generation, and superoxide dismutase (SOD) activity reduction. TMT significantly decreased phosphorylated glycogen synthase kinase-3β (GSK-3β) and inhibited Shh and PI3K/Akt pathways. However, the addition of LBP upregulated GSK-3β phosphorylation, activated Shh and PI3K/Akt pathways, and eventually reduced apoptosis and oxidative stress caused by TMT. The interaction between Shh and PI3K/Akt pathways was clarified by specific PI3K inhibitor LY294002 or Shh inhibitor GDC-0449. Moreover, LY294002 and GDC-0449 pretreatment both induced phosphorylated GSK-3β downregulation and significantly promoted apoptosis induced by TMT. These results suggest that LBP could reduce TMT-induced N2a cells apoptosis by regulating GSK-3β phosphorylation, Shh, and PI3K/Akt signaling pathways. PMID:27143997

  3. Lycium barbarum Polysaccharides Protect against Trimethyltin Chloride-Induced Apoptosis via Sonic Hedgehog and PI3K/Akt Signaling Pathways in Mouse Neuro-2a Cells.

    PubMed

    Zhao, Wanyun; Pan, Xiaoqi; Li, Tao; Zhang, Changchun; Shi, Nian

    2016-01-01

    Trimethyltin chloride (TMT) is a classic neurotoxicant that can cause severe neurodegenerative diseases. Some signaling pathways involving cell death play pivotal roles in the central nervous system. In this study, the role of Sonic Hedgehog (Shh) and PI3K/Akt pathways in TMT-induced apoptosis and protective effect of Lycium barbarum polysaccharides (LBP) on mouse neuro-2a (N2a) cells were investigated. Results showed that TMT treatment significantly enhanced apoptosis, upregulated proapoptotic Bax, downregulated antiapoptotic Bcl-2 expression, and increased caspase-3 activity in a dose-dependent manner in N2a cells. TMT induced oxidative stress in cells, performing reactive oxygen species (ROS) and malondialdehyde (MDA) excessive generation, and superoxide dismutase (SOD) activity reduction. TMT significantly decreased phosphorylated glycogen synthase kinase-3β (GSK-3β) and inhibited Shh and PI3K/Akt pathways. However, the addition of LBP upregulated GSK-3β phosphorylation, activated Shh and PI3K/Akt pathways, and eventually reduced apoptosis and oxidative stress caused by TMT. The interaction between Shh and PI3K/Akt pathways was clarified by specific PI3K inhibitor LY294002 or Shh inhibitor GDC-0449. Moreover, LY294002 and GDC-0449 pretreatment both induced phosphorylated GSK-3β downregulation and significantly promoted apoptosis induced by TMT. These results suggest that LBP could reduce TMT-induced N2a cells apoptosis by regulating GSK-3β phosphorylation, Shh, and PI3K/Akt signaling pathways. PMID:27143997

  4. A shared role for sonic hedgehog signalling in patterning chondrichthyan gill arch appendages and tetrapod limbs.

    PubMed

    Gillis, J Andrew; Hall, Brian K

    2016-04-15

    Chondrichthyans (sharks, skates, rays and holocephalans) possess paired appendages that project laterally from their gill arches, known as branchial rays. This led Carl Gegenbaur to propose that paired fins (and hence tetrapod limbs) originally evolved via transformation of gill arches. Tetrapod limbs are patterned by asonic hedgehog(Shh)-expressing signalling centre known as the zone of polarising activity, which establishes the anteroposterior axis of the limb bud and maintains proliferative expansion of limb endoskeletal progenitors. Here, we use loss-of-function, label-retention and fate-mapping approaches in the little skate to demonstrate that Shh secretion from a signalling centre in the developing gill arches establishes gill arch anteroposterior polarity and maintains the proliferative expansion of branchial ray endoskeletal progenitor cells. These findings highlight striking parallels in the axial patterning mechanisms employed by chondrichthyan branchial rays and paired fins/limbs, and provide mechanistic insight into the anatomical foundation of Gegenbaur's gill arch hypothesis. PMID:27095494

  5. Expression and secretion of a biologically active mouse sonic hedgehog protein by the methylotrophic yeast Pichia pastoris.

    PubMed

    Sakuma, Y; Kimura, M; Takabatake, T; Takeshima, K; Fujimura, H

    1999-09-01

    We have successfully secreted the amino-terminal functional domain of mouse sonic hedgehog protein (SHH) into culture fluid using a yeast Pichia pastoris expression system. A cDNA fragment encoding the amino-terminal domain of mouse SHH was inserted downstream of the Saccharomyces cerevisiae alpha-mating factor secretion signal. The DNA fragment was introduced into the host genome by the spheroplast transformation method. Transformants were selected based on their resistance to G418: His+ transformants which showed resistance to over 8 mg G418/ml were selected and analyzed for determination of the plasmid copy number. One His+ clone which has eight copies of the expression cassette per genome was cultured in minimal medium deficient for histidine, and further cultured in buffered medium supplemented with methanol which activates the AOX1 promoter. SDS-PAGE analysis indicated efficient expression and secretion of mouse SHH into culture fluid. The yield of secreted SHH was estimated to be 50 micrograms/ml. Purified protein was assayed for biological activity and found to activate the transcription of the Patched genes (Ptc-1 and Ptc-2) encoding receptors for SHH. PMID:10531654

  6. Temozolomide resistance in glioblastoma occurs by miRNA-9-targeted PTCH1, independent of sonic hedgehog level

    PubMed Central

    Munoz, Jessian L.; Rodriguez-Cruz, Vivian; Ramkissoon, Shakti H.; Ligon, Keith L.; Greco, Steven J.; Rameshwar, Pranela

    2015-01-01

    Glioblastoma Multiforme (GBM), the most common and lethal adult primary tumor of the brain, showed a link between Sonic Hedgehog (SHH) pathway in the resistance to temozolomide (TMZ). PTCH1, the SHH receptor, can tonically represses signaling by endocytosis. We asked how the decrease in PTCH1 in GBM cells could lead to TMZ-resistance. TMZ resistant GBM cells have increased PTCH1 mRNA and reduced protein. Knockdown of Dicer, a Type III RNAase, indicated that miRNAs can explain the decreased PTCH1 in TMZ resistant cells. Computational studies, real-time PCR, reporter gene studies, western blots, target protector oligos and ectopic expression identified miR-9 as the target of PTCH1 in resistant GBM cells with concomitant activation of SHH signaling. MiR-9 mediated increases in the drug efflux transporters, MDR1 and ABCG2. MiR-9 was increased in the tissues from GBM patients and in an early passage GBM cell line from a patient with recurrent GBM but not from a naïve patient. Pharmacological inhibition of SHH signaling sensitized the GBM cells to TMZ. Taken together, miR-9 targets PTCH1 in GBM cells by a SHH-independent method in GBM cells for TMZ resistance. The identified pathways could lead to new strategies to target GBM with combinations of drugs. PMID:25595896

  7. Inhibition of Sonic Hedgehog and Notch Pathways Enhances Sensitivity of CD133+ Glioma Stem Cells to Temozolomide Therapy

    PubMed Central

    Ulasov, Ilya V; Nandi, Suvobroto; Dey, Mahua; Sonabend, Adam M; Lesniak, Maciej S

    2011-01-01

    Malignant gliomas are currently treated with temozolomide (TMZ), but often exhibit resistance to this agent. CD133+ cancer stem cells, a population believed to contribute to the tumor’s chemoresistance, bear the activation of Notch and Sonic hedgehog (SHH) pathways. In this study, we examined whether inhibition of both pathways enhances the efficacy of TMZ monotherapy in the context of glioma stem cells. Transcriptional analysis of Notch and SHH pathways in CD133+-enriched glioma cell populations showed the activity of these pathways. CD133+ cells were less susceptible to TMZ treatment than the unsorted glioma counterparts. Interestingly, Notch and SHH pathway transcriptional activity in CD133+ glioma cells was further enhanced by TMZ exposure, which led to NOTCH 1, NCOR2, and GLI1 upregulation (6.64-, 3.73-, and 2.79-fold, respectively) and CFLAR downregulation (4.22-fold). The therapeutic effect of TMZ was enhanced by Notch and SHH pathway pharmacological antagonism with GSI-1 and cyclopamine. More importantly, simultaneous treatment involving TMZ with both of these compounds led to a significant increase in CD133+ glioma cytotoxicity than treatment with any of these agents alone (P < 0.05). In conclusion, CD133+ glioma cells overexpress genes involved in Notch and SHH pathways. These pathways contribute to the chemoresistant phenotype of CD133+ glioma cells, as their antagonism leads to an additive effect when used in combination with TMZ. PMID:20957337

  8. Inhibition of Sonic hedgehog and Notch pathways enhances sensitivity of CD133(+) glioma stem cells to temozolomide therapy.

    PubMed

    Ulasov, Ilya V; Nandi, Suvobroto; Dey, Mahua; Sonabend, Adam M; Lesniak, Maciej S

    2011-01-01

    Malignant gliomas are currently treated with temozolomide (TMZ), but often exhibit resistance to this agent. CD133(+) cancer stem cells, a population believed to contribute to the tumor's chemoresistance, bear the activation of Notch and Sonic hedgehog (SHH) pathways. In this study, we examined whether inhibition of both pathways enhances the efficacy of TMZ monotherapy in the context of glioma stem cells. Transcriptional analysis of Notch and SHH pathways in CD133(+)-enriched glioma cell populations showed the activity of these pathways. CD133(+) cells were less susceptible to TMZ treatment than the unsorted glioma counterparts. Interestingly, Notch and SHH pathway transcriptional activity in CD133(+) glioma cells was further enhanced by TMZ exposure, which led to NOTCH 1, NCOR2, and GLI1 upregulation (6.64-, 3.73-, and 2.79-fold, respectively) and CFLAR downregulation (4.22-fold). The therapeutic effect of TMZ was enhanced by Notch and SHH pathway pharmacological antagonism with GSI-1 and cyclopamine. More importantly, simultaneous treatment involving TMZ with both of these compounds led to a significant increase in CD133(+) glioma cytotoxicity than treatment with any of these agents alone (P < 0.05). In conclusion, CD133(+) glioma cells overexpress genes involved in Notch and SHH pathways. These pathways contribute to the chemoresistant phenotype of CD133(+) glioma cells, as their antagonism leads to an additive effect when used in combination with TMZ. PMID:20957337

  9. Recombinant EDA or Sonic Hedgehog rescue the branching defect in Ectodysplasin A pathway mutant salivary glands in vitro.

    PubMed

    Wells, K L; Mou, C; Headon, D J; Tucker, A S

    2010-10-01

    Hypohidrotic ectodermal dysplasia (HED) is characterized by defective ectodermal organ development. This includes the salivary glands (SGs), which have an important role in lubricating the oral cavity. In humans and mice, HED is caused by mutations in Ectodysplasin A (Eda) pathway genes. Various phenotypes of the mutant mouse Eda(Ta/Ta), which lacks the ligand Eda, can be rescued by maternal injection or in vitro culture supplementation with recombinant EDA. However, the response of the SGs to this treatment has not been investigated. Here, we show that the submandibular glands (SMGs) of Eda(Ta/Ta) mice exhibit impaired branching morphogenesis, and that supplementation of Eda(Ta/Ta) SMG explants with recombinant EDA rescues the defect. Supplementation of Edar(dlJ/dlJ) SMGs with recombinant Sonic hedgehog (Shh) also rescues the defect, whereas treatment with recombinant Fgf8 does not. This work is the first to test the ability of putative Eda target molecules to rescue Eda pathway mutant SMGs. PMID:20803597

  10. Effect of methacrylic acid beads on the sonic hedgehog signaling pathway and macrophage polarization in a subcutaneous injection mouse model.

    PubMed

    Lisovsky, Alexandra; Zhang, David K Y; Sefton, Michael V

    2016-08-01

    Poly(methacrylic acid-co-methyl methacrylate) (MAA) beads promote a vascular regenerative response when used in diabetic wound healing. Previous studies reported that MAA beads modulated the expression of sonic hedgehog (Shh) and inflammation related genes in diabetic wounds. The aim of this work was to follow up on these observations in a subcutaneous injection model to study the host response in the absence of the confounding factors of diabetic wound healing. In this model, MAA beads improved vascularization in healthy mice of both sexes compared to control poly(methyl methacrylate) (MM) beads, with a stronger effect seen in males than females. MAA-induced vessels were perfusable, as evidenced from the CLARITY-processed images. In Shh-Cre-eGFP/Ptch1-LacZ non-diabetic transgenic mice, the increased vessel formation was accompanied by a higher density of cells expressing GFP (Shh) and β-Gal (patched 1, Ptch1) suggesting MAA enhanced the activation of the Shh pathway. Ptch1 is the Shh receptor and a target of the pathway. MAA beads also modulated the inflammatory cell infiltrate in CD1 mice: more neutrophils and more macrophages were noted with MAA relative to MM beads at days 1 and 7, respectively. In addition, MAA beads biased macrophages towards a MHCII-CD206+ ("M2") polarization state. This study suggests that the Shh pathway and an altered inflammatory response are two elements of the complex mechanism whereby MAA-based biomaterials effect vascular regeneration. PMID:27264502

  11. Microduplications encompassing the Sonic hedgehog limb enhancer ZRS are associated with Haas-type polysyndactyly and Laurin-Sandrow syndrome.

    PubMed

    Lohan, S; Spielmann, M; Doelken, S C; Flöttmann, R; Muhammad, F; Baig, S M; Wajid, M; Hülsemann, W; Habenicht, R; Kjaer, K W; Patil, S J; Girisha, K M; Abarca-Barriga, H H; Mundlos, S; Klopocki, E

    2014-10-01

    Laurin-Sandrow syndrome (LSS) is a rare autosomal dominant disorder characterized by polysyndactyly of hands and/or feet, mirror image duplication of the feet, nasal defects, and loss of identity between fibula and tibia. The genetic basis of LSS is currently unknown. LSS shows phenotypic overlap with Haas-type polysyndactyly (HTS) regarding the digital phenotype. Here we report on five unrelated families with overlapping microduplications encompassing the Sonic hedgehog (SHH) limb enhancer ZPA regulatory sequence (ZRS) on chromosome 7q36. Clinically, the patients show polysyndactyly phenotypes and various types of lower limb malformations ranging from syndactyly to mirror image polydactyly with duplications of the fibulae. We show that larger duplications of the ZRS region (>80 kb) are associated with HTS, whereas smaller duplications (<80 kb) result in the LSS phenotype. On the basis of our data, the latter can be clearly distinguished from HTS by the presence of mirror image polysyndactyly of the feet with duplication of the fibula. Our results expand the clinical phenotype of the ZRS-associated syndromes and suggest that smaller duplications (<80 kb) are associated with a more severe phenotype. In addition, we show that these small microduplications within the ZRS region are the underlying genetic cause of Laurin-Sandrow syndrome. PMID:24456159

  12. Sonic Hedgehog Controls the Phenotypic Fate and Therapeutic Efficacy of Grafted Neural Precursor Cells in a Model of Nigrostriatal Neurodegeneration

    PubMed Central

    Madhavan, Lalitha; Daley, Brian F.; Davidson, Beverly L.; Boudreau, Ryan L.; Lipton, Jack W.; Cole-Strauss, Allyson; Steece-Collier, Kathy; Collier, Timothy J.

