Science.gov

Sample records for related transition metal

  1. Universal transition state scaling relations for (de)hydrogenation over transition metals.

    PubMed

    Wang, S; Petzold, V; Tripkovic, V; Kleis, J; Howalt, J G; Skúlason, E; Fernández, E M; Hvolbæk, B; Jones, G; Toftelund, A; Falsig, H; Björketun, M; Studt, F; Abild-Pedersen, F; Rossmeisl, J; Nørskov, J K; Bligaard, T

    2011-12-14

    We analyse the transition state energies for 249 hydrogenation/dehydrogenation reactions of atoms and simple molecules over close-packed and stepped surfaces and nanoparticles of transition metals using Density Functional Theory. Linear energy scaling relations are observed for the transition state structures leading to transition state scaling relations for all the investigated reactions. With a suitable choice of reference systems the transition state scaling relations form a universality class that can be approximated with one single linear relation describing the entire range of reactions over all types of surfaces and nanoclusters. PMID:21996683

  2. Neutral bimetallic transition metal phenoxyiminato catalysts and related polymerization methods

    DOEpatents

    Marks, Tobin J.; Rodriguez, Brandon A.; Delferro, Massimiliano

    2012-08-07

    A catalyst composition comprising a neutral bimetallic diphenoxydiiminate complex of group 10 metals or Ni, Pd or Pt is disclosed. The compositions can be used for the preparation of homo- and co-polymers of olefinic monomer compounds.

  3. Phonon related properties of transition metals, their carbides, and nitrides: A first-principles study

    NASA Astrophysics Data System (ADS)

    Isaev, E. I.; Simak, S. I.; Abrikosov, I. A.; Ahuja, R.; Vekilov, Yu. Kh.; Katsnelson, M. I.; Lichtenstein, A. I.; Johansson, B.

    2007-06-01

    Lattice dynamics of body-centered cubic (bcc) Vb-VIb group transition metals (TM), and B1-type monocarbides and mononitrides of IIIb-VIb transition metals are studied by means of first-principles density functional perturbation theory, ultra soft pseudopotentials, and generalized gradient approximation to the exchange-correlation functional. Ground state parameters of transition metals and their compounds are correctly reproduced with the generated ultrasoft pseudopotentials. The calculated phonon spectra of the bcc metals are in excellent agreement with results of inelastic neutron scattering experiments. We show that the superconductivity of transition metal carbides (TMC) and transition metal nitrides (TMN) is related to peculiarities of the phonon spectra, and the anomalies of the spectra are connected to the number of valence electrons in crystals. The calculated electron-phonon interaction constants for TM, TMC, and TMN are in excellent agreement with experimentally determined values. Phonon spectra for a number of monocarbides and mononitrides of transition metals within the cubic NaCl- and hexagonal WC-type structures are predicted. Ideal stoichiometric B1 crystals of ScC, YC, and VC are predicted to be dynamically stable and superconducting materials. We also conclude that YN is a semiconductor.

  4. On the behavior of Bronsted-Evans-Polanyi Relations for Transition Metal Oxides

    SciTech Connect

    Vojvodic, Aleksandra

    2011-08-22

    Versatile Broensted-Evans-Polanyi (BEP) relations are found from density functional theory for a wide range of transition metal oxides including rutiles and perovskites. For oxides, the relation depends on the type of oxide, the active site and the dissociating molecule. The slope of the BEP relation is strongly coupled to the adsorbate geometry in the transition state. If it is final state-like the dissociative chemisorption energy can be considered as a descriptor for the dissociation. If it is initial state-like, on the other hand, the dissociative chemisorption energy is not suitable as descriptor for the dissociation. Dissociation of molecules with strong intramolecular bonds belong to the former and molecules with weak intramolecular bonds to the latter group. We show, for the prototype system La-perovskites, that there is a 'cyclic' behavior in the transition state characteristics upon change of the active transition metal of the oxide.

  5. On the behavior of Brønsted-Evans-Polanyi relations for transition metal oxides.

    PubMed

    Vojvodic, A; Calle-Vallejo, F; Guo, W; Wang, S; Toftelund, A; Studt, F; Martínez, J I; Shen, J; Man, I C; Rossmeisl, J; Bligaard, T; Noørskov, J K; Abild-Pedersen, F

    2011-06-28

    Versatile Brønsted-Evans-Polanyi (BEP) relations are found from density functional theory for a wide range of transition metal oxides including rutiles and perovskites. For oxides, the relation depends on the type of oxide, the active site, and the dissociating molecule. The slope of the BEP relation is strongly coupled to the adsorbate geometry in the transition state. If it is final state-like the dissociative chemisorption energy can be considered as a descriptor for the dissociation. If it is initial state-like, on the other hand, the dissociative chemisorption energy is not suitable as descriptor for the dissociation. Dissociation of molecules with strong intramolecular bonds belong to the former and molecules with weak intramolecular bonds to the latter group. We show, for the prototype system La-perovskites, that there is a "cyclic" behavior in the transition state characteristics upon change of the active transition metal of the oxide. PMID:21721645

  6. Superconductivity in transition metals.

    PubMed

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. PMID:25666075

  7. Electrical Conductivity in Transition Metals

    ERIC Educational Resources Information Center

    Talbot, Christopher; Vickneson, Kishanda

    2013-01-01

    The aim of this "Science Note" is to describe how to test the electron-sea model to determine whether it accurately predicts relative electrical conductivity for first-row transition metals. In the electron-sea model, a metal crystal is viewed as a three-dimensional array of metal cations immersed in a sea of delocalised valence…

  8. C-Alkylation of Ketones and Related Compounds by Alcohols: Transition-Metal-Catalyzed Dehydrogenation.

    PubMed

    Huang, Fei; Liu, Zhuqing; Yu, Zhengkun

    2016-01-18

    Transition-metal-catalyzed C-alkylation of ketones and secondary alcohols, with alcohols, avoids use of organometallic or environmentally unfriendly alkylating agents by means of borrowing hydrogen (BH) or hydrogen autotransfer (HA) activation of the alcohol substrates. Water is formed as the only by-product, thus making the BH process atom-economical and environmentally benign. Diverse homogeneous and heterogeneous transition-metal catalysts, ketones, and alcohols can be used for this transformation, thus rendering the BH process promising for replacing those procedures that use traditional alkylating agents. This Minireview summarizes the advances during the last five years in transition-metal-catalyzed BH α-alkylation of ketones, and β-alkylation of secondary alcohols with alcohols. A discussion on the application of the BH strategy for C-C bond formation is included. PMID:26639633

  9. Relative edge energy in the stability of transition metal nanoclusters of different motifs.

    PubMed

    Zhao, X J; Xue, X L; Guo, Z X; Li, S F

    2016-07-01

    When a structure is reduced to a nanometer scale, the proportion of the edge atoms increases significantly, which can play a crucial role in determining both their geometric and electronic properties, as demonstrated by the recently established generalized Wulff construction principle [S. F. Li, et al., Phys. Rev. Lett., 2013, 111, 115501]. Consequently, it is of great interest to clarify quantitatively the role of the edge atoms that dominate the motifs of these nanostructures. In principle, establishing an effective method valid for determining the absolute value of the surface energy and particularly the edge energy for a given nanostructure is expected to resolve such a problem. However, hitherto, it is difficult to obtain the absolute edge energy of transition metal clusters, particularly when their sizes approach the nanometer regime. In this paper, taking Ru nanoclusters as a prototypical example, our first-principles calculations introduce the concept of relative edge energy (REE), reflecting the net edge atom effect over the surface (facet) atom effect, which is fairly powerful to quasi-quantitatively estimate the critical size at which the crossover occurs between different configurations of a given motif, such as from an icosahedron to an fcc nanocrystal. By contrast, the bulk effect should be re-considered to rationalize the power of the REE in predicting the relative stability of larger nanostructures between different motifs, such as fcc-like and hcp-like nanocrystals. PMID:27296770

  10. Oligocyclopentadienyl transition metal complexes

    SciTech Connect

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.

    2002-01-18

    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  11. Relative edge energy in the stability of transition metal nanoclusters of different motifs

    NASA Astrophysics Data System (ADS)

    Zhao, X. J.; Xue, X. L.; Guo, Z. X.; Li, S. F.

    2016-06-01

    When a structure is reduced to a nanometer scale, the proportion of the lowly-coordinated edge atoms increases significantly, which can play a crucial role in determining both their geometric and electronic properties, as demonstrated by the recently established generalized Wulff construction principle [S. F. Li, et al., Phys. Rev. Lett., 2013, 111, 115501]. Consequently, it is of great interest to clarify quantitatively the role of the edge atoms that dominate the motifs of these nanostructures. In principle, establishing an effective method valid for determining the absolute value of the surface energy and particularly the edge energy for a given nanostructure is expected to resolve such a problem. However, hitherto, it is difficult to obtain the absolute edge energy of transition metal clusters, particularly when their sizes approach the nanometer regime. In this paper, taking Ru nanoclusters as a prototypical example, our first-principles calculations introduce the concept of relative edge energy (REE), reflecting the net edge atom effect over the surface (facet) atom effect, which is fairly powerful to quasi-quantitatively estimate the critical size at which the crossover occurs between different configurations of a given motif, such as from an icosahedron to an fcc nanocrystal. By contrast, the bulk effect should be re-considered to rationalize the power of the REE in predicting the relative stability of larger nanostructures between different motifs, such as fcc-like and hcp-like nanocrystals.When a structure is reduced to a nanometer scale, the proportion of the lowly-coordinated edge atoms increases significantly, which can play a crucial role in determining both their geometric and electronic properties, as demonstrated by the recently established generalized Wulff construction principle [S. F. Li, et al., Phys. Rev. Lett., 2013, 111, 115501]. Consequently, it is of great interest to clarify quantitatively the role of the edge atoms that dominate the

  12. Transition Metal Switchable Mirror

    SciTech Connect

    2009-01-01

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  13. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2010-01-08

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  14. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2013-05-29

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  15. Transition Metal Switchable Mirror

    SciTech Connect

    2009-08-21

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  16. Fractal network dimension determining the relation between the strength of bulk metallic glasses and the glass transition temperature

    NASA Astrophysics Data System (ADS)

    Klein, D. J.; March, N. H.; Alonso, J. A.

    2009-07-01

    [Ma et al., Nat. Mater. 8, 30 (2009)] have uncovered the fractal dimension Df=2.31 associated with the medium-range order in a variety of bulk metallic glasses, reflected in the first sharp diffraction peak q1 determined from neutron and x-ray measurements. Here, based on the proposal in this journal of [Yang et al., Appl. Phys. Lett. 88, 221911 (2006)], which related the strength σy of bulk metallic glasses to the glass transition temperature Tg, we show that the product q1Dfσy is linear in Tg.

  17. Site-Specific Scaling Relations for Hydrocarbon Adsorption on Hexagonal Transition Metal Surfaces

    SciTech Connect

    Montemore, Matthew M.; Medlin, James W.

    2013-10-03

    Screening a large number of surfaces for their catalytic performance remains a challenge, leading to the need for simple models to predict adsorption properties. To facilitate rapid prediction of hydrocarbon adsorption energies, scaling relations that allow for calculation of the adsorption energy of any intermediate attached to any symmetric site on any hexagonal metal surface through a carbon atom were developed. For input, these relations require only simple electronic properties of the surface and of the gas-phase reactant molecules. Determining adsorption energies consists of up to four steps: (i) calculating the adsorption energy of methyl in the top site using density functional theory or by simple relations based on the electronic structure of the surface; (ii) using modified versions of classical scaling relations to scale between methyl in the top site and C₁ species with more metal-surface bonds (i.e., C, CH, CH₂) in sites that complete adsorbate tetravalency; (iii) using gas-phase bond energies to predict adsorption energies of longer hydrocarbons (i.e., CR, CR₂, CR₃); and (iv) expressing energetic changes upon translation of hydrocarbons to various sites in terms of the number of agostic interactions and the change in the number of carbon-metal bonds. Combining all of these relations allows accurate scaling over a wide range of adsorbates and surfaces, resulting in efficient screening of catalytic surfaces and a clear elucidation of adsorption trends. The relations are used to explain trends in methane reforming, hydrocarbon chain growth, and propane dehydrogenation.

  18. Point defects and defect-related transport of matter in transition metal-containing orthosilicates

    NASA Astrophysics Data System (ADS)

    Tang, Qi

    Point defects and defect-related transport properties of transition metal-containing orthosilicates with the olivine structure are interesting topics but are not yet well understood. At high temperatures, the transport properties of sufficiently pure olivines are governed by point defects. To improve the currently limited understanding of the defect structure and defect-related transport properties of olivine group compounds, the transport of matter in orthosilicates of the type Me2SiO4, with Me = Co and Mn, was experimentally investigated. The cation tracer diffusion of cobalt and manganese in cobalt and manganese orthosilicates, respectively, was studied as a function of crystal orientation, oxygen activity and temperature using high purity, synthetic cobalt and manganese orthosilicate single crystals grown by the floating zone method. Modeling of the observed oxygen activity dependancies of the cation tracer diffusion coefficients and of point defect concentrations was performed based on data obtained from this study in conjunction with other defect-related data reported in literature. The oxygen activity dependence of the diffusion of cobalt in Co 2SiO4 along the three principle orientations at 1300 °C at high oxygen activities is compatible with cobalt vacancies and holes as majority defects. At lower oxygen activities, the oxygen activity dependence of the cobalt tracer diffusion coefficients becomes smaller than at higher oxygen activities, which is most likely related to an increase in concentrations of cobalt interstitials. When using the space group Pbnm for assigning crystal orientations, the ratio found for the cobalt tracer diffusion coefficients at aO2 = 1 is approximately D*Co001 :D*Co010 :D*Co100 = 30:3:1. The oxygen activity dependence of the diffusion of manganese in Mn 2SiO4 along the three principle orientations at 1200 °C is, at high oxygen activities, compatible with manganese vacancies and holes as majority defects. The observed oxygen

  19. Modeling Ethanol Decomposition on Transition Metals: A Combined Application of Scaling and Brønsted-Evans-Polanyi Relations

    SciTech Connect

    Ferrin, Peter A.; Simonetti, Dante A.; Kandoi, Shampa; Kunkes, Edward L.; Dumesic, James A.; Norskov, Jens K.; Mavrikakis, Manos

    2009-04-29

    Applying density functional theory (DFT) calculations to the rational design of catalysts for complex reaction networks has been an ongoing challenge, primarily because of the high computational cost of these calculations. Certain correlations can be used to reduce the number and complexity of DFT calculations necessary to describe trends in activity and selectivity across metal and alloy surfaces, thus extending the reach of DFT to more complex systems. In this work, the well-known family of Brønsted-Evans-Polanyi (BEP) correlations, connecting minima with maxima in the potential energy surface of elementary steps, in tandem with a scaling relation, connecting binding energies of complex adsorbates with those of simpler ones (e.g., C, O), is used to develop a potential-energy surface for ethanol decomposition on 10 transition metal surfaces. Using a simple kinetic model, the selectivity and activity on a subset of these surfaces are calculated. Experiments on supported catalysts verify that this simple model is reasonably accurate in describing reactivity trends across metals, suggesting that the combination of BEP and scaling relations may substantially reduce the cost of DFT calculations required for identifying reactivity descriptors of more complex reactions.

  20. Relative stability of normal vs. inverse spinel for 3d transition metal oxides as lithium intercalation cathodes.

    PubMed

    Bhattacharya, Jishnu; Wolverton, C

    2013-05-01

    Spinel oxides represent an important class of cathode materials for Li-ion batteries. Two major variants of the spinel crystal structure are normal and inverse. The relative stability of normal and inverse ordering at different stages of lithiation has important consequences in lithium diffusivity, voltage, capacity retention and battery life. In this paper, we investigate the relative structural stability of normal and inverse structures of the 3d transition metal oxide spinels with first-principles DFT calculations. We have considered ternary spinel oxides LixM2O4 with M = Ti, V, Cr, Mn, Fe, Co and Ni in both lithiated (x = 1) and delithiated (x = 0) conditions. We find that for all lithiated spinels, the normal structure is preferred regardless of the metal. We observe that the normal structure for all these oxides has a lower size mismatch between octahedral cations compared to the inverse structure. With delithiation, many of the oxides undergo a change in stability with vanadium in particular, showing a tendency to occupy tetrahedral sites. We find that in the delithiated oxide, only vanadium ions can access a +5 oxidation state which prefers tetrahedral coordination. We have also calculated the average voltage of lithiation for these spinels. The calculated voltages agree well with the previously measured and calculated values, wherever available. For the yet to be characterized spinels, our calculation provides voltage values which can motivate further experimental attention. Lastly, we observe that all the normal spinel oxides of the 3d transition metal series have a driving force for a transformation to the non-spinel structure upon delithiation. PMID:23529669

  1. Selenophene transition metal complexes

    SciTech Connect

    White, C.J.

    1994-07-27

    This research shows that selenophene transition metal complexes have a chemistry that is similar to their thiophene analogs. Selenophene coordination has been demonstrated and confirmed by molecular structure in both the {eta}{sup 5}- and the {eta}{sup 1}(Se)-coordination modes. The reaction chemistry of selenophene complexes closely resembles that of the analogous thiophene complexes. One major difference, however, is that selenophene is a better donor ligand than thiophene making the selenophene complexes more stable than the corresponding thiophene complexes. The {sup 77}Se NMR chemical shift values for selenophene complexes fall within distinct regions primarily depending on the coordination mode of the selenophene ligand. In the final paper, the C-H bond activation of {eta}{sup 1}(S)-bound thiophenes, {eta}{sup 1}(S)-benzothiophene and {eta}{sup 1}(Se)-bound selenophenes has been demonstrated. The deprotonation and rearrangement of the {eta}{sup 1}(E)-bound ligand to the carbon bound L-yl complex readily occurs in the presence of base. Reprotonation with a strong acid gives a carbene complex that is unreactive towards nucleophilic attack at the carbene carbon and is stable towards exposure to air. The molecular structure of [Cp(NO)(PPh{sub 3})Re(2-benzothioenylcarbene)]O{sub 3}SCF{sub 3} was determined and contains a Re-C bond with substantial double bond character. Methyl substitution for the thienylcarbene or selenylcarbene gives a carbene that rearranges thermally to give back the {eta}{sup 1}(E)-bound complex. Based on these model reactions, a new mechanism for the H/D exchange of thiophene over the hydrodesulfurization catalyst has been proposed.

  2. Magnetic properties and structural transitions of orthorhombic fluorite-related compounds Ln{sub 3}MO{sub 7} (Ln=rare earths, M=transition metals)

    SciTech Connect

    Wakeshima, Makoto; Hinatsu, Yukio

    2010-11-15

    Magnetic properties and structural transitions of ternary rare-earth transition-metal oxides Ln{sub 3}MO{sub 7} (Ln=rare earths, M=transition metals) were investigated. In this study, we prepared a series of molybdates Ln{sub 3}MoO{sub 7} (Ln=La-Gd). They crystallize in an orthorhombic superstructure of cubic fluorite with space group P2{sub 1}2{sub 1}2{sub 1}, in which Ln{sup 3+} ions occupy two different crystallographic sites (the 8-coordinated and 7-coordinated sites). All of these compounds show a phase transition from the space group P2{sub 1}2{sub 1}2{sub 1} to Pnma in the temperature range between 370 and 710 K. Their magnetic properties were characterized by magnetic susceptibility measurements from 1.8 to 400 K and specific heat measurements from 0.4 to 400 K. Gd{sub 3}MoO{sub 7} shows an antiferromagnetic transition at 1.9 K. Measurements of the specific heat for Sm{sub 3}MoO{sub 7} and the analysis of the magnetic specific heat indicate a 'two-step' antiferromagnetic transition due to the ordering of Sm magnetic moments in different crystallographic sites, i.e., with decreasing temperature, the antiferromagnetic ordering of the 7-coordinated Sm ions occur at 2.5 K, and then the 8-coordinated Sm ions order at 0.8 K. The results of Ln{sub 3}MoO{sub 7} were compared with the magnetic properties and structural transitions of Ln{sub 3}MO{sub 7} (M=Nb, Ru, Sb, Ta, Re, Os, or Ir). -- Graphical Abstract: Magnetic properties and structural transitions of ternary rare-earth transition-metal oxides Ln{sub 3}MO{sub 7} (Ln=rare earths, M=transition metals) were investigated. In this study, we prepared a series of molybdates Ln{sub 3}MoO{sub 7} (Ln=La{approx}Gd). These compounds show a phase transition from the space group P2{sub 1}2{sub 1}2{sub 1} to Pnma in the temperature range between 370 and 710 K. Their magnetic properties were characterized by magnetic susceptibility and specific heat measurements from 0.4 to 400 K. The results of Ln{sub 3}MoO{sub 7} were

  3. Nuclear Quadrupole Coupling Constants in Niobium Pentachloride and Related Compounds (II) Transition Metal Nuclei

    NASA Astrophysics Data System (ADS)

    Okubo, Noriaki

    1982-02-01

    93Nb NQR spectrum in NbCl5 has been investigated from 4.2 K to 480 K. The coupling constant shows an unusual positive temperature dependence at low temperatures. The EFG tensor is calculated with the d2sp3 octahedral bond functions. The experimental data are analysed in terms of the contributions from the σ- and π-bonds. It is shown that the positive temperature dependence can be explained by the pπ-dπ bond mechanism. The theory is also applied to the related compounds and the consistency with the analysis of the halogen coupling constants is shown.

