Science.gov

Sample records for regulates stem cell

  1. Materials as stem cell regulators

    NASA Astrophysics Data System (ADS)

    Murphy, William L.; McDevitt, Todd C.; Engler, Adam J.

    2014-06-01

    The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine.

  2. Materials as stem cell regulators

    PubMed Central

    Murphy, William L.; McDevitt, Todd C.; Engler, Adam J.

    2014-01-01

    The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine. PMID:24845994

  3. Epigenetic Regulation of Mammalian Stem Cells

    PubMed Central

    Li, Xuekun

    2008-01-01

    Two critical properties of stem cells are self-renewal and multipotency. The maintenance of their “stemness” state and commitment to differentiation are therefore tightly controlled by intricate molecular networks. Epigenetic mechanisms, including DNA methylation, chromatin remodeling and the noncoding RNA-mediated process, have profound regulatory roles in mammalian gene expression. Recent studies have shown that epigenetic regulators are key players in stem cell biology and their dysfunction can result in human diseases such as cancer and neurodevelopmental disorders. Here, we review the recent evidences that advance our knowledge in epigenetic regulations of mammalian stem cells, with focus on embryonic stem cells and neural stem cells. PMID:18393635

  4. Stem cell regulation: Implications when differentiated cells regulate symmetric stem cell division.

    PubMed

    Høyem, Marte Rørvik; Måløy, Frode; Jakobsen, Per; Brandsdal, Bjørn Olav

    2015-09-01

    We use a mathematical model to show that if symmetric stem cell division is regulated by differentiated cells, then changes in the population dynamics of the differentiated cells can lead to changes in the population dynamics of the stem cells. More precisely, the relative fitness of the stem cells can be affected by modifying the death rate of the differentiated cells. This result is interesting because stem cells are less sensitive than differentiated cells to environmental factors, such as medical therapy. Our result implies that stem cells can be manipulated indirectly by medical treatments that target the differentiated cells. PMID:25997796

  5. Metabolic regulation of stem cell function.

    PubMed

    Burgess, R J; Agathocleous, M; Morrison, S J

    2014-07-01

    Stem cell function is regulated by intrinsic mechanisms, such as transcriptional and epigenetic regulators, as well as extrinsic mechanisms, such as short-range signals from the niche and long-range humoral signals. Interactions between these regulatory mechanisms and cellular metabolism are just beginning to be identified. In multiple systems, differentiation is accompanied by changes in glycolysis, oxidative phosphorylation and the levels of reactive oxygen species. Indeed, metabolic pathways regulate proliferation and differentiation by regulating energy production and the generation of substrates for biosynthetic pathways. Some metabolic pathways appear to function differently in stem cells as compared with restricted progenitors and differentiated cells. They also appear to influence stem cell function by regulating signal transduction, epigenetic marks and oxidative stress. Studies to date illustrate the importance of metabolism in the regulation of stem cell function and suggest complex cross-regulation likely exists between metabolism and other stem cell regulatory mechanisms. PMID:24697828

  6. Common stemness regulators of embryonic and cancer stem cells

    PubMed Central

    Hadjimichael, Christiana; Chanoumidou, Konstantina; Papadopoulou, Natalia; Arampatzi, Panagiota; Papamatheakis, Joseph; Kretsovali, Androniki

    2015-01-01

    Pluripotency of embryonic stem cells (ESCs) and induced pluripotent stem cells is regulated by a well characterized gene transcription circuitry. The circuitry is assembled by ESC specific transcription factors, signal transducing molecules and epigenetic regulators. Growing understanding of stem-like cells, albeit of more complex phenotypes, present in tumors (cancer stem cells), provides a common conceptual and research framework for basic and applied stem cell biology. In this review, we highlight current results on biomarkers, gene signatures, signaling pathways and epigenetic regulators that are common in embryonic and cancer stem cells. We discuss their role in determining the cell phenotype and finally, their potential use to design next generation biological and pharmaceutical approaches for regenerative medicine and cancer therapies. PMID:26516408

  7. Hematopoietic stem cells: multiparameter regulation.

    PubMed

    Song, Kedong; Li, Liying; Wang, Yiwei; Liu, Tianqing

    2016-04-01

    Hematopoietic stem cells (HSCs) are capable to self-renew with multi-potency which generated much excitement in clinical therapy. However, the main obstacle of HSCs in clinical application was insufficient number of HSCs which were derived from either bone marrow, peripheral blood or umbilical cord blood. This review briefly discusses the indispensable utility of growth factors and cytokines, stromal cells, extracellular matrix, bionic scaffold and microenvironment aiming to control the hematopoiesis in all directions and provide a better and comprehensive understanding for in vitro expansion of hematopoietic stem cells. PMID:26883144

  8. Metaboloepigenetic Regulation of Pluripotent Stem Cells

    PubMed Central

    Harvey, Alexandra J.; Gardner, David K.

    2016-01-01

    The differentiation of pluripotent stem cells is associated with extensive changes in metabolism, as well as widespread remodeling of the epigenetic landscape. Epigenetic regulation is essential for the modulation of differentiation, being responsible for cell type specific gene expression patterns through the modification of DNA and histones, thereby establishing cell identity. Each cell type has its own idiosyncratic pattern regarding the use of specific metabolic pathways. Rather than simply being perceived as a means of generating ATP and building blocks for cell growth and division, cellular metabolism can directly influence cellular regulation and the epigenome. Consequently, the significance of nutrients and metabolites as regulators of differentiation is central to understanding how cells interact with their immediate environment. This review serves to integrate studies on pluripotent stem cell metabolism, and the regulation of DNA methylation and acetylation and identifies areas in which current knowledge is limited. PMID:26839556

  9. HEC of a job regulating stem cells.

    PubMed

    Sparks, Erin E; Benfey, Philip N

    2014-02-24

    In this issue of Developmental Cell, Schuster et al. (2014) describe the signals regulated by the bHLH transcription factor HEC1 during Arabidopsis stem cell maintenance. HEC1 acts antagonistically with other factors, integrating multiple cues to provide a balance between cellular differentiation and proliferation. PMID:24576420

  10. Redox regulation in cancer stem cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processe...

  11. Epigenetic regulation in adult stem cells and cancers

    PubMed Central

    2013-01-01

    Adult stem cells maintain tissue homeostasis by their ability to both self-renew and differentiate to distinct cell types. Multiple signaling pathways have been shown to play essential roles as extrinsic cues in maintaining adult stem cell identity and activity. Recent studies also show dynamic regulation by epigenetic mechanisms as intrinsic factors in multiple adult stem cell lineages. Emerging evidence demonstrates intimate crosstalk between these two mechanisms. Misregulation of adult stem cell activity could lead to tumorigenesis, and it has been proposed that cancer stem cells may be responsible for tumor growth and metastasis. However, it is unclear whether cancer stem cells share commonalities with normal adult stem cells. In this review, we will focus on recent discoveries of epigenetic regulation in multiple adult stem cell lineages. We will also discuss how epigenetic mechanisms regulate cancer stem cell activity and probe the common and different features between cancer stem cells and normal adult stem cells. PMID:24172544

  12. Epigenetic Mechanisms Regulating Mesenchymal Stem Cell Differentiation

    PubMed Central

    Pérez-Campo, Flor M.; Riancho, José A.

    2015-01-01

    Human Mesenchymal Stem Cells (hMSCs) have emerged in the last few years as one of the most promising therapeutic cell sources and, in particular, as an important tool for regenerative medicine of skeletal tissues. Although they present a more restricted potency than Embryonic Stem (ES) cells, the use of hMCS in regenerative medicine avoids many of the drawbacks characteristic of ES cells or induced pluripotent stem cells. The challenge in using these cells lies into developing precise protocols for directing cellular differentiation to generate a specific cell lineage. In order to achieve this goal, it is of the upmost importance to be able to control de process of fate decision and lineage commitment. This process requires the coordinate regulation of different molecular layers at transcriptional, posttranscriptional and translational levels. At the transcriptional level, switching on and off different sets of genes is achieved not only through transcriptional regulators, but also through their interplay with epigenetic modifiers. It is now well known that epigenetic changes take place in an orderly way through development and are critical in the determination of lineage-specific differentiation. More importantly, alteration of these epigenetic changes would, in many cases, lead to disease generation and even tumour formation. Therefore, it is crucial to elucidate how epigenetic factors, through their interplay with transcriptional regulators, control lineage commitment in hMSCs. PMID:27019612

  13. Epigenetic Regulation of Hematopoietic Stem Cells

    PubMed Central

    Sharma, Shilpa; Gurudutta, Gangenahalli

    2016-01-01

    Hematopoietic stem cells are endowed with a distinct potential to bolster self-renewal and to generate progeny that differentiate into mature cells of myeloid and lymphoid lineages. Both hematopoietic stem cells and mature cells have the same genome, but their gene expression is controlled by an additional layer of epigenetics such as DNA methylation and post-translational histone modifications, enabling each cell-type to acquire various forms and functions. Until recently, several studies have largely focussed on the transcription factors andniche factors for the understanding of the molecular mechanisms by which hematopoietic cells replicate and differentiate. Several lines of emerging evidence suggest that epigenetic modifications eventually result in a defined chromatin structure and an “individual” gene expression pattern, which play an essential role in the regulation of hematopoietic stem cell self-renewal and differentiation. Distinct epigenetic marks decide which sets of genes may be expressed and which genes are kept silent. Epigenetic mechanisms are interdependent and ensure lifelong production of blood and bone marrow, thereby contributing to stem cell homeostasis. The epigenetic analysis of hematopoiesis raises the exciting possibility that chromatin structure is dynamic enough for regulated expression of genes. Though controlled chromatin accessibility plays an essential role in maintaining blood homeostasis; mutations in chromatin impacts on the regulation of genes critical to the development of leukemia. In this review, we explored the contribution of epigenetic machinery which has implications for the ramification of molecular details of hematopoietic self-renewal for normal development and underlying events that potentially co-operate to induce leukemia. PMID:27426084

  14. Epigenetic regulation of hematopoietic stem cell aging

    SciTech Connect

    Beerman, Isabel

    2014-12-10

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging.

  15. Ulk4 Regulates Neural Stem Cell Pool.

    PubMed

    Liu, Min; Guan, Zhenlong; Shen, Qin; Flinter, Frances; Domínguez, Laura; Ahn, Joo Wook; Collier, David A; O'Brien, Timothy; Shen, Sanbing

    2016-09-01

    The size of neural stem cell (NSC) pool at birth determines the starting point of adult neurogenesis. Aberrant neurogenesis is associated with major mental illness, in which ULK4 is proposed as a rare risk factor. Little is known about factors regulating the NSC pool, or function of the ULK4. Here, we showed that Ulk4(tm1a/tm1a) mice displayed a dramatically reduced NSC pool at birth. Ulk4 was expressed in a cell cycle-dependent manner and peaked in G2/M phases. Targeted disruption of the Ulk4 perturbed mid-neurogenesis and significantly reduced cerebral cortex in postnatal mice. Pathway analyses of dysregulated genes in Ulk4(tm1a/tm1a) mice revealed Ulk4 as a key regulator of cell cycle and NSC proliferation, partially through regulation of the Wnt signaling. In addition, we identified hemizygous deletion of ULK4 gene in 1.2/1,000 patients with pleiotropic symptoms including severe language delay and learning difficulties. ULK4, therefore, may significantly contribute to neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Stem Cells 2016;34:2318-2331. PMID:27300315

  16. Diverse mechanisms regulate stem cell self-renewal.

    PubMed

    Molofsky, Anna V; Pardal, Ricardo; Morrison, Sean J

    2004-12-01

    To what extent are the pathways that regulate self-renewal conserved between stem cells at different stages of development and in different tissues? Some pathways play a strikingly conserved role in regulating the self-renewal of diverse stem cells, whereas other pathways are specific to stem cells in certain tissues or at certain stages of development. Recent studies have highlighted differences between the self-renewal of embryonic, fetal and adult stem cells. By understanding these similarities and differences we may come to a molecular understanding of how stem cells replicate themselves and why aspects of this process differ between stem cells. PMID:15530784

  17. Nanotechnology in the regulation of stem cell behavior

    NASA Astrophysics Data System (ADS)

    Wu, King-Chuen; Tseng, Ching-Li; Wu, Chi-Chang; Kao, Feng-Chen; Tu, Yuan-Kun; So, Edmund C.; Wang, Yang-Kao

    2013-10-01

    Stem cells are known for their potential to repair damaged tissues. The adhesion, growth and differentiation of stem cells are likely controlled by the surrounding microenvironment which contains both chemical and physical cues. Physical cues in the microenvironment, for example, nanotopography, were shown to play important roles in stem cell fate decisions. Thus, controlling stem cell behavior by nanoscale topography has become an important issue in stem cell biology. Nanotechnology has emerged as a new exciting field and research from this field has greatly advanced. Nanotechnology allows the manipulation of sophisticated surfaces/scaffolds which can mimic the cellular environment for regulating cellular behaviors. Thus, we summarize recent studies on nanotechnology with applications to stem cell biology, including the regulation of stem cell adhesion, growth, differentiation, tracking and imaging. Understanding the interactions of nanomaterials with stem cells may provide the knowledge to apply to cell-scaffold combinations in tissue engineering and regenerative medicine.

  18. Survival regulation of leukemia stem cells.

    PubMed

    Hu, Yiguo; Li, Shaoguang

    2016-03-01

    Leukemia stem cells (LSCs) are a subpopulation cells at the apex of hierarchies in leukemia cells and responsible for disease continuous propagation. In this article, we discuss some cellular and molecular components, which are critical for LSC survival. These components include intrinsic signaling pathways and extrinsic microenvironments. The intrinsic signaling pathways to be discussed include Wnt/β-catenin signaling, Hox genes, Hh pathway, Alox5, and some miRNAs, which have been shown to play important roles in regulating LSC survival and proliferation. The extrinsic components to be discussed include selectins, CXCL12/CXCR4, and CD44, which involve in LSC homing, survival, and proliferation by affecting bone marrow microenvironment. Potential strategies for eradicating LSCs will also discuss. PMID:26686687

  19. Adhesion in the stem cell niche: biological roles and regulation

    PubMed Central

    Chen, Shuyi; Lewallen, Michelle; Xie, Ting

    2013-01-01

    Stem cell self-renewal is tightly controlled by the concerted action of stem cell-intrinsic factors and signals within the niche. Niche signals often function within a short range, allowing cells in the niche to self-renew while their daughters outside the niche differentiate. Thus, in order for stem cells to continuously self-renew, they are often anchored in the niche via adhesion molecules. In addition to niche anchoring, however, recent studies have revealed other important roles for adhesion molecules in the regulation of stem cell function, and it is clear that stem cell-niche adhesion is crucial for stem cell self-renewal and is dynamically regulated. Here, we highlight recent progress in understanding adhesion between stem cells and their niche and how this adhesion is regulated. PMID:23250203

  20. MicroRNAs as novel regulators of stem cell fate

    PubMed Central

    Choi, Eunhyun; Choi, Eunmi; Hwang, Ki-Chul

    2013-01-01

    Mounting evidence in stem cell biology has shown that microRNAs (miRNAs) play a crucial role in cell fate specification, including stem cell self-renewal, lineage-specific differentiation, and somatic cell reprogramming. These functions are tightly regulated by specific gene expression patterns that involve miRNAs and transcription factors. To maintain stem cell pluripotency, specific miRNAs suppress transcription factors that promote differentiation, whereas to initiate differentiation, lineage-specific miRNAs are upregulated via the inhibition of transcription factors that promote self-renewal. Small molecules can be used in a similar manner as natural miRNAs, and a number of natural and synthetic small molecules have been isolated and developed to regulate stem cell fate. Using miRNAs as novel regulators of stem cell fate will provide insight into stem cell biology and aid in understanding the molecular mechanisms and crosstalk between miRNAs and stem cells. Ultimately, advances in the regulation of stem cell fate will contribute to the development of effective medical therapies for tissue repair and regeneration. This review summarizes the current insights into stem cell fate determination by miRNAs with a focus on stem cell self-renewal, differentiation, and reprogramming. Small molecules that control stem cell fate are also highlighted. PMID:24179605

  1. Mechanical regulation of mesenchymal stem cell differentiation.

    PubMed

    Steward, Andrew J; Kelly, Daniel J

    2015-12-01

    Biophysical cues play a key role in directing the lineage commitment of mesenchymal stem cells or multipotent stromal cells (MSCs), but the mechanotransductive mechanisms at play are still not fully understood. This review article first describes the roles of both substrate mechanics (e.g. stiffness and topography) and extrinsic mechanical cues (e.g. fluid flow, compression, hydrostatic pressure, tension) on the differentiation of MSCs. A specific focus is placed on the role of such factors in regulating the osteogenic, chondrogenic, myogenic and adipogenic differentiation of MSCs. Next, the article focuses on the cellular components, specifically integrins, ion channels, focal adhesions and the cytoskeleton, hypothesized to be involved in MSC mechanotransduction. This review aims to illustrate the strides that have been made in elucidating how MSCs sense and respond to their mechanical environment, and also to identify areas where further research is needed. PMID:25382217

  2. Wnt pathway regulation of intestinal stem cells.

    PubMed

    Mah, Amanda T; Yan, Kelley S; Kuo, Calvin J

    2016-09-01

    Wnt signalling is involved in multiple aspects of embryonic development and adult tissue homeostasis, notably via controlling cellular proliferation and differentiation. Wnt signalling is subject to stringent positive and negative regulation to promote proper development and homeostasis yet avoid aberrant growth. Such multi-layer regulation includes post-translational modification and processing of Wnt proteins themselves, R-spondin (Rspo) amplification of Wnt signalling, diverse receptor families, and intracellular and extracellular antagonists and destruction and transcription complexes. In the gastrointestinal tract, Wnt signalling is crucial for development and renewal of the intestinal epithelium. Intestinal stem cells (ISCs) undergo symmetric division and neutral drift dynamics to renew the intestinal epithelium. Sources of Wnts and Wnt amplifers such as R-spondins are beginning to be elucidated as well as their functional contribution to intestinal homeostasis. In this review we focus on regulation of ISCs and intestinal homeostasis by the Wnt/Rspo pathway, the potential cellular sources of Wnt signalling regulators and highlight potential future areas of study. PMID:27581568

  3. The regulation of hematopoietic stem cell populations

    PubMed Central

    Mayani, Hector

    2016-01-01

    Evidence presented over the last few years indicates that the hematopoietic stem cell (HSC) compartment comprises not just one but a number of different cell populations. Based on HSCs’ proliferation and engraftment potential, it has been suggested that there are two classes of HSC, with long- and short-term engraftment potential. HSC heterogeneity seems to involve differentiation capacities as well, since it has been shown that some HSC clones are able to give rise to both myeloid and lymphoid progeny, whereas others are lymphoid deficient. It has been recognized that HSC function depends on intrinsic cell regulators, which are modulated by external signals. Among the former, we can include transcription factors and non-coding RNAs as well as epigenetic modifiers. Among the latter, cytokines and extracellular matrix molecules have been implicated. Understanding the elements and mechanisms that regulate HSC populations is of significant relevance both in biological and in clinical terms, and research in this area still has to face several complex and exciting challenges. PMID:27408695

  4. Neural stem cells and regulation of cell number.

    PubMed

    Sommer, Lukas; Rao, Mahendra

    2002-01-01

    Normal CNS development involves the sequential differentiation of multipotent stem cells. Alteration of the numbers of stem cells, their self-renewal ability, or their proliferative capacity will have major effects on the appropriate development of the nervous system. In this review, we discuss different mechanisms that regulate neural stem cell differentiation. Proliferation signals and cell cycle regulators may regulate cell kinetics or total number of cell divisions. Loss of trophic support and cytokine receptor activation may differentially contribute to the induction of cell death at specific stages of development. Signaling from differentiated progeny or asymmetric distribution of specific molecules may alter the self-renewal characteristics of stem cells. We conclude that the final decision of a cell to self-renew, differentiate or remain quiescent is dependent on an integration of multiple signaling pathways and at each instant will depend on cell density, metabolic state, ligand availability, type and levels of receptor expression, and downstream cross-talk between distinct signaling pathways. PMID:11897403

  5. Cell adhesion in regulation of asymmetric stem cell division

    PubMed Central

    Yamashita, Yukiko M.

    2010-01-01

    Adult stem cells inevitably communicate with their cellular neighbors within the tissues they sustain. Indeed, such communication, particularly with components of the stem cell niche, is essential for many aspects of stem cell behavior, including the maintenance of stem cell identity and asymmetric cell division. Cell adhesion mediates this communication by placing stem cells in close proximity to the signaling source and by providing a polarity cue that orients stem cells. Here, I review the recent discovery that cell adhesion molecules govern the behavior of stem cells. PMID:20724132

  6. Regulation of neural stem cells by choroid plexus cells population.

    PubMed

    Roballo, Kelly C S; Gonçalves, Natalia J N; Pieri, Naira C G; Souza, Aline F; Andrade, André F C; Ambrósio, Carlos E

    2016-07-28

    The choroid plexus is a tissue on the central nervous system responsible for producing cerebrospinal fluid, maintaining homeostasis and neural stem cells support; though, all of its functions still unclear. This study aimed to demonstrate the niches of choroid plexus cells for a better understanding of the cell types and functions, using the porcine as the animal model. The collected material was analyzed by histology, immunohistochemistry, and cell culture. The cell culture was characterizated by immunocytochemistry and flow cytometry. Our results showed OCT-4, TUBIII, Nestin, CD45, CD73, CD90 positive expression and GFAP, CD105 negative expression, also methylene blue histological staining confirmed the presence of telocytes cells. We realized that the choroid plexus is a unique and incomparable tissue with different niches of cells as pluripotent, hematopoietic, neuronal progenitors and telocyte cells, which provide its complexity, differentiated functionality and responsibility on brain balance and neural stem cells regulation. PMID:27181512

  7. Stem Cells in the Trabecular Meshwork for Regulating Intraocular Pressure.

    PubMed

    Yun, Hongmin; Zhou, Yi; Wills, Andrew; Du, Yiqin

    2016-06-01

    Intraocular pressure (IOP) is still the main treatment target for glaucoma. Outflow resistance mainly exists at the trabecular meshwork (TM) outflow pathway, which is responsible for IOP regulation. Changes of TM cellularity and TM extracellular matrix turnover may play important roles in IOP regulation. In this article, we review basic anatomy and physiology of the outflow pathway and TM stem cell characteristics regarding the location, isolation, identification and function. TM stem cells are localized at the insert region of the TM and are label-retaining in vivo. They can be isolated by side-population cell sorting, cloning culture, or sphere culture. TM stem cells are multipotent with the ability to home to the TM region and differentiate into TM cells in vivo. Other stem cell types, such as adipose-derived stem cells, mesenchymal stem cells and induced pluripotent stem cells have been discovered for TM cell differentiation and TM regeneration. We also review glaucomatous animal models, which are suitable to study stem cell-based therapies for TM regeneration. PMID:27183473

  8. [Physiological regulation of hematopoietic stem cell and its molecular basis].

    PubMed

    Dong, Fang; Hao, Sha; Cheng, Hui; Cheng, Tao

    2016-08-25

    As a classical type of tissue stem cells, hematopoietic stem cell (HSC) is the earliest discovered and has been widely applied in the clinic as a great successful example for stem cell therapy. Thus, HSC research represents a leading field in stem cell biology and regenerative medicine. Self-renewal, differentiation, quiescence, apoptosis and trafficking constitute major characteristics of functional HSCs. These characteristics also signify different dynamic states of HSC through physiological interactions with the microenvironment cues in vivo. This review covers our current knowledge on the physiological regulation of HSC and its underlying molecular mechanisms. It is our hope that this review will not only help our colleagues to understand how HSC is physiologically regulated but also serve as a good reference for the studies on stem cell and regenerative medicine in general. PMID:27546503

  9. Nutrient-sensing pathways and metabolic regulation in stem cells.

    PubMed

    Ochocki, Joshua D; Simon, M Celeste

    2013-10-14

    Stem cells exert precise regulation to maintain a balance of self-renewal and differentiation programs to sustain tissue homeostasis throughout the life of an organism. Recent evidence suggests that this regulation is modulated, in part, via metabolic changes and modifications of nutrient-sensing pathways such as mTOR and AMPK. It is becoming increasingly clear that stem cells inhibit oxidative phosphorylation in favor of aerobic glycolysis for energy production. Recent progress has detailed the molecular mechanisms of this metabolic phenotype and has offered insight into new metabolic pathways that may be involved in stem cell homeostasis. PMID:24127214

  10. Proinflammatory signaling regulates hematopoietic stem cell emergence.

    PubMed

    Espín-Palazón, Raquel; Stachura, David L; Campbell, Clyde A; García-Moreno, Diana; Del Cid, Natasha; Kim, Albert D; Candel, Sergio; Meseguer, José; Mulero, Victoriano; Traver, David

    2014-11-20

    Hematopoietic stem cells (HSCs) underlie the production of blood and immune cells for the lifetime of an organism. In vertebrate embryos, HSCs arise from the unique transdifferentiation of hemogenic endothelium comprising the floor of the dorsal aorta during a brief developmental window. To date, this process has not been replicated in vitro from pluripotent precursors, partly because the full complement of required signaling inputs remains to be determined. Here, we show that TNFR2 via TNF? activates the Notch and NF-?B signaling pathways to establish HSC fate, indicating a requirement for inflammatory signaling in HSC generation. We determine that primitive neutrophils are the major source of TNF?, assigning a role for transient innate immune cells in establishing the HSC program. These results demonstrate that proinflammatory signaling, in the absence of infection, is utilized by the developing embryo to generate the lineal precursors of the adult hematopoietic system. PMID:25416946

  11. Proinflammatory signaling regulates hematopoietic stem cell emergence

    PubMed Central

    Espín-Palazón, Raquel; Stachura, David L.; Campbell, Clyde A.; García-Moreno, Diana; Cid, Natasha Del; Kim, Albert D.; Candel, Sergio; Meseguer, José; Mulero, Victoriano; Traver, David

    2014-01-01

    Summary Hematopoietic stem cells (HSCs) underlie the production of blood and immune cells for the lifetime of an organism. In vertebrate embryos, HSCs arise from the unique transdifferentiation of hemogenic endothelium comprising the floor of the dorsal aorta during a brief developmental window. To date, this process has not been replicated in vitro from pluripotent precursors, partly because the full complement of required signaling inputs remains to be determined. Here, we show that TNFR2 via TNFα activates the Notch and NF-κB signaling pathways to establish HSC fate, indicating a requirement for inflammatory signaling in HSC generation. We determine that primitive neutrophils are the major source of TNFα, assigning a role for transient innate immune cells in establishing the HSC program. These results demonstrate that proinflammatory signaling, in the absence of infection, is utilized by the developing embryo to generate the lineal precursors of the adult hematopoietic system. PMID:25416946

  12. Molecular Evolution of Drosophila Germline Stem Cell and Neural Stem Cell Regulating Genes

    PubMed Central

    Choi, Jae Young; Aquadro, Charles F.

    2015-01-01

    Here, we study the molecular evolution of a near complete set of genes that had functional evidence in the regulation of the Drosophila germline and neural stem cell. Some of these genes have previously been shown to be rapidly evolving by positive selection raising the possibility that stem cell genes as a group have elevated signatures of positive selection. Using recent Drosophila comparative genome sequences and population genomic sequences of Drosophila melanogaster, we have investigated both long- and short-term evolution occurring across these two different stem cell systems, and compared them with a carefully chosen random set of genes to represent the background rate of evolution. Our results showed an excess of genes with evidence of a recent selective sweep in both germline and neural stem cells in D. melanogaster. However compared with their control genes, both stem cell systems had no significant excess of genes with long-term recurrent positive selection in D. melanogaster, or across orthologous sequences from the melanogaster group. The evidence of long-term positive selection was limited to a subset of genes with specific functions in both the germline and neural stem cell system. PMID:26507797

  13. Regulating the regulator: Numb acts upstream of p53 to control mammary stem and progenitor cell

    PubMed Central

    Faraldo, Marisa M.

    2015-01-01

    In this issue, Tosoni et al. (2015. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201505037) report that cell fate determinant and tumor suppressor Numb imposes asymmetric cell divisions in mammary stem cells by regulating p53. Numb thereby restricts mammary stem cell expansion and controls the proliferation and lineage-specific characteristics of their progeny. PMID:26598611

  14. STEM CELL AGING. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging

    PubMed Central

    Mohrin, Mary; Shin, Jiyung; Liu, Yufei; Brown, Katharine; Luo, Hanzhi; Xi, Yannan; Haynes, Cole M.; Chen, Danica

    2015-01-01

    Deterioration of adult stem cells accounts for much of aging-associated compromised tissue maintenance. How stem cells maintain metabolic homeostasis remains elusive. Here, we identified a regulatory branch of the mitochondrial unfolded protein response (UPRmt), which is mediated by the interplay of SIRT7 and NRF1 and is coupled to cellular energy metabolism and proliferation. SIRT7 inactivation caused reduced quiescence, increased mitochondrial protein folding stress (PFSmt), and compromised regenerative capacity of hematopoietic stem cells (HSCs). SIRT7 expression was reduced in aged HSCs, and SIRT7 up-regulation improved the regenerative capacity of aged HSCs. These findings define the deregulation of a UPRmt-mediated metabolic checkpoint as a reversible contributing factor for HSC aging. PMID:25792330

  15. A family business: stem cell progeny join the niche to regulate homeostasis

    PubMed Central

    Hsu, Ya-Chieh; Fuchs, Elaine

    2012-01-01

    Stem cell niches, the discrete microenvironments in which the stem cells reside, play a dominant part in regulating stem cell activity and behaviours. Recent studies suggest that committed stem cell progeny become indispensable components of the niche in a wide range of stem cell systems. These unexpected niche inhabitants provide versatile feedback signals to their stem cell parents. Together with other heterologous cell types that constitute the niche, they contribute to the dynamics of the microenvironment. As progeny are often located in close proximity to stem cell niches, similar feedback regulations may be the underlying principles shared by different stem cell systems. PMID:22266760

  16. Regulation of cancer stem cells by RING finger ubiquitin ligases

    PubMed Central

    Sun, Xiao-Hong

    2014-01-01

    Like normal stem cells, cancer stem cells (CSCs) are capable of self-renewal, either by symmetric or asymmetric cell division. They have the exclusive ability to reproduce malignant tumors indefinitely, and to confer resistance in response to radiation or chemotherapy. The ubiquitin modification system plays various roles in physiology and pathology. The key component for the specificity of this system is ubiquitin ligases (E3s). Of these E3s, the majority are RING finger proteins. Many RING finger E3s, such as the Cullin1-Skp1-F-box protein (SCF) E3s, CBL, BRCA1, MDM2 and von Hippel-Lindau tumour suppressor (VHL), are crucial in the regulation of cell-cycle progression and cell differentiation. As a result, many RING finger E3s are implicated in the positive and negative regulation of CSC maintenance. This review summarizes current knowledge in this research field. PMID:27358852

  17. Retinoid signaling regulates breast cancer stem cell differentiation

    PubMed Central

    Ginestier, Christophe; Wicinski, Julien; Cervera, Nathalie; Monville, Florence; Finetti, Pascal; Bertucci, François; Wicha, Max S.; Birnbaum, Daniel; Charafe-Jauffret, Emmanuelle

    2010-01-01

    The cancer stem cell (CSC) hypothesis implicates the development of new therapeutic approaches to target the CSC population. Characterization of the pathways that regulate CSCs activity will facilitate the development of targeted therapies. We recently reported that the enzymatic activity of ALDH1, as measured by the ALDELFUOR assay, can be utilized to isolate normal and malignant breast stem cells in both primary tumors and cell lines. In this study, utilizing a tumorsphere assay, we have demonstrated the role of retinoid signaling in the regulation of breast CSCs self-renewal and differentiation. Utilizing the gene set enrichment analysis (GSEA) algorithm we identified gene sets and pathways associated with retinoid signaling. These pathways regulate breast CSCs biology and their inhibition may provide novel therapeutic approaches to target breast CSCs. PMID:19806016

  18. Human colonic fibroblasts regulate stemness and chemotherapy resistance of colon cancer stem cells

    PubMed Central

    Colak, S.; Medema, J.P.

    2016-01-01

    abstract There is increasing evidence that cancers are heterogeneous and contain a hierarchical organization consisting of cancer stem cells and their differentiated cell progeny. These cancer stem cells are at the core of the tumor as they represent the clonogenic cells within a tumor. Moreover, these cells are considered to contain selective therapy resistance, which suggests a pivotal role in therapy resistance and tumor relapse. Here we show that differentiated cells can re-acquire stemness through factors secreted from fibroblasts. This induced CSC state also coincides with re-acquisition of resistance to chemotherapy. Resistance induced in newly formed CSCs is mediated by the anti-apoptotic molecule BCLXL and inhibition of BCLXL with the BH3 mimetic ABT-737 sensitizes these cancer cells toward chemotherapy. These data point to an important interplay between tumor cells and their microenvironment in the regulation of stemness and therapy resistance. PMID:25483065

  19. Laminin regulates PDGFRβ+ cell stemness and muscle development

    PubMed Central

    Yao, Yao; Norris, Erin H.; E. Mason, Christopher; Strickland, Sidney

    2016-01-01

    Muscle-resident PDGFRβ+ cells, which include pericytes and PW1+ interstitial cells (PICs), play a dual role in muscular dystrophy. They can either undergo myogenesis to promote muscle regeneration or differentiate into adipocytes and other cells to compromise regeneration. How the differentiation and fate determination of PDGFRβ+ cells are regulated, however, remains unclear. Here, by utilizing a conditional knockout mouse line, we report that PDGFRβ+ cell-derived laminin inhibits their proliferation and adipogenesis, but is indispensable for their myogenesis. In addition, we show that laminin alone is able to partially reverse the muscle dystrophic phenotype in these mice at the molecular, structural and functional levels. Further RNAseq analysis reveals that laminin regulates PDGFRβ+ cell differentiation/fate determination via gpihbp1. These data support a critical role of laminin in the regulation of PDGFRβ+ cell stemness, identify an innovative target for future drug development and may provide an effective treatment for muscular dystrophy. PMID:27138650

  20. Laminin regulates PDGFRβ(+) cell stemness and muscle development.

    PubMed

    Yao, Yao; Norris, Erin H; E Mason, Christopher; Strickland, Sidney

    2016-01-01

    Muscle-resident PDGFRβ(+) cells, which include pericytes and PW1(+) interstitial cells (PICs), play a dual role in muscular dystrophy. They can either undergo myogenesis to promote muscle regeneration or differentiate into adipocytes and other cells to compromise regeneration. How the differentiation and fate determination of PDGFRβ(+) cells are regulated, however, remains unclear. Here, by utilizing a conditional knockout mouse line, we report that PDGFRβ(+) cell-derived laminin inhibits their proliferation and adipogenesis, but is indispensable for their myogenesis. In addition, we show that laminin alone is able to partially reverse the muscle dystrophic phenotype in these mice at the molecular, structural and functional levels. Further RNAseq analysis reveals that laminin regulates PDGFRβ(+) cell differentiation/fate determination via gpihbp1. These data support a critical role of laminin in the regulation of PDGFRβ(+) cell stemness, identify an innovative target for future drug development and may provide an effective treatment for muscular dystrophy. PMID:27138650

  1. Signaling mechanisms regulating adult neural stem cells and neurogenesis

    PubMed Central

    Faigle, Roland; Song, Hongjun

    2012-01-01

    Background Adult neurogenesis occurs throughout life in discrete regions of the mammalian brain and is tightly regulated via both extrinsic environmental influences and intrinsic genetic factors. In recent years, several crucial signaling pathways have been identified in regulating self-renewal, proliferation, and differentiation of neural stem cells, as well as migration and functional integration of developing neurons in the adult brain. Scope of review Here we review our current understanding of signaling mechanisms, including Wnt, notch, sonic hedgehog, growth and neurotrophic factors, bone morphogenetic proteins, neurotransmitters, transcription factors, and epigenetic modulators, and crosstalk between these signaling pathways in the regulation of adult neurogenesis. We also highlight emerging principles in the vastly growing field of adult neural stem cell biology and neural plasticity. Major conclusions Recent methodological advances have enabled the field to identify signaling mechanisms that fine-tune and coordinate neurogenesis in the adult brain, leading to a better characterization of both cell-intrinsic and environmental cues defining the neurogenic niche. Significant questions related to niche cell identity and underlying regulatory mechanisms remain to be fully addressed and will be the focus of future studies. General significance A full understanding of the role and function of individual signaling pathways in regulating neural stem cells and generation and integration of newborn neurons in the adult brain may lead to targeted new therapies for neurological diseases in humans. PMID:22982587

  2. Biophysical regulation of stem cell behavior within the niche

    PubMed Central

    2012-01-01

    Stem cells reside within most tissues throughout the lifetimes of mammalian organisms. To maintain their capacities for division and differentiation and thereby build, maintain, and regenerate organ structure and function, these cells require extensive and precise regulation, and a critical facet of this control is the local environment or niche surrounding the cell. It is well known that soluble biochemical signals play important roles within such niches, and a number of biophysical aspects of the microenvironment, including mechanical cues and spatiotemporally varying biochemical signals, have also been increasingly recognized to contribute to the repertoire of stimuli that regulate various stem cells in various tissues of both vertebrates and invertebrates. For example, biochemical factors immobilized to the extracellular matrix or the surface of neighboring cells can be spatially organized in their placement. Furthermore, the extracellular matrix provides mechanical support and regulatory information, such as its elastic modulus and interfacial topography, which modulate key aspects of stem cell behavior. Numerous examples of each of these modes of regulation indicate that biophysical aspects of the niche must be appreciated and studied in conjunction with its biochemical properties. PMID:23241436

  3. Functional screen identifies regulators of murine hematopoietic stem cell repopulation.

    PubMed

    Holmfeldt, Per; Ganuza, Miguel; Marathe, Himangi; He, Bing; Hall, Trent; Kang, Guolian; Moen, Joseph; Pardieck, Jennifer; Saulsberry, Angelica C; Cico, Alba; Gaut, Ludovic; McGoldrick, Daniel; Finkelstein, David; Tan, Kai; McKinney-Freeman, Shannon

    2016-03-01

    Understanding the molecular regulation of hematopoietic stem and progenitor cell (HSPC) engraftment is paramount to improving transplant outcomes. To discover novel regulators of HSPC repopulation, we transplanted >1,300 mice with shRNA-transduced HSPCs within 24 h of isolation and transduction to focus on detecting genes regulating repopulation. We identified 17 regulators of HSPC repopulation: Arhgef5, Armcx1, Cadps2, Crispld1, Emcn, Foxa3, Fstl1, Glis2, Gprasp2, Gpr56, Myct1, Nbea, P2ry14, Smarca2, Sox4, Stat4, and Zfp251. Knockdown of each of these genes yielded a loss of function, except in the cases of Armcx1 and Gprasp2, whose loss enhanced hematopoietic stem cell (HSC) repopulation. The discovery of multiple genes regulating vesicular trafficking, cell surface receptor turnover, and secretion of extracellular matrix components suggests active cross talk between HSCs and the niche and that HSCs may actively condition the niche to promote engraftment. We validated that Foxa3 is required for HSC repopulating activity, as Foxa3(-/-) HSC fails to repopulate ablated hosts efficiently, implicating for the first time Foxa genes as regulators of HSPCs. We further show that Foxa3 likely regulates the HSC response to hematologic stress. Each gene discovered here offers a window into the novel processes that regulate stable HSPC engraftment into an ablated host. PMID:26880577

  4. Stem Cells

    MedlinePlus

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  5. Stem Cells

    MedlinePlus

    Stem cells are cells with the potential to develop into many different types of cells in the body. They serve as a repair ... body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  6. Hypoxia-mediated regulation of stem cell fate.