    2015-01-01

    The expression of soluble growth and survival promoting factors by neural precursor cells (NPCs) is suggested to be a prominent mechanism underlying the protective and regenerative effects of these cells after transplantation. Nevertheless, how and to what extent specific NPC-expressed factors contribute to therapeutic effects is not well understood. Using RNA silencing, the current study investigated the roles of two donor NPC molecules, namely glial cell-line derived neurotrophic factor (GDNF) and sonic hedgehog (SHH), in the protection of substantia nigra dopamine neurons in rats treated with 6-hydroxydopamine (6-OHDA). Analyses indicate that as opposed to the knock-down of GDNF, SHH inhibition caused a profound decline in nigrostriatal neuroprotection. Further, SHH silencing also curbed endogenous neurogenesis and the migration of host brdU+/dcx+ neural precursors into the striatum, which was present in the animals receiving control or GDNF silenced NPCs. A change in graft phenotype, mainly reflected by a reduced proportion of undifferentiated nestin+ cells, as well as a significantly greater host microglial activity, suggested an important role for these processes in the attenuation of neuroprotection and neurogenesis upon SHH silencing. Overall these studies reveal core mechanisms fundamental to grafted NPC-based therapeutic effects, and delineate the particular contributions of two graft-expressed molecules, SHH and GDNF, in mediating midbrain dopamine neuron protection, and host plasticity after NPC transplantation. PMID:26340267

  13. Distinct Sonic Hedgehog signaling dynamics specify floor plate and ventral neuronal progenitors in the vertebrate neural tube

    PubMed Central

    Ribes, Vanessa; Balaskas, Nikolaos; Sasai, Noriaki; Cruz, Catarina; Dessaud, Eric; Cayuso, Jordi; Tozer, Samuel; Yang, Lin Lin; Novitch, Ben; Marti, Elisa; Briscoe, James

    2010-01-01

    The secreted ligand Sonic Hedgehog (Shh) organizes the pattern of cellular differentiation in the ventral neural tube. For the five neuronal subtypes, increasing levels and durations of Shh signaling direct progenitors to progressively more ventral identities. Here we demonstrate that this mode of action is not applicable to the generation of the most ventral cell type, the nonneuronal floor plate (FP). In chick and mouse embryos, FP specification involves a biphasic response to Shh signaling that controls the dynamic expression of key transcription factors. During gastrulation and early somitogenesis, FP induction depends on high levels of Shh signaling. Subsequently, however, prospective FP cells become refractory to Shh signaling, and this is a prerequisite for the elaboration of their identity. This prompts a revision to the model of graded Shh signaling in the neural tube, and provides insight into how the dynamics of morphogen signaling are deployed to extend the patterning capacity of a single ligand. In addition, we provide evidence supporting a common scheme for FP specification by Shh signaling that reconciles mechanisms of FP development in teleosts and amniotes. PMID:20516201

  14. Disruption of sonic hedgehog signaling in Ellis-van Creveld dwarfism confers protection against bipolar affective disorder.

    PubMed

    Ginns, E I; Galdzicka, M; Elston, R C; Song, Y E; Paul, S M; Egeland, J A

    2015-10-01

    Ellis-van Creveld syndrome, an autosomal recessively inherited chondrodysplastic dwarfism, is frequent among Old Order Amish of Pennsylvania. Decades of longitudinal research on bipolar affective disorder (BPAD) revealed cosegregation of high numbers of EvC and Bipolar I (BPI) cases in several large Amish families descending from the same pioneer. Despite the high prevalence of both disorders in these families, no EvC individual has ever been reported with BPI. The proximity of the EVC gene to our previously reported chromosome 4p16 BPAD locus with protective alleles, coupled with detailed clinical observations that EvC and BPI do not occur in the same individuals, led us to hypothesize that the genetic defect causing EvC in the Amish confers protection from BPI. This hypothesis is supported by a significant negative association of these two disorders when contrasted with absence of disease (P=0.029, Fisher's exact test, two-sided, verified by permutation to estimate the null distribution of the test statistic). As homozygous Amish EVC mutations causing EvC dwarfism do so by disrupting sonic hedgehog (Shh) signaling, our data implicate Shh signaling in the underlying pathophysiology of BPAD. Understanding how disrupted Shh signaling protects against BPI could uncover variants in the Shh pathway that cause or increase risk for this and related mood disorders. PMID:25311364

  15. Embryonic tongue morphogenesis in an organ culture model of mouse mandibular arches: blocking Sonic hedgehog signaling leads to microglossia.

    PubMed

    Torii, Daisuke; Soeno, Yuuichi; Fujita, Kazuya; Sato, Kaori; Aoba, Takaaki; Taya, Yuji

    2016-01-01

    Mouse tongue development is initiated with the formation of lateral lingual swellings just before fusion between the mediodorsal surfaces of the mandibular arches at around embryonic day 11.0. Here, we investigated the role of Sonic hedgehog (Shh) signaling in embryonic mouse tongue morphogenesis. For this, we used an organ culture model of the mandibular arches from mouse embryos at embryonic day 10.5. When the Shh signaling inhibitor jervine was added to the culture medium for 24-96 h, the formation of lateral lingual swellings and subsequent epithelial invagination into the mesenchyme were impaired markedly, leading to a hypoplastic tongue with an incomplete oral sulcus. Notably, jervine treatment reduced the proliferation of non-myogenic mesenchymal cells at the onset of forming the lateral lingual swellings, whereas it did not affect the proliferation and differentiation of a myogenic cell lineage, which created a cell community at the central circumferential region of the lateral lingual swellings as seen in vivo and in control cultures lacking the inhibitor. Thus, epithelium-derived Shh signaling stimulates the proliferation of non-myogenic mesenchymal cells essential for forming lateral lingual swellings and contributes to epithelial invagination into the mesenchyme during early tongue development. PMID:26334330

  16. Insight from Frogs: Sonic Hedgehog Gene Expression and a Re-evaluation of the Vertebrate Odontogenic Band.

    PubMed

    Grieco, Theresa M; Hlusko, Leslea J

    2016-08-01

    While the identification of conserved processes across multiple taxa leads to an understanding of fundamental developmental mechanisms, the ways in which different animals fail to conform to common developmental processes can elucidate how evolution modifies development to result in the vast array of morphologies seen today-the developmental mechanisms that lead to anatomical variation. Odontogenesis-how teeth are initiated and formed-is well suited to the examination of both developmental conservation and phenotypic diversity. We suggest here that the study of early tooth development, the period of odontogenic band development, reveals departures from conserved mechanisms that question the role of players in the developmental process. In the earliest stages of odontogenesis, Sonic hedgehog (Shh) gene expression is interpreted as critical evidence of tooth initiation prior to any histological indication. However, a detailed examination of studies of tooth development across a wide range of taxa reveals that several vertebrate species fail to conform to the expectations of the Shh Consensus Model, calling for a reconsideration of the assumed causality of epithelial Shh in tooth initiation. We present new Shh gene expression data for an amphibian, the frog Silurana (Xenopus) tropicalis. In these animals, craniofacial and odontogenic developmental processes are more disjunct, and thereby provide a natural test of the hypothesis that Shh is immediately required for subsequent tooth development. Our results suggest that Shh expression may actually be related to the formation of the mouth rather than a required precursor to subsequent tooth formation. Anat Rec, 299:1099-1109, 2016. © 2016 Wiley Periodicals, Inc. PMID:27262165

  17. Sonic hedgehog and retinoic Acid induce bone marrow-derived stem cells to differentiate into glutamatergic neural cells.

    PubMed

    Yu, Zhenhai; Wu, Shixing; Liu, Zhen; Lin, Haiyan; Chen, Lei; Yuan, Xinli; Zhang, Zhiying; Liu, Fang; Zhang, Chuansen

    2015-01-01

    Studies have showed that transplanted stem cells in the inner ear won't regenerate to replace the damaged sensory hair cells. They can spontaneously differentiate into mesenchymal cells and fibrocytes in the damaged inner ear. Only mature sensory cells of MSCs-derived possess the great potency for cell transplantation in the treatment of sensorineural hearing loss. So, we try to establish an efficient generation of the glutamatergic sensory neural phenotype for the cell transplantation of the hearing loss. We isolated MSCs from femoral and tibial bones according to their adherence to culture dishes. After purification, proliferation, and passaged, cells became homogeneous in appearance, showing more uniformity and grew in a monolayer with a typical spindle-shape morphology. The cell surface markers were assessed using FACS to characterize the isolated cells. For neural induction to harvest the glutamatergic sensory neurons, passage 3 MSCs were incubated with preinduced medium for 24 hr, and neural-induced medium for an additional 14 days. The cells exhibit a typical neural shape. RT-PCR analysis indicated that the mRNA levels of the neural cell marker nestin, Tau, MAP-2, β-tubulin III, GluR-3, and GluR-4 were higher compared with primary MSCs. Immunohistochemistry and western-blotting proofed that nestin, MAP-2, β-tubulin III, and GluR-4 proteins indeed exhibit their expression difference in the induced cells compared to the MSCs. We show an efficient protocol by the combined applications of Sonic Hedgehog (Shh) and Retinoic Acid (RA) to induce MSCs to differentiate into the glutamatergic sensory neuron which were identified from the morphological, biochemical, and molecular characteristics. PMID:24547891

  18. Prenatal cadmium exposure dysregulates sonic hedgehog and Wnt/beta-catenin signaling in the thymus resulting in altered thymocyte development

    SciTech Connect

    Hanson, Miranda L.; Brundage, Kathleen M.; Schafer, Rosana; Tou, Janet C.; Barnett, John B.

    2010-01-15

    Cadmium (Cd) is both an environmental pollutant and a component of cigarette smoke. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports in the literature of immunomodulatory effects of prenatal exposure to Cd. The sonic hedgehog (Shh) and Wnt/beta-catenin pathways are required for thymocyte maturation. Several studies have demonstrated that Cd exposure affects these pathways in different organ systems. This study was designed to investigate the effect of prenatal Cd exposure on thymocyte development, and to determine if these effects were linked to dysregulation of Shh and Wnt/beta-catenin pathways. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose (10 ppm) of Cd throughout pregnancy and effects on the thymus were assessed on the day of birth. Thymocyte phenotype was determined by flow cytometry. A Gli:luciferase reporter cell line was used to measure Shh signaling. Transcription of target genes and translation of key components of both signaling pathways were assessed using real-time RT-PCR and western blot, respectively. Prenatal Cd exposure increased the number of CD4{sup +} cells and a subpopulation of double-negative cells (DN; CD4{sup -}CD8{sup -}), DN4 (CD44{sup -}CD25{sup -}). Shh and Wnt/beta-catenin signaling were both decreased in the thymus. Target genes of Shh (Patched1 and Gli1) and Wnt/beta-catenin (c-fos, and c-myc) were affected differentially among thymocyte subpopulations. These findings suggest that prenatal exposure to Cd dysregulates two signaling pathways in the thymus, resulting in altered thymocyte development.

  19. Duration of culture and sonic hedgehog signaling differentially specify PV versus SST cortical interneuron fates from embryonic stem cells

    PubMed Central

    Tyson, Jennifer A.; Goldberg, Ethan M.; Maroof, Asif M.; Xu, Qing; Petros, Timothy J.; Anderson, Stewart A.

    2015-01-01

    Medial ganglionic eminence (MGE)-derived GABAergic cortical interneurons (cINs) consist of multiple subtypes that are involved in many cortical functions. They also have a remarkable capacity to migrate, survive and integrate into cortical circuitry after transplantation into postnatal cortex. These features have engendered considerable interest in generating distinct subgroups of interneurons from pluripotent stem cells (PSCs) for the study of interneuron fate and function, and for the development of cell-based therapies. Although advances have been made, the capacity to generate highly enriched pools of subgroup fate-committed interneuron progenitors from PSCs has remained elusive. Previous studies have suggested that the two main MGE-derived interneuron subgroups – those expressing somatostatin (SST) and those expressing parvalbumin (PV) – are specified in the MGE from Nkx2.1-expressing progenitors at higher or lower levels of sonic hedgehog (Shh) signaling, respectively. To further explore the role of Shh and other factors in cIN fate determination, we generated a reporter line such that Nkx2.1-expressing progenitors express mCherry and postmitotic Lhx6-expressing MGE-derived interneurons express GFP. Manipulations of Shh exposure and time in culture influenced the subgroup fates of ESC-derived interneurons. Exposure to higher Shh levels, and collecting GFP-expressing precursors at 12 days in culture, resulted in the strongest enrichment for SST interneurons over those expressing PV, whereas the strongest enrichment for PV interneurons was produced by lower Shh and by collecting mCherry-expressing cells after 17 days in culture. These findings confirm that fate determination of cIN subgroups is crucially influenced by Shh signaling, and provide a system for the further study of interneuron fate and function. PMID:25804737

  20. Inhibition of APP gamma-secretase restores Sonic Hedgehog signaling and neurogenesis in the Ts65Dn mouse model of Down syndrome

    PubMed Central

    Giacomini, Andrea; Stagni, Fiorenza; Trazzi, Stefania; Guidi, Sandra; Emili, Marco; Brigham, Elizabeth; Ciani, Elisabetta; Bartesaghi, Renata

    2015-01-01

    Neurogenesis impairment starting from early developmental stages is a key determinant of intellectual disability in Down syndrome (DS). Previous evidence provided a causal relationship between neurogenesis impairment and malfunctioning of the mitogenic Sonic Hedgehog (Shh) pathway. In particular, excessive levels of AICD (amyloid precursor protein intracellular domain), a cleavage product of the trisomic gene APP (amyloid precursor protein) up-regulate transcription of Ptch1 (Patched1), the Shh receptor that keeps the pathway repressed. Since AICD results from APP cleavage by γ-secretase, the goal of the current study was to establish whether treatment with a γ-secretase inhibitor normalizes AICD levels and restores neurogenesis in trisomic neural precursor cells. We found that treatment with a selective γ-secretase inhibitor (ELND006; ELN) restores proliferation in neurospheres derived from the subventricular zone (SVZ) of the Ts65Dn mouse model of DS. This effect was accompanied by reduction of AICD and Ptch1 levels and was prevented by inhibition of the Shh pathway with cyclopamine. Treatment of Ts65Dn mice with ELN in the postnatal period P3–P15 restored neurogenesis in the SVZ and hippocampus, hippocampal granule cell number and synapse development, indicating a positive impact of treatment on brain development. In addition, in the hippocampus of treated Ts65Dn mice there was a reduction in the expression levels of various genes that are transcriptionally regulated by AICD, including APP, its origin substrate. Inhibitors of γ-secretase are currently envisaged as tools for the cure of Alzheimer's disease because they lower βamyloid levels. Current results provide novel evidence that γ-secretase inhibitors may represent a strategy for the rescue of neurogenesis defects in DS. PMID:26254735

  1. Cadherin Cad99C is regulated by Hedgehog signaling in Drosophila.

    PubMed

    Schlichting, Karin; Demontis, Fabio; Dahmann, Christian

    2005-03-01

    The subdivision of the Drosophila wing imaginal disc into anterior and posterior compartments requires a transcriptional response to Hedgehog signaling. However, the genes regulated by Hedgehog signal transduction that mediate the segregation of anterior and posterior cells have not been identified. Here, we molecularly characterize the previously predicted gene cad99C and show that it is regulated by Hedgehog signaling. Cad99C encodes a transmembrane protein with a molecular weight of approximately 184 kDa that contains 11 cadherin repeats in its extracellular domain and a conserved type I PDZ-binding site at its C-terminus. The levels of cad99C RNA and protein are low throughout the wing imaginal disc. However, in the pouch region, these levels are elevated in a strip of anterior cells along the A/P boundary where the Hedgehog signal is transduced. Ectopic expression of Hedgehog, or the Hedgehog-regulated transcription factor Cubitus interruptus, induces high-level expression of Cad99C. Conversely, blocking Hedgehog signal transduction by either inactivating Smoothened or Cubitus interruptus reduces high-level Cad99C expression. Finally, by analyzing mutant clones of cells, we show that Cad99C is not essential for cell segregation at the A/P boundary. We conclude that cad99C is a novel Hedgehog-regulated gene encoding a member of the cadherin superfamily in Drosophila. PMID:15708564

  2. Sonic hedgehog increases the skin wound-healing ability of mouse embryonic stem cells through the microRNA 200 family

    PubMed Central

    Suh, Han Na; Han, Ho Jae

    2015-01-01

    Background and Purpose To use stem cell therapy effectively, it is important to enhance the therapeutic potential of stem cells with soluble factors. Although sonic hedgehog (shh) is important in maintaining the stem cell, the recovery effect of mouse embryonic stem cells (mESCs) with shh has not yet been elucidated. The present study investigated the effect of mESCs with shh in skin recovery in vivo as well as the related intracellular signal pathways in vitro. Experimental Approach The healing effect of mESCs with shh on skin wounds was examined in vivo in ICR mice. The involvement of Smads, the microRNA (miR)-200 family, zinc finger E-box-binding homeobox (ZEBs) and E-cadherin on shh-induced mESC migration and self-renewal was determined in vitro. Key Results The mESCs with shh increased re-epithelialization and VEGF expression in skin wounds. Shh-treated mESCs increased both secreted and intracellular levels of VEGF. Shh induced dephosphorylation of glycogen synthase kinase 3β through the Smoothened receptor and increased the phosphorylation of Smad1 and Smad2/3 in mESCs. Shh-induced decrease of the mmu-miR-141, -200c, -200a, -200b and -429 expression levels was significantly reversed by Smad4 siRNA. Shh increased nuclear expression of ZEB1/ZEB2 and decreased E-cadherin expression while increasing cell migration and skin wound healing. Both these effects were reversed by mmu-miR-141 and -200b mimics. Conclusions and Implications Mouse ESCs accelerated skin wound healing by shh through down-regulating E-cadherin, an effect dependent on mmu-miR-141 and -200b. Our data provides evidence for the effectiveness of shh in stem cell-based therapy in vivo. PMID:25257936

  3. The influence of metal-ion binding on the structure and surface composition of Sonic Hedgehog: a combined classical and hybrid QM/MM MD study.