  4. Group 4 Metalloporphyrin diolato Complexes and Catalytic Application of Metalloporphyrins and Related Transition Metal Complexes

    SciTech Connect

    Guodong Du

    2004-12-19

    products, including mono-, bis-alkoxo, and chelating diolato complexes, depending on the identity of diols and the stoichiometry employed. It was also found that tin porphyrin complexes promoted the oxidative cleavage of vicinal diols and the oxidation of {alpha}-ketols to {alpha}-diketones with dioxygen. In extending the chemistry of metalloporphyrins and analogous complexes, a series of chiral tetraaza macrocyclic ligands and metal complexes were designed and synthesized. Examination of iron(II) complexes showed that they were efficient catalysts for the cyclopropanation of styrene by diazo reagents. Good yields and high diastereoselectivity were obtained with modest enantioselectivity. A rationalization of the stereoselectivity was presented on the basis of structural factors in a carbene intermediate.

  5. Complexity in Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Dagotto, Elbio; Alvarez, Gonzalo; Moreo, Adriana

    2004-03-01

    Recent computational results in the context of models for manganites and cuprates will be briefly discussed. It is argued that correlations in quenched disorder -- needed to mimic cooperative Jahn-Teller effects -- are important to have colossal magnetoresistance in 3D. A related recently discussed metal-insulator transition induced by disorder in a one-orbital model with cooperative phonons is intuitively explained [1]. In addition, it is argued that colossal effects should be far more common than currently known, and they may appear in cuprate superconductors as well [2]. [1] J. Burgy et al., cond-mat/0308456; C. Sen, G. Alvarez, and E. Dagotto, preprint. [2] See also Adriana Moreo, invited talk, March APS 04; G. Alvarez, M. Mayr et al., preprint.

  6. Magnetic properties and structural transitions of orthorhombic fluorite-related compounds Ln3MO 7 ( Ln=rare earths, M=transition metals)

    NASA Astrophysics Data System (ADS)

    Wakeshima, Makoto; Hinatsu, Yukio

    2010-11-01

    Magnetic properties and structural transitions of ternary rare-earth transition-metal oxides Ln3MO 7 ( Ln=rare earths, M=transition metals) were investigated. In this study, we prepared a series of molybdates Ln3MoO 7 ( Ln=La-Gd). They crystallize in an orthorhombic superstructure of cubic fluorite with space group P2 12 12 1, in which Ln3+ ions occupy two different crystallographic sites (the 8-coordinated and 7-coordinated sites). All of these compounds show a phase transition from the space group P2 12 12 1 to Pnma in the temperature range between 370 and 710 K. Their magnetic properties were characterized by magnetic susceptibility measurements from 1.8 to 400 K and specific heat measurements from 0.4 to 400 K. Gd 3MoO 7 shows an antiferromagnetic transition at 1.9 K. Measurements of the specific heat for Sm 3MoO 7 and the analysis of the magnetic specific heat indicate a "two-step" antiferromagnetic transition due to the ordering of Sm magnetic moments in different crystallographic sites, i.e., with decreasing temperature, the antiferromagnetic ordering of the 7-coordinated Sm ions occur at 2.5 K, and then the 8-coordinated Sm ions order at 0.8 K. The results of Ln3MoO 7 were compared with the magnetic properties and structural transitions of Ln3MO 7 ( M=Nb, Ru, Sb, Ta, Re, Os, or Ir).

  7. Relative Influence of Intrinsic and Extrinsic Factors on the Metal-Insulator Transition of VO2 Nanowires

    NASA Astrophysics Data System (ADS)

    Kim, In Soo

    The influence of stoichiometry on the metal-insulator transition of vanadium dioxide (VO2) nanowires was investigated using Raman spectroscopy. Controlled reduction of nominally strain-free suspended VO2 nanowires was conducted by rapid thermal annealing (RTA). The deficiency in oxygen assisted in the unprecedented suppression of the metallic (R) phase to temperatures as low as 103 K through generation of free electrons. In a complementary manner, oxygen-rich conditions stabilized the metastable monoclinic (M2) and triclinic (T) phases. A pseudo-phase diagram with dimensions of temperature and stoichiometry was established, highlighting the accessibility of new phases in the nanowire geometry. Detection of the dynamic elastic response across the metal-insulator transition in suspended VO2 nanowires was enabled by fiber-coupled polarization dependent interferometry. Dual-beam Raman spectroscopy was developed to determine the local domain/phase structure of VO2 nanowires, which allowed for accurate modeling using COMSOL finite element analysis (FEA). The Young's moduli of the single crystal insulating (M1) and metallic (R) phases without artifacts were determined for the first time. The sources of dissipation were identified as clamping losses, structural losses, thermoelastic damping, and domain wall motion. While contribution of thermoelastic damping was found to be dominant in the terminal phases, extraordinary dissipation was observed upon formation and movement of domain walls. Finally, it was shown that creation of local defects could lead to new classes of tunable sensors with a discrete and programmable frequency response with temperature.

  8. Transition metal sulfide loaded catalyst

    DOEpatents

    Maroni, Victor A.; Iton, Lennox E.; Pasterczyk, James W.; Winterer, Markus; Krause, Theodore R.

    1994-01-01

    A zeolite based catalyst for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C.sub.2 + hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  9. Transition metals in superheat melts

    NASA Technical Reports Server (NTRS)

    Jakes, Petr; Wolfbauer, Michael-Patrick

    1993-01-01

    A series of experiments with silicate melts doped with transition element oxides was carried out at atmospheric pressures of inert gas at temperatures exceeding liquidus. As predicted from the shape of fO2 buffer curves in T-fO2 diagrams the reducing conditions for a particular oxide-metal pair can be achieved through the T increase if the released oxygen is continuously removed. Experimental studies suggest that transition metals such as Cr or V behave as siderophile elements at temperatures exceeding liquidus temperatures if the system is not buffered by the presence of other oxide of more siderophile element. For example the presence of FeO prevents the reduction of Cr2O3. The sequence of decreasing siderophility of transition elements at superheat conditions (Mo, Ni, Fe, Cr) matches the decreasing degree of depletion of siderophile elements in mantle rocks as compared to chondrites.

  10. Approximating metal-insulator transitions

    NASA Astrophysics Data System (ADS)

    Danieli, Carlo; Rayanov, Kristian; Pavlov, Boris; Martin, Gaven; Flach, Sergej

    2015-12-01

    We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We propose an iterative construction of quasiperiodic potentials from sequences of potentials with increasing spatial period. At each finite iteration step, the eigenstates reflect the properties of the limiting quasiperiodic potential properties up to a controlled maximum system size. We then observe approximate Metal-Insulator Transitions (MIT) at the finite iteration steps. We also report evidence on mobility edges, which are at variance to the celebrated Aubry-André model. The dynamics near the MIT shows a critical slowing down of the ballistic group velocity in the metallic phase, similar to the divergence of the localization length in the insulating phase.

  11. Synthesis of transition metal carbonitrides

    DOEpatents

    Munir, Zuhair A. R.; Eslamloo-Grami, Maryam

    1994-01-01

    Transition metal carbonitrides (in particular, titanium carbonitride, TiC.sub.0.5 N.sub.0.5) are synthesized by a self-propagating reaction between the metal (e.g., titanium) and carbon in a nitrogen atmosphere. Complete conversion to the carbonitride phase is achieved with the addition of TiN as diluent and with a nitrogen pressure .gtoreq.0.6 MPa. Thermodynamic phase-stability calculations and experimental characterizations of quenched samples provided revealed that the mechanism of formation of the carbonitride is a two-step process. The first step involves the formation of the nonstoichiometric carbide, TiC.sub.0.5, and is followed by the formation of the product by the incorporation of nitrogen in the defect-structure carbide.

  12. Radiative transitions in metallic nanoclusters

    NASA Astrophysics Data System (ADS)

    Shalin, A. S.

    2008-02-01

    In this article, a new theoretical approach to studying light-scattering characteristics of nanosized objects based on the solution to the Thomas-Fermi equation and quasi-classical approximation is considered. It is shown that the distribution of valence electrons in the volume of metallic clusters exhibits a specific structure of "spatial zones." With the aid of quasi-classical wave functions, expressions for the appropriate dipole moments of the transitions between the ground and excited states are obtained; the behavior of the spectrum of gold clusters depending on their sizes is studied; a comparison with existing experimental data is carried out.

  13. Iodide effects in transition metal catalyzed reactions.

    PubMed

    Maitlis, Peter M; Haynes, Anthony; James, Brian R; Catellani, Marta; Chiusoli, Gian Paolo

    2004-11-01

    The unique properties of I(-) allow it to be involved in several different ways in reactions catalyzed by the late transition metals: in the oxidative addition, the migration, and the coupling/reductive elimination steps, as well as in substrate activation. Most steps are accelerated by I(-)(for example through an increased nucleophilicity of the metal center), but some are retarded, because a coordination site is blocked. The "soft" iodide ligand binds more strongly to soft metals (low oxidation state, electron rich, and polarizable) such as the later and heavier transition metals, than do the other halides, or N- and O-centered ligands. Hence in a catalytic cycle that includes the metal in a formally low oxidation state there will be less tendency for the metal to precipitate (and be removed from the cycle) in the presence of I(-) than most other ligands. Iodide is a good nucleophile and is also easily and reversibly oxidized to I(2). In addition, I(-) can play key roles in purely organic reactions that occur as part of a catalytic cycle. Thus to understand the function of iodide requires careful analysis, since two or sometimes more effects occur in different steps of one single cycle. Each of these topics is illustrated with examples of the influence of iodide from homogeneous catalytic reactions in the literature: methanol carbonylation to acetic acid and related reactions; CO hydrogenation; imine hydrogenation; and C-C and C-N coupling reactions. General features are summarised in the Conclusions. PMID:15510253

  14. Piperazine pivoted transition metal dithiocarbamates

    NASA Astrophysics Data System (ADS)

    Khan, Sadaf; Nami, Shahab A. A.; Siddiqi, K. S.

    2008-03-01

    A quadridentate ligand disodium bis(2,2'-dithiopiperazinato-2,2'-diamino diethylamine) Na 2L 2 and its self assembled transition metal complexes of the type, M 2(L 2) 2 {M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)} have been reported. The piperazine pivoted homodinuclear complexes have been characterized by a range of spectral, thermal, microanalytical and conductometric techniques. On the basis of IR and 1HNMR data a symmetrical bidentate coordination of the dithiocarbamato moiety has been observed in all the cases. The TGA profile of the ligand exhibits two stage thermolytic pattern although the complexes decompose in three steps, respectively. Metal sulfide is found to be the end product. The formation of homodinuclear complexes has been ascertained on the basis of FAB mass spectral data and a probable fragmentation pattern has been proposed. On the basis of UV-visible spectroscopic results and room temperature magnetic moment data a tetrahedral geometry has been proposed for all the complexes except for the Ni(II) and Cu(II) which are found to be square-planar.

  15. Aging of Transition Metal Dichalcogenide Monolayers.

    PubMed

    Gao, Jian; Li, Baichang; Tan, Jiawei; Chow, Phil; Lu, Toh-Ming; Koratkar, Nikhil

    2016-02-23

    Two-dimensional sheets of transition metal dichalcogenides are an emerging class of atomically thin semiconductors that are considered to be "air-stable", similar to graphene. Here we report that, contrary to current understanding, chemical vapor deposited transition metal dichalcogenide monolayers exhibit poor long-term stability in air. After room-temperature exposure to the environment for several months, monolayers of molybdenum disulfide and tungsten disulfide undergo dramatic aging effects including extensive cracking, changes in morphology, and severe quenching of the direct gap photoluminescence. X-ray photoelectron and Auger electron spectroscopy reveal that this effect is related to gradual oxidation along the grain boundaries and the adsorption of organic contaminants. These results highlight important challenges associated with the utilization of transition metal dichalcogenide monolayers in electronic and optoelectronic devices. We also demonstrate a potential solution to this problem, featuring encapsulation of the monolayer sheet by a 10-20 nm thick optically transparent polymer (parylene C). This strategy is shown to successfully prevent the degradation of the monolayer material under accelerated aging (i.e., high-temperature, oxygen-rich) conditions. PMID:26808328

  16. Method for dry etching of transition metals

    DOEpatents

    Ashby, Carol I. H.; Baca, Albert G.; Esherick, Peter; Parmeter, John E.; Rieger, Dennis J.; Shul, Randy J.

    1998-01-01

    A method for dry etching of transition metals. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorous-containing .pi.-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/.pi.-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the .pi.-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the .pi.-acceptor ligand for forming the volatile transition metal/.pi.-acceptor ligand complex.

  17. Method for dry etching of transition metals

    DOEpatents

    Ashby, C.I.H.; Baca, A.G.; Esherick, P.; Parmeter, J.E.; Rieger, D.J.; Shul, R.J.

    1998-09-29

    A method for dry etching of transition metals is disclosed. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorus-containing {pi}-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/{pi}-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the {pi}-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the {pi}-acceptor ligand for forming the volatile transition metal/{pi}-acceptor ligand complex.

  18. Transition metals activate TFEB in overexpressing cells

    PubMed Central

    Peña, Karina A.; Kiselyov, Kirill

    2015-01-01

    Transition metal toxicity is an important factor in the pathogenesis of numerous human disorders, including neurodegenerative diseases. Lysosomes have emerged as important factors in transition metal toxicity because they handle transition metals via endocytosis, autophagy, absorption from the cytoplasm and exocytosis. Transcription factor EB (TFEB) regulates lysosomal biogenesis and the expression of lysosomal proteins in response to lysosomal and/or metabolic stresses. Since transition metals cause lysosomal dysfunction, we proposed that TFEB may be activated to drive gene expression in response to transition metal exposure and that such activation may influence transition metal toxicity. We found that transition metals copper (Cu) and iron (Fe) activate recombinant TFEB and stimulate the expression of TFEB-dependent genes in TFEB-overexpressing cells. In cells that show robust lysosomal exocytosis, TFEB was cytoprotective at moderate levels of Cu exposure, decreasing oxidative stress as reported by the expression of heme oxygenase-1 (HMOX1) gene. However, at high levels of Cu exposure, particularly in cells with low levels of lysosomal exocytosis, activation of overexpressed TFEB was toxic, increasing oxidative stress and mitochondrial damage. Based on these data, we conclude that TFEB-driven gene network is a component of the cellular response to transition metals. These data suggest limitations and disadvantages of TFEB overexpression as a therapeutic approach. PMID:26251447

  19. Metal-metal bond lengths in complexes of transition metals*

    PubMed Central

    Pauling, Linus

    1976-01-01

    In complexes of the transition metals containing clusters of metal atoms the cobalt-cobalt bond lengths are almost always within 1 pm of the single-bond value 246 pm given by the enneacovalent radius of cobalt, whereas most of the observed iron-iron bond lengths are significantly larger than the single-bond value 248 pm, the mean being 264 pm, which corresponds to a half-bond. A simple discussion of the structures of these complexes based on spd hybrid orbitals, the electroneutrality principle, and the partial ionic character of bonds between unlike atoms leads to the conclusion that resonance between single bonds and no-bonds would occur for iron and its congeners but not for cobalt and its congeners, explaining the difference in the bond lengths. PMID:16592368

  20. Superconducting Metallic Glass Transition-Edge-Sensors

    NASA Technical Reports Server (NTRS)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  1. Vibrational scaling factors for transition metal carbonyls

    NASA Astrophysics Data System (ADS)

    Assefa, M. K.; Devera, J. L.; Brathwaite, A. D.; Mosley, J. D.; Duncan, M. A.

    2015-11-01

    Vibrational frequencies for a selected set of transition metal carbonyl complexes are computed with various forms of density functional theory (B3LYP, BP86, M06, and M06-L), employing several different basis sets. The computed frequencies for the carbonyl stretches are compared to the experimental values obtained from gas phase infrared spectra of isolated neutrals and ions. Recommended carbonyl-stretch scaling factors which are developed vary significantly for different functionals, but there is little variation with basis set. Scaled frequencies compared to experimental spectra for cobalt and tantalum carbonyl cations reveal additional variations in multiplet patterns and relative band intensities for different functionals.

  2. Strain induced fragility transition in metallic glass

    PubMed Central

    Yu, Hai-Bin; Richert, Ranko; Maaß, Robert; Samwer, Konrad

    2015-01-01

    Relaxation dynamics are the central topic in glassy physics. Recently, there is an emerging view that mechanical strain plays a similar role as temperature in altering the relaxation dynamics. Here, we report that mechanical strain in a model metallic glass modulates the relaxation dynamics in unexpected ways. We find that a large strain amplitude makes a fragile liquid become stronger, reduces dynamical heterogeneity at the glass transition and broadens the loss spectra asymmetrically, in addition to speeding up the relaxation dynamics. These findings demonstrate the distinctive roles of strain compared with temperature on the relaxation dynamics and indicate that dynamical heterogeneity inherently relates to the fragility of glass-forming materials. PMID:25981888

  3. Electrical Conduction in Transition-Metal Salts

    NASA Astrophysics Data System (ADS)

    Grado-Caffaro, M. A.; Grado-Caffaro, M.

    2016-04-01

    We predict that a given transition-metal salt as, for example, a K2CuCl4·2H2O-type compound, can behave as an electrical conductor in the paramagnetic case. In fact, we determine the electrical conductance in a salt of this type. This conductance is found to be quantised in agreement with previous well-known results. Related mathematical expressions in the context of superexchange interaction are obtained. In addition, we determine the corresponding (macroscopically viewed) current density and the associated electron wave functions.

  4. Electronic doping of transition metal oxide perovskites

    NASA Astrophysics Data System (ADS)

    Cammarata, Antonio; Rondinelli, James M.

    2016-05-01

    CaFeO3 is a prototypical negative charge transfer oxide that undergoes electronic metal-insulator transition concomitant with a dilation and contraction of nearly rigid octahedra. Altering the charge neutrality of the bulk system destroys the electronic transition, while the structure is significantly modified at high charge content. Using density functional theory simulations, we predict an alternative avenue to modulate the structure and the electronic transition in CaFeO3. Charge distribution can be modulated using strain-rotation coupling and thin film engineering strategies, proposing themselves as a promising avenue for fine tuning electronic features in transition metal-oxide perovskites.

  5. Tunable magnetocaloric effect in transition metal alloys.

    PubMed

    Belyea, Dustin D; Lucas, M S; Michel, E; Horwath, J; Miller, Casey W

    2015-01-01

    The unpredictability of geopolitical tensions and resulting supply chain and pricing instabilities make it imperative to explore rare earth free magnetic materials. As such, we have investigated fully transition metal based "high entropy alloys" in the context of the magnetocaloric effect. We find the NiFeCoCrPdx family exhibits a second order magnetic phase transition whose critical temperature is tunable from 100 K to well above room temperature. The system notably displays changes in the functionality of the magnetic entropy change depending on x, which leads to nearly 40% enhancement of the refrigerant capacity. A detailed statistical analysis of the universal scaling behavior provides direct evidence that heat treatment and Pd additions reduce the distribution of exchange energies in the system, leading to a more magnetically homogeneous alloy. The general implications of this work are that the parent NiFeCoCr compound can be tuned dramatically with FCC metal additives. Together with their relatively lower cost, their superior mechanical properties that aid manufacturability and their relative chemical inertness that aids product longevity, NiFeCoCr-based materials could ultimately lead to commercially viable magnetic refrigerants. PMID:26507636

  6. Tunable magnetocaloric effect in transition metal alloys

    PubMed Central

    Belyea, Dustin D.; Lucas, M. S.; Michel, E.; Horwath, J.; Miller, Casey W.