    PubMed

    Singh, Rashim Pal; Franke, Kristin; Wielockx, Ben

    2012-09-01

    Hypoxia-mediated regulation of stem cell fate, or reduced oxygen availability, is a prominent feature during mammalian development and under physiological and pathological conditions in adults. Oxygen-sensing is therefore indispensable as it enables the cells to adapt instantaneously to an inappropriate pO(2). This machinery relies primarily on hypoxia inducible factor (HIF). Moreover, a growing body of evidence proposes that different types of stem cells exist in a very hypoxic microenvironment, which may be beneficial for the maintenance of these cells and ensures continuous replenishment of dead or damaged cells in virtually all tissues of the body. Recent reports have shown that HIF is a critical player in these responses. However, a better understanding of the different HIF-related mechanisms is of utmost importance for the improvement of therapeutic strategies for tissue regeneration as well as hematological malignancies. PMID:22994515

  7. Current and Future Stem Cell Regulation: A Call to Action.

    PubMed

    Anz, Adam

    2016-01-01

    The orthopedic sports medicine profession experienced a pivotal shift with the acceptance and application of the arthroscope. The next leap forward will hinge on the acceptance, application, and regulation of biologic therapies, and a sentinel event will be the US Food and Drug Administration approval of a stem cell technology. While the arthroscope was developed in the hands of our sports medicine mentors, the current history of biologics has been mostly written by basic scientists. The baby steps of these technologies have involved benchtop laboratory studies and preclinical animal trials, clearly illustrating great potential. Clinical progress has struggled forward but stalled. Regulatory constraints and our inability to establish safety and efficacy are the major hurdles, with disconnect between the basic scientist, clinician, and regulatory bodies to blame. While the development of the arthroscope was barely influenced by governmental regulation, this will control and model the future of stem cell technologies. With current legislation before Congress concerning stem cell regulation, the next steps are dependent upon the clinician's understanding and participation in this regulation. PMID:27552450

  8. Epigenetic Gene Regulation in Stem Cells and Correlation to Cancer

    PubMed Central

    Mathews, Lesley A.; Crea, Francesco; Farrar, W. L.

    2009-01-01

    Through the classic study of genetics, much has been learned about the regulation and progression of human disease. Specifically, cancer has been defined as a disease driven by genetic alterations, including mutations in tumor-suppressor genes and oncogenes, as well as chromosomal abnormalities. However, the study of normal human development has identified that in addition to classical genetics, regulation of gene expression is also modified by ‘epigenetic’ alterations including chromatin remodeling and histone variants, DNA methylation, the regulation of polycomb group proteins and the epigenetic function of non-coding RNA. These changes are modifications inherited both during meiosis and mitosis, yet they do not result in alterations of the actual DNA sequence. A number of biological questions are directly influenced by epigenetics, such as how does a cell know when to divide, differentiate or remain quiescent, and more importantly, what happens when these pathways become altered? Do these alterations lead to the development and/or progression of cancer? This review will focus on summarizing the limited current literature involving epigenetic alterations in the context of human cancer stems cells (CSCs). The extent to which epigenetic changes define cell fate, identity, and phenotype are still under intense investigation, and many questions remain largely unanswered. Before discussing epigenetic gene silencing in CSCs, the different classifications of stem cells and their properties will be introduced. This will be followed by an introduction to the different epigenetic mechanisms Finally, there will be a discussion of the current knowledge of epigenetic modifications in stem cells, specifically what is known from rodent systems and established cancer cell lines, and how they are leading us to understand human stem cells. PMID:19443100

  9. miR-381 Regulates Neural Stem Cell Proliferation and Differentiation via Regulating Hes1 Expression

    PubMed Central

    Liu, Baoquan; Yang, Chunxiao; Nie, Xuedan; Wang, Xiaokun; Zheng, Jiaolin; Wang, Yue; Zhu, Yulan

    2015-01-01

    Neural stem cells are self-renewing, multipotent and undifferentiated precursors that retain the capacity for differentiation into both glial (astrocytes and oligodendrocytes) and neuronal lineages. Neural stem cells offer cell-based therapies for neurological disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease and spinal cord injuries. However, their cellular behavior is poorly understood. MicroRNAs (miRNAs) are a class of small noncoding RNAs involved in cell development, proliferation and differentiation through regulating gene expression at post-transcriptional level. The role of miR–381 in the development of neural stem cells remains unknown. In this study, we showed that overexpression of miR–381 promoted neural stem cells proliferation. It induced the neural stem cells differentiation to neurons and inhibited their differentiation to astrocytes. Furthermore, we identified HES1 as a direct target of miR–381 in neural stem cells. Moreover, re-expression of HES1 impaired miR-381-induced promotion of neural stem cells proliferation and induce neural stem cells differentiation to neurons. In conclusion, miR–381 played important role in neural stem cells proliferation and differentiation. PMID:26431046

  10. MicroRNA Regulation of Human Breast Cancer Stem Cells

    PubMed Central

    Shimono, Yohei; Mukohyama, Junko; Nakamura, Shun-ichi; Minami, Hironobu

    2015-01-01

    MicroRNAs (miRNAs) are involved in virtually all biological processes, including stem cell maintenance, differentiation, and development. The dysregulation of miRNAs is associated with many human diseases including cancer. We have identified a set of miRNAs differentially expressed between human breast cancer stem cells (CSCs) and non-tumorigenic cancer cells. In addition, these miRNAs are similarly upregulated or downregulated in normal mammary stem/progenitor cells. In this review, we mainly describe the miRNAs that are dysregulated in human breast CSCs directly isolated from clinical specimens. The miRNAs and their clusters, such as the miR-200 clusters, miR-183 cluster, miR-221-222 cluster, let-7, miR-142 and miR-214, target the genes and pathways important for stem cell maintenance, such as the self-renewal gene BMI1, apoptosis, Wnt signaling, Notch signaling, and epithelial-to-mesenchymal transition. In addition, the current evidence shows that metastatic breast CSCs acquire a phenotype that is different from the CSCs in a primary site. Thus, clarifying the miRNA regulation of the metastatic breast CSCs will further advance our understanding of the roles of human breast CSCs in tumor progression. PMID:26712794

  11. Histone variants as emerging regulators of embryonic stem cell identity

    PubMed Central

    Turinetto, Valentina; Giachino, Claudia

    2015-01-01

    Dynamic regulation of chromatin structure is an important mechanism for balancing the pluripotency and cell fate decision in embryonic stem cells (ESCs). Indeed ESCs are characterized by unusual chromatin packaging, and a wide variety of chromatin regulators have been implicated in control of pluripotency and differentiation. Genome-wide maps of epigenetic factors have revealed a unique epigenetic signature in pluripotent ESCs and have contributed models to explain their plasticity. In addition to the well known epigenetic regulation through DNA methylation, histone posttranslational modifications, chromatin remodeling, and non-coding RNA, histone variants are emerging as important regulators of ESC identity. In this review, we summarize and discuss the recent progress that has highlighted the central role of histone variants in ESC pluripotency and ESC fate, focusing, in particular, on H1 variants, H2A variants H2A.X, H2A.Z and macroH2A and H3 variant H3.3. PMID:26114724

  12. Huntingtin regulates mammary stem cell division and differentiation.

    PubMed

    Elias, Salah; Thion, Morgane S; Yu, Hua; Sousa, Cristovao Marques; Lasgi, Charlène; Morin, Xavier; Humbert, Sandrine

    2014-04-01

    Little is known about the mechanisms of mitotic spindle orientation during mammary gland morphogenesis. Here, we report the presence of huntingtin, the protein mutated in Huntington's disease, in mouse mammary basal and luminal cells throughout mammogenesis. Keratin 5-driven depletion of huntingtin results in a decreased pool and specification of basal and luminal progenitors, and altered mammary morphogenesis. Analysis of mitosis in huntingtin-depleted basal progenitors reveals mitotic spindle misorientation. In mammary cell culture, huntingtin regulates spindle orientation in a dynein-dependent manner. Huntingtin is targeted to spindle poles through its interaction with dynein and promotes the accumulation of NUMA and LGN. Huntingtin is also essential for the cortical localization of dynein, dynactin, NUMA, and LGN by regulating their kinesin 1-dependent trafficking along astral microtubules. We thus suggest that huntingtin is a component of the pathway regulating the orientation of mammary stem cell division, with potential implications for their self-renewal and differentiation properties. PMID:24749073

  13. Regulation of Glycan Structures in Murine Embryonic Stem Cells

    PubMed Central

    Nairn, Alison V.; Aoki, Kazuhiro; dela Rosa, Mitche; Porterfield, Mindy; Lim, Jae-Min; Kulik, Michael; Pierce, J. Michael; Wells, Lance; Dalton, Stephen; Tiemeyer, Michael; Moremen, Kelley W.

    2012-01-01

    The abundance and structural diversity of glycans on glycoproteins and glycolipids are highly regulated and play important roles during vertebrate development. Because of the challenges associated with studying glycan regulation in vertebrate embryos, we have chosen to study mouse embryonic stem (ES) cells as they differentiate into embryoid bodies (EBs) or into extraembryonic endodermal (ExE) cells as a model for cellular differentiation. We profiled N- and O-glycan structures isolated from these cell populations and examined transcripts encoding the corresponding enzymatic machinery for glycan biosynthesis in an effort to probe the mechanisms that drive the regulation of glycan diversity. During differentiation from mouse ES cells to either EBs or ExE cells, general trends were detected. The predominance of high mannose N-glycans in ES cells shifted to an equal abundance of complex and high mannose structures, increased sialylation, and increased α-Gal termination in the differentiated cell populations. Whereas core 1 O-glycan structures predominated in all three cell populations, increased sialylation and increased core diversity characterized the O-glycans of both differentiated cell types. Increased polysialylation was also found in both differentiated cell types. Differences between the two differentiated cell types included greater sialylation of N-glycans in EBs, whereas α-Gal-capped structures were more prevalent in ExE cells. Changes in glycan structures generally, but not uniformly, correlated with alterations in transcript abundance for the corresponding biosynthetic enzymes, suggesting that transcriptional regulation contributes significantly to the regulation of glycan expression. Knowledge of glycan structural diversity and transcript regulation should provide greater understanding of the roles of protein glycosylation in vertebrate development. PMID:22988249

  14. Mesenchymal Stem Cells and Myeloid Derived Suppressor Cells: Common Traits in Immune Regulation

    PubMed Central

    Nikolaev, Alexander

    2016-01-01

    To protect host against immune-mediated damage, immune responses are tightly regulated. The regulation of immune responses is mediated by various populations of mature immune cells, such as T regulatory cells and B regulatory cells, but also by immature cells of different origins. In this review, we discuss regulatory properties and mechanisms whereby two distinct populations of immature cells, mesenchymal stem cells, and myeloid derived suppressor cells mediate immune regulation, focusing on their similarities, discrepancies, and potential clinical applications. PMID:27529074

  15. Epac Activation Regulates Human Mesenchymal Stem Cells Migration and Adhesion.

    PubMed

    Yu, Jiao-Le; Deng, Ruixia; Chung, Sookja K; Chan, Godfrey Chi-Fung

    2016-04-01

    How to enhance the homing of human mesenchymal stem cells (hMSCs) to the target tissues remains a clinical challenge nowadays. To overcome this barrier, the mechanism responsible for the hMSCs migration and engraftment has to be defined. Currently, the exact mechanism involved in migration and adhesion of hMSCs remains unknown. Exchange protein directly activated by cAMP (Epac), a novel protein discovered in cAMP signaling pathway, may have a potential role in regulating cells adhesion and migration by triggering the downstream Rap family signaling cascades. However, the exact role of Epac in cells homing is elusive. Our study evaluated the role of Epac in the homing of hMSCs. We confirmed that hMSCs expressed functional Epac and its activation enhanced the migration and adhesion of hMSCs significantly. The Epac activation was further found to be contributed directly to the chemotactic responses induced by stromal cell derived factor-1 (SDF-1) which is a known chemokine in regulating hMSCs homing. These findings suggested Epac is connected to the SDF-1 signaling cascades. In conclusion, our study revealed that Epac plays a role in hMSCs homing by promoting adhesion and migration. Appropriate manipulation of Epac may enhance the homing of hMSCs and facilitate their future clinical applications. Stem Cells 2016;34:948-959. PMID:26727165

  16. Epigenetic regulator Lid maintains germline stem cells through regulating JAK-STAT signaling pathway activity

    PubMed Central

    Tarayrah, Lama; Li, Yuping; Gan, Qiang; Chen, Xin

    2015-01-01

    ABSTRACT Signaling pathways and epigenetic mechanisms have both been shown to play essential roles in regulating stem cell activity. While the role of either mechanism in this regulation is well established in multiple stem cell lineages, how the two mechanisms interact to regulate stem cell activity is not as well understood. Here we report that in the Drosophila testis, an H3K4me3-specific histone demethylase encoded by little imaginal discs (lid) maintains germline stem cell (GSC) mitotic index and prevents GSC premature differentiation. Lid is required in germ cells for proper expression of the Stat92E transcription factor, the downstream effector of the Janus kinase signal transducer and activator of transcription (JAK-STAT) signaling pathway. Our findings support a germ cell autonomous role for the JAK-STAT pathway in maintaining GSCs and place Lid as an upstream regulator of this pathway. Our study provides new insights into the biological functions of a histone demethylase in vivo and sheds light on the interaction between epigenetic mechanisms and signaling pathways in regulating stem cell activities. PMID:26490676

  17. The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration.

    PubMed

    Karpowicz, Phillip; Perez, Jessica; Perrimon, Norbert

    2010-12-01

    Identification of the signaling pathways that control the proliferation of stem cells (SCs), and whether they act in a cell or non-cell autonomous manner, is key to our understanding of tissue homeostasis and cancer. In the adult Drosophila midgut, the Jun N-Terminal Kinase (JNK) pathway is activated in damaged enterocyte cells (ECs) following injury. This leads to the production of Upd cytokines from ECs, which in turn activate the Janus kinase (JAK)/Signal transducer and activator of transcription (STAT) pathway in Intestinal SCs (ISCs), stimulating their proliferation. In addition, the Hippo pathway has been recently implicated in the regulation of Upd production from the ECs. Here, we show that the Hippo pathway target, Yorkie (Yki), also plays a crucial and cell-autonomous role in ISCs. Activation of Yki in ISCs is sufficient to increase ISC proliferation, a process involving Yki target genes that promote division, survival and the Upd cytokines. We further show that prior to injury, Yki activity is constitutively repressed by the upstream Hippo pathway members Fat and Dachsous (Ds). These findings demonstrate a cell-autonomous role for the Hippo pathway in SCs, and have implications for understanding the role of this pathway in tumorigenesis and cancer stem cells. PMID:21098564

  18. Mesenchymal stem cell printing and process regulated cell properties.

    PubMed

    Snyder, Jessica; Rin Son, Ae; Hamid, Qudus; Wang, Chengyang; Lui, Yigong; Sun, Wei

    2015-12-01

    This topical review with original analysis and empirical results compares cell sensitivity to physical stress during printing. The objective is to frame a reproducible causation between printing environment and printed cell morphology, viability and phenotype stability. Content includes: (1) a topical review classifies the overlap between physical stress vectors during printing and mesenchymal stem cell sensitivities. (2) Original flow analysis frames the feasible range of stress duration and intensity during manufacturing. (3) Preliminary empirical results define cell properties as a function of minimum, mean and maximum stress conditions. The review and analytical characterization serve as an essential precursor to interpret surprising empirical results. Results identify key cell properties are stress-dependent and controllable based on printing process parameter selection. Printing's minimum stress condition preserves cell viability. The maximum stress increases heterogeneity of cell response, induces inelastic ultra-structural distortion of the cell membrane and chromatin, and increases necrotic subpopulations post-printing. The review, analysis and preliminary results support the feasibility of modulating cell properties during fabrication by prescriptively tuning the stress environment. The process control over cell morphology, health and the rate of differentiation is both a direct result of strain during printing and an in-direct result of increased distress signaling from necrotic sub-populations. PMID:26696405

  19. Nutritional regulation of stem and progenitor cells in Drosophila

    PubMed Central

    Shim, Jiwon; Gururaja-Rao, Shubha; Banerjee, Utpal

    2013-01-01

    Stem cells and their progenitors are maintained within a microenvironment, termed the niche, through local cell-cell communication. Systemic signals originating outside the niche also affect stem cell and progenitor behavior. This review summarizes studies that pertain to nutritional effects on stem and progenitor cell maintenance and proliferation in Drosophila. Multiple tissue types are discussed that utilize the insulin-related signaling pathway to convey nutritional information either directly to these progenitors or via other cell types within the niche. The concept of systemic control of these cell types is not limited to Drosophila and may be functional in vertebrate systems, including mammals. PMID:24255094

  20. Mechanics Regulates Fate Decisions of Human Embryonic Stem Cells

    PubMed Central

    Sun, Yubing; Villa-Diaz, Luis G.; Lam, Raymond H. W.; Chen, Weiqiang; Krebsbach, Paul H.; Fu, Jianping

    2012-01-01

    Research on human embryonic stem cells (hESCs) has attracted much attention given their great potential for tissue regenerative therapy and fundamental developmental biology studies. Yet, there is still limited understanding of how mechanical signals in the local cellular microenvironment of hESCs regulate their fate decisions. Here, we applied a microfabricated micromechanical platform to investigate the mechanoresponsive behaviors of hESCs. We demonstrated that hESCs are mechanosensitive, and they could increase their cytoskeleton contractility with matrix rigidity. Furthermore, rigid substrates supported maintenance of pluripotency of hESCs. Matrix mechanics-mediated cytoskeleton contractility might be functionally correlated with E-cadherin expressions in cell-cell contacts and thus involved in fate decisions of hESCs. Our results highlighted the important functional link between matrix rigidity, cellular mechanics, and pluripotency of hESCs and provided a novel approach to characterize and understand mechanotransduction and its involvement in hESC function. PMID:22615930

  1. Cord blood stem cells revert glioma stem cell EMT by down regulating transcriptional activation of Sox2 and Twist1

    PubMed Central

    Velpula, Kiran Kumar; Dasari, Venkata Ramesh; Tsung, Andrew J.; Dinh, Dzung H.; Rao, Jasti S.

    2011-01-01

    The dynamic nature of cancer stem cells that underlie metastasis or their ability to switch between different cellular identities, as in EMT and MET, has profound implications for cancer therapy. The functional relationship between molecules involved in cancer cell stemness and metastasis is not clear. In this regard, our studies on hGBM tissue grade IV specimens showed significant expression of Twist1 and Sox2, known mesenchymal and stemness related markers, respectively, indicating their association with glial tumor genesis and metastasis. The glioma stem cells obtained from CD133+ cells demonstrated increased expression of Twist1 and Sox2 accompanied by significant increase in the mesenchymal markers such as N-cadherin, vimentin and β-catenin. Our studies on glioma stem cells treatment with human umbilical cord blood derived- mesenchymal stem cells, showed down regulation of Twist1 and Sox2 proteins, apart from other mesenchymal stem cell markers. Based on the in vitro experiments and in vivo intracranial xenograft mouse model studies, we elucidated the potential therapeutic role of hUCBSC in suppressing glioma cancer stemness by the induction of MET. PMID:22184289

  2. Cord blood stem cells revert glioma stem cell EMT by down regulating transcriptional activation of Sox2 and Twist1.

    PubMed

    Velpula, Kiran Kumar; Dasari, Venkata Ramesh; Tsung, Andrew J; Dinh, Dzung H; Rao, Jasti S

    2011-12-01

    The dynamic nature of cancer stem cells that underlie metastasis or their ability to switch between different cellular identities, as in EMT and MET, has profound implications for cancer therapy. The functional relationship between molecules involved in cancer cell stemness and metastasis is not clear. In this regard, our studies on hGBM tissue grade IV specimens showed significant expression of Twist1 and Sox2, known mesenchymal and stemness related markers, respectively, indicating their association with glial tumor genesis and metastasis. The glioma stem cells obtained from CD133+ cells demonstrated increased expression of Twist1 and Sox2 accompanied by significant increase in the mesenchymal markers such as N-cadherin, vimentin and β-catenin. Our studies on glioma stem cells treatment with human umbilical cord blood derived- mesenchymal stem cells, showed down regulation of Twist1 and Sox2 proteins, apart from other mesenchymal stem cell markers. Based on the in vitro experiments and in vivo intracranial xenograft mouse model studies, we elucidated the potential therapeutic role of hUCBSC in suppressing glioma cancer stemness by the induction of MET. PMID:22184289

  3. Isolation, characterization, and molecular regulation of muscle stem cells

    PubMed Central

    Fukada, So-ichiro; Ma, Yuran; Ohtani, Takuji; Watanabe, Yoko; Murakami, Satoshi; Yamaguchi, Masahiko

    2013-01-01

    Skeletal muscle has great regenerative capacity which is dependent on muscle stem cells, also known as satellite cells. A loss of satellite cells and/or their function impairs skeletal muscle regeneration and leads to a loss of skeletal muscle power; therefore, the molecular mechanisms for maintaining satellite cells in a quiescent and undifferentiated state are of great interest in skeletal muscle biology. Many studies have demonstrated proteins expressed by satellite cells, including Pax7, M-cadherin, Cxcr4, syndecan3/4, and c-met. To further characterize satellite cells, we established a method to directly isolate satellite cells using a monoclonal antibody, SM/C-2.6. Using SM/C-2.6 and microarrays, we measured the genes expressed in quiescent satellite cells and demonstrated that Hesr3 may complement Hesr1 in generating quiescent satellite cells. Although Hesr1- or Hesr3-single knockout mice show a normal skeletal muscle phenotype, including satellite cells, Hesr1/Hesr3-double knockout mice show a gradual decrease in the number of satellite cells and increase in regenerative defects dependent on satellite cell numbers. We also observed that a mouse's genetic background affects the regenerative capacity of its skeletal muscle and have established a line of DBA/2-background mdx mice that has a much more severe phenotype than the frequently used C57BL/10-mdx mice. The phenotype of DBA/2-mdx mice also seems to depend on the function of satellite cells. In this review, we summarize the methodology of direct isolation, characterization, and molecular regulation of satellite cells based on our results. The relationship between the regenerative capacity of satellite cells and progression of muscular disorders is also summarized. In the last part, we discuss application of the accumulating scientific information on satellite cells to treatment of patients with muscular disorders. PMID:24273513

  4. Nanomaterials for regulating cancer and stem cell fate

    NASA Astrophysics Data System (ADS)

    Shah, Birju P.

    The realm of nanomedicine has grown exponentially over the past few decades. However, there are several obstacles that need to be overcome, prior to the wide-spread clinical applications of these nanoparticles, such as (i) developing well-defined nanoparticles of varying size, morphology and composition to enable various clinical applications; (ii) overcome various physiological barriers encountered in order to deliver the therapeutics to the target location; and (iii) real-time monitoring of the nano-therapeutics within the human body for tracking their uptake, localization and effect. Hence, this dissertation focuses on developing multimodal nanotechnology-based approaches to overcome the above-mentioned challenges and thus enable regulation of cancer and stem cell fate. The initial part of this dissertation describes the development of multimodal magnetic core-shell nanoparticles (MCNPs), comprised of a highly magnetic core surrounded by a thin gold shell, thus combining magnetic and plasmonic properties. These nanoparticles were utilized for mainly two applications: (i) Magnetically-facilitated delivery of siRNA and plasmid DNA for effective stem cell differentiation and imaging and (ii) Combined hyperthermia and targeted delivery of a mitochondria-targeting peptide for enhancing apoptosis in cancer cells. The following part of this dissertation presents the generation of a multi-functional cyclodextrin-conjugated polymeric delivery platform (known as DexAMs), for co-delivery of anticancer drugs and siRNAs in a target-specific manner to brain tumor cells. This combined delivery of chemotherapeutics and siRNA resulted in a synergistic effect on the apoptosis of brain tumor cells, as compared to the individual treatments. The final part of this thesis presents development of stimuli-responsive uorescence resonance energy transfer (FRET)-based mesoporous silica nanoparticles for real-time monitoring of drug release in cells. The stimuli-responsive behavior of

  5. Endoplasmic reticulum stress regulation in hematopoietic stem cells.

    PubMed

    Miharada, Kenichi

    2016-08-01

    Adult hematopoietic stem cells (HSCs) reside in bone marrow and are maintained in a dormant state within a special microenvironment, their so-called "niche". Detaching from the niche induces cell cycle progression, resulting in a reduction of the reconstitution capacity of HSCs. In contrast, fetal liver HSCs actively divide without losing their stem cell potentials. Thus, it has been unclear what types of cellular responses and metabolic changes occur in growing HSCs. We previously discovered that HSCs express relatively low levels of endoplasmic reticulum (ER) chaperone proteins governing protein folding, making HSCs vulnerable to an elevation of stress signals caused by accumulation of un-/misfolded proteins (ER stress) upon in vitro culture. Interestingly, fetal liver HSCs do not show ER stress elevation despite unchanged levels of chaperone proteins. Our latest studies utilizing multiple mouse models revealed that in the fetal liver bile acids as chemical chaperones play a key role supporting the protein folding which results in the suppression of ER stress induction. These findings highlight the importance of ER stress regulations in hematopoiesis. PMID:27599423

  6. Signal integration by Ca2+ regulates intestinal stem cell activity

    PubMed Central

    Deng, Hansong; Gerencser, Akos A.; Jasper, Heinrich

    2015-01-01

    Summary Somatic stem cells (SCs) maintain tissue homeostasis by dynamically adjusting proliferation and differentiation in response to stress and metabolic cues. Here, we identify Ca2+ signaling as a central regulator of intestinal SC (ISC) activity in Drosophila. We find that dietary L-glutamate stimulates ISC division and gut growth. The metabotropic glutamate receptor (mGluR) is required in ISCs for this response and for an associated modulation of cytosolic Ca2+ oscillations that results in sustained high cytosolic Ca2+ concentrations. High cytosolic Ca2+ induces ISC proliferation by regulating Calcineurin and CREB - regulated transcriptional co-activator (CRTC). In response to a wide range of dietary and stress stimuli, ISCs reversibly transition between Ca2+ oscillation states that represent poised or activated modes of proliferation, respectively. We propose that the dynamic regulation of intracellular Ca2+ levels allows effective integration of diverse mitogenic signals in ISCs to tailor their proliferative activity to the needs of the tissue. PMID:26633624

  7. GATA-1 directly regulates Nanog in mouse embryonic stem cells

    SciTech Connect

    Li, Wen-Zhong; Ai, Zhi-Ying; Wang, Zhi-Wei; Chen, Lin-Lin; Guo, Ze-Kun; Zhang, Yong

    2015-09-25

    Nanog safeguards pluripotency in mouse embryonic stem cells (mESCs). Insight into the regulation of Nanog is important for a better understanding of the molecular mechanisms that control pluripotency of mESCs. In a silico analysis, we identify four GATA-1 putative binding sites in Nanog proximal promoter. The Nanog promoter activity can be significantly repressed by ectopic expression of GATA-1 evidenced by a promoter reporter assay. Mutation studies reveal that one of the four putative binding sites counts for GATA-1 repressing Nanog promoter activity. Direct binding of GATA-1 on Nanog proximal promoter is confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation. Our data provide new insights into the expanded regulatory circuitry that coordinates Nanog expression. - Highlights: • The Nanog proximal promoter conceives functional element for GATA-1. • GATA-1 occupies the Nanog proximal promoter in vitro and in vivo. • GATA-1 transcriptionally suppresses Nanog.

  8. Regulation of seminiferous tubule-associated stem Leydig cells in adult rat testes.

    PubMed

    Li, Xiaoheng; Wang, Zhao; Jiang, Zhenming; Guo, Jingjing; Zhang, Yuxi; Li, Chenhao; Chung, Jinyong; Folmer, Janet; Liu, June; Lian, Qingquan; Ge, Renshan; Zirkin, Barry R; Chen, Haolin

    2016-03-01

    Testicular Leydig cells are the primary source of testosterone in males. Adult Leydig cells have been shown to arise from stem cells present in the neonatal testis. Once established, adult Leydig cells turn over only slowly during adult life, but when these cells are eliminated experimentally from the adult testis, new Leydig cells rapidly reappear. As in the neonatal testis, stem cells in the adult testis are presumed to be the source of the new Leydig cells. As yet, the mechanisms involved in regulating the proliferation and differentiation of these stem cells remain unknown. We developed a unique in vitro system of cultured seminiferous tubules to assess the ability of factors from the seminiferous tubules to regulate the proliferation of the tubule-associated stem cells, and their subsequent entry into the Leydig cell lineage. The proliferation of the stem Leydig cells was stimulated by paracrine factors including Desert hedgehog (DHH), basic fibroblast growth factor (FGF2), platelet-derived growth factor (PDGF), and activin. Suppression of proliferation occurred with transforming growth factor β (TGF-β). The differentiation of the stem cells was regulated positively by DHH, lithium- induced signaling, and activin, and negatively by TGF-β, PDGFBB, and FGF2. DHH functioned as a commitment factor, inducing the transition of stem cells to the progenitor stage and thus into the Leydig cell lineage. Additionally, CD90 (Thy1) was found to be a unique stem cell surface marker that was used to obtain purified stem cells by flow cytometry. PMID:26929346

  9. Regulation of the adrenocortical stem cell niche: implications for disease

    PubMed Central

    Walczak, Elisabeth M.; Hammer, Gary D.

    2015-01-01

    Stem cells are endowed with the potential for self-renewal and multipotency. Pluripotent embryonic stem cells have an early role in the formation of the three germ layers (ectoderm, mesoderm and endoderm), whereas adult tissue stem cells and progenitor cells are critical mediators of organ homeostasis. The adrenal cortex is an exceptionally dynamic endocrine organ that is homeostatically maintained by paracrine and endocrine signals throughout postnatal life. In the past decade, much has been learned about the stem and progenitor cells of the adrenal cortex and the multiple roles that these cell populations have in normal development and homeostasis of the adrenal gland and in adrenal diseases. In this Review, we discuss the evidence for the presence of adrenocortical stem cells, as well as the various signalling molecules and transcriptional networks that are critical for the embryological establishment and postnatal maintenance of this vital population of cells. The implications of these pathways and cells in the pathophysiology of disease are also addressed. PMID:25287283

  10. Professional Regulation: A Potentially Valuable Tool in Responding to “Stem Cell Tourism”

    PubMed Central

    Zarzeczny, Amy; Caulfield, Timothy; Ogbogu, Ubaka; Bell, Peter; Crooks, Valorie A.; Kamenova, Kalina; Master, Zubin; Rachul, Christen; Snyder, Jeremy; Toews, Maeghan; Zoeller, Sonja

    2014-01-01

    The growing international market for unproven stem cell-based interventions advertised on a direct-to-consumer basis over the internet (“stem cell tourism”) is a source of concern because of the risks it presents to patients as well as their supporters, domestic health care systems, and the stem cell research field. Emerging responses such as public and health provider-focused education and national regulatory efforts are encouraging, but the market continues to grow. Physicians play a number of roles in the stem cell tourism market and, in many jurisdictions, are members of a regulated profession. In this article, we consider the use of professional regulation to address physician involvement in stem cell tourism. Although it is not without its limitations, professional regulation is a potentially valuable tool that can be employed in response to problematic types of physician involvement in the stem cell tourism market. PMID:25241736

  11. Mathematical model of adult stem cell regeneration with cross-talk between genetic and epigenetic regulation

    PubMed Central

    Lei, Jinzhi; Levin, Simon A.; Nie, Qing

    2014-01-01

    Adult stem cells, which exist throughout the body, multiply by cell division to replenish dying cells or to promote regeneration to repair damaged tissues. To perform these functions during the lifetime of organs or tissues, stem cells need to maintain their populations in a faithful distribution of their epigenetic states, which are susceptible to stochastic fluctuations during each cell division, unexpected injury, and potential genetic mutations that occur during many cell divisions. However, it remains unclear how the three processes of differentiation, proliferation, and apoptosis in regulating stem cells collectively manage these challenging tasks. Here, without considering molecular details, we propose a genetic optimal control model for adult stem cell regeneration that includes the three fundamental processes, along with cell division and adaptation based on differential fitnesses of phenotypes. In the model, stem cells with a distribution of epigenetic states are required to maximize expected performance after each cell division. We show that heterogeneous proliferation that depends on the epigenetic states of stem cells can improve the maintenance of stem cell distributions to create balanced populations. A control strategy during each cell division leads to a feedback mechanism involving heterogeneous proliferation that can accelerate regeneration with less fluctuation in the stem cell population. When mutation is allowed, apoptosis evolves to maximize the performance during homeostasis after multiple cell divisions. The overall results highlight the importance of cross-talk between genetic and epigenetic regulation and the performance objectives during homeostasis in shaping a desirable heterogeneous distribution of stem cells in epigenetic states. PMID:24501127

  12. Role of osteoclasts in regulating hematopoietic stem and progenitor cells

    PubMed Central

    Miyamoto, Takeshi

    2013-01-01

    Bone marrow (BM) cavities are utilized for hematopoiesis and to maintain hematopoietic stem cells (HSCs). HSCs have the ability to self-renew as well as to differentiate into multiple different hematopoietic lineage cells. HSCs produce their daughter cells throughout the lifespan of individuals and thus, maintaining HSCs is crucial for individual life. BM cavities provide a specialized microenvironment termed “niche” to support HSCs. Niches are composed of various types of cells such as osteoblasts, endothelial cells and reticular cells. Osteoclasts are unique cells which resorb bones and are required for BM cavity formation. Loss of osteoclast function or differentiation results in inhibition of BM cavity formation, an osteopetrotic phenotype. Osteoclasts are also reportedly required for hematopoietic stem and progenitor cell (HSPC) mobilization to the periphery from BM cavities. Thus, lack of osteoclasts likely results in inhibition of HSC maintenance and HSPC mobilization. However, we found that osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization by using three independent osteoclast-less animal models. In this review, I will discuss the roles of osteoclasts in hematopoietic stem cell maintenance and mobilization. PMID:24147255

  13. Cell–cell interaction networks regulate blood stem and progenitor cell fate

    PubMed Central

    Kirouac, Daniel C; Madlambayan, Gerard J; Yu, Mei; Sykes, Edward A; Ito, Caryn; Zandstra, Peter W

    2009-01-01

    Communication networks between cells and tissues are necessary for homeostasis in multicellular organisms. Intercellular (between cell) communication networks are particularly relevant in stem cell biology, as stem cell fate decisions (self-renewal, proliferation, lineage specification) are tightly regulated based on physiological demand. We have developed a novel mathematical model of blood stem cell development incorporating cell-level kinetic parameters as functions of secreted molecule-mediated intercellular networks. By relation to quantitative cellular assays, our model is capable of predictively simulating many disparate features of both normal and malignant hematopoiesis, relating internal parameters and microenvironmental variables to measurable cell fate outcomes. Through integrated in silico and experimental analyses, we show that blood stem and progenitor cell fate is regulated by cell–cell feedback, and can be controlled non-cell autonomously by dynamically perturbing intercellular signalling. We extend this concept by demonstrating that variability in the secretion rates of the intercellular regulators is sufficient to explain heterogeneity in culture outputs, and that loss of responsiveness to cell–cell feedback signalling is both necessary and sufficient to induce leukemic transformation in silico. PMID:19638974

  14. Integrin-linked kinase regulates the niche of quiescent epidermal stem cells

    PubMed Central

    Morgner, Jessica; Ghatak, Sushmita; Jakobi, Tobias; Dieterich, Christoph; Aumailley, Monique; Wickström, Sara A.

