Science.gov

Sample records for reinforced aluminium alloys

  1. Compressive strength of the mineral reinforced aluminium alloy composite

    NASA Astrophysics Data System (ADS)

    Arora, Rama; Sharma, Anju; Kumar, Suresh; Singh, Gurmel; Pandey, O. P.

    2016-05-01

    This paper presents the results of quasi-static compressive strength of aluminium alloy reinforced with different concentration of rutile mineral particles. The reinforced material shows increase in compressive strength with 5wt% rutile concentration as compared to the base alloy. This increase in compressive strength of composite is attributed to direct strengthening due to transfer of load from lower stiffness matrix (LM13 alloy) to higher stiffness reinforcement (rutile particles). Indirect strengthening mechanisms like increase in dislocation density at the matrix-reinforcement interface, grain size refinement of the matrix and dispersion strengthening are also the contributing factors. The decrease in compressive strength of composite with the increased concentration of rutile concentration beyond 5 wt.% can be attributed to the increase in dislocation density due to the void formation at the matrix-reinforcement interface.

  2. Mechanical Properties of Particulate Reinforced Aluminium Alloy Matrix Composite

    SciTech Connect

    Sayuti, M.; Sulaiman, S.; Baharudin, B. T. H. T.; Arifin, M. K. A.; Suraya, S.; Vijayaram, T. R.

    2011-01-17

    This paper discusses the mechanical properties of Titanium Carbide (TiC) particulate reinforced aluminium-silicon alloy matrix composite. TiC particulate reinforced LM6 alloy matrix composites were fabricated by carbon dioxide sand molding process with different particulate weight fraction. Tensile strength, hardness and microstructure studies were conducted to determine the maximum load, tensile strength, modulus of elasticity and fracture surface analysis have been performed to characterize the morphological aspects of the test samples after tensile testing. Hardness values are measured for the TiC reinforced LM6 alloy composites and it has been found that it gradually increases with increased addition of the reinforcement phase. The tensile strength of the composites increased with the increase percentage of TiC particulate.

  3. The fracture of boron fibre-reinforced 6061 aluminium alloy

    NASA Technical Reports Server (NTRS)

    Wright, M. A.; Welch, D.; Jollay, J.

    1979-01-01

    The fracture of 6061 aluminium alloy reinforced with unidirectional and cross-plied 0/90 deg, 0/90/+ or - 45 deg boron fibres has been investigated. The results have been described in terms of a critical stress intensity, K(Q). Critical stress intensity factors were obtained by substituting the failure stress and the initial crack length into the appropriate expression for K(Q). Values were obtained that depended on the dimensions of the specimens. It was therefore concluded that, for the size of specimen tested, the values of K(Q) did not reflect any basic materials property.

  4. Aging effects of diamond reinforced aluminium alloys submitted to deep space real conditions. Structural, chemical and electrical degradation

    NASA Astrophysics Data System (ADS)

    Korneli, Grigorov; Bouzekova-Penkova, Anna; Datcheva, Maria; Avdeev, George; Grushin, Valerii; Klimov, Stanislav

    2016-07-01

    An aluminium alloy (Al-Cu-Zn-Mg) reinforced with ultra-dispersed diamond powder and tungsten (W), has been prepared in form of 7 cm bars and 4 mm diameter. One part of them stayed 2 years on satellite exposed to outer space, where the Sun activity and the background radiation were monitored. After satellite return both batches has been studied. Structural test, mainly micro-hardness together with detailed X-rays analyses was performed. The satellite makes a tour around the Earth each two hours, the temperature difference being circa 300oC. The micro-hardness being measured with Agilent G200 nano-indentor shows a significant drop of 25%. The XRD patterns are consistent with the previous results, states defects incorporation, and crystalline cells deterioration.

  5. Hot tearing evaluation for aluminium alloys

    NASA Astrophysics Data System (ADS)

    Brůna, Marek

    2016-06-01

    Hot tearing during solidification of aluminium alloys castings can be a serious problem. This phenomenon is well known but still insufficiently investigated. Hot tearing occurs in form of irregular cracks in metal castings that develop during solidification and cooling. The cause of hot tearing is generally attributed to the development of thermally induced tensile stresses and strains in a casting as the molten metal contracts during solidification and solid state shrinkage. Submited paper consists of two parts. The first part introduces the reader to the phenomenon of hot tearing. The second part describes newly developed method for assessing hot tearing susceptibility of aluminium alloys, and also gives the results on hot tearing for various aluminium alloys.

  6. Thermodynamic properties of uranium in gallium-aluminium based alloys

    NASA Astrophysics Data System (ADS)

    Volkovich, V. A.; Maltsev, D. S.; Yamshchikov, L. F.; Chukin, A. V.; Smolenski, V. V.; Novoselova, A. V.; Osipenko, A. G.

    2015-10-01

    Activity, activity coefficients and solubility of uranium was determined in gallium-aluminium alloys containing 1.6 (eutectic), 5 and 20 wt.% aluminium. Additionally, activity of uranium was determined in aluminium and Ga-Al alloys containing 0.014-20 wt.% Al. Experiments were performed up to 1073 K. Intermetallic compounds formed in the alloys were characterized by X-ray diffraction. Partial and excess thermodynamic functions of U in the studied alloys were calculated.

  7. Thermodynamic properties of uranium in gallium-aluminium based alloys

    NASA Astrophysics Data System (ADS)

    Volkovich, V. A.; Maltsev, D. S.; Yamshchikov, L. F.; Chukin, A. V.; Smolenski, V. V.; Novoselova, A. V.; Osipenko, A. G.

    2015-10-01

    Activity, activity coefficients and solubility of uranium was determined in gallium-aluminium alloys containing 1.6 (eutectic), 5 and 20 wt.% aluminium. Additionally, activity of uranium was determined in aluminium and Ga-Al alloys containing 0.014-20 wt.% Al. Experiments were performed up to 1073 K. Intermetallic compounds formed in the alloys were characterized by X-ray diffraction. Partial and excess thermodynamic functions of U in the studied alloys were calculated.

  8. Precipitate strengthening of nanostructured aluminium alloy.

    PubMed

    Wawer, Kinga; Lewandowska, Malgorzata; Kurzydlowski, Krzysztof J

    2012-11-01

    Grain boundaries and precipitates are the major microstructural features influencing the mechanical properties of metals and alloys. Refinement of the grain size to the nanometre scale brings about a significant increase in the mechanical strength of the materials because of the increased number of grain boundaries which act as obstacles to sliding dislocations. A similar effect is obtained if nanoscale precipitates are uniformly distributed in coarse grained matrix. The development of nanograin sized alloys raises the important question of whether or not these two mechanisms are "additive" and precipitate strengthening is effective in nanostructured materials. In the reported work, hydrostatic extrusion (HE) was used to obtain nanostructured 7475 aluminium alloy. Nanosized precipitates were obtained by post-HE annealing. It was found that such annealing at the low temperatures (100 degrees C) results in a significant increase in the microhardness (HV0.2) and strength of the nanostructured 7475 aluminium alloy. These results are discussed in terms of the interplay between the precipitation and deformation of nanocrystalline metals. PMID:23421286

  9. Deviatoric response of the aluminium alloy, 5083

    NASA Astrophysics Data System (ADS)

    Appleby-Thomas, Gareth; Hazell, Paul; Millett, Jeremy; Bourne, Neil

    2009-06-01

    Aluminium alloys such as 5083 are established light weight armour materials. As such, the shock response of these materials is of great importance. The shear strength of a material under shock loading provides an insight into its ballistic performance. In this investigation embedded manganin stress gauges have been employed to measure both the longitudinal and lateral components of stress during plate impact experiments over a range of impact stresses. In turn, these results were used to determine the shear strength and to investigate the time dependence of lateral stress behind the shock front to give an indication of material response.

  10. Melt spun aluminium alloys for moulding optics

    NASA Astrophysics Data System (ADS)

    Gubbels, G.; Tegelaers, L.; Senden, R.

    2013-09-01

    Melt spinning is a rapid quenching process that makes it possible to create materials with a very fine microstructure. Due to this very fine microstructure the melt spinning process is an enabler for diamond turning optics and moulds without the need of post-polishing. Using diamond turning of melt spun aluminium one can achieve <=2 nm Rq surface roughness. Application areas are imaging and projection optics, mirrors, moulds for contact lenses and spectacles. One of the alloys that RSP produces is RSA-905. This alloy has a solid track record as a better and cheaper concept in the application of moulds for optical components such as contact lenses. The RSA-905 is a dispersion hardened amorphous-like alloy that keeps its properties when exposed to elevated temperatures (up to 380°C). This gives the material unique features for optics moulding applications. RSA-905 moulds are cheaper and better than traditional mould concepts such as copper or brass with or without NiP plating. In addition logistics can be simplified significantly: from typical weeks-months into days-week. Lifetime is typically in the range of 100.000 - 200.000 shots. For high volume production typically ranging from several 100.000 - several 1.000.000 shots, NiP plated steel moulds are typically used. By using an appropriate optical coating concept RSA-905 can be upgraded to a competitive alternative to steel in terms of price, performance and logistics. This paper presents some recent developments for improved mould performance of such concept. Hardness, wear resistance and adhesion are topics of interest and they can be applied by special coatings such as diamond-like carbon (DLC) and chromium nitride (CrN). These coatings make the aluminium alloy suitable for moulding mass production of small as well as larger optics, such as spectacle lenses.

  11. Aluminium alloys in municipal solid waste incineration bottom ash.

    PubMed

    Hu, Yanjun; Rem, Peter

    2009-05-01

    With the increasing growth of incineration of household waste, more and more aluminium is retained in municipal solid waste incinerator bottom ash. Therefore recycling of aluminium from bottom ash becomes increasingly important. Previous research suggests that aluminium from different sources is found in different size fractions resulting in different recycling rates. The purpose of this study was to develop analytical and sampling techniques to measure the particle size distribution of individual alloys in bottom ash. In particular, cast aluminium alloys were investigated. Based on the particle size distribution it was computed how well these alloys were recovered in a typical state-of-the-art treatment plant. Assessment of the cast alloy distribution was carried out by wet physical separation processes, as well as chemical methods, X-ray fluorescence analysis and electron microprobe analysis. The results from laboratory analyses showed that cast alloys tend to concentrate in the coarser fractions and therefore are better recovered in bottom ash treatment plants. PMID:19423581

  12. The role of TiB2 in strengthening TiB2 reinforced aluminium casting composites

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Kang, H.; Zhao, Y.; Zheng, Y.; Wang, T.

    2016-03-01

    With an aim of developing high quality in situ TiB2 reinforced aluminium foundry alloy based composites, the conventional direct synthesis method was modified into a two-step route. In step one we optimized the halide salt route to fabricate in situ TiB2 particulate reinforced aluminium matrix composites and in step two we investigated the effects of the Al-5wt.% TiB2 composite, as a “master composite”, on strengthening the practical foundry alloys. The in situ formed TiB2 particles play two roles while strengthening the composites: (1) The grain refinement effect that improves the quality of the alloy matrix; and (2) The interactions between the hard particulates and the matrix add extra increment to the material strength. In different alloy systems, TiB2 may play distinct roles in these two aspects (figure 1). Further analysis of the strengthening mechanisms shows that particle agglomeration behaviour during solidification is responsible for the latter one. The present work details the role of TiB2 in strengthening TiB2 reinforced aluminium casting composites.

  13. Modelling of micro- and macrosegregation for industrial multicomponent aluminium alloys

    NASA Astrophysics Data System (ADS)

    Ellingsen, K.; Mortensen, D.; M'Hamdi, M.

    2015-06-01

    Realistic predictions of macrosegregation formation during casting of aluminium alloys requires an accurate modeling of solute microsegregation accounting for multicomponent phase diagrams and secondary phase formation. In the present work, the stand alone Alstruc model, a microsegregation model for industrial multicomponent aluminium alloys, is coupled with the continuum model ALSIM which calculates the macroscopic transport of mass, enthalpy, momentum, and solutes as well as stresses and deformation during solidification of aluminium. Alstruc deals with multicomponent alloys accounting for temperature dependent partition coefficients, liquidus slopes and the precipitation of secondary phases. The challenge associated with computation of microsegregation for multicomponent alloys is solved in Alstruc by approximating the phase diagram data by simple, analytical expressions which allows for a CPU-time efficient coupling with the macroscopic transport model. In the present work, the coupled model has been applied in a study of macrosegregation including thermal and solutal convection, solidification shrinkage and surface exudation on an industrial DC-cast billet.

  14. Electrodeposition of aluminium, aluminium/magnesium alloys, and magnesium from organometallic electrolytes

    SciTech Connect

    Mayer, A.

    1988-01-01

    The electrodeposition of aluminum, magnesium, and the combination of these metals from nonaqueous media is discussed. Plating baths for depositing Al/Mg alloys or for plating essentially pure Mg were developed. These solutions contain alkali meal fluoride or quaternary ammonium halide/aluminium alkyl complexes and dialkyl magnesium dissolved in aromatic hydrocarbons. Alloy deposits over the whole composition range can be plated from these solutions by varying the relative quantities of the aluminium and magnesium alkyls and by changing the bath-operating parameters. 18 refs., 4 figs.

  15. Reinforcing aluminum alloys with high strength fibers

    NASA Technical Reports Server (NTRS)

    Kolpashnikov, A. I.; Manuylov, V. F.; Chukhin, B. D.; Shiryayev, Y. V.; Shurygin, A. S.

    1982-01-01

    A study is made of the possibility of reinforcing aluminum and aluminum based alloys with fibers made of high strength steel wire. The method of introducing the fibers is described in detail. Additional strengthening by reinforcement of the high alloy system Al - An - Mg was investigated.

  16. Recycling of aluminium scrap for secondary Al-Si alloys.

    PubMed

    Velasco, Eulogio; Nino, Jose

    2011-07-01

    An increasing amount of recycled aluminium is going into the production of aluminium alloy used for automotive applications. In these applications, it is necessary to control and remove alloy impurities and inclusions. Cleaning and fluxing processes are widely used during processing of the alloys for removal of inclusions, hydrogen and excess of magnesium. These processes use salt fluxes based in the system NaCl-KCl, injection of chlorine or mixture of chlorine with an inert gas. The new systems include a graphite wand and a circulation device to force convection in the melt and permit the bubbling and dispersion of reactive and cleaning agents. This paper discusses the recycling of aluminium alloys in rotary and reverberatory industrial furnaces. It focuses on the removal of magnesium during the melting process. In rotary furnaces, the magnesium lost is mainly due to the oxidation process at high temperatures. The magnesium removal is carried out by the reaction between chlorine and magnesium, with its efficiency associated to kinetic factors such as concentration of magnesium, mixing, and temperature. These factors are also related to emissions generated during the demagging process. Improvements in the metallic yield can be reached in rotary furnaces if the process starts with a proper salt, with limits of addition, and avoiding long holding times. To improve throughput in reverberatories, start the charging with high magnesium content material and inject chlorine gas if the molten metal is at the right temperature. Removal of magnesium through modern technologies can be efficiently performed to prevent environmental problems. PMID:20837560

  17. Carbon treated commercial aluminium alloys as anodes for aluminium-air batteries in sodium chloride electrolyte

    NASA Astrophysics Data System (ADS)

    Pino, M.; Herranz, D.; Chacón, J.; Fatás, E.; Ocón, P.

    2016-09-01

    An easy treatment based in carbon layer deposition into aluminium alloys is presented to enhance the performance of Al-air primary batteries with neutral pH electrolyte. The jellification of aluminate in the anode surface is described and avoided by the carbon covering. Treated commercial Al alloys namely Al1085 and Al7475 are tested as anodes achieving specific capacities above 1.2 Ah g-1vs 0.5 Ah g-1 without carbon covering. The influence of the binder proportion in the treatment as well as different carbonaceous materials, Carbon Black, Graphene and Pyrolytic Graphite are evaluated as candidates for the covering. Current densities of 1-10 mA cm-2 are measured and the influence of the alloy explored. A final battery design of 4 cells in series is presented for discharges with a voltage plateau of 2 V and 1 Wh g-1 energy density.

  18. Diffusion bonding of aluminium alloy, 8090

    SciTech Connect

    Sunwoo, A. )

    1994-08-15

    Ability to diffusion bond aluminum (Al) alloys, in particular superplastic aluminum alloys, will complete the technology-base that is strongly needed to enhance the use of superplastic forming (SPF) technology. Diffusion bonding (DB) is an attractive manufacturing option for applications where the preservation of the base metal microstructure and, in turn, mechanical properties is important in the bond area. As the technology moves from the laboratory to production, the DB process has to be production-feasible and cost-effective. At the Lawrence Livermore National Laboratory, the DB study of SPF Al alloys has been initiated. This paper describes the effect of surface chemistry on the DB properties of the Al alloy, 8090 (2.4Li-1.18Cu-0.57Mg-0.14Zr-Al). The integrity of the diffusion bonds was evaluated for both interlayered and bare surfaces. Two interlayer elements, copper (Cu) and zinc (Zn), were compared. Although the eutectic temperature of Al-Cu is 548 C, a thin Cu layer in contact with 8090 has been shown to lower its eutectic temperature to [approximately]521 C. In 8090, Cu is one of the primary alloying elements but has a limited solubility in Al at the bonding temperature. Zinc, on the other hand, forms a considerably lower eutectic (380 C) with Al and is highly soluble in Al. The diffusivity of Zn in Al is much faster than that of Cu, but Zn forms a more thermodynamically stable oxide. These subtle metallurgical differences will affect the transient liquid phase (TLP) formation at the interface, which will subsequently influence the bond quality.

  19. Aluminium. II - A review of deformation properties of high purity aluminium and dilute aluminium alloys.

    NASA Technical Reports Server (NTRS)

    Reed, R. P.

    1972-01-01

    The elastic and plastic deformation behavior of high-purity aluminum and of dilute aluminum alloys is reviewed. Reliable property data, including elastic moduli, elastic coefficients, tensile, creep, fatigue, hardness, and impact are presented. Single crystal tensile results are discussed. Rather comprehensive reference lists, containing publications of the past 20 years, are included for each of the above categories. Defect structures and mechanisms responsible for mechanical behavior are presented. Strengthening techniques (alloys, cold work, irradiation, quenching, composites) and recovery are briefly reviewed.

  20. Nanostructural hierarchy increases the strength of aluminium alloys.

    PubMed

    Liddicoat, Peter V; Liao, Xiao-Zhou; Zhao, Yonghao; Zhu, Yuntian; Murashkin, Maxim Y; Lavernia, Enrique J; Valiev, Ruslan Z; Ringer, Simon P

    2010-01-01

    Increasing the strength of metallic alloys while maintaining formability is an interesting challenge for enabling new generations of lightweight structures and technologies. In this paper, we engineer aluminium alloys to contain a hierarchy of nanostructures and possess mechanical properties that expand known performance boundaries-an aerospace-grade 7075 alloy exhibits a yield strength and uniform elongation approaching 1 GPa and 5%, respectively. The nanostructural architecture was observed using novel high-resolution microscopy techniques and comprises a solid solution, free of precipitation, featuring (i) a high density of dislocations, (ii) subnanometre intragranular solute clusters, (iii) two geometries of nanometre-scale intergranular solute structures and (iv) grain sizes tens of nanometres in diameter. Our results demonstrate that this novel architecture offers a design pathway towards a new generation of super-strong materials with new regimes of property-performance space. PMID:20842199

  1. Determination of phosphorus in hypereutectic aluminium-silicon alloys.

    PubMed

    Mukai, K

    1972-04-01

    A reproducible method is described for determination of small amounts of phosphorus (from 0.0005% to 0.02%) in hypereutectic aluminium-silicon complex alloys. The method permits the separate determination of phosphorus in acid-soluble and acid-insoluble fractions. Phosphomolybdate is extracted with n-butanol-chloroform solvent mixture and back-extracted with a btannous chloride reducing solution. The phosphorus content of a sample cut into small pieces decreases during storage; loss of phosphorus is negligible on acid dissolution under oxidizing conditions. PMID:18961077

  2. Deviatoric Response of AN Armour-Grade Aluminium Alloy

    NASA Astrophysics Data System (ADS)

    Appleby-Thomas, G. J.; Hazell, P. J.; Millett, J.; Bourne, N. K.

    2009-12-01

    Aluminium alloys such as 5083 H32 are established light-weight armour materials. As such, the shock response of these materials is of great importance. The shear strength of a material under shock loading provides an insight into its ballistic performance. In this investigation embedded manganin stress gauges have been employed to measure both the longitudinal and lateral components of stress during plate-impact experiments over a range of impact stresses. In turn, these results were used to determine the shear strength and to investigate the time dependence of lateral stress behind the shock front to give an indication of material response.

  3. Modelling work hardening of aluminium alloys containing dispersoids

    NASA Astrophysics Data System (ADS)

    Zhao, Qinglong; Holmedal, Bjørn

    2013-08-01

    The influence of dispersoids on tensile deformation behaviour has been studied by comparison of aluminium alloys containing different dispersoid densities. It was found that a fine dispersion of non-shearable particles led to an increased work hardening at the initial plastic deformation, but the effect was opposite at higher strains. The reason has been attributed to the generation of geometrically necessary dislocations (GNDs). A new model has been proposed for the evolution of GNDs based on a balance of storage and dynamic recovery of GNDs. The model predicts a rapid saturation of GNDs and a reduced work hardening at small strains, consistent with the experimental results.

  4. High rate constitutive modeling of aluminium alloy tube

    NASA Astrophysics Data System (ADS)

    Salisbury, C. P.; Worswick, M. J.; Mayer, R.

    2006-08-01

    As the need for fuel efficient automobiles increases, car designers are investigating light-weight materials for automotive bodies that will reduce the overall automobile weight. Aluminium alloy tube is a desirable material to use in automotive bodies due to its light weight. However, aluminium suffers from lower formability than steel and its energy absorption ability in a crash event after a forming operation is largely unknown. As part of a larger study on the relationship between crashworthiness and forming processes, constitutive models for 3mm AA5754 aluminium tube were developed. A nominal strain rate of 100/s is often used to characterize overall automobile crash events, whereas strain rates on the order of 1000/s can occur locally. Therefore, tests were performed at quasi-static rates using an Instron test fixture and at strain rates of 500/s to 1500/s using a tensile split Hopkinson bar. High rate testing was then conducted at rates of 500/s, 1000/s and 1500/s at 21circC, 150circC and 300circC. The generated data was then used to determine the constitutive parameters for the Johnson-Cook and Zerilli-Armstrong material models.

  5. Frictional conditions between alloy AA6060 aluminium and tool steel

    NASA Astrophysics Data System (ADS)

    Widerøe, Fredrik; Welo, Torgeir

    2011-05-01

    The frictional conditions in the new process of screw extrusion of aluminium have been investigated. The contact behaviour between the aluminum alloy and the tool steel in the extruder is vital for understanding the extrusion process. Using a compressive-rotational method for frictional measurements the conditions for unlubricated sticking friction between aluminum alloy AA6060 and tool steel at different combinations of temperatures and pressures have been investigated. In this method the samples in the form of disks are put under hydrostatic pressure while simultaneously being rotated at one end. Pins made from contrast material have been inserted into the samples to measure the deformation introduced. This approach along with 3D simulations form a method for determining the frictional conditions. The paper describes the test method and the results. It was found that the necessary pressure for sticking to occur between the aluminum AA6060 and the different parts of the extruder is heavily influenced by the temperature.

  6. Fabrication of superhydrophobic aluminium alloy surface with excellent corrosion resistance by a facile and environment-friendly method

    NASA Astrophysics Data System (ADS)

    Feng, Libang; Che, Yanhui; Liu, Yanhua; Qiang, Xiaohu; Wang, Yanping

    2013-10-01

    This work develops a facile and environment-friendly method for preparing the superhydrophobic aluminium alloy surface with excellent corrosion resistance. The superhydrophobic aluminium alloy surface is fabricated by the boiling water treatment and stearic acid (STA) modification. Results show that the boiling water treatment endows the aluminium alloy surface with a porous and rough structure, while STA modification chemically grafts the long hydrophobic alkyl chains onto the aluminium alloy surface. Just grounded on the micro- and nano-scale hierarchical structure along with the hydrophobic chemical composition, the superhydrophobic aluminium alloy surface is endued the excellent corrosion resistance.

  7. Thermoelectric power in low-density interstitial-free iron-aluminium alloys

    NASA Astrophysics Data System (ADS)

    Rana, Radhakanta; Liu, Cheng

    2013-09-01

    Thermoelectric power (TEP) studies on low-density interstitial-free iron-aluminium alloys reveal that the TEP decreases with increase in the aluminium content on account of the introduction of lattice dispersion centres. The TEP coefficients, determined from the Nordheim-Gorter law, for 6.8 and 8.1 wt.% aluminium additions to α-iron are found to be higher than values reported in previous literature for small aluminium additions. The grain size has a very weak effect on the TEP of these alloys.

  8. Performance of commercial aluminium alloys as anodes in gelled electrolyte aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Pino, M.; Chacón, J.; Fatás, E.; Ocón, P.

    2015-12-01

    The evaluation of commercial aluminium alloys, namely, Al2024, Al7475 and Al1085, for Al-air batteries is performed. Pure Al cladded Al2024 and Al7475 are also evaluated. Current rates from 0.8 mA cm-2 to 8.6 mA cm-2 are measured in a gel Al-air cell composed of the commercial alloy sample, a commercial air-cathode and an easily synthesizable gelled alkaline electrolyte. The influence of the alloying elements and the addition to the electrolyte of ZnO and ZnCl2, as corrosion inhibitors is studied and analysed via EDX/SEM. Specific capacities of up to 426 mAh/g are obtained with notably flat potential discharges of 1.3-1.4 V. The competition between self-corrosion and oxidation reactions is also discussed, as well as the influence of the current applied on that process. Al7475 is determined to have the best behaviour as anode in Al-air primary batteries, and cladding process is found to be an extra protection against corrosion at low current discharges. Conversely, Al1085 provided worse results because of an unfavourable metallic composition.

  9. Synthesis and Characterization of TiB2 Reinforced Aluminium Matrix Composites: A Review

    NASA Astrophysics Data System (ADS)

    Kumar, Narendra; Gautam, Gaurav; Gautam, Rakesh Kumar; Mohan, Anita; Mohan, Sunil

    2015-09-01

    Aluminium-matrix composites (AMCs) are developed to meet the demands of light weight high performance materials in aerospace, automotive, marine and other applications. The properties of AMCs can be tailored suitably by combinations of matrix, reinforcement and processing route. AMCs are one of the most attractive alternatives for the manufacturing of light weight and high strength parts due to their low density and high specific strength. There are various techniques for preparing the AMCs with different reinforcement particles. In AMCs, the reinforcements are usually in the form of metal oxides, carbides, borides, nitrides and their combination. Among the various reinforcements titanium di-boride (TiB2) is of much interest due to its excellent stiffness, hardness, and wear resistance. This paper attempts to provide an overview to explore the possibilities of synthesizing titanium di-boride reinforced AMCs with different techniques. The mechanical and tribological properties of these composites have been emphasized to project these as tribo-materials.

  10. The influence of alloy composition on residual stresses in heat treated aluminium alloys

    SciTech Connect

    Robinson, J.S.; Redington, W.

    2015-07-15

    The as quenched properties of eight different heat treatable aluminium alloys are related to residual stress magnitudes with the objective being to establish if there is a relationship between the residual stress and the as quenched alloy hardness and strength. Near surface residual stresses were assessed with X-ray diffraction using both the established sin{sup 2}ψ method and the more recent cos α technique. Through thickness residual stresses were also characterised using neutron diffraction. The alloys were chosen to encompass a wide range of strengths. The low to medium strength alloys were 6060 and 6082, medium to high strength 2618A, 2014A, 7075, 7010 and two variants of 7449, while the very high strength alloy was the powder metallurgy alloy N707. To assess the as quenched strength, dynamic hardness and tensile properties were determined from samples tested immediately after quenching to minimise the influence of precipitation hardening by natural aging. In addition, hot hardness measurements were made in situ on samples cooled to simulate quench paths. Within the experimental constraints of the investigation, the distribution of residual stress through the thickness was found to follow the same pattern for all the alloys investigated, varying from tensile in the interior to surface compression. The influence of alloy strength was manifested as a change in the observed residual stress magnitudes, and surface residual stresses were found to vary linearly with as quenched hardness and strength. - Highlights: • As quenched aluminium alloys contain high magnitude residual stresses. • Surface is compressive balance by a tensile core. • As quenched surface residual stress is linear function of alloy strength. • In situ hot hardness demonstrates rapid change in intrinsic hardness during rapid cooling.

  11. Laser Surface Pre-treatment of Aluminium for Hybrid Joints with Glass Fibre Reinforced Thermoplastics

    NASA Astrophysics Data System (ADS)

    Heckert, André; Zaeh, Michael F.

    Lightweight construction is a major trend in the automotive industry. Theconnection of fibre reinforced plastics with aluminium is consequently seen as promising prospect. In this regard, thermal joining can be applied for bonding of such hybrid joints. But in order to create a load bearing metal plastic joint, the surface of the metal has to be pre-treated. Recent research has shown that with laser surface pre-treatment high joint strengths are obtained. Yet there are a variety of laser sources and manufacturable surface topographies with structure sizes ranging from macroscopic to nanoscopic profiles. Within this work,macroscopic, microscopic and nanoscopic laser processed structures are created on aluminium and consequently joined to glass fibre reinforced thermoplastics of different fibre length and fibre content. High shear tensile strengths of up to 42 N/mm2 were obtained depending on the allocated material and the surface pre-treatment.

  12. Mackay icosahedron explaining orientation relationship of dispersoids in aluminium alloys.

    PubMed

    Muggerud, Astrid Marie F; Li, Yanjun; Holmestad, Randi; Andersen, Sigmund J

    2014-10-01

    The orientation relations (ORs) of the cubic icosahedral quasicrystal approximant phase α-Al(Fe,Mn)Si have been studied after low temperature annealing of a 3xxx wrought aluminium alloy by transmission electron microscopy. From diffraction studies it was verified that the most commonly observed OR for the α-Al(Fe,Mn)Si dispersoids is [1\\bar 11]α // [1\\bar 11]Al, (5\\bar 2\\bar 7)α // (011)Al. This orientation could be explained by assuming that the internal Mackay icosahedron (MI) in the α-phase has a fixed orientation in relation to Al, similar to that of the icosahedral quasi-crystals existing in this alloy system. It is shown that mirroring of the normal-to-high-symmetry icosahedral directions of the MI explains the alternative orientations, which are therefore likely to be caused by twinning of the fixed MI. Only one exception was found, which was related to the Bergman icosahedron internal to the T-phase of the Al-Mg-Zn system. PMID:25274523

  13. Aluminum-Alloy-Matrix/Alumina-Reinforcement Composites

    NASA Technical Reports Server (NTRS)

    Kashalikar, Uday; Rozenoyer, Boris

    2004-01-01

    Isotropic composites of aluminum-alloy matrices reinforced with particulate alumina have been developed as lightweight, high-specific-strength, less-expensive alternatives to nickel-base and ferrous superalloys. These composites feature a specific gravity of about 3.45 grams per cubic centimeter and specific strengths of about 200 MPa/(grams per cubic centimeter). The room-temperature tensile strength is 100 ksi (689 MPa) and stiffness is 30 Msi (206 GPa). At 500 F (260 C), these composites have shown 80 percent retention in strength and 95 percent retention in stiffness. These materials also have excellent fatigue tolerance and tribological properties. They can be fabricated in net (or nearly net) sizes and shapes to make housings, pistons, valves, and ducts in turbomachinery, and to make structural components of such diverse systems as diesel engines, automotive brake systems, and power-generation, mining, and oil-drilling equipment. Separately, incorporation of these metal matrix composites within aluminum gravity castings for localized reinforcement has been demonstrated. A composite part of this type can be fabricated in a pressure infiltration casting process. The process begins with the placement of a mold with alumina particulate preform of net or nearly net size and shape in a crucible in a vacuum furnace. A charge of the alloy is placed in the crucible with the preform. The interior of the furnace is evacuated, then the furnace heaters are turned on to heat the alloy above its liquidus temperature. Next, the interior of the furnace is filled with argon gas at a pressure about 900 psi (approximately equal to 6.2 MPa) to force the molten alloy to infiltrate the preform. Once infiltrated, the entire contents of the crucible can be allowed to cool in place, and the composite part recovered from the mold.

  14. Modelling of Local Necking and Fracture in Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    Achani, D.; Eriksson, M.; Hopperstad, O. S.; Lademo, O.-G.

    2007-05-01

    Non-linear Finite Element simulations are extensively used in forming and crashworthiness studies of automotive components and structures in which fracture need to be controlled. For thin-walled ductile materials, the fracture-related phenomena that must be properly represented are thinning instability, ductile fracture and through-thickness shear instability. Proper representation of the fracture process relies on the accuracy of constitutive and fracture models and their parameters that need to be calibrated through well defined experiments. The present study focuses on local necking and fracture which is of high industrial importance, and uses a phenomenological criterion for modelling fracture in aluminium alloys. As an accurate description of plastic anisotropy is important, advanced phenomenological constitutive equations based on the yield criterion YLD2000/YLD2003 are used. Uniaxial tensile tests and disc compression tests are performed for identification of the constitutive model parameters. Ductile fracture is described by the Cockcroft-Latham fracture criterion and an in-plane shear tests is performed to identify the fracture parameter. The reason is that in a well designed in-plane shear test no thinning instability should occur and it thus gives more direct information about the phenomenon of ductile fracture. Numerical simulations have been performed using a user-defined material model implemented in the general-purpose non-linear FE code LS-DYNA. The applicability of the model is demonstrated by correlating the predicted and experimental response in the in-plane shear tests and additional plane strain tension tests.

  15. Modelling of Local Necking and Fracture in Aluminium Alloys

    SciTech Connect

    Achani, D.; Eriksson, M.; Hopperstad, O. S.; Lademo, O.-G.