    2015-01-01

    The unpredictability of geopolitical tensions and resulting supply chain and pricing instabilities make it imperative to explore rare earth free magnetic materials. As such, we have investigated fully transition metal based “high entropy alloys” in the context of the magnetocaloric effect. We find the NiFeCoCrPdx family exhibits a second order magnetic phase transition whose critical temperature is tunable from 100 K to well above room temperature. The system notably displays changes in the functionality of the magnetic entropy change depending on x, which leads to nearly 40% enhancement of the refrigerant capacity. A detailed statistical analysis of the universal scaling behavior provides direct evidence that heat treatment and Pd additions reduce the distribution of exchange energies in the system, leading to a more magnetically homogeneous alloy. The general implications of this work are that the parent NiFeCoCr compound can be tuned dramatically with FCC metal additives. Together with their relatively lower cost, their superior mechanical properties that aid manufacturability and their relative chemical inertness that aids product longevity, NiFeCoCr-based materials could ultimately lead to commercially viable magnetic refrigerants. PMID:26507636

  7. Tunable magnetocaloric effect in transition metal alloys

    NASA Astrophysics Data System (ADS)

    Belyea, Dustin D.; Lucas, M. S.; Michel, E.; Horwath, J.; Miller, Casey W.

    2015-10-01

    The unpredictability of geopolitical tensions and resulting supply chain and pricing instabilities make it imperative to explore rare earth free magnetic materials. As such, we have investigated fully transition metal based “high entropy alloys” in the context of the magnetocaloric effect. We find the NiFeCoCrPdx family exhibits a second order magnetic phase transition whose critical temperature is tunable from 100 K to well above room temperature. The system notably displays changes in the functionality of the magnetic entropy change depending on x, which leads to nearly 40% enhancement of the refrigerant capacity. A detailed statistical analysis of the universal scaling behavior provides direct evidence that heat treatment and Pd additions reduce the distribution of exchange energies in the system, leading to a more magnetically homogeneous alloy. The general implications of this work are that the parent NiFeCoCr compound can be tuned dramatically with FCC metal additives. Together with their relatively lower cost, their superior mechanical properties that aid manufacturability and their relative chemical inertness that aids product longevity, NiFeCoCr-based materials could ultimately lead to commercially viable magnetic refrigerants.

  8. Thermomechanical properties of 3d transition metals

    SciTech Connect

    Karaoglu, B.; Rahman, S.M.M. . Dept. of Physics)

    1994-05-15

    The authors have investigated the density variation of the Einstein temperatures and elastic constants of the 3d transition metals. In this respect they have employed the transition metal (TM) pair potentials involving the sp contribution with an appropriate exchange and correlation function, the d-band broadening contribution and the d-band hybridization term. These calculations are aimed at testing the TM pair potentials in generating the quasilocal and local thermomechanical properties.

  9. Protein-Transition Metal Ion Networks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins obtained from agricultural sources were blended with divalent metal ions. Feather keratin, egg albumin, and wheat gluten showed increases of 2-3 times in modulus with addition of divalent transition metal ions Cu2+ and Zn2+. Increasing concentrations of ions resulted in increased stiffnes...

  10. Transition metal contacts to graphene

    SciTech Connect

    Politou, Maria De Gendt, Stefan; Heyns, Marc; Asselberghs, Inge; Radu, Iuliana; Conard, Thierry; Richard, Olivier; Martens, Koen; Huyghebaert, Cedric; Tokei, Zsolt; Lee, Chang Seung; Sayan, Safak

    2015-10-12

    Achieving low resistance contacts to graphene is a common concern for graphene device performance and hybrid graphene/metal interconnects. In this work, we have used the circular Transfer Length Method (cTLM) to electrically characterize Ag, Au, Ni, Ti, and Pd as contact metals to graphene. The consistency of the obtained results was verified with the characterization of up to 72 cTLM structures per metal. Within our study, the noble metals Au, Ag and Pd, which form a weaker bond with graphene, are shown to result in lower contact resistance (Rc) values compared to the more reactive Ni and Ti. X-ray Photo Electron Spectroscopy and Transmission Electron Microscopy characterization for the latter have shown the formation of Ti and Ni carbides. Graphene/Pd contacts show a distinct intermediate behavior. The weak carbide formation signature and the low Rc values measured agree with theoretical predictions of an intermediate state of weak chemisorption of Pd on graphene.

  11. Synthesis of Nanoporous Iminodiacetic Acid Sorbents for Binding Transition Metals

    PubMed Central

    Busche, Brad; Wiacek, Robert; Davidson, Joseph; Koonsiripaiboon, View; Yantasee, Wassana; Addleman, R. Shane; Fryxell, Glen E.

    2009-01-01

    Iminodiacetic acid (IDAA) forms strong complexes with a wide variety of metal ions. Using self-assembled monolayers in mesoporous supports (SAMMS) to present the IDAA ligand potentially allows for multiple metal-ligand interactions to enhance the metal binding affinity relative to that of randomly oriented polymer-based supports. This manuscript describes the synthesis of a novel nanostructured sorbent material built using self-assembly of a IDAA ligand inside a nanoporous silica, and demonstrates its use for capturing transition metal cations, and anionic metal complexes, such as PdCl4−2. PMID:22068901

  12. Transition metal catalysis in confined spaces.

    PubMed

    Leenders, Stefan H A M; Gramage-Doria, Rafael; de Bruin, Bas; Reek, Joost N H

    2015-01-21

    Transition metal catalysis plays an important role in both industry and in academia where selectivity, activity and stability are crucial parameters to control. Next to changing the structure of the ligand, introducing a confined space as a second coordination sphere around a metal catalyst has recently been shown to be a viable method to induce new selectivity and activity in transition metal catalysis. In this review we focus on supramolecular strategies to encapsulate transition metal complexes with the aim of controlling the selectivity via the second coordination sphere. As we will discuss, catalyst confinement can result in selective processes that are impossible or difficult to achieve by traditional methods. We will describe the template-ligand approach as well as the host-guest approach to arrive at such supramolecular systems and discuss how the performance of the catalyst is enhanced by confining it in a molecular container. PMID:25340992

  13. Method of boronizing transition-metal surfaces

    SciTech Connect

    Koyama, K.; Shimotake, H.

    1981-08-28

    A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB/sub 2/, or CrB/sub 2/. A transition metal to be coated is immersed in the melt at a temperature of no more than 700/sup 0/C and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface.

  14. Method of boronizing transition metal surfaces

    DOEpatents

    Koyama, Koichiro; Shimotake, Hiroshi

    1983-01-01

    A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB.sub.2, or CrB.sub.2. A transition metal to be coated is immersed in the melt at a temperature of no more than 700.degree. C. and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface.

  15. Method of boronizing transition metal surfaces

    DOEpatents

    Koyama, Koichiro; Shimotake, Hiroshi.

    1983-08-16

    A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB[sub 2], or CrB[sub 2]. A transition metal to be coated is immersed in the melt at a temperature of no more than 700 C and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface. 4 figs.

  16. Understanding topological phase transition in monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Choe, Duk-Hyun; Sung, Ha-Jun; Chang, K. J.

    2016-03-01

    Despite considerable interest in layered transition metal dichalcogenides (TMDs), such as M X2 with M =(Mo ,W ) and X =(S ,Se ,Te ) , the physical origin of their topological nature is still poorly understood. In the conventional view of topological phase transition (TPT), the nontrivial topology of electron bands in TMDs is caused by the band inversion between metal d - and chalcogen p -orbital bands where the former is pulled down below the latter. Here, we show that, in TMDs, the TPT is entirely different from the conventional speculation. In particular, M S2 and M S e2 exhibits the opposite behavior of TPT such that the chalcogen p -orbital band moves down below the metal d -orbital band. More interestingly, in M T e2 , the band inversion occurs between the metal d -orbital bands. Our findings cast doubts on the common view of TPT and provide clear guidelines for understanding the topological nature in new topological materials to be discovered.

  17. Microwave-assisted synthesis of transition metal phosphide

    SciTech Connect

    Viswanathan, Tito

    2014-12-30

    A method of synthesizing transition metal phosphide. In one embodiment, the method has the steps of preparing a transition metal lignosulfonate, mixing the transition metal lignosulfonate with phosphoric acid to form a mixture, and subjecting the mixture to a microwave radiation for a duration of time effective to obtain a transition metal phosphide.

  18. Nuclear Scattering from Transition Metals

    NASA Astrophysics Data System (ADS)

    Hira, Ajit; McKeough, James; Valerio, Mario; Cathey, Tommy

    2016-03-01

    In view of the continued interest in the scattering of light projectiles by metallic nuclei, we present a computational study of the interactions between different nuclear species of atoms such as H through F (Z <= 9) and the nuclei of Silver, Palladium and other metals. Recent work has shown that neutron scattering can be used to record holographic images of materials. We have developed a FORTRAN computer program to compute stopping cross sections and scattering angles in Ag and other metals for the small nuclear projectiles, using Monte Carlo calculation. This code allows for different angles of incidence. Next, simulations were done in the energy interval from 50 to 210 keV. The computational results thus obtained are compared with relevant experimental data. The data are further analyzed to identify periodic trends in terms of the atomic number of the projectile. Such studies also have potential applications in nuclear physics and in nuclear medicine. Funding from National Science Foundation.

  19. New Layered Ternary Transition-Metal Tellurides

    NASA Astrophysics Data System (ADS)

    Mar, Arthur

    Several new ternary transition-metal tellurides, a class of compounds hitherto largely unexplored, have been synthesized and characterized. These are layered materials whose structures have been determined by single -crystal X-ray diffraction methods. The successful preparation of the compound TaPtTe_5 was crucial in developing an understanding of the MM'Te_5 (M = Nb, Ta; M' = Ni, Pd, Pt) series of compounds, which adopt either of two possible closely-related layered structures. Interestingly, the compound TaPdTe _5 remains unknown. Instead, the compound Ta_4Pd_3Te _{16} has been prepared. Its structure is closely related to that of the previously prepared compound Ta_3Pd _3Te_{14}. The physical properties of these compounds have been measured and correlated with the metal substitutions and interlayer separations. A new series of compounds, MM'Te _4 (M = Nb, Ta; M' = Ru, Os, Rh, Ir), has been discovered. The structure of NbIrTe_4 serves as a prototype: it is an ordered variant of the binary telluride WTe_2. Electronic band-structure calculations have been performed in order to rationalize the trends in metal-metal and tellurium -tellurium bonding observed in WTe_2 and the MM'Te_4 phases. Extension of these studies to include main-group metals has resulted in the synthesis of the new layered ternary germanium tellurides TiGeTe_6, ZrGeTe_4 , and HfGeTe_4. Because germanium can behave ambiguously in its role as a metalloid element, it serves as an anion by capping the metal-centered trigonal prisms and also as a cation in being coordinated in turn by other tellurium atoms in a trigonal pyramidal fashion. Structural relationships among these compounds are illustrated through the use of bicapped trigonal prisms and trigonal pyramids as the basic structural building blocks. The electrical and magnetic properties of these compounds have been measured. Insight into the unusual bonding and physical properties of these germanium-containing compounds has been gained through

  20. Chemical vapour deposition: Transition metal carbides go 2D

    NASA Astrophysics Data System (ADS)

    Gogotsi, Yury

    2015-11-01

    The unique properties of 2D materials, such as graphene or transition metal dichalcogenides, have been attracting much attention in the past decade. Now, metallically conductive and even superconducting transition metal carbides are entering the game.

  1. Triple decker sandwiches and related compounds of the first row transition metals with cyclopentadienyl and hexafluorobenzene rings: remarkable effects of fluorine substitution.

    PubMed

    Gong, Shida; Luo, Qiong; Feng, Xiangfei; Li, Qian-shu; Xie, Yaoming; King, R Bruce; Schaefer, Henry F

    2015-08-21

    The complete series of Cp2M2(μ-C6F6) (M = Ti, V, Cr, Mn, Fe, Co, Ni) structures have been examined theoretically for comparison with their unsubstituted Cp2M2(μ-C6H6) analogues. The singlet triple decker sandwich titanium complex Cp2Ti2(η(6),η(6)-C6F6) with a closed shell electronic structure and a non-planar C6F6 ring is preferred energetically by a wide margin (>20 kcal mol(-1)) over other isomers and spin states. This is in contrast to the hydrogen analogue for which related triplet spin state structures are clearly preferred. A similar low-energy triple-decker sandwich Cp2V2(η(6),η(6)-C6F6) structure is found for vanadium but with a quintet spin state. The later transition metals from Cr to Ni energetically prefer the so-called "rice-ball" cis-Cp2M2(μ-C6F6) structures with varying hapticities of metal-ring bonding, a range of formal orders of metal-metal bonding, and varying spin states depending on the metal atom. Thus the lowest energy Cp2Cr2(μ-C6F6) structures are triplet and quintet structures with pentahapto-trihapto η(5),η(3)-μ-C6F6 rings and formal Cr=Cr double bonds. This contrasts with the structure of Cp2Cr2(μ-C6H6) having a bis(tetrahapto) η(4),η(4)-C6H6 ring and a formal Cr-Cr quadruple bond. The lowest energy Cp2Mn2(μ-C6F6) structures are trans and cis quintet spin state structures. This contrasts with Cp2Mn2(μ-C6H6) for which a closed-shell singlet triple decker sandwich structure is preferred. The lowest energy Cp2Fe2(μ-C6F6) structure is a triplet cis structure with a tetrahapto-dihapto η(4),η(2)-μ-C6F6 ring and a formal Fe-Fe single bond. The lowest energy Cp2Co2(μ-C6F6) structures are singlet spin state structures with formal M-M single bonds and either bridging bis(trihapto) η(3),η(3)-C6F6 or tetrahapto-dihapto η(4),η(2)-C6F6 rings. For Cp2Ni2(μ-C6F6) low energy singlet cis and trans structures are both found. The singlet cis-Cp2Ni2(μ-C6F6) structure has a Ni-Ni single bond of length ∼2.5 Å and a bridging bis

  2. Transition-metal substitutions in iron chalcogenides

    NASA Astrophysics Data System (ADS)

    Bezusyy, V. L.; Gawryluk, D. J.; Malinowski, A.; Cieplak, Marta Z.

    2015-03-01

    The a b -plane resistivity and Hall effect are studied in Fe1 -yMyTe0.65Se0.35 single crystals doped with two transition-metal elements, M = Co or Ni, over a wide doping range, 0 ≤y ≤0.2 . The superconducting transition temperature, Tc, reaches zero for Co at y ≃0.14 and for Ni at y ≃0.032 , while the resistivity at the Tc onset increases weakly with Co doping, and strongly with Ni doping. The Hall coefficient RH, positive for y =0 , remains so at high temperatures for all y , while it changes sign to negative at low T for y >0.135 (Co) and y >0.06 (Ni). The analysis based on a two-band model suggests that at high T residual hole pockets survive the doping, but holes get localized upon the lowering of T , so that the effect of the electron doping on the transport becomes evident. The suppression of the Tc by Co impurity is related to electron doping, while in the case of the Ni impurity strong electron localization most likely contributes to fast decrease of the Tc.

  3. Relative transition probabilities of cobalt

    NASA Technical Reports Server (NTRS)

    Roig, R. A.; Miller, M. H.

    1974-01-01

    Results of determinations of neutral-cobalt transition probabilities measured relative to Co I 4150.43 A and Co II 4145.15 A, using a gas-driven shock tube as the spectroscopic light source. Results are presented for 139 Co I lines in the range from 3940 to 6640 A and 11 Co II lines in the range from 3840 to 4730 A, which are estimated to have reliabilities ranging from 8 to 50%.

  4. Magnetism and electronic phase transitions in monoclinic transition metal dichalcogenides with transition metal atoms embedded

    NASA Astrophysics Data System (ADS)

    Lin, Xianqing; Ni, Jun

    2016-08-01

    First-principles calculations have been performed to study the energetic, electronic, and magnetic properties of substitutional 3d transition metal dopants in monoclinic transition metal dichalcogenides (TMDs) as topological insulators ( 1 T ' - MX 2 with M = (Mo, W) and X = (S, Se)). We find various favorite features in these doped systems to introduce magnetism and other desirable electronic properties: (i) The Mn embedded monoclinic TMDs are magnetic, and the doped 1 T ' - MoS 2 still maintains the semiconducting character with high concentration of Mn, while an electronic phase transition occurs in other Mn doped monoclinic TMDs with an increasing concentration of Mn. Two Mn dopants prefer the ferromagnetic coupling except for substitution of the nearest Mo atoms in 1 T ' - MoS 2 , and the strength of exchange interaction shows anisotropic behavior with dopants along one Mo zigzag chain having much stronger coupling. (ii) The substitutional V is a promising hole dopant, which causes little change to the energy dispersion around the conduction and valence band edges in most systems. In contrast, parts of the conduction band drop for the electron dopants Co and Ni due to the large structural distortion. Moreover, closing band gaps of the host materials are observed with increasing carrier concentration. (iii) Single Fe dopant has a magnetic moment, but it also dopes electrons. When two Fe dopants have a small distance, the systems turn into nonmagnetic semiconductors. (iv) The formation energies of all dopants are much lower than those in hexagonal TMDs and are all negative in certain growth conditions, suggesting possible realization of the predicted magnetism, electronic phase transitions as well as carrier doping in 1 T ' - MX 2 based topological devices.

  5. Configuring bonds between first-row transition metals.

    PubMed

    Eisenhart, Reed J; Clouston, Laura J; Lu, Connie C

    2015-11-17

    Alfred Werner, who pioneered the field of coordination chemistry, envisioned coordination complexes as a single, transition metal atom at the epicenter of a vast ligand space. The idea that the locus of a coordination complex could be shared by multiple metals held together with covalent bonds would eventually lead to the discovery of the quadruple and quintuple bond, which have no analogues outside of the transition metal block. Metal-metal bonding can be classified into homometallic and heterometallic groups. Although the former is dominant, the latter is arguably more intriguing because of the inherently larger chemical space in which metal-metal bonding can be explored. In 2013, Lu and Thomas independently reported the isolation of heterometallic multiple bonds with exclusively first-row transition metals. Structural and theoretical data supported triply bonded Fe-Cr and Fe-V cores. This Account describes our continued efforts to configure bonds between first-row transition metals from titanium to copper. Double-decker ligands, or binucleating platforms that brace two transition metals in proximity, have enabled the modular synthesis of diverse metal-metal complexes. The resulting complexes are also ideal for investigating the effects of an "ancillary" metal on the properties and reactivities of an "active" metal center. A total of 38 bimetallic complexes have been compiled comprising 18 unique metal-metal pairings. Twenty-one of these bimetallics are strictly isostructural, allowing for a systematic comparison of metal-metal bonding. The nature of the chemical bond between first-row metals is remarkably variable and depends on two primary factors: the total d-electron count, and the metals' relative d-orbital energies. Showcasing the range of covalent bonding are a quintuply bonded (d-d)(10) Mn-Cr heterobimetallic and the singly bonded late-late pairings, e.g., Fe-Co, which adopt unusually high spin states. A long-term goal is to rationally tailor the

  6. Dimensional diversity in transition metal trihalides

    SciTech Connect

    Jianhua Lin; Miller, G.J. )

    1993-04-14

    Structural variations of the second- and third-row transition metal trihalides are rationalized via tight-binding band calculations and evaluation of Madelung energetic factors. The observed structure for a given metal halide is controlled by both the coordination geometry at the anion and the d electron configuration at the metal. As the polarizability of the halide increases, the M-X-M angle, in general, decreases so that three-dimensional frameworks occur for the fluorides, while layer and chain structures are found for the chlorides, bromides, and iodides. Within a particular halide system, systematic structural trends also occur as the d electron configuration changes. 56 refs., 23 figs., 4 tabs.

  7. OH-transition metal bonding

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.

    1986-01-01

    The bonding in both CuOH and AgOH has a covalent component that leads to a bent structure. The larger electrostatic stabilization in CuOH leads to a larger D(e) (2.83 eV) compared with AgOH (2.20 eV). Using Ni5OH to model chemisorption of OH on a Ni surface, it is found that OH adsorption in the fourfold hollow of Ni(100) leads to an OH normal to the surface, while adsorption directly above a Ni atom leads to a tilted OH. These qualitative Ni5OH calculations allow for speculation on the observed variation of OH on metal surfaces.

  8. High Pressure Synthesis of Transition Metal Carbonyls.

    ERIC Educational Resources Information Center

    Hagen, A. P.; And Others

    1979-01-01

    Presents an experiment which uses readily available starting materials and inexpensive equipment for synthesis of transition metal carbonyls at 1000 atm and which is intended to give students experience in techniques used in research and industry. Safety precautions are emphasized. (Author/SA)

  9. Quantifying the binding strength of salicylaldoxime-uranyl complexes relative to competing salicylaldoxime-transition metal ion complexes in aqueous solution: a combined experimental and computational study.