    2015-01-01

    Stem cells reside in specialized niches that are critical for their function. Quiescent hair follicle stem cells (HFSCs) are confined within the bulge niche, but how the molecular composition of the niche regulates stem cell behaviour is poorly understood. Here we show that integrin-linked kinase (ILK) is a key regulator of the bulge extracellular matrix microenvironment, thereby governing the activation and maintenance of HFSCs. ILK mediates deposition of inverse laminin (LN)-332 and LN-511 gradients within the basement membrane (BM) wrapping the hair follicles. The precise BM composition tunes activities of Wnt and transforming growth factor-β pathways and subsequently regulates HFSC activation. Notably, reconstituting an optimal LN microenvironment restores the altered signalling in ILK-deficient cells. Aberrant stem cell activation in ILK-deficient epidermis leads to increased replicative stress, predisposing the tissue to carcinogenesis. Overall, our findings uncover a critical role for the BM niche in regulating stem cell activation and thereby skin homeostasis. PMID:26349061

  15. Ready, aim, shoot: stem cell regulation of the shoot apical meristem.

    PubMed

    Soyars, Cara L; James, Sean R; Nimchuk, Zachary L

    2016-02-01

    Plant shoot meristems contain stem cells that are continuously renewed to replenish cells that exit and differentiate during lateral organ formation. Complex cell-to-cell signaling systems balance division and differentiation. These center on ligand-receptor networks, hormone pathways, and transcriptional regulators that function in an integrated manner. In this review, we aim to highlight new findings in shoot stem cell regulation across species. PMID:26803586

  16. DAZL regulates Tet1 translation in murine embryonic stem cells

    PubMed Central

    Welling, Maaike; Chen, Hsu-Hsin; Muñoz, Javier; Musheev, Michael U; Kester, Lennart; Junker, Jan Philipp; Mischerikow, Nikolai; Arbab, Mandana; Kuijk, Ewart; Silberstein, Lev; Kharchenko, Peter V; Geens, Mieke; Niehrs, Christof; van de Velde, Hilde; van Oudenaarden, Alexander; Heck, Albert JR; Geijsen, Niels

    2015-01-01

    Embryonic stem cell (ESC) cultures display a heterogeneous gene expression profile, ranging from a pristine naïve pluripotent state to a primed epiblast state. Addition of inhibitors of GSK3β and MEK (so-called 2i conditions) pushes ESC cultures toward a more homogeneous naïve pluripotent state, but the molecular underpinnings of this naïve transition are not completely understood. Here, we demonstrate that DAZL, an RNA-binding protein known to play a key role in germ-cell development, marks a subpopulation of ESCs that is actively transitioning toward naïve pluripotency. Moreover, DAZL plays an essential role in the active reprogramming of cytosine methylation. We demonstrate that DAZL associates with mRNA of Tet1, a catalyst of 5-hydroxylation of methyl-cytosine, and enhances Tet1 mRNA translation. Overexpression of DAZL in heterogeneous ESC cultures results in elevated TET1 protein levels as well as increased global hydroxymethylation. Conversely, null mutation of Dazl severely stunts 2i-mediated TET1 induction and hydroxymethylation. Our results provide insight into the regulation of the acquisition of naïve pluripotency and demonstrate that DAZL enhances TET1-mediated cytosine hydroxymethylation in ESCs that are actively reprogramming to a pluripotent ground state. PMID:26077710

  17. Epigenetic Regulation of Epidermal Stem Cell Biomarkers and Their Role in Wound Healing

    PubMed Central

    Saldanha, Sabita N.; Royston, Kendra J.; Udayakumar, Neha; Tollefsbol, Trygve O.

    2015-01-01

    As an actively renewable tissue, changes in skin architecture are subjected to the regulation of stem cells that maintain the population of cells responsible for the formation of epidermal layers. Stems cells retain their self-renewal property and express biomarkers that are unique to this population. However, differential regulation of the biomarkers can initiate the pathway of terminal cell differentiation. Although, pockets of non-clarity in stem cell maintenance and differentiation in skin still exist, the influence of epigenetics in epidermal stem cell functions and differentiation in skin homeostasis and wound healing is clearly evident. The focus of this review is to discuss the epigenetic regulation of confirmed and probable epidermal stem cell biomarkers in epidermal stratification of normal skin and in diseased states. The role of epigenetics in wound healing, especially in diseased states of diabetes and cancer, will also be conveyed. PMID:26712738

  18. The topographical regulation of embryonic stem cell differentiation.

    PubMed Central

    Murray, Patricia; Edgar, David

    2004-01-01

    The potential use of pluripotent stem cells for tissue repair or replacement is now well recognized. While the ability of embryonic stem (ES) cells to differentiate into all cells of the body is undisputed, their use is currently restricted by our limited knowledge of the mechanisms controlling their differentiation. This review discusses recent work by ourselves and others investigating the intercellular signalling events that occur within aggregates of mouse ES cells. The work illustrates that the processes of ES cell differentiation, epithelialization and programmed cell death are dependent upon their location within the aggregates and coordinated by the extracellular matrix. Establishment of the mechanisms involved in these events is not only of use for the manipulation of ES cells themselves, but it also throws light on the ways in which differentiation is coordinated during embryogenesis. PMID:15306413

  19. Wnt/{beta}-catenin signaling regulates cancer stem cells in lung cancer A549 cells

    SciTech Connect

    Teng, Ying; Wang, Xiuwen; Wang, Yawei; Ma, Daoxin

    2010-02-12

    Wnt/{beta}-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that {beta}-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of {beta}-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of {beta}-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/{beta}-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.

  20. Hypoxia-Regulated Delta-like 1 Homologue Enhances Cancer Cell Stemness and Tumorigenicity

    PubMed Central

    Kim, Yuri; Lin, Qun; Zelterman, Daniel; Yun, Zhong

    2010-01-01

    Reduced oxygenation, or hypoxia, inhibits differentiation and facilitates stem cell maintenance. Hypoxia commonly occurs in solid tumors and promotes malignant progression. Hypoxic tumors are aggressive and exhibit stem cell–like characteristics. It remains unclear, however, whether and how hypoxia regulates cancer cell differentiation and maintains cancer cell stemness. Here, we show that hypoxia increases the expression of the stem cell gene DLK1, or delta-like 1 homologue (Drosophila), in neuronal tumor cells. Inhibition of DLK1 enhances spontaneous differentiation, decreases clonogenicity, and reduces in vivo tumor growth. Overexpression of DLK1 inhibits differentiation and enhances tumorigenic potentials. We further show that the DLK1 cytoplasmic domain, especially Tyrosine339 and Serine355, is required for maintaining both clonogenicity and tumorigenicity. Because elevated DLK1 expression is found in many tumor types, our observations suggest that hypoxia and DLK1 may constitute an important stem cell pathway for the regulation of cancer stem cell–like functionality and tumorigenicity. PMID:19934310

  1. Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing.

    PubMed

    Chandel, Navdeep S; Jasper, Heinrich; Ho, Theodore T; Passegué, Emmanuelle

    2016-08-01

    Many tissues and organ systems in metazoans have the intrinsic capacity to regenerate, which is driven and maintained largely by tissue-resident somatic stem cell populations. Ageing is accompanied by a deregulation of stem cell function and a decline in regenerative capacity, often resulting in degenerative diseases. The identification of strategies to maintain stem cell function and regulation is therefore a promising avenue to allay a wide range of age-related diseases. Studies in various organisms have revealed a central role for metabolic pathways in the regulation of stem cell function. Ageing is associated with extensive metabolic changes, and interventions that influence cellular metabolism have long been recognized as robust lifespan-extending measures. In this Review, we discuss recent advances in our understanding of the metabolic control of stem cell function, and how stem cell metabolism relates to homeostasis and ageing. PMID:27428307

  2. Stem cell differentiation increases membrane-actin adhesion regulating cell blebability, migration and mechanics

    PubMed Central

    Sliogeryte, Kristina; Thorpe, Stephen D.; Lee, David A.; Botto, Lorenzo; Knight, Martin M.

    2014-01-01

    This study examines how differentiation of human mesenchymal stem cells regulates the interaction between the cell membrane and the actin cortex controlling cell behavior. Micropipette aspiration was used to measure the pressure required for membrane-cortex detachment which increased from 0.15 kPa in stem cells to 0.71 kPa following chondrogenic differentiation. This effect was associated with reduced susceptibility to mechanical and osmotic bleb formation, reduced migration and an increase in cell modulus. Theoretical modelling of bleb formation demonstrated that the increased stiffness of differentiated cells was due to the increased membrane-cortex adhesion. Differentiated cells exhibited greater F-actin density and slower actin remodelling. Differentiated cells also expressed greater levels of the membrane-cortex ezrin, radixin, moeisin (ERM) linker proteins which was responsible for the reduced blebability, as confirmed by transfection of stem cells with dominant active ezrin-T567D-GFP. This study demonstrates that stem cells have an inherently weak membrane-cortex adhesion which increases blebability thereby regulating cell migration and stiffness. PMID:25471686

  3. Slit/Robo signaling regulates cell fate decisions in the intestinal stem cell lineage of Drosophila.

    PubMed

    Biteau, Benoît; Jasper, Heinrich

    2014-06-26

    In order to maintain tissue homeostasis, cell fate decisions within stem cell lineages have to respond to the needs of the tissue. This coordination of lineage choices with regenerative demand remains poorly characterized. Here, we identify a signal from enteroendocrine cells (EEs) that controls lineage specification in the Drosophila intestine. We find that EEs secrete Slit, a ligand for the Robo2 receptor in intestinal stem cells (ISCs) that limits ISC commitment to the endocrine lineage, establishing negative feedback control of EE regeneration. Furthermore, we show that this lineage decision is made within ISCs and requires induction of the transcription factor Prospero in ISCs. Our work identifies a function for the conserved Slit/Robo pathway in the regulation of adult stem cells, establishing negative feedback control of ISC lineage specification as a critical strategy to preserve tissue homeostasis. Our results further amend the current understanding of cell fate commitment within the Drosophila ISC lineage. PMID:24931602

  4. Slit/Robo signaling regulates cell fate decisions in the intestinal stem cell lineage of Drosophila

    PubMed Central

    Biteau, Benoît; Jasper, Heinrich

    2014-01-01

    To maintain tissue homeostasis, cell fate decisions within stem cell lineages have to respond to the needs of the tissue. This coordination of lineage choices with regenerative demand remains poorly characterized. Here we identify a signal from enteroendocrine cells (EEs) that controls lineage specification in the Drosophila intestine. We find that EEs secrete Slit, a ligand for the Robo2 receptor in stem cells (ISCs) that limits ISC commitment to the endocrine lineage, establishing negative feedback control of EE regeneration. We further show that this lineage decision is made within ISCs and requires induction of the transcription factor Prospero in ISCs. Our work identifies a new function for the conserved Slit/Robo pathway in the regulation of adult stem cells, establishing negative feedback control of ISC lineage specification as a critical strategy to preserve tissue homeostasis. Our results further amend the current understanding of cell fate commitment within the Drosophila ISC lineage. PMID:24931602

  5. The Retinoblastoma pathway regulates stem cell proliferation in freshwater planarians.

    PubMed

    Zhu, Shu Jun; Pearson, Bret J

    2013-01-15

    Freshwater planarians are flatworms of the Lophotrochozoan superphylum and are well known for their regenerative abilities, which rely on a large population of pluripotent adult stem cells. However, the mechanisms by which planarians maintain a precise population of adult stem cells while balancing proliferation and cell death, remain to be elucidated. Here we have identified, characterized, and functionally tested the core Retinoblastoma (Rb) pathway components in planarian adult stem cell biology. The Rb pathway is an ancient and conserved mechanism of proliferation control from plants to animals and is composed of three core components: an Rb protein, and a transcription factor heterodimer of E2F and DP proteins. Although the planarian genome contains all components of the Rb pathway, we found that they have undergone gene loss from the ancestral state, similar to other species in their phylum. The single Rb homolog (Smed-Rb) was highly expressed in planarian stem cells and was required for stem cell maintenance, similar to the Rb-homologs p107 and p130 in vertebrates. We show that planarians and their phylum have undergone the most severe reduction in E2F genes observed thus far, and the single remaining E2F was predicted to be a repressive-type E2F (Smed-E2F4-1). Knockdown of either Smed-E2F4-1 or its dimerization partner Dp (Smed-Dp) by RNAi resulted in temporary hyper-proliferation. Finally, we showed that known Rb-interacting genes in other systems, histone deacetylase 1 and cyclinD (Smed-HDAC1; Smed-cycD), were similar to Rb in expression and phenotypes when knocked down by RNAi, suggesting that these established interactions with Rb may also be conserved in planarians. Together, these results showed that planarians use the conserved components of the Rb tumor suppressor pathway to control proliferation and cell survival. PMID:23123964

  6. p73 regulates maintenance of neural stem cell

    SciTech Connect

    Agostini, Massimiliano; Tucci, Paola; Biochemistry Laboratory, IDI-IRCCS, C Chen, Hailan; Knight, Richard A.; Bano, Daniele; Nicotera, Pierluigi; McKeon, Frank; Melino, Gerry; Biochemistry Laboratory, IDI-IRCCS, C/O University of Rome 'Tor Vergata', 00133 Rome

    2010-12-03

    Research highlights: {yields} TAp73 is expressed in neural stem cells and its expression increases following their differentiation. {yields} Neural stem cells from p73 null mice have a reduced proliferative potential. {yields} p73-deficient neural stem cells show reduced expression of members of the Sox-2 and Notch gene families. {yields} Neurogenic areas are reduced in the brains of embryonic and adult p73-/- mice. -- Abstract: p73, a member of the p53 family, is a transcription factor that plays a key role in many biological processes. In the present study, we show that TAp73 is expressed in neural stem cells (NSC) and its expression increases following their differentiation. NSC from p73 null mice have a reduced proliferative potential, together with reduced expression of members of the Sox-2 and Notch gene families known to be important for NSC proliferation. In parallel with this in vitro data, the width of the neurogenic areas was reduced in the brains of embryonic and adult p73-/- mice. These data suggest that p73, and in particular TAp73, is important for maintenance of the NSC pool.

  7. Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate

    PubMed Central

    Vazquez-Martin, Alejandro; Van den Haute, Chris; Cufí, Sílvia; Corominas-Faja, Bruna; Cuyàs, Elisabet; Lopez-Bonet, Eugeni; Rodriguez-Gallego, Esther; Fernández-Arroyo, Salvador; Joven, Jorge; Baekelandt, Veerle; Menendez, Javier A.

    2016-01-01

    Our understanding on how selective mitochondrial autophagy, or mitophagy, can sustain the archetypal properties of stem cells is incomplete. PTEN-induced putative kinase 1 (PINK1) plays a key role in the maintenance of mitochondrial morphology and function and in the selective degradation of damaged mitochondria by mitophagy. Here, using embryonic fibroblasts from PINK1 gene-knockout (KO) mice, we evaluated whether mitophagy is a causal mechanism for the control of cell-fate plasticity and maintenance of pluripotency. Loss of PINK1-dependent mitophagy was sufficient to dramatically decrease the speed and efficiency of induced pluripotent stem cell (iPSC) reprogramming. Mitophagy-deficient iPSC colonies, which were characterized by a mixture of mature and immature mitochondria, seemed unstable, with a strong tendency to spontaneously differentiate and form heterogeneous populations of cells. Although mitophagy-deficient iPSC colonies normally expressed pluripotent markers, functional monitoring of cellular bioenergetics revealed an attenuated glycolysis in mitophagy-deficient iPSC cells. Targeted metabolomics showed a notable alteration in numerous glycolysis- and TCA-related metabolites in mitophagy-deficient iPSC cells, including a significant decrease in the intracellular levels of α-ketoglutarate -a key suppressor of the differentiation path in stem cells. Mitophagy-deficient iPSC colonies exhibited a notably reduced teratoma-initiating capacity, but fully retained their pluripotency and multi-germ layer differentiation capacity in vivo. PINK1-dependent mitophagy pathway is an important mitochondrial switch that determines the efficiency and quality of somatic reprogramming. Mitophagy-driven mitochondrial rejuvenation might contribute to the ability of iPSCs to suppress differentiation by directing bioenergetic transition and metabolome remodeling traits. These findings provide new insights into how mitophagy might influence the stem cell decisions to retain

  8. Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate.

    PubMed

    Vazquez-Martin, Alejandro; Van den Haute, Chris; Cufí, Sílvia; Corominas-Faja, Bruna; Cuyàs, Elisabet; Lopez-Bonet, Eugeni; Rodriguez-Gallego, Esther; Fernández-Arroyo, Salvador; Joven, Jorge; Baekelandt, Veerle; Menendez, Javier A

    2016-07-01

    Our understanding on how selective mitochondrial autophagy, or mitophagy, can sustain the archetypal properties of stem cells is incomplete. PTEN-induced putative kinase 1 (PINK1) plays a key role in the maintenance of mitochondrial morphology and function and in the selective degradation of damaged mitochondria by mitophagy. Here, using embryonic fibroblasts fromPINK1 gene-knockout (KO) mice, we evaluated whether mitophagy is a causal mechanism for the control of cell-fate plasticity and maintenance of pluripotency. Loss of PINK1-dependent mitophagy was sufficient to dramatically decrease the speed and efficiency of induced pluripotent stem cell (iPSC) reprogramming. Mitophagy-deficient iPSC colonies, which were characterized by a mixture of mature and immature mitochondria, seemed unstable, with a strong tendency to spontaneously differentiate and form heterogeneous populations of cells. Although mitophagy-deficient iPSC colonies normally expressed pluripotent markers, functional monitoring of cellular bioenergetics revealed an attenuated glycolysis in mitophagy-deficient iPSC cells. Targeted metabolomics showed a notable alteration in numerous glycolysis- and TCA-related metabolites in mitophagy-deficient iPSC cells, including a significant decrease in the intracellular levels of α-ketoglutarate -a key suppressor of the differentiation path in stem cells. Mitophagy-deficient iPSC colonies exhibited a notably reduced teratoma-initiating capacity, but fully retained their pluripotency and multi-germ layer differentiation capacity in vivo. PINK1-dependent mitophagy pathway is an important mitochondrial switch that determines the efficiency and quality of somatic reprogramming. Mitophagy-driven mitochondrial rejuvenation might contribute to the ability of iPSCs to suppress differentiation by directing bioenergetic transition and metabolome remodeling traits. These findings provide new insights into how mitophagy might influence the stem cell decisions to retain

  9. Microscale technologies for regulating human stem cell differentiation.

    PubMed

    Cimetta, Elisa; Vunjak-Novakovic, Gordana

    2014-09-01

    During development and regeneration, tissues emerge from coordinated sequences of stem cell renewal, specialization, and assembly that are orchestrated by cascades of regulatory factors. This complex in vivo milieu, while necessary to fully recapitulate biology and to properly engineer progenitor cells, is difficult to replicate in vitro. We are just starting to fully realize the importance of the entire context of cell microenvironment-the other cells, three-dimensional matrix, molecular and physical signals. Bioengineered environments that combine tissue-specific transport and signaling are critical to study cellular responses at biologically relevant scales and in settings predictive of human condition. We therefore developed microbioreactors that couple the application of fast dynamic changes in environmental signals with versatile, high-throughput operation and imaging capability. Our base device is a microfluidic platform with an array of microwells containing cells or tissue constructs that are exposed to stable concentration gradients. Mathematical modeling of flow and mass transport can predict the shape of these gradients and the kinetic changes in local concentrations. A single platform, the size of a microscope slide, contains up to 120 biological samples. As an example of application, we describe studies of cell fate specification and mesodermal lineage commitment in human embryonic stem cells and induced pluripotent stem cells. The embryoid bodies formed from these cells were subjected to single and multiple concentration gradients of Wnt3a, Activin A, bone morphogenic protein 4 (BMP4), and their inhibitors, and the gene expression profiles were correlated to the concentration gradients of morphogens to identify the exact conditions for mesodermal differentiation. PMID:24737735

  10. The role of CD44 in fetal and adult hematopoietic stem cell regulation

    PubMed Central

    Cao, Huimin; Heazlewood, Shen Y.; Williams, Brenda; Cardozo, Daniela; Nigro, Julie; Oteiza, Ana; Nilsson, Susan K.

    2016-01-01

    Throughout development, hematopoietic stem cells migrate to specific microenvironments, where their fate is, in part, extrinsically controlled. CD44 standard as a member of the cell adhesion molecule family is extensively expressed within adult bone marrow and has been previously reported to play important roles in adult hematopoietic regulation via CD44 standard-ligand interactions. In this manuscript, CD44 expression and function are further assessed and characterized on both fetal and adult hematopoietic stem cells. Using a CD44−/− mouse model, conserved functional roles of CD44 are revealed throughout development. CD44 is critical in the maintenance of hematopoietic stem and progenitor pools, as well as in hematopoietic stem cell migration. CD44 expression on hematopoietic stem cells as well as other hematopoietic cells within the bone marrow microenvironment is important in the homing and lodgment of adult hematopoietic stem cells isolated from the bone/bone marrow interface. CD44 is also involved in fetal hematopoietic stem cell migration out of the liver, via a process involving stromal cell-derived factor-1α. The absence of CD44 in neonatal bone marrow has no impact on the size of the long-term reconstituting hematopoietic stem cell pool, but results in an enhanced long-term engraftment potential of hematopoietic stem cells. PMID:26546504

  11. [BMAL1 gene regulates the osteogenic differentiation of bone marrow mesenchymal stem cells].

    PubMed

    Xiaoguang, Li; Xiao-long, Guo; Bin, Guo

    2016-06-01

    Periodontitis is a chronic infective disease characterized as the destruction of the supporting tissues of the teeth. Bone marrow mesenchymal stem cells, which are ideal adult stem cells for the regeneration of supporting tissues, may play important roles in restoring the structure and function of the periodontium and in promoting the treatment of periodontal disease. As a consequence, the characteristics, especially osteogenic differentiation mechanism, of these stem cells have been extensively investigated. The regulation of the physiological behavior of these stem cells is associated with BMAL1 gene. This gene is a potential treatment target for periodontal disease, although the specific mechanism remains inconclusive. This study aimed to describe the characteristics of BMAL1 gene and its ability to regulate the osteogenic differentiation of stem cells. PMID:27526460

  12. Regulation of nonsmall-cell lung cancer stem cell like cells by neurotransmitters and opioid peptides.

    PubMed

    Banerjee, Jheelam; Papu John, Arokya M S; Schuller, Hildegard M

    2015-12-15

    Nonsmall-cell lung cancer (NSCLC) is the leading type of lung cancer and has a poor prognosis. We have shown that chronic stress promoted NSCLC xenografts in mice via stress neurotransmitter-activated cAMP signaling downstream of beta-adrenergic receptors and incidental beta-blocker therapy was reported to improve clinical outcomes in NSCLC patients. These findings suggest that psychological stress promotes NSCLC whereas pharmacologically or psychologically induced decreases in cAMP may inhibit NSCLC. Cancer stem cells are thought to drive the development, progression and resistance to therapy of NSCLC. However, their potential regulation by stress neurotransmitters has not been investigated. In the current study, epinephrine increased the number of cancer stem cell like cells (CSCs) from three NSCLC cell lines in spheroid formation assays while enhancing intracellular cAMP and the stem cell markers sonic hedgehog (SHH), aldehyde dehydrogenase-1 (ALDH-1) and Gli1, effects reversed by GABA or dynorphin B via Gαi -mediated inhibition of cAMP formation. The growth of NSCLC xenografts in a mouse model of stress reduction was significantly reduced as compared with mice maintained under standard conditions. Stress reduction reduced serum levels of corticosterone, norepinephrine and epinephrine while the inhibitory neurotransmitter γ-aminobutyric acid (GABA) and opioid peptides increased. Stress reduction significantly reduced cAMP, VEGF, p-ERK, p-AKT, p-CREB, p-SRc, SHH, ALDH-1 and Gli1 in xenograft tissues whereas cleaved caspase-3 and p53 were induced. We conclude that stress neurotransmitters activate CSCs in NSCLC via multiple cAMP-mediated pathways and that pharmacologically or psychologically induced decreases in cAMP signaling may improve clinical outcomes in NSCLC patients. PMID:26088878

  13. SETD7 Regulates the Differentiation of Human Embryonic Stem Cells

    PubMed Central

    Castaño, Julio; Morera, Cristina; Sesé, Borja; Boue, Stephanie; Bonet-Costa, Carles; Martí, Merce; Roque, Alicia; Jordan, Albert; Barrero, Maria J.

    2016-01-01

    The successful use of specialized cells in regenerative medicine requires an optimization in the differentiation protocols that are currently used. Understanding the molecular events that take place during the differentiation of human pluripotent cells is essential for the improvement of these protocols and the generation of high quality differentiated cells. In an effort to understand the molecular mechanisms that govern differentiation we identify the methyltransferase SETD7 as highly induced during the differentiation of human embryonic stem cells and differentially expressed between induced pluripotent cells and somatic cells. Knock-down of SETD7 causes differentiation defects in human embryonic stem cell including delay in both the silencing of pluripotency-related genes and the induction of differentiation genes. We show that SETD7 methylates linker histone H1 in vitro causing conformational changes in H1. These effects correlate with a decrease in the recruitment of H1 to the pluripotency genes OCT4 and NANOG during differentiation in the SETD7 knock down that might affect the proper silencing of these genes during differentiation. PMID:26890252

  14. Mitochondrial Dynamics Impacts Stem Cell Identity and Fate Decisions by Regulating a Nuclear Transcriptional Program.

    PubMed

    Khacho, Mireille; Clark, Alysen; Svoboda, Devon S; Azzi, Joelle; MacLaurin, Jason G; Meghaizel, Cynthia; Sesaki, Hiromi; Lagace, Diane C; Germain, Marc; Harper, Mary-Ellen; Park, David S; Slack, Ruth S

    2016-08-01

    Regulated mechanisms of stem cell maintenance are key to preventing stem cell depletion and aging. While mitochondrial morphology plays a fundamental role in tissue development and homeostasis, its role in stem cells remains unknown. Here, we uncover that mitochondrial dynamics regulates stem cell identity, self-renewal, and fate decisions by orchestrating a transcriptional program. Manipulation of mitochondrial structure, through OPA1 or MFN1/2 deletion, impaired neural stem cell (NSC) self-renewal, with consequent age-dependent depletion, neurogenesis defects, and cognitive impairments. Gene expression profiling revealed ectopic expression of the Notch self-renewal inhibitor Botch and premature induction of transcription factors that promote differentiation. Changes in mitochondrial dynamics regulate stem cell fate decisions by driving a physiological reactive oxygen species (ROS)-mediated process, which triggers a dual program to suppress self-renewal and promote differentiation via NRF2-mediated retrograde signaling. These findings reveal mitochondrial dynamics as an upstream regulator of essential mechanisms governing stem cell self-renewal and fate decisions through transcriptional programming. PMID:27237737

  15. Types of Stem Cells

    MedlinePlus

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... stem cells blog from the International Society for Stem Cell Research. Learn About Stem Cells From Lab to You ...

  16. BVES Regulates Intestinal Stem Cell Programs and Intestinal Crypt Viability after Radiation.

    PubMed

    Reddy, Vishruth K; Short, Sarah P; Barrett, Caitlyn W; Mittal, Mukul K; Keating, Cody E; Thompson, Joshua J; Harris, Elizabeth I; Revetta, Frank; Bader, David M; Brand, Thomas; Washington, M Kay; Williams, Christopher S

    2016-06-01

    Blood vessel epicardial substance (BVES/Popdc1) is a junctional-associated transmembrane protein that is underexpressed in a number of malignancies and regulates epithelial-to-mesenchymal transition. We previously identified a role for BVES in regulation of the Wnt pathway, a modulator of intestinal stem cell programs, but its role in small intestinal (SI) biology remains unexplored. We hypothesized that BVES influences intestinal stem cell programs and is critical to SI homeostasis after radiation injury. At baseline, Bves(-/-) mice demonstrated increased crypt height, as well as elevated proliferation and expression of the stem cell marker Lgr5 compared to wild-type (WT) mice. Intercross with Lgr5-EGFP reporter mice confirmed expansion of the stem cell compartment in Bves(-/-) mice. To examine stem cell function after BVES deletion, we used ex vivo 3D-enteroid cultures. Bves(-/-) enteroids demonstrated increased stemness compared to WT, when examining parameters such as plating efficiency, stem spheroid formation, and retention of peripheral cystic structures. Furthermore, we observed increased proliferation, expression of crypt-base columnar "CBC" and "+4" stem cell markers, amplified Wnt signaling, and responsiveness to Wnt activation in the Bves(-/-) enteroids. Bves expression was downregulated after radiation in WT mice. Moreover, after radiation, Bves(-/-) mice demonstrated significantly greater SI crypt viability, proliferation, and amplified Wnt signaling in comparison to WT mice. Bves(-/-) mice also demonstrated elevations in Lgr5 and Ascl2 expression, and putative damage-responsive stem cell populations marked by Bmi1 and TERT. Therefore, BVES is a key regulator of intestinal stem cell programs and mucosal homeostasis. Stem Cells 2016;34:1626-1636. PMID:26891025

  17. Inducible regulation of GDNF expression in human neural stem cells.

    PubMed

    Wang, ShuYan; Ren, Ping; Guan, YunQian; Zou, ChunLin; Fu, LinLin; Zhang, Yu

    2013-01-01

    Glial cell derived neurotrophic factor (GDNF) holds promises for treating neurodegenerative diseases such as Parkinson's disease. Human neural stem cells (hNSCs) have proved to be a suitable cell delivery vehicle for the safe and efficient introduction of GDNF into the brain. In this study, we used hNSCs-infected with a lentivirus encoding GDNF and the hygromycin resistance gene as such vehicles. A modified tetracycline operator 7 (tetO7) was inserted into a region upstream of the EF1-α promoter to drive GDNF expression. After hygromycin selection, hNSCs were infected with a lentivirus encoding a KRAB-tetracycline repressor fusion protein (TTS). TTS bound to tetO7 and suppressed the expression of GDNF in hNSCs. Upon administration of doxycycline (Dox) the TTS-tetO7 complex separated and the expression of GDNF resumed. The hNSCs infected with GDNF expressed the neural stem cell specific markers, nestin and sox2, and exhibited no significant change in proliferation rate. However, the rate of apoptosis in hNSCs expressing GDNF was lower compared with normal NSCs in response to actinomycin treatment. Furthermore, a higher percentage of Tuj-1 positive cells were obtained from GDNF-producing NSCs under conditions that induced differentiation compared to control NSCs. The inducible expression of GDNF in hNSCs may provide a system for the controllable delivery of GDNF in patients with neurodegenerative diseases. PMID:23269553

  18. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation

    PubMed Central

    Kolf, Catherine M; Cho, Elizabeth; Tuan, Rocky S

    2007-01-01

    Recent advances in understanding the cellular and molecular signaling pathways and global transcriptional regulators of adult mesenchymal stem cells have provided new insights into their biology and potential clinical applications, particularly for tissue repair and regeneration. This review focuses on these advances, specifically in the context of self-renewal and regulation of lineage-specific differentiation of mesenchymal stem cells. In addition we review recent research on the concept of stem cell niche, and its relevance to adult mesenchymal stem cells. PMID:17316462

  19. Lsd1 Restricts the Number of Germline Stem Cells by Regulating Multiple Targets in Escort Cells

    PubMed Central

    Eliazer, Susan; Palacios, Victor; Wang, Zhaohui; Kollipara, Rahul K.; Kittler, Ralf; Buszczak, Michael

    2014-01-01

    Specialized microenvironments called niches regulate tissue homeostasis by controlling the balance between stem cell self-renewal and the differentiation of stem cell daughters. However the mechanisms that govern the formation, size and signaling of in vivo niches remain poorly understood. Loss of the highly conserved histone demethylase Lsd1 in Drosophila escort cells results in increased BMP signaling outside the cap cell niche and an expanded germline stem cell (GSC) phenotype. Here we present evidence that loss of Lsd1 also results in gradual changes in escort cell morphology and their eventual death. To better characterize the function of Lsd1 in different cell populations within the ovary, we performed Chromatin immunoprecipitation coupled with massive parallel sequencing (ChIP-seq). This analysis shows that Lsd1 associates with a surprisingly limited number of sites in escort cells and fewer, and often, different sites in cap cells. These findings indicate that Lsd1 exhibits highly selective binding that depends greatly on specific cellular contexts. Lsd1 does not directly target the dpp locus in escort cells. Instead, Lsd1 regulates engrailed expression and disruption of engrailed and its putative downstream target hedgehog suppress the Lsd1 mutant phenotype. Interestingly, over-expression of engrailed, but not hedgehog, results in an expansion of GSC cells, marked by the expansion of BMP signaling. Knockdown of other potential direct Lsd1 target genes, not obviously linked to BMP signaling, also partially suppresses the Lsd1 mutant phenotype. These results suggest that Lsd1 restricts the number of GSC-like cells by regulating a diverse group of genes and provide further evidence that escort cell function must be carefully controlled during development and adulthood to ensure proper germline differentiation. PMID:24625679

  20. Lsd1 restricts the number of germline stem cells by regulating multiple targets in escort cells.

    PubMed

    Eliazer, Susan; Palacios, Victor; Wang, Zhaohui; Kollipara, Rahul K; Kittler, Ralf; Buszczak, Michael

    2014-03-01

    Specialized microenvironments called niches regulate tissue homeostasis by controlling the balance between stem cell self-renewal and the differentiation of stem cell daughters. However the mechanisms that govern the formation, size and signaling of in vivo niches remain poorly understood. Loss of the highly conserved histone demethylase Lsd1 in Drosophila escort cells results in increased BMP signaling outside the cap cell niche and an expanded germline stem cell (GSC) phenotype. Here we present evidence that loss of Lsd1 also results in gradual changes in escort cell morphology and their eventual death. To better characterize the function of Lsd1 in different cell populations within the ovary, we performed Chromatin immunoprecipitation coupled with massive parallel sequencing (ChIP-seq). This analysis shows that Lsd1 associates with a surprisingly limited number of sites in escort cells and fewer, and often, different sites in cap cells. These findings indicate that Lsd1 exhibits highly selective binding that depends greatly on specific cellular contexts. Lsd1 does not directly target the dpp locus in escort cells. Instead, Lsd1 regulates engrailed expression and disruption of engrailed and its putative downstream target hedgehog suppress the Lsd1 mutant phenotype. Interestingly, over-expression of engrailed, but not hedgehog, results in an expansion of GSC cells, marked by the expansion of BMP signaling. Knockdown of other potential direct Lsd1 target genes, not obviously linked to BMP signaling, also partially suppresses the Lsd1 mutant phenotype. These results suggest that Lsd1 restricts the number of GSC-like cells by regulating a diverse group of genes and provide further evidence that escort cell function must be carefully controlled during development and adulthood to ensure proper germline differentiation. PMID:24625679

  1. Regulation of Hematopoietic Stem Cell Activity by Inflammation

    PubMed Central

    Schuettpelz, Laura G.; Link, Daniel C.

    2013-01-01

    Hematopoietic stem cells (HSCs) are quiescent cells with self-renewal capacity and the ability to generate all mature blood cells. HSCs normally reside in specialized niches in the bone marrow that help maintain their quiescence and long-term repopulating activity. There is emerging evidence that certain cytokines induced during inflammation have significant effects on HSCs in the bone marrow. Type I and II interferons, tumor necrosis factor, and lipopolysaccharide (LPS) directly stimulate HSC proliferation and differentiation, thereby increasing the short-term output of mature effector leukocytes. However, chronic inflammatory cytokine signaling can lead to HSC exhaustion and may contribute the development of hematopoietic malignancies. Pro-inflammatory cytokines such as G-CSF can also indirectly affect HSCs by altering the bone marrow microenvironment, disrupting the stem cell niche, and leading to HSC mobilization into the blood. Herein, we review our current understanding of the effects of inflammatory mediators on HSCs, and we discuss the potential clinical implications of these findings with respect to bone marrow failure and leukemogenesis. PMID:23882270

  2. C/EBPβ Regulates Stem Cell Activity and Specifies Luminal Cell Fate in the Mammary Gland

    PubMed Central

    LaMarca, Heather L.; Visbal, Adriana P.; Creighton, Chad J.; Liu, Hao; Zhang, Yiqun; Behbod, Fariba; Rosen, Jeffrey M.