    2007-05-17

    Non-linear Finite Element simulations are extensively used in forming and crashworthiness studies of automotive components and structures in which fracture need to be controlled. For thin-walled ductile materials, the fracture-related phenomena that must be properly represented are thinning instability, ductile fracture and through-thickness shear instability. Proper representation of the fracture process relies on the accuracy of constitutive and fracture models and their parameters that need to be calibrated through well defined experiments. The present study focuses on local necking and fracture which is of high industrial importance, and uses a phenomenological criterion for modelling fracture in aluminium alloys. As an accurate description of plastic anisotropy is important, advanced phenomenological constitutive equations based on the yield criterion YLD2000/YLD2003 are used. Uniaxial tensile tests and disc compression tests are performed for identification of the constitutive model parameters. Ductile fracture is described by the Cockcroft-Latham fracture criterion and an in-plane shear tests is performed to identify the fracture parameter. The reason is that in a well designed in-plane shear test no thinning instability should occur and it thus gives more direct information about the phenomenon of ductile fracture. Numerical simulations have been performed using a user-defined material model implemented in the general-purpose non-linear FE code LS-DYNA. The applicability of the model is demonstrated by correlating the predicted and experimental response in the in-plane shear tests and additional plane strain tension tests.

  16. Spall fracture in aluminium alloy at high strain rates

    NASA Astrophysics Data System (ADS)

    Joshi, K. D.; Rav, Amit; Sur, Amit; Kaushik, T. C.; Gupta, Satish C.

    2016-05-01

    Spall fracture strength and dynamic yield strength has been measured in 8mm thick target plates of aluminium alloy Al2024-T4 at high strain rates generated in three plate impact experiments carried out at impact velocities of 180 m/s, 370 m/s and 560m/s, respectively, using single stage gas gun facility. In each experiment, the free surface velocity history of the Al2024-T4 sample plate measured employing velocity interferometer system for any reflector (VISAR) is used to determine the spall strength and dynamic yield strength of this material. The spall strength of 1.11 GPa, 1.16 GPa and 1.43 GPa, determined from measured free surface velocity history of sample material in three experiments performed at impact velocity of 180 m/s, 370 m/s and 560 m/s, respectively, are higher than the quasi static value of 0.469 GPa and display almost linearly increasing trend with increasing impact velocity or equivalently with increasing strain rates. The average strain rates just ahead of the spall fracture are determined to be 1.9×10 4/s, 2.0×104/s and 2.5×104/s, respectively. The dynamic yield strength determined in the three experiments range from 0.383 GPa to 0.407 GPa, which is higher than the quasi static value of 0.324GPa.

  17. Application of thermoelectric potential measurements in chemical analysis-II Determination of aluminium in iron alloys.

    PubMed

    Krajina, A; Dolezal, J

    1967-12-01

    A method is proposed for the rapid determination of aluminium in iron alloys by means of thermoelectric potential measurement. An instrument has been modified, and a method devised for thermoelectro-analytical measurements. The thermoelectric potential of iron-germanium and iron-zinc alloys has been measured, and an attempt made at a theoretical explanation of the influence of alloying elements on the thermoelectric properties of transition metals. PMID:18960250

  18. New developments on optimizing properties of high-Zn aluminium cast alloys

    NASA Astrophysics Data System (ADS)

    Krajewski, W. K.; Buras, J.; Krajewski, P. K.; Greer, A. L.; Schumacher, P.; Haberl, K.

    2016-07-01

    Foundry alloys with Al-based matrices have a wide range of uses in today's global economy and there is a high demand for castings of Al alloys, including Al-Zn alloys. In this paper, investigations on the grain refinement of high-Zn aluminium cast alloys are presented. Aluminium alloys with relatively high zinc content have a tendency to be coarse-grained, especially in the case of castings with low cooling rates such as are found in sand moulds. The coarse-grained structure degrades the plasticity, specifically the elongation. Therefore, for aluminium alloys of high (10-30 wt.%) zinc content, inoculation is attractive, aiming to break up the primary dendrites of the a-phase solid solution of zinc in aluminium. Such dendrites are the principal microstructural component in these alloys. On the other hand, a finer grain structure usually reduces the damping (e.g. as measured by attenuation of ultrasound) in these alloys. In the present investigations, a binary sand-cast Al-20 wt.% Zn alloy was inoculated with different additions of AlTi3C0.15 (TiCAl) and ZnTi-based master alloys. The sand-cast samples were subjected to mechanical-property measurements (tensile strength and elongation), image analysis to determine grain size, and measurements of the attenuation of 1 MHz ultrasound. It is found that both of the master alloys used cause significant refinement of the a-AlZn primary dendrites and change their morphology from linear-branched to semi-globular, increase the elongation by about 40%, and decrease the attenuation coefficient by about 25% in comparison with the initial alloy without inoculation.

  19. Self-Pierce Riveting of Three Aluminium Alloy and Mild Steel Sheets

    SciTech Connect

    Mori, K.; Abe, Y.; Sakai, S.; Kato, T.

    2010-06-15

    Three aluminium alloy and steel sheets were joined with a self-piercing rivet. Self-pierce riveting has the function of joining steel and aluminium alloys having very different melting points due to plastic joining. The requisites for joining the three sheets are the driving of the rivet leg through the middle sheet, the flaring of the rivet leg in the lower sheet and the prevention of the fracture of the lower sheet. The joinability for various combinations of the three sheets was determined. When the rivet leg is small, no driving through the middle sheet occurs, the lower sheet ruptures for a large rivet leg. In addition, 980 MPa high strength steel, mild steel and aluminium alloy sheets were joined by the self-pierce riveting.

  20. Image analysis of atmospheric corrosion of field exposure high strength aluminium alloys

    NASA Astrophysics Data System (ADS)

    Tao, Lei; Song, Shizhe; Zhang, Xiaoyun; Zhang, Zheng; Lu, Feng

    2008-08-01

    The corrosion morphology image acquisition system which can be used in the field was established. In Beijing atmospheric corrosion exposure station, the image acquisition system was used to capture the early stage corrosion morphology of five types of high strength aluminium alloy specimens. After the denoise treatment, wavelet-based image analysis method was applied to decompose the improved images and energies of sub-images were extracted as character information. Based on the variation of image energy values, the corrosion degree of aluminium alloy specimens was qualitatively and quantitatively analyzed. The conclusion was basically identical with the result based on the corrosion weight loss. This method is supposed to be effective to analysis and quantify the corrosion damage from image of field exposure aluminium alloy specimens.

  1. Silica mesoporous thin films as containers for benzotriazole for corrosion protection of 2024 aluminium alloys

    NASA Astrophysics Data System (ADS)

    Recloux, Isaline; Mouanga, Maixent; Druart, Marie-Eve; Paint, Yoann; Olivier, Marie-Georges

    2015-08-01

    This work contributes to the development of a new environmentally friendly alternative pretreatment for 2024 aluminium alloys to replace hexavalent chromium based conversion layers in the aeronautical field. A silica mesoporous thin film, synthesized through the evaporation induced self-assembly process, was doped with benzotriazole to obtain active corrosion protection. Inhibitor loading contents were correlated with pore characteristics. The release kinetics was studied as function of pH. The application of the doped mesoporous film on 2024 aluminium alloy revealed a slowing down of corrosion processes, demonstrating its potential as an active inhibitor storage layer.

  2. Diffusion bonding of an aluminum-copper alloy reinforced with silicon carbide particles (AA2014/SiC/13p) using metallic interlayers

    SciTech Connect

    Urena, A.; Gomez de Salazar, J.M.; Escalera, M.D.

    1996-12-01

    In this work, the application of solid state diffusion bonding to a SiC particulate reinforced aluminium-copper alloy (AA2014) has been studied. The use of metallic interlayers such as an aluminum-lithium alloy and pure silver, has been tested. Bonding interfaces were microstructural characterized using scanning electron (SEM) and transmission electron microscopies (TEM). Joint strengths were evaluated by shear mechanical tests, completed with fractographic studies to determine the failure mechanisms of each kind of joint.

  3. Predicting the thermal conductivity of aluminium alloys in the cryogenic to room temperature range

    NASA Astrophysics Data System (ADS)

    Woodcraft, Adam L.

    2005-06-01

    Aluminium alloys are being used increasingly in cryogenic systems. However, cryogenic thermal conductivity measurements have been made on only a few of the many types in general use. This paper describes a method of predicting the thermal conductivity of any aluminium alloy between the superconducting transition temperature (approximately 1 K) and room temperature, based on a measurement of the thermal conductivity or electrical resistivity at a single temperature. Where predictions are based on low temperature measurements (approximately 4 K and below), the accuracy is generally better than 10%. Useful predictions can also be made from room temperature measurements for most alloys, but with reduced accuracy. This method permits aluminium alloys to be used in situations where the thermal conductivity is important without having to make (or find) direct measurements over the entire temperature range of interest. There is therefore greater scope to choose alloys based on mechanical properties and availability, rather than on whether cryogenic thermal conductivity measurements have been made. Recommended thermal conductivity values are presented for aluminium 6082 (based on a new measurement), and for 1000 series, and types 2014, 2024, 2219, 3003, 5052, 5083, 5086, 5154, 6061, 6063, 6082, 7039 and 7075 (based on low temperature measurements in the literature).

  4. Recovery of actinides from actinide-aluminium alloys by chlorination: Part II

    NASA Astrophysics Data System (ADS)

    Souček, P.; Cassayre, L.; Eloirdi, R.; Malmbeck, R.; Meier, R.; Nourry, C.; Claux, B.; Glatz, J.-P.

    2014-04-01

    A chlorination route is being investigated for recovery of actinides from actinide-aluminium alloys, which originate from pyrochemical recovery of actinides from spent metallic nuclear fuel by electrochemical methods in molten LiCl-KCl. In the present work, the most important steps of this route were experimentally tested using U-Pu-Al alloy prepared by electrodeposition of U and Pu on solid aluminium plate electrodes. The investigated processes were vacuum distillation for removal of the salt adhered on the electrode, chlorination of the alloy by chlorine gas and sublimation of the AlCl3 formed. The processes parameters were set on the base of a previous thermochemical study and an experimental work using pure UAl3 alloy. The present experimental results indicated high efficiency of salt distillation and chlorination steps, while the sublimation step should be further optimised.

  5. Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part II corrosion performance

    NASA Astrophysics Data System (ADS)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-11-01

    Surface treatment of aluminium alloys using steam with oxidative chemistries, namely KMnO4 and HNO3 resulted in accelerated growth of oxide on aluminium alloys. Detailed investigation of the corrosion performance of the treated surfaces was carried out using potentiodynamic polarisation and standard industrial test methods such as acetic acid salt spray (AASS) and filiform corrosion on commercial AA6060 alloy. Barrier properties of the film including adhesion were evaluated using tape test under wet and dry conditions. Electrochemical results showed reduced cathodic and anodic activity, while the protection provided by steam treatment with HNO3 was a function of the concentration of NO3- ions. The coating generated by inclusion of KMnO4 showed highest resistance to filiform corrosion. Overall, the performance of the steam treated surfaces under filiform corrosion and AASS test was a result of the local coverage of the alloy microstructure resulting from steam containing with KMnO4 and HNO3.

  6. Evaluation Of Four Welding Arc Processes Applied To 6061 Aluminium Alloy

    SciTech Connect

    Benoit, A.; Paillard, P.; Baudin, T.; Jobez, S.; Castagne, J.-F.

    2011-01-17

    At a time when greenhouse gas emissions must be reduced, the use of the aluminium alloys is expanding, in particular in the transportation industry. In order to extend the possibilities of aluminium assembly design, new Metal Inert Gas (MIG) welding processes have been conceived. They work at lower temperatures than usual arc processes (classic MIG or Tungsten Inert Gas). This study compares four arc welding processes, applied to the 6061 aluminium alloy. These four weld processes have been studied through the metallurgical analysis of the weld beads. Metallography, micro-hardness testings, X Ray radiography have been carried out on the produced weld beads. The processes are classified according to the quality of the beads like geometry of beads, size of the heat affected zone and presence of defects.

  7. Property enhancement by grain refinement of zinc-aluminium foundry alloys

    NASA Astrophysics Data System (ADS)

    Krajewski, W. K.; Greer, A. L.; Piwowarski, G.; Krajewski, P. K.

    2016-03-01

    Development of cast alloys with good mechanical properties and involving less energy consumption during their melting is one of the key demands of today's industry. Zinc foundry alloys of high and medium Al content, i.e. Zn-(15-30) wt.% Al and Zn-(8-12) wt.% Al, can satisfy these requirements. The present paper summarizes the work [1-9] on improving properties of sand-cast ZnAl10 (Zn-10 wt.% Al) and ZnAl25 (Zn-25 wt. % Al) alloys by melt inoculation. Special attention was devoted to improving ductility, whilst preserving high damping properties at the same time. The composition and structural modification of medium- and high-aluminium zinc alloys influence their strength, tribological properties and structural stability. In a series of studies, Zn - (10-12) wt. % Al and Zn - (25-26) wt.% Al - (1-2.5) wt.% Cu alloys have been doped with different levels of added Ti. The melted alloys were inoculated with ZnTi-based refiners and it was observed that the dendritic structure is significantly finer already after addition of 50 - 100 ppm Ti to the melted alloys. The alloy's structure and mechanical properties have been studied using: SEM (scanning electron microscopy), LM (light microscopy), dilatometry, pin-on-disc wear, and tensile strength measurements. Grain refinement leads to significant improvement of ductility in the binary high-aluminium Zn-(25-27) Al alloys while in the medium-aluminium alloys the effect is rather weak. In the ternary alloys Zn-26Al-Cu, replacing a part of Cu with Ti allows dimensional changes to be reduced while preserving good tribological properties. Furthermore, the high initial damping properties were nearly entirely preserved after inoculation. The results obtained allow us to characterize grain refinement of the examined high-aluminium zinc alloys as a promising process leading to the improvement of their properties. At the same time, using low melting ZnTi-based master alloys makes it possible to avoid the excessive melt overheating

  8. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps

    SciTech Connect

    Rabah, Mahmoud A

    2004-07-01

    This study explores a combined pyro-hydrometallurgical method to recover pure aluminium, nickel-copper alloy(s), and some valuable salts from spent fluorescent lamps (SFLs). It also examines the safe recycling of clean glass tubes for the fluorescent lamp industry. Spent lamps were decapped under water containing 35% acetone to achieve safe capture of mercury vapour. Cleaned glass tubes, if broken, were cut using a rotating diamond disc to a standard shorter length. Aluminium and copper-nickel alloys in the separated metallic parts were recovered using suitable flux to decrease metal losses going to slag. Operation variables affecting the quality of the products and the extent of recovery with the suggested method were investigated. Results revealed that total loss in the glass tube recycling operation was 2% of the SFLs. Pure aluminium meeting standard specification DIN 1712 was recovered by melting at 800 deg. C under sodium chloride/carbon flux for 20 min. Standard nickel-copper alloys with less than 0.1% tin were prepared by melting at 1250 deg. C using a sodium borate/carbon flux. De-tinning of the molten nickel-copper alloy was carried out using oxygen gas. Tin in the slag as oxide was recovered by reduction using carbon or hydrogen gas at 650-700 deg. C. Different valuable chloride salts were also obtained in good quality. Further research is recommended on the thermodynamics of nickel-copper recovery, yttrium and europium recovery, and process economics.

  9. Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part I Microstructural investigation

    NASA Astrophysics Data System (ADS)

    Din, Rameez Ud; Piotrowska, Kamila; Gudla, Visweswara Chakravarthy; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-11-01

    The surface treatment of aluminium alloys under steam containing KMnO4 and HNO3 resulted in the formation of an oxide layer having a thickness of up to 825 nm. The use of KMnO4 and HNO3 in the steam resulted in incorporation of the respective chemical species into the oxide layer. Steam treatment with solution containing HNO3 caused dissolution of Cu and Si from the intermetallic particles in the aluminium substrate. The growth rate of oxide layer was observed to be a function of MnO4- and NO3- ions present in the aqueous solution. The NO3- ions exhibit higher affinity towards the intermetallic particles resulting in poor coverage by the steam generated oxide layer compared to the coating formed using MnO4- ions. Further, increase in the concentration of NO3- ions in the solution retards precipitation of the steam generated aluminium hydroxide layer.

  10. Electrodeposition of iron and iron-aluminium alloys in an ionic liquid and their magnetic properties.

    PubMed

    Giridhar, P; Weidenfeller, B; El Abedin, S Zein; Endres, F

    2014-05-28

    In this work we show that nanocrystalline iron and iron-aluminium alloys can be electrodeposited from the ionic liquid 1-butyl-1-methylpyrrolidinium trifluoromethylsulfonate, [Py1,4]TfO, at 100 °C. The study comprises CV, SEM, XRD, and magnetic measurements. Two different sources of iron(ii) species, Fe(TfO)2 and FeCl2, were used for the electrodeposition of iron in [Py1,4]TfO. Cyclic voltammetry was employed to evaluate the electrochemical behavior of FeCl2, Fe(TfO)2, and (FeCl2 + AlCl3) in the employed ionic liquid. Thick iron deposits were obtained from FeCl2/[Py1,4]TfO at 100 °C. Electrodeposition of iron-aluminium alloys was successful in the same ionic liquid at 100 °C. The morphology and crystallinity of the obtained deposits were investigated using SEM and XRD, respectively. XRD measurements reveal the formation of iron-aluminium alloys. First magnetic measurements of some deposits gave relatively high coercive forces and power losses in comparison to commercial iron-silicon samples due to the small grain size in the nanometer regime. The present study shows the feasibility of preparing magnetic alloys from ionic liquids. PMID:24715034

  11. Fabrication of tungsten wire reinforced nickel-base alloy composites

    NASA Technical Reports Server (NTRS)

    Brentnall, W. D.; Toth, I. J.

    1974-01-01

    Fabrication methods for tungsten fiber reinforced nickel-base superalloy composites were investigated. Three matrix alloys in pre-alloyed powder or rolled sheet form were evaluated in terms of fabricability into composite monotape and multi-ply forms. The utility of monotapes for fabricating more complex shapes was demonstrated. Preliminary 1093C (2000F) stress rupture tests indicated that efficient utilization of fiber strength was achieved in composites fabricated by diffusion bonding processes. The fabrication of thermal fatigue specimens is also described.

  12. Performance of AA5052 alloy anode in alkaline ethylene glycol electrolyte with dicarboxylic acids additives for aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, DaPeng; Zhang, DaQuan; Lee, KangYong; Gao, LiXin

    2015-11-01

    Dicarboxylic acid compounds, i.e. succinic acid (SUA), adipic acid (ADA) and sebacic acid (SEA), are used as electrolyte additives in the alkaline ethylene glycol solution for AA5052 aluminium-air batteries. It shows that the addition of dicarboxylic acids lowers the hydrogen gas evolution rate of commercial AA5052 aluminium alloy anode. AA5052 aluminium alloy has wide potential window for electrochemical activity and better discharge performance in alkaline ethylene glycol solution containing dicarboxylic acid additives. ADA has the best inhibition effect for the self-corrosion of AA5052 anode among the three dicarboxylic acid additives. Fourier transform infrared spectroscopy (FT-IR) reveals that dicarboxylic acids and aluminium ions can form coordination complexes. Quantum chemical calculations shows that ADA has a smaller energy gap (ΔE, the energy difference between the lowest unoccupied orbital and the highest occupied orbital), indicating that ADA has the strongest interaction with aluminium ions.

  13. Composite Ni-Co-fly ash coatings on 5083 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Panagopoulos, C. N.; Georgiou, E. P.; Tsopani, A.; Piperi, L.

    2011-03-01

    Ni-Co-fly ash coatings were deposited on zincate treated 5083 wrought aluminium alloy substrates with the aid of the electrodeposition technique. Structural and chemical characterization of the produced composite coatings was performed with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDS) techniques. The Ni-Co-fly ash coatings were found to consist of a crystalline Ni-Co solid solution with dispersed fly ash particles. In addition, chemical analysis of the Ni-Co matrix showed that it consisted of 80 wt.% Ni and 20 wt.% Co. The co-deposition of fly ash particles leads to a significant increase of the microhardness of the coating. The corrosion behaviour of the Ni-Co-fly ash/zincate coated aluminium alloy, in a 0.3 M NaCl solution (pH = 3.5), was studied by means of potentiodynamic corrosion experiments.

  14. High-Rate Compaction of Aluminium Alloy Foams

    SciTech Connect

    Harrigan, J. J.; Hung, Y.-C.; Tan, P. J.; Bourne, N. K.; Withers, P. J.; Reid, S. R.; Millett, J. C. F.; Milne, A. M.

    2006-07-28

    The response of aluminium foams to impact can be categorised according to the impact velocity. Tests have been carried out at a range of impact velocities from quasi-static to velocities approaching the speed of sound in the foam. Various experimental arrangements have been employed including pneumatic launcher tests and plate impact experimants at velocities greater than 1000 m s-1. The quasi-static compression behaviour was approximately elastic, perfectly-plastic, locking. For static and dynamic compression at low impact velocities the deformation pattern was through the cumulative multiplication of discrete, non-contiguous crush bands. Selected impact tests are presented here for which the impact velocity is less than the velocity of sound, but above a certain critical impact velocity so that the plastic compression occurs in a shock-like manner and the specimens deform by progressive cell crushing. Laboratory X-ray microtomography has been employed to acquire tomographic datasets of aluminium foams before and after tests. The morphology of the underformed foam was used as the input dataset to an Eulerian code. Hydrocode simulations were then carried out on a real microstructure. These simulations provide insight to mechanisms associated with the localization of deformation.

  15. High-Rate Compaction of Aluminium Alloy Foams

    NASA Astrophysics Data System (ADS)

    Harrigan, J. J.; Millett, J. C. F.; Milne, A. M.

    2005-07-01

    The response of aluminium foams to impact can be categorised by the impact velocity. Tests are reported ranging from quasi-static to impact velocities greater than the speed of sound in the foam. The techniques used ranging from drop-hammer and pneumatic launcher tests, to plate impact at velocities greater than 1000 m s-1. The quasi-static compression behaviour was elastic, perfectly-plastic, locking. For static and dynamic compression at low impact velocities, post-impact examination of partially crushed specimens showed that deformation was through the cumulative multiplication of crush bands. If the impact velocity is less than the velocity of sound, but above a certain critical impact velocity, the plastic compression occurs in a shock-like manner and the specimens deform by progressive cell crushing. At higher impact velocities the compaction front is not preceded by an elastic wave. Laboratory X-ray microtomography has been employed to acquire tomographic datasets of aluminium foams before and after tests. The morphology of the underformed foam was input as the input dataset to an Eulerian code. Hydrocode simulations were then carried out on real microstructure. These simulations provide insight to mechanisms associated with the localization of deformation.

  16. High-Rate Compaction of Aluminium Alloy Foams

    NASA Astrophysics Data System (ADS)

    Harrigan, J. J.; Hung, Y.-C.; Tan, P. J.; Bourne, N. K.; Withers, P. J.; Reid, S. R.; Millett, J. C. F.; Milne, A. M.

    2006-07-01

    The response of aluminium foams to impact can be categorised according to the impact velocity. Tests have been carried out at a range of impact velocities from quasi-static to velocities approaching the speed of sound in the foam. Various experimental arrangements have been employed including pneumatic launcher tests and plate impact experimants at velocities greater than 1000 m s-1. The quasi-static compression behaviour was approximately elastic, perfectly-plastic, locking. For static and dynamic compression at low impact velocities the deformation pattern was through the cumulative multiplication of discrete, non-contiguous crush bands. Selected impact tests are presented here for which the impact velocity is less than the velocity of sound, but above a certain critical impact velocity so that the plastic compression occurs in a shock-like manner and the specimens deform by progressive cell crushing. Laboratory X-ray microtomography has been employed to acquire tomographic datasets of aluminium foams before and after tests. The morphology of the underformed foam was used as the input dataset to an Eulerian code. Hydrocode simulations were then carried out on a real microstructure. These simulations provide insight to mechanisms associated with the localization of deformation.

  17. Surface microhardening in a lithium implanted aluminium alloy

    SciTech Connect

    Singh, A.; Fiset, M.; Knystautas, E.J.; Lapointe, R.

    1984-09-01

    This paper describes changes observed in microhardness after implanting energetic lithium ions into pure aluminum and its 2024-T351 alloy. The addition of lithium to aluminum lowers the density and increases both the modulus of elasticity and tensile strength. Thus, these properties make such alloys attractive in aerospace applications. The authors believe that this is the first report where lithium implantation has been used to evaluate near surface changes.

  18. Protection of 2024-T3 aluminium alloy by corrosion resistant phytic acid conversion coating

    NASA Astrophysics Data System (ADS)

    Shi, Hongwei; Han, En-Hou; Liu, Fuchun; Kallip, Silvar

    2013-09-01

    The corrosion protection properties of environmentally friendly phytic acid conversion coatings were studied on 2024-T3 aluminium alloy. The films were prepared under acidic conditions with various pH values and characterised by SEM, EDS, ATR-FTIR and electrochemical techniques. The results indicate that the conversion coatings obtained by immersing the alloy in phytic acid solutions at pH from 3 to 5.5 provide excellent corrosion resistance. ATR-FTIR confirms that the film is formed by deposition of reaction products between Al3+ and phosphate groups in phytic acid molecules. The conformation models of the deposition film are proposed.

  19. Structural properties of molten dilute aluminium-transition metal alloys.

    PubMed

    Pozdnyakova, I; Hennet, L; Mathiak, G; Brillo, J; Zanghi, D; Brun, J-F; Brassamin, S; Bytchkov, A; Cristiglio, V; Véron, E; Matzen, G; Geandier, G; Thiaudière, D; Moss, S C; Spaepen, F; Egry, I; Price, D L

    2006-07-19

    The short-range order in liquid binary Al-rich alloys (Al-Fe, Al-Ti) was studied by x-ray diffraction. The measurements were performed using a novel containerless technique which combines aerodynamic levitation with inductive heating. The average structure factors, S(Q), have been determined for various temperatures and compositions in the stable liquid state. From S(Q), the pair correlation functions, g(r), have been calculated. The first interatomic distance is nearly temperature-independent, whereas the first-shell coordination number decreases with increasing temperature for all the alloys investigated. For the Al-Fe alloys, room-temperature scanning electron microscropy (SEM) studies show the formation of a microstructure, namely the existence of Al(13)Fe(4) inclusions in the Al matrix. PMID:21690847

  20. Electrochemical pitting evaluation of aluminium alloy 7075 in machining coolant

    SciTech Connect

    Stanaland, V.A.; Dillon, J.J.

    1984-08-24

    The corrosion rate of aluminum alloy 7075 in Trim Sol with a Tris-Nitro biocide addition is satisfactory. Both deaeration and increasing the nitrite addition decreased the stability of the passive film. Chloride contamination below 500 ppM does not cause pitting corrosion of aluminum alloy 7075 in the Trim Sol environment. The limit for chloride contamination is between 500 and 1000 ppM. The potentiodynamic, fast-scan-rate technique is satisfactory for evaluating the pitting tendency of the aluminum alloy 7075 in a Trim Sol environment. Consequently, the potentiodynamic, fast-scan-rate technique is recommended for use in conjunction with reverse scans to evaluate the quality of in-use machining coolants, that are suspected of causing contamination.

  1. Determination of anisotropy in impact toughness of aluminium alloy 2024 T3 plate

    NASA Astrophysics Data System (ADS)

    Siddiqui, M. H.; Hashmi, F.; Junaid, A.

    The research was aimed to quantify the existence of anisotropy in fracture toughness of aluminium alloy 2024 T3 plate (used in aircraft structural members). It was further needed to establish the direction in which the fracture toughness of aluminium alloy 2024 T3 plate is maximum and minimum. This could help ascertain the structural integrity of aircraft structural components; also while designing new components, the knowledge of variation in toughness with respect to direction helps in economizing dead weight of the aircraft. In this research, pursued at the College of Aeronautical Engineering, the anisotropy in toughness of aluminium alloy 2024 T3 plate was analysed using the Charpy V-notch impact toughness test. The effect of specimen orientation on the impact toughness values of the alloy was investigated and compared with known results to verify the reliability of the work and to ascertain the extent of anisotropy in fracture toughness of the said alloy. Charpy impact tests were carried out on ASTM E 23 standard specimens machined at a reference laboratory at room temperature (23° C +/- 2° C). Four different specimen orientations analysed for the purpose of this study were L-S, L-T, T-S and T-L directions. Subsequently, the results obtained at the research centre were then analysed and correlated with morphology of microstructure of the material to establish the reliability of the experimental results. Moreover, an analysis was also done to cater for the possible errors that could affect the fracture toughness values obtained from experimental results. It was concluded that the T-S orientation of the plate had maximum toughness, whereas, minimum toughness was observed in L-T direction.

  2. Effect of Refiner Addition Level on Zirconium-Containing Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    Jaradeh, M. M. R.; Carlberg, T.

    2012-01-01

    It is well known that in aluminium alloys containing Zr, grain refiner additions do not function as desired, producing an effect often referred to as nuclei poisoning. This paper investigates the structure of direct chill-cast ingots of commercial AA3003 aluminium alloys, with and without Zr, at various addition levels of Al5Ti1B master alloy. In Bridgman experiments simulating ingot solidification, Zr-containing alloys were studied after the addition of various amounts of Ti. It could be demonstrated, in both ingot casting and simulation experiments, that Zr poisoning can be compensated for by adding more Ti and/or Al5Ti1B. The results confirm better refinement behaviour with the addition of Ti + B than of only Ti. The various combinations of Zr and Ti also influenced the formation of AlFeMn phases, and the precipitation of large Al6(Mn,Fe) particles was revealed. AlZrTiSi intermetallic compounds were also detected.

  3. A hybrid aluminium alloy and its zoo of interacting nano-precipitates

    SciTech Connect

    Wenner, Sigurd; Marioara, Calin Daniel; Andersen, Sigmund Jarle; Ervik, Martin; Holmestad, Randi

    2015-08-15

    An alloy with aluminium as its base element is heat treated to form a multitude of precipitate phases known from different classes of industrial alloys: Al–Cu(–Mg), Al–Mg–Si–Cu, and Al–Zn–Mg. Nanometer-sized needle-shaped particles define the starting point of the phase nucleation, after which there is a split in the precipitation sequence into six phases of highly diverse compositions and morphologies. There are several unique effects of phases from different alloy systems being present in the same host lattice, of which we concentrate on two: the replacement of Ag by Zn on the Ω interface and the formation of combined plates of the θ′ and C phases. Using atomically resolved scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy, we investigate the formation mechanisms, crystal structures and compositions of the precipitates. - Graphical abstract: Display Omitted - Highlights: • An aluminium alloy composition in-between the 2/6/7xxx systems was investigated. • Six different phases from the three systems coexist in an over-aged state. • All phases with 〈001〉{sub Al} coherencies can nucleate on 6xxx needle precipitates. • Modified theta′ and omega interfaces are observed.

  4. Dilatometer study of rapidly solidified aluminium-silicon based alloys

    NASA Astrophysics Data System (ADS)

    Varga, B.; Fazakas, E.; Hargitai, H.; Varga, L. K.

    2009-01-01

    Aluminum-Silicon alloys are sought in a large number of automotive and aerospace applications due to their low coefficient of thermal expansion and high wear resistance. The present study focused on structural transformations as a function of the temperature of rapidly solidified hypereutectic Al100-xSix (x = 12, 22 and 40) alloys. Different structures out of equilibrium have been obtained after casting in sand, graphite and copper moulds and by melt spinning. The retained Si content in supersaturated alpha Al and the precipitation of Si is discussed in the light of the dilatometer studies [1, 2, 3] complemented by metallographic microscopy, XRD and DSC [4] measurements. A Kissinger analysis was used to determine the activation energy for the precipitation of supersaturated Si content.

  5. The fatigue response of the aluminium-lithium alloy, 8090

    NASA Technical Reports Server (NTRS)

    Birt, M. J.; Beevers, C. J.

    1989-01-01

    The fatigue response of an Al-Li-Cu-Mg-Zr (8090) alloy has been studied at room temperature. The initiation and growth of small and long cracks has been examined at R = 0.1 and at a frequency of 100 Hz. Initiation was observed to occur dominantly at sub-grain boundaries. The growth of the small cracks was crystallographic in character and exhibited little evidence of retardation or arrest at the grain boundaries. The long crack data showed the alloy to have a high resistance to fatigue crack growth with underaging providing the optimum heat treatment for fatigue crack growth resistance. In general, this can be attributed to high levels of crack closure which resulted from the presence of extensive microstructurally related asperities.

  6. Surface formation in direct chill (DC) casting of 6082 aluminium alloys

    NASA Astrophysics Data System (ADS)

    Bayat, N.; Carlberg, T.

    2016-03-01

    Surface defects in aluminium billet production are a real problem for the subsequent extrusion procedure. Extrusion productivity can be influenced by the surface properties, which is defined as surface appearance, surface segregation zone depth and large Mg2Si and β-particles (Al5FeSi). In this research the surface formation during DC casting of 6082 aluminium billets produced by the air slip technology is studied. The surface microstructures of 6082 aluminium alloys with smooth and wavy surface appearances were investigated, including segregation zone depths and phase formation. The results were discussed based on the exudation of liquid metal through the mushy zone. The specific appearance of the wavy surface of 6082 alloys was correlated to how the oxide skin adheres to the underlying mushy zone and coupled to the dendritic coherency and surface tension of the skin. The occurrence of different phases at the very surface and in the layer just below was explained by variations in solidification directions and subsequent segregation patterns.