    PubMed

    Mehio, Nada; Ivanov, Alexander S; Williams, Neil J; Mayes, Richard T; Bryantsev, Vyacheslav S; Hancock, Robert D; Dai, Sheng

    2016-05-31

    The design of new ligands and investigation of UO2(2+) complexations are an essential aspect of reducing the cost of extracting uranium from seawater, improving the sorption efficiency for uranium and the selectivity for uranium over competing ions (such as the transition metal cations). The binding strengths of salicylaldoxime-UO2(2+) complexes were quantified for the first time and compared with the binding strengths of salicylic acid-UO2(2+) and representative amidoxime-UO2(2+) complexes. We found that the binding strengths of salicylaldoxime-UO2(2+) complexes are ∼2-4 log β2 units greater in magnitude than their corresponding salicylic acid-UO2(2+) and representative amidoxime-UO2(2+) complexes; moreover, the selectivity of salicylaldoxime towards the UO2(2+) cation over competing Cu(2+) and Fe(3+) cations is far greater than those reported for salicylic acid and glutarimidedioxime in the literature. The higher UO2(2+) selectivity can likely be attributed to the different coordination modes observed for salicylaldoxime-UO2(2+) and salicylaldoxime-transition metal complexes. Density functional theory calculations indicate that salicylaldoxime can coordinate with UO2(2+) as a dianion species formed by η(2) coordination of the aldoximate and monodentate binding of the phenolate group. In contrast, salicylaldoxime coordinates with transition metal cations as a monoanion species via a chelate formed between phenolate and the oxime N; the complexes are stabilized via hydrogen bonding interactions between the oxime OH group and phenolate. By coupling the experimentally determined thermodynamic constants and the results of theoretical computations, we are able to derive a number of ligand design principles to further improve the UO2(2+) cation affinity, and thus further increase the selectivity of salicylaldoxime derivatives. PMID:26979403

  10. Superhardness effect in transition-metal diborides films

    NASA Astrophysics Data System (ADS)

    Bazhin, A. I.; Goncharov, A. A.; Pogrebnyak, A. D.; Stupak, V. A.; Goncharova, S. A.

    2016-06-01

    The structure, composition, and properties of transition-metal diboride films have been studied. It was shown that they are characterized by a wide range of structural states, namely from amorphous-like to nanocrystalline with crystallite sizes of 1-50 nm. The characteristic peculiarity of the structure of film transition-metal diborides with high physical and mechanical properties is the formation of a nanocrystalline (columnar) structure with the growth texture in plane [00.1] and a nanocrystallite size of 20-50 nm. The element composition of a superhard highly textured film transition-metal diborides was studied by ion mass spectrometry and Auger electron spectroscopy. The overstoichiometry effect in nanocrystalline transitionmetal diboride films is explained. It was shown that this effect is related to the formation of an additional B⎯B covalent bond, which is realized at subgrain boundaries and leads to the appearance of superhardness in the formed coatings.

  11. Electronic Transitions in f-electron Metals at High Pressures:

    SciTech Connect

    Yoo, C; Maddox, B; Lazicki, A; Iota, V; Klepeis, J P; McMahan, A

    2007-02-08

    This study was to investigate unusual phase transitions driven by electron correlation effects that occur in many f-band transition metals and are often accompanied by large volume changes: {approx}20% at the {delta}-{alpha} transition in Pu and 5-15% for analogous transitions in Ce, Pr, and Gd. The exact nature of these transitions has not been well understood, including the short-range correlation effects themselves, their relation to long-range crystalline order, the possible existence of remnants of the transitions in the liquid, the role of magnetic moments and order, the critical behavior, and dynamics of the transitions, among other issues. Many of these questions represent forefront physics challenges central to Stockpile materials and are also important in understanding the high-pressure behavior of other f- and d-band transition metal compounds including 3d-magnetic transition monoxide (TMO, TM=Mn, Fe, Co, Ni). The overarching goal of this study was, therefore, to understand the relationships between crystal structure and electronic structure of transition metals at high pressures, by using the nation's brightest third-generation synchrotron x-ray at the Advanced Photon Source (APS). Significant progresses have been made, including new discoveries of the Mott transition in MnO at 105 GPa and Kondo-like 4f-electron dehybridization and new developments of high-pressure resonance inelastic x-ray spectroscopy and x-ray emission spectroscopy. These scientific discoveries and technology developments provide new insights and enabling tools to understand scientific challenges in stockpile materials. The project has broader impacts in training two SEGRF graduate students and developing an university collaboration (funded through SSAAP).

  12. Properties of Transition Metal Doped Alumina

    NASA Astrophysics Data System (ADS)

    Nykwest, Erik; Limmer, Krista; Brennan, Ray; Blair, Victoria; Ramprasad, Rampi

    Crystallographic texture can have profound effects on the properties of a material. One method of texturing is through the application of an external magnetic field during processing. While this method works with highly magnetic systems, doping is required to couple non-magnetic systems with the external field. Experiments have shown that low concentrations of rare earth (RE) dopants in alumina powders have enabled this kind of texturing. The magnetic properties of RE elements are directly related to their f orbital, which can have as many as 7 unpaired electrons. Since d-block elements can have as many as 5 unpaired electrons the effects of substitutional doping of 3d transition metals (TM) for Al in alpha (stable) and theta (metastable) alumina on the local structure and magnetic properties, in addition to the energetic cost, have been calculated by performing first-principles calculations based on density functional theory. This study has led to the development of general guidelines for the magnetic moment distribution at and around the dopant atom, and the dependence of this distribution on the dopant atom type and its coordination environment. It is anticipated that these findings can aid in the selection of suitable dopants help to guide parallel experimental efforts. This project was supported in part by an internship at the Army Research Laboratory, administered by the Oak Ridge Institute for Science and Education, along with a grant of computer time from the DoD High Performance Computing Modernization Program.

  13. Insulator to Metal Transition in Fluid Hydrogen

    SciTech Connect

    Hood, R Q; Galli, G

    2003-06-15

    The authors have investigated the insulator to metal transition (ITM) in fluid hydrogen using first principles simulations. Both density functional and quantum Monte Carlo calculations show that the electronic energy gap of the liquid vanishes at about 9 fold compression and 3000 K. At these conditions the computed conductivity values are characteristic of a poor metal. These findings are consistent with those of recent shock wave experiments but the computed conductivity is larger than the measured value. From the ab-initio results they conclude that the ITM is driven by molecular dissociation rather than disorder and that both temperature and pressure play a key role in determining structural changes in the fluid.

  14. Magnetic and Metal-Insulator Transition in natural Transition Metal Sulfides

    NASA Astrophysics Data System (ADS)

    Wang, Renxiong; Metz, Tristin; Liu, I.-Lin; Wang, Kefeng; Wang, Xiangfeng; Jeffries, J. R.; Saha, S. R.; Greene, R. L.; Paglione, J.; Santelli, C. C.; Post, J.,

    In collaboration with the Smithsonian Institution's National Museum of Natural History, we present detailed studies of a class of natural minerals with potential to harbor correlated behavior. Transition metal sulfide minerals, such as Bornite (Cu5FeS4), are an important family of compounds known for their thermoelectric properties. We will present low temperature experimental studies of magnetic transitions and focus on a compound that exhibits a metal to insulator transition concident with entrance to an antiferromagnetic ground state, suggesting a potentially interesting system with promise for realizing new correlated states of matter in a naturally occurring mineral.

  15. (Electronic structure and reactivities of transition metal clusters)

    SciTech Connect

    Not Available

    1992-01-01

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  16. Cascade morphology transition in bcc metals.

    PubMed

    Setyawan, Wahyu; Selby, Aaron P; Juslin, Niklas; Stoller, Roger E; Wirth, Brian D; Kurtz, Richard J

    2015-06-10

    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent, b, in the defect production curve as a function of cascade energy (N(F) ~ E(MD)(b)). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, μ, between the high- and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of μ as a function of displacement threshold energy, E(d), is presented for bcc metals. PMID:25985256

  17. Cascade morphology transition in bcc metals

    SciTech Connect

    Setyawan, Wahyu; Selby, A.; Juslin, Niklas; Stoller, Roger E.; Wirth, Brian D.; Kurtz, Richard J.

    2015-06-10

    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent, $b$, in the defect production curve as a function of cascade energy ($N_F$$ \\sim$$E_{MD}^b$). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, $\\mu$, between the high- and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of $\\mu$ as a function of displacement threshold energy, $E_d$, is presented for bcc metals.

  18. Topological phase transition in layered transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Choe, Duk-Hyun; Sung, Ha-Jun; Chang, Kee Joo

    Despite considerable interests in transition metal dichalcogenides (TMDs), such as MX2 with M = (Mo, W) and X = (S, Se, Te), the physical origin of their topological nature is still in its infancy. The conventional view of topological phase transition (TPT) in TMDs is that the band inversion occurs between the metal d and chalcogen p orbital bands. More precisely, the former is pulled down below the latter. Here we introduce an explicit scheme for analyzing TPT in topological materials and find that the TPT in TMDs is different from the conventional speculation. When the 1T phase undergoes a structural transformation to the 1T' phase in monolayer MX2, the band topology changes from trivial to non-trivial, leading to the TPT. We discuss the exact role of the metal d and chalcogen p orbital bands during the TPT. Our finding would provide clear guidelines for understanding the topological nature not only in TMDs but also in other topological materials yet to be explored.

  19. Single-layer transition metal sulfide catalysts

    DOEpatents

    Thoma, Steven G.

    2011-05-31

    Transition Metal Sulfides (TMS), such as molybdenum disulfide (MoS.sub.2), are the petroleum industry's "workhorse" catalysts for upgrading heavy petroleum feedstocks and removing sulfur, nitrogen and other pollutants from fuels. We have developed an improved synthesis technique to produce SLTMS catalysts, such as molybdenum disulfide, with potentially greater activity and specificity than those currently available. Applications for this technology include heavy feed upgrading, in-situ catalysis, bio-fuel conversion and coal liquefaction.

  20. Ferroelectric control of metal-insulator transition

    NASA Astrophysics Data System (ADS)

    He, Xu; Jin, Kui-juan; Ge, Chen; Ma, Zhong-shui; Yang, Guo-zhen

    2016-03-01

    We propose a method of controlling the metal-insulator transition of one perovskite material at its interface with another ferroelectric material based on first principle calculations. The operating principle is that the rotation of oxygen octahedra tuned by the ferroelectric polarization can modulate the superexchange interaction in this perovskite. We designed a tri-color superlattice of (BiFeO3)N/LaNiO3/LaTiO3, in which the BiFeO3 layers are ferroelectric, the LaNiO3 layer is the layer of which the electronic structure is to be tuned, and LaTiO3 layer is inserted to enhance the inversion asymmetry. By reversing the ferroelectric polarization in this structure, there is a metal-insulator transition of the LaNiO3 layer because of the changes of crystal field splitting of the Ni eg orbitals and the bandwidth of the Ni in-plane eg orbital. It is highly expected that a metal-transition can be realized by designing the structures at the interfaces for more materials.

  1. Corrosion behavior of mesoporous transition metal nitrides

    SciTech Connect

    Yang, Minghui; Allen, Amy J.; Nguyen, Minh T.; Ralston, Walter T.; MacLeod, Michelle J.; DiSalvo, Francis J.

    2013-09-15

    Transition metal nitrides (TMN) have many desirable characteristics such as high hardness and good thermal stability under reducing conditions. This work reports an initial survey of the chemical stability of mesoporous TMNs (TM=Nb, V, Cr and Ti) in water at 80 °C at neutral, acidic and alkaline pH. The mesoporous TMNs had specific surface areas of 25–60 m{sup 2}/g with average pore sizes ranging from 10 to 50 nm. The high surface areas of these materials enhance the rate of corrosion per unit mass over that of a bulk material, making detection of corrosion much easier. The products were characterized by Rietveld refinement of powder X-ray diffraction (PXRD) patterns and by scanning electron microscopy (SEM). Several nitrides have corrosion rates that are, within error, not distinguishable from zero (±1 Å/day). Of the nitrides examined, CrN appears to be the most corrosion resistant under acidic conditions. None of the nitrides studied are corrosion resistant under alkaline conditions. - Graphical abstract: Corrosion behavior of mesoporous transition metal nitrides (TM=Nb, V, Cr and Ti) in acidic and alkaline solutions at 80 °C for 2 weeks. Display Omitted - highlights: • Corrosion rates of mesoporous transition metal nitrides in aqueous solution is reported. • The mesoporous TMNs had surface areas of 25–60 m{sup 2}/g. • CrN is the most corrosion resistant under the conditions studied.

  2. Thermodynamic Hydricity of Transition Metal Hydrides.

    PubMed

    Wiedner, Eric S; Chambers, Matthew B; Pitman, Catherine L; Bullock, R Morris; Miller, Alexander J M; Appel, Aaron M

    2016-08-10

    Transition metal hydrides play a critical role in stoichiometric and catalytic transformations. Knowledge of free energies for cleaving metal hydride bonds enables the prediction of chemical reactivity, such as for the bond-forming and bond-breaking events that occur in a catalytic reaction. Thermodynamic hydricity is the free energy required to cleave an M-H bond to generate a hydride ion (H(-)). Three primary methods have been developed for hydricity determination: the hydride transfer method establishes hydride transfer equilibrium with a hydride donor/acceptor pair of known hydricity, the H2 heterolysis method involves measuring the equilibrium of heterolytic cleavage of H2 in the presence of a base, and the potential-pKa method considers stepwise transfer of a proton and two electrons to give a net hydride transfer. Using these methods, over 100 thermodynamic hydricity values for transition metal hydrides have been determined in acetonitrile or water. In acetonitrile, the hydricity of metal hydrides spans a range of more than 50 kcal/mol. Methods for using hydricity values to predict chemical reactivity are also discussed, including organic transformations, the reduction of CO2, and the production and oxidation of hydrogen. PMID:27483171

  3. Catabolism of hyaluronan: involvement of transition metals

    PubMed Central

    Šoltés, Ladislav; Kogan, Grigorij

    2009-01-01

    One of the very complex structures in the vertebrates is the joint. The main component of the joint is the synovial fluid with its high-molar-mass glycosaminoglycan hyaluronan, which turnover is approximately twelve hours. Since the synovial fluid does not contain any hyaluronidases, the fast hyaluronan catabolism is caused primarily by reductive-oxidative processes. Eight transition metals – V23, Mn25, Fe26, Co27, Ni28, Cu29, Zn30, and Mo42 – naturally occurring in living organism are essential for the control of various metabolic and signaling pathways. They are also the key elements in catabolism of hyaluronan in the joint. In this overview, the role of these metals in physiological and pathophysiological catabolism of hyaluronan is described. The participation of these metals in the initiation and propagation of the radical degradation hyaluronan is critically reviewed. PMID:21217859

  4. Thickness dependence of spin polarization and electronic structure of ultra-thin films of MoS2 and related transition-metal dichalcogenides

    PubMed Central

    Chang, Tay-Rong; Lin, Hsin; Jeng, Horng-Tay; Bansil, A.

    2014-01-01

    We have carried out thickness dependent first-principles electronic structure calculations on ultra-thin films of transition-metal dichalcogenides MX2 (M = Mo or W; X = S, Se, or Te). When spin-orbit coupling (SOC) is included in the computations, monolayer MX2 thin films display spin-split states around the valence band maximum at the Brillouin zone corners with nearly 100% spin polarization. The spins are aligned oppositely along out-of-the-plane direction at the K and K′ points. For the bilayer films, spin polarization of this SOC induced band splitting can be switched on or off by an out-of-the-plane external electric field. The spin-polarized states are weakly coupled between the layers in bulk MX2 compounds with small kz dispersion. We confirm a transition from an indirect to direct band gap as the thickness is reduced to a monolayer in MoS2, in agreement with recent experimental findings. Owing to the presence of a large spin-splitting energy and an insulating band gap, MX2 compounds have great potential for spin/valley electronic applications at room temperature. PMID:25189645

  5. Synthesis of arsenic transition metal sulfides and metal arsenides

    SciTech Connect

    Singhal, G.H.; Brown, L.D.; Ryan, D.F.

    1993-12-31

    One of the chief problems in upgrading shale oil is the presence of inherent arsenic which is known to poison downstream catalysts. Highly dispersed transition metal sulfides formed in situ from the decomposition of dithiocarbamate (DTC) complexes of transition metals show excellent potential as dearsenation agents. The authors have studied the reaction of these sulfides with various arsenic compositions and characterized the metal arsenides and arsenic metal sulfides formed as well as the ease of their formation. Thus, the reaction of bis(butyldithiocarbamato)Ni, (NiBuDTC) with model compounds was very facile and gave NiAs, NiAsS, and NiAs2=xSx. In general the effectiveness of the sulfides for dearsenation followed the sequence Ni>Mo{much_gt}Co, while iron sulfides were totally ineffective. Based upon these results, tests were run in autoclaves (as well as a fixed-bed flow-through unit) with NiBuDTC and shale oil having 73 ppm inherent As. Under optimum conditions, dearsenation down to les than 1 ppm was obtained.

  6. Ultrafast photophysics of transition metal complexes.

    PubMed

    Chergui, Majed

    2015-03-17

    The properties of transition metal complexes are interesting not only for their potential applications in solar energy conversion, OLEDs, molecular electronics, biology, photochemistry, etc. but also for their fascinating photophysical properties that call for a rethinking of fundamental concepts. With the advent of ultrafast spectroscopy over 25 years ago and, more particularly, with improvements in the past 10-15 years, a new area of study was opened that has led to insightful observations of the intramolecular relaxation processes such as internal conversion (IC), intersystem crossing (ISC), and intramolecular vibrational redistribution (IVR). Indeed, ultrafast optical spectroscopic tools, such as fluorescence up-conversion, show that in many cases, intramolecular relaxation processes can be extremely fast and even shorter than time scales of vibrations. In addition, more and more examples are appearing showing that ultrafast ISC rates do not scale with the magnitude of the metal spin-orbit coupling constant, that is, that there is no heavy-atom effect on ultrafast time scales. It appears that the structural dynamics of the system and the density of states play a crucial role therein. While optical spectroscopy delivers an insightful picture of electronic relaxation processes involving valence orbitals, the photophysics of metal complexes involves excitations that may be centered on the metal (called metal-centered or MC) or the ligand (called ligand-centered or LC) or involve a transition from one to the other or vice versa (called MLCT or LMCT). These excitations call for an element-specific probe of the photophysics, which is achieved by X-ray absorption spectroscopy. In this case, transitions from core orbitals to valence orbitals or higher allow probing the electronic structure changes induced by the optical excitation of the valence orbitals, while also delivering information about the geometrical rearrangement of the neighbor atoms around the atom of

  7. Raman spectroscopy of transition metal dichalcogenides.

    PubMed

    Saito, R; Tatsumi, Y; Huang, S; Ling, X; Dresselhaus, M S

    2016-09-01

    Raman spectroscopy of transition metal dichalcogenides (TMDs) is reviewed based on our recent theoretical and experimental works. First, we discuss the semi-classical and quantum mechanical description for the polarization dependence of Raman spectra of TMDs in which the optical dipole transition matrix elements as a function of laser excitation energy are important for understanding the polarization dependence of the Raman intensity and Raman tensor. Overviewing the symmetry of TMDs, we discuss the dependence of the Raman spectra of TMDs on layer thickness, polarization, laser energy and the structural phase. Furthermore, we discuss the Raman spectra of twisted bilayer and heterostructures of TMDs. Finally, we give our perspectives on the Raman spectroscopy of TMDs. PMID:27388703

  8. Raman spectroscopy of transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Saito, R.; Tatsumi, Y.; Huang, S.; Ling, X.; Dresselhaus, M. S.

    2016-09-01

    Raman spectroscopy of transition metal dichalcogenides (TMDs) is reviewed based on our recent theoretical and experimental works. First, we discuss the semi-classical and quantum mechanical description for the polarization dependence of Raman spectra of TMDs in which the optical dipole transition matrix elements as a function of laser excitation energy are important for understanding the polarization dependence of the Raman intensity and Raman tensor. Overviewing the symmetry of TMDs, we discuss the dependence of the Raman spectra of TMDs on layer thickness, polarization, laser energy and the structural phase. Furthermore, we discuss the Raman spectra of twisted bilayer and heterostructures of TMDs. Finally, we give our perspectives on the Raman spectroscopy of TMDs.

  9. Electrocatalysis using transition metal carbide and oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Regmi, Yagya N.