    2010-01-01

    The bZIP transcription factor C/EBPβ is important for mammary gland development and its expression is deregulated in human breast cancer. To determine whether C/EBPβ regulates mammary stem cells (MaSCs), we employed two different knockout strategies. Utilizing both a germline and a conditional knockout strategy, we demonstrate that mammosphere formation was significantly decreased in C/EBPβ-deficient mammary epithelial cells (MECs). Functional limiting dilution transplantation assays indicated that the repopulating ability of C/EBPβ-deleted MECs was severely impaired. Serial transplantation experiments demonstrated that C/EBPβ deletion resulted in decreased outgrowth potential and premature MaSC senescence. In accord, FACS analysis demonstrated that C/EBPβ-null MECs contained fewer MaSCs, the loss of luminal progenitors and an increase in differentiated luminal cells as compared to wildtype. Gene profiling of C/EBPβ-null stem cells revealed an alteration in cell fate specification, exemplified by the expression of basal markers in the luminal compartment. Thus, C/EBPβ is a critical regulator of both MaSC repopulation activity and luminal cell lineage commitment. These findings have critical implications for understanding both stem cell biology and the etiology of different breast cancer subtypes. PMID:20054865

  3. State-dependent signaling by Cav1.2 regulates hair follicle stem cell function.

    PubMed

    Yucel, Gozde; Altindag, Banu; Gomez-Ospina, Natalia; Rana, Anshul; Panagiotakos, Georgia; Lara, Maria Fernanda; Dolmetsch, Ricardo; Oro, Anthony E

    2013-06-01

    The signals regulating stem cell activation during tissue regeneration remain poorly understood. We investigated the baldness associated with mutations in the voltage-gated calcium channel (VGCC) Cav1.2 underlying Timothy syndrome (TS). While hair follicle stem cells express Cav1.2, they lack detectable voltage-dependent calcium currents. Cav1.2(TS) acts in a dominant-negative manner to markedly delay anagen, while L-type channel blockers act through Cav1.2 to induce anagen and overcome the TS phenotype. Cav1.2 regulates production of the bulge-derived BMP inhibitor follistatin-like1 (Fstl1), derepressing stem cell quiescence. Our findings show how channels act in nonexcitable tissues to regulate stem cells and may lead to novel therapeutics for tissue regeneration. PMID:23752588

  4. p63 regulates olfactory stem cell self-renewal and differentiation

    PubMed Central

    Fletcher, Russell B.; Prasol, Melanie S.; Estrada, Jose; Baudhuin, Ariane; Vranizan, Karen; Choi, Yoon-Gi; Ngai, John

    2011-01-01

    Summary The olfactory epithelium is a sensory neuroepithelium that supports adult neurogenesis and tissue regeneration following injury, making it an excellent model for investigating neural stem cell regulation in vivo. Previous studies have identified the horizontal basal cell (HBC) as the neural stem cell of the postnatal olfactory epithelium. The molecules and pathways regulating HBC self-renewal and differentiation are unknown, however. In the present study we demonstrate that the transcription factor p63, a member of the p53 tumor suppressor gene family known to regulate stem cell dynamics in other epithelia, is highly enriched in HBCs. We show that p63 is required cell-autonomously for olfactory stem cell renewal and further demonstrate that p63 functions to repress HBC differentiation. These results provide critical insight into the genetic regulation of the olfactory stem cell in vivo, and more generally provide an entrée toward understanding the coordination of stem cell self-renewal and differentiation. PMID:22153372

  5. Drosophila Follicle Stem Cells are regulated by proliferation and niche adhesion as well as mitochondria and ROS

    PubMed Central

    Wang, Zhu A.; Huang, Jianhua; Kalderon, Daniel

    2012-01-01

    The mechanisms underlying adult stem cell behavior are likely to be diverse and have not yet been investigated systematically. Here we conducted an unbiased genetic screen using Drosophila ovarian follicle stem cells (FSCs) to probe essential functions regulating self-renewal of epithelial stem cells. Surprisingly, we find that niche adhesion emerge as the most commonly affected essential stem cell property, and that proliferation is critical for stem cell maintenance. We also find that PI3K pathway activation enhances FSC function, whereas mitochondrial dysfunction and ROS production lead to stem cell loss. Moreover, we find that most genes required specifically in the stem cell of the FSC lineage are widely expressed but are not required for the maintenance of ovarian germline stem cells. These findings highlight the fundamental characteristics of FSCs as an important stem cell paradigm that contrasts with some other stem cell models where repression of differentiation or relative quiescence are key. PMID:22473013

  6. Identification and molecular regulation of neural stem cells in the olfactory epithelium

    SciTech Connect

    Beites, Crestina L.; Kawauchi, Shimako; Crocker, Candice E.; Calof, Anne L. . E-mail: alcalof@uci.edu

    2005-06-10

    The sensory neurons that subserve olfaction, olfactory receptor neurons (ORNs), are regenerated throughout life, making the neuroepithelium in which they reside [the olfactory epithelium (OE)] an excellent model for studying how intrinsic and extrinsic factors regulate stem cell dynamics and neurogenesis during development and regeneration. Numerous studies indicate that transcription factors and signaling molecules together regulate generation of ORNs from stem and progenitor cells during development, and work on regenerative neurogenesis indicates that these same factors may operate at postnatal ages as well. This review describes our current knowledge of the identity of the OE neural stem cell; the different cell types that are thought to be the progeny (directly or indirectly) of this stem cell; and the factors that influence cell differentiation in the OE neuronal lineage. We review data suggesting that (1) the ORN lineage contains three distinct proliferating cell types-a stem cell and two populations of transit amplifying cells; (2) in established OE, these three cell types are present within the basal cell compartment of the epithelium; and (3) the stem cell that gives rise ultimately to ORNs may also generate two glial cell types of the primary olfactory pathway: sustentacular cells (SUS), which lie within OE proper; and olfactory ensheathing cells (OEC), which envelope the olfactory nerve. In addition, we describe factors that are both made by and found within the microenvironment of OE stem and progenitor cells, and which exert crucial growth regulatory effects on these cells. Thus, as with other regenerating tissues, the basis of regeneration in the OE appears be a population of stem cells, which resides within a microenvironment (niche) consisting of factors crucial for maintenance of its capacity for proliferation and differentiation.

  7. A Src inhibitor regulates the cell cycle of human pluripotent stem cells and improves directed differentiation.

    PubMed

    Chetty, Sundari; Engquist, Elise N; Mehanna, Elie; Lui, Kathy O; Tsankov, Alexander M; Melton, Douglas A

    2015-09-28

    Driving human pluripotent stem cells (hPSCs) into specific lineages is an inefficient and challenging process. We show that a potent Src inhibitor, PP1, regulates expression of genes involved in the G1 to S phase transition of the cell cycle, activates proteins in the retinoblastoma family, and subsequently increases the differentiation propensities of hPSCs into all three germ layers. We further demonstrate that genetic suppression of Src regulates the activity of the retinoblastoma protein and enhances the differentiation potential of hPSCs across all germ layers. These positive effects extend beyond the initial germ layer specification and enable efficient differentiation at subsequent stages of differentiation. PMID:26416968

  8. A Src inhibitor regulates the cell cycle of human pluripotent stem cells and improves directed differentiation

    PubMed Central

    Engquist, Elise N.; Mehanna, Elie; Lui, Kathy O.; Tsankov, Alexander M.

    2015-01-01

    Driving human pluripotent stem cells (hPSCs) into specific lineages is an inefficient and challenging process. We show that a potent Src inhibitor, PP1, regulates expression of genes involved in the G1 to S phase transition of the cell cycle, activates proteins in the retinoblastoma family, and subsequently increases the differentiation propensities of hPSCs into all three germ layers. We further demonstrate that genetic suppression of Src regulates the activity of the retinoblastoma protein and enhances the differentiation potential of hPSCs across all germ layers. These positive effects extend beyond the initial germ layer specification and enable efficient differentiation at subsequent stages of differentiation. PMID:26416968

  9. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity.

    PubMed

    Brand, U; Fletcher, J C; Hobe, M; Meyerowitz, E M; Simon, R

    2000-07-28

    The fate of stem cells in plant meristems is governed by directional signaling systems that are regulated by negative feedback. In Arabidopsis thaliana, the CLAVATA (CLV) genes encode the essential components of a negative, stem cell-restricting pathway. We used transgenic plants overexpressing CLV3 to show that meristem cell accumulation and fate depends directly on the level of CLV3 activity and that CLV3 signaling occurs exclusively through a CLV1/CLV2 receptor kinase complex. We also demonstrate that the CLV pathway acts by repressing the activity of the transcription factor WUSCHEL, an element of the positive, stem cell-promoting pathway. PMID:10915624

  10. Epigenetic Regulation of Stem Cell Maintenance in the Drosophila Testis via the Nucleosome Remodeling Factor NURF

    PubMed Central

    Cherry, Christopher M.; Matunis, Erika L.

    2010-01-01

    SUMMARY Regulation of stem cells depends on both tissue-specific transcriptional regulators and changes in chromatin organization, yet the coordination of these events in endogenous niches is poorly understood. In the Drosophila testis, local JAK-STAT signaling maintains germline and somatic stem cells (GSCs and cyst progenitor cells, or CPCs) in a single niche. Here we show that epigenetic regulation via the nucleosome remodeling factor (NURF) complex ensures GSC and CPC maintenance by positively regulating JAK-STAT signaling, thereby preventing premature differentiation. Conversely, NURF is not required in early differentiating daughter cells of either lineage. Since three additional ATP-dependent chromatin remodelers (ACF, CHRAC, and dMi-2/NuRD) are dispensable for stem cell maintenance in the testis, epigenetic regulation of stem cells within this niche may rely primarily on NURF. Thus, local signals cooperate with specific chromatin remodeling complexes in intact niches to coordinately regulate a common set of target genes to prevent premature stem cell differentiation. PMID:20569693

  11. Retroviral Transcriptional Regulation and Embryonic Stem Cells: War and Peace

    PubMed Central

    Schlesinger, Sharon

    2014-01-01

    Retroviruses have evolved complex transcriptional enhancers and promoters that allow their replication in a wide range of tissue and cell types. Embryonic stem (ES) cells, however, characteristically suppress transcription of proviruses formed after infection by exogenous retroviruses and also of most members of the vast array of endogenous retroviruses in the genome. These cells have unusual profiles of transcribed genes and are poised to make rapid changes in those profiles upon induction of differentiation. Many of the transcription factors in ES cells control both host and retroviral genes coordinately, such that retroviral expression patterns can serve as markers of ES cell pluripotency. This overlap is not coincidental; retrovirus-derived regulatory sequences are often used to control cellular genes important for pluripotency. These sequences specify the temporal control and perhaps “noisy” control of cellular genes that direct proper cell gene expression in primitive cells and their differentiating progeny. The evidence suggests that the viral elements have been domesticated for host needs, reflecting the wide-ranging exploitation of any and all available DNA sequences in assembling regulatory networks. PMID:25547290

  12. Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    McMurray, R. J.; Wann, A. K. T.; Thompson, C. L.; Connelly, J. T.; Knight, M. M.

    2013-12-01

    The primary cilium regulates cellular signalling including influencing wnt sensitivity by sequestering β-catenin within the ciliary compartment. Topographic regulation of intracellular actin-myosin tension can control stem cell fate of which wnt is an important mediator. We hypothesized that topography influences mesenchymal stem cell (MSC) wnt signaling through the regulation of primary cilia structure and function. MSCs cultured on grooves expressed elongated primary cilia, through reduced actin organization. siRNA inhibition of anterograde intraflagellar transport (IFT88) reduced cilia length and increased active nuclear β-catenin. Conversely, increased primary cilia assembly in MSCs cultured on the grooves was associated with decreased levels of nuclear active β-catenin, axin-2 induction and proliferation, in response to wnt3a. This negative regulation, on grooved topography, was reversed by siRNA to IFT88. This indicates that subtle regulation of IFT and associated cilia structure, tunes the wnt response controlling stem cell differentiation.

  13. Regulation of Ovarian Cancer Stem Cells or Tumor-Initiating Cells

    PubMed Central

    Kwon, Mi Jeong; Shin, Young Kee

    2013-01-01

    Cancer stem cells or tumor-initiating cells (CSC/TICs), which can undergo self-renewal and differentiation, are thought to play critical roles in tumorigenesis, therapy resistance, tumor recurrence and metastasis. Tumor recurrence and chemoresistance are major causes of poor survival rates of ovarian cancer patients, which may be due in part to the existence of CSC/TICs. Therefore, elucidating the molecular mechanisms responsible for the ovarian CSC/TICs is required to develop a cure for this malignancy. Recent studies have indicated that the properties of CSC/TICs can be regulated by microRNAs, genes and signaling pathways which also function in normal stem cells. Moreover, emerging evidence suggests that the tumor microenvironments surrounding CSC/TICs are crucial for the maintenance of these cells. Similarly, efforts are now being made to unravel the mechanism involved in the regulation of ovarian CSC/TICs, although much work is still needed. This review considers recent advances in identifying the genes and pathways involved in the regulation of ovarian CSC/TICs. Furthermore, current approaches targeting ovarian CSC/TICs are described. Targeting both CSC/TICs and bulk tumor cells is suggested as a more effective approach to eliminating ovarian tumors. Better understanding of the regulation of ovarian CSC/TICs might facilitate the development of improved therapeutic strategies for recurrent ovarian cancer. PMID:23528891

  14. Concise Review: Plasma and Nuclear Membranes Convey Mechanical Information to Regulate Mesenchymal Stem Cell Lineage.

    PubMed

    Uzer, Gunes; Fuchs, Robyn K; Rubin, Janet; Thompson, William R

    2016-06-01

    Numerous factors including chemical, hormonal, spatial, and physical cues determine stem cell fate. While the regulation of stem cell differentiation by soluble factors is well-characterized, the role of mechanical force in the determination of lineage fate is just beginning to be understood. Investigation of the role of force on cell function has largely focused on "outside-in" signaling, initiated at the plasma membrane. When interfaced with the extracellular matrix, the cell uses integral membrane proteins, such as those found in focal adhesion complexes to translate force into biochemical signals. Akin to these outside-in connections, the internal cytoskeleton is physically linked to the nucleus, via proteins that span the nuclear membrane. Although structurally and biochemically distinct, these two forms of mechanical coupling influence stem cell lineage fate and, when disrupted, often lead to disease. Here we provide an overview of how mechanical coupling occurs at the plasma and nuclear membranes. We also discuss the role of force on stem cell differentiation, with focus on the biochemical signals generated at the cell membrane and the nucleus, and how those signals influence various diseases. While the interaction of stem cells with their physical environment and how they respond to force is complex, an understanding of the mechanical regulation of these cells is critical in the design of novel therapeutics to combat diseases associated with aging, cancer, and osteoporosis. Stem Cells 2016;34:1455-1463. PMID:26891206

  15. Yap Tunes Airway Epithelial Size and Architecture by Regulating the Identity, Maintenance, and Self-renewal of Stem Cells

    PubMed Central

    Zhao, Rui; Fallon, Timothy R.; Saladi, Srinivas Vinod; Pardo-Saganta, Ana; Villoria, Jorge; Mou, Hongmei; Vinarsky, Vladimir; Gonzalez-Celeiro, Meryem; Nunna, Naveen; Hariri, Lida P.; Camargo, Fernando; Ellisen, Leif W.; Rajagopal, Jayaraj

    2014-01-01

    SUMMARY Our understanding of how stem cells are regulated to maintain appropriate tissue size and architecture is incomplete. We show that Yap is required for the actual maintenance of an adult mammalian stem cell. Without Yap, adult airway basal stem cells are lost through their unrestrained differentiation, resulting in the simplification of a pseudostratified epithelium into a columnar one. Conversely, Yap overexpression increases stem cell self-renewal and blocks terminal differentiation, resulting in epithelial hyperplasia and stratification. Yap overexpression in differentiated secretory cells causes them to partially reprogram and adopt a stem cell-like identity. In contrast, Yap knockdown prevents the dedifferentiation of secretory cells into stem cells. We then show that Yap functionally interacts with p63, the cardinal transcription factor associated with myriad epithelial basal stem cells. In aggregate, we show that Yap regulates all of the cardinal behaviors of airway epithelial stem cells and in so doing determines epithelial architecture. PMID:25043474

  16. Epigenetic regulation of planarian stem cells by the SET1/MLL family of histone methyltransferases

    PubMed Central

    Hubert, Amy; Henderson, Jordana M.; Ross, Kelly G.; Cowles, Martis W.; Torres, Jessica; Zayas, Ricardo M.

    2013-01-01

    Chromatin regulation is a fundamental mechanism underlying stem cell pluripotency, differentiation, and the establishment of cell type-specific gene expression profiles. To examine the role of chromatin regulation in stem cells in vivo, we study regeneration in the freshwater planarian Schmidtea mediterranea. These animals possess a high concentration of pluripotent stem cells, which are capable of restoring any damaged or lost tissues after injury or amputation. Here, we identify the S. mediterranea homologs of the SET1/MLL family of histone methyltransferases and COMPASS and COMPASS-like complex proteins and investigate their role in stem cell function during regeneration. We identified six S. mediterranea homologs of the SET1/MLL family (set1, mll1/2, trr-1, trr-2, mll5–1 and mll5–2), characterized their patterns of expression in the animal, and examined their function by RNAi. All members of this family are expressed in the stem cell population and differentiated tissues. We show that set1, mll1/2, trr-1, and mll5–2 are required for regeneration and that set1, trr-1 and mll5–2 play roles in the regulation of mitosis. Most notably, knockdown of the planarian set1 homolog leads to stem cell depletion. A subset of planarian homologs of COMPASS and COMPASS-like complex proteins are also expressed in stem cells and implicated in regeneration, but the knockdown phenotypes suggest that some complex members also function in other aspects of planarian biology. This work characterizes the function of the SET1/MLL family in the context of planarian regeneration and provides insight into the role of these enzymes in adult stem cell regulation in vivo. PMID:23235145

  17. Interplay of Matrix Stiffness and Cell-Cell Contact in Regulating Differentiation of Stem Cells.

    PubMed

    Ye, Kai; Cao, Luping; Li, Shiyu; Yu, Lin; Ding, Jiandong

    2016-08-31

    Stem cells are capable of sensing and responding to the mechanical properties of extracellular matrixes (ECMs). It is well-known that, while osteogenesis is promoted on the stiff matrixes, adipogenesis is enhanced on the soft ones. Herein, we report an "abnormal" tendency of matrix-stiffness-directed stem cell differentiation. Well-defined nanoarrays of cell-adhesive arginine-glycine-aspartate (RGD) peptides were modified onto the surfaces of persistently nonfouling poly(ethylene glycol) (PEG) hydrogels to achieve controlled specific cell adhesion and simultaneously eliminate nonspecific protein adsorption. Mesenchymal stem cells were cultivated on the RGD-nanopatterned PEG hydrogels with the same RGD nanospacing but different hydrogel stiffnesses and incubated in the induction medium to examine the effect of matrix stiffness on osteogenic and adipogenic differentiation extents. When stem cells were kept at a low density during the induction period, the differentiation tendency was consistent with the previous reports in the literature; however, both lineage commitments were favored on the stiff matrices at a high cell density. We interpreted such a complicated stiffness effect at a high cell density in two-dimensional culture as the interplay of matrix stiffness and cell-cell contact. As a result, this study strengthens the essence of the stiffness effect and highlights the combinatory effects of ECM cues and cell cues on stem cell differentiation. PMID:26600563

  18. Oct4 is a critical regulator of stemness in head and neck squamous carcinoma cells.

    PubMed

    Koo, B S; Lee, S H; Kim, J M; Huang, S; Kim, S H; Rho, Y S; Bae, W J; Kang, H J; Kim, Y S; Moon, J H; Lim, Y C

    2015-04-30

    Cancer stem cells (CSCs) have been suggested as responsible for the initiation and progression of cancers. Octamer-binding transcription factor 4 (Oct4) is an important regulator of embryonic stem cell fate. Here, we investigated whether Oct4 regulates stemness of head and neck squamous carcinoma (HNSC) CSCs. Our study showed that ectopic expression of Oct4 promotes tumor growth through cyclin E activation, increases chemoresistance through ABCC6 expression and enhances tumor invasion through slug expression. Also, Oct4 dedifferentiates differentiated HNSC cells to CSC-like cells. Furthermore, Oct4(high) HNSC CSCs have more stem cell-like traits compared with Oct4(low) cells, such as self-renewal, stem cell markers' expression, chemoresistance, invasion capacity and xenograft tumorigeneity in vitro and in vivo. In addition, knockdown of Oct4 led to markedly lower HNSC CSC stemness. Finally, there was a significant correlation between Oct4 expression and survival of 119 HNSC patients. Collectively, these data suggest that Oct4 may be a critical regulator of HNSC CSCs and its targeting may be potentially valuable in the treatment of HNSC CSCs. PMID:24954502

  19. An RNAi screen reveals intestinal regulators of branching morphogenesis, differentiation, and stem cell proliferation in planarians

    PubMed Central

    Forsthoefel, David J.; James, Noelle P.; Escobar, David J.; Stary, Joel M.; Vieira, Ana P.; Waters, Forrest A.; Newmark, Phillip A.

    2012-01-01

    SUMMARY Planarians grow and regenerate organs by coordinating proliferation and differentiation of pluripotent stem cells with remodeling of post-mitotic tissues. Understanding how these processes are orchestrated requires characterizing cell type-specific gene expression programs and their regulation during regeneration and homeostasis. To this end, we analyzed the expression profile of planarian intestinal phagocytes, cells responsible for digestion and nutrient storage/distribution. Utilizing RNA interference, we identified cytoskeletal regulators required for intestinal branching morphogenesis, and a modulator of bioactive sphingolipid metabolism, ceramide synthase, required for the production of functional phagocytes. Additionally, we found that a gut-enriched homeobox transcription factor, nkx-2.2, is required for somatic stem cell proliferation, suggesting a niche-like role for phagocytes. Identification of evolutionarily conserved regulators of intestinal branching, differentiation, and stem cell dynamics demonstrates the utility of the planarian digestive system as a model for elucidating the mechanisms controlling post-embryonic organogenesis. PMID:23079596

  20. Lysine-specific demethylase 1 regulates differentiation onset and migration of trophoblast stem cells

    NASA Astrophysics Data System (ADS)

    Zhu, Dongmei; Hölz, Stefanie; Metzger, Eric; Pavlovic, Mihael; Jandausch, Anett; Jilg, Cordula; Galgoczy, Petra; Herz, Corinna; Moser, Markus; Metzger, Daniel; Günther, Thomas; Arnold, Sebastian J.; Schüle, Roland

    2014-01-01

    Propagation and differentiation of stem cell populations are tightly regulated to provide sufficient cell numbers for tissue formation while maintaining the stem cell pool. Embryonic parts of the mammalian placenta are generated from differentiating trophoblast stem cells (TSCs) invading the maternal decidua. Here we demonstrate that lysine-specific demethylase 1 (Lsd1) regulates differentiation onset of TSCs. Deletion of Lsd1 in mice results in the reduction of TSC number, diminished formation of trophectoderm tissues and early embryonic lethality. Lsd1-deficient TSCs display features of differentiation initiation, including alterations of cell morphology, and increased migration and invasion. We show that increased TSC motility is mediated by the premature expression of the transcription factor Ovol2 that is directly repressed by Lsd1 in undifferentiated cells. In summary, our data demonstrate that the epigenetic modifier Lsd1 functions as a gatekeeper for the differentiation onset of TSCs, whereby differentiation-associated cell migration is controlled by the transcription factor Ovol2.

  1. Revealed: The spy who regulates neuroblastoma stem cells.

    PubMed

    Vora, Parvez; Venugopal, Chitra; Singh, Sheila K

    2014-11-30

    Neuroblastoma (NB), an embryonal tumour of the sympathetic nervous system, is thought to originate from undifferentiated neural crest cells and is known to exhibit extremely heterogeneous biological and clinical behaviors. Occurring in very young children, the median age at diagnosis is 17 months and it accounts for 10% of all pediatric cancer mortalities. The standard treatment regimen for patients with high-risk NB includes induction and surgery followed by isotretinoin or Accutane (13-cis retinoic acid) treatment, which is shown to induce terminal differentiation of NB cells. However, molecular regulators that maintain an undifferentiated phenotype in NB cells are still poorly understood. PMID:25483101

  2. aPKCλ controls epidermal homeostasis and stem cell fate through regulation of division orientation

    PubMed Central

    Niessen, Michaela T.; Scott, Jeanie; Zielinski, Julia G.; Vorhagen, Susanne; Sotiropoulou, Panagiota A.; Blanpain, Cédric

    2013-01-01

    The atypical protein kinase C (aPKC) is a key regulator of polarity and cell fate in lower organisms. However, whether mammalian aPKCs control stem cells and fate in vivo is not known. Here we show that loss of aPKCλ in a self-renewing epithelium, the epidermis, disturbed tissue homeostasis, differentiation, and stem cell dynamics, causing progressive changes in this tissue. This was accompanied by a gradual loss of quiescent hair follicle bulge stem cells and a temporary increase in proliferating progenitors. Lineage tracing analysis showed that loss of aPKCλ altered the fate of lower bulge/hair germ stem cells. This ultimately led to loss of proliferative potential, stem cell exhaustion, alopecia, and premature aging. Inactivation of aPKCλ produced more asymmetric divisions in different compartments, including the bulge. Thus, aPKCλ is crucial for homeostasis of self-renewing stratifying epithelia, and for the regulation of cell fate, differentiation, and maintenance of epidermal bulge stem cells likely through its role in balancing symmetric and asymmetric division. PMID:24019538

  3. Atypical PKC-iota Controls Stem Cell Expansion via Regulation of the Notch Pathway

    PubMed Central

    Mah, In Kyoung; Soloff, Rachel; Hedrick, Stephen M.; Mariani, Francesca V.

    2015-01-01

    Summary The number of stem/progenitor cells available can profoundly impact tissue homeostasis and the response to injury or disease. Here, we propose that an atypical PKC, Prkci, is a key player in regulating the switch from an expansion to a differentiation/maintenance phase via regulation of Notch, thus linking the polarity pathway with the control of stem cell self-renewal. Prkci is known to influence symmetric cell division in invertebrates; however a definitive role in mammals has not yet emerged. Using a genetic approach, we find that loss of Prkci results in a marked increase in the number of various stem/progenitor cells. The mechanism used likely involves inactivation and symmetric localization of NUMB, leading to the activation of NOTCH1 and its downstream effectors. Inhibition of atypical PKCs may be useful for boosting the production of pluripotent stem cells, multipotent stem cells, or possibly even primordial germ cells by promoting the stem cell/progenitor fate. PMID:26527382

  4. aPKCλ controls epidermal homeostasis and stem cell fate through regulation of division orientation.

    PubMed

    Niessen, Michaela T; Scott, Jeanie; Zielinski, Julia G; Vorhagen, Susanne; Sotiropoulou, Panagiota A; Blanpain, Cédric; Leitges, Michael; Niessen, Carien M

    2013-09-16

    The atypical protein kinase C (aPKC) is a key regulator of polarity and cell fate in lower organisms. However, whether mammalian aPKCs control stem cells and fate in vivo is not known. Here we show that loss of aPKCλ in a self-renewing epithelium, the epidermis, disturbed tissue homeostasis, differentiation, and stem cell dynamics, causing progressive changes in this tissue. This was accompanied by a gradual loss of quiescent hair follicle bulge stem cells and a temporary increase in proliferating progenitors. Lineage tracing analysis showed that loss of aPKCλ altered the fate of lower bulge/hair germ stem cells. This ultimately led to loss of proliferative potential, stem cell exhaustion, alopecia, and premature aging. Inactivation of aPKCλ produced more asymmetric divisions in different compartments, including the bulge. Thus, aPKCλ is crucial for homeostasis of self-renewing stratifying epithelia, and for the regulation of cell fate, differentiation, and maintenance of epidermal bulge stem cells likely through its role in balancing symmetric and asymmetric division. PMID:24019538

  5. Dipeptide species regulate p38MAPK–Smad3 signalling to maintain chronic myelogenous leukaemia stem cells

    PubMed Central

    Naka, Kazuhito; Jomen, Yoshie; Ishihara, Kaori; Kim, Junil; Ishimoto, Takahiro; Bae, Eun-Jin; Mohney, Robert P.; Stirdivant, Steven M.; Oshima, Hiroko; Oshima, Masanobu; Kim, Dong-Wook; Nakauchi, Hiromitsu; Takihara, Yoshihiro; Kato, Yukio; Ooshima, Akira; Kim, Seong-Jin

    2015-01-01

    Understanding the specific survival of the rare chronic myelogenous leukaemia (CML) stem cell population could provide a target for therapeutics aimed at eradicating these cells. However, little is known about how survival signalling is regulated in CML stem cells. In this study, we survey global metabolic differences between murine normal haematopoietic stem cells (HSCs) and CML stem cells using metabolomics techniques. Strikingly, we show that CML stem cells accumulate significantly higher levels of certain dipeptide species than normal HSCs. Once internalized, these dipeptide species activate amino-acid signalling via a pathway involving p38MAPK and the stemness transcription factor Smad3, which promotes CML stem cell maintenance. Importantly, pharmacological inhibition of dipeptide uptake inhibits CML stem cell activity in vivo. Our results demonstrate that dipeptide species support CML stem cell maintenance by activating p38MAPK–Smad3 signalling in vivo, and thus point towards a potential therapeutic target for CML treatment. PMID:26289811

  6. Dnmt3a regulates both cell proliferation and differentiation of mouse neural stem cells

    PubMed Central

    Wu, Zhourui; Huang, Kevin; Yu, Juehua; Le, Thuc; Namihira, Masakasu; Liu, Yupeng; Zhang, Jun; Xue, Zhigang; Cheng, Liming; Fan, Guoping

    2012-01-01

    DNA methylation is known to regulate cell differentiation and neuronal function in vivo. Here we examined whether deficiency of a de novo DNA methyltransferase, Dnmt3a, affects in vitro differentiation of mouse embryonic stem cells (mESCs) to neuronal and glial cell lineages. Early passage neural stem cells (NSCs) derived from Dnmt3a-deficient ESCs exhibited a moderate phenotype in precocious glial differentiation compared to wild-type counterparts. However, successive passaging to passage six (P6), when wild-type NSCs become gliogenic, revealed a robust phenotype of precocious astrocyte and oligodendrocyte differentiation in Dnmt3a−/− NSCs, consistent with our previous findings in the more severely hypomethylated Dnmt1−/− NSCs. Mass-spectrometry analysis revealed total levels of methylcytosine in Dnmt3a−/− NSCs at P6 were globally hypomethylated. Moreover, Dnmt3a−/− NSC proliferation rate was significantly increased when compared to control from P6 on. Thus, our work revealed a novel role for Dnmt3a in regulating both the timing of neural cell differentiation and cell proliferation in the paradigm of mESC-derived-NSCs. PMID:22714992

  7. OBE3 and WUS Interaction in Shoot Meristem Stem Cell Regulation

    PubMed Central

    Lin, Ta-Fang; Saiga, Shunsuke; Abe, Mitsutomo; Laux, Thomas

    2016-01-01

    The stem cells in the shoot apical meristem (SAM) are the origin of all above ground tissues in plants. In Arabidopsis thaliana, shoot meristem stem cells are maintained by the homeobox transcription factor gene WUS (WUSCHEL) that is expressed in cells of the organizing center underneath the stem cells. In order to identify factors that operate together with WUS in stem cell maintenance, we performed an EMS mutant screen for modifiers of the hypomorphic wus-6 allele. We isolated the oberon3-2 (obe3-2) mutant that enhances stem cell defects in wus-6, but does not affect the putative null allele wus-1. The OBE3 gene encodes a PHD (Plant Homeo Domain) protein that is thought to function in chromatin regulation. Single mutants of OBE3 or its closest homolog OBE4 do not display any defects, whereas the obe3-2 obe4-2 double mutant displays broad growth defects and developmental arrest of seedlings. Transcript levels of WUS and its target gene in the stem cells, CLAVATA3, are reduced in obe3-2. On the other hand, OBE3 and OBE4 transcripts are both indirectly upregulated by ectopic WUS expression. Our results suggest a positive feedback regulation between WUS and OBE3 that contributes to shoot meristem homeostasis. PMID:27196372

  8. OBE3 and WUS Interaction in Shoot Meristem Stem Cell Regulation.

    PubMed

    Lin, Ta-Fang; Saiga, Shunsuke; Abe, Mitsutomo; Laux, Thomas

    2016-01-01

    The stem cells in the shoot apical meristem (SAM) are the origin of all above ground tissues in plants. In Arabidopsis thaliana, shoot meristem stem cells are maintained by the homeobox transcription factor gene WUS (WUSCHEL) that is expressed in cells of the organizing center underneath the stem cells. In order to identify factors that operate together with WUS in stem cell maintenance, we performed an EMS mutant screen for modifiers of the hypomorphic wus-6 allele. We isolated the oberon3-2 (obe3-2) mutant that enhances stem cell defects in wus-6, but does not affect the putative null allele wus-1. The OBE3 gene encodes a PHD (Plant Homeo Domain) protein that is thought to function in chromatin regulation. Single mutants of OBE3 or its closest homolog OBE4 do not display any defects, whereas the obe3-2 obe4-2 double mutant displays broad growth defects and developmental arrest of seedlings. Transcript levels of WUS and its target gene in the stem cells, CLAVATA3, are reduced in obe3-2. On the other hand, OBE3 and OBE4 transcripts are both indirectly upregulated by ectopic WUS expression. Our results suggest a positive feedback regulation between WUS and OBE3 that contributes to shoot meristem homeostasis. PMID:27196372

  9. Oxygen Tension Regulates Human Mesenchymal Stem Cell Paracrine Functions

    PubMed Central

    Deschepper, Mickael; Moya, Adrien; Logeart-Avramoglou, Delphine; Boisson-Vidal, Catherine; Petite, Hervé

    2015-01-01

    Mesenchymal stem cells (MSCs) have captured the attention and research endeavors of the scientific world because of their differentiation potential. However, there is accumulating evidence suggesting that the beneficial effects of MSCs are predominantly due to the multitude of bioactive mediators secreted by these cells. Because the paracrine potential of MSCs is closely related to their microenvironment, the present study investigated and characterized select aspects of the human MSC (hMSC) secretome and assessed its in vitro and in vivo bioactivity as a function of oxygen tension, specifically near anoxia (0.1% O2) and hypoxia (5% O2), conditions that reflect the environment to which MSCs are exposed during MSC-based therapies in vivo. In contrast to supernatant conditioned media (CM) obtained from hMSCs cultured at either 5% or 21% of O2, CM from hMSCs cultured under near anoxia exhibited significantly (p < .05) enhanced chemotactic and proangiogenic properties and a significant (p < .05) decrease in the inflammatory mediator content. An analysis of the hMSC secretome revealed a specific profile under near anoxia: hMSCs increase their paracrine expression of the angiogenic mediators vascular endothelial growth factor (VEGF)-A, VEGF-C, interleukin-8, RANTES, and monocyte chemoattractant protein 1 but significantly decrease expression of several inflammatory/immunomodulatory mediators. These findings provide new evidence that elucidates aspects of great importance for the use of MSCs in regenerative medicine and could contribute to improving the efficacy of such therapies. Significance The present study investigated and characterized select aspects of the human mesenchymal stem cell (hMSC) secretome and assessed its in vitro and in vivo biological bioactivity as a function of oxygen tension, specifically near anoxia (0.1% O2) and hypoxia (5% O2), conditions that reflect the environment to which MSCs are exposed during MSC-based therapies in vivo. The present study

  10. Dynamic Trk and G Protein Signalings Regulate Dopaminergic Neurodifferentiation in Human Trophoblast Stem Cells

    PubMed Central

    Lee, Tony Tung-Yin; Tsai, Cheng-Fang; Chen, Hung-Sheng; Lai, Feng-Jie; Yokoyama, Kazunari K.; Hsieh, Tsung-Hsun; Wu, Ruey-Meei; Lee, Jau-nan

    2015-01-01

    Understanding the mechanisms in the generation of neural stem cells from pluripotent stem cells is a fundamental step towards successful management of neurodegenerative diseases in translational medicine. Albeit all-trans retinoic acid (RA) has been associated with axon outgrowth and nerve regeneration, the maintenance of differentiated neurons, the association with degenerative disease like Parkinson's disease, and its regulatory molecular mechanism from pluripotent stem cells to neural stem cells remain fragmented. We have previously reported that RA is capable of differentiation of human trophoblast stem cells to dopamine (DA) committed progenitor cells. Intracranial implantation of such neural progenitor cells into the 6-OHDA-lesioned substantia nigra pars compacta successfully regenerates dopaminergic neurons and integrity of the nigrostriatal pathway, ameliorating the behavioral deficits in the Parkinson’s disease rat model. Here, we demonstrated a dynamic molecular network in systematic analysis by addressing spatiotemporal molecular expression, intracellular protein-protein interaction and inhibition, imaging study, and genetic expression to explore the regulatory mechanisms of RA induction in the differentiation of human trophoblast stem cells to DA committed progenitor cells. We focused on the tyrosine receptor kinase (Trk), G proteins, canonical Wnt2B/β-catenin, genomic and non-genomic RA signaling transductions with Tyrosine hydroxylase (TH) gene expression as the differentiation endpoint. We found that at the early stage, integration of TrkA and G protein signalings aims for axonogenesis and morphogenesis, involving the novel RXRα/Gαq/11 and RARβ/Gβ signaling pathways. While at the later stage, five distinct signaling pathways together with epigenetic histone modifications emerged to regulate expression of TH, a precursor of dopamine. RA induction generated DA committed progenitor cells in one day. Our results provided substantial mechanistic

  11. Dynamic Trk and G Protein Signalings Regulate Dopaminergic Neurodifferentiation in Human Trophoblast Stem Cells.

    PubMed

    Tsai, Eing-Mei; Wang, Yu-Chih; Lee, Tony Tung-Yin; Tsai, Cheng-Fang; Chen, Hung-Sheng; Lai, Feng-Jie; Yokoyama, Kazunari K; Hsieh, Tsung-Hsun; Wu, Ruey-Meei; Lee, Jau-Nan

    2015-01-01

    Understanding the mechanisms in the generation of neural stem cells from pluripotent stem cells is a fundamental step towards successful management of neurodegenerative diseases in translational medicine. Albeit all-trans retinoic acid (RA) has been associated with axon outgrowth and nerve regeneration, the maintenance of differentiated neurons, the association with degenerative disease like Parkinson's disease, and its regulatory molecular mechanism from pluripotent stem cells to neural stem cells remain fragmented. We have previously reported that RA is capable of differentiation of human trophoblast stem cells to dopamine (DA) committed progenitor cells. Intracranial implantation of such neural progenitor cells into the 6-OHDA-lesioned substantia nigra pars compacta successfully regenerates dopaminergic neurons and integrity of the nigrostriatal pathway, ameliorating the behavioral deficits in the Parkinson's disease rat model. Here, we demonstrated a dynamic molecular network in systematic analysis by addressing spatiotemporal molecular expression, intracellular protein-protein interaction and inhibition, imaging study, and genetic expression to explore the regulatory mechanisms of RA induction in the differentiation of human trophoblast stem cells to DA committed progenitor cells. We focused on the tyrosine receptor kinase (Trk), G proteins, canonical Wnt2B/β-catenin, genomic and non-genomic RA signaling transductions with Tyrosine hydroxylase (TH) gene expression as the differentiation endpoint. We found that at the early stage, integration of TrkA and G protein signalings aims for axonogenesis and morphogenesis, involving the novel RXRα/Gαq/11 and RARβ/Gβ signaling pathways. While at the later stage, five distinct signaling pathways together with epigenetic histone modifications emerged to regulate expression of TH, a precursor of dopamine. RA induction generated DA committed progenitor cells in one day. Our results provided substantial mechanistic

  12. The Musashi family of RNA binding proteins: master regulators of multiple stem cell populations.

    PubMed

    Sutherland, Jessie M; McLaughlin, Eileen A; Hime, Gary R; Siddall, Nicole A

    2013-01-01

    In order to maintain their unlimited capacity to divide, stem cells require controlled temporal and spatial protein expression. The Musashi family of RNA-binding proteins have been shown to exhibit this necessary translational control through both repression and activation in order to regulate multiple stem cell populations. This chapter looks in depth at the initial discovery and characterisation of Musashi in the model organism Drosophila, and its subsequent emergence as a master regulator in a number of stem cell populations. Furthermore the unique roles for mammalian Musashi-1 and Musashi-2 in different stem cell types are correlated with the perceived diagnostic power of Musashi expression in specific stem cell derived oncologies. In particular the potential role for Musashi in the identification and treatment of human cancer is considered, with a focus on the role of Musashi-2 in leukaemia. Finally, the manipulation of Musashi expression is proposed as a potential avenue towards the targeted treatment of specific aggressive stem cell cancers. PMID:23696360

  13. Cyclin E-dependent protein kinase activity regulates niche retention of Drosophila ovarian follicle stem cells

    PubMed Central

    Wang, Zhu A.; Kalderon, Daniel

    2009-01-01

    Whether stem cells have unique cell cycle machineries and how they integrate with niche interactions remains largely unknown. We identified a hypomorphic cyclin E allele WX that strongly impairs the maintenance of follicle stem cells (FSCs) in the Drosophila ovary but does not reduce follicle cell proliferation or germline stem cell maintenance. CycEWX protein can still bind to the cyclin-dependent kinase catalytic subunit Cdk2, but forms complexes with reduced protein kinase activity measured in vitro. By creating additional CycE variants with different degrees of kinase dysfunction and expressing these and CycEWX at different levels, we found that higher CycE-Cdk2 kinase activity is required for FSC maintenance than to support follicle cell proliferation. Surprisingly, cycEWX FSCs were lost from their niches rather than arresting proliferation. Furthermore, FSC function was substantially restored by expressing either excess DE-cadherin or excess E2F1/DP, the transcription factor normally activated by CycE-Cdk2 phosphorylation of retinoblastoma proteins. These results suggest that FSC maintenance through niche adhesion is regulated by inputs that normally control S phase entry, possibly as a quality control mechanism to ensure adequate stem cell proliferation. We speculate that a positive connection between central regulators of the cell cycle and niche retention may be a common feature of highly proliferative stem cells. PMID:19966222

  14. FoxO is a critical regulator of stem cell maintenance in immortal Hydra.

    PubMed

    Boehm, Anna-Marei; Khalturin, Konstantin; Anton-Erxleben, Friederike; Hemmrich, Georg; Klostermeier, Ulrich C; Lopez-Quintero, Javier A; Oberg, Hans-Heinrich; Puchert, Malte; Rosenstiel, Philip; Wittlieb, Jörg; Bosch, Thomas C G

    2012-11-27

    Hydra's unlimited life span has long attracted attention from natural scientists. The reason for that phenomenon is the indefinite self-renewal capacity of its stem cells. The underlying molecular mechanisms have yet to be explored. Here, by comparing the transcriptomes of Hydra's stem cells followed by functional analysis using transgenic polyps, we identified the transcription factor forkhead box O (FoxO) as one of the critical drivers of this continuous self-renewal. foxO overexpression increased interstitial stem cell and progenitor cell proliferation and activated stem cell genes in terminally differentiated somatic cells. foxO down-regulation led to an increase in the number of terminally differentiated cells, resulting in a drastically reduced population growth rate. In addition, it caused down-regulation of stem cell genes and antimicrobial peptide (AMP) expression. These findings contribute to a molecular understanding of Hydra's immortality, indicate an evolutionarily conserved role of FoxO in controlling longevity from Hydra to humans, and have implications for understanding cellular aging. PMID:23150562

  15. FoxO is a critical regulator of stem cell maintenance in immortal Hydra

    PubMed Central

    Boehm, Anna-Marei; Khalturin, Konstantin; Anton-Erxleben, Friederike; Hemmrich, Georg; Klostermeier, Ulrich C.; Lopez-Quintero, Javier A.; Oberg, Hans-Heinrich; Puchert, Malte; Rosenstiel, Philip; Wittlieb, Jörg; Bosch, Thomas C. G.