    PubMed

    Hitzenberger, Manuel; Hofer, Thomas S

    2016-08-10

    In this work, the influence of the metal ions present in vertebrate Sonic Hedgehog was assessed by a series of molecular mechanics molecular dynamics simulations with differing ionic compositions. The obtained data suggest that Ca(ii) binding has a very distinct influence on the composition of the protein surface surrounding the binding site by shaping several ionic interactions with negatively charged sidechains that otherwise would be pointing towards the solvent, repelling potential ligands. Furthermore, the Ca(ii) ions play an important role in the stability of the loop regions where they are coordinated. In contrast, the removal of the Zn(ii) ion results in no noticeable destabilization of its chemical surrounding, however, it is shown that the destabilizing effect of removed Ca(ii) ions is amplified if Zn(ii) is absent as well. Furthermore, a quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation of Sonic Hedgehog with special focus on the Zn(ii) binding site has been conducted. The results indicate that QM/MM in contrast to pure MM accurately reproduces structural features also found by experimental studies and therefore is able to provide credible predictions not only of the dynamical properties of the studied system but also of protein-ligand interactions at the metal ion binding site. PMID:27452578

  4. Sonic hedgehog signaling pathway in vertebrate epithelial appendage morphogenesis: perspectives in development and evolution.

    PubMed

    Chuong, C M; Patel, N; Lin, J; Jung, H S; Widelitz, R B

    2000-11-01

    Vertebrate epithelial appendages are elaborate topological transformations of flat epithelia into complex organs that either protrude out of external (integument) and internal (oral cavity, gut) epithelia, or invaginate into the surrounding mesenchyme. Although they have specific structures and diverse functions, most epithelial appendages share similar developmental stages, including induction, morphogenesis, differentiation and cycling. The roles of the SHH pathway are analyzed in exemplary organs including feather, hair, tooth, tongue papilla, lung and foregut. SHH is not essential for induction and differentiation, but is involved heavily in morphogenetic processes including cell proliferation (size regulation), branching morphogenesis, mesenchymal condensation, fate determination (segmentation), polarizing activities and so on. Through differential activation of these processes by SHH in a spatiotemporal-specific fashion, organs of different shape and size are laid down. During evolution, new links of developmental pathways may occur and novel forms of epithelial appendages may emerge, upon which evolutionary selections can act. Sites of major variations have progressed from the body plan to the limb plan to the epithelial appendage plan. With its powerful morphogenetic activities, the SHH pathway would likely continue to play a major role in the evolution of novel epithelial appendages. PMID:11130174

  5. Neuropilins are positive regulators of Hedgehog signal transduction.

    PubMed

    Hillman, R Tyler; Feng, Brian Y; Ni, Jun; Woo, Wei-Meng; Milenkovic, Ljiljana; Hayden Gephart, Melanie G; Teruel, Mary N; Oro, Anthony E; Chen, James K; Scott, Matthew P

    2011-11-15

    The Hedgehog (Hh) pathway is essential for vertebrate embryogenesis, and excessive Hh target gene activation can cause cancer in humans. Here we show that Neuropilin 1 (Nrp1) and Nrp2, transmembrane proteins with roles in axon guidance and vascular endothelial growth factor (VEGF) signaling, are important positive regulators of Hh signal transduction. Nrps are expressed at times and locations of active Hh signal transduction during mouse development. Using cell lines lacking key Hh pathway components, we show that Nrps mediate Hh transduction between activated Smoothened (Smo) protein and the negative regulator Suppressor of Fused (SuFu). Nrp1 transcription is induced by Hh signaling, and Nrp1 overexpression increases maximal Hh target gene activation, indicating the existence of a positive feedback circuit. The regulation of Hh signal transduction by Nrps is conserved between mammals and bony fish, as we show that morpholinos targeting the Nrp zebrafish ortholog nrp1a produce a specific and highly penetrant Hh pathway loss-of-function phenotype. These findings enhance our knowledge of Hh pathway regulation and provide evidence for a conserved nexus between Nrps and this important developmental signaling system. PMID:22051878

  6. Set7 mediated Gli3 methylation plays a positive role in the activation of Sonic Hedgehog pathway in mammals.

    PubMed

    Fu, Lin; Wu, Hailong; Cheng, Steven Y; Gao, Daming; Zhang, Lei; Zhao, Yun

    2016-01-01

    Hedgehog signaling plays very important roles in development and cancers. Vertebrates have three transcriptional factors, Gli1, Gli2 and Gli3. Among them, Gli3 is a very special transcriptional factor which closely resembles Cubitus interruptus (Ci, in Drosophila) structurally and functionally as a 'double agent' for Shh target gene expression. Here we show that Gli3 full-length, but not the truncated form, can be methylated at K436 and K595. This methylation is specifically catalyzed by Set7, a lysine methyltransferase (KMT). Methylation at K436 and K595 respectively increases the stability and DNA binding ability of Gli3, resulting in an enhancement of Shh signaling activation. Furthermore, functional experiments indicate that the Gli3 methylation contributes to the tumor growth and metastasis in non-small cell lung cancer in vitro and in vivo. Therefore, we propose that Set7 mediated methylation is a novel PTM of Gli3, which positively regulates the transactivity of Gli3 and the activation of Shh signaling. PMID:27146893

  7. Set7 mediated Gli3 methylation plays a positive role in the activation of Sonic Hedgehog pathway in mammals

    PubMed Central

    Fu, Lin; Wu, Hailong; Cheng, Steven Y; Gao, Daming; Zhang, Lei; Zhao, Yun

    2016-01-01

    Hedgehog signaling plays very important roles in development and cancers. Vertebrates have three transcriptional factors, Gli1, Gli2 and Gli3. Among them, Gli3 is a very special transcriptional factor which closely resembles Cubitus interruptus (Ci, in Drosophila) structurally and functionally as a ‘double agent’ for Shh target gene expression. Here we show that Gli3 full-length, but not the truncated form, can be methylated at K436 and K595. This methylation is specifically catalyzed by Set7, a lysine methyltransferase (KMT). Methylation at K436 and K595 respectively increases the stability and DNA binding ability of Gli3, resulting in an enhancement of Shh signaling activation. Furthermore, functional experiments indicate that the Gli3 methylation contributes to the tumor growth and metastasis in non-small cell lung cancer in vitro and in vivo. Therefore, we propose that Set7 mediated methylation is a novel PTM of Gli3, which positively regulates the transactivity of Gli3 and the activation of Shh signaling. DOI: http://dx.doi.org/10.7554/eLife.15690.001 PMID:27146893

  8. N-docosahexaenoylethanolamine regulates Hedgehog signaling and promotes growth of cortical axons

    PubMed Central

    Kharebava, Giorgi; Rashid, Mohammad A.; Lee, Ji-Won; Sarkar, Sarmila; Kevala, Karl; Kim, Hee-Yong

    2015-01-01

    ABSTRACT Axonogenesis, a process for the establishment of neuron connectivity, is central to brain function. The role of metabolites derived from docosahexaenoic acid (DHA, 22:6n-3) that is specifically enriched in the brain, has not been addressed in axon development. In this study, we tested if synaptamide (N-docosahexaenoylethanolamine), an endogenous metabolite of DHA, affects axon growth in cultured cortical neurons. We found that synaptamide increased the average axon length, inhibited GLI family zinc finger 1 (GLI1) transcription and sonic hedgehog (Shh) target gene expression while inducing cAMP elevation. Similar effects were produced by cyclopamine, a regulator of the Shh pathway. Conversely, Shh antagonized elevation of cAMP and blocked synaptamide-mediated increase in axon length. Activation of Shh pathway by a smoothened (SMO) agonist (SAG) or overexpression of SMO did not inhibit axon growth mediated by synaptamide or cyclopamine. Instead, adenylate cyclase inhibitor SQ22536 abolished synaptamide-mediated axon growth indicating requirement of cAMP elevation for this process. Our findings establish that synaptamide promotes axon growth while Shh antagonizes synaptamide-mediated cAMP elevation and axon growth by a SMO-independent, non-canonical pathway. PMID:26545965

  9. Autonomous and nonautonomous roles of Hedgehog signaling in regulating limb muscle formation

    PubMed Central

    Hu, Jimmy Kuang-Hsien; McGlinn, Edwina; Harfe, Brian D.; Kardon, Gabrielle; Tabin, Clifford J.

    2012-01-01

    Muscle progenitor cells migrate from the lateral somites into the developing vertebrate limb, where they undergo patterning and differentiation in response to local signals. Sonic hedgehog (Shh) is a secreted molecule made in the posterior limb bud that affects patterning and development of multiple tissues, including skeletal muscles. However, the cell-autonomous and non-cell-autonomous functions of Shh during limb muscle formation have remained unclear. We found that Shh affects the pattern of limb musculature non-cell-autonomously, acting through adjacent nonmuscle mesenchyme. However, Shh plays a cell-autonomous role in maintaining cell survival in the dermomyotome and initiating early activation of the myogenic program in the ventral limb. At later stages, Shh promotes slow muscle differentiation cell-autonomously. In addition, Shh signaling is required cell-autonomously to regulate directional muscle cell migration in the distal limb. We identify neuroepithelial cell transforming gene 1 (Net1) as a downstream target and effector of Shh signaling in that context. PMID:22987639

  10. miR-219 regulates neural progenitors by dampening apical Par protein-dependent Hedgehog signaling.

    PubMed

    Hudish, Laura I; Galati, Domenico F; Ravanelli, Andrew M; Pearson, Chad G; Huang, Peng; Appel, Bruce

    2016-07-01

    The transition of dividing neuroepithelial progenitors to differentiated neurons and glia is essential for the formation of a functional nervous system. Sonic hedgehog (Shh) is a mitogen for spinal cord progenitors, but how cells become insensitive to the proliferative effects of Shh is not well understood. Because Shh reception occurs at primary cilia, which are positioned within the apical membrane of neuroepithelial progenitors, we hypothesized that loss of apical characteristics reduces the Shh signaling response, causing cell cycle exit and differentiation. We tested this hypothesis using genetic and pharmacological manipulation, gene expression analysis and time-lapse imaging of zebrafish embryos. Blocking the function of miR-219, a microRNA that downregulates apical Par polarity proteins and promotes progenitor differentiation, elevated Shh signaling. Inhibition of Shh signaling reversed the effects of miR-219 depletion and forced expression of Shh phenocopied miR-219 deficiency. Time-lapse imaging revealed that knockdown of miR-219 function accelerates the growth of primary cilia, revealing a possible mechanistic link between miR-219-mediated regulation of apical Par proteins and Shh signaling. Thus, miR-219 appears to decrease progenitor cell sensitivity to Shh signaling, thereby driving these cells towards differentiation. PMID:27226318

  11. Hedgehog signaling in prostate epithelial-mesenchymal growth regulation

    PubMed Central

    Peng, Yu-Ching; Joyner, Alexandra L.

    2015-01-01

    The prostate gland plays an important role in male reproduction, and is also an organ prone to diseases such as benign prostatic hyperplasia (BPH) and prostate cancer. The prostate consists of ducts with an inner layer of epithelium surrounded by stroma. Reciprocal signaling between these two cell compartments is instrumental to normal prostatic development, homeostasis, regeneration, as well as tumor formation. Hedgehog (HH) signaling is a master regulator in numerous developmental processes. In many organs, HH plays a key role in epithelial-mesenchymal signaling that regulates organ growth and tissue differentiation, and abnormal HH signaling has been implicated in the progression of various epithelial carcinomas. In this review, we focus on recent studies exploring the multipotency of endogenous postnatal and adult epithelial and stromal stem cells and studies addressing the role of HH in prostate development and cancer. We discuss the implications of the results for a new understanding of prostate development and disease. Insight into the cellular and molecular mechanisms underlying epithelial-mesenchymal growth regulation should provide a basis for devising innovative therapies to combat diseases of the prostate. PMID:25641695

  12. Regulator of G-Protein Signaling – 5 (RGS5) Is a Novel Repressor of Hedgehog Signaling

    PubMed Central

    Mahoney, William M.; Gunaje, Jagadambika; Daum, Guenter; Dong, Xiu Rong; Majesky, Mark W.

    2013-01-01

    Hedgehog (Hh) signaling plays fundamental roles in morphogenesis, tissue repair, and human disease. Initiation of Hh signaling is controlled by the interaction of two multipass membrane proteins, patched (Ptc) and smoothened (Smo). Recent studies identify Smo as a G-protein coupled receptor (GPCR)-like protein that signals through large G-protein complexes which contain the Gαi subunit. We hypothesize Regulator of G-Protein Signaling (RGS) proteins, and specifically RGS5, are endogenous repressors of Hh signaling via their ability to act as GTPase activating proteins (GAPs) for GTP-bound Gαi, downstream of Smo. In support of this hypothesis, we demonstrate that RGS5 over-expression inhibits sonic hedgehog (Shh)-mediated signaling and osteogenesis in C3H10T1/2 cells. Conversely, signaling is potentiated by siRNA-mediated knock-down of RGS5 expression, but not RGS4 expression. Furthermore, using immuohistochemical analysis and co-immunoprecipitation (Co-IP), we demonstrate that RGS5 is present with Smo in primary cilia. This organelle is required for canonical Hh signaling in mammalian cells, and RGS5 is found in a physical complex with Smo in these cells. We therefore conclude that RGS5 is an endogenous regulator of Hh-mediated signaling and that RGS proteins are potential targets for novel therapeutics in Hh-mediated diseases. PMID:23637832

  13. GALNT1-Mediated Glycosylation and Activation of Sonic Hedgehog Signaling Maintains the Self-Renewal and Tumor-Initiating Capacity of Bladder Cancer Stem Cells.

    PubMed

    Li, Chong; Du, Ying; Yang, Zhao; He, Luyun; Wang, Yanying; Hao, Lu; Ding, Mingxia; Yan, Ruping; Wang, Jiansong; Fan, Zusen

    2016-03-01

    The existence of bladder cancer stem cells (BCSC) has been suggested to underlie bladder tumor initiation and recurrence. Sonic Hedgehog (SHH) signaling has been implicated in promoting cancer stem cell (CSC) self-renewal and is activated in bladder cancer, but its impact on BCSC maintenance is unclear. In this study, we generated a mAb (BCMab1) against CD44(+) human bladder cancer cells that recognizes aberrantly glycosylated integrin α3β1. The combination of BCMab1 with an anti-CD44 antibody identified a BCMab1(+)CD44(+) cell subpopulation as BCSCs with stem cell-like properties. Gene expression analysis revealed that the hedgehog pathway was activated in the BCMab1(+)CD44(+) subpopulation and was required for BCSC self-renewal. Furthermore, the glycotransferase GALNT1 was highly expressed in BCMab1(+)CD44(+) cells and correlated with clinicopathologic features of bladder cancers. Mechanistically, GALNT1 mediated O-linked glycosylation of SHH to promote its activation, which was essential for the self-renewal maintenance of BCSCs and bladder tumorigenesis. Finally, intravesical instillation of GALNT1 siRNA and the SHH inhibitor cyclopamine exerted potent antitumor activity against bladder tumor growth. Taken together, our findings identify a BCSC subpopulation in human bladder tumors that appears to be responsive to the inhibition of GALNT1 and SHH signaling, and thus highlight a potential strategy for preventing the rapid recurrence typical in patients with bladder cancer. PMID:26676748

  14. An Nfic-hedgehog signaling cascade regulates tooth root development.

    PubMed

    Liu, Yang; Feng, Jifan; Li, Jingyuan; Zhao, Hu; Ho, Thach-Vu; Chai, Yang

    2015-10-01

    Coordination between the Hertwig's epithelial root sheath (HERS) and apical papilla (AP) is crucial for proper tooth root development. The hedgehog (Hh) signaling pathway and Nfic are both involved in tooth root development; however, their relationship has yet to be elucidated. Here, we establish a timecourse of mouse molar root development by histological staining of sections, and we demonstrate that Hh signaling is active before and during root development in the AP and HERS using Gli1 reporter mice. The proper pattern of Hh signaling activity in the AP is crucial for the proliferation of dental mesenchymal cells, because either inhibition with Hh inhibitors or constitutive activation of Hh signaling activity in transgenic mice leads to decreased proliferation in the AP and shorter roots. Moreover, Hh activity is elevated in Nfic(-/-) mice, a root defect model, whereas RNA sequencing and in situ hybridization show that the Hh attenuator Hhip is downregulated. ChIP and RNAscope analyses suggest that Nfic binds to the promoter region of Hhip. Treatment of Nfic(-/-) mice with Hh inhibitor partially restores cell proliferation, AP growth and root development. Taken together, our results demonstrate that an Nfic-Hhip-Hh signaling pathway is crucial for apical papilla growth and proper root formation. This discovery provides insight into the molecular mechanisms regulating tooth root development. PMID:26293299

  15. Phosphoinositides Regulate Ciliary Protein Trafficking to Modulate Hedgehog Signaling

    PubMed Central

    Roberson, Elle C.; Garcia, Galo; Abedin, Monika; Schurmans, Stéphane; Inoue, Takanari; Reiter, Jeremy F.