    Carbides are one of the several families of transition metal compounds that are considered economic alternatives to catalysts based on noble metals and their compounds. Phase pure transition metal carbides of group 4-6 metals, in the first three periods, were synthesized using a common eutectic salt flux synthesis method, and their electrocatalytic activities compared under uniform electrochemical conditions. Mo2C showed highest hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) activities among the nine metal carbides investigated, but all other metal carbides also showed substantial activities. All the metal carbides showed remarkable enhancement in catalytic activities as supports, when compared to traditional graphitic carbon as platinum support. Mo2C, the most active transition metal carbide electrocatalyst, was prepared using four different synthesis routes, and the synthesis route dependent activities compared. Bifunctional Mo 2C that is HER as well as oxygen evolution reaction (OER) active, was achieved when the carbide was templated on a multiwalled carbon nanotube using carbothermic reduction method. Bimetallic carbides of Fe, Co, and Ni with Mo or W were prepared using a common carbothermic reduction method. Two different stoichiometries of bimetallic carbides were obtained for each system within a 60 °C temperature window. While the bimetallic carbides showed relatively lower electrocatalytic activities towards HER and ORR in comparison to Mo2C and WC, they revealed remarkably higher OER activities than IrO2 and RuO2, the state-of-the-art OER catalysts. Bimetallic oxides of Fe, Co, and Ni with Mo and W were also prepared using a hydrothermal synthesis method and they also revealed OER activities that are much higher than RuO2 and IrO2. Additionally, the OER activities were dependent on the degree and nature of hydration in the bimetallic oxide crystal lattice, with the completely hydrated, as synthesized, cobalt molybdate and nickel

  10. Multifunctional Ligands in Transition Metal Catalysis

    SciTech Connect

    Crabtree, Robert H

    2011-01-01

    Sophisticated ligands are now being designed that do far more than just fulfil their traditional spectator roles by binding to the metal and providing a sterically-defined binding pocket for the substrate in homogeneous transition metal catalysis. This Focus review emphasizes selected cases in which ligands carry additional functional groups that change the properties of the ligand as a result of an external stimulus or undergo catalytically-relevant ligand-based reactivity. These include proton responsive ligands capable of gaining or losing one or more protons, ligands having a hydrogen bonding function, electroresponsive ligands capable of gaining or losing one or more electrons, and photoresponsive ligands capable of undergoing a useful change of properties upon irradiation. Molecular recognition ligands and proton coupled electron transfer (PCET) are briefly discussed.

  11. Strain Engineering of Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Dadgar, Ali; Pasupathy, Abhay; Herman, Irving; Wang, Dennis; Kang, Kyungnam; Yang, Eui-Hyeok

    The application of strain to materials can cause changes to bandwidth, effective masses, degeneracies and even structural phases. In the case of the transition metal dichalcogenide (TMD) semiconductors, small strain (around 1 percent) is expected to change band gaps and mobilities, while larger strains are expected to cause phase changes from the triangular 2H phase to orthorhombic 1T' phases. We will describe experimental techniques to apply small and large (around 10 percent) strains to one or few layer samples of the TMD semiconductors, and describe the effect of the strain using optical (Raman, photoluminescence) and cryogenic transport techniques.

  12. Phase transition metal-crown ether coordination compounds tuned by metal ions.

    PubMed

    Ye, Qiong; Wang, Hui-Ting; Zhou, Lin; Kong, Li-Hui; Ye, Heng-Yun; Fu, Da-Wei; Zhang, Yi

    2016-01-21

    Two isostructural metal crown ether coordination compounds, (15-crown-5)(BiCl3) 1 and (15-crown-5)(SbCl3) 2, are discovered to show phase transitions above room temperature, where the phase transition temperature relates to the metal center. Compound 1 crystallizes in the chiral orthorhombic space group P212121 in the low temperature phase and undergoes a reversible phase transition around 365 K to crystallize in the polar orthorhombic space group Pna21 in the high temperature phase, accompanied by thermal and dielectric anomalies. The variable-temperature structure analyses of compound 1 show that the phase transition is rooted in the conformational change of the crown ether and the displacement of the Bi cation and Cl anion. PMID:26648559

  13. [Spectroscopic studies on transition metal ions in colored diamonds].

    PubMed

    Meng, Yu-Fei; Peng, Ming-Sheng

    2004-07-01

    Transition metals like nickel, cobalt and iron have been often used as solvent catalysts in high pressure high temperature (HPHT) synthesis of diamond, and nickel and cobalt ions have been found in diamond lattice. Available studies indicated that nickel and cobalt ions could enter the lattice as interstitial or substitutional impurities and form complexes with nitrogen. Polarized microscopy, SEM-EDS, EPR, PL and FTIR have been used in this study to investigate six fancy color natural and synthetic diamonds in order to determine the spectroscopic characteristics and the existing forms of transition metal ions in colored diamond lattice. Cobalt-related optical centers were first found in natural chameleon diamonds, and some new nickel and cobalt-related optical and EPR centers have also been detected in these diamond samples. PMID:15766067

  14. Zwitterionic Group VIII transition metal initiators supported by olefin ligands

    SciTech Connect

    Bazan, Guillermo C.; Chen, Yaofeng

    2011-10-25

    A zwitterionic Group VIII transition metal complex containing the simple and relatively small 3-(arylimino)-but-1-en-2-olato ligand that catalyzes the formation of polypropylene and high molecular weight polyethylene. A novel feature of this catalyst is that the active species is stabilized by a chelated olefin adduct. The present invention also provides methods of polymerizing olefin monomers using zwitterionic catalysts, particularly polypropylene and high molecular weight polyethylene.

  15. Transition Metal Nitrides: A First Principles Study

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Singh, A. K.

    2016-04-01

    The present work describes the structural stability and electronic and mechanical properties of transition metal nitrides (TmNs: B1 cubic structure (cF8, Fm ‾ overline 3 m)) using first principles density functional theory (DFT) within generalized gradient approximation (GGA). The lattice constant of TmNs increases with increasing the atomic radii of the transition metals. Stability of the TmNs decreases from IVB to VIB groups due to increase in formation energy/atom. The bonding characteristics of these nitrides have been explained based on electronic density of states and charge density. All the TmNs satisfy Born stability criteria in terms of elastic constants except CrN and MoN that do not exist in equilibrium binary phase diagrams. The groups IVB and V-VIB nitrides are associated with brittle and ductile behaviour based on G/B ratios, respectively. The estimated melting temperatures of these nitrides exhibit reasonably good agreement with calculated with B than those of the C11 for all nitrides.

  16. Methyl Complexes of the Transition Metals.

    PubMed

    Campos, Jesús; López-Serrano, Joaquín; Peloso, Riccardo; Carmona, Ernesto

    2016-05-01

    Organometallic chemistry can be considered as a wide area of knowledge that combines concepts of classic organic chemistry, that is, based essentially on carbon, with molecular inorganic chemistry, especially with coordination compounds. Transition-metal methyl complexes probably represent the simplest and most fundamental way to view how these two major areas of chemistry combine and merge into novel species with intriguing features in terms of reactivity, structure, and bonding. Citing more than 500 bibliographic references, this review aims to offer a concise view of recent advances in the field of transition-metal complexes containing M-CH3 fragments. Taking into account the impressive amount of data that are continuously provided by organometallic chemists in this area, this review is mainly focused on results of the last five years. After a panoramic overview on M-CH3 compounds of Groups 3 to 11, which includes the most recent landmark findings in this area, two further sections are dedicated to methyl-bridged complexes and reactivity. PMID:26991740

  17. Transition-Metal-Catalyzed Bioorthogonal Cycloaddition Reactions.

    PubMed

    Yang, Maiyun; Yang, Yi; Chen, Peng R

    2016-02-01

    In recent years, bioorthogonal reactions have emerged as a powerful toolbox for specific labeling and visualization of biomolecules, even within the highly complex and fragile living systems. Among them, copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is one of the most widely studied and used biocompatible reactions. The cytotoxicity of Cu(I) ions has been greatly reduced due to the use of Cu(I) ligands, which enabled the CuAAC reaction to proceed on the cell surface, as well as within an intracellular environment. Meanwhile, other transition metals such as ruthenium, rhodium and silver are now under development as alternative sources for catalyzing bioorthogonal cycloadditions. In this review, we summarize the development of CuAAC reaction as a prominent bioorthogonal reaction, discuss various ligands used in reducing Cu(I) toxicity while promoting the reaction rate, and illustrate some of its important biological applications. The development of additional transition metals in catalyzing cycloaddition reactions will also be briefly introduced. PMID:27572985

  18. Metal Insulator transition in Vanadium Dioxide

    NASA Astrophysics Data System (ADS)

    Jovaini, Azita; Fujita, Shigeji; Suzuki, Akira; Godoy, Salvador

    2012-02-01

    MAR12-2011-000262 Abstract Submitted for the MAR12 Meeting of The American Physical Society Sorting Category: 03.9 (T) On the metal-insulator-transition in vanadium dioxide AZITA JOVAINI, SHIGEJI FUJITA, University at Buffalo, SALVADOR GODOY, UNAM, AKIRA SUZUKI, Tokyo University of Science --- Vanadium dioxide (VO2) undergoes a metal-insulator transition (MIT) at 340 K with the structural change from tetragonal to monoclinic crystal. The conductivity _/ drops at MIT by four orders of magnitude. The low temperature monoclinic phase is known to have a lower ground-state energy. The existence of the k-vector k is prerequisite for the conduction since the k appears in the semiclassical equation of motion for the conduction electron (wave packet). The tetragonal (VO2)3 unit is periodic along the crystal's x-, y-, and z-axes, and hence there is a three-dimensional k-vector. There is a one-dimensional k for a monoclinic crystal. We believe this difference in the dimensionality of the k-vector is the cause of the conductivity drop. Prefer Oral Session X Prefer .

  19. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    SciTech Connect

    Scalettar, Richard T.; Pickett, Warren E.

    2004-07-01

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals.

  20. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    SciTech Connect

    Richard T. Scalettar; Warren E. Pickett

    2005-08-02

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (i) Mott transitions in transition metal oxides, (ii) magnetism in half-metallic compounds, and (iii) large volume-collapse transitions in f-band metals.

  1. Pseudopotentials for quantum Monte Carlo studies of transition metal oxides

    NASA Astrophysics Data System (ADS)

    Krogel, Jaron T.; Santana, Juan A.; Reboredo, Fernando A.

    2016-02-01

    Quantum Monte Carlo (QMC) calculations of transition metal oxides are partially limited by the availability of high-quality pseudopotentials that are both accurate in QMC and compatible with major plane-wave electronic structure codes. We have generated a set of neon-core pseudopotentials with small cutoff radii for the early transition metal elements Sc to Zn within the local density approximation of density functional theory. The pseudopotentials have been directly tested for accuracy within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (M) atoms and the binding curve of each M-O dimer. We find the ionization potentials to be accurate to 0.16(1) eV, on average, relative to experiment. The equilibrium bond lengths of the dimers are within 0.5(1)% of experimental values, on average, and the binding energies are also typically accurate to 0.18(3) eV. The level of accuracy we find for atoms and dimers is comparable to what has recently been observed for bulk metals and oxides using the same pseudopotentials. Our QMC pseudopotential results also compare well with the findings of previous QMC studies and benchmark quantum chemical calculations.

  2. Pseudopotentials for quantum Monte Carlo studies of transition metal oxides

    DOE PAGESBeta

    Krogel, Jaron T.; Santana Palacio, Juan A.; Reboredo, Fernando A.

    2016-02-22

    Quantum Monte Carlo (QMC) calculations of transition metal oxides are partially limited by the availability of high-quality pseudopotentials that are both accurate in QMC and compatible with major plane-wave electronic structure codes. We have generated a set of neon-core pseudopotentials with small cutoff radii for the early transition metal elements Sc to Zn within the local density approximation of density functional theory. The pseudopotentials have been directly tested for accuracy within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (M) atoms and the binding curve of each M-O dimer. We find the ionization potentialsmore » to be accurate to 0.16(1) eV, on average, relative to experiment. The equilibrium bond lengths of the dimers are within 0.5(1)% of experimental values, on average, and the binding energies are also typically accurate to 0.18(3) eV. The level of accuracy we find for atoms and dimers is comparable to what has recently been observed for bulk metals and oxides using the same pseudopotentials. Our QMC pseudopotential results compare well with the findings of previous QMC studies and benchmark quantum chemical calculations.« less

  3. Defect-Tolerant Monolayer Transition Metal Dichalcogenides.

    PubMed

    Pandey, Mohnish; Rasmussen, Filip A; Kuhar, Korina; Olsen, Thomas; Jacobsen, Karsten W; Thygesen, Kristian S

    2016-04-13

    Localized electronic states formed inside the band gap of a semiconductor due to crystal defects can be detrimental to the material's optoelectronic properties. Semiconductors with a lower tendency to form defect induced deep gap states are termed defect-tolerant. Here we provide a systematic first-principles investigation of defect tolerance in 29 monolayer transition metal dichalcogenides (TMDs) of interest for nanoscale optoelectronics. We find that the TMDs based on group VI and X metals form deep gap states upon creation of a chalcogen (S, Se, Te) vacancy, while the TMDs based on group IV metals form only shallow defect levels and are thus predicted to be defect-tolerant. Interestingly, all the defect sensitive TMDs have valence and conduction bands with a very similar orbital composition. This indicates a bonding/antibonding nature of the gap, which in turn suggests that dangling bonds will fall inside the gap. These ideas are made quantitative by introducing a descriptor that measures the degree of similarity of the conduction and valence band manifolds. Finally, the study is generalized to nonpolar nanoribbons of the TMDs where we find that only the defect sensitive materials form edge states within the band gap. PMID:27027786

  4. Exciton complexes in low dimensional transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Thilagam, A.

    2014-08-01

    We examine the excitonic properties of layered configurations of low dimensional transition metal dichalcogenides (LTMDCs) using the fractional dimensional space approach. The binding energies of the exciton, trion, and biexciton in LTMDCs of varying layers are analyzed, and linked to the dimensionality parameter α, which provides insight into critical electro-optical properties (relative oscillator strength, absorption spectrum, exciton-exciton interaction) of the material systems. The usefulness of α is highlighted by its independence of the physical mechanisms underlying the confinement effects of geometrical structures. Our estimates of the binding energies of exciton complexes for the monolayer configuration of transition metal dichalcogenides suggest a non-collinear structure for the trion and a positronium-molecule-like square structure for the biexciton.

  5. Exciton complexes in low dimensional transition metal dichalcogenides

    SciTech Connect

    Thilagam, A.

    2014-08-07

    We examine the excitonic properties of layered configurations of low dimensional transition metal dichalcogenides (LTMDCs) using the fractional dimensional space approach. The binding energies of the exciton, trion, and biexciton in LTMDCs of varying layers are analyzed, and linked to the dimensionality parameter α, which provides insight into critical electro-optical properties (relative oscillator strength, absorption spectrum, exciton-exciton interaction) of the material systems. The usefulness of α is highlighted by its independence of the physical mechanisms underlying the confinement effects of geometrical structures. Our estimates of the binding energies of exciton complexes for the monolayer configuration of transition metal dichalcogenides suggest a non-collinear structure for the trion and a positronium-molecule-like square structure for the biexciton.

  6. Pressure induced structural phase transition in IB transition metal nitrides compounds

    NASA Astrophysics Data System (ADS)

    Soni, Shubhangi; Kaurav, Netram; Jain, A.; Shah, S.; Choudhary, K. K.

    2015-06-01

    Transition metal mononitrides are known as refractory compounds, and they have, relatively, high hardness, brittleness, melting point, and superconducting transition temperature, and they also have interesting optical, electronic, catalytic, and magnetic properties. Evolution of structural properties would be an important step towards realizing the potential technological scenario of this material of class. In the present study, an effective interionic interaction potential (EIOP) is developed to investigate the pressure induced phase transitions in IB transition metal nitrides TMN [TM = Cu, Ag, and Au] compounds. The long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge are properly incorporated in the EIOP. The vdW coefficients are computed following the Slater-Kirkwood variational method, as both the ions are polarizable. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data.

  7. Pressure induced structural phase transition in IB transition metal nitrides compounds

    SciTech Connect

    Soni, Shubhangi; Kaurav, Netram Jain, A.; Shah, S.; Choudhary, K. K.

    2015-06-24

    Transition metal mononitrides are known as refractory compounds, and they have, relatively, high hardness, brittleness, melting point, and superconducting transition temperature, and they also have interesting optical, electronic, catalytic, and magnetic properties. Evolution of structural properties would be an important step towards realizing the potential technological scenario of this material of class. In the present study, an effective interionic interaction potential (EIOP) is developed to investigate the pressure induced phase transitions in IB transition metal nitrides TMN [TM = Cu, Ag, and Au] compounds. The long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge are properly incorporated in the EIOP. The vdW coefficients are computed following the Slater-Kirkwood variational method, as both the ions are polarizable. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data.

  8. Smoothing of ultrathin silver films by transition metal seeding

    NASA Astrophysics Data System (ADS)

    Anders, André; Byon, Eungsun; Kim, Dong-Ho; Fukuda, Kentaro; Lim, Sunnie H. N.

    2006-11-01

    The nucleation and coalescence of silver islands on coated glass was investigated by in situ measurements of the sheet resistance. Sub-monolayer amounts of niobium and other transition metals were deposited prior to the deposition of silver. It was found that in some cases, the transition metals lead to coalescence of silver at nominally thinner films with smoother topology. The smoothing or roughening effects by the presence of the transition metal can be explained by kinetically limited transition metal islands growth and oxidation, followed by defect-dominated nucleation of silver.

  9. Electron Topological Transitions of 31/2 Kind in Metals

    NASA Astrophysics Data System (ADS)

    Mikitik, G. P.; Sharlai, Yu. V.

    2016-06-01

    We consider electron topological transitions associated with certain points of band-contact lines in metals. These transitions are 31/2 kind according to the classification of Lifshits and are widespread in metals with inversion symmetry and a weak spin-orbit interaction. The 31/2 -order transitions can be detected with the magnetic susceptibility. As an example, we consider these transitions in graphite.

  10. Radiation damage of transition metal carbides

    SciTech Connect

    Dixon, G.

    1991-01-01

    In this grant period we have investigated electrical properties of transition metal carbides and radiation-induced defects produced by low-temperature electron irradiation in them. Special attention has been given to the composition VC[sub 0.88] in which the vacancies on the carbon sublattice of this fcc crystal order to produce a V[sub 8]C[sub 7] superlattice. The existence of this superlattice structure was found to make the crystal somewhat resistant to radiation damage at low doses and/or at ambient temperature. At larger doses significant changes in the resistivity are produced. Annealing effects were observed which we believe to be connected with the reconstitution of the superlattice structure.

  11. Excited Biexcitons in Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Zhang, David

    Recently, experimental measurements and theoretical modeling have been in a disagreement concerning the binding energy of biexctions in transition metal dichalcogenides. While theory predicts a smaller binding energy (~20 meV) that is, as logically expected, lower than that of the trion, experiment finds values much larger (~60 meV), actually exceeding those for the trion. In this work, we show that there exists an excited state of the biexciton which yields binding energies that match well with experimental findings and thus gives a plausible explanation for the apparent discrepancy. Furthermore, it is shown that the electron-hole correlation functions of the ground state biexciton and trion are remarkably similar, possibly explaining why a distinct signature of ground state biexcitons would not have been noticed experimentally.

  12. Trion dynamics in Transition Metal Dichalcogenide Monolayers

    NASA Astrophysics Data System (ADS)

    Singh, Akshay; Tran, Kha; Wu, Sanweng; Ross, Jason; Moody, Galan; Xu, Xiaodong; Li, Elaine

    2015-03-01

    Transition Metal Dichalcogenides (TMD's) in the monolayer limit, exhibit interesting phenomena including increased photoluminescence, spin-valley coupling and many-body effects. Excitons (bound electron-hole pairs) and trions (charged excitons) in these materials have unusually large binding energy and dominate the optical response near the band gap. In particular, trions can drift under application of an electric field and have higher spin lifetimes increasing applications in quantum spin models. We study the temporal dynamics of excitons and trions including their formation and lifetimes using time resolved two-color pump-probe spectroscopy on a monolayer TMD (MoSe2). Trions are observed to have vastly different temporal dynamics with much slower decay than excitons. We also observe rapid formation of trions when resonantly pumped while a slow rise (in temporal response) is seen for other excitation energies. We suggest that localization of trions needs to be taken into account to explain these observations.

  13. Excited Biexcitons in Transition Metal Dichalcogenides.

    PubMed

    Zhang, David K; Kidd, Daniel W; Varga, Kálmán

    2015-10-14

    The Stochastic Variational Method (SVM) is used to show that the effective mass model correctly estimates the binding energies of excitons and trions but fails to predict the experimental binding energy of the biexciton. Using high-accuracy variational calculations, it is demonstrated that the biexciton binding energy in transition metal dichalcogenides is smaller than the trion binding energy, contradicting experimental findings. It is also shown that the biexciton has bound excited states and that the binding energy of the L = 0 excited state is in very good agreement with experimental data. This excited state corresponds to a hole attached to a negative trion and may be a possible resolution of the discrepancy between theory and experiment. PMID:26422057

  14. Energy bands in some transition metals

    NASA Astrophysics Data System (ADS)

    Laurent, D. G.

