Sample records for regulates sonic hedgehog

  1. Control of somite patterning by Sonic hedgehog and its downstream signal response genes.

    PubMed

    Borycki, A G; Mendham, L; Emerson, C P

    1998-02-01

    In the avian embryo, previous work has demonstrated that the notochord provides inductive signals to activate myoD and pax1 regulatory genes, which are expressed in the dorsal and ventral somite cells that give rise to myotomal and sclerotomal lineages. Here, we present bead implantation and antisense inhibition experiments that show that Sonic hedgehog is both a sufficient and essential notochord signal molecule for myoD and pax1 activation in somites. Furthermore, we show that genes of the Sonic hedgehog signal response pathway, specifically patched, the Sonic hedgehog receptor, and gli and gli2/4, zinc-finger transcription factors, are activated in coordination with somite formation, establishing that Sonic hedgehog response genes play a regulatory role in coordinating the response of somites to the constitutive notochord Sonic hedgehog signal. Furthermore, the expression of patched, gli and gli2/4 is differentially patterned in the somite, providing mechanisms for differentially transducing the Sonic hedgehog signal to the myotomal and sclerotomal lineages. Finally, we show that the activation of gli2/4 is controlled by the process of somite formation and signals from the surface ectoderm, whereas upregulation of patched and activation of gli is controlled by the process of somite formation and a Sonic hedgehog signal. The Sonic hedgehog signal response genes, therefore, have important functions in regulating the initiation of the Sonic hedgehog response in newly forming somites and in regulating the patterned expression of myoD and pax1 in the myotomal and sclerotomal lineages following somite formation.

  2. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yi-Ting; Ding, Jing-Ya; Li, Ming-Yang

    2012-09-10

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model tomore » study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the

  3. Dendrosomatic Sonic Hedgehog Signaling in Hippocampal Neurons Regulates Axon Elongation

    PubMed Central

    Petralia, Ronald S.; Ott, Carolyn; Wang, Ya-Xian; Lippincott-Schwartz, Jennifer; Mattson, Mark P.

    2015-01-01

    The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the transcription factor Gli1. The axon itself does not respond directly to Shh; instead, the Shh signal transduction originates from the somatodendritic region of the neurons and occurs in neurons with and without detectable primary cilia. Upon Shh stimulation, Smo localization to dendrites increases significantly. Shh pathway activation results in increased levels of profilin1 (Pfn1), an actin-binding protein. Mutations in Pfn1's actin-binding sites or reduction of Pfn1 eliminate the Shh-induced axon elongation. These findings indicate that Shh can regulate axon growth, which may be critical for development of hippocampal neurons. SIGNIFICANCE STATEMENT Although numerous signaling mechanisms have been identified that act directly on axons to regulate their outgrowth, it is not known whether signals transduced in dendrites may also affect axon outgrowth. We describe here a transcellular signaling pathway in embryonic hippocampal neurons in which activation of Sonic Hedgehog (Shh) receptors in dendrites stimulates axon growth. The pathway involves the dendritic-membrane-associated Shh signal transducer Smoothened (Smo) and the transcription factor Gli, which induces the expression of the gene encoding the actin-binding protein profilin 1. Our findings suggest scenarios in which stimulation of Shh in dendrites results in accelerated outgrowth of the axon, which therefore reaches its presumptive postsynaptic target cell more quickly. By this mechanism, Shh may play critical roles in the development of hippocampal neuronal circuits. PMID:26658865

  4. Function of Brg1 Chromatin Remodeling Factor in Sonic Hedgehog-Dependent Medulloblastoma Initiation and Maintenance

    DTIC Science & Technology

    2014-10-01

    Remodeling Factor in Sonic Hedgehog -Dependent Medulloblastoma Initiation and Maintenance PRINCIPAL INVESTIGATOR: Xuanming Shi CONTRACTING...Function of Brg1 Chromatin Remodeling Factor in Sonic Hedgehog -Dependent 5b. GRANT NUMBER W81XWH-12-1-0527 Medulloblastoma Initiation and Maintenance...medulloblastoma. 15. SUBJECT TERMS Medulloblastoma, Sonic Hedgehog , Chromatin remodeling, BAF complex, Brg1, mouse model of shh-subtype medulloblastoma

  5. Sonic hedgehog controls growth of external genitalia by regulating cell cycle kinetics

    PubMed Central

    Seifert, Ashley W.; Zheng, Zhengui; Ormerod, Brandi K.; Cohn, Martin J.

    2010-01-01

    During embryonic development, cells are instructed which position to occupy, they interpret these cues as differentiation programmes, and expand these patterns by growth. Sonic hedgehog (Shh) specifies positional identity in many organs; however, its role in growth is not well understood. In this study, we show that inactivation of Shh in external genitalia extends the cell cycle from 8.5 to 14.4 h, and genital growth is reduced by ∼75%. Transient Shh signalling establishes pattern in the genital tubercle; however, transcriptional levels of G1 cell cycle regulators are reduced. Consequently, G1 length is extended, leading to fewer progenitor cells entering S-phase. Cell cycle genes responded similarly to Shh inactivation in genitalia and limbs, suggesting that Shh may regulate growth by similar mechanisms in different organ systems. The finding that Shh regulates cell number by controlling the length of specific cell cycle phases identifies a novel mechanism by which Shh elaborates pattern during appendage development. PMID:20975695

  6. Function of Brg1 Chromatin Remodeling Factor in Sonic Hedgehog-Dependent Medulloblastoma Initiation and Maintenance

    DTIC Science & Technology

    2013-10-01

    Remodeling Factor in Sonic Hedgehog -Dependent Medulloblastoma Initiation and Maintenance PRINCIPAL INVESTIGATOR: Xuanming Shi CONTRACTING...5a. CONTRACT NUMBER W81XWH-12-1-0527 Function of Brg1 Chromatin Remodeling Factor in Sonic Hedgehog -Dependent 5b. GRANT NUMBER W81XWH-12-1...drug development and therapy of pediatric brain tumor and other Shh- dependent tumors. 15. SUBJECT TERMS Medulloblastoma, Sonic Hedgehog , Chromatin

  7. Sonic hedgehog signaling in kidney fibrosis: a master communicator.

    PubMed

    Zhou, Dong; Tan, Roderick J; Liu, Youhua

    2016-09-01

    The hedgehog signaling cascade is an evolutionarily conserved pathway that regulates multiple aspects of embryonic development and plays a decisive role in tissue homeostasis. As the best studied member of three hedgehog ligands, sonic hedgehog (Shh) is known to be associated with kidney development and tissue repair after various insults. Recent studies uncover an intrinsic link between dysregulated Shh signaling and renal fibrogenesis. In various types of chronic kidney disease (CKD), Shh is upregulated specifically in renal tubular epithelium but targets interstitial fibroblasts, thereby mediating a dynamic epithelial- mesenchymal communication (EMC). Tubule-derived Shh acts as a growth factor for interstitial fibroblasts and controls a hierarchy of fibrosis-related genes, which lead to the excessive deposition of extracellular matrix in renal interstitium. In this review, we recapitulate the principle of Shh signaling, its activation and regulation in a variety of kidney diseases. We also discuss the potential mechanisms by which Shh promotes renal fibrosis and assess the efficacy of blocking this signaling in preclinical settings. Continuing these lines of investigations will provide novel opportunities for designing effective therapies to improve CKD prognosis in patients.

  8. Sonic hedgehog signaling in kidney fibrosis: a master communicator

    PubMed Central

    Zhou, Dong; Tan, Roderick J.; Liu, Youhua

    2017-01-01

    The hedgehog signaling cascade is an evolutionarily conserved pathway that regulates multiple aspects of embryonic development and plays a decisive role in tissue homeostasis. As the best studied member of three hedgehog ligands, sonic hedgehog (Shh) is known to be associated with kidney development and tissue repair after various insults. Recent studies uncover an intrinsic link between dysregulated Shh signaling and renal fibrogenesis. In various types of chronic kidney disease (CKD), Shh is upregulated specifically in renal tubular epithelium but targets interstitial fibroblasts, thereby mediating a dynamic epithelial-mesenchymal communication (EMC). Tubule-derived Shh acts as a growth factor for interstitial fibroblasts and controls a hierarchy of fibrosis-related genes, which lead to the excessive deposition of extracellular matrix in renal interstitium. In this review, we recapitulate the principle of Shh signaling, its activation and regulation in a variety of kidney diseases. We also discuss the potential mechanisms by which Shh promotes renal fibrosis and assess the efficacy of blocking this signaling in preclinical settings. Continuing these lines of investigations will provide novel opportunities for designing effective therapies to improve CKD prognosis in patients. PMID:27333788

  9. Sonic-Hedgehog pathway inhibition normalizes desmoplastic tumor microenvironment to improve chemo- and nanotherapy

    PubMed Central

    Voutouri, Chrysovalantis; Kalli, Maria; Pirentis, Athanassios P.; Stylianopoulos, Triantafyllos

    2017-01-01

    Targeting the rich extracellular matrix of desmoplastic tumors has been successfully shown to normalize collagen and hyaluronan levels and re-engineer intratumoral mechanical forces, improving tumor perfusion and chemotherapy. As far as targeting the abundant cancer-associated fibroblasts (CAFs) in desmoplastic tumors is concerned, while both pharmacologic inhibition of the sonic-hedgehog pathway and genetic depletion of fibroblasts have been employed in pancreatic cancers, the results between the two methods have been contradictory. In this study, we employed vismodegib to inhibit the sonic-hedgehog pathway with the aim to i) elucidate the mechanism of how CAFs depletion improves drug delivery, ii) extent and evaluate the potential use of sonic-hedgehog inhibitors to breast cancers, and iii) investigate whether sonic-hedgehog inhibition improves not only chemotherapy, but also the efficacy of the most commonly used breast cancer nanomedicines, namely Abraxane® and Doxil®. We found that treatment with vismodegib normalizes the tumor microenvironment by reducing the proliferative CAFs and in cases the levels of collagen and hyaluronan. These modulations re-engineered the solid and fluid stresses in the tumors, improving blood vessel functionality. As a result, the delivery and efficacy of chemotherapy was improved in two models of pancreatic cancer. Additionally, vismodegib treatment significantly improved the efficacy of both Abraxane and Doxil in xenograft breast tumors. Our results suggest the use of vismodegib, and sonic hedgehog inhibitors in general, to enhance cancer chemo- and nanotherapy. PMID:28662901

  10. The Binding Mode of the Sonic Hedgehog Inhibitor Robotnikinin, a combined Docking and QM/MM MD Study.

    NASA Astrophysics Data System (ADS)

    Hitzenberger, Manuel; Schuster, Daniela; Hofer, Thomas S.

    2017-10-01

    Erroneous activation of the Hedgehog pathway has been linked to a great amount of cancerous diseases and therefore a large number of studies aiming at its inhibition have been carried out. One leverage point for novel therapeutic strategies targeting the proteins involved, is the prevention of complex formation between the extracellular signaling protein Sonic Hedgehog and the transmembrane protein Patched 1. In 2009 robotnikinin, a small molecule capable of binding to and inhibiting the activity of Sonic Hedgehog has been identified, however in the absence of X-ray structures of the Sonic Hedgehog-robotnikinin complex, the binding mode of this inhibitor remains unknown. In order to aid with the identification of novel Sonic Hedgehog inhibitors, the presented investigation elucidates the binding mode of robotnikinin by performing an extensive docking study, including subsequent molecular mechanical as well as quantum mechanical/molecular mechanical molecular dynamics simulations. The attained configurations enabled the identification of a number of key protein-ligand interactions, aiding complex formation and providing stabilizing contributions to the binding of the ligand. The predicted structure of the Sonic Hedgehog-robotnikinin complex is provided via a PDB file as supplementary material and can be used for further reference.

  11. The Role of Sonic Hedgehog in Craniofacial Patterning, Morphogenesis and Cranial Neural Crest Survival

    PubMed Central

    Dworkin, Sebastian; Boglev, Yeliz; Owens, Harley; Goldie, Stephen J.

    2016-01-01

    Craniofacial defects (CFD) are a significant healthcare problem worldwide. Understanding both the morphogenetic movements which underpin normal facial development, as well as the molecular factors which regulate these processes, forms the cornerstone of future diagnostic, and ultimately, preventative therapies. The soluble morphogen Sonic hedgehog (Shh), a vertebrate orthologue of Drosophila hedgehog, is a key signalling factor in the regulation of craniofacial skeleton development in vertebrates, operating within numerous tissue types in the craniofacial primordia to spatiotemporally regulate the formation of the face and jaws. This review will provide an overview of normal craniofacial skeleton development, and focus specifically on the known roles of Shh in regulating the development and progression of the first pharyngeal arch, which in turn gives rise to both the upper jaw (maxilla) and lower jaw (mandible). PMID:29615588

  12. The Role of Sonic Hedgehog in Craniofacial Patterning, Morphogenesis and Cranial Neural Crest Survival.

    PubMed

    Dworkin, Sebastian; Boglev, Yeliz; Owens, Harley; Goldie, Stephen J

    2016-08-03

    Craniofacial defects (CFD) are a significant healthcare problem worldwide. Understanding both the morphogenetic movements which underpin normal facial development, as well as the molecular factors which regulate these processes, forms the cornerstone of future diagnostic, and ultimately, preventative therapies. The soluble morphogen Sonic hedgehog ( Shh ), a vertebrate orthologue of Drosophila hedgehog , is a key signalling factor in the regulation of craniofacial skeleton development in vertebrates, operating within numerous tissue types in the craniofacial primordia to spatiotemporally regulate the formation of the face and jaws. This review will provide an overview of normal craniofacial skeleton development, and focus specifically on the known roles of Shh in regulating the development and progression of the first pharyngeal arch, which in turn gives rise to both the upper jaw (maxilla) and lower jaw (mandible).

  13. The regulation of tooth morphogenesis is associated with epithelial cell proliferation and the expression of Sonic hedgehog through epithelial-mesenchymal interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishida, Kentaro; Murofushi, Mayumi; Nakao, Kazuhisa

    2011-02-18

    Research highlights: {yields} Bioengineered teeth regulated the contact area of epithelium and mesenchyme. {yields} The crown width is regulated by the contact area of the epithelium and mesenchyme. {yields} This regulation is associated with cell proliferation and Sonic hedgehog expression. {yields} The cusp number is correlated with the crown width of the bioengineered tooth. {yields} Cell proliferation and Shh expression areas regulate the tooth morphogenesis. -- Abstract: Ectodermal organs, such as the tooth, salivary gland, hair, and mammary gland, develop through reciprocal epithelial-mesenchymal interactions. Tooth morphologies are defined by the crown width and tooth length (macro-morphologies), and by the numbermore » and locations of the cusp and roots (micro-morphologies). In our current study, we report that the crown width of a bioengineered molar tooth, which was reconstructed using dissociated epithelial and mesenchymal cells via an organ germ method, can be regulated by the contact area between epithelial and mesenchymal cell layers. We further show that this is associated with cell proliferation and Sonic hedgehog (Shh) expression in the inner enamel epithelium after the germ stage has formed a secondary enamel knot. We also demonstrate that the cusp number is significantly correlated with the crown width of the bioengineered tooth. These findings suggest that the tooth micro-morphology, i.e. the cusp formation, is regulated after the tooth width, or macro-morphology, is determined. These findings also suggest that the spatiotemporal patterning of cell proliferation and the Shh expression areas in the epithelium regulate the crown width and cusp formation of the developing tooth.« less

  14. Sonic hedgehog signaling regulates actin cytoskeleton via Tiam1-Rac1 cascade during spine formation.

    PubMed

    Sasaki, Nobunari; Kurisu, Junko; Kengaku, Mineko

    2010-12-01

    The sonic hedgehog (Shh) pathway has essential roles in several processes during development of the vertebrate central nervous system (CNS). Here, we report that Shh regulates dendritic spine formation in hippocampal pyramidal neurons via a novel pathway that directly regulates the actin cytoskeleton. Shh signaling molecules Patched (Ptc) and Smoothened (Smo) are expressed in several types of postmitotic neurons, including cerebellar Purkinje cells and hippocampal pyramidal neurons. Knockdown of Smo induces dendritic spine formation in cultured hippocampal neurons independently of Gli-mediated transcriptional activity. Smo interacts with Tiam1, a guanine nucleotide exchange factor for Rac1, via its cytoplasmic C-terminal region. Inhibition of Tiam1 or Rac1 activity suppresses spine induction by Smo knockdown. Shh induces remodeling of the actin cytoskeleton independently of transcriptional activation in mouse embryonic fibroblasts. These findings demonstrate a novel Shh pathway that regulates the actin cytoskeleton via Tiam1-Rac1 activation. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Gedunin inhibits pancreatic cancer by altering sonic hedgehog signaling pathway

    PubMed Central

    Subramani, Ramadevi; Gonzalez, Elizabeth; Nandy, Sushmita Bose; Arumugam, Arunkumar; Camacho, Fernando; Medel, Joshua; Alabi, Damilola; Lakshmanaswamy, Rajkumar

    2017-01-01

    INTRODUCTION The lack of efficient treatment options for pancreatic cancer highlights the critical need for the development of novel and effective chemotherapeutic agents. The medicinal properties found in plants have been used to treat many different illnesses including cancers. This study focuses on the anticancer effects of gedunin, a natural compound isolated from Azadirachta indica. METHODS Anti–proliferative effect of gedunin on pancreatic cancer cells was assessed using MTS assay. We used matrigel invasion assay, scratch assay, and soft agar colony formation assay to measure the anti–metastatic potential of gedunin. Immunoblotting was performed to analyze the effect of gedunin on the expression of key proteins involved in pancreatic cancer growth and metastasis. Gedunin induced apoptosis was measured using flow cytometric analysis. To further validate, xenograft studies with HPAC cells were performed. RESULTS Gedunin treatment is highly effective in inducing death of pancreatic cancer cells via intrinsic and extrinsic mediated apoptosis. Our data further indicates that gedunin inhibited metastasis of pancreatic cancer cells by decreasing their EMT, invasive, migratory and colony formation capabilities. Gedunin treatment also inhibited sonic hedgehog signaling pathways. Further, experiments with recombinant sonic hedgehog protein and Gli inhibitor (Gant-61) demonstrated that gedunin induces its anti–metastatic effect through inhibition of sonic hedgehog signaling. The anti–cancer effect of gedunin was further validated using xenograft mouse model. CONCLUSION Overall, our data suggests that gedunin could serve as a potent anticancer agent against pancreatic cancers. PMID:26988754

  16. Mechanical stimulation promote the osteogenic differentiation of bone marrow stromal cells through epigenetic regulation of Sonic Hedgehog.

    PubMed

    Wang, Chuandong; Shan, Shengzhou; Wang, Chenglong; Wang, Jing; Li, Jiao; Hu, Guoli; Dai, Kerong; Li, Qingfeng; Zhang, Xiaoling

    2017-03-15

    Mechanical unloading leads to bone loss and disuse osteoporosis partly due to impaired osteoblastogenesis of bone marrow stromal cells (BMSCs). However, the underlying molecular mechanisms of this phenomenon are not fully understood. In this study, we demonstrated that cyclic mechanical stretch (CMS) promotes osteoblastogenesis of BMSCs both in vivo and in vitro. Besides, we found that Hedgehog (Hh) signaling pathway was activated in this process. Inhibition of which by either knockdown of Sonic hedgehog (Shh) or treating BMSCs with Hh inhibitors attenuated the osteogenic effect of CMS on BMSCs, suggesting that Hh signaling pathway acts as an endogenous mediator of mechanical stimuli on BMSCs. Furthermore, we demonstrated that Shh expression level was regulated by DNA methylation mechanism. Chromatin Immunoprecipitation (ChIP) assay showed that DNA methyltransferase 3b (Dnmt3b) binds to Shh gene promoter, leading to DNA hypermethylation in mechanical unloading BMSCs. However, mechanical stimulation down-regulates the protein level of Dnmt3b, results in DNA demethylation and Shh expression. More importantly, we found that inhibition of Dnmt3b partly rescued bone loss in HU mice by mechanical unloading. Our results demonstrate, for the first time, that mechanical stimulation regulates osteoblastic genes expression via direct regulation of Dnmt3b, and the therapeutic inhibition of Dnmt3b may be an efficient strategy for enhancing bone formation under mechanical unloading. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Indian and sonic hedgehogs regulate synchondrosis growth plate and cranial base development and function.

    PubMed

    Young, Blanche; Minugh-Purvis, Nancy; Shimo, Tsuyoshi; St-Jacques, Benoit; Iwamoto, Masahiro; Enomoto-Iwamoto, Motomi; Koyama, Eiki; Pacifici, Maurizio

    2006-11-01

    The synchondroses consist of mirror-image growth plates and are critical for cranial base elongation, but relatively little is known about their formation and regulation. Here we show that synchondrosis development is abnormal in Indian hedgehog-null mice. The Ihh(-/-) cranial bases displayed reduced growth and chondrocyte proliferation, but chondrocyte hypertrophy was widespread. Rather than forming a typical narrow zone, Ihh(-/-) hypertrophic chondrocytes occupied an elongated central portion of each growth plate and were flanked by immature collagen II-expressing chondrocytes facing perichondrial tissues. Endochondral ossification was delayed in much of the Ihh(-/-) cranial bases but, surprisingly, was unaffected most posteriorly. Searching for an explanation, we found that notochord remnants near incipient spheno-occipital synchondroses at E13.5 expressed Sonic hedgehog and local chondrocytes expressed Patched, suggesting that Shh had sustained chondrocyte maturation and occipital ossification. Equally unexpected, Ihh(-/-) growth plates stained poorly with Alcian blue and contained low aggrecan transcript levels. A comparable difference was seen in cultured wild-type versus Ihh(-/-) synchondrosis chondrocytes. Treatment with exogenous Ihh did not fully restore normal proteoglycan levels in mutant cultures, but a combination of Ihh and BMP-2 did. In summary, Ihh is required for multiple processes during synchondrosis and cranial base development, including growth plate zone organization, chondrocyte orientation, and proteoglycan production. The cranial base appears to be a skeletal structure in which growth and ossification patterns along its antero-posterior axis are orchestrated by both Ihh and Shh.

  18. Cooperatively transcriptional and epigenetic regulation of sonic hedgehog overexpression drives malignant potential of breast cancer

    PubMed Central

    Duan, Zhao-Heng; Wang, Hao-Chuan; Zhao, Dong-Mei; Ji, Xiao-Xin; Song, Min; Yang, Xiao-Jun; Cui, Wei

    2015-01-01

    Sonic hedgehog (Shh), a ligand of Hedgehog signaling pathway, is considered an important oncogene and an exciting potential therapeutic target in several cancers. Comprehensive understanding of the regulation mechanism of Shh in cancer cells is necessary to find an effective approach to selectively block its tumorigenic function. We and others previously demonstrated that nuclear factor-kappa B (NF-κB) activation and promoter hypomethylation contributed to the overexpression of Shh. However, the relationship between transcriptional and epigenetic regulation of Shh, and their roles in the malignant phenotype of cancer cells are still not clearly elucidated. In the present study, our data showed that the level of Shh was higher in breast cancer tissues with positive NF-κB nuclear staining and promoter hypomethylation. In addition, survival analysis revealed that Shh overexpression, but not hypomethylation and NF-κB nuclear staining, was a poor prognosis indicator for breast cancers. Moreover, in vitro data demonstrated that both NF-κB activation and hypomethylation in promoter region were positively associated with the overexpression of Shh. Mechanistically, the hypomethylation in Shh promoter could facilitate NF-κB binding to its site, and subsequently cooperate to induce transcription of Shh. Furthermore, the biological function data indicated that overexpressed Shh enhanced the self-renewal capacity and migration ability of breast cancer cells, which could be augmented by promoter demethylation and NF-κB activation. Overall, our findings reveal multiple and cooperative mechanisms of Shh upregulation in cancer cells, and the roles of Shh in tumor malignant behavior, thus suggesting a new strategy for therapeutic interventions to reduce Shh in tumors and improve patients’ prognosis. PMID:25990213

  19. Regulator of G protein signaling 5 (RGS5) inhibits sonic hedgehog function in mouse cortical neurons.

    PubMed

    Liu, Chuanliang; Hu, Qiongqiong; Jing, Jia; Zhang, Yun; Jin, Jing; Zhang, Liulei; Mu, Lili; Liu, Yumei; Sun, Bo; Zhang, Tongshuai; Kong, Qingfei; Wang, Guangyou; Wang, Dandan; Zhang, Yao; Liu, Xijun; Zhao, Wei; Wang, Jinghua; Feng, Tao; Li, Hulun

    2017-09-01

    Regulator of G protein signaling 5 (RGS5) acts as a GTPase-activating protein (GAP) for the Gαi subunit and negatively regulates G protein-coupled receptor signaling. However, its presence and function in postmitotic differentiated primary neurons remains largely uncharacterized. During neural development, sonic hedgehog (Shh) signaling is involved in cell signaling pathways via Gαi activity. In particular, Shh signaling is essential for embryonic neural tube patterning, which has been implicated in neuronal polarization involving neurite outgrowth. Here, we examined whether RGS5 regulates Shh signaling in neurons. RGS5 transcripts were found to be expressed in cortical neurons and their expression gradually declined in a time-dependent manner in culture system. When an adenovirus expressing RGS5 was introduced into an in vitro cell culture model of cortical neurons, RGS5 overexpression significantly reduced neurite outgrowth and FM4-64 uptake, while cAMP-PKA signaling was also affected. These findings suggest that RGS5 inhibits Shh function during neurite outgrowth and the presynaptic terminals of primary cortical neurons mature via modulation of cAMP. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Novel association of VACTERL, neural tube defect and crossed renal ectopia: sonic hedgehog signaling: a point of coherence?

    PubMed

    Vaze, Dhananjay; Mahalik, Santosh; Rao, Katragadda L N

    2012-12-01

    The present case report describes two patients with a novel combination of VACTERL (vertebral, anorectal, cardiac, tracheoesophageal, renal, limb), neural tube defect and crossed renal ectopia. Though cases of VACTERL associated with crossed renal ectopia have been described, the present case report is the first to describe its combination with neural tube defect. The cases reported here are significant because central nervous system manifestations are scarce in VACTERL syndrome. The role of sonic hedgehog pathway has been proposed in VACTERL association and neural tube defects. Axial Sonic hedgehog signaling has also been implicated in the mediolateral positioning of the renal parenchyma. With this knowledge, the etiopathogenesis of this novel combination is discussed to highlight the role of sonic hedgehog signaling as a point of coherence. © 2011 The Authors. Congenital Anomalies © 2011 Japanese Teratology Society.

  1. Formation of the sacrum requires down-regulation of sonic hedgehog signaling in the sacral intervertebral discs.

    PubMed

    Bonavita, Raffaella; Vincent, Kathleen; Pinelli, Robert; Dahia, Chitra Lekha

    2018-05-21

    In humans, the sacrum forms an important component of the pelvic arch, and it transfers the weight of the body to the lower limbs. The sacrum is formed by collapse of the intervertebral discs (IVDs) between the five sacral vertebrae during childhood, and their fusion to form a single bone. We show that collapse of the sacral discs in the mouse is associated with the down-regulation of sonic hedgehog (SHH) signaling in the nucleus pulposus (NP) of the disc, and many aspects of this phenotype can be reversed by experimental postnatal activation of HH signaling. We have previously shown that SHH signaling is essential for the normal postnatal growth and differentiation of intervertebral discs elsewhere in the spine, and that loss of SHH signaling leads to pathological disc degeneration, a very common disorder of aging. Thus, loss of SHH is pathological in one region of the spine but part of normal development in another. © 2018. Published by The Company of Biologists Ltd.

  2. HIF-1 maintains a functional relationship between pancreatic cancer cells and stromal fibroblasts by upregulating expression and secretion of Sonic hedgehog

    PubMed Central

    Katagiri, Tomohiro; Kobayashi, Minoru; Yoshimura, Michio; Morinibu, Akiyo; Itasaka, Satoshi; Hiraoka, Masahiro; Harada, Hiroshi

    2018-01-01

    Hypoxic and stroma-rich microenvironments, characteristic features of pancreatic cancers, are strongly associated with a poor prognosis. However, whether and how hypoxia increases stromal compartments remain largely unknown. Here, we investigated the potential importance of a master regulator of the cellular adaptive response to hypoxia, hypoxia-inducible factor-1 (HIF-1), in the formation of stroma-rich microenvironments of pancreatic tumors. We found that pancreatic cancer cells secreted more Sonic hedgehog protein (SHH) under hypoxia by upregulating its expression and efficiency of secretion in a HIF-1-dependent manner. Recombinant SHH, which was confirmed to activate the hedgehog signaling pathway, accelerated the growth of fibroblasts in a dose-dependent manner. The SHH protein secreted from pancreatic cancer cells under hypoxic conditions promoted the growth of fibroblasts by stimulating their Sonic hedgehog signaling pathway. These results suggest that the increased secretion of SHH by HIF-1 is potentially responsible for the formation of detrimental and stroma-rich microenvironments in pancreatic cancers, therefore providing a rational basis to target it in cancer therapy. PMID:29535824

  3. Sonic hedgehog, Apoptosis and the Penis

    PubMed Central

    Podlasek, Carol A.

    2009-01-01

    Introduction Smooth muscle apoptosis in the penis is common in prostatectomy patients and animal models of erectile dysfunction (ED). A critical regulator of smooth muscle apoptosis in the penis is the secreted protein Sonic hedgehog (SHH). Since SHH protein treatment of the penis prevents cavernous nerve (CN) injury induced apoptosis, SHH has the potential to treat post-prostatectomy apoptosis. However little is known about how SHH signaling is regulated in the adult penis. Aim The goal of this review is to examine what is known about SHH signaling in the penis, to offer insight as to how SHH inhibition induces apoptosis in penile smooth muscle, and to define the role of the SHH pathway in maintaining CN integrity. Methods Information presented in this review was derived from a literature search using the National Library of Medicine PubMed Services. Search terms included SHH, apoptosis, smooth muscle, penis, ED, pelvic ganglia, corpora cavernosa, CN, regeneration, Schwann cell, neural activity and transport. Results In this review we have discussed the role of the CN in regulation of SHH abundance and apoptosis induction in the penis and have examined the function and localization of SHH signaling in the CN. Conclusion There is substantial potential to develop SHH for delivery to the penis of prostatectomy patients at the time of surgery in order to prevent apoptosis induction and long term ED development. Studies are in progress which will identify if SHH may be used as a regenerative therapy to speed CN regeneration. PMID:19267857

  4. Sonic Hedgehog Guides Axons via Zipcode Binding Protein 1-Mediated Local Translation.

    PubMed

    Lepelletier, Léa; Langlois, Sébastien D; Kent, Christopher B; Welshhans, Kristy; Morin, Steves; Bassell, Gary J; Yam, Patricia T; Charron, Frédéric

    2017-02-15

    Sonic hedgehog (Shh) attracts spinal cord commissural axons toward the floorplate. How Shh elicits changes in the growth cone cytoskeleton that drive growth cone turning is unknown. We find that the turning of rat commissural axons up a Shh gradient requires protein synthesis. In particular, Shh stimulation increases β-actin protein at the growth cone even when the cell bodies have been removed. Therefore, Shh induces the local translation of β-actin at the growth cone. We hypothesized that this requires zipcode binding protein 1 (ZBP1), an mRNA-binding protein that transports β-actin mRNA and releases it for local translation upon phosphorylation. We found that Shh stimulation increases phospho-ZBP1 levels in the growth cone. Disruption of ZBP1 phosphorylation in vitro abolished the turning of commissural axons toward a Shh gradient. Disruption of ZBP1 function in vivo in mouse and chick resulted in commissural axon guidance errors. Therefore, ZBP1 is required for Shh to guide commissural axons. This identifies ZBP1 as a new mediator of noncanonical Shh signaling in axon guidance. SIGNIFICANCE STATEMENT Sonic hedgehog (Shh) guides axons via a noncanonical signaling pathway that is distinct from the canonical Hedgehog signaling pathway that specifies cell fate and morphogenesis. Axon guidance is driven by changes in the growth cone in response to gradients of guidance molecules. Little is known about the molecular mechanism of how Shh orchestrates changes in the growth cone cytoskeleton that are required for growth cone turning. Here, we show that the guidance of axons by Shh requires protein synthesis. Zipcode binding protein 1 (ZBP1) is an mRNA-binding protein that regulates the local translation of proteins, including actin, in the growth cone. We demonstrate that ZBP1 is required for Shh-mediated axon guidance, identifying a new member of the noncanonical Shh signaling pathway. Copyright © 2017 the authors 0270-6474/17/371685-11$15.00/0.

  5. Molecular mechanisms of Sonic hedgehog mutant effects in holoprosencephaly.

    PubMed

    Maity, Tapan; Fuse, Naoyuki; Beachy, Philip A

    2005-11-22

    Holoprosencephaly (HPE), a human developmental brain defect, usually is also associated with varying degrees of midline facial dysmorphism. Heterozygous mutations in the Sonic hedgehog (SHH) gene are the most common genetic lesions associated with HPE, and loss of Shh function in the mouse produces cyclopia and alobar forebrain development. The N-terminal domain (ShhNp) of Sonic hedgehog protein, generated by cholesterol-dependent autoprocessing and modification at the C terminus and by palmitate addition at the N terminus, is the active ligand in the Shh signal transduction pathway. Here, we analyze seven reported missense mutations (G31R, D88V, Q100H, N115K, W117G, W117R, and E188Q) that alter the N-terminal signaling domain of Shh protein, and show that two of these mutations (Q100H and E188Q), which are questionably linked to HPE, produce no detectable effects on function. The remaining five alterations affect normal processing, Ptc binding, and signaling to varying degrees. These effects include introduction of a recognition site for furin-like proteases by the G31R alteration, resulting in cleavage of 11 amino acid residues from the N terminus of ShhNp and consequent reduced signaling potency. Two other alterations, W117G and W117R, cause temperature-dependent misfolding and retention in the sterol-poor endoplasmic reticulum, thus disrupting cholesterol-dependent autoprocessing.

  6. Sonic Hedgehog Signaling in Limb Development

    PubMed Central

    Tickle, Cheryll; Towers, Matthew

    2017-01-01

    The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis (e.g., thumb to little finger axis) of the limb. Shh has also been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Currently there are several models for how Shh specifies positional values over time in the limb buds of chick and mouse embryos and how this is integrated with growth. Extensive work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it remains unclear how antero-posterior positional values are encoded and then interpreted to give the particular structure appropriate to that position, for example, the type of digit. A distant cis-regulatory enhancer controls limb-bud-specific expression of Shh and the discovery of increasing numbers of interacting transcription factors indicate complex spatiotemporal regulation. Altered Shh signaling is implicated in clinical conditions with congenital limb defects and in the evolution of the morphological diversity of vertebrate limbs. PMID:28293554

  7. Could an endoneurial endothelial crosstalk between Wnt/β-catenin and Sonic Hedgehog pathways underlie the early disruption of the infra-orbital blood-nerve barrier following chronic constriction injury?

    PubMed

    Moreau, Nathan; Mauborgne, Annie; Couraud, Pierre-Olivier; Romero, Ignacio A; Weksler, Babette B; Villanueva, Luis; Pohl, Michel; Boucher, Yves

    2017-01-01

    Blood–nerve barrier disruption is pivotal in the development of neuroinflammation, peripheral sensitization, and neuropathic pain after peripheral nerve injury. Activation of toll-like receptor 4 and inactivation of Sonic Hedgehog signaling pathways within the endoneurial endothelial cells are key events, resulting in the infiltration of harmful molecules and immunocytes within the nerve parenchyma. However, we showed in a previous study that preemptive inactivation of toll-like receptor 4 signaling or sustained activation of Sonic Hedgehog signaling did not prevent the local alterations observed following peripheral nerve injury, suggesting the implication of another signaling pathway. Using a classical neuropathic pain model, the infraorbital nerve chronic constriction injury (IoN-CCI), we investigated the role of the Wnt/β-catenin pathway in chronic constriction injury-mediated blood–nerve barrier disruption and in its interactions with the toll-like receptor 4 and Sonic Hedgehog pathways. In the IoN-CCI model versus control, mRNA expression levels and/or immunochemical detection of major Wnt/Sonic Hedgehog pathway (Frizzled-7, vascular endothelial-cadherin, Patched-1 and Gli-1) and/or tight junction proteins (Claudin-1, Claudin-5, and Occludin) readouts were assessed. Vascular permeability was assessed by sodium fluorescein extravasation. IoN-CCI induced early alterations in the vascular endothelial-cadherin/β-catenin/Frizzled-7 complex, shown to participate in local blood–nerve barrier disruption via a β-catenin-dependent tight junction protein downregulation. Wnt pathway also mediated a crosstalk between toll-like receptor 4 and Sonic Hedgehog signaling within endoneurial endothelial cells. Nevertheless, preemptive inhibition of Wnt/β-catenin signaling before IoN-CCI could not prevent the downregulation of key Sonic Hedgehog pathway readouts or the disruption of the infraorbital blood–nerve barrier, suggesting that Sonic Hedgehog pathway

  8. The Role of the Sonic Hedgehog Pathway for Prostate Cancer Progression

    DTIC Science & Technology

    2007-02-01

    hepatocellular carcinomas : through transcriptional activation of the ligand Shh (Carcinogenesis 27: 1334-40, 2006). Second, our studies of Su(Fu...in hepatocellular carcinomas . Fig. 3 shows that the sonic hedgehog promoter activity is high in Huh7 cells but low in HepG2 cells. In the presence of... hepatocellular carcinomas and prostate cancer. LNCaP cells 0 50 100 150 200 250 300 Vector (-1800 to -200) (-680 to -200) R el at iv e lu ci fe ra

  9. Identification of conserved regions and residues within Hedgehog acyltransferase critical for palmitoylation of Sonic Hedgehog.

    PubMed

    Buglino, John A; Resh, Marilyn D

    2010-06-23

    Sonic hedgehog (Shh) is a palmitoylated protein that plays key roles in mammalian development and human cancers. Palmitoylation of Shh is required for effective long and short range Shh-mediated signaling. Attachment of palmitate to Shh is catalyzed by Hedgehog acyltransferase (Hhat), a member of the membrane bound O-acyl transferase (MBOAT) family of multipass membrane proteins. The extremely hydrophobic composition of MBOAT proteins has limited their biochemical characterization. Except for mutagenesis of two conserved residues, there has been no structure-function analysis of Hhat, and the regions of the protein required for Shh palmitoylation are unknown. Here we undertake a systematic approach to identify residues within Hhat that are required for protein stability and/or enzymatic activity. We also identify a second, novel MBOAT homology region (residues 196-234) that is required for Hhat activity. In total, ten deletion mutants and eleven point mutants were generated and analyzed. Truncations at the N- and C-termini of Hhat yielded inactive proteins with reduced stability. Four Hhat mutants with deletions within predicted loop regions and five point mutants retained stability but lost palmitoylation activity. We purified two point mutants, W378A and H379A, with defective Hhat activity. Kinetic analyses revealed alterations in apparent K(m) and V(max) for Shh and/or palmitoyl CoA, changes that likely explain the catalytic defects observed for these mutants. This study has pinpointed specific regions and multiple residues that regulate Hhat stability and catalysis. Our findings should be applicable to other MBOAT proteins that mediate lipid modification of Wnt proteins and ghrelin, and should serve as a model for understanding how secreted morphogens are modified by palmitoyl acyltransferases.

  10. Sonic hedgehog pathway activation increases mitochondrial abundance and activity in hippocampal neurons

    PubMed Central

    Yao, Pamela J.; Manor, Uri; Petralia, Ronald S.; Brose, Rebecca D.; Wu, Ryan T. Y.; Ott, Carolyn; Wang, Ya-Xian; Charnoff, Ari; Lippincott-Schwartz, Jennifer; Mattson, Mark P.

    2017-01-01

    Mitochondria are essential organelles whose biogenesis, structure, and function are regulated by many signaling pathways. We present evidence that, in hippocampal neurons, activation of the Sonic hedgehog (Shh) signaling pathway affects multiple aspects of mitochondria. Mitochondrial mass was increased significantly in neurons treated with Shh. Using biochemical and fluorescence imaging analyses, we show that Shh signaling activity reduces mitochondrial fission and promotes mitochondrial elongation, at least in part, via suppression of the mitochondrial fission protein dynamin-like GTPase Drp1. Mitochondria from Shh-treated neurons were more electron-dense, as revealed by electron microscopy, and had higher membrane potential and respiratory activity. We further show that Shh protects neurons against a variety of stresses, including the mitochondrial poison rotenone, amyloid β-peptide, hydrogen peroxide, and high levels of glutamate. Collectively our data suggest a link between Shh pathway activity and the physiological properties of mitochondria in hippocampal neurons. PMID:27932496

  11. Changes in expression and secretion patterns of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway molecules during murine neural stem/progenitor cell differentiation in vitro☆

    PubMed Central

    Lu, Jiang; Lu, Kehuan; Li, Dongsheng

    2012-01-01

    In the present study, we investigated the dynamic expression of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway related factors in the process of in vitro hippocampal neural stem/progenitor cell differentiation from embryonic Sprague-Dawley rats or embryonic Kunming species mice, using fluorescent quantitative reverse transcription-PCR and western blot analyses. Results demonstrated that the dynamic expression of fibroblast growth factor 8 was similar to fibroblast growth factor receptor 1 expression but not to other fibroblast growth factor receptors. Enzyme-linked immunosorbent assay demonstrated that fibroblast growth factor 8 and Sonic Hedgehog signaling pathway protein factors were secreted by neural cells into the intercellular niche. Our experimental findings indicate that fibroblast growth factor 8 and Sonic Hedgehog expression may be related to the differentiation of neural stem/progenitor cells. PMID:25624789

  12. The regulation of tooth morphogenesis is associated with epithelial cell proliferation and the expression of Sonic hedgehog through epithelial-mesenchymal interactions.

    PubMed

    Ishida, Kentaro; Murofushi, Mayumi; Nakao, Kazuhisa; Morita, Ritsuko; Ogawa, Miho; Tsuji, Takashi

    2011-02-18

    Ectodermal organs, such as the tooth, salivary gland, hair, and mammary gland, develop through reciprocal epithelial-mesenchymal interactions. Tooth morphologies are defined by the crown width and tooth length (macro-morphologies), and by the number and locations of the cusp and roots (micro-morphologies). In our current study, we report that the crown width of a bioengineered molar tooth, which was reconstructed using dissociated epithelial and mesenchymal cells via an organ germ method, can be regulated by the contact area between epithelial and mesenchymal cell layers. We further show that this is associated with cell proliferation and Sonic hedgehog (Shh) expression in the inner enamel epithelium after the germ stage has formed a secondary enamel knot. We also demonstrate that the cusp number is significantly correlated with the crown width of the bioengineered tooth. These findings suggest that the tooth micro-morphology, i.e. the cusp formation, is regulated after the tooth width, or macro-morphology, is determined. These findings also suggest that the spatiotemporal patterning of cell proliferation and the Shh expression areas in the epithelium regulate the crown width and cusp formation of the developing tooth. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Sonic hedgehog promotes stem-cell potential of Mueller glia in the mammalian retina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan Jin; Zheng Hua; Xiao Honglei

    2007-11-16

    Mueller glia have been demonstrated to display stem-cell properties after retinal damage. Here, we report this potential can be regulated by Sonic hedgehog (Shh) signaling. Shh can stimulate proliferation of Mueller glia through its receptor and target gene expressed on them, furthermore, Shh-treated Mueller glia are induced to dedifferentiate by expressing progenitor-specific markers, and then adopt cell fate of rod photoreceptor. Inhibition of signaling by cyclopamine inhibits proliferation and dedifferentiation. Intraocular injection of Shh promotes Mueller glia activation in the photoreceptor-damaged retina, Shh also enhances neurogenic potential by producing more rhodopsin-positive photoreceptors from Mueller glia-derived cells. Together, these results providemore » evidences that Mueller glia act as potential stem cells in mammalian retina, Shh may have therapeutic effects on these cells for promoting the regeneration of retinal neurons.« less

  14. Impact of Sonic Hedgehog Pathway Expression on Outcome in HPV Negative Head and Neck Carcinoma Patients after Surgery and Adjuvant Radiotherapy

    PubMed Central

    Enzenhofer, Elisabeth; Parzefall, Thomas; Haymerle, Georg; Schneider, Sven; Kadletz, Lorenz; Heiduschka, Gregor; Pammer, Johannes; Oberndorfer, Felicitas; Wrba, Fritz; Loader, Benjamin; Grasl, Matthäus Christoph; Perisanidis, Christos; Erovic, Boban M.

    2016-01-01

    Introduction HPV positive patients suffering from head and neck cancer benefit from intensified radiotherapy when applied as a primary as well as an adjuvant treatment strategy. However, HPV negative patients treated with surgery and adjuvant radiotherapy lack validated prognostic biomarkers. It is therefore important to define prognostic biomarkers in this particular patient population. Especially, ´high-risk groups´ need to be defined in order to adapt treatment protocols. Since dysregulation of the sonic hedgehog pathway plays an important role in carcinogenesis, we aimed to assess whether members of the sonic hedgehog-signaling pathway may act as prognostic factors in patients with HPV negative head and neck squamous cell carcinoma. Materials and Methods In this prospective study, pretreatment tumor biopsies of patients with head and neck squamous cell carcinoma were taken during panendoscopy (2005 to 2008). All patients were treated with surgery and postoperative radiotherapy. After assessment of HPV and p16 status, protein expression profiles of the Sonic hedgehog-signaling pathway were determined by immunohistochemistry and tissue microarray analyses in 36 HPV negative tumor biopsies. Expression profiles of Sonic hedgehog, Indian hedgehog, Patched, Smoothened, Gli-1, Gli-2 and Gli-3 were correlated with patients´ clinical data, local-control rate, disease-free as well as overall survival. Data from The Cancer Genome Atlas databank were used for external validation of our results. Results Gli-1 (p = 0.04) and Gli-2 (p = 0.02) overexpression was significantly linked to improved overall survival of HPV negative patients. Gli-2 (p = 0.04) overexpression correlated significantly with prolonged disease-free survival. Cox-multivariate analysis showed that overexpression of Gli-2 correlated independently (HR 0.40, 95% CI 0.16–0.95, p = 0.03) with increased overall survival. Discussion Gli-1 and Gli-2 overexpression represents a substantial prognostic factor for

  15. Sonic Hedgehog in pancreatic cancer: From bench to bedside, then back to the bench

    PubMed Central

    Rosow, David E.; Liss, Andrew S.; Strobel, Oliver; Fritz, Stefan; Bausch, Dirk; Valsangkar, Nakul P.; Alsina, Janivette; Kulemann, Birte; Park, Joo Kyung; Yamaguchi, Junpei; LaFemina, Jennifer; Thayer, Sarah P.

    2013-01-01

    Developmental genes are known to regulate cell proliferation, migration, and differentiation; thus, it comes as no surprise that the misregulation of developmental genes plays an important role in the biology of human cancers. One such pathway that has received an increasing amount of attention for its function in carcinogenesis is the Hedgehog (Hh) pathway. Initially the domain of developmental biologists, the Hh pathway and one of its ligands, Sonic Hedgehog (Shh), have been shown to play an important role in body planning and organ development, particularly in the foregut endoderm. Their importance in human disease became known to cancer biologists when germline mutations that resulted in the unregulated activity of the Hh pathway were found to cause basal cell carcinoma and medulloblastoma. Since then, misexpression of the Hh pathway has been shown to play an important role in many other cancers, including those of the pancreas. In many institutions, investigators are targeting misexpression of the Hh pathway in clinical trials, but there is still much fundamental knowledge to be gained about this pathway that can shape its clinical utility. This review will outline the evolution of our understanding of this pathway as it relates to the pancreas, as well as how the Hh pathway came to be a high-priority target for treatment. PMID:22770959

  16. Sonic hedgehog signaling regulates amygdalar neurogenesis and extinction of fear memory.

    PubMed

    Hung, Hui-Chi; Hsiao, Ya-Hsin; Gean, Po-Wu

    2015-10-01

    It is now recognized that neurogenesis occurs throughout life predominantly in the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the lateral ventricle. In the present study, we investigated the relationship between neurogenesis in the amygdala and extinction of fear memory. Mice received 15 tone-footshock pairings. Twenty-four hours after training, the mice were given 15 tone-alone trials (extinction training) once per day for 7 days. Two hours before extinction training, the mice were injected intraperitoneally with 5-bromo-3-deoxyuridine (BrdU). BrdU-positive and NeuN-positive cells were analyzed 52 days after the training. A group of mice that received tone-footshock pairings but no extinction training served as controls (FC+No-Ext). The number of BrdU(+)/NeuN(+) cells was significantly higher in the extinction (FC+Ext) than in the FC+No-Ext mice. Proliferation inhibitor methylazoxymethanol acetate (MAM) or DNA synthesis inhibitor cytosine arabinoside (Ara-C) reduced neurogenesis and retarded extinction. Silencing Sonic hedgehog (Shh) gene with short hairpin interfering RNA (shRNA) by means of a retrovirus expression system to knockdown Shh specifically in the mitotic neurons reduced neurogenesis and retarded extinction. By contrast, over-expression of Shh increased neurogenesis and facilitated extinction. These results suggest that amygdala neurogenesis and Shh signaling are involved in the extinction of fear memory. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  17. Not so Fast: Co-Requirements for Sonic Hedgehog Induced Brain Tumorigenesis.

    PubMed

    Ward, Stacey A; Rubin, Joshua B

    2015-08-06

    The Sonic hedgehog (Shh) pathway plays an integral role in cellular proliferation during normal brain development and also drives growth in a variety of cancers including brain cancer. Clinical trials of Shh pathway inhibitors for brain tumors have yielded disappointing results, indicating a more nuanced role for Shh signaling. We postulate that Shh signaling does not work alone but requires co-activation of other signaling pathways for tumorigenesis and stem cell maintenance. This review will focus on the interplay between the Shh pathway and these pathways to promote tumor growth in brain tumors, presenting opportunities for the study of combinatorial therapies.

  18. LKB1 Regulates Cerebellar Development by Controlling Sonic Hedgehog-mediated Granule Cell Precursor Proliferation and Granule Cell Migration.

    PubMed

    Men, Yuqin; Zhang, Aizhen; Li, Haixiang; Jin, Yecheng; Sun, Xiaoyang; Li, Huashun; Gao, Jiangang

    2015-11-09

    The Liver Kinase B1 (LKB1) gene plays crucial roles in cell differentiation, proliferation and the establishment of cell polarity. We created LKB1 conditional knockout mice (LKB1(Atoh1) CKO) to investigate the function of LKB1 in cerebellar development. The LKB1(Atoh1) CKO mice displayed motor dysfunction. In the LKB1(Atoh1) CKO cerebellum, the overall structure had a larger volume and more lobules. LKB1 inactivation led to an increased proliferation of granule cell precursors (GCPs), aberrant granule cell migration and overproduction of unipolar brush cells. To investigate the mechanism underlying the abnormal foliation, we examined sonic hedgehog signalling (Shh) by testing its transcriptional mediators, the Gli proteins, which regulate the GCPs proliferation and cerebellar foliation during cerebellar development. The expression levels of Gli genes were significantly increased in the mutant cerebellum. In vitro assays showed that the proliferation of cultured GCPs from mutant cerebellum significantly increased, whereas the proliferation of mutant GCPs significantly decreased in the presence of a Shh inhibitor GDC-0049. Thus, LKB1 deficiency in the LKB1(Atoh1) CKO mice enhanced Shh signalling, leading to the excessive GCP proliferation and the formation of extra lobules. We proposed that LKB1 regulates cerebellar development by controlling GCPs proliferation through Shh signalling during cerebellar development.

  19. LKB1 Regulates Cerebellar Development by Controlling Sonic Hedgehog-mediated Granule Cell Precursor Proliferation and Granule Cell Migration

    PubMed Central

    Men, Yuqin; Zhang, Aizhen; Li, Haixiang; Jin, Yecheng; Sun, Xiaoyang; Li, Huashun; Gao, Jiangang

    2015-01-01

    The Liver Kinase B1 (LKB1) gene plays crucial roles in cell differentiation, proliferation and the establishment of cell polarity. We created LKB1 conditional knockout mice (LKB1Atoh1 CKO) to investigate the function of LKB1 in cerebellar development. The LKB1Atoh1 CKO mice displayed motor dysfunction. In the LKB1Atoh1 CKO cerebellum, the overall structure had a larger volume and morelobules. LKB1 inactivationled to an increased proliferation of granule cell precursors (GCPs), aberrant granule cell migration and overproduction of unipolar brush cells. To investigate the mechanism underlying the abnormal foliation, we examined sonic hedgehog signalling (Shh) by testing its transcriptional mediators, the Gli proteins, which regulate the GCPs proliferation and cerebellar foliation during cerebellar development. The expression levels of Gli genes were significantly increased in the mutant cerebellum. In vitro assays showed that the proliferation of cultured GCPs from mutant cerebellum significantly increased, whereas the proliferation of mutant GCPs significantly decreased in the presence of a Shh inhibitor GDC-0049. Thus, LKB1 deficiency in the LKB1Atoh1 CKO mice enhanced Shh signalling, leading to the excessive GCP proliferation and the formation of extra lobules. We proposed that LKB1 regulates cerebellar development by controlling GCPs proliferation through Shh signalling during cerebellar development. PMID:26549569

  20. Sonic hedgehog protein promotes proliferation and chondrogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro.

    PubMed

    Warzecha, Jörg; Göttig, Stephan; Brüning, Christian; Lindhorst, Elmar; Arabmothlagh, Mohammad; Kurth, Andreas

    2006-10-01

    Sonic hedgehog (Shh) protein is known to be an important signaling protein in early embryonic development. Also, Shh is involved in the induction of early cartilaginous differentiation of mesenchymal cells in the limb and in the spine. The impact of Shh on adult stem cells, human bone marrow-derived mesenchymal stem cells (MSCs), was tested. The MSCs were treated either with recombinant Sonic hedgehog protein (r-Shh) or with transforming growth factor-beta 1 (TGF-beta(1)) as a positive control in vitro for 3 weeks. The effects on cartilaginous differentiation and proliferation were assayed. MSCs when treated with either Shh or TGF-beta(1) showed expression of cartilage markers aggrecan, Sox9, CEP-68, and collagen type II and X within 3 weeks. Only r-Shh-treated cells showed a very strong cell proliferation and much higher BrdU incorporation in cell assay systems. These are the first data that indicate an important role of Shh for the induction of cartilage production by MSCs in vitro.

  1. Intraflagellar transport protein 122 antagonizes Sonic Hedgehog signaling and controls ciliary localization of pathway components.

    PubMed

    Qin, Jian; Lin, Yulian; Norman, Ryan X; Ko, Hyuk W; Eggenschwiler, Jonathan T

    2011-01-25

    Primary cilia are required for proper Sonic Hedgehog (Shh) signaling in mammals. However, their role in the signal transduction process remains unclear. We have identified sister of open brain (sopb), a null allele of mouse Intraflagellar transport protein 122 (Ift122). IFT122 negatively regulates the Shh pathway in the cilium at a step downstream of the Shh ligand and the transmembrane protein Smoothened, but upstream of the Gli2 transcription factor. Ift122(sopb) mutants generate primary cilia, but they show features of defective retrograde intraflagellar transport. IFT122 controls the ciliary localization of Shh pathway regulators in different ways. Disruption of IFT122 leads to accumulation of Gli2 and Gli3 at cilia tips while blocking the ciliary localization of the antagonist TULP3. Suppressor of Fused and Smoothened localize to the cilium through an IFT122-independent mechanism. We propose that the balance between positive and negative regulators of the Shh pathway at the cilium tip controls the output of the pathway and that Shh signaling regulates this balance through intraflagellar transport.

  2. Sonic hedgehog: restricted expression and limb dysmorphologies

    PubMed Central

    Hill, Robert E; Heaney, Simon JH; Lettice, Laura A

    2003-01-01

    Sonic hedgehog, SHH, is required for patterning the limb. The array of skeletal elements that compose the hands and feet, and the ordered arrangement of these bones to form the pattern of fingers and toes are dependent on SHH. The mechanism of action of SHH in the limb is not fully understood; however, an aspect that appears to be important is the localized, asymmetric expression of Shh. Shh is expressed in the posterior margin of the limb bud in a region defined as the zone of polarizing activity (ZPA). Analysis of mouse mutants which have polydactyly (extra toes) shows that asymmetric expression of Shh is lost due to the appearance of an ectopic domain of expression in the anterior limb margin. One such polydactylous mouse mutant, sasquatch (Ssq), maps to the corresponding chromosomal region of the human condition pre-axial polydactyly (PPD) and thus represents a model for this condition. The mutation responsible for Ssq is located 1 Mb away from the Shh gene; however, the mutation disrupts a long-range cis-acting regulator of Shh expression. By inference, human pre-axial polydactyly results from a similar disruption of Shh expression. Other human congenital abnormalities also map near the pre-axial polydactyly locus, suggesting a major chromosomal region for limb dysmorphologies. The distinct phenotypes range from loss of all bones of the hands and feet to syndactyly of the soft tissue and fusion of the digits. We discuss the role played by Shh expression in mouse mutant phenotypes and the human limb dysmorphologies. PMID:12587915

  3. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development

    PubMed Central

    Bar, Carmit; Tsai, Pai-Chi; Valdes, Victor J.; Cohen, Idan; Santoriello, Francis J.; Zhao, Dejian; Hsu, Ya-Chieh; Ezhkova, Elena

    2016-01-01

    An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh) signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2) in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures. PMID:27414999

  4. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development.

    PubMed

    Perdigoto, Carolina N; Dauber, Katherine L; Bar, Carmit; Tsai, Pai-Chi; Valdes, Victor J; Cohen, Idan; Santoriello, Francis J; Zhao, Dejian; Zheng, Deyou; Hsu, Ya-Chieh; Ezhkova, Elena

    2016-07-01

    An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh) signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2) in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures.

  5. Thyroid Hormone Regulates the Expression of the Sonic Hedgehog Signaling Pathway in the Embryonic and Adult Mammalian Brain

    PubMed Central

    Desouza, Lynette A.; Sathanoori, Malini; Kapoor, Richa; Rajadhyaksha, Neha; Gonzalez, Luis E.; Kottmann, Andreas H.; Tole, Shubha

    2011-01-01

    Thyroid hormone is important for development and plasticity in the immature and adult mammalian brain. Several thyroid hormone-responsive genes are regulated during specific developmental time windows, with relatively few influenced across the lifespan. We provide novel evidence that thyroid hormone regulates expression of the key developmental morphogen sonic hedgehog (Shh), and its coreceptors patched (Ptc) and smoothened (Smo), in the early embryonic and adult forebrain. Maternal hypo- and hyperthyroidism bidirectionally influenced Shh mRNA in embryonic forebrain signaling centers at stages before fetal thyroid hormone synthesis. Further, Smo and Ptc expression were significantly decreased in the forebrain of embryos derived from hypothyroid dams. Adult-onset thyroid hormone perturbations also regulated expression of the Shh pathway bidirectionally, with a significant induction of Shh, Ptc, and Smo after hyperthyroidism and a decline in Smo expression in the hypothyroid brain. Short-term T3 administration resulted in a significant induction of cortical Shh mRNA expression and also enhanced reporter gene expression in Shh+/LacZ mice. Further, acute T3 treatment of cortical neuronal cultures resulted in a rapid and significant increase in Shh mRNA, suggesting direct effects. Chromatin immunoprecipitation assays performed on adult neocortex indicated enhanced histone acetylation at the Shh promoter after acute T3 administration, providing further support that Shh is a thyroid hormone-responsive gene. Our results indicate that maternal and adult-onset perturbations of euthyroid status cause robust and region-specific changes in the Shh pathway in the embryonic and adult forebrain, implicating Shh as a possible mechanistic link for specific neurodevelopmental effects of thyroid hormone. PMID:21363934

  6. Thyroid hormone regulates the expression of the sonic hedgehog signaling pathway in the embryonic and adult Mammalian brain.

    PubMed

    Desouza, Lynette A; Sathanoori, Malini; Kapoor, Richa; Rajadhyaksha, Neha; Gonzalez, Luis E; Kottmann, Andreas H; Tole, Shubha; Vaidya, Vidita A

    2011-05-01

    Thyroid hormone is important for development and plasticity in the immature and adult mammalian brain. Several thyroid hormone-responsive genes are regulated during specific developmental time windows, with relatively few influenced across the lifespan. We provide novel evidence that thyroid hormone regulates expression of the key developmental morphogen sonic hedgehog (Shh), and its coreceptors patched (Ptc) and smoothened (Smo), in the early embryonic and adult forebrain. Maternal hypo- and hyperthyroidism bidirectionally influenced Shh mRNA in embryonic forebrain signaling centers at stages before fetal thyroid hormone synthesis. Further, Smo and Ptc expression were significantly decreased in the forebrain of embryos derived from hypothyroid dams. Adult-onset thyroid hormone perturbations also regulated expression of the Shh pathway bidirectionally, with a significant induction of Shh, Ptc, and Smo after hyperthyroidism and a decline in Smo expression in the hypothyroid brain. Short-term T₃ administration resulted in a significant induction of cortical Shh mRNA expression and also enhanced reporter gene expression in Shh(+/LacZ) mice. Further, acute T₃ treatment of cortical neuronal cultures resulted in a rapid and significant increase in Shh mRNA, suggesting direct effects. Chromatin immunoprecipitation assays performed on adult neocortex indicated enhanced histone acetylation at the Shh promoter after acute T₃ administration, providing further support that Shh is a thyroid hormone-responsive gene. Our results indicate that maternal and adult-onset perturbations of euthyroid status cause robust and region-specific changes in the Shh pathway in the embryonic and adult forebrain, implicating Shh as a possible mechanistic link for specific neurodevelopmental effects of thyroid hormone.

  7. Sonic hedgehog is required for survival of both myogenic and chondrogenic somitic lineages.

    PubMed

    Teillet, M; Watanabe, Y; Jeffs, P; Duprez, D; Lapointe, F; Le Douarin, N M

    1998-06-01

    In vertebrates, the medial moieties of the somites give rise to the vertebrae and epaxial muscles, which develop in close relationship with the axial organs, neural tube and notochord. The lateral moieties contribute to the ribs and to limb and body wall muscles (hypaxial muscles) after a phase of lateral and ventral migration. Surgical ablation of the neural tube and notochord in the chick embryo during segmentation and early differentiation of the somites (day 2 of incubation) does not affect primary development of the hypaxial muscles, but leads to a complete absence of epaxial muscles, vertebrae and ribs, due to cell death in the somites. Here we demonstrate that cell death, which occurs within 24 hours of excision of the axial organs, affects both myogenic and chondrogenic cell lineages defined, respectively, by the expression of MyoD and Pax-1 genes. In contrast, Pax-3 transcripts, normally present in cells giving rise to hypaxial muscles, are preserved in the excised embryos. Backgrafting either the ventral neural tube or the notochord allows survival of MyoD- and Pax-1-expressing cells. Similarly, Sonic hedgehog-producing cells grafted in place of axial organs also rescue MyoD- and Pax-1-expressing cells from death and allow epaxial muscles, ribs and vertebrae to undergo organogenesis. These results demonstrate that the ventral neural tube and the notochord promote the survival of both myogenic and chondrogenic cell lineages in the somites and that this action is mediated by Sonic hedgehog.

  8. Dual role of Brg chromatin remodeling factor in Sonic hedgehog signaling during neural development.

    PubMed

    Zhan, Xiaoming; Shi, Xuanming; Zhang, Zilai; Chen, Yu; Wu, Jiang I

    2011-08-02

    Sonic hedgehog (Shh) signaling plays diverse roles during animal development and adult tissue homeostasis through differential regulation of Gli family transcription factors. Dysregulated Shh signaling activities have been linked to birth defects and tumorigenesis. Here we report that Brg, an ATP-dependent chromatin remodeling factor, has dual functions in regulating Shh target gene expression. Using a Brg conditional deletion in Shh-responding neural progenitors and fibroblasts, we demonstrate that Brg is required both for repression of the basal expression and for the activation of signal-induced transcription of Shh target genes. In developing telencephalons deficient for Brg, Shh target genes were derepressed, whereas Brg-deleted cerebellar granule neuron precursors failed to respond to Shh to increase their proliferation. The repressor function of Brg was mediated through Gli3 and both the repressor and activator functions of Brg appeared to be independent of its ATPase activity. Furthermore, Brg facilitates Gli coactivator histone deacetylase (HDAC) binding to the regulatory regions of Shh target genes, providing a possible mechanism for its positive role in Shh signaling. Our results thus reveal that a complex chromatin regulation mechanism underlies the precise transcription outcomes of Shh signaling and its diverse roles during development.

  9. Proliferation of murine midbrain neural stem cells depends upon an endogenous sonic hedgehog (Shh) source.

    PubMed

    Martínez, Constanza; Cornejo, Víctor Hugo; Lois, Pablo; Ellis, Tammy; Solis, Natalia P; Wainwright, Brandon J; Palma, Verónica

    2013-01-01

    The Sonic Hedgehog (Shh) pathway is responsible for critical patterning events early in development and for regulating the delicate balance between proliferation and differentiation in the developing and adult vertebrate brain. Currently, our knowledge of the potential role of Shh in regulating neural stem cells (NSC) is largely derived from analyses of the mammalian forebrain, but for dorsal midbrain development it is mostly unknown. For a detailed understanding of the role of Shh pathway for midbrain development in vivo, we took advantage of mouse embryos with cell autonomously activated Hedgehog (Hh) signaling in a conditional Patched 1 (Ptc1) mutant mouse model. This animal model shows an extensive embryonic tectal hypertrophy as a result of Hh pathway activation. In order to reveal the cellular and molecular origin of this in vivo phenotype, we established a novel culture system to evaluate neurospheres (nsps) viability, proliferation and differentiation. By recreating the three-dimensional (3-D) microenvironment we highlight the pivotal role of endogenous Shh in maintaining the stem cell potential of tectal radial glial cells (RGC) and progenitors by modulating their Ptc1 expression. We demonstrate that during late embryogenesis Shh enhances proliferation of NSC, whereas blockage of endogenous Shh signaling using cyclopamine, a potent Hh pathway inhibitor, produces the opposite effect. We propose that canonical Shh signaling plays a central role in the control of NSC behavior in the developing dorsal midbrain by acting as a niche factor by partially mediating the response of NSC to epidermal growth factor (EGF) and fibroblast growth factor (FGF) signaling. We conclude that endogenous Shh signaling is a critical mechanism regulating the proliferation of stem cell lineages in the embryonic dorsal tissue.

  10. Sonic hedgehog acts cell-autonomously on muscle precursor cells to generate limb muscle diversity

    PubMed Central

    Anderson, Claire; Williams, Victoria C.; Moyon, Benjamin; Daubas, Philippe; Tajbakhsh, Shahragim; Buckingham, Margaret E.; Shiroishi, Toshihiko; Hughes, Simon M.; Borycki, Anne-Gaëlle

    2012-01-01

    How muscle diversity is generated in the vertebrate body is poorly understood. In the limb, dorsal and ventral muscle masses constitute the first myogenic diversification, as each gives rise to distinct muscles. Myogenesis initiates after muscle precursor cells (MPCs) have migrated from the somites to the limb bud and populated the prospective muscle masses. Here, we show that Sonic hedgehog (Shh) from the zone of polarizing activity (ZPA) drives myogenesis specifically within the ventral muscle mass. Shh directly induces ventral MPCs to initiate Myf5 transcription and myogenesis through essential Gli-binding sites located in the Myf5 limb enhancer. In the absence of Shh signaling, myogenesis is delayed, MPCs fail to migrate distally, and ventral paw muscles fail to form. Thus, Shh production in the limb ZPA is essential for the spatiotemporal control of myogenesis and coordinates muscle and skeletal development by acting directly to regulate the formation of specific ventral muscles. PMID:22987640

  11. Sonic Hedgehog Signaling in Thyroid Cancer

    PubMed Central

    Xu, Xiulong; Lu, Yurong; Li, Yi; Prinz, Richard A.

    2017-01-01

    Thyroid cancer is the most common malignancy of the endocrine system. The initiation of thyroid cancer is often triggered by a genetic mutation in the phosphortidylinositol-3 kinase (PI3K) or mitogen-activated protein kinase (MAPK) pathway, such as RAS and BRAF, or by the rearrangement of growth factor receptor tyrosine kinase genes such as RET/PTC. The sonic hedgehog (Shh) pathway is evolutionarily conserved and plays an important role in the embryonic development of normal tissues and organs. Gene mutations in the Shh pathway are involved in basal cell carcinomas (BCC). Activation of the Shh pathway due to overexpression of the genes encoding the components of this pathway stimulates the growth and spread of a wide range of cancer types. The Shh pathway also plays an important role in cancer stem cell (CSC) self-renewal. GDC-0449 and LDE-225, two inhibitors of this pathway, have been approved for treating BCC and are being tested as a single agent or in combination with other drugs for treating various other cancers. Here, we review the recent findings on activation of the Shh pathway in thyroid cancer and its role in maintaining thyroid CSC self-renewal. We also summarize the recent developments on crosstalk of the Shh pathway with the MAPK and PI3K oncogenic pathways, and its implications for combination therapy. PMID:29163356

  12. Floor plate-derived sonic hedgehog regulates glial and ependymal cell fates in the developing spinal cord.

    PubMed

    Yu, Kwanha; McGlynn, Sean; Matise, Michael P

    2013-04-01

    Cell fate specification in the CNS is controlled by the secreted morphogen sonic hedgehog (Shh). At spinal cord levels, Shh produced by both the notochord and floor plate (FP) diffuses dorsally to organize patterned gene expression in dividing neural and glial progenitors. Despite the fact that two discrete sources of Shh are involved in this process, the individual contribution of the FP, the only intrinsic source of Shh throughout both neurogenesis and gliogenesis, has not been clearly defined. Here, we have used conditional mutagenesis approaches in mice to selectively inactivate Shh in the FP (Shh(FP)) while allowing expression to persist in the notochord, which underlies the neural tube during neurogenesis but not gliogenesis. We also inactivated Smo, the common Hh receptor, in neural tube progenitors. Our findings confirm and extend prior studies suggesting an important requirement for Shh(FP) in specifying oligodendrocyte cell fates via repression of Gli3 in progenitors. Our studies also uncover a connection between embryonic Shh signaling and astrocyte-mediated reactive gliosis in adults, raising the possibility that this pathway is involved in the development of the most common cell type in the CNS. Finally, we find that intrinsic spinal cord Shh signaling is required for the proper formation of the ependymal zone, the epithelial cell lining of the central canal that is also an adult stem cell niche. Together, our studies identify a crucial late embryonic role for Shh(FP) in regulating the specification and differentiation of glial and epithelial cells in the mouse spinal cord.

  13. Notochord-derived hedgehog is essential for tail regeneration in Xenopus tadpole.

    PubMed

    Taniguchi, Yuka; Watanabe, Kenji; Mochii, Makoto

    2014-06-18

    Appendage regeneration in amphibians is regulated by the combinatorial actions of signaling molecules. The requirement of molecules secreted from specific tissues is reflected by the observation that the whole process of regeneration can be inhibited if a certain tissue is removed from the amputated stump. Interestingly, urodeles and anurans show different tissue dependencies during tail regeneration. The spinal cord is essential for tail regeneration in urodele but not in anuran larva, whereas the notochord but not the spinal cord is essential for tail regeneration in anuran tadpoles. Sonic hedgehog is one of the signaling molecules responsible for such phenomenon in axolotl, as hedgehog signaling is essential for overall tail regeneration and sonic hedgehog is exclusively expressed in the spinal cord. In order to know whether hedgehog signaling is involved in the molecular mechanism underlying the inconsistent tissue dependency for tail regeneration between anurans and urodeles, we investigated expression of hedgehog signal-related genes in the regenerating tail of Xenopus tadpole and examined the effect of the hedgehog signal inhibitor, cyclopamine, on the tail regeneration. In Xenopus, sonic hedgehog is expressed exclusively in the notochord but not in the spinal cord of the regenerate. Overall regeneration was severely impaired in cyclopamine-treated tadpoles. Notochord maturation in the regenerate, including cell alignment and vacuolation, and myofiber formation were inhibited. Proliferation of spinal cord cells in the neural ampulla and of mesenchymal cells was also impaired. As in the axolotl, hedgehog signaling is required for multiple steps in tail regeneration in the Xenopus tadpole, although the location of the Shh source is quite different between the two species. This difference in Shh localization is the likely basis for the differing tissue requirement for tail regeneration between urodeles and anurans.

  14. Notochord-derived hedgehog is essential for tail regeneration in Xenopus tadpole

    PubMed Central

    2014-01-01

    Background Appendage regeneration in amphibians is regulated by the combinatorial actions of signaling molecules. The requirement of molecules secreted from specific tissues is reflected by the observation that the whole process of regeneration can be inhibited if a certain tissue is removed from the amputated stump. Interestingly, urodeles and anurans show different tissue dependencies during tail regeneration. The spinal cord is essential for tail regeneration in urodele but not in anuran larva, whereas the notochord but not the spinal cord is essential for tail regeneration in anuran tadpoles. Sonic hedgehog is one of the signaling molecules responsible for such phenomenon in axolotl, as hedgehog signaling is essential for overall tail regeneration and sonic hedgehog is exclusively expressed in the spinal cord. In order to know whether hedgehog signaling is involved in the molecular mechanism underlying the inconsistent tissue dependency for tail regeneration between anurans and urodeles, we investigated expression of hedgehog signal-related genes in the regenerating tail of Xenopus tadpole and examined the effect of the hedgehog signal inhibitor, cyclopamine, on the tail regeneration. Results In Xenopus, sonic hedgehog is expressed exclusively in the notochord but not in the spinal cord of the regenerate. Overall regeneration was severely impaired in cyclopamine-treated tadpoles. Notochord maturation in the regenerate, including cell alignment and vacuolation, and myofiber formation were inhibited. Proliferation of spinal cord cells in the neural ampulla and of mesenchymal cells was also impaired. Conclusion As in the axolotl, hedgehog signaling is required for multiple steps in tail regeneration in the Xenopus tadpole, although the location of the Shh source is quite different between the two species. This difference in Shh localization is the likely basis for the differing tissue requirement for tail regeneration between urodeles and anurans. PMID:24941877

  15. Sonic Hedgehog, VACTERL, and Fanconi anemia: Pathogenetic connections and therapeutic implications.

    PubMed

    Lubinsky, Mark

    2015-11-01

    Three systems with VACTERL association findings- mutations of the Sonic Hedgehog (SHH) signaling pathway in mice, murine adriamycin teratogenicity, and human Fanconi anemia (FA) pathway mutations, may all involve a similar mechanism. SHH is up-regulated in irradiated cells, and DNA breaks common with radiation damage in the adriamycin and FA systems are plausible signals for such effects, which would affect development. Since FA related DNA breakage occurs throughout life, SHH disturbances may account for later FA related findings involving hematopoietic and malignancy issues. In support, androgen, a standard treatment for FA hematologic failure, down-regulates SHH, and common FA malignancies such as squamous cell carcinomas and acute myeloid leukemia have been linked to enhanced SHH function. This suggests that interventions lowering SHH levels may be useful therapeutically. Also supporting a connection between pre- and post- natal findings, the frequency and number of VACTERL anomalies with FA correlate with the severity and onset of hematopoietic and malignancy issues. In FA, radial anomalies are the most common of these defects, followed by renal findings, while vertebral and gastrointestinal anomalies are relatively uncommon, a pattern that differs from observations of the VACTERL association. Genes with more severe effects also show a greatly increased incidence of brain abnormalities, and a paucity of such findings with other FA genes suggests that brain development is relatively refractory to SHH related effects, accounting for the rarity of such findings with the association. © 2015 Wiley Periodicals, Inc.

  16. Recombinant Human Sonic Hedgehog Protein Regulates the Expression of ZO-1 and Occludin by Activating Angiopoietin-1 in Stroke Damage

    PubMed Central

    Chen, Sheng-cai; Huang, Ming; Wang, Yong; Gao, Yuan; Huang, Yan; Wang, Meng-die; Mao, Ling; Hu, Bo

    2013-01-01

    This study examines the regulating effect of Sonic Hedgehog (Shh) on the permeability of the blood-brain barrier (BBB) in cerebral ischemia. By employing permanent middle cerebral artery occlusion (pMCAO) model, we find that Shh significantly decreases brain edema and preserves BBB permeability. Moreover, Shh increases zonula occludens-1 (ZO-1), occludin and angiopiotetin-1 (Ang-1) expression in the ischemic penumbra. Blockage of Shh with cyclopamine abolishes the effects of Shh on brain edema, BBB permeability and ZO-1, occludin, Ang-1 expression. Primary brain microvessel endothelial cells (BMECs) and astrocytes were pre-treated with Shh, cyclopamine, Ang-1-neutralizing antibody, and subjected to oxygen-glucose deprivation (OGD). Results show that the Ang-1 protein level in the culture medium of Shh-treated astrocytes is significantly higher. Shh also increased ZO-1, occludin and Ang-1 expression in BMECs, while cyclopamine and Ang-1-neutralizing antibody inhibited the effects of Shh on the ZO-1 and occludin expression, respectively. This study suggests that, under ischemic insults, Shh triggers Ang-1 production predominantly in astrocytes, and the secreted Ang-1 acts on BMECs, thereby upregulating ZO-1 and occludin to repair the tight junction and ameliorate the brain edema and BBB leakage. PMID:23894369

  17. Reprogramming Medulloblastoma-Propagating Cells by a Combined Antagonism of Sonic Hedgehog and CXCR4.

    PubMed

    Ward, Stacey A; Warrington, Nicole M; Taylor, Sara; Kfoury, Najla; Luo, Jingqin; Rubin, Joshua B

    2017-03-15

    The CXCR4 chemokine and Sonic Hedgehog (SHH) morphogen pathways are well-validated therapeutic targets in cancer, including medulloblastoma. However, single-agent treatments with SHH or CXCR4 antagonists have not proven efficacious in clinical trials to date. Here, we discovered that dual inhibition of the SHH and CXCR4 pathways in a murine model of SHH-subtype medulloblastoma exerts potent antitumor effects. This therapeutic synergy resulted in the suppression of tumor-propagating cell function and correlated with increased histone H3 lysine 27 trimethylation within the promoters of stem cell genes, resulting in their decreased expression. These results demonstrate that CXCR4 contributes to the epigenetic regulation of a tumor-propagating cell phenotype. Moreover, they provide a mechanistic rationale to evaluate the combination of SHH and CXCR4 inhibitors in clinical trials for the treatment of medulloblastoma, as well as other cancers driven by SHH that coexpress high levels of CXCR4. Cancer Res; 77(6); 1416-26. ©2016 AACR . ©2016 American Association for Cancer Research.

  18. Sonic hedgehog-Dependent Induction of MicroRNA 31 and MicroRNA 150 Regulates Mycobacterium bovis BCG-Driven Toll-Like Receptor 2 Signaling

    PubMed Central

    Ghorpade, Devram Sampat; Holla, Sahana; Kaveri, Srini V.; Bayry, Jagadeesh; Patil, Shripad A.

    2013-01-01

    Hedgehog (HH) signaling is a significant regulator of cell fate decisions during embryogenesis, development, and perpetuation of various disease conditions. Testing whether pathogen-specific HH signaling promotes unique innate recognition of intracellular bacteria, we demonstrate that among diverse Gram-positive or Gram-negative microbes, Mycobacterium bovis BCG, a vaccine strain, elicits a robust activation of Sonic HH (SHH) signaling in macrophages. Interestingly, sustained tumor necrosis factor alpha (TNF-α) secretion by macrophages was essential for robust SHH activation, as TNF-α−/− macrophages exhibited compromised ability to activate SHH signaling. Neutralization of TNF-α or blockade of TNF-α receptor signaling significantly reduced the infection-induced SHH signaling activation both in vitro and in vivo. Intriguingly, activated SHH signaling downregulated M. bovis BCG-mediated Toll-like receptor 2 (TLR2) signaling events to regulate a battery of genes associated with divergent functions of M1/M2 macrophages. Genome-wide expression profiling as well as conventional gain-of-function or loss-of-function analysis showed that SHH signaling-responsive microRNA 31 (miR-31) and miR-150 target MyD88, an adaptor protein of TLR2 signaling, thus leading to suppression of TLR2 responses. SHH signaling signatures could be detected in vivo in tuberculosis patients and M. bovis BCG-challenged mice. Collectively, these investigations identify SHH signaling to be what we believe is one of the significant regulators of host-pathogen interactions. PMID:23166298

  19. Neural Influences on Sonic Hedgehog and Apoptosis in the Rat Penis1

    PubMed Central

    Bond, Christopher; Tang, Yi; Podlasek, Carol A.