    2015-01-01

    SUMMARY Primary cilia interpret vertebrate Hedgehog (Hh) signals. Why cilia are essential for signaling is unclear. One possibility is that some forms of signaling require a distinct membrane lipid composition, found at cilia. We found that the ciliary membrane contains a particular phosphoinositide, PI(4)P, whereas a different phosphoinositide, PI(4,5)P2, is restricted to the membrane of the ciliary base. This distribution is created by Inpp5e, a ciliary phosphoinositide 5-phosphatase. Without Inpp5e, ciliary PI(4,5)P2 levels are elevated and Hh signaling is disrupted. Inpp5e limits the ciliary levels of inhibitors of Hh signaling, including Gpr161 and the PI(4,5)P2-binding protein Tulp3. Increasing ciliary PI(4,5)P2 levels or conferring the ability to bind PI(4)P on Tulp3 increases the ciliary localization of Tulp3. Lowering Tulp3 in cells lacking Inpp5e reduces ciliary Gpr161 levels and restores Hh signaling. Therefore, Inpp5e regulates ciliary membrane phosphoinositide composition, and Tulp3 reads out ciliary phosphoinositides to control ciliary protein localization, enabling Hh signaling. PMID:26305592

  16. Hedgehog signaling in development and homeostasis of the gastrointestinal tract.

    PubMed

    van den Brink, Gijs R

    2007-10-01

    The Hedgehog family of secreted morphogenetic proteins acts through a complex evolutionary conserved signaling pathway to regulate patterning events during development and in the adult organism. In this review I discuss the role of Hedgehog signaling in the development, postnatal maintenance, and carcinogenesis of the gastrointestinal tract. Three mammalian hedgehog genes, sonic hedgehog (Shh), indian hedgehog (Ihh), and desert hedgehog (Dhh) have been identified. Shh and Ihh are important endodermal signals in the endodermal-mesodermal cross-talk that patterns the developing gut tube along different axes. Mutations in Shh, Ihh, and downstream signaling molecules lead to a variety of gross malformations of the murine gastrointestinal tract including esophageal atresia, tracheoesophageal fistula, annular pancreas, midgut malrotation, and duodenal and anal atresia. These congenital malformations are also found in varying constellations in humans, suggesting a possible role for defective Hedgehog signaling in these patients. In the adult, Hedgehog signaling regulates homeostasis in several endoderm-derived epithelia, for example, the stomach, intestine, and pancreas. Finally, growth of carcinomas of the proximal gastrointestinal tract such as esophageal, gastric, biliary duct, and pancreatic cancers may depend on Hedgehog signaling offering a potential avenue for novel therapy for these aggressive cancers. PMID:17928586

  17. Hedgehog signaling regulates dental papilla formation and tooth size during zebrafish odontogenesis

    PubMed Central

    Yu, Jeffrey C.; Fox, Zachary D.B.; Crimp, James L.; Littleford, Hana E.; Jowdry, Andrea L.; Jackman, William R.

    2015-01-01

    Background Intercellular communication by the hedgehog cell signaling pathway is necessary for tooth development throughout the vertebrates, but it remains unclear which specific developmental signals control cell behavior at different stages of odontogenesis. To address this issue, we have manipulated hedgehog activity during zebrafish tooth development and visualized the results using confocal microscopy. Results We first established that reporter lines for dlx2b, fli1, NF-κB, and prdm1a are markers for specific subsets of tooth germ tissues. We then blocked hedgehog signaling with cyclopamine and observed a reduction or elimination of the cranial neural crest derived dental papilla, which normally contains the cells that later give rise to dentin-producing odontoblasts. Upon further investigation we observed that the dental papilla begins to form and then regresses in the absence of hedgehog signaling, through a mechanism unrelated to cell proliferation or apoptosis. We also found evidence of an isometric reduction in tooth size that correlates with the time of earliest hedgehog inhibition. Conclusions We hypothesize that these results reveal a previously uncharacterized function of hedgehog signaling during tooth morphogenesis, regulating the number of cells in the dental papilla and thereby controlling tooth size. PMID:25645398

  18. Hedgehog-dependent E3-ligase Midline1 regulates ubiquitin-mediated proteasomal degradation of Pax6 during visual system development.

    PubMed

    Pfirrmann, Thorsten; Jandt, Enrico; Ranft, Swantje; Lokapally, Ashwin; Neuhaus, Herbert; Perron, Muriel; Hollemann, Thomas

    2016-09-01

    Pax6 is a key transcription factor involved in eye, brain, and pancreas development. Although pax6 is expressed in the whole prospective retinal field, subsequently its expression becomes restricted to the optic cup by reciprocal transcriptional repression of pax6 and pax2 However, it remains unclear how Pax6 protein is removed from the eyestalk territory on time. Here, we report that Mid1, a member of the RBCC/TRIM E3 ligase family, which was first identified in patients with the X-chromosome-linked Opitz BBB/G (OS) syndrome, interacts with Pax6. We found that the forming eyestalk is a major domain of mid1 expression, controlled by the morphogen Sonic hedgehog (Shh). Here, Mid1 regulates the ubiquitination and proteasomal degradation of Pax6 protein. Accordantly, when Mid1 levels are knocked down, Pax6 expression is expanded and eyes are enlarged. Our findings indicate that remaining or misaddressed Pax6 protein is cleared from the eyestalk region to properly set the border between the eyestalk territory and the retina via Mid1. Thus, we identified a posttranslational mechanism, regulated by Sonic hedgehog, which is important to suppress Pax6 activity and thus breaks pax6 autoregulation at defined steps during the formation of the visual system. PMID:27555585

  19. Sonic hedgehog-glioma associated oncogene homolog 1 signaling enhances drug resistance in CD44(+)/Musashi-1(+) gastric cancer stem cells.

    PubMed

    Xu, Min; Gong, Aihua; Yang, Hongqiong; George, Suraj K; Jiao, Zhijun; Huang, Hongmei; Jiang, Xiaomeng; Zhang, Youli

    2015-12-01

    Drug resistance in gastric cancer largely results from the gastric cancer stem cells (GCSCs), which could be targeted to improve the efficacy of chemotherapy. In this study, we identified a subpopulation of GCSCs enriched in holoclones that expressed CD44(+)/Musashi-1(+) stem cell biomarkers, capable of self-renewal and proliferation. Enriched CD44(+)/Musashi-1(+) GCSCs demonstrated elevated expression of sonic hedgehog (SHH) and glioma-associated oncogene homolog 1 (GLI1), the well-known signaling pathway molecules involved in the drug resistance. Further, CD44(+)/Musashi-1(+) cells exhibited high drug efflux bump activity and were resistant to doxorubicin (Dox)-induced apoptosis, and unregulated the ATP-binding cassette sub-family G member 2 (ABCG2) expression,. The above effects on apoptosis were reversed in the presence of GLI inhibitors, GANT61 and GDC-0449, or by the knockdown of GLI1/SHH. Upon knockdown of GLI1, expression of ABCG2 was downregulated the antitumor effects were significantly improved as observed in the gastric cancer xenograft. Collectively, our study revealed that co-expression of CD44(+)/Musashi-1(+) could be used to identify GCSCs, which also accounts for the drug resistance in gastric cancer. SHH-GLI and its downstream effector ABCG2 could be better targeted to possibly improve the efficacy of chemotherapy in drug-resistant gastric cancers. PMID:26276718

  20. Astrocyte-derived sonic hedgehog contributes to angiogenesis in brain microvascular endothelial cells via RhoA/ROCK pathway after oxygen-glucose deprivation.

    PubMed

    He, Quan-Wei; Xia, Yuan-Peng; Chen, Sheng-Cai; Wang, Yong; Huang, Ming; Huang, Yan; Li, Jian-Yong; Li, Ya-Nan; Gao, Yuan; Mao, Ling; Mei, Yuan-Wu; Hu, Bo

    2013-06-01

    The human adult brain possesses intriguing plasticity, including neurogenesis and angiogenesis, which may be mediated by the activated sonic hedgehog (Shh). By employing a coculture system, brain microvascular endothelial cells (BMECs) cocultured with astrocytes, which were incubated under oxygen-glucose deprivation (OGD) condition, we tested the hypothesis that Shh secreted by OGD-activated astrocytes promotes cerebral angiogenesis following ischemia. The results of this study demonstrated that Shh was mainly secreted by astrocytes and the secretion was significantly upregulated after OGD. The proliferation, migration, and tube formation of BMECs cocultured with astrocytes after OGD were significantly enhanced, but cyclopamine (a Shh antagonist) or 5E1 (an antibody of Shh) reversed the change. Furthermore, silencing Ras homolog gene family, member A (RhoA) of BMECs by RNAi and blocking Rho-dependent kinase (ROCK) by Y27632, a specific antagonist of ROCK, suppressed the upregulation of proliferation, migration, and tube formation of BMECs after OGD. These findings suggested that Shh derived from activated astrocytes stimulated RhoA/ROCK pathway in BMECs after OGD, which might be involved in angiogenesis in vitro. PMID:23325464

  1. Testing chemotherapeutic agents in the feather follicle identifies a selective blockade of cell proliferation and a key role for sonic hedgehog signaling in chemotherapy-induced tissue damage.

    PubMed

    Xie, Guojiang; Wang, Hangwei; Yan, Zhipeng; Cai, Linyan; Zhou, Guixuan; He, Wanzhong; Paus, Ralf; Yue, Zhicao

    2015-03-01

    Chemotherapeutic agents induce complex tissue responses in vivo and damage normal organ functions. Here we use the feather follicle to investigate details of this damage response. We show that cyclophosphamide treatment, which causes chemotherapy-induced alopecia in mice and man, induces distinct defects in feather formation: feather branching is transiently and reversibly disrupted, thus leaving a morphological record of the impact of chemotherapeutic agents, whereas the rachis (feather axis) remains unperturbed. Similar defects are observed in feathers treated with 5-fluorouracil or taxol but not with doxorubicin or arabinofuranosyl cytidine (Ara-C). Selective blockade of cell proliferation was seen in the feather branching area, along with a downregulation of sonic hedgehog (Shh) transcription, but not in the equally proliferative rachis. Local delivery of the Shh inhibitor, cyclopamine, or Shh silencing both recapitulated this effect. In mouse hair follicles, those chemotherapeutic agents that disrupted feather formation also downregulated Shh gene expression and induced hair loss, whereas doxorubicin or Ara-C did not. Our results reveal a mechanism through which chemotherapeutic agents damage rapidly proliferating epithelial tissue, namely via the cell population-specific, Shh-dependent inhibition of proliferation. This mechanism may be targeted by future strategies to manage chemotherapy-induced tissue damage. PMID:25233072

  2. A variant in the sonic hedgehog regulatory sequence (ZRS) is associated with triphalangeal thumb and deregulates expression in the developing limb

    PubMed Central

    Furniss, Dominic; Lettice, Laura A.; Taylor, Indira B.; Critchley, Paul S.; Giele, Henk; Hill, Robert E.; Wilkie, Andrew O.M.

    2008-01-01

    A locus for triphalangeal thumb, variably associated with pre-axial polydactyly, was previously identified in the zone of polarizing activity regulatory sequence (ZRS), a long range limb-specific enhancer of the Sonic Hedgehog (SHH) gene at human chromosome 7q36.3. Here, we demonstrate that a 295T>C variant in the human ZRS, previously thought to represent a neutral polymorphism, acts as a dominant allele with reduced penetrance. We found this variant in three independently ascertained probands from southern England with triphalangeal thumb, demonstrated significant linkage of the phenotype to the variant (LOD = 4.1), and identified a shared microsatellite haplotype around the ZRS, suggesting that the probands share a common ancestor. An individual homozygous for the 295C allele presented with isolated bilateral triphalangeal thumb resembling the heterozygous phenotype, suggesting that the variant is largely dominant to the wild-type allele. As a functional test of the pathogenicity of the 295C allele, we utilized a mutated ZRS construct to demonstrate that it can drive ectopic anterior expression of a reporter gene in the developing mouse forelimb. We conclude that the 295T>C variant is in fact pathogenic and, in southern England, appears to be the most common cause of triphalangeal thumb. Depending on the dispersal of the founding mutation, it may play a wider role in the aetiology of this disorder. PMID:18463159

  3. Overexpression of sonic hedgehog in the triple negative breast cancer: clinicopathological characteristics of high burden breast cancer patients from Bangladesh.

    PubMed

    Noman, A S; Uddin, M; Rahman, M Z; Nayeem, M J; Alam, S S; Khatun, Z; Wahiduzzaman, M; Sultana, A; Rahman, M L; Ali, M Y; Barua, D; Ahmed, I; Islam, M S; Aboussekhra, A; Yeger, H; Farhat, W A; Islam, S S

    2016-01-01

    Dysregulation of Hedgehog (Hh) signaling pathway has been documented in mammary gland development and breast cancer (BC) progression. Despite the remarkable progress in therapeutic interventions, BC related mortality in Bangladesh increased in the last decade. Triple negative breast cancer (TNBC) still presents a critical therapeutic challenge. Thus effective targeted therapy is urgently needed. In this study, we report the clinicopathological characteristics and prognosis of BC patients from Bangladesh. Routine immunohistochemical analysis and high throughput RNA-Seq data from the TCGA library were used to analyze the expression pattern and association of high and low level of Shh expression in a collection of BC patients with a long-term follow-up. High levels of Shh were observed in a subset of BC tumors with poor prognostic pathological features. Higher level of Shh expression correlated with a significantly poorer overall survival of patients compared with patients whose tumors expressed a low level of Shh. These data support the contention that Shh could be a novel biomarker for breast cancer that is involved in mediating the aggressive phenotype of BC. We propose that BC patients exhibiting a higher level of Shh expression, representing a subset of BC patients, would be amenable to Shh targeted therapy. PMID:26727947

  4. Overexpression of sonic hedgehog in the triple negative breast cancer: clinicopathological characteristics of high burden breast cancer patients from Bangladesh

    PubMed Central

    Noman, A. S.; Uddin, M.; Rahman, M. Z.; Nayeem, M. J.; Alam, S. S.; Khatun, Z.; Wahiduzzaman, M.; Sultana, A.; Rahman, M. L.; Ali, M. Y.; Barua, D.; Ahmed, I.; Islam, M. S.; Aboussekhra, A.; Yeger, H.; Farhat, W. A.; Islam, S. S.