    2012-01-01

    Hydra’s unlimited life span has long attracted attention from natural scientists. The reason for that phenomenon is the indefinite self-renewal capacity of its stem cells. The underlying molecular mechanisms have yet to be explored. Here, by comparing the transcriptomes of Hydra’s stem cells followed by functional analysis using transgenic polyps, we identified the transcription factor forkhead box O (FoxO) as one of the critical drivers of this continuous self-renewal. foxO overexpression increased interstitial stem cell and progenitor cell proliferation and activated stem cell genes in terminally differentiated somatic cells. foxO down-regulation led to an increase in the number of terminally differentiated cells, resulting in a drastically reduced population growth rate. In addition, it caused down-regulation of stem cell genes and antimicrobial peptide (AMP) expression. These findings contribute to a molecular understanding of Hydra’s immortality, indicate an evolutionarily conserved role of FoxO in controlling longevity from Hydra to humans, and have implications for understanding cellular aging. PMID:23150562

  16. Progressive Chromatin Condensation and H3K9 Methylation Regulate the Differentiation of Embryonic and Hematopoietic Stem Cells

    PubMed Central

    Ugarte, Fernando; Sousae, Rebekah; Cinquin, Bertrand; Martin, Eric W.; Krietsch, Jana; Sanchez, Gabriela; Inman, Margaux; Tsang, Herman; Warr, Matthew; Passegué, Emmanuelle; Larabell, Carolyn A.; Forsberg, E. Camilla

    2015-01-01

    Summary Epigenetic regulation serves as the basis for stem cell differentiation into distinct cell types, but it is unclear how global epigenetic changes are regulated during this process. Here, we tested the hypothesis that global chromatin organization affects the lineage potential of stem cells and that manipulation of chromatin dynamics influences stem cell function. Using nuclease sensitivity assays, we found a progressive decrease in chromatin digestion among pluripotent embryonic stem cells (ESCs), multipotent hematopoietic stem cells (HSCs), and mature hematopoietic cells. Quantitative high-resolution microscopy revealed that ESCs contain significantly more euchromatin than HSCs, with a further reduction in mature cells. Increased cellular maturation also led to heterochromatin localization to the nuclear periphery. Functionally, prevention of heterochromatin formation by inhibition of the histone methyltransferase G9A resulted in delayed HSC differentiation. Our results demonstrate global chromatin rearrangements during stem cell differentiation and that heterochromatin formation by H3K9 methylation regulates HSC differentiation. PMID:26489895

  17. Snai1 regulates cell lineage allocation and stem cell maintenance in the mouse intestinal epithelium

    PubMed Central

    Horvay, Katja; Jardé, Thierry; Casagranda, Franca; Perreau, Victoria M; Haigh, Katharina; Nefzger, Christian M; Akhtar, Reyhan; Gridley, Thomas; Berx, Geert; Haigh, Jody J; Barker, Nick; Polo, Jose M; Hime, Gary R; Abud, Helen E

    2015-01-01

    Snail family members regulate epithelial-to-mesenchymal transition (EMT) during invasion of intestinal tumours, but their role in normal intestinal homeostasis is unknown. Studies in breast and skin epithelia indicate that Snail proteins promote an undifferentiated state. Here, we demonstrate that conditional knockout of Snai1 in the intestinal epithelium results in apoptotic loss of crypt base columnar stem cells and bias towards differentiation of secretory lineages. In vitro organoid cultures derived from Snai1 conditional knockout mice also undergo apoptosis when Snai1 is deleted. Conversely, ectopic expression of Snai1 in the intestinal epithelium in vivo results in the expansion of the crypt base columnar cell pool and a decrease in secretory enteroendocrine and Paneth cells. Following conditional deletion of Snai1, the intestinal epithelium fails to produce a proliferative response following radiation-induced damage indicating a fundamental requirement for Snai1 in epithelial regeneration. These results demonstrate that Snai1 is required for regulation of lineage choice, maintenance of CBC stem cells and regeneration of the intestinal epithelium following damage. PMID:25759216

  18. Ghrelin regulates cell cycle-related gene expression in cultured hippocampal neural stem cells.

    PubMed

    Chung, Hyunju; Park, Seungjoon

    2016-08-01

    We have previously demonstrated that ghrelin stimulates the cellular proliferation of cultured adult rat hippocampal neural stem cells (NSCs). However, little is known about the molecular mechanisms by which ghrelin regulates cell cycle progression. The purpose of this study was to investigate the potential effects of ghrelin on cell cycle regulatory molecules in cultured hippocampal NSCs. Ghrelin treatment increased proliferation assessed by CCK-8 proliferation assay. The expression levels of proliferating cell nuclear antigen and cell division control 2, well-known cell-proliferating markers, were also increased by ghrelin. Fluorescence-activated cell sorting analysis revealed that ghrelin promoted progression of cell cycle from G0/G1 to S phase, whereas this progression was attenuated by the pretreatment with specific inhibitors of MEK/extracellular signal-regulated kinase 1/2, phosphoinositide 3-kinase/Akt, mammalian target of rapamycin, and janus kinase 2/signal transducer and activator of transcription 3. Ghrelin-induced proliferative effect was associated with increased expression of E2F1 transcription factor in the nucleus, as determined by Western blotting and immunofluorescence. We also found that ghrelin caused an increase in protein levels of positive regulators of cell cycle, such as cyclin A and cyclin-dependent kinase (CDK) 2. Moreover, p27(KIP1) and p57(KIP2) protein levels were reduced when cell were exposed to ghrelin, suggesting downregulation of CDK inhibitors may contribute to proliferative effect of ghrelin. Our data suggest that ghrelin targets both cell cycle positive and negative regulators to stimulate proliferation of cultured hippocampal NSCs. PMID:27325242

  19. Stem cell therapy: a look at current research, regulations, and remaining hurdles.

    PubMed

    Reisman, Miriam; Adams, Katherine T

    2014-12-01

    Stem cell therapies offer great promise for a wide range of diseases and conditions. However, stem cell research-particularly human embryonic stem cell research-has also been a source of ongoing ethical, religious, and political controversy. PMID:25516694

  20. CDK6 as a key regulator of hematopoietic and leukemic stem cell activation

    PubMed Central

    Scheicher, Ruth; Hoelbl-Kovacic, Andrea; Bellutti, Florian; Tigan, Anca-Sarmiza; Prchal-Murphy, Michaela; Heller, Gerwin; Schneckenleithner, Christine; Salazar-Roa, María; Zöchbauer-Müller, Sabine; Zuber, Johannes; Malumbres, Marcos; Kollmann, Karoline

    2015-01-01

    The cyclin-dependent kinase 6 (CDK6) and CDK4 have redundant functions in regulating cell-cycle progression. We describe a novel role for CDK6 in hematopoietic and leukemic stem cells (hematopoietic stem cells [HSCs] and leukemic stem cells [LSCs]) that exceeds its function as a cell-cycle regulator. Although hematopoiesis appears normal under steady-state conditions, Cdk6−/− HSCs do not efficiently repopulate upon competitive transplantation, and Cdk6-deficient mice are significantly more susceptible to 5-fluorouracil treatment. We find that activation of HSCs requires CDK6, which interferes with the transcription of key regulators, including Egr1. Transcriptional profiling of HSCs is consistent with the central role of Egr1. The impaired repopulation capacity extends to BCR-ABLp210+ LSCs. Transplantation with BCR-ABLp210+–infected bone marrow from Cdk6−/− mice fails to induce disease, although recipient mice do harbor LSCs. Egr1 knock-down in Cdk6−/− BCR-ABLp210+ LSKs significantly enhances the potential to form colonies, underlining the importance of the CDK6-Egr1 axis. Our findings define CDK6 as an important regulator of stem cell activation and an essential component of a transcriptional complex that suppresses Egr1 in HSCs and LSCs. PMID:25342715

  1. The nuclear lamina regulates germline stem cell niche organization via modulation of EGFR signaling

    PubMed Central

    Chen, Haiyang; Chen, Xin; Zheng, Yixian

    2013-01-01

    Summary Stem cell-niche interactions have been studied extensively with regard to cell polarity and extracellular signaling. Less is known about the way in which signals and polarity cues integrate with intracellular structures to ensure appropriate niche organization and function. Here we report that nuclear lamins function in the cyst stem cells (CySCs) of Drosophila testis to control the interaction of CySCs with the hub. This interaction is important for regulation of CySC differentiation and organization of the niche that supports the germline stem cells (GSCs). Lamin promotes nuclear retention of phosphorylated ERK in the CySC lineage by regulating the distribution of specific nucleoporins within the nuclear pores. Lamin-regulated nuclear EGFR signaling in the CySC lineage is essential for proliferation and differentiation of the GSCs and the transient amplifying germ cells. Thus, we have uncovered a role for the nuclear lamina in integration of EGF signaling to regulate stem cell niche function. PMID:23827710

  2. Specification of neural cell fate and regulation of neural stem cell proliferation by microRNAs

    PubMed Central

    Pham, Jacqueline T; Gallicano, G Ian

    2012-01-01

    In the approximately 20 years since microRNAs (miRNAs) were first characterized, they have been shown to play important roles in diverse physiologic functions, particularly those requiring coordinated changes in networks of signaling pathways. The ability of miRNAs to silence expression of multiple gene targets hints at complex connections that research has only begun to elucidate. The nervous system, particularly the brain, and its progenitor cells offer opportunities to examine miRNA function due to the myriad different cell types, numerous functionally distinct regions, and fluidly dynamic connections between them. This review aims to summarize current understanding of miRNA regulation in neurodevelopment, beginning with miRNAs that establish a general neural fate in cells. Particular attention is given to miR-124, the most abundant brain-specific miRNA, along with its key regulators and targets as an example of the potentially far-reaching effects of miRNAs. These modulators and mediators enable miRNAs to subtly calibrate cellular proliferation and differentiation. To better understand their mechanisms of action, miRNA profiles in distinct populations and regions of cells have been examined as well as miRNAs that regulate proliferation of stem cells, a process marked by dramatic morphological shifts in response to temporally subtle and refined shifts in gene expression. To tease out the complex interactions of miRNAs and stem cells more accurately, future studies will require more sensitive methods of assessing miRNA expression and more rigorous models of miRNA pathways. Thorough characterization of similarities and differences in specific miRNAs’ effects in different species is vital to developing better disease models and therapeutics using miRNAs. PMID:23671807

  3. Jak-STAT regulation of cyst stem cell development in the Drosophila testis

    PubMed Central

    Sinden, D.; Badgett, M.; Fry, J.; Jones, T.; Palmen, R.; Sheng, X.; Simmons, A.; Matunis, E.; Wawersik, M.

    2012-01-01

    Establishment and maintenance of functional stem cells is critical for organ development and tissue homeostasis. Little is known about the mechanisms underlying stem establishment during organogenesis. Drosophila testes are among the most thoroughly characterized systems for studying stem cell behavior, with germline stem cells (GSCs) and somatic cyst stem cells (CySCs) cohabiting a discrete stem cell niche at the testis apex. GSCs and CySCs are arrayed around hub cells that also comprise the niche and communication between hub cells, GSCs, and CySCs regulates the balance between stem cell maintenance and differentiation. Recent data has shown that functional, asymmetrically dividing GSCs are first established at ~23 hrs after egg laying during Drosophila testis morphogenesis (Sheng et al., 2009). This process correlates with coalescence of the hub, but development of CySCs from somatic gonadal precursors (SGPs) was not examined. Here, we show that functional CySCs are present at the time of GSC establishment, and that Jak-STAT signaling is necessary and sufficient for CySC maintenance shortly thereafter. Furthermore, hyper-activation of Jak in CySCs promotes expansion of the GSC population, while ectopic Jak activation in the germline induces GSC gene expression in GSC daughter cells but does not prevent spermatogenic differentiation. Together, these observations indicate that, similar to adult testes, Jak-STAT signaling from the hub acts on both GSCs and CySC to regulate their development and differentiation, and that additional signaling from CySCs to the GSCs play a dominant role in controlling GSC maintenance during niche formation. PMID:23010510

  4. Tumor suppressors Sav/Scrib and oncogene Ras regulate stem cell transformation in adult Drosophila Malpighian Tubules

    PubMed Central

    Zeng, Xiankun; Singh, Shree Ram; Hou, David; Hou, Steven X.

    2012-01-01

    An increasing body of evidence suggests that tumors might originate from a few transformed cells that share many properties with normal stem cells. However, it remains unclear how normal stem cells are transformed into cancer stem cells. Here, we demonstrated that mutations causing the loss of tumor suppressor Sav or Scrib or activation of the oncogene Ras transform normal stem cells into cancer stem cells through a multistep process in the adult Drosophila Malpighian Tubules (MTs). In wild-type MTs, each stem cell generates one self-renewing and one differentiating daughter cell. However, in flies with loss-of-function sav or scrib or gain-of-function Ras mutations, both daughter cells grew and behaved like stem cells, leading to the formation of tumors in MTs. Ras functioned downstream of Sav and Scrib in regulating the stem cell transformation. The Ras-transformed stem cells exhibited many of the hallmarks of cancer, such as increased proliferation, reduced cell death, and failure to differentiate. We further demonstrated that several signal transduction pathways (including MEK/MAPK, RhoA, PKA, and TOR) mediate Rasṕ function in the stem cell transformation. Therefore, we have identified a molecular mechanism that regulates stem cell transformation, and this finding may lead to strategies for preventing tumor formation in certain organs. PMID:20432470

  5. Dynamic changes in intracellular ROS levels regulate airway basal stem cell homeostasis through Nrf2-dependent Notch signaling

    PubMed Central

    Paul, MK; Bisht, B; Darmawan, DO; Chiou, R; Ha, VL; Wallace, WD; Chon, AC; Hegab, AE; Grogan, T; Elashoff, DA; Alva-Ornelas, JA; Gomperts, BN

    2014-01-01

    SUMMARY Airways are exposed to myriad environmental and damaging agents such as reactive oxygen species (ROS), which also have physiological roles as signaling molecules that regulate stem cell function. However, the functional significance of both steady and dynamically changing ROS levels in different stem cell populations, as well as downstream mechanisms that integrate ROS sensing into decisions regarding stem cell homeostasis, are unclear. Here, we show in mouse and human airway basal stem cells (ABSCs) that intracellular flux from low to moderate ROS levels is required for stem cell self-renewal and proliferation. Changing ROS levels activate Nrf2, which activates the Notch pathway to stimulate ABSC self-renewal as well an antioxidant program that scavenges intracellular ROS, returning overall ROS levels to a low state to maintain homeostatic balance. This redox-mediated regulation of lung stem cell function has significant implications for stem cell biology, repair of lung injuries, and diseases such as cancer. PMID:24953182

  6. Role of microRNA in prostate cancer stem/progenitor cells regulation.

    PubMed

    Tao, Z-Q; Shi, A-M; Li, R; Wang, Y-Q; Wang, X; Zhao, J

    2016-07-01

    Most of the human tumors contain a population of cells with stem cell properties, called cancer stem cells (CSCs), which are believed to be responsible for tumor establishment, metastasis, and resistance to clinical therapy. It's crucial to understand the regulatory mechanisms unique to CSCs, in order to design CSC-specific therapeutics. Recent discoveries of microRNA (miRNA) have provided a new avenue for understanding the regulatory mechanisms of cancer. The present review article will discuss important milestones associated with mircroRNA regulation during prostate carcinogenesis. PMID:27460733

  7. Stress and stem cells.

    PubMed

    Tower, John

    2012-01-01

    The unique properties and functions of stem cells make them particularly susceptible to stresses and also lead to their regulation by stress. Stem cell division must respond to the demand to replenish cells during normal tissue turnover as well as in response to damage. Oxidative stress, mechanical stress, growth factors, and cytokines signal stem cell division and differentiation. Many of the conserved pathways regulating stem cell self-renewal and differentiation are also stress-response pathways. The long life span and division potential of stem cells create a propensity for transformation (cancer) and specific stress responses such as apoptosis and senescence act as antitumor mechanisms. Quiescence regulated by CDK inhibitors and a hypoxic niche regulated by FOXO transcription factor function to reduce stress for several types of stem cells to facilitate long-term maintenance. Aging is a particularly relevant stress for stem cells, because repeated demands on stem cell function over the life span can have cumulative cell-autonomous effects including epigenetic dysregulation, mutations, and telomere erosion. In addition, aging of the organism impairs function of the stem cell niche and systemic signals, including chronic inflammation and oxidative stress. PMID:23799624

  8. Peroxiredoxin II Is Essential for Maintaining Stemness by Redox Regulation in Liver Cancer Cells.

    PubMed

    Kwon, Taeho; Bak, Yesol; Park, Young-Ho; Jang, Gyu-Beom; Nam, Jeong-Seok; Yoo, Jeong Eun; Park, Young Nyun; Bak, In Seon; Kim, Jin-Man; Yoon, Do-Young; Yu, Dae-Yeul

    2016-05-01

    Redox regulation in cancer stem cells (CSCs) is viewed as a good target for cancer therapy because redox status plays an important role in cancer stem-cell maintenance. Here, we investigated the role of Peroxiredoxin II (Prx II), an antioxidant enzyme, in association with maintenance of liver CSCs. Our study demonstrates that Prx II overexpressed in liver cancer cells has high potential for self-renewal activity. Prx II expression significantly corelated with expression of epithelial-cell adhesion molecules (EpCAM) and cytokerain 19 in liver cancer tissues of hepatocellular carcinoma (HCC) patients. Downregulation of Prx II in Huh7 cells with treatment of siRNA reduced expression of EpCAM and CD133 as well as Sox2 in accordance with increased ROS and apoptosis, which were reversed in Huh7-hPrx II cells. Huh7-hPrx II cells exhibited strong sphere-formation activity compared with mock cells. Vascular endothelial growth factor (VEGF) exposure enhanced sphere formation, cell-surface expression of EpCAM and CD133, and pSTAT3 along with activation of VEGF receptor 2 in Huh7-hPrx II cells. The result also emerged in Huh7-H-ras(G12V) and SK-HEP-1-H-ras(G12V) cells with high-level expression of Prx II. Prx II was involved in regulation of VEGF driving cancer stem cells through VEGFR-2/STAT3 signaling to upregulate Bmi1 and Sox2. In addition, knockdown of Prx II in Huh7-H-ras(G12V) cells showed significant reduction in cell migration in vitro and in tumorigenic potential in vivo. Taken together, all the results demonstrated that Prx II plays a key role in the CSC self-renewal of HCC cells through redox regulation. Stem Cells 2016;34:1188-1197. PMID:26866938

  9. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration.

    PubMed

    Plikus, Maksim V; Mayer, Julie Ann; de la Cruz, Damon; Baker, Ruth E; Maini, Philip K; Maxson, Robert; Chuong, Cheng-Ming

    2008-01-17

    In the age of stem cell engineering it is critical to understand how stem cell activity is regulated during regeneration. Hairs are mini-organs that undergo cyclic regeneration throughout adult life, and are an important model for organ regeneration. Hair stem cells located in the follicle bulge are regulated by the surrounding microenvironment, or niche. The activation of such stem cells is cyclic, involving periodic beta-catenin activity. In the adult mouse, regeneration occurs in waves in a follicle population, implying coordination among adjacent follicles and the extrafollicular environment. Here we show that unexpected periodic expression of bone morphogenetic protein 2 (Bmp2) and Bmp4 in the dermis regulates this process. This BMP cycle is out of phase with the WNT/beta-catenin cycle, thus dividing the conventional telogen into new functional phases: one refractory and the other competent for hair regeneration, characterized by high and low BMP signalling, respectively. Overexpression of noggin, a BMP antagonist, in mouse skin resulted in a markedly shortened refractory phase and faster propagation of the regenerative wave. Transplantation of skin from this mutant onto a wild-type host showed that follicles in donor and host can affect their cycling behaviours mutually, with the outcome depending on the equilibrium of BMP activity in the dermis. Administration of BMP4 protein caused the competent region to become refractory. These results show that BMPs may be the long-sought 'chalone' inhibitors of hair growth postulated by classical experiments. Taken together, results presented in this study provide an example of hierarchical regulation of local organ stem cell homeostasis by the inter-organ macroenvironment. The expression of Bmp2 in subcutaneous adipocytes indicates physiological integration between these two thermo-regulatory organs. Our findings have practical importance for studies using mouse skin as a model for carcinogenesis, intra-cutaneous drug

  10. Wnt ligands regulate Tkv expression to constrain Dpp activity in the Drosophila ovarian stem cell niche

    PubMed Central

    Luo, Lichao; Wang, Huashan; Fan, Chao; Liu, Sen

    2015-01-01

    Stem cell self-renewal versus differentiation is regulated by the niche, which provides localized molecules that favor self-renewal. In the Drosophila melanogaster female germline stem cell (GSC) niche, Decapentaplegic (Dpp), a fly transforming growth factor β molecule and well-established long-range morphogen, acts over one cell diameter to maintain the GSCs. Here, we show that Thickveins (Tkv; a type I receptor of Dpp) is highly expressed in stromal cells next to Dpp-producing cells and functions to remove excess Dpp outside the niche, thereby spatially restricting its activity. Interestingly, Tkv expression in these stromal cells is regulated by multiple Wnt ligands that are produced by the niche. Our data demonstrate a self-restraining mechanism by which the Drosophila ovarian GSC niche acts to define its own boundary. PMID:26008746

  11. TRIM32 regulates skeletal muscle stem cell differentiation and is necessary for normal adult muscle regeneration.

    PubMed

    Nicklas, Sarah; Otto, Anthony; Wu, Xiaoli; Miller, Pamela; Stelzer, Sandra; Wen, Yefei; Kuang, Shihuan; Wrogemann, Klaus; Patel, Ketan; Ding, Hao; Schwamborn, Jens C

    2012-01-01

    Limb girdle muscular dystrophy type 2H (LGMD2H) is an inherited autosomal recessive disease of skeletal muscle caused by a mutation in the TRIM32 gene. Currently its pathogenesis is entirely unclear. Typically the regeneration process of adult skeletal muscle during growth or following injury is controlled by a tissue specific stem cell population termed satellite cells. Given that TRIM32 regulates the fate of mammalian neural progenitor cells through controlling their differentiation, we asked whether TRIM32 could also be essential for the regulation of myogenic stem cells. Here we demonstrate for the first time that TRIM32 is expressed in the skeletal muscle stem cell lineage of adult mice, and that in the absence of TRIM32, myogenic differentiation is disrupted. Moreover, we show that the ubiquitin ligase TRIM32 controls this process through the regulation of c-Myc, a similar mechanism to that previously observed in neural progenitors. Importantly we show that loss of TRIM32 function induces a LGMD2H-like phenotype and strongly affects muscle regeneration in vivo. Our studies implicate that the loss of TRIM32 results in dysfunctional muscle stem cells which could contribute to the development of LGMD2H. PMID:22299041

  12. TCDD-induced activation of aryl hydrocarbon receptor regulates the skin stem cell population.

    PubMed

    Mandavia, Chirag

    2015-03-01

    The environmental toxin 2,3,7,8 tetrachlorodibenzo p-dioxin (TCDD) plays an important role in the development of chloracne. Chloracne is characterized by hyperkeratosis of the interfollicular squamous epithelium and metaplasia of sebaceous glands. Dysregulation of keratinocyte terminal differentiation leading to accelerated formation of the cornified envelope as a result of TCDD-mediated aryl hydrocarbon receptor (AHR) activation has been implicated as one of the molecular pathogenic mechanisms contributing to the development of chloracne. In addition, chloracne is characterized by altered skin stem cell characteristics, and it has been speculated that the phenotype of chloracne closely matches that of c-Myc overexpressing transgenic mice. Therefore, we sought to determine whether TCDD plays a role in regulation of the skin stem cell population. We have proposed in this report that TCDD may directly or indirectly (via AHR receptor cross-talk) upregulate c-Myc via epidermal growth factor receptor-extracellular signal regulated kinase (EGFR-ERK) axis stimulation, which may correspond with an increase in human epidermal stem cell activation and differentiation of EPSCs into keratinocytes, with eventual depletion of the epidermal stem cell compartment of the skin. Thus, TCDD may cause increased epidermal stem cell turnover during chloracne. PMID:25618441

  13. Whole-animal genome-wide RNAi screen identifies networks regulating male germline stem cells in Drosophila.

    PubMed

    Liu, Ying; Ge, Qinglan; Chan, Brian; Liu, Hanhan; Singh, Shree Ram; Manley, Jacob; Lee, Jae; Weideman, Ann Marie; Hou, Gerald; Hou, Steven X

    2016-01-01

    Stem cells are regulated both intrinsically and externally, including by signals from the local environment and distant organs. To identify genes and pathways that regulate stem-cell fates in the whole organism, we perform a genome-wide transgenic RNAi screen through ubiquitous gene knockdowns, focusing on regulators of adult Drosophila testis germline stem cells (GSCs). Here we identify 530 genes that regulate GSC maintenance and differentiation. Of these, we further knock down 113 selected genes using cell-type-specific Gal4s and find that more than half were external regulators, that is, from the local microenvironment or more distal sources. Some genes, for example, versatile (vers), encoding a heterochromatin protein, regulates GSC fates differentially in different cell types and through multiple pathways. We also find that mitosis/cytokinesis proteins are especially important for male GSC maintenance. Our findings provide valuable insights and resources for studying stem cell regulation at the organismal level. PMID:27484291

  14. Whole-animal genome-wide RNAi screen identifies networks regulating male germline stem cells in Drosophila

    PubMed Central

    Liu, Ying; Ge, Qinglan; Chan, Brian; Liu, Hanhan; Singh, Shree Ram; Manley, Jacob; Lee, Jae; Weideman, Ann Marie; Hou, Gerald; Hou, Steven X.

    2016-01-01

    Stem cells are regulated both intrinsically and externally, including by signals from the local environment and distant organs. To identify genes and pathways that regulate stem-cell fates in the whole organism, we perform a genome-wide transgenic RNAi screen through ubiquitous gene knockdowns, focusing on regulators of adult Drosophila testis germline stem cells (GSCs). Here we identify 530 genes that regulate GSC maintenance and differentiation. Of these, we further knock down 113 selected genes using cell-type-specific Gal4s and find that more than half were external regulators, that is, from the local microenvironment or more distal sources. Some genes, for example, versatile (vers), encoding a heterochromatin protein, regulates GSC fates differentially in different cell types and through multiple pathways. We also find that mitosis/cytokinesis proteins are especially important for male GSC maintenance. Our findings provide valuable insights and resources for studying stem cell regulation at the organismal level. PMID:27484291

  15. ABCG2 regulates self-renewal and stem cell marker expression but not tumorigenicity or radiation resistance of glioma cells

    PubMed Central

    Wee, Boyoung; Pietras, Alexander; Ozawa, Tatsuya; Bazzoli, Elena; Podlaha, Ondrej; Antczak, Christophe; Westermark, Bengt; Nelander, Sven; Uhrbom, Lene; Forsberg-Nilsson, Karin; Djaballah, Hakim; Michor, Franziska; Holland, Eric C.

    2016-01-01

    Glioma cells with stem cell traits are thought to be responsible for tumor maintenance and therapeutic failure. Such cells can be enriched based on their inherent drug efflux capability mediated by the ABC transporter ABCG2 using the side population assay, and their characteristics include increased self-renewal, high stem cell marker expression and high tumorigenic capacity in vivo. Here, we show that ABCG2 can actively drive expression of stem cell markers and self-renewal in glioma cells. Stem cell markers and self-renewal was enriched in cells with high ABCG2 activity, and could be specifically inhibited by pharmacological and genetic ABCG2 inhibition. Importantly, despite regulating these key characteristics of stem-like tumor cells, ABCG2 activity did not affect radiation resistance or tumorigenicity in vivo. ABCG2 effects were Notch-independent and mediated by diverse mechanisms including the transcription factor Mef. Our data demonstrate that characteristics of tumor stem cells are separable, and highlight ABCG2 as a potential driver of glioma stemness. PMID:27456282

  16. The Endocrine Regulation of Stem Cells: Physiological Importance and Pharmacological Potentials for Cell-Based Therapy.

    PubMed

    Ghorbani, Ahmad; Naderi-Meshkin, Hojjat

    2016-01-01

    Throughout life, different types of stem cells participate in tissue generation, maintenance, plasticity, and repair. Their abilities to secrete growth factors, to proliferate and differentiate into several cell lineages, and to migrate and home into the damaged tissues have made them attractive candidates for cell therapy and tissue engineering applications. Normal stem cell function is tied to the cell-intrinsic mechanisms and extrinsic signals derived from the surrounding microenvironment or circulation. Understanding the regulatory signals that govern stem cell functions is essential in order to have full knowledge about organogenesis, tissue maintenance and tissue plasticity in the physiological condition. It is also important for optimizing tissue engineering and improving the therapeutic efficiency of stem cells in regenerative medicine. A growing body of evidence indicates that hormonal signals can critically influence stem cell functions in fetal, postnatal, and adult tissues. This review focuses on recent studies revealing how growth hormone, insulin, thyroid hormone, parathormone, adrenocorticotropin, glucocorticoids, erythropoietin, and gastrointestinal hormones control stem cell behavior through influencing survival, proliferation, migration, homing, and differentiation of these cells. Moreover, how environmental factors such as exercise, hypoxia, and nutrition might affect stem cell functions through influencing the endocrine system is discussed. Some of the current limitations of cell therapy and how hormones can help overcoming these limitations are briefly outlined. PMID:26337380

  17. Epigenetic Regulation of miRNAs and Breast Cancer Stem Cells

    PubMed Central

    Duru, Nadire; Gernapudi, Ramkishore; Eades, Gabriel; Eckert, Richard; Zhou, Qun

    2015-01-01

    MicroRNAs have emerged as important targets of chemopreventive strategies in breast cancer. We have found that miRNAs are dysregulated at an early stage in breast cancer, in non-malignant Ductal Carcinoma In Situ. Many dietary chemoprevention agents can act by epigenetically activating miRNA-signaling pathways involved in tumor cell proliferation and invasive progression. In addition, many miRNAs activated via chemopreventive strategies target cancer stem cell signaling and prevent tumor progression or relapse. Specifically, we have found that miRNAs regulate DCIS stem cells, which may play important roles in breast cancer progression to invasive disease. We have shown that chemopreventive agents can directly inhibit DCIS stem cells and block tumor formation in vivo, via activation of tumor suppressor miRNAs. PMID:26052481

  18. OCAM Regulates Embryonic Spinal Cord Stem Cell Proliferation by Modulating ErbB2 Receptor

    PubMed Central

    Deleyrolle, Loïc; Sabourin, Jean-Charles; Rothhut, Bernard; Fujita, Hiroko; Guichet, Pierre-Olivier; Teigell, Marisa; Ripoll, Chantal; Chauvet, Norbert; Perrin, Florence; Mamaeva, Daria; Noda, Tetsuo; Mori, Kensaku; Yoshihara, Yoshihiro; Hugnot, Jean-Philippe

    2015-01-01

    The proliferation and differentiation of neural stem cells are tightly controlled by intrinsic and extrinsic cues. Cell adhesion molecules are increasingly recognized as regulators of these processes. Here we report the expression of the olfactory cell adhesion molecule (OCAM/NCAM2/RNCAM) during mouse spinal cord development and in neural stem cells cultured as neurospheres. OCAM is also weakly expressed in the dormant adult stem cell niche around the central canal and is overexpressed after spinal cord injury. Both transmembrane (TM) and glycosylphosphatidylinositol (GPI)-linked isoforms are present in neurospheres. Electron microscopy and internalisation experiments revealed a dynamic trafficking of OCAM between the membrane and intracellular compartments. After differentiation, OCAM remains in neurons and oligodendrocytes whereas no expression is detected in astrocytes. Using OCAM knockout (KO) mice, we found that mutant spinal cord stem cells showed an increased proliferation and self-renewal rates although no effect on differentiation was observed. This effect was reversed by lentivirus-mediated re-introduction of OCAM. Mechanistically, we identified the ErbB2/Neu/HER2 protein as being implicated in the enhanced proliferation of mutant cells. ErbB2 protein expression and phosphorylation level were significantly increased in KO cells whereas no difference was observed at the mRNA level. Overexpression of ErbB2 in wild-type and mutant cells also increased their growth while reintroduction of OCAM in mutant cells reduced the level of phosphorylated ErbB2. These results indicate that OCAM exerts a posttranscriptional control on the ErbB2 signalling in spinal cord stem cells. This study adds further support for considering cell adhesion molecules as regulators of the ErbB signalling. PMID:25875008

  19. Low Density Lipoprotein Receptor Related Proteins as Regulators of Neural Stem and Progenitor Cell Function

    PubMed Central

    Landowski, Lila M.; Young, Kaylene M.

    2016-01-01

    The central nervous system (CNS) is a highly organised structure. Many signalling systems work in concert to ensure that neural stem cells are appropriately directed to generate progenitor cells, which in turn mature into functional cell types including projection neurons, interneurons, astrocytes, and oligodendrocytes. Herein we explore the role of the low density lipoprotein (LDL) receptor family, in particular family members LRP1 and LRP2, in regulating the behaviour of neural stem and progenitor cells during development and adulthood. The ability of LRP1 and LRP2 to bind a diverse and extensive range of ligands, regulate ligand endocytosis, recruit nonreceptor tyrosine kinases for direct signal transduction and signal in conjunction with other receptors, enables them to modulate many crucial neural cell functions. PMID:26949399

  20. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition.