    2010-01-01

    The role of sonic hedgehog (SHH) in maintaining corpora cavernosal morphology in the adult penis has been established; however, the mechanism of how SHH itself is regulated remains unclear. Since decreased SHH protein is a cause of smooth muscle apoptosis and erectile dysfunction (ED) in the penis, and SHH treatment can suppress cavernous nerve (CN) injury-induced apoptosis, the question of how SHH signaling is regulated is significant. It is likely that neural input is involved in this process since two models of neuropathy-induced ED exhibit decreased SHH protein and increased apoptosis in the penis. We propose the hypothesis that SHH abundance in the corpora cavernosa is regulated by SHH signaling in the pelvic ganglia, neural activity, or neural transport of a trophic factor from the pelvic ganglia to the corpora. We have examined each of these potential mechanisms. SHH inhibition in the penis shows a 12-fold increase in smooth muscle apoptosis. SHH inhibition in the pelvic ganglia causes significantly increased apoptosis (1.3-fold) and decreased SHH protein (1.1-fold) in the corpora cavernosa. SHH protein is not transported by the CN. Colchicine treatment of the CN resulted in significantly increased smooth muscle apoptosis (1.2-fold) and decreased SHH protein (1.3-fold) in the penis. Lidocaine treatment of the CN caused a similar increase in apoptosis (1.6-fold) and decrease in SHH protein (1.3-fold) in the penis. These results show that neural activity and a trophic factor from the pelvic ganglia/CN are necessary to regulate SHH protein and smooth muscle abundance in the penis. PMID:18256331

  20. TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy

    PubMed Central

    Farooqi, Ammad Ahmad; Shu, Chih-Wen; Huang, Hurng-Wern; Wang, Hui-Ru; Chang, Yung-Ting; Fayyaz, Sundas; Yuan, Shyng-Shiou F.; Tang, Jen-Yang

    2017-01-01

    Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer. PMID:28708091

  1. TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy.

    PubMed

    Farooqi, Ammad Ahmad; Shu, Chih-Wen; Huang, Hurng-Wern; Wang, Hui-Ru; Chang, Yung-Ting; Fayyaz, Sundas; Yuan, Shyng-Shiou F; Tang, Jen-Yang; Chang, Hsueh-Wei

    2017-07-14

    Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer.

  2. Sonic Hedgehog Has a Dual Effect on the Growth of Retinal Ganglion Axons Depending on Its Concentration

    PubMed Central

    Kolpak, Adrianne; Zhang, Jinhua; Bao, Zheng-Zheng

    2006-01-01

    The stereotypical projection of retinal ganglion cell (RGC) axons to the optic disc has served as a good model system for studying axon guidance. By both in vitro and in vivo experiments, we show that a secreted molecule, Sonic hedgehog (Shh), may play a critical role in the process. It is expressed in a dynamic pattern in the ganglion cell layer with a relatively higher expression in the center of the retina. Through gel culture and stripe assays, we show that Shh has a dual effect on RGC axonal growth, acting as a positive factor at low concentrations and a negative factor at high concentrations. Results from time-lapse video microscopic and stripe assay experiments further suggest that the effects of Shh on axons are not likely attributable to indirect transcriptional regulation by Shh. Overexpression of Shh protein or inhibition of Shh function inside the retina resulted in a complete loss of centrally directed projection of RGC axons, suggesting that precise regulation of Shh level inside the retina is critical for the projection of RGC axons to the optic disc. PMID:15800198

  3. Sonic Hedgehog modulates EGFR dependent proliferation of neural stem cells during late mouse embryogenesis through EGFR transactivation

    PubMed Central

    Reinchisi, Gisela; Parada, Margarita; Lois, Pablo; Oyanadel, Claudia; Shaughnessy, Ronan; Gonzalez, Alfonso; Palma, Verónica

    2013-01-01

    Sonic Hedgehog (Shh/GLI) and EGFR signaling pathways modulate Neural Stem Cell (NSC) proliferation. How these signals cooperate is therefore critical for understanding normal brain development and function. Here we report a novel acute effect of Shh signaling on EGFR function. We show that during late neocortex development, Shh mediates the activation of the ERK1/2 signaling pathway in Radial Glial cells (RGC) through EGFR transactivation. This process is dependent on metalloprotease activity and accounts for almost 50% of the EGFR-dependent mitogenic response of late NSCs. Furthermore, in HeLa cancer cells, a well-known model for studying the EGFR receptor function, Shh also induces cell proliferation involving EGFR activation, as reflected by EGFR internalization and ERK1/2 phosphorylation. These findings may have important implications for understanding the mechanisms that regulate NSC proliferation during neurogenesis and may lead to novel approaches to the treatment of tumors. PMID:24133411

  4. Feedback control of mammalian Hedgehog signaling by the Hedgehog-binding protein, Hip1, modulates Fgf signaling during branching morphogenesis of the lung.

    PubMed

    Chuang, Pao-Tien; Kawcak, T'Nay; McMahon, Andrew P

    2003-02-01

    Hedgehog (Hh) signaling plays a major role in multiple aspects of embryonic development. A key issue is how negative regulation of Hh signaling might contribute to generating differential responses over tens of cell diameters. In cells that respond to Hh, two proteins that are up-regulated are Patched1 (Ptch1), the Hh receptor, a general target in both invertebrate and vertebrate organisms, and Hip1, a Hh-binding protein that is vertebrate specific. To address the developmental role of Hip1 in the context of Hh signaling, we generated Hip1 mutants in the mouse. Loss of Hip1 function results in specific defects in two Hh target issues, the lung, a target of Sonic hedgehog (Shh) signaling, and the endochondral skeleton, a target of Indian hedgehog (Ihh) signaling. Hh signaling was up-regulated in Hip1 mutants, substantiating Hip1's general role in negatively regulating Hh signaling. Our studies focused on Hip1 in the lung. Here, a dynamic interaction between Hh and fibroblast growth factor (Fgf) signaling, modulated at least in part by Hip1, controls early lung branching.

  5. Hedgehog signaling regulates the generation of ameloblast progenitors in the continuously growing mouse incisor

    PubMed Central

    Seidel, Kerstin; Ahn, Christina P.; Lyons, David; Nee, Alexander; Ting, Kevin; Brownell, Isaac; Cao, Tim; Carano, Richard A. D.; Curran, Tom; Schober, Markus; Fuchs, Elaine; Joyner, Alexandra; Martin, Gail R.; de Sauvage, Frederic J.; Klein, Ophir D.

    2010-01-01

    In many organ systems such as the skin, gastrointestinal tract and hematopoietic system, homeostasis is dependent on the continuous generation of differentiated progeny from stem cells. The rodent incisor, unlike human teeth, grows throughout the life of the animal and provides a prime example of an organ that rapidly deteriorates if newly differentiated cells cease to form from adult stem cells. Hedgehog (Hh) signaling has been proposed to regulate self-renewal, survival, proliferation and/or differentiation of stem cells in several systems, but to date there is little evidence supporting a role for Hh signaling in adult stem cells. We used in vivo genetic lineage tracing to identify Hh-responsive stem cells in the mouse incisor and we show that sonic hedgehog (SHH), which is produced by the differentiating progeny of the stem cells, signals to several regions of the incisor. Using a hedgehog pathway inhibitor (HPI), we demonstrate that Hh signaling is not required for stem cell survival but is essential for the generation of ameloblasts, one of the major differentiated cell types in the tooth, from the stem cells. These results therefore reveal the existence of a positive-feedback loop in which differentiating progeny produce the signal that in turn allows them to be generated from stem cells. PMID:20978073

  6. Hedgehog Signaling in the Stomach

    PubMed Central

    Konstantinou, Daniel; Bertaux-Skeirik, Nina; Zavros, Yana

    2016-01-01

    The Hedgehog (Hh) signaling pathway not only plays a key part in controlling embryonic development, but in the adult stomach governs important cellular events such as epithelial cell differentiation, proliferation, gastric disease and regeneration. In particular, Sonic Hedgehog (Shh) signaling has been well studied for its role in gastric physiology and pathophysiology. Shh is secreted from the gastric parietal cells and contributes to the regeneration of the epithelium in response to injury, or the development of gastritis during Helicobacter pylori infection. Dysregulation of the Shh signaling pathway leads to the disruption of gastric differentiation, loss of gastric acid secretion and the development of cancer. In this chapter, we will review the most recent findings that reveal the role of Shh as a regulator of gastric physiology, regeneration and disease. PMID:27750091

  7. Mesencephalic basolateral domain specification is dependent on Sonic Hedgehog

    PubMed Central

    Martinez-Lopez, Jesus E.; Moreno-Bravo, Juan A.; Madrigal, M. Pilar; Martinez, Salvador; Puelles, Eduardo

    2015-01-01

    In the study of central nervous system morphogenesis, the identification of new molecular markers allows us to identify domains along the antero-posterior and dorso-ventral (DV) axes. In the past years, the alar and basal plates of the midbrain have been divided into different domains. The precise location of the alar-basal boundary is still under discussion. We have identified Barhl1, Nhlh1 and Six3 as appropriate molecular markers to the adjacent domains of this transition. The description of their expression patterns and the contribution to the different mesencephalic populations corroborated their role in the specification of these domains. We studied the influence of Sonic Hedgehog on these markers and therefore on the specification of these territories. The lack of this morphogen produced severe alterations in the expression pattern of Barhl1 and Nhlh1 with consequent misspecification of the basolateral (BL) domain. Six3 expression was apparently unaffected, however its distribution changed leading to altered basal domains. In this study we confirmed the localization of the alar-basal boundary dorsal to the BL domain and demonstrated that the development of the BL domain highly depends on Shh. PMID:25741244

  8. Suppressor of Fused Chaperones Gli Proteins To Generate Transcriptional Responses to Sonic Hedgehog Signaling

    PubMed Central

    Zhang, Ziyu; Shen, Longyan; Law, Kelvin; Zhang, Zengdi; Liu, Xiaotong; Hua, Hu; Li, Sanen; Huang, Huijie; Yue, Shen; Hui, Chi-chung

    2016-01-01

    ABSTRACT Cellular responses to the graded Sonic Hedgehog (Shh) morphogenic signal are orchestrated by three Gli genes that give rise to both transcription activators and repressors. An essential downstream regulator of the pathway, encoded by the tumor suppressor gene Suppressor of fused (Sufu), plays critical roles in the production, trafficking, and function of Gli proteins, but the mechanism remains controversial. Here, we show that Sufu is upregulated in active Shh responding tissues and accompanies Gli activators translocating into and Gli repressors out of the nucleus. Trafficking of Sufu to the primary cilium, potentiated by Gli activators but not repressors, was found to be coupled to its nuclear import. We have identified a nuclear export signal (NES) motif of Sufu in juxtaposition to the protein kinase A (PKA) and glycogen synthase kinase 3 (GSK3) dual phosphorylation sites and show that Sufu binds the chromatin with both Gli1 and Gli3. Close comparison of neural tube development among individual Ptch1−/−, Sufu−/−, and Ptch1−/−; Sufu−/− double mutant embryos indicates that Sufu is critical for the maximal activation of Shh signaling essential to the specification of the most-ventral neurons. These data define Sufu as a novel class of molecular chaperone required for every aspect of Gli regulation and function. PMID:27849569

  9. Sonic hedgehog expression in corticofugal projection neurons directs cortical microcircuit formation.

    PubMed

    Harwell, Corey C; Parker, Philip R L; Gee, Steven M; Okada, Ami; McConnell, Susan K; Kreitzer, Anatol C; Kriegstein, Arnold R

    2012-03-22

    The precise connectivity of inputs and outputs is critical for cerebral cortex function; however, the cellular mechanisms that establish these connections are poorly understood. Here, we show that the secreted molecule Sonic Hedgehog (Shh) is involved in synapse formation of a specific cortical circuit. Shh is expressed in layer V corticofugal projection neurons and the Shh receptor, Brother of CDO (Boc), is expressed in local and callosal projection neurons of layer II/III that synapse onto the subcortical projection neurons. Layer V neurons of mice lacking functional Shh exhibit decreased synapses. Conversely, the loss of functional Boc leads to a reduction in the strength of synaptic connections onto layer Vb, but not layer II/III, pyramidal neurons. These results demonstrate that Shh is expressed in postsynaptic target cells while Boc is expressed in a complementary population of presynaptic input neurons, and they function to guide the formation of cortical microcircuitry. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Murine models of VACTERL syndrome: Role of sonic hedgehog signaling pathway.

    PubMed

    Kim, P C; Mo, R; Hui Cc, C

    2001-02-01

    VACTERL syndrome is a common surgical condition affecting the development of many midaxial organs. The etiology, embryology, and pathogenesis of the VACTERL syndrome are not known. The authors report here new mouse models of VACTERL syndrome involving the Sonic hedgehog (Shh) signaling pathway. Mutant mice involving Shh signaling, the Shh transcription factors Gli2-/- and Gli3-/-, Gli2-/-;Gli3+/- double heterozygotes, and Shh-/- were analyzed. In addition to reported vertebral, anal, tracheoesophageal, and limb anomalies, mutant mice display cardiac, renal, and associated anomalies, namely congenital diaphragmatic hernia and omphalocele, known to be associated in VACTERL syndrome. The Shh transcription factors Gli2 and Gli3 have specific and overlapping roles in the induction of VACTERL phenotypes in a gene-dose dependent manner in these mutants. To the authors' knowledge, these mutant mice represent the first animal model that mimics the human VACTERL syndrome, and suggests that aberrations in Shh signaling might be involved in the VACTERL syndrome.

  11. Sonic Hedgehog Expression in Corticofugal Projection Neurons Directs Cortical Microcircuit Formation

    PubMed Central

    Harwell, Corey C.; Parker, Philip R.L.; Gee, Steven M.; Okada, Ami; McConnell, Susan K.; Kreitzer, Anatol C.; Kriegstein, Arnold R.

    2012-01-01

    SUMMARY The precise connectivity of inputs and outputs is critical for cerebral cortex function; however, the cellular mechanisms that establish these connections are poorly understood. Here, we show that the secreted molecule Sonic Hedgehog (Shh) is involved in synapse formation of a specific cortical circuit. Shh is expressed in layer V corticofugal projection neurons and the Shh receptor, Brother of CDO (Boc), is expressed in local and callosal projection neurons of layer II/III that synapse onto the subcortical projection neurons. Layer V neurons of mice lacking functional Shh exhibit decreased synapses. Conversely, the loss of functional Boc leads to a reduction in the strength of synaptic connections onto layer Vb, but not layer II/III, pyramidal neurons. These results demonstrate that Shh is expressed in postsynaptic target cells while Boc is expressed in a complementary population of presynaptic input neurons, and they function to guide the formation of cortical microcircuitry. PMID:22445340

  12. Hippi is essential for node cilia assembly and Sonic hedgehog signaling

    PubMed Central

    Houde, Caroline; Dickinson, Robin J.; Houtzager, Vicky M.; Cullum, Rebecca; Montpetit, Rachel; Metzler, Martina; Simpson, Elizabeth M.; Roy, Sophie; Hayden, Michael R.; Hoodless, Pamela A.; Nicholson, Donald W.

    2016-01-01

    Hippi functions as an adapter protein that mediates pro-apoptotic signaling from poly-glutamine-expanded huntingtin, an established cause of Huntington disease, to the extrinsic cell death pathway. To explore other functions of Hippi we generated Hippi knock-out mice. This deletion causes randomization of the embryo turning process and heart looping, which are hallmarks of defective left–right (LR) axis patterning. We report that motile monocilia normally present at the surface of the embryonic node, and proposed to initiate the break in LR symmetry, are absent on Hippi−/− embryos. Furthermore, defects in central nervous system development are observed. The Sonic hedgehog (Shh) pathway is downregulated in the neural tube in the absence of Hippi, which results in failure to establish ventral neural cell fate. Together, these findings demonstrate a dual role for Hippi in cilia assembly and Shh signaling during development, in addition to its proposed role in apoptosis signal transduction in the adult brain under pathogenically stressful conditions. PMID:17027958

  13. Feedback control of mammalian Hedgehog signaling by the Hedgehog-binding protein, Hip1, modulates Fgf signaling during branching morphogenesis of the lung

    PubMed Central

    Chuang, Pao-Tien; Kawcak, T'Nay; McMahon, Andrew P.

    2003-01-01

    Hedgehog (Hh) signaling plays a major role in multiple aspects of embryonic development. A key issue is how negative regulation of Hh signaling might contribute to generating differential responses over tens of cell diameters. In cells that respond to Hh, two proteins that are up-regulated are Patched1 (Ptch1), the Hh receptor, a general target in both invertebrate and vertebrate organisms, and Hip1, a Hh-binding protein that is vertebrate specific. To address the developmental role of Hip1 in the context of Hh signaling, we generated Hip1 mutants in the mouse. Loss of Hip1 function results in specific defects in two Hh target issues, the lung, a target of Sonic hedgehog (Shh) signaling, and the endochondral skeleton, a target of Indian hedgehog (Ihh) signaling. Hh signaling was up-regulated in Hip1 mutants, substantiating Hip1's general role in negatively regulating Hh signaling. Our studies focused on Hip1 in the lung. Here, a dynamic interaction between Hh and fibroblast growth factor (Fgf) signaling, modulated at least in part by Hip1, controls early lung branching. PMID:12569124

  14. Hedgehog signaling in the murine melanoma microenvironment.

    PubMed

    Geng, Ling; Cuneo, Kyle C; Cooper, Michael K; Wang, Hong; Sekhar, Konjeti; Fu, Allie; Hallahan, Dennis E

    2007-01-01

    The Hedgehog intercellular signaling pathway regulates cell proliferation and differentiation. This pathway has been implicated to play a role in the pathogenesis of cancer and in embryonic blood vessel development. In the current study, Hedgehog signaling in tumor related vasculature and microenvironment was examined using human umbilical vein endothelial cells and B16F0 (murine melanoma) tumors models. Use of exogenous Sonic hedgehog (Shh) peptide significantly increased BrdU incorporation in endothelial cells in vitro by a factor of 2 (P < 0.001). The Hedgehog pathway antagonist cyclopamine effectively reduced Shh-induced proliferation to control levels. To study Hedgehog signaling in vivo a hind limb tumor model with the B16F0 cell line was used. Treatment with 25 mg/kg cyclopamine significantly attenuated BrdU incorporation in tumor cells threefold (P < 0.001), in tumor related endothelial cells threefold (P = 0.004), and delayed tumor growth by 4 days. Immunohistochemistry revealed that the Hedgehog receptor Patched was localized to the tumor stroma and that B16F0 cells expressed Shh peptide. Furthermore, mouse embryonic fibroblasts required the presence of B16F0 cells to express Patched in a co-culture assay system. These studies indicate that Shh peptide produced by melanoma cells induces Patched expression in fibroblasts. To study tumor related angiogenesis a vascular window model was used to monitor tumor vascularity. Treatment with cyclopamine significantly attenuated vascular formation by a factor of 2.5 (P < 0.001) and altered vascular morphology. Furthermore, cyclopamine reduced tumor blood vessel permeability to FITC labeled dextran while having no effect on normal blood vessels. These studies suggest that Hedgehog signaling regulates melanoma related vascular formation and function.

  15. Disturbed MEK/ERK signaling increases osteoclast activity via the Hedgehog-Gli pathway in postmenopausal osteoporosis.

    PubMed

    Li, Xiaojie; Jie, Qiang; Zhang, Hongyang; Zhao, Yantao; Lin, Yangjing; Du, Junjie; Shi, Jun; Wang, Long; Guo, Kai; Li, Yong; Wang, Chunhui; Gao, Bo; Huang, Qiang; Liu, Jian; Yang, Liu; Luo, Zhuojing

    2016-11-01

    Postmenopausal osteoporosis is a worldwide health problem and is characterized by increased and activated osteoclasts. However, the mechanism by which osteoclasts are dysregulated in postmenopausal osteoporosis is not fully understood. In this study, we found that the Hedgehog-Gli pathway was upregulated in postmenopausal osteoporotic osteoclasts and that 17β-estradiol both inhibited osteoclastogenesis and induced osteoclast apoptosis by downregulating Hedgehog-Gli signaling. Furthermore, we demonstrated that the Hedgehog-Gli pathway was negatively regulated by MEK/ERK signaling and that this effect was Sonic Hedgehog (SHH)-dependent and was partially blocked by an anti-SHH antibody. Moreover, we found that the stimulatory effect of Hedgehog signaling on osteoclastogenesis and the inhibitory effect on osteoclast apoptosis were dependent on the Gli family of transcription factors. The pathways and molecules that contribute to the regulation of osteoclastogenesis and apoptosis represent potential new strategies for designing molecular drugs for the treatment of postmenopausal osteoporosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Hedgehog signaling in the stomach.

    PubMed

    Konstantinou, Daniel; Bertaux-Skeirik, Nina; Zavros, Yana

    2016-12-01

    The Hedgehog (Hh) signaling pathway not only plays a key part in controlling embryonic development, but in the adult stomach governs important cellular events such as epithelial cell differentiation, proliferation, gastric disease, and regeneration. In particular, Sonic Hedgehog (Shh) signaling has been well studied for its role in gastric physiology and pathophysiology. Shh is secreted from the gastric parietal cells and contributes to the regeneration of the epithelium in response to injury, or the development of gastritis during Helicobacter pylori infection. Dysregulation of the Shh signaling pathway leads to the disruption of gastric differentiation, loss of gastric acid secretion and the development of cancer. In this chapter, we will review the most recent findings that reveal the role of Shh as a regulator of gastric physiology, regeneration, and disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Sonic hedgehog from both nerves and epithelium is a key trophic factor for taste bud maintenance.

    PubMed

    Castillo-Azofeifa, David; Losacco, Justin T; Salcedo, Ernesto; Golden, Erin J; Finger, Thomas E; Barlow, Linda A

    2017-09-01

    The integrity of taste buds is intimately dependent on an intact gustatory innervation, yet the molecular nature of this dependency is unknown. Here, we show that differentiation of new taste bud cells, but not progenitor proliferation, is interrupted in mice treated with a hedgehog (Hh) pathway inhibitor (HPI), and that gustatory nerves are a source of sonic hedgehog (Shh) for taste bud renewal. Additionally, epithelial taste precursor cells express Shh transiently, and provide a local supply of Hh ligand that supports taste cell renewal. Taste buds are minimally affected when Shh is lost from either tissue source. However, when both the epithelial and neural supply of Shh are removed, taste buds largely disappear. We conclude Shh supplied by taste nerves and local taste epithelium act in concert to support continued taste bud differentiation. However, although neurally derived Shh is in part responsible for the dependence of taste cell renewal on gustatory innervation, neurotrophic support of taste buds likely involves a complex set of factors. © 2017. Published by The Company of Biologists Ltd.

  18. Hedgehog signaling regulates nociceptive sensitization.

    PubMed

    Babcock, Daniel T; Shi, Shanping; Jo, Juyeon; Shaw, Michael; Gutstein, Howard B; Galko, Michael J

    2011-09-27

    Nociceptive sensitization is a tissue damage response whereby sensory neurons near damaged tissue enhance their responsiveness to external stimuli. This sensitization manifests as allodynia (aversive withdrawal to previously nonnoxious stimuli) and/or hyperalgesia (exaggerated responsiveness to noxious stimuli). Although some factors mediating nociceptive sensitization are known, inadequacies of current analgesic drugs have prompted a search for additional targets. Here we use a Drosophila model of thermal nociceptive sensitization to show that Hedgehog (Hh) signaling is required for both thermal allodynia and hyperalgesia following ultraviolet irradiation (UV)-induced tissue damage. Sensitization does not appear to result from developmental changes in the differentiation or arborization of nociceptive sensory neurons. Genetic analysis shows that Hh signaling acts in parallel to tumor necrosis factor (TNF) signaling to mediate allodynia and that distinct transient receptor potential (TRP) channels mediate allodynia and hyperalgesia downstream of these pathways. We also demonstrate a role for Hh in analgesic signaling in mammals. Intrathecal or peripheral administration of cyclopamine (CP), a specific inhibitor of Sonic Hedgehog signaling, blocked the development of analgesic tolerance to morphine (MS) or morphine antinociception in standard assays of inflammatory pain in rats and synergistically augmented and sustained morphine analgesia in assays of neuropathic pain. We demonstrate a novel physiological role for Hh signaling, which has not previously been implicated in nociception. Our results also identify new potential therapeutic targets for pain treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Sonic hedgehog multimerization: a self-organizing event driven by post-translational modifications?

    PubMed

    Koleva, Mirella V; Rothery, Stephen; Spitaler, Martin; Neil, Mark A A; Magee, Anthony I

    2015-01-01

    Sonic hedgehog (Shh) is a morphogen active during vertebrate development and tissue homeostasis in adulthood. Dysregulation of the Shh signalling pathway is known to incite carcinogenesis. Due to the highly lipophilic nature of this protein imparted by two post-translational modifications, Shh's method of transit through the aqueous extracellular milieu has been a long-standing conundrum, prompting the proposition of numerous hypotheses to explain the manner of its displacement from the surface of the producing cell. Detection of high molecular-weight complexes of Shh in the intercellular environment has indicated that the protein achieves this by accumulating into multimeric structures prior to release from producing cells. The mechanism of assembly of the multimers, however, has hitherto remained mysterious and contentious. Here, with the aid of high-resolution optical imaging and post-translational modification mutants of Shh, we show that the C-terminal cholesterol and the N-terminal palmitate adducts contribute to the assembly of large multimers and regulate their shape. Moreover, we show that small Shh multimers are produced in the absence of any lipid modifications. Based on an assessment of the distribution of various dimensional characteristics of individual Shh clusters, in parallel with deductions about the kinetics of release of the protein from the producing cells, we conclude that multimerization is driven by self-assembly underpinned by the law of mass action. We speculate that the lipid modifications augment the size of the multimolecular complexes through prolonging their association with the exoplasmic membrane.

  20. Resveratrol Downregulates Interleukin-6-Stimulated Sonic Hedgehog Signaling in Human Acute Myeloid Leukemia

    PubMed Central

    Su, Yu-Chieh; Li, Szu-Chin; Wu, Yin-Chi; Wang, Li-Min; Chao, K. S. Clifford; Liao, Hui-Fen

    2013-01-01

    IL-6 and sonic hedgehog (Shh) signaling molecules are considered to maintain the growth of cancer stem cells (CSCs). Resveratrol, an important integrant in traditional Chinese medicine, possesses certain antitumor effects. However, the mechanisms on regulating acute myeloid leukemia (AML) are unclear. This study first used human subjects to demonstrate that the plasma levels of IL-6 and IL-1β in AML patients were higher and lower, respectively, than healthy donors. The expression of Shh preproproteins, and C- and N-terminal Shh peptides increased in bone marrow and peripheral blood mononuclear cells isolated from AML patients, and the plasma N-Shh secretion was greater. To further clarify the effect of IL-6 and resveratrol in Shh signaling, human AML HL-60 cells were tested. IL-6 upregulated Shh and Gli-1 expression and was accompanied by an increase of cell viability. Resveratrol significantly decreased CSC-related Shh expression, Gli-1 nuclear translocation, and cell viability in IL-6-treated HL-60 cells and had synergistic effect with Shh inhibitor cyclopamine on inhibiting cell growth. Conclusions. IL-6 stimulated the growth of AML cells through Shh signaling, and this effect might be blocked by resveratrol. Further investigations of Shh as a prognostic marker and resveratrol as a therapeutic drug target to CSCs in AML are surely warranted. PMID:23533494

  1. Sonic Hedgehog promotes proliferation of Notch-dependent monociliated choroid plexus tumour cells

    PubMed Central

    Li, Li; Grausam, Katie B.; Wang, Jun; Lun, Melody P.; Ohli, Jasmin; Lidov, Hart G. W.; Calicchio, Monica L.; Zeng, Erliang; Salisbury, Jeffrey L.; Wechsler-Reya, Robert J.; Lehtinen, Maria K.; Schüller, Ulrich; Zhao, Haotian

    2016-01-01

    Aberrant Notch signaling has been linked to many cancers including choroid plexus (CP) tumours, a group of rare and predominantly pediatric brain neoplasms. We developed animal models of CP tumours by inducing sustained expression of Notch1 that recapitulate properties of human CP tumours with aberrant NOTCH signaling. Whole transcriptome and functional analyses showed that tumour cell proliferation is associated with Sonic Hedgehog (Shh) in the tumour microenvironment. Unlike CP epithelial cells, which have multiple primary cilia, tumour cells possess a solitary primary cilium as a result of Notch-mediated suppression of multiciliate diffferentiation. A Shh-driven signaling cascade in the primary cilium occurs in tumour cells but not in epithelial cells. Lineage studies show that CP tumours arise from mono-ciliated progenitors in the roof plate characterized by elevated Notch signaling. Abnormal SHH signaling and distinct ciliogenesis are detected in human CP tumours, suggesting SHH pathway and cilia differentiation as potential therapeutic avenues. PMID:26999738

  2. Genetic interactions between the hedgehog co-receptors Gas1 and Boc regulate cell proliferation during murine palatogenesis

    PubMed Central

    Xavier, Guilherme M.; Seppala, Maisa; Papageorgiou, Spyridon N.; Fan, Chen-Ming; Cobourne, Martyn T.

    2016-01-01

    Abnormal regulation of Sonic hedgehog (Shh) signaling has been described in a variety of human cancers and developmental anomalies, which highlights the essential role of this signaling molecule in cell cycle regulation and embryonic development. Gas1 and Boc are membrane co-receptors for Shh, which demonstrate overlapping domains of expression in the early face. This study aims to investigate potential interactions between these co-receptors during formation of the secondary palate. Mice with targeted mutation in Gas1 and Boc were used to generate Gas1; Boc compound mutants. The expression of key Hedgehog signaling family members was examined in detail during palatogenesis via radioactive in situ hybridization. Morphometric analysis involved computational quantification of BrdU-labeling and cell packing; whilst TUNEL staining was used to assay cell death. Ablation of Boc in a Gas1 mutant background leads to reduced Shh activity in the palatal shelves and an increase in the penetrance and severity of cleft palate, associated with failed elevation, increased proliferation and reduced cell death. Our findings suggest a dual requirement for Boc and Gas1 during early development of the palate, mediating cell cycle regulation during growth and subsequent fusion of the palatal shelves. PMID:27811357

  3. Hedgehog-mediated regulation of PPARγ controls metabolic patterns in neural precursors and shh-driven medulloblastoma.

    PubMed

    Bhatia, Bobby; Potts, Chad R; Guldal, Cemile; Choi, SunPhil; Korshunov, Andrey; Pfister, Stefan; Kenney, Anna M; Nahlé, Zaher A

    2012-04-01

    Sonic hedgehog (Shh) signaling is critical during development and its aberration is common across the spectrum of human malignancies. In the cerebellum, excessive activity of the Shh signaling pathway is associated with the devastating pediatric brain tumor medulloblastoma. We previously demonstrated that exaggerated de novo lipid synthesis is a hallmark of Shh-driven medulloblastoma and that hedgehog signaling inactivates the Rb/E2F tumor suppressor complex to promote lipogenesis. Indeed, such Shh-mediated metabolic reprogramming fuels tumor progression, in an E2F1- and FASN-dependent manner. Here, we show that the nutrient sensor PPARγ is a key component of the Shh metabolic network, particularly its regulation of glycolysis. Our data show that in primary cerebellar granule neural precursors (CGNPs), proposed medulloblastoma cells-of-origin, Shh stimulation elicits a marked induction of PPARγ alongside major glycolytic markers. This is also documented in the actively proliferating Shh-responsive CGNPs in the developing cerebellum, and PPARγ expression is strikingly elevated in Shh-driven medulloblastoma in vivo. Importantly, pharmacological blockade of PPARγ and/or Rb inactivation inhibits CGNP proliferation, drives medulloblastoma cell death and extends survival of medulloblastoma-bearing animals in vivo. This coupling of mitogenic Shh signaling to a major nutrient sensor and metabolic transcriptional regulator define a novel mechanism through which Shh signaling engages the nutrient sensing machinery in brain cancer, controls the cell cycle, and regulates the glycolytic index. This also reveals a dominant role of Shh in the etiology of glucose metabolism in medulloblastoma and underscores the function of the Shh → E2F1 → PPARγ axis in altering substrate utilization patterns in brain cancers in favor of tumor growth. These findings emphasize the value of PPARγ downstream of Shh as a global therapeutic target in hedgehog-dependent and/or Rb

  4. Anthothecol-encapsulated PLGA nanoparticles inhibit pancreatic cancer stem cell growth by modulating sonic hedgehog pathway.

    PubMed

    Verma, Raj Kumar; Yu, Wei; Singh, Surya Pratap; Shankar, Sharmila; Srivastava, Rakesh K

    2015-11-01

    Anthothecol, a limonoid isolated from plant Khaya anthotheca (Meliaceae), is an antimalarial compound. The objectives of this study were to examine the molecular mechanisms by which anthothecol-encapsulated PLGA-nanoparticles (Antho-NPs) regulate the behavior of pancreatic cancer stem cells (CSCs). Antho-NPs inhibited cell proliferation and colony formation, and induced apoptosis in pancreatic CSCs and cancer cell lines, but had no effects on human normal pancreatic ductal epithelial cells. Antho-NPs inhibited self-renewal capacity of pancreatic CSCs isolated from human and Kras(G12D) mice. Furthermore, antho-NPs suppressed cell motility, migration and invasion by up-regulating E-cadherin and inhibiting N-cadherin and Zeb1. In addition, Antho-NPs inhibited pluripotency maintaining factors and stem cell markers, suggesting their inhibitory role on CSC population. Anthothecol disrupted binding of Gli to DNA, and inhibited Gli transcription and Gli target genes. Our studies establish preclinical significance of Antho-NPs for the treatment and/or prevention of pancreatic cancer. Despite medical advances, the prognosis of pancreatic cancer remains poor. The search for an effective treatment has been under intensive research for some time. In this article, the authors investigated the efficacy and mechanism of anthothecol (an antimalarial compound), encapsulated by PLGA nanoparticles (Antho-NPs), against pancreatic cancer cell lines. It was found that Antho-NPs acted via the Sonic hedgehog signaling pathway and inhibited cancer stem cell growth. These results have provided important basis for further clinical trials. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Sonic hedgehog-expressing basal cells are general post-mitotic precursors of functional taste receptor cells

    PubMed Central

    Miura, Hirohito; Scott, Jennifer K.; Harada, Shuitsu; Barlow, Linda A.

    2014-01-01

    Background Taste buds contain ~60 elongate cells and several basal cells. Elongate cells comprise three functional taste cell types: I - glial cells, II - bitter/sweet/umami receptor cells, and III - sour detectors. Although taste cells are continuously renewed, lineage relationships among cell types are ill-defined. Basal cells have been proposed as taste bud stem cells, a subset of which express Sonic hedgehog (Shh). However, Shh+ basal cells turnover rapidly suggesting that Shh+ cells are precursors of some or all taste cell types. Results To fate map Shh-expressing cells, mice carrying ShhCreERT2 and a high (CAG-CAT-EGFP) or low (R26RLacZ) efficiency reporter allele were given tamoxifen to activate Cre in Shh+ cells. Using R26RLacZ, lineage-labeled cells occur singly within buds, supporting a post-mitotic state for Shh+ cells. Using either reporter, we show that Shh+ cells differentiate into all three taste cell types, in proportions reflecting cell type ratios in taste buds (I > II > III). Conclusions Shh+ cells are not stem cells, but are post-mitotic, immediate precursors of taste cells. Shh+ cells differentiate into each of the three taste cell types, and the choice of a specific taste cell fate is regulated to maintain the proper ratio within buds. PMID:24590958

  6. Sonic Hedgehog Initiates Cochlear Hair Cell Regeneration through Downregulation of Retinoblastoma Protein

    PubMed Central

    Lu, Na; Chen, Yan; Wang, Zhengmin; Chen, Guoling; Lin, Qin; Chen, Zheng-Yi; Li, Huawei

    2013-01-01

    Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We show that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration. PMID:23211596

  7. Aberrant Epithelial-Mesenchymal Hedgehog Signaling Characterizes Barrett's Metaplasia

    PubMed Central

    Wang, David H.; Clemons, Nicholas J.; Miyashita, Tomoharu; Dupuy, Adam J.; Zhang, Wei; Szczepny, Anette; Corcoran-Schwartz, Ian M.; Wilburn, Daniel L.; Montgomery, Elizabeth A.; Wang, Jean S.; Jenkins, Nancy A.; Copeland, Neal A.; Harmon, John W.; Phillips, Wayne A.; Watkins, D. Neil

    2010-01-01

    Background & Aims The molecular mechanism underlying epithelial metaplasia in Barrett's esophagus remains unknown. Recognizing that Hedgehog signaling is required for early esophageal development, we sought to determine if the Hedgehog pathway is reactivated in Barrett's esophagus, and if genes downstream of the pathway could promote columnar differentiation of esophageal epithelium. Methods Immunohistochemistry, immunofluorescence, and quantitative real-time PCR were used to analyze clinical specimens, human esophageal cell lines, and mouse esophagi. Human esophageal squamous epithelial (HET-1A) and adenocarcinoma (OE33) cells were subjected to acid treatment and used in transfection experiments. Swiss Webster mice were used in a surgical model of bile reflux injury. An in vivo transplant culture system was created using esophageal epithelium from Sonic hedgehog transgenic mice. Results Marked upregulation of Hedgehog ligand expression, which can be induced by acid or bile exposure, occurs frequently in Barrett's epithelium and is associated with stromal expression of the Hedgehog target genes PTCH1 and BMP4. BMP4 signaling induces expression of SOX9, an intestinal crypt transcription factor, which is highly expressed in Barrett's epithelium. We further show that expression of DMBT1, the human homologue of the columnar cell factor Hensin, occurs in Barrett's epithelium and is induced by SOX9. Finally, transgenic expression of Sonic hedgehog in mouse esophageal epithelium induces expression of stromal Bmp4, epithelial Sox9 and columnar cytokeratins. Conclusions Epithelial Hedgehog ligand expression may contribute to the initiation of Barrett's esophagus through induction of stromal BMP4, which triggers reprogramming of esophageal epithelium in favor of a columnar phenotype. PMID:20138038

  8. Multiphasic and tissue-specific roles of sonic hedgehog in cloacal septation and external genitalia development

    PubMed Central

    Seifert, Ashley W.; Bouldin, Cortney M.; Choi, Kyung-Suk; Harfe, Brian D.; Cohn, Martin J.

    2009-01-01

    Malformations of the external genitalia are among the most common congenital anomalies in humans. The urogenital and anorectal sinuses develop from the embryonic cloaca, and the penis and clitoris develop from the genital tubercle. Within the genital tubercle, the endodermally derived urethral epithelium functions as an organizer and expresses sonic hedgehog (Shh). Shh knockout mice lack external genitalia and have a persistent cloaca. This identified an early requirement for Shh, but precluded analysis of its later role in the genital tubercle. We conducted temporally controlled deletions of Shh and report that Shh is required continuously through the onset of sexual differentiation. Shh function is divisible into two temporal phases; an anogenital phase, during which Shh regulates outgrowth and patterning of the genital tubercle and septation of the cloaca, and a later external genital phase, during which Shh regulates urethral tube closure. Disruption of Shh function during the anogenital phase causes coordinated anorectal and genitourinary malformations, whereas inactivation during the external genital phase causes hypospadias. Shh directs cloacal septation by promoting cell proliferation in adjacent urorectal septum mesenchyme. Additionally, conditional inactivation of smoothened in the genital ectoderm and cloacal/urethral endoderm shows that the ectoderm is a direct target of Shh and is required for urethral tube closure, highlighting a novel role for genital ectoderm in urethragenesis. Identification of the stages during which disruption of Shh results in either isolated or coordinated malformations of anorectal and external genital organs provides a new tool for investigating the etiology of anogenital malformations in humans. PMID:19906862

  9. Melatonin influences the sonic hedgehog signaling pathway in porcine cumulus oocyte complexes.

    PubMed

    Lee, Sanghoon; Jin, Jun-Xue; Taweechaipaisankul, Anukul; Kim, Geon A; Ahn, Curie; Lee, Byeong Chun

    2017-10-01

    Melatonin, which is synthesized in the pineal gland and peripheral reproductive organs, has antioxidant properties and regulates physiological processes. It is well known that melatonin affects in vitro maturation (IVM) of oocytes and embryonic development in many species. However, beneficial effects of melatonin on IVM have been explained mainly by indirect antioxidant effects and little information is available on the underlying mechanism by which melatonin directly acts on porcine cumulus oocyte complexes (COCs). Sonic hedgehog (Shh) signaling is important for follicle development, oocyte maturation, and embryo development, and there may be a relationship between melatonin and Shh signaling. To examine this, we designed three groups: (i) control, (ii) melatonin (10 -9  mol/L), and (iii) melatonin with cyclopamine (2 μmol/L; Shh signaling inhibitor). The aim of this study was to investigate the effects of these agents on cumulus expansion, oocyte maturation, embryo development after parthenogenetic activation (PA), gene expression in cumulus cells, oocytes and blastocysts, and protein expression in COCs. Melatonin significantly increased the proportion of COCs exhibiting complete cumulus expansion (degree 4), PA blastocyst formation rates, and total cell numbers, which were inhibited by addition of cyclopamine. Simultaneously, the expression of cumulus expansion-related genes (Ptgs1, Ptgs2, and Has2) and Shh signaling-related genes (Shh, Pthc1, Smo, and Gli1) and proteins (Ptch1, Smo, and Gli1) in cumulus cells was upregulated in the melatonin-treated group, and these effects were also inhibited by cyclopamine. In conclusion, our results suggest that Shh signaling mediates effects of melatonin to improve porcine cumulus expansion and subsequent embryo development. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Sonic Hedgehog Protein Is Decreased and Penile Morphology Is Altered in Prostatectomy and Diabetic Patients

    PubMed Central

    Angeloni, Nicholas L.; Bond, Christopher W.; McVary, Kevin T.; Podlasek, Carol A.

    2013-01-01

    Erectile dysfunction (ED) is a debilitating medical condition and current treatments are ineffective in patients with cavernous nerve (CN) injury, due to penile remodeling and apoptosis. A critical regulator of penile smooth muscle and apoptosis is the secreted protein sonic hedgehog (SHH). SHH protein is decreased in rat prostatectomy and diabetic ED models, SHH inhibition in the penis induces apoptosis and ED, and SHH treatment at the time of CN injury suppresses smooth muscle apoptosis and promotes regeneration of erectile function. Thus SHH treatment has significant translational potential as an ED therapy if similar mechanisms underlie ED development in patients. In this study we quantify SHH protein and morphological changes in corpora cavernosal tissue of control, prostatectomy and diabetic patients and hypothesize that decreased SHH protein is an underlying cause of ED development in prostatectomy and diabetic patients. Our results show significantly decreased SHH protein in prostatectomy and diabetic penis. Morphological remodelling of the penis, including significantly increased apoptotic index and decreased smooth muscle/collagen ratio, accompanies declining SHH. SHH signaling is active in human penis and is altered in a parallel manner to previous observations in the rat. These results suggest that SHH has significant potential to be developed as an ED therapy in prostatectomy and diabetic patients. The increased apoptotic index long after initial injury is suggestive of ongoing remodeling that may be clinically manipulatable. PMID:23967143

  11. The role of the sonic hedgehog signalling pathway in patients with midline defects and congenital hypopituitarism.

    PubMed

    Gregory, L C; Gaston-Massuet, C; Andoniadou, C L; Carreno, G; Webb, E A; Kelberman, D; McCabe, M J; Panagiotakopoulos, L; Saldanha, J W; Spoudeas, H A; Torpiano, J; Rossi, M; Raine, J; Canham, N; Martinez-Barbera, J P; Dattani, M T

    2015-05-01

    The Gli family of zinc finger (GLI) transcription factors mediates the sonic hedgehog signalling pathway (HH) essential for CNS, early pituitary and ventral forebrain development in mice. Human mutations in this pathway have been described in patients with holoprosencephaly (HPE), isolated congenital hypopituitarism (CH) and cranial/midline facial abnormalities. Mutations in Sonic hedgehog (SHH) have been associated with HPE but not CH, despite murine studies indicating involvement in pituitary development. We aimed to establish the role of the HH pathway in the aetiology of hypothalamo-pituitary disorders by screening our cohort of patients with midline defects and/or CH for mutations in SHH, GLI2, Shh brain enhancer 2 (SBE2) and growth-arrest specific 1 (GAS1). Two variants and a deletion of GLI2 were identified in three patients. A novel variant at a highly conserved residue in the zinc finger DNA-binding domain, c.1552G > A [pE518K], was identified in a patient with growth hormone deficiency and low normal free T4. A nonsynonymous variant, c.2159G > A [p.R720H], was identified in a patient with a short neck, cleft palate and hypogonadotrophic hypogonadism. A 26·6 Mb deletion, 2q12·3-q21·3, encompassing GLI2 and 77 other genes, was identified in a patient with short stature and impaired growth. Human embryonic expression studies and molecular characterisation of the GLI2 mutant p.E518K support the potential pathogenicity of GLI2 mutations. No mutations were identified in GAS1 or SBE2. A novel SHH variant, c.1295T>A [p.I432N], was identified in two siblings with variable midline defects but normal pituitary function. Our data suggest that mutations in SHH, GAS1 and SBE2 are not associated with hypopituitarism, although GLI2 is an important candidate for CH. © 2014 John Wiley & Sons Ltd.

  12. Injury-stimulated Sonic hedgehog expression in microglia contributes to neuroinflammatory response in the MPTP model of Parkinson's disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jeong Hwi; Department of Biochemistry & Molecular Biology, School of Medicine Kyung Hee University, Seoul 130-701; Chung, Young Cheul

    Parkinson's disease (PD) is a progressive neurodegenerative disorder in which dopamine (DA) neurons in the substantia nigra pars compacta (SNpc) region are selectively destroyed. Sonic hedgehog (Shh) has been well known to play a key role in a variety of processes such as embryogenesis, cell proliferation and protection, and tissue repair during inflammation. However, the evidences for the innate role of Shh in adult brain injury are presently lacking and studies have been needed to unveil the importance of Shh in the process of neurodegeneration. Here, we investigated the role of Shh in the pathologic progress of Parkinson's disease inmore » MPTP-induced animal model system. Interestingly, we observed that Shh expression was gradually increased in MPTP affected SNpc region. Activated microglia exclusively expressed SHH in vivo and we could recapitulate Shh induction in activated cultured primary microglia cells. Using the SHH responsive Cre-loxP binary genetic reporter transgenic mouse system, we also found that most of the cell types except for oligodendrocyte in the SNpc region reacted to the SHH by MPTP injection. Taken together, activated microglia induced Shh expression and most neural cells except oligodendrocyte responded to microglia-derived SHH in MPTP-treated SN. These results suggest that SHH in activated microglia by MPTP-injection might be involved in the innate processes of recovery from neurotoxin induced injury in the PD animal model system. - Highlights: • Sonic hedgehog (Shh) was induced by MPTP neurotoxin at the Substantia Nigra (SN) in vivo. • Activated microglia are major cell type for SHH expression in vivo and in vitro. • Different types of cells in the brain, except oligodendrocyte, respond to microglia-derived SHH in SN region.« less

  13. Multivalency of Sonic hedgehog conjugated to linear polymer chains modulates protein potency.

    PubMed

    Wall, Samuel T; Saha, Krishanu; Ashton, Randolph S; Kam, Kimberly R; Schaffer, David V; Healy, Kevin E

    2008-04-01

    A potently active multivalent form of the protein Sonic hedgehog (Shh) was produced by bioconjugation of a modified recombinant form of Shh to the linear polymers poly(acrylic acid) (pAAc) and hyaluronic acid (HyA) via a two-step reaction exploiting carboimiide and maleimide chemistry. Efficiency of the conjugation was approximately 75% even at stoichiometric ratios of 30 Shh molecules per linear HyA chain (i.e., 30:1 Shh/HyA). Bioactivity of the conjugates was tested via a cellular assay across a range of stoichiometric ratios of Shh molecules to HyA linear chains, which was varied from 0.6:1 Shh/HyA to 22:1 Shh/HyA. Results indicate that low conjugation ratios decrease Shh bioactivity and high ratios increase this activity beyond the potency of monomeric Shh, with approximately equal activity between monomeric soluble Shh and conjugated Shh at 7:1 Shh/HyA. In addition, high-ratio constructs increased angiogenesis determined by the in vivo chick chorioallantoic membrane (CAM) assay. These results are captured by a kinetic model of multiple interactions between the Shh/HyA conjugates and cell surface receptors resulting in higher cell signaling at lower bulk Shh concentrations.

  14. Suppression of hedgehog signaling regulates hepatic stellate cell activation and collagen secretion.

    PubMed

    Li, Tao; Leng, Xi-Sheng; Zhu, Ji-Ye; Wang, Gang

    2015-01-01

    Hepatic stellate cells (HSCs) play an important role in liver fibrosis. This study investigates the expression of hedgehog in HSC and the role of hedgehog signaling on activation and collagen secretion of HSC. Liver ex vivo perfusion with collagenase IV and density gradient centrifugation were used to isolate HSC. Expression of hedgehog signaling components Ihh, Smo, Ptc, Gli2 and Gli3 in HSC were detected by RT-PCR. Hedgehog siRNA vectors targeting Ihh, Smo and Gli2 were constructed and transfected into HSC respectively. Suppression of hedgehog signaling were detected by SYBR Green fluorescence quantitative RT-PCR. Effects of hedgehog signaling inhibition on HSC activation and collagen I secretion were analyzed. Hedgehog signaling components Ihh, Smo, Ptc, Gli2 and Gli3 were expressed in HSC. siRNA vectors targeting Ihh, Smo and Gli2 were successfully constructed and decreased target gene expression. Suppression of hedgehog signaling significantly decreased the expression of α-SMA in HSC (P<0.01). Collagen type I secretion of HSC were also significantly decreased (P<0.01). In summary, HSC activation and collagen secretion can be regulated by hedgehog signaling. Hedgehog may play a role in the pathogenesis of liver fibrosis.

  15. Long-range sclerotome induction by sonic hedgehog: direct role of the amino-terminal cleavage product and modulation by the cyclic AMP signaling pathway.

    PubMed

    Fan, C M; Porter, J A; Chiang, C; Chang, D T; Beachy, P A; Tessier-Lavigne, M

    1995-05-05

    A long-range signal encoded by the Sonic hedgehog (Shh) gene has been implicated as the ventral patterning influence from the notochord that induces sclerotome and represses dermomyotome in somite differentiation. Long-range effects of hedgehog (hh) signaling have been suggested to result either from local induction of a secondary diffusible signal or from the direct action of the highly diffusible carboxy-terminal product of HH autoproteolytic cleavage. Here we provide evidence that the long-range somite patterning effects of SHH are instead mediated by a direct action of the amino-terminal cleavage product. We also show that pharmacological manipulations to increase the activity of cyclic AMP-dependent protein kinase A can selectively antagonize the effects of the amino-terminal cleavage product. Our results support the operation of a single evolutionarily conserved signaling pathway for both local and direct long-range inductive actions of HH family members.

  16. Regulation of Hedgehog Signalling Inside and Outside the Cell

    PubMed Central

    Ramsbottom, Simon A.; Pownall, Mary E.

    2016-01-01

    The hedgehog (Hh) signalling pathway is conserved throughout metazoans and plays an important regulatory role in both embryonic development and adult homeostasis. Many levels of regulation exist that control the release, reception, and interpretation of the hedgehog signal. The fatty nature of the Shh ligand means that it tends to associate tightly with the cell membrane, and yet it is known to act as a morphogen that diffuses to elicit pattern formation. Heparan sulfate proteoglycans (HSPGs) play a major role in the regulation of Hh distribution outside the cell. Inside the cell, the primary cilium provides an important hub for processing the Hh signal in vertebrates. This review will summarise the current understanding of how the Hh pathway is regulated from ligand production, release, and diffusion, through to signal reception and intracellular transduction. PMID:27547735

  17. Endogenous Sonic Hedgehog limits inflammation and angiogenesis in the ischaemic skeletal muscle of mice.

    PubMed

    Caradu, Caroline; Guy, Alexandre; James, Chloé; Reynaud, Annabel; Gadeau, Alain-Pierre; Renault, Marie-Ange

    2018-04-01

    Hedgehog (Hh) signalling has been shown to be re-activated in ischaemic tissues and participate in ischaemia-induced angiogenesis. Sonic Hedgehog (Shh) is upregulated by more than 80-fold in the ischaemic skeletal muscle, however its specific role in ischaemia-induced angiogenesis has not yet been fully investigated. The purpose of the present study was to investigate the role of endogenous Shh in ischaemia-induced angiogenesis. To this aim, we used inducible Shh knock-out (KO) mice and unexpectedly found that capillary density was significantly increased in re-generating muscle of Shh deficient mice 5 days after hind limb ischaemia was induced, demonstrating that endogenous Shh does not promote angiogenesis but more likely limits it. Myosin and MyoD expression were equivalent in Shh deficient mice and control mice, indicating that endogenous Shh is not required for ischaemia-induced myogenesis. Additionally, we observed a significant increase in macrophage infiltration in the ischaemic muscle of Shh deficient mice. Our data indicate that this was due to an increase in chemokine expression by myoblasts in the setting of impaired Hh signalling, using tissue specific Smoothened conditional KO mice. The increased macrophage infiltration in mice deficient for Hh signalling in myocytes was associated with increased VEGFA expression and a transiently increased angiogenesis, demonstrating that Shh limits inflammation and angiogenesis indirectly by signalling to myocytes. Although ectopic administration of Shh has previously been shown to promote ischaemia-induced angiogenesis, the present study reveals that endogenous Shh does not promote ischaemia-induced angiogenesis. On the contrary, the absence of Shh leads to aberrant ischaemic tissue inflammation and a transiently increased angiogenesis.

  18. PM2.5 promotes human bronchial smooth muscle cell migration via the sonic hedgehog signaling pathway.

    PubMed

    Ye, Xiuqin; Hong, Wei; Hao, Binwei; Peng, Gongyong; Huang, Lingmei; Zhao, Zhuxiang; Zhou, Yumin; Zheng, Mengning; Li, Chenglong; Liang, Chunxiao; Yi, Erkang; Pu, Jinding; Li, Bing; Ran, Pixin

    2018-03-02

    The contribution of airway remodeling in chronic obstructive pulmonary disease (COPD) has been well documented, with airway smooth muscle cell proliferation and migration playing a role in the remodeling process. Here, we aimed to verify the effects of fine particulate matter (PM2.5) on human bronchial smooth muscle cell (HBSMC) migration and to explore the underlying signaling pathways. HBSMC apoptosis, proliferation and migration were measured using flow cytometry, cell counting and transwell migration assays, respectively. The role of the hedgehog pathway in cell migration was assessed by western blotting to measure the expression of Sonic hedgehog (Shh), Gli1 and Snail. Furthermore, siRNA was used to knock down Gli1 or Snail expression. PM2.5 induced HBSMC apoptosis in a dose-dependent manner, although certain concentrations of PM2.5 did not induce HBSMC proliferation or apoptosis. Interestingly, cell migration was stimulated by PM2.5 doses far below those that induced apoptosis. Additional experiments revealed that these PM2.5 doses enhanced the expression of Shh, Gli1 and Snail in HBSMCs. Furthermore, PM2.5-induced cell migration and protein expression were enhanced by recombinant Shh and attenuated by cyclopamine. Similar results were obtained by knocking down Gli1 or Snail. These findings suggest that PM2.5, which may exert its effects through the Shh signaling pathway, is necessary for the migration of HBSMCs. These data define a novel role for PM2.5 in airway remodeling in COPD.

  19. Sonic hedgehog regulates its own receptor on postcrossing commissural axons in a glypican1-dependent manner.

    PubMed

    Wilson, Nicole H; Stoeckli, Esther T

    2013-08-07

    Upon reaching their intermediate target, the floorplate, commissural axons acquire responsiveness to repulsive guidance cues, allowing the axons to exit the midline and adopt a contralateral, longitudinal trajectory. The molecular mechanisms that regulate this switch from attraction to repulsion remain poorly defined. Here, we show that the heparan sulfate proteoglycan Glypican1 (GPC1) is required as a coreceptor for the Shh-dependent induction of Hedgehog-interacting protein (Hhip) in commissural neurons. In turn, Hhip is required for postcrossing axons to respond to a repulsive anteroposterior Shh gradient. Thus, Shh is a cue with dual function. In precrossing axons it acts as an attractive guidance molecule in a transcription-independent manner. At the same time, Shh binds to GPC1 to induce the expression of its own receptor, Hhip, which mediates the repulsive response of postcrossing axons to Shh. Our study characterizes a molecular mechanism by which navigating axons switch their responsiveness at intermediate targets. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Hedgehog signaling regulates gene expression in planarian glia.

    PubMed

    Wang, Irving E; Lapan, Sylvain W; Scimone, M Lucila; Clandinin, Thomas R; Reddien, Peter W

    2016-09-09

    Hedgehog signaling is critical for vertebrate central nervous system (CNS) development, but its role in CNS biology in other organisms is poorly characterized. In the planarian Schmidtea mediterranea, hedgehog (hh ) is expressed in medial cephalic ganglia neurons, suggesting a possible role in CNS maintenance or regeneration. We performed RNA sequencing of planarian brain tissue following RNAi of hh and patched (ptc) , which encodes the Hh receptor. Two misregulated genes, intermediate filament-1 (if-1 ) and calamari (cali ), were expressed in a previously unidentified non-neural CNS cell type. These cells expressed orthologs of astrocyte-associated genes involved in neurotransmitter uptake and metabolism, and extended processes enveloping regions of high synapse concentration. We propose that these cells are planarian glia. Planarian glia were distributed broadly, but only expressed if-1 and cali in the neuropil near hh + neurons. Planarian glia and their regulation by Hedgehog signaling present a novel tractable system for dissection of glia biology.

  1. Transient Overexpression of Sonic Hedgehog Alters the Architecture and Mechanical Properties of Trabecular Bone

    PubMed Central

    Kiuru, Maija; Solomon, Jason; Ghali, Bassem; van der Meulen, Marjolein; Crystal, Ronald G; Hidaka, Chisa

    2009-01-01

    Bone formation and remodeling involve coordinated interactions between osteoblasts and osteoclasts through signaling networks involving a variety of molecular pathways. We hypothesized that overexpression of Sonic hedgehog (Shh), a morphogen with a crucial role in skeletal development, would stimulate osteoblastogenesis and bone formation in adult animals in vivo. Systemic administration of adenovirus expressing the N-terminal form of Shh into adult mice resulted in a primary increase in osteoblasts and their precursors. Surprisingly, however, this was associated with altered trabecular morphology, decreased bone volume, and decreased compressive strength in the vertebrae. Whereas no change was detected in the number of osteoclast precursors, bone marrow stromal cells from Shh-treated mice showed enhanced osteoclastogenic potential in vitro. These effects were mediated by the PTH/PTH-related protein (PTHrP) pathway as evidenced by increased sensitivity to PTH stimulation and upregulation of the PTH/PTHrP receptor (PPR). Together, these data show that Shh has stimulatory effects on osteoprogenitors and osteoblasts in adult animals in vivo, which results in bone remodeling and reduced bone strength because of a secondary increase in osteoclastogenesis. PMID:19338448

  2. A compartmentalized phosphoinositide signaling axis at cilia is regulated by INPP5E to maintain cilia and promote Sonic Hedgehog medulloblastoma.

    PubMed

    Conduit, S E; Ramaswamy, V; Remke, M; Watkins, D N; Wainwright, B J; Taylor, M D; Mitchell, C A; Dyson, J M

    2017-10-26

    Sonic Hedgehog (SHH) signaling at primary cilia drives the proliferation and progression of a subset of medulloblastomas, the most common malignant paediatric brain tumor. Severe side effects associated with conventional treatments and resistance to targeted therapies has led to the need for new strategies. SHH signaling is dependent on primary cilia for signal transduction suggesting the potential for cilia destabilizing mechanisms as a therapeutic target. INPP5E is an inositol polyphosphate 5-phosphatase that hydrolyses PtdIns(4,5)P 2 and more potently, the phosphoinositide (PI) 3-kinase product PtdIns(3,4,5)P 3 . INPP5E promotes SHH signaling during embryonic development via PtdIns(4,5)P 2 hydrolysis at cilia, that in turn regulates the cilia recruitment of the SHH suppressor GPR161. However, the role INPP5E plays in cancer is unknown and the contribution of PI3-kinase signaling to cilia function is little characterized. Here, we reveal INPP5E promotes SHH signaling in SHH medulloblastoma by negatively regulating a cilia-compartmentalized PI3-kinase signaling axis that maintains primary cilia on tumor cells. Conditional deletion of Inpp5e in a murine model of constitutively active Smoothened-driven medulloblastoma slowed tumor progression, suppressed cell proliferation, reduced SHH signaling and promoted tumor cell cilia loss. PtdIns(3,4,5)P 3 , its effector pAKT and the target pGSK3β, which when non-phosphorylated promotes cilia assembly/stability, localized to tumor cell cilia. The number of PtdIns(3,4,5)P 3 /pAKT/pGSK3β-positive cilia was increased in cultured Inpp5e-null tumor cells relative to controls. PI3-kinase inhibition or expression of wild-type, but not catalytically inactive HA-INPP5E partially rescued cilia loss in Inpp5e-null tumor cells in vitro. INPP5E mRNA and copy number were reduced in human SHH medulloblastoma compared to other molecular subtypes and consistent with the murine model, reduced INPP5E was associated with improved overall

  3. Hedgehog signaling regulates gene expression in planarian glia

    PubMed Central

    Wang, Irving E; Lapan, Sylvain W; Scimone, M Lucila; Clandinin, Thomas R; Reddien, Peter W

    2016-01-01

    Hedgehog signaling is critical for vertebrate central nervous system (CNS) development, but its role in CNS biology in other organisms is poorly characterized. In the planarian Schmidtea mediterranea, hedgehog (hh) is expressed in medial cephalic ganglia neurons, suggesting a possible role in CNS maintenance or regeneration. We performed RNA sequencing of planarian brain tissue following RNAi of hh and patched (ptc), which encodes the Hh receptor. Two misregulated genes, intermediate filament-1 (if-1) and calamari (cali), were expressed in a previously unidentified non-neural CNS cell type. These cells expressed orthologs of astrocyte-associated genes involved in neurotransmitter uptake and metabolism, and extended processes enveloping regions of high synapse concentration. We propose that these cells are planarian glia. Planarian glia were distributed broadly, but only expressed if-1 and cali in the neuropil near hh+ neurons. Planarian glia and their regulation by Hedgehog signaling present a novel tractable system for dissection of glia biology. DOI: http://dx.doi.org/10.7554/eLife.16996.001 PMID:27612382

  4. Subcellular Localization of Patched and Smoothened, the Receptors for Sonic Hedgehog Signaling, in the Hippocampal Neuron

    PubMed Central

    Petralia, Ronald S.; Schwartz, Catherine M.; Wang, Ya-Xian; Mattson, Mark P.; Yao, Pamela J.

    2011-01-01

    Cumulative evidence suggests that, aside from patterning the embryonic neural tube, Sonic hedgehog (Shh) signaling plays important roles in the mature nervous system. In this study, we investigate the expression and localization of the Shh signaling receptors, Patched (Ptch) and Smoothened (Smo), in the hippocampal neurons of young and mature rats. Reverse transcriptase-polymerase chain reaction and immunoblotting analyses show that the expression of Ptch and Smo remains at a moderate level in young postnatal and adult brains. By using immunofluorescence light microscopy and immunoelectron microscopy, we examine the spatial distribution of Ptch and Smo within the hippocampal neurons. In young developing neurons, Ptch and Smo are present in the processes and are clustered at their growth cones. In mature neurons, Ptch and Smo are concentrated in dendrites, spines, and postsynaptic sites. Synaptic Ptch and Smo often co-exist with unusual structures—synaptic spinules and autophagosomes. Our results reveal the anatomical organization of the Shh receptors within both the young and the mature hippocampal neurons. PMID:21618238

  5. Exclusion of the Sonic Hedgehog gene as responsible for Currarino syndrome and anorectal malformations with sacral hypodevelopment.

    PubMed

    Seri, M; Martucciello, G; Paleari, L; Bolino, A; Priolo, M; Salemi, G; Forabosco, P; Caroli, F; Cusano, R; Tocco, T; Lerone, M; Cama, A; Torre, M; Guys, J M; Romeo, G; Jasonni, V

    1999-01-01

    Anorectal malformations (ARMs) are common congenital anomalies that account for 1:4 digestive malformations. ARM patients show different degrees of sacral hypodevelopment while the hemisacrum is characteristic of the Currarino syndrome (CS). Cases of CS present an association of ARM, hemisacrum and presacral mass. A gene responsible for CS has recently been mapped in 7q36. Among the genes localized in this critical region, sonic hedgehog (SHH) was thought to represent a candidate gene for CS as well as for ARM with different levels of sacral hypodevelopment according to its role in the differentiation of midline mesoderm. By linkage analysis we confirmed the critical region in one large family with recurrence of CS. In addition, the screening of SHH in 7 CS and in 15 sporadic ARM patients with sacral hypodevelopment allowed us to exclude its role in the pathogenesis of these disorders.

  6. YB-1 is elevated in medulloblastoma and drives proliferation in Sonic hedgehog-dependent cerebellar granule neuron progenitor cells and medulloblastoma cells.

    PubMed

    Dey, A; Robitaille, M; Remke, M; Maier, C; Malhotra, A; Gregorieff, A; Wrana, J L; Taylor, M D; Angers, S; Kenney, A M

    2016-08-11

    Postnatal proliferation of cerebellar granule neuron precursors (CGNPs), proposed cells of origin for the SHH-associated subgroup of medulloblastoma, is driven by Sonic hedgehog (Shh) and insulin-like growth factor (IGF) in the developing cerebellum. Shh induces the oncogene Yes-associated protein (YAP), which drives IGF2 expression in CGNPs and mouse Shh-associated medulloblastomas. To determine how IGF2 expression is regulated downstream of YAP, we carried out an unbiased screen for transcriptional regulators bound to IGF2 promoters. We report that Y-box binding protein-1 (YB-1), an onco-protein regulating transcription and translation, binds to IGF2 promoter P3. We observed that YB-1 is upregulated across human medulloblastoma subclasses as well as in other varieties of pediatric brain tumors. Utilizing the cerebellar progenitor model for the Shh subgroup of medulloblastoma in mice, we show for the first time that YB-1 is induced by Shh in CGNPs. Its expression is YAP-dependent and it is required for IGF2 expression in CGNPs. Finally, both gain-of function and loss-of-function experiments reveal that YB-1 activity is required for sustaining CGNP and medulloblastoma cell (MBC) proliferation. Collectively, our findings describe a novel role for YB-1 in driving proliferation in the developing cerebellum and MBCs and they identify the SHH:YAP:YB1:IGF2 axis as a powerful target for therapeutic intervention in medulloblastomas.

  7. Preclinical characterization of therapeutic antibodies targeted at the carboxy-terminus of Sonic hedgehog

    PubMed Central

    Tolani, Bhairavi; Hoang, Ngoc T.; Acevedo, Luis A.; Leprieur, Etienne Giroux; Li, Hui; He, Biao; Jablons, David M.

    2018-01-01

    The Sonic Hedgehog (Shh) signaling pathway has been implicated in the development and tumor progression of a number of human cancers. Using synthetic peptide mimics to mount an immune response, we generated a mouse mAb to the carboxy (C)-terminus of the Shh protein and characterized its preclinical antitumor effects. In vitro screening guided selection of the best candidate for mAb scale-up production and therapeutic development. C-term anti-Shh, Ab 1C11-2G4 was selected based on ELISA screens, Western blotting, and flow cytometric analyses. Purified Ab 1C11-2G4 was shown to recognize and bind both Shh peptide mimics and cell surface Shh. Administration of Ab 1C11-2G4 not only reduced cell viability in 7 cancer cell lines but also significantly inhibitted tumor growth in a xenograft model of A549 lung cancer cells. Ex vivo analyses of xenograft tumors revealed a reduction in Shh signal transduction and apoptosis in 2G4-treated mice. Collectively, our results provide early demonstration of the antitumor utility of antibodies specific for the C-terminal region of Shh, and support continued development to evaluate their potential efficacy in cancers in which Shh activity is elevated. PMID:29581846

  8. Variant allele frequency enrichment analysis in vitro reveals sonic hedgehog pathway to impede sustained temozolomide response in GBM.

    PubMed

    Biswas, Nidhan K; Chandra, Vikas; Sarkar-Roy, Neeta; Das, Tapojyoti; Bhattacharya, Rabindra N; Tripathy, Laxmi N; Basu, Sunandan K; Kumar, Shantanu; Das, Subrata; Chatterjee, Ankita; Mukherjee, Ankur; Basu, Pryiadarshi; Maitra, Arindam; Chattopadhyay, Ansuman; Basu, Analabha; Dhara, Surajit

    2015-01-21

    Neoplastic cells of Glioblastoma multiforme (GBM) may or may not show sustained response to temozolomide (TMZ) chemotherapy. We hypothesize that TMZ chemotherapy response in GBM is predetermined in its neoplastic clones via a specific set of mutations that alter relevant pathways. We describe exome-wide enrichment of variant allele frequencies (VAFs) in neurospheres displaying contrasting phenotypes of sustained versus reversible TMZ-responses in vitro. Enrichment of VAFs was found on genes ST5, RP6KA1 and PRKDC in cells showing sustained TMZ-effect whereas on genes FREM2, AASDH and STK36, in cells showing reversible TMZ-effect. Ingenuity pathway analysis (IPA) revealed that these genes alter cell-cycle, G2/M-checkpoint-regulation and NHEJ pathways in sustained TMZ-effect cells whereas the lysine-II&V/phenylalanine degradation and sonic hedgehog (Hh) pathways in reversible TMZ-effect cells. Next, we validated the likely involvement of the Hh-pathway in TMZ-response on additional GBM neurospheres as well as on GBM patients, by extracting RNA-sequencing-based gene expression data from the TCGA-GBM database. Finally, we demonstrated TMZ-sensitization of a TMZ non-responder neurosphere in vitro by treating them with the FDA-approved pharmacological Hh-pathway inhibitor vismodegib. Altogether, our results indicate that the Hh-pathway impedes sustained TMZ-response in GBM and could be a potential therapeutic target to enhance TMZ-response in this malignancy.

  9. Curcumin inhibits bladder cancer stem cells by suppressing Sonic Hedgehog pathway.

    PubMed

    Wang, Dengdian; Kong, Xiaochuan; Li, Yuan; Qian, Weiwei; Ma, Jiaxing; Wang, Daming; Yu, Dexin; Zhong, Caiyun

    2017-11-04

    Cancer stem cells (CSCs) is responsible for the recurrence of human cancers. Thus, targeting CSCs is considered to be a valid way for human cancer treatment. Curcumin is a major component of phytochemicals that exerts potent anticancer activities. However, the effect of curcumin on bladder cancer stem cells (BCSCs) remains to be elucidated. In this study, we investigated the mechanism of curcumin suppressing bladder cancer stem cells. In this study, UM-UC-3 and EJ cells were cultured in serum-free medium (SFM) to form cell spheres that was characterized as BCSCs. Then cell spheres were separately treated with different concentrations of curcumin and purmorphamine. Cell cycle analysis were used to determine the percentage of cells in different phases. Western blot and quantitative real-time PCR analysis were used to detect the expression of relative molecules. Immunofluorescence staining analysis were also utilized to measure the protein level of CD44. We found that CSC markers, including CD44, CD133, ALDH1-A1, OCT-4 and Nanog, were obviously highly expressed in cell spheres. Moreover, we observed that curcumin reduced the cell spheres formation, decreased the expression of CSC markers, suppressed cell proliferation and induced cell apoptosis. We also found that curcumin inhibited the activation of Shh pathway, while the inhibitory effects of curcumin on BCSCs could be weakened by upregulation of Sonic Hedgehog (Shh) pathway. Altogether, these data suggested that curcumin inhibited the activities of BCSCs through suppressing Shh pathway, which might be an effective chemopreventive agent for bladder cancer intervention. Copyright © 2017. Published by Elsevier Inc.

  10. Gli2 protein expression level is a feasible marker of ligand-dependent hedgehog activation in pancreatic neoplasms.

    PubMed

    Sugiyama, Y; Sasajima, J; Mizukami, Y; Koizumi, K; Kawamoto, T; Ono, Y; Karasaki, H; Tanabe, H; Fujiya, M; Kohgo, Y

    2016-06-01

    The hedgehog pathway is known to promote proliferation of pancreatic ductal adenocarcinoma (PDA) and has been shown to restrain tumor progression. To understand how hedgehog causes these effects, we sought to carefully examine protein expression of hedgehog signaling components during different tumor stages. Genetically engineered mice, Pdx1-Cre;LSL-KrasG12D and Pdx1-Cre;LSL-KrasG12D;p53lox/+, were utilized to model distinct phases of tumorigenesis, pancreatic intraepithelial neoplasm (PanIN) and PDA. Human pancreatic specimens of intraductal papillary mucinous neoplasm (IPMN) and PDA were also employed. PanIN and IPMN lesions highly express Sonic Hedgehog, at a level that is slightly higher than that observed in PDA. GLI2 protein is also expressed in both PanIN/IPMN and PDA. Although there was no difference in the nuclear staining, the cytoplasmic GLI2 level in PDA was modest in comparison to that in PanIN/IPMN. Hedgehog interacting protein was strongly expressed in the precursors, whereas the level in PDA was significantly attenuated. There were no differences in expression of Patched1 at early and late stages. Finally, a strong correlation between Sonic Hedgehog and GLI2 staining was found in both human and murine pancreatic tumors. The results indicate that the GLI2 protein level could serve as a feasible marker of ligand-dependent hedgehog activation in pancreatic neoplasms.

  11. CHSY1 promotes aggressive phenotypes of hepatocellular carcinoma cells via activation of the hedgehog signaling pathway.

    PubMed

    Liu, Chiung-Hui; Lan, Chyn-Tair; Chou, Jui-Feng; Tseng, To-Jung; Liao, Wen-Chieh

    2017-09-10

    Abnormal expression of chondroitin sulfate has been found in many types of cancer, while its biological functions in hepatocellular carcinoma (HCC) progression remain uninvestigated. Here, we report that chondroitin sulfate synthase 1 (CHSY1), the enzyme that mediates the polymerization step of chondroitin sulfate, is a critical mediator of malignant character in HCC that acts via modulating the activity of the hedgehog signaling. CHSY1 was up-regulated frequently in HCC where these events were associated with worse histologic grade and poor survival. Enforced expression of CHSY1 was sufficient to enhance cell growth, migration, invasion, and epithelial-mesenchymal transition, whereas silencing of CHSY1 suppressed these malignant phenotypes. Mechanistic investigations revealed that the increase of cell surface chondroitin sulfate by CHSY1 promoted sonic hedgehog binding and signaling. Inhibiting hedgehog pathway with vismodegib decreased CHSY1-induced migration, invasion, and lung metastasis of HCC cells, establishing the critical role of hedgehog signaling in mediating the effects of CHSY1 expression. Together, our results indicate that CHSY1 overexpression in HCC contributes to the malignant behaviors in cancer cells, we provide novel insights into the significance of chondroitin sulfate in hedgehog signaling and HCC pathogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Sonic hedgehog initiates cochlear hair cell regeneration through downregulation of retinoblastoma protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Na; Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114; Chen, Yan

    Highlights: Black-Right-Pointing-Pointer Shh activation in neonatal cochleae enhances sensory cell proliferation. Black-Right-Pointing-Pointer Proliferating supporting cells can transdifferentiate into hair cells. Black-Right-Pointing-Pointer Shh promotes proliferation by transiently modulating pRb activity. Black-Right-Pointing-Pointer Shh inhibits pRb by inhibiting transcription and increasing phosphorylation of pRb. -- Abstract: Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We showmore » that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration.« less

  13. Subcellular localization of Patched and Smoothened, the receptors for Sonic hedgehog signaling, in the hippocampal neuron.

    PubMed

    Petralia, Ronald S; Schwartz, Catherine M; Wang, Ya-Xian; Mattson, Mark P; Yao, Pamela J

    2011-12-15

    Cumulative evidence suggests that, aside from patterning the embryonic neural tube, Sonic hedgehog (Shh) signaling plays important roles in the mature nervous system. In this study, we investigate the expression and localization of the Shh signaling receptors, Patched (Ptch) and Smoothened (Smo), in the hippocampal neurons of young and mature rats. Reverse transcriptase-polymerase chain reaction and immunoblotting analyses show that the expression of Ptch and Smo remains at a moderate level in young postnatal and adult brains. By using immunofluorescence light microscopy and immunoelectron microscopy, we examine the spatial distribution of Ptch and Smo within the hippocampal neurons. In young developing neurons, Ptch and Smo are present in the processes and are clustered at their growth cones. In mature neurons, Ptch and Smo are concentrated in dendrites, spines, and postsynaptic sites. Synaptic Ptch and Smo often co-exist with unusual structures-synaptic spinules and autophagosomes. Our results reveal the anatomical organization of the Shh receptors within both the young and the mature hippocampal neurons. Copyright © 2011 Wiley-Liss, Inc.

  14. Heterochronic shift in Hox-mediated activation of sonic hedgehog leads to morphological changes during fin development.

    PubMed

    Sakamoto, Koji; Onimaru, Koh; Munakata, Keijiro; Suda, Natsuno; Tamura, Mika; Ochi, Haruki; Tanaka, Mikiko

    2009-01-01

    We explored the molecular mechanisms of morphological transformations of vertebrate paired fin/limb evolution by comparative gene expression profiling and functional analyses. In this study, we focused on the temporal differences of the onset of Sonic hedgehog (Shh) expression in paired appendages among different vertebrates. In limb buds of chick and mouse, Shh expression is activated as soon as there is a morphological bud, concomitant with Hoxd10 expression. In dogfish (Scyliorhinus canicula), however, we found that Shh was transcribed late in fin development, concomitant with Hoxd13 expression. We utilized zebrafish as a model to determine whether quantitative changes in hox expression alter the timing of shh expression in pectoral fins of zebrafish embryos. We found that the temporal shift of Shh activity altered the size of endoskeletal elements in paired fins of zebrafish and dogfish. Thus, a threshold level of hox expression determines the onset of shh expression, and the subsequent heterochronic shift of Shh activity can affect the size of the fin endoskeleton. This process may have facilitated major morphological changes in paired appendages during vertebrate limb evolution.

  15. Mouse Mesenchyme forkhead 2 (Mf2): expression, DNA binding and induction by sonic hedgehog during somitogenesis.

    PubMed

    Wu, S C; Grindley, J; Winnier, G E; Hargett, L; Hogan, B L

    1998-01-01

    Cloning and sequencing of mouse Mf2 (mesoderm/mesenchyme forkhead 2) cDNAs revealed an open reading frame encoding a putative protein of 492 amino acids which, after in vitro translation, binds to a DNA consensus sequence. Mf2 is expressed at high levels in the ventral region of newly formed somites, in sclerotomal derivatives, in lateral plate and cephalic mesoderm and in the first and second branchial arches. Other regions of mesodermal expression include the developing tongue, meninges, nose, whiskers, kidney, genital tubercule and limb joints. In the nervous system Mf2 is transcribed in restricted regions of the mid- and forebrain. In several tissues, including the early somite, Mf2 is expressed in cell populations adjacent to regions expressing sonic hedgehog (Shh) and in explant cultures of presomitic mesoderm Mf2 is induced by Shh secreted by COS cells. These results suggest that Mf2, like other murine forkhead genes, has multiple roles in embryogenesis, possibly mediating the response of cells to signaling molecules such as SHH.

  16. Active Sonic Hedgehog Signaling between Androgen Independent Human Prostate Cancer Cells and Normal/Benign but Not Cancer-Associated Prostate Stromal Cells

    PubMed Central

    Shigemura, Katsumi; Huang, Wen-Chin; Li, Xiangyan; Zhau, Haiyen E.; Zhu, Guodong; Gotoh, Akinobu; Fujisawa, Masato; Xie, Jingwu; Marshall, Fray F.; Chung, Leland W. K.

    2012-01-01

    BACKGROUND Sonic hedgehog (Shh) signaling plays a pivotal role in stromal-epithelial interaction during normal development but its role in tumor-stromal interaction during carcinogenic progression is less well defined. Since hormone refractory prostate cancer with bone metastasis is difficult to treat, it is crucial to investigate how androgen independent (AI) human prostate cancer cells communicate with their associated stroma. METHODS Shh and its target transcription factor, Gli1 mRNA, were assessed by RT-PCR and/or quantitative RT-PCR in co-cultured cell recombinants comprised of AI C4-2 either with NPF (prostate fibroblasts from normal/benign prostate gland) or CPF cancer-associated stromal fibroblasts) under Shh/cyclopamine (a hedgehog signaling inhibitor) treatment. Human bone marrow stromal (HS27A) cells were used as controls. In vivo investigation was performed by checking serum PSA and immunohistochemical staining for the apoptosis-associated M30 gene in mice bearing chimeric C4-2/NPF tumors. RESULTS CONCLUSIONS Based on co-culture and chimeric tumor models, active Shh-mediated signaling was demonstrated between AI prostate cancer and NPF in a paracrine- and tumor progression-dependent manner. Our study suggests that drugs like cyclopamine that interfere with Shh signaling could be beneficial in preventing AI progression in prostate cancer cells. PMID:21520153

  17. Sonic Hedgehog switches on Wnt/planar cell polarity signaling in commissural axon growth cones by reducing levels of Shisa2

    PubMed Central

    Onishi, Keisuke

    2017-01-01

    Commissural axons switch on responsiveness to Wnt attraction during midline crossing and turn anteriorly only after exiting the floor plate. We report here that Sonic Hedgehog (Shh)-Smoothened signaling downregulates Shisa2, which inhibits the glycosylation and cell surface presentation of Frizzled3 in rodent commissural axon growth cones. Constitutive Shisa2 expression causes randomized turning of post-crossing commissural axons along the anterior–posterior (A–P) axis. Loss of Shisa2 led to precocious anterior turning of commissural axons before or during midline crossing. Post-crossing commissural axon turning is completely randomized along the A–P axis when Wntless, which is essential for Wnt secretion, is conditionally knocked out in the floor plate. This regulatory link between Shh and planar cell polarity (PCP) signaling may also occur in other developmental processes. PMID:28885142

  18. Analysis of testosterone effects on sonic hedgehog signaling in juvenile, adolescent and adult sprague dawley rat penis.