    2016-01-01

    Dysregulation of Hedgehog (Hh) signaling pathway has been documented in mammary gland development and breast cancer (BC) progression. Despite the remarkable progress in therapeutic interventions, BC related mortality in Bangladesh increased in the last decade. Triple negative breast cancer (TNBC) still presents a critical therapeutic challenge. Thus effective targeted therapy is urgently needed. In this study, we report the clinicopathological characteristics and prognosis of BC patients from Bangladesh. Routine immunohistochemical analysis and high throughput RNA-Seq data from the TCGA library were used to analyze the expression pattern and association of high and low level of Shh expression in a collection of BC patients with a long-term follow-up. High levels of Shh were observed in a subset of BC tumors with poor prognostic pathological features. Higher level of Shh expression correlated with a significantly poorer overall survival of patients compared with patients whose tumors expressed a low level of Shh. These data support the contention that Shh could be a novel biomarker for breast cancer that is involved in mediating the aggressive phenotype of BC. We propose that BC patients exhibiting a higher level of Shh expression, representing a subset of BC patients, would be amenable to Shh targeted therapy. PMID:26727947

  5. Seminiferous cord formation is regulated by hedgehog signaling in the marsupial.

    PubMed

    Chung, Jin Wei; Pask, Andrew J; Renfree, Marilyn B

    2012-03-01

    The signaling molecule DHH, secreted by Sertoli cells, has essential regulatory functions in testicular differentiation. DHH is required for the differentiation of peritubular myoid cells that line the seminiferous cords and steroidogenic Leydig cells. The testicular cords in Dhh-null male mice lack a basal lamina and develop abnormally. To date, the DHH-signaling pathway has never been examined outside of any eutherian mammals. This study examined the effects of inhibition of DHH signaling in a marsupial mammal, the tammar wallaby, by culturing gonads in vitro in the presence of the hedgehog-signaling inhibitors cyclopamine and forskolin. Disruption of hedgehog signaling in the tammar testes caused highly disorganized cord formation. SOX9 protein remained strongly expressed in Sertoli cells, laminin distribution was highly fragmented, and germ cells were distributed around the cortical regions of treated testes in an ovarianlike morphology. This suggests that hedgehog signaling regulates cord formation in the tammar wallaby testis as it does in eutherian mammals. These data demonstrate that the hedgehog pathway has been highly conserved in mammals for at least 160 million years. PMID:22133695

  6. Context-dependent Regulation of the GLI Code in Cancer by HEDGEHOG and Non-HEDGEHOG Signals

    PubMed Central

    Stecca, Barbara; Ruiz i Altaba, Ariel

    2010-01-01

    A surprisingly large and unrelated number of human tumors depend on sustained HEDGEHOG-GLI (HH-GLI) signaling for growth. This includes cancers of the skin, brain, colon, lungs, prostate, blood and pancreas among others. The basis of such commonality is not obvious. HH-GLI signaling has also been shown to be active in and required for cancer stem cell survival and expansion in different cancer types, and its activity is essential not only for tumor growth but also for recurrence and metastatic growth, two key medical problems. Here we review recent data on the role of HH-GLI signaling in cancer focusing on the role of the GLI code, the regulated combinatorial and cooperative function of repressive and activating forms of all Gli transcription factors, as a signaling nexus that integrates not only HH signals but also those of multiple tumor suppressors and oncogenes. Recent data support the view that the context-dependent regulation of the GLI code by oncogenes and tumor suppressors constitutes a basis for the widespread involvement of GLI1 in human cancers, representing a perversion of its normal role in the control of stem cell lineages during normal development and homeostasis. PMID:20083481

  7. Hedgehog signaling regulates FOXA2 in esophageal embryogenesis and Barrett’s metaplasia

    PubMed Central

    Wang, David H.; Tiwari, Anjana; Kim, Monica E.; Clemons, Nicholas J.; Regmi, Nanda L.; Hodges, William A.; Berman, David M.; Montgomery, Elizabeth A.; Watkins, D. Neil; Zhang, Xi; Zhang, Qiuyang; Jie, Chunfa; Spechler, Stuart J.; Souza, Rhonda F.

    2014-01-01

    Metaplasia can result when injury reactivates latent developmental signaling pathways that determine cell phenotype. Barrett’s esophagus is a squamous-to-columnar epithelial metaplasia caused by reflux esophagitis. Hedgehog (Hh) signaling is active in columnar-lined, embryonic esophagus and inactive in squamous-lined, adult esophagus. We showed previously that Hh signaling is reactivated in Barrett’s metaplasia and overexpression of Sonic hedgehog (SHH) in mouse esophageal squamous epithelium leads to a columnar phenotype. Here, our objective was to identify Hh target genes involved in Barrett’s pathogenesis. By microarray analysis, we found that the transcription factor Foxa2 is more highly expressed in murine embryonic esophagus compared with postnatal esophagus. Conditional activation of Shh in mouse esophageal epithelium induced FOXA2, while FOXA2 expression was reduced in Shh knockout embryos, establishing Foxa2 as an esophageal Hh target gene. Evaluation of patient samples revealed FOXA2 expression in Barrett’s metaplasia, dysplasia, and adenocarcinoma but not in esophageal squamous epithelium or squamous cell carcinoma. In esophageal squamous cell lines, Hh signaling upregulated FOXA2, which induced expression of MUC2, an intestinal mucin found in Barrett’s esophagus, and the MUC2-processing protein AGR2. Together, these data indicate that Hh signaling induces expression of genes that determine an intestinal phenotype in esophageal squamous epithelial cells and may contribute to the development of Barrett’s metaplasia. PMID:25083987

  8. Sonic hedgehog inhibitors prevent colitis-associated cancer via orchestrated mechanisms of IL-6/gp130 inhibition, 15-PGDH induction, Bcl-2 abrogation, and tumorsphere inhibition

    PubMed Central

    Kangwan, Napapan; Kim, Yoon-Jae; Han, Young Min; Jeong, Migyeong; Park, Jong-Min; Go, Eun-Jin; Hahm, Ki-Baik

    2016-01-01

    Sonic hedgehog (SHH) signaling is essential in normal development of the gastrointestinal (GI) tract, whereas aberrantly activated SHH is implicated in GI cancers because it facilitates carcinogenesis by redirecting stem cells. Since colitis-associated cancer (CAC) is associated with inflammatory bowel diseases, in which SHH and IL-6 signaling, inflammation propagation, and cancer stem cell (CSC) activation have been implicated, we hypothesized that SHH inhibitors may prevent CAC by blocking the above SHH-related carcinogenic pathways. In the intestinal epithelial cells IEC-6 and colon cancer cells HCT-116, IL-6 expression and its signaling were assessed with SHH inhibitors and levels of other inflammatory mediators, proliferation, apoptosis, tumorsphere formation, and tumorigenesis were also measured. CAC was induced in C57BL/6 mice by administration of azoxymethane followed by dextran sodium sulfate administration. SHH inhibitors were administered by oral gavage and the mice were sacrificed at 16 weeks. TNF-α–stimulated IEC-6 cells exhibited increased levels of proinflammatory cytokines and enzymes, whereas SHH inhibitors suppressed TNF-α–induced inflammatory signaling, especially IL-6/IL-6R/gp130 signaling. SHH inhibitors significantly induced apoptosis, inhibited cell proliferation, suppressed tumorsphere formation, and reduced stemness factors. In the mouse model, SHH inhibitors significantly reduced tumor incidence and multiplicity, decreased the expression of IL-6, TNF-α, COX-2, STAT3, and NF-κB, and significantly induced apoptosis. In colosphere xenografts, SHH inhibitor significantly suppressed tumorigenesis by inhibiting tumorsphere formation. Taken together, our data suggest that administration of SHH inhibitors could be an effective strategy to prevent colitis-induced colorectal carcinogenesis, mainly by targeting IL-6 signaling, ablating CSCs, and suppressing oncogenic inflammation, achieving chemoquiescence ultimately. PMID:26716648

  9. The differentiation of amniotic fluid stem cells into sweat glandlike cells is enhanced by the presence of Sonic hedgehog in the conditioned medium.

    PubMed

    Liang, Hansi; Sun, Qing; Zhen, Yunfang; Li, Fang; Xu, YunYun; Liu, Yao; Zhang, Xueguang; Qin, Mingde

    2016-09-01

    After patients suffer severe full-thickness burn injuries, the current treatments cannot lead to the complete self-regeneration of the sweat gland structure and function. Therefore, it is important to identify new methods for acquiring sufficient functional sweat gland cells to restore skin function. In this study, we induced CD117+ human amniotic fluid stem (hAFS) cells to differentiate into sweat glandlike (hAFS-SG) cells based on the use of conditioned medium (CM) from the human sweat gland (hSG) cells. Real-time PCR and immunofluorescent staining were used to confirm the expression of the sweat gland-related genes Ectodysplasin-A (EDA), Ectodysplasin-A receptor (EDAR), keratin 8 (K8) and carcino-embryonic antigen (CEA). Transmission electron microscopy analysis shows that microvilli, the cellular structures that are typical for hSG cells, can also be observed on the membrane of the hAFS-SG cells. Our test for the calcium response to acetylcholine (Ach) proved that hAFS-SG cells have the potential to respond to Ach in a manner similar to normal sweat glands. A three-dimensional culture is an effective approach that stimulates the hAFS-SG cells to form tubular structures and drives hAFS-SG cells to mature into higher stage. We also found that epidermal growth factor enhances the efficiency of differentiation and that Sonic hedgehog is an important factor of the CM that influences sweat gland differentiation. Our study provides the basis for further investigations into novel methods of inducing stem cells to differentiate into sweat glandlike cells. PMID:27120089

  10. PI3K/AKT/mTOR and sonic hedgehog pathways cooperate together to inhibit human pancreatic cancer stem cell characteristics and tumor growth

    PubMed Central

    Sharma, Narinder; Nanta, Rajesh; Sharma, Jay; Gunewardena, Sumedha; Singh, Karan P.; Shankar, Sharmila; Srivastava, Rakesh K.

    2015-01-01

    Cancer stem cells (CSCs) play major roles in cancer initiation, progression, and metastasis. It is evident from growing reports that PI3K/Akt/mTOR and Sonic Hedgehog (Shh) signaling pathways are aberrantly reactivated in pancreatic CSCs. Here, we examined the efficacy of combining NVP-LDE-225 (PI3K/mTOR inhibitor) and NVP-BEZ-235 (Smoothened inhibitor) on pancreatic CSCs characteristics, microRNA regulatory network, and tumor growth. NVP-LDE-225 co-operated with NVP-BEZ-235 in inhibiting pancreatic CSC's characteristics and tumor growth in mice by acting at the level of Gli. Combination of NVP-LDE-225 and NVP-BEZ-235 inhibited self-renewal capacity of CSCs by suppressing the expression of pluripotency maintaining factors Nanog, Oct-4, Sox-2 and c-Myc, and transcription of Gli. NVP-LDE-225 co-operated with NVP-BEZ-235 to inhibit Lin28/Let7a/Kras axis in pancreatic CSCs. Furthermore, a superior interaction of these drugs was observed on spheroid formation by pancreatic CSCs isolated from Pankras/p53 mice. The combination of these drugs also showed superior effects on the expression of proteins involved in cell proliferation, survival and apoptosis. In addition, NVP-LDE-225 co-operated with NVP-BEZ-235 in inhibiting EMT through modulation of cadherin, vimentin and transcription factors Snail, Slug and Zeb1. In conclusion, these data suggest that the combined inhibition of PI3K/Akt/mTOR and Shh pathways may be beneficial for the treatment of pancreatic cancer. PMID:26451606

  11. Genome-Wide Screening Reveals an EMT Molecular Network Mediated by Sonic Hedgehog-Gli1 Signaling in Pancreatic Cancer Cells

    PubMed Central

    Xie, Chuangao; Wei, Shu-mei; Gan, Huizhong; He, Shengli; Wang, Fan; Xu, Ling; Lu, Jie; Dai, Weiqi; He, Lei; Chen, Ping; Wang, Xingpeng; Guo, Chuanyong

    2012-01-01

    Aims The role of sonic hedgehog (SHH) in epithelial mesenchymal transition (EMT) of pancreatic cancer (PC) is known, however, its mechanism is unclear. Because SHH promotes tumor development predominantly through Gli1, we sought to understand its mechanism by identifying Gli1 targets in pancreatic cancer cells. Methods First, we investigated invasion, migration, and EMT in PC cells transfected with lentiviral Gli1 interference vectors or SHH over-expression vectors in vitro and in vivo. Next, we determined the target gene profiles of Gli1 in PC cells using cDNA microarray assays. Finally, the primary regulatory networks downstream of SHH-Gli1 signaling in PC cells were studied through functional analyses of these targets. Results Our results indicate there is decreased E-cadherin expression upon increased expression of SHH/Gli1. Migration of PC cells increased significantly in a dose-dependent manner within 24 hours of Gli1 expression (P<0.05). The ratio of liver metastasis and intrasplenic miniature metastasis increased markedly upon activation of SHH-Gli1 signals in nude mice. Using cDNA microarray, we identified 278 upregulated and 59 downregulated genes upon Gli1 expression in AsPC-1 cells. The data indicate that SHH-Gli1 signals promote EMT by mediating a complex signaling network including TGFβ, Ras, Wnt, growth factors, PI3K/AKT, integrins, transmembrane 4 superfamily (TM4SF), and S100A4. Conclusion Our results suggest that targeting the molecular connections established between SHH-Gli1 signaling and EMT could provide effective therapies for PC. PMID:22900095

  12. Activation of the sonic hedgehog signaling pathway occurs in the CD133 positive cells of mouse liver cancer Hepa 1–6 cells

    PubMed Central

    Jeng, Kuo-Shyang; Sheen, I-Shyan; Jeng, Wen-Juei; Yu, Ming-Che; Hsiau, Hsin-I; Chang, Fang-Yu; Tsai, Hsin-Hua

    2013-01-01

    Background The important role of cancer stem cells in carcinogenesis has been emphasized in research. CD133+ cells have been mentioned as liver cancer stem cells in hepatocellular carcinoma (HCC). Some researchers have proposed that the sonic hedgehog (Shh) pathway contributes to hepatocarcinogenesis and that the pathway activation occurs mainly in cancer stem cells. We investigated whether the activation of the Shh pathway occurs in CD133+ cells from liver cancer. Materials and methods We used magnetic sorting to isolate CD133+ cells from mouse cancer Hepa 1–6 cells. To examine the clonogenicity, cell culture and soft agar colony formation assay were performed between CD133+ and CD133− cells. To study the activation of the Shh pathway, we examined the mRNA expressions of Shh, patched homolog 1 (Ptch-1), glioma-associated oncogene homolog 1 (Gli-1), and smoothened homolog (Smoh) by real-time polymerase chain reaction of both CD133+ and CD133− cells. Results The number (mean ± standard deviation) of colonies of CD133+ cells and CD133− cells was 1,031.0 ± 104.7 and 119.7 ± 17.6 respectively. This difference was statistically significant (P < 0.001). Their clonogenicity was 13.7% ± 1.4% and 1.6% ± 0.2% respectively with a statistically significant difference found (P < 0.001). CD133+ cells and CD133− cells were found to have statistically significant differences in Shh mRNA and Smoh mRNA (P = 0.005 and P = 0.043 respectively). Conclusion CD133+ Hepa 1–6 cells have a significantly higher colony proliferation and clonogenicity. The Shh pathway is activated in these cells that harbor stem cell features, with an underexpression of Shh mRNA and an overexpression of Smoh mRNA. Blockade of the Shh signaling pathway may be a potential therapeutic strategy for hepatocarcinogenesis. PMID:23950652

  13. Sonic hedgehog inhibitors prevent colitis-associated cancer via orchestrated mechanisms of IL-6/gp130 inhibition, 15-PGDH induction, Bcl-2 abrogation, and tumorsphere inhibition.

    PubMed

    Kangwan, Napapan; Kim, Yoon-Jae; Han, Young Min; Jeong, Migyeong; Park, Jong-Min; Go, Eun-Jin; Hahm, Ki-Baik

    2016-02-16

    Sonic hedgehog (SHH) signaling is essential in normal development of the gastrointestinal (GI) tract, whereas aberrantly activated SHH is implicated in GI cancers because it facilitates carcinogenesis by redirecting stem cells. Since colitis-associated cancer (CAC) is associated with inflammatory bowel diseases, in which SHH and IL-6 signaling, inflammation propagation, and cancer stem cell (CSC) activation have been implicated, we hypothesized that SHH inhibitors may prevent CAC by blocking the above SHH-related carcinogenic pathways. In the intestinal epithelial cells IEC-6 and colon cancer cells HCT-116, IL-6 expression and its signaling were assessed with SHH inhibitors and levels of other inflammatory mediators, proliferation, apoptosis, tumorsphere formation, and tumorigenesis were also measured. CAC was induced in C57BL/6 mice by administration of azoxymethane followed by dextran sodium sulfate administration. SHH inhibitors were administered by oral gavage and the mice were sacrificed at 16 weeks. TNF-α-stimulated IEC-6 cells exhibited increased levels of proinflammatory cytokines and enzymes, whereas SHH inhibitors suppressed TNF-α-induced inflammatory signaling, especially IL-6/IL-6R/gp130 signaling. SHH inhibitors significantly induced apoptosis, inhibited cell proliferation, suppressed tumorsphere formation, and reduced stemness factors. In the mouse model, SHH inhibitors significantly reduced tumor incidence and multiplicity, decreased the expression of IL-6, TNF-α, COX-2, STAT3, and NF-κB, and significantly induced apoptosis. In colosphere xenografts, SHH inhibitor significantly suppressed tumorigenesis by inhibiting tumorsphere formation. Taken together, our data suggest that administration of SHH inhibitors could be an effective strategy to prevent colitis-induced colorectal carcinogenesis, mainly by targeting IL-6 signaling, ablating CSCs, and suppressing oncogenic inflammation, achieving chemoquiescence ultimately. PMID:26716648

  14. Structural basis of SUFU-GLI interaction in human Hedgehog signalling regulation.

    PubMed

    Cherry, Amy L; Finta, Csaba; Karlström, Mikael; Jin, Qianren; Schwend, Thomas; Astorga-Wells, Juan; Zubarev, Roman A; Del Campo, Mark; Criswell, Angela R; de Sanctis, Daniele; Jovine, Luca; Toftgård, Rune

    2013-12-01

    Hedgehog signalling plays a fundamental role in the control of metazoan development, cell proliferation and differentiation, as highlighted by the fact that its deregulation is associated with the development of many human tumours. SUFU is an essential intracellular negative regulator of mammalian Hedgehog signalling and acts by binding and modulating the activity of GLI transcription factors. Despite its central importance, little is known about SUFU regulation and the nature of SUFU-GLI interaction. Here, the crystal and small-angle X-ray scattering structures of full-length human SUFU and its complex with the key SYGHL motif conserved in all GLIs are reported. It is demonstrated that GLI binding is associated with major conformational changes in SUFU, including an intrinsically disordered loop that is also crucial for pathway activation. These findings reveal the structure of the SUFU-GLI interface and suggest a mechanism for an essential regulatory step in Hedgehog signalling, offering possibilities for the development of novel pathway modulators and therapeutics. PMID:24311597

  15. Structural basis of SUFU–GLI interaction in human Hedgehog signalling regulation

    SciTech Connect

    Cherry, Amy L.; Finta, Csaba; Karlström, Mikael; Jin, Qianren; Schwend, Thomas; Astorga-Wells, Juan; Zubarev, Roman A.; Del Campo, Mark; Criswell, Angela R.; Sanctis, Daniele de; Jovine, Luca Toftgård, Rune

    2013-12-01

    Crystal and small-angle X-ray scattering structures of full-length human SUFU alone and in complex with the conserved SYGHL motif from GLI transcription factors show major conformational changes associated with binding and reveal an intrinsically disordered region crucial for pathway activation. Hedgehog signalling plays a fundamental role in the control of metazoan development, cell proliferation and differentiation, as highlighted by the fact that its deregulation is associated with the development of many human tumours. SUFU is an essential intracellular negative regulator of mammalian Hedgehog signalling and acts by binding and modulating the activity of GLI transcription factors. Despite its central importance, little is known about SUFU regulation and the nature of SUFU–GLI interaction. Here, the crystal and small-angle X-ray scattering structures of full-length human SUFU and its complex with the key SYGHL motif conserved in all GLIs are reported. It is demonstrated that GLI binding is associated with major conformational changes in SUFU, including an intrinsically disordered loop that is also crucial for pathway activation. These findings reveal the structure of the SUFU–GLI interface and suggest a mechanism for an essential regulatory step in Hedgehog signalling, offering possibilities for the development of novel pathway modulators and therapeutics.