  7. Study on optimal surface property of WC-Co cutting tool for aluminium alloy cutting

    NASA Astrophysics Data System (ADS)

    Nizar, Mohd; Arimatsu, Naoya; Kawamitsu, Hiroshi; Takai, Kazuteru; Fukumoto, Masahiro

    2016-02-01

    The light weight property as well as high corrosion resistance of aluminium alloy has increased their demand especially in automobile industries. Aluminium alloy as a matter of fact has a low melting point and high ductility that severely adhere to the cutting tool surface and cause deterioration of chip evacuation. This problem often resulting in tools breakage. In this paper, in order to impart functions of anti-adhesion, we propose a technique by controlling the grinding marks micro texture on the tool surface by using the blast polishing treatment without any coating technologies. The results show that the tool which underwent polishing treatment reduces the cutting force as well as the aluminium adherence during the initial cutting process, and become worst as the process cutting continues. These results indicate that grinding mark texture improves the anti-adhesion by reducing the contact area during cutting and provide storage for the lubricant. In addition, too much polishing on the tool surface may remove these textures and resultantly worsen the tool performance.

  8. Corrosion behavior of rapidly solidified magnesium-aluminium-zinc alloys

    SciTech Connect

    Daloz, D.; Michot, G.; Steinmetz, P.

    1997-12-01

    Rapidly solidified magnesium alloys with 8 at%, 15 at%, and 20 at% Al and 1 at% and 3 at% Zn were fabricated by centrifugal atomization followed by hot extrusion. Microstructure of the alloys was composed of a fine-grain magnesium matrix (0.5 {micro}m) with {beta}-Mg{sub 17}Al{sub 12} precipitates. Electrochemical and weight-loss tests were performed in borate and ASTM D 1384 solution (chloride, carbonate, and sulfate). In both media, corrosion current f the alloys decreased with increases in aluminum or zinc content. In borate solution, a passivating plateau was observed from the corrosion potential (E{sub corr}) to E{sub corr} + 1,200 mV. Current density decreased with aluminum and zinc concentrations. Electrochemical behavior of the synthesized matrix and precipitates was characterized. Zinc increased E{sub corr} of the two phases, with a corresponding decrease of corrosion current. The same trend was noticed for aluminum but with a less dramatic effect. The corrosion mechanism was suggested result from galvanic coupling of the matrix and the second phase. The galvanic corrosion, however, was reduced strongly by passivation of the matrix as a result of the surrounding precipitates. The positive influence of rapid solidification (corrosion rate decreased 1 order of magnitude) was the creation of a fine, highly homogeneous microstructure through this fabrication process.

  9. Investigation on Tool Wear Rate for Modified and Unmodified Aluminium-Silicon Casting Alloy

    NASA Astrophysics Data System (ADS)

    Haque, M. M.; Khan, A. A.; Ismail, Ahmad F.

    This study demonstrates and explains the effect of strontium modification on machinability of aluminium-silicon eutectic (LM-6 type) alloy. This alloy is known to have many favourable features including weight to strength ratio, high corrosion resistance and excellent castability. However, normal unmodified LM-6 alloy has poor machinability, which reduces its applications range. In this work, various samples of LM-6 alloy were cast using sand and metallic chill mould with and without strontium addition. Machining on each cast product, was carried out using recommended cutting parameters for Al-Si alloys. Strontium modified samples have recorded a reduction in average flank wear, an increase in shear plane angles and a reduction in chip thickness. The main reason for this improvement is the refining effect of strontium, which reduces the size of the hard silicon particles. As a result, their abrasive action on the tool face has reduced a lot. Dramatic reductions in tool wear rate were recorded when the microstructures were refined. On the other hand, when no refinement of microstructure occurs, tool wear rate becomes high. Chip analysis showed that strontium modified sample produced a thinner chip thickness with a larger shear plane angle, requiring less cutting forces. The tool wear depends not only on the phases present in the work material, but also on their sizes and distribution over entire structure. Thus, strontium modification has better effect on machinability of die cast alloy compared to that of the sand cast LM-6 alloy.

  10. Fabrication of self-healing super-hydrophobic surfaces on aluminium alloy substrates

    SciTech Connect

    Wang, Yang; Wei Liu, Xiao; Zhang, Hai Feng Zhou, Zhi Ping

    2015-04-15

    We present a method to fabricate a super-hydrophobic surface with a self-healing ability on an aluminium alloy substrate. The coatings are obtained by combining a two-step process (first, the substrate is immersed in a solution of HCl, HF and H{sub 2}O, and then in boiling water) and succeeding surface fluorination with a solution of poly(vinylidene-fluoride-co-hexafluoropropylene) and a fluoroalkyl silane. The morphological features and chemical composition were studied by scanning electron micrometry and energy-dispersive X-ray spectroscopy. The prepared super-hydrophobic aluminium surfaces showed hierarchical structures forming pores, petals and particles with a contact angle of 161° and a sliding angle of 3°.

  11. Finite Element Analysis of Warpage in Laminated Aluminium Alloy Plates for Machining of Primary Aeronautic Parts

    SciTech Connect

    Reis, A. C.; Moreira Filho, L. A.; Menezes, M. A.

    2007-04-07

    The aim of this paper consists in presenting a method of simulating the warpage in 7xxx series aluminium alloy plates. To perform this simulation finite element software MSC.Patran and MSC.Marc were used. Another result of this analysis will be the influence on material residual stresses induced on the raw material during the rolling process upon the warpage of primary aeronautic parts, fabricated through machining (milling) at Embraer. The method used to determinate the aluminium plate residual stress was Layer Removal Test. The numerical algorithm Modified Flavenot Method was used to convert layer removal and beam deflection in stress level. With such information about the level and profile of residual stresses become possible, during the step that anticipate the manufacturing to incorporate these values in the finite-element approach for modelling warpage parts. Based on that warpage parameter surely the products are manufactured with low relative vulnerability propitiating competitiveness and price.

  12. Development and characterization of fatigue resistant Aramid reinforced aluminium laminates (ARALL) for fatigue Critical aircraft components

    NASA Astrophysics Data System (ADS)

    Qaiser, M. H.; Umar, S.; Nauman, S.

    2014-06-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced ALuminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft.

  13. Properties of experimental copper-aluminium-nickel alloys for dental post-and-core applications

    PubMed Central

    Rittapai, Apiwat; Kajornchaiyakul, Julathep; Harniratisai, Choltacha

    2014-01-01

    PURPOSE This study aimed to develop a copper-aluminium-nickel alloy which has properties comparable to that of dental alloys used for dental post and core applications with the reasonable cost. MATERIALS AND METHODS Sixteen groups of experimental copper alloys with variants of 3, 6, 9, 12 wt% Al and 0, 2, 4, 6 wt% Ni were prepared and casted. Their properties were tested and evaluated. The data of thermal, physical, and mechanical properties were analyzed using the two-way ANOVA and Tukey's test (α=0.05). The alloy toxicity was evaluated according to the ISO standard. RESULTS The solidus and liquidus points of experimental alloys ranged from 1023℃ to 1113℃ and increased as the nickel content increased. The highest ultimate tensile strength (595.9 ± 14.2 MPa) was shown in the Cu-12Al-4Ni alloy. The tensile strength was increased as the both elements increased. Alloys with 3-6 wt% Al exhibited a small amount of 0.2% proof strength. Accordingly, the Cu-9Al-2Ni and Cu-9Al-4Ni alloys not only demonstrated an appropriate modulus of elasticity (113.9 ± 8.0 and 122.8 ± 11.3 GPa, respectively), but also had a value of 0.2% proof strength (190.8 ± 4.8 and 198.2 ± 3.4 MPa, respectively), which complied with the ISO standard requirement (>180 MPa). Alloys with the highest contents of nickel (6 wt% Ni) revealed a widespread decolourisation zone (5.0-5.9 mm), which correspondingly produced the largest cell response, equating positive control. CONCLUSION The copper alloys fused with 9 wt% Al and 2-4 wt% Ni can be considered for a potential use as dental post and core applications. PMID:25006386

  14. Microstructure refinement of commercial 7xxx aluminium alloys solidified by the electromagnetic vibration technique

    NASA Astrophysics Data System (ADS)

    Li, M.; Tamura, T.; Omura, N.; Murakami, Y.; Tada, S.

    2016-03-01

    This paper examines the microstructure refinement of commercial 7xxx aluminium alloys solidified by the electromagnetic vibration technique (EMV) as a function of vibration frequency, f. The microstructure evolution reveals that at the low frequency of f = 62.5 Hz, the solidified microstructure is coarse and with the increase of vibration frequency to f = 500 Hz, the grain size becomes the finest and further increase of frequency to f = 2000 Hz results in coarsening of microstructures. The refinement mechanism is clarified when considering the significant difference in electrical resistivities of the solid and the liquid in mushy zone, in which both phases coexist and subject to vibration. The frequency-dependent refinement behaviour is revealed when the displacement of the mobile solid and sluggish liquid is taken into account during solidification. In contrast to 3xxx aluminium alloys, no giant compounds have been discerned in the present 7xxx alloy regardless of the solidification condition. The formation of crystalline twin is briefly discussed when considering the vibration condition.

  15. Bond strength of pressure sensitive adhesives for CFRP aluminium-alloy hybrid beams under impact loading

    NASA Astrophysics Data System (ADS)

    Sato, C.

    2003-09-01

    This paper discusses the impact absorbing capabilities of CFRP aluminium-alloy hybrid beams bonded with double-coated pressure sensitive adhesive tapes. Two sorts of double-coated adhesive tapes (VHB and SBT, 3M) were used in experiments. The strength and absorbed energy of the beams under impact loading were measured using an instrumented Charpy tester. Using the beams having the different adhesive tapes and the CFRP of different length, the variations of the strength and the absorbed energy were investigated. The beams bonded with VHB showed sufficient strength and absorbed energy. SBT showed also great capability of absorbing impact energy.

  16. Bending Properties of Locally Laser Heat Treated AA2024-T3 Aluminium Alloy

    NASA Astrophysics Data System (ADS)

    Mohammadi, Amirahmad; Vanhove, Hans; Van Bael, Albert; Duflou, Joost R.

    The bending properties of AA2024-T3 aluminium alloy after localized laser assisted softening have been studied and compared to untreated material. Single and multi-path laser scanning strategies are applied for achieving a predictable and minimized springback. Process parameters for softening have been chosen based on FE modeling. In order to investigate the softening, and to characterize the size of this softened region, hardness measurements were carried out. Using a triple scanning path strategy springback was reduced by about 43% without changing the bending radius.

  17. Microstructure evolution in age-hardenable aluminium alloy during processing by hydrostatic extrusion.

    PubMed

    Lewandowska, M

    2006-10-01

    In the present work, scanning and transmission electron microscopy were used to investigate the microstructural evolution occurring during the hydrostatic extrusion of an age-hardenable aluminium alloy. It was shown that processing by hydrostatic extrusion leads to grain refinement to 95 nm in equivalent diameter. Hydrostatic extrusion also influences the geometrical parameters of two different types of particle: intermetallic inclusions and precipitates. The intermetallic inclusions slightly decrease in mean equivalent diameter, but their size remains at the micrometre level. The precipitates are fragmented to nanoscale spherical particles, and their evolution delays the process of grain refinement. PMID:17100901

  18. Research of aluminium alloy aerospace structure aperture measurement based on 3D digital speckle correlation method

    NASA Astrophysics Data System (ADS)

    Bai, Lu; Wang, Hongbo; Zhou, Jiangfan; Yang, Rong; Zhang, Hui

    2014-11-01

    In this paper, the aperture change of the aluminium alloy aerospace structure under real load is researched. Static experiments are carried on which is simulated the load environment of flight course. Compared with the traditional methods, through experiments results, it's proved that 3D digital speckle correlation method has good adaptability and precision on testing aperture change, and it can satisfy measurement on non-contact,real-time 3D deformation or stress concentration. The test results of new method is compared with the traditional method.

  19. Fatigue Resistance of Liquid-assisted Self-repairing Aluminum Alloys Reinforced with Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Wright, M. Clara; Manuel, Michele; Wallace, Terryl

    2013-01-01

    A self-repairing aluminum-based composite system has been developed using a liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal-metal composite was thermodynamically designed to have a matrix with a relatively even dispersion of a low-melting eutectic phase, allowing for repair of cracks at a predetermined temperature. Additionally, shape memory alloy (SMA) wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to show a proof-of-concept Shape Memory Alloy Self-Healing (SMASH) technology for aeronautical applications.

  20. In situ creep under helium implantation of titanium aluminium alloy

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jung, P.; Nazmy, M.; Hoffelner, W.

    2006-06-01

    The intermetallic alloy Ti-47Al-2W-0.5Si (at.%) has been homogeneously implanted with 4He2+ ions under uniaxial tensile stresses from 20 to 450 MPa to a maximum dose of about 0.16 dpa (1370 appm-He) with displacement damage rates of 2 × 10-6 dpa s-1 at temperatures of 573 and 773 K. Strain under implantation was determined by Linear Variable Displacement Transformer (LVDT), while changes of microstructure were investigated after implantation by Transmission Electron Microscopy (TEM). Irradiation creep strain showed a pronounced transient behaviour, virtually independent of temperature, with a stress dependence which can be approximately described by a creep compliance of 8 × 10-6 dpa-1 MPa-1 up to stresses of 350 MPa. The microstructure of the as-received material consisted of a patch-work of mainly lamellar γ/α2 colonies and equiaxed γ-grains with islands of precipitates. Only 'black dot' damage was observed after implantation at 573 K under different stresses, while implantation at 773 K yielded a dense population of bubbles and dislocation loops, mostly mutually attached.

  1. Effect of Ultrasonic Treatment on the Microstructure of A201 Aluminium Alloy for Thixoforming

    SciTech Connect

    Kandemir, Sinan; Atkinson, Helen V.; Lawes, Simon D. A.

    2011-05-04

    It is known that the introduction of high intensity ultrasonic waves into liquid and solidifying metals leads to a non-dendritic and fine grain structure which is the requirement for semi-solid feedstock production. The effect of vibration time on the semi-solid microstructure of the A201 aluminium alloy billets fabricated with the ultrasonic treatment in the liquid state was studied in this paper. It was observed that the application of ultrasound technology can break up and distribute the dendrites which are present in the as-cast alloy. A suitable thixotropic microstructure with relatively rounded and fine globules could be obtained by ultrasonically treating liquid metal at 690 deg. C for a treatment time of 1 minute, cooling to room temperature and then reheating to the semi-solid state. This shows the ultrasonic treatment could be an economic and alternative route to produce A201 semi-solid feedstock for thixoforming.

  2. Physically-based constitutive modelling of residual stress development in welding of aluminium alloy 2024

    SciTech Connect

    Preston, R.V.; Shercliff, H.R. . E-mail: hrs@eng.cam.ac.uk; Withers, P.J.; Smith, S.

    2004-10-04

    A finite element model has been developed to predict the evolution of residual stress and distortion which takes into account the history-dependence of the yield stress-temperature response of heat-treatable aluminium alloys during welding. The model was applied to TIG welding of 2024-T3 aluminium alloy, and the residual strain predictions validated using high resolution X-ray synchrotron diffraction. The goal was to capture the influence of the permanent evolution of the microstructure during the thermal cycle with a straightforward numerical procedure, while retaining a sound physical basis. Hardness and resistivity measurements after isothermal hold-and-quench experiments were used to identify salient temperatures for zero, partial and full dissolution of the initial hardening precipitates, and the extent of softening - both immediately after welding, and after natural ageing. Based on these data, a numerical procedure for weld modelling was proposed for tracking the different yield responses during heating and cooling based on the peak temperature reached locally. This history-dependent model was superior to a conventional model in predicting the peak tensile strains, but otherwise the effect of temperature history was weak for 2024-T3. Predictions of the hardness profile immediately after welding compared with the post-weld naturally aged hardness provided insight into the competition between dissolution and coarsening of the precipitates in the heat-affected zone.

  3. Properties and microstructures of carbon fiber reinforced magnesium alloys

    SciTech Connect

    Oettinger, O.; Gruber, M.; Grau, C.; Singer, R.F.

    1994-12-31

    Two types of carbon fibers (M40J, T300J) were incorporated into magnesium alloy matrices by a new gas pressure infiltration technique using infiltration pressures of about 10--50 MPa. Mechanical testing of the unidirectionally reinforced magnesium alloys shows excellent in-axis properties. Tensile strength of consistently more than 1000 MPa for 1.8 g/cm{sup 3} density has been obtained. However, the off-axis properties of these composites are rather poor. A promising approach to improve the fiber/matrix interface strength is by using magnesium alloys with carbide forming alloying elements such as aluminum or zirconium (AM20, AZ91, MSR-B) . The interface microstructure is observed to depend on the processing parameters, matrix content and the characteristics of the employed carbon fibers. Bending tests with varying beam length over thickness ratio are used to study the microstructure/interfacial strength relation, following an approach which is common for polymer composites. With optimized processing conditions and fiber/matrix selection interlaminar shear strength values nearly equal to polymer composites can be reached.

  4. Evaluation of AA5052 alloy anode in alkaline electrolyte with organic rare-earth complex additives for aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dapeng; Li, Heshun; Liu, Jie; Zhang, Daquan; Gao, Lixin; Tong, Lin

    2015-10-01

    Behaviours of the AA5052 aluminium alloy anode of the alkaline aluminium-air battery are studied by the hydrogen evolution test, the electrochemical measurements and the surface analysis method. The combination of amino-acid and rare earth as electrolyte additives effectively retards the self-corrosion of AA5052 aluminium alloy in 4 M NaOH solution. It shows that the combination of L-cysteine and cerium nitrate has a synergistic effect owing to the formation of a complex film on AA5052 alloy surface. The organic rare-earth complex can decrease the anodic polarisation, suppress the hydrogen evolution and increase the anodic utilization rate.

  5. Electrochemical and DFT studies of quinoline derivatives on corrosion inhibition of AA5052 aluminium alloy in NaCl solution

    NASA Astrophysics Data System (ADS)

    Wang, Dapeng; Yang, Dong; Zhang, Daquan; Li, Kang; Gao, Lixin; Lin, Tong

    2015-12-01

    Two quinoline derivatives, 8-aminoquinoline (8-AQ) and 8-nitroquinoline (8-NQ), have been used as inhibitors to examine their corrosion protection effect on AA5052 aluminium alloy in 3% NaCl solution. The weight-loss and electrochemical measurement have indicated that 8-AQ and 8-NQ play as anodic inhibitor to retard the anodic electrochemical process. SEM/EDS analysis clearly shows that 8-AQ and 8-NQ form a protective film on the AA5052 alloy surface. Density functional theory (DFT) calculation confirmed the formation of strong hybridization between the p-orbital of reactive sites in the inhibitor molecules and the sp-orbital of the Al atom. 8-aminoquinoline and 8-nitroquinoline may be useful as effective corrosion inhibitors for aluminium alloys.

  6. Interfacial stresses in shape memory alloy-reinforced composites

    NASA Astrophysics Data System (ADS)

    Hiremath, S. R.; Prajapati, Maulik; Rakesh, S.; Roy Mahapatra, D.

    2014-03-01

    Debonding of Shape Memory Alloy (SMA) wires in SMA reinforced polymer matrix composites is a complex phenomenon compared to other fabric fiber debonding in similar matrix composites. This paper focuses on experimental study and analytical correlation of stress required for debonding of thermal SMA actuator wire reinforced composites. Fiber pull-out tests are carried out on thermal SMA actuator at parent state to understand the effect of stress induced detwinned martensites. An ASTM standard is followed as benchmark method for fiber pull-out test. Debonding stress is derived with the help of non-local shear-lag theory applied to elasto-plastic interface. Furthermore, experimental investigations are carried out to study the effect of Laser shot peening on SMA surface to improve the interfacial strength. Variation in debonding stress due to length of SMA wire reinforced in epoxy are investigated for non-peened and peened SMA wires. Experimental results of interfacial strength variation due to various L/d ratio for non-peened and peened SMA actuator wires in epoxy matrix are discussed.

  7. Experimental characterisation and modelling of deformation- induced microstructure in an A6061 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Kreyca, J. F.; Falahati, A.; Kozeschnik, E.

    2016-03-01

    For industry, the mechanical properties of a material in form of flow curves are essential input data for finite element simulations. Current practice is to obtain flow curves experimentally and to apply fitting procedures to obtain constitutive equations that describe the material response to external loading as a function of temperature and strain rate. Unfortunately, the experimental procedure for characterizing flow curves is complex and expensive, which is why the prediction of flow-curves by computer modelling becomes increasingly important. In the present work, we introduce a state parameter based model that is capable of predicting the flow curves of an A6061 aluminium alloy in different heat-treatment conditions. The model is implemented in the thermo-kinetic software package MatCalc and takes into account precipitation kinetics, subgrain formation, dynamic recovery by spontaneous annihilation and dislocation climb. To validate the simulation results, a series of compression tests is performed on the thermo-mechanical simulator Gleeble 1500.

  8. Experimental study of thermal oxidation of nanoscale alloys of aluminium and zinc (nAlZn)

    NASA Astrophysics Data System (ADS)

    Noor, Fahad; Wen, Dongsheng

    2015-10-01

    Aluminium-based alloys have wide applications but little is known about the thermal-chemical kinetics of nanoalloys. This work investigated the thermal oxidation of Zn and Al nanoalloys (nAlZn) with a BET equivalent diameter of 141 nm through the simultaneous TGA/DSC method. The thermal analysis was combined with elemental, morphology and crystalline structure analysis to elucidate the reaction mechanisms. It was found that the complete oxidation of nAlZn in air can be characterised by a three-stage process, including two endothermic and three exothermic reactions. With the help of ex-situ XRD, different reaction pathways were proposed for different stages, forming the end products of ZnO and ZnAl2O4. The reactivity comparison between Al and nAlZn suggested that different criteria should be used for different applications.

  9. Strain rate effects on mechanical properties in tension of aluminium alloys used in armour applications

    NASA Astrophysics Data System (ADS)

    Cadoni, E.; Dotta, M.; Forni, D.; Bianchi, S.; Kaufmann, H.

    2012-08-01

    The mechanical properties in tension of two aluminium alloys (AA5059-H131 and AA7039-T651) used in armour applications were determined from tests carried out over a wide range of strain-rates on round specimens. The experimental research was developed in the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. The target strain rates were set at the following four levels: 10-3, 30, 300 and 1000s-1. The quasi-static tests were performed with a universal electromechanical machine, whereas a hydro-pneumatic machine and a Split Hopkinson Tensile Bar apparatus were used for medium and high strain-rates respectively. The required parameters by the Johnson-Cook constitutive law were also determined.

  10. Microstructure of friction stir welded joints of 2017A aluminium alloy sheets.

    PubMed

    Mroczka, K; Dutkiewicz, J; Pietras, A

    2010-03-01

    The present study examines a friction stir welded 2017A aluminium alloy. Transmission electron microscope investigations of the weld nugget revealed the average grain size of 5 microm, moderate density of dislocations as well as the presence of nanometric precipitates located mostly in grains interiors. Scanning electron microscope observations of fractures showed the presence of ductile fracture in the region of the weld nugget with brittle precipitates in the lower part. The microhardness analysis performed on the cross-section of the joints showed fairly small changes; however, after the artificial ageing process an increase in hardness was observed. The change of the joint hardness subject to the ageing process indicates partial supersaturation in the material during friction stir welding and higher precipitation hardening of the joint. PMID:20500429

  11. Growth of PEO ceramic coatings on AA 2024-T3 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Forero Sotomonte, S.; Blanco Pinzon, C.; García Vergara, S.

    2016-02-01

    The growth of PEO ceramic coatings on AA 2024-T3 aluminium alloy in an aqueous Na2SiO3 (10.5g/l), KOH (2.8g/l) solution at 310 and 400V for 500 and 710s, was investigated. The morphology, roughness and thickness of the coatings were determined by SEM, digital microscopy, XRD diffraction analysis and thickness measuring instrument. The results show that thicker coatings are produced with longer process times and high applied voltages. Due to the nature of the PEO process, the roughness of the surface coatings increases as the coating become thicker, due to the development of sparks. The coatings are porous, with a crater like morphology and they are mainly amorphous.

  12. Microstructures in the 6060 aluminium alloy after various severe plastic deformation treatments

    SciTech Connect

    Adamczyk-Cieslak, Boguslawa Mizera, Jaroslaw; Kurzydlowski, Krzysztof Jan

    2011-03-15

    This paper presents the results concerning the microstructural refinement of the industrial 6060 aluminium alloy processed by severe plastic deformation (SPD). The high level of plastic deformation was achieved using the three methods: hydrostatic extrusion (HE), equal channel angular extrusion (ECAE) and extrusion torsion (ET), which differed in the dynamics of the loading, intensity and homogeneity of the plastic strain field. Microstructure analyses were performed before and after SPD deformation using a transmission (TEM) and a scanning electron microscope (SEM). The refined microstructures were examined qualitatively and quantitatively by the stereological methods and computer image analyses. The microstructure of the industrial 6060 aluminium alloy after deformation was characterized by an average grain size of about 0.4 {mu}m. The results show that the precipitates strongly affect the degree of refinement and the mechanism of microstructural transformations. During the SPD, the second phase particles break apart and homogenize. The HE method generates the largest increase of the volume fraction of the small primary particles. Moreover, the HE process is most effective in reducing the primary particle size. During HE and ECAE processes the second phase precipitates dissolve partially and change their shape. - Research Highlights: {yields} SPD results in a significant increase in the density of the small primary particles. {yields} SPD homogenizes the particle size distribution. {yields} HE and ECAE processes bring nano-grains in the vicinity of the primary particles. {yields} HE and ECAE processing results in the {beta}' precipitates partial dissolutions. {yields} During HE and ECAE processes the {beta}' particles change their shape.

  13. Flow and failure of an aluminium alloy from low to high temperature and strain rate

    NASA Astrophysics Data System (ADS)

    Sancho, Rafael; Cendón, David; Gálvez, Francisco

    2015-09-01

    The mechanical behaviour of an aluminium alloy is presented in this paper. The study has been carried out to analyse the flow and failure of the aluminium alloy 7075-T73. An experimental study has been planned performing tests of un-notched and notched tensile specimens at low strain rates using a servo-hydraulic machine. High strain rate tests have been carried out using the same geometry in a Hopkinson Split Tensile Bar. The dynamic experiments at low temperature were performed using a cryogenic chamber, and the high temperature ones with a furnace, both incorporated to the Hopkinson bar. Testing temperatures ranged from - 50 ∘C to 100 ∘C and the strain rates from 10-4 s-1 to 600 s-1. The material behaviour was modelled using the Modified Johnson-Cook model and simulated using LS-DYNA. The results show that the Voce type of strain hardening is the most accurate for this material, while the traditional Johnson-Cook is not enough accurate to reproduce the necking of un-notched specimens. The failure criterion was obtained by means of the numerical simulations using the analysis of the stress triaxiality versus the strain to failure. The diameters at the failure time were measured using the images taken with an image camera, and the strain to failure was computed for un-notched and notched specimens. The numerical simulations show that the analysis of the evolution of the stress triaxiality is crucial to achieve accurate results. A material model using the Modified Johnson-Cook for flow and failure is proposed.

  14. Extrusion Die Design and Process Simulation of High Strength Aluminium Alloy

    NASA Astrophysics Data System (ADS)

    Sheu, Jinn-Jong; Chen, Yan-Hong; Su, Guan-Cheng

    2011-01-01

    Aluminium alloy 7075 is an excellent metal with the features of high strength and light weight. The solid extruded parts of AL 7075 are commonly used in the structure members of airplanes and bicycles. The seamless tubes of AL 7075 are also used, while tubes with welding line (seamed) are mainly made by the other types of aluminium alloy. This research is focused on the extrusion die design and process simulation of the rectangular seamed AL 7075 tubes. A new die design concept is proposed to increase the welding pressure in the chamber to solve the problem of poor welding ability of AL 7075. The key points of welding ability improvement are the higher welding pressure, the crucial billet temperature, and the extrusion speed. The designed extrusion die should have some features to control the material flow and achieve the higher welding pressure. In this paper, not only use the traditional die bearing and the welding chamber, but also add a conical guiding chamber (specified with chamber height and width) to improve the material flow control. Finite element method is used to simulate the extrusion process and evaluate the effect of die design parameters for a seamed rectangular 7075 tube extrusion. The die stress should be considered carefully because of increasing the welding pressure also increases the die stress. Taguchi method is used to obtain the optimum combination of die design parameters to get higher welding pressure and keep the die stress at a reasonable low level. The method proposed in this paper is able to increase the welding pressure with the cost of reasonable die stress.

  15. Influences of post weld heat treatment on tensile properties of friction stir welded AA2519-T87 aluminium alloy joints

    NASA Astrophysics Data System (ADS)

    Sabari, S. Sree; Balasubramanian, V.; Malarvizhi, S.; Reddy, G. Madusudhan

    2015-12-01

    AA 2519-T87 is an aluminium alloy that principally contains Cu as an alloying element and is a new grade of Al-Cu alloy system. This material is a potential candidate for light combat military vehicles. Fusion welding of this alloy leads to hot cracking, porosity and alloy segregation in the weld metal region. Friction stir welding (FSW) is a solid state joining process which can overcome the above mentioned problems. However, the FSW of age hardenable aluminium alloys results in poor tensile properties in the as-welded condition (AW). Hence, post weld heat treatment (PWHT) is used to enhance deteriorated tensile properties of FSW joints. In this work, the effect of PWHT, namely artificial ageing (AA) and solution treatment (ST) followed by ageing (STA) on the microstructure, tensile properties and microhardness were systematically investigated. The microstructural features of the weld joints were characterised using an optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The tensile strength and microhardness of the joints were correlated with the grain size, precipitate size, shape and its distribution. From the investigation, it was found that STA treatment is beneficial in enhancing the tensile strength of the FSW joints of AA2519-T87 alloy and this is mainly due to the presence of fine and densely distributed precipitates in the stir zone.

  16. A survey of some metallographic etching reagents for restoration of obliterated engraved marks on aluminium-silicon alloy surfaces.

    PubMed

    Uli, Norjaidi; Kuppuswamy, R; Amran, Mohd Firdaus Che

    2011-05-20

    A brief survey to assess the sensitivity and efficacy of some common etching reagents for revealing obliterated engraved marks on Al-Si alloy surfaces is presented. Experimental observations have recommended use of alternate swabbing of 10% NaOH and 10% HNO(3) on the obliterated surfaces for obtaining the desired results. The NaOH etchant responsible for bringing back the original marks resulted in the deposition of some dark coating that has masked the recovered marks. The coating had been well removed by dissolving it in HNO(3) containing 10-20% acid. However, the above etching procedure was not effective on aluminium (99% purity) and Al-Zn-Mg-Cu alloy surfaces. Also the two reagents (i) immersion in 10% aq. phosphoric acid and (ii) alternate swabbing of 60% HCl and 40% NaOH suggested earlier for high strength Al-Zn-Mg-Cu alloys [23] were quite ineffective on Al-Si alloys. Thus different aluminium alloys needed different etching treatments for successfully restoring the obliterated marks. Al-Si alloys used in casting find wide applications especially in the manufacture of engine blocks of motor vehicles. Hence, the results presented in this paper are of much relevance in serial number restoration problems involving this alloy. PMID:21145675

  17. High temperature oxidation of copper and copper aluminium alloys: Impact on furnace side wall cooling systems

    NASA Astrophysics Data System (ADS)

    Plascencia Barrera, Gabriel

    The high temperature oxidation behaviours of copper and dilute Cu-Al alloys were investigated. Experiments were carried out by: (i) Oxidizing under various oxygen potentials at different temperatures using a combined TG-DTA apparatus. (ii) Oxidizing in a muffle furnace (in air) at different temperatures for extended periods of time. The oxidation mechanisms were evaluated based upon the kinetic data obtained as well as by X-ray diffraction and microscopical (SEM and optical) analyses. It was found that oxidation of copper strongly depends on the temperature. Two distinct mechanisms were encountered. Between 300 and 500°C, the oxidation rate is controlled by lateral growth of the oxide on the metal surface, whereas between 600 and 1000°C oxidation is controlled by lattice diffusion of copper ions through the oxide scale. On the other hand, the partial pressure of oxygen only has a small effect on the oxidation of copper. Alloy oxidation is also dependent on the temperature. As temperature increases, more aluminium is required to protect copper from being oxidized. It was shown that if the amount of oxygen that dissolves in the alloy exceeds the solubility limit of oxygen in copper, an internal oxidation layer will develop, leading to the formation of a tarnishing scale. On the other hand if the oxygen content in the alloy lies below the solubility limit of oxygen in copper, no oxidation products will form since a tight protective alumina layer will form on the alloy surface. Surface phenomena may affect the oxidation behaviour of dilute Cu-Al alloys. Immersion tests in molten copper matte and copper converting slag, using laboratory scale cooling elements with various copper based materials, were conducted. Results from these tests showed that alloying copper with 3 to 4 wt% Al decreases the oxidation rate of pure copper by 4 orders of magnitude; however due to a significant drop in thermal conductivity, the ability to extract heat is compromised, leading to

  18. The influence of quench sensitivity on residual stresses in the aluminium alloys 7010 and 7075

    SciTech Connect

    Robinson, J.S.; Tanner, D.A.; Truman, C.E.; Paradowska, A.M.; Wimpory, R.C.