    PubMed

    Bond, Christopher W; Angeloni, Nicholas L; Podlasek, Carol A

    2010-03-01

    Smooth muscle apoptosis is a major contributing factor to erectile dysfunction (ED) development in prostatectomy and diabetic patients and animal models. A critical regulator of penile smooth muscle and apoptosis is Sonic hedgehog (SHH). The SHH protein is decreased in ED models and SHH treatment of cavernous nerve (CN) injured rats prevents smooth muscle apoptosis. A close association between androgen deficiency and ED has been suggested in the literature, but few studies have examined the molecular effects on penile smooth muscle and on known signaling mechanisms that regulate morphology. Aim. Examine testosterone and SHH interaction in eugonadal adult, adolescent and juvenile rats by performing castration studies and treatment with supraphysiological testosterone. The eugonadal adult Sprague Dawley rats were either treated with testosterone for 7 or 14 days (N = 14) or were castrated for 4 or 7 days (N = 12). The juvenile rats were treated with testosterone for 8 days (N = 7). The adolescent rats were castrated and sacrificed at P88 (N = 8). The control rats had empty vehicle (N = 22) or sham surgery (N = 20). The active form of SHH protein and mRNA were quantified by semi-quantitative immunohistochemical analysis and real-time reverse transcriptase polymerase chain reaction (RT-PCR). Testosterone treatment did not alter SHH signaling in juvenile rats. Shh mRNA increased 3.2-fold and SHH protein increased 1.2-fold in rats castrated during puberty. In adult rats, castration decreased Shh mRNA 3.2-fold but did not alter SHH protein. Testosterone supplement in adult rats increased Shh mRNA 2.3-fold and decreased SHH protein 1.3-fold. SHH signaling is independent of testosterone in normal juvenile rats and is sensitive to testosterone during adolescence, while testosterone supplement in the adult adversely impacts SHH signaling in a very similar manner to that observed with CN injury.

  19. The Acid-Secreting Parietal Cell as an Endocrine Source of Sonic Hedgehog During Gastric Repair

    PubMed Central

    Engevik, Amy C.; Feng, Rui; Yang, Li

    2013-01-01

    Sonic Hedgehog (Shh) has been shown to regulate wound healing in various tissues. Despite its known function in tissue regeneration, the role of Shh secreted from the gastric epithelium during tissue repair in the stomach remains unknown. Here we tested the hypothesis that Shh secreted from the acid-secreting parietal cell is a fundamental circulating factor that drives gastric repair. A mouse model expressing a parietal cell-specific deletion of Shh (PC-ShhKO) was generated using animals bearing loxP sites flanking exon 2 of the Shh gene (Shhflx/flx) and mice expressing a Cre transgene under the control of the H+,K+-ATPase β-subunit promoter. Shhflx/flx, the H+,K+-ATPase β-subunit promoter, and C57BL/6 mice served as controls. Ulcers were induced via acetic acid injury. At 1, 2, 3, 4, 5, and 7 days after the ulcer induction, gastric tissue and blood samples were collected. Parabiosis experiments were used to establish the effect of circulating Shh on ulcer repair. Control mice exhibited an increased expression of Shh in the gastric tissue and plasma that correlated with the repair of injury within 7 days after surgery. PC-ShhKO mice showed a loss of ulcer repair and reduced Shh tissue and plasma concentrations. In a parabiosis experiment whereby a control mouse was paired with a PC-ShhKO littermate and both animals subjected to gastric injury, a significant increase in the circulating Shh was measured in both parabionts. Elevated circulating Shh concentrations correlated with the repair of gastric ulcers in the PC-ShhKO parabionts. Therefore, the acid-secreting parietal cell within the stomach acts as an endocrine source of Shh during repair. PMID:24092639

  20. A new role for Hedgehogs in juxtacrine signaling.

    PubMed

    Pettigrew, Christopher A; Asp, Eva; Emerson, Charles P

    2014-02-01

    The Hedgehog pathway plays important roles in embryonic development, adult stem cell maintenance and tumorigenesis. In mammals these effects are mediated by Sonic, Desert and Indian Hedgehog (Shh, Dhh and Ihh). Shh undergoes autocatalytic cleavage and dual lipidation prior to secretion and forming a response gradient. Post-translational processing and secretion of Dhh and Ihh ligands has not previously been investigated. This study reports on the synthesis, processing, secretion and signaling activities of SHH, IHH and DHH preproteins expressed in cultured cells, providing unexpected evidence that DHH does not undergo substantial autoprocessing or secretion, and does not function in paracrine signaling. Rather, DHH functions as a juxtacrine signaling ligand to activate a cell contact-mediated HH signaling response, consistent with its localised signaling in vivo. Further, the LnCAP prostate cancer cell, when induced to express endogenous DHH and SHH, is active only in juxtacrine signaling. Domain swap studies reveal that the C-terminal domain of HH regulates its processing and secretion. These findings establish a new regulatory role for HHs in cell-mediated juxtacrine signaling in development and cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Genotypic and phenotypic analysis of 396 individuals with mutations in Sonic Hedgehog.

    PubMed

    Solomon, Benjamin D; Bear, Kelly A; Wyllie, Adrian; Keaton, Amelia A; Dubourg, Christele; David, Veronique; Mercier, Sandra; Odent, Sylvie; Hehr, Ute; Paulussen, Aimee; Clegg, Nancy J; Delgado, Mauricio R; Bale, Sherri J; Lacbawan, Felicitas; Ardinger, Holly H; Aylsworth, Arthur S; Bhengu, Ntombenhle Louisa; Braddock, Stephen; Brookhyser, Karen; Burton, Barbara; Gaspar, Harald; Grix, Art; Horovitz, Dafne; Kanetzke, Erin; Kayserili, Hulya; Lev, Dorit; Nikkel, Sarah M; Norton, Mary; Roberts, Richard; Saal, Howard; Schaefer, G B; Schneider, Adele; Smith, Erika K; Sowry, Ellen; Spence, M Anne; Shalev, Stavit A; Steiner, Carlos E; Thompson, Elizabeth M; Winder, Thomas L; Balog, Joan Z; Hadley, Donald W; Zhou, Nan; Pineda-Alvarez, Daniel E; Roessler, Erich; Muenke, Maximilian

    2012-07-01

    Holoprosencephaly (HPE), the most common malformation of the human forebrain, may result from mutations in over 12 genes. Sonic Hedgehog (SHH) was the first such gene discovered; mutations in SHH remain the most common cause of non-chromosomal HPE. The severity spectrum is wide, ranging from incompatibility with extrauterine life to isolated midline facial differences. To characterise genetic and clinical findings in individuals with SHH mutations. Through the National Institutes of Health and collaborating centres, DNA from approximately 2000 individuals with HPE spectrum disorders were analysed for SHH variations. Clinical details were examined and combined with published cases. This study describes 396 individuals, representing 157 unrelated kindreds, with SHH mutations; 141 (36%) have not been previously reported. SHH mutations more commonly resulted in non-HPE (64%) than frank HPE (36%), and non-HPE was significantly more common in patients with SHH than in those with mutations in the other common HPE related genes (p<0.0001 compared to ZIC2 or SIX3). Individuals with truncating mutations were significantly more likely to have frank HPE than those with non-truncating mutations (49% vs 35%, respectively; p=0.012). While mutations were significantly more common in the N-terminus than in the C-terminus (including accounting for the relative size of the coding regions, p=0.00010), no specific genotype-phenotype correlations could be established regarding mutation location. SHH mutations overall result in milder disease than mutations in other common HPE related genes. HPE is more frequent in individuals with truncating mutations, but clinical predictions at the individual level remain elusive.

  2. Low-intensity pulsed ultrasound promotes spinal fusion and enhances migration and proliferation of MG63s through sonic hedgehog signaling pathway.

    PubMed

    Zhou, Xiao-Yi; Xu, Xi-Ming; Wu, Sui-Yi; Zhang, Zi-Cheng; Wang, Fei; Yang, Yi-Lin; Li, Ming; Wei, Xian-Zhao

    2018-05-01

    Low-intensity pulsed ultrasound (LIPUS) has been found to accelerate the healing process of spinal fusion via a process closely related to osteoblast differentiation and migration. Sonic hedgehog (Shh) signaling plays an important role in development and homeostasis, including a critical function in bone formation. However, its role in spinal fusion during LIPUS treatment is still unknown. This study showed that LIPUS treatment after spinal fusion surgery increased bone formation. The increased bone mass under LIPUS treatment appeared to result from the increased migration and proliferation of osteoblasts, resulting from upregulation of the Shh signaling pathway. In contrast, inhibition of Shh reduced the migratory and proliferative ability of osteoblast-like MG63 cells and blocked the efficacy of LIPUS treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Characterization of the human oncogene SCL/TAL1 interrupting locus (Stil) mediated Sonic hedgehog (Shh) signaling transduction in proliferating mammalian dopaminergic neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Lei; Department of Physiology, Nankai University School of Medicine, Tianjin 300071; Carr, Aprell L.

    2014-07-11

    Highlights: • Stil is a human oncogene that is conserved in vertebrate species. • Stil functions in the Shh pathway in mammalian cells. • The expression of Stil is required for mammalian dopaminergic cell proliferation. - Abstract: The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in all vertebrate species. In humans, the expression of Stil is involved in cancer cell survival, apoptosis and proliferation. In this research, we investigated the roles of Stil expression in cell proliferation of mammalian dopaminergic (DA) PC12 cells. Stil functions through the Sonic hedgehog (Shh) signal transduction pathway. Co-immunoprecipitation tests revealed that STILmore » interacts with Shh downstream components, which include SUFU and GLI1. By examining the expression of Stil, Gli1, CyclinD2 (cell-cycle marker) and PCNA (proliferating cell nuclear antigen), we found that up-regulation of Stil expression (transfection with overexpression plasmids) increased Shh signaling transduction and PC12 cell proliferation, whereas down-regulation of Stil expression (by shRNA) inhibited Shh signaling transduction, and thereby decreased PC12 cell proliferation. Transient transfection of PC12 cells with Stil knockdown or overexpression plasmids did not affect PC12 cell neural differentiation, further indicating the specific roles of Stil in cell proliferation. The results from this research suggest that Stil may serve as a bio-marker for neurological diseases involved in DA neurons, such as Parkinson’s disease.« less

  4. Left cardiac isomerism in the Sonic hedgehog null mouse.

    PubMed

    Hildreth, Victoria; Webb, Sandra; Chaudhry, Bill; Peat, Jonathan D; Phillips, Helen M; Brown, Nigel; Anderson, Robert H; Henderson, Deborah J

    2009-06-01

    Sonic hedgehog (Shh) is a secreted morphogen necessary for the production of sidedness in the developing embryo. In this study, we describe the morphology of the atrial chambers and atrioventricular junctions of the Shh null mouse heart. We demonstrate that the essential phenotypic feature is isomerism of the left atrial appendages, in combination with an atrioventricular septal defect and a common atrioventricular junction. These malformations are known to be frequent in humans with left isomerism. To confirm the presence of left isomerism, we show that Pitx2c, a recognized determinant of morphological leftness, is expressed in the Shh null mutants on both the right and left sides of the inflow region, and on both sides of the solitary arterial trunk exiting from the heart. It has been established that derivatives of the second heart field expressing Isl1 are asymmetrically distributed in the developing normal heart. We now show that this population is reduced in the hearts from the Shh null mutants, likely contributing to the defects. To distinguish the consequences of reduced contributions from the second heart field from those of left-right patterning disturbance, we disrupted the movement of second heart field cells into the heart by expressing dominant-negative Rho kinase in the population of cells expressing Isl1. This resulted in absence of the vestibular spine, and presence of atrioventricular septal defects closely resembling those seen in the hearts from the Shh null mutants. The primary atrial septum, however, was well formed, and there was no evidence of isomerism of the atrial appendages, suggesting that these features do not relate to disruption of the contributions made by the second heart field. We demonstrate, therefore, that the Shh null mouse is a model of isomerism of the left atrial appendages, and show that the recognized associated malformations found at the venous pole of the heart in the setting of left isomerism are likely to arise from

  5. Hedgehog signaling regulates FOXA2 in esophageal embryogenesis and Barrett’s metaplasia

    PubMed Central

    Wang, David H.; Tiwari, Anjana; Kim, Monica E.; Clemons, Nicholas J.; Regmi, Nanda L.; Hodges, William A.; Berman, David M.; Montgomery, Elizabeth A.; Watkins, D. Neil; Zhang, Xi; Zhang, Qiuyang; Jie, Chunfa; Spechler, Stuart J.; Souza, Rhonda F.

    2014-01-01

    Metaplasia can result when injury reactivates latent developmental signaling pathways that determine cell phenotype. Barrett’s esophagus is a squamous-to-columnar epithelial metaplasia caused by reflux esophagitis. Hedgehog (Hh) signaling is active in columnar-lined, embryonic esophagus and inactive in squamous-lined, adult esophagus. We showed previously that Hh signaling is reactivated in Barrett’s metaplasia and overexpression of Sonic hedgehog (SHH) in mouse esophageal squamous epithelium leads to a columnar phenotype. Here, our objective was to identify Hh target genes involved in Barrett’s pathogenesis. By microarray analysis, we found that the transcription factor Foxa2 is more highly expressed in murine embryonic esophagus compared with postnatal esophagus. Conditional activation of Shh in mouse esophageal epithelium induced FOXA2, while FOXA2 expression was reduced in Shh knockout embryos, establishing Foxa2 as an esophageal Hh target gene. Evaluation of patient samples revealed FOXA2 expression in Barrett’s metaplasia, dysplasia, and adenocarcinoma but not in esophageal squamous epithelium or squamous cell carcinoma. In esophageal squamous cell lines, Hh signaling upregulated FOXA2, which induced expression of MUC2, an intestinal mucin found in Barrett’s esophagus, and the MUC2-processing protein AGR2. Together, these data indicate that Hh signaling induces expression of genes that determine an intestinal phenotype in esophageal squamous epithelial cells and may contribute to the development of Barrett’s metaplasia. PMID:25083987

  6. Nicotine induces self-renewal of pancreatic cancer stem cells via neurotransmitter-driven activation of sonic hedgehog signalling.

    PubMed

    Al-Wadei, Mohammed H; Banerjee, Jheelam; Al-Wadei, Hussein A N; Schuller, Hildegard M

    2016-01-01

    A small subpopulation of pancreatic cancer cells with characteristics of stem cells drive tumour initiation, progression and metastasis. A better understanding of the regulation of cancer stem cells may lead to more effective cancer prevention and therapy. We have shown that the proliferation and migration of pancreatic cancer cell lines is activated by the nicotinic receptor-mediated release of stress neurotransmitters, responses reversed by γ-aminobutyric acid (GABA). However, the observed cancer inhibiting effects of GABA will only succeed clinically if GABA inhibits pancreatic cancer stem cells (PCSCs) in addition to the more differentiated cancer cells that comprise the majority of cancer tissues and cell lines. Using PCSCs isolated from two pancreatic cancer patients by cell sorting and by spheroid formation assay from pancreatic cancer cell line Panc-1, we tested the hypothesis that nicotine induces the self-renewal of PCSCs. Nicotinic acetylcholine receptors (nAChRs) α3, α4, α5 and α7 were expressed and chronic exposure to nicotine increased the protein expression of these receptors. Immunoassays showed that PCSCs produced the stress neurotransmitters epinephrine and norepinephrine and the inhibitory neurotransmitter GABA. Chronic nicotine significantly increased the production of stress neurotransmitters and sonic hedgehog (SHH) while inducing Gli1 protein and decreasing GABA. GABA treatment inhibited the induction of SHH and Gli1. Spheroid formation and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide assays showed significant nicotine-induced increases in self renewal and cell proliferation, responses blocked by GABA. Our data suggest that nicotine increases the SHH-mediated malignant potential of PCSCs and that GABA prevents these effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Hedgehog signaling regulates segment formation in the annelid Platynereis.

    PubMed

    Dray, Nicolas; Tessmar-Raible, Kristin; Le Gouar, Martine; Vibert, Laura; Christodoulou, Foteini; Schipany, Katharina; Guillou, Aurélien; Zantke, Juliane; Snyman, Heidi; Béhague, Julien; Vervoort, Michel; Arendt, Detlev; Balavoine, Guillaume

    2010-07-16

    Annelids and arthropods share a similar segmented organization of the body whose evolutionary origin remains unclear. The Hedgehog signaling pathway, prominent in arthropod embryonic segment patterning, has not been shown to have a similar function outside arthropods. We show that the ligand Hedgehog, the receptor Patched, and the transcription factor Gli are all expressed in striped patterns before the morphological appearance of segments in the annelid Platynereis dumerilii. Treatments with small molecules antagonistic to Hedgehog signaling disrupt segment formation. Platynereis Hedgehog is not necessary to establish early segment patterns but is required to maintain them. The molecular similarity of segment patterning functions of the Hedgehog pathway in an annelid and in arthropods supports a common origin of segmentation in protostomes.

  8. Lentivirus-mediated delivery of sonic hedgehog into the striatum stimulates neuroregeneration in a rat model of Parkinson disease.

    PubMed

    Zhang, Yi; Dong, Weiren; Guo, Suiqun; Zhao, Shu; He, Suifen; Zhang, Lihua; Tang, Yinjuan; Wang, Haihong

    2014-12-01

    Parkinson disease (PD) is a progressive neurodegenerative disorder in which the nigrostriatal pathway, consisting of dopaminergic neuronal projections from the substantia nigra to the striatum, degenerates. Viral transduction is currently the most promising in vivo strategy for delivery of therapeutic proteins into the brain for treatment of PD. Sonic hedgehog (Shh) is necessary for cell proliferation, differentiation and neuroprotection in the central nervous system. In this study, we investigated the effects of overexpressed N-terminal product of SHH (SHH-N) in a PD model rat. A lentiviral vector containing SHH-N was stereotactically injected into the striatum 24 h after a striatal 6-OHDA lesion. We found that overexpressed SHH-N attenuated behavioral deficits and reduced the loss of dopamine neurons in the substantia nigra and the loss of dopamine fibers in the striatum. In addition, fluoro-ruby-labeled nigrostriatal projections were also repaired. Together, our results demonstrate the feasibility and efficacy of using the strategy of lentivirus-mediated Shh-N delivery to delay nigrostriatal pathway degeneration. This strategy holds the potential for therapeutic application in the treatment of PD.

  9. In smokers, Sonic hedgehog modulates pulmonary endothelial function through vascular endothelial growth factor.

    PubMed

    Henno, Priscilla; Grassin-Delyle, Stanislas; Belle, Emeline; Brollo, Marion; Naline, Emmanuel; Sage, Edouard; Devillier, Philippe; Israël-Biet, Dominique

    2017-05-23

    Tobacco-induced pulmonary vascular disease is partly driven by endothelial dysfunction. The Sonic hedgehog (SHH) pathway is involved in vascular physiology. We sought to establish whether the SHH pathway has a role in pulmonary endothelial dysfunction in smokers. The ex vivo endothelium-dependent relaxation of pulmonary artery rings in response to acetylcholine (Ach) was compared in 34 current or ex-smokers and 8 never-smokers. The results were expressed as a percentage of the contraction with phenylephrine. We tested the effects of SHH inhibitors (GANT61 and cyclopamine), an SHH activator (SAG) and recombinant VEGF on the Ach-induced relaxation. The level of VEGF protein in the pulmonary artery ring was measured in an ELISA. SHH pathway gene expression was quantified in reverse transcriptase-quantitative polymerase chain reactions. Ach-induced relaxation was much less intense in smokers than in never-smokers (respectively 24 ± 6% and 50 ± 7% with 10 -4 M Ach; p = 0.028). All SHH pathway genes were expressed in pulmonary artery rings from smokers. SHH inhibition by GANT61 reduced Ach-induced relaxation and VEGF gene expression in the pulmonary artery ring. Recombinant VEGF restored the ring's endothelial function. VEGF gene and protein expression levels in the pulmonary artery rings were positively correlated with the degree of Ach-induced relaxation and negatively correlated with the number of pack-years. SHH pathway genes and proteins are expressed in pulmonary artery rings from smokers, where they modulate endothelial function through VEGF.

  10. Histone deacetylase and Cullin3-REN(KCTD11) ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation.

    PubMed

    Canettieri, Gianluca; Di Marcotullio, Lucia; Greco, Azzura; Coni, Sonia; Antonucci, Laura; Infante, Paola; Pietrosanti, Laura; De Smaele, Enrico; Ferretti, Elisabetta; Miele, Evelina; Pelloni, Marianna; De Simone, Giuseppina; Pedone, Emilia Maria; Gallinari, Paola; Giorgi, Alessandra; Steinkühler, Christian; Vitagliano, Luigi; Pedone, Carlo; Schinin, M Eugenià; Screpanti, Isabella; Gulino, Alberto

    2010-02-01

    Hedgehog signalling is crucial for development and is deregulated in several tumours, including medulloblastoma. Regulation of the transcriptional activity of Gli (glioma-associated oncogene) proteins, effectors of the Hedgehog pathway, is poorly understood. We show here that Gli1 and Gli2 are acetylated proteins and that their HDAC-mediated deacetylation promotes transcriptional activation and sustains a positive autoregulatory loop through Hedgehog-induced upregulation of HDAC1. This mechanism is turned off by HDAC1 degradation through an E3 ubiquitin ligase complex formed by Cullin3 and REN, a Gli antagonist lost in human medulloblastoma. Whereas high HDAC1 and low REN expression in neural progenitors and medulloblastomas correlates with active Hedgehog signalling, loss of HDAC activity suppresses Hedgehog-dependent growth of neural progenitors and tumour cells. Consistent with this, abrogation of Gli1 acetylation enhances cellular proliferation and transformation. These data identify an integrated HDAC- and ubiquitin-mediated circuitry, where acetylation of Gli proteins functions as an unexpected key transcriptional checkpoint of Hedgehog signalling.

  11. A review of hedgehog signaling in cranial bone development

    PubMed Central

    Pan, Angel; Chang, Le; Nguyen, Alan; James, Aaron W.

    2013-01-01

    During craniofacial development, the Hedgehog (HH) signaling pathway is essential for mesodermal tissue patterning and differentiation. The HH family consists of three protein ligands: Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and Desert Hedgehog (DHH), of which two are expressed in the craniofacial complex (IHH and SHH). Dysregulations in HH signaling are well documented to result in a wide range of craniofacial abnormalities, including holoprosencephaly (HPE), hypotelorism, and cleft lip/palate. Furthermore, mutations in HH effectors, co-receptors, and ciliary proteins result in skeletal and craniofacial deformities. Cranial suture morphogenesis is a delicate developmental process that requires control of cell commitment, proliferation and differentiation. This review focuses on both what is known and what remains unknown regarding HH signaling in cranial suture morphogenesis and intramembranous ossification. As demonstrated from murine studies, expression of both SHH and IHH is critical to the formation and fusion of the cranial sutures and calvarial ossification. SHH expression has been observed in the cranial suture mesenchyme and its precise function is not fully defined, although some postulate SHH to delay cranial suture fusion. IHH expression is mainly found on the osteogenic fronts of the calvarial bones, and functions to induce cell proliferation and differentiation. Unfortunately, neonatal lethality of IHH deficient mice precludes a detailed examination of their postnatal calvarial phenotype. In summary, a number of basic questions are yet to be answered regarding domains of expression, developmental role, and functional overlap of HH morphogens in the calvaria. Nevertheless, SHH and IHH ligands are integral to cranial suture development and regulation of calvarial ossification. When HH signaling goes awry, the resultant suite of morphologic abnormalities highlights the important roles of HH signaling in cranial development. PMID:23565096

  12. Peptide amphiphile nanofiber hydrogel delivery of sonic hedgehog protein to the cavernous nerve to promote regeneration and prevent erectile dysfunction.

    PubMed

    Choe, Shawn; Bond, Christopher W; Harrington, Daniel A; Stupp, Samuel I; McVary, Kevin T; Podlasek, Carol A

    2017-01-01

    Erectile dysfunction (ED) has high impact on quality of life in prostatectomy, diabetic and aging patients. An underlying mechanism is cavernous nerve (CN) injury, which causes ED in up to 80% of prostatectomy patients. We examine how sonic hedgehog (SHH) treatment with innovative peptide amphiphile nanofiber hydrogels (PA), promotes CN regeneration after injury. SHH and its receptors patched (PTCH1) and smoothened (SMO) are localized in PG neurons and glia. SMO undergoes anterograde transport to signal to downstream targets. With crush injury, PG neurons degenerate and undergo apoptosis. SHH protein decreases, SMO localization changes to the neuronal cell surface, and anterograde transport stops. With SHH treatment SHH is taken up at the injury site and undergoes retrograde transport to PG neurons, allowing SMO transport to occur, and neurons remain intact. SHH treatment prevents neuronal degeneration, maintains neuronal, glial and downstream target signaling, and is significant as a regenerative therapy. Published by Elsevier Inc.

  13. Administration of sonic hedgehog protein induces angiogenesis and has therapeutic effects after stroke in rats.

    PubMed

    Chen, Sheng-Cai; Huang, Ming; He, Quan-Wei; Zhang, Yan; Opoku, Elvis Nana; Yang, Hang; Jin, Hui-Juan; Xia, Yuan-Peng; Hu, Bo

    2017-06-03

    The Sonic hedgehog (Shh) signaling pathway is recapitulated in response to ischemic injury. Here, we investigated the clinical implications of Shh protein in the ischemic stroke and explored the underlying mechanism. Intracerebroventricular injection of Shh, Cyclopamine, or anti-vascular endothelial growth factor (VEGF) was performed immediately after permanent middle cerebral artery occlusion (pMCAO) surgery and lasted for 7days (d). Phosphate-buffered saline (PBS) was used as control. Neurological deficits and infarct volume were examined 7d after pMCAO. Microvascular density with fluorescein-iso-thiocyanate (FITC) assay and double staining with CD31 and Ki-67 was measured at 7d. To observe in vitro angiogenesis, rat brain microvascular endothelial cells (RBMECs) were incubated under oxygen glucose deprivation (OGD) for 6h (h) and treated with Shh/anti-VEGF. We found that (1) Shh improved neurological scores and reduced infarct volume, which was blocked by Cyclopamine, (2) Shh improved the microvascular density and promoted angiogenesis and neuron survival in the ischemic boundary zone, (3) Shh enhanced VEGF expression and VEGF antibody could reverse angiogenic and protective effect of Shh in vivo and in vitro. These data demonstrate that the administration of Shh protein could protect brain from ischemic injury, in part by promoting angiogenic repair. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Downregulation of the Sonic Hedgehog/Gli pathway transcriptional target Neogenin-1 is associated with basal cell carcinoma aggressiveness.

    PubMed

    Casas, Bárbara S; Adolphe, Christelle; Lois, Pablo; Navarrete, Nelson; Solís, Natalia; Bustamante, Eva; Gac, Patricio; Cabané, Patricio; Gallegos, Ivan; Wainwright, Brandon J; Palma, Verónica

    2017-10-13

    Basal Cell Carcinoma (BCC) is one of the most diagnosed cancers worldwide. It develops due to an unrestrained Sonic Hedgehog (SHH) signaling activity in basal cells of the skin. Certain subtypes of BCC are more aggressive than others, although the molecular basis of this phenomenon remains unknown. We have previously reported that Neogenin-1 (NEO1) is a downstream target gene of the SHH/GLI pathway in neural tissue. Given that SHH participates in epidermal homeostasis, here we analyzed the epidermal expression of NEO1 in order to identify whether it plays a role in adult epidermis or BCC. We describe the mRNA and protein expression profile of NEO1 and its ligands (Netrin-1 and RGMA) in human and mouse control epidermis and in a broad range of human BCCs. We identify in human BCC a significant positive correlation in the levels of NEO1 receptor, NTN-1 and RGMA ligands with respect to GLI1 , the main target gene of the canonical SHH pathway. Moreover, we show via cyclopamine inhibition of the SHH/GLI pathway of ex vivo cultures that NEO1 likely functions as a downstream target of SHH/GLI signaling in the skin. We also show how Neo1 expression decreases throughout BCC progression in the K14-Cre:Ptch1 lox/lox mouse model and that aggressive subtypes of human BCC exhibit lower levels of NEO1 than non-aggressive BCC samples. Taken together, these data suggest that NEO1 is a SHH/GLI target in epidermis. We propose that NEO1 may be important in tumor onset and is then down-regulated in advanced BCC or aggressive subtypes.

  15. Downregulation of the Sonic Hedgehog/Gli pathway transcriptional target Neogenin-1 is associated with basal cell carcinoma aggressiveness

    PubMed Central

    Casas, Bárbara S.; Adolphe, Christelle; Lois, Pablo; Navarrete, Nelson; Solís, Natalia; Bustamante, Eva; Gac, Patricio; Cabané, Patricio; Gallegos, Ivan; Wainwright, Brandon J.; Palma, Verónica

    2017-01-01

    Basal Cell Carcinoma (BCC) is one of the most diagnosed cancers worldwide. It develops due to an unrestrained Sonic Hedgehog (SHH) signaling activity in basal cells of the skin. Certain subtypes of BCC are more aggressive than others, although the molecular basis of this phenomenon remains unknown. We have previously reported that Neogenin-1 (NEO1) is a downstream target gene of the SHH/GLI pathway in neural tissue. Given that SHH participates in epidermal homeostasis, here we analyzed the epidermal expression of NEO1 in order to identify whether it plays a role in adult epidermis or BCC. We describe the mRNA and protein expression profile of NEO1 and its ligands (Netrin-1 and RGMA) in human and mouse control epidermis and in a broad range of human BCCs. We identify in human BCC a significant positive correlation in the levels of NEO1 receptor, NTN-1 and RGMA ligands with respect to GLI1, the main target gene of the canonical SHH pathway. Moreover, we show via cyclopamine inhibition of the SHH/GLI pathway of ex vivo cultures that NEO1 likely functions as a downstream target of SHH/GLI signaling in the skin. We also show how Neo1 expression decreases throughout BCC progression in the K14-Cre:Ptch1lox/lox mouse model and that aggressive subtypes of human BCC exhibit lower levels of NEO1 than non-aggressive BCC samples. Taken together, these data suggest that NEO1 is a SHH/GLI target in epidermis. We propose that NEO1 may be important in tumor onset and is then down-regulated in advanced BCC or aggressive subtypes. PMID:29137400

  16. Hedgehog Signaling Promotes the Proliferation and Subsequent Hair Cell Formation of Progenitor Cells in the Neonatal Mouse Cochlea

    PubMed Central

    Chen, Yan; Lu, Xiaoling; Guo, Luo; Ni, Wenli; Zhang, Yanping; Zhao, Liping; Wu, Lingjie; Sun, Shan; Zhang, Shasha; Tang, Mingliang; Li, Wenyan; Chai, Renjie; Li, Huawei

    2017-01-01

    Hair cell (HC) loss is the major cause of permanent sensorineural hearing loss in mammals. Unlike lower vertebrates, mammalian cochlear HCs cannot regenerate spontaneously after damage, although the vestibular system does maintain limited HC regeneration capacity. Thus HC regeneration from the damaged sensory epithelium has been one of the main areas of research in the field of hearing restoration. Hedgehog signaling plays important roles during the embryonic development of the inner ear, and it is involved in progenitor cell proliferation and differentiation as well as the cell fate decision. In this study, we show that recombinant Sonic Hedgehog (Shh) protein effectively promotes sphere formation, proliferation, and differentiation of Lgr5+ progenitor cells isolated from the neonatal mouse cochlea. To further explore this, we determined the effect of Hedgehog signaling on cell proliferation and HC regeneration in cultured cochlear explant from transgenic R26-SmoM2 mice that constitutively activate Hedgehog signaling in the supporting cells of the cochlea. Without neomycin treatment, up-regulation of Hedgehog signaling did not significantly promote cell proliferation or new HC formation. However, after injury to the sensory epithelium by neomycin treatment, the over-activation of Hedgehog signaling led to significant supporting cell proliferation and HC regeneration in the cochlear epithelium explants. RNA sequencing and real-time PCR were used to compare the transcripts of the cochleae from control mice and R26-SmoM2 mice, and multiple genes involved in the proliferation and differentiation processes were identified. This study has important implications for the treatment of sensorineural hearing loss by manipulating the Hedgehog signaling pathway. PMID:29311816

  17. The Role of the Sonic Hedgehog Pathway for Prostate Cancer Progression

    DTIC Science & Technology

    2005-02-01

    analyses. Sumin Chi contributed to wers GY, Qi YP, Gysin S, Fernandez-Del Castillo C, Yajnik V. AntoniuB, McMahon M, Warshaw AL Hebrok M: Hedgehog is an...role for p27kiP, gene dosage • 15. Romer JT, Kimura H, Magdaleno S et at: 391(6662), 90-92 (1998). in a mouse model of prostate carcinogenesis

  18. Positive and Negative Regulation of Muscle Cell Identity by Members of the hedgehog and TGF-β Gene Families

    PubMed Central

    Du, Shao Jun; Devoto, Stephen H.; Westerfield, Monte; Moon, Randall T.

    1997-01-01

    We have examined whether the development of embryonic muscle fiber type is regulated by competing influences between Hedgehog and TGF-β signals, as previously shown for development of neuronal cell identity in the neural tube. We found that ectopic expression of Hedgehogs or inhibition of protein kinase A in zebrafish embryos induces slow muscle precursors throughout the somite but muscle pioneer cells only in the middle of the somite. Ectopic expression in the notochord of Dorsalin-1, a member of the TGF-β superfamily, inhibits the formation of muscle pioneer cells, demonstrating that TGF-β signals can antagonize the induction of muscle pioneer cells by Hedgehog. We propose that a Hedgehog signal first induces the formation of slow muscle precursor cells, and subsequent Hedgehog and TGF-β signals exert competing positive and negative influences on the development of muscle pioneer cells. PMID:9314535

  19. Sonic hedgehog signaling in spinal cord contributes to morphine-induced hyperalgesia and tolerance through upregulating brain-derived neurotrophic factor expression

    PubMed Central

    Song, Zhi-Jing; Miao, Shuai; Zhao, Ye; Wang, Xiu-Li; Liu, Yue-Peng

    2018-01-01

    Purpose Preventing opioid-induced hyperalgesia and tolerance continues to be a major clinical challenge, and the underlying mechanisms of hyperalgesia and tolerance remain elusive. Here, we investigated the role of sonic hedgehog (Shh) signaling in opioid-induced hyperalgesia and tolerance. Methods Shh signaling expression, behavioral changes, and neurochemical alterations induced by morphine were analyzed in male adult CD-1 mice with repeated administration of morphine. To investigate the contribution of Shh to morphine-induced hyperalgesia (MIH) and tolerance, Shh signaling inhibitor cyclopamine and Shh small interfering RNA (siRNA) were used. To explore the mechanisms of Shh signaling in MIH and tolerance, brain-derived neurotrophic factor (BDNF) inhibitor K252 and anti-BDNF antibody were used. Results Repeated administration of morphine produced obvious hyperalgesia and tolerance. The behavioral changes were correlated with the upregulation and activation of morphine treatment-induced Shh signaling. Pharmacologic and genetic inhibition of Shh signaling significantly delayed the generation of MIH and tolerance and associated neurochemical changes. Chronic morphine administration also induced upregulation of BDNF. Inhibiting BDNF effectively delayed the generation of MIH and tolerance. The upregulation of BDNF induced by morphine was significantly suppressed by inhibiting Shh signaling. In naïve mice, exogenous activation of Shh signaling caused a rapid increase of BDNF expression, as well as thermal hyperalgesia. Inhibiting BDNF significantly suppressed smoothened agonist-induced hyperalgesia. Conclusion These findings suggest that Shh signaling may be a critical mediator for MIH and tolerance by regulating BDNF expression. Inhibiting Shh signaling, especially during the early phase, may effectively delay or suppress MIH and tolerance. PMID:29662325

  20. Sex and hedgehog: roles of genes in the hedgehog signaling pathway in mammalian sexual differentiation.

    PubMed

    Franco, Heather L; Yao, Humphrey H-C

    2012-01-01

    The chromosome status of the mammalian embryo initiates a multistage process of sexual development in which the bipotential reproductive system establishes itself as either male or female. These events are governed by intricate cell-cell and interorgan communication that is regulated by multiple signaling pathways. The hedgehog signaling pathway was originally identified for its key role in the development of Drosophila, but is now recognized as a critical developmental regulator in many species, including humans. In addition to its developmental roles, the hedgehog signaling pathway also modulates adult organ function, and misregulation of this pathway often leads to diseases, such as cancer. The hedgehog signaling pathway acts through its morphogenetic ligands that signal from ligand-producing cells to target cells over a specified distance. The target cells then respond in a graded manner based on the concentration of the ligands that they are exposed to. Through this unique mechanism of action, the hedgehog signaling pathway elicits cell fate determination, epithelial-mesenchymal interactions, and cellular homeostasis. Here, we review current findings on the roles of hedgehog signaling in the sexually dimorphic development of the reproductive organs with an emphasis on mammals and comparative evidence in other species.

  1. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Zhong Xin; Sun, Cong Cong; Wenzhou People's Hospital, Wenzhou, Zhejiang

    Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Westernmore » blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.« less

  2. Loss and Re-emergence of Legs in Snakes by Modular Evolution of Sonic hedgehog and HOXD Enhancers.

    PubMed

    Leal, Francisca; Cohn, Martin J

    2016-11-07

    Limb reduction and loss are hallmarks of snake evolution. Although advanced snakes are completely limbless, basal and intermediate snakes retain pelvic girdles and small rudiments of the femur. Moreover, legs may have re-emerged in extinct snake lineages [1-5], suggesting that the mechanisms of limb development were not completely lost in snakes. Here we report that hindlimb development arrests in python embryos as a result of mutations that abolish essential transcription factor binding sites in the limb-specific enhancer of Sonic hedgehog (SHH). Consequently, SHH transcription is weak and transient in python hindlimb buds, leading to early termination of a genetic circuit that drives limb outgrowth. Our results suggest that degenerate evolution of the SHH limb enhancer played a role in reduction of hindlimbs during snake evolution. By contrast, HOXD digit enhancers are conserved in pythons, and HOXD gene expression in the hindlimb buds progresses to the distal phase, forming an autopodial (digit) domain. Python hindlimb buds then develop transitory pre-chondrogenic condensations of the tibia, fibula, and footplate, raising the possibility that re-emergence of hindlimbs during snake evolution did not require de novo re-evolution of lost structures but instead could have resulted from persistence of embryonic legs. VIDEO ABSTRACT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Disruption of sonic hedgehog signaling in Ellis-van Creveld dwarfism confers protection against bipolar affective disorder.

    PubMed

    Ginns, E I; Galdzicka, M; Elston, R C; Song, Y E; Paul, S M; Egeland, J A

    2015-10-01

    Ellis-van Creveld syndrome, an autosomal recessively inherited chondrodysplastic dwarfism, is frequent among Old Order Amish of Pennsylvania. Decades of longitudinal research on bipolar affective disorder (BPAD) revealed cosegregation of high numbers of EvC and Bipolar I (BPI) cases in several large Amish families descending from the same pioneer. Despite the high prevalence of both disorders in these families, no EvC individual has ever been reported with BPI. The proximity of the EVC gene to our previously reported chromosome 4p16 BPAD locus with protective alleles, coupled with detailed clinical observations that EvC and BPI do not occur in the same individuals, led us to hypothesize that the genetic defect causing EvC in the Amish confers protection from BPI. This hypothesis is supported by a significant negative association of these two disorders when contrasted with absence of disease (P=0.029, Fisher's exact test, two-sided, verified by permutation to estimate the null distribution of the test statistic). As homozygous Amish EVC mutations causing EvC dwarfism do so by disrupting sonic hedgehog (Shh) signaling, our data implicate Shh signaling in the underlying pathophysiology of BPAD. Understanding how disrupted Shh signaling protects against BPI could uncover variants in the Shh pathway that cause or increase risk for this and related mood disorders.

  4. The Role of Polycomb Group Gene BMI-1 in the Development of Prostate Cancer

    DTIC Science & Technology

    2013-07-01

    cyclin D1 (Wnt target) and Bcl-2 (Sonic Hedgehog -SHH target). The novel finding in presented in the 2nd annual report was that regulation of Bcl-2... hedgehog (SHH) pathway that is very well know to regulate Bcl-2. For this purpose we determined the expression level of Bcl-2 in BMI1- overexpressing and...2006; 15: 217-27. 16. Hegde GV, Munger CM, Emanuel K, Joshi AD, Greiner TC, Weisenburger DD, Vose JM, et al. Targeting of sonic hedgehog -GLI signaling

  5. Mobilization of Neural Precursors in the Circulating Blood of Patients with Multiple Sclerosis

    DTIC Science & Technology

    2013-09-01

    Bongarzone ER. Expression of sonic hedgehog targeted genes in peripheral blood mononuclear cells of patients with multiple sclerosis. Society for...Print Program#/Poster#: 322.13 Presentation Title: Expression of sonic  hedgehog  targeted genes in peripheral blood mononuclear cells of patients with...analyses. Gene array hybridization showed up­ regulation of various components of the Sonic  hedgehog  (Shh) pathway including, Olig1 and Olig2. Taken

  6. Sonic hedgehog (Shh)/Gli modulates the spatial organization of neuroepithelial cell proliferation in the developing chick optic tectum.

    PubMed

    Rapacioli, Melina; Botelho, Joao; Cerda, Gustavo; Duarte, Santiago; Elliot, Matías; Palma, Verónica; Flores, Vladimir

    2012-10-02

    Sonic hedgehog (Shh)/Gli pathway plays an important regulatory role on the neuroepithelial cells (NEc) proliferation in the dorsal regions of the developing vertebrate Central Nervous System. The aim of this paper was to analyze the effect of the Shh/Gli signaling pathway activation on the proliferation dynamics and/or the spatial organization of the NEc proliferation activity during early stages of the developing chick optic tectum (OT). In ovo pharmacological gain and loss of hedgehog function approaches were complemented with in vivo electroporation experiments in order to create ectopic sources of either Shh or Gli activator (GliA) proteins in the OT. NEc proliferating activity was analyzed at ED 4/4.5 by recording the spatial co-ordinates of the entire population of mitotic NEc (mNEc) located along OT dorsal-ventral sections. Several space signals (numerical sequences) were derived from the mNEc spatial co-ordinate records and analyzed by different standardized non-linear methods of signal analysis. In ovo pharmacologic treatment with cyclopamine resulted in dramatic failure in the OT expansion while the agonist purmorphamine produced the opposite result, a huge expansion of the OT vesicle. Besides, GliA and Shh misexpressions interfere with the formation of the intertectal fissure located along the dorsal midline. This morphogenetic alteration is accompanied by an increase in the mNEc density. There is a gradient in the response of NEcs to Shh and GliA: the increase in mNEc density is maximal near the dorsal regions and decrease towards the OT-tegmental boundary. Biomathematical analyses of the signals derived from the mNEc records show that both Shh and GliA electroporations change the proliferation dynamics and the spatial organization of the mNEc as revealed by the changes in the scaling index estimated by these methods. The present results show that the Shh/Gli signaling pathway plays a critical role in the OT expansion and modelling. This effect is

  7. Human germline hedgehog pathway mutations predispose to fatty liver.

    PubMed

    Guillen-Sacoto, Maria J; Martinez, Ariel F; Abe, Yu; Kruszka, Paul; Weiss, Karin; Everson, Joshua L; Bataller, Ramon; Kleiner, David E; Ward, Jerrold M; Sulik, Kathleen K; Lipinski, Robert J; Solomon, Benjamin D; Muenke, Maximilian

    2017-10-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common form of liver disease. Activation of hedgehog (Hh) signaling has been implicated in the progression of NAFLD and proposed as a therapeutic target; however, the effects of Hh signaling inhibition have not been studied in humans with germline mutations that affect this pathway. Patients with holoprosencephaly (HPE), a disorder associated with germline mutations disrupting Sonic hedgehog (SHH) signaling, were clinically evaluated for NAFLD. A combined mouse model of Hh signaling attenuation (Gli2 heterozygous null: Gli2 +/- ) and diet-induced NAFLD was used to examine aspects of NAFLD and hepatic gene expression profiles, including molecular markers of hepatic fibrosis and inflammation. Patients with HPE had a higher prevalence of liver steatosis compared to the general population, independent of obesity. Exposure of Gli2 +/- mice to fatty liver-inducing diets resulted in increased liver steatosis compared to wild-type mice. Similar to humans, this effect was independent of obesity in the mutant mice and was associated with decreased expression of pro-fibrotic and pro-inflammatory genes, and increased expression of PPARγ, a potent anti-fibrogenic and anti-inflammatory regulator. Interestingly, tumor suppressors p53 and p16INK4 were found to be downregulated in the Gli2 +/- mice exposed to a high-fat diet. Our results indicate that germline mutations disrupting Hh signaling promotes liver steatosis, independent of obesity, with reduced fibrosis. While Hh signaling inhibition has been associated with a better NAFLD prognosis, further studies are required to evaluate the long-term effects of mutations affecting this pathway. Lay summary: Non-alcoholic fatty liver disease (NAFLD) is characterized by excess fat deposition in the liver predominantly due to high calorie intake and a sedentary lifestyle. NAFLD progression is usually accompanied by activation of the Sonic hedgehog (SHH) pathway leading to fibrous

  8. Angiogenesis within the developing mouse neural tube is dependent on sonic hedgehog signaling: possible roles of motor neurons.

    PubMed

    Nagase, Takashi; Nagase, Miki; Yoshimura, Kotaro; Fujita, Toshiro; Koshima, Isao

    2005-06-01

    Embryonic morphogenesis of vascular and nervous systems is tightly coordinated, and recent studies revealed that some neurogenetic factors such as Sonic hedgehog (Shh) also exhibit angiogenetic potential. Vascularization within the developing mouse neural tube depends on vessel sprouting from the surrounding vascular plexus. Previous studies implicated possible roles of VEGF/Flk-1 and Angiopoietin-1(Ang-1)/Tie-2 signaling as candidate molecules functioning in this process. Examining gene expressions of these factors at embryonic day (E) 9.5 and 10.5, we unexpectedly found that both VEGF and Ang-1 were expressed in the motor neurons in the ventral neural tube. The motor neurons were indeed located in the close vicinity of the infiltrating vessels, suggesting involvement of motor neurons in the sprouting. To substantiate this possibility, we inhibited induction of the motor neurons in the cultured mouse embryos by cyclopamine, a Shh signaling blocker. The vessel sprouting was dramatically impaired by inhibition of Shh signaling, together with nearly complete loss of the motor neurons. Expression of Ang-1, but not VEGF, within the neural tube was remarkably reduced in the cyclopamine treated embryos. These results suggest that the neural tube angiogenesis is dependent on Shh signaling, and mediated, at least in part, by the Ang-1 positive motor neurons.

  9. Cell fate specification in the lingual epithelium is controlled by antagonistic activities of Sonic hedgehog and retinoic acid.

    PubMed

    El Shahawy, Maha; Reibring, Claes-Göran; Neben, Cynthia L; Hallberg, Kristina; Marangoni, Pauline; Harfe, Brian D; Klein, Ophir D; Linde, Anders; Gritli-Linde, Amel

    2017-07-01

    The interaction between signaling pathways is a central question in the study of organogenesis. Using the developing murine tongue as a model, we uncovered unknown relationships between Sonic hedgehog (SHH) and retinoic acid (RA) signaling. Genetic loss of SHH signaling leads to enhanced RA activity subsequent to loss of SHH-dependent expression of Cyp26a1 and Cyp26c1. This causes a cell identity switch, prompting the epithelium of the tongue to form heterotopic minor salivary glands and to overproduce oversized taste buds. At developmental stages during which Wnt10b expression normally ceases and Shh becomes confined to taste bud cells, loss of SHH inputs causes the lingual epithelium to undergo an ectopic and anachronic expression of Shh and Wnt10b in the basal layer, specifying de novo taste placode induction. Surprisingly, in the absence of SHH signaling, lingual epithelial cells adopted a Merkel cell fate, but this was not caused by enhanced RA signaling. We show that RA promotes, whereas SHH, acting strictly within the lingual epithelium, inhibits taste placode and lingual gland formation by thwarting RA activity. These findings reveal key functions for SHH and RA in cell fate specification in the lingual epithelium and aid in deciphering the molecular mechanisms that assign cell identity.

  10. Cell fate specification in the lingual epithelium is controlled by antagonistic activities of Sonic hedgehog and retinoic acid

    PubMed Central

    Neben, Cynthia L.; Harfe, Brian D.; Linde, Anders

    2017-01-01

    The interaction between signaling pathways is a central question in the study of organogenesis. Using the developing murine tongue as a model, we uncovered unknown relationships between Sonic hedgehog (SHH) and retinoic acid (RA) signaling. Genetic loss of SHH signaling leads to enhanced RA activity subsequent to loss of SHH-dependent expression of Cyp26a1 and Cyp26c1. This causes a cell identity switch, prompting the epithelium of the tongue to form heterotopic minor salivary glands and to overproduce oversized taste buds. At developmental stages during which Wnt10b expression normally ceases and Shh becomes confined to taste bud cells, loss of SHH inputs causes the lingual epithelium to undergo an ectopic and anachronic expression of Shh and Wnt10b in the basal layer, specifying de novo taste placode induction. Surprisingly, in the absence of SHH signaling, lingual epithelial cells adopted a Merkel cell fate, but this was not caused by enhanced RA signaling. We show that RA promotes, whereas SHH, acting strictly within the lingual epithelium, inhibits taste placode and lingual gland formation by thwarting RA activity. These findings reveal key functions for SHH and RA in cell fate specification in the lingual epithelium and aid in deciphering the molecular mechanisms that assign cell identity. PMID:28715412

  11. Hypomorphic Recessive Variants in SUFU Impair the Sonic Hedgehog Pathway and Cause Joubert Syndrome with Cranio-facial and Skeletal Defects.

    PubMed

    De Mori, Roberta; Romani, Marta; D'Arrigo, Stefano; Zaki, Maha S; Lorefice, Elisa; Tardivo, Silvia; Biagini, Tommaso; Stanley, Valentina; Musaev, Damir; Fluss, Joel; Micalizzi, Alessia; Nuovo, Sara; Illi, Barbara; Chiapparini, Luisa; Di Marcotullio, Lucia; Issa, Mahmoud Y; Anello, Danila; Casella, Antonella; Ginevrino, Monia; Leggins, Autumn Sa'na; Roosing, Susanne; Alfonsi, Romina; Rosati, Jessica; Schot, Rachel; Mancini, Grazia Maria Simonetta; Bertini, Enrico; Dobyns, William B; Mazza, Tommaso; Gleeson, Joseph G; Valente, Enza Maria

    2017-10-05

    The Sonic Hedgehog (SHH) pathway is a key signaling pathway orchestrating embryonic development, mainly of the CNS and limbs. In vertebrates, SHH signaling is mediated by the primary cilium, and genetic defects affecting either SHH pathway members or ciliary proteins cause a spectrum of developmental disorders. SUFU is the main negative regulator of the SHH pathway and is essential during development. Indeed, Sufu knock-out is lethal in mice, and recessive pathogenic variants of this gene have never been reported in humans. Through whole-exome sequencing in subjects with Joubert syndrome, we identified four children from two unrelated families carrying homozygous missense variants in SUFU. The children presented congenital ataxia and cerebellar vermis hypoplasia with elongated superior cerebellar peduncles (mild "molar tooth sign"), typical cranio-facial dysmorphisms (hypertelorism, depressed nasal bridge, frontal bossing), and postaxial polydactyly. Two siblings also showed polymicrogyria. Molecular dynamics simulation predicted random movements of the mutated residues, with loss of the native enveloping movement of the binding site around its ligand GLI3. Functional studies on cellular models and fibroblasts showed that both variants significantly reduced SUFU stability and its capacity to bind GLI3 and promote its cleavage into the repressor form GLI3R. In turn, this impaired SUFU-mediated repression of the SHH pathway, as shown by altered expression levels of several target genes. We demonstrate that germline hypomorphic variants of SUFU cause deregulation of SHH signaling, resulting in recessive developmental defects of the CNS and limbs which share features with both SHH-related disorders and ciliopathies. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  12. Gas1 extends the range of Hedgehog action by facilitating its signaling

    PubMed Central

    Martinelli, David C.; Fan, Chen-Ming

    2007-01-01

    Cellular signaling initiated by Hedgehog binding to Patched1 has profound importance in mammalian embryogenesis, genetic disease, and cancer. Hedgehog acts as a morphogen to specify distinctive cell fates using different concentration thresholds, but our knowledge of how the concentration gradient is interpreted into the activity gradient is incomplete. The membrane protein Growth Arrest-Specific Gene 1 (GAS1) was thought to be a negative regulator of the Hedgehog concentration gradient. Here, we report unexpected genetic evidence that Gas1 positively regulates Hedgehog signaling in multiple developmental contexts, an effect particularly noticeable at regions where Hedgehog acts at low concentration. Using a combination of in vitro cell culture and in ovo electroporation assays, we demonstrate that GAS1 acts cooperatively with Patched1 for Hedgehog binding and enhances signaling activity in a cell-autonomous manner. Our data support a model in which GAS1 helps transform the Hedgehog protein gradient into the observed activity gradient. We propose that Gas1 is an evolutionarily novel, vertebrate-specific Hedgehog pathway regulator. PMID:17504940

  13. Primary Cilia and Mammalian Hedgehog Signaling

    PubMed Central

    Bangs, Fiona; Anderson, Kathryn V.

    2017-01-01

    It has been a decade since it was discovered that primary cilia have an essential role in Hedgehog signaling in mammals. This discovery came from screens in the mouse that identified a set of genes that are required for both normal Hedgehog signaling and for the formation of primary cilia. Since then, dozens of mouse mutations have been identified that disrupt cilia in a variety of ways and have complex effects on Hedgehog signaling. Here we summarize the genetic and developmental studies used to deduce how Hedgehog signal transduction is linked to cilia and the complex effects that perturbation of cilia structure can have on Hh signaling. We conclude by describing the current status of our understanding of the cell-type specific regulation of ciliogenesis and how that determines the ability of cells to respond to Hedgehog ligands. PMID:27881449

  14. Neuropilins are positive regulators of Hedgehog signal transduction

    PubMed Central

    Hillman, R. Tyler; Feng, Brian Y.; Ni, Jun; Woo, Wei-Meng; Milenkovic, Ljiljana; Hayden Gephart, Melanie G.; Teruel, Mary N.; Oro, Anthony E.; Chen, James K.; Scott, Matthew P.

    2011-01-01

    The Hedgehog (Hh) pathway is essential for vertebrate embryogenesis, and excessive Hh target gene activation can cause cancer in humans. Here we show that Neuropilin 1 (Nrp1) and Nrp2, transmembrane proteins with roles in axon guidance and vascular endothelial growth factor (VEGF) signaling, are important positive regulators of Hh signal transduction. Nrps are expressed at times and locations of active Hh signal transduction during mouse development. Using cell lines lacking key Hh pathway components, we show that Nrps mediate Hh transduction between activated Smoothened (Smo) protein and the negative regulator Suppressor of Fused (SuFu). Nrp1 transcription is induced by Hh signaling, and Nrp1 overexpression increases maximal Hh target gene activation, indicating the existence of a positive feedback circuit. The regulation of Hh signal transduction by Nrps is conserved between mammals and bony fish, as we show that morpholinos targeting the Nrp zebrafish ortholog nrp1a produce a specific and highly penetrant Hh pathway loss-of-function phenotype. These findings enhance our knowledge of Hh pathway regulation and provide evidence for a conserved nexus between Nrps and this important developmental signaling system. PMID:22051878

  15. Sonic hedgehog (SHH) and glioblastoma-2 (Gli-2) expressions are associated with poor jaundice-free survival in biliary atresia.

    PubMed

    Jung, Hae Yoen; Jing, Jin; Lee, Kyoung Bun; Jang, Ja-June

    2015-03-01

    Biliary atresia (BA) causes biliary obstruction in neonates. Although the Kasai operation can successfully treat certain BA cases, many patients exhibit recurrent jaundice and secondary biliary cirrhosis requiring liver transplantation. Consequently, studies of the prognostic factors of the Kasai operation are needed. Accordingly, sonic hedgehog (SHH) pathway expression at the extrahepatic bile duct (EHBD), an important bile duct repair mechanism, will be investigated via immunohistochemistry in patients with BA to examine the association with post-Kasai operation prognosis. Fifty-seven EHBD specimens were obtained during Kasai operations from 1992 to 2009. The SHH, patched (PTCH), and glioblastoma-2 (Gli-2) immunohistochemical staining results were analyzed quantitatively. Overall, 57.9% of patients had bile flow normalization after the Kasai operation; 43.1% did not. High preoperative serum total bilirubin, direct bilirubin, and aspartate aminotransferase levels were associated with sustained jaundice post-Kasai operation, as was an age ≥65days at the time of surgery (all p<0.05). High Gli-2 and SHH expression rates were significantly associated with early post-Kasai operation jaundice relapse. Strong Gli-2 and SHH expression in the EHBD might be a poor prognostic factor in Kasai operation-treated patients with BA. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Sonic Hedgehog promotes the survival of neural crest cells by limiting apoptosis induced by the dependence receptor CDON during branchial arch development.

    PubMed

    Delloye-Bourgeois, Céline; Rama, Nicolas; Brito, José; Le Douarin, Nicole; Mehlen, Patrick

    2014-09-26

    Cell-adhesion molecule-related/Downregulated by Oncogenes (CDO or CDON) was identified as a receptor for the classic morphogen Sonic Hedgehog (SHH). It has been shown that, in cell culture, CDO also behaves as a SHH dependence receptor: CDO actively triggers apoptosis in absence of SHH via a proteolytic cleavage in CDO intracellular domain. We present evidence that CDO is also pro-apoptotic in the developing neural tube where SHH is known to act as a survival factor. SHH, produced by the ventral foregut endoderm, was shown to promote survival of facial neural crest cells (NCCs) that colonize the first branchial arch (BA1). We show here that the survival activity of SHH on neural crest cells is due to SHH-mediated inhibition of CDO pro-apoptotic activity. Silencing of CDO rescued NCCs from apoptosis observed upon SHH inhibition in the ventral foregut endoderm. Thus, the pair SHH/dependence receptor CDO may play an important role in neural crest cell survival during the formation of the first branchial arch. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. The hedgehog system in ovarian follicles of cattle selected for twin ovulations and births: evidence of a link between the IGF and hedgehog systems

    USDA-ARS?s Scientific Manuscript database

    Hedgehog signaling is involved in regulation of ovarian function in Drosophila but its role in regulating mammalian ovarian folliculogenesis is less clear. Therefore, gene expression of Indian hedgehog (IHH) and its type 1 receptor, patched 1 (PTCH1), were quantified in bovine granulosa (GC) or the...

  18. Initiation and patterning of the snake dentition are dependent on Sonic hedgehog signaling.

    PubMed

    Buchtová, Marcela; Handrigan, Gregory R; Tucker, Abigail S; Lozanoff, Scott; Town, Liam; Fu, Katherine; Diewert, Virginia M; Wicking, Carol; Richman, Joy M

    2008-07-01

    Here we take the first look at cellular dynamics and molecular signaling in the developing snake dentition. We found that tooth formation differs from rodents in several respects. The majority of snake teeth bud off of a deep, ribbon-like dental lamina rather than as separate tooth germs. Prior to and after dental lamina ingrowth, we observe asymmetries in cell proliferation and extracellular matrix distribution suggesting that localized signaling by a secreted protein is involved. We cloned Sonic hedgehog from the African rock python Python sebae and traced its expression in the species as well as in two other snakes, the closely-related Python regius and the more derived corn snake Elaphe guttata (Colubridae). We found that expression of Shh is first confined to the odontogenic band and defines the position of the future dental lamina. Shh transcripts in pythons are progressively restricted to the oral epithelium on one side of the dental lamina and remain in this position throughout the prehatching period. Shh is expressed in the inner enamel epithelium and the stellate reticulum of the tooth anlagen, but is absent from the outer enamel epithelium and its derivative, the successional lamina. This suggests that signals other than Shh are responsible for replacement tooth formation. Functional studies using cyclopamine to block Hh signaling during odontogenesis prevented initiation and extension of the dental lamina into the mesenchyme, and also affected the directionality of this process. Further, blocking Hh signaling led to disruptions of the inner enamel epithelium. To explore the role of Shh in lamina extension, we looked at its expression in the premaxillary teeth, which form closer to the oral surface than elsewhere in the mouth. Oral ectodermal Shh expression in premaxillary teeth is lost soon after the teeth form reinforcing the idea that Shh is controlling the depth of the dental lamina. In summary, we have found diverse roles for Shh in patterning the

  19. Learning Induces Sonic Hedgehog Signaling in the Amygdala which Promotes Neurogenesis and Long-Term Memory Formation

    PubMed Central

    Hung, Hui-Chi; Hsiao, Ya-Hsin

    2015-01-01

    Background: It is known that neurogenesis occurs throughout the life mostly in the subgranular zone of the hippocampus and the subventricular zone of the lateral ventricle. We investigated whether neurogenesis occurred in the amygdala and its function in fear memory formation. Methods: For detection of newborn neurons, mice were injected intraperitoneally with 5-bromo-2’-deoxyuridine (BrdU) 2h before receiving 15 tone–footshock pairings, and newborn neurons were analyzed 14 and 42 days after training. To determine the relationship between neurogenesis and memory formation, mice were given a proliferation inhibitor methylazoxymethanol (MAM) or a DNA synthesis inhibitor cytosine arabinoside (Ara-C). To test whether sonic hedgehog (Shh) signaling was required for neurogenesis, Shh-small hairpin–interfering RNA (shRNA) was inserted into a retroviral vector (Retro-Shh-shRNA). Results: The number of BrdU+/Neuronal nuclei (NeuN)+ cells was significantly higher in the conditioned mice, suggesting that association of tone with footshock induced neurogenesis. MAM and Ara-C markedly reduced neurogenesis and impaired fear memory formation. Shh, its receptor patched 1 (Ptc1), and transcription factor Gli1 protein levels increased at 1 day and returned to baseline at 7 days after fear conditioning. Retro-Shh-shRNA, which knocked down Shh specifically in the mitotic neurons, reduced the number of BrdU+/NeuN+ cells and decreased freezing responses. Conclusions: These results suggest that fear learning induces Shh signaling activation in the amygdala, which promotes neurogenesis and fear memory formation. PMID:25522410

  20. The hedgehog/Gli signaling paradigm in prostate cancer

    PubMed Central

    Chen, Mengqian; Carkner, Richard; Buttyan, Ralph

    2011-01-01

    Hedgehog is a ligand-activated signaling pathway that regulates Gli-mediated transcription. Although most noted for its role as an embryonic morphogen, hyperactive hedgehog also causes human skin and brain malignancies. The hedgehog-related gene anomalies found in these tumors are rarely found in prostate cancer. Yet surveys of human prostate tumors show concordance of high expression of hedgehog ligands and Gli2 that correlate with the potential for metastasis and therapy-resistant behavior. Likewise, prostate cancer cell lines express hedgehog target genes, and their growth and survival is affected by hedgehog/Gli inhibitors. To date, the preponderance of data supports the idea that prostate tumors benefit from a paracrine hedgehog microenvironment similar to the developing prostate. Uncertainty remains as to whether hedgehog’s influence in prostate cancer also includes aspects of tumor cell autocrine-like signaling. The recent findings that Gli proteins interact with the androgen receptor and affect its transcriptional output have helped to identify a novel pathway through which hedgehog/Gli might affect prostate tumor behavior and raises questions as to whether hedgehog signaling in prostate cancer cells is suitably measured by the expression of Gli target genes alone. PMID:21776292

  1. Sonic hedgehog promotes neurite outgrowth of cortical neurons under oxidative stress: Involving of mitochondria and energy metabolism.

    PubMed

    He, Weiliang; Cui, Lili; Zhang, Cong; Zhang, Xiangjian; He, Junna; Xie, Yanzhao; Chen, Yanxia

    2017-01-01

    Oxidative stress has been demonstrated to be involved in the etiology of several neurobiological disorders. Sonic hedgehog (Shh), a secreted glycoprotein factor, has been implicated in promoting several aspects of brain remodeling process. Mitochondria may play an important role in controlling fundamental processes in neuroplasticity. However, little evidence is available about the effect and the potential mechanism of Shh on neurite outgrowth in primary cortical neurons under oxidative stress. Here, we revealed that Shh treatment significantly increased the viability of cortical neurons in a dose-dependent manner, which was damaged by hydrogen peroxide (H 2 O 2 ). Shh alleviated the apoptosis rate of H 2 O 2 -induced neurons. Shh also increased neuritogenesis injuried by H 2 O 2 in primary cortical neurons. Moreover, Shh reduced the generation of reactive oxygen species (ROS), increased the activities of SOD and and decreased the productions of MDA. In addition, Shh protected mitochondrial functions, elevated the cellular ATP levels and amelioratesd the impairment of mitochondrial complex II activities of cortical neurons induced by H 2 O 2 . In conclusion, all these results suggest that Shh acts as a prosurvival factor playing an essential role to neurite outgrowth of cortical neuron under H 2 O 2 -induced oxidative stress, possibly through counteracting ROS release and preventing mitochondrial dysfunction and ATP as well as mitochondrial complex II activities against oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. An early role for sonic hedgehog from foregut endoderm in jaw development: ensuring neural crest cell survival.

    PubMed

    Brito, José M; Teillet, Marie-Aimée; Le Douarin, Nicole M

    2006-08-01

    We have investigated the role of Sonic hedgehog (Shh) in the development of facial structures by depriving chicken embryos of the most anterior sources of this morphogen, including the prechordal plate and the anterior ventral endoderm of the foregut, before the onset of neural crest cell (NCC) migration to the first branchial arch (BA1). The entire forehead, including the foregut endoderm, was removed at 5- to 10-somite stage (ss), which led to the absence of the lower jaw when the operation was performed before 7-ss. If the embryos were deprived of their forehead at 8- to 10-ss, they were later on endowed with a lower beak. In embryos that were operated on early, the NCCs migrated normally to BA1 but were subjected to massive apoptosis a few hours later. Cell death did not occur when forehead excision was performed at a later stage. In this case, onward expression of Shh in the ventral foregut endoderm extended caudally over the excision limit, and we hypothesized that absence of Shh production by the endoderm in embryos that were operated on early could be responsible for the NCC apoptosis and the failure of BA1 development. We thus provided exogenous Shh to the embryos that were operated on before 7-ss. In this case, the development of the lower jaw was rescued. Therefore, Shh derived from the ventral foregut endoderm ensures the survival of NCCs at a critical stage of BA1 development.

  3. Epithelial heparan sulfate regulates Sonic Hedgehog signaling in lung development.

    PubMed

    He, Hua; Huang, Meina; Sun, Shenfei; Wu, Yihui; Lin, Xinhua

    2017-08-01

    The tree-like structure of the mammalian lung is generated from branching morphogenesis, a reiterative process that is precisely regulated by numerous factors. How the cell surface and extra cellular matrix (ECM) molecules regulate this process is still poorly understood. Herein, we show that epithelial deletion of Heparan Sulfate (HS) synthetase Ext1 resulted in expanded branching tips and reduced branching number, associated with several mesenchymal developmental defects. We further demonstrate an expanded Fgf10 expression and increased FGF signaling activity in Ext1 mutant lungs, suggesting a cell non-autonomous mechanism. Consistent with this, we observed reduced levels of SHH signaling which is responsible for suppressing Fgf10 expression. Moreover, reactivating SHH signaling in mutant lungs rescued the tip dilation phenotype and attenuated FGF signaling. Importantly, the reduced SHH signaling activity did not appear to be caused by decreased Shh expression or protein stability; instead, biologically active form of SHH proteins were reduced in both the Ext1 mutant epithelium and surrounding wild type mesenchymal cells. Together, our study highlights the epithelial HS as a key player for dictating SHH signaling critical for lung morphogenesis.

  4. Lycium barbarum Polysaccharides Protect against Trimethyltin Chloride-Induced Apoptosis via Sonic Hedgehog and PI3K/Akt Signaling Pathways in Mouse Neuro-2a Cells.

    PubMed

    Zhao, Wanyun; Pan, Xiaoqi; Li, Tao; Zhang, Changchun; Shi, Nian

    2016-01-01

    Trimethyltin chloride (TMT) is a classic neurotoxicant that can cause severe neurodegenerative diseases. Some signaling pathways involving cell death play pivotal roles in the central nervous system. In this study, the role of Sonic Hedgehog (Shh) and PI3K/Akt pathways in TMT-induced apoptosis and protective effect of Lycium barbarum polysaccharides (LBP) on mouse neuro-2a (N2a) cells were investigated. Results showed that TMT treatment significantly enhanced apoptosis, upregulated proapoptotic Bax, downregulated antiapoptotic Bcl-2 expression, and increased caspase-3 activity in a dose-dependent manner in N2a cells. TMT induced oxidative stress in cells, performing reactive oxygen species (ROS) and malondialdehyde (MDA) excessive generation, and superoxide dismutase (SOD) activity reduction. TMT significantly decreased phosphorylated glycogen synthase kinase-3β (GSK-3β) and inhibited Shh and PI3K/Akt pathways. However, the addition of LBP upregulated GSK-3β phosphorylation, activated Shh and PI3K/Akt pathways, and eventually reduced apoptosis and oxidative stress caused by TMT. The interaction between Shh and PI3K/Akt pathways was clarified by specific PI3K inhibitor LY294002 or Shh inhibitor GDC-0449. Moreover, LY294002 and GDC-0449 pretreatment both induced phosphorylated GSK-3β downregulation and significantly promoted apoptosis induced by TMT. These results suggest that LBP could reduce TMT-induced N2a cells apoptosis by regulating GSK-3β phosphorylation, Shh, and PI3K/Akt signaling pathways.

  5. Lycium barbarum Polysaccharides Protect against Trimethyltin Chloride-Induced Apoptosis via Sonic Hedgehog and PI3K/Akt Signaling Pathways in Mouse Neuro-2a Cells

    PubMed Central

    Zhao, Wanyun; Pan, Xiaoqi; Li, Tao; Zhang, Changchun; Shi, Nian

    2016-01-01

    Trimethyltin chloride (TMT) is a classic neurotoxicant that can cause severe neurodegenerative diseases. Some signaling pathways involving cell death play pivotal roles in the central nervous system. In this study, the role of Sonic Hedgehog (Shh) and PI3K/Akt pathways in TMT-induced apoptosis and protective effect of Lycium barbarum polysaccharides (LBP) on mouse neuro-2a (N2a) cells were investigated. Results showed that TMT treatment significantly enhanced apoptosis, upregulated proapoptotic Bax, downregulated antiapoptotic Bcl-2 expression, and increased caspase-3 activity in a dose-dependent manner in N2a cells. TMT induced oxidative stress in cells, performing reactive oxygen species (ROS) and malondialdehyde (MDA) excessive generation, and superoxide dismutase (SOD) activity reduction. TMT significantly decreased phosphorylated glycogen synthase kinase-3β (GSK-3β) and inhibited Shh and PI3K/Akt pathways. However, the addition of LBP upregulated GSK-3β phosphorylation, activated Shh and PI3K/Akt pathways, and eventually reduced apoptosis and oxidative stress caused by TMT. The interaction between Shh and PI3K/Akt pathways was clarified by specific PI3K inhibitor LY294002 or Shh inhibitor GDC-0449. Moreover, LY294002 and GDC-0449 pretreatment both induced phosphorylated GSK-3β downregulation and significantly promoted apoptosis induced by TMT. These results suggest that LBP could reduce TMT-induced N2a cells apoptosis by regulating GSK-3β phosphorylation, Shh, and PI3K/Akt signaling pathways. PMID:27143997

  6. Hedgehog hives.

    PubMed

    Fairley, J A; Suchniak, J; Paller, A S

    1999-05-01

    Hedgehogs are increasingly popular pets in the United States and Europe. A number of infections may be acquired from these animals, and hedgehogs are possible hosts of parasites. However, to our knowledge there arc no previous reports of urticarial reactions to hedgehogs. We describe 3 patients who developed an acute, transient, urticarial reaction after contact with the extended spines of pet hedgehogs. One patient also developed a more prolonged reaction at the site of contact. Interestingly, all 3 patients had documented allergies to cats and/or dogs. The results of prick testing in 1 patient to an extract of hedgehog dander produced an immediate wheal-and-flare reaction. A variety of dermatologic disorders may be seen in handlers of hedgehogs. Due to the increasing popularity of these animals as pets, it is likely that these reactions will be noted more frequently by dermatologists. The presence of allergies to other pets may be predictive of hedgehog hives and further investigation of the cross reaction of various animal antigens may clarify this relationship.

  7. The hedgehog system machinery controls transforming growth factor-β-dependent myofibroblastic differentiation in humans: involvement in idiopathic pulmonary fibrosis.

    PubMed

    Cigna, Natacha; Farrokhi Moshai, Elika; Brayer, Stéphanie; Marchal-Somme, Joëlle; Wémeau-Stervinou, Lidwine; Fabre, Aurélie; Mal, Hervé; Lesèche, Guy; Dehoux, Monique; Soler, Paul; Crestani, Bruno; Mailleux, Arnaud A

    2012-12-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown cause. Key signaling developmental pathways are aberrantly expressed in IPF. The hedgehog pathway plays a key role during fetal lung development and may be involved in lung fibrogenesis. We determined the expression pattern of several Sonic hedgehog (SHH) pathway members in normal and IPF human lung biopsies and primary fibroblasts. The effect of hedgehog pathway inhibition was assayed by lung fibroblast proliferation and differentiation with and without transforming growth factor (TGF)-β1. We showed that the hedgehog pathway was reactivated in the IPF lung. Importantly, we deciphered the cross talk between the hedgehog and TGF-β pathway in human lung fibroblasts. TGF-β1 modulated the expression of key components of the hedgehog pathway independent of Smoothened, the obligatory signal transducer of the pathway. Smoothened was required for TGF-β1-induced myofibroblastic differentiation of control fibroblasts, but differentiation of IPF fibroblasts was partially resistant to Smoothened inhibition. Furthermore, functional hedgehog pathway machinery from the primary cilium, as well as GLI-dependent transcription in the nucleus, was required for the TGF-β1 effects on normal and IPF fibroblasts during myofibroblastic differentiation. These data identify the GLI transcription factors as potential therapeutic targets in lung fibrosis. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. Modulation of Sonic hedgehog-induced mouse embryonic stem cell behaviors through E-cadherin expression and Integrin β1-dependent F-actin formation.

    PubMed

    Oh, Ji Young; Suh, Han Na; Choi, Gee Euhn; Lee, Hyun Jik; Jung, Young Hyun; Ko, So Hee; Kim, Jun Sung; Chae, Chang Woo; Lee, Chang-Kyu; Han, Ho Jae

    2018-06-22

    Sonic hedgehog pathway (Shh) plays a central role in maintaining stem cell function and behavior in various processes related to self-renewal and tissue regeneration. However, the therapeutic effect of Shh on mouse embryonic stem cells (mESCs) has not yet been clearly described. Thus, we investigated the effect of Shh on the regulation of mESC behaviors as well as the effect of Shh-pretreated mESCs in skin wound healing. The present study investigated the underlying mechanisms of Shh signaling pathway in growth and motility of mESCs using western blot analysis, cell proliferation assay, and cell migration assay. In addition, the effect of Shh-pretreated mESCs in skin wound healing was determined using mouse excisional wound splinting model. Shh induced adherens junction disruption through proteolysis by activating matrix metallopeptidases. In addition, the release of β-catenin from adherens junctions mediated by Shh led to cell cycle-dependent mESC proliferation. Shh-mediated Gli1 expression led to integrin β1 upregulation, followed by FAK and Src phosphorylation. Furthermore, among the Rho-GTPases, Rac1 and Cdc42 were activated in a Shh-dependent manner while F-actin expression was suppressed by Rac1 and Cdc42 siRNA transfection. Consistent with the in vitro results, skin wound healing assay revealed that Shh-treated mESCs induced angiogenesis and skin wound repair compared to that in Shh-treated mESCs transfected with integrin β1 siRNA in vivo. Our results imply that Shh induces adherens junction disruption and integrin β1-dependent F-actin formation involving FAK/Src and Rac1/Cdc42 signaling pathways in mESCs. This article is protected by copyright. All rights reserved.

  9. The sonic hedgehog signaling pathway maintains the cancer stem cell self-renewal of anaplastic thyroid cancer by inducing snail expression.

    PubMed

    Heiden, Katherine B; Williamson, Ashley J; Doscas, Michelle E; Ye, Jin; Wang, Yimin; Liu, Dingxie; Xing, Mingzhao; Prinz, Richard A; Xu, Xiulong

    2014-11-01

    Cancer stem cells (CSCs) have been recently identified in thyroid neoplasm. Anaplastic thyroid cancer (ATC) contains a higher percentage of CSCs than well-differentiated thyroid cancer. The signaling pathways and the transcription factors that regulate thyroid CSC self-renewal remain poorly understood. The objective of this study is to use two ATC cell lines (KAT-18 and SW1736) as a model to study the role of the sonic hedgehog (Shh) pathway in maintaining thyroid CSC self-renewal and to understand its underlying molecular mechanisms. The expression and activity of aldehyde dehydrogenase (ALDH), a marker for thyroid CSCs, was analyzed by Western blot and ALDEFLUOR assay, respectively. The effect of three Shh pathway inhibitors (cyclopamine, HhAntag, GANT61), Shh, Gli1, Snail knockdown, and Gli1 overexpression on thyroid CSC self-renewal was analyzed by ALDEFLUOR assay and thyrosphere formation. The sensitivity of transfected KAT-18 cells to radiation was evaluated by a colony survival assay. Western blot analysis revealed that ALDH protein levels in five thyroid cancer cell lines (WRO82, a follicular thyroid cancer cell line; BCPAP and TPC1, two papillary thyroid cancer cell lines; KAT-18 and SW1736, two ATC cell lines) correlated with the percentage of the ALDH(High) cells as well as Gli1 and Snail expression. The Shh pathway inhibitors, Shh and Gli1 knockdown, in KAT-18 cells decreased thyroid CSC self-renewal and increased radiation sensitivity. In contrast, Gli1 overexpression led to increased thyrosphere formation, an increased percentage of ALDH(High) cells, and increased radiation resistance in KAT-18 cells. Inhibition of the Shh pathway by three specific inhibitors led to decreased Snail expression and a decreased number of ALDH(High) cells in KAT-18 and SW1736. Snail gene knockdown decreased the number of ALDH(High) cells in KAT-18 and SW1736 cells. The Shh pathway promotes the CSC self-renewal in ATC cell lines by Gli1-induced Snail expression.

  10. Low-intensity pulsed ultrasound stimulation promotes osteoblast differentiation through hedgehog signaling.

    PubMed

    Matsumoto, Kenichi; Shimo, Tsuyoshi; Kurio, Naito; Okui, Tatsuo; Ibaragi, Soichiro; Kunisada, Yuki; Obata, Kyoichi; Masui, Masanori; Pai, Pang; Horikiri, Yuu; Yamanaka, Nobuyuki; Takigawa, Masaharu; Sasaki, Akira

    2018-06-01

    Low-intensity pulsed ultrasound (LIPUS) has been used as an adjunct to fracture healing therapies, but the mechanisms underlying its action are not known. We reported that sonic hedgehog (SHH) signaling was activated in osteoblasts at the dynamic remodeling site of a bone fracture. Mechanical stimulation is a crucial factor in bone remodeling, and it is related to the primary cilia as a sensor of hedgehog signaling. Here we observed that LIPUS promoted callus formation in accord with Gli2-positive cells after 14 days at the mouse femur fractured site compared with a control group. An immunofluorescence analysis showed that the numbers of primary cilia and cilia/osterix double-positive osteoblasts were increased at the fracture site by LIPUS. LIPUS stimulated not only the number and the length of primary cilia, but also the levels of ciliated protein, Ift88 mRNA, and SHH, Gli1, and Gli2 in MC3T3-E1 cells. Further experiments revealed that LIPUS stimulated osteogenic differentiation in the presence of smoothened agonist (SAG) treatment. These results indicate that LIPUS stimulates osteogenic differentiation and the maturation of osteoblasts by a primary cilium-mediated activation of hedgehog signaling. © 2017 Wiley Periodicals, Inc.