  16. FGF signaling enhances a sonic hedgehog negative feedback loop at the initiation of spinal cord ventral patterning.

    PubMed

    Morales, Aixa V; Espeso-Gil, Sergio; Ocaña, Inmaculada; Nieto-Lopez, Francisco; Calleja, Elena; Bovolenta, Paola; Lewandoski, Mark; Diez Del Corral, Ruth

    2016-09-01

    A prevalent developmental mechanism for the assignment of cell identities is the production of spatiotemporal concentration gradients of extracellular signaling molecules that are interpreted by the responding cells. One of such signaling systems is the Shh gradient that controls neuronal subtype identity in the ventral spinal cord. Using loss and gain of function approaches in chick and mouse embryos, we show here that the fibroblast growth factor (FGF) signaling pathway is required to restrict the domains of ventral gene expression as neuroepithelial cells become exposed to Shh during caudal extension of the embryo. FGF signaling activates the expression of the Shh receptor and negative pathway regulator Patched 2 (Ptch2) and therefore can enhance a negative feedback loop that restrains the activity of the pathway. Thus, we identify one of the mechanisms by which FGF signaling acts as a modulator of the onset of Shh signaling activity in the context of coordination of ventral patterning and caudal axis extension. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 956-971, 2016. PMID:26600420

  17. Hedgehog signaling regulates myelination in the peripheral nervous system through primary cilia.

    PubMed

    Yoshimura, Kentaro; Takeda, Sen

    2012-02-01

    Myelination is an essential prerequisite for the nervous system to transmit an impulse efficiently by a saltatory conduction. In the peripheral nervous system (PNS), Schwann cells (SCs) engage in myelination. However, a detailed molecular mechanism underlying myelination still remains unclear. In this study, we hypothesized that the primary cilia of SCs are the regulators of Hedgehog (Hh) signaling-mediated myelination. To confirm our hypothesis, we used mouse dorsal root ganglion (DRG)/SC co-cultures, wherein the behavior of SCs could be analyzed by maintaining the interaction of SCs with DRG neurons. Under these conditions, SCs had primary cilia, and Hh signaling molecules accumulated on the primary cilia. When the SCs were stimulated by the addition of desert hedgehog or smoothened agonist, formation of myelin segments on the DRG axons was facilitated. On the contrary, upon administration of cyclopamine, an inhibitor of Hh signaling, myelin segments became comparable to those of controls. Of note, the ratio of SCs harboring primary cilium reached the highest point during the early phase of myelination. Furthermore, the strongest effects of Hh on myelination were encountered during the same stage. These results collectively indicate that Hh signaling regulates myelin formation through primary cilia in the PNS. PMID:22101064

  18. Hedgehog-Gli pathway activation during kidney fibrosis.

    PubMed

    Fabian, Steven L; Penchev, Radostin R; St-Jacques, Benoit; Rao, Anjali N; Sipilä, Petra; West, Kip A; McMahon, Andrew P; Humphreys, Benjamin D

    2012-04-01

    The Hedgehog (Hh) signaling pathway regulates tissue patterning during development, including patterning and growth of limbs and face, but whether Hh signaling plays a role in adult kidney remains undefined. In this study, using a panel of hedgehog-reporter mice, we show that the two Hh ligands (Indian hedgehog and sonic hedgehog ligands) are expressed in tubular epithelial cells. We report that the Hh effectors (Gli1 and Gli2) are expressed exclusively in adjacent platelet-derived growth factor receptor-β-positive interstitial pericytes and perivascular fibroblasts, suggesting a paracrine signaling loop. In two models of renal fibrosis, Indian Hh ligand was upregulated with a dramatic activation of downstream Gli effector expression. Hh-responsive Gli1-positive interstitial cells underwent 11-fold proliferative expansion during fibrosis, and both Gli1- and Gli2-positive cells differentiated into α-smooth muscle actin-positive myofibroblasts. In the pericyte-like cell line 10T1/2, hedgehog ligand triggered cell proliferation, suggesting a possible role for this pathway in the regulation of cell cycle progression of myofibroblast progenitors during the development of renal fibrosis. The hedgehog antagonist IPI-926 abolished Gli1 induction in vivo but did not decrease kidney fibrosis. However, the transcriptional induction of Gli2 was unaffected by IPI-926, suggesting the existence of smoothened-independent Gli activation in this model. This study is the first detailed description of paracrine hedgehog signaling in adult kidney, which indicates a possible role for hedgehog-Gli signaling in fibrotic chronic kidney disease. PMID:22342522

  19. Hedgehog-Gli Pathway Activation during Kidney Fibrosis

    PubMed Central

    Fabian, Steven L.; Penchev, Radostin R.; St-Jacques, Benoit; Rao, Anjali N.; Sipilä, Petra; West, Kip A.; McMahon, Andrew P.; Humphreys, Benjamin D.

    2012-01-01

    The Hedgehog (Hh) signaling pathway regulates tissue patterning during development, including patterning and growth of limbs and face, but whether Hh signaling plays a role in adult kidney remains undefined. In this study, using a panel of hedgehog-reporter mice, we show that the two Hh ligands (Indian hedgehog and sonic hedgehog ligands) are expressed in tubular epithelial cells. We report that the Hh effectors (Gli1 and Gli2) are expressed exclusively in adjacent platelet-derived growth factor receptor-β-positive interstitial pericytes and perivascular fibroblasts, suggesting a paracrine signaling loop. In two models of renal fibrosis, Indian Hh ligand was upregulated with a dramatic activation of downstream Gli effector expression. Hh-responsive Gli1-positive interstitial cells underwent 11-fold proliferative expansion during fibrosis, and both Gli1- and Gli2-positive cells differentiated into α-smooth muscle actin-positive myofibroblasts. In the pericyte-like cell line 10T1/2, hedgehog ligand triggered cell proliferation, suggesting a possible role for this pathway in the regulation of cell cycle progression of myofibroblast progenitors during the development of renal fibrosis. The hedgehog antagonist IPI-926 abolished Gli1 induction in vivo but did not decrease kidney fibrosis. However, the transcriptional induction of Gli2 was unaffected by IPI-926, suggesting the existence of smoothened-independent Gli activation in this model. This study is the first detailed description of paracrine hedgehog signaling in adult kidney, which indicates a possible role for hedgehog-Gli signaling in fibrotic chronic kidney disease. PMID:22342522

  20. Structural insights into hedgehog ligand sequestration by the human hedgehog-interacting protein HIP

    PubMed Central

    Bishop, Benjamin; Aricescu, A. Radu; Harlos, Karl; O’Callaghan, Chris A.; Jones, E. Yvonne; Siebold, Christian

    2009-01-01

    Hedgehog (Hh) morphogens play fundamental roles in development whilst dysregulation of Hh signaling leads to disease. Multiple cell surface receptors are responsible for transducing and/or regulating Hh signals. Among these, the hedgehog-interacting protein (HIP) is a highly conserved, vertebrate-specific, inhibitor of Hh signaling. We have solved a series of crystal structures for the human HIP ectodomain and Desert Hh in isolation, as well as Sonic and Desert Hh-HIP complexes, with and without calcium. The interaction determinants, confirmed by biophysical studies and mutagenesis, reveal novel and distinct functions for Hh zinc- and calcium-binding sites; functions which appear common to all vertebrate Hhs. Zinc makes a key contribution to the Hh-HIP interface while calcium prevents electrostatic repulsion between the two proteins, thus playing a major modulatory role. This interplay of several metal-binding sites suggests a tuneable mechanism for regulation of Hh signaling. PMID:19561611

  1. Epigenetic regulation of human hedgehog interacting protein in glioma cell lines and primary tumor samples

    PubMed Central

    Shahi, Mehdi H.; Zazpe, Idoya; Afzal, Mohammad; Sinha, Subrata; Rebhun, Robert B.; Meléndez, Bárbara; Rey, Juan A.

    2016-01-01

    Glioma constitutes one of the most common groups of brain tumors, and its prognosis is influenced by different genetic and epigenetic modulations. In this study, we demonstrated low or no expression of hedgehog interacting protein (HHIP) in most of the cell lines and primary glioma tumor samples. We further proceeded to promoter methylation study of this gene in the same cell lines and primary tumor samples and found 87 % (7/8) HHIP methylation in glioblastoma cell lines and 75 % (33/44) in primary tumor samples. These methylation pattern correlates with low or unexpressed HHIP in both cell lines and primary tumor samples. Our results suggest the possibility of epigenetic regulation of this gene in glioma, similarly to medulloblastoma, gastric, hepatic, and pancreatic cancers. Also, HHIP might be a diagnostic or prognostic marker in glioma and help to the detection of these tumors in early stages of disease. PMID:25416442

  2. Interplay between menin and Dnmt1 reversibly regulates pancreatic cancer cell growth downstream of the Hedgehog signaling pathway.

    PubMed

    Cheng, Peng; Wang, Yun-Feng; Li, Gang; Yang, Sheng-sheng; Liu, Che; Hu, Hao; Jin, Gang; Hu, Xian-Gui

    2016-01-01

    Menin, the product of the Men1 gene, which is frequently mutated in pancreatic neuroendocrine tumors, acts as a chromatin-remodeling factor to modulate the transcription of cell cycle regulators by interacting with histone modification factors. However, the function of menin and its underlying mechanisms in pancreatic ductal adenocarcinoma remain unknown. Here, we found that menin inhibited pancreatic cancer cell growth in vitro and in vivo and that its expression was gradually lost during pancreatic carcinogenesis. Menin overexpression significantly activated the expression of the cyclin-dependent kinase (CDK) inhibitors p18 and p27, accompanied with a decrease in DNA methylation levels of p18 and p27 promoters. Mechanistically, we found that interaction of menin with DNA methyltransferase 1 (Dnmt1) competitively pulled down Dnmt1 from p18 and p27 promoters, leading to the downregulation of DNA methylation levels. Moreover, menin expression was suppressed by Dnmt1 downstream of the Hedgehog signaling pathway, and menin overexpression strongly antagonized the promotion effect of hedgehog signaling on pancreatic cancer cell proliferation. Taken together, the interaction between menin and Dnmt1 reversibly regulates pancreatic cancer cell growth downstream of Hedgehog pathways with complex mutual modulation networks, suggesting that the Hedgehog/Dnmt1/menin axis is a potential molecular target for pancreatic cancer therapy. PMID:26454216

  3. Hedgehog signaling update.

    PubMed

    Cohen, M Michael

    2010-08-01

    In vertebrate hedgehog signaling, hedgehog ligands are processed to become bilipidated and then multimerize, which allows them to leave the signaling cell via Dispatched 1 and become transported via glypicans and megalin to the responding cells. Hedgehog then interacts with a complex of Patched 1 and Cdo/Boc, which activates endocytic Smoothened to the cilium. Patched 1 regulates the activity of Smoothened (1) via Vitamin D3, which inhibits Smoothened in the absence of hedgehog ligand or (2) via oxysterols, which activate Smoothened in the presence of hedgehog ligand. Hedgehog ligands also interact with Hip1, Patched 2, and Gas1, which regulate the range as well as the level of hedgehog signaling. In vertebrates, Smoothened is shortened at its C-terminal end and lacks most of the phosphorylation sites of importance in Drosophila. Cos2, also of importance in Drosophila, plays no role in mammalian transduction, nor do its homologs Kif7 and Kif27. The cilium may provide a function analogous to that of Cos2 by linking Smoothened to the modulation of Gli transcription factors. Disorders associated with the hedgehog signaling network follow, including nevoid basal cell carcinoma syndrome, holoprosencephaly, Smith-Lemli-Opitz syndrome, Greig cephalopolysyndactyly syndrome, Pallister-Hall syndrome, Carpenter syndrome, and Rubinstein-Taybi syndrome. PMID:20635334

  4. SOX18 Is a Novel Target Gene of Hedgehog Signaling in Cervical Carcinoma Cell Lines

    PubMed Central

    Popovic, Jelena; Schwirtlich, Marija; Rankovic, Branislava; Stevanovic, Milena

    2015-01-01

    Although there is much evidence showing functional relationship between Hedgehog pathway, in particular Sonic hedgehog, and SOX transcription factors during embryonic development, scarce data are available regarding their crosstalk in cancer cells. SOX18 protein plays an important role in promoting tumor angiogenesis and therefore emerged as a promising potential target in antiangiogenic tumor therapy. Recently it became evident that expression of SOX18 gene in tumors is not restricted to endothelium of accompanying blood and lymphatic vessels, but in tumor cells as well.In this paper we have identified human SOX18 gene as a novel target gene of Hedgehog signaling in cervical carcinoma cell lines. We have presented data showing that expression of SOX18 gene is regulated by GLI1 and GLI2 transcription factors, final effectors of Hedgehog signaling, and that modulation of Hedgehog signaling activity in considerably influence SOX18 expression. We consider important that Hedgehog pathway inhibitors reduced SOX18 expression, thus showing, for the first time, possibility for manipulationwith SOX18 gene expression. In addition, we analyzed the role of SOX18 in malignant potential of cervical carcinoma cell line, and showed that its overexpression has no influence on cells proliferation and viability, but substantially promotes migration and invasion of cells in vitro. Pro-migratory effect of SOX18 suggests its role in promoting malignant spreading, possibly in response to Hedgehog activation. PMID:26588701

  5. Regulation of chondrocyte terminal differentiation in the postembryonic growth plate: the role of the PTHrP-Indian hedgehog axis.