    PubMed

    Sperber, Henrik; Mathieu, Julie; Wang, Yuliang; Ferreccio, Amy; Hesson, Jennifer; Xu, Zhuojin; Fischer, Karin A; Devi, Arikketh; Detraux, Damien; Gu, Haiwei; Battle, Stephanie L; Showalter, Megan; Valensisi, Cristina; Bielas, Jason H; Ericson, Nolan G; Margaretha, Lilyana; Robitaille, Aaron M; Margineantu, Daciana; Fiehn, Oliver; Hockenbery, David; Blau, C Anthony; Raftery, Daniel; Margolin, Adam A; Hawkins, R David; Moon, Randall T; Ware, Carol B; Ruohola-Baker, Hannele

    2015-12-01

    For nearly a century developmental biologists have recognized that cells from embryos can differ in their potential to differentiate into distinct cell types. Recently, it has been recognized that embryonic stem cells derived from both mice and humans exhibit two stable yet epigenetically distinct states of pluripotency: naive and primed. We now show that nicotinamide N-methyltransferase (NNMT) and the metabolic state regulate pluripotency in human embryonic stem cells (hESCs).  Specifically, in naive hESCs, NNMT and its enzymatic product 1-methylnicotinamide are highly upregulated, and NNMT is required for low S-adenosyl methionine (SAM) levels and the H3K27me3 repressive state. NNMT consumes SAM in naive cells, making it unavailable for histone methylation that represses Wnt and activates the HIF pathway in primed hESCs. These data support the hypothesis that the metabolome regulates the epigenetic landscape of the earliest steps in human development. PMID:26571212

  1. The regulation of stem cell aging by Wnt signaling.

    PubMed

    Fujimaki, Shin; Wakabayashi, Tamami; Takemasa, Tohru; Asashima, Makoto; Kuwabara, Tomoko

    2015-12-01

    Aging is an inevitable physiological process that leads to the dysfunction of various tissues, and these changes may contribute to certain diseases, and ultimately death. Recent research has discovered biological pathways that promote aging. This review focuses on Wnt signaling, Wnt is a highly conserved secreted signaling molecule that plays an essential role in the development and function of various tissues, and is a notable factor that regulates aging. Although Wnt signaling influences aging in various tissues, its effects are particularly prominent in neuronal tissue and skeletal muscle. In neuronal tissue, neurogenesis is attenuated by the downregulation of Wnt signaling with aging. Skeletal muscle can also become weaker with aging, in a process known as sarcopenia. A notable cause of sarcopenia is the myogenic-to-fibrogenic trans-differentiation of satellite cells by excessive upregulation of Wnt signaling with aging, resulting in the impaired regenerative capacity of aged skeletal muscle. However, exercise is very useful for preventing the age-related alterations in neuronal tissue and skeletal muscle. Upregulation of Wnt signaling is implicated in the positive effects of exercise, resulting in the activation of neurogenesis in adult neuronal tissue and myogenesis in mature skeletal muscle. Although more investigations are required to thoroughly understand age-related changes and their biological mechanisms in a variety of tissues, this review proposes exercise as a useful therapy for the elderly, to prevent the negative effects of aging and maintain their quality of life. PMID:26322973

  2. Planarian PTEN homologs regulate stem cells and regeneration through TOR signaling.

    PubMed

    Oviedo, Néstor J; Pearson, Bret J; Levin, Michael; Sánchez Alvarado, Alejandro

    2008-01-01

    We have identified two genes, Smed-PTEN-1 and Smed-PTEN-2, capable of regulating stem cell function in the planarian Schmidtea mediterranea. Both genes encode proteins homologous to the mammalian tumor suppressor, phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Inactivation of Smed-PTEN-1 and -2 by RNA interference (RNAi) in planarians disrupts regeneration, and leads to abnormal outgrowths in both cut and uncut animals followed soon after by death (lysis). The resulting phenotype is characterized by hyperproliferation of neoblasts (planarian stem cells), tissue disorganization and a significant accumulation of postmitotic cells with impaired differentiation capacity. Further analyses revealed that rapamycin selectively prevented such accumulation without affecting the normal neoblast proliferation associated with physiological turnover and regeneration. In animals in which PTEN function is abrogated, we also detected a significant increase in the number of cells expressing the planarian Akt gene homolog (Smed-Akt). However, functional abrogation of Smed-Akt in Smed-PTEN RNAi-treated animals does not prevent cell overproliferation and lethality, indicating that functional abrogation of Smed-PTEN is sufficient to induce abnormal outgrowths. Altogether, our data reveal roles for PTEN in the regulation of planarian stem cells that are strikingly conserved to mammalian models. In addition, our results implicate this protein in the control of stem cell maintenance during the regeneration of complex structures in planarians. PMID:19048075

  3. Stem Cell Basics

    MedlinePlus

    ... stem cells? What are the potential uses of human stem cells and the obstacles that must be overcome before ... two kinds of stem cells from animals and humans: embryonic stem cells and non-embryonic "somatic" or "adult" stem cells . ...

  4. Learn About Stem Cells

    MedlinePlus

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... ISSCR Get Involved Media © 2015 International Society for Stem Cell Research Terms of Use Disclaimer Privacy Policy

  5. The Osa-containing SWI/SNF chromatin-remodeling complex regulates stem cell commitment in the adult Drosophila intestine

    PubMed Central

    Zeng, Xiankun; Lin, Xinhua; Hou, Steven X.

    2013-01-01

    The proportion of stem cells versus differentiated progeny is well balanced to maintain tissue homeostasis, which in turn depends on the balance of the different signaling pathways involved in stem cell self-renewal versus lineage-specific differentiation. In a screen for genes that regulate cell lineage determination in the posterior midgut, we identified that the Osa-containing SWI/SNF (Brahma) chromatin-remodeling complex regulates Drosophila midgut homeostasis. Mutations in subunits of the Osa-containing complex result in intestinal stem cell (ISC) expansion as well as enteroendocrine (EE) cell reduction. We further demonstrated that Osa regulates ISC self-renewal and differentiation into enterocytes by elaborating Notch signaling, and ISC commitment to differentiation into EE cells by regulating the expression of Asense, an EE cell fate determinant. Our data uncover a unique mechanism whereby the commitment of stem cells to discrete lineages is coordinately regulated by chromatin-remodeling factors. PMID:23942514

  6. The novel tumour suppressor Madm regulates stem cell competition in the Drosophila testis.

    PubMed

    Singh, Shree Ram; Liu, Ying; Zhao, Jiangsha; Zeng, Xiankun; Hou, Steven X

    2016-01-01

    Stem cell competition has emerged as a mechanism for selecting fit stem cells/progenitors and controlling tumourigenesis. However, little is known about the underlying molecular mechanism. Here we identify Mlf1-adaptor molecule (Madm), a novel tumour suppressor that regulates the competition between germline stem cells (GSCs) and somatic cyst stem cells (CySCs) for niche occupancy. Madm knockdown results in overexpression of the EGF receptor ligand vein (vn), which further activates EGF receptor signalling and integrin expression non-cell autonomously in CySCs to promote their overproliferation and ability to outcompete GSCs for niche occupancy. Conversely, expressing a constitutively activated form of the Drosophila JAK kinase (hop(Tum-l)) promotes Madm nuclear translocation, and suppresses vn and integrin expression in CySCs that allows GSCs to outcompete CySCs for niche occupancy and promotes GSC tumour formation. Tumour suppressor-mediated stem cell competition presented here could be a mechanism of tumour initiation in mammals. PMID:26792023

  7. The novel tumour suppressor Madm regulates stem cell competition in the Drosophila testis

    PubMed Central

    Singh, Shree Ram; Liu, Ying; Zhao, Jiangsha; Zeng, Xiankun; Hou, Steven X.

    2016-01-01

    Stem cell competition has emerged as a mechanism for selecting fit stem cells/progenitors and controlling tumourigenesis. However, little is known about the underlying molecular mechanism. Here we identify Mlf1-adaptor molecule (Madm), a novel tumour suppressor that regulates the competition between germline stem cells (GSCs) and somatic cyst stem cells (CySCs) for niche occupancy. Madm knockdown results in overexpression of the EGF receptor ligand vein (vn), which further activates EGF receptor signalling and integrin expression non-cell autonomously in CySCs to promote their overproliferation and ability to outcompete GSCs for niche occupancy. Conversely, expressing a constitutively activated form of the Drosophila JAK kinase (hopTum−l) promotes Madm nuclear translocation, and suppresses vn and integrin expression in CySCs that allows GSCs to outcompete CySCs for niche occupancy and promotes GSC tumour formation. Tumour suppressor-mediated stem cell competition presented here could be a mechanism of tumour initiation in mammals. PMID:26792023

  8. Screens for piwi suppressors in Drosophila identify dosage-dependent regulators of germline stem cell division.

    PubMed Central

    Smulders-Srinivasan, Tora K; Lin, Haifan

    2003-01-01

    The Drosophila piwi gene is the founding member of the only known family of genes whose function in stem cell maintenance is highly conserved in both animal and plant kingdoms. piwi mutants fail to maintain germline stem cells in both male and female gonads. The identification of piwi-interacting genes is essential for understanding how stem cell divisions are regulated by piwi-mediated mechanisms. To search for such genes, we screened the Drosophila third chromosome ( approximately 36% of the euchromatic genome) for suppressor mutations of piwi2 and identified six strong and three weak piwi suppressor genes/sequences. These genes/sequences interact negatively with piwi in a dosage-sensitive manner. Two of the strong suppressors represent known genes--serendipity-delta and similar, both encoding transcription factors. These findings reveal that the genetic regulation of germline stem cell division involves dosage-sensitive mechanisms and that such mechanisms exist at the transcriptional level. In addition, we identified three other types of piwi interactors. The first type consists of deficiencies that dominantly interact with piwi2 to cause male sterility, implying that dosage-sensitive regulation also exists in the male germline. The other two types are deficiencies that cause lethality and female-specific lethality in a piwi2 mutant background, revealing the zygotic function of piwi in somatic development. PMID:14704180

  9. Disseminated prostate cancer cells can instruct hematopoietic stem and progenitor cells to regulate bone phenotype.

    PubMed

    Joseph, Jeena; Shiozawa, Yusuke; Jung, Younghun; Kim, Jin Koo; Pedersen, Elisabeth; Mishra, Anjali; Zalucha, Janet Linn; Wang, Jingcheng; Keller, Evan T; Pienta, Kenneth J; Taichman, Russell S

    2012-03-01

    Prostate cancer metastases and hematopoietic stem cells (HSC) frequently home to the bone marrow, where they compete to occupy the same HSC niche. We have also shown that under conditions of hematopoietic stress, HSCs secrete the bone morphogenetic proteins (BMP)-2 and BMP-6 that drives osteoblastic differentiation from mesenchymal precursors. As it is not known, we examined whether metastatic prostate cancer cells can alter regulation of normal bone formation by HSCs and hematopoietic progenitor cells (HPC). HSC/HPCs isolated from mice bearing nonmetastatic and metastatic tumor cells were isolated and their ability to influence osteoblastic and osteoclastic differentiation was evaluated. When the animals were inoculated with the LNCaP C4-2B cell line, which produces mixed osteoblastic and osteolytic lesions in bone, HPCs, but not HSCs, were able to induced stromal cells to differentiate down an osteoblastic phenotype. Part of the mechanism responsible for this activity was the production of BMP-2. On the other hand, when the animals were implanted with PC3 cells that exhibits predominantly osteolytic lesions in bone, HSCs derived from these animals were capable of directly differentiating into tartrate-resistant acid phosphatase-positive osteoclasts through an interleukin-6-mediated pathway. These studies for the first time identify HSC/HPCs as novel targets for future therapy involved in the bone abnormalities of prostate cancer. PMID:22241219

  10. N(6)-Methyladenosine Methyltransferases and Demethylases: New Regulators of Stem Cell Pluripotency and Differentiation.

    PubMed

    Wu, Yunshu; Zhang, Shiwen; Yuan, Quan

    2016-07-15

    The discovery of mammalian N(6)-methyladenosine (m(6)A) methyltransferases and demethylases has enriched our knowledge of the dynamic regulation of the most prevalent posttranscriptional RNA modification, m(6)A methylation. This reversible methylation process of adding and removing m(6)A marks on RNA has been shown to have broad biological functions in fine tuning cellular processes and gene expression. Recent studies have revealed a critical role for the currently known m(6)A methyltransferases and demethylases in regulating the pluripotency and differentiation of stem cells. These data establish a novel dimension in epigenetic regulation at the RNA level to affect mammalian cell fate. PMID:27216987

  11. Abscission Is Regulated by the ESCRT-III Protein Shrub in Drosophila Germline Stem Cells

    PubMed Central

    Matias, Neuza Reis; Mathieu, Juliette; Huynh, Jean-René

    2015-01-01

    Abscission is the final event of cytokinesis that leads to the physical separation of the two daughter cells. Recent technical advances have allowed a better understanding of the cellular and molecular events leading to abscission in isolated yeast or mammalian cells. However, how abscission is regulated in different cell types or in a developing organism remains poorly understood. Here, we characterized the function of the ESCRT-III protein Shrub during cytokinesis in germ cells undergoing a series of complete and incomplete divisions. We found that Shrub is required for complete abscission, and that levels of Shrub are critical for proper timing of abscission. Loss or gain of Shrub delays abscission in germline stem cells (GSCs), and leads to the formation of stem-cysts, where daughter cells share the same cytoplasm as the mother stem cell and cannot differentiate. In addition, our results indicate a negative regulation of Shrub by the Aurora B kinase during GSC abscission. Finally, we found that Lethal giant discs (lgd), known to be required for Shrub function in the endosomal pathway, also regulates the duration of abscission in GSCs. PMID:25647097

  12. Regulation of c-Myc Expression by Ahnak Promotes Induced Pluripotent Stem Cell Generation.

    PubMed

    Lim, Hee Jung; Kim, Jusong; Park, Chang-Hwan; Lee, Sang A; Lee, Man Ryul; Kim, Kye-Seong; Kim, Jaesang; Bae, Yun Soo

    2016-01-01

    We have previously reported that Ahnak-mediated TGFβ signaling leads to down-regulation of c-Myc expression. Here, we show that inhibition of Ahnak can promote generation of induced pluripotent stem cells (iPSC) via up-regulation of endogenous c-Myc. Consistent with the c-Myc inhibitory role of Ahnak, mouse embryonic fibroblasts from Ahnak-deficient mouse (Ahnak(-/-) MEF) show an increased level of c-Myc expression compared with wild type MEF. Generation of iPSC with just three of the four Yamanaka factors, Oct4, Sox2, and Klf4 (hereafter 3F), was significantly enhanced in Ahnak(-/-) MEF. Similar results were obtained when Ahnak-specific shRNA was applied to wild type MEF. Of note, expressionof Ahnak was significantly induced during the formation of embryoid bodies from embryonic stem cells, suggesting that Ahnak-mediated c-Myc inhibition is involved in embryoid body formation and the initial differentiation of pluripotent stem cells. The iPSC from 3F-infected Ahnak(-/-) MEF cells (Ahnak(-/-)-iPSC-3F) showed expression of all stem cell markers examined and the capability to form three primary germ layers. Moreover, injection of Ahnak(-/-)-iPSC-3F into athymic nude mice led to development of teratoma containing tissues from all three primary germ layers, indicating that iPSC from Ahnak(-/-) MEF are bona fide pluripotent stem cells. Taken together, these data provide evidence for a new role for Ahnak in cell fate determination during development and suggest that manipulation of Ahnak and the associated signaling pathway may provide a means to regulate iPSC generation. PMID:26598518

  13. FDA Warns About Stem Cell Claims

    MedlinePlus

    ... Home For Consumers Consumer Updates FDA Warns About Stem Cell Claims Share Tweet Linkedin Pin it More sharing ... blood-forming system. back to top Regulation of Stem Cells FDA regulates stem cells in the U.S. to ...

  14. Protein post-translational modifications and regulation of pluripotency in human stem cells

    PubMed Central

    Wang, Yu-Chieh; Peterson, Suzanne E; Loring, Jeanne F

    2014-01-01

    Post-translational modifications (PTMs) are known to be essential mechanisms used by eukaryotic cells to diversify their protein functions and dynamically coordinate their signaling networks. Defects in PTMs have been linked to numerous developmental disorders and human diseases, highlighting the importance of PTMs in maintaining normal cellular states. Human pluripotent stem cells (hPSCs), including embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs), are capable of self-renewal and differentiation into a variety of functional somatic cells; these cells hold a great promise for the advancement of biomedical research and clinical therapy. The mechanisms underlying cellular pluripotency in human cells have been extensively explored in the past decade. In addition to the vast amount of knowledge obtained from the genetic and transcriptional research in hPSCs, there is a rapidly growing interest in the stem cell biology field to examine pluripotency at the protein and PTM level. This review addresses recent progress toward understanding the role of PTMs (glycosylation, phosphorylation, acetylation and methylation) in the regulation of cellular pluripotency. PMID:24217768

  15. Heparan sulfate regulates the number and centrosome positioning of Drosophila male germline stem cells

    PubMed Central

    Levings, Daniel C.; Arashiro, Takeshi; Nakato, Hiroshi

    2016-01-01

    Stem cell division is tightly controlled via secreted signaling factors and cell adhesion molecules provided from local niche structures. Molecular mechanisms by which each niche component regulates stem cell behaviors remain to be elucidated. Here we show that heparan sulfate (HS), a class of glycosaminoglycan chains, regulates the number and asymmetric division of germline stem cells (GSCs) in the Drosophila testis. We found that GSC number is sensitive to the levels of 6-O sulfate groups on HS. Loss of 6-O sulfation also disrupted normal positioning of centrosomes, a process required for asymmetric division of GSCs. Blocking HS sulfation specifically in the niche, termed the hub, led to increased GSC numbers and mispositioning of centrosomes. The same treatment also perturbed the enrichment of Apc2, a component of the centrosome-anchoring machinery, at the hub–GSC interface. This perturbation of the centrosome-anchoring process ultimately led to an increase in the rate of spindle misorientation and symmetric GSC division. This study shows that specific HS modifications provide a novel regulatory mechanism for stem cell asymmetric division. The results also suggest that HS-mediated niche signaling acts upstream of GSC division orientation control. PMID:26792837

  16. Direct induction of haematoendothelial programs in human pluripotent stem cells by transcriptional regulators.

    PubMed

    Elcheva, Irina; Brok-Volchanskaya, Vera; Kumar, Akhilesh; Liu, Patricia; Lee, Jeong-Hee; Tong, Lilian; Vodyanik, Maxim; Swanson, Scott; Stewart, Ron; Kyba, Michael; Yakubov, Eduard; Cooke, John; Thomson, James A; Slukvin, Igor

    2014-01-01

    Advancing pluripotent stem cell technologies for modelling haematopoietic stem cell development and blood therapies requires identifying key regulators of haematopoietic commitment from human pluripotent stem cells (hPSCs). Here, by screening the effect of 27 candidate factors, we reveal two groups of transcriptional regulators capable of inducing distinct haematopoietic programs from hPSCs: pan-myeloid (ETV2 and GATA2) and erythro-megakaryocytic (GATA2 and TAL1). In both cases, these transcription factors directly convert hPSCs to endothelium, which subsequently transform into blood cells with pan-myeloid or erythro-megakaryocytic potential. These data demonstrate that two distinct genetic programs regulate the haematopoietic development from hPSCs and that both of these programs specify hPSCs directly to haemogenic endothelial cells. In addition, this study provides a novel method for the efficient induction of blood and endothelial cells from hPSCs via the overexpression of modified mRNA for the selected transcription factors. PMID:25019369

  17. Cryptotanshinone targets tumor-initiating cells through down-regulation of stemness genes expression

    PubMed Central

    ZHANG, YING; CABARCAS, STEPHANIE M.; ZHENG, JI; SUN, LEI; MATHEWS, LESLEY A.; ZHANG, XIAOHU; LIN, HONGSHENG; FARRAR, WILLIAM L.

    2016-01-01

    Recent evidence indicates that tumor-initiating cells (TICs), also called cancer stem cells (CSCs), are responsible for tumor initiation and progression, therefore representing an important cell population that may be used as a target for the development of future anticancer therapies. In the present study, Cryptotanshinone (CT), a traditional Chinese herbal medicine, was demonstrated to regulate the behaviors of LNCaP prostate cells and prostate LNCaP TICs. The results demonstrate that treatment with CT alters cellular proliferation, cell cycle status, migration, viability, colony formation and notably, sphere formation and down-regulation of stemness genes (Nanog, OCT4, SOX2, β-catenin, CXCR4) in TICs. The present study demonstrates that CT targets the LNCaP CD44+CD24- population that is representative of prostate TICs and also affects total LNCaP cells as well via down-regulation of stemness genes. The strong effect with which CT has on prostate TICs suggests that CT may potentially function as a novel natural anticancer agent that specifically targets TICs. PMID:27313698

  18. Angiogenin Promotes Hematopoietic Regeneration by Dichotomously Regulating Quiescence of Stem and Progenitor Cells.

    PubMed

    Goncalves, Kevin A; Silberstein, Lev; Li, Shuping; Severe, Nicolas; Hu, Miaofen G; Yang, Hailing; Scadden, David T; Hu, Guo-Fu

    2016-08-11

    Regulation of stem and progenitor cell populations is critical in the development, maintenance, and regeneration of tissues. Here, we define a novel mechanism by which a niche-secreted RNase, angiogenin (ANG), distinctively alters the functional characteristics of primitive hematopoietic stem/progenitor cells (HSPCs) compared with lineage-committed myeloid-restricted progenitor (MyePro) cells. Specifically, ANG reduces the proliferative capacity of HSPC while simultaneously increasing proliferation of MyePro cells. Mechanistically, ANG induces cell-type-specific RNA-processing events: tRNA-derived stress-induced small RNA (tiRNA) generation in HSPCs and rRNA induction in MyePro cells, leading to respective reduction and increase in protein synthesis. Recombinant ANG protein improves survival of irradiated animals and enhances hematopoietic regeneration of mouse and human HSPCs in transplantation. Thus, ANG plays a non-cell-autonomous role in regulation of hematopoiesis by simultaneously preserving HSPC stemness and promoting MyePro proliferation. These cell-type-specific functions of ANG suggest considerable therapeutic potential. PMID:27518564

  19. BRD4 regulates Nanog expression in mouse embryonic stem cells and preimplantation embryos

    PubMed Central

    Liu, W; Stein, P; Cheng, X; Yang, W; Shao, N-Y; Morrisey, E E; Schultz, R M; You, J

    2014-01-01

    Bromodomain-containing protein 4 (BRD4) is an important epigenetic reader implicated in the pathogenesis of a number of different cancers and other diseases. Brd4-null mouse embryos die shortly after implantation and are compromised in their ability to maintain the inner cell mass, which gives rise to embryonic stem cells (ESCs). Here we report that BRD4 regulates expression of the pluripotency factor Nanog in mouse ESCs and preimplantation embryos, as well as in human ESCs and embryonic cancer stem cells. Inhibition of BRD4 function using a chemical inhibitor, small interfering RNAs, or a dominant-negative approach suppresses Nanog expression, and abolishes the self-renewal ability of ESCs. We also find that BRD4 associates with BRG1 (brahma-related gene 1, aka Smarca4 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a, member 4)), a key regulator of ESC self-renewal and pluripotency, in the Nanog regulatory regions to regulate Nanog expression. Our study identifies Nanog as a novel BRD4 target gene, providing new insights for the biological function of BRD4 in stem cells and mouse embryos. Knowledge gained from these non-cancerous systems will facilitate future investigations of how Brd4 dysfunction leads to cancers. PMID:25146928

  20. Epigenetic regulation in pluripotent stem cells: a key to breaking the epigenetic barrier.

    PubMed

    Watanabe, Akira; Yamada, Yasuhiro; Yamanaka, Shinya

    2013-01-01

    The differentiation and reprogramming of cells are accompanied by drastic changes in the epigenetic profiles of cells. Waddington's classical model clearly describes how differentiating cells acquire their cell identity as the developmental potential of an individual cell population declines towards the terminally differentiated state. The recent discovery of induced pluripotent stem cells as well as of somatic cell nuclear transfer provided evidence that the process of differentiation can be reversed. The identity of somatic cells is strictly protected by an epigenetic barrier, and these cells acquire pluripotency by breaking the epigenetic barrier by reprogramming factors such as Oct3/4, Sox2, Klf4, Myc and LIN28. This review covers the current understanding of the spatio-temporal regulation of epigenetics in pluripotent and differentiated cells, and discusses how cells determine their identity and overcome the epigenetic barrier during the reprogramming process. PMID:23166402

  1. GATA-3 REGULATES THE SELF-RENEWAL OF LONG-TERM HEMATOPOIETIC STEM CELLS

    PubMed Central

    Frelin, Catherine; Herrington, Robert; Janmohamed, Salima; Barbara, Mary; Tran, Gary; Paige, Christopher J.; Benveniste, Patricia; Zuñiga-Pflücker, Juan-Carlos; Souabni, Abdallah; Busslinger, Meinrad; Iscove, Norman N

    2016-01-01

    Gata3 is expressed and required for differentiation and function throughout the T lymphocyte lineage. Despite evidence it may also be expressed in multipotent hematopoietic stem cells (HSC), any role in these cells has remained unclear. Here we show GATA3 was cytoplasmic in quiescent long-term stem cells from steady state bone marrow, but relocated to the nucleus when HSC cycle. Relocation depended on p38-MAPK signaling and was associated with diminished capacity for long-term reconstitution upon transfer to irradiated mice. Deletion of Gata3 enhanced repopulating capacity and augmented self-renewal of long term HSC in cell-autonomous fashion, without affecting cell cycle. These observations position Gata3 as a regulator of the balance between self-renewal and differentiation in HSC acting downstream of the p38 signaling pathway. PMID:23974957

  2. Purpose and regulation of stem cells: a systems-biology view from the Caenorhabditis elegans germ line

    PubMed Central

    Cinquin, Olivier

    2010-01-01

    Stem cells are expected to play a key role in the development and maintenance of organisms, and hold great therapeutic promises. However, a number of questions must be answered to achieve an understanding of stem cells and put them to use. Here I review some of these questions, and how they relate to the model system provided by the Caenorhabditis elegans germ line, which is exceptional in its thorough genetic characterization and experimental accessibility under in vivo conditions. A fundamental question is how to define a stem cell; different definitions can be adopted that capture different features of interest. In the C. elegans germ line, stem cells can be defined by cell lineage or by cell commitment (‘commitment’ must itself be carefully defined). These definitions are associated with two other important questions about stem cells: their functions (which must be addressed following a systems approach, based on an evolutionary perspective) and their regulation. I review possible functions and their evolutionary groundings, including genome maintenance and powerful regulation of cell proliferation and differentiation, and possible regulatory mechanisms, including asymmetrical division and control of transit amplification by a developmental timer. I draw parallels between Drosophila and C. elegans germline stem cells; such parallels raise intriguing questions about Drosophila stem cells. I conclude by showing that the C. elegans germ line bears similarities with a number of other stem cell systems, which underscores its relevance to the understanding of stem cells. PMID:19065622

  3. Distinct mechanisms regulate Cdx2 expression in the blastocyst and in trophoblast stem cells.

    PubMed

    Rayon, Teresa; Menchero, Sergio; Rollán, Isabel; Ors, Inmaculada; Helness, Anne; Crespo, Miguel; Nieto, Andres; Azuara, Véronique; Rossant, Janet; Manzanares, Miguel

    2016-01-01

    The first intercellular differences during mammalian embryogenesis arise in the blastocyst, producing the inner cell mass and the trophectoderm. The trophectoderm is the first extraembryonic tissue and does not contribute to the embryo proper, its differentiation instead forming tissues that sustain embryonic development. Crucial roles in extraembryonic differentiation have been identified for certain transcription factors, but a comprehensive picture of the regulation of this early specification is still lacking. Here, we investigated whether the regulatory mechanisms involved in Cdx2 expression in the blastocyst are also utilized in the postimplantation embryo. We analyzed an enhancer that is regulated through Hippo and Notch in the blastocyst trophectoderm, unexpectedly finding that it is inactive in the extraembryonic structures at postimplantation stages. Further analysis identified other Cdx2 regulatory elements including a stem-cell specific regulatory sequence and an element that drives reporter expression in the trophectoderm, a subset of cells in the extraembryonic region of the postimplantation embryo and in trophoblast stem cells. The cross-comparison in this study of cis-regulatory elements employed in the blastocyst, stem cell populations and the postimplantation embryo provides new insights into early mammalian development and suggests a two-step mechanism in Cdx2 regulation. PMID:27256674

  4. Cytoskeletal to Nuclear Strain Transfer Regulates YAP Signaling in Mesenchymal Stem Cells

    PubMed Central

    Driscoll, Tristan P.; Cosgrove, Brian D.; Heo, Su-Jin; Shurden, Zach E.; Mauck, Robert L.

    2015-01-01

    Mechanical forces transduced to cells through the extracellular matrix are critical regulators of tissue development, growth, and homeostasis, and can play important roles in directing stem cell differentiation. In addition to force-sensing mechanisms that reside at the cell surface, there is growing evidence that forces transmitted through the cytoskeleton and to the nuclear envelope are important for mechanosensing, including activation of the Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) pathway. Moreover, nuclear shape, mechanics, and deformability change with differentiation state and have been likewise implicated in force sensing and differentiation. However, the significance of force transfer to the nucleus through the mechanosensing cytoskeletal machinery in the regulation of mesenchymal stem cell mechanobiologic response remains unclear. Here we report that actomyosin-generated cytoskeletal tension regulates nuclear shape and force transmission through the cytoskeleton and demonstrate the differential short- and long-term response of mesenchymal stem cells to dynamic tensile loading based on the contractility state, the patency of the actin cytoskeleton, and the connections it makes with the nucleus. Specifically, we show that while some mechanoactive signaling pathways (e.g., ERK signaling) can be activated in the absence of nuclear strain transfer, cytoskeletal strain transfer to the nucleus is essential for activation of the YAP/TAZ pathway with stretch. PMID:26083918

  5. Distinct mechanisms regulate Cdx2 expression in the blastocyst and in trophoblast stem cells

    PubMed Central

    Rayon, Teresa; Menchero, Sergio; Rollán, Isabel; Ors, Inmaculada; Helness, Anne; Crespo, Miguel; Nieto, Andres; Azuara, Véronique; Rossant, Janet; Manzanares, Miguel

    2016-01-01

    The first intercellular differences during mammalian embryogenesis arise in the blastocyst, producing the inner cell mass and the trophectoderm. The trophectoderm is the first extraembryonic tissue and does not contribute to the embryo proper, its differentiation instead forming tissues that sustain embryonic development. Crucial roles in extraembryonic differentiation have been identified for certain transcription factors, but a comprehensive picture of the regulation of this early specification is still lacking. Here, we investigated whether the regulatory mechanisms involved in Cdx2 expression in the blastocyst are also utilized in the postimplantation embryo. We analyzed an enhancer that is regulated through Hippo and Notch in the blastocyst trophectoderm, unexpectedly finding that it is inactive in the extraembryonic structures at postimplantation stages. Further analysis identified other Cdx2 regulatory elements including a stem-cell specific regulatory sequence and an element that drives reporter expression in the trophectoderm, a subset of cells in the extraembryonic region of the postimplantation embryo and in trophoblast stem cells. The cross-comparison in this study of cis-regulatory elements employed in the blastocyst, stem cell populations and the postimplantation embryo provides new insights into early mammalian development and suggests a two-step mechanism in Cdx2 regulation. PMID:27256674

  6. Multi-layered environmental regulation on the homeostasis of stem cells: the saga of hair growth and alopecia.

    PubMed

    Chen, Chih-Chiang; Chuong, Cheng Ming

    2012-04-01

    Stem cells are fascinating because of their potential in regenerative medicine. Stem cell homeostasis has been thought to be mainly regulated by signals from their adjacent micro-environment named the "stem cell niche". However, recent studies reveal that there can be multiple layers of environmental controls. Here we review these environmental controls using the paradigm of hair stem cells, because to observe and analyze the growth of hair is easier due to their characteristic cyclic regeneration pattern. The length of hair fibers is regulated by the duration of the growth period. In the hair follicles, hair stem cells located in the follicle bulge interact with signals from the dermal papilla. Outside of the follicle, activation of hair stem cells has been shown to be modulated by molecules released from the intra-dermal adipose tissue as well as body hormone status, immune function, neural activities, and aging. The general physiological status of an individual is further influenced by circadian rhythms and changing seasons. The interactive networks of these environmental factors provide new understanding on how stem cell homeostasis is regulated, inspiring new insights for regenerative medicine. Therapies do not necessarily have to be achieved by using stem cells themselves which may constitute a higher risk but by modulating stem cell activity through targeting one or multiple layers of their micro- and macro-environments. PMID:22391240

  7. Independent stem cell lineages regulate adipose organogenesis and adipose homeostasis

    PubMed Central

    Jiang, Yuwei; Berry, Daniel C.; Tang, Wei; Graff, Jonathan M.

    2014-01-01

    Summary Adipose tissues have striking plasticity, highlighted by childhood and adult obesity. Using adipose lineage analyses, smooth muscle actin (SMA)-mural cell fate mapping, and conditional PPARγ deletion to block adipocyte differentiation, we find two phases of adipocyte generation that emanate from two independent adipose progenitor compartments, Developmental and Adult. These two compartments are sequentially required for organ formation and maintenance. Although both Developmental and Adult progenitors are specified during the developmental period and express PPARγ, they have distinct micro-anatomical, functional, morphogenetic and molecular profiles. Further, the two compartments derive from different lineages, while adult adipose progenitors fate map from an SMA+ mural lineage, Developmental progenitors do not. Remarkably, the Adult progenitor compartment appears to be specified earlier than the Developmental cells, and then enters the already developmentally formed adipose depots. Thus, two distinct cell compartments control adipose organ development and organ homeostasis, which may provide discrete therapeutic target for childhood and adult obesity. PMID:25437556

  8. Gene Expression Profiling of Muscle Stem Cells Identifies Novel Regulators of Postnatal Myogenesis

    PubMed Central

    Alonso-Martin, Sonia; Rochat, Anne; Mademtzoglou, Despoina; Morais, Jessica; de Reyniès, Aurélien; Auradé, Frédéric; Chang, Ted Hung-Tse; Zammit, Peter S.; Relaix, Frédéric

    2016-01-01

    Skeletal muscle growth and regeneration require a population of muscle stem cells, the satellite cells, located in close contact to the myofiber. These cells are specified during fetal and early postnatal development in mice from a Pax3/7 population of embryonic progenitor cells. As little is known about the genetic control of their formation and maintenance, we performed a genome-wide chronological expression profile identifying the dynamic transcriptomic changes involved in establishment of muscle stem cells through life, and acquisition of muscle stem cell properties. We have identified multiple genes and pathways associated with satellite cell formation, including set of genes specifically induced (EphA1, EphA2, EfnA1, EphB1, Zbtb4, Zbtb20) or inhibited (EphA3, EphA4, EphA7, EfnA2, EfnA3, EfnA4, EfnA5, EphB2, EphB3, EphB4, EfnBs, Zfp354c, Zcchc5, Hmga2) in adult stem cells. Ephrin receptors and ephrins ligands have been implicated in cell migration and guidance in many tissues including skeletal muscle. Here we show that Ephrin receptors and ephrins ligands are also involved in regulating the adult myogenic program. Strikingly, impairment of EPHB1 function in satellite cells leads to increased differentiation at the expense of self-renewal in isolated myofiber cultures. In addition, we identified new transcription factors, including several zinc finger proteins. ZFP354C and ZCCHC5 decreased self-renewal capacity when overexpressed, whereas ZBTB4 increased it, and ZBTB20 induced myogenic progression. The architectural and transcriptional regulator HMGA2 was involved in satellite cell activation. Together, our study shows that transcriptome profiling coupled with myofiber culture analysis, provides an efficient system to identify and validate candidate genes implicated in establishment/maintenance of muscle stem cells. Furthermore, tour de force transcriptomic profiling provides a wealth of data to inform for future stem cell-based muscle therapies. PMID:27446912

  9. Nitric Oxide Prevents Mouse Embryonic Stem Cell Differentiation Through Regulation of Gene Expression, Cell Signaling, and Control of Cell Proliferation.