  11. FOREBRAIN AND HINDBRAIN DEVELOPMENT IN ZEBRAFISH IS SENSITIVE TO ETHANOL EXPOSURE INVOLVING AGRIN, FGF AND SONIC HEDGEHOG FUNCTION

    PubMed Central

    Zhang, Chengjin; Ojiaku, Princess; Cole, Gregory J.

    2014-01-01

    BACKGROUND Ethanol is a teratogen that affects numerous developmental processes in the nervous system, which includes development and survival of GABAergic and glutamatergic neurons. Possible molecular mechanisms accounting for ethanol’s effects on nervous system development include perturbed fibroblast growth factor (Fgf) and Sonic hedgehog (Shh) signaling. In zebrafish, forebrain GABAergic neuron development is dependent on Fgf19 and Shh signaling. The present study was conducted to test the hypothesis that ethanol affects GABAergic and glutamatergic neuron development by disrupting Fgf, Shh, and agrin function. METHODS Zebrafish embryos were exposed to varying concentrations of ethanol during a range of developmental stages, in the absence or presence of morpholino oligonucleotides (MOs) that disrupt agrin or Shh function. In situ hybridization was employed to analyze glutamic acid decarboxylase (GAD1) gene expression, as well as markers of glutamatergic neurons. RESULTS Acute ethanol exposure results in marked reduction in GAD1 gene expression in forebrain and hindbrain, and reduction of glutamatergic neuronal markers in hindbrain. Subthreshold ethanol exposure, combined with agrin or Shh MO treatment, produces a similar diminution in expression of markers for GABAergic and glutamatergic neurons. Consistent with the ethanol effects on Fgf and Shh pathways, Fgf19, Fgf8 or Shh mRNA overexpression rescues ethanol-induced decreases in GAD1 and atonal1a gene expression. CONCLUSIONS These studies demonstrate that GABAergic and glutamatergic neuron development in zebrafish forebrain or cerebellum is sensitive to ethanol exposure, and provides additional evidence that a signaling pathway involving agrin, Fgfs and Shh may be a critical target of ethanol exposure during zebrafish embryogenesis. PMID:23184466

  12. Comparative genomics identification of a novel set of temporally regulated hedgehog target genes in the retina.

    PubMed

    McNeill, Brian; Perez-Iratxeta, Carol; Mazerolle, Chantal; Furimsky, Marosh; Mishina, Yuji; Andrade-Navarro, Miguel A; Wallace, Valerie A

    2012-03-01

    The hedgehog (Hh) signaling pathway is involved in numerous developmental and adult processes with many links to cancer. In vertebrates, the activity of the Hh pathway is mediated primarily through three Gli transcription factors (Gli1, 2 and 3) that can serve as transcriptional activators or repressors. The identification of Gli target genes is essential for the understanding of the Hh-mediated processes. We used a comparative genomics approach using the mouse and human genomes to identify 390 genes that contained conserved Gli binding sites. RT-qPCR validation of 46 target genes in E14.5 and P0.5 retinal explants revealed that Hh pathway activation resulted in the modulation of 30 of these targets, 25 of which demonstrated a temporal regulation. Further validation revealed that the expression of Bok, FoxA1, Sox8 and Wnt7a was dependent upon Sonic Hh (Shh) signaling in the retina and their regulation is under positive and negative controls by Gli2 and Gli3, respectively. We also show using chromatin immunoprecipitation that Gli2 binds to the Sox8 promoter, suggesting that Sox8 is an Hh-dependent direct target of Gli2. Finally, we demonstrate that the Hh pathway also modulates the expression of Sox9 and Sox10, which together with Sox8 make up the SoxE group. Previously, it has been shown that Hh and SoxE group genes promote Müller glial cell development in the retina. Our data are consistent with the possibility for a role of SoxE group genes downstream of Hh signaling on Müller cell development. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  13. The buccohypophyseal canal is an ancestral vertebrate trait maintained by modulation in sonic hedgehog signaling.

    PubMed

    Khonsari, Roman H; Seppala, Maisa; Pradel, Alan; Dutel, Hugo; Clément, Gaël; Lebedev, Oleg; Ghafoor, Sarah; Rothova, Michaela; Tucker, Abigael; Maisey, John G; Fan, Chen-Ming; Kawasaki, Maiko; Ohazama, Atsushi; Tafforeau, Paul; Franco, Brunella; Helms, Jill; Haycraft, Courtney J; David, Albert; Janvier, Philippe; Cobourne, Martyn T; Sharpe, Paul T

    2013-03-28

    The pituitary gland is formed by the juxtaposition of two tissues: neuroectoderm arising from the basal diencephalon, and oral epithelium, which invaginates towards the central nervous system from the roof of the mouth. The oral invagination that reaches the brain from the mouth is referred to as Rathke's pouch, with the tip forming the adenohypophysis and the stalk disappearing after the earliest stages of development. In tetrapods, formation of the cranial base establishes a definitive barrier between the pituitary and oral cavity; however, numerous extinct and extant vertebrate species retain an open buccohypophyseal canal in adulthood, a vestige of the stalk of Rathke's pouch. Little is currently known about the formation and function of this structure. Here we have investigated molecular mechanisms driving the formation of the buccohypophyseal canal and their evolutionary significance. We show that Rathke's pouch is located at a boundary region delineated by endoderm, neural crest-derived oral mesenchyme and the anterior limit of the notochord, using CD1, R26R-Sox17-Cre and R26R-Wnt1-Cre mouse lines. As revealed by synchrotron X-ray microtomography after iodine staining in mouse embryos, the pouch has a lobulated three-dimensional structure that embraces the descending diencephalon during pituitary formation. Polaris(fl/fl); Wnt1-Cre, Ofd1(-/-) and Kif3a(-/-) primary cilia mouse mutants have abnormal sonic hedgehog (Shh) signaling and all present with malformations of the anterior pituitary gland and midline structures of the anterior cranial base. Changes in the expressions of Shh downstream genes are confirmed in Gas1(-/-) mice. From an evolutionary perspective, persistence of the buccohypophyseal canal is a basal character for all vertebrates and its maintenance in several groups is related to a specific morphology of the midline that can be related to modulation in Shh signaling. These results provide insight into a poorly understood ancestral vertebrate

  14. Maintenance of Taste Organs Is Strictly Dependent on Epithelial Hedgehog/GLI Signaling.

    PubMed

    Ermilov, Alexandre N; Kumari, Archana; Li, Libo; Joiner, Ariell M; Grachtchouk, Marina A; Allen, Benjamin L; Dlugosz, Andrzej A; Mistretta, Charlotte M

    2016-11-01

    For homeostasis, lingual taste papilla organs require regulation of epithelial cell survival and renewal, with sustained innervation and stromal interactions. To investigate a role for Hedgehog/GLI signaling in adult taste organs we used a panel of conditional mouse models to manipulate GLI activity within epithelial cells of the fungiform and circumvallate papillae. Hedgehog signaling suppression rapidly led to taste bud loss, papilla disruption, and decreased proliferation in domains of papilla epithelium that contribute to taste cells. Hedgehog responding cells were eliminated from the epithelium but retained in the papilla stromal core. Despite papilla disruption and loss of taste buds that are a major source of Hedgehog ligand, innervation to taste papillae was maintained, and not misdirected, even after prolonged GLI blockade. Further, vimentin-positive fibroblasts remained in the papilla core. However, retained innervation and stromal cells were not sufficient to maintain taste bud cells in the context of compromised epithelial Hedgehog signaling. Importantly taste organ disruption after GLI blockade was reversible in papillae that retained some taste bud cell remnants where reactivation of Hedgehog signaling led to regeneration of papilla epithelium and taste buds. Therefore, taste bud progenitors were either retained during epithelial GLI blockade or readily repopulated during recovery, and were poised to regenerate taste buds once Hedgehog signaling was restored, with innervation and papilla connective tissue elements in place. Our data argue that Hedgehog signaling is essential for adult tongue tissue maintenance and that taste papilla epithelial cells represent the key targets for physiologic Hedgehog-dependent regulation of taste organ homeostasis. Because disruption of GLI transcriptional activity in taste papilla epithelium is sufficient to drive taste organ loss, similar to pharmacologic Hedgehog pathway inhibition, the findings suggest that taste

  15. Maintenance of Taste Organs Is Strictly Dependent on Epithelial Hedgehog/GLI Signaling

    PubMed Central

    Mistretta, Charlotte M.

    2016-01-01

    For homeostasis, lingual taste papilla organs require regulation of epithelial cell survival and renewal, with sustained innervation and stromal interactions. To investigate a role for Hedgehog/GLI signaling in adult taste organs we used a panel of conditional mouse models to manipulate GLI activity within epithelial cells of the fungiform and circumvallate papillae. Hedgehog signaling suppression rapidly led to taste bud loss, papilla disruption, and decreased proliferation in domains of papilla epithelium that contribute to taste cells. Hedgehog responding cells were eliminated from the epithelium but retained in the papilla stromal core. Despite papilla disruption and loss of taste buds that are a major source of Hedgehog ligand, innervation to taste papillae was maintained, and not misdirected, even after prolonged GLI blockade. Further, vimentin-positive fibroblasts remained in the papilla core. However, retained innervation and stromal cells were not sufficient to maintain taste bud cells in the context of compromised epithelial Hedgehog signaling. Importantly taste organ disruption after GLI blockade was reversible in papillae that retained some taste bud cell remnants where reactivation of Hedgehog signaling led to regeneration of papilla epithelium and taste buds. Therefore, taste bud progenitors were either retained during epithelial GLI blockade or readily repopulated during recovery, and were poised to regenerate taste buds once Hedgehog signaling was restored, with innervation and papilla connective tissue elements in place. Our data argue that Hedgehog signaling is essential for adult tongue tissue maintenance and that taste papilla epithelial cells represent the key targets for physiologic Hedgehog-dependent regulation of taste organ homeostasis. Because disruption of GLI transcriptional activity in taste papilla epithelium is sufficient to drive taste organ loss, similar to pharmacologic Hedgehog pathway inhibition, the findings suggest that taste

  16. The imidazopyridine derivative JK184 reveals dual roles for microtubules in Hedgehog signaling.

    PubMed

    Cupido, Tommaso; Rack, Paul G; Firestone, Ari J; Hyman, Joel M; Han, Kyuho; Sinha, Surajit; Ocasio, Cory A; Chen, James K

    2009-01-01

    Eradicating hedgehogs: The title molecule has been previously identified as a potent inhibitor of the Hedgehog signaling pathway, which gives embryonic cells information needed to develop properly. This molecule is shown to modulate Hedgehog target gene expression by depolymerizing microtubules, thus revealing dual roles of the cytoskeleton in pathway regulation (see figure).

  17. Hedgehog Zoonoses

    PubMed Central

    Riley, Patricia Y.

    2005-01-01

    Exotic pets, including hedgehogs, have become popular in recent years among pet owners, especially in North America. Such animals can carry and introduce zoonotic agents, a fact well illustrated by the recent outbreak of monkeypox in pet prairie dogs. We reviewed known and potential zoonotic diseases that could be carried and transmitted by pet hedgehogs or when rescuing and caring for wild-caught hedgehogs. PMID:15705314

  18. Induction of autophagy and apoptosis by miR-148a through the sonic hedgehog signaling pathway in hepatic stellate cells

    PubMed Central

    Liu, Xu-You; He, Ya-Jun; Yang, Qi-Hong; Huang, Wei; Liu, Zhi-He; Ye, Guo-Rong; Tang, Shao-Hui; Shu, Jian-Chang

    2015-01-01

    Autophagy is an evolutionarily conserved biological process that is activated in response to stress. Increasing evidence indicate that dysregulated miRNAs significantly contribute to autophagy and are thus implicated in various pathological conditions, including hepatic fibrosis. MiR-148a, a member of the miR-148/152 family, has been found to be downregulated in hepatic fibrosis and human hepatocellular carcinoma. However, the role of miR-148a in the development of hepatic fibrosis remains largely unknown. In this study, we describe the epigenetic regulation of miR-148a and its impact on autophagy in hepatic stellate cells (HSCs), exploring new targets of miR-148a. We found that miR-148a expression was significantly increased under starvation-induced conditions in LX-2 and T-6 cells. In addition, dual-luciferase reporter assays showed that miR-148a suppressed target gene expression by directly interacting with the 3’-untranslated regions (3’-UTRs) of growth arrest-specific gene 1 (Gas1) transcripts. Intriguingly, Gas1, which encodes a Hedgehog surface binding receptor and facilitates the Hedgehog (Hh) signaling pathway, inhibited autophagosome synthesis. Furthermore, we demonstrated a novel function for miR-148a as a potent inducer of autophagy in HSCs. Overexpressing of miR-148a increased autophagic activity, which inhibited proliferation and promoted apoptosis in HSCs. In conclusion, these data support a novel role for miR-148a as a key regulator of autophagy through the Hh signaling pathway, making miR-148a a potential candidate for the development of novel therapeutic strategies. PMID:26609469

  19. Evolutionary analyses of hedgehog and Hoxd-10 genes in fish species closely related to the zebrafish

    PubMed Central

    Zardoya, Rafael; Abouheif, Ehab; Meyer, Axel

    1996-01-01

    The study of development has relied primarily on the isolation of mutations in genes with specific functions in development and on the comparison of their expression patterns in normal and mutant phenotypes. Comparative evolutionary analyses can complement these approaches. Phylogenetic analyses of Sonic hedgehog (Shh) and Hoxd-10 genes from 18 cyprinid fish species closely related to the zebrafish provide novel insights into the functional constraints acting on Shh. Our results confirm and extend those gained from expression and crystalline structure analyses of this gene. Unexpectedly, exon 1 of Shh is found to be almost invariant even in third codon positions among these morphologically divergent species suggesting that this exon encodes for a functionally important domain of the hedgehog protein. This is surprising because the main functional domain of Shh had been thought to be that encoded by exon 2. Comparisons of Shh and Hoxd-10 gene sequences and of resulting gene trees document higher evolutionary constraints on the former than on the latter. This might be indicative of more general evolutionary patterns in networks of developmental regulatory genes interacting in a hierarchical fashion. The presence of four members of the hedgehog gene family in cyprinid fishes was documented and their homologies to known hedgehog genes in other vertebrates were established. PMID:8917540

  20. Evolutionary analyses of hedgehog and Hoxd-10 genes in fish species closely related to the zebrafish.

    PubMed

    Zardoya, R; Abouheif, E; Meyer, A

    1996-11-12

    The study of development has relied primarily on the isolation of mutations in genes with specific functions in development and on the comparison of their expression patterns in normal and mutant phenotypes. Comparative evolutionary analyses can complement these approaches. Phylogenetic analyses of Sonic hedgehog (Shh) and Hoxd-10 genes from 18 cyprinid fish species closely related to the zebrafish provide novel insights into the functional constraints acting on Shh. Our results confirm and extend those gained from expression and crystalline structure analyses of this gene. Unexpectedly, exon 1 of Shh is found to be almost invariant even in third codon positions among these morphologically divergent species suggesting that this exon encodes for a functionally important domain of the hedgehog protein. This is surprising because the main functional domain of Shh had been thought to be that encoded by exon 2. Comparisons of Shh and Hoxd-10 gene sequences and of resulting gene trees document higher evolutionary constraints on the former than on the latter. This might be indicative of more general evolutionary patterns in networks of developmental regulatory genes interacting in a hierarchical fashion. The presence of four members of the hedgehog gene family in cyprinid fishes was documented and their homologies to known hedgehog genes in other vertebrates were established.

  1. A variant in the sonic hedgehog regulatory sequence (ZRS) is associated with triphalangeal thumb and deregulates expression in the developing limb

    PubMed Central

    Furniss, Dominic; Lettice, Laura A.; Taylor, Indira B.; Critchley, Paul S.; Giele, Henk; Hill, Robert E.; Wilkie, Andrew O.M.

    2008-01-01

    A locus for triphalangeal thumb, variably associated with pre-axial polydactyly, was previously identified in the zone of polarizing activity regulatory sequence (ZRS), a long range limb-specific enhancer of the Sonic Hedgehog (SHH) gene at human chromosome 7q36.3. Here, we demonstrate that a 295T>C variant in the human ZRS, previously thought to represent a neutral polymorphism, acts as a dominant allele with reduced penetrance. We found this variant in three independently ascertained probands from southern England with triphalangeal thumb, demonstrated significant linkage of the phenotype to the variant (LOD = 4.1), and identified a shared microsatellite haplotype around the ZRS, suggesting that the probands share a common ancestor. An individual homozygous for the 295C allele presented with isolated bilateral triphalangeal thumb resembling the heterozygous phenotype, suggesting that the variant is largely dominant to the wild-type allele. As a functional test of the pathogenicity of the 295C allele, we utilized a mutated ZRS construct to demonstrate that it can drive ectopic anterior expression of a reporter gene in the developing mouse forelimb. We conclude that the 295T>C variant is in fact pathogenic and, in southern England, appears to be the most common cause of triphalangeal thumb. Depending on the dispersal of the founding mutation, it may play a wider role in the aetiology of this disorder. PMID:18463159

  2. Hedgehog Signaling Regulates the Survival of Gastric Cancer Cells by Regulating the Expression of Bcl-2

    PubMed Central

    Han, Myoung-Eun; Lee, Young-Suk; Baek, Sun-Yong; Kim, Bong-Seon; Kim, Jae-Bong; Oh, Sae-Ock

    2009-01-01

    Gastric cancer is the second most common cause of cancer deaths worldwide. The underlying molecular mechanisms of its carcinogenesis are relatively poorly characterized. Hedgehog (Hh) signaling, which is critical for development of various organs including the gastrointestinal tract, has been associated with gastric cancer. The present study was undertaken to reveal the underlying mechanism by which Hh signaling controls gastric cancer cell proliferation. Treatment of gastric cancer cells with cyclopamine, a specific inhibitor of Hh signaling pathway, reduced proliferation and induced apoptosis of gastric cancer cells. Cyclopamine treatment induced cytochrome c release from mitochondria and cleavage of caspase 9. Moreover, Bcl-2 expression was significantly reduced by cyclopamine treatment. These results suggest that Hh signaling regulates the survival of gastric cancer cells by regulating the expression of Bcl-2. PMID:19742123

  3. Holoprosencephaly: from Homer to Hedgehog.

    PubMed

    Ming, J E; Muenke, M

    1998-03-01

    Holoprosencephaly (HPE), a common developmental defect affecting the forebrain and face, is etiologically heterogeneous and exhibits wide phenotypic variation. Graded degrees of severity of the brain malformation are also reflected in the highly variable craniofacial malformations associated with HPE. In addition, individuals with microforms of HPE, who usually have normal cognition and normal brain imaging, are at risk for having children with HPE. Some obligate carriers for HPE may not have any phenotypic abnormalities. Recurrent chromosomal rearrangements in individuals with HPE suggest loci containing genes important for brain development, and abnormalities in these genes may result in HPE. Recently, Sonic Hedgehog (SHH) was the first gene identified as causing HPE in humans. Proper function of SHH depends on cholesterol modification. Other candidate genes that may be involved in HPE include components of the SHH pathway, elements involved in cholesterol metabolism, and genes expressed in the developing forebrain.

  4. Zebrafish blowout provides genetic evidence for Patched1-mediated negative regulation of Hedgehog signaling within the proximal optic vesicle of the vertebrate eye.

    PubMed

    Lee, Jiwoon; Willer, Jason R; Willer, Gregory B; Smith, Kierann; Gregg, Ronald G; Gross, Jeffrey M

    2008-07-01

    In this study, we have characterized the ocular defects in the recessive zebrafish mutant blowout that presents with a variably penetrant coloboma phenotype. blowout mutants develop unilateral or bilateral colobomas and as a result, the retina and retinal pigmented epithelium are not contained within the optic cup. Colobomas result from defects in optic stalk morphogenesis whereby the optic stalk extends into the retina and impedes the lateral edges of the choroid fissure from meeting and fusing. The expression domain of the proximal optic vesicle marker pax2a is expanded in blowout at the expense of the distal optic vesicle marker pax6, suggesting that the initial patterning of the optic vesicle into proximal and distal territories is disrupted in blowout. Later aspects of distal optic cup formation (i.e. retina development) are normal in blowout mutants, however. Positional cloning of blowout identified a nonsense mutation in patched1, a negative regulator of the Hedgehog pathway, as the underlying cause of the blowout phenotype. Expanded domains of expression of the Hedgehog target genes patched1 and patched2 were observed in blowout, consistent with a loss of Patched1 function and upregulation of Hedgehog pathway activity. Moreover, colobomas in blowout could be suppressed by pharmacologically inhibiting the Hedgehog pathway with cyclopamine, and maximal rescue occurred when embryos were exposed to cyclopamine between 5.5 and 13 hours post-fertilization. These observations highlight the critical role that Hedgehog pathway activity plays in mediating patterning of the proximal/distal axis of the optic vesicle during the early phases of eye development and they provide genetic confirmation for the integral role that patched1-mediated negative regulation of Hedgehog signaling plays during vertebrate eye development.

  5. Zebrafish blowout provides genetic evidence for Patched1 mediated negative regulation of Hedgehog signaling within the proximal optic vesicle of the vertebrate eye

    PubMed Central

    Lee, Jiwoon; Willer, Jason R.; Willer, Gregory B.; Smith, Kierann; Gregg, Ronald G.; Gross, Jeffrey M.

    2008-01-01

    In this study we have characterized the ocular defects in the recessive zebrafish mutant blowout that presents with a variably penetrant coloboma phenotype. blowout mutants develop unilateral or bilateral colobomas and as a result, the retina and retinal pigmented epithelium are not contained within the optic cup. Colobomas result from defects in optic stalk morphogenesis whereby the optic stalk extends into the retina and impedes the lateral edges of the choroid fissure from meeting and fusing. The expression domain of the proximal optic vesicle marker pax2a is expanded in blowout at the expense of the distal optic vesicle marker pax6, suggesting that the initial patterning of the optic vesicle into proximal and distal territories is disrupted in blowout. Later aspects of distal optic cup formation (i.e. retina development) are normal in blowout mutants, however. Positional cloning of blowout identified a nonsense mutation in patched1, a negative regulator of the Hedgehog pathway, as the underlying cause of the blowout phenotype. Expanded domains of expression of the Hedgehog target genes patched1 and patched2 were observed in blowout, consistent with a loss of Patched1 function and upregulation of Hedgehog pathway activity. Moreover, colobomas in blowout could be suppressed by pharmacologically inhibiting the Hedgehog pathway with cyclopamine, and maximal rescue occurred when embryos were exposed to cyclopamine between 5.5 and 13 hours post fertilization. These observations highlight the critical role that Hedgehog pathway activity plays in mediating patterning of the proximal/distal axis of the optic vesicle during the early phases of eye development and they provide genetic confirmation for the integral role that patched1-mediated negative regulation of Hedgehog signaling plays during vertebrate eye development. PMID:18479681

  6. Pleiotropic functions of embryonic sonic hedgehog expression link jaw and taste bud amplification with eye loss during cavefish evolution.

    PubMed

    Yamamoto, Yoshiyuki; Byerly, Mardi S; Jackman, William R; Jeffery, William R

    2009-06-01

    This study addresses the role of sonic hedgehog (shh) in increasing oral-pharyngeal constructive traits (jaws and taste buds) at the expense of eyes in the blind cavefish Astyanax mexicanus. In cavefish embryos, eye primordia degenerate under the influence of hyperactive Shh signaling. In concert, cavefish show amplified jaw size and taste bud numbers as part of a change in feeding behavior. To determine whether pleiotropic effects of hyperactive Shh signaling link these regressive and constructive traits, shh expression was compared during late development of the surface-dwelling (surface fish) and cave-dwelling (cavefish) forms of Astyanax. After an initial expansion along the midline of early embryos, shh was elevated in the oral-pharyngeal region in cavefish and later was confined to taste buds. The results of shh inhibition and overexpression experiments indicate that Shh signaling has an important role in oral and taste bud development. Conditional overexpression of an injected shh transgene at specific times in development showed that taste bud amplification and eye degeneration are sensitive to shh overexpression during the same early developmental period, although taste buds are not formed until much later. Genetic crosses between cavefish and surface fish revealed an inverse relationship between eye size and jaw size/taste bud number, supporting a link between oral-pharyngeal constructive traits and eye degeneration. The results suggest that hyperactive Shh signaling increases oral and taste bud amplification in cavefish at the expense of eyes. Therefore, selection for constructive oral-pharyngeal traits may be responsible for eye loss during cavefish evolution via pleiotropic function of the Shh signaling pathway.

  7. Astrocytoma in an African hedgehog (Atelerix albiventris) suspected wobbly hedgehog syndrome.

    PubMed

    Nakata, Makoto; Miwa, Yasutsugu; Itou, Takuya; Uchida, Kazuyuki; Nakayama, Hiroyuki; Sakai, Takeo

    2011-10-01

    A 28-month-old African hedgehog was referred to our hospital with progressive tetraparesis. On the first presentation, the hedgehog was suspected as having wobbly hedgehog syndrome (WHS) and the animal was treated with medication and rehabilitation. The animal died 22 days after onset. Pathological examination revealed that the animal was involved in astrocytoma between the medulla oblongata and the spinal cord (C1). This report indicates that a primary central nervous system tumor should be considered as one of the differential diagnoses for hedgehogs presenting with progressive paresis, together with WHS.

  8. Loss of Pin1 Suppresses Hedgehog-Driven Medulloblastoma Tumorigenesis.

    PubMed

    Xu, Tao; Zhang, Honglai; Park, Sung-Soo; Venneti, Sriram; Kuick, Rork; Ha, Kimberly; Michael, Lowell Evan; Santi, Mariarita; Uchida, Chiyoko; Uchida, Takafumi; Srinivasan, Ashok; Olson, James M; Dlugosz, Andrzej A; Camelo-Piragua, Sandra; Rual, Jean-François

    2017-03-01

    Medulloblastoma is the most common malignant brain tumor in children. Therapeutic approaches to medulloblastoma (combination of surgery, radiotherapy, and chemotherapy) have led to significant improvements, but these are achieved at a high cost to quality of life. Alternative therapeutic approaches are needed. Genetic mutations leading to the activation of the Hedgehog pathway drive tumorigenesis in ~30% of medulloblastoma. In a yeast two-hybrid proteomic screen, we discovered a novel interaction between GLI1, a key transcription factor for the mediation of Hedgehog signals, and PIN1, a peptidylprolyl cis/trans isomerase that regulates the postphosphorylation fate of its targets. The GLI1/PIN1 interaction was validated by reciprocal pulldowns using epitope-tagged proteins in HEK293T cells as well as by co-immunoprecipiations of the endogenous proteins in a medulloblastoma cell line. Our results support a molecular model in which PIN1 promotes GLI1 protein abundance, thus contributing to the positive regulation of Hedgehog signals. Most importantly, in vivo functional analyses of Pin1 in the GFAP-tTA;TRE-SmoA1 mouse model of Hedgehog-driven medulloblastoma demonstrate that the loss of Pin1 impairs tumor development and dramatically increases survival. In summary, the discovery of the GLI1/PIN1 interaction uncovers PIN1 as a novel therapeutic target in Hedgehog-driven medulloblastoma tumorigenesis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. The ADAMTS5 Metzincin Regulates Zebrafish Somite Differentiation

    PubMed Central

    Dancevic, Carolyn M.; Gibert, Yann; Smith, Adam D.; Ward, Alister C.; McCulloch, Daniel R.

    2018-01-01

    The ADAMTS5 metzincin, a secreted zinc-dependent metalloproteinase, modulates the extracellular matrix (ECM) during limb morphogenesis and other developmental processes. Here, the role of ADAMTS5 was investigated by knockdown of zebrafish adamts5 during embryogenesis. This revealed impaired Sonic Hedgehog (Shh) signaling during somite patterning and early myogenesis. Notably, synergistic regulation of myod expression by ADAMTS5 and Shh during somite differentiation was observed. These roles were not dependent upon the catalytic activity of ADAMTS5. These data identify a non-enzymatic function for ADAMTS5 in regulating an important cell signaling pathway that impacts on muscle development, with implications for musculoskeletal diseases in which ADAMTS5 and Shh have been associated. PMID:29518972

  10. The Role of Hedgehog-Interacting Protein in Maintaining Cavernous Nerve Integrity and Adult Penile Morphology

    PubMed Central

    Angeloni, Nicholas L.; Bond, Christopher W.; Monsivais, Diana; Tang, Yi; Podlasek, Carol A.

    2010-01-01

    Introduction Sonic hedgehog (SHH) is an essential regulator of smooth muscle apoptosis in the penis that has significant clinical potential as a therapy to suppress post-prostatectomy apoptosis, an underlying cause of erectile dysfunction (ED). Thus an understanding of how SHH signaling is regulated in the adult penis is essential to move the field of ED research forward and to develop new treatment strategies. We propose that hedgehog-interacting protein (HIP), which has been shown to bind SHH protein and to play a role in SHH regulation during embryogenesis of other organs, is a critical regulator of SHH signaling, penile morphology, and apoptosis induction. Aims We have examined HIP signaling in the penis and cavernous nerve (CN) during postnatal differentiation of the penis, in CN-injured, and a diabetic model of ED. Methods HIP localization/abundance and RNA abundance were examined by immunohistochemical (IHC) analysis and real-time reverse transcriptase-polymerase chain reaction (RT-PCR) in Sprague-Dawley rats between the ages of 7 and 92 days old, in CN-injured Sprague-Dawley rats and in BioBreeding/Worcester diabetic rats. HIP signaling was perturbed in the pelvic ganglia and in the penis and TUNEL assay was performed in the penis. CN tie, lidocaine, and anti-kinesin experiments were performed to examine HIP signaling in the CN and penis. Results In this study we are the first to demonstrate that HIP undergoes anterograde transport to the penis via the CN, that HIP perturbation in the pelvic ganglia or the penis induces apoptosis, and that HIP plays a role in maintaining CN integrity, penile morphology, and SHH abundance. Conclusions These studies are significant because they show HIP involvement in cross-talk (signaling) between the pelvic ganglia and penis, which is integral for maintenance of penile morphology and they suggest a mechanism of how nerves may regulate target organ morphology and function. PMID:19515211

  11. Motile cilia of human airway epithelia contain hedgehog signaling components that mediate noncanonical hedgehog signaling.

    PubMed

    Mao, Suifang; Shah, Alok S; Moninger, Thomas O; Ostedgaard, Lynda S; Lu, Lin; Tang, Xiao Xiao; Thornell, Ian M; Reznikov, Leah R; Ernst, Sarah E; Karp, Philip H; Tan, Ping; Keshavjee, Shaf; Abou Alaiwa, Mahmoud H; Welsh, Michael J

    2018-02-06

    Differentiated airway epithelia produce sonic hedgehog (SHH), which is found in the thin layer of liquid covering the airway surface. Although previous studies showed that vertebrate HH signaling requires primary cilia, as airway epithelia mature, the cells lose primary cilia and produce hundreds of motile cilia. Thus, whether airway epithelia have apical receptors for SHH has remained unknown. We discovered that motile cilia on airway epithelial cells have HH signaling proteins, including patched and smoothened. These cilia also have proteins affecting cAMP-dependent signaling, including Gα i and adenylyl cyclase 5/6. Apical SHH decreases intracellular levels of cAMP, which reduces ciliary beat frequency and pH in airway surface liquid. These results suggest that apical SHH may mediate noncanonical HH signaling through motile cilia to dampen respiratory defenses at the contact point between the environment and the lung, perhaps counterbalancing processes that stimulate airway defenses. Copyright © 2018 the Author(s). Published by PNAS.

  12. The buccohypophyseal canal is an ancestral vertebrate trait maintained by modulation in sonic hedgehog signaling

    PubMed Central

    2013-01-01

    Background The pituitary gland is formed by the juxtaposition of two tissues: neuroectoderm arising from the basal diencephalon, and oral epithelium, which invaginates towards the central nervous system from the roof of the mouth. The oral invagination that reaches the brain from the mouth is referred to as Rathke’s pouch, with the tip forming the adenohypophysis and the stalk disappearing after the earliest stages of development. In tetrapods, formation of the cranial base establishes a definitive barrier between the pituitary and oral cavity; however, numerous extinct and extant vertebrate species retain an open buccohypophyseal canal in adulthood, a vestige of the stalk of Rathke’s pouch. Little is currently known about the formation and function of this structure. Here we have investigated molecular mechanisms driving the formation of the buccohypophyseal canal and their evolutionary significance. Results We show that Rathke’s pouch is located at a boundary region delineated by endoderm, neural crest-derived oral mesenchyme and the anterior limit of the notochord, using CD1, R26R-Sox17-Cre and R26R-Wnt1-Cre mouse lines. As revealed by synchrotron X-ray microtomography after iodine staining in mouse embryos, the pouch has a lobulated three-dimensional structure that embraces the descending diencephalon during pituitary formation. Polarisfl/fl; Wnt1-Cre, Ofd1-/- and Kif3a-/- primary cilia mouse mutants have abnormal sonic hedgehog (Shh) signaling and all present with malformations of the anterior pituitary gland and midline structures of the anterior cranial base. Changes in the expressions of Shh downstream genes are confirmed in Gas1-/- mice. From an evolutionary perspective, persistence of the buccohypophyseal canal is a basal character for all vertebrates and its maintenance in several groups is related to a specific morphology of the midline that can be related to modulation in Shh signaling. Conclusion These results provide insight into a poorly

  13. Is sonic Hedgehog involved in human fracture healing? --a prospective study on local and systemic concentrations of SHH.

    PubMed

    Eipeldauer, Stefan; Thomas, Anita; Hoechtl-Lee, Leonard; Kecht, Mathias; Binder, Harald; Koettstorfer, Julia; Gregori, Markus; Sarahrudi, Kambiz

    2014-01-01

    Sonic Hedgehog (SHH) is a new signalling pathway in bone repair. Evidence exist that SHH pathway plays a significant role in vasculogenesis and limb development during embryogenesis. Some in vitro and animal studies has already proven its potential for bone regeneration. However, no data on the role of SHH in the human fracture healing have been published so far. Seventy-five patients with long bone fractures were included into the study and divided in 2 groups. First group contained 69 patients with normal fracture healing. Four patients with impaired fracture healing formed the second group. 34 volunteers donated blood samples as control. Serum samples were collected over a period of 1 year following a standardized time schedule. In addition, SHH levels were measured in fracture haematoma and serum of 16 patients with bone fractures. Fracture haematoma and patients serum both contained lower SHH concentrations compared to control serum. The comparison between the patients' serum SHH level and the control serum revealed lower levels for the patients at all measurement time points. Significantly lower concentrations were observed at weeks 1 and 2 after fracture. SHH levels were slightly decreased in patients with impaired fracture healing without statistical significance. This is the first study to report local and systemic concentration of SHH in human fracture healing and SHH serum levels in healthy adults. A significant reduction of the SHH levels during the inflammatory phase of fracture healing was found. SHH concentrations in fracture haematoma and serum were lower than the concentration in control serum for the rest of the healing period. Our findings indicate that there is no relevant involvement of SHH in human fracture healing. Fracture repair process seem to reduce the SHH level in human. Further studies are definitely needed to clarify the underlying mechanisms.

  14. Prenatal cadmium exposure dysregulates sonic hedgehog and Wnt/beta-catenin signaling in the thymus resulting in altered thymocyte development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Miranda L.; Brundage, Kathleen M.; Schafer, Rosana

    2010-01-15

    Cadmium (Cd) is both an environmental pollutant and a component of cigarette smoke. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports in the literature of immunomodulatory effects of prenatal exposure to Cd. The sonic hedgehog (Shh) and Wnt/beta-catenin pathways are required for thymocyte maturation. Several studies have demonstrated that Cd exposure affects these pathways in different organ systems. This study was designed to investigate the effect of prenatal Cd exposure on thymocyte development, and to determine if these effects were linked to dysregulation of Shh and Wnt/beta-catenin pathways. Pregnant C57Bl/6more » mice were exposed to an environmentally relevant dose (10 ppm) of Cd throughout pregnancy and effects on the thymus were assessed on the day of birth. Thymocyte phenotype was determined by flow cytometry. A Gli:luciferase reporter cell line was used to measure Shh signaling. Transcription of target genes and translation of key components of both signaling pathways were assessed using real-time RT-PCR and western blot, respectively. Prenatal Cd exposure increased the number of CD4{sup +} cells and a subpopulation of double-negative cells (DN; CD4{sup -}CD8{sup -}), DN4 (CD44{sup -}CD25{sup -}). Shh and Wnt/beta-catenin signaling were both decreased in the thymus. Target genes of Shh (Patched1 and Gli1) and Wnt/beta-catenin (c-fos, and c-myc) were affected differentially among thymocyte subpopulations. These findings suggest that prenatal exposure to Cd dysregulates two signaling pathways in the thymus, resulting in altered thymocyte development.« less

  15. Temporal and spatial expression patterns of Hedgehog receptors in the developing inner and middle ear.

    PubMed

    Shin, Jeong-Oh; Ankamreddy, Harinarayana; Jakka, Naga Mahesh; Lee, Seokwon; Kim, Un-Kyung; Bok, Jinwoong

    2017-01-01

    The mammalian inner ear is a complex organ responsible for balance and hearing. Sonic hedgehog (Shh), a member of the Hedgehog (Hh) family of secreted proteins, has been shown to play important roles in several aspects of inner ear development, including dorsoventral axial specification, cochlear elongation, tonotopic patterning, and hair cell differentiation. Hh proteins initiate a downstream signaling cascade by binding to the Patched 1 (Ptch1) receptor. Recent studies have revealed that other types of co-receptors can also mediate Hh signaling, including growth arrest-specific 1 (Gas1), cell-adhesion molecules-related/down-regulated by oncogenes (Cdon), and biregional Cdon binding protein (Boc). However, little is known about the role of these Hh co-receptors in inner ear development. In this study, we examined the expression patterns of Gas1, Cdon, and Boc, as well as that of Ptch1, in the developing mouse inner ear from otocyst (embryonic day (E) 9.5) until birth and in the developing middle ear at E15.5. Ptch1, a readout of Hh signaling, was expressed in a graded pattern in response to Shh signaling throughout development. Expression patterns of Gas1, Cdon, and Boc differed from that of Ptch1, and each Hh co-receptor was expressed in specific cells and domains in the developing inner and middle ear. These unique and differential expression patterns of Hh co-receptors suggest their roles in mediating various time- and space-specific functions of Shh during ear development.

  16. Protein-bound Polysaccharide-K Inhibits Hedgehog Signaling Through Down-regulation of MAML3 and RBPJ Transcription Under Hypoxia, Suppressing the Malignant Phenotype in Pancreatic Cancer.

    PubMed

    Yamasaki, Akio; Onishi, Hideya; Imaizumi, Akira; Kawamoto, Makoto; Fujimura, Akiko; Oyama, Yasuhiro; Katano, Mitsuo

    2016-08-01

    Hedgehog signaling is activated in pancreatic cancer and could be a therapeutic target. We previously demonstrated that recombination signal binding protein for immunoglobulin-kappa-J region (RBPJ) and mastermind-like 3 (MAML3) contribute to the hypoxia-induced up-regulation of Smoothened (SMO) transcription. We have also shown that protein-bound polysaccharide-K (PSK) could be effective for refractory pancreatic cancer that down-regulates SMO transcription under hypoxia. In this study, we evaluated whether the anticancer mechanism of PSK involves inhibiting RBPJ and MAML3 expression under hypoxia. PSK reduced SMO, MAML3 and RBPJ expression in pancreatic cancer cells under hypoxia. PSK also blocked RBPJ-induced invasiveness under hypoxia by inhibiting matrix metalloproteinase expression. Lastly, we showed that PSK attenuated RBPJ-induced proliferation both in vitro and in vivo. These results suggest that PSK suppresses Hedgehog signaling through down-regulation of MAML3 and RBPJ transcription under hypoxia, inhibiting the induction of a malignant phenotype in pancreatic cancer. Our results may lead to development of new treatments for refractory pancreatic cancer using PSK as a Hedgehog inhibitor. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. Distinct Effects of the mesenchymal dysplasia Gene Variant of Murine Patched-1 Protein on Canonical and Non-canonical Hedgehog Signaling Pathways*

    PubMed Central

    Harvey, Malcolm C.; Fleet, Andrew; Okolowsky, Nadia; Hamel, Paul A.

    2014-01-01

    Hedgehog (Hh) signaling requires regulation of the receptor Patched-1 (Ptch1), which, in turn, regulates Smoothened activity (canonical Hh signaling) as well as other non-canonical signaling pathways. The mutant Ptch1 allele mesenchymal dysplasia (mes), which truncates the Ptch1 C terminus, produces a limited spectrum of developmental defects in mice as well as deregulation of canonical Hh signaling in some, but not all, affected tissues. Paradoxically, mes suppresses canonical Hh signaling and binds to Hh ligands with an affinity similar to wild-type mouse Ptch1 (mPtch1). We characterized the distinct activities of the mes variant of mPtch1 mediating Hh signaling through both canonical and non-canonical pathways. We demonstrated that mPtch1 bound c-src in an Hh-regulated manner. Stimulation with Sonic Hedgehog (Shh) of primary mammary mesenchymal cells from wild-type and mes animals activated Erk1/2. Although Shh activated c-src in wild-type cells, c-src was constitutively activated in mes mesenchymal cells. Transient assays showed that wild-type mPtch1, mes, or mPtch1 lacking the C terminus repressed Hh signaling in Ptch1-deficient mouse embryo fibroblasts and that repression was reversed by Shh, revealing that the C terminus was dispensable for mPtch1-dependent regulation of canonical Hh signaling. In contrast to these transient assays, constitutively high levels of mGli1 but not mPtch1 were present in primary mammary mesenchymal cells from mes mice, whereas the expression of mPtch1 was similarly induced in both mes and wild-type cells. These data define a novel signal transduction pathway involving c-src that is activated by the Hh ligands and reveals the requirement for the C terminus of Ptch in regulation of canonical and non-canonical Hh signaling pathways. PMID:24570001

  18. Sonic Hedgehog mutations are not a common cause of congenital hypopituitarism in the absence of complex midline cerebral defects.

    PubMed

    Paulo, Sabrina Soares; Fernandes-Rosa, Fábio L; Turatti, Wendy; Coeli-Lacchini, Fernanda Borchers; Martinelli, Carlos E; Nakiri, Guilherme S; Moreira, Ayrton C; Santos, Antônio C; de Castro, Margaret; Antonini, Sonir R

    2015-04-01

    Sonic Hedgehog (SHH) and GLI2, an obligatory mediator of SHH signal transduction, are holoprosencephaly (HPE)-associated genes essential in pituitary formation. GLI2 variants have been found in patients with congenital hypopituitarism without complex midline cerebral defects (MCD). However, data on the occurrence of SHH mutations in these patients are limited. We screened for SHH and GLI2 mutations or copy number variations (CNV) in patients with congenital hypopituitarism without MCD or with variable degrees of MCD. Detailed data on clinical, laboratory and neuroimaging findings of 115 patients presenting with congenital hypopituitarism without MCD, septo-optic dysplasia or HPE were analysed. The SHH and GLI2 genes were directly sequenced, and the presence of gene CNV was analysed by multiplex ligation-dependent probe amplification (MLPA). Anterior pituitary deficiency was found in 74% and 53% of patients with SOD or HPE, respectively. Diabetes insipidus was common in patients with HPE (47%) but infrequent in patients with congenital hypopituitarism or SOD (7% and 8%, respectively). A single heterozygous nonsense SHH mutation (p.Tyr175Ter) was found in a patient presenting with hypopituitarism and alobar HPE. No other SHH mutations or CNV were found. Nine GLI2 variations (8 missense and 1 frameshift) including a homozygous and a compound heterozygous variation were found in patients with congenital hypopituitarism or SOD, but not in HPE patients. No GLI2 CNV were found. SHH mutations or copy number variations are not a common cause of congenital hypopituitarism in patients without complex midline cerebral defects. GLI2 variants are found in some patients with congenital hypopituitarism without complex midline cerebral defects or septo-optic dysplasia. However, functional analyses of these variants are needed to strengthen genotype-phenotype relationship. © 2014 John Wiley & Sons Ltd.

  19. Arsenic inhibits hedgehog signaling during P19 cell differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jui Tung; Bain, Lisa J., E-mail: lbain@clemson.edu; Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634

    Arsenic is a toxicant found in ground water around the world, and human exposure mainly comes from drinking water or from crops grown in areas containing arsenic in soils or water. Epidemiological studies have shown that arsenic exposure during development decreased intellectual function, reduced birth weight, and altered locomotor activity, while in vitro studies have shown that arsenite decreased muscle and neuronal cell differentiation. The sonic hedgehog (Shh) signaling pathway plays an important role during the differentiation of both neurons and skeletal muscle. The purpose of this study was to investigate whether arsenic can disrupt Shh signaling in P19 mousemore » embryonic stem cells, leading to changes muscle and neuronal cell differentiation. P19 embryonic stem cells were exposed to 0, 0.25, or 0.5 μM of sodium arsenite for up to 9 days during cell differentiation. We found that arsenite exposure significantly reduced transcript levels of genes in the Shh pathway in both a time and dose-dependent manner. This included the Shh ligand, which was decreased 2- to 3-fold, the Gli2 transcription factor, which was decreased 2- to 3-fold, and its downstream target gene Ascl1, which was decreased 5-fold. GLI2 protein levels and transcriptional activity were also reduced. However, arsenic did not alter GLI2 primary cilium accumulation or nuclear translocation. Moreover, additional extracellular SHH rescued the inhibitory effects of arsenic on cellular differentiation due to an increase in GLI binding activity. Taken together, we conclude that arsenic exposure affected Shh signaling, ultimately decreasing the expression of the Gli2 transcription factor. These results suggest a mechanism by which arsenic disrupts cell differentiation. - Highlights: • Arsenic exposure decreases sonic hedgehog pathway-related gene expression. • Arsenic decreases GLI2 protein levels and transcriptional activity in P19 cells. • Arsenic exposure does not alter the levels of SHH

  20. Immunoprevention of Basal Cell Carcinomas with Recombinant Hedgehog-interacting Protein

    PubMed Central

    Vogt, Annika; Chuang, Pao-Tien; Hebert, Jennifer; Hwang, Jimmy; Lu, Ying; Kopelovich, Levy; Athar, Mohammad; Bickers, David R.; Epstein, Ervin H.

    2004-01-01

    Basal cell carcinomas (BCCs) are driven by abnormal hedgehog signaling and highly overexpress several hedgehog target genes. We report here our use of one of these target genes, hedgehog-interacting protein (Hip1), as a tumor-associated antigen for immunoprevention of BCCs in Ptch1+/− mice treated with ionizing radiation. Hip1 mRNA is expressed in adult mouse tissues at levels considerably lower than those in BCCs. Immunization with either of two large recombinant Hip1 polypeptides was well tolerated in Ptch1+/− mice, induced B and T cell responses detectable by enzyme-linked immunosorbent assay, Western blot, delayed type hypersensitivity, and enzyme-linked immunospot assay, and reduced the number of BCCs by 42% (P < 0.001) and 32% (P < 0.01), respectively. We conclude that immunization with proteins specifically up-regulated by hedgehog signaling may hold promise as a preventive option for patients such as those with the basal cell nevus syndrome who are destined to develop large numbers of BCCs. PMID:15024045

  1. Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition

    PubMed Central

    Tang, Yujie; Gholamin, Sharareh; Schubert, Simone; Willardson, Minde I.; Lee, Alex; Bandopadhayay, Pratiti; Bergthold, Guillame; Masoud, Sabran; Nguyen, Brian; Vue, Nujsaubnusi; Balansay, Brianna; Yu, Furong; Oh, Sekyung; Woo, Pamelyn; Chen, Spenser; Ponnuswami, Anitha; Monje, Michelle; Atwood, Scott X.; Whitson, Ramon J.; Mitra, Siddhartha; Cheshier, Samuel H.; Qi, Jun; Beroukhim, Rameen; Tang, Jean Y.; Wechsler-Reya, Rob; Oro, Anthony E.; Link, Brian A.; Bradner, James E.; Cho, Yoon-Jae

    2014-01-01

    Hedgehog signaling drives oncogenesis in several cancers and strategies targeting this pathway have been developed, most notably through inhibition of Smoothened. However, resistance to Smoothened inhibitors occurs via genetic changes of Smoothened or other downstream Hedgehog components. Here, we overcome these resistance mechanisms by modulating GLI transcription via inhibition of BET bromodomain proteins. We show the BET bromodomain protein, BRD4, regulates GLI transcription downstream of SMO and SUFU and chromatin immunoprecipitation studies reveal BRD4 directly occupies GLI1 and GLI2 promoters, with a substantial decrease in engagement of these sites upon treatment with JQ1, a small molecule inhibitor targeting BRD4. Globally, genes associated with medulloblastoma-specific GLI1 binding sites are downregulated in response to JQ1 treatment, supporting direct regulation of GLI activity by BRD4. Notably, patient- and GEMM-derived Hedgehog-driven tumors (basal cell carcinoma, medulloblastoma and atypical teratoid/rhabdoid tumor) respond to JQ1 even when harboring genetic lesions rendering them resistant to Smoothened antagonists. PMID:24973920

  2. Inflammatory PAF Receptor Signaling Initiates Hedgehog Signaling and Kidney Fibrogenesis During Ethanol Consumption

    PubMed Central

    Latchoumycandane, Calivarathan; Hanouneh, Mohamad; Nagy, Laura E.; McIntyre, Thomas M.

    2015-01-01

    Acute inflammation either resolves or proceeds to fibrotic repair that replaces functional tissue. Pro-fibrotic hedgehog signaling and induction of its Gli transcription factor in pericytes induces fibrosis in kidney, but molecular instructions connecting inflammation to fibrosis are opaque. We show acute kidney inflammation resulting from chronic ingestion of the common xenobiotic ethanol initiates Gli1 transcription and hedgehog synthesis in kidney pericytes, and promotes renal fibrosis. Ethanol ingestion stimulated transcription of TGF-ß, collagens I and IV, and alpha-smooth muscle actin with accumulation of these proteins. This was accompanied by deposition of extracellular fibrils. Ethanol catabolism by CYP2E1 in kidney generates local reactive oxygen species that oxidize cellular phospholipids to phospholipid products that activate the Platelet-activating Factor receptor (PTAFR) for inflammatory phospholipids. Genetically deleting this ptafr locus abolished accumulation of mRNA for TGF-ß, collagen IV, and α-smooth muscle actin. Loss of PTAFR also abolished ethanol-stimulated Sonic (Shh) and Indian hedgehog (Ihh) expression, and abolished transcription and accumulation of Gli1. Shh induced in pericytes and Ihh in tubules escaped to urine of ethanol-fed mice. Neutrophil myeloperoxidase (MPO) is required for ethanol-induced kidney inflammation, and Shh was not present in kidney or urine of mpo -/- mice. Shh also was present in urine of patients with acute kidney injury, but not in normal individuals or those with fibrotic liver cirrhosis We conclude neither endogenous PTAFR signaling nor CYP2E1-generated radicals alone are sufficient to initiate hedgehog signaling, but instead PTAFR-dependent neutrophil infiltration with myeloperoxidase activation is necessary to initiate ethanol-induced fibrosis in kidney. We also show fibrogenic mediators escape to urine, defining a new class of urinary mechanistic biomarkers of fibrogenesis for an organ not commonly

  3. Evolutionary Genomics and Adaptive Evolution of the Hedgehog Gene Family (Shh, Ihh and Dhh) in Vertebrates

    PubMed Central

    Pereira, Joana; Johnson, Warren E.; O’Brien, Stephen J.; Jarvis, Erich D.; Zhang, Guojie; Gilbert, M. Thomas P.; Vasconcelos, Vitor; Antunes, Agostinho

    2014-01-01

    The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog – Shh; Indian hedgehog – Ihh; and Desert hedgehog – Dhh), each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots. PMID:25549322

  4. Anticancer drugs and the regulation of Hedgehog genes GLI1 and PTCH1, a comparative study in nonmelanoma skin cancer cell lines.

    PubMed

    Olesen, Uffe H; Bojesen, Sophie; Gehl, Julie; Haedersdal, Merete

    2017-11-01

    Nonmelanoma skin cancer is the most common cancer in humans, comprising mainly basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). BCC proliferation is highly dependent on the Hedgehog signaling pathway. We aimed to investigate a panel of anticancer drugs with known activity against skin cancer for their therapeutic potential in localized, enhanced topical treatment of SCC and BCC. Cytotoxicity profiles for vismodegib, 5-fluorouracil (5-FU), methotrexate (MTX), cisplatin, bleomycin, and vorinostat were established in terms of half maximal inhibitory concentration values in a panel of immortalized keratinocytes (HaCaT), BCC (UWBCC1 and BCC77015), and SCC (A431 and SCC25) cell lines. The impact of treatment on the regulation of Hedgehog pathway target genes (GLI1 and PTCH1), measured by real-time PCR, was compared between UWBCC1 and HaCaT. Varying cell line sensitivity profiles to the examined anticancer drugs were observed. Generally, 24-h drug exposure was sufficient to reduce cell viability. We found that 5-FU, MTX, and cisplatin significantly downregulated the expression of two genes controlled by the Hedgehog pathway (≤25-, 2.9-, and 12.5-fold, respectively, for GLI1 in UWBCC1 cells at 48 h, P<0.0001). The gene regulation showed clear concentration dependence and correlated with cytotoxicity for both 5-FU and MTX. We find a potential for the use of anticancer drugs in localized and enhanced topical treatment of nonmelanoma skin cancer. Of importance in the clinical setting, 24-h drug exposure may be sufficient for significant cytotoxicity for vismodegib, 5-FU, cisplatin, and bleomycin. MTX, 5-FU, and cisplatin may offer particular promise through combined cytotoxicity and downregulation of Hedgehog pathway genes GLI1 and PTCH1.

  5. The expression of Hedgehog genes (Ihh, Dhh) and Hedgehog target genes (Ptc1, Gli1, Coup-TfII) is affected by estrogenic stimuli in the uterus of immature female rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katayama, Seiichi; Ashizawa, Koji; Gohma, Hiroshi

    2006-12-15

    The objective of this study was to investigate the effects of estrogen receptor (ER) agonists and an ER antagonist on the expression of Hedgehog genes (Indian hedgehog: Ihh; Desert hedgehog: Dhh) and Hedgehog target genes (Patched 1: Ptc1; glioma-associated oncogene homolog 1: Gli1; chicken ovalbumin upstream promoter transcription factor II: Coup-TfII) in the rat uterus. Immature female rats were administered once with 17{alpha}-ethynyl estradiol (EE, an ER agonist), propyl pyrazole triole (PPT, an ER{alpha}-selective agonist), diarylpropionitrile (DPN, an ER{beta}-selective agonist), or ICI 182,780 (an ER antagonist). Expression of mRNA for Ihh, Dhh, and Ptc1 was dose-dependently downregulated by EE inmore » the uterus of immature rats, mediated by ER as confirmed by coadministration of ICI 182,780. The mRNA expression levels of Ptc1, Gli1, and Coup-TfII were simultaneously downregulated during the period in which the mRNA expression levels of Ihh and Dhh were downregulated in the uterus after administration of EE. PPT downregulated the transcription of Ihh, Dhh, Ptc1, Gli1, and Coup-TfII, indicating that expression of these genes was regulated by the ER{alpha}-dependent pathway. DPN also downregulated the transcription of Ihh and Dhh, although the effect was weaker than that of PPT, indicating that the regulation of uterine Ihh and Dhh transcription was also affected by the ER{beta}-dependent pathway. These results suggest that the expression of Hedgehog genes (Ihh, Dhh) and Hedgehog target genes (Ptc1, Gli1, Coup-TfII) is affected by estrogenic stimuli in the uterus of immature female rats.« less

  6. Outfoxing the Hedgehog

    ERIC Educational Resources Information Center

    Barbieri, Richard

    2011-01-01

    Jim Collins's "Good to Great" has attained near-scriptural status in organizations, including nonprofits, which Collins says constitute a third of his readers. The pivot point in "Good to Great" is the Hedgehog Concept. The "Hedgehog Concept" (HC), this author claims, is dangerous for schools because it distorts the nature of education. As Collins…

  7. The role of nutraceuticals in the regulation of Wnt and Hedgehog signaling in cancer

    PubMed Central

    Li, Yiwei; Wang, Zhiwei; Kong, Dejuan

    2010-01-01

    Multiple cellular signaling pathways have been involved in the processes of cancer cell invasion and metastasis. Among many signaling pathways, Wnt and Hedgehog (Hh) signaling pathways are critically involved in embryonic development, in the biology of cancer stem cells (CSCs) and in the acquisition of epithelial to mesenchymal transition (EMT), and thus this article will remain focused on Wnt and Hh signaling. Since CSCs and EMT are also known to be responsible for cancer cell invasion and metastasis, the Wnt and Hedgehog signaling pathways are also intimately associated with cancer invasion and metastasis. Emerging evidence suggests the beneficial role of chemopreventive agents commonly known as nutraceutical in cancer. Among many such agents, soy isoflavones, curcumin, green tea polyphenols, 3,3′-diindolylmethane, resveratrol, lycopene, vitamin D, etc. have been found to prevent, reverse, or delay the carcinogenic process. Interestingly, these agents have also shown to prevent or delay the progression of cancer, which could in part be due to their ability to attack CSCs or EMT-type cells by attenuating the Wnt and Hedgehog signaling pathways. In this review, we summarize the current state of our knowledge on the role of Wnt and Hedgehog signaling pathways, and their targeted inactivation by chemopreventive agents (nutraceuticals) for the prevention of tumor progression and/or treatment of human malignancies. PMID:20711635

  8. Intestinal cell kinase, a protein associated with endocrine-cerebro-osteodysplasia syndrome, is a key regulator of cilia length and Hedgehog signaling.

    PubMed

    Moon, Heejung; Song, Jieun; Shin, Jeong-Oh; Lee, Hankyu; Kim, Hong-Kyung; Eggenschwiller, Jonathan T; Bok, Jinwoong; Ko, Hyuk Wan

    2014-06-10

    Endocrine-cerebro-osteodysplasia (ECO) syndrome is a recessive genetic disorder associated with multiple congenital defects in endocrine, cerebral, and skeletal systems that is caused by a missense mutation in the mitogen-activated protein kinase-like intestinal cell kinase (ICK) gene. In algae and invertebrates, ICK homologs are involved in flagellar formation and ciliogenesis, respectively. However, it is not clear whether this role of ICK is conserved in mammals and how a lack of functional ICK results in the characteristic phenotypes of human ECO syndrome. Here, we generated Ick knockout mice to elucidate the precise role of ICK in mammalian development and to examine the pathological mechanisms of ECO syndrome. Ick null mouse embryos displayed cleft palate, hydrocephalus, polydactyly, and delayed skeletal development, closely resembling ECO syndrome phenotypes. In cultured cells, down-regulation of Ick or overexpression of kinase-dead or ECO syndrome mutant ICK resulted in an elongation of primary cilia and abnormal Sonic hedgehog (Shh) signaling. Wild-type ICK proteins were generally localized in the proximal region of cilia near the basal bodies, whereas kinase-dead ICK mutant proteins accumulated in the distal part of bulged ciliary tips. Consistent with these observations in cultured cells, Ick knockout mouse embryos displayed elongated cilia and reduced Shh signaling during limb digit patterning. Taken together, these results indicate that ICK plays a crucial role in controlling ciliary length and that ciliary defects caused by a lack of functional ICK leads to abnormal Shh signaling, resulting in congenital disorders such as ECO syndrome.

  9. Hedgehog regulates Norrie disease protein to drive neural progenitor self-renewal.

    PubMed

    McNeill, Brian; Mazerolle, Chantal; Bassett, Erin A; Mears, Alan J; Ringuette, Randy; Lagali, Pamela; Picketts, David J; Paes, Kim; Rice, Dennis; Wallace, Valerie A

    2013-03-01

    Norrie disease (ND) is a congenital disorder characterized by retinal hypovascularization and cognitive delay. ND has been linked to mutations in 'Norrie Disease Protein' (Ndp), which encodes the secreted protein Norrin. Norrin functions as a secreted angiogenic factor, although its role in neural development has not been assessed. Here, we show that Ndp expression is initiated in retinal progenitors in response to Hedgehog (Hh) signaling, which induces Gli2 binding to the Ndp promoter. Using a combination of genetic epistasis and acute RNAi-knockdown approaches, we show that Ndp is required downstream of Hh activation to induce retinal progenitor proliferation in the retina. Strikingly, Ndp regulates the rate of cell-cycle re-entry and not cell-cycle kinetics, thereby uncoupling the self-renewal and cell-cycle progression functions of Hh. Taken together, we have uncovered a cell autonomous function for Ndp in retinal progenitor proliferation that is independent of its function in the retinal vasculature, which could explain the neural defects associated with ND.

  10. Hedgehog signaling pathway in neuroblastoma differentiation.

    PubMed

    Souzaki, Ryota; Tajiri, Tatsuro; Souzaki, Masae; Kinoshita, Yoshiaki; Tanaka, Sakura; Kohashi, Kenichi; Oda, Yoshinao; Katano, Mitsuo; Taguchi, Tomoaki

    2010-12-01

    The hedgehog (Hh) signaling pathway is activated in some adult cancers. On the other hand, the Hh signaling pathway plays an important role in the development of the neural crest in embryos. The aim of this study is to show the activation of Hh signaling pathway in neuroblastoma (NB), a pediatric malignancy arising from neural crest cells, and to reveal the meaning of the Hh signaling pathway in NB development. This study analyzed the expression of Sonic hedgehog (Shh), GLI1, and Patched 1 (Ptch1), transactivators of Hh signaling pathway, by immunohistochemistry in 82 NB and 10 ganglioneuroblastoma cases. All 92 cases were evaluated for the status of MYCN amplification. Of the 92 cases, 67 (73%) were positive for Shh, 62 cases (67%) were positive for GLI1, and 73 cases (79%) were positive for Ptch1. Only 2 (10%) of the 20 cases with MYCN amplification were positive for Shh and GLI1, and 4 cases (20%) were positive for Ptch1 (MYCN amplification vs no MYCN amplification, P ≦ .01). The percentage of GLI1-positive cells in the cases with INSS stage 1 without MYCN amplification was significantly higher than that with INSS stage 4. Of 72 cases without MYCN amplification, 60 were GLI1-positive. Twelve cases were GLI1-negative, and the prognosis of the GLI1-positive cases was significantly better than that of the GLI1-negative cases (P = .015). Most of NBs without MYCN amplification were positive for Shh, GLI1, and Ptch1. In the cases without MYCN amplification, the high expression of GLI1 was significantly associated with early clinical stage and a good prognosis of the patients. In contrast to adult cancers, the activation of the Hh signaling pathway in NB may be associated with the differentiation of the NB. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Single-nucleotide variants in two Hedgehog genes, SHH and HHIP, as genetic cause of combined pituitary hormone deficiency.

    PubMed

    Gorbenko del Blanco, Darya; de Graaff, Laura C G; Visser, Theo J; Hokken-Koelega, Anita C S

    2013-03-01

    Combined pituitary hormone deficiency (CPHD) is characterized by deficiencies of two or more anterior pituitary hormones. Its genetic cause is unknown in the majority of cases. The Hedgehog (Hh) signalling pathway has been implicated in disorders associated with pituitary development. Mutations in Sonic Hedgehog (SHH) have been described in patients with holoprosencephaly (with or without pituitary involvement). Hedgehog interacting protein (HHIP) has been associated with variations in adult height in genome wide association studies. We investigated whether mutations in these two genes of the Hh pathway, SHH and HHIP, could result in 'idiopathic' CPHD. We directly sequenced the coding regions and exon - intron boundaries of SHH and HHIP in 93 CPHD patients of the Dutch HYPOPIT study in whom mutations in the classical CPHD genes PROP1, POU1F1, HESX1, LHX3 and LHX4 had been ruled out. We compared the expression of Hh genes in Hep3B transfected cells between wild-type proteins and mutants. We identified three single-nucleotide variants (p.Ala226Thr, c.1078C>T and c.*8G>T) in SHH. The function of the latter was severely affected in our in vitro assay. In HHIP, we detected a new activating variant c.-1G>C, which increases HHIP's inhibiting function on the Hh pathway. Our results suggest involvement of the Hedgehog pathway in CPHD. We suggest that both SHH and HHIP are investigated as a second screening in CPHD, after mutations in the classical CPHD genes have been ruled out. © 2012 Blackwell Publishing Ltd.

  12. Long-term behavioral change as a result of acute ethanol exposure in zebrafish: Evidence for a role for sonic hedgehog but not retinoic acid signaling.

    PubMed

    Burton, Derek F; Zhang, Chengjin; Boa-Amponsem, Oswald; Mackinnon, Shanta; Cole, Gregory J

    2017-05-01

    Developmental exposure to ethanol is recognized to produce long-term neurobehavioral impairment in multiple animal models. However, the molecular mechanisms underlying these deficits remain poorly understood. The present study was undertaken to ascertain whether two well-characterized targets of prenatal alcohol exposure, sonic hedgehog (Shh) and retinoic acid (RA), that induce the hallmark morphological phenotypes of fetal alcohol spectrum disorders (FASD), are involved in the generation of behavioral alterations as a result of alcohol exposure. Zebrafish embryos were exposed to ethanol (0%, 1%, 3%) at either 8-10 or 24-27h post-fertilization (hpf) and then evaluated during adolescence in the novel tank dive test to assess anxiety and risk-taking behavior. Overt signs of dysmorphogenesis were also scored and behavioral and morphological changes were compared for embryos treated with alcohol alone or in combination with subthreshold doses of shh or alhh1a3 morpholinos (MOs). Ethanol treated fish displayed altered tank diving behavior that was not exacerbated by combined MO treatment. While treatment of embryos with either shha mRNA or RA prior to ethanol exposure only ameliorated the altered tank diving response in the case of shha mRNA overexpression, dysmorphogenesis was rescued by both treatments. These results suggest that the effects of ethanol exposure on changes in anxiety and risk-taking behavior in adolescent zebrafish is manifested by a blunting of Shh, but not RA, signaling during early development. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Hedgehog signalling stimulates precursor cell accumulation and impairs epithelial maturation in the murine oesophagus.

    PubMed

    van Dop, Willemijn A; Rosekrans, Sanne L; Uhmann, Anja; Jaks, Viljar; Offerhaus, G Johan A; van den Bergh Weerman, Marius A; Kasper, Maria; Heijmans, Jarom; Hardwick, James C H; Verspaget, Hein W; Hommes, Daan W; Toftgård, Rune; Hahn, Heidi; van den Brink, Gijs R

    2013-03-01

    In the intestine Hedgehog (Hh) signalling is directed from epithelium to mesenchyme and negatively regulates epithelial precursor cell fate. The role of Hh signalling in the oesophagus has not been studied in vivo. Here the authors examined the role of Hh signalling in epithelial homeostasis of oesophagus. The authors used transgenic mice in which the Hh receptor Patched1 (Ptch1) could be conditionally inactivated in a body-wide manner and mice in which Gli1 could be induced specifically in the epithelium of the skin and oesophagus. Effects on epithelial homeostasis of the oesophagus were examined using immunohistochemistry, in situ hybridisation, transmission electron microscopy and real-time PCR. Hh signalling was examined in patients with oesophageal squamous cell carcinoma (SCC) by quantitative real-time PCR. Sonic Hh is signalled in an autocrine manner in the basal layer of the oesophagus. Activation of Hh signalling resulted in an expansion of the epithelial precursor cell compartment and failure of epithelial maturation and migration. Levels of Hh targets GLI1, HHIP and PTCH1 were increased in SCC compared with normal tissue from the same patients. Here the authors find that Hh signalling positively regulates the precursor cell compartment in the oesophageal epithelium in an autocrine manner. Since Hh signalling targets precursor cells in the oesophageal epithelium and signalling is increased in SCCs, Hh signalling may be involved in oesophageal SCC formation.

  14. Hedgehog signaling is synergistically enhanced by nutritional deprivation and ligand stimulation in human fibroblasts of Gorlin syndrome.

    PubMed

    Mizuochi, Hiromi; Fujii, Katsunori; Shiohama, Tadashi; Uchikawa, Hideki; Shimojo, Naoki

    2015-02-13

    Hedgehog signaling is a pivotal developmental pathway that comprises hedgehog, PTCH1, SMO, and GLI proteins. Mutations in PTCH1 are responsible for Gorlin syndrome, which is characterized by developmental defects and tumorigenicity. Although the hedgehog pathway has been investigated extensively in Drosophila and mice, its functional roles have not yet been determined in human cells. In order to elucidate the mechanism by which transduction of the hedgehog signal is regulated in human tissues, we employed human fibroblasts derived from three Gorlin syndrome patients and normal controls. We investigated GLI1 transcription, downstream of hedgehog signaling, to assess native signal transduction, and then treated fibroblasts with a recombinant human hedgehog protein with or without serum deprivation. We also examined the transcriptional levels of hedgehog-related genes under these conditions. The expression of GLI1 mRNA was significantly higher in Gorlin syndrome-derived fibroblasts than in control cells. Hedgehog stimulation and nutritional deprivation synergistically enhanced GLI1 transcription levels, and this was blocked more efficiently by vismodegib, a SMO inhibitor, than by the natural compound, cyclopamine. Messenger RNA profiling revealed the increased expression of Wnt signaling and morphogenetic molecules in these fibroblasts. These results indicated that the hedgehog stimulation and nutritional deprivation synergistically activated the hedgehog signaling pathway in Gorlin syndrome fibroblasts, and this was associated with increments in the transcription levels of hedgehog-related genes such as those involved in Wnt signaling. These fibroblasts may become a significant tool for predicting the efficacies of hedgehog molecular-targeted therapies such as vismodegib. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Cardiomyopathy in captive African hedgehogs (Atelerix albiventris).

    PubMed

    Raymond, J T; Garner, M M

    2000-09-01

    From 1994 to 1999, 16 captive African hedgehogs (Atelerix albiventris), from among 42 necropsy cases, were diagnosed with cardiomyopathy. The incidence of cardiomyopathy in this study population was 38%. Fourteen of 16 hedgehogs with cardiomyopathy were males and all hedgehogs were adult (>1 year old). Nine hedgehogs exhibited 1 or more of the following clinical signs before death: heart murmur, lethargy, icterus, moist rales, anorexia, dyspnea, dehydration, and weight loss. The remaining 7 hedgehogs died without premonitory clinical signs. Gross findings were cardiomegaly (6 cases), hepatomegaly (5 cases), pulmonary edema (5 cases), pulmonary congestion (4 cases), hydrothorax (3 cases), pulmonary infarct (1 case), renal infarcts (1 case), ascites (1 case), and 5 cases showed no changes. Histologic lesions were found mainly within the left ventricular myocardium and consisted primarily of myodegeneration, myonecrosis, atrophy, hypertrophy, and disarray of myofibers. All hedgehogs with cardiomyopathy had myocardial fibrosis, myocardial edema, or both. Other common histopathologic findings were acute and chronic passive congestion of the lungs, acute passive congestion of the liver, renal tubular necrosis, vascular thrombosis, splenic extramedullary hematopoiesis, and hepatic lipidosis. This is the first report of cardiomyopathy in African hedgehogs.

  16. Gli1-Mediated Regulation of Sox2 Facilitates Self-Renewal of Stem-Like Cells and Confers Resistance to EGFR Inhibitors in Non-Small Cell Lung Cancer.

    PubMed

    Bora-Singhal, Namrata; Perumal, Deepak; Nguyen, Jonathan; Chellappan, Srikumar

    2015-07-01

    Non-small cell lung cancer (NSCLC) patients have very low survival rates because the current therapeutic strategies are not fully effective. Although EGFR tyrosine kinase inhibitors are effective for NSCLC patients harboring EGFR mutations, patients invariably develop resistance to these agents. Alterations in multiple signaling cascades have been associated with the development of resistance to EGFR inhibitors. Sonic Hedgehog and associated Gli transcription factors play a major role in embryonic development and have recently been found to be reactivated in NSCLC, and elevated Gli1 levels correlate with poor prognosis. The Hedgehog pathway has been implicated in the functions of cancer stem cells, although the underlying molecular mechanisms are not clear. In this context, we demonstrate that Gli1 is a strong regulator of embryonic stem cell transcription factor Sox2. Depletion of Gli1 or inhibition of the Hedgehog signaling significantly abrogated the self-renewal of stem-like side-population cells from NSCLCs as well as vascular mimicry of such cells. Gli1 was found to transcriptionally regulate Sox2 through its promoter region, and Gli1 could be detected on the Sox2 promoter. Inhibition of Hedgehog signaling appeared to work cooperatively with EGFR inhibitors in markedly reducing the viability of NSCLC cells as well as the self-renewal of stem-like cells. Thus, our study demonstrates a cooperative functioning of the EGFR signaling and Hedgehog pathways in governing the stem-like functions of NSCLC cancer stem cells and presents a novel therapeutic strategy to combat NSCLC harboring EGFR mutations. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Detection of a pneumonia virus of mice (PVM) in an African hedgehog (Atelerix arbiventris) with suspected wobbly hedgehog syndrome (WHS).

    PubMed

    Madarame, Hiroo; Ogihara, Kikumi; Kimura, Moe; Nagai, Makoto; Omatsu, Tsutomu; Ochiai, Hideharu; Mizutani, Tetsyuya

    2014-09-17

    A pneumonia virus of mice (PVM) from an African hedgehog (Atelerix arbiventris) with suspected wobbly hedgehog syndrome (WHS) was detected and genetically characterized. The affected hedgehog had a nonsuppurative encephalitis with vacuolization of the white matter, and the brain samples yielded RNA reads highly homogeneous to PVM strain 15 (96.5% of full genomic sequence homology by analysis of next generation sequencing). PVM antigen was also detected in the brain and the lungs immunohistochemically. A PVM was strongly suggested as a causative agent of encephalitis of a hedgehog with suspected WHS. This is a first report of PVM infection in hedgehogs. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Strong sonic hedgehog signaling in the mouse ventral spinal cord is not required for oligodendrocyte precursor cell (OPC) generation but is necessary for correct timing of its generation.

    PubMed

    Hashimoto, Hirokazu; Jiang, Wen; Yoshimura, Takeshi; Moon, Kyeong-Hye; Bok, Jinwoong; Ikenaka, Kazuhiro

    2017-11-06

    In the mouse neural tube, sonic hedgehog (Shh) secreted from the floor plate (FP) and the notochord (NC) regulates ventral patterning of the neural tube, and later is essential for the generation of oligodendrocyte precursor cells (OPCs). During early development, the NC is adjacent to the neural tube and induces ventral domains in it, including the FP. In the later stage of development, during gliogenesis in the spinal cord, the pMN domain receives strong Shh signaling input. While this is considered to be essential for the generation of OPCs, the actual role of this strong input in OPC generation remains unclear. Here we studied OPC generation in bromi mutant mice which show abnormal ciliary structure. Shh signaling occurs within cilia and has been reported to be weak in bromi mutants. At E11.5, accumulation of Patched1 mRNA, a Shh signaling reporter, is observed in the pMN domain of wild type but not bromi mutants, whereas expression of Gli1 mRNA, another Shh reporter, disappeared. Thus, Shh signaling input to the pMN domain at E12.5 was reduced in bromi mutant mice. In these mutants, induction of the FP structure was delayed and its size was reduced compared to wild type mice. Furthermore, while the p3 and pMN domains were induced, the length of the Nkx2.2-positive region and the number of Olig2-positive cells decreased. The number of OPCs was also significantly decreased in the E12.5 and E14.5 bromi mutant spinal cord. In contrast, motor neuron (MN) production, detected by HB9 expression, significantly increased. It is likely that the transition from MN production to OPC generation in the pMN domain is impaired in bromi mutant mice. These results suggest that strong Shh input to the pMN domain is not required for OPC generation but is essential for producing a sufficient number of OPCs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The Kto-Skd complex can regulate ptc expression by interacting with Cubitus interruptus (Ci) in the Hedgehog signaling pathway.

    PubMed

    Mao, Feifei; Yang, Xiaofeng; Fu, Lin; Lv, Xiangdong; Zhang, Zhao; Wu, Wenqing; Yang, Siqi; Zhou, Zhaocai; Zhang, Lei; Zhao, Yun

    2014-08-08

    The hedgehog (Hh) signaling pathway plays a very important role in metazoan development by controlling pattern formation. Drosophila imaginal discs are subdivided into anterior and posterior compartments that derive from adjacent cell populations. The anterior/posterior (A/P) boundaries, which are critical to maintaining the position of organizers, are established by a complex mechanism involving Hh signaling. Here, we uncover the regulation of ptc in the Hh signaling pathway by two subunits of mediator complex, Kto and Skd, which can also regulate boundary location. Collectively, we provide further evidence that Kto-Skd affects the A/P-axial development of the whole wing disc. Kto can interact with Cubitus interruptus (Ci), bind to the Ci-binding region on ptc promoter, which are both regulated by Hh signals to down-regulate ptc expression. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Intestinal lymphosarcoma in captive African hedgehogs.

    PubMed

    Raymond, J T; Clarke, K A; Schafer, K A

    1998-10-01

    Two captive adult female African hedgehogs (Atelerix albiventris) had inappetance and bloody diarrhea for several days prior to death. Both hedgehogs had ulceration of the small intestine and hepatic lipidosis. Histopathology revealed small intestinal lymphosarcoma with metastasis to the liver. Extracellular particles that had characteristics of retroviruses were observed associated with the surface of some neoplastic lymphoid cells by transmission electron microscopy. These are the first reported cases of intestinal lymphosarcoma in African hedgehogs.

  1. Desert hedgehog promotes ischemia-induced angiogenesis by ensuring peripheral nerve survival.

    PubMed

    Renault, Marie-Ange; Chapouly, Candice; Yao, Qinyu; Larrieu-Lahargue, Frédéric; Vandierdonck, Soizic; Reynaud, Annabel; Petit, Myriam; Jaspard-Vinassa, Béatrice; Belloc, Isabelle; Traiffort, Elisabeth; Ruat, Martial; Duplàa, Cécile; Couffinhal, Thierry; Desgranges, Claude; Gadeau, Alain-Pierre

    2013-03-01

    Blood vessel growth and patterning have been shown to be regulated by nerve-derived signals. Desert hedgehog (Dhh), one of the Hedgehog family members, is expressed by Schwann cells of peripheral nerves. The purpose of this study was to investigate the contribution of Dhh to angiogenesis in the setting of ischemia. We induced hindlimb ischemia in wild-type and Dhh(-/-) mice. First, we found that limb perfusion is significantly impaired in the absence of Dhh. This effect is associated with a significant decrease in capillary and artery density in Dhh(-/-). By using mice in which the Hedgehog signaling pathway effector Smoothened was specifically invalidated in endothelial cells, we demonstrated that Dhh does not promote angiogenesis by a direct activation of endothelial cells. On the contrary, we found that Dhh promotes peripheral nerve survival in the ischemic muscle and, by doing so, maintains the pool of nerve-derived proangiogenic factors. Consistently, we found that denervation of the leg, immediately after the onset of ischemia, severely impairs ischemia-induced angiogenesis and decreases expression of vascular endothelial growth factor A, angiopoietin 1, and neurotrophin 3 in the ischemic muscle. This study demonstrates the crucial roles of nerves and factors regulating nerve physiology in the setting of ischemia-induced angiogenesis.

  2. Sonic Booms in Atmospheric Turbulence (SonicBAT) Testing

    NASA Image and Video Library

    2017-08-23

    A motorized glider prepares to take off from the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Flying with its engine off, the glider will be positioned above the 14,000-foot level to measure sonic booms created by agency F-18 jets to measure the effects of sonic booms. Several flights a day have been taking place the week of Aug. 21, 2017 as part of NASA's Sonic Booms in Atmospheric Turbulence, or SonicBAT II Program. NASA at Kennedy is partnering with the agency's Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Space Florida for a program in which F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers measure the effects of low-altitude turbulence caused by sonic booms.

  3. Sonic Booms in Atmospheric Turbulence (SonicBAT) Testing

    NASA Image and Video Library

    2017-08-23

    A motorized glider has taken off from the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Flying with its engine off, the glider will be positioned above the 14,000-foot level to measure sonic booms created by agency F-18 jets to measure the effects of sonic booms. Several flights a day have been taking place the week of Aug. 21, 2017 as part of NASA's Sonic Booms in Atmospheric Turbulence, or SonicBAT II Program. NASA at Kennedy is partnering with the agency's Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Space Florida for a program in which F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers measure the effects of low-altitude turbulence caused by sonic booms.

  4. SonicBAT Testing

    NASA Image and Video Library

    2017-08-24

    Teams from NASA's Armstrong Flight Research Center in California, and Langley Research Center in Virginia, are conducting supersonic flight tests to study the ways sonic booms travel. The Sonic Booms in Atmospheric Turbulence flight series, or SonicBAT, features a F/A-18 research aircraft to create sonic booms, flying at supersonic speeds just off the coast of Florida. In order to understand how atmospheric turbulence in a humic climate impacts how sonic booms travel, NASA is flying a TG-14 motorized glider to obtain data on sonic booms before they travel through atmospheric turbulence. That data is compared with similar data captured by two microphone arrays on the ground that hear sonic booms that have traveled through atmospheric turbulence.