    1981-08-01

    Self consistent linear combination of Gaussian orbitals energy band calculations were performed for the two paramagnetic 3d transition metals, chromium and vanadium. The energy bands densities of states and Fermi surfaces were obtained using the two most popular local exchange correlation potentials (Kohn-Sham-Gaspar and von Barth-Hedin) for chromium and the Kohn-Sham-Gaspar potential alone for vanadium. A comparison was made with the available experimental data. New interpretations for some of the neutron scattering data are made in the chromium case. Results are also presented for the Compton profiles and optical conductivities. These correlate well with the experiments if appropriate angular averages (for the Compton profile) and lifetime effcts (for the optical conductivity) are included. The electron energy loss spectrum, computed over the range 0-6.5 eV agreed well with experiment.

  15. Main-group elements as transition metals.

    PubMed

    Power, Philip P

    2010-01-14

    The last quarter of the twentieth century and the beginning decade of the twenty-first witnessed spectacular discoveries in the chemistry of the heavier main-group elements. The new compounds that were synthesized highlighted the fundamental differences between their electronic properties and those of the lighter elements to a degree that was not previously apparent. This has led to new structural and bonding insights as well as a gradually increasing realization that the chemistry of the heavier main-group elements more resembles that of transition-metal complexes than that of their lighter main-group congeners. The similarity is underlined by recent work, which has shown that many of the new compounds react with small molecules such as H(2), NH(3), C(2)H(4) or CO under mild conditions and display potential for applications in catalysis. PMID:20075912

  16. Spin-orbit damping in transition metals

    NASA Astrophysics Data System (ADS)

    Gilmore, Keith

    2008-03-01

    Magnetization dynamics are routinely described with the Landau-Lifshitz-Gilbert (LLG) equation. However, it is expected that the LLG equation fails to properly describe the large amplitude dynamics that occur during magnetization reversal. Improving switching speeds in nanoscale devices by tailoring materials requires both a qualitative understanding of the relaxation processes that contribute to damping and the ability to quantitatively calculate the resulting damping rates. We consider small amplitude LLG damping in transition metals as a prelude to approaching the more complicated mechanisms expected in complete reversal events. LLG damping rates in pure transition metal systems have non-monotonic temperature dependencies that have been empirically shown by Heinrich et al. [1] to have one part proportional to the conductivity and one part proportional to the resistivity. Kambersky [2] postulated that both contributions result from a torque between the spin and orbital moments. We have conducted first-principles calculations that validate this claim for single element systems [3]. Our calculations for Fe, Co, and Ni both qualitatively match the two trends observed in measurements and quantitatively agree with the observed damping rates. We will discuss how the spin-orbit interaction produces two contributions to damping with nearly opposite temperature dependencies and compare calculations of the damping rate versus resistivity with experimental results. [1] B. Heinrich, D.J. Meredith, and J.F. Cochran, J. Appl. Phys., 50(11), 7726 (1979). [2] V. Kambersky, Czech. J. Phys. B, 26, 1366 (1976). [3] K. Gilmore, Y.U. Idzerda, and M.D. Stiles, Phys. Rev. Lett., 99, 027204 (2007).

  17. New Gallides and Germanides of Transition Metals

    NASA Astrophysics Data System (ADS)

    Popova, S. V.

    1982-01-01

    The analysis of the average atomic volumes (AAV) of the intermediate phases from the concentration was done in many two-component systems. It was shown that in some systems (namely transition metal with non-transition element from the IIIrd or IVth group of the periodic table) the AAV of the intermediate phases are much more less than the sum of the volumes of the pure components. It means that the formation of the intermediate phases in such systems is accompanied by a rather large decreasing of the volume in comparison with the mixture of elements. For this reason the high pressure conditions are favourable for the formation of the intermediate phases in such systems from the thermodynamical point of view. On the ground of these data the systems W-Ga, W-Ge, Re-Ga, Os-Ga, Sc-Ga, Ta-Ga, were investigated at high pressures and temperatures. It was found that many new phases are crystallised in these systems. All of them are metastable at room pressure. The composition and crystal structures of these phases were investigated at ordinary conditions.

  18. Transition Metal Phosphide Hydroprocessing Catalysts: A review

    SciTech Connect

    Oyama, S.; Gott, T; Zhao, H; Lee, Y

    2009-01-01

    The diminishing quality of oil feedstocks coupled with increasingly more stringent environmental regulations limiting the content of sulfur in transportation fuels have given rise to a need for improved hydroprocessing technology. This review begins with a summary of the major improvements in hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) catalysts and processes that have been reported in recent years. It then describes a new class of hydroprocessing catalysts, the transition metal phosphides, which have emerged as a promising group of high-activity, stable catalysts. The phosphides have physical properties resembling ceramics, so are strong and hard, yet retain electronic and magnetic properties similar to metals. Their crystal structures are based on trigonal prisms, yet they do not form layered structures like the sulfides. They display excellent performance in HDS and HDN, with the most active phosphide, Ni{sub 2}P, having activity surpassing that of promoted sulfides on the basis of sites titrated by chemisorption (CO for the phosphides, O{sub 2} for the sulfides). In the HDS of difficult heteroaromatics like 4,6-dimethyldibenzothiophene Ni{sub 2}P operates by the hydrogenation pathway, while in the HDN of substituted nitrogen compounds like 2-methylpiperidine it carries out nucleophilic substitution. The active sites for hydrogenation in Ni{sub 2}P have a square pyramidal geometry, while those for direct hydrodesulfurization have a tetrahedral geometry. Overall, Ni{sub 2}P is a promising catalyst for deep HDS in the presence of nitrogen and aromatic compounds.

  19. Polytypism in superhard transition-metal triborides

    PubMed Central

    Liang, Yongcheng; Yang, Jiong; Yuan, Xun; Qiu, Wujie; Zhong, Zheng; Yang, Jihui; Zhang, Wenqing

    2014-01-01

    The quest of novel compounds with special structures and unusual functionalities continues to be a central challenge to modern materials science. Even though their exact structures have puzzled scientists for decades, superhard transition-metal borides (TMBs) have long been believed to exist only in simple crystal structures. Here, we report on a polytypic phenomenon in superhard WB3 and MoB3 with a series of energetically degenerate structures due to the random stacking of metal layers amongst the interlocking boron layers. Such polytypism can create a multiphase solid-solution compound with a large number of interfaces amongst different polytypes, and these interfaces will strongly hinder the interlayer sliding movement within each polytype, thereby further increase the hardness of this particular material. Furthermore, in contrast to the conventional knowledge that intrinsically strong chemical bonds in superhard materials should lead to high lattice thermal conductivity, the polytypic TMB3 manifest anomalously low lattice thermal conductivity due to structural disorders and phonon folding. These findings promise to open a new avenue to searching for novel superhard materials with additional functionalities. PMID:24863493

  20. Enhancing conductivity of metallic carbon nanotube networks by transition metal adsorption.

    PubMed

    Ketolainen, T; Havu, V; Puska, M J

    2015-02-01

    The conductivity of carbon nanotube thin films is mainly determined by carbon nanotube junctions, the resistance of which can be reduced by several different methods. We investigate electronic transport through carbon nanotube junctions in a four-terminal configuration, where two metallic single-wall carbon nanotubes are linked by a group 6 transition metal atom. The transport calculations are based on the Green's function method combined with the density-functional theory. The transition metal atom is found to enhance the transport through the junction near the Fermi level. However, the size of the nanotube affects the improvement in the conductivity. The enhancement is related to the hybridization of chromium and carbon atom orbitals, which is clearly reflected in the character of eigenstates near the Fermi level. The effects of chromium atoms and precursor molecules remaining adsorbed on the nanotubes outside the junctions are also examined. PMID:25662658

  1. Enhancing conductivity of metallic carbon nanotube networks by transition metal adsorption

    SciTech Connect

    Ketolainen, T. Havu, V.; Puska, M. J.

    2015-02-07

    The conductivity of carbon nanotube thin films is mainly determined by carbon nanotube junctions, the resistance of which can be reduced by several different methods. We investigate electronic transport through carbon nanotube junctions in a four-terminal configuration, where two metallic single-wall carbon nanotubes are linked by a group 6 transition metal atom. The transport calculations are based on the Green’s function method combined with the density-functional theory. The transition metal atom is found to enhance the transport through the junction near the Fermi level. However, the size of the nanotube affects the improvement in the conductivity. The enhancement is related to the hybridization of chromium and carbon atom orbitals, which is clearly reflected in the character of eigenstates near the Fermi level. The effects of chromium atoms and precursor molecules remaining adsorbed on the nanotubes outside the junctions are also examined.

  2. Pristine and intercalated transition metal dichalcogenide superconductors

    NASA Astrophysics Data System (ADS)

    Klemm, Richard A.

    2015-07-01

    Transition metal dichalcogenides (TMDs) are quasi-two-dimensional layered compounds that exhibit strongly competing effects of charge-density wave (CDW) formation and superconductivity (SC). The weak van der Waals interlayer bonding between hexagonal layers of octahedral or trigonal prismatic TMD building blocks allows many polytypes to form. In the single layer 1 T polytype materials, one or more CDW states can form, but the pristine TMDs are not superconducting. The 2 H polytypes have two or more Fermi surfaces and saddle bands, allowing for dual orderings, which can be coexisting CDW and SC orderings, two SC gaps as in MgB2, two CDW gaps, and possibly even pseudogaps above the onset TCDW s of CDW orderings. Higher order polytypes allow for multiple CDW gaps and at least one superconducting gap. The CDW transitions TCDW s usually greatly exceed the superconducting transitions at their low Tc values, their orbital order parameters (OPs) are generally highly anisotropic and can even contain nodes, and the SC OPs can be greatly affected by their simultaneous presence. The properties of the CDWs ubiquitously seen in TMDs are remarkably similar to those of the pseudogaps seen in the high-Tc cuprates. In 2H-NbSe2, for example, the CDW renders its general s-wave SC OP orbital symmetry to be highly anisotropic and strongly reduces its Josephson coupling strength (IcRn) with the conventional SC, Pb. Hence, the pristine TMDs are highly "unconventional" in comparison with Pb, but are much more "conventional" than are the ferromagnetic superconductors such as URhGe. Applied pressure and intercalation generally suppress the TMD CDWs, allowing for enhanced SC formation, even in the 1 T polytype materials. The misfit intercalation compound (LaSe)1.14(NbSe2) and many 2 H -TMDs intercalated with organic Lewis base molecules, such as TaS2(pyridine)1/2, have completely incoherent c-axis transport, dimensional-crossover effects, and behave as stacks of intrinsic Josephson junctions

  3. Trends in Ionization Energy of Transition-Metal Elements

    ERIC Educational Resources Information Center

    Matsumoto, Paul S.

    2005-01-01

    A rationale for the difference in the periodic trends in the ionization energy of the transition-metal elements versus the main-group elements is presented. The difference is that in the transition-metal elements, the electrons enter an inner-shell electron orbital, while in the main-group elements, the electrons enter an outer-shell electron…

  4. Nanostructured transition metal oxides useful for water oxidation catalysis

    DOEpatents

    Frei, Heinz M; Jiao, Feng

    2013-12-24

    The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H.sub.2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.

  5. Nutritional immunity: transition metals at the pathogen-host interface

    PubMed Central

    Hood, M. Indriati; Skaar, Eric P.

    2013-01-01

    Transition metals occupy an essential niche in biological systems. Their electrostatic properties stabilize substrates or reaction intermediates in the active sites of enzymes, while their heightened reactivity is harnessed for catalysis. However, the latter property renders transition metals toxic at high concentrations. Bacteria, like all living organisms, must regulate the levels of these elements to satisfy their physiological needs while avoiding harm. It is therefore not surprising that the host capitalizes on both the essentiality and toxicity of transition metals to defend against bacterial invaders. This review will discuss established and emerging paradigms in nutrient metal homeostasis at the pathogen-host interface. PMID:22796883

  6. Density functional plus dynamical mean-field theory of the metal-insulator transition in early transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Dang, Hung T.; Ai, Xinyuan; Millis, Andrew J.; Marianetti, Chris A.

    2014-09-01

    The combination of density functional theory and single-site dynamical mean-field theory, using both Hartree and full continuous-time quantum Monte Carlo impurity solvers, is used to study the metal-insulator phase diagram of perovskite transition-metal oxides of the form ABO3 with a rare-earth ion A =Sr, La, Y and transition metal B =Ti, V, Cr. The correlated subspace is constructed from atomiclike d orbitals defined using maximally localized Wannier functions derived from the full p-d manifold; for comparison, results obtained using a projector method are also given. Paramagnetic DFT + DMFT computations using full charge self-consistency along with the standard "fully localized limit" (FLL) double counting are shown to incorrectly predict that LaTiO3, YTiO3, LaVO3, and SrMnO3 are metals. A more general examination of the dependence of physical properties on the mean p-d energy splitting, the occupancy of the correlated d states, the double-counting correction, and the lattice structure demonstrates the importance of charge-transfer physics even in the early transition-metal oxides and elucidates the factors underlying the failure of the standard approximations. If the double counting is chosen to produce a p-d splitting consistent with experimental spectra, single-site dynamical mean-field theory provides a reasonable account of the materials properties. The relation of the results to those obtained from "d-only" models in which the correlation problem is based on the frontier orbital p-d antibonding bands is determined. It is found that if an effective interaction U is properly chosen the d-only model provides a good account of the physics of the d1 and d2 materials.

  7. Nucleation and growth of noble metals on transition-metal di-tellurides

    NASA Astrophysics Data System (ADS)

    Hla, S. W.; Marinković, V.; Prodan, A.

    1997-04-01

    Transition-metal di-tellurides (α- and β-MoTe 2 and WTe 2) were used as substrates for nucleation and growth studies of noble metals. They represent a group of chemically closely related compounds with different surface topographies. Nucleation and growth of Ag and Au at room temperature were studied by means of UHV-STM, AFM and TEM. The results revealed that the growth and orientation of these metals are influenced by the topography of the substrate surfaces. Contrary to the growth on atomically flat α-MoTe 2, there is an enhanced diffusion and nucleation along the periodic surface troughs on β-MoTe 2 and WTe 2. The topography of their (001) surfaces is responsible for the orientation of metal (112) planes being parallel to the substrate surface.)

  8. Patterning Superatom Dopants on Transition Metal Dichalcogenides.

    PubMed

    Yu, Jaeeun; Lee, Chul-Ho; Bouilly, Delphine; Han, Minyong; Kim, Philip; Steigerwald, Michael L; Roy, Xavier; Nuckolls, Colin

    2016-05-11

    This study describes a new and simple approach to dope two-dimensional transition metal dichalcogenides (TMDCs) using the superatom Co6Se8(PEt3)6 as the electron dopant. Semiconducting TMDCs are wired into field-effect transistor devices and then immersed into a solution of these superatoms. The degree of doping is determined by the concentration of the superatoms in solution and by the length of time the films are immersed in the dopant solution. Using this chemical approach, we are able to turn mono- and few-layer MoS2 samples from moderately to heavily electron-doped states. The same approach applied on WSe2 films changes their characteristics from hole transporting to electron transporting. Moreover, we show that the superatom doping can be patterned on specific areas of TMDC films. To illustrate the power of this technique, we demonstrate the fabrication of a lateral p-n junction by selectively doping only a portion of the channel in a WSe2 device. Finally, encapsulation of the doped films with crystalline hydrocarbon layers stabilizes their properties in an ambient environment. PMID:27082448

  9. Transition metal-free olefin polymerization catalyst

    DOEpatents

    Sen, Ayusman; Wojcinski, II, Louis M.; Liu, Shengsheng

    2001-01-01

    Ethylene and/or propylene are polymerized to form high molecular weight, linear polymers by contacting ethylene and/or propylene monomer, in the presence of an inert reaction medium, with a catalyst system which consists essentially of (1) an aluminum alkyl component, such as trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-octylaluminum and diethylaluminum hydride and (2) a Lewis acid or Lewis acid derivative component, such as B (C.sub.6 F.sub.5).sub.3, [(CH.sub.3).sub.2 N (H) (C.sub.6 H.sub.5)].sup.+ [B (C.sub.6 F.sub.5)4].sup.-, [(C.sub.2 H.sub.5).sub.3 NH].sup.+ [B C.sub.6 F.sub.5).sub.4 ],.sup.-, [C(C.sub.6 F.sub.5).sub.3 ].sup.+ [B(C.sub.6 F.sub.5).sub.4 ].sup.-, (C.sub.2 H.sub.5).sub.2 Al(OCH.sub.3), (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butyl-4-methylphenoxide), (C.sub.2 H.sub.5)Al(2,6 -di-t-butylphenoxide).sub.2, (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butylphonoxide) , 2,6 -di-t-butylphenol.multidot.methylaluminoxane or an alkylaluminoxane, and which may be completely free any transition metal component(s).

  10. Exciton formation in monolayer transition metal dichalcogenides.

    PubMed

    Ceballos, Frank; Cui, Qiannan; Bellus, Matthew Z; Zhao, Hui

    2016-06-01

    Two-dimensional transition metal dichalcogenides provide a unique platform to study excitons in confined structures. Recently, several important aspects of excitons in these materials have been investigated in detail. However, the formation process of excitons from free carriers has yet to be understood. Here we report time-resolved measurements on the exciton formation process in monolayer samples of MoS2, MoSe2, WS2, and WSe2. The free electron-hole pairs, injected by an ultrashort laser pulse, immediately induce a transient absorption signal of a probe pulse tuned to the exciton resonance. The signal quickly drops by about a factor of two within 1 ps and is followed by a slower decay process. In contrast, when excitons are resonantly injected, the fast decay component is absent. Based both on its excitation excess energy and intensity dependence, this fast decay process is attributed to the formation of excitons from the electron-hole pairs. This interpretation is also consistent with a model that shows how free electron-hole pairs can be about twice more effective than excitons in altering the exciton absorption strength. From our measurements and analysis of our results, we determined that the exciton formation times in these monolayers to be shorter than 1 ps. PMID:27219022

  11. Trion formation in monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Kezerashvili, Roman Ya.; Tsiklauri, Shalva M.

    We present three-body calculations for trions binding energy in monolayer transition metal dichalcogenides using the method of hyperspherical harmonics (HH). In numerical calculations for a proper treatment of Coulomb screening in two dimensions we assume that electrons and holes are interacted via Keldysh potential. The convergences of binding energy calculations for the ground state of the trion as a function of the grand angular momentum are studied. For the trion binding energy in MoS2 we obtain 19.2 mev. This value is remarkably close to the experimental one of 18 meV. A comparison with results of other calculations are presented. We also study solutions of a hyperradial equation in a minimal approximation for the ground angular momentum to examine two regimes: a long range and a short range cases when the inter particle distance is much greater and much less than the screening length. For these cases, we find analytical expressions for the energy and wave function for trion states

  12. Impact Electrochemistry of Layered Transition Metal Dichalcogenides.

    PubMed

    Lim, Chee Shan; Tan, Shu Min; Sofer, Zdeněk; Pumera, Martin

    2015-08-25

    Layered transition metal dichalcogenides (TMDs) exhibit paramount importance in the electrocatalysis of the hydrogen evolution reaction. It is crucial to determine the size of the electrocatalytic particles as well as to establish their electrocatalytic activity, which occurs at the edges of these particles. Here, we show that individual TMD (MoS2, MoSe2, WS2, or WSe2; in general MX2) nanoparticles impacting an electrode surface provide well-defined current "spikes" in both the cathodic and anodic regions. These spikes originate from direct oxidation of the nanoparticles (from M(4+) to M(6+)) at the anodic region and from the electrocatalytic currents generated upon hydrogen evolution in the cathodic region. The positive correlation between the frequency of the impacts and the concentration of TMD nanoparticles is also demonstrated here, enabling determination of the concentration of TMD nanoparticles in colloidal form. In addition, the size of individual TMD nanoparticles can be evaluated using the charge passed during every spike. The capability of detecting both the "indirect" catalytic effect of an impacting TMD nanoparticle as well as "direct" oxidation indicates that the frequency of impacts in both the "indirect" and "direct" scenarios are comparable. This suggests that all TMD nanoparticles, which are electrochemically oxidizable (thus capable of donating electrons to electrodes), are also capable of catalyzing the hydrogen reduction reaction. PMID:26241193

  13. Energetic characteristics of transition metal complexes.

    PubMed

    Wojewódka, Andrzej; Bełzowski, Janusz; Wilk, Zenon; Staś, Justyna

    2009-11-15

    Ten transition metal nitrate and perchlorate complexes of hydrazine and ethylenediamine were synthesized, namely [Cu(EN)(2)](ClO(4))(2), [Co(EN)(3)](ClO(4))(3), [Ni(EN)(3)](ClO(4))(2), [Hg(EN)(2)](ClO(4))(2), [Cr(N(2)H(4))(3)](ClO(4))(3), [Cd(N(2)H(4))(3)](ClO(4))(2), [Ni(N(2)H(4))(3)](NO(3))(2), [Co(N(2)H(4))(3)](NO(3))(3), [Zn(N(2)H(4))(3)](NO(3))(2), and [Cd(N(2)H(4))(3)](NO(3))(2) based on the lines of the literature reported methods. All of them were tested with applying underwater detonation test and further compared to the typical blasting explosives: RDX, HMX, TNT and PETN. From the above presented complexes [Ni(N(2)H(4))(3)](NO(3))(2) (called NHN) and [Co(N(2)H(4))(3)](NO(3))(3) (called CoHN) are known as primary explosives and can be used as the standard explosives. Explosion parameters, such as shock wave overpressure, shock wave energy equivalent and bubble energy equivalent, were determined. Evaluated energetic characteristics of the tested compounds are comparable to those of the classic high explosives and are even enhanced in some cases. PMID:19631466

  14. Exciton formation in monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Ceballos, Frank; Cui, Qiannan; Bellus, Matthew Z.; Zhao, Hui

    2016-06-01

    Two-dimensional transition metal dichalcogenides provide a unique platform to study excitons in confined structures. Recently, several important aspects of excitons in these materials have been investigated in detail. However, the formation process of excitons from free carriers has yet to be understood. Here we report time-resolved measurements on the exciton formation process in monolayer samples of MoS2, MoSe2, WS2, and WSe2. The free electron-hole pairs, injected by an ultrashort laser pulse, immediately induce a transient absorption signal of a probe pulse tuned to the exciton resonance. The signal quickly drops by about a factor of two within 1 ps and is followed by a slower decay process. In contrast, when excitons are resonantly injected, the fast decay component is absent. Based both on its excitation excess energy and intensity dependence, this fast decay process is attributed to the formation of excitons from the electron-hole pairs. This interpretation is also consistent with a model that shows how free electron-hole pairs can be about twice more effective than excitons in altering the exciton absorption strength. From our measurements and analysis of our results, we determined that the exciton formation times in these monolayers to be shorter than 1 ps.