    PubMed

    Tapia-Limonchi, Rafael; Cahuana, Gladys M; Caballano-Infantes, Estefania; Salguero-Aranda, Carmen; Beltran-Povea, Amparo; Hitos, Ana B; Hmadcha, Abdelkrim; Martin, Franz; Soria, Bernat; Bedoya, Francisco J; Tejedo, Juan R

    2016-09-01

    Nitric oxide (NO) delays mouse embryonic stem cell (mESC) differentiation by regulating genes linked to pluripotency and differentiation. Nevertheless, no profound study has been conducted on cell differentiation regulation by this molecule through signaling on essential biological functions. We sought to demonstrate that NO positively regulates the pluripotency transcriptional core, enforcing changes in the chromatin structure, in addition to regulating cell proliferation, and signaling pathways with key roles in stemness. Culturing mESCs with 2 μM of the NO donor diethylenetriamine/NO (DETA/NO) in the absence of leukemia inhibitory factor (LIF) induced significant changes in the expression of 16 genes of the pluripotency transcriptional core. Furthermore, treatment with DETA/NO resulted in a high occupancy of activating H3K4me3 at the Oct4 and Nanog promoters and repressive H3K9me3 and H3k27me3 at the Brachyury promoter. Additionally, the activation of signaling pathways involved in pluripotency, such as Gsk3-β/β-catenin, was observed, in addition to activation of PI3 K/Akt, which is consistent with the protection of mESCs from cell death. Finally, a decrease in cell proliferation coincides with cell cycle arrest in G2/M. Our results provide novel insights into NO-mediated gene regulation and cell proliferation and suggest that NO is necessary but not sufficient for the maintenance of pluripotency and the prevention of cell differentiation. J. Cell. Biochem. 117: 2078-2088, 2016. © 2016 Wiley Periodicals, Inc. PMID:26853909

  10. GATAe regulates intestinal stem cell maintenance and differentiation in Drosophila adult midgut.

    PubMed

    Okumura, Takashi; Takeda, Koji; Kuchiki, Megumi; Akaishi, Marie; Taniguchi, Kiichiro; Adachi-Yamada, Takashi

    2016-02-01

    Adult intestinal tissues, exposed to the external environment, play important roles including barrier and nutrient-absorption functions. These functions are ensured by adequately controlled rapid-cell metabolism. GATA transcription factors play essential roles in the development and maintenance of adult intestinal tissues both in vertebrates and invertebrates. We investigated the roles of GATAe, the Drosophila intestinal GATA factor, in adult midgut homeostasis with its first-generated knock-out mutant as well as cell type-specific RNAi and overexpression experiments. Our results indicate that GATAe is essential for proliferation and maintenance of intestinal stem cells (ISCs). Also, GATAe is involved in the differentiation of enterocyte (EC) and enteroendocrine (ee) cells in both Notch (N)-dependent and -independent manner. The results also indicate that GATAe has pivotal roles in maintaining normal epithelial homeostasis of the Drosophila adult midgut through interaction of N signaling. Since recent reports showed that mammalian GATA-6 regulates normal and cancer stem cells in the adult intestinal tract, our data also provide information on the evolutionally conserved roles of GATA factors in stem-cell regulation. PMID:26719127

  11. Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia

    PubMed Central

    Zhang, Bin; Ho, Yin Wei; Huang, Qin; Maeda, Takahiro; Lin, Allen; Lee, Sung-uk; Hair, Alan; Holyoake, Tessa L.; Huettner, Claudia; Bhatia, Ravi

    2012-01-01

    Summary We characterized leukemia stem cells (LSC) in chronic phase chronic myelogenous leukemia (CML) using a transgenic mouse model. LSC were restricted to cells with long-term hematopoietic stem cell (LTHSC) phenotype. CML LTHSC demonstrated reduced homing and retention in the bone marrow (BM), related to decreased CXCL12 expression in CML BM, resulting from increased G-CSF production by leukemia cells. Altered cytokine expression in CML BM was associated with selective impairment of normal LTHSC growth and a growth advantage to CML LTHSC. Imatinib (IM) treatment partially corrected abnormalities in cytokine levels and LTHSC growth. These results were validated using human CML samples and provide improved understanding of microenvironmental regulation of normal and leukemic LTHSC and their response to IM in CML. PMID:22516264

  12. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture

    PubMed Central

    Gilbert, PM; Havenstrite, KL; Magnusson, KEG; Sacco, A; Leonardi, NA; Kraft, P; Nguyen, NK; Thrun, S; Lutolf, MP; Blau, HM

    2010-01-01

    Freshly isolated muscle stem cells (MuSCs) exhibit robust regenerative capacity in vivo that is rapidly lost in culture. Using a bioengineered substrate to recapitulate key biophysical and biochemical niche features in conjunction with a novel highly automated single cell tracking algorithm, we show that substrate elasticity is a potent regulator of MuSC fate in culture. Unlike MuSCs on rigid plastic dishes (~106kPa), MuSCs cultured on soft hydrogel substrates that mimic the elasticity of muscle (12kPa) self-renew in vitro and contribute extensively to muscle regeneration when subsequently transplanted into mice and assayed histologically and quantitatively by non-invasive bioluminescence imaging. Our studies provide novel evidence that by recapitulating physiological tissue rigidity, propagation of adult muscle stem cells is possible, enabling future cell-based therapies for muscle wasting diseases. PMID:20647425

  13. Implant Surface Design Regulates Mesenchymal Stem Cell Differentiation and Maturation.

    PubMed

    Boyan, B D; Cheng, A; Olivares-Navarrete, R; Schwartz, Z

    2016-03-01

    Changes in dental implant materials, structural design, and surface properties can all affect biological response. While bulk properties are important for mechanical stability of the implant, surface design ultimately contributes to osseointegration. This article reviews the surface parameters of dental implant materials that contribute to improved cell response and osseointegration. In particular, we focus on how surface design affects mesenchymal cell response and differentiation into the osteoblast lineage. Surface roughness has been largely studied at the microscale, but recent studies have highlighted the importance of hierarchical micron/submicron/nanosurface roughness, as well as surface roughness in combination with surface wettability. Integrins are transmembrane receptors that recognize changes in the surface and mediate downstream signaling pathways. Specifically, the noncanonical Wnt5a pathway has been implicated in osteoblastic differentiation of cells on titanium implant surfaces. However, much remains to be elucidated. Only recently have studies been conducted on the differences in biological response to implants based on sex, age, and clinical factors; these all point toward differences that advocate for patient-specific implant design. Finally, challenges in implant surface characterization must be addressed to optimize and compare data across studies. An understanding of both the science and the biology of the materials is crucial for developing novel dental implant materials and surface modifications for improved osseointegration. PMID:26927483

  14. NRF2/Long Noncoding RNA ROR Signaling Regulates Mammary Stem Cell Expansion and Protects against Estrogen Genotoxicity*

    PubMed Central

    Zhang, Yongshu; Xia, Jixiang; Li, Qinglin; Yao, Yuan; Eades, Gabriel; Gernapudi, Ramkishore; Duru, Nadire; Kensler, Thomas W.; Zhou, Qun

    2014-01-01

    Long noncoding RNAs (lncRNAs) have emerged as key regulators of gene expression in embryonic stem cell (ESC) self-renewal and differentiation. In ESCs, lncRNAs are regulated at the genetic level via transcription factor binding to lncRNA gene promoters. Here we demonstrate that the key cytoprotective transcription factor NRF2 controls lncRNA expression in mammary stem cells. By profiling lncRNAs in wild-type and NRF2 knockdown mammary stem cells, we demonstrate that the lncRNA ROR, a regulator of embryonic stem cell pluripotency, is overexpressed upon NRF2 knockdown. We performed promoter analyses and examined predicted NRF2 binding elements in the ROR promoter using luciferase reporter constructs of a ROR promoter deletion series. Our studies revealed that NRF2 binds to two specific NRF2 response elements flanking the ROR promoter and that these two NRF2 response elements are equally important to suppress ROR transcription. In addition, we identified associated H3K27me3 chromatin modification and EZH2 binding at the ROR promoter that was dependent on NRF2 binding. We observed that NRF2 knockdown or ROR overexpression leads to increased stem cell self-renewal in mammary stem cells. Furthermore, we demonstrate Nrf2 regulation of the mammary stem cell population in vivo. These observations provide further evidence for the critical role of NRF2 in maintaining normal stem cell subpopulations in mammary epithelium. PMID:25231996

  15. NRF2/long noncoding RNA ROR signaling regulates mammary stem cell expansion and protects against estrogen genotoxicity.

    PubMed

    Zhang, Yongshu; Xia, Jixiang; Li, Qinglin; Yao, Yuan; Eades, Gabriel; Gernapudi, Ramkishore; Duru, Nadire; Kensler, Thomas W; Zhou, Qun

    2014-11-01

    Long noncoding RNAs (lncRNAs) have emerged as key regulators of gene expression in embryonic stem cell (ESC) self-renewal and differentiation. In ESCs, lncRNAs are regulated at the genetic level via transcription factor binding to lncRNA gene promoters. Here we demonstrate that the key cytoprotective transcription factor NRF2 controls lncRNA expression in mammary stem cells. By profiling lncRNAs in wild-type and NRF2 knockdown mammary stem cells, we demonstrate that the lncRNA ROR, a regulator of embryonic stem cell pluripotency, is overexpressed upon NRF2 knockdown. We performed promoter analyses and examined predicted NRF2 binding elements in the ROR promoter using luciferase reporter constructs of a ROR promoter deletion series. Our studies revealed that NRF2 binds to two specific NRF2 response elements flanking the ROR promoter and that these two NRF2 response elements are equally important to suppress ROR transcription. In addition, we identified associated H3K27me3 chromatin modification and EZH2 binding at the ROR promoter that was dependent on NRF2 binding. We observed that NRF2 knockdown or ROR overexpression leads to increased stem cell self-renewal in mammary stem cells. Furthermore, we demonstrate Nrf2 regulation of the mammary stem cell population in vivo. These observations provide further evidence for the critical role of NRF2 in maintaining normal stem cell subpopulations in mammary epithelium. PMID:25231996

  16. Regulation of KAT6 Acetyltransferases and Their Roles in Cell Cycle Progression, Stem Cell Maintenance, and Human Disease.

    PubMed

    Huang, Fu; Abmayr, Susan M; Workman, Jerry L

    2016-07-15

    The lysine acetyltransferase 6 (KAT6) histone acetyltransferase (HAT) complexes are highly conserved from yeast to higher organisms. They acetylate histone H3 and other nonhistone substrates and are involved in cell cycle regulation and stem cell maintenance. In addition, the human KAT6 HATs are recurrently mutated in leukemia and solid tumors. Therefore, it is important to understand the mechanisms underlying the regulation of KAT6 HATs and their roles in cell cycle progression. In this minireview, we summarize the identification and analysis of the KAT6 complexes and discuss the regulatory mechanisms governing their enzymatic activities and substrate specificities. We further focus on the roles of KAT6 HATs in regulating cell proliferation and stem cell maintenance and review recent insights that aid in understanding their involvement in human diseases. PMID:27185879

  17. Regulation of the survival and differentiation of hepatic stem/progenitor cells by acyclic retinoid.

    PubMed

    Kamiya, Akihide

    2015-01-01

    During embryonic liver development, hepatic stem/progenitor cells (HpSCs) have a high proliferative ability and bipotency to differentiate into hepatocytes and cholangiocytes. Retinoic acid is a derivative of vitamin A and is involved in the proliferation and differentiation of stem/progenitor cells in several tissues. However, whether retinoic acid regulates the characteristics of HpSCs in the normal liver is still unknown. A recent study has shown that acyclic retinoid regulates the survival and proliferation of HpSCs derived from mouse foetal liver. Acyclic retinoid suppressed the expansion of CD29(+)CD49f(+) HpSCs through the induction of hepatocytic differentiation and progression of apoptosis. PMID:26021438

  18. The Role of miRNAs in the Regulation of Pancreatic Cancer Stem Cells

    PubMed Central

    Bimonte, Sabrina; Barbieri, Antonio; Leongito, Maddalena; Palma, Giuseppe; del Vecchio, Vitale; Falco, Michela; Palaia, Raffaele; Albino, Vittorio; Piccirillo, Mauro; Amore, Alfonso; Petrillo, Antonella; Granata, Vincenza; Izzo, Francesco

    2016-01-01

    Pancreatic ductal adenocarcinoma is currently one of the deadliest cancers with low overall survival rate. This disease leads to an aggressive local invasion and early metastases and is poorly responsive to treatment with chemotherapy or chemoradiotherapy. Several studies have shown that pancreatic cancer stem cells (PCSCs) play different roles in the regulation of drug resistance and recurrence in pancreatic cancer. MicroRNA (miRNA), a class of newly emerging small noncoding RNAs, is involved in the modulation of several biological activities ranging from invasion to metastases development, as well as drug resistance of pancreatic cancer. In this review, we synthesize the latest findings on the role of miRNAs in regulating different biological properties of pancreatic cancer stem cells. PMID:27006664

  19. STAT3 is a key transcriptional regulator of cancer stem cell marker CD133 in HCC

    PubMed Central

    Ghoshal, Sarani; Fuchs, Bryan C.

    2016-01-01

    Cancer stem cell (CSC) marker CD133 was found to be upregulated in many cancers including hepatocellular carcinoma (HCC). However, the molecular mechanism of CD133 regulation in the liver tumor microenvironment has remained elusive. In this study Won and colleagues report that interleukin-6 (IL-6) mediated signal transducer and activator of transcription factor 3 (STAT3) signaling and hypoxia enhance the expression of CD133 and promote the progression of HCC. PMID:27275460

  20. Effects of p21 Gene Down-Regulation through RNAi on Antler Stem Cells In Vitro

    PubMed Central

    Guo, Qianqian; Wang, Datao; Liu, Zhen; Li, Chunyi

    2015-01-01

    Cell cycle is an integral part of cell proliferation, and consists mainly of four phases, G1, S, G2 and M. The p21 protein, a cyclin dependent kinase inhibitor, plays a key role in regulating cell cyclevia G1 phase control. Cells capable of epimorphic regeneration have G2/M accumulation as their distinctive feature, whilst the majority of somatic cells rest at G1 phase. To investigate the role played byp21 in antler regeneration, we studied the cell cycle distribution of antler stem cells (ASCs), via down-regulation of p21 in vitro using RNAi. The results showed that ASCs had high levels of p21 mRNA expression and rested at G1 phase, which was comparable to the control somatic cells. Down-regulation of p21 did not result in ASC cell cycle re-distribution toward G2/M accumulation, but DNA damage and apoptosis of the ASCs significantly increased and the process of cell aging was slowed. These findings suggest that the ASCs may have evolved to use an alternative, p21-independent cell cycle regulation mechanism. Also a unique p21-dependent inhibitory effect may control DNA damage as a protective mechanism to ensure the fast proliferating ASCs do not become dysplastic/cancerous. Understanding of the mechanism underlying the role played by p21 in the ASCs could give insight into a mammalian system where epimorphic regeneration is initiated whilst the genome stability is effectively maintained. PMID:26308075

  1. Minireview: Complexity of Hematopoietic Stem Cell Regulation in the Bone Marrow Microenvironment

    PubMed Central

    Hoffman, Corey M.

    2014-01-01

    Hematopoiesis in vertebrates is sustained over the duration of an organism's lifetime due to strict regulation of the highly hierarchical hematopoietic system, where a few immature hematopoietic stem cells (HSCs) continuously regenerate the entire blood supply, which is constantly being replaced. Although HSCs self-regulate through cell-autonomous processes, they also receive a variety of signals from their microenvironment or niche. Within the microenvironment, HSCs are regulated through both cell-cell interactions and secreted signals, including hormones. HSCs at the apex of the blood supply integrate these signals to produce progeny to support hematopoiesis while simultaneously maintaining a stem cell pool. In the past 10 years, advances in genetic models and flow cytometry have provided the tools to test how the microenvironment regulates HSCs. This review is organized in 3 main parts and will focus on cellular components of the HSC niche that are potential targets for hormonal signals, then review critical regulatory signals in the HSC niche, and finally highlight the emerging role of hormonal and paracrine signals in the bone marrow. PMID:25083740

  2. The pluripotency factor Nanog regulates pericentromeric heterochromatin organization in mouse embryonic stem cells.

    PubMed

    Novo, Clara Lopes; Tang, Calvin; Ahmed, Kashif; Djuric, Ugljesa; Fussner, Eden; Mullin, Nicholas P; Morgan, Natasha P; Hayre, Jasvinder; Sienerth, Arnold R; Elderkin, Sarah; Nishinakamura, Ryuichi; Chambers, Ian; Ellis, James; Bazett-Jones, David P; Rugg-Gunn, Peter J

    2016-05-01

    An open and decondensed chromatin organization is a defining property of pluripotency. Several epigenetic regulators have been implicated in maintaining an open chromatin organization, but how these processes are connected to the pluripotency network is unknown. Here, we identified a new role for the transcription factor NANOG as a key regulator connecting the pluripotency network with constitutive heterochromatin organization in mouse embryonic stem cells. Deletion of Nanog leads to chromatin compaction and the remodeling of heterochromatin domains. Forced expression of NANOG in epiblast stem cells is sufficient to decompact chromatin. NANOG associates with satellite repeats within heterochromatin domains, contributing to an architecture characterized by highly dispersed chromatin fibers, low levels of H3K9me3, and high major satellite transcription, and the strong transactivation domain of NANOG is required for this organization. The heterochromatin-associated protein SALL1 is a direct cofactor for NANOG, and loss of Sall1 recapitulates the Nanog-null phenotype, but the loss of Sall1 can be circumvented through direct recruitment of the NANOG transactivation domain to major satellites. These results establish a direct connection between the pluripotency network and chromatin organization and emphasize that maintaining an open heterochromatin architecture is a highly regulated process in embryonic stem cells. PMID:27125671

  3. The pluripotency factor Nanog regulates pericentromeric heterochromatin organization in mouse embryonic stem cells

    PubMed Central

    Novo, Clara Lopes; Tang, Calvin; Ahmed, Kashif; Djuric, Ugljesa; Fussner, Eden; Mullin, Nicholas P.; Morgan, Natasha P.; Hayre, Jasvinder; Sienerth, Arnold R.; Elderkin, Sarah; Nishinakamura, Ryuichi; Chambers, Ian; Ellis, James; Bazett-Jones, David P.; Rugg-Gunn, Peter J.

    2016-01-01

    An open and decondensed chromatin organization is a defining property of pluripotency. Several epigenetic regulators have been implicated in maintaining an open chromatin organization, but how these processes are connected to the pluripotency network is unknown. Here, we identified a new role for the transcription factor NANOG as a key regulator connecting the pluripotency network with constitutive heterochromatin organization in mouse embryonic stem cells. Deletion of Nanog leads to chromatin compaction and the remodeling of heterochromatin domains. Forced expression of NANOG in epiblast stem cells is sufficient to decompact chromatin. NANOG associates with satellite repeats within heterochromatin domains, contributing to an architecture characterized by highly dispersed chromatin fibers, low levels of H3K9me3, and high major satellite transcription, and the strong transactivation domain of NANOG is required for this organization. The heterochromatin-associated protein SALL1 is a direct cofactor for NANOG, and loss of Sall1 recapitulates the Nanog-null phenotype, but the loss of Sall1 can be circumvented through direct recruitment of the NANOG transactivation domain to major satellites. These results establish a direct connection between the pluripotency network and chromatin organization and emphasize that maintaining an open heterochromatin architecture is a highly regulated process in embryonic stem cells. PMID:27125671

  4. Regulation of CTNNB1 signaling in gastric cancer and stem cells

    PubMed Central

    Tanabe, Shihori; Aoyagi, Kazuhiko; Yokozaki, Hiroshi; Sasaki, Hiroki

    2016-01-01

    Recent research has shown that the alteration of combinations in gene expression contributes to cellular phenotypic changes. Previously, it has been demonstrated that the combination of cadherin 1 and cadherin 2 expression can identify the diffuse-type and intestinal-type gastric cancers. Although the diffuse-type gastric cancer has been resistant to treatment, the precise mechanism and phenotypic involvement has not been revealed. It may be possible that stem cells transform into gastric cancer cells, possibly through the involvement of a molecule alteration and signaling mechanism. In this review article, we focus on the role of catenin beta 1 (CTNNB1 or β-catenin) and describe the regulation of CTNNB1 signaling in gastric cancer and stem cells. PMID:27574551

  5. Regulation of CTNNB1 signaling in gastric cancer and stem cells.

    PubMed

    Tanabe, Shihori; Aoyagi, Kazuhiko; Yokozaki, Hiroshi; Sasaki, Hiroki

    2016-08-15

    Recent research has shown that the alteration of combinations in gene expression contributes to cellular phenotypic changes. Previously, it has been demonstrated that the combination of cadherin 1 and cadherin 2 expression can identify the diffuse-type and intestinal-type gastric cancers. Although the diffuse-type gastric cancer has been resistant to treatment, the precise mechanism and phenotypic involvement has not been revealed. It may be possible that stem cells transform into gastric cancer cells, possibly through the involvement of a molecule alteration and signaling mechanism. In this review article, we focus on the role of catenin beta 1 (CTNNB1 or β-catenin) and describe the regulation of CTNNB1 signaling in gastric cancer and stem cells. PMID:27574551

  6. Molecular control of brain size: Regulators of neural stem cell life, death and beyond

    SciTech Connect

    Joseph, Bertrand; Hermanson, Ola

    2010-05-01

    The proper development of the brain and other organs depends on multiple parameters, including strictly controlled expansion of specific progenitor pools. The regulation of such expansion events includes enzymatic activities that govern the correct number of specific cells to be generated via an orchestrated control of cell proliferation, cell cycle exit, differentiation, cell death etc. Certain proteins in turn exert direct control of these enzymatic activities and thus progenitor pool expansion and organ size. The members of the Cip/Kip family (p21Cip1/p27Kip1/p57Kip2) are well-known regulators of cell cycle exit that interact with and inhibit the activity of cyclin-CDK complexes, whereas members of the p53/p63/p73 family are traditionally associated with regulation of cell death. It has however become clear that the roles for these proteins are not as clear-cut as initially thought. In this review, we discuss the roles for proteins of the Cip/Kip and p53/p63/p73 families in the regulation of cell cycle control, differentiation, and death of neural stem cells. We suggest that these proteins act as molecular interfaces, or 'pilots', to assure the correct assembly of protein complexes with enzymatic activities at the right place at the right time, thereby regulating essential decisions in multiple cellular events.

  7. Glycosyltransferase ST6GAL1 contributes to the regulation of pluripotency in human pluripotent stem cells

    PubMed Central

    Wang, Yu-Chieh; Stein, Jason W.; Lynch, Candace L.; Tran, Ha T.; Lee, Chia-Yao; Coleman, Ronald; Hatch, Adam; Antontsev, Victor G.; Chy, Hun S.; O’Brien, Carmel M.; Murthy, Shashi K.; Laslett, Andrew L.; Peterson, Suzanne E.; Loring, Jeanne F.

    2015-01-01

    Many studies have suggested the significance of glycosyltransferase-mediated macromolecule glycosylation in the regulation of pluripotent states in human pluripotent stem cells (hPSCs). Here, we observed that the sialyltransferase ST6GAL1 was preferentially expressed in undifferentiated hPSCs compared to non-pluripotent cells. A lectin which preferentially recognizes α-2,6 sialylated galactosides showed strong binding reactivity with undifferentiated hPSCs and their glycoproteins, and did so to a much lesser extent with differentiated cells. In addition, downregulation of ST6GAL1 in undifferentiated hPSCs led to a decrease in POU5F1 (also known as OCT4) protein and significantly altered the expression of many genes that orchestrate cell morphogenesis during differentiation. The induction of cellular pluripotency in somatic cells was substantially impeded by the shRNA-mediated suppression of ST6GAL1, partially through interference with the expression of endogenous POU5F1 and SOX2. Targeting ST6GAL1 activity with a sialyltransferase inhibitor during cell reprogramming resulted in a dose-dependent reduction in the generation of human induced pluripotent stem cells (hiPSCs). Collectively, our data indicate that ST6GAL1 plays an important role in the regulation of pluripotency and differentiation in hPSCs, and the pluripotent state in human cells can be modulated using pharmacological tools to target sialyltransferase activity. PMID:26304831

  8. The Phosphatases STS1 and STS2 Regulate Hematopoietic Stem and Progenitor Cell Fitness

    PubMed Central

    Zhang, Jing; Vakhrusheva, Olesya; Bandi, Srinivasa Rao; Demirel, Özlem; Kazi, Julhash U.; Fernandes, Ramona Gomes; Jakobi, Katja; Eichler, Astrid; Rönnstrand, Lars; Rieger, Michael A.; Carpino, Nick; Serve, Hubert; Brandts, Christian H.

    2015-01-01

    Summary FLT3 and c-KIT are crucial regulators of hematopoietic stem and progenitor cells. We investigated the role of STS1 and STS2 on FLT3 and c-KIT phosphorylation, activity, and function in normal and stress-induced hematopoiesis. STS1/STS2-deficient mice show a profound expansion of multipotent progenitor and lymphoid primed multipotent progenitor cells with elevated colony-forming capacity. Although long-term hematopoietic stem cells are not increased in numbers, lack of STS1 and STS2 significantly promotes long-term repopulation activity, demonstrating a pivotal role of STS1/STS2 in regulating hematopoietic stem and progenitor cell fitness. Biochemical analysis identified STS1/STS2 as direct phosphatases of FLT3 and c-KIT. Loss of STS1/STS2 induces hyperphosphorylation of FLT3, enhances AKT signaling, and confers a strong proliferative advantage. Therefore, our study reveals that STS1 and STS2 may serve as novel pharmaceutical targets to improve hematopoietic recovery after bone marrow transplantation. PMID:26365512

  9. The Phosphatases STS1 and STS2 Regulate Hematopoietic Stem and Progenitor Cell Fitness.

    PubMed

    Zhang, Jing; Vakhrusheva, Olesya; Bandi, Srinivasa Rao; Demirel, Özlem; Kazi, Julhash U; Fernandes, Ramona Gomes; Jakobi, Katja; Eichler, Astrid; Rönnstrand, Lars; Rieger, Michael A; Carpino, Nick; Serve, Hubert; Brandts, Christian H

    2015-10-13

    FLT3 and c-KIT are crucial regulators of hematopoietic stem and progenitor cells. We investigated the role of STS1 and STS2 on FLT3 and c-KIT phosphorylation, activity, and function in normal and stress-induced hematopoiesis. STS1/STS2-deficient mice show a profound expansion of multipotent progenitor and lymphoid primed multipotent progenitor cells with elevated colony-forming capacity. Although long-term hematopoietic stem cells are not increased in numbers, lack of STS1 and STS2 significantly promotes long-term repopulation activity, demonstrating a pivotal role of STS1/STS2 in regulating hematopoietic stem and progenitor cell fitness. Biochemical analysis identified STS1/STS2 as direct phosphatases of FLT3 and c-KIT. Loss of STS1/STS2 induces hyperphosphorylation of FLT3, enhances AKT signaling, and confers a strong proliferative advantage. Therefore, our study reveals that STS1 and STS2 may serve as novel pharmaceutical targets to improve hematopoietic recovery after bone marrow transplantation. PMID:26365512

  10. TCPs, WUSs, and WINDs: families of transcription factors that regulate shoot meristem formation, stem cell maintenance, and somatic cell differentiation

    PubMed Central

    Ikeda, Miho; Ohme-Takagi, Masaru

    2014-01-01

    In contrast to somatic mammalian cells, which cannot alter their fate, plant cells can dedifferentiate to form totipotent callus cells and regenerate a whole plant, following treatment with specific phytohormones. However, the regulatory mechanisms and key factors that control differentiation-dedifferentiation and cell totipotency have not been completely clarified in plants. Recently, several plant transcription factors that regulate meristem formation and dedifferentiation have been identified and include members of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP), WUSCHEL (WUS), and WOUND INDUCED DEDIFFERENTIATION (WIND1) families. WUS and WIND positively control plant cell totipotency, while TCP negatively controls it. Interestingly, TCP is a transcriptional activator that acts as a negative regulator of shoot meristem formation, and WUS is a transcriptional repressor that positively maintains totipotency of the stem cells of the shoot meristem. We describe here the functions of TCP, WUS, and WIND transcription factors in the regulation of differentiation-dedifferentiation by positive and negative transcriptional regulators. PMID:25232356

  11. Comparing national home-keeping and the regulation of translational stem cell applications: An international perspective.

    PubMed

    Sleeboom-Faulkner, Margaret; Chekar, Choon Key; Faulkner, Alex; Heitmeyer, Carolyn; Marouda, Marina; Rosemann, Achim; Chaisinthop, Nattaka; Chang, Hung-Chieh Jessica; Ely, Adrian; Kato, Masae; Patra, Prasanna K; Su, Yeyang; Sui, Suli; Suzuki, Wakana; Zhang, Xinqing

    2016-03-01

    A very large grey area exists between translational stem cell research and applications that comply with the ideals of randomised control trials and good laboratory and clinical practice and what is often referred to as snake-oil trade. We identify a discrepancy between international research and ethics regulation and the ways in which regulatory instruments in the stem cell field are developed in practice. We examine this discrepancy using the notion of 'national home-keeping', referring to the way governments articulate international standards and regulation with conflicting demands on local players at home. Identifying particular dimensions of regulatory tools - authority, permissions, space and acceleration - as crucial to national home-keeping in Asia, Europe and the USA, we show how local regulation works to enable development of the field, notwithstanding international (i.e. principally 'western') regulation. Triangulating regulation with empirical data and archival research between 2012 and 2015 has helped us to shed light on how countries and organisations adapt and resist internationally dominant regulation through the manipulation of regulatory tools (contingent upon country size, the state's ability to accumulate resources, healthcare demands, established traditions of scientific governance, and economic and scientific ambitions). PMID:26921839

  12. TLX: A Master Regulator for Neural Stem Cell Maintenance and Neurogenesis

    PubMed Central

    Islam, Mohammed M.; Zhang, Chun-Li

    2014-01-01

    The orphan nuclear receptor TLX, also known as NR2E1, is an essential regulator of neural stem cell (NSC) self-renewal, maintenance, and neurogenesis. In vertebrates, TLX is specifically localized to the neurogenic regions of the forebrain and retina throughout development and adulthood. TLX regulates the expression of genes involved in multiple pathways, such as the cell cycle, DNA replication, and cell adhesion. These roles are primarily performed through the transcriptional repression or activation of downstream target genes. Emerging evidence suggests the misregulation of TLX might play a role in the onset and progression of human neurological disorders making this factor an ideal therapeutic target. Here, we review the current understanding of TLX function, expression, regulation, and activity significant to NSC maintenance, adult neurogenesis, and brain plasticity. PMID:24930777

  13. Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy.

    PubMed

    Ahmad, Tanveer; Mukherjee, Shravani; Pattnaik, Bijay; Kumar, Manish; Singh, Suchita; Kumar, Manish; Rehman, Rakhshinda; Tiwari, Brijendra K; Jha, Kumar A; Barhanpurkar, Amruta P; Wani, Mohan R; Roy, Soumya S; Mabalirajan, Ulaganathan; Ghosh, Balaram; Agrawal, Anurag

    2014-05-01

    There is emerging evidence that stem cells can rejuvenate damaged cells by mitochondrial transfer. Earlier studies show that epithelial mitochondrial dysfunction is critical in asthma pathogenesis. Here we show for the first time that Miro1, a mitochondrial Rho-GTPase, regulates intercellular mitochondrial movement from mesenchymal stem cells (MSC) to epithelial cells (EC). We demonstrate that overexpression of Miro1 in MSC (MSCmiro(Hi)) leads to enhanced mitochondrial transfer and rescue of epithelial injury, while Miro1 knockdown (MSCmiro(Lo)) leads to loss of efficacy. Treatment with MSCmiro(Hi) was associated with greater therapeutic efficacy, when compared to control MSC, in mouse models of rotenone (Rot) induced airway injury and allergic airway inflammation (AAI). Notably, airway hyperresponsiveness and remodeling were reversed by MSCmiro(Hi) in three separate allergen-induced asthma models. In a human in vitro system, MSCmiro(Hi) reversed mitochondrial dysfunction in bronchial epithelial cells treated with pro-inflammatory supernatant of IL-13-induced macrophages. Anti-inflammatory MSC products like NO, TGF-β, IL-10 and PGE2, were unchanged by Miro1 overexpression, excluding non-specific paracrine effects. In summary, Miro1 overexpression leads to increased stem cell repair. PMID:24431222

  14. Design of a regulated lentiviral vector for hematopoietic stem cell gene therapy of globoid cell leukodystrophy.

    PubMed

    Ungari, Silvia; Montepeloso, Annita; Morena, Francesco; Cocchiarella, Fabienne; Recchia, Alessandra; Martino, Sabata; Gentner, Bernhard; Naldini, Luigi; Biffi, Alessandra

    2015-01-01

    Globoid cell leukodystrophy (GLD) is a demyelinating lysosomal storage disease due to the deficiency of the galactocerebrosidase (GALC) enzyme. The favorable outcome of hematopoietic stem and progenitor cell (HSPC)-based approaches in GLD and other similar diseases suggests HSPC gene therapy as a promising therapeutic option for patients. The path to clinical development of this strategy was hampered by a selective toxicity of the overexpressed GALC in the HSPC compartment. Here, we presented the optimization of a lentiviral vector (LV) in which miR-126 regulation was coupled to codon optimization of the human GALC cDNA to obtain a selective and enhanced enzymatic activity only upon transduced HSPCs differentiation. The safety of human GALC overexpression driven by this LV was extensively demonstrated in vitro and in vivo on human HSPCs from healthy donors. No perturbation in the content of proapoptotic sphingolipids, gene expression profile, and capability of engraftment and mutlilineage differentiation in chimeric mice was observed. The therapeutic potential of this LV was then assessed in a severe GLD murine model that benefited from transplantation of corrected HSPCs with longer survival and ameliorated phenotype as compared to untreated siblings. This construct has thus been selected as a candidate for clinical translation. PMID:26509184

  15. Design of a regulated lentiviral vector for hematopoietic stem cell gene therapy of globoid cell leukodystrophy

    PubMed Central

    Ungari, Silvia; Montepeloso, Annita; Morena, Francesco; Cocchiarella, Fabienne; Recchia, Alessandra; Martino, Sabata; Gentner, Bernhard; Naldini, Luigi; Biffi, Alessandra

    2015-01-01

    Globoid cell leukodystrophy (GLD) is a demyelinating lysosomal storage disease due to the deficiency of the galactocerebrosidase (GALC) enzyme. The favorable outcome of hematopoietic stem and progenitor cell (HSPC)-based approaches in GLD and other similar diseases suggests HSPC gene therapy as a promising therapeutic option for patients. The path to clinical development of this strategy was hampered by a selective toxicity of the overexpressed GALC in the HSPC compartment. Here, we presented the optimization of a lentiviral vector (LV) in which miR-126 regulation was coupled to codon optimization of the human GALC cDNA to obtain a selective and enhanced enzymatic activity only upon transduced HSPCs differentiation. The safety of human GALC overexpression driven by this LV was extensively demonstrated in vitro and in vivo on human HSPCs from healthy donors. No perturbation in the content of proapoptotic sphingolipids, gene expression profile, and capability of engraftment and mutlilineage differentiation in chimeric mice was observed. The therapeutic potential of this LV was then assessed in a severe GLD murine model that benefited from transplantation of corrected HSPCs with longer survival and ameliorated phenotype as compared to untreated siblings. This construct has thus been selected as a candidate for clinical translation. PMID:26509184

  16. Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways

    PubMed Central

    Ren, Fangfang; Wang, Bing; Yue, Tao; Yun, Eun-Young; Ip, Y. Tony; Jiang, Jin

    2010-01-01

    Intestinal stem cells (ISCs) in the Drosophila adult midgut are essential for maintaining tissue homeostasis and replenishing lost cells in response to tissue damage. Here we demonstrate that the Hippo (Hpo) signaling pathway, an evolutionarily conserved pathway implicated in organ size control and tumorigenesis, plays an essential role in regulating ISC proliferation. Loss of Hpo signaling in either midgut precursor cells or epithelial cells stimulates ISC proliferation. We provide evidence that loss of Hpo signaling in epithelial cells increases the production of cytokines of the Upd family and multiple EGFR ligands that activate JAK-STAT and EGFR signaling pathways in ISCs to stimulate their proliferation, thus revealing a unique non–cell-autonomous role of Hpo signaling in blocking ISC proliferation. Finally, we show that the Hpo pathway mediator Yorkie (Yki) is also required in precursor cells for injury-induced ISC proliferation in response to tissue-damaging reagent DSS. PMID:21078993

  17. Regulation of CpG methylation by Dnmt and Tet in pluripotent stem cells.

    PubMed

    Horii, Takuro; Hatada, Izuho

    2016-08-25

    Vertebrate genomes are highly methylated at cytosine residues in CpG sequences. CpG methylation plays an important role in epigenetic gene silencing and genome stability. Compared with other epigenetic modifications, CpG methylation is thought to be relatively stable; however, it is sometimes affected by environmental changes, leading to epigenetic instability and disease. CpG methylation is reversible and regulated by DNA methyltransferases and demethylases including ten-eleven translocation. Here, we discuss CpG methylation instability and the regulation of CpG methylation by DNA methyltransferases and ten-eleven translocation in pluripotent stem cells. PMID:27151232

  18. Regulation of CpG methylation by Dnmt and Tet in pluripotent stem cells

    PubMed Central

    HORII, Takuro; HATADA, Izuho

    2016-01-01

    Vertebrate genomes are highly methylated at cytosine residues in CpG sequences. CpG methylation plays an important role in epigenetic gene silencing and genome stability. Compared with other epigenetic modifications, CpG methylation is thought to be relatively stable; however, it is sometimes affected by environmental changes, leading to epigenetic instability and disease. CpG methylation is reversible and regulated by DNA methyltransferases and demethylases including ten-eleven translocation. Here, we discuss CpG methylation instability and the regulation of CpG methylation by DNA methyltransferases and ten-eleven translocation in pluripotent stem cells. PMID:27151232

  19. DNA context represents transcription regulation of the gene in mouse embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Ha, Misook; Hong, Soondo

    2016-04-01

    Understanding gene regulatory information in DNA remains a significant challenge in biomedical research. This study presents a computational approach to infer gene regulatory programs from primary DNA sequences. Using DNA around transcription start sites as attributes, our model predicts gene regulation in the gene. We find that H3K27ac around TSS is an informative descriptor of the transcription program in mouse embryonic stem cells. We build a computational model inferring the cell-type-specific H3K27ac signatures in the DNA around TSS. A comparison of embryonic stem cell and liver cell-specific H3K27ac signatures in DNA shows that the H3K27ac signatures in DNA around TSS efficiently distinguish the cell-type specific H3K27ac peaks and the gene regulation. The arrangement of the H3K27ac signatures inferred from the DNA represents the transcription regulation of the gene in mESC. We show that the DNA around transcription start sites is associated with the gene regulatory program by specific interaction with H3K27ac.

  20. DNA context represents transcription regulation of the gene in mouse embryonic stem cells

    PubMed Central

    Ha, Misook; Hong, Soondo

    2016-01-01

    Understanding gene regulatory information in DNA remains a significant challenge in biomedical research. This study presents a computational approach to infer gene regulatory programs from primary DNA sequences. Using DNA around transcription start sites as attributes, our model predicts gene regulation in the gene. We find that H3K27ac around TSS is an informative descriptor of the transcription program in mouse embryonic stem cells. We build a computational model inferring the cell-type-specific H3K27ac signatures in the DNA around TSS. A comparison of embryonic stem cell and liver cell-specific H3K27ac signatures in DNA shows that the H3K27ac signatures in DNA around TSS efficiently distinguish the cell-type specific H3K27ac peaks and the gene regulation. The arrangement of the H3K27ac signatures inferred from the DNA represents the transcription regulation of the gene in mESC. We show that the DNA around transcription start sites is associated with the gene regulatory program by specific interaction with H3K27ac. PMID:27075878

  1. Reactive Oxygen Species Regulate Hematopoietic Stem Cell Self-Renewal, Migration and Development, As Well As Their Bone Marrow Microenvironment

    PubMed Central

    Ludin, Aya; Gur-Cohen, Shiri; Golan, Karin; Kaufmann, Kerstin B.; Itkin, Tomer; Medaglia, Chiara; Lu, Xin-Jiang; Ledergor, Guy; Kollet, Orit

    2014-01-01

    Abstract Significance: Blood forming, hematopoietic stem cells (HSCs) mostly reside in the bone marrow in a quiescent, nonmotile state via adhesion interactions with stromal cells and macrophages. Quiescent, proliferating, and differentiating stem cells have different metabolism, and accordingly different amounts of intracellular reactive oxygen species (ROS). Importantly, ROS is not just a byproduct of metabolism, but also plays a role in stem cell state and function. Recent Advances: ROS levels are dynamic and reversibly dictate enhanced cycling and myeloid bias in ROShigh short-term repopulating stem cells, and ROSlow quiescent long-term repopulating stem cells. Low levels of ROS, regulated by intrinsic factors such as cell respiration or nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) activity, or extrinsic factors such as stem cell factor or prostaglandin E2 are required for maintaining stem cell self-renewal. High ROS levels, due to stress and inflammation, induce stem cell differentiation and enhanced motility. Critical Issues: Stem cells need to be protected from high ROS levels to avoid stem cell exhaustion, insufficient host immunity, and leukemic transformation that may occur during chronic inflammation. However, continuous low ROS production will lead to lack of stem cell function and opportunistic infections. Ultimately, balanced ROS levels are crucial for maintaining the small stem cell pool and host immunity, both in homeostasis and during stress situations. Future Directions: Deciphering the signaling pathway of ROS in HSC will provide a better understanding of ROS roles in switching HSC from quiescence to activation and vice versa, and will also shed light on the possible roles of ROS in leukemia initiation and development. Antioxid. Redox Signal. 21, 1605–1619. PMID:24762207

  2. The Regulation of rRNA Gene Transcription during Directed Differentiation of Human Embryonic Stem Cells

    PubMed Central

    Liu, Zhong; Zhao, Rui; Giles, Keith E.