  5. Clinical implications of hedgehog signaling pathway inhibitors

    PubMed Central

    Liu, Hailan; Gu, Dongsheng; Xie, Jingwu

    2011-01-01

    Hedgehog was first described in Drosophila melanogaster by the Nobel laureates Eric Wieschaus and Christiane Nüsslein-Volhard. The hedgehog (Hh) pathway is a major regulator of cell differentiation, proliferation, tissue polarity, stem cell maintenance, and Carcinogenesis. The first link of Hh signaling to cancer was established through studies of a rare familial disease, Gorlin syndrome, in 1996. Follow-up studies revealed activation of this pathway in basal cell carcinoma, medulloblastoma and, leukemia as well as in gastrointestinal, lung, ovarian, breast, and prostate cancer. Targeted inhibition of Hh signaling is now believed to be effective in the treatment and prevention of human cancer. The discovery and synthesis of specific inhibitors for this pathway are even more exciting. In this review, we summarize major advances in the understanding of Hh signaling pathway activation in human cancer, mouse models for studying Hh-mediated Carcinogenesis, the roles of Hh signaling in tumor development and metastasis, antagonists for Hh signaling and their clinical implications. PMID:21192841

  6. Foxp2 regulates neuronal differentiation and neuronal subtype specification.

    PubMed

    Chiu, Yi-Chi; Li, Ming-Yang; Liu, Yuan-Hsuan; Ding, Jing-Ya; Yu, Jenn-Yah; Wang, Tsu-Wei

    2014-07-01

    Mutations of the transcription factor FOXP2 in humans cause a severe speech and language disorder. Disruption of Foxp2 in songbirds or mice also leads to deficits in song learning or ultrasonic vocalization, respectively. These data suggest that Foxp2 plays important roles in the developing nervous system. However, the mechanism of Foxp2 in regulating neural development remains elusive. In the current study, we found that Foxp2 increased neuronal differentiation without affecting cell proliferation and cell survival in primary neural progenitors from embryonic forebrains. Foxp2 induced the expression of platelet-derived growth factor receptor α, which mediated the neurognic effect of Foxp2. In addition, Foxp2 positively regulated the differentiation of medium spiny neurons derived from the lateral ganglionic eminence and negatively regulated the formation of interneurons derived from dorsal medial ganglionic eminence by interacting with the Sonic hedgehog pathway. Taken together, our results suggest that Foxp2 regulates multiple aspects of neuronal development in the embryonic forebrain. © 2014 Wiley Periodicals, Inc.

  7. Sarcoptes scabiei on hedgehogs in New Zealand.

    PubMed

    Kriechbaum, Caroline; Pomroy, William; Gedye, Kristene

    2018-03-01

    European hedgehogs (Erinaceus europaeus) were introduced into New Zealand from Britain during the period from 1869 to the early 1900s. The only mite found on New Zealand hedgehogs in early studies was Caparinia tripilis, with Sarcoptes scabiei first being reported in 1996. The aim of this study was to investigate the prevalence of Sarcoptes infestation on hedgehogs in New Zealand, the number of mites found and the degree of mange observed. Dead hedgehogs were collected from veterinary clinics, rescue centres, members of the public and from road-kill. Twenty-one (55.3%) of the animals examined had visible skin lesions. Both Caparinia and Sarcoptes mites were identified on microscopic examination with Sarcoptes the most common, being found on over 70% of animals examined (n = 38). The numbers of mites recovered after brushing the head and body ranged from 1 to 5659 (median = 341 mites) with only six animals (22.2%) having fewer than 10 Sarcoptes mites found. Caparinia mites were seen on fewer animals and generally in very low numbers. These findings indicate a change in the mite populations on hedgehogs in New Zealand and that infected animals develop the debilitating hyperkeratotic form of sarcoptic mange without an accompanying hypersensitivity response limiting numbers of mites. Analysis of the cox 1 gene of Sarcoptes from two hedgehogs showed close alignment to sequences derived from a pig with one and from a dog with the second. More work needs to be undertaken to identify the source(s) of the Sarcoptes found on hedgehogs in New Zealand and whether other mammalian hosts may be infected from contact with hedgehogs.

  8. Hedgehog Signaling in Pancreatic Fibrosis and Cancer

    PubMed Central

    Bai, Yongyu; Bai, Yongheng; Dong, Jiaojiao; Li, Qiang; Jin, Yuepeng; Chen, Bicheng; Zhou, Mengtao

    2016-01-01

    Abstract The hedgehog signaling pathway was first discovered in the 1980s. It is a stem cell-related pathway that plays a crucial role in embryonic development, tissue regeneration, and organogenesis. Aberrant activation of hedgehog signaling leads to pathological consequences, including a variety of human tumors such as pancreatic cancer. Multiple lines of evidence indicate that blockade of this pathway with several small-molecule inhibitors can inhibit the development of pancreatic neoplasm. In addition, activated hedgehog signaling has been reported to be involved in fibrogenesis in many tissues, including the pancreas. Therefore, new therapeutic targets based on hedgehog signaling have attracted a great deal of attention to alleviate pancreatic diseases. In this review, we briefly discuss the recent advances in hedgehog signaling in pancreatic fibrogenesis and carcinogenesis and highlight new insights on their potential relationship with respect to the development of novel targeted therapies. PMID:26962810

  9. Mammary gland tumors in captive African hedgehogs.

    PubMed

    Raymond, J T; Gerner, M

    2000-04-01

    From December 1995 to July 1999, eight mammary gland tumors were diagnosed in eight adult captive female African hedgehogs (Atelerix albiventris). The tumors presented as single or multiple subcutaneous masses along the cranial or caudal abdomen that varied in size for each hedgehog. Histologically, seven of eight (88%) mammary gland tumors were malignant. Tumors were classified as solid (4 cases), tubular (2 cases), and papillary (2 cases). Seven tumors had infiltrated into the surrounding stroma and three tumors had histologic evidence of neoplastic vascular invasion. Three hedgehogs had concurrent neoplasms. These are believed to be the first reported cases of mammary gland tumors in African hedgehogs.

  10. Noncanonical Hedgehog Signaling

    PubMed Central

    Brennan, Donna; Chen, Xiaole; Cheng, Lan; Mahoney, My; Riobo, Natalia A.

    2012-01-01

    The notion of noncanonical hedgehog (Hh) signaling in mammals has started to receive support from numerous observations. By noncanonical, we refer to all those cellular and tissue responses to any of the Hh isoforms that are independent of transcriptional changes mediated by the Gli family of transcription factors. In this chapter, we discuss the most recent findings that suggest that Patched1 can regulate cell proliferation and apoptosis independently of Smoothened (Smo) and Gli and the reports that Smo modulates actin cytoskeleton-dependent processes such as fibroblast migration, endothelial cell tubulogenesis, axonal extension, and neurite formation by diverse mechanisms that exclude any involvement of Gli-dependent transcription. We also acknowledge the existence of less stronger evidence of noncanonical signaling in Drosophila. PMID:22391299

  11. Disseminated histoplasmosis in an African pygmy hedgehog.

    PubMed

    Snider, Timothy A; Joyner, Priscilla H; Clinkenbeard, Kenneth D

    2008-01-01

    A 2-year-old captive-bred sexually intact female African pygmy hedgehog (Atelerix albiventris) was evaluated because of vague signs of illness including inappetence, weakness, lethargy, and weight loss over a 20-day period. Abnormalities detected via initial clinicopathologic analyses included anemia, thrombocytopenia, leukopenia, hypoproteinemia, and hypoglycemia. Results of a fecal flotation test were negative. Three weeks after the initial evaluation, splenomegaly was detected via palpation and ultrasonography. The hedgehog was treated with broad-spectrum antibacterial agents, resulting in an initially favorable response. Fenbendazole was also administered against possible occult parasitic infestation. After 3 weeks of illness, the hedgehog's condition had worsened and supportive care and administration of additional antibacterial agents were instituted. The hedgehog died, and pathologic examinations revealed severe splenomegaly; granulomatous infiltrates were evident in multiple organs, and Histoplasma capsulatum yeasts were detected intralesionally. Histoplasmosis can develop in a wide range of mammalian species. African pygmy hedgehogs are becoming increasingly popular as exotic pets, and vague signs of illness and splenomegaly are often attributed to hemolymphatic malignancies, which are somewhat common in this species. Practitioners should be aware that similar clinical signs may be associated with histoplasmosis in these animals. Although the hedgehog of this report was confined indoors, it originated from an area where histoplasmosis was endemic; this indicates that the disease should be included as a differential diagnosis for hedgehogs that develop vague signs of illness and are known to originate from such geographic regions.

  12. Confidence Intervals for Laboratory Sonic Boom Annoyance Tests

    NASA Technical Reports Server (NTRS)

    Rathsam, Jonathan; Christian, Andrew

    2016-01-01

    Commercial supersonic flight is currently forbidden over land because sonic booms have historically caused unacceptable annoyance levels in overflown communities. NASA is providing data and expertise to noise regulators as they consider relaxing the ban for future quiet supersonic aircraft. One deliverable NASA will provide is a predictive model for indoor annoyance to aid in setting an acceptable quiet sonic boom threshold. A laboratory study was conducted to determine how indoor vibrations caused by sonic booms affect annoyance judgments. The test method required finding the point of subjective equality (PSE) between sonic boom signals that cause vibrations and signals not causing vibrations played at various amplitudes. This presentation focuses on a few statistical techniques for estimating the interval around the PSE. The techniques examined are the Delta Method, Parametric and Nonparametric Bootstrapping, and Bayesian Posterior Estimation.

  13. Downregulation of MicroRNA 29a/b exacerbated diabetic retinopathy by impairing the function of Müller cells via Forkhead box protein O4.

    PubMed

    Zhang, Jiayu; Wu, Liang; Chen, Jiawei; Lin, Sisi; Cai, Daqiu; Chen, Chengwei; Chen, Zhenguo

    2018-05-01

    Diabetic retinopathy is a neurological disease, which can lead to blindness in severe cases. The pathogenesis underlying diabetic retinopathy is unclear. The aim of this study was to explore the role of dysregulated microRNA 29a/b in the onset and progression of diabetic retinopathy. Diabetes mellitus was induced in rats using 60 mg/kg of streptozotocin. Glucose (5.5 and 25 mM) was used to stimulate rat retinal Müller cells. Real-time polymerase chain reaction and Western blot analyses were used to determine gene expression. A luciferase reporter assay was conducted to validate the relationship of microRNA 29a/b with glioma-associated oncogene homolog 1 and Forkhead box protein O4. The expression of microRNA 29a/b and glutamine synthetase decreased in both diabetes mellitus rats and rat retinal Müller cells stimulated with high glucose, whereas the expression of sonic hedgehog, glioma-associated oncogene homolog 1, glial fibrillary acidic protein, and vascular endothelial growth factor, as well as the content of glutamate, increased. Dysregulated microRNA 29a/b was directly regulated by the sonic hedgehog-glioma-associated oncogene homolog 1 signalling pathway, and microRNA 29a and microRNA 29b targeted Forkhead box protein O4 and regulated its expression. Downregulation of microRNA 29a/b, mediated by the sonic hedgehog-glioma-associated oncogene homolog 1 signalling pathway, exacerbated diabetic retinopathy by upregulating Forkhead box protein O4.

  14. NHR-23 dependent collagen and hedgehog-related genes required for molting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kouns, Nathaniel A.; Nakielna, Johana; Behensky, Frantisek

    2011-10-07

    Highlights: {yields} NHR-23 is a critical regulator of nematode development and molting. {yields} The manuscript characterizes the loss-of-function phenotype of an nhr-23 mutant. {yields} Whole genome expression analysis identifies new potential targets of NHR-23. {yields} Hedgehog-related genes are identified as NHR-23 dependent genes. {yields} New link between sterol mediated signaling and regulation by NHR-23 is found. -- Abstract: NHR-23, a conserved member of the nuclear receptor family of transcription factors, is required for normal development in Caenorhabditis elegans where it plays a critical role in growth and molting. In a search for NHR-23 dependent genes, we performed whole genome comparativemore » expression microarrays on both control and nhr-23 inhibited synchronized larvae. Genes that decreased in response to nhr-23 RNAi included several collagen genes. Unexpectedly, several hedgehog-related genes were also down-regulated after nhr-23 RNAi. A homozygous nhr-23 deletion allele was used to confirm the RNAi knockdown phenotypes and the changes in gene expression. Our results indicate that NHR-23 is a critical co-regulator of functionally linked genes involved in growth and molting and reveal evolutionary parallels among the ecdysozoa.« less

  15. Sonic Booms in Atmospheric Turbulence (SonicBAT) Testing

    NASA Image and Video Library

    2017-08-22

    NASA F-18 jets prepare for takeoff from the agency's Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Several flights a day have been taking place the week of Aug. 21, 2017 to measure the effects of sonic booms. It is part of NASA's Sonic Booms in Atmospheric Turbulence, or SonicBAT II Program. NASA at Kennedy is partnering with the agency's Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Space Florida for a program in which F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers measure the effects of low-altitude turbulence caused by sonic booms.

  16. Sonic Booms in Atmospheric Turbulence (SonicBAT) Testing

    NASA Image and Video Library

    2017-08-22

    An engineer in a control trailer at NASA's Kennedy Space Center in Florida monitors data before flights of agency F-18 jets to measure the effects of sonic booms. Several flights a day have been taking place the week of Aug. 21, 2017 as part of NASA's Sonic Booms in Atmospheric Turbulence, or SonicBAT II Program. NASA at Kennedy is partnering with the agency's Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Space Florida for a program in which F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers measure the effects of low-altitude turbulence caused by sonic booms.

  17. Sonic Booms in Atmospheric Turbulence (SonicBAT) Testing

    NASA Image and Video Library

    2017-08-22

    NASA pilots board an F-18 jet prior to take off from the agency's Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Several flights a day have been taking place the week of Aug. 21, 2017 to measure the effects of sonic booms. It is part of NASA's Sonic Booms in Atmospheric Turbulence, or SonicBAT II Program. NASA at Kennedy is partnering with the agency's Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Space Florida for a program in which F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers measure the effects of low-altitude turbulence caused by sonic booms.

  18. Sonic Booms in Atmospheric Turbulence (SonicBAT) Testing

    NASA Image and Video Library

    2017-08-22

    A NASA F-18 jet is prepared for takeoff from the agency's Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Several flights a day have been taking place the week of Aug. 21, 2017 to measure the effects of sonic booms. It is part of NASA's Sonic Booms in Atmospheric Turbulence, or SonicBAT II Program. NASA at Kennedy is partnering with the agency's Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Space Florida for a program in which F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers measure the effects of low-altitude turbulence caused by sonic booms.

  19. Sonic Booms in Atmospheric Turbulence (SonicBAT) Testing

    NASA Image and Video Library

    2017-08-22

    A NASA F-18 jet takes off from the agency's Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Several flights a day have been taking place the week of Aug. 21, 2017 to measure the effects of sonic booms. It is part of NASA's Sonic Booms in Atmospheric Turbulence, or SonicBAT II Program. NASA at Kennedy is partnering with the agency's Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Space Florida for a program in which F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers measure the effects of low-altitude turbulence caused by sonic booms.

  20. Sonic Booms in Atmospheric Turbulence (SonicBAT) Testing

    NASA Image and Video Library

    2017-08-22

    A NASA pilot boards an F-18 jet prior to take off from the agency's Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Several flights a day have been taking place the week of Aug. 21, 2017 to measure the effects of sonic booms. It is part of NASA's Sonic Booms in Atmospheric Turbulence, or SonicBAT II Program. NASA at Kennedy is partnering with the agency's Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Space Florida for a program in which F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers measure the effects of low-altitude turbulence caused by sonic booms.

  1. Comprehensive methylome analysis of ovarian tumors reveals hedgehog signaling pathway regulators as prognostic DNA methylation biomarkers.

    PubMed

    Huang, Rui-Lan; Gu, Fei; Kirma, Nameer B; Ruan, Jianhua; Chen, Chun-Liang; Wang, Hui-Chen; Liao, Yu-Ping; Chang, Cheng-Chang; Yu, Mu-Hsien; Pilrose, Jay M; Thompson, Ian M; Huang, Hsuan-Cheng; Huang, Tim Hui-Ming; Lai, Hung-Cheng; Nephew, Kenneth P

    2013-06-01

    Women with advanced stage ovarian cancer (OC) have a five-year survival rate of less than 25%. OC progression is associated with accumulation of epigenetic alterations and aberrant DNA methylation in gene promoters acts as an inactivating "hit" during OC initiation and progression. Abnormal DNA methylation in OC has been used to predict disease outcome and therapy response. To globally examine DNA methylation in OC, we used next-generation sequencing technology, MethylCap-sequencing, to screen 75 malignant and 26 normal or benign ovarian tissues. Differential DNA methylation regions (DMRs) were identified, and the Kaplan-Meier method and Cox proportional hazard model were used to correlate methylation with clinical endpoints. Functional role of specific genes identified by MethylCap-sequencing was examined in in vitro assays. We identified 577 DMRs that distinguished (p < 0.001) malignant from non-malignant ovarian tissues; of these, 63 DMRs correlated (p < 0.001) with poor progression free survival (PFS). Concordant hypermethylation and corresponding gene silencing of sonic hedgehog pathway members ZIC1 and ZIC4 in OC tumors was confirmed in a panel of OC cell lines, and ZIC1 and ZIC4 repression correlated with increased proliferation, migration and invasion. ZIC1 promoter hypermethylation correlated (p < 0.01) with poor PFS. In summary, we identified functional DNA methylation biomarkers significantly associated with clinical outcome in OC and suggest our comprehensive methylome analysis has significant translational potential for guiding the design of future clinical investigations targeting the OC epigenome. Methylation of ZIC1, a putative tumor suppressor, may be a novel determinant of OC outcome.

  2. Sonic hedgehog in the notochord is sufficient for patterning of the intervertebral discs

    PubMed Central

    Choi, Kyung-Suk; Lee, Chanmi; Harfe, Brian D.

    2012-01-01

    The intervertebral discs, located between adjacent vertebrae, are required for stability of the spine and distributing mechanical load throughout the vertebral column. All cell types located in thes middle regions of the discs, called nuclei pulposi, are derived from the embryonic notochord. Recently, it was shown that the hedgehog signaling pathway plays an essential role during formation of nuclei pulposi. However, during the time that nuclei pulposi are forming, Shh is expressed in both the notochord and the nearby floor plate. To determine the source of SHH protein sufficient for formation of nuclei pulposi we removed Shh from either the floor plate or the notochord using tamoxifen-inducible Cre alleles. Removal of Shh from the floor plate resulted in phenotypically normal intervertebral discs, indicating that Shh expression in this tissue is not required for disc patterning. In addition, embryos that lacked Shh in the floor plate had normal vertebral columns, demonstrating that Shh expression in the notochord is sufficient for pattering the entire vertebral column. Removal of Shh from the notochord resulted in the absence of Shh in the floor plate, loss of intervertebral discs and vertebral structures. These data indicate that Shh expression in the notochord is sufficient for patterning of the intervertebral discs and the vertebral column. PMID:22841806

  3. Hedgehog inhibition promotes a switch from Type II to Type I cell death receptor signaling in cancer cells.

    PubMed

    Kurita, Satoshi; Mott, Justin L; Cazanave, Sophie C; Fingas, Christian D; Guicciardi, Maria E; Bronk, Steve F; Roberts, Lewis R; Fernandez-Zapico, Martin E; Gores, Gregory J

    2011-03-31

    TRAIL is a promising therapeutic agent for human malignancies. TRAIL often requires mitochondrial dysfunction, referred to as the Type II death receptor pathway, to promote cytotoxicity. However, numerous malignant cells are TRAIL resistant due to inhibition of this mitochondrial pathway. Using cholangiocarcinoma cells as a model of TRAIL resistance, we found that Hedgehog signaling blockade sensitized these cancer cells to TRAIL cytotoxicity independent of mitochondrial dysfunction, referred to as Type I death receptor signaling. This switch in TRAIL requirement from Type II to Type I death receptor signaling was demonstrated by the lack of functional dependence on Bid/Bim and Bax/Bak, proapoptotic components of the mitochondrial pathway. Hedgehog signaling modulated expression of X-linked inhibitor of apoptosis (XIAP), which serves to repress the Type I death receptor pathway. siRNA targeted knockdown of XIAP mimics sensitization to mitochondria-independent TRAIL killing achieved by Hedgehog inhibition. Regulation of XIAP expression by Hedgehog signaling is mediated by the glioma-associated oncogene 2 (GLI2), a downstream transcription factor of Hedgehog. In conclusion, these data provide additional mechanisms modulating cell death by TRAIL and suggest Hedgehog inhibition as a therapeutic approach for TRAIL-resistant neoplasms.

  4. The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution.

    PubMed

    Matus, David Q; Magie, Craig R; Pang, Kevin; Martindale, Mark Q; Thomsen, Gerald H

    2008-01-15

    Hedgehog signaling is an important component of cell-cell communication during bilaterian development, and abnormal Hedgehog signaling contributes to disease and birth defects. Hedgehog genes are composed of a ligand ("hedge") domain and an autocatalytic intein ("hog") domain. Hedgehog (hh) ligands bind to a conserved set of receptors and activate downstream signal transduction pathways terminating with Gli/Ci transcription factors. We have identified five intein-containing genes in the anthozoan cnidarian Nematostella vectensis, two of which (NvHh1 and NvHh2) contain definitive hedgehog ligand domains, suggesting that to date, cnidarians are the earliest branching metazoan phylum to possess definitive Hh orthologs. Expression analysis of NvHh1 and NvHh2, the receptor NvPatched, and a downstream transcription factor NvGli (a Gli3/Ci ortholog) indicate that these genes may have conserved roles in planar and trans-epithelial signaling during gut and germline development, while the three remaining intein-containing genes (NvHint1,2,3) are expressed in a cell-type-specific manner in putative neural precursors. Metazoan intein-containing genes that lack a hh ligand domain have previously only been identified within nematodes. However, we have identified intein-containing genes from both Nematostella and in two newly annotated lophotrochozoan genomes. Phylogenetic analyses suggest that while nematode inteins may be derived from an ancestral true hedgehog gene, the newly identified cnidarian and lophotrochozoan inteins may be orthologous, suggesting that both true hedgehog and hint genes may have been present in the cnidarian-bilaterian ancestor. Genomic surveys of N. vectensis suggest that most of the components of both protostome and deuterostome Hh signaling pathways are present in anthozoans and that some appear to have been lost in ecdysozoan lineages. Cnidarians possess many bilaterian cell-cell signaling pathways (Wnt, TGFbeta, FGF, and Hh) that appear to act in

  5. The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution

    PubMed Central

    Matus, David Q.; Magie, Craig; Pang, Kevin; Martindale, Mark Q; Thomsen, Gerald H.

    2008-01-01

    Hedgehog signaling is an important component of cell-cell communication during bilaterian development, and abnormal Hedgehog signaling contributes to disease and birth defects. Hedgehog genes are composed of a ligand (“hedge”) domain and an autocatalytic intein (“hog”) domain. Hedgehog (hh) ligands bind to a conserved set of receptors and activate downstream signal transduction pathways terminating with Gli/Ci transcription factors. We have identified five intein-containing genes in the anthozoan cnidarian Nematostella vectensis, two of which (NvHh1 and NvHh2) contain definitive hedgehog ligand domains, suggesting that to date, cnidarians are the earliest branching metazoan phylum to possess definitive Hh orthologs. Expression analysis of NvHh1 and NvHh2, the receptor NvPatched and a downstream transcription factor NvGli (a Gli3/Ci ortholog) indicate that these genes may have conserved roles in planar and trans-epithelial signaling during gut and germline development, while the three remaining intein-containing genes (NvHint1,2,3) are expressed in a cell-type specific manner in putative neural precursors. Metazoan intein-containing genes that lack a ligand domain have previously only been identified within nematodes. However, phylogenetic analyses suggest that these nematode inteins may be derived from an ancestral nematode true hedgehog gene, and that the non-bilaterian intein-containing genes identified here may represent an ancestral state prior to the domain swapping events that resulted in the formation of true hedgehog genes in the cnidarian-bilaterian ancestor. Genomic surveys of N. vectensis suggest that most of the components of both protostome and deuterostome Hh signaling pathways are present in anthozoans and that some appear to have been lost in ecdysozoan lineages. Cnidarians possess many bilaterian cell-cell signaling pathways (Wnt, TGFß, FGF and Hh) that appear to act in concert to pattern tissues along the oral-aboral axis of the polyp

  6. Sonic spectrometer and treatment system

    DOEpatents

    Slomka, Bogdan J.

    1997-06-03

    A novel system and method for treating an object with sonic waveforms. A traveling broad-band sonic waveform containing a broad-band of sonic frequencies is radiated at the object. A traveling reflected sonic waveform containing sonic frequencies reflected by the object is received in response to the traveling broad-band sonic waveform. A traveling transmitted sonic waveform containing sonic frequencies transmitted through the object is also received in response to the traveling broad-band sonic waveform. In a resonance mode, the frequency spectra of the broad-band and reflected sonic waveforms is analyzed so as to select one or more sonic frequencies that cause the object to resonate. An electrical resonance treatment sonic waveform containing the sonic frequencies that cause the object to resonate is then radiated at the object so as to treat the object. In an absorption mode, the frequency spectra of the electrical broad-band, reflected, and transmitted sonic waveforms is compared so as to select one or more sonic frequencies that are absorbed by the object. An electrical absorption treatment sonic waveform containing the sonic frequencies that are absorbed by the object is then radiated at the object so as to treat the object.

  7. LncRNA EGOT Promotes Tumorigenesis Via Hedgehog Pathway in Gastric Cancer.

    PubMed

    Peng, Wei; Wu, Jianzhong; Fan, Hong; Lu, Jianwei; Feng, Jifeng

    2017-12-05

    Gastric cancer (GC) is one of the mostly terminal malignancies with poor prognosis. Long noncoding RNA EGOT (EGOT) acts as a crucial regulator in the breast cancer. However, the function of EGOT in GC remains unknown. This work was to explore the clinical value and biological significance of EGOT in GC. EGOT levels in GC tissue and cell were analyzed by qRT-PCR. After knockdown of EGOT, GC cell growth and cycle progression were detected. The expression of EGOT was observably elevated in GC. Upregulation of EGOT was related with lymphatic metastasis and TNM stage. In addition, knockdown of EGOT by siRNA could significantly inhibit GC cell proliferation and arrest cycle progression in G1 phase. Moreover, EGOT mediated cyclin D1 expression in GC cells which was regulated by Hedgehog pathway. Further, loss of EGOT downregulated Hedgehog signaling pathway in GC cells. EGOT functions as an oncogene in GC, and may be useful as a conceivable diagnostic and prognostic biomarker for GC tumorigenesis.

  8. Sonic spectrometer and treatment system

    DOEpatents

    Slomka, B.J.

    1997-06-03

    A novel system and method is developed for treating an object with sonic waveforms. A traveling broad-band sonic waveform containing a broad-band of sonic frequencies is radiated at the object. A traveling reflected sonic waveform containing sonic frequencies reflected by the object is received in response to the traveling broad-band sonic waveform. A traveling transmitted sonic waveform containing sonic frequencies transmitted through the object is also received in response to the traveling broad-band sonic waveform. In a resonance mode, the frequency spectra of the broad-band and reflected sonic waveforms is analyzed so as to select one or more sonic frequencies that cause the object to resonate. An electrical resonance treatment sonic waveform containing the sonic frequencies that cause the object to resonate is then radiated at the object so as to treat the object. In an absorption mode, the frequency spectra of the electrical broad-band, reflected, and transmitted sonic waveforms is compared so as to select one or more sonic frequencies that are absorbed by the object. An electrical absorption treatment sonic waveform containing the sonic frequencies that are absorbed by the object is then radiated at the object so as to treat the object. 1 fig.

  9. Preclinical Studies of Induced Pluripotent Stem Cell-Derived Astrocyte Transplantation in ALS

    DTIC Science & Technology

    2013-10-01

    followed by caudalization and ventralization using retinoic acid and sonic hedgehog , respectively (Fig. 1A). By day 15 of differentiation, neural...μg/ml, Sigma-Aldrich), were added. At day 7, rhBDNF (10 ng/ml, R&D) and sonic hedgehog (SHH-C, 200 ng/ml, Invitrogen) were added. At day 10

  10. Digging a hole under Hedgehog: downstream inhibition as an emerging anticancer strategy.

    PubMed

    Di Magno, Laura; Coni, Sonia; Di Marcotullio, Lucia; Canettieri, Gianluca

    2015-08-01

    Hedgehog signaling is a key regulator of development and stem cell fate and its aberrant activation is a leading cause of a number of tumors. Activating germline or somatic mutations of genes encoding Hh pathway components are found in Basal Cell Carcinoma (BCC) and Medulloblastoma (MB). Ligand-dependent Hedgehog hyperactivation, due to autocrine or paracrine mechanisms, is also observed in a large number of malignancies of the breast, colon, skin, bladder, pancreas and other tissues. The key tumorigenic role of Hedgehog has prompted effort aimed at identifying inhibitors of this signaling. To date, only the antagonists of the membrane transducer Smo have been approved for therapy or are under clinical trials in patients with BCC and MB linked to Ptch or Smo mutations. Despite the good initial response, patients treated with Smo antagonists have eventually developed resistance due to the occurrence of compensating mechanisms. Furthermore, Smo antagonists are not effective in tumors where the Hedgehog hyperactivation is due to mutations of pathway components downstream of Smo, or in case of non-canonical, Smo-independent activation of the Gli transcription factors. For all these reasons, the research of Hh inhibitors acting downstream of Smo is becoming an area of intensive investigation. In this review we illustrate the progresses made in the identification of effective Hedgehog inhibitors and their application in cancer, with a special emphasis on the newly identified downstream inhibitors. We describe in detail the Gli inhibitors and illustrate their mode of action and applications in experimental and/or clinical settings. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. CXCL14 is a candidate biomarker for Hedgehog signalling in idiopathic pulmonary fibrosis.

    PubMed

    Jia, Guiquan; Chandriani, Sanjay; Abbas, Alexander R; DePianto, Daryle J; N'Diaye, Elsa N; Yaylaoglu, Murat B; Moore, Heather M; Peng, Ivan; DeVoss, Jason; Collard, Harold R; Wolters, Paul J; Egen, Jackson G; Arron, Joseph R

    2017-09-01

    Idiopathic pulmonary fibrosis (IPF) is associated with aberrant expression of developmental pathways, including Hedgehog (Hh). As Hh signalling contributes to multiple pro-fibrotic processes, Hh inhibition may represent a therapeutic option for IPF. However, no non-invasive biomarkers are available to monitor lung Hh activity. We assessed gene and protein expression in IPF and control lung biopsies, mouse lung, fibroblasts stimulated in vitro with sonic hedgehog (SHh), and plasma in IPF patients versus controls, and cancer patients before and after treatment with vismodegib, a Hh inhibitor. Lung tissue from IPF patients exhibited significantly greater expression of Hh-related genes versus controls. The gene most significantly upregulated in both IPF lung biopsies and fibroblasts stimulated in vitro with SHh was CXCL14 , which encodes a soluble secreted chemokine whose expression is inhibited in vitro by the addition of vismodegib. CXCL14 expression was induced by SHh overexpression in mouse lung. Circulating CXCL14 protein levels were significantly higher in plasma from IPF patients than controls. In cancer patients, circulating CXCL14 levels were significantly reduced upon vismodegib treatment. CXCL14 is a systemic biomarker that could be used to identify IPF patients with increased Hh pathway activity and monitor the pharmacodynamic effects of Hh antagonist therapy in IPF. Post-results, NCT00968981. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Inhibition of the hedgehog pathway targets the tumor-associated stroma in pancreatic cancer.

    PubMed

    Hwang, Rosa F; Moore, Todd T; Hattersley, Maureen Mertens; Scarpitti, Meghan; Yang, Bin; Devereaux, Erik; Ramachandran, Vijaya; Arumugam, Thiruvengadam; Ji, Baoan; Logsdon, Craig D; Brown, Jeffrey L; Godin, Robert

    2012-09-01

    The Hedgehog (Hh) pathway has emerged as an important pathway in multiple tumor types and is thought to be dependent on a paracrine signaling mechanism. The purpose of this study was to determine the role of pancreatic cancer-associated fibroblasts (human pancreatic stellate cells, HPSCs) in Hh signaling. In addition, we evaluated the efficacy of a novel Hh antagonist, AZD8542, on tumor progression with an emphasis on the role of the stroma compartment. Expression of Hh pathway members and activation of the Hh pathway were analyzed in both HPSCs and pancreatic cancer cells. We tested the effects of Smoothened (SMO) inhibition with AZD8542 on tumor growth in vivo using an orthotopic model of pancreatic cancer containing varying amounts of stroma. HPSCs expressed high levels of SMO receptor and low levels of Hh ligands, whereas cancer cells showed the converse expression pattern. HPSC proliferation was stimulated by Sonic Hedgehog with upregulation of downstream GLI1 mRNA. These effects were abrogated by AZD8542 treatment. In an orthotopic model of pancreatic cancer, AZD8542 inhibited tumor growth only when HPSCs were present, implicating a paracrine signaling mechanism dependent on stroma. Further evidence of paracrine signaling of the Hh pathway in prostate and colon cancer models is provided, demonstrating the broader applicability of our findings. Based on the use of our novel human-derived pancreatic cancer stellate cells, our results suggest that Hh-targeted therapies primarily affect the tumor-associated stroma, rather than the epithelial compartment.

  13. Endodermal Hedgehog signals modulate Notch pathway activity in the developing digestive tract mesenchyme

    PubMed Central

    Kim, Tae-Hee; Kim, Byeong-Moo; Mao, Junhao; Rowan, Sheldon; Shivdasani, Ramesh A.

    2011-01-01

    The digestive tract epithelium and its adjoining mesenchyme undergo coordinated patterning and growth during development. The signals they exchange in the process are not fully characterized but include ligands of the Hedgehog (Hh) family, which originate in the epithelium and are necessary for mesenchymal cells to expand in number and drive elongation of the developing gut tube. The Notch signaling pathway has known requirements in fetal and adult intestinal epithelial progenitors. We detected Notch pathway activity in the embryonic gut mesenchyme and used conditional knockout mice to study its function. Selective disruption of the Notch effector gene RBP-Jκ (Rbpj) in the mesenchyme caused progressive loss of subepithelial fibroblasts and abbreviated gut length, revealing an unexpected requirement in this compartment. Surprisingly, constitutive Notch activity also induced rapid mesenchymal cell loss and impaired organogenesis, probably resulting from increased cell death and suggesting the need for a delicate balance in Notch signaling. Because digestive tract anomalies in mouse embryos with excess Notch activity phenocopy the absence of Hh signaling, we postulated that endodermal Hh restrains mesenchymal Notch pathway activity. Indeed, Hh-deficient embryos showed Notch overactivity in their defective gut mesenchyme and exposure to recombinant sonic hedgehog could override Notch-induced death of cultured fetal gut mesenchymal cells. These results reveal unexpected interactions between prominent signals in gastrointestinal development and provide a coherent explanation for Hh requirements in mesenchymal cell survival and organ growth. PMID:21750033

  14. Quiet Sonic Booms: A NASA and Industry Progress Report

    NASA Technical Reports Server (NTRS)

    Larson, David Nils; Martin, Roy; Haering, Edward A.

    2011-01-01

    The purpose of this Oral Presentation is to present a progress report on NASA and Industry efforts related to Quiet Sonic Boom Program activities. This presentation will review changes in aircraft shaping to produce quiet supersonic booms and associated supersonic flight test methods and results. In addition, new flight test profiles have been recently developed that have allowed for the generation of sonic booms of varying intensity. These new flight test profiles have allowed for ground testing of the response of various building structures to sonic booms and the associated public acceptability to various sonic boom intensities. The new flight test profiles and associated ground measurement test methods will be reviewed. Finally, this Oral Presentation will review the International Regulatory requirements that would be involved to change aviation regulation and allow for overland quiet supersonic flight.

  15. Umbilical cord blood cells regulate endogenous neural stem cell proliferation via hedgehog signaling in hypoxic ischemic neonatal rats.

    PubMed

    Wang, Xiao-Li; Zhao, Yan-Song; Hu, Ming-Ying; Sun, Ye-Quan; Chen, Yu-Xi; Bi, Xue-Hui

    2013-06-26

    Umbilical cord blood mononuclear cells (UCBMC) transplantation may improve hypoxia-induced brain injury in neonatal rats, but the mechanism is unclear. This study examines whether UCBMC promote neural stem cell (NSC) proliferation via the Sonic hedgehog (Shh) signaling pathway. The rats underwent left carotid ligation followed by hypoxic stress. UCBMC were transplanted 24h after hypoxia ischemia (HI), and immunohistochemistry, immmunoblotting, and morphology analyses were performed at different time points after transplantation. Increased numbers of NSCs were observed in the subventrical zone (SVZ) of the HI+UCBMC group, but these increases were attenuated by cyclopamine treatment. There were significant increases in Shh and Gli1 protein levels after transplantation in the HI group treated with UCBMC compared to HI rats treated with phosphate-buffered solution (PBS). Significantly more Gli1(+)DAPI(+) cells were observed in the SVZ of the HI+UCBMC group compared to the HI+PBS and N+UCBMC groups, but few Gli1(+)DAPI(+) cells were found in the SVZ of the HI+cyclopamine+UCBMC group. The HI+UCBMC group had significantly less neuronal loss in the cortex and CA1 sector of the hippocampus compared to the HI+PBS group, but more neuron loss was observed in the HI+cyclopamine+UCBMC group compared to HI+UCBMC. These results indicate that UCBMC may promote NSC proliferation and alleviate brain injury in HI neonatal rats via Shh signaling. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Sonic hedgehog in the notochord is sufficient for patterning of the intervertebral discs.

    PubMed

    Choi, Kyung-Suk; Lee, Chanmi; Harfe, Brian D

    2012-01-01

    The intervertebral discs, located between adjacent vertebrae, are required for stability of the spine and distributing mechanical load throughout the vertebral column. All cell types located in the middle regions of the discs, called nuclei pulposi, are derived from the embryonic notochord. Recently, it was shown that the hedgehog signaling pathway plays an essential role during formation of nuclei pulposi. However, during the time that nuclei pulposi are forming, Shh is expressed in both the notochord and the nearby floor plate. To determine the source of SHH protein sufficient for formation of nuclei pulposi we removed Shh from either the floor plate or the notochord using tamoxifen-inducible Cre alleles. Removal of Shh from the floor plate resulted in phenotypically normal intervertebral discs, indicating that Shh expression in this tissue is not required for disc patterning. In addition, embryos that lacked Shh in the floor plate had normal vertebral columns, demonstrating that Shh expression in the notochord is sufficient for pattering the entire vertebral column. Removal of Shh from the notochord resulted in the absence of Shh in the floor plate, loss of intervertebral discs and vertebral structures. These data indicate that Shh expression in the notochord is sufficient for patterning of the intervertebral discs and the vertebral column. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Correlation Between Hedgehog (Hh) Protein Family and Brain-Derived Neurotrophic Factor (BDNF) in Autism Spectrum Disorder (ASD).

    PubMed

    Halepoto, Dost Muhammad; Bashir, Shahid; Zeina, Rana; Al-Ayadhi, Laila Y

    2015-12-01

    To determine the correlation of Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and Brain-Derived Neurotrophic Factor (BDNF) in children with Autism Spectrum Disorder (ASD). An observational, comparative study. Autism Research and Treatment Center, Al-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia, from October 2011 to May 2012. Serum levels of SHH, IHH and BDNF were determined in recently diagnosed autistic patients and age-matched healthy children (n=25), using the Enzyme-Linked Immunosorbent Assay (ELISA). Childhood Autism Rating Scale (CARS) was used for the assessment of autistic severity. Spearman correlation co-efficient 'r' was determined. The serum levels of IHH and SHH were significantly higher in autistic subjects than those of control subjects. There was significant correlation between age and IHH (r = 0.176, p = 0.03), BDNF and severe IHH (r = 0.1763, p = 0.003), and severe BDNF and severe SHH (r = 0.143, p < 0.001). However, there were no significant relationships among the serum levels of SHH, IHH and BDNF and the CARS score, age or gender. The findings support a correlation between SHH, IHH and BDNF in autistic children, suggesting their pathological role in autism.

  18. Hedgehog Signaling Regulates Epithelial-Mesenchymal Transition in Pancreatic Cancer Stem-Like Cells

    PubMed Central

    Wang, Feng; Ma, Ling; Zhang, Zhengkui; Liu, Xiaoran; Gao, Hongqiao; Zhuang, Yan; Yang, Pei; Kornmann, Marko; Tian, Xiaodong; Yang, Yinmo

    2016-01-01

    Hedgehog (Hh) signaling is crucially involved in tumorigenesis. This study aimed to assess the role of Hh signaling in the regulation of epithelial-mesenchymal transition (EMT), stemness properties and chemoresistance of human pancreatic Panc-1 cancer stem cells (CSCs). Panc-1 cells were transfected with recombinant lentiviral vectors to silence SMO and serum-free floating-culture system was used to isolate Panc-1 tumorspheres. The expression of CSC and EMT markers was detected by flow cytometry, real-time RT-PCR and Western blot analysis. Malignant behaviors of Panc-1 CSC were evaluated by tumorigenicity assays and nude mouse lung metastasis model. We found that tumorspheres derived from pancreatic cancer cell line Panc-1 possessed self-renewal, differentiation and stemness properties. Hh pathway and EMT were active in Panc-1 tumorspheres. Inhibition of Hh signaling by SMO knockdown inhibited self-renewal, EMT, invasion, chemoresistance, pulmonary metastasis, tumorigenesis of pancreatic CSCs. In conclusion, Hh signaling contributes to the maintenance of stem-like properties and chemoresistance of pancreatic CSC and promotes the tumorigenesis and metastasis of pancreatic cancer. Hh pathway is a potential molecular target for the development of therapeutic strategies for pancreatic CSCs. PMID:26918054

  19. Hedgehog Signaling Regulates Epithelial-Mesenchymal Transition in Pancreatic Cancer Stem-Like Cells.

    PubMed

    Wang, Feng; Ma, Ling; Zhang, Zhengkui; Liu, Xiaoran; Gao, Hongqiao; Zhuang, Yan; Yang, Pei; Kornmann, Marko; Tian, Xiaodong; Yang, Yinmo

    2016-01-01

    Hedgehog (Hh) signaling is crucially involved in tumorigenesis. This study aimed to assess the role of Hh signaling in the regulation of epithelial-mesenchymal transition (EMT), stemness properties and chemoresistance of human pancreatic Panc-1 cancer stem cells (CSCs). Panc-1 cells were transfected with recombinant lentiviral vectors to silence SMO and serum-free floating-culture system was used to isolate Panc-1 tumorspheres. The expression of CSC and EMT markers was detected by flow cytometry, real-time RT-PCR and Western blot analysis. Malignant behaviors of Panc-1 CSC were evaluated by tumorigenicity assays and nude mouse lung metastasis model. We found that tumorspheres derived from pancreatic cancer cell line Panc-1 possessed self-renewal, differentiation and stemness properties. Hh pathway and EMT were active in Panc-1 tumorspheres. Inhibition of Hh signaling by SMO knockdown inhibited self-renewal, EMT, invasion, chemoresistance, pulmonary metastasis, tumorigenesis of pancreatic CSCs. In conclusion, Hh signaling contributes to the maintenance of stem-like properties and chemoresistance of pancreatic CSC and promotes the tumorigenesis and metastasis of pancreatic cancer. Hh pathway is a potential molecular target for the development of therapeutic strategies for pancreatic CSCs.

  20. SonicBAT News Conference

    NASA Image and Video Library

    2017-08-17

    In the Kennedy Space Center's Press Site auditorium, Larry Cliatt, SonicBAT Fluid Mechanics at Armstrong Flight Research Center in California, speaks to members of the media at a news conference to discuss upcoming flight tests to study the effects of sonic booms. Kennedy is partnering with Armstrong, Langley and Space Florida for a program called SonicBAT for Sonic Booms in Atmospheric Turbulence. Starting in August, NASA F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers on the ground measure the effects of low-altitude turbulence on sonic booms. The study could lead to technology mitigating the annoying sonic booms making possible supersonic flights over populated areas.

  1. SonicBAT News Conference

    NASA Image and Video Library

    2017-08-17

    In the Kennedy Space Center's Press Site auditorium, Peter Coen, SonicBAT Mission Analysis at NASA’s Langley Research Center in Virginia, speaks to members of the media at a news conference to discuss upcoming flight tests to study the effects of sonic booms. Kennedy is partnering with Armstrong, Langley and Space Florida for a program called SonicBAT for Sonic Booms in Atmospheric Turbulence. Starting in August, NASA F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers on the ground measure the effects of low-altitude turbulence on sonic booms. The study could lead to technology mitigating the annoying sonic booms making possible supersonic flights over populated areas.

  2. Vibration Penalty Estimates for Indoor Annoyance Caused by Sonic Boom

    NASA Technical Reports Server (NTRS)

    Rathsam, Jonathan; Klos, Jacob

    2016-01-01

    Commercial supersonic flight is currently forbidden over land because sonic booms have historically caused unacceptable annoyance levels in overflown communities. NASA is providing data and expertise to noise regulators as they consider relaxing the ban for future quiet supersonic aircraft. One key objective is a predictive model for indoor annoyance based on factors such as noise and indoor vibration levels. The current study quantified the increment in indoor sonic boom annoyance when sonic booms can be felt directly through structural vibrations in addition to being heard. A shaker mounted below each chair in the sonic boom simulator emulated vibrations transmitting through the structure to that chair. The vibration amplitudes were determined from numeric models of a large range of residential structures excited by the same sonic boom waveforms used in the experiment. The analysis yielded vibration penalties, which are the increments in sound level needed to increase annoyance as much as the vibration does. For sonic booms at acoustic levels from 75 to 84 dB Perceived Level, vibration signals with lower amplitudes (+1 sigma) yielded penalties from 0 to 5 dB, and vibration signals with higher amplitudes (+3 sigma) yielded penalties from 6 to 10 dB.

  3. Intestinal plasmacytoma in an African hedgehog.

    PubMed

    Ramos-Vara, J A; Miller, M A; Craft, D

    1998-04-01

    A 3-yr-old male African hedgehog (Atelerix albiventris) had anorexia and weight loss for 1 wk before its death. The colon and mesocolon were diffusely infiltrated by a neoplastic proliferation of round cells with plasmacytoid features. A diagnosis of intestinal plasmacytoma was made and confirmed by electron microscopy. No other organs appeared to be affected. This is the first description of intestinal plasmacytoma in a hedgehog.

  4. SonicBAT News Conference

    NASA Image and Video Library

    2017-08-17

    In the Kennedy Space Center's Press Site auditorium, NASA and other government leaders speak to members of the media at a news conference to discuss upcoming flight tests to study the effects of sonic booms. Participants from left are: Matthew Kamlet of NASA Communications at the Armstrong Flight Research Center in California; Peter Coen, SonicBAT Mission Analysis at NASA’s Langley Research Center in Virginia; Larry Cliatt, SonicBAT Fluid Mechanics at Armstrong; Dale Ketcham chief of Strategic Alliances for Space Florida; and Laura Henning, public information officer for the Canaveral National Seashore. Kennedy is partnering with Armstrong, Langley and Space Florida for a program called SonicBAT for Sonic Booms in Atmospheric Turbulence. Starting in August, NASA F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers on the ground measure the effects of low-altitude turbulence on sonic booms. The study could lead to technology mitigating the annoying sonic booms making possible supersonic flights over populated areas.

  5. Patterning of mammalian somites by surface ectoderm and notochord: evidence for sclerotome induction by a hedgehog homolog.

    PubMed

    Fan, C M; Tessier-Lavigne, M

    1994-12-30

    An early step in the development of vertebrae, ribs, muscle, and dermis is the differentiation of the somitic mesoderm into dermomyotome dorsally and sclerotome ventrally. To analyze this process, we have developed an in vitro assay for somitic mesoderm differentiation. We show that sclerotomal markers can be induced by a diffusible factor secreted by notochord and floor plate and that heterologous cells expressing Sonic hedgehog (shh/vhh-1) mimic this effect. In contrast, expression of dermomyotomal markers can be caused by a contact-dependent signal from surface ectoderm and a diffusible signal from dorsal neural tube. Our results extend previous studies by suggesting that dorsoventral patterning of somites involves the coordinate action of multiple dorsalizing and ventralizing signals and that a diffusible form of Shh/Vhh-1 mediates sclerotome induction.

  6. The chicken talpid3 gene encodesa novel protein essentialfor Hedgehog signaling

    PubMed Central

    Davey, Megan G.; Paton, I. Robert; Yin, Yili; Schmidt, Maike; Bangs, Fiona K.; Morrice, David R.; Smith, Terence Gordon; Buxton, Paul; Stamataki, Despina; Tanaka, Mikiko; Münsterberg, Andrea E.; Briscoe, James; Tickle, Cheryll; Burt, Dave W.

    2006-01-01

    Talpid3 is a classical chicken mutant with abnormal limb patterning and malformations in other regions of the embryo known to depend on Hedgehog signaling. We combined the ease of manipulating chicken embryos with emerging knowledge of the chicken genome to reveal directly the basis of defective Hedgehog signal transduction in talpid3 embryos and to identify the talpid3 gene. We show in several regions of the embryo that the talpid3 phenotype is completely ligand independent and demonstrate for the first time that talpid3 is absolutely required for the function of both Gli repressor and activator in the intracellular Hedgehog pathway. We map the talpid3 locus to chromosome 5 and find a frameshift mutation in a KIAA0586 ortholog (ENSGALG00000012025), a gene not previously attributed with any known function. We show a direct causal link between KIAA0586 and the mutant phenotype by rescue experiments. KIAA0586 encodes a novel protein, apparently specific to vertebrates, that localizes to the cytoplasm. We show that Gli3 processing is abnormal in talpid3 mutant cells but that Gli3 can still translocate to the nucleus. These results suggest that the talpid3 protein operates in the cytoplasm to regulate the activity of both Gli repressor and activator proteins. PMID:16702409

  7. Neogenin, a regulator of adult hippocampal neurogenesis, prevents depressive-like behavior.

    PubMed

    Sun, Dong; Sun, Xiang-Dong; Zhao, Lu; Lee, Dae-Hoon; Hu, Jin-Xia; Tang, Fu-Lei; Pan, Jin-Xiu; Mei, Lin; Zhu, Xiao-Juan; Xiong, Wen-Cheng

    2018-01-08

    Adult neurogenesis in hippocampal dentate gyrus (DG) is a complex, but precisely controlled process. Dysregulation of this event contributes to multiple neurological disorders, including major depression. Thus, it is of considerable interest to investigate how adult hippocampal neurogenesis is regulated. Here, we present evidence for neogenin, a multifunctional transmembrane receptor, to regulate adult mouse hippocampal neurogenesis. Loss of neogenin in adult neural stem cells (NSCs) or neural progenitor cells (NPCs) impaired NSCs/NPCs proliferation and neurogenesis, whereas increased their astrocytic differentiation. Mechanistic studies revealed a role for neogenin to positively regulate Gli1, a crucial downstream transcriptional factor of sonic hedgehog, and expression of Gli1 into neogenin depleted NSCs/NPCs restores their proliferation. Further morphological and functional studies showed additional abnormities, including reduced dendritic branches and spines, and impaired glutamatergic neuro-transmission, in neogenin-depleted new-born DG neurons; and mice with depletion of neogenin in NSCs/NPCs exhibited depressive-like behavior. These results thus demonstrate unrecognized functions of neogenin in adult hippocampal NSCs/NPCs-promoting NSCs/NPCs proliferation and neurogenesis and preventing astrogliogenesis and depressive-like behavior, and suggest neogenin regulation of Gli1 signaling as a possible underlying mechanism.

  8. SonicBAT News Conference

    NASA Image and Video Library

    2017-08-17

    In the Kennedy Space Center's Press Site auditorium, Dale Ketcham chief of Strategic Alliances for Space Florida, speaks to members of the media at a news conference to discuss upcoming flight tests to study the effects of sonic booms. Kennedy is partnering with Armstrong, Langley and Space Florida for a program called SonicBAT for Sonic Booms in Atmospheric Turbulence. Starting in August, NASA F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers on the ground measure the effects of low-altitude turbulence on sonic booms. The study could lead to technology mitigating the annoying sonic booms making possible supersonic flights over populated areas.

  9. SonicBAT News Conference

    NASA Image and Video Library

    2017-08-17

    In the Kennedy Space Center's Press Site auditorium, Laura Henning, public information officer for the Canaveral National Seashore, speaks to members of the media at a news conference to discuss upcoming flight tests to study the effects of sonic booms. Kennedy is partnering with Armstrong, Langley and Space Florida for a program called SonicBAT for Sonic Booms in Atmospheric Turbulence. Starting in August, NASA F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers on the ground measure the effects of low-altitude turbulence on sonic booms. The study could lead to technology mitigating the annoying sonic booms making possible supersonic flights over populated areas.

  10. SonicBAT News Conference

    NASA Image and Video Library

    2017-08-17

    In the Kennedy Space Center's Press Site auditorium, Matthew Kamlet of NASA Communications at the Armstrong Flight Research Center in California, speaks to members of the media at a news conference to discuss upcoming flight tests to study the effects of sonic booms. Kennedy is partnering with Armstrong, Langley and Space Florida for a program called SonicBAT for Sonic Booms in Atmospheric Turbulence. Starting in August, NASA F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers on the ground measure the effects of low-altitude turbulence on sonic booms. The study could lead to technology mitigating the annoying sonic booms making possible supersonic flights over populated areas.

  11. Conditional loss of hepatocellular Hedgehog signaling in female mice leads to the persistence of hepatic steroidogenesis, androgenization and infertility.

    PubMed

    Rennert, Christiane; Eplinius, Franziska; Hofmann, Ute; Johänning, Janina; Rolfs, Franziska; Schmidt-Heck, Wolfgang; Guthke, Reinhardt; Gebhardt, Rolf; Ricken, Albert M; Matz-Soja, Madlen

    2017-11-01

    The Hedgehog signaling pathway is known to be involved in embryogenesis, tissue remodeling, and carcinogenesis. Because of its involvement in carcinogenesis, it seems an interesting target for cancer therapy. Indeed, Sonidegib, an approved inhibitor of the Hedgehog receptor Smoothened (Smo), is highly active against diverse carcinomas, but its use is also reported to be associated with several systemic side effects. Our former work in adult mice demonstrated hepatic Hedgehog signaling to play a key role in the insulin-like growth factor axis and lipid metabolism. The current work using mice with an embryonic and hepatocyte-specific Smo deletion describes an adverse impact of the hepatic Hedgehog pathway on female fertility. In female SAC-KO mice, we detected androgenization characterized by a 3.3-fold increase in testosterone at 12 weeks of age based on an impressive induction of steroidogenic gene expression in hepatocytes, but not in the classic steroidogenic organs (ovary and adrenal gland). Along with the elevated level of testosterone, the female SAC-KO mice showed infertility characterized by juvenile reproductive organs and acyclicity. The endocrine and reproductive alterations resembled polycystic ovarian syndrome and could be confirmed in a second mouse model with conditional deletion of Smo at 8 weeks of age after an extended period of 8 months. We conclude that the down-regulation of hepatic Hedgehog signaling leads to an impaired hormonal balance by the induction of steroidogenesis in the liver. These effects of Hedgehog signaling inhibition should be considered when using Hedgehog inhibitors as anti-cancer drugs.

  12. Progenitor Cell Fate Decisions in Mammary Tumorigenesis

    DTIC Science & Technology

    2013-03-01

    31.8 NM_134032 Homeo box 82 Hoxb2 18.0 BC011063 HomeoboxAS Hoxa5 17.1 AW105779 Lactate dehydrogenase D Ldbd 14.6 AV367068 Desert hedgehog Dhh 13.8...Fgfrl 689 NM_009704 AmpbiJeplin Areg 663 AV304616 Sonic hedgehog Shh 44.6 NM_D10446 Forklad box A2 Foxa2 42.6 NM_007!’i54 Bone morphogenetic protein...111.5 AV304616 Sonic hedgehog Shb 104.9 NM....010446 Fo!thead box A2 Foxa2 81.7 NM_007SS4 Bone morphogenetic protein 4 Bmp4 69.4 NM_008010 Fibroblast

  13. Corynebacterial pneumonia in an African hedgehog.

    PubMed

    Raymond, J T; Williams, C; Wu, C C

    1998-04-01

    A 3-mo-old, male African hedgehog (Atelerix albiventris) was anorectic and lethargic for a period of 3 days prior to death. Necropys revealed lungs that were diffusely firm, dark red, and dorsally adhered by fibrinous tags to the pericardial sac. Histopathology revealed necrosuppurative bronchopneumonia with pulmonary abscesses and suppurative pericarditis and myocarditis. A Corynebacterium sp. was isolated from the lungs. We believe this is the first reported case of corynebacterial pneumonia in an African hedgehog.

  14. Chylous ascites in a hedgehog (Atelerix albiventris).

    PubMed

    Roh, Yoon-Seok; Kim, Eun-Ju; Cho, Ara; Kim, Min-Su; Cho, Ho-Seong; Lim, Chae Woong; Kim, Bumseok

    2014-12-01

    An African pygmy hedgehog (Atelerix albiventris) was diagnosed as chylous ascites with biliary cirrhosis. Abdomenocentesis revealed a milky fluid with a 324 mg/dl triglyceride level. On serum biochemical examination, the hedgehog had hypoalbuminemia, hypoglycemia, and high blood urea nitrogen. There was no cytologic or genomic evidence of infection, and a blood culture was negative. Histopathologic examination revealed a liver with proliferative bile ducts that were often surrounded by prominent septa of fibrous connective tissue. In the area of ductular reaction, proliferative cells positive for CD66, an embryogenic antigen of epithelial cells, were revealed. The potential association between chylous ascites and liver cirrhosis is undetermined but could be an aspect of future study. This is the first description of chylous ascites in a hedgehog.

  15. Hedgehog signal transduction: key players, oncogenic drivers, and cancer therapy

    PubMed Central

    Pak, Ekaterina; Segal, Rosalind A.

    2016-01-01

    Summary The Hedgehog (Hh) signaling pathway governs complex developmental processes, including proliferation and patterning within diverse tissues. These activities rely on a tightly-regulated transduction system that converts graded Hh input signals into specific levels of pathway activity. Uncontrolled activation of Hh signaling drives tumor initiation and maintenance. However, recent entry of pathway-specific inhibitors into the clinic reveals mixed patient responses and thus prompts further exploration of pathway activation and inhibition. In this review, we share emerging insights on regulated and oncogenic Hh signaling, supplemented with updates on the development and use of Hh pathway-targeted therapies. PMID:27554855

  16. Glypican-5 stimulates rhabdomyosarcoma cell proliferation by activating Hedgehog signaling

    PubMed Central

    Shi, Wen; Capurro, Mariana

    2011-01-01

    Glypican-5 (GPC5) is one of the six members of the glypican family. It has been previously reported that GPC5 stimulates the proliferation of rhabdomyosarcoma cells. In this study, we show that this stimulatory activity of GPC5 is a result of its ability to promote Hedgehog (Hh) signaling. We have previously shown that GPC3, another member of the glypican family, inhibits Hh signaling by competing with Patched 1 (Ptc1) for Hh binding. Furthermore, we showed that GPC3 binds to Hh through its core protein but not to Ptc1. In this paper, we demonstrate that GPC5 increases the binding of Sonic Hh to Ptc1. We also show that GPC5 binds to both Hh and Ptc1 through its glycosaminoglycan chains and that, unlike GPC3, GPC5 localizes to the primary cilia. Interestingly, we found that the heparan sulfate chains of GPC5 display a significantly higher degree of sulfation than those of GPC3. Based on these results, we propose that GPC5 stimulates Hh signaling by facilitating/stabilizing the interaction between Hh and Ptc1. PMID:21339334

  17. Sonic boom acceptability studies

    NASA Technical Reports Server (NTRS)

    Shepherd, Kevin P.; Sullivan, Brenda M.; Leatherwood, Jack D.; Mccurdy, David A.

    1992-01-01

    The determination of the magnitude of sonic boom exposure which would be acceptable to the general population requires, as a starting point, a method to assess and compare individual sonic booms. There is no consensus within the scientific and regulatory communities regarding an appropriate sonic boom assessment metric. Loudness, being a fundamental and well-understood attribute of human hearing was chosen as a means of comparing sonic booms of differing shapes and amplitudes. The figure illustrates the basic steps which yield a calculated value of loudness. Based upon the aircraft configuration and its operating conditions, the sonic boom pressure signature which reaches the ground is calculated. This pressure-time history is transformed to the frequency domain and converted into a one-third octave band spectrum. The essence of the loudness method is to account for the frequency response and integration characteristics of the auditory system. The result of the calculation procedure is a numerical description (perceived level, dB) which represents the loudness of the sonic boom waveform.

  18. Sonic Booms in Atmospheric Turbulence (SonicBAT) Ground Measurements in a Hot Desert Climate

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.

    2017-01-01

    The Sonic Booms in Atmospheric Turbulence (SonicBAT) Project flew a series of 20 F-18 flights with 69 supersonic passes at Edwards Air Force Base in July 2016 to quantify the effect of atmospheric turbulence on sonic booms. Most of the passes were at a pressure altitude of 32,000 feet and a Mach number of 1.4, yielding a nominal sonic boom overpressure of 1.6 pounds per square foot. Atmospheric sensors such as GPS sondeballoons, Sonic Detection and Ranging (SODAR) acoustic sounders, and ultrasonic anemometers were used to characterize the turbulence state of the atmosphere for each flight. Spiked signatures in excess of 7 pounds per square foot were measured at some locations, as well as rounded sonic-boom signatures with levels much lower than the nominal. This presentation will quantify the range of overpressure and Perceived Level of the sonic boom as a function of turbulence parameters, and also present the spatial variation of these quantities over the array. Comparison with historical data will also be shown.

  19. Hedgehog signaling pathway is active in GBM with GLI1 mRNA expression showing a single continuous distribution rather than discrete high/low clusters.

    PubMed

    Chandra, Vikas; Das, Tapojyoti; Gulati, Puneet; Biswas, Nidhan K; Rote, Sarang; Chatterjee, Uttara; Ghosh, Samarendra N; Deb, Sumit; Saha, Suniti K; Chowdhury, Anup K; Ghosh, Subhashish; Rudin, Charles M; Mukherjee, Ankur; Basu, Analabha; Dhara, Surajit

    2015-01-01

    Hedgehog (Hh) signaling pathway is a valid therapeutic target in a wide range of malignancies. We focus here on glioblastoma multiforme (GBM), a lethal malignancy of the central nervous system (CNS). By analyzing RNA-sequencing based transcriptomics data on 149 clinical cases of TCGA-GBM database we show here a strong correlation (r = 0.7) between GLI1 and PTCH1 mRNA expression--as a hallmark of the canonical Hh-pathway activity in this malignancy. GLI1 mRNA expression varied in 3 orders of magnitude among the GBM patients of the same cohort showing a single continuous distribution-unlike the discrete high/low-GLI1 mRNA expressing clusters of medulloblastoma (MB). When compared with MB as a reference, the median GLI1 mRNA expression in GBM appeared 14.8 fold lower than that of the "high-Hh" cluster of MB but 5.6 fold higher than that of the "low-Hh" cluster of MB. Next, we demonstrated statistically significant up- and down-regulation of GLI1 mRNA expressions in GBM patient-derived low-passage neurospheres in vitro by sonic hedgehog ligand-enriched conditioned media (shh-CM) and by Hh-inhibitor drug vismodegib respectively. We also showed clinically achievable dose (50 μM) of vismodegib alone to be sufficient to induce apoptosis and cell cycle arrest in these low-passage GBM neurospheres in vitro. Vismodegib showed an effect on the neurospheres, both by down-regulating GLI1 mRNA expression and by inducing apoptosis/cell cycle arrest, irrespective of their relative endogenous levels of GLI1 mRNA expression. We conclude from our study that this single continuous distribution pattern of GLI1 mRNA expression technically puts almost all GBM patients in a single group rather than discrete high- or low-clusters in terms of Hh-pathway activity. That is suggestive of therapies with Hh-pathway inhibitor drugs in this malignancy without a need for further stratification of patients on the basis of relative levels of Hh-pathway activity among them.

  20. Basal cell carcinoma pathogenesis and therapy involving hedgehog signaling and beyond.

    PubMed

    Bakshi, Anshika; Chaudhary, Sandeep C; Rana, Mehtab; Elmets, Craig A; Athar, Mohammad

    2017-12-01

    Basal cell carcinoma (BCC) of the skin is driven by aberrant hedgehog signaling. Thus blocking this signaling pathway by small molecules such as vismodegib inhibits tumor growth. Primary cilium in the epidermal cells plays an integral role in the processing of hedgehog signaling-related proteins. Recent genomic studies point to the involvement of additional genetic mutations that might be associated with the development of BCCs, suggesting significance of other signaling pathways, such as WNT, NOTCH, mTOR, and Hippo, aside from hedgehog in the pathogenesis of this human neoplasm. Some of these pathways could be regulated by noncoding microRNA. Altered microRNA expression profile is recognized with the progression of these lesions. Stopping treatment with Smoothened (SMO) inhibitors often leads to tumor reoccurrence in the patients with basal cell nevus syndrome, who develop 10-100 of BCCs. In addition, the initial effectiveness of these SMO inhibitors is impaired due to the onset of mutations in the drug-binding domain of SMO. These data point to a need to develop strategies to overcome tumor recurrence and resistance and to enhance efficacy by developing novel single agent-based or multiple agents-based combinatorial approaches. Immunotherapy and photodynamic therapy could be additional successful approaches particularly if developed in combination with chemotherapy for inoperable and metastatic BCCs. © 2017 Wiley Periodicals, Inc.

  1. Basal cell carcinoma pathogenesis and therapy involving hedgehog signaling and beyond

    PubMed Central

    Bakshi, Anshika; Chaudhary, Sandeep C.; Rana, Mehtab; Elmets, Craig A.; Athar, Mohammad

    2018-01-01

    Basal cell carcinoma (BCC) of the skin is driven by aberrant hedgehog signaling. Thus blocking this signaling pathway by small molecules such as vismodegib inhibits tumor growth. Primary cilium in the epidermal cells plays an integral role in the processing of hedgehog signaling-related proteins. Recent genomic studies point to the involvement of additional genetic mutations that might be associated with the development of BCCs, suggesting significance of other signaling pathways, such as WNT, NOTCH, mTOR, and Hippo, aside from hedgehog in the pathogenesis of this human neoplasm. Some of these pathways could be regulated by noncoding microRNA. Altered microRNA expression profile is recognized with the progression of these lesions. Stopping treatment with Smoothened (SMO) inhibitors often leads to tumor reoccurrence in the patients with basal cell nevus syndrome, who develop 10–100 of BCCs. In addition, the initial effectiveness of these SMO inhibitors is impaired due to the onset of mutations in the drug-binding domain of SMO. These data point to a need to develop strategies to overcome tumor recurrence and resistance and to enhance efficacy by developing novel single agent-based or multiple agents-based combinatorial approaches. Immunotherapy and photodynamic therapy could be additional successful approaches particularly if developed in combination with chemotherapy for inoperable and metastatic BCCs. PMID:28574612

  2. Acute upregulation of hedgehog signaling in mice causes differential effects on cranial morphology.

    PubMed

    Singh, Nandini; Dutka, Tara; Devenney, Benjamin M; Kawasaki, Kazuhiko; Reeves, Roger H; Richtsmeier, Joan T

    2015-03-01

    Hedgehog (HH) signaling, and particularly signaling by sonic hedgehog (SHH), is implicated in several essential activities during morphogenesis, and its misexpression causes a number of developmental disorders in humans. In particular, a reduced mitogenic response of cerebellar granule cell precursors to SHH signaling in a mouse model for Down syndrome (DS), Ts65Dn, is substantially responsible for reduced cerebellar size. A single treatment of newborn trisomic mice with an agonist of the SHH pathway (SAG) normalizes cerebellar morphology and restores some cognitive deficits, suggesting a possible therapeutic application of SAG for treating the cognitive impairments of DS. Although the beneficial effects on the cerebellum are compelling, inappropriate activation of the HH pathway causes anomalies elsewhere in the head, particularly in the formation and patterning of the craniofacial skeleton. To determine whether an acute treatment of SAG has an effect on craniofacial morphology, we quantitatively analyzed the cranial form of adult euploid and Ts65Dn mice that were injected with either SAG or vehicle at birth. We found significant deformation of adult craniofacial shape in some animals that had received SAG at birth. The most pronounced differences between the treated and untreated mice were in the midline structures of the facial skeleton. The SAG-driven craniofacial dysmorphogenesis was dose-dependent and possibly incompletely penetrant at lower concentrations. Our findings illustrate that activation of HH signaling, even with an acute postnatal stimulation, can lead to localized dysmorphology of the skull by generating modular shape changes in the facial skeleton. These observations have important implications for translating HH-agonist-based treatments for DS. © 2015. Published by The Company of Biologists Ltd.

  3. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures

    PubMed Central

    Juhász, Tamás; Szentléleky, Eszter; Szűcs Somogyi, Csilla; Takács, Roland; Dobrosi, Nóra; Engler, Máté; Tamás, Andrea; Reglődi, Dóra; Zákány, Róza

    2015-01-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load. PMID:26230691

  4. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures.

    PubMed

    Juhász, Tamás; Szentléleky, Eszter; Somogyi, Csilla Szűcs; Takács, Roland; Dobrosi, Nóra; Engler, Máté; Tamás, Andrea; Reglődi, Dóra; Zákány, Róza

    2015-07-29

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load.

  5. Cryptosporidium erinacei and C. parvum in a group of overwintering hedgehogs.

    PubMed

    Hofmannová, Lada; Hauptman, Karel; Huclová, Kristýna; Květoňová, Dana; Sak, Bohumil; Kváč, Martin

    2016-10-01

    This study describes cryptosporidiosis in an overwintering group of 15 European hedgehogs (Erinaceus europaeus), comprising 3 adults and 12 juveniles. Four juvenile hedgehogs were hospitalised with anorexia, malodorous diarrhoea and dehydration. Immediate parasitological examinations revealed the presence of Cryptosporidium sp. in these animals and also in 5 other juveniles. All hedgehogs were coproscopically monitored for 4 months over the winter season. Shedding of Cryptosporidium oocysts persisted from 6 to 70 days. Repeated shedding of Cryptosporidium oocysts occurred in 3 animals after 4 months subsequent to the first outbreak. Clinical signs were observed only at the beginning of the outbreak (apathy, anorexia, general weakness, mild dehydration, and malodorous faeces with changed consistence - soft/diarrhoea) in the 4 hospitalised juveniles. Overall 11 hedgehogs were Cryptosporidium-positive, both microscopically and by PCR methods. Sequence analyses of SSU rRNA and gp60 genes revealed the presence of C. parvum IIdA18G1 subtype in all positive hedgehogs. Moreover, 3 hedgehogs had a mixed infection of the zoonotic C. parvum and C. erinacei XIIIaA19R13 subtype. Cryptosporidium infections can be rapidly spread among debilitated animals and the positive hedgehogs released back into the wild can be a source of the infection for individuals weakened after hibernation. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. WHEN AND WHY DO HEDGEHOGS AND FOXES DIFFER?

    PubMed

    Keil, Frank C

    2010-01-01

    Philip E. Tetlock's finding that "hedgehog" experts (those with one big theory) are worse predictors than "foxes" (those with multiple, less comprehensive theories) offers fertile ground for future research. Are experts as likely to exhibit hedgehog- or fox-like tendencies in areas that call for explanatory, diagnostic, and skill-based expertise-as they did when Tetlock called on experts to make predictions? Do particular domains of expertise curtail or encourage different styles of expertise? Can we trace these different styles to childhood? Finally, can we nudge hedgehogs to be more like foxes? Current research can only grope at the answers to these questions, but they are essential to gauging the health of expert political judgment.

  7. PARTNER Project 8: Sonic boom mitigation

    NASA Astrophysics Data System (ADS)

    Sparrow, Victor W.

    2005-09-01

    Current U.S. and international laws prohibit commercial supersonic flight over land due to the impact of conventional sonic boom noise. Aircraft manufacturers, however, now have modern computational fluid dynamics and optimization tools, unavailable when those laws were enacted, that will allow them to design and build aircraft with boom signatures that are substantially smoothed compared with traditional N-waves. One purpose of the FAA/NASA/Transport Canada PARTNER Center of Excellence Project 8 is to determine exactly which waveforms would be heard by the public if low-boom supersonic aircraft are put into service. Another purpose is to ascertain the acceptability of those waveforms. The project involves the following universities, government, and industry partners: Penn State, Purdue, Stanford, the National Aeronautics and Space Administration, the Federal Aviation Administration, Boeing, Cessna, Gulfstream, Lockheed-Martin, and Wyle Laboratories. Some of the initial project work includes studies on the propagation of sonic booms through atmospheric turbulence, on the mutual reproducibility of three sonic boom simulators, and on the realism of those simulators as determined by expert listeners. The results of all the studies are intended to provide the FAA with new data to reassess current regulations. [Work supported by NASA, the FAA, and the PARTNER industrial partners.

  8. Ectoparasitic infestations of the European hedgehog (Erinaceus europaeus) in Urmia city, Iran: First report

    PubMed Central

    Gorgani-Firouzjaee, Tahmineh; Pour-Reza, Behzad; Naem, Soraya; Tavassoli, Mousa

    2013-01-01

    Hedgehogs are small, nocturnal mammals that become popular in the world and have significant role in transmission of zoonotic agents. Some of the agents are transmitted by ticks and fleas such as rickettsial agents. For these reason, a survey on ectoparasites in European hedgehog (Erinaceus europaeus) carried out between April 2006 and December 2007 from different parts of Urmia city, west Azerbaijan, Iran. After being euthanized external surface of body of animals was precisely considered for ectoparasites, and arthropods were collected and stored in 70% ethanol solution. Out of 34 hedgehogs 23 hedgehogs (67.70%) were infested with ticks (Rhipicephalus turanicus). Fleas of the species Archaeopsylla erinacei were found on 19 hedgehogs of 34 hedgehogs (55.90%). There was no significant differences between sex of ticks (p > 0.05) but found in fleas (p < 0.05). The prevalence of infestation in sexes and the body condition of hedgehogs (small, medium and large) with ticks and fleas did not show significant differences (p > 0.05). Highest occurrence of infestation in both tick and flea was in June. Among three seasons of hedgehog collection significant differences was observed (p < 0.05). The result of our survey revealed that infestation rate in hedgehog was high. According to zoonotic importance of this ectoparasite and ability to transmission of some pathogens, more studies are needed to investigate hedgehog parasites in different parts of Iran. PMID:25653796

  9. Roles for Hedgehog signaling in adult organ homeostasis and repair

    PubMed Central

    Petrova, Ralitsa; Joyner, Alexandra L.

    2014-01-01

    The hedgehog (HH) pathway is well known for its mitogenic and morphogenic functions during development, and HH signaling continues in discrete populations of cells within many adult mammalian tissues. Growing evidence indicates that HH regulates diverse quiescent stem cell populations, but the exact roles that HH signaling plays in adult organ homeostasis and regeneration remain poorly understood. Here, we review recently identified functions of HH in modulating the behavior of tissue-specific adult stem and progenitor cells during homeostasis, regeneration and disease. We conclude that HH signaling is a key factor in the regulation of adult tissue homeostasis and repair, acting via multiple different routes to regulate distinct cellular outcomes, including maintenance of plasticity, in a context-dependent manner. PMID:25183867

  10. Spontaneous neoplasia in four captive greater hedgehog tenrecs (Setifer setosus).

    PubMed

    Khoii, Mina K; Howerth, Elizabeth W; Burns, Roy B; Carmichael, K Paige; Gyimesi, Zoltan S

    2008-09-01

    Little information is available about diseases and pathology of species within the family Tenrecidae, including the greater hedgehog tenrec (Setifer setosus), a Madagascan insectivore. This report summarizes necropsy and histopathologic findings of neoplasia in four captive greater hedgehog tenrecs. Although only four animals are included in this report, neoplasia seems to be a common and significant source of morbidity and mortality in greater hedgehog tenrecs. Types of neoplasia identified include a thyroid follicular-solid carcinoma, two urinary bladder transitional cell carcinomas, uterine endometrial polyps, and multicentric B-cell lymphoma. Due to small sample size, no etiology could be determined, but genetics, viral infection, pesticide treatment, nutrition, or other environmental factors might contribute to the development of neoplasia in this species. This is the first report of neoplasia in greater hedgehog tenrecs.

  11. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    PubMed Central

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Hales, Russell K.

    2012-01-01

    Purpose Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of KrasG12D-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radio-sensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. PMID:23182391

  12. Hedgehog pathway inhibition radiosensitizes non-small cell lung cancers.

    PubMed

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T; Aftab, Blake T; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M; Wong, John; Rudin, Charles M; Tran, Phuoc T; Hales, Russell K

    2013-05-01

    Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras(G12D)-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.

    2013-05-01

    Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntagmore » and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.« less

  14. The Hedgehog Signal Transduction Network

    PubMed Central

    Robbins, David J.; Fei, Dennis Liang; Riobo, Natalia A.

    2013-01-01

    Hedgehog (Hh) proteins regulate the development of a wide range of metazoan embryonic and adult structures, and disruption of Hh signaling pathways results in various human diseases. Here, we provide a comprehensive review of the signaling pathways regulated by Hh, consolidating data from a diverse array of organisms in a variety of scientific disciplines. Similar to the elucidation of many other signaling pathways, our knowledge of Hh signaling developed in a sequential manner centered on its earliest discoveries. Thus, our knowledge of Hh signaling has for the most part focused on elucidating the mechanism by which Hh regulates the Gli family of transcription factors, the so-called “canonical” Hh signaling pathway. However, in the past few years, numerous studies have shown that Hh proteins can also signal through Gli-independent mechanisms collectively referred to as “noncanonical” signaling pathways. Noncanonical Hh signaling is itself subdivided into two distinct signaling modules: (i) those not requiring Smoothened (Smo) and (ii) those downstream of Smo that do not require Gli transcription factors. Thus, Hh signaling is now proposed to occur through a variety of distinct context-dependent signaling modules that have the ability to crosstalk with one another to form an interacting, dynamic Hh signaling network. PMID:23074268

  15. Sonic Boom Modeling Technical Challenge

    NASA Technical Reports Server (NTRS)

    Sullivan, Brenda M.

    2007-01-01

    This viewgraph presentation reviews the technical challenges in modeling sonic booms. The goal of this program is to develop knowledge, capabilities and technologies to enable overland supersonic flight. The specific objectives of the modeling are: (1) Develop and validate sonic boom propagation model through realistic atmospheres, including effects of turbulence (2) Develop methods enabling prediction of response of and acoustic transmission into structures impacted by sonic booms (3) Develop and validate psychoacoustic model of human response to sonic booms under both indoor and outdoor listening conditions, using simulators.

  16. Otic ablation of smoothened reveals direct and indirect requirements for Hedgehog signaling in inner ear development

    PubMed Central

    Brown, Alexander S.; Epstein, Douglas J.

    2011-01-01

    In mouse embryos lacking sonic hedgehog (Shh), dorsoventral polarity within the otic vesicle is disrupted. Consequently, ventral otic derivatives, including the cochlear duct and saccule, fail to form, and dorsal otic derivatives, including the semicircular canals, endolymphatic duct and utricle, are malformed or absent. Since inner ear patterning and morphogenesis are heavily dependent on extracellular signals derived from tissues that are also compromised by the loss of Shh, the extent to which Shh signaling acts directly on the inner ear for its development is unclear. To address this question, we generated embryos in which smoothened (Smo), an essential transducer of Hedgehog (Hh) signaling, was conditionally inactivated in the otic epithelium (Smoecko). Ventral otic derivatives failed to form in Smoecko embryos, whereas vestibular structures developed properly. Consistent with these findings, we demonstrate that ventral, but not dorsal, otic identity is directly dependent on Hh. The role of Hh in cochlear-vestibular ganglion (cvg) formation is more complex, as both direct and indirect signaling mechanisms are implicated. Our data suggest that the loss of cvg neurons in Shh–/– animals is due, in part, to an increase in Wnt responsiveness in the otic vesicle, resulting in the ectopic expression of Tbx1 in the neurogenic domain and subsequent repression of Ngn1 transcription. A mitogenic role for Shh in cvg progenitor proliferation was also revealed in our analysis of Smoecko embryos. Taken together, these data contribute to a better understanding of the intrinsic and extrinsic signaling properties of Shh during inner ear development. PMID:21831920

  17. Sonic Booms And Building Vibration Revisited

    NASA Astrophysics Data System (ADS)

    Sutherland, Louis C.; Kryter, Karl D.; Czech, Joseph

    2006-05-01

    Lessons learned from the 1960's sonic boom tests at St. Louis, Oklahoma City and at Edwards Air Force Base (EAFB) and more recently in communities near EAFB and Nellis AFB are briefly reviewed from the standpoint of building vibration and rattle response induced by the sonic boom signature. Available data on the vibro-acoustic threshold of rattle are considered along with the principal sonic boom signature parameters, peak overpressure and duration, which drive the low frequency vibration response of buildings to sonic booms. Implications for the current effort to develop an acceptable sonic boom signature are considered with this overview of current understanding of building vibration response to sonic booms. Possible gaps in this current knowledge for current technology boom signatures are considered.