    PubMed

    Farquharson, C; Jefferies, D; Seawright, E; Houston, B

    2001-09-01

    Chondrocyte differentiation during embryonic bone growth is controlled by interactions between PTHrP and Indian hedgehog. We have now determined that the major components of this signaling pathway are present in the postembryonic growth plate. PTHrP was immunolocalized throughout the growth plate, and semiquantitative RT-PCR analysis of maturationally distinct chondrocyte fractions indicated that PTHrP, Indian hedgehog, and the PTH/PTHrP receptor were expressed at similar levels throughout the growth plate. However, patched, the hedgehog receptor, was more highly expressed in proliferating chondrocytes. Although all fractionated cells responded to PTHrP in culture by increasing thymidine incorporation and cAMP production and decreasing alkaline phosphatase activity, the magnitude of response was greatest in the proliferative chondrocytes. Bone morphogenetic proteins are considered likely intermediates in PTHrP signaling. Expression of bone morphogenetic protein-2 and 4--7 was detected within the growth plate, and PTHrP inhibited the expression of bone morphogenetic protein-4 and 6. Although organ culture studies indicated a possible paracrine role for epiphyseal chondrocyte-derived PTHrP in regulating growth plate chondrocyte differentiation, the presence within the postembryonic growth plate of functional components of the PTHrP-Indian hedgehog pathway suggests that local mechanisms intrinsic to the growth plate exist to control the rate of endochondral ossification. PMID:11517192

  6. In Vivo RNAi Screen Reveals Neddylation Genes as Novel Regulators of Hedgehog Signaling

    PubMed Central

    Su, Ying; Liu, Min; Ospina, Jason K.; Yang, Shengyuan; Zhu, Alan Jian

    2011-01-01

    Hedgehog (Hh) signaling is highly conserved in all metazoan animals and plays critical roles in many developmental processes. Dysregulation of the Hh signaling cascade has been implicated in many diseases, including cancer. Although key components of the Hh pathway have been identified, significant gaps remain in our understanding of the regulation of individual Hh signaling molecules. Here, we report the identification of novel regulators of the Hh pathway, obtained from an in vivo RNA interference (RNAi) screen in Drosophila. By selectively targeting critical genes functioning in post-translational modification systems utilizing ubiquitin (Ub) and Ub-like proteins, we identify two novel genes (dUba3 and dUbc12) that negatively regulate Hh signaling activity. We provide in vivo and in vitro evidence illustrating that dUba3 and dUbc12 are essential components of the neddylation pathway; they function in an enzyme cascade to conjugate the ubiquitin-like NEDD8 modifier to Cullin proteins. Neddylation activates the Cullin-containing ubiquitin ligase complex, which in turn promotes the degradation of Cubitus interruptus (Ci), the downstream transcription factor of the Hh pathway. Our study reveals a conserved molecular mechanism of the neddylation pathway in Drosophila and sheds light on the complex post-translational regulations in Hh signaling. PMID:21931660

  7. Deubiquitination of Ci/Gli by Usp7/HAUSP Regulates Hedgehog Signaling.

    PubMed

    Zhou, Zizhang; Yao, Xia; Li, Shuang; Xiong, Yue; Dong, Xiaohua; Zhao, Yun; Jiang, Jin; Zhang, Qing

    2015-07-01

    Hedgehog (Hh) signaling plays essential roles in animal development and tissue homeostasis, and its misregulation causes congenital diseases and cancers. Regulation of the ubiquitin/proteasome-mediated proteolysis of Ci/Gli transcription factors is central to Hh signaling, but whether deubiquitinase is involved in this process remains unknown. Here, we show that Hh stimulates the binding of a ubiquitin-specific protease Usp7 to Ci, which positively regulates Hh signaling activity through inhibiting Ci ubiquitination and degradation mediated by both Slimb-Cul1 and Hib-Cul3 E3 ligases. Furthermore, we find that Usp7 forms a complex with GMP-synthetase (GMPS) to promote Hh pathway activity. Finally, we show that the mammalian counterpart of Usp7, HAUSP, positively regulates Hh signaling by modulating Gli ubiquitination and stability. Our findings reveal a conserved mechanism by which Ci/Gli is stabilized by a deubiquitination enzyme and identify Usp7/HUASP as a critical regulator of Hh signaling and potential therapeutic target for Hh-related cancers. PMID:26120032

  8. Regulation of Smoothened Phosphorylation and High-Level Hedgehog Signaling Activity by a Plasma Membrane Associated Kinase

    PubMed Central

    Tong, Chao; Wang, Bing; Chen, Yongbin; Jiang, Jin

    2016-01-01

    Hedgehog (Hh) signaling controls embryonic development and adult tissue homeostasis through the G protein coupled receptor (GPCR)-family protein Smoothened (Smo). Upon stimulation, Smo accumulates on the cell surface in Drosophila or primary cilia in vertebrates, which is thought to be essential for its activation and function, but the underlying mechanisms remain poorly understood. Here we show that Hh stimulates the binding of Smo to a plasma membrane-associated kinase Gilgamesh (Gish)/CK1γ and that Gish fine-tunes Hh pathway activity by phosphorylating a Ser/Thr cluster (CL-II) in the juxtamembrane region of Smo carboxyl-terminal intracellular tail (C-tail). We find that CL-II phosphorylation is promoted by protein kinase A (PKA)-mediated phosphorylation of Smo C-tail and depends on cell surface localization of both Gish and Smo. Consistent with CL-II being critical for high-threshold Hh target gene expression, its phosphorylation appears to require higher levels of Hh or longer exposure to the same level of Hh than PKA-site phosphorylation on Smo. Furthermore, we find that vertebrate CK1γ is localized at the primary cilium to promote Smo phosphorylation and Sonic hedgehog (Shh) pathway activation. Our study reveals a conserved mechanism whereby Hh induces a change in Smo subcellular localization to promote its association with and activation by a plasma membrane localized kinase, and provides new insight into how Hh morphogen progressively activates Smo. PMID:27280464

  9. Regulation of Smoothened Phosphorylation and High-Level Hedgehog Signaling Activity by a Plasma Membrane Associated Kinase.

    PubMed

    Li, Shuangxi; Li, Shuang; Han, Yuhong; Tong, Chao; Wang, Bing; Chen, Yongbin; Jiang, Jin

    2016-06-01

    Hedgehog (Hh) signaling controls embryonic development and adult tissue homeostasis through the G protein coupled receptor (GPCR)-family protein Smoothened (Smo). Upon stimulation, Smo accumulates on the cell surface in Drosophila or primary cilia in vertebrates, which is thought to be essential for its activation and function, but the underlying mechanisms remain poorly understood. Here we show that Hh stimulates the binding of Smo to a plasma membrane-associated kinase Gilgamesh (Gish)/CK1γ and that Gish fine-tunes Hh pathway activity by phosphorylating a Ser/Thr cluster (CL-II) in the juxtamembrane region of Smo carboxyl-terminal intracellular tail (C-tail). We find that CL-II phosphorylation is promoted by protein kinase A (PKA)-mediated phosphorylation of Smo C-tail and depends on cell surface localization of both Gish and Smo. Consistent with CL-II being critical for high-threshold Hh target gene expression, its phosphorylation appears to require higher levels of Hh or longer exposure to the same level of Hh than PKA-site phosphorylation on Smo. Furthermore, we find that vertebrate CK1γ is localized at the primary cilium to promote Smo phosphorylation and Sonic hedgehog (Shh) pathway activation. Our study reveals a conserved mechanism whereby Hh induces a change in Smo subcellular localization to promote its association with and activation by a plasma membrane localized kinase, and provides new insight into how Hh morphogen progressively activates Smo. PMID:27280464

  10. The Hedgehog signalling pathway in bone formation

    PubMed Central

    Yang, Jing; Andre, Philipp; Ye, Ling; Yang, Ying-Zi

    2015-01-01

    The Hedgehog (Hh) signalling pathway plays many important roles in development, homeostasis and tumorigenesis. The critical function of Hh signalling in bone formation has been identified in the past two decades. Here, we review the evolutionarily conserved Hh signalling mechanisms with an emphasis on the functions of the Hh signalling pathway in bone development, homeostasis and diseases. In the early stages of embryonic limb development, Sonic Hedgehog (Shh) acts as a major morphogen in patterning the limb buds. Indian Hedgehog (Ihh) has an essential function in endochondral ossification and induces osteoblast differentiation in the perichondrium. Hh signalling is also involved intramembrane ossification. Interactions between Hh and Wnt signalling regulate cartilage development, endochondral bone formation and synovial joint formation. Hh also plays an important role in bone homeostasis, and reducing Hh signalling protects against age-related bone loss. Disruption of Hh signalling regulation leads to multiple bone diseases, such as progressive osseous heteroplasia. Therefore, understanding the signalling mechanisms and functions of Hh signalling in bone development, homeostasis and diseases will provide important insights into bone disease prevention, diagnoses and therapeutics. PMID:26023726

  11. Hedgehog signalling.

    PubMed

    Lee, Raymond Teck Ho; Zhao, Zhonghua; Ingham, Philip W

    2016-02-01

    The Hedgehog (Hh) signalling pathway is one of the key regulators of metazoan development. Hh proteins have been shown to play roles in many developmental processes and have become paradigms for classical morphogens. Dysfunction of the Hh pathway underlies a number of human developmental abnormalities and diseases, making it an important therapeutic target. Interest in Hh signalling thus extends across many fields, from evo-devo to cancer research and regenerative medicine. Here, and in the accompanying poster, we provide an outline of the current understanding of Hh signalling mechanisms, highlighting the similarities and differences between species. PMID:26839340

  12. Hedgehog-regulated atypical PKC promotes phosphorylation and activation of Smoothened and Cubitus interruptus in Drosophila.

    PubMed

    Jiang, Kai; Liu, Yajuan; Fan, Junkai; Epperly, Garretson; Gao, Tianyan; Jiang, Jin; Jia, Jianhang

    2014-11-11

    Smoothened (Smo) is essential for transduction of the Hedgehog (Hh) signal in both insects and vertebrates. Cell surface/cilium accumulation of Smo is thought to play an important role in Hh signaling, but how the localization of Smo is controlled remains poorly understood. In this study, we demonstrate that atypical PKC (aPKC) regulates Smo phosphorylation and basolateral accumulation in Drosophila wings. Inactivation of aPKC by either RNAi or a mutation inhibits Smo basolateral accumulation and attenuates Hh target gene expression. In contrast, expression of constitutively active aPKC elevates basolateral accumulation of Smo and promotes Hh signaling. The aPKC-mediated phosphorylation of Smo at Ser680 promotes Ser683 phosphorylation by casein kinase 1 (CK1), and these phosphorylation events elevate Smo activity in vivo. Moreover, aPKC has an additional positive role in Hh signaling by regulating the activity of Cubitus interruptus (Ci) through phosphorylation of the Zn finger DNA-binding domain. Finally, the expression of aPKC is up-regulated by Hh signaling in a Ci-dependent manner. Our findings indicate a direct involvement of aPKC in Hh signaling beyond its role in cell polarity. PMID:25349414

  13. Hedgehog-regulated atypical PKC promotes phosphorylation and activation of Smoothened and Cubitus interruptus in Drosophila

    PubMed Central

    Jiang, Kai; Liu, Yajuan; Fan, Junkai; Epperly, Garretson; Gao, Tianyan; Jiang, Jin; Jia, Jianhang

    2014-01-01

    Smoothened (Smo) is essential for transduction of the Hedgehog (Hh) signal in both insects and vertebrates. Cell surface/cilium accumulation of Smo is thought to play an important role in Hh signaling, but how the localization of Smo is controlled remains poorly understood. In this study, we demonstrate that atypical PKC (aPKC) regulates Smo phosphorylation and basolateral accumulation in Drosophila wings. Inactivation of aPKC by either RNAi or a mutation inhibits Smo basolateral accumulation and attenuates Hh target gene expression. In contrast, expression of constitutively active aPKC elevates basolateral accumulation of Smo and promotes Hh signaling. The aPKC-mediated phosphorylation of Smo at Ser680 promotes Ser683 phosphorylation by casein kinase 1 (CK1), and these phosphorylation events elevate Smo activity in vivo. Moreover, aPKC has an additional positive role in Hh signaling by regulating the activity of Cubitus interruptus (Ci) through phosphorylation of the Zn finger DNA-binding domain. Finally, the expression of aPKC is up-regulated by Hh signaling in a Ci-dependent manner. Our findings indicate a direct involvement of aPKC in Hh signaling beyond its role in cell polarity. PMID:25349414

  14. The C-terminal tail of the Hedgehog receptor Patched regulates both localization and turnover

    PubMed Central

    Lu, Xingwu; Liu, Songmei; Kornberg, Thomas B.

    2006-01-01

    Patched (Ptc) is a membrane protein whose function in Hedgehog (Hh) signal transduction has been conserved among metazoans and whose malfunction has been implicated in human cancers. Genetic analysis has shown that Ptc negatively regulates Hh signal transduction, but its activity and structure are not known. We investigated the functional and structural properties of Drosophila Ptc and its C-terminal domain (CTD), 183 residues that are predicted to reside in the cytoplasm. Our results show that Ptc, as well as truncated Ptc deleted of its CTD, forms a stable trimer. This observation is consistent with the proposal that Ptc is structurally similar to trimeric transporters. The CTD itself trimerizes and is required for both Ptc internalization and turnover. Two mutant forms of the CTD, one that disrupts trimerization and the other that mutates the target sequence of the Nedd4 ubiquitin ligase, stabilize Ptc but do not prevent internalization and sequestration of Hh. Ptc deleted of its CTD is stable and localizes to the plasma membrane. These data show that degradation of Ptc is regulated at a step subsequent to endocytosis, although endocytosis is a likely prerequisite. We also show that the CTD of mouse Ptc regulates turnover. PMID:16980583

  15. The T-box transcription factor Midline regulates wing development by repressing wingless and hedgehog in Drosophila

    PubMed Central

    Fu, Chong-Lei; Wang, Xian-Feng; Cheng, Qian; Wang, Dan; Hirose, Susumu; Liu, Qing-Xin

    2016-01-01

    Wingless (Wg) and Hedgehog (Hh) signaling pathways are key players in animal development. However, regulation of the expression of wg and hh are not well understood. Here, we show that Midline (Mid), an evolutionarily conserved transcription factor, expresses in the wing disc of Drosophila and plays a vital role in wing development. Loss or knock down of mid in the wing disc induced hyper-expression of wingless (wg) and yielded cocked and non-flat wings. Over-expression of mid in the wing disc markedly repressed the expression of wg, DE-Cadherin (DE-Cad) and armadillo (arm), and resulted in a small and blistered wing. In addition, a reduction in the dose of mid enhanced phenotypes of a gain-of-function mutant of hedgehog (hh). We also observed repression of hh upon overexpression of mid in the wing disc. Taken together, we propose that Mid regulates wing development by repressing wg and hh in Drosophila. PMID:27301278

  16. The T-box transcription factor Midline regulates wing development by repressing wingless and hedgehog in Drosophila.

    PubMed

    Fu, Chong-Lei; Wang, Xian-Feng; Cheng, Qian; Wang, Dan; Hirose, Susumu; Liu, Qing-Xin

    2016-01-01

    Wingless (Wg) and Hedgehog (Hh) signaling pathways are key players in animal development. However, regulation of the expression of wg and hh are not well understood. Here, we show that Midline (Mid), an evolutionarily conserved transcription factor, expresses in the wing disc of Drosophila and plays a vital role in wing development. Loss or knock down of mid in the wing disc induced hyper-expression of wingless (wg) and yielded cocked and non-flat wings. Over-expression of mid in the wing disc markedly repressed the expression of wg, DE-Cadherin (DE-Cad) and armadillo (arm), and resulted in a small and blistered wing. In addition, a reduction in the dose of mid enhanced phenotypes of a gain-of-function mutant of hedgehog (hh). We also observed repression of hh upon overexpression of mid in the wing disc. Taken together, we propose that Mid regulates wing development by repressing wg and hh in Drosophila. PMID:27301278

  17. Hedgehog Signaling Components Are Expressed in Choroidal Neovascularization in Laser-induced Retinal Lesion

    PubMed Central

    Nochioka, Katsunori; Okuda, Hiroaki; Tatsumi, Kouko; Morita, Shoko; Ogata, Nahoko; Wanaka, Akio

    2016-01-01

    Choroidal neovascularization is one of the major pathological changes in age-related macular degeneration, which causes devastating blindness in the elderly population. The molecular mechanism of choroidal neovascularization has been under extensive investigation, but is still an open question. We focused on sonic hedgehog signaling, which is implicated in angiogenesis in various organs. Laser-induced injuries to the mouse retina were made to cause choroidal neovascularization. We examined gene expression of sonic hedgehog, its receptors (patched1, smoothened, cell adhesion molecule down-regulated by oncogenes (Cdon) and biregional Cdon-binding protein (Boc)) and downstream transcription factors (Gli1-3) using real-time RT-PCR. At seven days after injury, mRNAs for Patched1 and Gli1 were upregulated in response to injury, but displayed no upregulation in control retinas. Immunohistochemistry revealed that Patched1 and Gli1 proteins were localized to CD31-positive endothelial cells that cluster between the wounded retina and the pigment epithelium layer. Treatment with the hedgehog signaling inhibitor cyclopamine did not significantly decrease the size of the neovascularization areas, but the hedgehog agonist purmorphamine made the areas significantly larger than those in untreated retina. These results suggest that the hedgehog-signaling cascade may be a therapeutic target for age-related macular degeneration. PMID:27239075

  18. Hedgehog Signaling Components Are Expressed in Choroidal Neovascularization in Laser-induced Retinal Lesion.

    PubMed

    Nochioka, Katsunori; Okuda, Hiroaki; Tatsumi, Kouko; Morita, Shoko; Ogata, Nahoko; Wanaka, Akio