  15. Alternative Kondo breakdown mechanism: Orbital-selective orthogonal metal transition

    NASA Astrophysics Data System (ADS)

    Zhong, Yin; Liu, Ke; Wang, Yong-Qiang; Luo, Hong-Gang

    2012-09-01

    In a recent paper of Nandkishore, Metlitski, and Senthil [Phys. Rev. B1098-012110.1103/PhysRevB.86.045128 86, 045128 (2012)], a concept of orthogonal metal has been introduced to reinterpret the disordered state of slave-spin representation in the Hubbard model as an exotic gapped metallic state. We extend this concept to study the corresponding quantum phase transition in the extended Anderson lattice model. It is found that the disordered state of slave spins in this model is an orbital-selective orthogonal metal, a generalization of the concept of the orthogonal metal in the Hubbard model. The quantum critical behaviors are multiscale and dominated by a z=3 and z=2 critical modes in the high- and low-temperature regime, respectively. Such behaviors are obviously in contrast to the naive expectation in the Hubbard model. The result provides alternative Kondo breakdown mechanism for heavy fermion compounds underlying the physics of the orbital-selective orthogonal metal in the disordered state, which is different from the conventional Kondo breakdown mechanism with the fractionalized Fermi-liquid picture. This work is expected to be useful in understanding the quantum criticality happening in some heavy fermion materials and other related strongly correlated systems.

  16. Mass-metallicity relation from z = 5 to the present: evidence for a transition in the mode of galaxy growth at z = 2.6 due to the end of sustained primordial gas infall

    NASA Astrophysics Data System (ADS)

    Møller, P.; Fynbo, J. P. U.; Ledoux, C.; Nilsson, K. K.

    2013-04-01

    We analyse the redshift evolution of the mass-metallicity relation in a sample of 110 Damped Lyman α absorbers (DLAs) spanning the redshift range z = 0.11-5.06 and find that the zero-point of the correlation changes significantly with redshift. The evolution is such that the zero-point is constant at the early phases of galaxy growth (i.e. no evolution) but then features a sharp break at z = 2.6 ± 0.2 with a rapid incline towards lower redshifts such that damped absorbers of identical masses are more metal rich at later times than earlier. The slope of this mass-metallicity correlation evolution is 0.35 ± 0.07 dex per unit redshift. We compare this result to similar studies of the redshift evolution of emission selected galaxy samples and find a remarkable agreement with the slope of the evolution of galaxies of stellar mass log(M*/M⊙) ≈ 8.5. This allows us to form an observational tie between damped absorbers and galaxies seen in emission. We use results from simulations to infer the virial mass of the dark matter halo of a typical DLA galaxy and find a ratio (Mvir/M*) ≈ 30. We compare our results to those of several other studies that have reported strong transition-like events at redshifts around z = 2.5-2.6 and argue that all those observations can be understood as the consequence of a transition from a situation where galaxies were fed more unprocessed infalling gas than they could easily consume to one where they suddenly become infall starved and turn to mainly processing, or re-processing, of previously acquired gas.

  17. Origin of Transitions between Metallic and Insulating States in Simple Metals

    NASA Astrophysics Data System (ADS)

    Naumov, Ivan I.; Hemley, Russell J.

    2015-04-01

    Unifying principles that underlie recently discovered transitions between metallic and insulating states in elemental solids under pressure are developed. Using group theory arguments and first-principles calculations, we show that the electronic properties of the phases involved in these transitions are controlled by symmetry principles. The valence bands in these systems are described by simple and composite band representations constructed from localized Wannier functions centered on points unoccupied by atoms, and which are not necessarily all symmetrical. The character of the Wannier functions is closely related to the degree of s -p (-d ) hybridization and reflects multicenter chemical bonding in these insulating states. The conditions under which an insulating state is allowed for structures having an integer number of atoms per primitive unit cell as well as reentrant (i.e., metal-insulator-metal) transition sequences are detailed, resulting in predictions of behavior such as phases having band-contact lines. The general principles developed are tested and applied to the alkali and alkaline earth metals, including elements where high-pressure insulating phases have been reported (e.g., Li, Na, and Ca).

  18. Polaronic Transport in Phosphate Glasses Containing Transition Metal Ions

    NASA Astrophysics Data System (ADS)

    Henderson, Mark

    The goal of this dissertation is to characterize the basic transport properties of phosphate glasses containing various amounts of TIs and to identify and explain any electronic phase transitions which may occur. The P2 O5-V2O5-WO3 (PVW) glass system will be analyzed to find the effect of TI concentration on conduction. In addition, the effect of the relative concentrations of network forming ions (SiO2 and P2O5) on transport will be studied in the P2O5-SiO2-Fe2O 3 (PSF) system. Also presented is a numerical study on a tight-binding model adapted for the purposes of modelling Gaussian traps, mimicking TI's, which are arranged in an extended network. The results of this project will contribute to the development of fundamental theories on the electronic transport in glasses containing mixtures of transition oxides as well as those containing multiple network formers without discernible phase separation. The present study on the PVW follows up on previous investigation into the effect on mixed transition ions in oxide glasses. Past research has focused on glasses containing transition metal ions from the 3d row. The inclusion of tungsten, a 5d transition metal, adds a layer of complexity through the mismatch of the energies of the orbitals contributing to localized states. The data have indicated that a transition reminiscent of a metal-insulator transition (MIT) occurs in this system as the concentration of tungsten increases. As opposed to some other MIT-like transitions found in phosphate glass systems, there seems to be no polaron to bipolaron conversion. Instead, the individual localization parameter for tungsten noticeably decreases dramatically at the transition point as well as the adiabaticity. Another distinctive feature of this project is the study of the PSF system, which contains two true network formers, phosphorous pentoxide (P2O 5) and silicon dioxide (SiO2). It is not usually possible to do a reliable investigation of the conduction properties of

  19. Solid-solid phase transitions via melting in metals.

    PubMed

    Pogatscher, S; Leutenegger, D; Schawe, J E K; Uggowitzer, P J; Löffler, J F

    2016-01-01

    Observing solid-solid phase transitions in-situ with sufficient temporal and spatial resolution is a great challenge, and is often only possible via computer simulations or in model systems. Recently, a study of polymeric colloidal particles, where the particles mimic atoms, revealed an intermediate liquid state in the transition from one solid to another. While not yet observed there, this finding suggests that such phenomena may also occur in metals and alloys. Here we present experimental evidence for a solid-solid transition via the formation of a metastable liquid in a 'real' atomic system. We observe this transition in a bulk glass-forming metallic system in-situ using fast differential scanning calorimetry. We investigate the corresponding transformation kinetics and discuss the underlying thermodynamics. The mechanism is likely to be a feature of many metallic glasses and metals in general, and may provide further insight into phase transition theory. PMID:27103085

  20. Solid–solid phase transitions via melting in metals

    PubMed Central

    Pogatscher, S.; Leutenegger, D.; Schawe, J. E. K.; Uggowitzer, P. J.; Löffler, J. F.

    2016-01-01

    Observing solid–solid phase transitions in-situ with sufficient temporal and spatial resolution is a great challenge, and is often only possible via computer simulations or in model systems. Recently, a study of polymeric colloidal particles, where the particles mimic atoms, revealed an intermediate liquid state in the transition from one solid to another. While not yet observed there, this finding suggests that such phenomena may also occur in metals and alloys. Here we present experimental evidence for a solid–solid transition via the formation of a metastable liquid in a ‘real' atomic system. We observe this transition in a bulk glass-forming metallic system in-situ using fast differential scanning calorimetry. We investigate the corresponding transformation kinetics and discuss the underlying thermodynamics. The mechanism is likely to be a feature of many metallic glasses and metals in general, and may provide further insight into phase transition theory. PMID:27103085

  1. Doping dependent plasmon dispersion in 2 H -transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Müller, Eric; Büchner, Bernd; Habenicht, Carsten; König, Andreas; Knupfer, Martin; Berger, Helmuth; Huotari, Simo

    2016-07-01

    We report the behavior of the charge carrier plasmon of 2 H -transition metal dichalcogenides (TMDs) as a function of intercalation with alkali metals. Intercalation and concurrent doping of the TMD layers have a substantial impact on plasmon energy and dispersion. While the plasmon energy shifts are related to the intercalation level as expected within a simple homogeneous electron gas picture, the plasmon dispersion changes in a peculiar manner independent of the intercalant and the TMD materials. Starting from a negative dispersion, the slope of the plasmon dispersion changes sign and grows monotonously upon doping. Quantitatively, the increase of this slope depends on the orbital character (4 d or 5 d ) of the conduction bands, which indicates a decisive role of band structure effects on the plasmon behavior.

  2. Hyperfine structure studies of transition metals

    SciTech Connect

    Young, L.; Kurtz, C.; Hasegawa, S.

    1995-08-01

    This past year our studies of hyperfine structure (hfs) in metastable states of transition metals concentrated on the analysis of hfs in the four-valence electron system, Nb II. Earlier, we measured hfs intervals using the laser-rf double resonance and laser-induced fluorescence methods in a fast-ion beam of Nb{sup +}. The resulting experimental magnetic dipole and electric quadrupole interaction constants are compared to those calculated by a relativistic configuration interaction approach. These are the first hfs data on this refractory element. Theoretically, it is found that the most important contributions to the energy are the pair excitations, valence single excitations and core polarization from the shallow core. However, the inner core polarization is found to be crucial for hfs, albeit unimportant for energy. For the J=2 level at 12805 cm{sup -1}, 4d{sup 4} {sup 3}F. the theoretical relativistic configuration A-value is in agreement with the experimental result to an accuracy of 4%. Other calculated A-values are expected to be of the same accuracy. A paper describing these results was accepted for publication. Experimental studies of the four-valence electron system V{sup +} in the (4s+3d){sup 4} manifold are complete. The theoretical difficulties for the 3d manifold, noted earlier for the three-valence electron Ti{sup +}, as compared to the 4d manifold appear to be repeated in the case of the four-valence electron systems (Nb{sup +} and V{sup +}). Relativistic configuration interaction calculations are underway, after which a paper will be published.

  3. New pathways for organic synthesis. Practical applications of transition metals

    SciTech Connect

    Colquhoun, H.M.; Holton, J.; Thompson, D.J.; Twigg, M.V.

    1984-01-01

    This book contains a considerable number of transition-metal-based procedures that have genuine applications in synthesis, and which are arranged according to the nature of the organic product or synthetic transformation being carried out. The objective is to provide those engaged in the preparation of pharmaceuticals, natural products, herbicides, dyestuffs, and other organic chemicals with a practical guide to the application of transition metals in organic synthesis. Topics considered include the formation of carbon-carbon bonds, the formation of carbocyclic compounds, the formation of heterocyclic compounds, the isomerization of alkenes, the direct introduction and removal of carbonyl groups, reduction, oxidation, and preparing and handling transition metal catalysts.

  4. Recognition- and Reactivity-Based Fluorescent Probes for Studying Transition Metal Signaling in Living Systems

    PubMed Central

    2015-01-01

    Conspectus Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed “recognition” and “reactivity”. Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give

  5. Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems.

    PubMed

    Aron, Allegra T; Ramos-Torres, Karla M; Cotruvo, Joseph A; Chang, Christopher J

    2015-08-18

    Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed "recognition" and "reactivity". Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three recent

  6. Process for making transition metal nitride whiskers

    DOEpatents

    Bamberger, C.E.

    1988-04-12

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites. 1 fig., 1 tab.

  7. Process for making transition metal nitride whiskers

    SciTech Connect

    Bamberger, Carlos E.

    1989-01-01

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites.

  8. Chiral phase transition in lattice QCD as a metal-insulator transition

    SciTech Connect

    Garcia-Garcia, Antonio M.; Osborn, James C.

    2007-02-01

    We investigate the lattice QCD Dirac operator with staggered fermions at temperatures around the chiral phase transition. We present evidence of a metal-insulator transition in the low lying modes of the Dirac operator around the same temperature as the chiral phase transition. This strongly suggests the phenomenon of Anderson localization drives the QCD vacuum to the chirally symmetric phase in a way similar to a metal-insulator transition in a disordered conductor. We also discuss how Anderson localization affects the usual phenomenological treatment of phase transitions a la Ginzburg-Landau.

  9. Electrolytic separation of crystals of transition-metal oxides

    NASA Technical Reports Server (NTRS)

    Arnott, R. J.; Feretti, A.; Kunnamann, W.

    1969-01-01

    Versatile flux system grows large, well-formed, stoichiometric single crystals of mixed oxides of the transition-metal elements. These crystals have important uses in the microwave field, and applications as lasers and masers in communications.

  10. Electrical properties of transition metal hydrogen complexes in silicon

    SciTech Connect

    Weber, J.

    1998-12-31

    A summary is given on the electrical properties of transition-metal hydrogen complexes in silicon. Contrary to the general understanding, hydrogen leads not only to passivation of deep defect levels but also creates several new levels in the band gap due to electrically active transition-metal complexes. The author presents detailed data for Pt-H complexes and summarize briefly the results on the transition metals Ti, Co, Ni, Pd, and Ag. The introduction of hydrogen at room temperature by wet chemical etching, followed by specific annealing steps allows us to study the formation of the different complexes. In particular, depth profiles of the defect concentrations give an estimate of the number of hydrogen atoms involved in the complexes. Transition-metals binding up to four hydrogen atoms are identified.

  11. Mechanisms of transition-metal gettering in silicon

    SciTech Connect

    MYERS JR.,SAMUEL M.; SEIBT,M.; SCHROTER,W.

    2000-03-23

    The atomic process, kinetics, and equilibrium thermodynamics underlying the gettering of transition-metal impurities in Si are reviewed from a mechanistic perspective. Methods for mathematical modeling of gettering are reviewed and illustrated. Needs for further research are discussed.

  12. Compositional dependence of elastic moduli for transition-metal oxide spinels

    NASA Astrophysics Data System (ADS)

    Reichmann, H. J.; Jacobsen, S. D.; Boffa Ballaran, T.

    2012-12-01

    Spinel phases (AB2O4) are common non-silicate oxides in the Earth's crust and upper mantle. A characteristic of this mineral group is the ability to host a wide range of transition metals. Here we summarize the influence of transition metals (Fe, Zn, and Mn) on the pressure dependence of elastic moduli of related spinels (magnetite, gahnite, and franklinite) using GHz-ultrasonic interferometry. Measurements were carried out up to 10 GPa in diamond-anvil cells using hydrostatic pressure media. Transition metals with unfilled 3d orbitals strongly influence the elastic properties of spinels. Franklinite (Zn,Mn)Fe2O4 and magnetite Fe3O4 with transition metals on both A and B cation sites exhibit pressure-induced mode softening of C44, whereas C44 of gahnite(ZnAl2O4) and spinel (MgAl2O4) exhibit positive pressure derivatives of the shear moduli. Spinels with two transition elements tend to undergo phase changes at a lower pressure than those with none or only one transition metal. Along the Mn-Zn solid solution, the variation of moduli with composition is non-linear, and a mid-range franklinite composition studied here shows a minimum in C44 compared with either end-member: MnFe2O 4 or ZnFe2O4. In general, the linear variation of sound velocity with density (Birch's Law) is followed by spinels, however spinels containing only one or no transition metals follow a distinct slope from those containing transition metals on both A and B sites. The Cauchy relation, 0.5(C12 - C44) = P is fulfilled by spinels with only one or no transition metals, suggesting that that Coulomb interactions dominate. Spinels with two transition metals fail to meet the Cauchy relation, indicating strong directional dependence and covalent character of bonding. The bonding character of transition metals is crucial to understanding the elastic behavior of natural and synthetic spinel solid solutions containing transition metals.

  13. Bi-phase transition diagrams of metallic thin multilayers

    SciTech Connect

    Li, J.C.; Liu, W.; Jiang, Q. . E-mail: jiangq@jlu.edu.cn

    2005-02-01

    Phase transitions of metallic multilayers induced by differences in interface energy are considered thermodynamically, based on a thermodynamic model for interface energy and the Goldschmidt premise for lattice contraction. Bi-phase transition diagrams of Co/Cr, Zr/Nb, Ti/Nb and Ti/Al multilayers are constructed, which are in agreement with experimental results.

  14. The transition to the metallic state in low density hydrogen.

    PubMed

    McMinis, Jeremy; Morales, Miguel A; Ceperley, David M; Kim, Jeongnim

    2015-11-21

    Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work, we use diffusion quantum Monte Carlo to benchmark the transition between paramagnetic and anti-ferromagnetic body centered cubic atomic hydrogen in its ground state. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transition order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of rs = 2.27(3) a0. We compare our results to previously reported density functional theory, Hedin's GW approximation, and dynamical mean field theory results. PMID:26590549

  15. [Non-empirical interatomic potentials for transition metals

    SciTech Connect

    Not Available

    1993-01-01

    The report is divided into the following sections: potential-energy functions for d-band metals, potential-energy functions for aluminides and quasicrystals, electronic structure of complex structures and quasicrystals, potential-energy functions in transition-metal oxides, applications to defect structure and mechanical properties, and basic theory of interatomic potentials.

  16. [Non-empirical interatomic potentials for transition metals]. Progress report

    SciTech Connect

    Not Available

    1993-05-01

    The report is divided into the following sections: potential-energy functions for d-band metals, potential-energy functions for aluminides and quasicrystals, electronic structure of complex structures and quasicrystals, potential-energy functions in transition-metal oxides, applications to defect structure and mechanical properties, and basic theory of interatomic potentials.

  17. Activation of methane by transition metal-substituted aluminophosphate molecular sieves

    DOEpatents

    Iton, Lennox E.; Maroni, Victor A.

    1991-01-01

    Aluminophosphate molecular sieves substituted with cobalt, manganese or iron and having the AlPO.sub.4 -34 or AlPO.sub.4 -5, or related AlPO.sub.4 structure activate methane starting at approximately 350.degree. C. Between 400.degree. and 500.degree. C. and at methane pressures .ltoreq.1 atmosphere the rate of methane conversion increases steadily with typical conversion efficiencies at 500.degree. C. approaching 50% and selectivity to the production of C.sub.2+ hydrocarbons approaching 100%. The activation mechanism is based on reduction of the transition metal(III) form of the molecular sieve to the transition metal(II) form with accompanying oxidative dehydrogenation of the methane. Reoxidation of the - transition metal(II) form to the transition metal(III) form can be done either chemically (e.g., using O.sub.2) or electrochemically.