    2012-03-15

    The most critical stage in the heat treatment of high strength aluminium alloys is the rapid cooling necessary to form a supersaturated solid solution. A disadvantage of quenching is that the thermal gradients can be sufficient to cause inhomogeneous plastic deformation which in turn leads to the development of large residual stresses. Two 215 mm thick rectilinear forgings have been made from 7000 series alloys with widely different quench sensitivity to determine if solute loss in the form of precipitation during quenching can significantly affect residual stress magnitudes. The forgings were heat treated and immersion quenched using cold water to produce large magnitude residual stresses. The through thickness residual stresses were measured by neutron diffraction and incremental deep hole drilling. The distribution of residual stresses was found to be similar for both alloys varying from highly triaxial and tensile in the interior, to a state of biaxial compression in the surface. The 7010 forging exhibited larger tensile stresses in the interior. The microstructural variation from surface to centre for both forgings was determined using optical and transmission electron microscopy. These observations were used to confirm the origin of the hardness variation measured through the forging thickness. When the microstructural changes were accounted for in the through thickness lattice parameter, the residual stresses in the two forgings were found to be very similar. Solute loss in the 7075 forging appeared to have no significant effect on the residual stress magnitudes when compared to 7010. - Highlights: Black-Right-Pointing-Pointer Through thickness residual stress measurements made on large Al alloy forgings. Black-Right-Pointing-Pointer Residual stress characterised using neutron diffraction and deep hole drilling. Black-Right-Pointing-Pointer Biaxial compressive surface and triaxial subsurface residual stresses. Black-Right-Pointing-Pointer Quench sensitivity

  19. Pulsed laser cleaning of aluminium-magnesium alloys: effect of surface modifications on adhesion

    NASA Astrophysics Data System (ADS)

    Autric, Michel; Oltra, Roland

    2008-05-01

    Surface cleaning is a key step in many industrial processes and especially in laser surface treatments. During laser cleaning of metallic alloys using pulsed lasers, surface modification can be induced due to transient thermal effect. In ambient atmospheric conditions, an oxidation of the cleaned surface can be detected. The aim of this work was to characterize this transient oxidation that can occur below the laser energy domain leading to any phase change (melting, ablation) of the cleaned substrate. A Q-switched Nd:YAG laser (1.06 μm) with 10 ns pulse duration was used for this study. X-ray photoelectron spectroscopy and secondary ion mass spectroscopy were used for surface analysis of irradiated samples. Thermal oxidation took place on the aluminium-magnesium alloy (5000 series) during the irradiation in air (fluence range 0.6-1.4 Jcm-2). It has been demonstrated that this 10 ns laser thermal oxidation and the steady state thermal oxidation have the same mechanism. When the laser fluence reached 1 J cm -2 , the oxide formed by the thermal oxidation became in a large extent crystalline and its outer part was entirely covered by a continuous magnesium oxide layer.

  20. A microstructure-based yield stress and work-hardening model for textured 6xxx aluminium alloys

    NASA Astrophysics Data System (ADS)

    Khadyko, M.; Myhr, O. R.; Dumoulin, S.; Hopperstad, O. S.

    2016-04-01

    The plastic properties of an aluminium alloy are defined by its microstructure. The most important factors are the presence of alloying elements in the form of solid solution and precipitates of various sizes, and the crystallographic texture. A nanoscale model that predicts the work-hardening curves of 6xxx aluminium alloys was proposed by Myhr et al. The model predicts the solid solution concentration and the particle size distributions of different types of metastable precipitates from the chemical composition and thermal history of the alloy. The yield stress and the work hardening of the alloy are then determined from dislocation mechanics. The model was largely used for non-textured materials in previous studies. In this work, a crystal plasticity-based approach is proposed for the work hardening part of the nanoscale model, which allows including the influence of the crystallographic texture. The model is evaluated by comparison with experimental data from uniaxial tensile tests on two textured 6xxx alloys in five temper conditions.

  1. Aluminium/lithium alloy-CFRP hybrid laminate: Fabrication and properties

    SciTech Connect

    Freischmidt, G.; Coutts, R.S.P.; Janardhana, M.N.

    1993-12-31

    Hybrid composite laminates of aluminum and aluminum/lithium alloy sheeting with unidirectional carbon fiber/epoxy plies have been fabricated to produce sheet materials of high strength, low density and reduced fatigue crack growth rate. In an arrangement of one layer of unidirectional carbon fiber reinforced plastic (CFRP) and 2 sheets of 2090-T3 aluminum alloy was used to give a material with a density of 2.20g/cm{sup 3}. Tensile test results gave an ultimate strength of 803MPa, a modulus of 75.7GPa and a 2% offset yield strength of 497MPa. Preliminary fatigue crack growth rate determinations on single edge notch (SEN) specimens show a marked reduction compared to monolithic 2090-T3. Other hybrid laminates using 2024-T3 alloy have also been made and tested. These laminates show reduced tensile properties, however, they appear to have lower fatigue crack growth rates than when using 2090T3 in hybrid form. The fabrication of hybrid laminates included the use of unsupported adhesive film to bond the precured unidirectional carbon fiber composite plies to the aluminum sheeting. This has left a distinct interphase region between the alloy and CFRP which is thought to improve properties through an effective load transfer.

  2. Zirconium behaviour during electrorefining of actinide-zirconium alloy in molten LiCl-KCl on aluminium cathodes

    NASA Astrophysics Data System (ADS)

    Meier, R.; Souček, P.; Malmbeck, R.; Krachler, M.; Rodrigues, A.; Claux, B.; Glatz, J.-P.; Fanghänel, Th.

    2016-04-01

    A pyrochemical electrorefining process for the recovery of actinides from metallic nuclear fuel based on actinide-zirconium alloys (An-Zr) in a molten salt is being investigated. In this process actinides are group-selectively recovered on solid aluminium cathodes as An-Al alloys using a LiCl-KCl eutectic melt at a temperature of 450 °C. In the present study the electrochemical behaviour of zirconium during electrorefining was investigated. The maximum amount of actinides that can be oxidised without anodic co-dissolution of zirconium was determined at a selected constant cathodic current density. The experiment consisted of three steps to assess the different stages of the electrorefining process, each of which employing a fresh aluminium cathode. The results indicate that almost a complete dissolution of the actinides without co-dissolution of zirconium is possible under the applied experimental conditions.

  3. and Carbon Fiber Reinforced 2024 Aluminum Alloy Composites

    NASA Astrophysics Data System (ADS)

    Kaczmar, Jacek W.; Naplocha, Krzysztof; Morgiel, Jerzy

    2014-08-01

    The microstructure and mechanical properties of 2024 aluminum alloy composite materials strengthened with Al2O3 Saffil fibers or together with addition of carbon fibers were investigated. The fibers were stabilized in the preform with silica binder strengthened by further heat treatment. The preforms with 80-90% porosity were infiltrated by direct squeeze casting method. The microstructure of the as-cast specimens consisted mainly of α-dendrites with intermetallic compounds precipitated at their boundaries. The homogenization treatment of the composite materials substituted silica binder with a mixture of the Θ phase and silicon precipitates distributed in the remnants of SiO2 amorphous phase. Outside of this area at the binder/matrix interface, fine MgO precipitates were also present. At surface of C fibers, a small amount of fine Al3C4 carbides were formed. During pressure infiltration of preforms containing carbon fibers under oxygen carrying atmosphere, C fibers can burn releasing gasses and causing cracks initiated by thermal stress. The examination of tensile and bending strength showed that reinforcing of aluminum matrix with 10-20% fibers improved investigated properties in the entire temperature range. The largest increase in relation to unreinforced alloy was observed for composite materials examined at the temperature of 300 °C. Substituting Al2O3 Saffil fibers with carbon fibers leads to better wear resistance at dry condition with no relevant effect on strength properties.

  4. Thermodynamic analysis of compatibility of several reinforcement materials with FeAl alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Chemical compatibility of several reinforcement materials with FeAl alloys within the concentration range 40 to 50 at pct Al have been analyzed from thermodynamic considerations at 1173 and 1273 K. The reinforcement materials considered in this study include carbides, borides, oxides, nitrides, and silicides. Although several chemically compatible reinforcement materials are identified, the coefficients of thermal expansion for none of these materials match closely with that of FeAl alloys and this might pose serious problems in the design of composite systems based on FeAl alloys.

  5. New understanding of the role of coincidence site lattice boundaries in abnormal grain growth of aluminium alloy

    NASA Astrophysics Data System (ADS)

    Park, Chang-Soo; Park, Hyung-Ki; Shim, Hyung-Seok; Na, Tae-Wook; Han, Chan-Hee; Hwang, Nong-Moon

    2015-04-01

    The sequential microstructure evolution of abnormal grain growth (AGG) in the aluminium alloy (AA5052) was investigated to analyse the migration behaviour of coincidence site lattice (CSL) boundaries, which are known to play an important role in inducing AGG. The sequential evolution showed that CSL boundaries tend to disappear more slowly than general boundaries at the growth front of abnormally growing grains. Especially, the migration rate of Σ9 boundaries was noticeably low, which is contrary to the previous suggestions.

  6. Thermodynamic analysis of compatibility of several reinforcement materials with beta phase NiAl alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Chemical compatibility of several reinforcement materials with beta phase NiAl alloys within the concentration range 40 to 50 at. percent Al have been analyzed from thermodynamic considerations at 1373 and 1573 K. The reinforcement materials considered in this study include carbides, borides, oxides, nitrides, beryllides, and silicides. Thermodynamic data for NiAl alloys have been reviewed and activity of Ni and Al in the beta phase have been derived at 1373 and 1573 K. Criteria for chemical compatibility between the reinforcement material and the matrix have been defined and several chemically compatible reinforcement materials have been defined.

  7. Temperature and thermal stress fields during the pulse train of long-pulse laser irradiating aluminium alloy plate

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Jin, Guangyong; Gu, Xiu-ying

    2014-12-01

    Based on Von Mises yield criterion and elasto-plastic constitutive equations, an axisymmetric finite element model of a Gaussian laser beam irradiating a metal substrate was established. In the model of finite element, the finite difference hybrid algorithm is used to solve the problem of transient temperature field and stress field. Taking nonlinear thermal and mechanical properties into account, transient distributions of temperature field and stress fields generated by the pulse train of long-pulse laser in a piece of aluminium alloy plate were computed by the model. Moreover,distributions as well as histories of temperature and stress fields were obtained. Finite element analysis software COMSOL is used to simulate the Temperature and thermal stress fields during the pulse train of long-pulse laser irradiating 7A04 aluminium alloy plate. By the analysis of the results, it is found that Mises equivalent stress on the target surface distribute within the scope of the center of a certain radius. However, the stress is becoming smaller where far away from the center. Futhermore, the Mises equivalent stress almost does not effect on stress damage while the Mises equivalent stress is far less than the yield strength of aluminum alloy targets. Because of the good thermal conductivity of 7A04 aluminum alloy, thermal diffusion is extremely quick after laser irradiate. As a result, for the multi-pulsed laser, 7A04 aluminum alloy will not produce obvious temperature accumulation when the laser frequency is less than or equal to 10 Hz. The result of this paper provides theoretical foundation not only for research of theories of 7A04 aluminium alloy and its numerical simulation under laser radiation but also for long-pulse laser technology and widening its application scope.

  8. Ballistic Impact Properties of Zr-Based Amorphous Alloy Composites Reinforced with Woven Continuous Fibers

    NASA Astrophysics Data System (ADS)

    Kim, Gyeong Su; Son, Chang-Young; Lee, Sang-Bok; Lee, Sang-Kwan; Song, Young Buem; Lee, Sunghak

    2012-03-01

    This study aims at investigating ballistic impact properties of Zr-based amorphous alloy (LM1 alloy) matrix composites reinforced with woven stainless steel or glass continuous fibers. The fiber-reinforced composites with excellent fiber/matrix interfaces were fabricated without pores and misinfiltration by liquid pressing process, and contained 35 to 41 vol pct of woven continuous fibers homogeneously distributed in the amorphous matrix. The woven-STS-continuous-fiber-reinforced composite consisted of the LM1 alloy layer of 1.0 mm in thickness in the upper region and the fiber-reinforced composite layer in the lower region. The hard LM1 alloy layer absorbed the ballistic impact energy by forming many cracks, and the fiber-reinforced composite layer interrupted the crack propagation and blocked the impact and traveling of the projectile, thereby resulting in the improvement of ballistic performance by about 20 pct over the LM1 alloy. According to the ballistic impact test data of the woven-glass-continuous-fiber-reinforced composite, glass fibers were preferentially fragmented to form a number of cracks, and the amorphous matrix accelerated the fragmentation of glass fibers and the initiation of cracks. Because of the absorption process of ballistic impact energy by forming very large amounts of cracks, fragments, and debris, the glass-fiber-reinforced composite showed better ballistic performance than the LM1 alloy.

  9. Modelling of liquid metal flow and oxide film defects in filling of aluminium alloy castings

    NASA Astrophysics Data System (ADS)

    Dai, X.; Jolly, M.; Yang, X.; Campbell, J.

    2012-07-01

    The liquid metal flow behaviours in different runner system designs have important effects on the mechanical strength of aluminium alloy castings. In this paper, a new model has been developed which is a two-dimensional program using a finite difference technique and the Marker and Cell (MAC) method to simulate the flow of liquid metal during filling a mould. In the program the Eulerian method has been used for the liquid metal flow, while the Oxide Film Entrainment Tracking Algorithm (OFET) method (a Lagrangian method) has been used to simulate the movement of the oxide film on the liquid metal surface or in the liquid metal flow. Several examples have been simulated and tested and the relevant results were obtained. These results were compared with measured bending strengths. It was found that the completed program was capable of simulating effectively the filling processes of different runner systems. The simulation results are consistent with the experiment. In addition, the program is capable of providing clearer images for predicting the distribution of the oxide film defects generated during filling a mould.

  10. Shock induced spall fracture in aluminium alloy "Al2014-T4"

    NASA Astrophysics Data System (ADS)

    Joshi, K. D.; Rav, Amit; Sur, Amit; Das, P. C.; Gupta, Satish C.

    2015-06-01

    The plate impact experiments have been carried out on 8mm thick target plates of aluminium alloy Al2014-T4 at impact velocities of 180 m/s, 290 m/s and 500m/s, respectively, using single stage gas gun facility. In each experiment, the of free surface velocity history of the sample plate is measured using VISAR instrument and utilized to determine the spall strength and dynamic yield strength of this material. The spall strength of 0.87 GPa, 0.97 GPa and 1.11 GPa, respectively, measured for impact velocities of 180 m/s, 290 m/s and 500 m/s with corresponding average strain rates varying from 1.36×104/s to 2.41×14/s has been found to display nearly linear dependence upon the strain rates. The dynamic yield strength with its value ranging from 0.395 GPa to 0.400 GPa, though, is higher than the quasi static value of 0.355GPa, appears to be relatively independent of impact velocities up to at least 500 m/s or equivalently strain rates up to ˜ 9.4×104/s.

  11. Influence of transport mechanisms on nucleation and grain structure formation in DC cast aluminium alloy ingots

    NASA Astrophysics Data System (ADS)

    Bedel, M.; Založnik, M.; Kumar, A.; Combeau, H.; Jarry, P.; Waz, E.

    2012-01-01

    The grain structure formation in direct chill (DC) casting is directly linked to nucleation, which is generally promoted by inoculation. Inoculation prevents defects, but also modifies the physical properties by changing the microstructure. We studied the coupling of the nucleation on inoculant particles and the grain growth in the presence of melt flow induced by thermosolutal convection and of the transport of free-floating equiaxed grains. We used a volume-averaged two-phase multiscale model with a fully coupled description of phenomena on the grain scale (nucleation on grain refiner particles and grain growth) and on the product scale (macroscopic transport). The transport of inoculant particles is also modeled, which accounts for the inhomogeneous distribution of inoculant particles in the melt. The model was applied to an industrial sized (350mm thick) DC cast aluminium alloy ingot. A discretised nuclei size distribution was defined and the impact of different macroscopic phenomena on the grain structure formation was studied: the zone and intensity of nucleation and the resulting grain size distribution. It is shown that nucleation in the presence of macroscopic transport cannot be explained only in terms of cooling rate, but variations of composition, nuclei density and grain density, all affected by transport, must be accounted for.

  12. Fatigue behaviour of laser machined 2024 T3 aeronautic aluminium alloy

    NASA Astrophysics Data System (ADS)

    Carpio, F. J.; Araújo, D.; Pacheco, F. J.; Méndez, D.; García, A. J.; Villar, M. P.; García, R.; Jiménez, D.; Rubio, L.

    2003-03-01

    High power laser applications as welding, machining and marking are widely used in several industrial sectors to take advantage of their high processing velocity, clean processing conditions, and a high versatility. However, the heat affected zone (HAZ) is expected to change the mechanical behaviour of laser processed structural elements. For aeronautic applications, this feature is of first importance because those elements suffer cyclic stress under service conditions. Indeed, the most severe requirements for further industrial implantation are the fatigue specifications. In this communication, fatigue behaviour of laser machined 2024 aluminium alloy is studied to evaluate a possible certification of laser-based machining in the aeronautic industry. For this reason, 1.6 mm thick samples laser machined were carried out using a CO 2 laser. The experimental fatigue curves are shown to lie very close to aeronautic requirement despite theoretical fatigue behaviour of the material is significantly more resistant. This is attributed to surface roughness induced by a surface melting zone shown that diminish the fatigue resistance. Fatigue behaviour and surface roughness should be improved using higher power and/or high absorption wavelength as that of YAG laser ( λ=1.06 μm).

  13. Deep surface rolling for fatigue life enhancement of laser clad aircraft aluminium alloy

    NASA Astrophysics Data System (ADS)

    Zhuang, W.; Liu, Q.; Djugum, R.; Sharp, P. K.; Paradowska, A.

    2014-11-01

    Deep surface rolling can introduce deep compressive residual stresses into the surface of aircraft metallic structure to extend its fatigue life. To develop cost-effective aircraft structural repair technologies such as laser cladding, deep surface rolling was considered as an advanced post-repair surface enhancement technology. In this study, aluminium alloy 7075-T651 specimens with a blend-out region were first repaired using laser cladding technology. The surface of the laser cladding region was then treated by deep surface rolling. Fatigue testing was subsequently conducted for the laser clad, deep surface rolled and post-heat treated laser clad specimens. It was found that deep surface rolling can significantly improve the fatigue life in comparison with the laser clad baseline repair. In addition, three dimensional residual stresses were measured using neutron diffraction techniques. The results demonstrate that beneficial compressive residual stresses induced by deep surface rolling can reach considerable depths (more than 1.0 mm) below the laser clad surface.

  14. Comparison of self-healing ionomer to aluminium-alloy bumpers for protecting spacecraft equipment from space debris impacts

    NASA Astrophysics Data System (ADS)

    Francesconi, A.; Giacomuzzo, C.; Grande, A. M.; Mudric, T.; Zaccariotto, M.; Etemadi, E.; Di Landro, L.; Galvanetto, U.

    2013-03-01

    This paper discusses the impact behavior of a self-healing ionomeric polymer and compares its protection capability against space debris impacts to that of simple aluminium-alloy bumpers. To this end, 14 impact experiments on both ionomer and Al-7075-T6 thin plates with similar surface density were made with 1.5 mm aluminium spheres at velocity between 1 and 4 km/s.First, the perforation extent in both materials was evaluated vis-à-vis the prediction of well known hole-size equations; then, attention was given to the damage potential of the cloud of fragments ejected from the rear side of the target by analysing the craters pattern and the momentum transferred to witness plates mounted on a ballistic pendulum behind the bumpers.Self-healing was completely successful in all but one ionomer samples and the primary damage on ionomeric polymers was found to be significantly lower than that on aluminium. On the other hand, aluminium plates exhibited slightly better debris fragmentation abilities, even though the protecting performance of ionomers seemed to improve at increasing impact speed.

  15. Experimental investigations of visco-plastic properties of the aluminium and tungsten alloys used in KE projectiles

    NASA Astrophysics Data System (ADS)

    Kruszka, L.; Magier, M.

    2012-08-01

    The main aim of studies on dynamic behaviour of construction materials at high strain rates is to determine the variation of mechanical properties (strength, plasticity) in function of the strain rate and temperature. On the basis of results of dynamic tests on the properties of constructional materials the constitutive models are formulated to create numerical codes applied to solve constructional problems with computer simulation methods. In the case of military applications connected with the phenomena of gunshot and terminal ballistics it's particularly important to develop a model of strength and armour penetration with KE projectile founded on reliable results of dynamic experiments and constituting the base for further analyses and optimization of projectile designs in order to achieve required penetration depth. Static and dynamic results of strength investigations of the EN AW-7012 aluminium alloy (sabot) and tungsten alloy (penetrator) are discussed in this paper. Static testing was carried out with the INSTRON testing machine. Dynamic tests have been conducted using the split Hopkinson pressure bars technique at strain rates up to 1,2 ṡ 104s-1 (for aluminium alloy) and 6 ṡ 103s-1 (for tungsten alloy).

  16. Physical and Mechanical Properties of Composites and Light Alloys Reinforced with Detonation Nanodiamonds

    NASA Astrophysics Data System (ADS)

    Sakovich, G. V.; Vorozhtsov, S. A.; Vorozhtsov, A. B.; Potekaev, A. I.; Kulkov, S. N.

    2016-07-01

    The influence of introduction of particles of detonation-synthesized nanodiamonds into composites and aluminum-base light alloys on their physical and mechanical properties is analyzed. The data on microstructure and physical and mechanical properties of composites and cast aluminum alloys reinforced with diamond nanoparticles are presented. The introduction of nanoparticles is shown to result in a significant improvement of the material properties.

  17. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications.

    PubMed

    Choudhary, Lokesh; Singh Raman, R K; Hofstetter, Joelle; Uggowitzer, Peter J

    2014-09-01

    The complex interaction between physiological stresses and corrosive human body fluid may cause premature failure of metallic biomaterials due to the phenomenon of stress corrosion cracking. In this study, the susceptibility to stress corrosion cracking of biodegradable and aluminium-free magnesium alloys ZX50, WZ21 and WE43 was investigated by slow strain rate tensile testing in a simulated human body fluid. Slow strain rate tensile testing results indicated that each alloy was susceptible to stress corrosion cracking, and this was confirmed by fractographic features of transgranular and/or intergranular cracking. However, the variation in alloy susceptibility to stress corrosion cracking is explained on the basis of their electrochemical and microstructural characteristics. PMID:25063163

  18. Laser surface melting of aluminium alloy 6013 for improving stress corrosion and corrosion fatigue resistance

    NASA Astrophysics Data System (ADS)

    Xu, Wen-Long

    Laser surface treatment of aluminium alloy 6013, a relatively new high strength aluminium alloy, was conducted with the aim of improving the alloy's resistance to stress corrosion cracking and corrosion fatigue. In the first phase of this research, laser surface melting (LSM) of the alloy was conducted using an excimer laser. The microstructural changes induced by the laser treatment were studied in detail and characterised. The results showed that excimer LSM produced a relatively thin, non-dentritic planar re-melted layer which is largely free of coarse constituent particles and precipitates. The planar growth phenomenon was explained using the high velocity and high temperature gradient absolute stability criteria. The structure of the oxide and/or the nitride bearing film at the outmost surface of the re-melted layer was also characterised. The results of the electrochemical tests showed that the pitting corrosion resistance of the alloy could be greatly increased by excimer laser melting, especially when the alloy was treated in nitrogen gas: the corrosion current density of the N2-treated specimen was some two orders of magnitude lower than that of the air-treated specimen which was one order of magnitude lower than that of the untreated specimen. The effect of the outer surface oxide and/or nitride bearing film per se on pitting corrosion resistance was determined. The results of a Mott - Schottky analysis strongly suggest that the outer surface film, which exhibited the nature of an n-type semiconductor was responsible for the significant improvement of the corrosion resistance of the laser-treated material. Furthermore, the corrosion response of the surface film was modelled using equivalent circuits. Based on the results of the slow strain rate tensile (SSRT) and corrosion fatigue tests, the stress corrosion cracking and pitting corrosion fatigue behaviour of the excimer laser treated material was evaluated. The results of the SSRT test showed that, in

  19. Load carrying capacity of RCC beams by replacing steel reinforcement bars with shape memory alloy bars

    NASA Astrophysics Data System (ADS)

    Bajoria, Kamal M.; Kaduskar, Shreya S.

    2016-04-01

    In this paper the structural behavior of reinforced concrete (RC) beams with smart rebars under two point loading system has been numerically studied, using Finite Element Method. The material used in this study is Super-elastic Shape Memory Alloys (SE SMAs) which contains nickel and titanium. In this study, different quantities of steel and SMA rebars have been used for reinforcement and the behavior of these models under two point bending loading system is studied. A comparison of load carrying capacity for the model between steel reinforced concrete beam and the beam reinforced with S.M.A and steel are performed. The results show that RC beams reinforced with combination of shape memory alloy and steel show better performance.

  20. Improvement in performance of reinforced concrete structures using shape memory alloys

    NASA Astrophysics Data System (ADS)

    Bajoria, Kamal M.; Kaduskar, Shreya S.

    2015-04-01

    Shape memory alloys (SMA) are a unique class of materials which have ability to undergo large deformation and also regain its undeformed shape by removal of stress or by heating. This unique property could be effectively utilized to enhance the safety of a structure. This paper presents the pushover analysis performance of a Reinforced Concrete moment resistance frame with the traditional steel reinforcement replaced partially with Nickel-Titanium (Nitinol) SMA. The results are compared with the RC structure reinforced with conventional steel. Partial replacement of traditional steel reinforcement by SMA shows better performance.

  1. Preparation and Characterization of Binder Less Mg/Mg Alloy Infiltrated SiCp Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Muthu Kumar, S.; Dhindaw, B. K.

    2007-10-01

    SiCp-reinforced commercial pure magnesium and AZ91 alloy MMCs’ were prepared through infiltration route without the use of any special atmospheres. The preform was prepared using a mixture of reinforcement particles and the matrix metal particles. The composites were prepared with various volume percentage of the reinforcement and their properties with the variation of SiCp were analyzed. The interfacial properties of the composites were analyzed using microstructure, microhardness, and wear studies. Calculation of thermal conditions during infiltration was done to study the effect of adding matrix metal particles on the infiltration behavior and its effect on the uniformity distribution of the reinforcements.

  2. Influence of Hot Deformation on Mechanical Properties and Microstructure of a Twin-Roll Cast Aluminium Alloy EN AW-6082

    NASA Astrophysics Data System (ADS)

    Grydin, O.; Stolbchenko, M.; Nürnberger, F.; Schaper, M.

    2014-03-01

    Thin strips of medium- and high-strength age-hardening aluminium alloys are widely used in the automotive industry. Reducing their production costs caused by high energy consumption is an actual challenge. The implementation of the twin-roll casting technology is promising. However, mechanical properties of directly cast high-alloyed thin aluminium strips are oftentimes inadequate to standard specifications. In this work, the influence of a hot deformation following a twin-roll cast strip process on the mechanical properties and microstructure is investigated. For this study strips of age-hardening aluminium alloy EN AW-6082—manufactured at a laboratory scaled twin-roll caster—were single-pass rolled at temperatures of 420 °C and true strains of up to 0.5. The mechanical properties of the as-cast and by different strains hot deformed material in the soft-annealed and age-hardened states were characterized by tensile tests. The results reveal that the twin-roll cast material features the necessary strength properties, though it does not meet the standard requirements for ductility. Furthermore, the required minimum strain during hot rolling that is necessary to ascertain the standard specifications has been determined. Based on micrographs, the uniformity of the mechanical properties and of the microstructure as a result of recrystallization due to hot metal forming and heat treatment were determined. A fine-grain microstructure and satisfactory material ductility after prior rolling with a true strain above 0.41 for the age-hardened state T6 and above 0.1 for the soft-annealed state O have been established.

  3. Electromagnetic Gauge Study of Laser-Induced Shock Waves in Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    Peyre, P.; Fabbro, R.

    1995-12-01

    The laser-shock behaviour of three industrial aluminum alloys has been analyzed with an Electromagnetic Gauge Method (EMV) for measuring the velocity of the back free surface of thin foils submitted to plane laser irradiation. Surface pressure, shock decay in depth and Hugoniot Elastic Limits (HEL) of the materials were investigated with increasing thicknesses of foils to be shocked. First, surface peak pressures values as a function of laser power density gave a good agreement with conventional piezoelectric quartz measurements. Therefore, comparison of experimental results with computer simulations, using a 1D hydrodynamic Lagrangian finite difference code, were also in good accordance. Lastly, HEL values were compared with static and dynamic compressive tests in order to estimate the effects of a very large range of strain rates (10^{-3} s^{-1} to 10^6 s^{-1}) on the mechanical properties of the alloys. Cet article fait la synthèse d'une étude récente sur la caractérisation du comportement sous choc-laser de trois alliages d'aluminium largement utilisés dans l'industrie à travers la méthode dite de la jauge électromagnétique. Cette méthode permet de mesurer les vitesses matérielles induites en face arrière de plaques d'épaisseurs variables par un impact laser. La mise en vitesse de plaques nous a permis, premièrement, de vérifier la validité des pressions d'impact superficielles obtenues en les comparant avec des résultats antérieurs obtenus par des mesures sur capteurs quartz. Sur des plaques d'épaisseurs croissantes, nous avons caractérisé l'atténuation des ondes de choc en profondeur dans les alliages étudiés et mesuré les limites d'élasticité sous choc (pressions d'Hugoniot) des alliages. Les résultats ont été comparés avec succès à des simulations numériques grâce à un code de calcul monodimensionnel Lagrangien. Enfin, les valeurs des pressions d'Hugoniot mesurées ont permis de tracer l'évolution des contraintes d

  4. Wear Properties of Thixoformed and High Pressure Die Cast Aluminium Alloys for Connecting Rod Applications in Compressors

    NASA Astrophysics Data System (ADS)

    Birol, Yücel; Birol, Feriha

    2007-04-01

    Hypereutectic aluminium casting alloys are attractive candidates for connecting rod applications in compressors. The wear properties of these alloys are largely controlled by their microstructural features which in turn are affected by the processing route. Several hypo- and hypereutectic Al-Si alloys were produced by high pressure die casting and thixoforming in the present work. The former route produced a very fine microstructure while relatively coarser, globular α-Al matrix dominated in thixoformed grades. A modified Falex Block on Ring equipment was employed to investigate the wear properties of these alloys. Wear tests were carried out under service conditions in the lubricated state at 75°C. The superior wear properties of hypereutectic alloys produced by high pressure die casting with respect to the thixoformed variety is accounted for by the very fine microstructure with a fine dispersion of primary Si particles in the former. Of the two production routes employed, thixoforming had a favorable effect on wear properties at equal Si levels.

  5. Investigation on corrosion and wear behaviors of nanoparticles reinforced Ni-based composite alloying layer

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Tao, Jie; Jiang, Shuyun; Xu, Zhong

    2008-04-01

    In order to investigate the role of amorphous SiO 2 particles in corrosion and wear resistance of Ni-based metal matrix composite alloying layer, the amorphous nano-SiO 2 particles reinforced Ni-based composite alloying layer has been prepared by double glow plasma alloying on AISI 316L stainless steel surface, where Ni/amorphous nano-SiO 2 was firstly predeposited by brush plating. The composition and microstructure of the nano-SiO 2 particles reinforced Ni-based composite alloying layer were analyzed by using SEM, TEM and XRD. The results indicated that the composite alloying layer consisted of γ-phase and amorphous nano-SiO 2 particles, and under alloying temperature (1000 °C) condition, the nano-SiO 2 particles were uniformly distributed in the alloying layer and still kept the amorphous structure. The corrosion resistance of composite alloying layer was investigated by an electrochemical method in 3.5%NaCl solution. Compared with single alloying layer, the amorphous nano-SiO 2 particles slightly decreased the corrosion resistance of the Ni-Cr-Mo-Cu alloying layer. X-ray photoelectron spectroscopy (XPS) revealed that the passive films formed on the composite alloying consisted of Cr 2O 3, MoO 3, SiO 2 and metallic Ni and Mo. The dry wear test results showed that the composite alloying layer had excellent friction-reduced property, and the wear weight loss of composite alloying layer was less than 60% of that of Ni-Cr-Mo-Cu alloying layer.

  6. Effects of surface treatment of aluminium alloy 1050 on the adhesion and anticorrosion properties of the epoxy coating

    NASA Astrophysics Data System (ADS)

    Sharifi Golru, S.; Attar, M. M.; Ramezanzadeh, B.

    2015-08-01

    The objective of this work is to investigate the effects of zirconium-based (Zr) conversion coating on the adhesion properties and corrosion resistance of an epoxy/polyamide coating applied on the aluminium alloy 1050 (AA1050). Field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectrum (EDS), atomic force microscope (AFM) and contact angle measuring device were employed in order to characterize the surface characteristics of the Zr treated AA1050 samples. The epoxy/polyamide coating was applied on the untreated and Zr treated samples. The epoxy coating adhesion to the aluminium substrate was evaluated by pull-off test before and after 30 days immersion in 3.5% w/w NaCl solution. In addition, the electrochemical impedance spectroscopy (EIS) and salt spray tests were employed to characterize the corrosion protection properties of the epoxy coating applied on the AA1050 samples. Results revealed that the surface treatment of AA1050 by zirconium conversion coating resulted in the increase of surface free energy and surface roughness. The dry and recovery (adhesion strength after 30 days immersion in the 3.5 wt% NaCl solution) adhesion strengths of the coatings applied on the Zr treated aluminium samples were greater than untreated sample. In addition, the adhesion loss of the coating applied on the Zr treated aluminium substrate was lower than other samples. Also, the results obtained from EIS and salt spray test clearly revealed that the Zr conversion coating could enhance the corrosion protective performance of the epoxy coating significantly.

  7. Dispersoid reinforced alloy powder and method of making

    SciTech Connect

    Anderson, Iver E.; Terpstra, Robert L.

    2012-06-12

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  8. Dispersoid reinforced alloy powder and method of making

    SciTech Connect

    Anderson, Iver E.; Terpstra, Robert L.

    2010-04-20

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  9. Non-destructive and three-dimensional measurement of local strain development during tensile deformation in an aluminium alloy

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Miura, H.; Toda, H.

    2015-08-01

    Anisotropy of mechanical responses depending on crystallographic orientation causes inhomogeneous deformation on the mesoscopic scale (grain size scale). Investigation of the local plastic strain development is important for discussing recrystallization mechanisms, because the sites with higher local plastic strain may act as potential nucleation sites for recrystallization. Recently, high-resolution X-ray tomography, which is non-destructive inspection method, has been utilized for observation of the materials structure. In synchrotron radiation X-ray tomography, more than 10,000 microstructural features, like precipitates, dispersions, compounds and hydrogen pores, can be observed in aluminium alloys. We have proposed employing these microstructural features as marker gauges to measure local strains, and then have developed a method to calculate the three-dimensional strain distribution by tracking the microstructural features. In this study, we report the development of local plastic strain as a function of the grain microstructure in an aluminium alloy by means of this three-dimensional strain measurement technique. Strongly heterogeneous strain development was observed during tensile loading to 30%. In other words, some parts of the sample deform little whereas another deforms a lot. However, strain in the whole specimen was keeping harmony. Comparing the microstructure with the strain concentration that is obtained by this method has a potential to reveal potential nucleation sites of recrystallization.