  18. High Speed Research Program Sonic Fatigue

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A. (Technical Monitor); Beier, Theodor H.; Heaton, Paul

    2005-01-01

    The objective of this sonic fatigue summary is to provide major findings and technical results of studies, initiated in 1994, to assess sonic fatigue behavior of structure that is being considered for the High Speed Civil Transport (HSCT). High Speed Research (HSR) program objectives in the area of sonic fatigue were to predict inlet, exhaust and boundary layer acoustic loads; measure high cycle fatigue data for materials developed during the HSR program; develop advanced sonic fatigue calculation methods to reduce required conservatism in airframe designs; develop damping techniques for sonic fatigue reduction where weight effective; develop wing and fuselage sonic fatigue design requirements; and perform sonic fatigue analyses on HSCT structural concepts to provide guidance to design teams. All goals were partially achieved, but none were completed due to the premature conclusion of the HSR program. A summary of major program findings and recommendations for continued effort are included in the report.

  19. Cryptosporidium erinacei n. sp. (Apicomplexa: Cryptosporidiidae) in hedgehogs.

    PubMed

    Kváč, Martin; Hofmannová, Lada; Hlásková, Lenka; Květoňová, Dana; Vítovec, Jiří; McEvoy, John; Sak, Bohumil

    2014-03-17

    The morphological, biological, and molecular characteristics of Cryptosporidium hedgehog genotype are described, and the species name Cryptosporidium erinacei n. sp. is proposed to reflect its specificity for hedgehogs under natural and experimental conditions. Oocysts of C. erinacei are morphologically indistinguishable from Cryptosporidium parvum, measuring 4.5-5.8 μm (mean=4.9 μm) × 4.0-4.8 μm (mean=4.4 μm) with a length to width ratio of 1.13 (1.02-1.35) (n=100). Oocysts of C. erinacei obtained from a naturally infected European hedgehog (Erinaceus europaeus) were infectious for naïve 8-week-old four-toed hedgehogs (Atelerix albiventris); the prepatent period was 4-5 days post infection (DPI) and the patent period was longer than 20 days. C. erinacei was not infectious for 8-week-old SCID and BALB/c mice (Mus musculus), Mongolian gerbils (Meriones unguiculatus), or golden hamsters (Mesocricetus auratus). Phylogenetic analyses based on small subunit rRNA, 60 kDa glycoprotein, actin, Cryptosporidium oocyst wall protein, thrombospondin-related adhesive protein of Cryptosporidium-1, and heat shock protein 70 gene sequences revealed that C. erinacei is genetically distinct from previously described Cryptosporidium species. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Hedgehog signaling is required at multiple stages of zebrafish tooth development.

    PubMed

    Jackman, William R; Yoo, James J; Stock, David W

    2010-11-30

    The accessibility of the developing zebrafish pharyngeal dentition makes it an advantageous system in which to study many aspects of tooth development from early initiation to late morphogenesis. In mammals, hedgehog signaling is known to be essential for multiple stages of odontogenesis; however, potential roles for the pathway during initiation of tooth development or in later morphogenesis are incompletely understood. We have identified mRNA expression of the hedgehog ligands shha and the receptors ptc1 and ptc2 during zebrafish pharyngeal tooth development. We looked for, but did not detect, tooth germ expression of the other known zebrafish hedgehog ligands shhb, dhh, ihha, or ihhb, suggesting that as in mammals, only Shh participates in zebrafish tooth development. Supporting this idea, we found that morphological and gene expression evidence of tooth initiation is eliminated in shha mutant embryos, and that morpholino antisense oligonucleotide knockdown of shha, but not shhb, function prevents mature tooth formation. Hedgehog pathway inhibition with the antagonist compound cyclopamine affected tooth formation at each stage in which we applied it: arresting development at early stages and disrupting mature tooth morphology when applied later. These results suggest that hedgehog signaling is required continuously during odontogenesis. In contrast, over-expression of shha had no effect on the developing dentition, possibly because shha is normally extensively expressed in the zebrafish pharyngeal region. We have identified previously unknown requirements for hedgehog signaling for early tooth initiation and later morphogenesis. The similarity of our results with data from mouse and other vertebrates suggests that despite gene duplication and changes in the location of where teeth form, the roles of hedgehog signaling in tooth development have been largely conserved during evolution.

  1. Acinic cell carcinoma in an African pygmy hedgehog (Atelerix albiventris).

    PubMed

    Fukuzawa, Ryuji; Fukuzawa, Kazuhiro; Abe, Hitoshi; Nagai, Toshihiro; Kameyama, Kaori

    2004-01-01

    A male African pygmy hedgehog (Atelerix albiventris), estimated to be 3 years old, presented with exophthalmos and fixed abduction of the right eye. Radiographic examination revealed a retrobulbar tumor in the right orbital cavity. The mass was surgically resected but recurred 3 months later and the hedgehog died. There was no gross or microscopic evidence of salivary or lacrimal gland involvement of the tumor at surgery or at necropsy. The histopathologic, immunohistochemical, and ultrastructural findings were those of acinic cell carcinoma, the origin of which was unknown. This is the first known case of acinic cell carcinoma in an African hedgehog.

  2. Signaling mechanisms regulating adult neural stem cells and neurogenesis

    PubMed Central

    Faigle, Roland; Song, Hongjun

    2012-01-01

    Background Adult neurogenesis occurs throughout life in discrete regions of the mammalian brain and is tightly regulated via both extrinsic environmental influences and intrinsic genetic factors. In recent years, several crucial signaling pathways have been identified in regulating self-renewal, proliferation, and differentiation of neural stem cells, as well as migration and functional integration of developing neurons in the adult brain. Scope of review Here we review our current understanding of signaling mechanisms, including Wnt, notch, sonic hedgehog, growth and neurotrophic factors, bone morphogenetic proteins, neurotransmitters, transcription factors, and epigenetic modulators, and crosstalk between these signaling pathways in the regulation of adult neurogenesis. We also highlight emerging principles in the vastly growing field of adult neural stem cell biology and neural plasticity. Major conclusions Recent methodological advances have enabled the field to identify signaling mechanisms that fine-tune and coordinate neurogenesis in the adult brain, leading to a better characterization of both cell-intrinsic and environmental cues defining the neurogenic niche. Significant questions related to niche cell identity and underlying regulatory mechanisms remain to be fully addressed and will be the focus of future studies. General significance A full understanding of the role and function of individual signaling pathways in regulating neural stem cells and generation and integration of newborn neurons in the adult brain may lead to targeted new therapies for neurological diseases in humans. PMID:22982587

  3. Defective ciliogenesis, embryonic lethality and severe impairment of the Sonic Hedgehog pathway caused by inactivation of the mouse complex A intraflagellar transport gene Ift122/Wdr10, partially overlapping with the DNA repair gene Med1/Mbd4

    PubMed Central

    Cortellino, Salvatore; Wang, Chengbing; Wang, Baolin; Bassi, Maria Rosaria; Caretti, Elena; Champeval, Delphine; Calmont, Amelie; Jarnik, Michal; Burch, John; Zaret, Kenneth; Larue, Lionel; Bellacosa, Alfonso

    2009-01-01

    Primary cilia are assembled and maintained by evolutionarily conserved intraflagellar transport (IFT) proteins that are involved in the coordinated movement of macromolecular cargo from the basal body to the cilium tip and back. The IFT machinery is organized in two structural complexes named complex A and complex B. Recently, inactivation in the mouse germline of Ift genes belonging to complex B revealed a requirement of ciliogenesis, or proteins involved in ciliogenesis, for Sonic Hedgehog (Shh) signaling in mammals. Here we report on a complex A mutant mouse, defective for the Ift122 gene. Ift122-null embryos show multiple developmental defects (exencephaly, situs viscerum inversus, delay in turning, hemorrhage and defects in limb development) that result in lethality. In the node, primary cilia were absent or malformed in homozygous mutant and heterozygous embryos, respectively. Impairment of the Shh pathway was apparent in both neural tube patterning (expansion of motoneurons and rostro-caudal level-dependent contraction or expansion of the dorso-lateral interneurons), and limb patterning (ectrosyndactyly). These phenotypes are distinct from both complex B IFT mutant embryos and embryos defective for the ciliary protein hennin/Arl13b, and suggest reduced levels of both Gli2/Gli3 activator and Gli3 repressor functions. We conclude that complex A and complex B factors play similar but distinct roles in ciliogenesis and Shh/Gli3 signaling. PMID:19000668

  4. Static flexural properties of hedgehog spines conditioned in coupled temperature and relative humidity environments.

    PubMed

    Kennedy, Emily B; Hsiung, Bor-Kai; Swift, Nathan B; Tan, Kwek-Tze

    2017-11-01

    Hedgehogs are agile climbers, scaling trees and plants to heights exceeding 10m while foraging insects. Hedgehog spines (a.k.a. quills) provide fall protection by absorbing shock and could offer insights for the design of lightweight, material-efficient, impact-resistant structures. There has been some study of flexural properties of hedgehog spines, but an understanding of how this keratinous biological material is affected by various temperature and relative humidity treatments, or how spine color (multicolored vs. white) affects mechanics, is lacking. To bridge this gap in the literature, we use three-point bending to analyze the effect of temperature, humidity, spine color, and their interactions on flexural strength and modulus of hedgehog spines. We also compare specific strength and stiffness of hedgehog spines to conventional engineered materials. We find hedgehog spine flexural properties can be finely tuned by modifying environmental conditioning parameters. White spines tend to be stronger and stiffer than multicolored spines. Finally, for most temperature and humidity conditioning parameters, hedgehog spines are ounce for ounce stronger than 201 stainless steel rods of the same diameter but as pliable as styrene rods with a slightly larger diameter. This unique combination of strength and elasticity makes hedgehog spines exemplary shock absorbers, and a suitable reference model for biomimicry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Reduced primary cilia length and altered Arl13b expression are associated with deregulated chondrocyte Hedgehog signaling in alkaptonuria.

    PubMed

    Thorpe, Stephen D; Gambassi, Silvia; Thompson, Clare L; Chandrakumar, Charmilie; Santucci, Annalisa; Knight, Martin M

    2017-09-01

    Alkaptonuria (AKU) is a rare inherited disease resulting from a deficiency of the enzyme homogentisate 1,2-dioxygenase which leads to the accumulation of homogentisic acid (HGA). AKU is characterized by severe cartilage degeneration, similar to that observed in osteoarthritis. Previous studies suggest that AKU is associated with alterations in cytoskeletal organization which could modulate primary cilia structure/function. This study investigated whether AKU is associated with changes in chondrocyte primary cilia and associated Hedgehog signaling which mediates cartilage degradation in osteoarthritis. Human articular chondrocytes were obtained from healthy and AKU donors. Additionally, healthy chondrocytes were treated with HGA to replicate AKU pathology (+HGA). Diseased cells exhibited shorter cilia with length reductions of 36% and 16% in AKU and +HGA chondrocytes respectively, when compared to healthy controls. Both AKU and +HGA chondrocytes demonstrated disruption of the usual cilia length regulation by actin contractility. Furthermore, the proportion of cilia with axoneme breaks and bulbous tips was increased in AKU chondrocytes consistent with defective regulation of ciliary trafficking. Distribution of the Hedgehog-related protein Arl13b along the ciliary axoneme was altered such that its localization was increased at the distal tip in AKU and +HGA chondrocytes. These changes in cilia structure/trafficking in AKU and +HGA chondrocytes were associated with a complete inability to activate Hedgehog signaling in response to exogenous ligand. Thus, we suggest that altered responsiveness to Hedgehog, as a consequence of cilia dysfunction, may be a contributing factor in the development of arthropathy highlighting the cilium as a novel target in AKU. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals Inc.

  6. Influence of Chair Vibrations on Indoor Sonic Boom Annoyance

    NASA Technical Reports Server (NTRS)

    Rathsam, Jonathan; Klos, Jacob; Loubeau, Alexandra

    2015-01-01

    One goal of NASA’s Commercial Supersonic Technology Project is to identify candidate noise metrics suitable for regulating quiet sonic boom aircraft. A suitable metric must consider the short duration and pronounced low frequency content of sonic booms. For indoor listeners, rattle and creaking sounds and floor and chair vibrations may also be important. The current study examined the effect of such vibrations on the annoyance of test subjects seated indoors. The study involved two chairs exposed to nearly identical acoustic levels: one placed directly on the floor, and the other isolated from floor vibrations by pneumatic elastomeric mounts. All subjects experienced both chairs, sitting in one chair for the first half of the experiment and the other chair for the remaining half. Each half of the experiment consisted of 80 impulsive noises played at the exterior of the sonic boom simulator. When all annoyance ratings were analyzed together there appeared to be no difference in mean annoyance with isolation condition. When the apparent effect of transfer bias was removed, a subtle but measurable effect of vibration on annoyance was identified.

  7. Sonic Booms on Big Structures (SonicBOBS) Phase I Database; NASA Dryden Sensors

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Arnac, Sarah Renee

    2010-01-01

    This DVD contains 13 channels of microphone and up to 22 channels of pressure transducer data collected in September, 2009 around several buildings located at Edwards Air Force Base. These data were recorded by NASA Dryden. Not included are data taken by NASA Langley and Gulfstream. Each day's data is in a separate folder and each pass is in a file beginning with "SonicBOBS_" (for microphone data) or "SonicBOBSBB_" (for BADS and BASS data) followed by the month, day, year as two digits each, followed by the hour, minute, sec after midnight GMT. The filename time given is for the END time of the raw recording file. In the case of the microphone data, this time may be several minutes after the sonic boom, and is according to the PC's uncalibrated clock. The Matlab data files have the actual time as provided by a GPS-based IRIG-B signal recorded concurrently with the data. Microphone data is given for 5 seconds prior to 20 seconds after the sonic boom. BADS and BASS data is given for the full recording, 6 seconds for the BADS and 10 seconds for the BASS. As an example of the naming convention, file "SonicBOBS_091209154618.mat" is from September 12, 2009 at 15:46:18 GMT. Note that data taken on September 12, 2009 prior to 01:00:00 GMT was of the Space Shuttle Discovery (a sonic boom of opportunity), which was on September 11, 2009 in local Pacific Daylight Time.

  8. Novel Hedgehog pathway targets against basal cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Jean Y.; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA; So, P.-L.

    2007-11-01

    The Hedgehog signaling pathway plays a key role in directing growth and patterning during embryonic development and is required in vertebrates for the normal development of many structures, including the neural tube, axial skeleton, skin, and hair. Aberrant activation of the Hedgehog (Hh) pathway in adult tissue is associated with the development of basal cell carcinoma (BCC), medulloblastoma, and a subset of pancreatic, gastrointestinal, and other cancers. This review will provide an overview of what is known about the mechanisms by which activation of Hedgehog signaling leads to the development of BCCs and will review two recent papers suggesting thatmore » agents that modulate sterol levels might influence the Hh pathway. Thus, sterols may be a new therapeutic target for the treatment of BCCs, and readily available agents such as statins (HMG-CoA reductase inhibitors) or vitamin D might be helpful in reducing BCC incidence.« less

  9. Unilateral proptosis and orbital cellulitis in eight African hedgehogs (Atelerix albiventris).

    PubMed

    Wheler, C L; Grahn, B H; Pocknell, A M

    2001-06-01

    Eight African hedgehogs (Atelerix albiventris) were presented with unilateral proptosis. Six animals presented specifically for an ocular problem, whereas two had concurrent neurologic disease. Enucleation and light microscopic examination of tissues was performed in five animals, and euthanasia followed by complete postmortem examination was performed in three animals. Histopathologic findings in all hedgehogs included orbital cellulitis, panophthalmitis, and corneal ulceration, with perforation in seven of eight eyes. The etiology of the orbital cellulitis was not determined, but it appeared to precede proptosis. Orbits in hedgehogs are shallow and the palpebral fissures are large, which may predispose them to proptosis, similar to brachycephalic dogs. This clinical presentation was seen in 15% (8/54) of African hedgehogs presented to the Western College of Veterinary Medicine over a 2-yr period from January 1995 to December 1996 and warrants further investigation.

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT; ULTRASONIC AQUEOUS CLEANING SYSTEMS, SMART SONIC CORPORATION, SMART SONIC

    EPA Science Inventory

    This report is a product of the U.S. EPA's Environmental Technoloy Verification (ETV) Program and is focused on the Smart Sonics Ultrasonic Aqueous Cleaning Systems. The verification is based on three main objectives. (1) The Smart Sonic Aqueous Cleaning Systems, Model 2000 and...

  11. Low speed and angle of attack effects on sonic and near-sonic inlets

    NASA Technical Reports Server (NTRS)

    Hickcox, T. E.; Lawrence, R. L.; Syberg, J.; Wiley, D. R.

    1975-01-01

    Tests of the Quiet, Clean Short-Haul Experimental Engine (QCSEE) were conducted to determine the effects of forward velocity and angle of attack on sonic and near-sonic inlet aerodynamic performance penalties and acoustic suppression characteristics. The tests demonstrate that translating centerbody and radial vane sonic inlets, and QCSEE high throat Mach number inlets, can be designed to operate effectively at forward speed and moderate angle of attack with good performance and noise suppression capability. The test equipment and procedures used in conducting the evaluation are described. Results of the tests are presented in tabular form.

  12. The Tumor Suppressor Actions of the Vitamin D Receptor in Skin

    DTIC Science & Technology

    2014-10-01

    induced tumor formation. In previous studies we determined that the hedgehog (HH) and wnt/β-catenin pathways were activated in the skin of VDR null...SUBJECT TERMS epidermal tumors, keratinocytes, vitamin D receptor, sonic hedgehog , β-catenin, UVB 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...epidermal tumor formation by blocking the β-catenin and hedgehog pathways, key pathways in keratinocyte proliferation that if left unchecked lead to

  13. Targeting Breast Cancer Recurrence via Hedgehog-mediated Sensitization of Breast Cancer Stem Cells

    DTIC Science & Technology

    2011-07-01

    Hedgehog -mediated Sensitization of Breast Cancer Stem Cells PRINCIPAL INVESTIGATOR: David J. Robbins, Ph.D...June 2010 – 14 June 2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Targeting Breast Cancer Recurrence via Hedgehog -mediated Sensitization of...this award. Introduction The purpose of the research supported by this award is to determine if targeting the hedgehog signaling pathway in

  14. Hedgehog and Resident Vascular Stem Cell Fate

    PubMed Central

    Mooney, Ciaran J.; Hakimjavadi, Roya; Fitzpatrick, Emma; Kennedy, Eimear; Walls, Dermot; Morrow, David; Redmond, Eileen M.; Cahill, Paul A.

    2015-01-01

    The Hedgehog pathway is a pivotal morphogenic driver during embryonic development and a key regulator of adult stem cell self-renewal. The discovery of resident multipotent vascular stem cells and adventitial progenitors within the vessel wall has transformed our understanding of the origin of medial and neointimal vascular smooth muscle cells (SMCs) during vessel repair in response to injury, lesion formation, and overall disease progression. This review highlights the importance of components of the Hh and Notch signalling pathways within the medial and adventitial regions of adult vessels, their recapitulation following vascular injury and disease progression, and their putative role in the maintenance and differentiation of resident vascular stem cells to vascular lineages from discrete niches within the vessel wall. PMID:26064136

  15. High-Quality Seismic Observations of Sonic Booms

    NASA Technical Reports Server (NTRS)

    Wurman, Gilead; Haering, Edward A., Jr.; Price, Michael J.

    2011-01-01

    The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on Earthquake Warning Systems in order to prevent such systems from experiencing false alarms due to sonic booms. The airspace above the Antelope Valley, California includes the High Altitude Supersonic Corridor and the Black Mountain Supersonic Corridor. These corridors are among the few places in the US where supersonic flight is permitted, and sonic booms are commonplace in the Antelope Valley. One result of this project is a rich dataset of high-quality accelerometer records of sonic booms which can shed light on the interaction between these atmospheric phenomena and the solid earth. Nearly 100 sonic booms were recorded with low-noise triaxial MEMS accelerometers recording 1000 samples per second. The sonic booms had peak overpressures ranging up to approximately 10 psf and were recorded in three flight series in 2010 and 2011. Each boom was recorded with up to four accelerometers in various array configurations up to 100 meter baseline lengths, both in the built environment and the free field. All sonic booms were also recorded by nearby microphones. We present the results of the project in terms of the potential for sonic-boom-induced false alarms in Earthquake Warning Systems, and highlight some of the interesting features of the dataset.

  16. Genetic Analysis of Hedgehog Signaling in Ventral Body Wall Development and the Onset of Omphalocele Formation

    PubMed Central

    Matsumaru, Daisuke; Haraguchi, Ryuma; Miyagawa, Shinichi; Motoyama, Jun; Nakagata, Naomi; Meijlink, Frits; Yamada, Gen

    2011-01-01

    Background An omphalocele is one of the major ventral body wall malformations and is characterized by abnormally herniated viscera from the body trunk. It has been frequently found to be associated with other structural malformations, such as genitourinary malformations and digit abnormalities. In spite of its clinical importance, the etiology of omphalocele formation is still controversial. Hedgehog (Hh) signaling is one of the essential growth factor signaling pathways involved in the formation of the limbs and urogenital system. However, the relationship between Hh signaling and ventral body wall formation remains unclear. Methodology/Principal Findings To gain insight into the roles of Hh signaling in ventral body wall formation and its malformation, we analyzed phenotypes of mouse mutants of Sonic hedgehog (Shh), GLI-Kruppel family member 3 (Gli3) and Aristaless-like homeobox 4 (Alx4). Introduction of additional Alx4Lst mutations into the Gli3Xt/Xt background resulted in various degrees of severe omphalocele and pubic diastasis. In addition, loss of a single Shh allele restored the omphalocele and pubic symphysis of Gli3Xt/+; Alx4Lst/Lst embryos. We also observed ectopic Hh activity in the ventral body wall region of Gli3Xt/Xt embryos. Moreover, tamoxifen-inducible gain-of-function experiments to induce ectopic Hh signaling revealed Hh signal dose-dependent formation of omphaloceles. Conclusions/Significance We suggest that one of the possible causes of omphalocele and pubic diastasis is ectopically-induced Hh signaling. To our knowledge, this would be the first demonstration of the involvement of Hh signaling in ventral body wall malformation and the genetic rescue of omphalocele phenotypes. PMID:21283718

  17. Spontaneous tumours in captive African hedgehogs (Atelerix albiventris): a retrospective study.

    PubMed

    Raymond, J T; Garner, M M

    2001-01-01

    Forty tumours were diagnosed in 35 (53%) of 66 captive African hedgehogs documented at Northwest ZooPath (NZP) between 1994 and 1999. Three hedgehogs had more than one type of tumour and the remaining 32 had a single type. Of the 35 hedgehogs with tumours, 14 were female, 11 were male, and 10 were of unknown gender; 21 were from zoological parks and 14 were privately owned. Twenty of the hedgehogs with tumours were adult (>1 year old) with a median age of 3.5 years (range 2-5.5 years); 15, of unreported age, were classified as adult. Thirty-four (85%) of the 40 tumours were classified as malignant and six (15%) as benign. The integumentary, haemolymphatic, digestive and endocrine systems were common sites for tumours. The most common tumours were mammary gland adenocarcinoma, lympho-sarcoma and oral squamous cell carcinoma. Copyright Harcourt Publishers Ltd.

  18. The Sonic Altimeter for Aircraft

    NASA Technical Reports Server (NTRS)

    Draper, C S

    1937-01-01

    Discussed here are results already achieved with sonic altimeters in light of the theoretical possibilities of such instruments. From the information gained in this investigation, a procedure is outlined to determine whether or not a further development program is justified by the value of the sonic altimeter as an aircraft instrument. The information available in the literature is reviewed and condensed into a summary of sonic altimeter developments. Various methods of receiving the echo and timing the interval between the signal and the echo are considered. A theoretical discussion is given of sonic altimeter errors due to uncertainties in timing, variations in sound velocity, aircraft speed, location of the sending and receiving units, and inclinations of the flight path with respect to the ground surface. Plots are included which summarize the results in each case. An analysis is given of the effect of an inclined flight path on the frequency of the echo. A brief study of the acoustical phases of the sonic altimeter problem is carried through. The results of this analysis are used to predict approximately the maximum operating altitudes of a reasonably designed sonic altimeter under very good and very bad conditions. A final comparison is made between the estimated and experimental maximum operating altitudes which shows good agreement where quantitative information is available.

  19. Stromal adipocyte enhancer-binding protein (AEBP1) promotes mammary epithelial cell hyperplasia via proinflammatory and hedgehog signaling.

    PubMed

    Holloway, Ryan W; Bogachev, Oleg; Bharadwaj, Alamelu G; McCluskey, Greg D; Majdalawieh, Amin F; Zhang, Lei; Ro, Hyo-Sung

    2012-11-09

    Disruption of mammary stromal-epithelial communication leads to aberrant mammary gland development and induces mammary tumorigenesis. Macrophages have been implicated in carcinogenesis primarily by creating an inflammatory microenvironment, which promotes growth of the adjacent epithelial cells. Adipocyte enhancer-binding protein 1 (AEBP1), a novel proinflammatory mediator, promotes macrophage inflammatory responsiveness by inducing NF-κB activity, which has been implicated in tumor cell growth and survival by aberrant sonic hedgehog (Shh) expression. Here, we show that stromal macrophage AEBP1 overexpression results in precocious alveologenesis in the virgin AEBP1 transgenic (AEBP1(TG)) mice, and the onset of ductal hyperplasia was accelerated in AEBP1(TG) mice fed a high fat diet, which induces endogenous AEBP1 expression. Transplantation of AEBP1(TG) bone marrow cells into non-transgenic (AEBP1(NT)) mice resulted in alveolar hyperplasia with up-regulation of NF-κB activity and TNFα expression as displayed in the AEBP1(TG) mammary macrophages and epithelium. Shh expression was induced in AEBP1(TG) macrophages and RAW264.7 macrophages overexpressing AEBP1. The Shh target genes Gli1 and Bmi1 expression was induced in the AEBP1(TG) mammary epithelium and HC11 mammary epithelial cells co-cultured with AEBP1(TG) peritoneal macrophages. The conditioned AEBP1(TG) macrophage culture media promoted NF-κB activity and survival signal, Akt activation, in HC11 cells, whereas such effects were abolished by TNFα neutralizing antibody treatment. Furthermore, HC11 cells displayed enhanced proliferation in response to AEBP1(TG) macrophages and their conditioned media. Our findings highlight the role of AEBP1 in the signaling pathways regulating the cross-talk between mammary epithelium and stroma that could predispose the mammary tissue to tumorigenesis.

  20. Stromal Adipocyte Enhancer-binding Protein (AEBP1) Promotes Mammary Epithelial Cell Hyperplasia via Proinflammatory and Hedgehog Signaling*

    PubMed Central

    Holloway, Ryan W.; Bogachev, Oleg; Bharadwaj, Alamelu G.; McCluskey, Greg D.; Majdalawieh, Amin F.; Zhang, Lei; Ro, Hyo-Sung

    2012-01-01

    Disruption of mammary stromal-epithelial communication leads to aberrant mammary gland development and induces mammary tumorigenesis. Macrophages have been implicated in carcinogenesis primarily by creating an inflammatory microenvironment, which promotes growth of the adjacent epithelial cells. Adipocyte enhancer-binding protein 1 (AEBP1), a novel proinflammatory mediator, promotes macrophage inflammatory responsiveness by inducing NF-κB activity, which has been implicated in tumor cell growth and survival by aberrant sonic hedgehog (Shh) expression. Here, we show that stromal macrophage AEBP1 overexpression results in precocious alveologenesis in the virgin AEBP1 transgenic (AEBP1TG) mice, and the onset of ductal hyperplasia was accelerated in AEBP1TG mice fed a high fat diet, which induces endogenous AEBP1 expression. Transplantation of AEBP1TG bone marrow cells into non-transgenic (AEBP1NT) mice resulted in alveolar hyperplasia with up-regulation of NF-κB activity and TNFα expression as displayed in the AEBP1TG mammary macrophages and epithelium. Shh expression was induced in AEBP1TG macrophages and RAW264.7 macrophages overexpressing AEBP1. The Shh target genes Gli1 and Bmi1 expression was induced in the AEBP1TG mammary epithelium and HC11 mammary epithelial cells co-cultured with AEBP1TG peritoneal macrophages. The conditioned AEBP1TG macrophage culture media promoted NF-κB activity and survival signal, Akt activation, in HC11 cells, whereas such effects were abolished by TNFα neutralizing antibody treatment. Furthermore, HC11 cells displayed enhanced proliferation in response to AEBP1TG macrophages and their conditioned media. Our findings highlight the role of AEBP1 in the signaling pathways regulating the cross-talk between mammary epithelium and stroma that could predispose the mammary tissue to tumorigenesis. PMID:22995915

  1. Review of current sonic boom studies.

    NASA Technical Reports Server (NTRS)

    Kane, E. J.

    1973-01-01

    Several aspects of the sonic boom phenomena are currently under investigation at The Boeing Co. This work, supported by the NASA and the FAA, includes an in-depth analysis of sonic boom measurements recorded at the BREN tower, a summary and evaluation of sonic boom investigations done in the last decade and a half, and configuration studies to determine practical lower bound sonic boom limits. The BREN tower test program yielded unique and valuable data because it was the first time that vertical profile measurements were made through caustics produced by maneuvers and atmospheric refraction. The objective of the second effort is to compile in a single reference an annotated abstract, including significant results, for each published sonic boom study and to provide a comprehensive review of the current state of the art to aid future researchers. The configuration work is devoted toward determining the feasibility of supersonic transport type airplanes with a primary design goal of acceptable sonic boom characteristics. Each of these investigations is briefly reviewed and significant results are discussed.

  2. Sonic-boom research: Selected bibliography with annotation

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Maglieri, D. J.; Stephens, D. G.

    1986-01-01

    Citations of selected documents are included which represent the state of the art of technology in each of the following subject areas: prediction, measurement, and minimization of steady-flight sonic booms; prediction and measurement of accelerating-flight sonic booms; sonic-boom propagation; the effects of sonic booms on people, communities, structures, animals, birds, and terrain; and sonic-boom simulator technology. Documents are listed in chronological order in each section of the paper, with key documents and associated annotation listed first. The sources are given along with acquisition numbers, when available, to expedite the acquisition of copies of the documents.

  3. Radiological investigations of the hedgehog (Erinaceus concolor) appendicular skeleton.

    PubMed

    Hashemi, Mohammad; Javadi, Shahram; Hadian, Mojtaba; Pourreza, Behzad; Behfar, Mahdi

    2009-03-01

    The normal radiographic anatomy of the healthy hedgehog can help to identify anatomic features unique to the hedgehog while comparing it with other small mammals, such as the dog and cat. Radiographic examination is a method that can play an important role in the diagnosis of a wide variety of skeletal diseases. Seven (2 males, 5 females) free-living hedgehogs (Erinaceus concolor) from the Urmia region of Iran were selected for this study. Lateral and craniocaudal radiographs from the front and hind limbs were obtained. The radiographs from these hedgehogs were compared with the normal canine and feline skeletal radiographic anatomy. On the forelimb radiographs, the clavicle was observed as a complete bone connected to the scapula and manubrium. There are three and five carpal bones in the proximal and distal rows, respectively, as in the dog and cat. The pelvis has a larger obturator foramen when compared with the dog and cat. In the lateral view, the pubis and ischium are relatively larger than in the dog and cat and have a more ventral position. The tarsal bones are similar to those of the dog and cat. The number of phalanges and sesamoid bones in the forelimb and hindlimb are likewise similar to those found in the dog and cat.

  4. Effects of a natural fire on a Kuenzler's hedgehog cactus (Echinocereus fendleri var. kuenzleri) and nylon hedgehog cactus (Echinocereus viridiflorus) population in Southeastern New Mexico

    Treesearch

    Robert C. Sivinski

    2007-01-01

    During the summer of 1992, a natural wildfire burned 250 acres of juniper savanna on Rawhide Ridge in the Guadalupe Mountains of southeastern New Mexico. This fire burned through the center of a Kuenzler's hedgehog cactus population. This threatened cactus is locally sympatric with the more abundant nylon hedgehog cactus, which has similar growth form and stature...

  5. Trichophyton erinacei in pet hedgehogs in Spain: Occurrence and revision of its taxonomic status.

    PubMed

    Abarca, M L; Castellá, G; Martorell, J; Cabañes, F J

    2017-02-01

    Hedgehogs have increased in popularity as pets in Spain but there are no data of infection rates of this exotic animal with dermatophytes in our country. During the period of 2008-2011 a total of 20 pet hedgehogs (19 African pygmy hedgehogs and 1 Egyptian long-eared hedgehog) suspected of having dermatophytoses were studied. This is the first survey of the occurrence of T. erinacei in household hedgehogs in Spain. The T. erinacei infection rate was 50% (9 out of 19 African pygmy hedgehogs, and the one Egyptian long-eared hedgehog surveyed). Morphological identification of the isolates was confirmed by molecular analysis. All the strains had the same ITS sequence and showed 100% sequence similarity to T. erinacei type strain CBS 511.73 (AB 105793). The Spanish isolates were confirmed as T. erinacei urease positive. On the basis of ITS sequences, T. erinacei is a species close to but separate from the taxa included in the A. benhamiae complex. Review of the current literature on DNA-based methods for identification of species included in this complex has highlighted the urgent need to reach a consensus in species circumscription and classification system accepted by all mycologists. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Infection with Crenosoma striatum lungworm in Long-eared Hedgehog (Hemiechinus auritus) in Kerman province southeast of Iran.

    PubMed

    Mirzaei, Mohammad

    2014-12-01

    Hedgehogs are distributed in different areas of Iran. Unfortunately, clinical and parasitological studies on parasites of hedgehogs are very few. Crenosoma striatum is a common lungworm in hedgehogs. C. striatum infection can cause weight loss, dry cough, bronchitis with ulcerous reactions based on secondary bacterial infections, pulmonary damage, thickening of the tracheal wall, and pulmonary emphysema up to cardiovascular failure. In this survey, six dead hedgehogs (Hemiechinus auritus) were investigated for lungworm infection. All the six hedgehogs had C. striatum infection in their lungs.

  7. Micro-sonicator for spore lysis

    DOEpatents

    Miles, Robin R.; Belgrader, Phillip; Nasarabadi, Shanavaz L.

    2000-01-01

    A micro-sonicator for spore lysis. Using micromachining technology, the micro-sonicator uses ultrasonic excitation of spores to perform spore and cell lysis. The micro-sonicator comprises a container with a cavity therein for retaining the sample in an ultrasonic transmission medium, the cavity being closed by a silicon membrane to which an electrode and piezoelectric material are attached, with the electrode and piezoelectric material being electrically connected to an AC signal generator which causes the membrane to flex and vibrate at the frequency of the applied voltage.

  8. Development of the sonic pump levitation

    NASA Technical Reports Server (NTRS)

    Dunn, S. A.

    1984-01-01

    A prototype levitating/positioning device termed the Sonic Pump Levitator was designed, built and successfully tested in full gravity and in the reduced gravity of the parabolic flight regime of the KC-135. Positioning is achieved by timely and appropriate application of gas momentum from one or more of six sonic pumps. The sonic pumps, which are arranged orthogonally in opposed pairs about the levitation region, are activated by an electro-optical, computer controlled, feedback system. The sonic pump is a transducer which is capable of converting sound energy into a directed flow of gas. It consists of a loudspeaker whose face is sealed by a closure perforated by one or more orifices. The diaphragm of the loudspeaker is the only moving part of the sonic pump, no valves being needed. This very low inertia electromechanical device was developed to provide the short response time necessary to keep pace with the demands of computerized position keeping.

  9. Ultrasonic/Sonic Jackhammer

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Herz, Jack

    2005-01-01

    An ultrasonic/sonic jackhammer (USJ) is the latest in a series of related devices. Each of these devices cuts into a brittle material by means of hammering and chiseling actions of a tool bit excited with a combination of ultrasonic and sonic vibrations. A small-scale prototype of the USJ has been demonstrated. A fully developed, full-scale version of the USJ would be used for cutting through concrete, rocks, hard asphalt, and other materials to which conventional pneumatic jackhammers are applied, but the USJ would offer several advantages over conventional pneumatic jackhammers.

  10. Sonic levitation apparatus

    NASA Technical Reports Server (NTRS)

    Dunn, S. A.; Pomplum, A. R.; Paquette, E. G.; Ethridge, E. C.; Johnson, J. L. (Inventor)

    1984-01-01

    A sonic levitation apparatus is disclosed which includes a sonic transducer which generates acoustical energy responsive to the level of an electrical amplifier. A duct communicates with an acoustical chamber to deliver an oscillatory motion of air to a plenum section which contains a collimated hole structure having a plurality of parallel orifices. The collimated hole structure converts the motion of the air to a pulsed. Unidirectional stream providing enough force to levitate a material specimen. Particular application to the production of microballoons in low gravity environment is discussed.

  11. Sonic flow distortion experiment

    NASA Astrophysics Data System (ADS)

    Peters, Gerhard; Kirtzel, Hans-Jürgen; Radke, Jürgen

    2017-04-01

    We will present results from a field experiment with multiple sonic anemometers, and will address the question about residual errors of wind tunnel based calibrations that are transferred to atmospheric measurements. Ultrasonic anemometers have become standard components of high quality in-situ instrumentations, because of the long term calibration stability, fast response, wide dynamic range, and various options of built in quality control. On the downside of this technology is the fact that the sound transducers and the carrying structure represent obstacles in the flow causing systematic deviations of the measured flow from the free flow. Usually, the correction schemes are based on wind tunnel observations of the sonic-response as function of angle of attack under stationary conditions. Since the natural atmospheric flow shows turbulence intensities and scales, which cannot be mimicked in a wind tunnel, it is suspected that the wind-tunnel based corrections may be not (fully) applicable to field data. The wide spread use of sonic anemometers in eddy flux instrumentations for example in the frame of EuroFlux, AmeriFlux or other international observation programs has therefore prompted a - still controversial - discussion of the significance of residual flow errors. In an attempt to quantify the flow distortion in free field conditions, 12 identical 3-component sonics with 120 degree head symmetry were operated at the north margin of an abandoned airfield. The sonics were installed in a straight line in WE-direction at 2.6 m height with a mutual distance of 3 meters and with an azimuth increment of the individual sonics of 11 degrees. Synchronous raw data were recorded with 20 Hz sample rate. Data of about 12 hours with southerly winds (from the relatively flat airfield) were analyzed. Statistical homogeneity of the wind field in the range of the instruments line was assumed, but a variable finite turbulent decay constant was accounted for, which was estimated

  12. NASA Ames Sonic Boom Testing

    NASA Technical Reports Server (NTRS)

    Durston, Donald A.; Kmak, Francis J.

    2009-01-01

    Multiple sonic boom wind tunnel models were tested in the NASA Ames Research Center 9-by 7-Foot Supersonic Wind Tunnel to reestablish related test techniques in this facility. The goal of the testing was to acquire higher fidelity sonic boom signatures with instrumentation that is significantly more sensitive than that used during previous wind tunnel entries and to compare old and new data from established models. Another objective was to perform tunnel-to-tunnel comparisons of data from a Gulfstream sonic boom model tested at the NASA Langley Research Center 4-foot by 4-foot Unitary Plan Wind Tunnel.

  13. [Hedgehog fungi in a dermatological office in Munich : Case reports and review].

    PubMed

    Kargl, A; Kosse, B; Uhrlaß, S; Koch, D; Krüger, C; Eckert, K; Nenoff, P

    2018-02-12

    Patient 1: After contact to a central European hedgehog (Erinaceus europaeus), a 50-year-old female with atopy developed erythrosquamous tinea manus on the thumb and thenar eminence of the right hand. The patient had previously been scalded by hot steam at the affected site. The zoophilic dermatophyte Trichophyton erinacei could be cultured from the hedgehog as well as from scrapings from the woman's skin. Antifungal treatment of the hedgehog was initiated using 2 weekly cycles of itraconazole solution (0.1 ml/kg body weight, BW). In addition, every other day enilconazole solution was used for topical treatment. The patient was treated with ciclopirox olamine cream and oral terbinafine 250 mg daily for 2 weeks, which led to healing of the Tinea manus .Patient 2: An 18-year-old woman presented for emergency consultation with rimmed, papulous, vesicular and erosive crusted skin lesions of the index finger, and an erythematous dry scaling round lesion on the thigh. The patient worked at an animal care facility, specifically caring for hedgehogs. One of the hedgehogs suffered from a substantial loss of spines. Fungal cultures from skin scrapings of both lesions yielded T. erinacei. Treatment with ciclopirox olamine cream and oral terbinafine 250 mg for 14 days was initiated which led to healing of the lesions. Identification of all three T. erinacei isolates from both patients and from the hedgehog was confirmed by sequencing of the internal transcribed spacer (ITS) region of the ribosomal DNA, and of the translation elongation factor (TEF)-1-alpha gene. Using ITS sequencing discrimination between T. erinacei strains from European and from African hedgehogs is possible. T. erinacei should be considered a so-called emerging pathogen. In Germany the zoophilic dermatophyte T. erinacei should be taken into account as causative agent of dermatomycoses in humans after contact to hedgehogs.

  14. Status of sonic boom methodology and understanding

    NASA Technical Reports Server (NTRS)

    Darden, Christine M.; Powell, Clemans A.; Hayes, Wallace D.; George, Albert R.; Pierce, Allan D.

    1989-01-01

    In January 1988, approximately 60 representatives of industry, academia, government, and the military gathered at NASA-Langley for a 2 day workshop on the state-of-the-art of sonic boom physics, methodology, and understanding. The purpose of the workshop was to assess the sonic boom area, to determine areas where additional sonic boom research is needed, and to establish some strategies and priorities in this sonic boom research. Attendees included many internationally recognized sonic boom experts who had been very active in the Supersonic Transport (SST) and Supersonic Cruise Aircraft Research Programs of the 60's and 70's. Summaries of the assessed state-of-the-art and the research needs in theory, minimization, atmospheric effects during propagation, and human response are given.

  15. Unstructured grids for sonic-boom analysis

    NASA Technical Reports Server (NTRS)

    Fouladi, Kamran

    1993-01-01

    A fast and efficient unstructured grid scheme is evaluated for sonic-boom applications. The scheme is used to predict the near-field pressure signatures of a body of revolution at several body lengths below the configuration, and those results are compared with experimental data. The introduction of the 'sonic-boom grid topology' to this scheme make it well suited for sonic-boom applications, thus providing an alternative to conventional multiblock structured grid schemes.

  16. Eosinophilic leukemia in three African pygmy hedgehogs ( Atelerix albiventris) and validation of Luna stain.

    PubMed

    Martínez-Jiménez, David; Garner, Bridget; Coutermarsh-Ott, Sheryl; Burrell, Caitlin; Clark, Sabrina; Nabity, Mary; Díaz-Delgado, Josué; Rodrigues-Hoffmann, Aline; Zaks, Karen; Proença, Laila; Divers, Stephen; Saba, Corey; Cazzini, Paola

    2017-03-01

    Neoplasia is usually encountered in the African pygmy hedgehog at a mean age of 3.5 y, and malignancy is common. Myelogenous leukemias are rarely reported in hedgehogs. We describe 3 cases of eosinophilic leukemia in adult, middle-aged (mean age: 2.3 y) hedgehogs, for which prognosis appears grave. In 1 case, attempted treatment was unsuccessful, and in all 3 cases, the disease course was rapid and all died soon after diagnosis. Blood smear evaluation, along with complete blood count, was critical in making the diagnosis in all cases. Luna stain was validated and used to better visualize eosinophils in cytologic and histologic sections. Electron microscopy confirmed the presence of specific granules in hedgehog eosinophils.

  17. A different kind of hedgehog pathway: tinea manus due to Trichophyton erinacei transmitted by an African pygmy hedgehog (Atelerix albiventris).

    PubMed

    Weishaupt, Julia; Kolb-Mäurer, Annette; Lempert, Sigrid; Nenoff, Pietro; Uhrlaß, Silke; Hamm, Henning; Goebeler, Matthias

    2014-02-01

    The unusual case of a 29-year-old woman with tinea manus caused by infection due to Trichophyton erinacei is described. The patient presented with marked erosive inflammation of the entire fifth finger of her right hand. Mycological and genomic diagnostics resulted in identification of T. erinacei as the responsible pathogen, which had been transmitted by a domestic African pygmy hedgehog, Atelerix albiventris. Upon prolonged treatment with topical and systemic antifungal agents skin lesions slowly resolved. This case illustrates that the increasingly popular keeping of extraordinary pets such as hedgehogs may bear the risk of infections with uncommon dermatophytes. © 2013 Blackwell Verlag GmbH.

  18. High-Speed Research: Sonic Boom, volume 1

    NASA Technical Reports Server (NTRS)

    Darden, Christine M. (Compiler)

    1992-01-01

    A High-Speed Sonic Boom Workshop was held at LaRC of Feb. 25-27, 1992. The purpose was to make presentations on current research activities and accomplishments and to assess progress in the area of sonic boom since the program was initiated in FY-90. Twenty-nine papers were presented during the 2-1/2 day workshop. Attendees included representatives from academia, industry, and government who are actively involved in sonic-boom research. Volume 1 contains papers related to atmospheric effects on the sonic-boom signature during propagation and on acceptability studies.

  19. The Sound of Stigmatization: Sonic Habitus, Sonic Styles, and Boundary Work in an Urban Slum.

    PubMed

    Schwarz, Ori

    2015-07-01

    Based on focus groups and interviews with student renters in an Israeli slum, the article explores the contributions of differences in sonic styles and sensibilities to boundary work, social categorization, and evaluation. Alongside visual cues such as broken windows, bad neighborhoods are characterized by sonic cues, such as shouts from windows. Students understand "being ghetto" as being loud in a particular way and use loudness as a central resource in their boundary work. Loudness is read as a performative index of class and ethnicity, and the performance of middle-class studentship entails being appalled by stigmatized sonic practices and participating in their exoticization. However, the sonic is not merely yet another resource of boundary work. Paying sociological attention to senses other than vision reveals complex interactions between structures anchored in the body, structures anchored in language, and actors' identification strategies, which may refine theorizations of the body and the senses in social theory.

  20. Endogenous stem cell proliferation induced by intravenous hedgehog agonist administration after contusion in the adult rat spinal cord.

    PubMed

    Bambakidis, Nicholas C; Horn, Eric M; Nakaji, Peter; Theodore, Nicholas; Bless, Elizabeth; Dellovade, Tammy; Ma, Chiyuan; Wang, Xukui; Preul, Mark C; Coons, Stephen W; Spetzler, Robert F; Sonntag, Volker K H

    2009-02-01

    Sonic hedgehog (Shh) is a glycoprotein molecule that upregulates the transcription factor Gli1. The Shh protein plays a critical role in the proliferation of endogenous neural precursor cells when directly injected into the spinal cord after a spinal cord injury in adult rodents. Small-molecule agonists of the hedgehog (Hh) pathway were used in an attempt to reproduce these findings through intravenous administration. The expression of Gli1 was measured in rat spinal cord after the intravenous administration of an Hh agonist. Ten adult rats received a moderate contusion and were treated with either an Hh agonist (10 mg/kg, intravenously) or vehicle (5 rodents per group) 1 hour and 4 days after injury. The rats were killed 5 days postinjury. Tissue samples were immediately placed in fixative. Samples were immunohistochemically stained for neural precursor cells, and these cells were counted. Systemic dosing with an Hh agonist significantly upregulated Gli1 expression in the spinal cord (p < 0.005). After spinal contusion, animals treated with the Hh agonist had significantly more nestin-positive neural precursor cells around the rim of the lesion cavity than in vehicle-treated controls (means +/- SDs, 46.9 +/- 12.9 vs 20.9 +/- 8.3 cells/hpf, respectively, p < 0.005). There was no significant difference in the area of white matter injury between the groups. An intravenous Hh agonist at doses that upregulate spinal cord Gli1 transcription also increases the population of neural precursor cells after spinal cord injury in adult rats. These data support previous findings based on injections of Shh protein directly into the spinal cord.

  1. High-Speed Research: Sonic Boom, Volume 1

    NASA Technical Reports Server (NTRS)

    Edwards, Thomas A. (Editor)

    1994-01-01

    The second High-Speed Research Program Sonic Boom Workshop was held at NASA Ames Research Center May 12-14, 1993. The workshop was organized into three sessions dealing with atmospheric propagation, acceptability, and configuration design. Volume 1 includes papers on atmospheric propagation and acceptability studies. Significant progress is noted in these areas in the time since the previous workshop a year earlier. In particular, several papers demonstrate an improved capability to model the effect of atmospheric turbulence on sonic booms. This is a key issue in determining the stability and acceptability of shaped sonic booms. In the area of acceptability, the PLdB metric has withstood considerable scrutiny and is validated as a loudness metric for a wide variety of sonic boom shapes. The differential loudness of asymmetric sonic booms is better understood, too.

  2. Torpor Patterns in Desert Hedgehogs (Paraechinus aethiopicus) Represent Another New Point along a Thermoregulatory Continuum.

    PubMed

    Boyles, Justin G; Bennett, Nigel C; Mohammed, Osama B; Alagaili, Abdulaziz N

    Documenting variation in thermoregulatory patterns across phylogenetically and geographically diverse taxa is key to understanding the evolution of endothermy and heterothermy in birds and mammals. We recorded body temperature (T b ) in free-ranging desert hedgehogs (Paraechinus aethiopicus) across three seasons in the deserts of Saudi Arabia. Modal T b 's (35°-36.5°C) were slightly below normal for mammals but still warmer than those of other hedgehogs. The single maximum T b recorded was 39.2°C, which is cooler than maximum T b 's recorded in most desert mammals. Desert hedgehogs commonly used torpor during winter and spring but never during summer. Torpor bouts occurred frequently but irregularly, and most lasted less than 24 h. Unlike daily heterotherms, desert hedgehogs did occasionally remain torpid for more than 24 h, including one bout of 101 h. Body temperatures during torpor were often within 2°-3°C of ambient temperature; however, we never recorded repeated bouts of long, predictable torpor punctuated by brief arousal periods similar to those common among seasonal hibernators. Thus, desert hedgehogs can be included on the ever-growing list of species that display torpor patterns intermediate to traditionally defined hibernators and daily heterotherms. Extant hedgehogs are a recent radiation within an ancient family, and the intermediate thermoregulatory pattern displayed by desert hedgehogs is unlike the deeper and more regular torpor seen in other hedgehogs, suggesting that this may be a derived-as opposed to ancestral-trait in this subfamily. We suggest that this family (Erinaceidae) and order (Eulipotyphla) may be important for understanding the evolution of thermoregulatory patterns among Laurasiatheria and mammals in general.

  3. Field intercomparison of prevailing sonic anemometers

    NASA Astrophysics Data System (ADS)

    Mauder, Matthias; Zeeman, Matthias J.

    2018-01-01

    Three-dimensional sonic anemometers are the core component of eddy covariance systems, which are widely used for micrometeorological and ecological research. In order to characterize the measurement uncertainty of these instruments we present and analyse the results from a field intercomparison experiment of six commonly used sonic anemometer models from four major manufacturers. These models include Campbell CSAT3, Gill HS-50 and R3, METEK uSonic-3 Omni, R. M. Young 81000 and 81000RE. The experiment was conducted over a meadow at the TERENO/ICOS site DE-Fen in southern Germany over a period of 16 days in June of 2016 as part of the ScaleX campaign. The measurement height was 3 m for all sensors, which were separated by 9 m from each other, each on its own tripod, in order to limit contamination of the turbulence measurements by adjacent structures as much as possible. Moreover, the high-frequency data from all instruments were treated with the same post-processing algorithm. In this study, we compare the results for various turbulence statistics, which include mean horizontal wind speed, standard deviations of vertical wind velocity and sonic temperature, friction velocity, and the buoyancy flux. Quantitative measures of uncertainty, such as bias and comparability, are derived from these results. We find that biases are generally very small for all sensors and all computed variables, except for the sonic temperature measurements of the two Gill sonic anemometers (HS and R3), confirming a known transducer-temperature dependence of the sonic temperature measurement. The best overall agreement between the different instruments was found for the mean wind speed and the buoyancy flux.

  4. High-Speed Research: Sonic Boom, volume 2

    NASA Technical Reports Server (NTRS)

    Darden, Christine M. (Compiler)

    1992-01-01

    A High-Speed Sonic Boom Workshop was held at NASA Langley Research Center on February 25-27, 1992. The purpose of the workshop was to make presentations on current research activities and accomplishments and to assess progress in the area of sonic boom since the program was initiated in FY-90. Twenty-nine papers were presented during the 2-1/2 day workshop. Attendees included representatives from academia, industry, and government who are actively involved in sonic-boom research. Volume 2 contains papers related to low sonic-boom design and analysis using both linear theory and higher order computational fluid dynamics (CFD) methods.

  5. OSTEOSARCOMA IN AFRICAN HEDGEHOGS (ATELERIX ALBIVENTRIS): FIVE CASES.

    PubMed

    Reyes-Matute, Alonso; Méndez-Bernal, Adriana; Ramos-Garduño, Liliana-Aurora

    2017-06-01

    Osteosarcomas are unusual neoplasms in African hedgehogs ( Atelerix albiventris ) and have been reported in extraskeletal and skeletal locations, including mandible, ribs, and vertebra. Five hedgehogs with osteosarcoma submitted to the Pathology Department at Facultad de Medicina Veterinaria y Zootecnia, National Autonomous University of Mexico are reported. In two cases, the neoplasm arose from the skull; one case arose from the ribs with associated compression of the thoracic and abdominal cavity, and another case involved the vertebrae. In the last case, the neoplasm arose from the scapula. Histologic lesions were similar in all cases and consisted of well-demarcated nodules in which neoplastic cells were arranged in sheets of polyhedral to spindle-shaped cells with interspersed areas of necrosis. Numerous trabeculae of osteoid were present throughout the tumors. No metastases were detected. The predominant histologic pattern was osteoblastic, but a telangiectatic-like pattern was observed in the vertebral osteosarcoma. Electron microscopy was performed in two cases, and malignant osteoblasts had features consistent with descriptions in other species, including deposits of hydroxyapatite in osteoid. According to these cases and previously published data, axial osteosarcomas are more frequent in contrast to appendicular osteosarcomas in African hedgehogs, and metastases are rare.

  6. The Zn finger protein Iguana impacts Hedgehog signaling by promoting ciliogenesis.

    PubMed

    Glazer, Andrew M; Wilkinson, Alex W; Backer, Chelsea B; Lapan, Sylvain W; Gutzman, Jennifer H; Cheeseman, Iain M; Reddien, Peter W

    2010-01-01

    Hedgehog signaling is critical for metazoan development and requires cilia for pathway activity. The gene iguana was discovered in zebrafish as required for Hedgehog signaling, and encodes a novel Zn finger protein. Planarians are flatworms with robust regenerative capacities and utilize epidermal cilia for locomotion. RNA interference of Smed-iguana in the planarian Schmidtea mediterranea caused cilia loss and failure to regenerate new cilia, but did not cause defects similar to those observed in hedgehog(RNAi) animals. Smed-iguana gene expression was also similar in pattern to the expression of multiple other ciliogenesis genes, but was not required for expression of these ciliogenesis genes. iguana-defective zebrafish had too few motile cilia in pronephric ducts and in Kupffer's vesicle. Kupffer's vesicle promotes left-right asymmetry and iguana mutant embryos had left-right asymmetry defects. Finally, human Iguana proteins (dZIP1 and dZIP1L) localize to the basal bodies of primary cilia and, together, are required for primary cilia formation. Our results indicate that a critical and broadly conserved function for Iguana is in ciliogenesis and that this function has come to be required for Hedgehog signaling in vertebrates.

  7. Sonicated Diagnostic Immunoblot for Bartonellosis

    PubMed Central

    Mallqui, Vania; Speelmon, Emily C.; Verástegui, Manuela; Maguiña-Vargas, Ciro; Pinell-Salles, Paula; Lavarello, Rosa; Delgado, Jose; Kosek, Margaret; Romero, Sofia; Arana, Yanina; Gilman, Robert H.

    2000-01-01

    Two simple Bartonella bacilliformis immunoblot preparation methods were developed. Antigen was prepared by two different methods: sonication of whole organisms or glycine extraction. Both methods were then tested for sensitivity and specificity. Well-defined control sera were utilized in the development of these diagnostic immunoblots, and possible cross-reactions were thoroughly examined. Sera investigated for cross-reaction with these diagnostic antigens were drawn from patients with brucellosis, chlamydiosis, Q fever, and cat scratch disease, all of whom were from regions where bartonellosis is not endemic. While both immunoblots yielded reasonable sensitivity and high specificity, we recommend the use of the sonicated immunoblot, which has a higher sensitivity when used to detect acute disease and produces fewer cross-reactions. The sonicated immunoblot reported here is 94% sensitive to chronic bartonellosis and 70% sensitive to acute bartonellosis. In a healthy group, it is 100% specific. This immunoblot preparation requires a simple sonication protocol for the harvesting of B. bacilliformis antigens and is well suited for use in regions of endemicity. PMID:10618267

  8. Ticks and Fleas Infestation on East Hedgehogs (Erinaceus concolor) in Van Province, Eastern Region of Turkey

    PubMed Central

    Goz, Yaşar; Yilmaz, Ali Bilgin; Aydin, Abdulalim; Dicle, Yalçın

    2016-01-01

    Background: Ixodid ticks (Acari: İxodidae) and fleas (Siphonaptera) are the major vectors of pathogens threatening animals and human healths. The aim of our study was to detect the infestation rates of East Hedgehogs (Erinaceus concolor) with ticks and fleas in Van Province, eastern region of Turkey. Methods: We examined fleas and ticks infestation patterns in 21 hedgehogs, collected from three suburbs with the greater of number gardens. In order to estimate flea and tick infestation of hedgehogs, we immobilized the ectoparasites by treatment the body with a insecticide trichlorphon (Neguvon®-Bayer). Results: On the hedgehogs, 60 ixodid ticks and 125 fleas were detected. All of the ixodid ticks were Rhipicephalus turanicus and all of the fleas were Archaeopsylla erinacei. Infestation rate for ticks and fleas was detected 66.66 % and 100 %, respectively. Conclusion: We detected ticks (R. turanicus) and fleas (A. erinacei) in hedgehogs at fairly high rates. Since many ticks and fleas species may harbor on hedgehogs and transmit some tick-borne and flea-borne patogens, this results are the important in terms of veterinary and public health. PMID:27047971

  9. A Study of Reflected Sonic Booms Using Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Kantor, Samuel R.; Cliatt, Larry J., II

    2017-01-01

    In support of ongoing efforts to bring commercial supersonic flight to the public, the Sonic Booms in Atmospheric Turbulence (SonicBAT) flight test was conducted at NASA Armstrong Flight Research Center. During this test, airborne sonic boom measurements were made using an instrumented TG-14 motor glider, called the Airborne Acoustic Measurement Platform (AAMP).During the flight program, the AAMP was consistently able to measure the sonic boom wave that was reflected off of the ground, in addition to the incident wave, resulting in the creation of a completely unique data set of airborne sonic boom reflection measurements. This paper focuses on using this unique data set to investigate the ability of sonic boom modeling software to calculate sonic boom reflections. Because the algorithms used to model sonic boom reflections are also used to model the secondary carpet and over the top booms, the use of actual flight data is vital to improving the understanding of the effects of sonic booms outside of the primary carpet. Understanding these effects becomes especially important as the return of commercial supersonic approaches, as well as ensuring the accuracy of mission planning for future experiments.

  10. Hedgehog induction of murine vasculogenesis is mediated by Foxf1 and Bmp4.

    PubMed

    Astorga, Jeanette; Carlsson, Peter

    2007-10-01

    The first vasculature of the developing vertebrate embryo forms by assembly of endothelial cells into simple tubes from clusters of mesodermal angioblasts. Maturation of this vasculature involves remodeling, pruning and investment with mural cells. Hedgehog proteins are part of the instructive endodermal signal that triggers the assembly of the first primitive vessels in the mesoderm. We used a combination of genetic and in vitro culture methods to investigate the role of hedgehogs and their targets in murine extraembryonic vasculogenesis. We show that Bmps, in particular Bmp4, are crucial for vascular tube formation, that Bmp4 expression in extraembryonic tissues requires the forkhead transcription factor Foxf1 and that the role of hedgehog proteins in this process is to activate Foxf1 expression in the mesoderm. We show in the allantois that genetic disruption of hedgehog signaling (Smo(-/-)) has no effect on Foxf1 expression, and neither Bmp4 expression nor vasculogenesis are disturbed. By contrast, targeted inactivation of Foxf1 leads to loss of allantoic Bmp4 and vasculature. In vitro, the avascular Foxf1(-/-) phenotype can be rescued by exogenous Bmp4, and vasculogenesis in wild-type tissue can be blocked by the Bmp antagonist noggin. Hedgehogs are required for activation of Foxf1, Bmp4 expression and vasculogenesis in the yolk sac. However, vasculogenesis in Smo(-/-) yolk sacs can be rescued by exogenous Bmp4, consistent with the notion that the role of hedgehog signaling in primary vascular tube formation is as an activator of Bmp4, via Foxf1.

  11. Notochord-dependent expression of MFH1 and PAX1 cooperates to maintain the proliferation of sclerotome cells during the vertebral column development.

    PubMed

    Furumoto, T A; Miura, N; Akasaka, T; Mizutani-Koseki, Y; Sudo, H; Fukuda, K; Maekawa, M; Yuasa, S; Fu, Y; Moriya, H; Taniguchi, M; Imai, K; Dahl, E; Balling, R; Pavlova, M; Gossler, A; Koseki, H

    1999-06-01

    During axial skeleton development, the notochord is essential for the induction of the sclerotome and for the subsequent differentiation of cartilage forming the vertebral bodies and intervertebral discs. These functions are mainly mediated by the diffusible signaling molecule Sonic hedgehog. The products of the paired-box-containing Pax1 and the mesenchyme forkhead-1 (Mfh1) genes are expressed in the developing sclerotome and are essential for the normal development of the vertebral column. Here, we demonstrate that Mfh1 like Pax1 expression is dependent on Sonic hedgehog signals from the notochord, and Mfh1 and Pax1 act synergistically to generate the vertebral column. In Mfh1/Pax1 double mutants, dorsomedial structures of the vertebrae are missing, resulting in extreme spina bifida accompanied by subcutaneous myelomeningocoele, and the vertebral bodies and intervertebral discs are missing. The morphological defects in Mfh1/Pax1 double mutants strongly correlate with the reduction of the mitotic rate of sclerotome cells. Thus, both the Mfh1 and the Pax1 gene products cooperate to mediate Sonic hedgehog-dependent proliferation of sclerotome cells. Copyright 1999 Academic Press.

  12. Ectoparasites infestation of free-ranging hedgehog (Etelerix algirus) in north western Libya

    PubMed Central

    Hosni, M.M.; Maghrbi, A.A. El

    2014-01-01

    The aim of this study was to assess the prevalence of ectoparasites in hedgehogs (Etelerix algirus) in north western region of Libya. Seventy hedgehogs were sampled, and 39 (55.7%) were infested with external parasites. A total of 44 ticks, 491 fleas were collected from the infested hedgehogs and four species of ectoparasites were identified, one mite (Sarcoptes scabiei), one tick (Rhipicephalus appendiculatus) and two fleas (Xenopsylla cheopis and Ctenocephalides canis). For ectoparasites, 10/39 (25.6%) were infested by S. scabiei, 8/39 (20.5%) by Rh. appendiculatus and 11/39 (28.2%) by fleas. The prevalence of mixed infestation with S. scabiei and C. canis was 3(7.7%), Rh. appendiculatus and C. canis was 2 (5.1%) and infestation by two species of fleas was 5 (12.8%). The overall mixed infestation was 10 (25.6%). We concluded that the hedgehogs may play an important role in spreading external parasites and transmission of diseases from one region to another and from wildlife animals to domestic animals and human. PMID:26623333

  13. Cytoarchitectonic and quantitative Golgi study of the hedgehog supraoptic nucleus.

    PubMed

    Caminero, A A; Machín, C; Sanchez-Toscano, F

    1992-02-01

    A cytoarchitectural study was made of the supraoptic nucleus (SON) of the hedgehog with special attention to the quantitative comparison of its main neuronal types. The main purposes were (1) to relate the characteristics of this nucleus in the hedgehog (a primitive mammalian insectivorous brain) with those in the SONs of more evolutionarily advanced species; (2) to identify quantitatively the dendritic fields of the main neuronal types in the hedgehog SON and to study their synaptic connectivity. From a descriptive standpoint, 3 neuronal types were found with respect to the number of dendritic stems arising from the neuronal soma: bipolar neurons (48%), multipolar neurons (45.5%) and monopolar neurons (6.5%). Within the multipolar type 2 subtypes could be distinguished, taking into account the number of dendritic spines: (a) with few spines (93%) and (b) very spiny (7%). These results indicate that the hedgehog SON is similar to that in other species except for the very spiny neurons, the significance of which is discussed. In order to characterise the main types more satisfactorily (bipolar and multipolars with few spines) we undertook a quantitative Golgi study of their dendritic fields. Although the patterns of the dendritic field are similar in both neuronal types, the differences in the location of their connectivity can reflect functional changes and alterations in relation to the synaptic afferences.

  14. [Oligodendroglioma with neuronal differentiation in an 8-month-old African hedgehog (Atelerix albiventris)].

    PubMed

    Völker, Iris; Schwarze, Iris; Brezina, Tina E; Köstlinger, Saskia; Hewicker-Trautwein, Marion

    2016-10-12

    An 8-month-old, male African hedgehog clinically displayed a wobbly walk, anuria, inappetence and apathy, whereupon the suspected diagnosis wobbly hedgehog syndrome was made. After exacerbation, the hedgehog was euthanized. Histologically, a tumour mainly consisting of medium-sized, oval tumour cells and a smaller number of spindeloid cells was found in the cerebrum. The tumour contained neuropil islets and extracellular myxoid material. Immunohistochemically, the tumour cells expressed oligodendroglial (neurite outgrowth inhibitor, Nogo-A; oligodendrocyte transcription factor, Olig-2) and neuronal (neuron-specific enolase, NSE; microtubule-associated protein-2a, MAP-2a; synaptophysin) cell markers. Based on these findings, an oligodendroglioma with neuronal differentiation was diagnosed. Such a brain tumour has to date not been reported for African hedgehogs. At necropsy, a severely filled and dilated urinary bladder was observed, which was presumably caused by a central blockade of the micturition centre in the brain. In the case of neurological symptoms in young hedgehogs, a primary brain tumour should, as in adults, be considered as a differential diagnosis. As further differentials, inflammatory-infectious (rabies, herpes, baylisascariosis), degenerative (cardiomyopathy, intervertebral-disc disease), traumatic, alimentary (vitamin-B deficiency) and metabolic-toxic (heat-cold-torpor, hepatic encephalopathy) triggers have to be considered.

  15. The Effect of Sonic Booms on Earthquake Warning Systems

    NASA Technical Reports Server (NTRS)

    Wurman, Gilead; Haering, Edward A, Jr.; Price, Michael J.

    2011-01-01

    Several aerospace companies are designing quiet supersonic business jets for service over the United States. These aircraft have the potential to increase the occurrence of mild sonic booms across the country. This leads to interest among earthquake warning (EQW) developers and the general seismological community in characterizing the effect of sonic booms on seismic sensors in the field, their potential impact on EQW systems, and means of discriminating their signatures from those of earthquakes. The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. (SWS) and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on EQW sensors. The study consists of exposing high-sample-rate (1000 sps) triaxial accelerometers to sonic booms with overpressures ranging from 10 to 600 Pa in the free field and the built environment. The accelerometers record the coupling of the sonic boom to the ground and surrounding structures, while microphones record the acoustic wave above ground near the sensor. Sonic booms are broadband signals with more high-frequency content than earthquakes. Even a 1000 sps accelerometer will produce a significantly aliased record. Thus the observed peak ground velocity is strongly dependent on the sampling rate, and increases as the sampling rate is reduced. At 1000 sps we observe ground velocities that exceed those of P-waves from ML 3 earthquakes at local distances, suggesting that sonic booms are not negligible for EQW applications. We present the results of several experiments conducted under SonicBREWS showing the effects of typical-case low amplitude sonic booms and worst-case high amplitude booms. We show the effects of various sensor placements and sensor array geometries. Finally, we suggest possible avenues for discriminating sonic booms from earthquakes for the purposes of EQW.

  16. Prevalence of Salmonella typhimurium infection in Norwegian hedgehog populations associated with two human disease outbreaks.

    PubMed Central

    Handeland, K.; Refsum, T.; Johansen, B. S.; Holstad, G.; Knutsen, G.; Solberg, I.; Schulze, J.; Kapperud, G.

    2002-01-01

    Faecal carriage of salmonella was investigated in 320 hedgehogs from Moss municipality in south-eastern Norway, Askøy, Bergen and Os municipalities in central-western Norway, and five municipalities in south-western and central Norway. The sampling in Moss was carried out 1 year after a human outbreak of salmonellosis, whereas the sampling in Askøy, Bergen and Os was carried out during a human outbreak. Both outbreaks were caused by Salmonella Typhimurium 4,5,12:i:1,2. No salmonella were detected in the hedgehogs from south-western (0/115) and central (0/24) Norway. Thirty-nine percent (39/99) of the animals sampled on Jeløy, and 41% (34/82) of those from Askøy, Bergen and Os, carried S. Typhimurium 4,5,12:i:1,2. The PFGE profile of isolates from hedgehogs and human beings were identical within each of the two outbreak areas. A significantly higher carrier rate of S. Typhimurium occurred among hedgehogs sampled at feeding places, compared to those caught elsewhere. The salmonella-infected hedgehog populations most likely constituted the primary source of infection during both of the human disease outbreaks, and the Norwegian hedgehog is suggested as a reservoir host of S. Typhimurium 4,5,12:i:1,2. PMID:12113498

  17. Reduced primary cilia length and altered Arl13b expression are associated with deregulated chondrocyte Hedgehog signaling in alkaptonuria

    PubMed Central

    Thorpe, Stephen D.; Gambassi, Silvia; Thompson, Clare L.; Chandrakumar, Charmilie

    2017-01-01

    Alkaptonuria (AKU) is a rare inherited disease resulting from a deficiency of the enzyme homogentisate 1,2‐dioxygenase which leads to the accumulation of homogentisic acid (HGA). AKU is characterized by severe cartilage degeneration, similar to that observed in osteoarthritis. Previous studies suggest that AKU is associated with alterations in cytoskeletal organization which could modulate primary cilia structure/function. This study investigated whether AKU is associated with changes in chondrocyte primary cilia and associated Hedgehog signaling which mediates cartilage degradation in osteoarthritis. Human articular chondrocytes were obtained from healthy and AKU donors. Additionally, healthy chondrocytes were treated with HGA to replicate AKU pathology (+HGA). Diseased cells exhibited shorter cilia with length reductions of 36% and 16% in AKU and +HGA chondrocytes respectively, when compared to healthy controls. Both AKU and +HGA chondrocytes demonstrated disruption of the usual cilia length regulation by actin contractility. Furthermore, the proportion of cilia with axoneme breaks and bulbous tips was increased in AKU chondrocytes consistent with defective regulation of ciliary trafficking. Distribution of the Hedgehog‐related protein Arl13b along the ciliary axoneme was altered such that its localization was increased at the distal tip in AKU and +HGA chondrocytes. These changes in cilia structure/trafficking in AKU and +HGA chondrocytes were associated with a complete inability to activate Hedgehog signaling in response to exogenous ligand. Thus, we suggest that altered responsiveness to Hedgehog, as a consequence of cilia dysfunction, may be a contributing factor in the development of arthropathy highlighting the cilium as a novel target in AKU. PMID:28158906

  18. Sonic Fatigue Design Techniques for Advanced Composite Aircraft Structures

    DTIC Science & Technology

    1980-04-01

    AFWAL-TR-80.3019 AD A 090553 SONIC FATIGUE DESIGN TECHNIQUES FOR ADVANCED COMPOSITE AIRCRAFT STRUCTURES FINAL REPORT Ian Holehouse Rohr Industries...5 2. General Sonic Fatigue Theory .... ....... 7 3. Composite Laminate Analysis .. ....... ... 10 4. Preliminary Sonic Fatigue...overall sonic fatigue design guides. These existing desiyn methcds have been developed for metal structures. However, recent advanced composite

  19. Cryptosporidial infection in a captive European hedgehog (Erinaceus europaeus).

    PubMed

    Meredith, Anna Louise; Milne, Elspeth Mary

    2009-12-01

    An adult female hedgehog (Erinaceus europaeus) developed hemorrhagic diarrhea and was euthanized after failure to respond to treatment. At postmortem examination, the gastrointestinal tract was distended with clear fluid. Histopathologic examination of the jejunum and ileum revealed numerous small, round, pale basophilic organisms typical of cryptosporidia on the luminal surface of the enterocytes and free in the crypts. In addition, there was severe villus atrophy in the ileum. It was thought that an underlying chronic systemic disease had predisposed the hedgehog to cryptosporidiosis by immunosuppression. This report appears to be the first detailed description of cryptosporidiosis in this species.

  20. Instrumentation for measuring aircraft noise and sonic boom

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1976-01-01

    Improved instrumentation suitable for measuring aircraft noise and sonic booms is described. An electric current proportional to the sound pressure level at a condenser microphone is produced and transmitted over a cable and amplified by a zero drive amplifier. The converter consists of a local oscillator, a dual-gate field-effect transistor mixer, and a voltage regulator/impedance translator. The improvements include automatic tuning compensation against changes in static microphone capacitance and means for providing a remote electrical calibration capability.

  1. NHR-23 dependent collagen and hedgehog-related genes required for molting.

    PubMed

    Kouns, Nathaniel A; Nakielna, Johana; Behensky, Frantisek; Krause, Michael W; Kostrouch, Zdenek; Kostrouchova, Marta

    2011-10-07

    NHR-23, a conserved member of the nuclear receptor family of transcription factors, is required for normal development in Caenorhabditis elegans where it plays a critical role in growth and molting. In a search for NHR-23 dependent genes, we performed whole genome comparative expression microarrays on both control and nhr-23 inhibited synchronized larvae. Genes that decreased in response to nhr-23 RNAi included several collagen genes. Unexpectedly, several hedgehog-related genes were also down-regulated after nhr-23 RNAi. A homozygous nhr-23 deletion allele was used to confirm the RNAi knockdown phenotypes and the changes in gene expression. Our results indicate that NHR-23 is a critical co-regulator of functionally linked genes involved in growth and molting and reveal evolutionary parallels among the ecdysozoa. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Hedgehog signaling plays roles in epithelial cell proliferation in neonatal mouse uterus and vagina.

    PubMed

    Nakajima, Tadaaki; Iguchi, Taisen; Sato, Tomomi

    2012-04-01

    Both the uterus and vagina develop from the Müllerian duct but are quite distinct in morphology and function. To investigate factors controlling epithelial differentiation and cell proliferation in neonatal uterus and vagina, we focused on Hedgehog (HH) signaling. In neonatal mice, Sonic hh (Shh) was localized in the vaginal epithelium and Indian hh (Ihh) was slightly expressed in the uterus and vagina, whereas all Glioma-associated oncogene homolog (Gli) genes were mainly expressed in the stroma. The expression of target genes of HH signaling was high in the neonatal vagina and in the uterus, it increased with growth. Thus, in neonatal mice, Shh in the vaginal epithelium and Ihh in the uterus and vagina activated HH signaling in the stroma. Tissue recombinants showed that vaginal Shh expression was inhibited by the vaginal stroma and uterine Ihh expression was stimulated by the uterine stroma. Addition of a HH signaling inhibitor decreased epithelial cell proliferation in organ-cultured uterus and vagina and increased stromal cell proliferation in organ-cultured uterus. However, it did not affect epithelial differentiation or the expression of growth factors in organ-cultured uterus and vagina. Thus, activated HH signaling stimulates epithelial cell proliferation in neonatal uterus and vagina but inhibits stromal cell proliferation in neonatal uterus.

  3. Locally resonant sonic materials

    PubMed

    Liu; Zhang; Mao; Zhu; Yang; Chan; Sheng

    2000-09-08

    We have fabricated sonic crystals, based on the idea of localized resonant structures, that exhibit spectral gaps with a lattice constant two orders of magnitude smaller than the relevant wavelength. Disordered composites made from such localized resonant structures behave as a material with effective negative elastic constants and a total wave reflector within certain tunable sonic frequency ranges. A 2-centimeter slab of this composite material is shown to break the conventional mass-density law of sound transmission by one or more orders of magnitude at 400 hertz.

  4. Resonance: The science behind the art of sonic drilling

    NASA Astrophysics Data System (ADS)

    Lucon, Peter Andrew

    The research presented in this dissertation quantifies the system dynamics and the influence of control variables of a sonic drill system. The investigation began with an initial body of work funded by the Department of Energy under a Small Business Innovative Research Phase I Grant, grant number: DE-FG02-06ER84618, to investigate the feasibility of using sonic drills to drill micro well holes to depths of 1500 feet. The Department of Energy funding enabled feasibility testing using a 750 hp sonic drill owned by Jeffery Barrow, owner of Water Development Co. During the initial feasibility testing, data was measured and recorded at the sonic drill head while the sonic drill penetrated to a depth of 120 feet. To demonstrate feasibility, the system had to be well understood to show that testing of a larger sonic drill could simulate the results of drilling a micro well hole of 2.5 inch diameter. A first-order model of the system was developed that produced counter-intuitive findings that enabled the feasibility of using this method to drill deeper and produce micro-well holes to 1500 feet using sonic drills. Although funding was not continued, the project work continued. This continued work expanded on the sonic drill models by understanding the governing differential equation and solving the boundary value problem, finite difference methods, and finite element methods to determine the significance of the control variables that can affect the sonic drill. Using a design of experiment approach and commercially available software, the significance of the variables to the effectiveness of the drill system were determined. From the significant variables, as well as the real world testing, a control system schematic for a sonic drill was derived and is patent pending. The control system includes sensors, actuators, personal logic controllers, as well as a human machine interface. It was determined that the control system should control the resonant mode and the weight on

  5. A Study of Reflected Sonic Booms Using Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Kantor, Samuel R.; Cliatt, Larry J.

    2017-01-01

    In support of ongoing efforts to bring commercial supersonic flight to the public, the Sonic Booms in Atmospheric Turbulence (SonicBAT) flight test conducted at NASA Armstrong Flight Research Center. During this test, airborne sonic boom measurements were made using an instrumented TG-14 motor glider, called the Airborne Acoustic Measurement Platform (AAMP).During the flight program, the AAMP was consistently able to measure the sonic boom wave that was reflected off of the ground, in addition to the incident wave, resulting in the creation of a completely unique data set of airborne sonic boom reflection measurements.

  6. Primary Cilia Negatively Regulate Melanogenesis in Melanocytes and Pigmentation in a Human Skin Model.

    PubMed

    Choi, Hyunjung; Shin, Ji Hyun; Kim, Eun Sung; Park, So Jung; Bae, Il-Hong; Jo, Yoon Kyung; Jeong, In Young; Kim, Hyoung-June; Lee, Youngjin; Park, Hea Chul; Jeon, Hong Bae; Kim, Ki Woo; Lee, Tae Ryong; Cho, Dong-Hyung

    2016-01-01

    The primary cilium is an organelle protruding from the cell body that senses external stimuli including chemical, mechanical, light, osmotic, fluid flow, and gravitational signals. Skin is always exposed to the external environment and responds to external stimuli. Therefore, it is possible that primary cilia have an important role in skin. Ciliogenesis was reported to be involved in developmental processes in skin, such as keratinocyte differentiation and hair formation. However, the relation between skin pigmentation and primary cilia is largely unknown. Here, we observed that increased melanogenesis in melanocytes treated with a melanogenic inducer was inhibited by a ciliogenesis inducer, cytochalasin D, and serum-free culture. However, these inhibitory effects disappeared in GLI2 knockdown cells. In addition, activation of sonic hedgehog (SHH)-smoothened (Smo) signaling pathway by a Smo agonist, SAG inhibited melanin synthesis in melanocytes and pigmentation in a human skin model. On the contrary, an inhibitor of primary cilium formation, ciliobrevin A1, activated melanogenesis in melanocytes. These results suggest that skin pigmentation may be regulated partly by the induction of ciliogenesis through Smo-GLI2 signaling.