    2016-04-28

    Choroidal neovascularization is one of the major pathological changes in age-related macular degeneration, which causes devastating blindness in the elderly population. The molecular mechanism of choroidal neovascularization has been under extensive investigation, but is still an open question. We focused on sonic hedgehog signaling, which is implicated in angiogenesis in various organs. Laser-induced injuries to the mouse retina were made to cause choroidal neovascularization. We examined gene expression of sonic hedgehog, its receptors (patched1, smoothened, cell adhesion molecule down-regulated by oncogenes (Cdon) and biregional Cdon-binding protein (Boc)) and downstream transcription factors (Gli1-3) using real-time RT-PCR. At seven days after injury, mRNAs for Patched1 and Gli1 were upregulated in response to injury, but displayed no upregulation in control retinas. Immunohistochemistry revealed that Patched1 and Gli1 proteins were localized to CD31-positive endothelial cells that cluster between the wounded retina and the pigment epithelium layer. Treatment with the hedgehog signaling inhibitor cyclopamine did not significantly decrease the size of the neovascularization areas, but the hedgehog agonist purmorphamine made the areas significantly larger than those in untreated retina. These results suggest that the hedgehog-signaling cascade may be a therapeutic target for age-related macular degeneration. PMID:27239075

  19. SCF (Fbxl17) ubiquitylation of Sufu regulates Hedgehog signaling and medulloblastoma development.

    PubMed

    Raducu, Madalina; Fung, Ella; Serres, Sébastien; Infante, Paola; Barberis, Alessandro; Fischer, Roman; Bristow, Claire; Thézénas, Marie-Laëtitia; Finta, Csaba; Christianson, John C; Buffa, Francesca M; Kessler, Benedikt M; Sibson, Nicola R; Di Marcotullio, Lucia; Toftgård, Rune; D'Angiolella, Vincenzo

    2016-07-01

    Skp1-Cul1-F-box protein (SCF) ubiquitin ligases direct cell survival decisions by controlling protein ubiquitylation and degradation. Sufu (Suppressor of fused) is a central regulator of Hh (Hedgehog) signaling and acts as a tumor suppressor by maintaining the Gli (Glioma-associated oncogene homolog) transcription factors inactive. Although Sufu has a pivotal role in Hh signaling, the players involved in controlling Sufu levels and their role in tumor growth are unknown. Here, we show that Fbxl17 (F-box and leucine-rich repeat protein 17) targets Sufu for proteolysis in the nucleus. The ubiquitylation of Sufu, mediated by Fbxl17, allows the release of Gli1 from Sufu for proper Hh signal transduction. Depletion of Fbxl17 leads to defective Hh signaling associated with an impaired cancer cell proliferation and medulloblastoma tumor growth. Furthermore, we identify a mutation in Sufu, occurring in medulloblastoma of patients with Gorlin syndrome, which increases Sufu turnover through Fbxl17-mediated polyubiquitylation and leads to a sustained Hh signaling activation. In summary, our findings reveal Fbxl17 as a novel regulator of Hh pathway and highlight the perturbation of the Fbxl17-Sufu axis in the pathogenesis of medulloblastoma. PMID:27234298

  20. Hedgehog receptor function during craniofacial development.

    PubMed

    Xavier, Guilherme M; Seppala, Maisa; Barrell, William; Birjandi, Anahid A; Geoghegan, Finn; Cobourne, Martyn T

    2016-07-15

    The Hedgehog signalling pathway plays a fundamental role in orchestrating normal craniofacial development in vertebrates. In particular, Sonic hedgehog (Shh) is produced in three key domains during the early formation of the head; neuroectoderm of the ventral forebrain, facial ectoderm and the pharyngeal endoderm; with signal transduction evident in both ectodermal and mesenchymal tissue compartments. Shh signalling from the prechordal plate and ventral midline of the diencephalon is required for appropriate division of the eyefield and forebrain, with mutation in a number of pathway components associated with Holoprosencephaly, a clinically heterogeneous developmental defect characterized by a failure of the early forebrain vesicle to divide into distinct halves. In addition, signalling from the pharyngeal endoderm and facial ectoderm plays an essential role during development of the face, influencing cranial neural crest cells that migrate into the early facial processes. In recent years, the complexity of Shh signalling has been highlighted by the identification of multiple novel proteins that are involved in regulating both the release and reception of this protein. Here, we review the contributions of Shh signalling during early craniofacial development, focusing on Hedgehog receptor function and describing the consequences of disruption for inherited anomalies of this region in both mouse models and human populations. PMID:26875496

  1. Defective ciliogenesis, embryonic lethality and severe impairment of the Sonic Hedgehog pathway caused by inactivation of the mouse complex A intraflagellar transport gene Ift122/Wdr10, partially overlapping with the DNA repair gene Med1/Mbd4

    PubMed Central

    Cortellino, Salvatore; Wang, Chengbing; Wang, Baolin; Bassi, Maria Rosaria; Caretti, Elena; Champeval, Delphine; Calmont, Amelie; Jarnik, Michal; Burch, John; Zaret, Kenneth; Larue, Lionel; Bellacosa, Alfonso

    2009-01-01

    Primary cilia are assembled and maintained by evolutionarily conserved intraflagellar transport (IFT) proteins that are involved in the coordinated movement of macromolecular cargo from the basal body to the cilium tip and back. The IFT machinery is organized in two structural complexes named complex A and complex B. Recently, inactivation in the mouse germline of Ift genes belonging to complex B revealed a requirement of ciliogenesis, or proteins involved in ciliogenesis, for Sonic Hedgehog (Shh) signaling in mammals. Here we report on a complex A mutant mouse, defective for the Ift122 gene. Ift122-null embryos show multiple developmental defects (exencephaly, situs viscerum inversus, delay in turning, hemorrhage and defects in limb development) that result in lethality. In the node, primary cilia were absent or malformed in homozygous mutant and heterozygous embryos, respectively. Impairment of the Shh pathway was apparent in both neural tube patterning (expansion of motoneurons and rostro-caudal level-dependent contraction or expansion of the dorso-lateral interneurons), and limb patterning (ectrosyndactyly). These phenotypes are distinct from both complex B IFT mutant embryos and embryos defective for the ciliary protein hennin/Arl13b, and suggest reduced levels of both Gli2/Gli3 activator and Gli3 repressor functions. We conclude that complex A and complex B factors play similar but distinct roles in ciliogenesis and Shh/Gli3 signaling. PMID:19000668

  2. Hedgehog signaling to distinct cell types differentially regulates coronary artery and vein development.

    PubMed

    Lavine, Kory J; Long, Fanxin; Choi, Kyunghee; Smith, Craig; Ornitz, David M

    2008-09-01

    Vascular development begins with formation of a primary capillary plexus that is later remodeled to give rise to the definitive vasculature. Although the mechanism by which arterial and venous fates are acquired is well understood, little is known about when during vascular development arterial and venous vessels emerge and how their growth is regulated. Previously, we have demonstrated that a hedgehog (HH)/vascular endothelial growth factor (VEGF) and angiopoeitin 2 (ANG2) signaling pathway is essential for the development of the coronary vasculature. Here, we use conditional gene targeting to identify the cell types that receive HH signaling and mediate coronary vascular development. We show that HH signaling to the cardiomyoblast is required for the development of coronary veins, while HH signaling to the perivascular cell (PVC) is necessary for coronary arterial growth. Moreover, the cardiomyoblast and PVC appear to be the exclusive cell types that receive HH signals, as ablation of HH signaling in both cell types leads to an arrest in coronary development. Finally, we present evidence suggesting that coronary arteries and veins may be derived from distinct lineages. PMID:18725519

  3. Hedgehog Zoonoses

    PubMed Central

    Riley, Patricia Y.

    2005-01-01

    Exotic pets, including hedgehogs, have become popular in recent years among pet owners, especially in North America. Such animals can carry and introduce zoonotic agents, a fact well illustrated by the recent outbreak of monkeypox in pet prairie dogs. We reviewed known and potential zoonotic diseases that could be carried and transmitted by pet hedgehogs or when rescuing and caring for wild-caught hedgehogs. PMID:15705314

  4. Sonic boom

    NASA Astrophysics Data System (ADS)

    Maglieri, Domenic J.; Plotkin, Kenneth J.

    1991-08-01

    A status of the knowledge of sonic booms is provided, with emphasis on their generation, propagation and prediction. For completeness, however, material related to the potential for sonic boom alleviation and the response to sonic booms is also included. The material is presented in the following sections: (1) nature of sonic booms; (2) review and status of theory; (3) measurements and predictions; (4) sonic boom minimization; and (5) responses to sonic booms.

  5. Intestinal cell kinase, a protein associated with endocrine-cerebro-osteodysplasia syndrome, is a key regulator of cilia length and Hedgehog signaling

    PubMed Central

    Moon, Heejung; Song, Jieun; Shin, Jeong-Oh; Lee, Hankyu; Kim, Hong-Kyung; Eggenschwiller, Jonathan T.; Bok, Jinwoong; Ko, Hyuk Wan

    2014-01-01

    Endocrine-cerebro-osteodysplasia (ECO) syndrome is a recessive genetic disorder associated with multiple congenital defects in endocrine, cerebral, and skeletal systems that is caused by a missense mutation in the mitogen-activated protein kinase-like intestinal cell kinase (ICK) gene. In algae and invertebrates, ICK homologs are involved in flagellar formation and ciliogenesis, respectively. However, it is not clear whether this role of ICK is conserved in mammals and how a lack of functional ICK results in the characteristic phenotypes of human ECO syndrome. Here, we generated Ick knockout mice to elucidate the precise role of ICK in mammalian development and to examine the pathological mechanisms of ECO syndrome. Ick null mouse embryos displayed cleft palate, hydrocephalus, polydactyly, and delayed skeletal development, closely resembling ECO syndrome phenotypes. In cultured cells, down-regulation of Ick or overexpression of kinase-dead or ECO syndrome mutant ICK resulted in an elongation of primary cilia and abnormal Sonic hedgehog (Shh) signaling. Wild-type ICK proteins were generally localized in the proximal region of cilia near the basal bodies, whereas kinase-dead ICK mutant proteins accumulated in the distal part of bulged ciliary tips. Consistent with these observations in cultured cells, Ick knockout mouse embryos displayed elongated cilia and reduced Shh signaling during limb digit patterning. Taken together, these results indicate that ICK plays a crucial role in controlling ciliary length and that ciliary defects caused by a lack of functional ICK leads to abnormal Shh signaling, resulting in congenital disorders such as ECO syndrome. PMID:24853502

  6. The Kto-Skd complex can regulate ptc expression by interacting with Cubitus interruptus (Ci) in the Hedgehog signaling pathway.

    PubMed

    Mao, Feifei; Yang, Xiaofeng; Fu, Lin; Lv, Xiangdong; Zhang, Zhao; Wu, Wenqing; Yang, Siqi; Zhou, Zhaocai; Zhang, Lei; Zhao, Yun

    2014-08-01

    The hedgehog (Hh) signaling pathway plays a very important role in metazoan development by controlling pattern formation. Drosophila imaginal discs are subdivided into anterior and posterior compartments that derive from adjacent cell populations. The anterior/posterior (A/P) boundaries, which are critical to maintaining the position of organizers, are established by a complex mechanism involving Hh signaling. Here, we uncover the regulation of ptc in the Hh signaling pathway by two subunits of mediator complex, Kto and Skd, which can also regulate boundary location. Collectively, we provide further evidence that Kto-Skd affects the A/P-axial development of the whole wing disc. Kto can interact with Cubitus interruptus (Ci), bind to the Ci-binding region on ptc promoter, which are both regulated by Hh signals to down-regulate ptc expression. PMID:24962581

  7. The Kto-Skd Complex Can Regulate ptc Expression by Interacting with Cubitus interruptus (Ci) in the Hedgehog Signaling Pathway*

    PubMed Central

    Mao, Feifei; Yang, Xiaofeng; Fu, Lin; Lv, Xiangdong; Zhang, Zhao; Wu, Wenqing; Yang, Siqi; Zhou, Zhaocai; Zhang, Lei; Zhao, Yun

    2014-01-01

    The hedgehog (Hh) signaling pathway plays a very important role in metazoan development by controlling pattern formation. Drosophila imaginal discs are subdivided into anterior and posterior compartments that derive from adjacent cell populations. The anterior/posterior (A/P) boundaries, which are critical to maintaining the position of organizers, are established by a complex mechanism involving Hh signaling. Here, we uncover the regulation of ptc in the Hh signaling pathway by two subunits of mediator complex, Kto and Skd, which can also regulate boundary location. Collectively, we provide further evidence that Kto-Skd affects the A/P-axial development of the whole wing disc. Kto can interact with Cubitus interruptus (Ci), bind to the Ci-binding region on ptc promoter, which are both regulated by Hh signals to down-regulate ptc expression. PMID:24962581

  8. [Hedgehog signaling pathway and human disorders].

    PubMed

    Fujii, Katsunori; Miyashita, Toshiyuki

    2009-07-01

    The hedgehog signaling pathway plays pivotal roles in embryonic development and cancer formation. This pathway in mammals consists of multiple molecules such as Sonic Hedgehog, PTCH, SMO, and GLI. Mutations of these components result in various human malformations or tumors, i.e., holoprosencephaly, Gorlin syndrome, Greig encephalopolysyndactyly, Pallister-Hall syndrome, Rubinstein-Taybi syndrome, basal cell carcinomas, and medulloblastomas. Recently, small molecules that inhibit this signaling pathway were developed, and clinically applied to cancer therapy. Thus, understanding of these molecular relationships may facilitate the development of new therapies and treatments for diseases caused by hedgehog signaling disorders. PMID:19618878

  9. Regulation of hedgehog Ligand Expression by the N-End Rule Ubiquitin-Protein Ligase Hyperplastic Discs and the Drosophila GSK3β Homologue, Shaggy

    PubMed Central

    Moncrieff, Sophie; Moncan, Matthieu; Scialpi, Flavia; Ditzel, Mark

    2015-01-01

    Hedgehog (Hh) morphogen signalling plays an essential role in tissue development and homeostasis. While much is known about the Hh signal transduction pathway, far less is known about the molecules that regulate the expression of the hedgehog (hh) ligand itself. Here we reveal that Shaggy (Sgg), the Drosophila melanogaster orthologue of GSK3β, and the N-end Rule Ubiquitin-protein ligase Hyperplastic Discs (Hyd) act together to co-ordinate Hedgehog signalling through regulating hh ligand expression and Cubitus interruptus (Ci) expression. Increased hh and Ci expression within hyd mutant clones was effectively suppressed by sgg RNAi, placing sgg downstream of hyd. Functionally, sgg RNAi also rescued the adult hyd mutant head phenotype. Consistent with the genetic interactions, we found Hyd to physically interact with Sgg and Ci. Taken together we propose that Hyd and Sgg function to co-ordinate hh ligand and Ci expression, which in turn influences important developmental signalling pathways during imaginal disc development. These findings are important as tight temporal/spatial regulation of hh ligand expression underlies its important roles in animal development and tissue homeostasis. When deregulated, hh ligand family misexpression underlies numerous human diseases (e.g., colorectal, lung, pancreatic and haematological cancers) and developmental defects (e.g., cyclopia and polydactyly). In summary, our Drosophila-based findings highlight an apical role for Hyd and Sgg in initiating Hedgehog signalling, which could also be evolutionarily conserved in mammals. PMID:26334301

  10. Habenular Neurogenesis in Zebrafish Is Regulated by a Hedgehog, Pax6 Proneural Gene Cascade

    PubMed Central

    Naye, François; Peers, Bernard; Roussigné, Myriam; Blader, Patrick

    2016-01-01

    The habenulae are highly conserved nuclei in the dorsal diencephalon that connect the forebrain to the midbrain and hindbrain. These nuclei have been implicated in a broad variety of behaviours in humans, primates, rodents and zebrafish. Despite this, the molecular mechanisms that control the genesis and differentiation of neural progenitors in the habenulae remain relatively unknown. We have previously shown that, in zebrafish, the timing of habenular neurogenesis is left-right asymmetric and that in the absence of Nodal signalling this asymmetry is lost. Here, we show that habenular neurogenesis requires the homeobox transcription factor Pax6a and the redundant action of two proneural bHLH factors, Neurog1 and Neurod4. We present evidence that Hedgehog signalling is required for the expression of pax6a, which is in turn necessary for the expression of neurog1 and neurod4. Finally, we demonstrate by pharmacological inhibition that Hedgehog signalling is required continuously during habenular neurogenesis and by cell transplantation experiments that pathway activation is required cell autonomously. Our data sheds light on the mechanism underlying habenular development that may provide insights into how Nodal signalling imposes asymmetry on the timing of habenular neurogenesis. PMID:27387288