  10. Study of twin-roll cast Aluminium alloys subjected to severe plastic deformation by equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Poková, M.; Cieslar, M.

    2014-08-01

    Aluminium alloys prepared by twin-roll casting method become widely used in industry applications. Their high solid solution supersaturation and finer grains ensure better mechanical properties when compared with the direct-chill cast ones. One of the possibilities how to enhance their thermal stability is the addition of zirconium. After heat treatment Al3Zr precipitates form and these pin moving grain boundaries when the material is exposed to higher temperatures. In the present work twin-roll cast aluminium alloys based on AA3003 with and without Zr addition were annealed for 8 hours at 450 °C to enable precipitation of Al3Zr phase. Afterwards they were subjected to severe plastic deformation by equal channel angular pressing, which led to the reduction of average grain size under 1 μm. During subsequent isochronal annealing recovery and recrystallization took place. These processes were monitored by microhardness measurements, light optical microscopy and in-situ transmission electron microscopy. The addition of Zr stabilizes the grain size and increases the recrystallization temperature by 100 °C.

  11. Dispersoid reinforced alloy powder and method of making

    SciTech Connect

    Anderson, Iver E; Rieken, Joel

    2013-12-10

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with an introduced reactive species than does the alloying element and wherein one or more atomizing parameters is/are modified to controllably reduce the amount of the reactive species, such as oxygen, introduced into the atomized particles so as to reduce anneal times and improve reaction (conversion) to the desired strengthening dispersoids in the matrix. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies are made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  12. Effect of nano-hydroxyapatite reinforcement in mechanically alloyed NiTi composites for biomedical implant.

    PubMed

    Akmal, Muhammad; Raza, Ahmad; Khan, Muhammad Mudasser; Khan, M Imran; Hussain, Muhammad Asif

    2016-11-01

    Equi-atomic NiTi alloy composites reinforced with 0, 2, 4 and 6vol.% nano-hydroxyapatite (HA) were successfully synthesized using pressureless sintering. Pure Ni and Ti elements were ball milled for 10h in order to produce a mechanically alloyed equi-atomic NiTi alloy (MA-NiTi). Mechanically alloyed NiTi and HA powders were blended, compacted and then sintered for 3h at 1325K. The sintered density varied inversely with volume percent of HA reinforcement. The X-Ray diffraction spectra and SEM images showed the formation of multiple phases like NiTi, NiTi2, Ni3Ti, and Ni4Ti3. The back scattered-SEM image analysis confirmed the presence of Ni-rich and Ti-rich phases with increasing HA content. The 6vol.% HA reinforced composite showed Ni3Ti as the major phase having the highest hardness value which can be attributed to the presence of relatively harder phases along with higher HA content as a reinforcement. The composite of MA-NiTi with 2vol.% HA manifested the most desirable results in the form of better sintering density mainly due to the minute decomposition of NiTi into other phases. Therefore, the 2vol.% reinforced MA-NiTi composite can be exploited as a novel material for manufacturing biomedical implants. PMID:27523992

  13. Nanostructured Nb reinforced NiTi shape memory alloy composite with high strength and narrow hysteresis

    NASA Astrophysics Data System (ADS)

    Hao, Shijie; Cui, Lishan; Jiang, Daqiang; Yu, Cun; Jiang, Jiang; Shi, Xiaobin; Liu, Zhenyang; Wang, Shan; Wang, Yandong; Brown, Dennis E.; Ren, Yang

    2013-06-01

    An in-situ nanostructured Nb reinforced NiTi shape-memory alloy composite was fabricated by mechanical reduction of an as-cast Nb-NiTi eutectic alloy. The composite exhibits large elastic strain, high strength, narrow hysteresis, and high mechanical energy storage density and efficiency during tensile cycling. In situ synchrotron high-energy X-ray diffraction revealed that these superior properties were attributed to the strong coupling between nanostructured Nb and NiTi matrix during deformation. Furthermore, this study offers a good understanding of the deformation behavior of the nanoscale reinforcement embedded in the metal matrix deformed by stress-induced phase transformation.

  14. A Fatigue Model for Discontinuous Particulate-Reinforced Aluminum Alloy Composite: Influence of Microstructure

    NASA Astrophysics Data System (ADS)

    McCullough, R. R.; Jordon, J. B.; Brammer, A. T.; Manigandan, K.; Srivatsan, T. S.; Allison, P. G.; Rushing, T. W.

    2014-01-01

    In this paper, the use of a microstructure-sensitive fatigue model is put forth for the analysis of discontinuously reinforced aluminum alloy metal matrix composite. The fatigue model was used for a ceramic particle-reinforced aluminum alloy deformed under conditions of fully reversed strain control. Experimental results revealed the aluminum alloy to be strongly influenced by volume fraction of the particulate reinforcement phase under conditions of strain-controlled fatigue. The model safely characterizes the evolution of fatigue damage in this aluminum alloy composite into the distinct stages of crack initiation and crack growth culminating in failure. The model is able to capture the specific influence of particle volume fraction, particle size, and nearest neighbor distance in quantifying fatigue life. The model yields good results for correlation of the predicted results with the experimental test results on the fatigue behavior of the chosen aluminum alloy for two different percentages of the ceramic particle reinforcement. Further, the model illustrates that both particle size and volume fraction are key factors that govern fatigue lifetime. This conclusion is well supported by fractographic observations of the cyclically deformed and failed specimens.

  15. The effect of aluminium on the metallography of a nickel base removable partial denture casting alloy.

    PubMed

    Lewis, A J

    1978-12-01

    Three special nickel-chromium alloys were prepared in which the aluminum levels were adjusted both above and below that of a commercial nickel base dental casting alloy. Tensile and metallographic evaluation of representative samples of the alloys were made and the changes in the properties of the alloys are reported. PMID:285671

  16. Dispersoid reinforced alloy powder and method of making

    SciTech Connect

    Anderson, Iver E; Terpstra, Robert L

    2014-10-21

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. Bodies made from the dispersion strengthened solidified particles exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures.

  17. Application of Cu-Al-Mn superelastic alloy bars as reinforcement elements in concrete beams

    NASA Astrophysics Data System (ADS)

    Shrestha, Kshitij C.; Araki, Yoshikazu; Nagae, Takuya; Yano, Hayato; Koetaka, Yuji; Omori, Toshihiro; Sutou, Yuji; Kainuma, Ryosuke; Ishida, Kiyohito

    2012-04-01

    Experimental works are done to assess the seismic behavior of concrete beams reinforced with superelastic alloy (SEA) bars. Applicability of newly developed Cu-Al-Mn SEA bars, characterized by large recovery strain, low material cost, and high machinability, have been proposed as partial replacements for conventional steel bars in order to reduce residual deformations in structures during and after intense earthquakes. Four-point reverse-cyclic bending tests were done on 1/3 scale concrete beams comprising three different types of specimens - conventional steel reinforced concrete (ST-RC), SEA reinforced concrete (SEA-RC), and SEA reinforced concrete with pre-tensioning (SEA-PC). The results showed that SEA reinforced concrete beams demonstrated significant enhancement in crack recovery capacity in comparison to steel reinforced beam. Average recovery of cracks for each of the specimens was 21% for ST-RC, 84% for SEA-RC, and 86% for SEA-PC. In addition, SEA-RC and SEA-PC beams demonstrated strong capability of recentering with comparable normalized strength and ductility relative to conventional ST-RC beam specimen. ST-RC beam, on the other hand, showed large residual cracks due to progressive reduction in its re-centering capability with each cycle. Both the SEA-RC and SEA-PC specimens demonstrated superiority of Cu-Al-Mn SEA bars to conventional steel reinforcing bars as reinforcement elements.

  18. Formulation of anisotropic Hill criteria for the description of an aluminium alloy behaviour during the channel die compression test

    SciTech Connect

    Gavrus, A.; Francillette, H.

    2007-04-07

    During the last years the study of the plastic deformation modes and the anisotropic mechanical behaviour of aluminium alloys have been the subject of many investigations. This paper deals with a phenomenological identification of an anisotropic Hill constitutive equation of aluminium AU4G samples using a channel die compression device at room temperature. By considering the different possible orientations of the samples in the channel die device, three initial textures, named ND (normal direction Z), LD (longitudinal direction X) and TD (transverse direction Y), were defined with the corresponding stresses {sigma}ND, {sigma}LD and {sigma}TD. To describe the anisotropy of the material, a quadratic Hill criteria is used. An Avrami type equation based on the mixture of the hardening and softening phenomena is used to describe variation of each stress component with the equivalent plastic strain. The identification of the parameters of the law is made using an identification software (OPTPAR) and a good correlation between the experimental stresses and computed ones is obtained. The variation of the Hill parameters with a proposed equivalent strain, describing the deformation history of the material, is analysed. Finally, using the expressions of F, G, H and N, the constitutive equation of the normal anisotropy in the plane XY is obtained.

  19. Small Crack Growth and Fatigue Life Predictions for High-Strength Aluminium Alloys. Part 1; Experimental and Fracture Mechanics Analysis

    NASA Technical Reports Server (NTRS)

    Wu, X. R.; Newman, J. C.; Zhao, W.; Swain, M. H.; Ding, C. F.; Phillips, E. P.

    1998-01-01

    The small crack effect was investigated in two high-strength aluminium alloys: 7075-T6 bare and LC9cs clad alloy. Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks. In the experimental program, fatigue tests, small crack and large crack tests A,ere conducted under constant amplitude and Mini-TWIST spectrum loading conditions. A pronounced small crack effect was observed in both materials, especially for the negative stress ratios. For all loading conditions, most of the fatigue life of the SENT specimens was shown to be crack propagation from initial material defects or from the cladding layer. In the analysis program, three-dimensional finite element and A weight function methods were used to determine stress intensity factors and to develop SIF equations for surface and corner cracks at the notch in the SENT specimens. A plastisity-induced crack-closure model was used to correlate small and large crack data, and to make fatigue life predictions, Predicted crack-growth rates and fatigue lives agreed well with experiments. A total fatigue life prediction method for the aluminum alloys was developed and demonstrated using the crack-closure model.

  20. The effect of cerium and lanthanum surface treatments on early stages of oxidation of A361 aluminium alloy at high temperature

    NASA Astrophysics Data System (ADS)

    Pardo, A.; Feliú, S.; Merino, M. C.; Arrabal, R.; Matykina, E.

    2007-11-01

    X-ray photoelectron spectroscopy analysis has been used to study the surface of A361 aluminium alloy after electrodeposition of cerium and lanthanum compounds followed by oxidation tests in air at 100-500 °C for 2 h. Cerium and lanthanum oxide deposits are found on the β-AlFeSi second phase particles and to a lesser extent on the eutectic Al-Si areas, while the α-Al phase is covered with a thin aluminium oxide film. This uneven deposition may be related either to a preferential nucleation and growth process on active interfaces or to the differing electrical conductivity of the phases and intermetallic compounds of the alloy. Initial stages of oxidation of A361 alloy disclosed thickening of the aluminium oxide layer and Mg enrichment at the surface, especially above 400 °C. Rare earth deposits revealed two different effects: reduced Mg diffusion and enhanced thickening of the aluminium oxide film. A distinctive behaviour of Ce oxide appears at 300-500 °C related with Ce(III) to Ce(IV) transition.

  1. Predicting the Surface Quality of Face Milled Aluminium Alloy Using a Multiple Regression Model and Numerical Optimization

    NASA Astrophysics Data System (ADS)

    Simunovic, K.; Simunovic, G.; Saric, T.

    2013-10-01

    The surface roughness is a very significant indicator of surface quality. It represents an essential exploitation requirement and influences technological time and costs, i.e. productivity. For that reason, the main objective of this paper is to analyse the influence of face milling cutting parameters (number of revolution, feed rate and depth of cut) on the surface roughness of aluminium alloy. Hence, a statistical (regression) model has been developed to predict the surface roughness by using the methodology of experimental design. Central composite design is chosen for fitting response surface. Also, numerical optimization considering two goals simultaneously (minimum propagation of error and minimum roughness) was performed throughout the experimental region. In this way, the settings of cutting parameters causing the minimum variability in response were determined for the estimated variations of the significant regression factors.

  2. Influence of dispersoids on microstructure evolution and work hardening of aluminium alloys during tension and cold rolling

    NASA Astrophysics Data System (ADS)

    Zhao, Qinglong; Holmedal, Bjørn; Li, Yanjun

    2013-08-01

    The influence of dispersoids on work hardening of aluminium during tension and cold rolling has been studied by comparing Al-Mn alloys containing similar amounts of solutes but various dispersoid densities. The microstructure evolution with deformation strain was examined in transmission and scanning electron microscopy. It is found that a high density of fine dispersoids strengthens the materials significantly, but their strengthening effect diminishes as the strain increases. From a series of Bauschinger tests, it is found that the internal stress, due to particles, increases rapidly at the initial stage of deformation, but saturates at strains larger than 5%. It is concluded that the internal stress makes a small contribution to the work hardening and contributes to less than 10% of the total flow stress during monotonic loading at strains larger than 5%. The work-hardening behaviour has been correlated to the corresponding microstructure, and the strengthening mechanisms are discussed.

  3. Effects of Welding Processes and Post-Weld Aging Treatment on Fatigue Behavior of AA2219 Aluminium Alloy Joints

    NASA Astrophysics Data System (ADS)

    Malarvizhi, S.; Balasubramanian, V.

    2011-04-01

    AA2219 aluminium alloy square butt joints without filler metal addition were fabricated using gas tungsten arc welding (GTAW), electron beam welding (EBW), and friction stir welding (FSW) processes. The fabricated joints were post-weld aged at 175 °C for 12 h. The effect of three welding processes and post-weld aging (PWA) treatment on the fatigue properties is reported. Transverse tensile properties of the welded joints were evaluated. Microstructure analysis was also carried out using optical and electron microscopes. It was found that the post-weld aged FSW joints showed superior fatigue performance compared to EBW and GTAW joints. This was mainly due to the formation of very fine, dynamically recrystallized grains and uniform distribution of fine precipitates in the weld region.

  4. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites.

    PubMed

    Wang, Z; Georgarakis, K; Nakayama, K S; Li, Y; Tsarkov, A A; Xie, G; Dudina, D; Louzguine-Luzgin, D V; Yavari, A R

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  5. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-04-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses.

  6. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    PubMed Central

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  7. Processing and response of aluminum-lithium alloy composites reinforced with copper-coated silicon carbide particulates

    SciTech Connect

    Khor, K.A.; Cao, Y.; Boey, F.Y.C.; Hanada, K.; Murakoshi, Y.; Sudarshan, T.S.; Srivatsan, T.S.

    1998-02-01

    Lithium-containing aluminum alloys have shown promise for demanding aerospace applications because of their light weight, high strength, and good damage tolerance characteristics. Additions of ceramic reinforcements to an aluminum-lithium alloy can significantly enhance specific strength, and specific modulus while concurrently offering acceptable performance at elevated temperatures. The processing and fabrication of aluminum-lithium alloy-based composites are hampered by particulate agglomeration or clustering and the existence of poor interfacial relationships between the reinforcing phase and the matrix. The problem of distribution of the reinforcing phase in the metal matrix can be alleviated by mechanical alloying. This article presents the results of a study aimed at addressing and improving the interfacial relationship between the host matrix and the reinforcing phase. Copper-coated silicon carbide particulates are introduced as the particulate reinforcing phase, and the resultant composite mixture is processed by conventional milling followed by hot pressing and hot extrusion. The influence of extrusion ration and extrusion temperature on microstructure and mechanical properties was established. Post extrusion processing by hot isostatic pressing was also examined. Results reveal the increase in elastic modulus of the aluminum-lithium alloy matrix reinforced with copper-coated SiC to be significantly more than the mechanically alloyed Al-Li/SiC counterpart. This suggests the possible contributions of interfacial strengthening on mechanical response in direct comparison with a uniform distribution of the reinforcing ceramic particulates.

  8. Microstructure and mechanical properties of titanium alloys reinforced with titanium boride

    NASA Astrophysics Data System (ADS)

    Hill, Davion M.

    Microstructure features in TiB-reinforced titanium alloys are correlated with mechanical properties. Both laser deposition and arc melting are used to fabricate test alloys where microstructure evolution with heat treatment is examined. SEM and TEM investigations of microstructure are coupled with 3D reconstruction to provide an adequate picture of phases in these alloys. Mechanical properties are then studied. Wear testing of several test alloys is presented, followed by hardness and modulus measurements of individual phases via micro- and nano-indentation as well as a novel micro-compression technique. Bulk mechanical properties are then tested in Ti-6Al-4V and Ti-555 (Ti-5Al-5V-5Mo-3Cr-1Fe) with varying amounts of boron. Image processing methods are then applied to high resolution back-scattered scanning electron microscope images to quantify microstructure features in the tensile test specimens, and these values are then correlated with mechanical properties.

  9. Fabrication of a nanocomposite from in situ iron nanoparticle reinforced copper alloy.

    PubMed

    Wang, Zidong; Wang, Xuewen; Wang, Qiangsong; Shih, I; Xu, J J

    2009-02-18

    In situ iron nanoparticle reinforced Cu-3Sn-8Zn-6Pb alloy has been fabricated by centrifugal casting in a vacuum chamber with a medium frequency electrical furnace. The microstructure of this alloy was analyzed with a scanning electron microscope (SEM) and a high-resolution transmission electron microscope (HRTEM), and the results show that the grains of Cu-3Sn-8Zn-6Pb alloy without iron have a typical dendrite structure with dimensions from 500 to 1500 microm, and the grains of the alloy with the addition of 1% iron are small and equiaxed, with dimensions from 20 to 60 microm. Then, the relatively uniform dispersed particles in the copper matrix were identified with the HRTEM to be pure iron with dimensions in the order of 2-20 nm. The mechanical properties of the alloys were measured and the results show a significant increase in the tensile strength of the alloy with iron nanoparticles and a slight increase of the elongation compared to that without iron. The mechanism of formation of the iron nanoparticles was analyzed by thermodynamic and dynamic theories, and the results indicate that the in situ iron nanoparticles of Cu-3Sn-8Zn-6Pb alloy can reasonably form during solidification in the centrifugal casting technique. PMID:19417426

  10. Fabrication of a nanocomposite from in situ iron nanoparticle reinforced copper alloy

    NASA Astrophysics Data System (ADS)

    Wang, Zidong; Wang, Xuewen; Wang, Qiangsong; Shih, I.; Xu, J. J.

    2009-02-01

    In situ iron nanoparticle reinforced Cu-3Sn-8Zn-6Pb alloy has been fabricated by centrifugal casting in a vacuum chamber with a medium frequency electrical furnace. The microstructure of this alloy was analyzed with a scanning electron microscope (SEM) and a high-resolution transmission electron microscope (HRTEM), and the results show that the grains of Cu-3Sn-8Zn-6Pb alloy without iron have a typical dendrite structure with dimensions from 500 to 1500 µm, and the grains of the alloy with the addition of 1% iron are small and equiaxed, with dimensions from 20 to 60 µm. Then, the relatively uniform dispersed particles in the copper matrix were identified with the HRTEM to be pure iron with dimensions in the order of 2-20 nm. The mechanical properties of the alloys were measured and the results show a significant increase in the tensile strength of the alloy with iron nanoparticles and a slight increase of the elongation compared to that without iron. The mechanism of formation of the iron nanoparticles was analyzed by thermodynamic and dynamic theories, and the results indicate that the in situ iron nanoparticles of Cu-3Sn-8Zn-6Pb alloy can reasonably form during solidification in the centrifugal casting technique.

  11. Experimental investigation of bond in concrete members reinforced with shape memory alloy bars

    NASA Astrophysics Data System (ADS)

    Daghash, S. M.; Sherif, M. M.; Ozbulut, O. E.

    2015-04-01

    Conventional seismic design of reinforced concrete structures relies on yielding of steel reinforcement to dissipate energy while undergoing residual deformations. Therefore, reinforced concrete structures subjected to strong earthquakes experience large permanent displacements and are prone to severe damage or collapse. Shape memory alloys (SMAs) have gained increasing acceptance in recent years for use in structural engineering due to its attractive properties such as high corrosion resistance, excellent re-centering ability, good energy dissipation capacity, and durability. SMAs can undergo large deformations in the range of 6-8% strain and return their original undeformed position upon unloading. Due to their appealing characteristics, SMAs have been considered as an alternative to traditional steel reinforcement in concrete structures to control permanent deformations. However, the behavior of SMAs in combination with concrete has yet to be explored. In particular, the bond strength is important to ensure the composite action between concrete and SMA reinforcements. This study investigates the bond behavior between SMA bars and concrete through pull-out tests. To explore the size effect on bond strength, the tests are performed using various diameters of SMA bars. For the same diameter, the tests are also conducted with different embedment length to assess the effect of embedment length on bond properties of SMA bars. To monitor the slippage of the SMA reinforcement, an optical Digital Image Correlation method is used and the bond-slip curves are obtained.

  12. Feasibility of Cu-Al-Mn superelastic alloy bars as reinforcement elements in concrete beams

    NASA Astrophysics Data System (ADS)

    Shrestha, Kshitij C.; Araki, Yoshikazu; Nagae, Takuya; Koetaka, Yuji; Suzuki, Yusuke; Omori, Toshihiro; Sutou, Yuji; Kainuma, Ryosuke; Ishida, Kiyohito

    2013-02-01

    Experimental and numerical works are reported to assess the cyclic response of concrete beams reinforced with superelastic alloy (SEA) bars. The feasibility of newly developed Cu-Al-Mn SEA bars, characterized by large recovery strain, low material cost and high machinability, is examined as partial replacements for conventional steel bars, in order to reduce residual cracks in structures during and after intense earthquakes. Four-point reverse cyclic bending tests were done on one-third scale concrete beams comprising three different types of specimens—conventional steel reinforced concrete, SEA reinforced concrete and SEA reinforced concrete (RC) with pre-tensioning. The results showed that SEA reinforced concrete beams demonstrated strong recentering capability and significant enhancement in crack recovery capacity, in comparison to steel reinforced beams. Furthermore, corresponding finite element models were generated to simulate the experimental observations. Both the experimental observations and finite element computations illustrated the superiority of SEA bars to conventional steel bars in providing RC beam specimens with recentering and crack recovery capabilities.

  13. Three-dimensional characterization of fatigue-relevant intermetallic particles in high-strength aluminium alloys using synchrotron X-ray nanotomography

    NASA Astrophysics Data System (ADS)

    Nizery, E.; Proudhon, H.; Buffiere, J.-Y.; Cloetens, P.; Morgeneyer, T. F.; Forest, S.

    2015-09-01

    Second-phase particles and small porosities are known to favour fatigue crack initiation in high-strength aluminium alloys 2050-T8 and 7050-T7451. Using high-resolution X-ray tomography (320 nm voxel size), with Paganin reconstruction algorithms, the probability that large clusters of particles contain porosities could be measured for the first time in 3D, as well as precise 3D size distributions. Additional holotomography imaging provided improved spatial resolution (50 nm voxel size), allowing to estimate the probability of finding cracked particles in the as-received material state. The extremely precise 3D shape (including cracks) as well as local chemistry of the particles has been determined. This experiment enabled unprecedented 3D identification of detrimental stress risers relevant for fatigue in as-received aluminium alloys.

  14. Effect of Silicon on Mechanical and Wear Properties of Aluminium-Alloyed Gray Cast Iron

    NASA Astrophysics Data System (ADS)

    Vadiraj, Aravind; Tiwari, Shashank

    2014-08-01

    Influence of Si on mechanical and wear properties of Al-alloyed gray cast iron has been investigated in this work. The Si content is varied from 1.27 to 2.1% in five different alloys with nearly 2% Al additions. Alloy with 2.1% Si and 1.9% Al shows maximum ferrite matrix with highest flake volume (17.3%). It also has the lowest hardness and strength. Rest of the alloys with Si content equal to or less than 1.7% and 2% Al content shows maximum pearlite matrix with higher hardness and strength. They have also shown a tendency for oxide formation and reduced wear during sliding probably due to higher friction heat and lower heat dissipation tendency due to lower flake volume and Al addition which reduces thermal conductivity of the matrix. The same oxide layer was not evident in alloy with 2.1% Si and 1.9% Al alloy having the highest flake volume (17.3%).

  15. Evidence of [eta]' or ordered zone formation in aluminum alloy 7075 from differential scanning calorimetry. [Aluminium alloy 7075

    SciTech Connect

    Bartges, C.W. )

    1993-05-01

    The development of high strength levels in Al-Mg-Zn-(Cu) alloys is dependent on the decomposition of the supersaturated solid solution ([alpha][sub ss]). The equilibrium phase, [eta], and the transition phase, [eta][prime], have compositions Mg(Zn, Al, Cu)[sub 2] and the GP Zones are solute rich clusters. Several authors have presented evidence that there is another precipitate which forms between the GP Zones and [eta][prime], though there is some controversy whether it is crystallographically distinct from the matrix, [eta][prime], or an ordered GP Zone. Regardless of their structure, these particles are seldom observed and are not usually considered in the decomposition of these alloys. Most of the previous observations of these particles have been the result of involved transmission electron microscopic and X-ray scattering experiments. This report shows they may also be detected using differential scanning calorimetry (DSC). Also significant is the fact that the particles were observed in AA 7075, an important commercial alloy. Lloyd and Chaturvedi also saw indications of [eta][prime] or ordered zones using DSC, but the results reported herein are different in several important respects. DSC traces of alloys aged for various times at room temperature and 121 C have shown there is at least one phase which can form during the decomposition of aluminum alloy 7075 that is not usually stated in the decomposition reaction. The results of previous studies suggest they may be ordered GP Zones or [eta][prime].

  16. Aging characteristics of short glass fiber reinforced ZA-27 alloy composite materials

    NASA Astrophysics Data System (ADS)

    Sharma, S. C.; Girish, B. M.; Satish, B. M.; Kamath, R.

    1998-12-01

    Aging characteristics of short glass fiber reinforced ZA-27 alloy composite materials have been evaluated in the present study. The liquid metallurgy technique was used to fabricate the composites, in which preheated short glass fibers were introduced into the ZA-27 alloy melt above its liquidus temperature. The aging temperature employed was 125 °C for 6, 12,18, and 24 h. The aged alloy (no fibers) reached the peak hardness after 18 h, while the composites (regardless of filler content) reached the same hardness in 12 h. It is hypothesized that the aging treatment of a composite improves the strength of the interface between the short fibers and the matrix. This is confirmed by the tensile fractograph analysis, which indicates that at a given aging temperature, the composites aged for 18 h exhibit short fibers that remain attached to the metal matrix, while those aged for 6 h undergo debonding.

  17. Physical and mechanical properties of LoVAR: a new lightweight particle-reinforced Fe-36Ni alloy

    NASA Astrophysics Data System (ADS)

    Stephenson, Timothy; Tricker, David; Tarrant, Andrew; Michel, Robert; Clune, Jason

    2015-09-01

    Fe-36Ni is an alloy of choice for low thermal expansion coefficient (CTE) for optical, instrument and electrical applications in particular where dimensional stability is critical. This paper outlines the development of a particle-reinforced Fe-36Ni alloy that offers reduced density and lower CTE compared to the matrix alloy. A summary of processing capability will be given relating the composition and microstructure to mechanical and physical properties.

  18. Physical and Mechanical Properties of LoVAR: A New Lightweight Particle-Reinforced Fe-36Ni Alloy

    NASA Technical Reports Server (NTRS)

    Stephenson, Timothy; Tricker, David; Tarrant, Andrew; Michel, Robert; Clune, Jason

    2015-01-01

    Fe-36Ni is an alloy of choice for low thermal expansion coefficient (CTE) for optical, instrument and electrical applications in particular where dimensional stability is critical. This paper outlines the development of a particle-reinforced Fe-36Ni alloy that offers reduced density and lower CTE compared to the matrix alloy. A summary of processing capability will be given relating the composition and microstructure to mechanical and physical properties.

  19. High strain rate superplasticity of a {beta}-Si{sub 3}N{sub 4} whisker reinforced pure aluminium composite made by squeeze casting

    SciTech Connect

    Imai, T.; Tochigi, I.; Ai, K.; L`Esperance, G.; Hong, B.

    1996-05-15

    High strain rate superplasticity (HSRS) in ceramic whisker or particulate reinforced aluminum alloy composites is expected to offer an efficiently near-net shape forming technique to automobile, aerospace, and even semi-conductor industries, since the HSRS composites usually exhibit a total elongation of 250--600% at a high strain rate of about 0.1--10 s{sup {minus}1}. It is thought that primary deformation mechanism of the HSRS is grain boundary sliding since the composites have the fine grain size of 3{approximately}0.8 {micro}m. The purpose of this study is to develop a thermomechanical processing route to produce a fine microstructure and a HSRS in a {beta}-Si{sub 3}N{sub 4} whisker reinforced 99.99% pure aluminum composite fabricated by squeeze casting. In addition, superplastic deformation mechanism of the composite are also discussed.

  20. Impact resistance and hardness modelling of Aluminium alloy welds using square-headed friction-stir welding tool

    NASA Astrophysics Data System (ADS)

    Sudhakar, U.; Srinivas, J., Dr.

    2016-02-01

    This paper proposes modelling and optimization issues relating to friction-stir welding process of aluminium alloys. A specially prepared SS tool of square headed pin profile with cylindrical shoulder is used with a vertical milling machine. Effects of process variables including tool rotation and tool velocity on the weld performance are studied in terms of impact strength and hardness. Three different rotational motions and three welding speeds (feeds) of tool are considered at constant axial load (depth of cut) condition and altogether nine experiments are conducted on a vertical milling machine with specially prepared fixture. Each weld sample is then tested for its impact strength (IS) and hardness independently. A model is developed to correlate the relations between the hardness/impact strength with tool rotation and weld speed using neural networks. The optimized process conditions are predicted to improvise the impact strength and hardness of the weld. Further, the morphology of the weld is studied using SEM to know the material flow characteristics.

  1. Development of Carbon Fiber Reinforced Stellite Alloy Based Composites for Tribocorrosion Applications

    NASA Astrophysics Data System (ADS)

    Khoddamzadeh, Alireza

    This thesis reports the design and development of two classes of new composite materials, which are low-carbon Stellite alloy matrices, reinforced with either chopped plain carbon fiber or chopped nickel-coated carbon fiber. The focus of this research is on obviating the problems related to the presence of carbides in Stellite alloys by substituting carbides as the main strengthening agent in Stellite alloys with the aforementioned carbon fibers. Stellite 25 was selected as the matrix because of its very low carbon content (0.1 wt%) and thereby relatively carbide free microstructure. The nickel coating was intended to eliminate any chance of carbide formation due to the possible reaction between carbon fibers and the matrix alloying additions. The composite specimens were fabricated using the designed hot isostatic pressing and sintering cycles. The fabricated specimens were microstructurally analyzed in order to identify the main phases present in the specimens and also to determine the possible carbide formation from the carbon fibers. The material characterization of the specimens was achieved through density, hardness, microhardness, corrosion, wear, friction, and thermal conductivity tests. These novel materials exhibit superior properties compared to existing Stellite alloys and are expected to spawn a new generation of materials used for high temperature, severe corrosion, and wear resistant applications in various industries.

  2. Microstructure and mechanical properties of Ni sub 3 Al-based alloys reinforced with particulates

    SciTech Connect

    McKamey, C.G.; Carmichael, C.A.

    1990-01-01

    Hot-extrusion was used to produce Ni{sub 3}Al-based alloys to which 10 vol % TiN, NbC, HfO{sub 2}, or HfN was added for reinforcement. The TiN, NbC, and HfO{sub 2} particulates produced Ni{sub 3}Al-matrix composites in which no reaction was noted at the particle-matrix interface. However, the addition of HfN resulted in extensive reaction in which the hafnium appeared to diffuse into the matrix. Microstructures of this alloy showed a complex array of phases and voids where the HfN particles are presumed to have been originally. Hot hardness, compression, and compression creep tests were preformed on specimens cut from the extruded bar of each alloy. No significant strengthening was observed for the alloys containing TiN, NbC, or HfO{sub 2}. However the HfN-containing alloy did show significant strengthening in simple compression and compression creep. This presentation will include microstructures and the results of the mechanical properties tests. 26 refs., 5 figs.

  3. Emission of nanoparticles during friction stir welding (FSW) of aluminium alloys.

    PubMed

    Gomes, J F; Miranda, R M; Santos, T J; Carvalho, P A

    2014-01-01

    Friction stir welding (FSW) is now well established as a welding process capable of joining some different types of metallic materials, as it was (1) found to be a reliable and economical way of producing high quality welds, and (2) considered a "clean" welding process that does not involve fusion of metal, as is the case with other traditional welding processes. The aim of this study was to determine whether the emission of particles during FSW in the nanorange of the most commonly used aluminum (Al) alloys, AA 5083 and AA 6082, originated from the Al alloy itself due to friction of the welding tool against the item that was being welded. Another goal was to measure Al alloys in the alveolar deposited surface area during FSW. Nanoparticles dimensions were predominantly in the 40- and 70-nm range. This study demonstrated that microparticles were also emitted during FSW but due to tool wear. However, the biological relevance and toxic manifestations of these microparticles remain to be determined. PMID:25072724

  4. Finite Element Modelling of the Sawing of DC Cast AA2024 Aluminium Alloy Slabs

    SciTech Connect

    Drezet, J.-M.; Ludwig, O.; Heinrich, B.