    2016-01-01

    It has become increasingly clear that proper cellular control of pluripotency and differentiation is related to the regulation of rRNA synthesis. To further our understanding of the role that the regulation of rRNA synthesis has in pluripotency we monitored rRNA synthesis during the directed differentiation of human embryonic stem cells (hESCs). We discovered that the rRNA synthesis rate is reduced ~50% within 6 hours of ACTIVIN A treatment. This precedes reductions in expression of specific stem cell markers and increases in expression of specific germ layer markers. The reduction in rRNA synthesis is concomitant with dissociation of the Pol I transcription factor, UBTF, from the rRNA gene promoter and precedes any increase to heterochromatin throughout the rRNA gene. To directly investigate the role of rRNA synthesis in pluripotency, hESCs were treated with the Pol I inhibitor, CX-5461. The direct reduction of rRNA synthesis by CX-5461 induces the expression of markers for all three germ layers, reduces the expression of pluripotency markers, and is overall similar to the ACTIVIN A induced changes. This work indicates that the dissociation of UBTF from the rRNA gene, and corresponding reduction in transcription, represent early regulatory events during the directed differentiation of pluripotent stem cells. PMID:27299313

  3. S6K1 regulates hematopoietic stem cell self-renewal and leukemia maintenance.

    PubMed

    Ghosh, Joydeep; Kobayashi, Michihiro; Ramdas, Baskar; Chatterjee, Anindya; Ma, Peilin; Mali, Raghuveer Singh; Carlesso, Nadia; Liu, Yan; Plas, David R; Chan, Rebecca J; Kapur, Reuben

    2016-07-01

    Hyperactivation of the mTOR pathway impairs hematopoietic stem cell (HSC) functions and promotes leukemogenesis. mTORC1 and mTORC2 differentially control normal and leukemic stem cell functions. mTORC1 regulates p70 ribosomal protein S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding (eIF4E-binding) protein 1 (4E-BP1), and mTORC2 modulates AKT activation. Given the extensive crosstalk that occurs between mTORC1 and mTORC2 signaling pathways, we assessed the role of the mTORC1 substrate S6K1 in the regulation of both normal HSC functions and in leukemogenesis driven by the mixed lineage leukemia (MLL) fusion oncogene MLL-AF9. We demonstrated that S6K1 deficiency impairs self-renewal of murine HSCs by reducing p21 expression. Loss of S6K1 also improved survival in mice transplanted with MLL-AF9-positive leukemic stem cells by modulating AKT and 4E-BP1 phosphorylation. Taken together, these results suggest that S6K1 acts through multiple targets of the mTOR pathway to promote self-renewal and leukemia progression. Given the recent interest in S6K1 as a potential therapeutic target in cancer, our results further support targeting this molecule as a potential strategy for treatment of myeloid malignancies. PMID:27294524

  4. The Antiaging Gene Klotho Regulates Proliferation and Differentiation of Adipose-Derived Stem Cells.

    PubMed

    Fan, Jun; Sun, Zhongjie

    2016-06-01

    Klotho was originally discovered as an aging-suppressor gene. The purpose of this study was to investigate whether secreted Klotho (SKL) affects the proliferation and differentiation of adipose-derived stem cells (ADSCs). RT-PCR and Western blot analysis showed that short-form Klotho was expressed in mouse ADSCs. The Klotho gene mutation KL(-/-) significantly decreased proliferation of ADSCs and expression of pluripotent transcription factors (Nanog, Sox-2, and Oct-4) in mice. The adipogenic differentiation of ADSCs was also decreased in KL(-/-) mice. Incubation with Klotho-deficient medium decreased ADSC proliferation, pluripotent transcription factor levels, and adipogenic differentiation, which is similar to what was found in KL(-/-) mice. These results indicate that Klotho deficiency suppresses ADSC proliferation and differentiation. Interestingly, treatment with recombinant SKL protein rescued the Klotho deficiency-induced impairment in ADSC proliferation and adipogenic differentiation. SKL also regulated ADSCs' differentiation to other cell lineages (osteoblasts, myofibroblasts), indicating that SKL maintains stemness of ADSCs. It is intriguing that overexpression of SKL significantly increased PPAR-γ expression and lipid formation in ADSCs following adipogenic induction, indicating enhanced adipogenic differentiation. Overexpression of SKL inhibited expression of TGFβ1 and its downstream signaling mediator Smad2/3. This study demonstrates, for the first time, that SKL is essential to the maintenance of normal proliferation and differentiation in ADSCs. Klotho regulates adipogenic differentiation in ADSCs, likely via inhibition of TGFβ1 and activation of PPAR-γ. Stem Cells 2016;34:1615-1625. PMID:26865060

  5. Regulation of mesenchymal stem cell 3D microenvironment: From macro to microfluidic bioreactors.

    PubMed

    Sart, Sébastien; Agathos, Spiros N; Li, Yan; Ma, Teng

    2016-01-01

    Human mesenchymal stem cells (hMSCs) have emerged as an important cell type in cell therapy and tissue engineering. In these applications, maintaining the therapeutic properties of hMSCs requires tight control of the culture environments and the structural cell organizations. Bioreactor systems are essential tools to achieve these goals in the clinical-scale expansion and tissue engineering applications. This review summarizes how different bioreactors provide cues to regulate the structure and the chemico-mechanical microenvironment of hMSCs with a focus on 3D organization. In addition to conventional bioreactors, recent advances in microfluidic bioreactors as a novel approach to better control the hMSC microenvironment are also discussed. These advancements highlight the key role of bioreactor systems in preserving hMSC's functional properties by providing dynamic and temporal regulation of in vitro cellular microenvironment. PMID:26696441

  6. On the cutting edge of organ renewal: identification, regulation and evolution of incisor stem cells

    PubMed Central

    Hu, Jimmy Kuang-Hsien; Mushegyan, Vagan; Klein, Ophir D.

    2014-01-01

    The rodent incisor is one of a number of organs that grow continuously throughout the life of an animal. Continuous growth of the incisor arose as an evolutionary adaptation to compensate for abrasion at the distal end of the tooth. The sustained turnover of cells that deposit the mineralized dental tissues is made possible by epithelial and mesenchymal stem cells residing at the proximal end of the incisor. A complex network of signaling pathways and transcription factors regulates the formation, maintenance, and differentiation of these stem cells during development and throughout adulthood. Research over the past 15 years has led to significant progress in our understanding of this network, which includes FGF, BMP, Notch, and Hh signaling, as well as cell adhesion molecules and microRNAs. This review surveys key historical experiments that laid the foundation of the field and discusses more recent findings that definitively identified the stem cell population, elucidated the regulatory network, and demonstrated possible genetic mechanisms for the evolution of continuously growing teeth. PMID:24307456

  7. Rbm24 Regulates Alternative Splicing Switch in Embryonic Stem Cell Cardiac Lineage Differentiation.

    PubMed

    Zhang, Tao; Lin, Yu; Liu, Jing; Zhang, Zi Guan; Fu, Wei; Guo, Li Yan; Pan, Lei; Kong, Xu; Zhang, Meng Kai; Lu, Ying Hua; Huang, Zheng Rong; Xie, Qiang; Li, Wei Hua; Xu, Xiu Qin

    2016-07-01

    The transition of embryonic stem cell (ESC) pluripotency to differentiation is accompanied by an expansion of mRNA and proteomic diversity. Post-transcriptional regulation of ESCs is critically governed by cell type-specific splicing. However, little is known about the splicing factors and the molecular mechanisms directing ESC early lineage differentiation. Our study identifies RNA binding motif protein 24 (Rbm24) as a key splicing regulator that plays an essential role in controlling post-transcriptional networks during ESC transition into cardiac differentiation. Using an inducible mouse ESC line in which gene expression could be temporally regulated, we demonstrated that forced expression of Rbm24 in ESCs dramatically induced a switch to cardiac specification. Genome-wide RNA sequencing analysis identified more than 200 Rbm24-regulated alternative splicing events (AS) which occurred in genes essential for the ESC pluripotency or differentiation. Remarkably, AS genes regulated by Rbm24 composed of transcriptional factors, cytoskeleton proteins, and ATPase gene family members which are critical components required for cardiac development and functionality. Furthermore, we show that Rbm24 regulates ESC differentiation by promoting alternative splicing of pluripotency genes. Among the Rbm24-regulated events, Tpm1, an actin filament family gene, was identified to possess ESC/tissue specific isoforms. We demonstrated that these isoforms were functionally distinct and that their exon AS switch was essential for ESC differentiation. Our results suggest that ESC's switching into the differentiation state can be initiated by a tissue-specific splicing regulator, Rbm24. This finding offers a global view on how an RNA binding protein influences ESC lineage differentiation by a splicing-mediated regulatory mechanism. Stem Cells 2016;34:1776-1789. PMID:26990106

  8. Initiation of stem cell differentiation involves cell cycle-dependent regulation of developmental genes by Cyclin D.

    PubMed

    Pauklin, Siim; Madrigal, Pedro; Bertero, Alessandro; Vallier, Ludovic

    2016-02-15

    Coordination of differentiation and cell cycle progression represents an essential process for embryonic development and adult tissue homeostasis. These mechanisms ultimately determine the quantities of specific cell types that are generated. Despite their importance, the precise molecular interplays between cell cycle machinery and master regulators of cell fate choice remain to be fully uncovered. Here, we demonstrate that cell cycle regulators Cyclin D1-3 control cell fate decisions in human pluripotent stem cells by recruiting transcriptional corepressors and coactivator complexes onto neuroectoderm, mesoderm, and endoderm genes. This activity results in blocking the core transcriptional network necessary for endoderm specification while promoting neuroectoderm factors. The genomic location of Cyclin Ds is determined by their interactions with the transcription factors SP1 and E2Fs, which result in the assembly of cell cycle-controlled transcriptional complexes. These results reveal how the cell cycle orchestrates transcriptional networks and epigenetic modifiers to instruct cell fate decisions. PMID:26883361

  9. Initiation of stem cell differentiation involves cell cycle-dependent regulation of developmental genes by Cyclin D

    PubMed Central

    Pauklin, Siim; Madrigal, Pedro; Bertero, Alessandro; Vallier, Ludovic

    2016-01-01

    Coordination of differentiation and cell cycle progression represents an essential process for embryonic development and adult tissue homeostasis. These mechanisms ultimately determine the quantities of specific cell types that are generated. Despite their importance, the precise molecular interplays between cell cycle machinery and master regulators of cell fate choice remain to be fully uncovered. Here, we demonstrate that cell cycle regulators Cyclin D1–3 control cell fate decisions in human pluripotent stem cells by recruiting transcriptional corepressors and coactivator complexes onto neuroectoderm, mesoderm, and endoderm genes. This activity results in blocking the core transcriptional network necessary for endoderm specification while promoting neuroectoderm factors. The genomic location of Cyclin Ds is determined by their interactions with the transcription factors SP1 and E2Fs, which result in the assembly of cell cycle-controlled transcriptional complexes. These results reveal how the cell cycle orchestrates transcriptional networks and epigenetic modifiers to instruct cell fate decisions. PMID:26883361

  10. Functional regulation of FoxO1 in neural stem cell differentiation.

    PubMed

    Kim, D-Y; Hwang, I; Muller, F L; Paik, J-H

    2015-12-01

    Forkhead transcription factor family O (FoxO) maintains adult stem cell reserves by supporting their long-term proliferative potential. MicroRNAs (miRs) regulate neuronal stem/progenitor cell (NSPC) proliferation and differentiation during neural development by controlling the expression of a specific set of target genes. In the neurogenic subventricular zone, FoxO1 is specifically expressed in NSPCs and is no longer detected during the transition to neuroblast stage, forming an inverse correlation with miR-9 expression. The 3'-untranslated region of FoxO1 contains a conserved target sequence of miR-9 and FoxO1 expression is coordinated in concert with miR-9 during neuronal differentiation. Our study demonstrates that FoxO1 contributes to NSPC fate decision through its cooperation with the Notch signaling pathway. PMID:26470727

  11. [Ideological conflicts leading to regulation of investigation with embryonic stem cells].

    PubMed

    Brena, Ingrid

    2015-01-01

    Human stem cells, particularly embryonic, have huge therapeutic potential to many degenerative diseases, so they are the subject of intense research in many countries. Because obtaining human stem cells involves the use of zygotes obtained by in vitro fertilization, when they arrive in the blastocyst stage, ethical issues arise that some groups considered insurmountable; in Mexico to date it has not been possible to established a law or rule that regulates the issue. The purpose of this paper is to discuss the ideological conflicts that have led to this situation, and about the light a judgment delivered by the Inter-American Court of Human Rights may shed on a democratic and secular legislation. PMID:25946541

  12. Dnmt3a Regulates Myeloproliferation and Liver-Specific Expansion of Hematopoietic Stem and Progenitor Cells

    PubMed Central

    Guryanova, Olga A.; Lieu, Yen K.; Garrett-Bakelman, Francine E.; Spitzer, Barbara; Glass, Jacob L.; Shank, Kaitlyn; Valencia Martinez, Ana Belen; Rivera, Sharon A.; Durham, Benjamin H.; Rapaport, Franck; Keller, Matthew D.; Pandey, Suveg; Bastian, Lennart; Tovbin, Daniel; Weinstein, Abby R.; Teruya-Feldstein, Julie; Abdel-Wahab, Omar; Santini, Valeria; Mason, Christopher E.; Melnick, Ari M.; Mukherjee, Siddhartha; Levine, Ross L.

    2015-01-01

    DNMT3A mutations are observed in myeloid malignancies, including myeloproliferative neoplasms (MPN), myelodysplastic syndromes (MDS), and acute myeloid leukemia (AML). Transplantation studies have elucidated an important role for Dnmt3a in stem cell self-renewal and in myeloid differentiation. Here we investigated the impact of conditional hematopoietic Dnmt3a loss on disease phenotype in primary mice. Mx1-Cre-mediated Dnmt3a ablation led to the development of a lethal, fully penetrant myeloproliferative neoplasm with myelodysplasia (MDS/MPN) characterized by peripheral cytopenias and by marked, progressive hepatomegaly. We detected expanded stem/progenitor populations in the liver of Dnmt3a-ablated mice. The MDS/MPN induced by Dnmt3a ablation was transplantable, including the marked hepatomegaly. Homing studies showed that Dnmt3a-deleted bone marrow cells preferentially migrated to the liver. Gene expression and DNA methylation analyses of progenitor cell populations identified differential regulation of hematopoietic regulatory pathways, including fetal liver hematopoiesis transcriptional programs. These data demonstrate that Dnmt3a ablation in the hematopoietic system leads to myeloid transformation in vivo, with cell autonomous aberrant tissue tropism and marked extramedullary hematopoiesis (EMH) with liver involvement. Hence, in addition to the established role of Dnmt3a in regulating self-renewal, Dnmt3a regulates tissue tropism and limits myeloid progenitor expansion in vivo. PMID:26710888

  13. Magnesium regulates neural stem cell proliferation in the mouse hippocampus by altering mitochondrial function.

    PubMed

    Jia, Shanshan; Mou, Chengzhi; Ma, Yihe; Han, Ruijie; Li, Xue

    2016-04-01

    In the adult brain, neural stem cells from the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the cortex progress through the following five developmental stages: radial glia-like cells, neural progenitor cells, neuroblasts, immature neurons, and mature neurons. These developmental stages are linked to both neuronal microenvironments and energy metabolism. Neurogenesis is restricted and has been demonstrated to arise from tissue microenvironments. We determined that magnesium, a key nutrient in cellular energy metabolism, affects neural stem cell (NSC) proliferation in cells derived from the embryonic hippocampus by influencing mitochondrial function. Densities of proliferating cells and NSCs both showed their highest values at 0.8 mM [Mg(2+) ]o , whereas lower proliferation rates were observed at 0.4 and 1.4 mM [Mg(2+) ]o . The numbers and sizes of the neurospheres reached the maximum at 0.8 mM [Mg(2+) ]o and were weaker under both low (0.4 mM) and high (1.4 mM) concentrations of magnesium. In vitro experimental evidence demonstrates that extracellular magnesium regulates the number of cultured hippocampal NSCs, affecting both magnesium homeostasis and mitochondrial function. Our findings indicate that the effect of [Mg(2+) ]o on NSC proliferation may lie downstream of alterations in mitochondrial function because mitochondrial membrane potential was highest in the NSCs in the moderate [Mg(2+) ]o (0.8 mM) group and lower in both the low (0.4 mM) and high (1.4 mM) [Mg(2+) ]o groups. Overall, these findings demonstrate a new function for magnesium in the brain in the regulation of hippocampal neural stem cells: affecting their cellular energy metabolism. PMID:26634890

  14. Epigenetic Mechanisms Regulate MHC and Antigen Processing Molecules in Human Embryonic and Induced Pluripotent Stem Cells

    PubMed Central

    Suárez-Álvarez, Beatriz; Rodriguez, Ramón M.; Calvanese, Vincenzo; Blanco-Gelaz, Miguel A.; Suhr, Steve T.; Ortega, Francisco; Otero, Jesus; Cibelli, Jose B.; Moore, Harry; Fraga, Mario F.; López-Larrea, Carlos

    2010-01-01

    Background Human embryonic stem cells (hESCs) are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC) class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored. Methodology/Principal Findings We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM) components and NKG2D ligands (NKG2D-L) in hESCs, induced pluripotent stem cells (iPSCs) and NTera2 (NT2) teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP) assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1) and tapasin (TPN) components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of β2-microglobulin (β2m) light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB) were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and β2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs). Absence of HLA-DR and HLA-G expression was regulated by DNA methylation. Conclusions/Significance Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell allograft acceptance

  15. Feedback Regulation in a Cancer Stem Cell Model can Cause an Allee Effect.

    PubMed

    Konstorum, Anna; Hillen, Thomas; Lowengrub, John

    2016-04-01

    The exact mechanisms of spontaneous tumor remission or complete response to treatment are phenomena in oncology that are not completely understood. We use a concept from ecology, the Allee effect, to help explain tumor extinction in a model of tumor growth that incorporates feedback regulation of stem cell dynamics, which occurs in many tumor types where certain signaling molecules, such as Wnts, are upregulated. Due to feedback and the Allee effect, a tumor may become extinct spontaneously or after therapy even when the entire tumor has not been eradicated by the end of therapy. We quantify the Allee effect using an 'Allee index' that approximates the area of the basin of attraction for tumor extinction. We show that effectiveness of combination therapy in cancer treatment may occur due to the increased probability that the system will be in the Allee region after combination treatment versus monotherapy. We identify therapies that can attenuate stem cell self-renewal, alter the Allee region and increase its size. We also show that decreased response of tumor cells to growth inhibitors can reduce the size of the Allee region and increase stem cell densities, which may help to explain why this phenomenon is a hallmark of cancer. PMID:27113934

  16. Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis.

    PubMed

    Wu, Xiaoting; Fleming, Angeleen; Ricketts, Thomas; Pavel, Mariana; Virgin, Herbert; Menzies, Fiona M; Rubinsztein, David C

    2016-01-01

    Autophagy is a conserved, intracellular, lysosomal degradation pathway. While mechanistic aspects of this pathway are increasingly well defined, it remains unclear how autophagy modulation impacts normal physiology. It is, however, becoming clear that autophagy may play a key role in regulating developmental pathways. Here we describe for the first time how autophagy impacts stem cell differentiation by degrading Notch1. We define a novel route whereby this plasma membrane-resident receptor is degraded by autophagy, via uptake into ATG16L1-positive autophagosome-precursor vesicles. We extend our findings using a physiologically relevant mouse model with a hypomorphic mutation in Atg16L1, a crucial autophagy gene, which shows developmental retention of early-stage cells in various tissues where the differentiation of stem cells is retarded and thus reveal how modest changes in autophagy can impact stem cell fate. This may have relevance for diverse disease conditions, like Alzheimer's Disease or Crohn's Disease, associated with altered autophagy. PMID:26837467

  17. Tryptophan derivatives regulate the transcription of Oct4 in stem-like cancer cells.

    PubMed

    Cheng, Jie; Li, Wenxin; Kang, Bo; Zhou, Yanwen; Song, Jiasheng; Dan, Songsong; Yang, Ying; Zhang, Xiaoqian; Li, Jingchao; Yin, Shengyong; Cao, Hongcui; Yao, Hangping; Zhu, Chenggang; Yi, Wen; Zhao, Qingwei; Xu, Xiaowei; Zheng, Min; Zheng, Shusen; Li, Lanjuan; Shen, Binghui; Wang, Ying-Jie

    2015-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to environmental toxicants, is increasingly recognized as a key player in embryogenesis and tumorigenesis. Here we show that a variety of tryptophan derivatives that act as endogenous AhR ligands can affect the transcription level of the master pluripotency factor Oct4. Among them, ITE enhances the binding of the AhR to the promoter of Oct4 and suppresses its transcription. Reduction of endogenous ITE levels in cancer cells by tryptophan deprivation or hypoxia leads to Oct4 elevation, which can be reverted by administration with synthetic ITE. Consequently, synthetic ITE induces the differentiation of stem-like cancer cells and reduces their tumorigenic potential in both subcutaneous and orthotopic xenograft tumour models. Thus, our results reveal a role of tryptophan derivatives and the AhR signalling pathway in regulating cancer cell stemness and open a new therapeutic avenue to target stem-like cancer cells. PMID:26059097

  18. Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis

    PubMed Central

    Wu, Xiaoting; Fleming, Angeleen; Ricketts, Thomas; Pavel, Mariana; Virgin, Herbert; Menzies, Fiona M.; Rubinsztein, David C.

    2016-01-01

    Autophagy is a conserved, intracellular, lysosomal degradation pathway. While mechanistic aspects of this pathway are increasingly well defined, it remains unclear how autophagy modulation impacts normal physiology. It is, however, becoming clear that autophagy may play a key role in regulating developmental pathways. Here we describe for the first time how autophagy impacts stem cell differentiation by degrading Notch1. We define a novel route whereby this plasma membrane-resident receptor is degraded by autophagy, via uptake into ATG16L1-positive autophagosome-precursor vesicles. We extend our findings using a physiologically relevant mouse model with a hypomorphic mutation in Atg16L1, a crucial autophagy gene, which shows developmental retention of early-stage cells in various tissues where the differentiation of stem cells is retarded and thus reveal how modest changes in autophagy can impact stem cell fate. This may have relevance for diverse disease conditions, like Alzheimer's Disease or Crohn's Disease, associated with altered autophagy. PMID:26837467

  19. Meis1 Regulates Epidermal Stem Cells and Is Required for Skin Tumorigenesis

    PubMed Central

    Okumura, Kazuhiro; Saito, Megumi; Isogai, Eriko; Aoto, Yoshimasa; Hachiya, Tsuyoshi; Sakakibara, Yasubumi; Katsuragi, Yoshinori; Hirose, Satoshi; Kominami, Ryo; Goitsuka, Ryo; Nakamura, Takuro; Wakabayashi, Yuichi

    2014-01-01

    Previous studies have shown that Meis1 plays an important role in blood development and vascular homeostasis, and can induce blood cancers, such as leukemia. However, its role in epithelia remains largely unknown. Here, we uncover two roles for Meis1 in the epidermis: as a critical regulator of epidermal homeostasis in normal tissues and as a proto-oncogenic factor in neoplastic tissues. In normal epidermis, we show that Meis1 is predominantly expressed in the bulge region of the hair follicles where multipotent adult stem cells reside, and that the number of these stem cells is reduced when Meis1 is deleted in the epidermal tissue of mice. Mice with epidermal deletion of Meis1 developed significantly fewer DMBA/TPA-induced benign and malignant tumors compared with wild-type mice, suggesting that Meis1 plays a role in both tumor development and malignant progression. This is consistent with the observation that Meis1 expression increases as tumors progress from benign papillomas to malignant carcinomas. Interestingly, we found that Meis1 localization was altered to neoplasia development. Instead of being localized to the stem cell region, Meis1 is localized to more differentiated cells in tumor tissues. These findings suggest that, during the transformation from normal to neoplastic tissues, a functional switch occurs in Meis1. PMID:25013928

  20. Tryptophan derivatives regulate the transcription of Oct4 in stem-like cancer cells

    PubMed Central

    Cheng, Jie; Li, Wenxin; Kang, Bo; Zhou, Yanwen; Song, Jiasheng; Dan, Songsong; Yang, Ying; Zhang, Xiaoqian; Li, Jingchao; Yin, Shengyong; Cao, Hongcui; Yao, Hangping; Zhu, Chenggang; Yi, Wen; Zhao, Qingwei; Xu, Xiaowei; Zheng, Min; Zheng, Shusen; Li, Lanjuan; Shen, Binghui; Wang, Ying-Jie

    2015-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to environmental toxicants, is increasingly recognized as a key player in embryogenesis and tumorigenesis. Here we show that a variety of tryptophan derivatives that act as endogenous AhR ligands can affect the transcription level of the master pluripotency factor Oct4. Among them, ITE enhances the binding of the AhR to the promoter of Oct4 and suppresses its transcription. Reduction of endogenous ITE levels in cancer cells by tryptophan deprivation or hypoxia leads to Oct4 elevation, which can be reverted by administration with synthetic ITE. Consequently, synthetic ITE induces the differentiation of stem-like cancer cells and reduces their tumorigenic potential in both subcutaneous and orthotopic xenograft tumour models. Thus, our results reveal a role of tryptophan derivatives and the AhR signalling pathway in regulating cancer cell stemness and open a new therapeutic avenue to target stem-like cancer cells. PMID:26059097

  1. Feedback Regulation in a Cancer Stem Cell Model can Cause an Allee Effect

    PubMed Central

    Konstorum, Anna; Hillen, Thomas; Lowengrub, John

    2016-01-01

    The exact mechanisms of spontaneous tumor remission or complete response to treatment are phenomena in oncology that are not completely understood. We use a concept from ecology, the Allee effect, to help explain tumor extinction in a model of tumor growth that incorporates feedback regulation of stem cell dynamics, which occurs in many tumor types where certain signaling molecules, such as Wnts, are upregulated. Due to feedback and the Allee effect, a tumor may become extinct spontaneously or after therapy even when the entire tumor has not been eradicated by the end of therapy. We quantify the Allee effect using an ‘Allee index’ that approximates the area of the basin of attraction for tumor extinction. We show that effectiveness of combination therapy in cancer treatment may occur due to the increased probability that the system will be in the Allee region after combination treatment versus monotherapy. We identify therapies that can attenuate stem cell self-renewal, alter the Allee region and increase its size. We also show that decreased response of tumor cells to growth inhibitors can reduce the size of the Allee region and increase stem cell densities, which may help to explain why this phenomenon is a hallmark of cancer. PMID:27113934

  2. Opposing activities of Notch and Wnt signaling regulate intestinal stem cells and gut homeostasis.

    PubMed

    Tian, Hua; Biehs, Brian; Chiu, Cecilia; Siebel, Christian W; Wu, Yan; Costa, Mike; de Sauvage, Frederic J; Klein, Ophir D

    2015-04-01

    Proper organ homeostasis requires tight control of adult stem cells and differentiation through the integration of multiple inputs. In the mouse small intestine, Notch and Wnt signaling are required both for stem cell maintenance and for a proper balance of differentiation between secretory and absorptive cell lineages. In the absence of Notch signaling, stem cells preferentially generate secretory cells at the expense of absorptive cells. Here, we use function-blocking antibodies against Notch receptors to demonstrate that Notch blockade perturbs intestinal stem cell function by causing a derepression of the Wnt signaling pathway, leading to misexpression of prosecretory genes. Importantly, attenuation of the Wnt pathway rescued the phenotype associated with Notch blockade. These studies bring to light a negative regulatory mechanism that maintains stem cell activity and balanced differentiation, and we propose that the interaction between Wnt and Notch signaling described here represents a common theme in adult stem cell biology. PMID:25818302

  3. Regulation of microRNA function in somatic stem cell proliferation and differentiation

    PubMed Central

    Shenoy, Archana; Blelloch, Robert H.

    2015-01-01

    microRNAs (miRNAs) are important modulators of development. Owing to their ability to simultaneously silence hundreds of target genes, they have key roles in large-scale transcriptomic changes that occur during cell fate transitions. In somatic stem and progenitor cells — such as those involved in myogenesis, haematopoiesis, skin and neural development — miRNA function is carefully regulated to promote and stabilize cell fate choice. miRNAs are integrated within networks that form both positive and negative feedback loops. Their function is regulated at multiple levels, including transcription, biogenesis, stability, availability and/or number of target sites, as well as their cooperation with other miRNAs and RNA-binding proteins. Together, these regulatory mechanisms result in a refined molecular response that enables proper cellular differentiation and function. PMID:25118717

  4. Signal integration by Ca(2+) regulates intestinal stem-cell activity.

    PubMed

    Deng, Hansong; Gerencser, Akos A; Jasper, Heinrich

    2015-12-10

    Somatic stem cells maintain tissue homeostasis by dynamically adjusting proliferation and differentiation in response to stress and metabolic cues. Here we identify Ca(2+) signalling as a central regulator of intestinal stem cell (ISC) activity in Drosophila. We show that dietary L-glutamate stimulates ISC division and gut growth. The metabotropic glutamate receptor (mGluR) is required in ISCs for this response, and for an associated modulation of cytosolic Ca(2+) oscillations that results in sustained high cytosolic Ca(2+) concentrations. High cytosolic Ca(2+) concentrations induce ISC proliferation by regulating Calcineurin and CREB-regulated transcriptional co-activator (Crtc). In response to a wide range of dietary and stress stimuli, ISCs reversibly transition between Ca(2+) oscillation states that represent poised or activated modes of proliferation, respectively. We propose that the dynamic regulation of intracellular Ca(2+) levels allows effective integration of diverse mitogenic signals in ISCs to adapt their proliferative activity to the needs of the tissue. PMID:26633624

  5. Stem cell glycolipids.

    PubMed

    Yanagisawa, Makoto

    2011-09-01

    Glycolipids are compounds containing one or more monosaccharide residues bound by a glycosidic linkage to a hydrophobic moiety. Because of their expression patterns and the intracellular localization patterns, glycolipids, including stage-specific embryonic antigens (SSEA-3, SSEA-4, and possibly SSEA-1) and gangliosides (e.g., GD3, GD2, and A2B5 antigens), have been used as marker molecules of stem cells. In this review, I will introduce glycolipids expressed in pluripotent stem cells (embryonic stem cells, induced pluripotent stem cells, very small embryonic-like stem cells, amniotic stem cells, and multilineage-differentiating stress enduring cells), multipotent stem cells (neural stem cells, mesenchymal stem cells, fetal liver multipotent progenitor cells, and hematopoietic stem cells), and cancer stem cells (brain cancer stem cells and breast cancer stem cells), and discuss their availability as biomarkers for identifying and isolating stem cells. PMID:21161592

  6. Cell adhesion geometry regulates non-random DNA segregation and asymmetric cell fates in mouse skeletal muscle stem cells.

    PubMed

    Yennek, Siham; Burute, Mithila; Théry, Manuel; Tajbakhsh, Shahragim

    2014-05-22

    Cells of several metazoan species have been shown to non-randomly segregate their DNA such that older template DNA strands segregate to one daughter cell. The mechanisms that regulate this asymmetry remain undefined. Determinants of cell fate are polarized during mitosis and partitioned asymmetrically as the spindle pole orients during cell division. Chromatids align along the pole axis; therefore, it is unclear whether extrinsic cues that determine spindle pole position also promote non-random DNA segregation. To mimic the asymmetric divisions seen in the mouse skeletal stem cell niche, we used micropatterns coated with extracellular matrix in asymmetric and symmetric motifs. We show that the frequency of non-random DNA segregation and transcription factor asymmetry correlates with the shape of the motif and that these events can be uncoupled. Furthermore, regulation of DNA segregation by cell adhesion occurs within a defined time interval. Thus, cell adhesion cues have a major impact on determining both DNA segregation patterns and cell fates. PMID:24836002

  7. Signals that regulate the oncogenic fate of neural stem cells and progenitors.

    PubMed

    Swartling, Fredrik J; Bolin, Sara; Phillips, Joanna J; Persson, Anders I

    2014-10-01

    Brain tumors have frequently been associated with a neural stem cell (NSC) origin and contain stem-like tumor cells, so-called brain tumor stem cells (BTSCs) that share many features with normal NSCs. A stem cell state of BTSCs confers resistance to radiotherapy and treatment with alkylating agents. It is also a hallmark of aggressive brain tumors and is maintained by transcriptional networks that are also active in embryonic stem cells. Advances in reprogramming of somatic cells into induced pluripotent stem (iPS) cells have further identified genes that drive stemness. In this review, we will highlight the possible drivers of stemness in medulloblastoma and glioma, the most frequent types of primary malignant brain cancer in children and adults, respectively. Signals that drive expansion of developmentally defined neural precursor cells are also active in corresponding brain tumors. Transcriptomal subgroups of human medulloblastoma and glioma match features of NSCs but also more restricted progenitors. Lessons from genetically-engineered mouse (GEM) models show that temporally and regionally defined NSCs can give rise to distinct subgroups of medulloblastoma and glioma. We will further discuss how acquisition of stem cell features may drive brain tumorigenesis from a non-NSC origin. Genetic alterations, signaling pathways, and therapy-induced changes in the tumor microenvironment can drive reprogramming networks and induce stemness in brain tumors. Finally, we propose a model where dysregulation of microRNAs (miRNAs) that normally provide barriers against reprogramming plays an integral role in promoting stemness in brain tumors. PMID:23376224

  8. Piwi maintains germline stem cells and oogenesis in Drosophila through negative regulation of Polycomb group proteins.

    PubMed

    Peng, Jamy C; Valouev, Anton; Liu, Na; Lin, Haifan

    2016-03-01

    The Drosophila melanogaster Piwi protein regulates both niche and intrinsic mechanisms to maintain germline stem cells, but its underlying mechanism remains unclear. Here we report that Piwi interacts with Polycomb group complexes PRC1 and PRC2 in niche and germline cells to regulate ovarian germline stem cells and oogenesis. Piwi physically interacts with the PRC2 subunits Su(z)12 and Esc in the ovary and in vitro. Chromatin coimmunoprecipitation of Piwi, the PRC2 enzymatic subunit E(z), histone H3 trimethylated at lysine 27 (H3K27me3) and RNA polymerase II in wild-type and piwi mutant ovaries demonstrates that Piwi binds a conserved DNA motif at ∼ 72 genomic sites and inhibits PRC2 binding to many non-Piwi-binding genomic targets and H3K27 trimethylation. Moreover, Piwi influences RNA polymerase II activities in Drosophila ovaries, likely via inhibiting PRC2. We hypothesize that Piwi negatively regulates PRC2 binding by sequestering PRC2 in the nucleoplasm, thus reducing PRC2 binding to many targets and influencing transcription during oogenesis. PMID:26780607

  9. Piwi maintains germline stem cells and oogenesis in Drosophila through negative regulation of Polycomb Group proteins

    PubMed Central

    Peng, Jamy C.; Valouev, Anton; Liu, Na; Lin, Haifan

    2015-01-01

    The Drosophila Piwi protein regulates both niche and intrinsic mechanisms to maintain germline stem cells, but its underlying mechanism remains unclear. Here we report that Piwi cooperates with Polycomb Group complexes PRC1 and PRC2 in niche and germline cells to regulate ovarian germline stem cells and oogenesis. Piwi physically interacts with PRC2 subunits Su(z)12 and Esc in the ovary and in vitro. Chromatin co-immunoprecipitation of Piwi, the PRC2 enzymatic subunit E(z), lysine-27-tri-methylated histone 3 (H3K27m3), and RNA polymerase II in wild-type and piwi mutant ovaries reveals that Piwi binds a conserved DNA motif at ~72 genomic sites, and inhibits PRC2 binding to many non-Piwi-binding genomic targets and H3K27 tri-methylation. Moreover, Piwi influences RNA Polymerase II activities in Drosophila ovaries likely via inhibiting PRC2. We hypothesize that Piwi negatively regulates PRC2 binding by sequestering PRC2 in the nucleoplasm, thus reducing PRC2 binding to many targets and influences transcription during oogenesis. PMID:26780607

  10. ASPM regulates symmetric stem cell division by tuning Cyclin E ubiquitination

    PubMed Central

    Capecchi, Mario R.; Pozner, Amir

    2016-01-01

    We generate a mouse model for the human microcephaly syndrome by mutating the ASPM locus, and demonstrate a premature exhaustion of the neuronal progenitor pool due to dysfunctional self-renewal processes. Earlier studies have linked ASPM mutant progenitor excessive cell cycle exit to a mitotic orientation defect. Here, we demonstrate a mitotic orientation-independent effect of ASPM on cell cycle duration. We pinpoint the cell fate-determining factor to the length of time spent in early G1 before traversing the restriction point. Characterization of the molecular mechanism reveals an interaction between ASPM and the Cdk2/Cyclin E complex, regulating the Cyclin activity by modulating its ubiquitination, phosphorylation and localization into the nucleus, before the cell is fated to transverse the restriction point. Thus, we reveal a novel function of ASPM in mediating the tightly coordinated Ubiquitin- Cyclin E- Retinoblastoma- E2F bistable-signalling pathway controlling restriction point progression and stem cell maintenance. PMID:26581405