  7. Cytoarchitectonic and quantitative Golgi study of the hedgehog supraoptic nucleus.

    PubMed Central

    Caminero, A A; Machín, C; Sanchez-Toscano, F

    1992-01-01

    A cytoarchitectural study was made of the supraoptic nucleus (SON) of the hedgehog with special attention to the quantitative comparison of its main neuronal types. The main purposes were (1) to relate the characteristics of this nucleus in the hedgehog (a primitive mammalian insectivorous brain) with those in the SONs of more evolutionarily advanced species; (2) to identify quantitatively the dendritic fields of the main neuronal types in the hedgehog SON and to study their synaptic connectivity. From a descriptive standpoint, 3 neuronal types were found with respect to the number of dendritic stems arising from the neuronal soma: bipolar neurons (48%), multipolar neurons (45.5%) and monopolar neurons (6.5%). Within the multipolar type 2 subtypes could be distinguished, taking into account the number of dendritic spines: (a) with few spines (93%) and (b) very spiny (7%). These results indicate that the hedgehog SON is similar to that in other species except for the very spiny neurons, the significance of which is discussed. In order to characterise the main types more satisfactorily (bipolar and multipolars with few spines) we undertook a quantitative Golgi study of their dendritic fields. Although the patterns of the dendritic field are similar in both neuronal types, the differences in the location of their connectivity can reflect functional changes and alterations in relation to the synaptic afferences. Images Fig. 2 Fig. 3 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:1452481

  8. A Flight Research Overview of WSPR, a Pilot Project for Sonic Boom Community Response

    NASA Technical Reports Server (NTRS)

    Cliatt, Larry James; Haering, Ed; Jones, Thomas P.; Waggoner, Erin R.; Flattery, Ashley K.; Wiley, Scott L.

    2014-01-01

    In support of NASAs ongoing effort to bring supersonic commercial travel to the public, NASA Dryden Flight Research Center and NASA Langley Research Center, in cooperation with other industry organizations, conducted a flight research experiment to identify the methods, tools, and best practices for a large-scale quiet (or low) sonic boom community human response test. The name of the effort was Waveforms and Sonic boom Perception and Response. Such tests will go towards building a dataset that governing agencies like the Federal Aviation Administration and International Civil Aviation Organization will use to establish regulations for acceptable sound levels of overland sonic booms. Until WSPR, there had never been an effort that studied the response of people in their own homes and performing daily activities to non-traditional, low sonic booms.WSPR was a NASA collaborative effort with several industry partners, in response to a NASA Aeronautics Research Mission Directorate Research Opportunities in Aeronautics. The primary contractor was Wyle. Other partners included Gulfstream Aerospace Corporation, Pennsylvania State University, Tetra Tech, and Fidell Associates, Inc.A major objective of the effort included exposing a community with the sonic boom magnitudes and occurrences expected in high-air traffic regions with a network of supersonic commercial aircraft in place. Low-level sonic booms designed to simulate those produced by the next generation of commercial supersonic aircraft were generated over a small residential community. The sonic boom footprint was recorded with an autonomous wireless microphone array that spanned the entire community. Human response data was collected using multiple survey methods. The research focused on essential elements of community response testing including subject recruitment, survey methods, instrumentation systems, flight planning and operations, and data analysis methods.This paper focuses on NASAs role in the efforts

  9. Hawking radiation in sonic black holes.

    PubMed

    Giovanazzi, S

    2005-02-18

    I present a microscopic description of Hawking radiation in sonic black holes. A one-dimensional Fermi-degenerate liquid squeezed by a smooth barrier forms a transonic flow, a sonic analog of a black hole. The quantum treatment of the noninteracting case establishes a close relationship between sonic Hawking radiation and quantum tunneling through the barrier. Quasiparticle excitations appear at the barrier and are then radiated with a thermal distribution in exact agreement with Hawking's formula. The signature of the radiation can be found in the dynamic structure factor, which can be measured in a scattering experiment. The possibility for experimental verification of this new transport phenomenon for ultracold atoms is discussed.

  10. Real-Time, Interactive Sonic Boom Display

    NASA Technical Reports Server (NTRS)

    Haering, Jr., Edward A. (Inventor); Plotkin, Kenneth J. (Inventor)

    2012-01-01

    The present invention is an improved real-time, interactive sonic boom display for aircraft. By using physical properties obtained via various sensors and databases, the invention determines, in real-time, sonic boom impacts locations and intensities for aircraft traveling at supersonic speeds. The information is provided to a pilot via a display that lists a selectable set of maneuvers available to the pilot to mitigate sonic boom issues. Upon selection of a maneuver, the information as to the result of the maneuver is displayed and the pilot may proceed with making the maneuver, or provide new data to the system in order to calculate a different maneuver.

  11. WHEN AND WHY DO HEDGEHOGS AND FOXES DIFFER?

    PubMed Central

    Keil, Frank C.

    2011-01-01

    Philip E. Tetlock’s finding that “hedgehog” experts (those with one big theory) are worse predictors than “foxes” (those with multiple, less comprehensive theories) offers fertile ground for future research. Are experts as likely to exhibit hedgehog- or fox-like tendencies in areas that call for explanatory, diagnostic, and skill-based expertise—as they did when Tetlock called on experts to make predictions? Do particular domains of expertise curtail or encourage different styles of expertise? Can we trace these different styles to childhood? Finally, can we nudge hedgehogs to be more like foxes? Current research can only grope at the answers to these questions, but they are essential to gauging the health of expert political judgment. PMID:21698070

  12. Smoothened-antagonists reverse homogentisic acid-induced alterations of Hedgehog signaling and primary cilium length in alkaptonuria.

    PubMed

    Gambassi, Silvia; Geminiani, Michela; Thorpe, Stephen D; Bernardini, Giulia; Millucci, Lia; Braconi, Daniela; Orlandini, Maurizio; Thompson, Clare L; Petricci, Elena; Manetti, Fabrizio; Taddei, Maurizio; Knight, Martin M; Santucci, Annalisa

    2017-11-01

    Alkaptonuria (AKU) is an ultra-rare genetic disease, in which the accumulation of a toxic metabolite, homogentisic acid (HGA) leads to the systemic development of ochronotic aggregates. These aggregates cause severe complications mainly at the level of joints with extensive degradation of the articular cartilage. Primary cilia have been demonstrated to play an essential role in development and the maintenance of articular cartilage homeostasis, through their involvement in mechanosignaling and Hedgehog signaling pathways. Hedgehog signaling has been demonstrated to be activated in osteoarthritis (OA) and to drive cartilage degeneration in vivo. The numerous similarities between OA and AKU suggest that primary cilia Hedgehog signaling may also be altered in AKU. Thus, we characterized an AKU cellular model in which healthy chondrocytes were treated with HGA (66 µM) to replicate AKU cartilage pathology. We investigated the degree of activation of the Hedgehog signaling pathway and how treatment with inhibitors of the receptor Smoothened (Smo) influenced Hedgehog activation and primary cilia structure. The results obtained in this work provide a further step in the comprehension of the pathophysiological features of AKU, suggesting a potential therapeutic approach to modulate AKU cartilage degradation processes through manipulation of the Hedgehog pathway. © 2016 Wiley Periodicals, Inc.

  13. Display Provides Pilots with Real-Time Sonic-Boom Information

    NASA Technical Reports Server (NTRS)

    Haering, Ed; Plotkin, Ken

    2013-01-01

    Supersonic aircraft generate shock waves that move outward and extend to the ground. As a cone of pressurized air spreads across the landscape along the flight path, it creates a continuous sonic boom along the flight track. Several factors can influence sonic booms: weight, size, and shape of the aircraft; its altitude and flight path; and weather and atmospheric conditions. This technology allows pilots to control the impact of sonic booms. A software system displays the location and intensity of shock waves caused by supersonic aircraft. This technology can be integrated into cockpits or flight control rooms to help pilots minimize sonic boom impact in populated areas. The system processes vehicle and flight parameters as well as data regarding current atmospheric conditions. The display provides real-time information regarding sonic boom location and intensity, enabling pilots to make the necessary flight adjustments to control the timing and location of sonic booms. This technology can be used on current-generation supersonic aircraft, which generate loud sonic booms, as well as future- generation, low-boom aircraft, anticipated to be quiet enough for populated areas.

  14. Desert hedgehog is a mediator of demyelination in compression neuropathies.

    PubMed

    Jung, James; Frump, Derek; Su, Jared; Wang, Weiping; Mozaffar, Tahseen; Gupta, Ranjan

    2015-09-01

    The secreted protein desert hedgehog (dhh) controls the formation of the nerve perineurium during development and is a key component of Schwann cells that ensures peripheral nerve survival. We postulated that dhh may play a critical role in maintaining myelination and investigated its role in demyelination-induced compression neuropathies by using a post-natal model of a chronic nerve injury in wildtype and dhh(-/-) mice. We evaluated demyelination using electrophysiological, morphological, and molecular approaches. dhh transcripts and protein are down-regulated early after injury in wild-type mice, suggesting an intimate relationship between the hedgehog pathway and demyelination. In dhh(-/-) mice, nerve injury induced more prominent and severe demyelination relative to their wild-type counterparts, suggesting a protective role of dhh. Alterations in nerve fiber characteristics included significant decreases in nerve conduction velocity, increased myelin debris, and substantial decreases in internodal length. Furthermore, in vitro studies showed that dhh blockade via either adenovirus-mediated (shRNA) or pharmacological inhibition both resulted in severe demyelination, which could be rescued by exogenous Dhh. Exogenous Dhh was protective against this demyelination and maintained myelination at baseline levels in a custom in vitro bioreactor to applied biophysical forces to myelinated DRG/Schwann cell co-cultures. Together, these results demonstrate a pivotal role for dhh in maintaining myelination. Furthermore, dhh signaling reveals a potential target for therapeutic intervention to prevent and treat demyelination of peripheral nerves in compression neuropathies. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Realism Assessment of Sonic Boom Simulators

    NASA Technical Reports Server (NTRS)

    Sullivan, Brenda M.; Davies, Patrica; Hodgdon, Kthleen K.; Salamone, Joseph A., III; Pilon, Anthony

    2008-01-01

    Developments in small supersonic aircraft design are predicted to result in low-intensity sonic booms. Booms generated by current aircraft are similar to those that led to the ban on commercial supersonic fli ght over the US, so are unsuitable for parametric studies of psychoac oustic response to low-intensity booms. Therefore, simulators have be en used to study the impact of predicted low-intensity sonic booms. H owever, simulators have been criticized because, when simulating conv entional-level booms, the sounds were observed to be unrealistic by p eople experienced in listening to sonic booms. Thus, two studies were conducted to measure the perceived realism of three sonic boom simul ators. Experienced listeners rated the realism of conventional sonic boom signatures when played in these simulators. The effects on percei ved realism of factors such as duration of post-boom noise, exclusion of very low frequency components, inclusion of ground reflections, a nd type of simulator were examined. Duration of post-boom noise was f ound to have a strong effect on perceived realism, while type of simu lator had a weak effect. It was determined that post-boom noise had t o be at least 1.5 seconds long for the sound to be rated very realist ic. Loudness level did not affect realism for the range of sounds pla yed in the tests (80-93 dB ASEL).

  16. Tongue and Taste Organ Biology and Function: Homeostasis Maintained by Hedgehog Signaling.

    PubMed

    Mistretta, Charlotte M; Kumari, Archana

    2017-02-10

    The tongue is an elaborate complex of heterogeneous tissues with taste organs of diverse embryonic origins. The lingual taste organs are papillae, composed of an epithelium that includes specialized taste buds, the basal lamina, and a lamina propria core with matrix molecules, fibroblasts, nerves, and vessels. Because taste organs are dynamic in cell biology and sensory function, homeostasis requires tight regulation in specific compartments or niches. Recently, the Hedgehog (Hh) pathway has emerged as an essential regulator that maintains lingual taste papillae, taste bud and progenitor cell proliferation and differentiation, and neurophysiological function. Activating or suppressing Hh signaling, with genetic models or pharmacological agents used in cancer treatments, disrupts taste papilla and taste bud integrity and can eliminate responses from taste nerves to chemical stimuli but not to touch or temperature. Understanding Hh regulation of taste organ homeostasis contributes knowledge about the basic biology underlying taste disruptions in patients treated with Hh pathway inhibitors.

  17. Integument Mycobiota of Wild European Hedgehogs (Erinaceus europaeus) from Catalonia, Spain.

    PubMed

    Molina-López, R A; Adelantado, C; Arosemena, E L; Obón, E; Darwich, L; Calvo, M A

    2012-01-01

    There are some reports about the risk of manipulating wild hedgehogs since they can be reservoirs of potential zoonotic agents like dermatophytes. The aim of this study was to describe the integument mycobiota, with special attention to dermatophytes of wild European hedgehogs. Samples from spines and fur were cultured separately in Sabouraud dextrose agar (SDA) with antibiotic and dermatophyte test medium (DTM) plates. Nineteen different fungal genera were isolated from 91 cultures of 102 hedgehogs. The most prevalent genera were Cladosporium (79.1%), Penicillium (74.7%), Alternaria (64.8%), and Rhizopus (63.7%). A lower prevalence of Aspergillus (P = 0,035; χ (2) = 8,633) and Arthrinium (P = 0,043; χ (2) = 8,173) was isolated during the spring time and higher frequencies of Fusarium (P = 0,015; χ (2) = 10,533) during the autumn. The prevalence of Acremonium was significantly higher in young animals (70%, 26/37) than in adults (30%, 11/37) (P = 0,019; χ (2) = 5,915). Moreover, the majority of the saprophytic species that grew at the SDA culture were also detected at the DTM. Finally, no cases of ringworm were diagnosed and no dermatophytes spp. were isolated. Concluding, this study provides the first description of fungal mycobiota of the integument of wild European hedgehogs in Spain, showing a large number of saprophytic species and the absence of dermatophytes.

  18. Integument Mycobiota of Wild European Hedgehogs (Erinaceus europaeus) from Catalonia, Spain

    PubMed Central

    Molina-López, R. A.; Adelantado, C.; Arosemena, E. L.; Obón, E.; Darwich, L.; Calvo, M. A.

    2012-01-01

    There are some reports about the risk of manipulating wild hedgehogs since they can be reservoirs of potential zoonotic agents like dermatophytes. The aim of this study was to describe the integument mycobiota, with special attention to dermatophytes of wild European hedgehogs. Samples from spines and fur were cultured separately in Sabouraud dextrose agar (SDA) with antibiotic and dermatophyte test medium (DTM) plates. Nineteen different fungal genera were isolated from 91 cultures of 102 hedgehogs. The most prevalent genera were Cladosporium (79.1%), Penicillium (74.7%), Alternaria (64.8%), and Rhizopus (63.7%). A lower prevalence of Aspergillus (P = 0,035; χ 2 = 8,633) and Arthrinium (P = 0,043; χ 2 = 8,173) was isolated during the spring time and higher frequencies of Fusarium (P = 0,015; χ 2 = 10,533) during the autumn. The prevalence of Acremonium was significantly higher in young animals (70%, 26/37) than in adults (30%, 11/37) (P = 0,019; χ 2 = 5,915). Moreover, the majority of the saprophytic species that grew at the SDA culture were also detected at the DTM. Finally, no cases of ringworm were diagnosed and no dermatophytes spp. were isolated. Concluding, this study provides the first description of fungal mycobiota of the integument of wild European hedgehogs in Spain, showing a large number of saprophytic species and the absence of dermatophytes. PMID:23762757

  19. Simulator Study of Indoor Annoyance Caused by Shaped Sonic Boom Stimuli With and Without Rattle Augmentation

    NASA Technical Reports Server (NTRS)

    Rathsam, Jonathan; Loubeau, Alexandra; Klos, Jacob

    2013-01-01

    The National Aeronautics and Space Administration's High Speed Project is developing a predictive capability for annoyance caused by shaped sonic booms transmitted indoors. The predictive capability is intended for use by aircraft designers as well as by aircraft noise regulators who are considering lifting the current prohibition on overland civil supersonic flight. The goal of the current study is to use an indoor simulator to validate two models developed using headphone tests for annoyance caused by sonic booms with and without rattle augmentation. The predictors in the proposed models include Moore and Glasberg's Stationary Loudness Level, the time derivative of Moore and Glasberg's time-varying short-term Loudness Level, and the difference between two weighted sound exposure levels, CSEL-ASEL. The indoor simulator provides a more realistic listening environment than headphones due to lowfrequency sound reproduction down to 6 Hz, which also causes perceptible tactile vibration. The results of this study show that a model consisting of {PL + (CSEL-ASEL)} is a reliable predictor of annoyance caused by shaped sonic booms alone, rattle sounds alone, and shaped sonic booms and rattle sounds together.

  20. Soft tissue sarcomas in the African hedgehog (Atelerix albiventris): microscopic and immunohistologic study of three cases.

    PubMed

    Ramos-Vara, J A

    2001-09-01

    Three soft tissue tumors from 2 female hedgehogs were examined microscopically and immunohistochemically. Two tumors involved haired skin and the third one was vaginal. Microscopically, the cutaneous tumors had features of malignant peripheral nerve sheath tumor (MPNST), whereas the vaginal tumor was classified only as a spindle cell sarcoma. Immunohistochemically, all 3 tumors were strongly positive for vimentin and strongly to moderately positive for CD10 and neuron-specific enolase but did not stain with antibody to S100 protein, an antigen typically present in human MPNST The cutaneous tumor from hedgehog no. 1 was examined ultrastructurally and the neoplastic cells resembled fibroblasts. Hedgehog no. 1 was euthanized at the time of the biopsy. The outcome of the other hedgehog was unknown.

  1. A local difference in Hedgehog signal transduction increases mechanical cell bond tension and biases cell intercalations along the Drosophila anteroposterior compartment boundary.

    PubMed

    Rudolf, Katrin; Umetsu, Daiki; Aliee, Maryam; Sui, Liyuan; Jülicher, Frank; Dahmann, Christian

    2015-11-15

    Tissue organization requires the interplay between biochemical signaling and cellular force generation. The formation of straight boundaries separating cells with different fates into compartments is important for growth and patterning during tissue development. In the developing Drosophila wing disc, maintenance of the straight anteroposterior (AP) compartment boundary involves a local increase in mechanical tension at cell bonds along the boundary. The biochemical signals that regulate mechanical tension along the AP boundary, however, remain unknown. Here, we show that a local difference in Hedgehog signal transduction activity between anterior and posterior cells is necessary and sufficient to increase mechanical tension along the AP boundary. This difference in Hedgehog signal transduction is also required to bias cell rearrangements during cell intercalations to keep the characteristic straight shape of the AP boundary. Moreover, severing cell bonds along the AP boundary does not reduce tension at neighboring bonds, implying that active mechanical tension is upregulated, cell bond by cell bond. Finally, differences in the expression of the homeodomain-containing protein Engrailed also contribute to the straight shape of the AP boundary, independently of Hedgehog signal transduction and without modulating cell bond tension. Our data reveal a novel link between local differences in Hedgehog signal transduction and a local increase in active mechanical tension of cell bonds that biases junctional rearrangements. The large-scale shape of the AP boundary thus emerges from biochemical signals inducing patterns of active tension on cell bonds. © 2015. Published by The Company of Biologists Ltd.

  2. A sonic tool for spinal fusion.

    PubMed

    Weis, E B

    1977-01-01

    The application of sonic energy to bone cutting problems is reported. The basic principle of the resonant tool, its adaptation for surgery, the experimental results of its use in animals, and clinical experience are reported. This sonic tool is found to introduce no significant tissue destruction. It does have several desirable characteristics for routine use in orthopedics.

  3. Morphometrics of foramen magnum in African four-toed hedgehog (Atelerix albiventris).

    PubMed

    Girgiri, I; Olopade, J O; Yahaya, A

    The purpose of this study was to examine the morphometry of the foramen magnum of African four-toed hedgehog (Atelerix albiventris) in Maiduguri. Fourteen hedgehog skulls (7 male and 7 female each) were used for this study. The overall mean value of foramen magnum height and width were 0.51 ± 0.05 cm and 0.64 ± 0.04 cm while occipital condylar and interparacondylar widths were 1.00 ± 0.12 cm and 1.62 ± 0.07 cm, respectively. There was no significant difference between the two sexes. The foramen magnum index was 83.4 ± 5.51 cm in males and was significantly higher than 76.3 ± 6.37 cm observed in females. The presences of dorsal notches (occipital dysplasia) were observed, that were of three distinct types. It is envisaged, that the study will provide a valuable database on the anatomy of foramen magnum of hedgehogs in Nigeria for morphological, neurological, zooarchaeological, and comparative anatomical studies.

  4. Ultrasonic/Sonic Jackhammer

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Herz, Jack L. (Inventor); Sherrit, Stewart (Inventor)

    2014-01-01

    The invention provides a novel jackhammer that utilizes ultrasonic and/or sonic vibrations as source of power. It is easy to operate and does not require extensive training, requiring substantially less physical capabilities from the user and thereby increasing the pool of potential operators. An important safety benefit is that it does not fracture resilient or compliant materials such as cable channels and conduits, tubing, plumbing, cabling and other embedded fixtures that may be encountered along the impact path. While the ultrasonic/sonic jackhammer of the invention is able to cut concrete and asphalt, it generates little back-propagated shocks or vibrations onto the mounting fixture, and can be operated from an automatic platform or robotic system. PNEUMATICS; ULTRASONICS; IMPACTORS; DRILLING; HAMMERS BRITTLE MATERIALS; DRILL BITS; PROTOTYPES; VIBRATION

  5. Hedgehogs and Foxes at the Crossroads: Leadership and Diversity at the University of California

    ERIC Educational Resources Information Center

    González, Cristina

    2011-01-01

    Following Clark Kerr's distinction between hedgehogs, or visionary leaders who know "one big thing," and foxes, or shrewd leaders who know "many things," this paper studies Kerr, an archetypical hedgehog, and David Gardner, a quintessential fox, as models for these two types of leaders. The paper also analyzes the hedgehog…

  6. Subjective Response to Simulated Sonic Booms in Homes

    NASA Technical Reports Server (NTRS)

    McCurdy, David A.; Brown, Sherilyn A.

    1996-01-01

    One of the environmental issues affecting the development of a second-generation supersonic commercial transport is the impact of sonic booms on people. Aircraft designers are attempting to design the transport to produce sonic boom signatures that will have minimum impact on the public. Current supersonic commercial aircraft produce an 'N-wave' sonic boom pressure signature that is considered unacceptable by the public. This has resulted in first-generation supersonic transports being banned from flying supersonic over land in the United States, a severe economic constraint. By tailoring aircraft volume and lift distributions, designers hope to produce sonic boom signatures having specific shapes other than 'N-wave' that may be more acceptable to the public. As part of the effort to develop a second-generation supersonic commercial transport, Langley Research Center is conducting research to study people's subjective response to sonic booms. As part of that research, a system was developed for performing studies of the subjective response of people to the occurrence of simulated sonic booms in their homes. The In-Home Noise Generation/Response System (IHONORS) provides a degree of situational realism not available in the laboratory and a degree of control over the noise exposure not found in community surveys. The computer-controlled audio system generates the simulated sonic booms, measures the noise levels, and records the subjects' ratings and can be placed and operated in individual homes for extended periods of time. The system was used to conduct an in-home study of subjective response to simulated sonic booms. The primary objective of the study was to determine the effect on annoyance of the number of sonic boom occurrences in a realistic environment. The effects on annoyance of several other parameters were also examined. Initially, data analyses were based on all the data collected. However, further analyser found that test subjects adapted to the sonic

  7. Potential for Sonic Boom Reduction of the Boeing HSCT

    NASA Technical Reports Server (NTRS)

    Haglund, George T.

    1999-01-01

    The HSR sonic boom technology program includes a goal of reducing the objectionable aspects of sonic boom. Earlier HSCT sonic boom studies considered achieving significant sonic boom reduction by the use of arrow-wing planforms and detailed shaping of the airplane to produce shaped waveforms (non N-waves) at the ground. While these design efforts were largely successful, the added risk and cost of the airplanes were judged to be unacceptable. The objective of the current work is to explore smaller configuration refinements that could lead to reduced sonic boom impact, within design and operational constraints. A somewhat modest target of 10% reduction in sonic boom maximum overpressure was selected to minimize the effect on the configuration performance. This work was a joint NASA/Industry effort, utilizing the respective strengths of team members at Boeing, NASA Langley, and NASA Ames. The approach used was to first explore a wide range of modifications and airplane characteristics for their effects on sonic boom and drag, using classical Modified Linear Theory (MLT) methods. CFD methods were then used to verify promising, modifications and to analyze modifications for which the MLT methods were not appropriate. The tea m produced a list of configuration changes with their effects on sonic boom and, in some cases, an estimate of the drag penalty. The most promising modifications were applied to produce a boom-softened derivative of the baseline Boeing High Speed Civil Transport (HSCT) configuration. This boom-softened configuration was analyzed in detail for the reduce sonic boom impact and also for the effect of the configuration modifications on drag, weight, and overall performance relative to the baseline.

  8. Sonic Hedgehog Signaling Promotes Tumor Growth

    DTIC Science & Technology

    2005-02-01

    mesenchyme and urothelium from normal or androgen-insensitive mice. Endocrinology 1993; 132(6):2342-2350. 4. Cunha GR, Donjacour AA, Sugimura Y. Stromal... urothelium of testicular feminized (Tfm/y) mice. J Steroid Biochem 1981; 14(12): 1317-1324. 18. Lamm ML, Catbagan WS, Laciak RJ, Barnett DH, Hebner CM

  9. Sonic Hedgehog Signaling Promotes Tumor Growth

    DTIC Science & Technology

    2006-02-01

    urogenital sinus mesenchyme and urothelium from normal or androgen-insen- sitive mice. Endocrinology 1993;132(6):2342–2350. 4. Cunha GR, Donjacour AA...706–714. 17. Cunha GR, Chung LW. Stromal-epithelial interactions–I. Induc- tion of prostatic phenotype in urothelium of testicular feminized (Tfm/y

  10. Assessment of Near-Field Sonic Boom Simulation Tools

    NASA Technical Reports Server (NTRS)

    Casper, J. H.; Cliff, S. E.; Thomas, S. D.; Park, M. A.; McMullen, M. S.; Melton, J. E.; Durston, D. A.

    2008-01-01

    A recent study for the Supersonics Project, within the National Aeronautics and Space Administration, has been conducted to assess current in-house capabilities for the prediction of near-field sonic boom. Such capabilities are required to simulate the highly nonlinear flow near an aircraft, wherein a sonic-boom signature is generated. There are many available computational fluid dynamics codes that could be used to provide the near-field flow for a sonic boom calculation. However, such codes have typically been developed for applications involving aerodynamic configuration, for which an efficiently generated computational mesh is usually not optimum for a sonic boom prediction. Preliminary guidelines are suggested to characterize a state-of-the-art sonic boom prediction methodology. The available simulation tools that are best suited to incorporate into that methodology are identified; preliminary test cases are presented in support of the selection. During this phase of process definition and tool selection, parallel research was conducted in an attempt to establish criteria that link the properties of a computational mesh to the accuracy of a sonic boom prediction. Such properties include sufficient grid density near shocks and within the zone of influence, which are achieved by adaptation and mesh refinement strategies. Prediction accuracy is validated by comparison with wind tunnel data.

  11. Prediction of sonic boom at a focus

    NASA Technical Reports Server (NTRS)

    Plotkin, K. J.; Cantril, J. M.

    1976-01-01

    The behavior of sonic boom at a focus has been reviewed for the purpose of extending present sonic boom computational methods to include focal zones. The geometry of a focal zone - whether a smooth caustic, a cusped caustic, or a perfect focus to a point - determines the character of focused signatures. The seeming contradiction of various experimental data can be resolved by noting these differences. A ray acoustic analysis has been developed for quantitative determination of caustic geometry. The only reliable theory presently available for signatures at a focus is for a smooth caustic. There has been some controversy between theoretical and experimental values of a constant in the scaling law for this case. It has been found that this discrepancy can be resolved by accounting for the finite thickness of real sonic boom shock waves. These findings have been incorporated into an existing sonic boom computer program.

  12. Anti‑fibrotic effect of Sedum sarmentosum Bunge extract in kidneys via the hedgehog signaling pathway.

    PubMed

    Bai, Yongheng; Wu, Cunzao; Hong, Weilong; Zhang, Xing; Liu, Leping; Chen, Bicheng

    2017-07-01

    Sedum sarmentosum Bunge (SSBE) is a perennial plant widely distributed in Asian countries, and its extract is traditionally used for the treatment of certain inflammatory diseases. Our previous studies demonstrated that SSBE has marked renal anti‑fibrotic effects. However, the underlying molecular mechanisms remain to be fully elucidated. The present study identified that SSBE exerts its inhibitory effect on the myofibroblast phenotype and renal fibrosis via the hedgehog signaling pathway in vivo and in vitro. In rats with unilateral ureteral obstruction (UUO), SSBE administration reduced kidney injury and alleviated interstitial fibrosis by decreasing the levels of transforming growth factor (TGF)‑β1 and its receptor, and inhibiting excessive accumulation of extracellular matrix (ECM) components, including type I and III collagens. In addition, SSBE suppressed the expression of proliferating cell nuclear antigen, and this anti‑proliferative activity was associated with downregulation of hedgehog signaling activity in SSBE‑treated UUO kidneys. In cultured renal tubular epithelial cells (RTECs), recombinant TGF‑β1 activated hedgehog signaling, and resulted in induction of the myofibroblast phenotype. SSBE treatment inhibited the activation of hedgehog signaling and partially reversed the fibrotic phenotype in TGF‑β1‑treated RTECs. Similarly, aristolochic acid‑mediated upregulated activity of hedgehog signaling was reduced by SSBE treatment, and thereby led to the abolishment of excessive ECM accumulation. Therefore, these findings suggested that SSBE attenuates the myofibroblast phenotype and renal fibrosis via suppressing the hedgehog signaling pathway, and may facilitate the development of treatments for kidney fibrosis.

  13. A Flight Research Overview of WSPR, a Pilot Project for Sonic Boom Community Response

    NASA Technical Reports Server (NTRS)

    Cliatt, Larry J., II; Haering, Edward A., Jr.; Jones, Thomas P.; Waggoner, Erin R.; Flattery, Ashley K.; Wiley, Scott L.

    2014-01-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, the NASA Armstrong Flight Research Center and the NASA Langley Research Center, in cooperation with other industry organizations, conducted a flight research experiment to identify the methods, tools, and best practices for a large-scale quiet (or low) sonic boom community human response test. The name of the effort was Waveforms and Sonic boom Perception and Response (WSPR). Such tests will be applied to building a dataset that governing agencies such as the Federal Aviation Administration and the International Civil Aviation Organization will use to establish regulations for acceptable sound levels of overland sonic booms. The WSPR test was the first such effort that studied responses to non-traditional low sonic booms while the subject persons were in their own homes and performing daily activities.The WSPR test was a NASA collaborative effort with several industry partners, in response to a NASA Aeronautics Research Mission Directorate Research Opportunities in Aeronautics. The primary contractor was Wyle (El Segundo, California). Other partners included Gulfstream Aerospace Corporation (Savannah, Georgia); Pennsylvania State University (University Park, Pennsylvania); Tetra Tech, Inc. (Pasadena, California); and Fidell Associates, Inc. (Woodland Hills, California).A major objective of the effort included exposing a community to the sonic boom magnitudes and occurrences that would be expected to occur in high-air traffic regions having a network of supersonic commercial aircraft in place. Low-level sonic booms designed to simulate those produced by the next generation of commercial supersonic aircraft were generated over a small residential community. The sonic boom footprint was recorded with an autonomous wireless microphone array that spanned the entire community. Human response data were collected using multiple

  14. The Potential of Sonic IR to Inspect Aircraft Components Traditionally Inspected with Fluorescent Penetrant and or Magnetic Particle Inspection

    NASA Astrophysics Data System (ADS)

    DiMambro, J.; Ashbaugh, D. M.; Han, X.; Favro, L. D.; Lu, J.; Zeng, Z.; Li, W.; Newaz, G. M.; Thomas, R. L.

    2006-03-01

    Sandia National Laboratories Airworthiness Assurance Nondestructive Inspection Validation Center (AANC) provides independent and quantitative evaluations of new and enhanced inspection, to developers, users, and regulators of aircraft. Wayne State University (WSU) has developed and patented an inspection technique using high-power ultrasonic excitation and infrared technology to detect defects in a variety of materials. AANC and WSU are working together as part of the FAA Sonic Infrared Technology Transfer Program. The ultimate goal of the program is to implement Sonic IR in the aviation field where appropriate. The capability of Sonic IR imaging to detect cracks in components commonly inspected with magnetic particle or liquid penetrant inspection in the field is of interest to industry.

  15. Gravitational black-holes-hedgehogs and two degenerate vacua of the Universe

    NASA Astrophysics Data System (ADS)

    Sidharth, B. G.; Das, C. R.; Laperashvili, L. V.; Nielsen, H. B.

    In the present paper, assuming the Multiple Point Principle (MPP) as a new law of Nature, we considered the existence of the two degenerate vacua of the Universe: the first Electroweak (EW) vacuum at v1 ≈ 246GeV — “true vacuum”, and the second Planck scale “false vacuum” at v2 ˜ 1018 GeV. In these vacua, we investigated different topological defects. The main aim of this paper is an investigation of the black-hole-hedgehogs configurations as defects of the false vacuum. In the framework of the f(R) gravity, described by the Gravi-Weak unification model, we considered a black-hole solution, which corresponds to a “hedgehog” — global monopole, that has been “swallowed” by the black-hole with mass core MBH ˜ 1018GeV and radius δ ˜ 10‑21GeV‑1. Considering the results of the hedgehog lattice theory in the framework of the SU(2) Yang-Mills gauge-invariant theory with hedgehogs in the Wilson loops, we have used the critical value of temperature for the hedgehogs confinement phase (Tc ˜ 1018GeV). This result gave us the possibility to conclude that the SM shows a new physics with contributions of the SU(2)-triplet Higgs bosons at the scale ˜10TeV. Theory predicts the stability of the EW-vacuum and the accuracy of the MPP.

  16. Sonic Boom: Six Decades of Research

    NASA Technical Reports Server (NTRS)

    Maglieri, Domenic J.; Bobbitt, Percy J.; Plotkin, Kenneth J.; Shepherd, Kevin P.; Coen, Peter G.; Richwine, David M.

    2014-01-01

    Sonic booms generated by aircraft traveling at supersonic speeds have been the subject of extensive aeronautics research for over 60 years. Hundreds of papers have been published that document the experimental and analytical research conducted during this time period. The purpose of this publication is to assess and summarize this work and establish the state-of-the-art for researchers just entering the field, or for those interested in a particular aspect of the subject. This publication consists of ten chapters that cover the experimental and analytical aspects of sonic boom generation, propagation and prediction with summary remarks provided at the end of each chapter. Aircraft maneuvers, sonic boom minimization, simulation techniques and devices as well as human, structural, and other responses to sonic booms are also discussed. The geometry and boom characteristics of various low-boom concepts, both large civil transports and smaller business-jet concepts, are included. The final chapter presents an assessment of civilian supersonic overland flight and highlights the need for continued research and a low-boom demonstrator vehicle. Summary remarks are provided at the end of each chapter. The studies referenced in this publication have been drawn from over 500 references.

  17. Boc modifies the spectrum of holoprosencephaly in the absence of Gas1 function

    PubMed Central

    Seppala, Maisa; Xavier, Guilherme M.; Fan, Chen-Ming; Cobourne, Martyn T.

    2014-01-01

    ABSTRACT Holoprosencephaly is a heterogeneous developmental malformation of the central nervous system characterized by impaired forebrain cleavage, midline facial anomalies and wide phenotypic variation. Indeed, microforms represent the mildest manifestation, associated with facial anomalies but an intact central nervous system. In many cases, perturbations in sonic hedgehog signaling are responsible for holoprosencephaly. Here, we have elucidated the contribution of Gas1 and an additional hedgehog co-receptor, Boc during early development of the craniofacial midline, by generating single and compound mutant mice. Significantly, we find Boc has an essential role in the etiology of a unique form of lobar holoprosencephaly that only occurs in conjunction with combined loss of Gas1. Whilst Gas1−/− mice have microform holoprosencephaly characterized by a single median maxillary central incisor, cleft palate and pituitary anomalies, Boc−/− mice have a normal facial midline. However, Gas1−/−; Boc−/− mutants have lobar holoprosencephaly associated with clefting of the lip, palate and tongue, secondary to reduced sonic hedgehog transduction in the central nervous system and face. Moreover, maxillary incisor development is severely disrupted in these mice, arresting prior to cellular differentiation as a result of apoptosis in the odontogenic epithelium. Thus, Boc and Gas1 retain an essential function in these tooth germs, independent of their role in midline development of the central nervous system and face. Collectively, this phenotype demonstrates both redundancy and individual requirements for Gas1 and Boc during sonic hedgehog transduction in the craniofacial midline and suggests BOC as a potential digenic locus for lobar holoprosencephaly in human populations. PMID:25063195

  18. Tick-induced blood loss leads to regenerative anaemia in the European hedgehog ( Erinaceus europaeus).

    PubMed

    Pfäffle, M; Petney, T; Elgas, M; Skuballa, J; Taraschewski, H

    2009-04-01

    Although there is an increasing understanding of the role of parasites in their host dynamics, accurate, quantitative estimates of parasite caused morbidity in wild animals are rare. Here, we examine the possible impact of 2 tick species (Ixodes ricinus, I. hexagonus) on the condition of the European hedgehog (Erinaceus europaeus). For this, we tested for correlations between blood parameters of 36 adult hedgehogs from an experimental population enclosed in a natural habitat and their tick infestation over a period of 8 months (March-October 2007). We found correlations between the tick infestation and the concentration of red blood cells, haemoglobin, haematocrit, MCH, MCHC, thrombocytes, lymphocytes and neutrophils. These results indicate that ticks can induce anaemia in the hedgehog. The peripheral blood characteristics and the erythrocyte indices characterize this anaemia as haemorrhagic and regenerative. During the course of our study the hedgehogs of our population showed below normal mortality but morbidity was found to be high resulting from the blood loss caused by the feeding activity of the ticks.

  19. Recent Progress on Sonic Boom Research at NASA

    NASA Technical Reports Server (NTRS)

    Loubeau, Alexandra

    2012-01-01

    Sonic boom research conducted at NASA through the Supersonics Project of the Fundamental Aeronautics Program is oriented toward understanding the potential impact of sonic boom noise on communities from new low-boom supersonic aircraft designs. Encompassing research in atmospheric propagation, structural response, and human response, NASA research contributes to knowledge in key areas needed to support development of a new noise-based standard for supersonic aircraft certification. Partnerships with several industry, government, and academic institutions have enabled the recent execution of several acoustic field studies on sonic booms. An overview of recent activities funded by NASA includes: focus boom model development and experimental validation, field experiments of structural transmission of sonic booms into large buildings, and low boom community response testing.

  20. Surgical resection of peripheral odontogenic fibromas in African pygmy hedgehog (Atelerix albiventris): a case study.

    PubMed

    Wozniak-Biel, Anna; Janeczek, Maciej; Janus, Izabela; Nowak, Marcin

    2015-07-04

    Neoplastic lesions of the mammary gland, lymph nodes, or oral cavity in African pygmy hedgehogs (Atelerix albiventris) are common in captive animals. Chemotherapy and radiotherapy protocols have not yet been established for the African pygmy hedgehog. Thus, surgical resection is the current treatment of choice in this species. A 5-year-old male African pygmy hedgehog showed multiple erythematous, round small tumors located in the oral cavity, on both sides of maxilla. The treatment of choice was surgical resection of tumors using a surgical knife under general anesthesia. Excised neoplastic lesions were diagnosed as peripheral odontogenic fibroma by histopathology. Six months after surgery relapse of tumors in the oral cavity was not observed. The treatment adopted in this case report is safe for the patient and provides the best solution for mild proliferative lesions of the oral cavity. To our knowledge this is the first report of surgical resection of oral tumors (peripheral odontogenic fibroma) in the African pygmy hedgehog.

  1. Investigational Notch and Hedgehog Inhibitors – Therapies for Cardiovascular disease

    PubMed Central

    Redmond, EM; Guha, S; Walls, D; Cahill, PA

    2011-01-01

    Importance to the field During the past decade a variety of Notch and Hedgehog pathway inhibitors have been developed for the treatment of several cancers. An emerging paradigm suggests that these same gene regulatory networks are often recapitulated in the context of cardiovascular disease and may now offer an attractive target for therapeutic intervention. Areas Covered This article briefly reviews the profile of Notch and Hedgehog inhibitors that have reached the pre-clinic and clinic for cancer treatment and discusses the clinical issues surrounding targeted use of these inhibitors in the treatment of vascular disorders. Expert Opinion Pre-clinical and clinical data using pan-Notch inhibitors (γ-secretase inhibitors) and selective antibodies to preferentially target notch receptors and ligands has proven successful but concerns remain over normal organ homeostasis and significant pathology in multiple organs. In contrast, the Hedgehog based drug pipeline is rich with more than a dozen Smoothened (SMO) inhibitors at various stages of development. Overall, refined strategies will be necessary to harness these pathways safely as a powerful tool to disrupt angiogenesis and vascular proliferative phenomena without causing prohibitive side effects already seen with cancer models and patients. PMID:22007748

  2. Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia

    PubMed Central

    Huang, Peng; Schier, Alexander F.

    2009-01-01

    Summary Cilia have been implicated in Hedgehog (Hh) and Wnt signaling in mouse but not in Drosophila. To determine whether the role of cilia is conserved in zebrafish, we generated maternal-zygotic (MZ) oval (ovl; ift88) mutants that lack all cilia. MZovl mutants display normal canonical and non-canonical Wnt signaling but show defects in Hh signaling. As in mouse, zebrafish cilia are required to mediate the activities of Hh, Ptc, Smo and PKA. However, in contrast to mouse Ift88 mutants, which show a dramatic reduction in Hh signaling, zebrafish MZovl mutants display dampened, but expanded, Hh pathway activity. This activity is largely due to gli1, the expression of which is fully dependent on Hh signaling in mouse but not in zebrafish. These results reveal a conserved requirement for cilia in transducing the activity of upstream regulators of Hh signaling but distinct phenotypic effects due to differential regulation and differing roles of transcriptional mediators. PMID:19700616

  3. Sonication improves kasturi lime (Citrus microcarpa) juice quality.

    PubMed

    Bhat, Rajeev; Kamaruddin, Nor Shuaidda Bt Che; Min-Tze, Liong; Karim, A A

    2011-11-01

    Freshly squeezed kasturi lime fruit juice was sonicated (for 0, 30 and 60min at 20°C, 25kHz frequency) to evaluate its impact on selected physico-chemical and antioxidant properties, such as pH, °Brix, titratable acidity, Hunter color values (L(∗), a(∗), b(∗)), ascorbic acid, DPPH radical scavenging activity, total phenolics, antioxidant capacity, flavonoids and flavonols. Additionally, the effect of sonication treatments on the microbial load (TPC, yeast and mold) were also evaluated. Sonication of juice samples for 60min showed enhancement in most of the bioactive compounds compared to samples treated for 30min and control samples (untreated). Significant reductions in the microbial load corresponding to sonication time were also recorded. Results of the present study indicate that sonication may be employed as a suitable technique for kasturi lime juice processing, where antioxidant and other bioactive compound retention or enhancement is desired, along with the achievement of safety and quality standards. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Efficacy of a combination of 10% imidacloprid and 1% moxidectin against Caparinia tripilis in African pygmy hedgehog (Atelerix albiventris).

    PubMed

    Kim, Kyu-Rim; Ahn, Kyu-Sung; Oh, Dae-Sung; Shin, Sung-Shik

    2012-08-07

    The efficacy and safety of a combination formulation of 10% imidacloprid + 1.0% moxidectin spot-on (Advocate® for Cats, Bayer Animal Health GmbH, Leverkusen, Germany) was tested in 40 African pygmy hedgehogs (Atelerix albiventris) naturally infested with Caparinia tripilis. The optimal dosage level of the combination for hedgehogs was determined by assigning 20 hedgehogs into three treatment groups (0.1, 0.4 and 1.6 ml/Kg b.w.), and one untreated control group of 5 hedgehogs each. Twenty naturally infested hedgehogs were then randomly assigned to either treatment or control group with 10 animals each, and the number of live mites was counted from 13 body regions on day 0, 3, 9, 16, and 30 after single treatment at the dosage level of 0.1 ml/Kg. Before the chemotherapy, the highest density of mite was observed in external ear canals followed by the dorsal and the lowest in the ventral regions of the body surface. The dosage level of 0.1 ml/Kg, which corresponded to the recommended dosage level for cats, containing 10 mg imidacloprid and 1 mg moxidectin was also the optimal dosage level for hedgehogs. No hedgehogs in the treatment group showed live mites from day 3 post treatment. Side effects such as ataxia, depression, nausea, and weight fluctuation were not observed during the whole period of study. This report suggests that a combination formulation of 0.1 ml/Kg of 10% imidacloprid + 1% moxidectin spot-on for cats is also useful for the control of Caparinia tripilis infestation in hedgehogs.

  5. Gorlin syndrome-derived induced pluripotent stem cells are hypersensitive to hedgehog-mediated osteogenic induction.

    PubMed

    Hasegawa, Daigo; Ochiai-Shino, Hiromi; Onodera, Shoko; Nakamura, Takashi; Saito, Akiko; Onda, Takeshi; Watanabe, Katsuhito; Nishimura, Ken; Ohtaka, Manami; Nakanishi, Mahito; Kosaki, Kenjiro; Yamaguchi, Akira; Shibahara, Takahiko; Azuma, Toshifumi

    2017-01-01

    Gorlin syndrome is an autosomal dominant inherited syndrome that predisposes a patient to the formation of basal cell carcinomas, odontogenic keratocysts, and skeletal anomalies. Causative mutations in several genes associated with the sonic hedgehog (SHH) signaling pathway, including PTCH1, have been identified in Gorlin syndrome patients. However, no definitive genotype-phenotype correlations are evident in these patients, and their clinical presentation varies greatly, often leading to delayed diagnosis and treatment. We generated iPSCs from four unrelated Gorlin syndrome patients with loss-of-function mutations in PTCH1 using the Sendai virus vector (SeVdp(KOSM)302). The patient-derived iPSCs exhibited basic iPSC features, including stem cell marker expression, totipotency, and the ability to form teratomas. GLI1 expression levels were greater in fibroblasts and patient-derived iPSCs than in the corresponding control cells. Patient-derived iPSCs expressed lower basal levels than control iPSCs of the genes encoding the Hh ligands Indian Hedgehog (IHH) and SHH, the Hh acetyltransferase HHAT, Wnt proteins, BMP4, and BMP6. Most of these genes were upregulated in patient-derived iPSCs grown in osteoblast differentiation medium (OBM) and downregulated in control iPSCs cultured in OBM. The expression of GLI1 and GLI2 substantially decreased in both control and patient-derived iPSCs cultured in OBM, whereas GLI3, SHH, and IHH were upregulated in patient-derived iPSCs and downregulated in control iPSCs grown in OBM. Activation of Smoothened by SAG in cells grown in OBM significantly enhanced alkaline phosphatase activity in patient-derived iPSCs compared with control iPSC lines. In summary, patient-derived iPSCs expressed lower basal levels than the control iPSCs of the genes encoding Hh, Wnt, and bone morphogenetic proteins, but their expression of these genes strongly increased under osteogenic conditions. These findings indicate that patient-derived iPSCs are

  6. Gli1 protein participates in Hedgehog-mediated specification of osteoblast lineage during endochondral ossification.

    PubMed

    Hojo, Hironori; Ohba, Shinsuke; Yano, Fumiko; Saito, Taku; Ikeda, Toshiyuki; Nakajima, Keiji; Komiyama, Yuske; Nakagata, Naomi; Suzuki, Kentaro; Takato, Tsuyoshi; Kawaguchi, Hiroshi; Chung, Ung-il

    2012-05-18

    With regard to Hedgehog signaling in mammalian development, the majority of research has focused on Gli2 and Gli3 rather than Gli1. This is because Gli1(-/-) mice do not show any gross abnormalities in adulthood, and no detailed analyses of fetal Gli1(-/-) mice are available. In this study, we investigated the physiological role of Gli1 in osteogenesis. Histological analyses revealed that bone formation was impaired in Gli1(-/-) fetuses compared with WT fetuses. Gli1(-/-) perichondrial cells expressed neither runt-related transcription factor 2 (Runx2) nor osterix, master regulators of osteogenesis, in contrast to WT cells. In vitro analyses showed that overexpression of Gli1 up-regulated early osteogenesis-related genes in both WT and Runx2(-/-) perichondrial cells, and Gli1 activated transcription of those genes via its association with their 5'-regulatory regions, underlying the function of Gli1 in the perichondrium. Moreover, Gli1(-/-);Gli2(-/-) mice showed more severe phenotypes of impaired bone formation than either Gli1(-/-) or Gli2(-/-) mice, and osteoblast differentiation was impaired in Gli1(-/-);Gli3(-/-) perichondrial cells compared with Gli3(-/-) cells in vitro. These data suggest that Gli1 itself can induce early osteoblast differentiation, at least to some extent, in a Runx2-independent manner. It also plays a redundant role with Gli2 and is involved in the repressor function of Gli3 in osteogenesis. On the basis of these findings, we propose that upon Hedgehog input, Gli1 functions collectively with Gli2 and Gli3 in osteogenesis.

  7. Deubiquitinating enzymes in cancer stem cells: functions and targeted inhibition for cancer therapy.

    PubMed

    Kaushal, Kamini; Antao, Ainsley Mike; Kim, Kye-Seong; Ramakrishna, Suresh

    2018-06-01

    The ability of cancers to evade conventional treatments, such as chemotherapy and radiation therapy, has been attributed to a subpopulation of cancer stem cells (CSCs). CSCs are regulated by mechanisms similar to those that regulate normal stem cells (NSCs), including processes involving ubiquitination and deubiquitination enzymes (DUBs) that regulate the expression of various factors, such as Notch, Wnt, Sonic Hedgehog (Shh), and Hippo. In this review, we discuss the roles of various DUBs involved in the regulation of core stem cell transcription factors and CSC-related proteins that are implicated in the modulation of cellular processes and carcinogenesis. In addition, we discuss the various DUB inhibitors that have been designed to target processes relevant to cancer and CSC maintenance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Identification of Sonic Hedgehog-Induced Stromal Factors That Stimulate Prostate Tumor Growth

    DTIC Science & Technology

    2007-11-01

    Regulates Prostate Tumor Growth by a Paracrine Mechanism. Poster at The 4th International Conference on Tumor Microenvironment, Florence, Italy ...transcription in a prostate smooth muscle cell line (PS-1). Endocrinology 137:864-872. Grishina, I.B., Kim, S.Y., Ferrara , C., Makarenkova, H.P., and Walden...Endocrinology 137:864-872. Grishina, I.B., Kim, S.Y., Ferrara , C., Makarenkova, H.P., and Walden, P.D. (2005) BMP7 inhibits branching morphogenesis in the

  9. The phylogenetic relationships of insectivores with special reference to the lesser hedgehog tenrec as inferred from the complete sequence of their mitochondrial genome.

    PubMed

    Nikaido, Masato; Cao, Ying; Okada, Norihiro; Hasegawa, Masami

    2003-02-01

    The complete mitochondrial genome of a lesser hedgehog tenrec Echinops telfairi was determined in this study. It is an endemic African insectivore that is found specifically in Madagascar. The tenrec's back is covered with hedgehog-like spines. Unlike other spiny mammals, such as spiny mice, spiny rats, spiny dormice and porcupines, lesser hedgehog tenrecs look amazingly like true hedgehogs (Erinaceidae). However, they are distinguished morphologically from hedgehogs by the absence of a jugal bone. We determined the complete sequence of the mitochondrial genome of a lesser hedgehog tenrec and analyzed the results phylogenetically to determine the relationships between the tenrec and other insectivores (moles, shrews and hedgehogs), as well as the relationships between the tenrec and endemic African mammals, classified as Afrotheria, that have recently been shown by molecular analysis to be close relatives of the tenrec. Our data confirmed the afrotherian status of the tenrec, and no direct relation was recovered between the tenrec and the hedgehog. Comparing our data with those of others, we found that within-species variations in the mitochondrial DNA of lesser hedgehog tenrecs appear to be the largest recognized to date among mammals, apart from orangutans, which might be interesting from the view point of evolutionary history of tenrecs on Madagascar.

  10. Morphological study of the European hedgehog (Erinaceus europaeus) tongue by SEM and LM.

    PubMed

    Akbari, Ghasem; Babaei, Mohammad; Hassanzadeh, Belal

    2018-03-01

    The hedgehog tongue is a tactile and taste organ which carries out various functions. Detailed functional and morphological studies are required to clearly define the relationship of the hedgehog tongue with taste, food palatability, mastication and swallowing of food, as well as the production of sounds. The aim of this study was to determine the relationship between the morphological characteristics of the European hedgehog tongue and the lifestyle of this animal, as well as to compare findings with the results of studies on other vertebrates. Gross and micro-anatomical light and scanning electron microscopy studies revealed that the hedgehog tongue could be divided in three areas, namely the apex, body and root. A keratinized stratified squamous epithelium, which was smooth on the ventral surface but bore four types of papillae on the dorsal surface, lined the tongue. Three types of these papillae were found to have gustatory functions and to express their activity in close relation with the salivary glands. These simple conical filiform papillae were situated caudally and distributed one after the other without a break. The dome-shaped fungiform papillae on the apex, with the highest distribution rate on the apex edge, were small, but those on the body and root were large. The three circular vallate papillae were arranged in a triangular shape. The foliate papillae with a few tiny projections, found in a shallow furrow, were situated between the root and the body. Most of the nerve fibers observed in different sections of the tongue tissue were of the unmyelinated type, confirming that the main task of the hedgehog tongue was its gustatory function.

  11. Endometrial polyps in 2 African pygmy hedgehogs

    PubMed Central

    2005-01-01

    Abstract Reports of spontaneously occurring endometrial polyps in animals are rare and have only involved a few species. This report is intended to advise veterinarians that older African pygmy hedgehogs may develop endometrial polyps and that these lesions can be a cause of bloody vaginal discharge, sometimes interpreted as hematuria. PMID:16048013

  12. Efficacy of a combination of 10% imidacloprid and 1% moxidectin against Caparinia tripilis in African pygmy hedgehog (Atelerix albiventris)

    PubMed Central

    2012-01-01

    Background The efficacy and safety of a combination formulation of 10% imidacloprid + 1.0% moxidectin spot-on (Advocate® for Cats, Bayer Animal Health GmbH, Leverkusen, Germany) was tested in 40 African pygmy hedgehogs (Atelerix albiventris) naturally infested with Caparinia tripilis. Methods The optimal dosage level of the combination for hedgehogs was determined by assigning 20 hedgehogs into three treatment groups (0.1, 0.4 and 1.6 ml/Kg b.w.), and one untreated control group of 5 hedgehogs each. Twenty naturally infested hedgehogs were then randomly assigned to either treatment or control group with 10 animals each, and the number of live mites was counted from 13 body regions on day 0, 3, 9, 16, and 30 after single treatment at the dosage level of 0.1 ml/Kg. Results Before the chemotherapy, the highest density of mite was observed in external ear canals followed by the dorsal and the lowest in the ventral regions of the body surface. The dosage level of 0.1 ml/Kg, which corresponded to the recommended dosage level for cats, containing 10 mg imidacloprid and 1 mg moxidectin was also the optimal dosage level for hedgehogs. No hedgehogs in the treatment group showed live mites from day 3 post treatment. Side effects such as ataxia, depression, nausea, and weight fluctuation were not observed during the whole period of study. Conclusions This report suggests that a combination formulation of 0.1 ml/Kg of 10% imidacloprid + 1% moxidectin spot-on for cats is also useful for the control of Caparinia tripilis infestation in hedgehogs. PMID:22871121

  13. Sonic Thermometer for High-Altitude Balloons

    NASA Technical Reports Server (NTRS)

    Bognar, John

    2012-01-01

    The sonic thermometer is a specialized application of well-known sonic anemometer technology. Adaptations have been made to the circuit, including the addition of supporting sensors, which enable its use in the high-altitude environment and in non-air gas mixtures. There is a need to measure gas temperatures inside and outside of superpressure balloons that are flown at high altitudes. These measurements will allow the performance of the balloon to be modeled more accurately, leading to better flight performance. Small thermistors (solid-state temperature sensors) have been used for this general purpose, and for temperature measurements on radiosondes. A disadvantage to thermistors and other physical (as distinct from sonic) temperature sensors is that they are subject to solar heating errors when they are exposed to the Sun, and this leads to issues with their use in a very high-altitude environment

  14. Establishment of a pancreatic cancer stem cell model using the SW1990 human pancreatic cancer cell line in nude mice.

    PubMed

    Pan, Yan; Gao, Song; Hua, Yong-Qiang; Liu, Lu-Ming

    2015-01-01

    To establish a pancreatic cancer stem cell model using human pancreatic cancer cells in nude mice to provide a platform for pancreatic cancer stem cell research. To establish pancreatic cancer xenografts using human pancreatic cancer cell line SW1990, nude mice were randomly divided into control and gemcitabine groups. When the tumor grew to a volume of 125 mm3, they treated with gemcitabine at a dose of 50 mg/kg by intraperitoneal injection of 0.2 ml in the gemcitabine group, while the mice in control group were treated with the same volume of normal saline. Gemcitabine was given 2 times a week for 3 times. When the model was established, the proliferation of pancreatic cancer stem cells was observed by clone formation assay, and the protein and/or mRNA expression of pancreatic stem cell surface markers including CD24, CD44, CD133, ALDH, transcription factors containing Oct-4, Sox-2, Nanog and Gli, the key nuclear transcription factor in Sonic Hedgehog signaling pathway was detected by Western blot and/or RT-PCR to verify the reliability of this model. This model is feasible and safe. During the establishment, no mice died and the weight of nude mice maintained above 16.5 g. The clone forming ability in gemcitabine group was stronger than that of the control group (p<0.01). In gemcitabine group, the protein expression of pancreatic cancer stem cell surface markers including CD44, and ALDH was up-regulated, the protein and mRNA expression of nuclear transcription factor including Oct-4, Sox-2 and Nanog was also significantly increased (P<0.01). In addition, the protein expression of key nuclear transcription factor in Sonic Hedgehog signaling pathway, Gli-1, was significantly enhanced (p<0.01). The pancreatic cancer stem cell model was successfully established using human pancreatic cancer cell line SW1990 in nude mice. Gemcitabine could enrich pancreatic cancer stem cells, simultaneously accompanied by the activation of Sonic Hedgehog signaling pathway.

  15. Sonic Boom Minimization Efforts on Boeing HSCT Baseline

    NASA Technical Reports Server (NTRS)

    Cheung, Samson H.; Fouladi, Kamran; Haglund, George; Tu, Eugene

    1999-01-01

    A team was formed to tackle the sonic boom softening issues of the current Boeing HSCT design. The team consisted of personnel from NASA Ames, NASA Langley, and Boeing company. The work described in this paper was done when the first author was at NASA Ames Research Center. This paper presents the sonic boom softening work on two Boeing High Speed Civil Transport (HSCT) baseline configurations, Reference-H and Boeing-1122. This presentation can be divided into two parts: parametric studies and sonic boom minimization by CFD optimization routines.

  16. Transplantation of oligodendrocyte precursors and sonic hedgehog results in improved function and white matter sparing in the spinal cords of adult rats after contusion.

    PubMed

    Bambakidis, Nicholas C; Miller, Robert H

    2004-01-01

    A substantial cause of neurological disability in spinal cord injury is oligodendrocyte death leading to demyelination and axonal degeneration. Rescuing oligodendrocytes and preserving myelin is expected to result in significant improvement in functional outcome after spinal cord injury. Although previous investigators have used cellular transplantation of xenografted pluripotent embryonic stem cells and observed improved functional outcome, these transplants have required steroid administration and only a minority of these cells develop into oligodendrocytes. The objective of the present study was to determine whether allografts of oligodendrocyte precursors transplanted into an area of incomplete spinal cord contusion would improve behavioral and electrophysiological measures of spinal cord function. Additional treatment incorporated the use of the glycoprotein molecule Sonic hedgehog (Shh), which has been shown to play a critical role in oligodendroglial development and induce proliferation of endogenous neural precursors after spinal cord injury. Laboratory study. Moderate spinal cord contusion injury was produced in 39 adult rats at T9-T10. Ten animals died during the course of the study. Nine rats served as contusion controls (Group 1). Six rats were treated with oligodendrocyte precursor transplantation 5 days after injury (Group 2). The transplanted cells were isolated from newborn rat pups using immunopanning techniques. Another eight rats received an injection of recombinant Shh along with the oligodendrocyte precursors (Group 3), while six more rats were treated with Shh alone (Group 4). Eight additional rats received only T9 laminectomies to serve as noninjured controls (Group 0). Animals were followed for 28 days. After an initial complete hindlimb paralysis, rats of all groups receiving a contusive injury recovered substantial function within 1 week. By 28 days, rats in Groups 2 and 3 scored 4.7 and 5.8 points better on the Basso, Beattie, Bresnahan

  17. The gross anatomy of the male reproductive system of the European hedgehog (Erinaceus Europaeus).

    PubMed

    Akbari, G; Babaei, M; Kianifard, D; Mohebi, D

    2018-01-01

    Hedgehogs are small spiny-coated insectivores. Due to their low body weight, calm character, and easy maintenance, they are kept as pets. It is therefore worthwhile to care about hedgehogs' health problems and to provide pet owners with information about their reproduction. Moreover, it is necessary to be familiar with their anatomy so as to satisfy the need to improve nutrition and medical care, even surgery. This study was carried out on five adult male European hedgehogs euthanased in a chloroform chamber. The European hedgehog's oval testes are invisible in inguinal region because they have no true scrotal sac. The testes are located in the craniocaudal direction with dorsolateral epididymal attachments. The vesicular glands, the European hedgehog's largest accessory sex glands, are lobulated structures containing dorsomedial and ventrolateral parts on each side. The prostate is an oval gland with right and left lobes. The paired bulbourethral glands are laid on the ischiocavernosus muscle. Histologically the vesicular, prostate gland ducts and ductus deferens as well as urethra separately were discharged in a diverticlum at the level of the pelvic urethra end. A sigmoid flexure exists in the proximal part of shaft body of the penis. There are two retractor penile muscles. In dorsal end of the penile glans, there is a small urethral process with two nail- -like, needle-shaped structures. They are on both sides of the urethral process. Furthermore, there are two intromittent sacs (Sacculus urethralis) in the ventral part of the end of the penis. (Folia Morphol 2018; 77, 1: 36-43).

  18. The hedgehog regulated oncogenes Gli1 and Gli2 block myoblast differentiation by inhibiting MyoD-mediated transcriptional activation

    PubMed Central

    Gerber, AN; Wilson, CW; Li, Y-J; Chuang, P-T

    2012-01-01

    The mechanism by which activation of the Hedgehog (Hh) pathway modulates differentiation and promotes oncogenesis in specific tissues is poorly understood. We therefore, analysed rhabdomyosarcomas from mice that were haploinsufficient for the Hh-binding protein, Hip1, or for the Hh receptor, Patched 1 (Ptch1). Transfection of the Hh-regulated transcription factor Gli1, which is expressed in a subset of mouse and human rhabdomyosarcomas, suppressed differentiation of myogenic rhabdomyosarcoma lines generated from Hip1+/− and Ptch1+/− mice. The closely related factor, Gli2, had similar effects. Gli1 and Gli2 inhibited myogenesis by repressing the capacity of MyoD to activate transcription. Deletion analysis of Gli1 indicated that multiple domains of Gli1 are required for efficient inhibition of MyoD. Gli1 reduced the ability of MyoD to heterodimerize with E12 and bind DNA, providing one mechanism whereby the Gli proteins modulate the activity of MyoD. This novel activity of Gli proteins provides new insights into how Hh signaling modulates terminal differentiation through inhibition of tissue-specific factors such as MyoD. This mechanism may contribute to the broad role of Hh signaling and the Gli proteins in differentiation decisions and cancer formation. PMID:16964293

  19. Simple atmospheric perturbation models for sonic-boom-signature distortion studies

    NASA Technical Reports Server (NTRS)

    Ehernberger, L. J.; Wurtele, Morton G.; Sharman, Robert D.

    1994-01-01

    Sonic-boom propagation from flight level to ground is influenced by wind and speed-of-sound variations resulting from temperature changes in both the mean atmospheric structure and small-scale perturbations. Meteorological behavior generally produces complex combinations of atmospheric perturbations in the form of turbulence, wind shears, up- and down-drafts and various wave behaviors. Differences between the speed of sound at the ground and at flight level will influence the threshold flight Mach number for which the sonic boom first reaches the ground as well as the width of the resulting sonic-boom carpet. Mean atmospheric temperature and wind structure as a function of altitude vary with location and time of year. These average properties of the atmosphere are well-documented and have been used in many sonic-boom propagation assessments. In contrast, smaller scale atmospheric perturbations are also known to modulate the shape and amplitude of sonic-boom signatures reaching the ground, but specific perturbation models have not been established for evaluating their effects on sonic-boom propagation. The purpose of this paper is to present simple examples of atmospheric vertical temperature gradients, wind shears, and wave motions that can guide preliminary assessments of nonturbulent atmospheric perturbation effects on sonic-boom propagation to the ground. The use of simple discrete atmospheric perturbation structures can facilitate the interpretation of the resulting sonic-boom propagation anomalies as well as intercomparisons among varied flight conditions and propagation models.

  20. Necropsy and histopathologic findings in 14 African hedgehogs (Atelerix albiventris): a retrospective study.

    PubMed

    Raymond, J T; White, M R

    1999-06-01

    From fiscal years 1992 through 1996, 14 African hedgehog (Atelerix albiventris) cases were submitted to the Animal Disease Diagnostic Laboratory at Purdue University. The most common diagnoses were splenic extramedullary hematopoiesis (91%), hepatic lipidosis (50%), renal disease (50%), and neoplastic disease (29%). Other less frequent necropsy findings were myocarditis (21%), colitis (14%), bacterial septicemia (14%), and pneumonia (14%). The data indicate that splenic extramedullary hematopoiesis, hepatic lipidosis, renal disease, and neoplasms are frequent postmortem findings in hedgehogs.

  1. Ursolic acid suppresses TGF-β1-induced quiescent HSC activation and transformation by inhibiting NADPH oxidase expression and Hedgehog signaling

    PubMed Central

    Yu, Shan-Shan; Chen, Biao; Huang, Chen-Kai; Zhou, Juan-Juan; Huang, Xin; Wang, An-Jiang; Li, Bi-Min; He, Wen-Hua; Zhu, Xuan

    2017-01-01

    Activation of quiescent hepatic stellate cells (q-HSCs) and their transformation to myofibroblasts (MFBs) is a key event in liver fibrosis. Hedgehog (Hh) signaling stimulates q-HSCs to differentiate into MFBs, and NADPH oxidase (NOX) may be involved in regulating Hh signaling. The author's preliminary study demonstrated that ursolic acid (UA) selectively induces apoptosis in activated HSCs and inhibits their proliferation in vitro via negative regulation of NOX activity and expression. However, the effect of UA on q-HSCs remains to be elucidated. The present study aimed to investigate the effect of UA on q-HSC activation and HSC transformation and to observe alterations in the NOX and Hh signaling pathways during q-HSC activation. q-HSC were isolated from adult male Sprague-Dawley rats. Following culture for 3 days, the cells were treated with or without transforming growth factor-β1 (TGF-β1; 5 µg/l); intervention groups were pretreated with UA (40 µM) or diphenyleneiodonium chloride (DPI; 10 µM) for 30 min prior to addition of TGF-β1. mRNA and protein expression of NOX and Hh signaling components and markers of q-HSC activation were examined by western blotting and reverse transcription-polymerase chain reaction. TGF-β1 induced activation of q-HSCs, with increased expression of α-smooth muscle actin (α-SMA) and type I collagen. In addition, expression of NOX subunits (gp91phox, p67phox, p22phox, and Rac1) and Hh signaling components, including sonic Hh, sterol-4-alpha-methyl oxidase, and Gli family zinc finger 2, were upregulated in activated HSCs. Pretreatment of q-HSCs with UA or DPI prior to TGF-β1 significantly downregulated expression of NOX subunits and Hh signaling components and additionally inhibited expression of α-SMA and type I collagen, thereby preventing transformation to MFBs. UA inhibited TGF-β1-induced activation of q-HSCs and their transformation by inhibiting expression of NOX subunits and the downstream Hh pathway. PMID:29042951

  2. Sonic boom signature data from cruciform microphone array experiments during the 1966-1967 EAFB national sonic boom evaluation program

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Maglieri, D. J.

    1990-01-01

    Tables are provided of measured sonic boom signature data derived from supersonic flyover tests of the XB-70, B-58 and F-104 aircraft for ranges of altitude and Mach number. These tables represent a convenient hard copy version of available electronic files and complement preliminary information included in a reference National Sonic Boom Evaluation Office document.

  3. Phosphoproteome analysis reveals a critical role for hedgehog signalling in osteoblast morphological transitions.

    PubMed

    Marumoto, Ariane; Milani, Renato; da Silva, Rodrigo A; da Costa Fernandes, Célio Junior; Granjeiro, José Mauro; Ferreira, Carmen V; Peppelenbosch, Maikel P; Zambuzzi, Willian F

    2017-10-01

    The reciprocal and adaptive interactions between cells and substrates governing morphological transitions in the osteoblast compartment remain largely obscure. Here we show that osteoblast cultured in basement membrane matrix (Matrigel™) exhibits significant morphological changes after ten days of culture, and we decided to exploit this situation to investigate the molecular mechanisms responsible for guiding osteoblast morphological transitions. As almost all aspects of cellular physiology are under control of kinases, we generated more or less comprehensive cellular kinome profiles employing PepChip peptide arrays that contain over 1000 consensus substrates of kinase peptide. The results obtained were used to construct interactomes, and these revealed an important role for FoxO in mediating morphological changes of osteoblast, which was validated by Western blot technology when FoxO was significantly up-expressed in response to Matrigel™. As FoxO is a critical protein in canonical hedgehog signalling, we decided to explore the possible involvement of hedgehog signalling during osteoblast morphological changes. It appeared that osteoblast culture in Matrigel™ stimulates release of a substantial amounts Shh while concomitantly inducing upregulation of the expression of the bona fide hedgehog target genes Gli-1 and Patched. Functional confirmation of the relevance of these results for osteoblast morphological transitions came from experiments in which Shh hedgehog signalling was inhibited using the well-established pathway inhibitor cyclopamine (Cyc). In the presence of Cyc, culture of osteoblasts in Matrigel™ is not capable of inducing morphological changes but appears to provoke a proliferative response as evident from the upregulation of Cyclin D3 and cdk4. The most straightforward interpretation of our results is that hedgehog signalling is both necessary and sufficient for membrane matrix-based morphological transitions. Copyright © 2017 Elsevier Inc

  4. Review of sonic-boom simulation devices and techniques.

    NASA Technical Reports Server (NTRS)

    Edge, P. M., Jr.; Hubbard, H. H.

    1972-01-01

    Research on aircraft-generated sonic booms has led to the development of special techniques to generate controlled sonic-boom-type disturbances without the complications and expense of supersonic flight operations. This paper contains brief descriptions of several of these techniques along with the significant hardware items involved and indicates the advantages and disadvantages of each in research applications. Included are wind tunnels, ballistic ranges, spark discharges, piston phones, shock tubes, high-speed valve systems, and shaped explosive charges. Specialized applications include sonic-boom generation and propagation studies and the responses of structures, terrain, people, and animals. Situations for which simulators are applicable are shown to include both small-scale and large-scale laboratory tests and full-scale field tests. Although no one approach to simulation is ideal, the various techniques available generally complement each other to provide desired capability for a broad range of sonic-boom studies.

  5. Production of systemically circulating Hedgehog by the intestine couples nutrition to growth and development.

    PubMed

    Rodenfels, Jonathan; Lavrynenko, Oksana; Ayciriex, Sophie; Sampaio, Julio L; Carvalho, Maria; Shevchenko, Andrej; Eaton, Suzanne

    2014-12-01

    In Drosophila larvae, growth and developmental timing are regulated by nutrition in a tightly coordinated fashion. The networks that couple these processes are far from understood. Here, we show that the intestine responds to nutrient availability by regulating production of a circulating lipoprotein-associated form of the signaling protein Hedgehog (Hh). Levels of circulating Hh tune the rates of growth and developmental timing in a coordinated fashion. Circulating Hh signals to the fat body to control larval growth. It regulates developmental timing by controlling ecdysteroid production in the prothoracic gland. Circulating Hh is especially important during starvation, when it is also required for mobilization of fat body triacylglycerol (TAG) stores. Thus, we demonstrate that Hh, previously known only for its local morphogenetic functions, also acts as a lipoprotein-associated endocrine hormone, coordinating the response of multiple tissues to nutrient availability. © 2014 Rodenfels et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Fluralaner as a single dose oral treatment for Caparinia tripilis in a pygmy African hedgehog.

    PubMed

    Romero, Camilo; Sheinberg Waisburd, Galia; Pineda, Jocelyn; Heredia, Rafael; Yarto, Enrique; Cordero, Alberto M

    2017-12-01

    African pygmy hedgehogs (Atelerix albiventris) are popular pets belonging to the Erinaceidae family of spined mammals. Amongst the most common skin diseases occurring in this species is infestation caused by the mite Caparinia spp. Due to their skin anatomy and spiny coat, detection of skin lesions in these hedgehogs can be difficult. This may result in delays in seeking medical care, which may lead to secondary bacterial infection and self-inflicted trauma. Multiple therapies have been used in the treatment of this skin condition including ivermectin, amitraz, fipronil and selamectin. A drug which could be administered as a single oral dose would be advantageous to these pets and their owners. To evaluate the effect of a single oral dose (15 mg/kg) of fluralaner on Caparinia tripilis infestation in the African pygmy hedgehog. A 10-month-old African pygmy hedgehog weighing 184 g. Response to treatment was monitored by dermatological examination and superficial skin scrapings repeated at 7, 14, 21, 30, 60, 90 and 120 days following fluralaner administration. On Day 7 after treatment, adult mites were observed exhibiting normal movement. On Day 14, only dead mites were observed. No life stages of the mites were found after Day 21. A single oral dose at 15 mg/kg of fluralaner was effective within 21 days after treatment for capariniasis in this case. Further studies are required to evaluate the drug's safety and toxicology in hedgehogs, and to confirm efficacy. © 2017 ESVD and ACVD.

  7. The Hedgehog Signal Induced Modulation of Bone Morphogenetic Protein Signaling: An Essential Signaling Relay for Urinary Tract Morphogenesis

    PubMed Central

    Nakagata, Naomi; Miyagawa, Shinichi; Suzuki, Kentaro; Kitazawa, Sohei; Yamada, Gen

    2012-01-01

    Background Congenital diseases of the urinary tract are frequently observed in infants. Such diseases present a number of developmental anomalies such as hydroureter and hydronephrosis. Although some genetically-modified mouse models of growth factor signaling genes reproduce urinary phenotypes, the pathogenic mechanisms remain obscure. Previous studies suggest that a portion of the cells in the external genitalia and bladder are derived from peri-cloacal mesenchymal cells that receive Hedgehog (Hh) signaling in the early developmental stages. We hypothesized that defects in such progenitor cells, which give rise to urinary tract tissues, may be a cause of such diseases. Methodology/Principal Findings To elucidate the pathogenic mechanisms of upper urinary tract malformations, we analyzed a series of Sonic hedgehog (Shh) deficient mice. Shh−/− displayed hydroureter and hydronephrosis phenotypes and reduced expression of several developmental markers. In addition, we suggested that Shh modulation at an early embryonic stage is responsible for such phenotypes by analyzing the Shh conditional mutants. Tissue contribution assays of Hh-responsive cells revealed that peri-cloacal mesenchymal cells, which received Hh signal secreted from cloacal epithelium, could contribute to the ureteral mesenchyme. Gain- and loss-of-functional mutants for Hh signaling revealed a correlation between Hh signaling and Bone morphogenetic protein (Bmp) signaling. Finally, a conditional ablation of Bmp receptor type IA (BmprIA) gene was examined in Hh-responsive cell lineages. This system thus made it possible to analyze the primary functions of the growth factor signaling relay. The defective Hh-to-Bmp signaling relay resulted in severe urinary tract phenotypes with a decrease in the number of Hh-responsive cells. Conclusions/Significance This study identified the essential embryonic stages for the pathogenesis of urinary tract phenotypes. These results suggested that Hh

  8. Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling

    PubMed Central

    Luchetti, Giovanni; Sircar, Ria; Kong, Jennifer H; Nachtergaele, Sigrid; Sagner, Andreas; Byrne, Eamon FX; Covey, Douglas F; Siebold, Christian; Rohatgi, Rajat

    2016-01-01

    Cholesterol is necessary for the function of many G-protein coupled receptors (GPCRs). We find that cholesterol is not just necessary but also sufficient to activate signaling by the Hedgehog (Hh) pathway, a prominent cell-cell communication system in development. Cholesterol influences Hh signaling by directly activating Smoothened (SMO), an orphan GPCR that transmits the Hh signal across the membrane in all animals. Unlike many GPCRs, which are regulated by cholesterol through their heptahelical transmembrane domains, SMO is activated by cholesterol through its extracellular cysteine-rich domain (CRD). Residues shown to mediate cholesterol binding to the CRD in a recent structural analysis also dictate SMO activation, both in response to cholesterol and to native Hh ligands. Our results show that cholesterol can initiate signaling from the cell surface by engaging the extracellular domain of a GPCR and suggest that SMO activity may be regulated by local changes in cholesterol abundance or accessibility. DOI: http://dx.doi.org/10.7554/eLife.20304.001 PMID:27705744

  9. Analysis of the Transcriptomes Downstream of Eyeless and the Hedgehog, Decapentaplegic and Notch Signaling Pathways in Drosophila melanogaster

    PubMed Central

    Nfonsam, Landry E.; Cano, Carlos; Mudge, Joann; Schilkey, Faye D.; Curtiss, Jennifer

    2012-01-01

    Tissue-specific transcription factors are thought to cooperate with signaling pathways to promote patterned tissue specification, in part by co-regulating transcription. The Drosophila melanogaster Pax6 homolog Eyeless forms a complex, incompletely understood regulatory network with the Hedgehog, Decapentaplegic and Notch signaling pathways to control eye-specific gene expression. We report a combinatorial approach, including mRNAseq and microarray analyses, to identify targets co-regulated by Eyeless and Hedgehog, Decapentaplegic or Notch. Multiple analyses suggest that the transcriptomes resulting from co-misexpression of Eyeless+signaling factors provide a more complete picture of eye development compared to previous efforts involving Eyeless alone: (1) Principal components analysis and two-way hierarchical clustering revealed that the Eyeless+signaling factor transcriptomes are closer to the eye control transcriptome than when Eyeless is misexpressed alone; (2) more genes are upregulated at least three-fold in response to Eyeless+signaling factors compared to Eyeless alone; (3) based on gene ontology analysis, the genes upregulated in response to Eyeless+signaling factors had a greater diversity of functions compared to Eyeless alone. Through a secondary screen that utilized RNA interference, we show that the predicted gene CG4721 has a role in eye development. CG4721 encodes a neprilysin family metalloprotease that is highly up-regulated in response to Eyeless+Notch, confirming the validity of our approach. Given the similarity between D. melanogaster and vertebrate eye development, the large number of novel genes identified as potential targets of Ey+signaling factors will provide novel insights to our understanding of eye development in D. melanogaster and humans. PMID:22952997

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samarzija, Ivana; Beard, Peter, E-mail: peter.beard@epfl.ch

    Highlights: Black-Right-Pointing-Pointer Unknown cellular mutations complement papillomavirus-induced carcinogenesis. Black-Right-Pointing-Pointer Hedgehog pathway components are expressed by cervical cancer cells. Black-Right-Pointing-Pointer Hedgehog pathway activators and inhibitors regulate cervical cancer cell biology. Black-Right-Pointing-Pointer Cell immortalization by papillomavirus and activation of Hedgehog are independent. -- Abstract: Human papillomavirus (HPV) infection is considered to be a primary hit that causes cervical cancer. However, infection with this agent, although needed, is not sufficient for a cancer to develop. Additional cellular changes are required to complement the action of HPV, but the precise nature of these changes is not clear. Here, we studied the function of themore » Hedgehog (Hh) signaling pathway in cervical cancer. The Hh pathway can have a role in a number of cancers, including those of liver, lung and digestive tract. We found that components of the Hh pathway are expressed in several cervical cancer cell lines, indicating that there could exists an autocrine Hh signaling loop in these cells. Inhibition of Hh signaling reduces proliferation and survival of the cervical cancer cells and induces their apoptosis as seen by the up-regulation of the pro-apoptotic protein cleaved caspase 3. Our results indicate that Hh signaling is not induced directly by HPV-encoded proteins but rather that Hh-activating mutations are selected in cells initially immortalized by HPV. Sonic Hedgehog (Shh) ligand induces proliferation and promotes migration of the cervical cancer cells studied. Together, these results indicate pro-survival and protective roles of an activated Hh signaling pathway in cervical cancer-derived cells, and suggest that inhibition of this pathway may be a therapeutic option in fighting cervical cancer.« less

  11. A study of peripheral blood in hedgehogs in Turkey.

    PubMed

    Ozparlak, Haluk; Celik, Ilhami; Sur, Emrah; Ozaydin, Tuğba; Arslan, Atilla

    2011-09-01

    The aim of this study was to determine diameters of blood cells, differential counts of peripheral blood leukocytes, alpha-naphthyl acetate esterase (ANAE), acid phosphatase (ACP-ase) activity of some leukocyte types, and enzymatic positivity percentages of peripheral blood lymphocytes in two hedgehogs species, Hemiechinus auritus, the long-eared hedgehog, and Erinaceus concolor, the southern white-breasted hedgehog. Air-dried peripheral blood smears were stained with May-Grünwald-Giemsa stain. ANAE and ACP-ase were stained in glutaraldehyde-acetone-fixed smears. ANAE-positive lymphocytes displayed a dot-like positivity pattern characterized with 1-5 reddish brown cytoplasmic granules, whereas ACP-ase positive lymphocytes displayed a dot-like positivity pattern characterized with 1-3 pinkish cytoplasmic granules. Monocytes gave a diffuse and strong reaction while neutrophils displayed a weak positive reaction for ANAE and ACP-ase. No difference was observed in mean diameters of peripheral blood cells of these species. It was found that lymphocytes made up the majority (64.3% and 65.5%) of leukocytes, followed by neutrophils (23.9% and 23.3%), eosinophils (9.0% and 7.6%), monocytes (1.8% and 2.3%), and basophils (1.0% and 1.3%) in H. auritus and E. concolor, respectively. Mean ANAE positivity oflymphocytes was 36.6% and 51.3% and ACP-ase positivity was 32.1% and 37.5% for H. auritus and E. concolor, respectively. The ANAE positivity of lymphocytes in E. concolor was significantly (P < 0.05) higher than that of H. auritus.