    2007-04-07

    In the semi-continuous casting of large cross-section rolling sheet ingots of high-strength aluminum alloys (2xxx and 7xxx series), the control of the residual (internal) stresses generated by the non-uniform cooling becomes a necessity. These stresses must be relieved by a thermal treatment before the head and foot of the ingot can be cut. Otherwise, the saw can be caught owing to compressive stresses or cut parts may be ejected thus injuring people or damaging equipment. These high added-value ingots need to be produced in secure conditions. Moreover, a better control of the sawing procedure could allow the suppression of the thermal treatment and therefore save time and energy. By studying the stress build-up during casting and the stress relief during sawing, key parameters for the control and optimization of the processing steps, can be derived. To do so, the direct chill (DC) casting of the AA2024 alloy is modeled with ABAQUS 6.5 with special attention to the thermo-mechanical properties of the alloy. The sawing operation is then simulated by removing mesh elements so as to reproduce the progression of the saw in the ingot. Preliminary results showing the stress relief during sawing accompanied by the risk of saw blocking due to compression or initiating a crack ahead of the saw, are analyzed with an approach based on the rate of strain energy release.

  5. Finite Element Modelling of the Sawing of DC Cast AA2024 Aluminium Alloy Slabs

    NASA Astrophysics Data System (ADS)

    Drezet, J.-M.; Ludwig, O.; Heinrich, B.

    2007-04-01

    In the semi-continuous casting of large cross-section rolling sheet ingots of high-strength aluminum alloys (2xxx and 7xxx series), the control of the residual (internal) stresses generated by the non-uniform cooling becomes a necessity. These stresses must be relieved by a thermal treatment before the head and foot of the ingot can be cut. Otherwise, the saw can be caught owing to compressive stresses or cut parts may be ejected thus injuring people or damaging equipment. These high added-value ingots need to be produced in secure conditions. Moreover, a better control of the sawing procedure could allow the suppression of the thermal treatment and therefore save time and energy. By studying the stress build-up during casting and the stress relief during sawing, key parameters for the control and optimization of the processing steps, can be derived. To do so, the direct chill (DC) casting of the AA2024 alloy is modeled with ABAQUS 6.5 with special attention to the thermo-mechanical properties of the alloy. The sawing operation is then simulated by removing mesh elements so as to reproduce the progression of the saw in the ingot. Preliminary results showing the stress relief during sawing accompanied by the risk of saw blocking due to compression or initiating a crack ahead of the saw, are analyzed with an approach based on the rate of strain energy release.

  6. Computational prediction of the refinement of oxide agglomerates in a physical conditioning process for molten aluminium alloy

    NASA Astrophysics Data System (ADS)

    Tong, M.; Jagarlapudi, S. C.; Patel, J. B.; Stone, I. C.; Fan, Z.; Browne, D. J.

    2015-06-01

    Physically conditioning molten scrap aluminium alloys using high shear processing (HSP) was recently found to be a promising technology for purification of contaminated alloys. HSP refines the solid oxide agglomerates in molten alloys, so that they can act as sites for the nucleation of Fe-rich intermetallic phases which can subsequently be removed by the downstream de-drossing process. In this paper, a computational modelling for predicting the evolution of size of oxide clusters during HSP is presented. We used CFD to predict the macroscopic flow features of the melt, and the resultant field predictions of temperature and melt shear rate were transferred to a population balance model (PBM) as its key inputs. The PBM is a macroscopic model that formulates the microscopic agglomeration and breakage of a population of a dispersed phase. Although it has been widely used to study conventional deoxidation of liquid metal, this is the first time that PBM has been used to simulate the melt conditioning process within a rotor/stator HSP device. We employed a method which discretizes the continuous profile of size of the dispersed phase into a collection of discrete bins of size, to solve the governing population balance equation for the size of agglomerates. A finite volume method was used to solve the continuity equation, the energy equation and the momentum equation. The overall computation was implemented mainly using the FLUENT module of ANSYS. The simulations showed that there is a relatively high melt shear rate between the stator and sweeping tips of the rotor blades. This high shear rate leads directly to significant fragmentation of the initially large oxide aggregates. Because the process of agglomeration is significantly slower than the breakage processes at the beginning of HSP, the mean size of oxide clusters decreases very rapidly. As the process of agglomeration gradually balances the process of breakage, the mean size of oxide clusters converges to a

  7. Compressive behavior of titanium alloy skin-stiffener specimens selectively reinforced with boron-aluminum composite

    NASA Technical Reports Server (NTRS)

    Herring, H. W.; Carri, R. L.; Webster, R. C.

    1971-01-01

    A method of selectively reinforcing a conventional titanium airframe structure with unidirectional boron-aluminum composite attached by brazing was successfully demonstrated in compression tests of short skin-stiffener specimens. In a comparison with all-titanium specimens, improvements in structural performance recorded for the composite-reinforced specimens exceeded 25 percent on an equivalent-weight basis over the range from room temperature to 700 K (800 F) in terms of both initial buckling and maximum strengths. Performance at room temperature was not affected by prior exposure at 588 K (600 F) for 1000 hours in air or by 400 thermal cycles between 219 K and 588 K (-65 F and 600 F). The experimental results were generally predictable from existing analytical procedures. No evidence of failure was observed in the braze between the boron-aluminum composite and the titanium alloy.

  8. Observations on infiltration of silicon carbide compacts with an aluminium alloy

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Rohatgi, P. K.

    1992-01-01

    The melt infiltration of ceramic particulates permits an opportunity to observe such fundamental materials phenomena as nucleation, dynamic wetting and growth in constrained environments. Experimental observations are presented on the infiltration behavior and matrix microstructures that form when porous compacts of platelet-shaped single crystals of alpha- (hexagonal) silicon carbide are infiltrated with a liquid 2014 Al alloy. The infiltration process involved counter gravity infiltration of suitably tamped and preheated compacts of silicon carbide platelets under an external pressure in a special pressure chamber for a set period, then by solidification of the infiltrant metal in the interstices of the bed at atmospheric pressure.

  9. Aluminium plasmonics

    SciTech Connect

    Gerard, Davy; Gray, Stephen K.

    2014-12-15

    In this study, we present an overview of 'aluminium plasmonics', i.e. the study of both fundamental and practical aspects of surface plasmon excitations in aluminium structures, in particular thin films and metal nanoparticles. After a brief introduction noting both some recent and historical contributions to aluminium plasmonics, we discuss the optical properties of aluminium and aluminium nanostructures and highlight a few selected studies in a host of areas ranging from fluorescence to data storage.

  10. ``Long-life`` aluminium brazing alloys for automotive radiators -- a ten-year retrospective

    SciTech Connect

    Scott, A.C.; Woods, R.A.

    1998-12-31

    A class of corrosion-resistant brazing sheet materials, generally referred to as ``long-life alloys,`` has been in widespread use in brazed aluminum automobile radiators for over ten years. K319 tube material was initially introduced in 1986 to address the problem of road-salt-induced, outside-in corrosion of tubes in vacuum-brazed aluminum radiators, The development history, metallurgy, and field performance of long-life radiator brazing sheet are reviewed. This material utilizes the familiar sacrificial layer concept to improve corrosion resistance; however, it is unusual in that the layer is not introduced by conventional cladding means during sheet manufacture, but rather develops in situ by metallurgical transformations which occur during the brazing cycle. The sacrificial layer, about 25 mV anodic to the core alloy, increases by an order of magnitude the time-to-perforation of radiator tube sheet tested in cyclic acidified salt spray (SWAAT), which mimics the corrosion morphology observed in the field. Radiators examined after ten years of field service show excellent corrosion resistance, as predicted by SWAAT.

  11. Process-scale modelling of microstructure in direct chill casting of aluminium alloys

    NASA Astrophysics Data System (ADS)

    Bedel, M.; Heyvaert, L.; Založnik, M.; Combeau, H.; Daloz, D.; Lesoult, G.

    2015-06-01

    The mechanical properties of an alloy being related to its microstructure, the understanding of the mechanisms responsible for the grain structure formation in direct chill casting is crucial. However, the grain size prediction by modelling is difficult since a variety of multi-scale coupled phenomena have to be considered. Nucleation and growth of the grains are interrelated, and the macroscopic transport phenomena such as the motion of grains and inoculant particles with the flow impact the nucleation-gowth competition. Thus we propose to study the grain size distribution of a 5182 alloy industrial scale slab of 510 mm thickness, both non-inoculated and inoculated with Al-3Ti-1B, for which experimental grain size measurements are available. We use a volume-averaged two-phase multi-scale model that describes nucleation from inoculant particles and grain growth, fully coupled with macroscopic transport phenomena: fluid flow induced by natural convection and solidification shrinkage, heat, mass and solute mass transport, grains and inoculant particles motion. We analyze the effect of liquid and grain motion as the effect of grain morphology on microstructure formation and we show in which extent those phenomena are responsible for the grain size distribution observed experimentally. The effect of the refiner level is also studied.

  12. Reactive spark plasma sintering (SPS) of nitride reinforced titanium alloy composites

    SciTech Connect

    Borkar, Tushar; Nag, Soumya; Ren, Yang; Tiley, Jaimie; Banerjee, Rajarshi

    2014-12-25

    Coupled in situ alloying and nitridation of titanium–vanadium alloys, has been achieved by introducing reactive nitrogen gas during the spark plasma sintering (SPS) of blended titanium and vanadium elemental powders, leading to a new class of nitride reinforced titanium alloy composites. The resulting microstructure includes precipitates of the d-TiN phase with the NaCl structure, equiaxed (or globular) precipitates of a nitrogen enriched hcp a(Ti,N) phase with a c/a ratio more than what is expected for pure hcp Ti, and fine scale plate-shaped precipitates of hcp a-Ti, distributed within a bcc b matrix. During SPS processing, the d-TiN phase appears to form at a temperature of 1400 C, while only hcp a(Ti,N) and a-Ti phases form at lower processing temperatures. Consequently, the highest microhardness is exhibited by the composite processed at 1400 C while those processed at 1300 C or below exhibit lower values. Processing at temperatures below 1300 C, resulted in an incomplete alloying of the blend of titanium and vanadium powders. These d-TiN precipitates act as heterogeneous nucleation sites for the a(Ti,N) precipitates that appear to engulf and exhibit an orientation relationship with the nitride phase at the center. Furthermore, fine scale a-Ti plates are precipitated within the nitride precipitates, presumably resulting from the retrograde solubility of nitrogen in titanium.

  13. Hard particle reinforced aluminum-alloys for aircraft applications EWISCO 1993--1994

    SciTech Connect

    Lugscheider, E.; Jokiel, P.; Remer, P.; Yushchenko, K.; Borisov, Y.; Vitiaz, P.; Steinhaeuser, S.

    1994-12-31

    Light metals such as aluminum, titanium, magnesium are widely used as structural materials in industrial parts. Their low density combined with reasonable physical properties are the main advantages of these materials that have led to a wide range of applications in transportation, particularly in the fabrication of aircrafts. Some of the disadvantages of these light metals and alloys are low wear resistance, high reactivity and low thermal tolerance. Thermal sprayed coatings are required to protect these structures and to broaden the use of these materials. The goal of this collaborative research work was to improve wear and corrosion properties of common Al-alloys. Five hard particle reinforced aluminum based powders were sprayed with different thermal spray processes. In order to optimize the wear and corrosion resistance of the coatings different spray processes and spray parameters were investigated. The coatings were produced mainly using atmospherical plasma spraying and CDS (continuous detonation spraying). Further tests with two ukrainian types of flame spraying were carried out. The aluminum alloy 7075 [AlZnMgCu1,5] was used as substrate material. Powder and coating morphology, porosity and homogeneity were investigated. Several tests for wear, corrosion behavior, bond strength and hardness were also carried out. The results of this investigation illustrate the excellent properties of thermal sprayed surface coatings in the field of wear and corrosion protection which expands the future applications of these aluminum alloys. This paper presents the results obtained at the Materials Science Institute, Aachen.

  14. [Comporison Sduty of Microstructure by Metallographicalk on the Polarized Light and Texture by XRD of CC 5083 and CC 5182 Aluminium Alloy after Cold Rolling and Recrystallization].

    PubMed

    Chen, Ming-biao; Li, Yong-wei; Tan, Yuan-biao; Ma, Min; Wang, Xue-min; Liu, Wen-chang

    2015-03-01

    At present the study of relation between microstructure, texture and performance of CC 5083 aluminium alloy after cold tolling and recrystallization processes is still finitude. So that the use of the CC 5083 aluminium alloy be influenced. Be cased into electrical furnace, hot up with unlimited speed followed the furnace hot up to different temperature and annealed 2h respectively, and be cased into salt-beth furnace, hot up quickly to different temperature and annealed 30 min respectively for CC 5083 and CC 5182 aluminum alloy after cold roling with 91.5% reduction. The microstructure be watched use metallographic microscope, the texture be inspected by XRD. The start temperature of recrystallization and grain grow up temperature within annealing in the electric furnace of CC 5083 aluminum alloy board is 343 degrees C, and the shap of grain after grow up with long strip (the innovation point ); The start temperature of recrystallization within annealling in the salt bath furnace of CC 5083 is 343 degrees C. The start temperature and end temperature of recrystallization within annealling of CC 5083 and CC 5182 aluminum alloy is 371 degrees C. The grain grow up outstanding of cold rooled CC 5152 aluminum alloy after annealed with 454 degrees C in the electric furnace and salt bath furnace. The start temperature of grain grow up of CC 5083 alluminurn alloy annealed in the electric furnace and salt bath furnace respectively is higher than the start temperature of grain grow up of CC 5182 alluminum alloy annealed in the electric furnace and salt bath furnace respectively. The strat temperature of recrystallization grain grow up is higher than which annealled with other three manner annealing process. The recrystallization temperature of CC 5182 annealed in the salt bath furnace is higher than which annealed in the electric furnace. The recrystallization temperature of the surface layer of CC 5083 and CC 5182 aluminum alloy is higher than the inner layer (the innovation

  15. Study on aluminium-based single films.

    PubMed

    Vinod Kumar, G S; García-Moreno, F; Babcsán, N; Brothers, A H; Murty, B S; Banhart, J

    2007-12-28

    In the present paper the authors studied isolated metallic films made from the same material used for making metallic foams, and then characterised their properties. Metal films were made from a liquid aluminium alloy reinforced with ceramic particles of known concentration. Melts without such particles were also investigated. It is shown that stable films could not be made from Al-Si alloy having no particles, and just extremely thin and fragile films could be made from commercially-pure Al. In contrast, aluminium alloys containing particles such as SiC and TiB(2) allowed pulling thin, stable films, which did not rupture. Significant thinning of films was observed when the particle concentration in the melt decreased. By in situ X-ray monitoring of liquid films during pulling, film thickness and drainage effects within the liquid film could be studied. The morphology and microstructure of films was characterised after solidification. Our work shows that the question of how foams are stabilised can be studied using a simplified system such as a film, instead of having to deal with the multitude of different structural elements present in a foam. PMID:18060172

  16. On the melt infiltration of copper coated silicon carbide with an aluminium alloy

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Rohatgi, P. K.

    1992-01-01

    Pressure-assisted infiltration of porous compacts of Cu coated and uncoated single crystals of platelet shaped alpha (hexagonal) SiC was used to study infiltration dynamics and particulate wettability with a 2014 Al alloy. The infiltration lengths were measured for a range of experimental variables which included infiltration pressure, infiltration time, and SiC size. A threshold pressure (P(th)) for flow initiation through compacts was identified from an analysis of infiltration data; P(th) decreased while penetration lengths increased with increasing SiC size (more fundamentally, due to changes in interparticle pore size) and with increasing infiltration times. Cu coated SiC led to lower P(th) and 60-80 percent larger penetration lengths compared to uncoated SiC under identical processing conditions.

  17. Fatigue properties of as-welded AA6005 and AA6082 aluminium alloys in T1 and T5 temper condition

    SciTech Connect

    Ranes, M.; Kluken, A.O.; Midling, O.T.

    1996-12-31

    The present investigation was undertaken to determine the as-welded fatigue properties of AA6005 and AA6082 aluminium alloys in the T1 and T5 temper conditions. Extruded flat bars of the base materials were welded by means of the Metal Inert Gas (MIG), Friction Stir and Plasma-keyhole techniques. The latter technique was only employed for alloy AA6005. The weldments were subsequently fatigue tested at a load ratio of 0.5. The results revealed that the friction stir welds had fatigue properties superior to both the MIG and Plasma-keyhole welds. For alloy AA6005 the fatigue properties of the friction stir weld was close to the base material properties. The shortest fatigue life was exhibited by the MIG welds. The fatigue strength of these weldments appear to be affected by the base metal temper condition. For this reason, MIG welds on alloy AA6082 should be performed in the T5 temper condition, while alloy AA6005 should be welded in the T1 temper condition. Plasma-keyhole welds should be performed on T1 tempered material rather than on T5 tempered material. Repair welding of MIG welds on the T1 tempered base material resulted in improved fatigue properties of AA6082 weldments, while the fatigue strength of AA6005 weldments remained unaffected. The fatigue properties of MIG welds in alloy AA6082 correspond well with the static strength properties.

  18. Effect of severe plastic deformation on microstructure and mechanical properties of magnesium and aluminium alloys in wide range of strain rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir; Skripnyak, Evgeniya; Skripnyak, Vladimir; Vaganova, Irina; Skripnyak, Nataliya

    2013-06-01

    Results of researches testify that a grain size have a strong influence on the mechanical behavior of metals and alloys. Ultrafine grained HCP and FCC metal alloys present higher values of the spall strength than a corresponding coarse grained counterparts. In the present study we investigate the effect of grain size distribution on the flow stress and strength under dynamic compression and tension of aluminium and magnesium alloys. Microstructure and grain size distribution in alloys were varied by carrying out severe plastic deformation during the multiple-pass equal channel angular pressing, cyclic constrained groove pressing, and surface mechanical attrition treatment. Tests were performed using a VHS-Instron servo-hydraulic machine. Ultra high speed camera Phantom V710 was used for photo registration of deformation and fracture of specimens in range of strain rates from 0,01 to 1000 1/s. In dynamic regime UFG alloys exhibit a stronger decrease in ductility compared to the coarse grained material. The plastic flow of UFG alloys with a bimodal grain size distribution was highly localized. Shear bands and shear crack nucleation and growth were recorded using high speed photography.

  19. In-situ processing of aluminum nitride particle reinforced aluminum alloy composites

    NASA Astrophysics Data System (ADS)

    Zheng, Qingjun

    Discontinuously reinforced aluminum alloy composites (DRACs) have potential applications in automotive, electronic packaging, and recreation industries. Conventional processing of DRACs is by incorporation of ceramic particles/whiskers/fibers into matrix alloys. Because of the high cost of ceramic particles, DRACs are expensive. The goal of this work was to develop a low-cost route of AlN-Al DRACs processing through bubbling and reacting nitrogen and ammonia gases with aluminum alloy melt in the temperature range of 1373--1523 K. Thermodynamic analysis of AlN-Al alloy system was performed based on Gibbs energy minimization theory. AlN is stable in aluminum, Al-Mg, Al-Si, Al-Zn, and Al-Li alloys over the whole temperature range for application and processing of DRACs. Experiments were carried out to form AlN by bubbling nitrogen and ammonia gases through aluminum, Al-Mg, and Al-Si alloy melts. Products were characterized with XRD, SEM, and EDX. The results showed that in-situ processing of AlN reinforced DRACs is technically feasible. Significant AlN was synthesized by bubbling deoxidized nitrogen and ammonia gases. When nitrogen gas was used as the nitrogen precursor, the AlN particles formed in-situ are small in size, (<10 mum). The formation of AlN is strongly affected by the trace oxygen impurities in the nitrogen gas. The deleterious effect of oxygen impurities is due to their inhibition to the chemisorption of nitrogen gas at the interface. In comparison with nitrogen gas, bubbling ammonia led to formation of AlN particles in smaller size (about 2 mum or less) at a significantly higher rate. Ammonia is not stable and dissociated into nitrogen and hydrogen at reaction temperatures. The hydrogen functions as oxygen-getter at the interface and benefits chemisorption of nitrogen, thereby promoting the formation of AlN. The overall process of AlN formation was modeled using two-film model. For nitrogen bubbling gas, the whole process is controlled by chemisorption

  20. A Modified Constitutive Equation for Aluminum Alloy Reinforced by Silicon Carbide Particles at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Yang, Yajing; Li, Fuguo; Yuan, Zhanwei; Qiao, Huijuan

    2013-09-01

    In this paper, the constitutive relationship of an aluminum alloy reinforced by silicon carbide particles is investigated using a new method of double multivariate nonlinear regression (DMNR) in which the strain, strain rate, deformation temperature, and the interaction effect among the strain, strain rate, and deformation temperature are considered. The experimental true stress-strain data were obtained by isothermal hot compression tests on a Gleeble-3500 thermo-mechanical simulator in the temperature range of 623-773 K and the strain rate range of 0.001-10 s-1. The experiments showed that the material-softening behavior changed with the strain rate, and it changed from dynamic recovery to dynamic recrystallization with an increase in the strain rate. A new constitutive equation has been established by the DMNR; the correlation coefficient ( R) and average absolute relative error (AARE) of this model are 0.98 and 7.8%, respectively. To improve the accuracy of the model, separate constitutive relationships were obtained according to the softening behavior. At strain rates of 0.001, 0.01, 0.1, and 1 s-1, the R and AARE are 0.9865 and 6.0%, respectively; at strain rates of 5 and 10 s-1, the R and AARE are 0.9860 and 3.0%, respectively. The DMNR gives an accurate and precise evaluation of the flow stress for the aluminum alloy reinforced by silicon carbide particles.

  1. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant

    PubMed Central

    Petersen, Richard C.

    2014-01-01

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P < 10−4, and 19.3% to 77.7% at 0.1 mm, P < 10−8. Carbon-fiber fragments planned to occur in the test designs, instead of producing an inflammation, stimulated bone formation and increased bone integration to the implant. In addition, low-thermal polymer processing allows incorporation of minerals and pharmaceuticals for future major tissue-engineering potential. PMID:25553057

  2. Elemental electron energy loss mapping of a precipitate in a multi-component aluminium alloy.

    PubMed

    Mørtsell, Eva A; Wenner, Sigurd; Longo, Paolo; Andersen, Sigmund J; Marioara, Calin D; Holmestad, Randi

    2016-07-01

    The elemental distribution of a precipitate cross section, situated in a lean Al-Mg-Si-Cu-Ag-Ge alloy, has been investigated in detail by electron energy loss spectroscopy (EELS) and aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). A correlative analysis of the EELS data is connected to the results and discussed in detail. The energy loss maps for all relevant elements were recorded simultaneously. The good spatial resolution allows elemental distribution to be evaluated, such as by correlation functions, in addition to being compared with the HAADF image. The fcc-Al lattice and the hexagonal Si-network within the precipitates were resolved by EELS. The combination of EELS and HAADF-STEM demonstrated that some atomic columns consist of mixed elements, a result that would be very uncertain based on one of the techniques alone. EELS elemental mapping combined with a correlative analysis have great potential for identification and quantification of small amounts of elements at the atomic scale. PMID:27124585

  3. The effect of welding parameters on surface quality of AA6351 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Yacob, S.; MAli, M. A.; Ahsan, Q.; Ariffin, N.; Ali, R.; Arshad, A.; Wahab, M. I. A.; Ismail, S. A.; Roji, NS M.; Din, W. B. W.; Zakaria, M. H.; Abdullah, A.; Yusof, M. I.; Kamarulzaman, K. Z.; Mahyuddin, A.; Hamzah, M. N.; Roslan, R.

    2015-12-01

    In the present work, the effects of gas metal arc welding-cold metal transfer (GMAW-CMT) parameters on surface roughness are experimentally assessed. The purpose of this study is to develop a better understanding of the effects of welding speed, material thickness and contact tip to work distance on the surface roughness. Experiments are conducted using single pass gas metal arc welding-cold metal transfer (GMAW-CMT) welding technique to join the material. The material used in this experiment was AA6351 aluminum alloy with the thickness of 5mm and 6mm. A Mahr Marsuft XR 20 machine was used to measure the average roughness (Ra) of AA6351 joints. The main and interaction effect analysis was carried out to identify process parameters that affect the surface roughness. The results show that all the input process parameters affect the surface roughness of AA6351 joints. Additionally, the average roughness (Ra) results also show a decreasing trend with increased of welding speed. It is proven that gas metal arc welding-cold metal transfer (GMAW-CMT)welding process has been successful in term of providing weld joint of good surface quality for AA6351 based on the low value surface roughness condition obtained in this setup. The outcome of this experimental shall be valuable for future fabrication process in order to obtained high good quality weld.

  4. Analysis of interfacial debonding in shape memory alloy wire-reinforced composites

    NASA Astrophysics Data System (ADS)

    Miramini, A.; Kadkhodaei, M.; Alipour, A.; Mashayekhi, M.

    2016-01-01

    One of the common types of failure in shape memory alloy (SMA) wire-reinforced composites is interfacial debonding between the fiber and the matrix. In this paper, a three dimensional finite element model for an SMA wire-reinforced composite is developed based on cohesive zone modeling to predict interfacial debonding between the SMA wire and the surrounding matrix. The interfacial debonding is also experimentally investigated by conducting a number of pull-out tests on steel as well as Nitinol wires embedded in an epoxy matrix. To evaluate the presented method, the developed finite element analysis is employed to simulate a single wire pull-out test for ordinary (e.g. steel) wires. In order to simulate SMA wire pull-out, a 3D SMA constitutive model is implemented into the commercial finite element software ABAQUS using a user material subroutine (UMAT). An acceptable agreement is shown to exist between the theoretical results and the experimental data, indicating the efficiency of the proposed approach to model interfacial debonding in SMA wire-reinforced composites.

  5. Characterization of reinforcement distribution in cast Al-alloy/SiC{sub p} composites

    SciTech Connect

    Karnezis, P.A.; Durrant, G.; Cantor, B.

    1998-02-01

    The distribution of reinforcement in 10% SiC and 20% SiC{sub p} reinforced A356 alloy processed by gravity casting, squeeze casting, and roll casting is studied by using the mean free path, nearest neighbor distance, radial distribution function, and quadrat methods. The study is performed by using computer image analysis methods in an automated procedure to prevent operator errors, improve sample size, and minimize analysis time. From the methods used to characterize the SiC{sub p} distributions, the quadrat method and radial distribution function are found to be more effective in detecting pronounced changes in the metal-matrix composite (MMC) microstructure through appropriate parameters, whereas the mean free path is characteristic of the particular MMC system rather than process specific. Furthermore, the nearest neighbor distance is of little use in studying cast MMCs, because it is affected by local clusters of a few SiC particles commonly found in cast MMCs, thus failing to characterize the macroscopic arrangement of reinforcement. Quantitative methods present themselves as a useful tool for quality control in MMC fabrication and can be used to correlate particle distribution and properties of MMC systems.

  6. Effect of Alloying Elements on Tensile Properties, Microstructure, and Corrosion Resistance of Reinforcing Bar Steel

    NASA Astrophysics Data System (ADS)

    Panigrahi, B. K.; Srikanth, S.; Sahoo, G.

    2009-11-01

    The effect of copper, phosphorus, and chromium present in a semikilled reinforcing bar steel produced by in-line quenching [thermomechanical treatment (TMT)] process on the tensile properties, microstructure, and corrosion resistance of steel in simulated chloride environment has been investigated. The results have been compared with that of a semikilled C-Mn reinforcing bar steel without these alloying elements produced by the same process route. Though the amount of phosphorus (0.11 wt.%) was higher than that specified by ASTM A 706 standard, the Cu-P-Cr steel exhibited a composite microstructure, and good balance of yield stress, tensile stress, elongation, and ultimate tensile to yield stress ratio. Two conventional test methods, namely, the salt fog, and potentiodynamic polarization tests, were used for the corrosion test. The rust formed on Cu-P-Cr steel was adherent, and was of multiple colors, while the corrosion products formed on the C-Mn steel were weakly adherent and relatively darker blue. Also, the free corrosion potential of the Cu-P-Cr steel was nobler, and the corrosion current was markedly lower than that of a C-Mn rebar. The Cu-P-Cr steel did not develop any pits/deep grooves on its surface even after the prolonged exposure to salt fog. The improved corrosion resistance of the Cu-P-Cr steel has been attributed to the presence of copper, phosphorus, and small amount of chromium in the dense, adherent rust layer on the surface of reinforcing steel bar. A schematic mechanism of charge transfer has been proposed to explain the improved corrosion resistance of the Cu-P-Cr alloyed TMT rebar.

  7. Strength of MWCNT-Reinforced 70Sn-30Bi Solder Alloys

    NASA Astrophysics Data System (ADS)

    Billah, Md Muktadir; Chen, Quanfang

    2016-01-01

    In this study, the effect of Cu-coated multi-walled carbon nanotubes (MWCNTs) on the tensile strength of 70Sn-30Bi solder alloy has been investigated. Copper was first deposited onto metal-activated MWCNTs by an electroless process and confirmed with a scanning electron microscope and energy dispersive spectroscopy. Sn-Bi alloy solder was reinforced with Cu-coated MWCNTs with additions of 0.5 wt.%, 1 wt.%, 2 wt.%, and 3 wt.%, respectively. 70Sn-30Bi solder was produced by melting pure tin and bismuth in an inert gas atmosphere. Cu-coated MWCNTs were then added into the metal matrix by cold rolling, followed by hot pressing to disperse the carbon nanotubes (CNTs) in the matrix. Tensile tests were conducted on an mechanical testing and simulation (MTS) tester. The tensile strength was found to be proportional to the addition of Cu/MWCNTs, and about 47.6% increase in tensile strength over the pure alloy has been obtained for an addition of 3 wt.% Cu/MWCNTs. The Cu coating may enhance CNT dispersion to prevent tangling.

  8. Dry Sliding Wear Behaviour of Flyash Reinforced ZA-27 Alloy Based Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Sharma, S. C.; Krishna, M.; Bhattacharyya, D.

    In the present investigation, an attempt has been made to evaluate the wear rate of ZA-27 alloy composites reinforced with fly ash particles from 1 to 3 wt% in steps of 1 wt%. The compo-casting method has been used to fabricate the composites using Raichur fly ash of average size 3-5 microns. The wear specimens are tested under dry conditions using a pin-on-disc sliding wear testing machine with wear loads of 20-120 N in steps of 20 N, and the sliding distances in the range of 0.5 km to 2.5 km. The results indicate that the wear rate of the composites is less than that of the matrix alloy and it further decreases with the increase in fly ash content. However, the material loss in terms of wear rate and wear volume increases with the increase in load and sliding distance, both in the cases of composites and the matrix alloy. An increase in the applied load increases the wear severity by changing the wear mechanism from abrasion to particle-cracking induced delamination wear. It is found that with the increase in fly ash content, the wear resistance increases monotonically. The observations have been explained using scanning electron microscope (SEM) analysis of the worn surfaces of the composites.

  9. Wear response of a Zn-base alloy in the presence of SiC particle reinforcement: A comparative study with a copper-base alloy

    SciTech Connect

    Prasad, B.K.; Das, S.; Modi, O.P.; Jha, A.K.; Dasgupta, R.; Yegneswaran, A.H.

    1999-12-01

    An attempt has been made in this study to examine the effects produced by the reinforcement of (10 wt%) SiC particles on the sliding wear behavior of a Zn-base alloy. The matrix alloy was also subjected to identical test conditions to assess the influence of the SiC dispersoid phase. The wear characteristics of the (Zn-base alloy) composite and the matrix alloy were also compared with those of a Cu-base alloy (i.e., an aluminum bronze) in order to understand the scope of exploiting the Zn-base alloy matrix/composite as a substitute material for the latter (Cu-base) alloy. It has been observed that low frictional heat generated at the lower sliding speed (0.42 m/s) enabled the Zn-base (matrix) alloy to perform better than the composite material, while the Cu-base alloy showed intermediate wear resistance. On the contrary, the trend changed at a higher sliding speed (4.62 m/s) when high frictional heating caused the wear behavior of the Cu-base alloy to be superior to that of the Zn-base (matrix) alloy. The composite in this case performed better than the matrix alloy. The wear behavior of the specimens has been explained in terms of factors like microcracking tendency and thermal stability introduced by the SiC dispersoid phase and lubricating, load bearing, and low melting characteristics of microconstituents like {alpha} and {eta} in the (Zn-base) alloy system and the thermal stability of the Cu-base alloy. It seems that the predominance of one set of parameters over the other actually controls the overall performance of a material. Once again, it is the test conditions that ultimately allow a particular set of factors to govern the other and influence the response of the specimens accordingly. The observed wear behavior of the samples has been substantiated further with their wear surface characteristics.

  10. The effects of short pulse laser surface cleaning on porosity formation and reduction in laser welding of aluminium alloy for automotive component manufacture

    NASA Astrophysics Data System (ADS)

    AlShaer, A. W.; Li, L.; Mistry, A.

    2014-12-01

    Laser welding of aluminium alloys typically results in porosity in the fusion zones, leading to poor mechanical and corrosion performances. Mechanical and chemical cleaning of surfaces has been used previously to remove contaminants for weld joint preparations. However, these methods are slow, ineffective (e.g. due to hydrogen trapping) or lead to environmental hazards. This paper reports the effects of short pulsed laser surface cleaning on porosity formation and reduction in laser welding of AC-170PX (AA6014) aluminium sheets (coated with Ti/Zr and lubricated using a dry lubricant AlO70) with two types of joints: fillet edge and flange couch, using an AA4043 filler wire for automotive component assembly. The effect of laser cleaning on porosity reduction during laser welding using a filler wire has not been reported before. In this work, porosity and weld fusion zone geometry were examined prior to and after laser cleaning. The nanosecond pulsed Nd:YAG laser cleaning was found to reduce porosity significantly in the weld fusion zones. For the fillet edge welds, porosity was reduced to less than 0.5% compared with 10-80% without laser cleaning. For flange couch welds, porosity was reduced to 0.23-0.8% with laser cleaning from 0.7% to 4.3% without laser cleaning. This has been found to be due to the elimination of contaminations and oxide layers that contribute to the porosity formation. The laser cleaning is based on thermal ablation. This research focuses on porosity reduction in laser welding of aluminium alloy. Weld quality was investigated for two joints, fillet edge and flange couch joints. The effect of laser cleaning on porosity reduction after welding was investigated. It was found that laser cleaning reduced porosity less than 1% in both joints. Weld dimensions and strength were evaluated and discussed for both types of joints.

  11. Effects of processing parameters on the extrusion by continuous variable cross-section direct extrusion with 7A09 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Li, Feng; Wu, Hongbin; Qin, Minghan

    2016-02-01

    In order to study the effects of processing parameters on the continuous variable cross-section direct extrusion (CVCDE), taking 7A09 aluminium alloy for example, the extrusion speed and forming temperature and the friction factor as key processing parameters are applied to research by finite element (FE) simulation. The research result showed that the extrusion speed had a significant influence on the maximum temperature of the billet, at the same time, both decreasing the friction factor and increasing forming temperature within a certain range were beneficial to reduce extrusion load. Both forming temperature and the extrusion speed were inversely linked to extrusion load, but the friction factor was directly proportional to extrusion load. Forming temperature had a far more important influence on extrusion load by comparison: when forming temperature increased from 380∘ to 430∘C, the peak value of extrusion load decreased by 25.6% and the flow uniformity of extruded product got improved. The process window based on both the press limit and surface defects limit was established and the most reasonable forming temperature was 405∘C under this process condition, which provided theoretical basis for formulation process of 7A09 aluminium alloy on the CVCDE extrusion.

  12. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    SciTech Connect

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    The utilization of aluminum die casting as enclosures where internal equipment is rotating inside of the casting and could fracture requires a strong housing to restrain the fractured parts. A typical example would be a supercharger. In case of a failure, unless adequately contained, fractured parts could injure people operating the equipment. A number of potential reinforcement materials were investigated. The initial work was conducted in sand molds to create experimental conditions that promote prolonged contact of the reinforcing material with molten aluminum. Bonding of Aluminum bronze, Cast iron, and Ni-resist inserts with various electroplated coatings and surface treatments were analyzed. Also toughening of A354 aluminum cast alloy by steel and stainless steel wire mesh with various conditions was analyzed. A practical approach to reinforcement of die cast aluminum components is to use a reinforcing steel preform. Such performs can be fabricated from steel wire mesh or perforated metal sheet by stamping or deep drawing. A hemispherical, dome shaped casting was selected in this investigation. A deep drawing die was used to fabricate the reinforcing performs. The tendency of aluminum cast enclosures to fracture could be significantly reduced by installing a wire mesh of austenitic stainless steel or a punched austenitic stainless steel sheet within the casting. The use of reinforcements made of austenitic stainless steel wire mesh or punched austenitic stainless steel sheet provided marked improvement in reducing the fragmentation of the casting. The best strengthening was obtained with austenitic stainless steel wire and with a punched stainless steel sheet without annealing this material. Somewhat lower results were obtained with the annealed punched stainless steel sheet. When the annealed 1020 steel wire mesh was used, the results were only slightly improved because of the lower mechanical properties of this unalloyed steel. The lowest results were

  13. The effect of Co alloying content on the kinetics of reaction zone growth in tungsten fiber reinforced superalloy composites

    NASA Technical Reports Server (NTRS)

    Rodriguez, A.; Tien, J. K.; Caulfield, T.; Petrasek, D. W.

    1988-01-01

    A Co-free modified superalloy similar in composition to Waspaloy is investigated in an effort to understand the effect of Co on reaction zone growth kinetics and verify the chemistry dependence of reaction zone growth in the matrix of tungsten fiber reinforced superalloy composites. The values of the parabolic rate constant, characterizing the kinetics of reaction zone growth, for the Waspaloy matrix and the C-free alloy as well as five other alloys from a previous study confirm the dependence of reaction zone growth kinetics on cobalt content of the matrix. The Co-free alloy composite exhibits the slowest reaction zone growth among all tungsten fiber reinforced composites studied to date.

  14. Aging effects on the fracture toughness of SiC whisker reinforced 2XXX aluminum alloys

    NASA Technical Reports Server (NTRS)

    Ratnaparkhi, P. L.; Rack, H. J.

    1989-01-01

    The effect of aging (at 150 C) time on the fracture toughness behavior of a 2XXX alloy (Al-3.55Cu-1.29Mg-0.01Fe-trace Mn) reinforced with 5 vol pct F-8 SiC whiskers was investigated by measuring hardness and electrical conductivity followed by fracture toughness tests on center-cracked specimens. The ageing time-hardening response plots showed that, independent of whisker orientation, the initial rapid increase in hardness was followed by a more gradual increase, with a broad hardness peak between 32 and 128 hrs of aging. Coincident with the hardness changes, the electrical conductivity initially decreased, reached a minimum, and then increased at aging times beyond 32 hrs. Examination by SEM indicated that the initial increase in hardness and decrease in conductivity was due to the GPB zone formation, while the subsequent increase in electrical conductivity and decrease in hardness (overaging) was due to S nucleation and growth.

  15. Design and performance of a shape memory alloy-reinforced composite aerodynamic profile

    NASA Astrophysics Data System (ADS)

    Simpson, J. C.; Boller, C.

    2008-04-01

    Based on a shape memory alloy (SMA)-reinforced composite developed separately, the applicability of the composite has been demonstrated through realization of a realistically scaled aerodynamic profile of around 0.5 m span by 0.5 m root chord whose skins had been made from this composite. The design, manufacturing and assembly of the profile are described. The curved skins were manufactured with two layers of SMA wires integrated into the layup of aramid fibre prepregs. All SMA wires were connected such that they can be operated as individual sets of wires and at low voltages, similar to the conditions for electrical energy generation in a real aircraft. The profile was then mounted on a vibration test rig and excited by a shaker at its tip which allowed the dynamic performance of the profile to be validated under internal actuation conditions generated through the SMA wires.

  16. Compressive strength of titanium alloy skin-stringer panels selectively reinforced with boron-aluminum composite.

    NASA Technical Reports Server (NTRS)

    Herring, H. W.; Carri, R. L.

    1972-01-01

    Description of a method of selectively reinforcing conventional titanium airframe structure with unidirectional boron-aluminum composite attached by brazing which has been successfully demonstrated based on compression tests of short skin-stringer panels. Improvements in structural performance exceeded 25% on an equivalent weight basis over the range from room temperature to 800 F, both in terms of initial buckling and maximum strengths. Room-temperature performance was not affected by prior exposure at 600 F for 1000 hours in air, or by 400 cycles between -65 and 600 F. The experimental results were generally predictable on the basis of existing analytical procedures. No evidence of failure was observed in the braze bond between the boron-aluminum composite and the titanium alloy.

  17. The failure of notched specimens of boron-fiber reinforced 6061 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Wright, M. A.; Iannuzzi, F. A.

    1974-01-01

    The effect of notches on the strength of boron fiber reinforced 6061 aluminum alloy was determined at room temperature, 300 F, and 600 F. Both unidirectional and cross-plied specimens were tested. The strengths of individual fibers were measured, and upper and lower bounds of composite strength were calculated using bundle theory. Fracture tests were performed on specimens containing center slots of various lengths, and the values of the critical stress intensity factor for initial crack propagation or final failure were calculated. For unidirectional specimens, these parameters depended on thickness; for cross-plied specimens, fairly constant values were obtained at room temperature. The cross-plied material invariably failed at a lower stress as the environmental temperature was raised.

  18. Design and operation of an aluminium alloy tank using doped Na3AlH6 in kg scale for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Urbanczyk, R.; Peinecke, K.; Meggouh, M.; Minne, P.; Peil, S.; Bathen, D.; Felderhoff, M.

    2016-08-01

    In this publication the authors present an aluminium alloy tank for hydrogen storage using 1921 g of Na3AlH6 doped with 4 mol% of TiCl3 and 8 mol% of activated carbon. The tank and the heat exchangers are manufactured by extrusion moulding of Al-Mg-Si based alloys. EN AW 6082 T6 alloy is used for the tank and a specifically developed alloy with a composition similar to EN AW 6060 T6 is used for the heat exchangers. The three heat exchangers have a corrugated profile to enhance the surface area for heat transfer. The doped complex hydride Na3AlH6 is densified to a powder density of 0.62 g cm-3. The hydrogenation experiments are carried out at 2.5 MPa. During one of the dehydrogenation experiments approximately 38 g of hydrogen is released, accounting for gravimetric hydrogen density of 2.0 mass-%. With this tank 15 hydrogenation and 16 dehydrogenation tests are carried out.

  19. Dissimilar friction stir welding of aluminum alloys reinforced with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Pantelis, D. I.; Karakizis, P. N.; Dragatogiannis, D. A.; Charitidis, C. A.

    2016-01-01

    This chapter is devoted to studying the possibility of incorporating carbon nanotubes (CNTs) as reinforcing fillers in dissimilar metal matrices joints produced by friction stir welding (FSW), as well as the impact of this incorporation on the microstructural and mechanical properties of these joints. Carbon nanotubes are extensively used as a reinforcing material in nanocomposites, due to their high stiffness and strength. FSW is a solid-state welding process of joining aluminum and other metallic alloys and has been employed in the aerospace, rail, automotive, and marine industries. Recently, friction stir processing (FSP), a derivative method of FSW, has been employed as an alternative for the production of metal matrix composites (MMCs). In this work, the process parameters were optimized in order to achieve nondefective welds, with and without the addition of CNTs. Two main cases were studied: (1) FSP was optimized by changing the tool rotational and travel speed as well as the number and direction of FSW passes, and (2) a Taguchi design scheme was adopted to further investigate the FSP in relevance to three factors (number, direction of passes, and tool rotational speed). Mechanical behavior was studied, and the local mechanical properties of the produced MMCs were compared with their bulk counterparts and parent materials. More specifically, the measured mechanical properties in the micro- and nanoscale (namely hardness and elastic modulus) are correlated with the microstructure and the presence of fillers.

  20. Wear and corrosion performance of two different tempers (T6 and T73) of AA7075 aluminium alloy after nitrogen implantation

    NASA Astrophysics Data System (ADS)

    Abreu, C. M.; Cristóbal, M. J.; Figueroa, R.; Pena, G.

    2015-02-01

    The present work reports the improvements in corrosion resistance and tribological properties achieved after Nitrogen ion implantation into aluminium alloy AA7075 subjected to two different tempers, T6 and T73. Nitrogen implantation at a nominal dose of 2 × 1017 ions/cm2 and at an accelerating voltage of 50 keV produced an increase of the surface hardness of the alloys up to a 130% in T6 samples and to 190% in T73 samples. The increase in hardness has a very positive effect on wear resistance as indicate the significant reduction of specific wear rate on both tempers (about -75% for T6 and -90% for T73 samples). Similarly, an improvement in corrosion properties of both tempers is confirmed by DC techniques, showing a decrease of the registered current density on potentiodynamic curves, and by the increase of impedance shown by AC techniques. This overall improvement in the alloy performance has been mainly attributed to the formation of a stoichiometric aluminium nitride layer (AlN), identified by XPS and GIXRD. The combination of EXCO immersion tests and electrochemical measurements allowed explaining the effect of AlN layer, which behave as a barrier delaying the onset of corrosion and slowing its progress. However, the implantation do not modified the corrosion morphology which seems to be determined mainly by the heat treating conditions. Thereby, in both tempers the localized attack starts at the intermetallic/matrix interface, but in T6 type specimens the progress of corrosion is clearly intergranular, while T73 specimens show the formation of clusters of small geometrical pits, probably related to the biggest MgZn2 strengthening precipitates.

  1. The Influence of Strain Rate Variations on the Appearance of Serrated Yielding in 2024-T3 Al-Clad Aluminium Alloy

    SciTech Connect

    Leacock, Alan G.; McMurray, Robert J.; Brown, D.; Poston, Ken

    2007-04-07

    To avoid failure during the stretch forming process using manual control, machine operators tend to achieve the final form using a stop-start approach. It was observed that when approaching full form, stretcher-strain marks appeared on the surface of the part if the operator stopped and restarted the forming operation. In order to investigate this phenomenon, a series of tensile tests was conducted using two batches of 2024-T3 aluminium alloy. The specimens were tested using several different strain rates, representative of those used on the shop floor. Additional tests were conducted involving a series of pauses under displacement control at differing levels of strain and strain rate. In the uninterrupted tests for the two batches of 2024-T3 material tested, serrated yielding was observed just prior to failure. However for the tests in which there was a pause in displacement, the material consistently exhibited serrated yielding when the crosshead began to move again. These results indicate that the pause provides an opportunity for strain ageing and pinning of the dislocations resulting in serrated yielding of this alloy. In order to avoid serrated yielding, stretch forming operations using 2024-T3 aluminium should be conducted at a constant strain rate without interruption. This also has far reaching implications for those involved in the production and testing of these alloys. The test programme described represents an initial attempt to investigate a phenomenon noted during an industrial forming process and should be extended to analyse the affect of strain path changes on the occurrence of serrated yielding.

  2. In situ monitoring of corrosion mechanisms and phosphate inhibitor surface deposition during corrosion of zinc-magnesium-aluminium (ZMA) alloys using novel time-lapse microscopy.

    PubMed

    Sullivan, James; Cooze, Nathan; Gallagher, Callum; Lewis, Tom; Prosek, Tomas; Thierry, Dominique

    2015-01-01

    In situ time-lapse optical microscopy was used to examine the microstructural corrosion mechanisms in three zinc-magnesium-aluminium (ZMA) alloy coated steels immersed in 1% NaCl pH 7. Preferential corrosion of MgZn(2) lamellae within the eutectic phases was observed in all the ZMA alloys followed by subsequent dissolution of Zn rich phases. The total extent and rate of corrosion, measured using time-lapse image analysis and scanning vibrating electrode technique (SVET) estimated mass loss, decreased as Mg and Al alloying additions were increased up to a level of 3 wt% Mg and 3.7 wt% Al. This was probably due to the increased presence of MgO and Al(2)O(3) at the alloy surface retarding the kinetics of cathodic oxygen reduction. The addition of 1 × 10(-2) mol dm(-3) Na(3)PO(4) to 1% NaCl pH 7 had a dramatic influence on the corrosion mechanism for a ZMA with passivation of anodic sites through phosphate precipitation observed using time-lapse image analysis. Intriguing rapid precipitation of filamentous phosphate was also observed and it is postulated that these filaments nucleate and grow due to super saturation effects. Polarisation experiments showed that the addition of 1 × 10(-2) mol dm(-3) Na(3)PO(4) to the 1% NaCl electrolyte promoted an anodic shift of 50 mV in open circuit potential for the ZMA alloy with a reduction in anodic current of 2.5 orders of magnitude suggesting that it was acting primarily as an anodic inhibitor supporting the inferences from the time-lapse investigations. These phosphate additions resulted in a 98% reduction in estimated mass loss as measured by SVET demonstrating the effectiveness of phosphate inhibitors for this alloy system. PMID:25912828

  3. Finite element modelling of shot peening and peen forming processes and characterisation of peened AA2024-T351 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Gariepy, Alexandre

    The main purpose of this thesis was to develop and validate finite element (FE) simulation tools for shot peening and peen forming. The specific aim was to achieve quantitatively accurate predictions for both processes and demonstrate the potential of reliable FE modelling for scientific investigation and industrial applications. First, an improved dynamic impact model that takes into account the stochastic nature of shot peening was proposed by carefully studying its dimensions, introducing a dispersion of shot sizes and significantly reducing its computational cost. In addition, cyclic mechanical testing was conducted to define a suitable material constitutive theory for aluminium alloy (AA) 2024-T3/T351 subjected to shot peening. By combining a realistic shot peening model with an appropriate material law, fairly good residual stress predictions were achieved for three different sets of shot peening parameters. Second, an experimental and numerical characterization of AA2024-T351 shot peened with parameters representative of fatigue life improvement applications was conducted. Multiple techniques, such as micro-indentation, residual stress determination and electron backscatter diffraction, were combined to gain a better understanding of the influence of shot peening on the material. The potential uses of finite element simulation to complement experimental data were also studied. The material heterogeneity arising from the random impact sequence was investigated and it was found that the impact modelling methodology could provide useful information on such heterogeneities. Third, a novel peen forming simulation methodology was introduced. The impact model provided the necessary input data as part of a multiscale approach. Numerically calculated unbalanced induced stress profiles were input into shell elements and the deformed shape after peen forming was computed as a springback analysis. In addition, a simple interpolation method was proposed to model the

  4. Improved Wear Resistance of Al-Mg Alloy with SiC and Al2O3 Particle Reinforcement

    NASA Astrophysics Data System (ADS)

    Mehedi, Md. A.; Bhadhon, K. M. H.; Haque, M. N.

    2016-01-01

    Al-3.73Mg alloy was reinforced with a different ratio of SiC and Al2O3 particulate mixtures, and their corresponding wear properties were investigated by pin-on-disk method. The investigation revealed that the mass loss of the hybrid composite at different loads and sliding velocities reduced with the increase of the SiC volume. Only 6% particulate reinforcement in the Al-Mg matrix was enough to reduce the wear of the surface by one-fourth. The wear mechanism was also investigated by examining the worn surface with a scanning electron microscope.

  5. Microstructure Changes in Isochronally Annealed Alumina Fibre Reinforced Mg-Ag-Nd-Zr Alloy

    NASA Astrophysics Data System (ADS)

    Kiehn, J.; Smola, B.; Vostrý, P.; Stulíková, I.; Kainer, K. U.

    1997-12-01

    The commercial alloy QE22 (Mg-Ag-;Nd-Zr alloy) was reinforced by 22 vol% -Al2O3 short fibres applying the squeeze cast technology. Precipitation effects were studied in this material after a preceding solution heat treatment by isochronal annealing up to 300 °C by means of electrical resistivity, hardness and reversible stress relaxation measurements. The annealing response of the properties was compared to the annealing response of the unreinforced matrix alloy. The microstructure changes were studied in detail by transmission electron microscopy. A sharp drop of resistivity between 180 and 280 °C was found on normalised resistivity annealing curves of both reinforced and unreinforced specimens due to the redistribution of solutes. In composites the fibres act as nucleation centres in the precipitation process promoting e.g. precipitation of Al2Nd or Ag compounds. The Al content in the matrix is enhanced due to the decomposition of the preform binder. The evolution of the particle population inside the grains involves the formation of new Al2Nd-like cubic particles between 120 and 180 °C. Above 180 °C these particles are continuously substituted by hexagonal -phase and/or tetragonal Mg12Nd particles. This process finishes at 300 °C by the transformation of all new particles to semicoherent Mg12Nd precipitates. The precipitation process in grain interiors of the unreinforced alloy is different involving only change of the morphological features of tetragonal semicoherent Mg12Nd particles existing in the alloy already in the initial state after solution heat treatment. Die kommerzielle Legierung QE22 (Mg-Ag-Nd-Zr) wurde im Preßgießverfahren mit 22 Vol.-% δ-Al2O3 Kurzfasern verstärkt. Die Untersuchung des Ausscheidungsverhaltens während isochroner Wärmebehandlungen bis 300 °C nach vorangegangenem Lösungsglühen erfolgte über die Bestimmung der Änderung des elektrischen Widerstandes, der Härte und der reversiblen Spannungsrelaxation. Die Auswirkung der

  6. Numerical Evaluation Of Shape Memory Alloy Recentering Braces In Reinforced Concrete Buildings Subjected To Seismic Loading

    NASA Astrophysics Data System (ADS)

    Charles, Winsbert Curt

    Seismic protective techniques utilizing specialized energy dissipation devices within the lateral resisting frames have been successfully used to limit inelastic deformation in reinforced concrete buildings by increasing damping and/or altering the stiffness of these structures. However, there is a need to investigate and develop systems with self-centering capabilities; systems that are able to assist in returning a structure to its original position after an earthquake. In this project, the efficacy of a shape memory alloy (SMA) based device, as a structural recentering device is evaluated through numerical analysis using the OpenSees framework. OpenSees is a software framework for simulating the seismic response of structural and geotechnical systems. OpenSees has been developed as the computational platform for research in performance-based earthquake engineering at the Pacific Earthquake Engineering Research Center (PEER). A non-ductile reinforced concrete building, which is modelled using OpenSees and verified with available experimental data is used for the analysis in this study. The model is fitted with Tension/Compression (TC) SMA devices. The performance of the SMA recentering device is evaluated for a set of near-field and far-field ground motions. Critical performance measures of the analysis include residual displacements, interstory drift and acceleration (horizontal and vertical) for different types of ground motions. The results show that the TC device's performance is unaffected by the type of ground motion. The analysis also shows that the inclusion of the device in the lateral force resisting system of the building resulted in a 50% decrease in peak horizontal displacement, and inter-story drift elimination of residual deformations, acceleration was increased up to 110%.

  7. Improving the corrosion wear resistance of AISI 316L stainless steel by particulate reinforced Ni matrix composite alloying layer

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Zhuo, Chengzhi; Tao, Jie; Jiang, Shuyun; Liu, Linlin

    2009-01-01

    In order to overcome the problem of corrosion wear of AISI 316L stainless steel (SS), two kinds of composite alloying layers were prepared by a duplex treatment, consisting of Ni/nano-SiC and Ni/nano-SiO2 predeposited by brush plating, respectively, and subsequent surface alloying with Ni-Cr-Mo-Cu by a double glow process. The microstructure of the two kinds of nanoparticle reinforced Ni-based composite alloying layers was investigated by means of SEM and TEM. The electrochemical corrosion behaviour of composite alloying layers compared with the Ni-based alloying layer and 316L SS under different conditions was characterized by potentiodynamic polarization test and electrochemical impedance spectroscopy. Results showed that under alloying temperature (1000 °C) conditions, amorphous nano-SiO2 particles still retained the amorphous structure, whereas nano-SiC particles were decomposed and Ni, Cr reacted with SiC to form Cr6.5Ni2.5Si and Cr23C6. In static acidic solution, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO2 particles interlayer is lower than that of the Ni-based alloying layer. However, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO2 particles interlayer is prominently superior to that of the Ni-based alloying layer under acidic flow medium condition and acidic slurry flow condition. The corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiC particles interlayer is evidently lower than that of the Ni-based alloying layer, but higher than that of 316L SS under all test conditions. The results show that the highly dispersive nano-SiO2 particles are helpful in improving the corrosion wear resistance of the Ni-based alloying layer, whereas carbides and silicide phase are deleterious to that of the Ni-based alloying layer due to the fact that the preferential removal of the matrix around the precipitated phase takes place by the chemical

  8. Electro-bending characterization of adaptive 3D fiber reinforced plastics based on shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ashir, Moniruddoza; Hahn, Lars; Kluge, Axel; Nocke, Andreas; Cherif, Chokri

    2016-03-01

    The industrial importance of fiber reinforced plastics (FRPs) is growing steadily in recent years, which are mostly used in different niche products, has been growing steadily in recent years. The integration of sensors and actuators in FRP is potentially valuable for creating innovative applications and therefore the market acceptance of adaptive FRP is increasing. In particular, in the field of highly stressed FRP, structural integrated systems for continuous component parts monitoring play an important role. This presented work focuses on the electro-mechanical characterization of adaptive three-dimensional (3D)FRP with integrated textile-based actuators. Here, the friction spun hybrid yarn, consisting of shape memory alloy (SMA) in wire form as core, serves as an actuator. Because of the shape memory effect, the SMA-hybrid yarn returns to its original shape upon heating that also causes the deformation of adaptive 3D FRP. In order to investigate the influences of the deformation behavior of the adaptive 3D FRP, investigations in this research are varied according to the structural parameters such as radius of curvature of the adaptive 3D FRP, fabric types and number of layers of the fabric in the composite. Results show that reproducible deformations can be realized with adaptive 3D FRP and that structural parameters have a significant impact on the deformation capability.

  9. Fabrication of fibre reinforced nickel aluminide matrix composites by reactive processing

    SciTech Connect

    Downing, M.; Horsfall, I.

    1994-12-31

    This paper describes the fabrication by reactive processing of short, and continuous, alumina fibre reinforced nickel aluminide matrix composites. The fibre is introduced into the aluminide system to increase toughness and high temperature strength. The short fibre reinforced nickel aluminide is formed by squeeze casting a porous preform containing nickel powder and SAFFIL fibre with an aluminium or aluminium alloy melt. The continuous fibre reinforced nickel aluminide is formed by squeeze casting a jig containing nickel coated ALMAX fibre. The short fibre reinforced composite (containing 10% and 20% volume fibre) reacted during infiltration with an aluminium melt to form a single phase intermetallic. Using an aluminium-copper melt the intermetallic formation was inhibited and a multi-phase composite was obtained. A preliminary study into reactive processing of this system by utilising a hot isostatic pressing (HIP) cycle is presented. HIP was required to prevent the formation of porosity due to an imbalance in the diffusive mobility of the various components. It was found that HIP was only effective on canned samples, the preferred encapsulation material being glass. The continuous fibre reinforced composite did not react to an intermetallic phase when infiltrated with an aluminum melt. Use of an aluminum-copper melt resulted in partial nickel-melt reaction producing various nickel-aluminum (-copper) phases. HIP was then used to form a two phase intermetallic matrix with no evidence of fibre damage.

  10. Recent advances in joining of aluminium metal matrix composites

    SciTech Connect

    Threadgill, P.L.

    1994-12-31

    Studies have been made of the use of friction welding and gas tungsten arc welding to join several types of SiC particulate reinforced aluminium alloys. The joints have been subjected to detailed metallographic assessment, and some mechanical property data are also reported. Friction welding has been shown to be a very suitable process, and good joints were obtained with relative ease. Although bond line strength in the as-welded condition is less than parent material strength, a full solution treatment and age will restore properties. GTA welding is possible on reinforced 2080 and 7475 sheet materials, using either autogenous welding or a 4047A filler. No evidence for particle/matrix reactions was observed, although SiC particles in the melt zone were often surrounded by eutectic or interdendritic phases. Mechanical properties were variable, but could be significantly improved by postweld heat treatment.

  11. The effect of surface pre-conditioning treatments on the local composition of Zr-based conversion coatings formed on aluminium alloys

    NASA Astrophysics Data System (ADS)

    Cerezo, J.; Vandendael, I.; Posner, R.; de Wit, J. H. W.; Mol, J. M. C.; Terryn, H.

    2016-03-01

    This study investigates the effect of different alkaline, acidic and thermal pre-conditioning treatments applied to different Al alloy surfaces. The obtained results are compared to the characteristics of Zr-based conversion coatings that were subsequently generated on top of these substrates. Focus is laid on typical elemental distributions on the sample surfaces, in particular on the amount of precipitated functional additives such as Cu species that are present in the substrate matrix as well as in the conversion bath solutions. To this aim, Field Emission Auger Electron spectra, depth profiles and surface maps with superior local resolution were acquired and compared to scanning electron microscopy images of the sample. The results show how de-alloying processes, which occur at and around intermetallic particles in the Al matrix during typical industrial alkaline or acidic cleaning procedures, provide a significant source of crystallization cores for any following coating processes. This is in particular due for Cu-species, as the resulting local Cu structures on the surface strongly affect the film formation and compositions of state-of-the-art Zr-based films. The findings are highly relevant for industrial treatments of aluminium surfaces, especially for those that undergo corrosion protection and painting process steps prior to usage.

  12. Effects of stress concentration on the fatigue strength of 7003-T5 aluminum alloy butt joints with weld reinforcement

    NASA Astrophysics Data System (ADS)

    Zhu, Zongtao; Li, Yuanxing; Zhang, Mingyue; Hui, Chen

    2015-03-01

    7003-T5 Aluminum (Al) alloy plates with a thickness of 5 mm are welded by gas metal arc welding (GMAW) method in this work. In order to investigate the influence of stress concentration introduced by weld reinforcement on fatigue strength, the stress concentration factor of the butt joint is calculated. Microscopic and X-ray techniques were utilized to make sure there are no weld defects with large size in butt weld, which can induce extra stress concentration. The cyclic stress - number of cycles to failure (S-N) curves of the joints with and without the welder were obtained by fatigue testing, and the results show that the fatigue strength of 7003-T5 Al alloy butt joints with the weld reinforcement is 50 MPa, which is only 45% of the joints without the weld reinforcement. Fracture surface observation indicated that the fatigue source and propagation are dissimilar for the specimens with and without the welder due to the stress concentration at the weld root. The stress concentration with a factor of 1.7 has great effect on the fatigue strength, but little influence on the tensile strength.

  13. Tensile and fatigue behaviour of self-piercing rivets of CFRP to aluminium for automotive application

    NASA Astrophysics Data System (ADS)

    Kang, J.; Rao, H.; Zhang, R.; Avery, K.; Su, X.

    2016-07-01

    In this study, the tensile and fatigue behaviour of self-piercing rivets (SPRs) in carbon fibre reinforced plastic (CFRP) to aluminium 6111 T82 alloys were evaluated. An average maximum lap-shear tensile load capacity of 3858 N was achieved, which is comparable to metal-to-metal SPR lap-shear joints. The CFRP-Al SPRs failed in lap-shear tension due to pull-out of the rivet head from the CFRP upper sheet. The CFRP-Al SPR lap- shear specimens exhibited superior fatigue life compared to previously studied aluminium-to- aluminium SPR lap-shear joints. The SPR lap-shear joints under fatigue loads failed predominantly due to kinked crack growth along the width of the bottom aluminium sheet. The fatigue cracks initiated in the plastically deformed region of the aluminium sheet close to the rivet shank in the rivet-sheet interlock region. Scatter in fatigue life and failure modes was observed in SPR lap-shear specimens tested close to maximum tensile load.

  14. Study on reinforced concrete beams strengthened using shape memory alloy wires in combination with carbon-fiber-reinforced polymer plates

    NASA Astrophysics Data System (ADS)

    Li, Hui; Liu, Zhi-qiang; Ou, Jin-ping

    2007-12-01

    It has been proven that carbon-fiber-reinforced polymer (CFRP) sheets or plates are capable of improving the strength of reinforced concrete (RC) structures. However, residual deformation of RC structures in service reduces the effect of CFRP strengthening. SMA can be applied to potentially decrease residual deformation and even close concrete cracks because of its recovery forces imposed on the concrete when heated. Therefore, a method of a RC structure strengthened by CFRP plates in combination with SMA wires is proposed in this paper. The strengthening effect of this method is investigated through experiments and numerical study based on the nonlinear finite element software ABAQUS in simple RC beams. Parametric analysis and assessment of damage by defining a damage index are carried out. The results indicate that recovery forces of SMA wires can decrease deflections and even close cracks in the concrete. The recovery rate of deflection of the beam increases with increasing the ratio of SMA wires. The specimen strengthened with CFRP plates has a relatively large stiffness and smaller damage index value when the residual deformation of the beam is first reduced by activation of the SMA wires. The effectiveness of this strengthening method for RC beams is verified by experimental and numerical results.

  15. Enhancing tensile ductility of a particulate-reinforced aluminum MMC by lamination with Mg-9% Li alloy

    SciTech Connect

    Syn, C.K.; Lesuer, D.R.; Sherby, O.D.

    1995-05-01

    A laminated metal composite has been made by press bonding alternating layers of a particulate-reinforced aluminum MMC, 6090/SiC/25p, and a Mg-9%Li alloy. The mechanical properties including tensile ductility were evaluated. The tensile ductility of the Al MMC was found to increase from 3.5% to 11.5%. In contrast to other laminates based on ultrahigh carbon, steel, the laminate of this study and other Al MMC laminates exhibited tensile yield strengths that did not follow the rule of averages. This is attributed to interlayer reaction products developed during processing of the Al MMC laminates.

  16. Improvement in Microstructure Performance of the NiCrBSi Reinforced Coating on TA15 Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Peng, Li

    2012-10-01

    This work is based on the dry sliding wear of NiCrBSi reinforced coating deposited on TA15 titanium alloy using the laser cladding technique, the parameters of which were such as to provide almost crack-free coatings with minimum dilution and very low porosity. SEM results indicated that a laser clad coating with metallurgical joint to the substrate was formed. Compared with TA15 substrate, an improvement of the micro-hardness and wear resistance was observed for this composite coating. Rare earth oxide Y2O3 was beneficial in producing of the amorphous phases in laser clad coating. With addition of Y2O3, more amorphous alloys were produced, which increased the micro-hardness and wear resistance of the coating.

  17. Powder processing and properties of zircon-reinforced Al-13.5Si-2.5Mg alloy composites

    SciTech Connect

    Ejiofor, J.U.; Reddy, R.G.; Okorie, B.A.

    1997-06-01

    Zircon, ZrSiO{sub 4}, is a thermally stable mineral requiring expensive and energy-intensive process to reduce. Owing to its abundance, high hardness, excellent abrasion/wear resistance, and low coefficient of thermal expansion, a low-cost alternative use of the mineral for medium-strength tribology was investigated. The present study has developed a conventional low-cost, double-compaction powder metallurgy route in the synthesis of Al-13.5Si-2.5Mg alloy reinforced with zircon. The mechanical and physical properties were determined following the development of optimum conditions of cold pressing and reaction sintering. Reinforcing the hypereutectic Al-Si alloy with 15 vol% zircon particles (size <200 {micro}m) and cold pressing at 350 MPa to near-net shape, followed by liquid-phase reaction sintering at 615 C in vacuum for 20 min, improved the ultimate tensile strength, 0.2% yield strength, and hardness of the alloy by 4, 12.8, and 88%, respectively. At values of more than 9 vol% zircon, percent elongation and the dimensional changes of the sintered composites remained virtually unchanged. At a critical volume fraction of zircon, between 0.03 and 0.05, a sharp rise in hardness was observed. Microstructural and mechanical property analysis showed that the improvement in the mechanical properties is attributable largely to the load-bearing ability and intrinsic hardness of zircon, rather than to particulate dispersion effects. A good distribution of the dispersed zircon particulates in the matrix alloy was achieved.