  12. Sonic and Supersonic Jet Plumes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, E.; Naughton, J. W.; Flethcher, D. G.; Edwards, Thomas A. (Technical Monitor)

    1994-01-01

    Study of sonic and supersonic jet plumes are relevant to understanding such phenomenon as jet-noise, plume signatures, and rocket base-heating and radiation. Jet plumes are simple to simulate and yet, have complex flow structures such as Mach disks, triple points, shear-layers, barrel shocks, shock- shear- layer interaction, etc. Experimental and computational simulation of sonic and supersonic jet plumes have been performed for under- and over-expanded, axisymmetric plume conditions. The computational simulation compare very well with the experimental observations of schlieren pictures. Experimental data such as temperature measurements with hot-wire probes are yet to be measured and will be compared with computed values. Extensive analysis of the computational simulations presents a clear picture of how the complex flow structure develops and the conditions under which self-similar flow structures evolve. From the computations, the plume structure can be further classified into many sub-groups. In the proposed paper, detail results from the experimental and computational simulations for single, axisymmetric, under- and over-expanded, sonic and supersonic plumes will be compared and the fluid dynamic aspects of flow structures will be discussed.

  13. Recurrent sebaceous carcinoma in an African hedgehog (Atelerix albiventris).

    PubMed

    Kim, Hyung-Jin; Kim, Yong-Baek; Park, Jun-Won; Oh, Won-Seok; Kim, Eun-Ok; Lim, Byoung-Yong; Kim, Dae-Yong

    2010-07-01

    A 1.5-year-old intact male African hedgehog (Atelerix albiventris) was presented with a firm, non-movable subcutaneous mass on ventral chest area. Microscopically, the tumor was un-encapsulated, invasive up to the muscle layer, and composed of highly pleomorphic polygonal cells arranged in variably-sized lobules. The neoplastic cells had abundant cytoplasm with vacuolation and a large pleomorphic nucleus with prominent nucleoli. Mitotic figures were frequently observed with atypical mitoses. Immunohistochemically, the neoplastic cells were strongly positive for cytokeratin, but negative for vimentin. Based on these findings, a diagnosis of sebaceous carcinoma was made. Three months after the surgery, a recurrent mass was found at the surgical site. On necropsy, the mass has penetrated the underlying intercostal musculature, without metastasis to distant organs. This is the first report of a sebaceous carcinoma in an African hedgehog.

  14. Topological spin-hedgehog crystals of a chiral magnet as engineered with magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Kanazawa, N.; White, J. S.; Rønnow, H. M.; Dewhurst, C. D.; Morikawa, D.; Shibata, K.; Arima, T.; Kagawa, F.; Tsukazaki, A.; Kozuka, Y.; Ichikawa, M.; Kawasaki, M.; Tokura, Y.

    2017-12-01

    We report the engineering of spin-hedgehog crystals in thin films of the chiral magnet MnGe by tailoring the magnetic anisotropy. As evidenced by neutron scattering on films with different thicknesses and by varying a magnetic field, we can realize continuously deformable spin-hedgehog crystals, each of which is described as a superposition state of a different set of three spin spirals (a triple-q state). The directions of the three propagation vectors q vary systematically, gathering from the three orthogonal 〈100 〉 directions towards the film normal as the strength of the uniaxial magnetic anisotropy and/or the magnetic field applied along the film normal increase. The formation of triple-q states coincides with the onset of topological Hall signals, that are ascribed to skew scattering by an emergent magnetic field originating in the nontrivial topology of spin hedgehogs. These findings highlight how nanoengineering of chiral magnets makes possible the rational design of unique topological spin textures.

  15. Sebaceous gland carcinoma and mammary gland carcinoma in an African hedgehog (Ateletrix albiventris).

    PubMed

    Matute, Alonso Reyes; Bernal, Adriana Mendez; Lezama, José Ramírez; Guadalupe, Manzano Pech Linaloe; Antonio, Galicia Avalos Marco

    2014-09-01

    A sebaceous carcinoma was diagnosed, together with a mammary carcinoma, in an adult African hedgehog (Atelerix albiventris). The first neoplasm was located in the subcutaneous tissue of the neck and extended towards the axillary area of the chest. The second was located in the subcutaneous left caudal abdominal region. The purpose of this paper is to report the histopathologic and ultrastructural features of these neoplasms. Although there is little information about diseases affecting this species, it is known that neoplastic disorders are fairly common in African hedgehogs. The mammary carcinoma is considered to be the most common neoplasm in these animals; however, the presentation of sebaceous carcinoma is rare. In hedgehogs, the simultaneous presence of two neoplasms is common, which is why special attention should be paid to the presentation of other tumors during the early detection of a neoplastic process as this will greatly facilitate the optimal treatment and improve the long-term prognosis of affected animals.

  16. The morphology and histopathology of Nephridiacanthus major (Acanthocephala: Oligacanthorhynchidae) from hedgehogs in Iran.

    PubMed

    Heckmann, Richard A; Amin, Omar M; Halajian, Ali; El-Naggar, Atif M

    2013-02-01

    The morphology of Nephridiacanthus major (Bremser 1811 in Westrumb 1821) Golvan, 1962 collected from the long-eared hedgehog Hemiechinus auritus (Gmelin 1770) and the Eastern European hedgehog Erinaceus concolor Martin, 1838 (Erinaceidae) is described using SEM for the first time. This acanthocephalan was previously described from hedgehogs in Europe, Asia, and Africa. Measurements of specimens from Iran, Bulgaria, Germany, Central Asia, Morocco, and Egypt show considerable variations in the size of the trunk, proboscis, proboscis hooks and receptacle, and eggs. The SEM studies add new perspectives to its morphology. Features observed for the first time include the near terminal position and shape of the female gonopore and orifice, among others. Histopathological studies for this species are reported for the first time. Tissue sections show extensive damage near the proboscis with hemorrhaging and formation of collagenous connective tissue, compression of the intestinal mucosa, obstruction of intestinal lumen, and extensive necrosis of host epithelial tissue.

  17. Histopathologic study of eosinophilic bronchointerstitial pneumonia caused by Crenosoma striatum in the hedgehog.

    PubMed

    Hoseini, Seyed Mohammad; Youssefi, Mohammad Reza; Mousapour, Aliasghar; Dozouri, Rohollah; Eshkevari, Shahab Ramezanpour; Nikzad, Mohammad; Nikzad, Reza; Omidzahir, Shila

    2014-06-01

    Crenosoma striatum is a species of parasitic nematodes from the family Crenosomatidae responsible for pathologic lung lesions in the hedgehog (Erinaceus europaeus). Infection with C. striatum can cause weight loss, dry cough, and bronchitis. In the present study, hedgehogs killed by road accidents, or trapped and found dead on farms in different parts of Mazandaran province (Iran), were transferred to the laboratory. After dissection, parasite samples collected from the lung were placed into 70% alcohol. After clarification with lactophenol and subsequent staining, the nematodes were identified as C. striatum according to previously published guidelines. For histopathologic examination, lung samples were collected. The tissues were fixed and following routine processing, sections were stained with hematoxylin and eosin. Microscopic diagnoses included hyperemia, eosinophilic bronchointerstitial pneumonia, thickening of the interstitium, and eosinophilic microabscesses in bronchial airways. Eosinophilic pneumonia was characterized by eosinophil and other mononuclear leukocyte infiltration within the lung interstitium. Crenosoma striatum can lead to mortality in hedgehogs.

  18. Weakfish sonic muscle: influence of size, temperature and season.

    PubMed

    Connaughton, M A; Fine, M L; Taylor, M H

    2002-08-01

    The influence of temperature, size and season on the sounds produced by the sonic muscles of the weakfish Cynoscion regalis are categorized and used to formulate a hypothesis about the mechanism of sound generation by the sonic muscle and swimbladder. Sounds produced by male weakfish occur at the time and location of spawning and have been observed in courtship in captivity. Each call includes a series of 6-10 sound pulses, and each pulse expresses a damped, 2-3 cycle acoustic waveform generated by single simultaneous twitches of the bilateral sonic muscles. The sonic muscles triple in mass during the spawning season, and this hypertrophy is initiated by rising testosterone levels that trigger increases in myofibrillar and sarcoplasmic cross-sectional area of sonic muscle fibers. In response to increasing temperature, sound pressure level (SPL), dominant frequency and repetition rate increase, and pulse duration decreases. Likewise, SPL and pulse duration increase and dominant frequency decreases with fish size. Changes in acoustic parameters with fish size suggest the possibility that drumming sounds act as an 'honest' signal of male fitness during courtship. These parameters also correlate with seasonally increasing sonic muscle mass. We hypothesize that sonic muscle twitch duration rather than the resonant frequency of the swimbladder determines dominant frequency. The brief (3.5 ms), rapidly decaying acoustic pulses reflect a low-Q, broadly tuned resonator, suggesting that dominant frequency is determined by the forced response of the swimbladder to sonic muscle contractions. The changing dominant frequency with temperature in fish of the same size further suggests that frequency is not determined by the natural frequency of the bladder because temperature is unlikely to affect resonance. Finally, dominant frequency correlates with pulse duration (reflecting muscle twitch duration), and the inverse of the period of the second cycle of acoustic energy

  19. Environmental Pollution: Noise Pollution - Sonic Boom

    DTIC Science & Technology

    1977-06-01

    UNCLASSIFIED AD-A041 400 DDC/BIB-77/06 ENVIRONMENTAL POLLUTION NOISE POLLUTION SONIC BOOM A DDC BIBLIOGRAPHY DDC-TAS Cameron Station Alexandria, Va...rn7Sttio 658S-A041 400 4 TITLE xand r.VuhtlVlia) 2 TA i b- 1iblog ra ph y ENVIRONMENTAL POLLUTION : --. Apr-l IM59-Jul, 7NOISE POLLUTION -SONIC BOOM. 1,976...BIBLIOGRAPHY SEARCH CONTROL NO. /2OM09 AD- 769 970 20/1 1/3 DEFENSE UOCUMENTATION CENTER ALEXANDRIA VA ENVIRONMENTAL POLLUTION : NOISE POLLUTION

  20. Organization of the Indian hedgehog--parathyroid hormone-related protein system in the postnatal growth plate.

    PubMed

    Chau, Michael; Forcinito, Patricia; Andrade, Anenisia C; Hegde, Anita; Ahn, Sohyun; Lui, Julian C; Baron, Jeffrey; Nilsson, Ola

    2011-08-01

    In embryonic growth cartilage, Indian hedgehog (Ihh) and parathyroid hormone-related protein (PTHrP) participate in a negative feedback loop that regulates chondrocyte differentiation. Postnatally, this region undergoes major structural and functional changes. To explore the organization of the Ihh–PTHrP system in postnatal growth plate, we microdissected growth plates of 7-day-old rats into their constituent zones and assessed expression of genes participating in the h–PTHrP feedback loop. Ihh, Patched 1, Smoothened, Gli1, Gli2, Gli3, and Pthr1 were expressed in regions analogous to the expression domains in embryonic growth cartilage. However, PTHrP was expressed in resting zone cartilage, a site that differs from the embryonic source, the periarticular cells. We then used mice in which lacZ has replaced coding sequences of Gli1 and thus serves as a marker for active hedgehog signaling. At 1, 4, 8, and 12 weeks of age, lacZ expression was detected in a pattern analogous to that of embryonic cartilage. The findings support the hypothesis that the embryonic Ihh–PTHrP feedback loop is maintained in the postnatal growth plate except that the source of PTHrP has shifted to a more proximal location in the resting zone.

  1. Sex, age, and tissue specific accumulation of eight metals, arsenic, and selenium in the European hedgehog (Erinaceus europaeus).

    PubMed

    Rautio, Anni; Kunnasranta, Mervi; Valtonen, Anu; Ikonen, Mirva; Hyvärinen, Heikki; Holopainen, Ismo J; Kukkonen, Jussi V K

    2010-11-01

    Many insectivores have been shown to be sensitive to heavy metals and therefore suitable for biomonitoring purposes. In Finland, the hibernation period of the European hedgehog (Erinaceus europaeus) is long, and during hibernation the stress caused by environmental toxins may be crucial. Concentrations of cadmium (Cd), copper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), arsenic (As), and selenium (Se) were measured in a population of hedgehogs in the town of Joensuu in eastern Finland during the summers of 2004 and 2005. The analyzed tissues were kidney, liver, hair, and spine. The sampled hedgehogs (n = 65) were mainly road-killed animals. As expected, the concentrations of heavy metals were low because the hedgehogs were living in a comparatively unpolluted area. Significant increases with age were found in Cd concentrations (kidney, liver, and spine) and some essential elements (Se in spine, kidney, and liver; Mo in kidney and liver; Cu in spine; Fe in liver; and Mn in spine). Age accumulation and correlations between Se and Cd and between Mo and Cd may indicate the protective roles of Se and Mo against Cd toxicity in hedgehogs, in which Cd is already at comparatively low concentrations. Sex had no significant effect on concentrations of the elements studied. In conclusion, age is an important parameter to be taken into account when studying heavy-metal concentrations in hedgehogs and other insectivores.

  2. Preconditioning potential of purmorphamine: a hedgehog activator against ischaemic reperfusion injury in ovariectomised rat heart.

    PubMed

    Sharma, Shweta; Kaur, Avileen; Sharma, Saurabh

    2018-04-01

    The present study was been designed to investigate the role and pharmacological potential of hedgehog in oestrogen-deficient rat heart. Oestrogen deficiency was produced in female Wistar rats by the surgical removal of both ovaries and these animals were used four weeks later. Isolated rat heart was subjected to 30 min ischaemia followed by 120 min of reperfusion (I/R). The heart was subjected to pharmacological preconditioning with the hedgehog agonist purmorphamine (1μM) and GDC-0449, a hedgehog antagonist, in the last episode of reperfusion before I/R. Myocardial infarction was assessed in terms of the increase in lactate dehydrogenase (LDH), creatinine kinase-MB (CK-MB), myeloperoxidase (MPO) level and infarct size (triphenyltetrazolium chloride staining). Immunohistochemistry analysis was done for the assessment of tumour necrosis factor (TNF)-α level in cardiac tissue. eNOS expression was estimated by rt-PCR. Pharmacological preconditioning with purmorphamine significantly attenuated I/R-induced myocardial infarction, TNF-α, MPO level and release of LDH and CK-MB compared to the I/R control group. However, GDC-0449 prevented the ameliorative preconditioning effect of estradiol. It may be concluded that the hedgehog agonist purmorphamine prevents the ovariectomised heart from ischaemic reperfusion injury.

  3. Instrumentation for measurement of aircraft noise and sonic boom

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1975-01-01

    A jet aircraft noise and sonic boom measuring device which converts sound pressure into electric current is described. An electric current proportional to the sound pressure level at a condenser microphone is produced and transmitted over a cable, amplified by a zero drive amplifier and recorded on magnetic tape. The converter is comprised of a local oscillator, a dual-gate field-effect transistor (FET) mixer and a voltage regulator/impedance translator. A carrier voltage that is applied to one of the gates of the FET mixer is generated by the local oscillator. The microphone signal is mixed with the carrier to produce an electrical current at the frequency of vibration of the microphone diaphragm by the FET mixer. The voltage of the local oscillator and mixer stages is regulated, the carrier at the output is eliminated, and a low output impedance at the cable terminals is provided by the voltage regulator/impedance translator.

  4. Subjective response of people to simulated sonic booms in their homes

    NASA Technical Reports Server (NTRS)

    McCurdy, David A.; Brown, Sherilyn A.; Hilliard, R. David

    2004-01-01

    In order to determine the effect of the number of sonic boom occurrences on annoyance, a computer-based system was developed for studying the subjective response of people to the occurrence of simulated sonic booms in their homes. The system provided a degree of control over the noise exposure not found in community surveys and a degree of situational realism not available in the laboratory. A system was deployed for eight weeks in each of 33 homes. Each day from 4 to 63 sonic booms were played as the test subject went about his or her normal activities. At the end of the day, the test subjects rated their annoyance to the sonic booms heard during the day. The sonic booms consisted of different combinations of waveforms, levels, and occurrence rates. The experiment confirmed that the increase in annoyance resulting from multiple occurrences can be modeled by the addition of the term "10 * log(number of occurrences)" to the sonic boom level. Of several noise metrics considered, perceived level was the best annoyance predictor. Comparisons of the subjective responses to the different sonic boom waveforms found no differences that were not accounted for by the noise metrics.

  5. State of the art of sonic boom modeling

    NASA Astrophysics Data System (ADS)

    Plotkin, Kenneth J.

    2002-01-01

    Based on fundamental theory developed through the 1950s and 1960s, sonic boom modeling has evolved into practical tools. Over the past decade, there have been requirements for design tools for an advanced supersonic transport, and for tools for environmental assessment of various military and aerospace activities. This has resulted in a number of advances in the understanding of the physics of sonic booms, including shock wave rise times, propagation through turbulence, and blending sonic boom theory with modern computational fluid dynamics (CFD) aerodynamic design methods. This article reviews the early fundamental theory, recent advances in theory, and the application of these advances to practical models.

  6. State of the art of sonic boom modeling.

    PubMed

    Plotkin, Kenneth J

    2002-01-01

    Based on fundamental theory developed through the 1950s and 1960s, sonic boom modeling has evolved into practical tools. Over the past decade, there have been requirements for design tools for an advanced supersonic transport, and for tools for environmental assessment of various military and aerospace activities. This has resulted in a number of advances in the understanding of the physics of sonic booms, including shock wave rise times, propagation through turbulence, and blending sonic boom theory with modern computational fluid dynamics (CFD) aerodynamic design methods. This article reviews the early fundamental theory, recent advances in theory, and the application of these advances to practical models.

  7. Constancy and variability in cortical structure. A study on synapses and dendritic spines in hedgehog and monkey.

    PubMed

    Schüz, A; Demianenko, G P

    1995-01-01

    Synapses and dendritic spines were investigated in the parietal cortex of the hedgehog (Erinaceus europaeus) and the monkey (Macaca mulatta). There was no significant difference in the density of synapses between the two species (14 synapses/100 microns2 in the hedgehog, 15/100 microns2 in the monkey), neither in the size of the synaptic junctions, in the proportion of Type I and Type II synapses (8-10% were of Type II in the hedgehog, 10-14% in the monkey) nor in the proportion of perforated synapses (8% in the hedgehog, 5% in the monkey). The only striking difference at the electron microscopic level concerned the frequency of synapses in which the postsynaptic profile was deeply indented into the presynaptic terminal. Such synapses were 10 times more frequent in the monkey. Dendritic spines were investigated in Golgi-preparations. The density of spines along dendrites was similar in both species. The results are discussed with regard to connectivity in the cortex of small and large brains.

  8. First report of acariasis by Caparinia tripilis in African hedgehogs, (Atelerix albiventris), in Costa Rica.

    PubMed

    Moreira, Andrés; Troyo, Adriana; Calderón-Arguedas, Olger

    2013-01-01

    The African hedgehog is one of the newly imported exotic pets which have been observed with increasing regularity in veterinary clinics in Costa Rica. Despite their popularity, information about their diseases is scarce. Within skin diseases of hedgehogs, mange caused by Caparinia spp. is a common diagnosis in other countries. Two adult African hedgehogs, one male and one female, were brought to a private clinic in Heredia, Costa Rica, with chronic pruritic dermatitis, scabs, nearly complete loss of spines, lethargy, dehydration, and weight loss. During physical exam, deposits of dry seborrhea were taken and processed for diagnosis. Microscopic examination revealed psoroptid mites identified as Caparinia tripilis. This is the first report of the presence of Caparinia tripilis in Costa Rica and, to the authors' knowledge, the rest of Central America.

  9. [Changes of pulse rate caused by sonic bomms during sleep (author's transl)].

    PubMed

    Griefahn, B

    1975-12-05

    In two experimental series (19 resp. 53 nights, 2 different persons in each series, test-time 10.30 p.m. to 3.00 a.m.) pulse rate after sonic booms had been recorded during sleep. In the first 3 nights the subjects slept undisturbed by noise. In the following 11 resp. 30 nights sonic booms were applied alternately 2 or 4 times. In the main series after 10 more nights without any noise 4 nights with 8 and 16 sonic booms alternately followed. The last 6 undisturbed nights in both series were used as comparison phase. The interval between two sonic booms was 40 min in nights with 2 booms, 20 min in nights with 4 sonic booms and in the nights with 8 and 16 sonic booms 8.6 resp. 4.6 min. Sound level of the sonic booms ranged from 0.48 mbar to 1.45 mbar, 1 mbar [83.5 dB (A)] in the average. The first sonic boom was applied if one of the two subjects had entered the deepest stage of sleep. Sonic booms induced a biphasic reaction in pulse rate. After an initial increase in frequency with a maximum in the 4th sec pulse rate decreased below the value before sonic boom; it was followed by a slow increase towards the baseline value. This reaction was analysed with special regard to the following factors: 1. Intensity. Due to very fast increase of noise intensity there was no significant correlation between the intensity of sonic boom and the pulse reaction. 2. Exogenic variables. There is no significant connection between postboom pulse rate and noiseless time before the sonic boom, the duration of the test series and the ambient temperature. 3. Endogenic variables. No correlation could be found between the stage of sleep and the reaction. On the contrary a very significant correlation was found between the maximum of postboom increase of pulse rate and the pulse rate before boom. With increasing pulse rate the extent of reaction becomes smaller.

  10. C2cd3 is required for cilia formation and Hedgehog signaling in mouse

    PubMed Central

    Hoover, Amber N.; Wynkoop, Aaron; Zeng, Huiqing; Jia, Jinping; Niswander, Lee A.; Liu, Aimin

    2011-01-01

    Cilia are essential for mammalian embryonic development as well as for the physiological activity of various adult organ systems. Despite the multiple crucial roles that cilia play, the mechanisms underlying ciliogenesis in mammals remain poorly understood. Taking a forward genetic approach, we have identified Hearty (Hty), a recessive lethal mouse mutant with multiple defects, including neural tube defects, abnormal dorsal-ventral patterning of the spinal cord, a defect in left-right axis determination and severe polydactyly (extra digits). By genetic mapping, sequence analysis of candidate genes and characterization of a second mutant allele, we identify Hty as C2cd3, a novel gene encoding a vertebrate-specific C2 domain-containing protein. Target gene expression and double-mutant analyses suggest that C2cd3 is an essential regulator of intracellular transduction of the Hedgehog signal. Furthering a link between Hedgehog signaling and cilia function, we find that cilia formation and proteolytic processing of Gli3 are disrupted in C2cd3 mutants. Finally, we observe C2cd3 protein at the basal body, consistent with its essential function in ciliogenesis. Interestingly, the human ortholog for this gene lies in proximity to the critical regions of Meckel-Gruber syndrome 2 (MKS2) and Joubert syndrome 2 (JBTS2), making it a potential candidate for these two human genetic disorders. PMID:19004860

  11. Thyroid c-cell carcinoma in an African pygmy hedgehog (Atelerix albiventris).

    PubMed

    Miller, Debra L; Styer, Eloise L; Stobaeus, Janeen K; Norton, Terry M

    2002-12-01

    A 3-yr-old African pygmy hedgehog (Atelerix albiventris) was submitted with dysphagia, weight loss, and tetraparesis. A palpable mass was found on the ventral neck. Histologic examination revealed replacement of the thyroid gland by a highly cellular, expansile, and infiltrative mass composed of lobules of polygonal cells separated by fine fibrovascular septa. Examination of ultrathin sections revealed tumor cells with few to many dense-core neuroendocrine granules, approximately 100-200 nm in diameter, and stromal amyloid. Immunohistochemical stains were positive for neuron-specific enolase. Only rare cells had positive immunohistochemical staining for calcitonin. Findings are consistent with a neuroendocrine tumor of C-cell origin. This is the first report of a C-cell carcinoma in a hedgehog.

  12. Review of sonic fatigue technology

    NASA Technical Reports Server (NTRS)

    Clarkson, B. L.

    1994-01-01

    From the early-1960s until the mid-1980s, there was very little theoretical development for sonic fatigue prediction. Design nomographs based on simple theoretical models and results of specially designed tests were developed for most common aircraft structures. The use of advanced composites in the 1980s, however, generated an increased interest in development of more sophisticated theoretical models because of the possibilities for a much wider range of structural designs. The purpose of this report is to review sonic fatigue technology and, in particular, to assess recent developments. It also suggests a plan for a coordinated program of theoretical and experimental work to meet the anticipated needs of future aerospace vehicles.

  13. Sonic morphology: Aesthetic dimensional auditory spatial awareness

    NASA Astrophysics Data System (ADS)

    Whitehouse, Martha M.

    The sound and ceramic sculpture installation, " Skirting the Edge: Experiences in Sound & Form," is an integration of art and science demonstrating the concept of sonic morphology. "Sonic morphology" is herein defined as aesthetic three-dimensional auditory spatial awareness. The exhibition explicates my empirical phenomenal observations that sound has a three-dimensional form. Composed of ceramic sculptures that allude to different social and physical situations, coupled with sound compositions that enhance and create a three-dimensional auditory and visual aesthetic experience (see accompanying DVD), the exhibition supports the research question, "What is the relationship between sound and form?" Precisely how people aurally experience three-dimensional space involves an integration of spatial properties, auditory perception, individual history, and cultural mores. People also utilize environmental sound events as a guide in social situations and in remembering their personal history, as well as a guide in moving through space. Aesthetically, sound affects the fascination, meaning, and attention one has within a particular space. Sonic morphology brings art forms such as a movie, video, sound composition, and musical performance into the cognitive scope by generating meaning from the link between the visual and auditory senses. This research examined sonic morphology as an extension of musique concrete, sound as object, originating in Pierre Schaeffer's work in the 1940s. Pointing, as John Cage did, to the corporeal three-dimensional experience of "all sound," I composed works that took their total form only through the perceiver-participant's participation in the exhibition. While contemporary artist Alvin Lucier creates artworks that draw attention to making sound visible, "Skirting the Edge" engages the perceiver-participant visually and aurally, leading to recognition of sonic morphology.

  14. brother of cdo (umleitung) is cell-autonomously required for Hedgehog-mediated ventral CNS patterning in the zebrafish

    PubMed Central

    Bergeron, Sadie A.; Tyurina, Oksana V.; Miller, Emily; Bagas, Andrea; Karlstrom, Rolf O.

    2011-01-01

    The transmembrane protein Brother of Cdo (Boc) has been implicated in Shh-mediated commissural axon guidance, and can both positively and negatively regulate Hedgehog (Hh) target gene transcription, however, little is known about in vivo requirements for Boc during vertebrate embryogenesis. The zebrafish umleitung (umlty54) mutant was identified by defects in retinotectal axon projections. Here, we show that the uml locus encodes Boc and that Boc function is cell-autonomously required for Hh-mediated neural patterning. Our phenotypic analysis suggests that Boc is required as a positive regulator of Hh signaling in the spinal cord, hypothalamus, pituitary, somites and upper jaw, but that Boc might negatively regulate Hh signals in the lower jaw. This study reveals a role for Boc in ventral CNS cells that receive high levels of Hh and uncovers previously unknown roles for Boc in vertebrate embryogenesis. PMID:21115611

  15. Indian hedgehog roles in post-natal TMJ development and organization.

    PubMed

    Ochiai, T; Shibukawa, Y; Nagayama, M; Mundy, C; Yasuda, T; Okabe, T; Shimono, K; Kanyama, M; Hasegawa, H; Maeda, Y; Lanske, B; Pacifici, M; Koyama, E

    2010-04-01

    Indian hedgehog (Ihh) is essential for embryonic mandibular condylar growth and disc primordium formation. To determine whether it regulates those processes during post-natal life, we ablated Ihh in cartilage of neonatal mice and assessed the consequences on temporomandibular joint (TMJ) growth and organization over age. Ihh deficiency caused condylar disorganization and growth retardation and reduced polymorphic cell layer proliferation. Expression of Sox9, Runx2, and Osterix was low, as was that of collagen II, collagen I, and aggrecan, thus altering the fibrocartilaginous nature of the condyle. Though a disc formed, it exhibited morphological defects, partial fusion with the glenoid bone surface, reduced synovial cavity space, and, unexpectedly, higher lubricin expression. Analysis of the data shows, for the first time, that continuous Ihh action is required for completion of post-natal TMJ growth and organization. Lubricin overexpression in mutants may represent a compensatory response to sustain TMJ movement and function.

  16. Growth plate-derived hedgehog-signal-responsive cells provide skeletal tissue components in growing bone.

    PubMed

    Haraguchi, Ryuma; Kitazawa, Riko; Imai, Yuuki; Kitazawa, Sohei

    2018-04-01

    Longitudinal bone growth progresses by continuous bone replacement of epiphyseal cartilaginous tissue, known as "growth plate", produced by columnar proliferated- and differentiated-epiphyseal chondrocytes. The endochondral ossification process at the growth plate is governed by paracrine signals secreted from terminally differentiated chondrocytes (hypertrophic chondrocytes), and hedgehog signaling is one of the best known regulatory signaling pathways in this process. Here, to investigate the developmental relationship between longitudinal endochondral bone formation and osteogenic progenitors under the influence of hedgehog signaling at the growth plate, genetic lineage tracing was carried out with the use of Gli1 CreERT2 mice line to follow the fate of hedgehog-signal-responsive cells during endochondral bone formation. Gli1 CreERT2 genetically labeled cells are detected in hypertrophic chondrocytes and osteo-progenitors at the chondro-osseous junction (COJ); these progeny then commit to the osteogenic lineage in periosteum, trabecular and cortical bone along the developing longitudinal axis. Furthermore, in ageing bone, where longitudinal bone growth ceases, hedgehog-signal responsiveness and its implication in osteogenic lineage commitment is significantly weakened. These results show, for the first time, evidence of the developmental contribution of endochondral progenitors under the influence of epiphyseal chondrocyte-derived secretory signals in longitudinally growing bone. This study provides a precise outline for assessing the skeletal lineage commitment of osteo-progenitors in response to growth-plate-derived regulatory signals during endochondral bone formation.

  17. Ultrasonic/Sonic Impacting Penetrators

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Sherrit, Stewart; Stark, Randall A.

    2008-01-01

    Ultrasonic/sonic impacting penetrators (USIPs) are recent additions to the series of apparatuses based on ultrasonic/sonic drill corers (USDCs). A USIP enables a rod probe to penetrate packed soil or another substance of similar consistency, without need to apply a large axial force that could result in buckling of the probe or in damage to some buried objects. USIPs were conceived for use in probing and analyzing soil to depths of tens of centimeters in the vicinity of buried barrels containing toxic waste, without causing rupture of the barrels. USIPs could also be used for other purposes, including, for example, searching for pipes, barrels, or other hard objects buried in soil; and detecting land mines. USDCs and other apparatuses based on USDCs have been described in numerous previous NASA Tech Briefs articles. The ones reported previously were designed, variously, for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. To recapitulate: A USDC can be characterized as a lightweight, low-power, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. As shown in the figure, a basic USDC includes a piezoelectric stack, a backing and a horn connected to the stack, a free mass (free in the sense that it can slide axially a short distance between the horn and the shoulder of tool bit), and a tool bit, i.e., probe for USIP. The piezoelectric stack is driven at the resonance frequency of the stack/horn/backing assembly to create ultrasonic vibrations that are mechanically amplified by the horn. To prevent fracture during operation, the piezoelectric stack is held in compression by a bolt. The bouncing of the free mass between the horn and the tool bit at sonic frequencies generates hammering actions to the bit that are more effective for drilling than is the microhammering action of ultrasonic vibrations in ordinary ultrasonic drills. The hammering actions

  18. The evolution of floral sonication, a pollen foraging behavior used by bees (Anthophila)

    PubMed Central

    Cardinal, Sophie; Buchmann, Stephen L.; Russell, Avery L.

    2018-01-01

    Abstract Over 22,000 species of biotically pollinated flowering plants, including some major agricultural crops, depend primarily on bees capable of floral sonication for pollination services. The ability to sonicate (“buzz”) flowers is widespread in bees but not ubiquitous. Despite the prevalence of this pollinator behavior and its importance to natural and agricultural systems, the evolutionary history of floral sonication in bees has not been previously studied. Here, we reconstruct the evolutionary history of floral sonication in bees by generating a time‐calibrated phylogeny and reconstructing ancestral states for this pollen extraction behavior. We also test the hypothesis that the ability to sonicate flowers and thereby efficiently access pollen from a diverse assemblage of plant species, led to increased diversification among sonicating bee taxa. We find that floral sonication evolved on average 45 times within bees, possibly first during the Early Cretaceous (100–145 million years ago) in the common ancestor of bees. We find that sonicating lineages are significantly more species rich than nonsonicating sister lineages when comparing sister clades, but a probabilistic structured rate permutation on phylogenies approach failed to support the hypothesis that floral sonication is a key driver of bee diversification. This study provides the evolutionary framework needed to further study how floral sonication by bees may have facilitated the spread and common evolution of angiosperm species with poricidal floral morphology. PMID:29392714

  19. An in-home study of subjective response to simulated sonic booms

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Brown, Sherilyn A.; Hilliard, R. David

    1994-01-01

    The proposed development of a second-generation supersonic commercial transport has resulted in increased research efforts to provide an environmentally acceptable aircraft. One of the environmental issues is the impact of sonic booms on people. Aircraft designers are attempting to design the transport to produce sonic boom signatures that will have minimum impact on the public. Current supersonic commercial aircraft produce an 'N-wave' sonic boom pressure signature that is considered unacceptable by the public. This has resulted in first-generation supersonic transports being banned from flying supersonically over land in the United States, a severe economic constraint. By tailoring aircraft volume and lift distributions, designers hope to produce sonic boom signatures having specific shapes other than 'N-wave' that may be more acceptable to the public and could possibly permit overland supersonic flight. As part of the effort to develop a second-generation supersonic commercial transport, Langley Research Center is conducting research to study people's subjective response to sonic booms. As part of that research, a system was developed for performing studies of the subjective response of people to the occurrence of simulated sonic booms in their homes. The In-Home Noise Generation/Response System (IHONORS) provides a degree of situational realism not available in the laboratory and a degree of control over the noise exposure not found in community surveys. The computer-controlled audio system generates the simulated sonic booms, measures the noise levels, and records the subjects' rating and can be placed and operated in individuals' homes for extended periods of time. The system was used to conduct an in-home study of subjective response to simulated sonic booms. The primary objective of the study was to determine the effect on annoyance of the number of sonic boom occurrences in a realistic environment.

  20. Surgical and medical management of a uterine spindle cell tumor in an African hedgehog (Atelerix albiventris).

    PubMed

    Done, Lisa B; Deem, Sharon L; Fiorello, Christine V

    2007-12-01

    A 5-yr-old female African hedgehog (Ateleris albiventris) presented with hematuria. Vulvar culture results revealed a 4+ growth of Enterococcus sp. and gamma-Streptococcus sp. susceptible to trimethoprim sulfa and enrofloxacin. Ultrasound evaluation of the abdomen revealed an unidentifiable tubular structure in the region of the reproductive tract. An exploratory laparotomy and ovariohysterectomy were performed. Pathologic studies of the uterus showed a uterine spindle cell tumor, uterine endometrial polyp, uterine adenomyosis, and a possible acute infarct resulting in uterine wall necrosis. Hematuria did not reoccur, and the hedgehog lived for another 19 mo until she died from an oral squamous cell carcinoma. To date, this is the first report of a uterine spindle cell tumor in an African hedgehog.

  1. Dynamic impact testing of hedgehog spines using a dual-arm crash pendulum.

    PubMed

    Swift, Nathan B; Hsiung, Bor-Kai; Kennedy, Emily B; Tan, Kwek-Tze

    2016-08-01

    Hedgehog spines are a potential model for impact resistant structures and material. While previous studies have examined static mechanical properties of individual spines, actual collision tests on spines analogous to those observed in the wild have not previously been investigated. In this study, samples of roughly 130 keratin spines were mounted vertically in thin substrates to mimic the natural spine layout on hedgehogs. A weighted crash pendulum was employed to induce and measure the effects of repeated collisions against samples, with the aim to evaluate the influence of various parameters including humidity effect, impact energy, and substrate hardness. Results reveal that softer samples-due to humidity conditioning and/or substrate material used-exhibit greater durability over multiple impacts, while the more rigid samples exhibit greater energy absorption performance at the expense of durability. This trend is exaggerated during high-energy collisions. Comparison of the results to baseline tests with industry standard impact absorbing foam, wherein the spines exhibit similar energy absorption, verifies the dynamic impact absorption capabilities of hedgehog spines and their candidacy as a structural model for engineered impact technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Comparison of two systemic antifungal agents, itraconazole and terbinafine, for the treatment of dermatophytosis in European hedgehogs (Erinaceus europaeus).

    PubMed

    Bexton, Steve; Nelson, Helen

    2016-12-01

    Dermatophytosis caused by Trichophyton erinacei is a common scaling and crusting skin disease affecting European hedgehogs (Erinaceus europaeus) admitted to wildlife rescue centres. The application of topical therapy can be challenging because wild hedgehogs are subject to stress and often roll into a ball when handled. Systemic antifungal therapy is more convenient but has not been evaluated in this species. To compare the efficacy of oral itraconazole versus oral terbinafine for the treatment of dermatophytosis affecting hedgehogs. A treatment trial was undertaken in a wildlife hospital involving 165 hedgehogs with naturally occurring dermatophytosis. Animals were randomly divided into two groups and treated with either itraconazole or terbinafine orally for 28 days. The therapeutic efficacy was evaluated after 14 and 28 days by mycological culture and clinical dermatological lesion scores. Both drugs were well tolerated and clinically effective. After 14 and 28 days of treatment, the respective mycological cure rate was 36.6% and 65.9% for the itraconazole-treated group and 92.8% and 98.8% for the terbinafine-treated group. Itraconazole and terbinafine were both effective for the treatment of dermatophytosis affecting hedgehogs; however, terbinafine was more effective. © 2016 ESVD and ACVD.

  3. The Impact of Sonication on the Surface Quality of Single-Walled Carbon Nanotubes.

    PubMed

    Koh, Byumseok; Cheng, Wei

    2015-08-01

    Sonication process is regularly adopted for dispersing single-walled carbon nanotubes (SWCNTs) in an aqueous medium. This can be achieved by either covalent functionalization of SWCNTs with strong acid or by noncovalent functionalization using dispersants that adsorb onto the surface of SWCNTs during dispersion. Because the dispersion process is usually performed using sonication, unintentional free radical formation during sonication process may induce covalent modification of SWCNT surface. Herein, we have systematically investigated the status of SWCNT surface modification under various sonication conditions using Raman spectroscopy. Comparing ID /IG (Raman intensities between D and G bands) ratio of SWCNTs under various sonication conditions suggests that typical sonication conditions (1-6 h bath sonication with sonication power between 3 and 80 W) in aqueous media do not induce covalent modification of SWCNT surface. In addition, we confirm that SWCNT dispersion with single-stranded DNA (ssDNA) involves noncovalent adsorption of ssDNA onto the surface of SWCNTs, but not covalent linkage between ssDNA and SWCNT surface. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Morphological and immunohistochemical characterization of spontaneous mammary tumours in European hedgehogs (Erinaceus europaeus).

    PubMed

    Döpke, C; Fehr, M; Thiele, A; Pohlenz, J; Wohlsein, P

    2007-07-01

    Mammary tumour samples (11 surgical and five post-mortem) from 16 adult European hedgehogs submitted between 1980 and 2004 were examined. Histologically, the tumours were classified as simple tubulo-papillary carcinomas with local invasive growth. In six cases, tumour cell emboli were present in blood vessels or lymphatic vessels, or both. However, metastasis to regional lymph nodes was found only in one hedgehog. Malignant neoplastic epithelial cells were immunolabelled by antibodies specific for various cytokeratins (CKs), including CK1-8, 10, 13-16, 19 and 20. CK expression did not differ from that in normal mammary gland tissue. CK20 was expressed in the mammary tissue of hedgehogs, in contrast to that of dogs and cats; CK7 immunolabelling, however, which commonly occurs in mammary epithelial cells, was negative. CK20 expression, together with the lack of CK7 as determined by a protein-specific antibody, represented an important difference from the CK profile shown by mammary epithelial cells of other mammalian species, including the dog and cat.

  5. Stability of sonic boom metrics regarding signature distortions from atmospheric turbulence.

    PubMed

    Doebler, William J; Sparrow, Victor W

    2017-06-01

    The degree of insensitivity to atmospheric turbulence was evaluated for five metrics (A-, B-, E-weighted sound exposure level, Stevens Mark VII Perceived Level, and NASA's Indoor Sonic Boom Annoyance Predictor) that correlate to human annoyance from sonic booms. Eight N-wave shaped sonic booms from NASA's FaINT experiment and five simulated "low-boom" sonic booms were turbulized by Locey's ten atmospheric filter functions. The B-weighted sound exposure level value changed the least due to the turbulence filters for twelve of thirteen booms. This makes it the most turbulence stable metric which may be useful for quiet supersonic aircraft certification.

  6. Development of the sonic pump levitator

    NASA Technical Reports Server (NTRS)

    Dunn, S. A.

    1985-01-01

    The process and mechanism involved in producing glass microballoons (GMBs) of acceptable quality for laser triggered inertial fusion through use of glass jet levitation and manipulation are considered. The gas jet levitation device, called sonic pumps, provides positioning by timely and appropriate application of gas mementum from one or more of six sonic pumps which are arranged orthogonally in opposed pairs about the levitation region and are activated by an electrooptical, computer controlled, feedback system. The levitation device was fabricated and its associated control systems were assembled into a package and tested in reduced gravity flight regime of the NASA KC-135 aircraft.

  7. The evolution of floral sonication, a pollen foraging behavior used by bees (Anthophila).

    PubMed

    Cardinal, Sophie; Buchmann, Stephen L; Russell, Avery L

    2018-03-01

    Over 22,000 species of biotically pollinated flowering plants, including some major agricultural crops, depend primarily on bees capable of floral sonication for pollination services. The ability to sonicate ("buzz") flowers is widespread in bees but not ubiquitous. Despite the prevalence of this pollinator behavior and its importance to natural and agricultural systems, the evolutionary history of floral sonication in bees has not been previously studied. Here, we reconstruct the evolutionary history of floral sonication in bees by generating a time-calibrated phylogeny and reconstructing ancestral states for this pollen extraction behavior. We also test the hypothesis that the ability to sonicate flowers and thereby efficiently access pollen from a diverse assemblage of plant species, led to increased diversification among sonicating bee taxa. We find that floral sonication evolved on average 45 times within bees, possibly first during the Early Cretaceous (100-145 million years ago) in the common ancestor of bees. We find that sonicating lineages are significantly more species rich than nonsonicating sister lineages when comparing sister clades, but a probabilistic structured rate permutation on phylogenies approach failed to support the hypothesis that floral sonication is a key driver of bee diversification. This study provides the evolutionary framework needed to further study how floral sonication by bees may have facilitated the spread and common evolution of angiosperm species with poricidal floral morphology. © 2018 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  8. High precision UTDR measurements by sonic velocity compensation with reference transducer.

    PubMed

    Stade, Sam; Kallioinen, Mari; Mänttäri, Mika; Tuuva, Tuure

    2014-07-02

    An ultrasonic sensor design with sonic velocity compensation is developed to improve the accuracy of distance measurement in membrane modules. High accuracy real-time distance measurements are needed in membrane fouling and compaction studies. The benefits of the sonic velocity compensation with a reference transducer are compared to the sonic velocity calculated with the measured temperature and pressure using the model by Belogol'skii, Sekoyan et al. In the experiments the temperature was changed from 25 to 60 °C at pressures of 0.1, 0.3 and 0.5 MPa. The set measurement distance was 17.8 mm. Distance measurements with sonic velocity compensation were over ten times more accurate than the ones calculated based on the model. Using the reference transducer measured sonic velocity, the standard deviations for the distance measurements varied from 0.6 to 2.0 µm, while using the calculated sonic velocity the standard deviations were 21-39 µm. In industrial liquors, not only the temperature and the pressure, which were studied in this paper, but also the properties of the filtered solution, such as solute concentration, density, viscosity, etc., may vary greatly, leading to inaccuracy in the use of the Belogol'skii, Sekoyan et al. model. Therefore, calibration of the sonic velocity with reference transducers is needed for accurate distance measurements.

  9. Sonic CPT Probing in Support of DNAPL Characterization

    DTIC Science & Technology

    2000-11-21

    directed at developing advanced sensors for delivery by the cone penetrometer. To accommodate these new sensors , probe sizes have increased (from 1.44-in...capability of the CPT, a sonic vibratory system was integrated with conventional CPT to advance cone penetrometer sensor packages past currently attainable...Sonic, Cone Penetrometer, Site Characterization, Fluorescense, Sensor , Shock Hardened Sensors , Geoprobe• 17. SECURITY CLASSIFICATION OF REPORT

  10. Shuttle sonic boom - Technology and predictions. [environmental impact

    NASA Technical Reports Server (NTRS)

    Holloway, P. F.; Wilhold, G. A.; Jones, J. H.; Garcia, F., Jr.; Hicks, R. M.

    1973-01-01

    Because the shuttle differs significantly in both geometric and operational characteristics from conventional supersonic aircraft, estimation of sonic boom characteristics required a new technology base. The prediction procedures thus developed are reviewed. Flight measurements obtained for both the ascent and entry phases of the Apollo 15 and 16 and for the ascent phase only of the Apollo 17 missions are presented which verify the techniques established for application to shuttle. Results of extensive analysis of the sonic boom overpressure characteristics completed to date are presented which indicate that this factor of the shuttle's environmental impact is predictable, localized, of short duration and acceptable. Efforts are continuing to define the shuttle sonic boom characteristics to a fine level of detail based on the final system design.

  11. Low sensitivity of implant sonication when screening for infection in revision surgery

    PubMed Central

    Van Diek, Floor M; Albers, Christiaan G M; Van Hooff, Miranda L; Meis, Jacques F; Goosen, Jon H M

    2017-01-01

    Background and purpose Prosthetic-joint infection (PJI) is the most serious complication of arthroplasty, and accurate identification of a potentially responsible microorganism is essential for successful antibiotic treatment. We therefore determined the diagnostic accuracy of sonication and compared it with tissue culture as a screening tool in detecting prosthetic joint infection in revision arthroplasty. Patients and methods 252 consecutive revision arthroplasty cases were enrolled. These cases were determined as being suspected or unsuspected of having infection according to standard criteria. Perioperatively, 6 periprosthetic interface tissue biopsies were obtained from each patient and the implants removed were sonicated. The sensitivity and specificity of periprosthetic tissue culture and sonication fluid cultures were determined. Results Preoperatively, 75 revision cases were classified as having PJI (33 early and 42 late) and 177 were unsuspected of having infection. Compared with tissue culture, the sensitivity of the sonication fluid analysis was low: 0.47 (95% CI: 0.35–0.59) for sonication as compared to 0.68 (95% CI: 0.56–0.78) for tissue culture. The specificity of the sonication fluid analysis was higher than that for tissue culture: 0.99 (95% CI: 0.96–1.0) as compared to 0.80 (95% CI: 0.74–0.86). Interpretation Sonication is a highly specific test for diagnosis of PJI. However, due to the low sensitivity, a negative sonication result does not rule out the presence of PJI. Thus, sonication is not of value for screening of microorganisms during revision surgery. PMID:28287012

  12. Myxoma of the penis in an African pygmy hedgehog (Atelerix albiventris).

    PubMed

    Takami, Yoshinori; Yasuda, Namie; Une, Yumi

    2017-01-20

    A penile tumor (4 × 2.5 × 1 cm) was surgically removed from an African pygmy hedgehog (Atelerix albiventris) aged 3 years and 5 months. The tumor was continuous with the dorsal fascia of the penile head. Histopathologically, tumor cells were pleomorphic (oval-, short spindle- and star-shaped cells) with low cell density. Abundant edematous stroma was weakly positive for Alcian blue staining and positive for colloidal iron reaction. Tumor cells displayed no cellular atypia or karyokinesis. Tumor cell cytoplasm was positive for vimentin antibody, while cytoplasm and nuclei were positive for S-100 protein antibody. Tumor cell ultrastructure matched that of fibroblasts, and the rough endoplasmic reticulum was enlarged. The tumor was diagnosed as myxoma. This represents the first report of myxoma in a hedgehog.

  13. Fatal herpes simplex infection in a pygmy African hedgehog (Atelerix albiventris).

    PubMed

    Allison, N; Chang, T C; Steele, K E; Hilliard, J K

    2002-01-01

    An adult pygmy African hedgehog developed acute posterior paresis attributed to a prolapsed intervertebral disc diagnosed by C-T scan. Corticosteroid therapy resulted in prompt resolution of the ataxia, but 2 weeks later the animal became anorexic and died. Macroscopically, the liver was stippled with punctate off-white foci which were confirmed microscopically to be foci of necrosis. Numerous hepatocytes contained intranuclear inclusions and syncytial cell formation was also present. A herpes virus was isolated and identified by fluorescent antibody and polymerase chain reaction studies as herpesvirus simplex type 1. To our knowledge, this is the first report of herpes infection in the African hedgehog and the first time herpes simplex has been identified as a cause of disease in insectivores.

  14. NASA Test Flights Examine Effect of Atmospheric Turbulence on Sonic Booms

    NASA Image and Video Library

    2016-07-20

    NASA pilot Nils Larson, and flight test engineer and pilot Wayne Ringelberg, head for a mission debrief after flying a NASA F/A-18 at Mach 1.38 to create sonic booms as part of the SonicBAT flight series at NASA’s Armstrong Flight Research Center in California, to study sonic boom signatures with and without the element of atmospheric turbulence.

  15. Flight test measurements and analysis of sonic boom phenomena near the shock wave extremity

    NASA Technical Reports Server (NTRS)

    Haglund, G. T.; Kane, E. J.

    1973-01-01

    The sonic boom flight test program conducted at Jackass Flats, Nevada, during the summer and fall of 1970 consisted of 121 sonic-boom-generating flights over the 1500 ft instrumented BREN tower. This test program was designed to provide information on several aspects of sonic boom, including caustics produced by longitudinal accelerations, caustics produced by steady flight near the threshold Mach number, sonic boom characteristics near lateral cutoff, and the vertical extent of shock waves attached to near-sonic airplanes. The measured test data, except for the near-sonic flight data, were analyzed in detail to determine sonic boom characteristics for these flight conditions and to determine the accuracy and the range of validity of linear sonic boom theory. The caustic phenomena observed during the threshold Mach number flights and during the transonic acceleration flights are documented and analyzed in detail. The theory of geometric acoustics is shown to be capable of predicting shock wave-ground intersections, and current methods for calculating sonic boom pressure signature away from caustics are shown to be reasonably accurate.

  16. Sonic boom (human response and atmospheric effects) outdoor-to-indoor response to minimized sonic booms

    NASA Technical Reports Server (NTRS)

    Brown, David; Sutherland, Louis C.

    1992-01-01

    The preferred descriptor to define the spectral content of sonic booms is the Sound Exposure Spectrum Level, LE(f). This descriptor represents the spectral content of the basic noise descriptors used for describing any single event--the Sound Exposure Level, LE. The latter is equal to ten times the logarithms, to the base ten, of the integral, over the duration of the event, of the square of the instantaneous acoustic pressure, divided by the square of the reference pressure, 20 micro-Pa. When applied to the evaluation of community response to sonic booms, it is customary to use the so-called C-Weighted Sound Exposure Level, LCE, for which the frequency content of the instantaneous acoustic pressure is modified by the C-Weighting curve.

  17. A Compilation of Space Shuttle Sonic Boom Measurements

    NASA Technical Reports Server (NTRS)

    Maglieri, Domenic J.; Henderson, Herbert R.; Massey, Steven J.; Stansbery, Eugene G.

    2011-01-01

    Sonic boom measurements have been obtained on 26 flights of the Space Shuttle system beginning with the launch of STS-1 on April 12, 1981, to the reentry-descent of STS-41 into EAFB on Oct. 10, 1990. A total of 23 boom measurements were acquired within the focus region off the Florida coast during 3 STS launch-ascents and 113 boom measurements were acquired during 23 STS reentry-descent to landing into Florida and California. Sonic boom measurements were made under, and lateral to, the vehicle ground track and cover the Mach-altitude range of about 1.3 to 23 and 54,000 feet to 243,000 feet, respectively. Vehicle operational data, flight profiles and weather data were also gathered during the flights. This STS boom database is contained in 26 documents, some are formal and referenceable but most internal documents. Another 38 documents, also non-referenceable, contain predicted sonic boom footprints for reentry-descent flights on which no measurements were made. The purpose of this report is to provide an overview of the STS sonic boom database and summarize the main findings.

  18. Residents' reactions to long-term sonic boom exposure: Preliminary results

    NASA Technical Reports Server (NTRS)

    Fields, James M.; Moulton, Carey; Baumgartner, Robert M.; Thomas, Jeff

    1994-01-01

    This presentation is about residents' reactions to sonic booms in a long-term sonic boom exposure environment. Although two phases of the data collection have been completed, the analysis of the data has only begun. The results are thus preliminary. The list of four authors reflects the complex multi-disciplinary character of any field study such as this one. Carey Moulton is responsible for Wyle Laboratories' acoustical data collection effort. Robert Baumgartner and Jeff Thomas of HBRS, a social science research firm, are responsible for social survey field work and data processing. The study is supported by the NASA Langley Research Center. The study has several objectives. The preliminary data addresses two of the primary objectives. The first objective is to describe the reactions to sonic booms of people who are living where sonic booms are a routine, recurring feature of the acoustical environment. The second objective is to compare these residents' reactions to the reactions of residents who hear conventional aircraft noise around airports. Here is an overview of the presentation. This study will first be placed in the context of previous community survey research on sonic booms. Next the noise measurement program will be briefly described and part of a social survey interview will be presented. Finally data will be presented on the residents' reactions and these reactions will be compared with reactions to conventional aircraft. Twelve community studies of residents' reactions to sonic booms were conducted in the United States and Europe in the 1960's and early 1970's. None of the 12 studies combined three essential ingredients that are found in the present study. Residents' long-term responses are related to a measured noise environment. Sonic booms are a permanent feature of the residential environment. The respondents' do not live on a military base. The present study is important because it provides the first dose/response relationship for sonic booms

  19. Evaluation of human response to structural vibrations induced by sonic booms

    NASA Technical Reports Server (NTRS)

    Sutherland, Louis C.; Czech, J.

    1992-01-01

    The topic is addressed of building vibration response to sonic boom and the evaluation of the associated human response to this vibration. An attempt is made to reexamine some of the issues addressed previously and to offer fresh insight that may assist in reassessing the potential impact of sonic boom over populated areas. Human response to vibration is reviewed first and a new human vibration response criterion curve is developed as a function of frequency. The difference between response to steady state versus impulsive vibration is addressed and a 'vibration exposure' or 'vibration energy' descriptor is suggested as one possible way to evaluate duration effects on response to transient vibration from sonic booms. New data on the acoustic signature of rattling objects are presented along with a review of existing data on the occurrence of rattle. Structural response to sonic boom is reviewed and a new descriptor, 'Acceleration Exposure Level' is suggested which can be easily determined from the Fourier Spectrum of a sonic boom. A preliminary assessment of potential impact from sonic booms is provided in terms of human response to vibration and detection of rattle based on a synthesis of the preceding material.

  20. Reproductive characteristics of the african pygmy hedgehog, atelerix albiventris.

    PubMed

    Bedford, J M; Mock, O B; Nagdas, S K; Winfrey, V P; Olson, G E

    2000-09-01

    To obtain further perspective on reproduction and particularly gamete function among so-called primitive mammals presently grouped in the Order Insectivora, we have examined the African hedgehog, Atelerix albiventris, in light of unusual features reported in shrews and moles. Atelerix proves to share many but not all of the characteristics seen in these other insectivores. The penis of Atelerix has a 'snail-like' form, but lacks the surface spines common in insectivores and a number of other mammals. Hedgehog spermatozoa display an eccentric insertion of the tail on the sperm head, and they manifest the barbs on the perforatorium that, in shrews, probably effect the initial binding of the sperm head to the zona pellucida. As a possible correlate, the structural matrix of the hedgehog acrosome comprises only two main components, as judged by immunoblotting, rather than the complex of peptides seen in the matrix of some higher mammals. The Fallopian tube of Atelerix is relatively simple; it displays only minor differences in width and in the arborized epithelium between the isthmus and ampulla, and shows no evidence of the unusual sperm crypts that characterize the isthmus or ampulla, depending on the species, in shrews and moles. In common with other insectivores, Atelerix appears to be an induced ovulator, as judged by the ovulation of some 6-8 eggs by about 23 h after injection of hCG. The dense cumulus oophorus appeared to have little matrix, in keeping with the modest dimensions of the tubal ampulla and, while it was not quite as discrete as that of soricids, it did show the same insensitivity to 0.5% (w/v) ovine or bovine hyaluronidase.

  1. The effect of sonication method on the mechanical properties of nanosilicon/epoxy composite

    NASA Astrophysics Data System (ADS)

    Razali, Nur Zarifah; Abidin, Mohd Hanafiah; Romli, Ahmad Zafir

    2017-09-01

    An experimental work had been conducted to deeply understand the science of dispersion uniformity and mechanical properties exerted with the addition of nano-powder in composite system. The epoxy with nano-silicon contained between 1-5 wt% were utilized to investigate the mechanical behavior and identify the morphology changes and fracture by using optical micrograph images (in which will be discussed in the fractography section). Sonication method was utilized in distributing nano-silicon homogenously in the matrix and two type of devices opted were horn and bath sonicator. In this study, an in-direct sonication (bath) method which having a frequency of 42 kHz was introduced to the samples by using water as a medium and a comparison had been made between bath and horn sonicator efficiency. Non-destructive testing such as density and morphology testing like Optical micrograph was done as to identify the morphology changes in micro-level as well as to confirm the uniformity of nano-silicon distribution in the viscous epoxy. Whilst the destructive testing (i.e izod impact) was used to measure toughness and strength of composite sample. Result shows that Izod impact at velocity 2.0 ms-1 are 2.1kJ/m2 (for bath sonication) and 1.5kJ/m2 (for horn sonication) at velocity of 3.5 ms-1 are 2.8 kJ/m2 (for bath sonication) and 2.0kJ/m2 (for horn sonication). It can be concluded that bath sonication method give significant increment compared to horn sonication.

  2. Sonic horizon formation for oscillating Bose-Einstein condensates in isotropic harmonic potential

    PubMed Central

    Wang, Ying; Zhou, Yu; Zhou, Shuyu

    2016-01-01

    We study the sonic horizon phenomena of the oscillating Bose-Einstein condensates in isotropic harmonic potential. Based on the Gross-Pitaevskii equation model and variational method, we derive the original analytical formula for the criteria and lifetime of the formation of the sonic horizon, demonstrating pictorially the interaction parameter dependence for the occur- rence of the sonic horizon and damping effect of the system distribution width. Our analytical results corroborate quantitatively the particular features of the sonic horizon reported in previous numerical study. PMID:27922129

  3. Subjective response to sonic booms having different shapes, rise times, and durations

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1994-01-01

    Two laboratory experiments were conducted to quantify the subjective response of people to simulated outdoor sonic booms having different pressure signatures. The specific objectives of the experiments were to compare subjective response to sonic booms when described in terms of 'loudness' and 'annoyance'; to determine the ability of various noise metrics to predict subjective response to sonic booms; to determine the effects on subjective response of rise time, duration, and level; and to compare the subjective response to 'N-wave' sonic boom signatures with the subjective response to 'minimized' sonic boom signatures. The experiments were conducted in a computer-controlled, man-rated sonic boom simulator capable of reproducing user-specified pressure signatures for a wide range of sonic boom parameters. One hundred and fifty sonic booms representing different combinations of two wave shapes, four rise times, seven durations, and three peak overpressures were presented to 36 test subjects in each experiment. The test subjects in the first experiment made judgments of 'loudness' while the test subjects in the second experiment judged 'annoyance.' Subjective response to sonic booms was the same whether expressed in terms of loudness or in terms of annoyance. Analyses of several different noise metrics indicated that A-weighted sound exposure level and Perceived Level were the best predictors of subjective response. Further analyses indicated that, of these two noise metrics, only Perceived Level completely accounted for the effects of wave shape, rise time, and peak overpressure. Neither metric fully accounted for the effect of duration. However, the magnitude of the duration effect was small over the very wide range of durations considered.

  4. Spinal osteosarcoma in a hedgehog with pedal self-mutilation.

    PubMed

    Rhody, Jeffrey L; Schiller, Chris A

    2006-09-01

    An African pygmy hedgehog (Atelerix albiventris) was diagnosed with osteosarcoma of vertebral origin with compression of the spinal cord and spinal nerves. The only presenting sign was a self-mutilation of rear feet. Additional diagnoses included a well-differentiated splenic hemangiosarcoma, an undifferentiated sarcoma of the ascending colon, and membranoproliferative glomerulonephritis.

  5. Evaluation of human response to structural vibration induced by sonic boom

    NASA Technical Reports Server (NTRS)

    Sutherland, L. C.; Czech, J.

    1992-01-01

    This paper addresses the topic of building vibration response to sonic boom and the evaluation of the associated human response to this vibration. The paper reexamines some of the issues addressed in the previous extensive coverage of the topic, primarily by NASA, and attempts to offer a fresh viewpoint for some of the problems that may assist in reassessing the potential impact of sonic boom over populated areas. The topics addressed are: (1) human response to vibration; (2) criteria for, and acoustic signature of rattle; (3) structural response to shaped booms, including definition of two new descriptors for assessing the structural response to sonic boom; and (4) a detailed review of the previous NASA/FAA Sonic Boom Test Program involving structural response measurements at Edwards AFB and an initial estimate of structural response to sonic booms from possible high speed civil transport configurations. Finally, these estimated vibration responses are shown to be substantially greater than the human response and rattle criteria developed earlier.

  6. Myxoma of the penis in an African pygmy hedgehog (Atelerix albiventris)

    PubMed Central

    TAKAMI, Yoshinori; YASUDA, Namie; UNE, Yumi

    2016-01-01

    A penile tumor (4 × 2.5 × 1 cm) was surgically removed from an African pygmy hedgehog (Atelerix albiventris) aged 3 years and 5 months. The tumor was continuous with the dorsal fascia of the penile head. Histopathologically, tumor cells were pleomorphic (oval-, short spindle- and star-shaped cells) with low cell density. Abundant edematous stroma was weakly positive for Alcian blue staining and positive for colloidal iron reaction. Tumor cells displayed no cellular atypia or karyokinesis. Tumor cell cytoplasm was positive for vimentin antibody, while cytoplasm and nuclei were positive for S-100 protein antibody. Tumor cell ultrastructure matched that of fibroblasts, and the rough endoplasmic reticulum was enlarged. The tumor was diagnosed as myxoma. This represents the first report of myxoma in a hedgehog. PMID:27784859

  7. Langley's Computational Efforts in Sonic-Boom Softening of the Boeing HSCT

    NASA Technical Reports Server (NTRS)

    Fouladi, Kamran

    1999-01-01

    NASA Langley's computational efforts in the sonic-boom softening of the Boeing high-speed civil transport are discussed in this paper. In these efforts, an optimization process using a higher order Euler method for analysis was employed to reduce the sonic boom of a baseline configuration through fuselage camber and wing dihedral modifications. Fuselage modifications did not provide any improvements, but the dihedral modifications were shown to be an important tool for the softening process. The study also included aerodynamic and sonic-boom analyses of the baseline and some of the proposed "softened" configurations. Comparisons of two Euler methodologies and two propagation programs for sonic-boom predictions are also discussed in the present paper.

  8. Indian hedgehog signaling triggers Nkx3.2 protein degradation during chondrocyte maturation

    PubMed Central

    Choi, Seung-Won; Jeong, Da-Un; Kim, Jeong-Ah; Lee, Boyoung; Joeng, Kyu Sang; Long, Fanxin; Kim, Dae-Won

    2015-01-01

    The Indian hedgehog (Ihh) pathway plays an essential role in facilitating chondrocyte hypertrophy and bone formation during skeletal development. Nkx3.2 is initially induced in chondrocyte precursor cells, maintained in early-stage chondrocytes, and down-regulated in terminal-stage chondrocytes. Consistent with these expression patterns, Nkx3.2 has been shown to enhance chondrocyte differentiation and cell survival, while inhibiting chondrocyte hypertrophy and apoptosis. Thus, in this work, we investigate whether Nkx3.2, an early stage chondrogenic factor, can be regulated by Ihh, a key regulator for chondrocyte hypertrophy. Here, we show that Ihh signaling can induce proteasomal degradation of Nkx3.2. In addition, we found that Ihh can suppress levels of Lrp (Wnt co-receptor) and Sfrp (Wnt antagonist) expression, which, in turn, may selectively enhance Lrp-independent non-canonical Wnt pathways in chondrocyte. In agreement with these findings, Ihh-induced Nkx3.2 degradation requires Wnt5a, which is capable of triggering Nkx3.2 degradation. Finally, we found that Nkx3.2 protein levels in chondrocytes are remarkably elevated in mice defective in Ihh signaling by deletion of either Ihh or Smoothened. Thus, these results suggest that Ihh/Wnt5a signaling may play a role in negative regulation of Nkx3.2 for appropriate progression of chondrocyte hypertrophy during chondrogenesis. PMID:22507129

  9. Detection and Assessment of Secondary Sonic Booms in New England.

    DTIC Science & Technology

    1980-05-01

    MEASUREMENT DATA During the period May 3, 1979 to September 14, 1979, infra - sonic measurements were made at Malden MA, at six other sites in the Greater...D-AO8O 160 TRANSPORTATION SYSTEMS CENTER CAMBRIDGE MA F/ 20/1 DETECTION AND ASSESSMENT OF SECONDARY SONIC BOOMS IN NEW ENGLAN--ETC(U) MAY 80 E J...CHART F AA-AEE-8O-22 DETECTION AND ASSESSMENT OF SECONDARY SONIC BOOMS IN NEW ENGLAND AD A088 160 MAY 1980 Q4 = Ci OF T R, 4 This document has been

  10. Preliminary airborne measurements for the SR-71 sonic boom propagation experiment

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Ehernberger, L. J.; Whitmore, Stephen A.

    1995-01-01

    SR-71 sonic boom signatures were measured to validate sonic boom propagation prediction codes. An SR-71 aircraft generated sonic booms from Mach 1.25 to Mach 1.6, at altitudes of 31,000 to 48,000 ft, and at various gross weights. An F-16XL aircraft measured the SR-71 near-field shock waves from close to the aircraft to more than 8,000 ft below, gathering 105 signatures. A YO-3A aircraft measured the SR-71 sonic booms from 21,000 to 38,000 feet below, recording 17 passes. The sonic booms at ground level and atmospheric data were recorded for each flight. Data analysis is underway. Preliminary results show that shock wave patterns and coalescence vary with SR-71 gross weight, Mach number, and altitude. For example, noncoalesced shock wave signatures were measured by the YO-3A at 21,000 ft below the SR-71 aircraft while at a low gross weight, Mach 1.25, and 31,000-ft altitude. This paper describes the design and execution of the flight research experiment. Instrumentation and flight maneuvers of the SR-71, F-16XL, and YO-3A aircraft and sample sonic boom signatures are included.

  11. Hematologic and biochemical variables of hedgehogs (Erinaceus europaeus) after overwintering in rehabilitation centers.

    PubMed

    Rossi, Gabriele; Mangiagalli, Gerard; Paracchini, Giulia; Paltrinieri, Saverio

    2014-03-01

    Information about laboratory reference intervals (RIs) of European Hedgehog (Erinaceus europaeus) hospitalized at rehabilitation centers is scarce. The purpose of this study was to establish hematologic and biochemical RIs for rehabilitated hedgehogs before the release into the wild, and to assess whether sex and management of the center influence laboratory results. Blood was collected from 50 hedgehogs at 3 centers. Thirty-eight animals were included in the study based on normal body weight, absence of clinical signs of disease, Bunnell index > 0.80, and absence of hibernation during overwintering. CBCs were performed using an automated laser cell counter followed by morphologic analysis of blood smears. Clinical biochemistry was performed using an automated spectrophotometer. RIs were determined as recommended by the ASVCP guidelines. Hematology profiles revealed a prevalence of lymphocytes, a constant presence of nucleated RBCs, Howell-Jolly bodies and basophils, and bilobed nuclei in neutrophils and eosinophils. Biochemistry profiles were characterized by higher creatinine and urea concentrations, and higher ALP and GGT activities compared with other domestic species. The sex did not influence the results. Conversely, numbers of eosinophils, activated and large granular lymphocytes, and concentrations of total protein, glucose and cholesterol were different among the centers, likely due to different management practices (eg, antiparasitic treatments, environmental exposure to microorganisms, diet). The RIs established in this study can be used to monitor the health status of hedgehogs in rehabilitation centers. As management practices appeared to influence some variables, it is recommended to standardize the management protocols to minimize their influence on laboratory data. © 2014 American Society for Veterinary Clinical Pathology and European Society for Veterinary Clinical Pathology.

  12. Traumatic elbow luxation in a free-ranging hedgehog (Erinaceus europaeus): surgical management using circumferential suture prostheses.

    PubMed

    Vallefuoco, Rosario; Pignon, Charly; Furst, Anna; Personne, Lauriane; Courreau, Jean-Francois; Moissonnier, Pierre

    2013-06-01

    A free-ranging adult female hedgehog (Erinaceus europaeus) was presented injured, presumably from vehicular trauma. Clinical and radiographic examination under general anesthesia revealed a lateral elbow luxation. Closed reduction was unsuccessful, so a surgical approach with circumferential suture prostheses was used to stabilize the elbow. Neither perioperative nor postoperative complications were recorded. The hedgehog regained good range of motion of the elbow and was fully able to run and to roll into a ball.

  13. A loudness calculation procedure applied to shaped sonic booms

    NASA Technical Reports Server (NTRS)

    Shepherd, Kevin P.; Sullivan, Brenda M.

    1991-01-01

    Described here is a procedure that can be used to calculate the loudness of sonic booms. The procedure is applied to a wide range of sonic booms, both classical N-waves and a variety of other shapes of booms. The loudness of N-waves is controlled by overpressure and the associated rise time. The loudness of shaped booms is highly dependent on the characteristics of the initial shock. A comparison of the calculated loudness values indicates that shaped booms may have significantly reduced loudness relative to N-waves having the same peak overpressure. This result implies that a supersonic transport designed to yield minimized sonic booms may be substantially more acceptable than an unconstrained design.

  14. Field intercomparison of six different three-dimensional sonic anemometers

    NASA Astrophysics Data System (ADS)

    Mauder, Matthias; Zeeman, Matthias

    2017-04-01

    Although sonic anemometers have been used extensively for several decades in micrometeorological and ecological research, there is still some scientific debate about the measurement uncertainty of these instruments. This is due to the fact that an absolute reference for the measurement of turbulent wind fluctuations in the free atmosphere does not exist. In view of this lack we have conducted a field intercomparison experiment of six commonly used sonic anemometers from four major manufacturers. The models included Campbell CSAT3, Gill HS-50 and R3, METEK uSonic-3 Omni, R.M. Young 81000 and 81000RE. The experiment was conducted over a meadow at the TERENO/ICOS site De-Fen in southern Germany over a period of 16 days in June of 2016 in preparation of the ScaleX campaign. The measurement height was 3 m for all sensors, which were separated by 9 m from each other, each on its own tripod, in order to limit contamination of the turbulence measurements by neighbouring structures as much as possible. Moreover, the data were filtered for potentially disturbed wind sectors, and the high-frequency data from all instruments were treated with the same post-processing algorithm. In this presentation, we compare the results for various turbulence statistics from all sensors. These include mean horizontal wind speed, standard deviations of vertical wind velocity and sonic temperature, friction velocity and the covariance between vertical wind velocity and sonic temperature. Quantitative measures of uncertainty were derived from these results. We find that biases and regression intercepts are generally very small for all sensors and all computed variables, except for the temperature measurements of the two Gill sonic anemometers (HS and R3), which are known to suffer from a transducer-temperature dependence of the sonic temperature measurement. The comparability of the instruments is not always as good, which means that there is some scatter but the errors compensate at least

  15. Lateral spread of sonic boom measurements from US Air Force boomfile flight tests

    NASA Technical Reports Server (NTRS)

    Downing, J. Micah

    1992-01-01

    A series of sonic boom flight tests were conducted by the US Air Force at Edwards AFB in 1987 with current supersonic DOD aircraft. These tests involved 43 flights by various aircraft at different Mach number and altitude combinations. The measured peak overpressures to predicted values as a function of lateral distance are compared. Some of the flights are combined into five groups because of the varying profiles and the limited number of sonic booms obtained during this study. The peak overpressures and the lateral distances are normalized with respect to the Carlson method predicted centerline overpressures and lateral cutoff distances, respectively, to facilitate comparisons between sonic boom data from similar flight profiles. It is demonstrated that the data agrees with sonic boom theory and previous studies and adds to the existing sonic boom database by including sonic boom signatures, tracking, and weather data in a digital format.

  16. Identification and Validation of Novel Hedgehog-Responsive Enhancers Predicted by Computational Analysis of Ci/Gli Binding Site Density

    PubMed Central

    Richards, Neil; Parker, David S.; Johnson, Lisa A.; Allen, Benjamin L.; Barolo, Scott; Gumucio, Deborah L.

    2015-01-01

    The Hedgehog (Hh) signaling pathway directs a multitude of cellular responses during embryogenesis and adult tissue homeostasis. Stimulation of the pathway results in activation of Hh target genes by the transcription factor Ci/Gli, which binds to specific motifs in genomic enhancers. In Drosophila, only a few enhancers (patched, decapentaplegic, wingless, stripe, knot, hairy, orthodenticle) have been shown by in vivo functional assays to depend on direct Ci/Gli regulation. All but one (orthodenticle) contain more than one Ci/Gli site, prompting us to directly test whether homotypic clustering of Ci/Gli binding sites is sufficient to define a Hh-regulated enhancer. We therefore developed a computational algorithm to identify Ci/Gli clusters that are enriched over random expectation, within a given region of the genome. Candidate genomic regions containing Ci/Gli clusters were functionally tested in chicken neural tube electroporation assays and in transgenic flies. Of the 22 Ci/Gli clusters tested, seven novel enhancers (and the previously known patched enhancer) were identified as Hh-responsive and Ci/Gli-dependent in one or both of these assays, including: Cuticular protein 100A (Cpr100A); invected (inv), which encodes an engrailed-related transcription factor expressed at the anterior/posterior wing disc boundary; roadkill (rdx), the fly homolog of vertebrate Spop; the segment polarity gene gooseberry (gsb); and two previously untested regions of the Hh receptor-encoding patched (ptc) gene. We conclude that homotypic Ci/Gli clustering is not sufficient information to ensure Hh-responsiveness; however, it can provide a clue for enhancer recognition within putative Hedgehog target gene loci. PMID:26710299

  17. Learning to Play: A "Hedgehog Concept" for Physical Education

    ERIC Educational Resources Information Center

    Johnson, Tyler

    2014-01-01

    What is physical education and why does it exist? Despite its relatively long and storied history, consensus about the main purpose of physical education remains minimal. This article explores three questions, developed by Jim Collins in his best-selling book Good to Great, to help organizations identify a hedgehog concept, or primary reason for…

  18. An Intermediate in the evolution of superfast sonic muscles

    PubMed Central

    2011-01-01

    Background Intermediate forms in the evolution of new adaptations such as transitions from water to land and the evolution of flight are often poorly understood. Similarly, the evolution of superfast sonic muscles in fishes, often considered the fastest muscles in vertebrates, has been a mystery because slow bladder movement does not generate sound. Slow muscles that stretch the swimbladder and then produce sound during recoil have recently been discovered in ophidiiform fishes. Here we describe the disturbance call (produced when fish are held) and sonic mechanism in an unrelated perciform pearl perch (Glaucosomatidae) that represents an intermediate condition in the evolution of super-fast sonic muscles. Results The pearl perch disturbance call is a two-part sound produced by a fast sonic muscle that rapidly stretches the bladder and an antagonistic tendon-smooth muscle combination (part 1) causing the tendon and bladder to snap back (part 2) generating a higher-frequency and greater-amplitude pulse. The smooth muscle is confirmed by electron microscopy and protein analysis. To our knowledge smooth muscle attachment to a tendon is unknown in animals. Conclusion The pearl perch, an advanced perciform teleost unrelated to ophidiiform fishes, uses a slow type mechanism to produce the major portion of the sound pulse during recoil, but the swimbladder is stretched by a fast muscle. Similarities between the two unrelated lineages, suggest independent and convergent evolution of sonic muscles and indicate intermediate forms in the evolution of superfast muscles. PMID:22126599

  19. Hedgehog Signaling in Prostate Cancer and Its Therapeutic Implication

    PubMed Central

    Gonnissen, Annelies; Isebaert, Sofie; Haustermans, Karin

    2013-01-01

    Activation of Hedgehog (Hh) signaling is implicated in the development and progression of several tumor types, including prostate cancer, which is still the most common non-skin malignancy and the third leading cause of cancer-related mortality in men in industrialized countries worldwide. Several studies have indicated that the Hh pathway plays a crucial role in the development as well as in the progression of this disease to more aggressive and even therapy-resistant disease states. Moreover, preclinical data have shown that inhibition of Hh signaling has the potential to reduce prostate cancer invasiveness and metastatic potential. Clinical trials investigating the benefit of Hh inhibitors in patients with prostate cancer have recently been initiated. However, acquired drug resistance has already been observed in other tumor types after long-term Hh inhibition. Therefore, combining Hh inhibitors with ionizing radiation, chemotherapy or other molecular targeted agents could represent an alternative therapeutic strategy. In this review, we will highlight the role of Hh signaling in the development and progression of prostate cancer and summarize the different therapeutic applications of Hedgehog inhibition. PMID:23880852

  20. Rib osteoblastic osteosarcoma in an African hedgehog (Atelerix albiventris).

    PubMed

    Benoit-Biancamano, Marie-Odile; D'Anjou, Marc-André; Girard, Christiane; Langlois, Isabelle

    2006-07-01

    A 3-year-old African hedgehog (Atelerix albiventris) was presented to the Exotic Animal Clinic of the University of Montreal for evaluation of a mass growing on the right thoracic wall. The diagnostic workup, which included helical computed tomography, confirmed the presence of a large mass, originating from the right 7th rib, infiltrating the thoracic wall and cavity. The animal was euthanized due to the poor prognosis. At necropsy, a well-demarcated mass penetrated the thoracic wall and incorporated the 6th to 8th ribs. Cut sections of the tumor were white, glistening, firm, and gritty. Microscopically, it was composed of polyhedral to elongated cells with interspersed trabeculae of osteoid and large areas of coagulative necrosis. On the basis of histopathologic findings, a diagnosis of osteoblastic osteosarcoma was made. To the authors' knowledge, this is the first report of an osteoblastic osteosarcoma on the thoracic wall of an African hedgehog, as well as the first report of the use of helical computed tomography in that species.