  18. The Effect of Cu and Ge Additions on Strength and Precipitation in a lean 6xxx Aluminium Alloy

    NASA Astrophysics Data System (ADS)

    Mørtsell, E. A.; Marioara, C. D.; Andersen, S. J.; Røyset, J.; Reiso, O.; Holmestad, R.

    2015-10-01

    It has been demonstrated that the strength loss in a lean Al-Mg-Si alloy due to solute reduction could be compensated by back-adding a lower at % of Ge and Cu. Nanosized precipitate needles which are the main cause of strength in these alloys, and material hardness has been correlated to parameters quantified by TEM. It was found that additions of Ge and Cu strongly affect the precipitation process by increasing precipitate density and reducing precipitate size. Investigations of precipitate atomic structure by HAADF-STEM indicated that they contain mixed areas of known phases and disordered regions. A hexagonal Si/Ge-network was found to be present in all precipitate cross sections.

  19. Cube texture formation during the early stages of recrystallization of Al-1%wt.Mn and AA1050 aluminium alloys

    NASA Astrophysics Data System (ADS)

    Miszczyk, M. M.; Paul, H.

    2015-08-01

    The cube texture formation during primary recrystallization was analysed in plane strain deformed samples of a commercial AA1050 alloy and an Al-1%wt.Mn model alloy single crystal of the Goss{110}<001> orientation. The textures were measured with the use of X-ray diffraction and scanning electron microscopy equipped with an electron backscattered diffraction facility. After recrystallization of the Al-1%wt.Mn single crystal, the texture of the recrystallized grains was dominated by four variants of the S{123}<634> orientation. The cube grains were only sporadically detected by the SEM/EBSD system. Nevertheless, an increased density of <111> poles corresponding to the cube orientation was observed. The latter was connected with the superposition of four variants of the S{123}<634> orientation. This indicates that the cube texture after the recrystallization was a ‘compromise texture’. In the case of the recrystallized AA1050 alloy, the strong cube texture results from both the increased density of the particular <111> poles of the four variants of the S orientation and the ∼40°(∼< 111>)-type rotation. The first mechanism transforms the Sdef-oriented areas into Srex ones, whereas the second the near S-oriented, as-deformed areas into near cube-oriented grains.

  20. Effect of casting/mould interfacial heat transfer during solidification of aluminium alloys cast in CO2-sand mould

    NASA Astrophysics Data System (ADS)

    Kulkarni, S. N.; Radhakrishna, D. K.

    2011-06-01

    The ability of heat to flow across the casting and through the interface from the casting to the mold directly affects the evolution of solidification and plays a notable role in determining the freezing conditions within the casting, mainly in foundry systems of high thermal diffusivity such as chill castings. An experimental procedure has been utilized to measure the formation process of an interfacial gap and metal-mould interfacial movement during solidification of hollow cylindrical castings of Al-4.5 % Cu alloy cast in CO2-sand mould. Heat flow between the casting and the mould during solidification of Al-4.5 % Cu alloy in CO2-sand mould was assessed using an inverse modeling technique. The analysis yielded the interfacial heat flux ( q), heat transfer coefficient ( h) and the surface temperatures of the casting and the mould during solidification of the casting. The peak heat flux was incorporated as a dimensionless number and modeled as a function of the thermal diffusivities of the casting and the mould materials. Heat flux transients were normalized with respect to the peak heat flux and modeled as a function of time. The heat flux model proposed was to estimate the heat flux transients during solidification of Al-4.5 % Cu alloy cast in CO2-sand moulds.

  1. The attack of titanium-6 wt% aluminium-4 wt% vanadium alloy by a molten uranium-5.7 wt% manganese alloy at 1015 °C

    NASA Astrophysics Data System (ADS)

    Moran, F. J.; Jarman, R. A.

    1991-06-01

    The liquid metal corrosion (LMC) resistance of the alloy Ti-6 wt% Al-4 wt% V (IMI 318) in contact with molten U-5.7 wt% Mn has been assessed. The uranium alloy was melted at 1015 °C under vacuum in hemispherical IMI 318 alloy crucibles. The attack rate of the molten alloy on the IMI 318, for times up to 3 h, was estimated from metallography and by chemical analysis of the resolidified uranium melt. The mechanism of the LMC process was examined with optical and electron microscopy allied with EDAX and microhardness tests. Melt saturation occurred after one hour and titanium-rich (approximately 80 wt% Ti) dendrites began to nucleate and grow in the uranium melt. This result was predicted by the relevant equilibrium phase diagrams. During the LMC reaction, an interface (diffusion) layer grew in IMI 318 alloy where it contacted the uranium alloy melt. The levels of Ti and U changed with test time and distance across this interface, with the Ti level falling at the melt/IMI 318 surface and the U increasing at the same point. The mean LMC rate was initially rapid, 1.45 mm/h after 15 min but fell to 0.3 mm/h at 3 h. The conclusions were that the LMC reaction was diffusion-controlled, with the slow self-diffusion of β-titanium most likely to be the rate determining step. The reaction probably follows parabolic rate-kinetics as do other diffusion-controlled processes. The attack front was generally uniform with no clear evidence of preferential attack.

  2. Fabrication of Nano-Composite Surface Layers on Aluminium Employing Friction Stir Processing Technique

    NASA Astrophysics Data System (ADS)

    Bozorg, S. F. K.; Zarghani, A. S.; Zarei-Hanzaki, A.

    2010-03-01

    Al/Al2O3 nano-composite surface layer was fabricated via friction stir processing technique. Commercial AA6082 aluminium alloy extruded bar and nanometric Al2O3 powder were subjected to friction stir processing at a substrate travel speed of 80 mm/min and a tool rotation speed of 1000 rpm using a hardened H-13 tool steel. The grain structure and reinforcement particles were investigated by using optical and scanning electron microscopy. Results show that Al2O3 particles can be more uniformly dispread in aluminium substrate by increasing the number of processing passes. Also, hardness enhancement of the nano-composite surface layer was found. This is attributed to uniform dispersion of Al2O3 particles.

  3. Fabrication of Nano-Composite Surface Layers on Aluminium Employing Friction Stir Processing Technique

    SciTech Connect

    Bozorg, S. F. K.; Zarghani, A. S.; Zarei-Hanzaki, A.

    2010-03-11

    Al/Al{sub 2}O{sub 3} nano-composite surface layer was fabricated via friction stir processing technique. Commercial AA6082 aluminium alloy extruded bar and nanometric Al{sub 2}O{sub 3} powder were subjected to friction stir processing at a substrate travel speed of 80 mm/min and a tool rotation speed of 1000 rpm using a hardened H-13 tool steel. The grain structure and reinforcement particles were investigated by using optical and scanning electron microscopy. Results show that Al{sub 2}O{sub 3} particles can be more uniformly dispread in aluminium substrate by increasing the number of processing passes. Also, hardness enhancement of the nano-composite surface layer was found. This is attributed to uniform dispersion of Al{sub 2}O{sub 3} particles.

  4. Effect of Machining Parameters on Surface Integrity in Machining Nimonic C-263 Super Alloy Using Whisker-Reinforced Ceramic Insert

    NASA Astrophysics Data System (ADS)

    Ezilarasan, C.; Senthil kumar, V. S.; Velayudham, A.

    2013-06-01

    Whisker-reinforced ceramic inserts were used to conduct turning trials on nimonic C-263 super alloy to study the effect of different combinations of cutting parameters on surface integrity (roughness, microhardness, and residual stress) by employing energy dispersive spectroscopy, scanning electron microscopy, x-ray diffraction, and Vicker's microhardness test. Abrasion, adhesion and diffusion were found to be the main tool wear mechanisms in turning nimonic C-263 alloy. Based on characterization of surface roughness, a combination of 190 m/min cutting speed and 0.102 mm/rev feed rate was found to be the critical condition for turning nimonic C-263 alloy. Microhardness varied between 550 and 690 HV at the feed rates of 0.102-0.143 mm/rev for a cutting speed of 250 m/min after 9 min of turning. A tensile residual stress of 725-850 MPa on the machined surface was recorded at the preceding combination of cutting parameters. Cutting speed and cutting time had a dominant effect on the magnitude of the residual stress. No evidence of thermal relaxation and reduction in the degree of work hardening was noted during machining at high cutting speed.

  5. Microstructure and wear resistance of Al-SiC composites coatings on ZE41 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Rodrigo, P.; Campo, M.; Torres, B.; Escalera, M. D.; Otero, E.; Rams, J.

    2009-08-01

    Al and Al-SiC composites coatings were prepared by oxyacetylene flame spraying on ZE41 magnesium alloy substrates. Coatings with controlled reinforcement rate of up to 23 vol.% were obtained by spraying mixtures containing aluminium powder with up to 50 vol.% SiC particles. The coatings were sprayed on the magnesium alloy with minor degradation of its microstructure or mechanical properties. The coatings were compacted to improve their microstructure and protective behaviour. The wear behaviour of these coatings has been tested using the pin-on-disk technique and the reinforced coatings provided 85% more wear resistance than uncoated ZE41 and 400% more than pure Al coatings.

  6. Investigation of the aluminium-aluminium oxide reversible transformation as observed by hot stage electron microscopy.

    NASA Technical Reports Server (NTRS)

    Grove, C. A.; Judd, G.; Ansell, G. S.

    1972-01-01

    Thin foils of high purity aluminium and an Al-Al2O3 SAP type of alloy were oxidised in a specially designed hot stage specimen chamber in an electron microscope. Below 450 C, amorphous aluminium oxide formed on the foil surface and was first detectable at foil edges, holes, and pits. Islands of aluminium then nucleated in this amorphous oxide. The aluminium islands displayed either a lateral growth with eventual coalescence with other islands, or a reoxidation process which caused the islands to disappear. The aluminium island formation was determined to be related to the presence of the electron beam. A mechanism based upon electron charging due to the electron beam was proposed to explain the nucleation, growth, coalescence, disappearance, and geometry of the aluminium islands.

  7. Comparison between diffraction contrast tomography and high-energy diffraction microscopy on a slightly deformed aluminium alloy.

    PubMed

    Renversade, Loïc; Quey, Romain; Ludwig, Wolfgang; Menasche, David; Maddali, Siddharth; Suter, Robert M; Borbély, András

    2016-01-01

    The grain structure of an Al-0.3 wt%Mn alloy deformed to 1% strain was reconstructed using diffraction contrast tomography (DCT) and high-energy diffraction microscopy (HEDM). 14 equally spaced HEDM layers were acquired and their exact location within the DCT volume was determined using a generic algorithm minimizing a function of the local disorientations between the two data sets. The microstructures were then compared in terms of the mean crystal orientations and shapes of the grains. The comparison shows that DCT can detect subgrain boundaries with disorientations as low as 1° and that HEDM and DCT grain boundaries are on average 4 µm apart from each other. The results are important for studies targeting the determination of grain volume. For the case of a polycrystal with an average grain size of about 100 µm, a relative deviation of about ≤10% was found between the two techniques. PMID:26870379

  8. The surface reactivity of a magnesium-aluminium alloy in acidic fluoride solutions studied by electrochemical techniques and XPS

    NASA Astrophysics Data System (ADS)

    Verdier, S.; van der Laak, N.; Delalande, S.; Metson, J.; Dalard, F.

    2004-08-01

    The behaviour of the 6% Al magnesium alloy AM60 in aqueous acid fluoride solutions was studied in situ by electrochemical techniques and the surface chemistry of the resulting film was examined by monochromatized XPS. The evolution of the corrosion potential and cyclic voltammograms showed that the aggressiveness of the solutions is mainly driven by their fluoride concentration, the pH having almost no detectable influence. The more concentrated and acidic fluoride solutions led to a higher degree of fluoride coverage of the surface. The surface film is composed of magnesium hydroxide and hydroxyfluoride Mg(OH) 2- xF x which approaches MgF 2 with increasing fluoride concentration in the film. The parameters governing the film evolution and their relation to surface reactions are discussed.

  9. Parameter Design in Fusion Welding of AA 6061 Aluminium Alloy using Desirability Grey Relational Analysis (DGRA) Method

    NASA Astrophysics Data System (ADS)

    Adalarasan, R.; Santhanakumar, M.

    2015-01-01

    In the present work, yield strength, ultimate strength and micro-hardness of the lap joints formed with Al 6061 alloy sheets by using the processes of Tungsten Inert Gas (TIG) welding and Metal Inert Gas (MIG) welding were studied for various combinations of the welding parameters. The parameters taken for study include welding current, voltage, welding speed and inert gas flow rate. Taguchi's L9 orthogonal array was used to conduct the experiments and an integrated technique of desirability grey relational analysis was disclosed for optimizing the welding parameters. The ignored robustness in desirability approach is compensated by the grey relational approach to predict the optimal setting of input parameters for the TIG and MIG welding processes which were validated through the confirmation experiments.

  10. Comparison between diffraction contrast tomography and high-energy diffraction microscopy on a slightly deformed aluminium alloy

    PubMed Central

    Renversade, Loïc; Quey, Romain; Ludwig, Wolfgang; Menasche, David; Maddali, Siddharth; Suter, Robert M.; Borbély, András

    2016-01-01

    The grain structure of an Al–0.3 wt%Mn alloy deformed to 1% strain was reconstructed using diffraction contrast tomography (DCT) and high-energy diffraction microscopy (HEDM). 14 equally spaced HEDM layers were acquired and their exact location within the DCT volume was determined using a generic algorithm minimizing a function of the local disorientations between the two data sets. The microstructures were then compared in terms of the mean crystal orientations and shapes of the grains. The comparison shows that DCT can detect subgrain boundaries with disorientations as low as 1° and that HEDM and DCT grain boundaries are on average 4 µm apart from each other. The results are important for studies targeting the determination of grain volume. For the case of a polycrystal with an average grain size of about 100 µm, a relative deviation of about ≤10% was found between the two techniques. PMID:26870379

  11. One-dimensional shape memory alloy models for use with reinforced composite structures

    NASA Astrophysics Data System (ADS)

    Zak, A. J.; Cartmell, M. P.; Ostachowicz, W. M.; Wiercigroch, M.

    2003-06-01

    In this paper three models of the shape memory alloy behaviour have been presented and re-investigated. The models are attributed to Tanaka, Liang and Rogers, and Brinson, and have been used extensively in the literature for studying the static or dynamic performance of different composite material structures with embedded shape memory alloy components. The major differences and similarities between these models have been emphasised and examined in the paper. A simple experimental rig was designed and manufactured to gain additional insight into the main mechanics governing the shape memory alloy (SMA) mechanical properties. Data obtained from the experimental measurements on Ni-Ti wires have been used in the numerical simulation for validation purposes. It has been found that the three models all agree well in their predictions of the superelastic behaviour at higher temperatures, above the austenite finish temperature when shape memory alloys stay in the fully austenitic phase. However, at low temperatures, when the alloys stay in the fully martensitic phase, some difficulties may be encountered. The model developed by Brinson introduces two new state variables and therefore two different mechanisms for the instigation of stress-induced and temperature-induced martensite. This enables more accurate predictions of the superelastic behaviour. In general, it can be recommended that for investigations of the shape memory and superelastic behaviour of shape memory alloy components the Brinson model, or refinements based on the Brinson model, should be applied.

  12. Microstructural changes in a mechanically alloyed Al-6.2Zn-2.5Mg-1.7Cu alloy (7010) with and without particulate SiC reinforcement

    SciTech Connect

    Bhaduri, A.; Gopinathan, V.; Ramakrishnan, P.; Miodownik, A.P.

    1996-11-01

    Elemental powders of Al, Zn, Mg, and Cu (corresponding to the composition of 7010 aluminium alloy) were milled in a high-energy attritor with and without additions of SiC particulates. The microstructural changes taking place in the milled powders (which eventually lead to mechanical alloying) are found to be retarded by SiC additions. High-resolution techniques such as electron probe microanalysis (EPMA) and transmission electron microscopy/energy-dispersive X-ray analysis (TEM/EDX) revealed the presence of localized solute-rich regions long after the diffraction line from these solutes had ceased to appear in the X-ray diffractograms. Zinc appears to be more difficult to be mechanically alloyed into aluminum than either Cu or Mg in spite of its comparatively larger diffusivity in aluminum.

  13. Study on preparation and properties of molybdenum alloys reinforced by nano-sized ZrO2 particles

    NASA Astrophysics Data System (ADS)

    Cui, Chaopeng; Gao, Yimin; Wei, Shizhong; Zhang, Guoshang; Zhou, Yucheng; Zhu, Xiangwei; Guo, Songliang

    2016-03-01

    The nano-sized ZrO2-reinforced Mo alloy was prepared by a hydrothermal method and a subsequent powder metallurgy process. During the hydrothermal process, the nano-sized ZrO2 particles were added into the Mo powder via the hydrothermal synthesis. The grain size of Mo powder decreases obviously with the addition of ZrO2 particles, and the fine-grain sintered structure is obtained correspondingly due to hereditation. In addition to a few of nano-sized ZrO2 particles in grain boundaries or sub-boundaries, most are dispersed in grains. The tensile strength and yield strength have been increased by 32.33 and 53.76 %.

  14. Crack bridging by uncracked ligaments during fatigue-crack growth in SiC-reinforced aluminum-alloy composites

    NASA Astrophysics Data System (ADS)

    Shang, Jian Ku; Ritchie, R. O.

    1989-05-01

    Micro-mechanisms of crack-tip shielding associated with the growth of fatigue cracks in metalmatrix composites are examined with specific emphasis on the role of crack bridging by uncracked ligaments. Simple analytical models are developed for such bridging induced by both overlapping cracks and by coplanar ligaments in the wake of the crack tip; the models are based on respective notions of a critical tensile strain or critical crack-opening displacement in the ligament. The predicted degree of shielding derived from these mechanisms is not large, but is found to be consistent with experimental observations in high-strength P/M aluminum alloys reinforced with 15 to 20 vol pct of SiC particulate.

  15. The corrosion protection of AA2024-T3 aluminium alloy by leaching of lithium-containing salts from organic coatings.

    PubMed

    Visser, Peter; Liu, Yanwen; Zhou, Xiaorong; Hashimoto, Teruo; Thompson, George E; Lyon, Stuart B; van der Ven, Leendert G J; Mol, Arjan J M C; Terryn, Herman A

    2015-01-01

    Lithium carbonate and lithium oxalate were incorporated as leachable corrosion inhibitors in model organic coatings for the protection of AA2024-T3. The coated samples were artificially damaged with a scribe. It was found that the lithium-salts are able to leach from the organic coating and form a protective layer in the scribe on AA2024-T3 under neutral salt spray conditions. The present paper shows the first observation and analysis of these corrosion protective layers, generated from lithium-salt loaded organic coatings. The scribed areas were examined by scanning and transmission electron microscopy before and after neutral salt spray exposure (ASTM-B117). The protective layers typically consist of three different layered regions, including a relatively dense layer near the alloy substrate, a porous middle layer and a flake-shaped outer layer, with lithium uniformly distributed throughout all three layers. Scanning electron microscopy and white light interferometry surface roughness measurements demonstrate that the formation of the layer occurs rapidly and, therefore provides an effective inhibition mechanism. Based on the observation of this work, a mechanism is proposed for the formation of these protective layers. PMID:25927079

  16. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology

    NASA Astrophysics Data System (ADS)

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-12-01

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm2, and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p+-n homojunction through the formation of re-grown crystalline silicon layer (~5-10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method.

  17. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology

    PubMed Central

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-01-01

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm2, and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p+−n homojunction through the formation of re-grown crystalline silicon layer (~5–10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method. PMID:26632759

  18. Microstructure and Mechanical Properties of Cr-SiC Particles-Reinforced Fe-Based Alloy Coating

    NASA Astrophysics Data System (ADS)

    Wang, Fu-cheng; Du, Xiao-dong; Zhan, Ma-ji; Lang, Jing-wei; Zhou, Dan; Liu, Guang-fu; Shen, Jian

    2015-12-01

    In this study, SiC particles were first coated with Cr to form a layer that can protect the SiC particles from dissolution in the molten pool. Then, the Cr-SiC powder was injected into the tail of molten pool during plasma-transferred arc welding process (PTAW), where the temperature was relatively low, to prepare Cr-SiC particles reinforced Fe-based alloy coating. The microstructure and phase composition of the powder and surface coatings were analyzed, and the element distribution and hardness at the interfacial region were also evaluated. The protective layer consists of Cr3Si, Cr7C3, and Cr23C6, which play an important role in the microstructure and mechanical properties. The protective layer is dissolved in the molten pool forming a flocculent region and a transition region between the SiC particles and the matrix. The tribological performance of the coating was also assessed using a ring-block sliding wear tester with GGr15 grinding ring under 490 and 980 N load. Cr-SiC particles-reinforced coating has a lower wear rate than the unreinforced coating.

  19. Compound characterization of laser brazed SiC-steel joints using tungsten reinforced SnAgTi-alloys

    NASA Astrophysics Data System (ADS)

    Südmeyer, I.; Rohde, M.; Fürst, T.

    2010-02-01

    With the help of a CO2-laser (λ = 10.64 μm) Silicon carbide (Trade name: Ekasic-F, Comp: ESK Ceramics) has been brazed to commercial steel (C45E, Matnr. 1.1191) using SnAgTi-filler alloys. The braze pellets were dry pressed based on commercially available powders and polished to a thickness of 300 μm. The SnAgTi-fractions were varied with the objective of improving the compound strength. Furthermore, tungsten reinforced SnAgTi-fillers were examined with regard to the shear strength of the ceramic/steel joints. Polished microsections of SnAgTi-pellets were investigated before brazing in order to evaluate the particle distribution and to detect potential porosities using optical microscopy. The brazing temperature and the influence of the reinforcing particles on the active braze filler were determined by measurements with a differential scanning calorimeter (DSC). After brazing. the ceramic-steel joints were characterized by scanning electron micrographs and EDX-analysis. Finally the mechanical strength of the braze-joints was determined by shear tests.

  20. The Microstructure-Processing-Property Relationships in an Al Matrix Composite System Reinforced by Al-Cu-Fe Alloy Particles

    SciTech Connect

    Fei Tang

    2004-12-19

    Metal matrix composites (MMC), especially Al matrix composites, received a lot of attention during many years of research because of their promise for the development of automotive and aerospace materials with improved properties and performance, such as lighter weight and better structural properties, improved thermal conductivity and wear resistance. In order to make the MMC materials more viable in various applications, current research efforts on the MMCs should continue to focus on two important aspects, including improving the properties of MMCs and finding more economical techniques to produce MMCs. Solid state vacuum sintering was studied in tap densified Al powder and in hot quasi-isostatically forged samples composed of commercial inert gas atomized or high purity Al powder, generated by a gas atomization reaction synthesis (GARS) technique. The GARS process results in spherical Al powder with a far thinner surface oxide. The overall results indicated the enhanced ability of GARS-processed Al and Al alloy powders for solid state sintering, which may lead to simplification of current Al powder consolidation processing methods. Elemental Al-based composites reinforced with spherical Al-Cu-Fe alloy powders were produced by quasi-isostatic forging and vacuum hot pressing (VHP) consolidation methods. Microstructures and tensile properties of AYAl-Cu-Fe composites were characterized. It was proved that spherical Al-Cu-Fe alloy powders can serve as an effective reinforcement particulate for elemental Al-based composites, because of their high hardness and a preferred type of matrix/reinforcement interfacial bonding, with reduced strain concentration around the particles. Ultimate tensile strength and yield strength of the composites were increased over the corresponding Al matrix values, far beyond typical observations. This remarkable strengthening was achieved without precipitation hardening and without severe strain hardening during consolidation because of

  1. Effect of Y2O3 and TiC Reinforcement Particles on Intermetallic Formation and Hardness of Al6061 Composites via Mechanical Alloying and Sintering

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Liang; Lin, Chen-Han

    2015-08-01

    Al6061-based composites reinforced with 2 wt pctY2O3 and 2 wt pctTiC particles produced by mechanical alloying were investigated. The reinforced particles play important roles in the microstructural development and in determining the properties of the alloys. High-energy ball milling can facilitate a solid-state reaction between reinforced particles and the Al matrix, and the reaction kinetics of atomic diffusion can be accelerated enormously by subsequent sintering processing. As a result, complex intermetallic compounds and oxide particles can be formed in the alloy. In this study, the effect of reinforcement on phase formation and mechanical properties of Al6061-based composites has been examined. The results suggest that nano-Y2O3 particles can act as nucleation sites to facilitate formation of Al-Si-Y-O-based oxide particles. The addition of TiC particles can effectively refine the grain structure and encourage formation of iron-rich intermetallic compounds. Nanoindentation was used to understand the local variations in mechanical properties of the Al6061-based composites.

  2. Production of aluminium metal matrix composites by liquid processing methods

    NASA Astrophysics Data System (ADS)

    Hynes, N. Rajesh Jesudoss; Kumar, R.; Tharmaraj, R.; Velu, P. Shenbaga

    2016-05-01

    Owing to high strength to low weight ratio, Aluminium matrix composites are widely used in diverse applications of many industries. This lucrative property is achieved by reinforcing the brittle ceramic particles in the aluminium matrix. Aluminium matrix composites are produced by liquid processing methods and solid processing methods. Nevertheless, liquidprocessing techniques stand out because of its simplicity and its suitability for mass production. In this review article, the production of aluminium matrix composites by different liquid processing technique is discussed and a comparative study is carried out.

  3. Evidence of aluminium accumulation in aluminium welders.

    PubMed Central

    Elinder, C G; Ahrengart, L; Lidums, V; Pettersson, E; Sjögren, B

    1991-01-01

    Using atomic absorption spectrometry the aluminium concentrations in blood and urine and in two iliac bone biopsies obtained from welders with long term exposure to fumes containing aluminium were measured. The urinary excretion of two workers who had welded for 20 and 21 years varied between 107 and 351 micrograms Al/l, more than 10 times the concentration found in persons without occupational exposure. Urinary aluminium excretion remained high many years after stopping exposure. Blood and bone aluminium concentrations (4-53 micrograms Al/l and 18-29 micrograms Al/g respectively) were also raised but not to the same extent as urine excretion. It is concluded that long term exposure to aluminium by inhalation gives rise to accumulation of aluminium in the body and skeleton of health persons, and that the elimination of retained aluminium is very slow, in the order of several years. PMID:1954151

  4. A comparative study on low cycle fatigue behaviour of nano and micro Al2O3 reinforced AA2014 particulate hybrid composites

    NASA Astrophysics Data System (ADS)

    Senthilkumar, R.; Arunkumar, N.; Manzoor Hussian, M.

    Aluminium based metal matrix composites have drawn more attraction due to their improved properties in structural applications for the past two decades. The fatigue behaviour of composite materials needs to be studied for their structural applications. In this work, powder metallurgy based aluminium (AA2014) alloy reinforced with micro and nano-sized alumina particles were fabricated and consolidated with the hot extrusion process. The evaluation of mechanical properties in the extruded composite was carried out. This composite was subjected to low cycle fatigue test with a constant strain rate. Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) images were used to evaluate the fatigue behaviour of aluminium-nano composite samples. Enhanced mechanical properties were exhibited by the nano alumina reinforced aluminium composites, when compared to the micron sized alumina reinforced composites. The failure cycle is observed to be higher for the nano alumina reinforced composites when compared with micron sized alumina composites due to a lower order of induced plastic strain.

  5. High strain rate superplasticity of Si{sub 3}N{sub 4} whisker reinforced 7075 alloy matrix composite fabricated by squeeze casting

    SciTech Connect

    Lim, S.W.; Nishida, Yoshinori

    1995-06-01

    The {alpha}-Si{sub 3}N{sub 4} whisker reinforced 7075 aluminum alloy composite which exhibits superplasticity was produced by squeeze casting, followed by hot extrusion to pursue industrial advantages, and following results were obtained: (1) the production of {alpha}-Si3N4 whisker reinforced 7075 aluminum alloy composite which exhibits superplasticity was succeeded by squeeze casting; (2) the composite exhibited a total elongation of 260% at strain rates 0.18 s{sup {minus}1} at 773 K; (3) the superplasticity occurred in the wide range of strain rate from 0.1 to 1 s{sup {minus}1}; (4) the superplasticity occurred in the industrially useful whisker volume fraction range of 20%--30%.

  6. Aging kinetics of a silicon carbide reinforced Al-Zn-Mg-Cu alloy

    SciTech Connect

    Davies, C.H.J.; Raghunathan, N.; Sheppard, T.

    1994-01-01

    The aging kinetics of a composite of an Al-Zn-Mg-Cu powder (CW67) combined with a varied volume fraction of a particulate silicon carbide were investigated by means of differential scanning calorimetry (DSC), X-ray diffraction (XRD) and transmission electron microscopy (TEM). DSC revealed that the maximum rate of precipitation of the metastable {eta}{prime} phase was substantially lower for CW67/SiC/20p than for the unreinforced alloy or CW67/SiC/10p. TEM of isothermally aged material revealed differences between the unreinforced alloy and composites in respect of precipitate size and morphology. The authors conclude that SiC additions, by dint of additional dislocations generated during quenching, can affect the aging of CW67 either by accelerating the nucleation of precipitates or by accelerating precipitate growth. The aging rate of CW67/SiC/20p was increased by accelerating both the nucleation of precipitates and growth, whereas the aging in CW67/SiC10p was enhanced by accelerating precipitate growth only.

  7. The effect of TiB2 reinforcement on the mechanical properties of an Al-Cu-Li alloy-based metal-matrix composite

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The addition of ceramic particles to aluminum based alloys can substantially improve mechanical properties, especially Young's modulus and room and elevated temperature strengths. However, these improvements typically occur at the expense of tensile ductility. The mechanical properties are evaluated to a metal matrix composite (MMC) consisting of an ultrahigh strength aluminum lithium alloy, Weldalite (tm) 049, reinforced with TiB2 particles produced by an in situ precipitation technique called the XD (tm) process. The results are compared to the behavior of a nonreinforced Weldalite 049 variant. It is shown that both 049 and 049-TiB2 show very attractive warm temperature properties e.g., 625 MPa yield strength at 150 C after 100 h at temperature. Weldalite 049 reinforced with a nominal 4 v pct. TiB2 shows an approx. 8 pct. increase in modulus and a good combination of strength (529 MPa UTS) and ductility (6.5 pct.) in the T3 temper. And the high ductility of Weldalite 049 in the naturally aged and underaged tempers makes the alloy a good, high strength matrix for ceramic reinforcement.

  8. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch

    NASA Astrophysics Data System (ADS)

    El-Tahan, M.; Dawood, M.; Song, G.

    2015-06-01

    The objective of this research is to develop a self-stressing patch using a combination of shape memory alloys (SMAs) and fiber reinforced polymer (FRP) composites. Prestressed carbon FRP patches are emerging as a promising alternative to traditional methods to repair cracked steel structures and civil infrastructure. However, prestressing these patches typically requires heavy and complex fixtures, which is impractical in many applications. This paper presents a new approach in which the prestressing force is applied by restraining the shape memory effect of NiTiNb SMA wires. The wires are subsequently embedded in an FRP overlay patch. This method overcomes the practical challenges associated with conventional prestressing. This paper presents the conceptual development of the self-stressing patch with the support of experimental observations. The bond between the SMA wires and the FRP is evaluated using pull-out tests. The paper concludes with an experimental study that evaluates the patch response during activation subsequent monotonic tensile loading. The results demonstrate that the self-stressing patch with NiTiNb SMA is capable of generating a significant prestressing force with minimal tool and labor requirements.

  9. Biodegradable poly-lactic acid based-composite reinforced unidirectionally with high-strength magnesium alloy wires.

    PubMed

    Li, X; Chu, C L; Liu, L; Liu, X K; Bai, J; Guo, C; Xue, F; Lin, P H; Chu, Paul K

    2015-05-01

    Biodegradable poly-lactic acid (PLA)--based composites reinforced unidirectionally with high-strength magnesium alloy wires (MAWs) are fabricated by a heat-compressing process and the mechanical properties and degradation behavior are studied experimentally and theoretically. The composites possess improved strengthening and toughening properties. The bending strength and impact strength of the composites with 40 vol% MAWs are 190 MPa and 150 kJ/m(2), respectively, although PLA has a low viscosity and an average molecular weight of 60,000 g/mol. The mechanical properties of the composites can be further improved by internal structure modification and interface strengthening and a numerical model incorporating the equivalent section method (ESM) is proposed for the bending strength. Micro arc oxidization (MAO) of the MAWs is an effective interfacial strengthening method. The composites exhibit high strength retention during degradation and the PLA in the composite shows a smaller degradation rate than pure PLA. The novel biodegradable composites have large potential in bone fracture fixation under load-bearing conditions. PMID:25725562

  10. IEC 61267: Feasibility of type 1100 aluminium and a copper/aluminium combination for RQA beam qualities.

    PubMed

    Leong, David L; Rainford, Louise; Zhao, Wei; Brennan, Patrick C

    2016-01-01

    In the course of performance acceptance testing, benchmarking or quality control of X-ray imaging systems, it is sometimes necessary to harden the X-ray beam spectrum. IEC 61267 specifies materials and methods to accomplish beam hardening and, unfortunately, requires the use of 99.9% pure aluminium (Alloy 1190) for the RQA beam quality, which is expensive and difficult to obtain. Less expensive and more readily available filters, such as Alloy 1100 (99.0% pure) aluminium and copper/aluminium combinations, have been used clinically to produce RQA series without rigorous scientific investigation to support their use. In this paper, simulation and experimental methods are developed to determine the differences in beam quality using Alloy 1190 and Alloy 1100. Additional simulation investigated copper/aluminium combinations to produce RQA5 and outputs from this simulation are verified with laboratory tests using different filter samples. The results of the study demonstrate that although Alloy 1100 produces a harder beam spectrum compared to Alloy 1190, it is a reasonable substitute. A combination filter of 0.5 mm copper and 2 mm aluminium produced a spectrum closer to that of Alloy 1190 than Alloy 1100 with the added benefits of lower exposures and lower batch variability. PMID:26776501