  18. Occupational Transitions as a Relational Project

    ERIC Educational Resources Information Center

    Hallqvist, Anders

    2012-01-01

    Looking at "biographical learning" as part of a work transition, the aim of this paper is to investigate how social relations enable and constrain such a learning process in outplacement clients. To examine the process, its character and social conditions, the study draws on interviews with workers who had been made redundant and were enrolled at…

  19. The metal-insulator transition in vanadium dioxide nanobeams

    NASA Astrophysics Data System (ADS)

    Cobden, David

    2009-05-01

    Solid materials in which electron-electron correlations are strong can exhibit dramatic phase transitions, at which an abrupt change in the electronic properties occurs with a small accompanying distortion of the lattice. Such transitions could be harnessed to make electronic or optoelectronic devices or sensors embodying different principles from those in present semiconductor technology. A famous example is the metal-insulator transition in vanadium dioxide which occurs at 67 ^oC at ambient pressure. VO2 is a stable, strong material with a simple structure. Unfortunately though, applications and methodical studies of this and other phase transitions are hindered by broadening, hysteresis and mechanical degradation at the transition, caused by the inevitable domain structure. Nanostructures of the material which are smaller than the characteristic domain size do not show these problems. Using devices made from nanobeams of VO2 we have been able to achieve good control of the transition and to determine a number of its properties for the first time. For instance, we find that the metallic phase can be supercooled by more than 50 ^oC; that the resistivity of the insulator in coexistence with the metal is independent of temperature; and that the transition occurs via the intermediate M2 phase. We also study nanoelectromechanical effects where reversible buckling of the nanobeam is coupled to the phase transition, and we investigate methods of controlling the phase transition, for example using a gate voltage.

  20. Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes

    SciTech Connect

    Liu, Kexi; Lei, Yinkai; Wang, Guofeng

    2013-11-28

    Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O{sub 2} adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N{sub 4} chelation, as well as the molecular and electronic structures for the O{sub 2} adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O{sub 2} on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d{sub z{sup 2}}, d{sub xy}, d{sub xz}, and d{sub yz}) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O{sub 2} adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.

  1. Dielectric breakdown and avalanches at nonequilibrium metal-insulator transitions.

    PubMed

    Shekhawat, Ashivni; Papanikolaou, Stefanos; Zapperi, Stefano; Sethna, James P

    2011-12-30

    Motivated by recent experiments on the finite temperature Mott transition in VO(2) films, we propose a classical coarse-grained dielectric breakdown model where each degree of freedom represents a nanograin which transitions from insulator to metal with increasing temperature and voltage at random thresholds due to quenched disorder. We describe the properties of the resulting nonequilibrium metal-insulator transition and explain the universal characteristics of the resistance jump distribution. We predict that by tuning voltage, another critical point is approached, which separates a phase of boltlike avalanches from percolationlike ones. PMID:22243320

  2. Trion formation dynamics in monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Singh, Akshay; Moody, Galan; Tran, Kha; Scott, Marie E.; Overbeck, Vincent; Berghäuser, Gunnar; Schaibley, John; Seifert, Edward J.; Pleskot, Dennis; Gabor, Nathaniel M.; Yan, Jiaqiang; Mandrus, David G.; Richter, Marten; Malic, Ermin; Xu, Xiaodong; Li, Xiaoqin

    2016-01-01

    We report charged exciton (trion) formation dynamics in doped monolayer transition metal dichalcogenides, specifically molybdenum diselenide (MoS e2 ), using resonant two-color pump-probe spectroscopy. When resonantly pumping the exciton transition, trions are generated on a picosecond time scale through exciton-electron interaction. As the pump energy is tuned from the high energy to low energy side of the inhomogeneously broadened exciton resonance, the trion formation time increases by ˜ 50 % . This feature can be explained by the existence of both localized and delocalized excitons in a disordered potential and suggests the existence of an exciton mobility edge in transition metal dichalcogenides.

  3. Trion formation dynamics in monolayer transition metal dichalcogenides

    DOE PAGESBeta

    Singh, Akashay; Moody, Galan; Schaibley, John R.; Yan, Jiaqiang; Mandrus, David G.; Xu, Xiaodong; Li, Xiaoqun; Tran, Kha; Scott, Marie E.; Overbeck, Vincent; et al

    2016-01-05

    Here, we report charged exciton (trion) formation dynamics in doped monolayer transition metal dichalcogenides, specifically molybdenum diselenide (MoSe2), using resonant two-color pump-probe spectroscopy. When resonantly pumping the exciton transition, trions are generated on a picosecond time scale through exciton-electron interaction. As the pump energy is tuned from the high energy to low energy side of the inhomogeneously broadened exciton resonance, the trion formation time increases by ~50%. This feature can be explained by the existence of both localized and delocalized excitons in a disordered potential and suggests the existence of an exciton mobility edge in transition metal dichalcogenides.

  4. Binding of transition metals to S100 proteins.

    PubMed

    Gilston, Benjamin A; Skaar, Eric P; Chazin, Walter J

    2016-08-01

    The S100 proteins are a unique class of EF-hand Ca(2+) binding proteins distributed in a cell-specific, tissue-specific, and cell cycle-specific manner in humans and other vertebrates. These proteins are distinguished by their distinctive homodimeric structure, both intracellular and extracellular functions, and the ability to bind transition metals at the dimer interface. Here we summarize current knowledge of S100 protein binding of Zn(2+), Cu(2+) and Mn(2+) ions, focusing on binding affinities, conformational changes that arise from metal binding, and the roles of transition metal binding in S100 protein function. PMID:27430886

  5. Transit-Depth Metallicity Correlation: A Bayesian Approach

    NASA Astrophysics Data System (ADS)

    Sarkis, P.; Nehmé, C.

    2015-12-01

    A negative correlation was previously reported between the transit depth of Kepler's Q1-Q12 gas giant candidates and the stellar metallicity. In this present work, we revisit this correlation to better understand the role of the stellar metallicity in the formation of giant planets, in particular, to investigate the effect of the metallicity on the transit depth. We selected the 82 confirmed giant planets from the cumulative catalogue. This is the first large and homogenous sample of confirmed giant planets used to study this correlation. Such samples are suitable to perform robust statistical analysis. We present the first hierarchical Bayesian linear regression model to revise this correlation. The advantages of using a Bayesian framework are to incorporate measurement errors in the model and to quantify both the intrinsic scatter and the uncertainties on the parameters of the model. Our statistical analysis reveals no correlation between the transit depth of confirmed giant planets and the stellar metallicity.

  6. Properties of molecular beam epitaxy grown Eu{sub x}(transition metal){sub y} films (transition metals: Mn, Cr)

    SciTech Connect

    Balin, K.; Nowak, A.; Gibaud, A.; Szade, J.; Celinski, Z.

    2011-04-01

    The electronic and crystallographic structures, as well as the magnetic properties, of Eu{sub x}(transition metal){sub y} (transition metals: Mn, Cr) thin films grown by molecular beam epitaxy were studied. Relative changes of the Eu/Mn and Eu/Cr ratios derived from the XPS lines, as well as x-ray reflectivity, indicate mixing of the Eu/Mn and Eu/Cr layers. Valency transitions from Eu{sup 2+} to Eu{sup 3+} were observed in both systems for most studied stoichiometries. A transition to a magnetically ordered phase was observed at 15 K, 40 K, and 62 K for selected films in the Eu-Mn system, and at 50 K for the film with a Eu/Cr ratio of 0.5.

  7. Transition Metals in Control of Gene Expression

    NASA Astrophysics Data System (ADS)

    O'Halloran, Thomas V.

    1993-08-01

    Metalloproteins play structural and catalytic roles in gene expression. The metalloregulatory proteins are a subclass that exerts metal-responsive control of genes involved in respiration, metabolism, and metal-specific homeostasis or stress-response systems, such as iron uptake and storage, copper efflux, and mercury detoxification. Two allosteric mechanisms for control of gene expression were first discovered in metalloregulatory systems: an iron-responsive translational control mechanism for ferritin production and a mercury-responsive DNA-distortion mechanism for transcriptional control of detoxification genes. These otherwise unrelated mechanisms give rise to a rapid physiological response when metal ion concentrations exceed a dangerous threshold. Molecular recognition in these allosteric metal ion receptors is achieved through atypical coordination geometries, cluster formation, or complexes with prosthetic groups, such as sulfide and heme. Thus, many of the inorganic assemblies that otherwise buttress the structure of biopolymers or catalyze substrate transformation in active sites of enzymes have also been adapted to serve sensor functions in the metalloregulatory proteins. Mechanistic studies of these metal-sensor protein interactions are providing new insights into fundamental aspects of inorganic chemistry, molecular biology, and cellular physiology.

  8. [Transition metal mediated transformations of small molecules

    SciTech Connect

    Sen, A.

    1992-01-01

    Work on organotransition metal chemistry, homogeneous and heterogeneous catalysis is summarized. Several cationic palladium(II) complexes with bulky phosphine or pyridine ligands were discovered that are highly selective catalysts for linear dimerization of vinyl monomers and linear polymerization of p-divinylbenzene, the reactions proceeding through a carbocationic mechanism. Our studies were continued on alternating olefin-carbon monoxide copolymers. The copolymerization reaction and reactivity of copolymers were examined. New catalytic systems for alternating copolymerization of [alpha]-olefins with CO were discovered. In the case of styrene derivatives, tactic copolymers were obtained. Poly(ethylenepyrrolediyl) derivatives were synthesized from alternating ethylene-carbon monoxide copolymer and become electronic conductors when doped with iodine. A catalytic system for direct synthesis of polyureas and polyoxamides from and diamines was also discovered. Pt metal catalyzed the oxidation of ethers, esters, and amines to carboxylic acids and the oxidation of olefins to 1,2-diols. Anaerobic and aerobic decomposition of molybdenum(VI)-oxoalkyl compounds were studied for heterogeneous oxidation of alkanes and olefins on Mo(VI)-oxide surfaces. Synthesis of polymer-trapped metal, metal oxide, and metal sulfide nanoclusters (size <1--10 nm) was studied.

  9. Flexible metallic seal for transition duct in turbine system

    SciTech Connect

    Flanagan, James Scott; LeBegue, Jeffrey Scott; McMahan, Kevin Weston; Dillard, Daniel Jackson; Pentecost, Ronnie Ray

    2014-04-22

    A turbine system is disclosed. In one embodiment, the turbine system includes a transition duct. The transition duct includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct further includes an interface member for interfacing with a turbine section. The turbine system further includes a flexible metallic seal contacting the interface member to provide a seal between the interface member and the turbine section.

  10. The Metallicities of Stars with and without Transiting Planets

    NASA Astrophysics Data System (ADS)

    Buchhave, Lars A.; Latham, David W.

    2015-08-01

    Host star metallicities have been used to infer observational constraints on planet formation throughout the history of the exoplanet field. The giant planet metallicity correlation has now been widely accepted, but questions remain as to whether the metallicity correlation extends to the small terrestrial-sized planets. Here, we report metallicities for a sample of 518 stars in the Kepler field that have no detected transiting planets and compare their metallicity distribution to a sample of stars that hosts small planets ({R}p\\lt 1.7 {R}\\oplus ). Importantly, both samples have been analyzed in a homogeneous manner using the same set of tools (Stellar Parameters Classification tool). We find the average metallicity of the sample of stars without detected transiting planets to be {[{{m}}/{{H}}]}{SNTP,{dwarf}}=-0.02+/- 0.02 {dex} and the sample of stars hosting small planets to be {[{{m}}/{{H}}]}{STP}=-0.02+/- 0.02 {dex}. The average metallicities of the two samples are indistinguishable within the uncertainties, and the two-sample Kolmogorov-Smirnov test yields a p-value of 0.68 (0.41σ), indicating a failure to reject the null hypothesis that the two samples are drawn from the same parent population. We conclude that the homogeneous analysis of the data presented here supports the hypothesis that stars hosting small planets have a metallicity similar to stars with no known transiting planets in the same area of the sky.

  11. Density Functional Theory in Transition-Metal Chemistry: Relative Energies of Low-Lying States of Iron Compounds and the Effect of Spatial Symmetry Breaking

    SciTech Connect

    Sorkin, Anastassia; Iron, Mark A.; Truhlar, Donald G.

    2008-02-01

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The ground and lower excited states of Fe2, Fe2 -, and FeO+ were studied using a number of density functional theory (DFT) methods. Specific attention was paid to the relative state energies, the internuclear distances (re), and the harmonic vibrational frequencies (öe). A number of factors influencing the calculated values of these properties were examined. These include basis sets, the nature of the density functional chosen, the percentage of Hartree- Fock exchange in the density functional, and constraints on orbital symmetry. A number of different types of generalized gradient approximation (GGA) density functionals (straight GGA, hybrid GGA, meta-GGA, and hybrid meta-GGA) were examined, and it was found that the best results were obtained with hybrid GGA or hybrid meta-GGA functionals that contain nonzero fractions of HF exchange; specifically, the best overall results were obtained with B3LYP, M05, and M06, closely followed by B1LYP. One significant observation was the effect of enforcing symmetry on the orbitals. When a degenerate orbital (ð or ä) is partially occupied in the 4¼ excited state of FeO+, reducing the enforced symmetry (from C6v to C4v to C2v) results in a lower energy since these degenerate orbitals are split in the lower symmetries. The results obtained were compared to higher level ab initio results from the literature and to recent PBE+U plane wave results by Kulik et al. (Phys. Rev. Lett. 2006, 97, 103001). It was found that some of the improvements that were afforded by the semiempirical +U correction can also be accomplished by improving the form of the DFT functional and, in one case, by not enforcing high symmetry on the orbitals.

  12. Spin and pseudospins in layered transition metal dichalcogenides

    SciTech Connect

    Xu, Xiaodong; Yao, Wang; Xiao, Di; Heinz, Tony F.

    2014-01-01

    The recent emergence of two-dimensional layered materials in particular the transition metal dichalcogenides provides a new laboratory for exploring the internal quantum degrees of freedom of electrons and their potential for new electronics. These degrees of freedom are the real electron spin, the layer pseudospin, and the valley pseudospin. New methods for the quantum control of the spin and these pseudospins arise from the existence of Berry phase-related physical properties and strong spin orbit coupling. The former leads to the versatile control of the valley pseudospin, whereas the latter gives rise to an interplay between the spin and the pseudospins. Here, we provide a brief review of both theoretical and experimental advances in this field.

  13. Extraction of exchange parameters in transition-metal perovskites

    NASA Astrophysics Data System (ADS)

    Furrer, A.; Podlesnyak, A.; Krämer, K. W.

    2015-09-01

    The extraction of exchange parameters from measured spin-wave dispersion relations has severe limitations particularly for magnetic compounds such as the transition-metal perovskites, where the nearest-neighbor exchange parameter usually dominates the couplings between the further-distant-neighbor spins. Very precise exchange parameters beyond the nearest-neighbor spins can be obtained by neutron spectroscopic investigations of the magnetic excitation spectra of isolated multimers in magnetically diluted compounds. This is exemplified for manganese trimers in the mixed three- and two-dimensional perovskite compounds KM nxZ n1 -xF3 and K2M nxZ n1 -xF4 , respectively. It is shown that the small exchange couplings between the second-nearest-neighbor and the third-nearest-neighbor spins can be determined unambiguously and with equal precision as the dominating nearest-neighbor exchange coupling.

  14. Spin susceptibility of two-dimensional transition-metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Hatami, H.; Kernreiter, T.; Zülicke, U.

    2014-07-01

    We have obtained analytical expressions for the q-dependent static spin susceptibility of monolayer transition-metal dichalcogenides, considering both the electron-doped and hole-doped cases. Our results are applied to calculate spin-related physical observables of monolayer MoS2, focusing especially on in-plane/out-of-plane anisotropies. We find that the hole-mediated Ruderman-Kittel-Kasuya-Yosida exchange interaction for in-plane impurity-spin components decays with the power law R-5/2 as a function of distance R, which deviates from the R-2 power law normally exhibited by a two-dimensional Fermi liquid. In contrast, the out-of-plane spin response shows the familiar R-2 long-range behavior. We also use the spin susceptibility to define a collective g factor for hole-doped MoS2 systems and discuss its density-dependent anisotropy.

  15. Topological and unconventional magnetic states in transition metal oxides

    NASA Astrophysics Data System (ADS)

    Fiete, Gregory

    In this talk I describe some recent work on unusual correlated phases that may be found in bulk transition metal oxides with strong spin-orbit coupling. I will focus on model Hamiltonian studies that are motivated by the pyrocholore iridates, though the correlated topological phases described may appear in a much broader class of materials. I will describe a variety of fractionalized topological phases protected by time-reversal and crystalline symmetries: The weak topological Mott insulator (WTMI), the TI* phase, and the topological crystalline Mott insulator (TCMI). If time permits, I will also discuss closely related heterostructures of pyrochlore iridates in a bilayer and trilayer film geometry. These quasi-two dimensional systems may exhibit a number of interesting topological and magnetic phases. This work is generously funded by the ARO, DARPA, and the NSF.

  16. Extraction of exchange parameters in transition-metal perovskites

    DOE PAGESBeta

    Furrer, A.; Podlesnyak, A.; Krämer, K. W.

    2015-09-15

    When extracting exchange parameters from measured spin-wave dispersion relations there are severe limitations particularly for magnetic compounds such as the transition-metal perovskites, where the nearest-neighbor exchange parameter usually dominates the couplings between the further-distant-neighbor spins. Very precise exchange parameters beyond the nearest-neighbor spins can be obtained by neutron spectroscopic investigations of the magnetic excitation spectra of isolated multimers in magnetically diluted compounds. Moreover, this is exemplified for manganese trimers in the mixed three-and two-dimensional perovskite compounds KMnxZn1-xF3 and K2MnxZn1-xF4, respectively. We show that the small exchange couplings between the second-nearest-neighbor and the third-nearest-neighbor spins can be determined unambiguously and withmore » equal precision as the dominating nearest-neighbor exchange coupling.« less

  17. The metal-insulator transition in magnetite.

    NASA Technical Reports Server (NTRS)

    Cullen, J. R.; Callen, E.

    1972-01-01

    We describe an electronic model for the low temperature transition in magnetite, in which the average number of electrons on a site is non-integral. The solution of the one-dimensional problem is reviewed, and the connection of the model with the Verwey ordering is discussed. Some of the implication of the three dimensional problem are discussed.

  18. Flexible transition metal dichalcogenide nanosheets for band-selective photodetection

    PubMed Central

    Velusamy, Dhinesh Babu; Kim, Richard Hahnkee; Cha, Soonyoung; Huh, June; Khazaeinezhad, Reza; Kassani, Sahar Hosseinzadeh; Song, Giyoung; Cho, Suk Man; Cho, Sung Hwan; Hwang, Ihn; Lee, Jinseong; Oh, Kyunghwan; Choi, Hyunyoug; Park, Cheolmin

    2015-01-01

    The photocurrent conversions of transition metal dichalcogenide nanosheets are unprecedentedly impressive, making them great candidates for visible range photodetectors. Here we demonstrate a method for fabricating micron-thick, flexible films consisting of a variety of highly separated transition metal dichalcogenide nanosheets for excellent band-selective photodetection. Our method is based on the non-destructive modification of transition metal dichalcogenide sheets with amine-terminated polymers. The universal interaction between amine and transition metal resulted in scalable, stable and high concentration dispersions of a single to a few layers of numerous transition metal dichalcogenides. Our MoSe2 and MoS2 composites are highly photoconductive even at bending radii as low as 200 μm on illumination of near infrared and visible light, respectively. More interestingly, simple solution mixing of MoSe2 and MoS2 gives rise to blended composite films in which the photodetection properties were controllable. The MoS2/MoSe2 (5:5) film showed broad range photodetection suitable for both visible and near infrared spectra. PMID:26333531

  19. Modified electronic population analysis for transition-metal complexes

    SciTech Connect

    Noell, J.O.

    1982-01-01

    A modification to the Mulliken electronic population analysis designed primarily for use on transition-metal systems is presented. All terms arising from the metal basis functions including diagonal terms are repartioned between the metal and the ligands. This reapportionment is an attempt to reflect more accurately the actual electron density in well-defined areas of space, which characterize the metal and the ligand. This modified analysis appears to yield more reasonable charge assignments than a conventional Mulliken analysis. The cost of the analysis is negligible in comparison with that of calculating the wave function.

  20. Memristor using a transition metal nitride insulator

    SciTech Connect

    Stevens, James E; Marinella, Matthew; Lohn, Andrew John

    2014-10-28

    Apparatus is disclosed in which at least one resistive switching element is interposed between at least a first and a second conducting electrode element. The resistive switching element comprises a metal oxynitride. A method for making such a resistive switching element is also disclosed.

  1. Metallization and charge-transfer gap closure of transition-metal iodides under pressure

    SciTech Connect

    Chen, A. Li-Chung

    1993-05-01

    It is shown with resistivity and near-IR absorption measurements that NiI{sub 2}, CoI{sub 2}, and FeI{sub 2} metallize under pressure by closure of the charge-transfer energy gap at pressures of 17, 10, and 23 GPa, respectively, which is close to the antiferromagnetic-diamagnetic transition in NiI{sub 2} and CoI{sub 2}. Thus, the magnetic transitions probably are caused by the metallization; in NiI{sub 2} and CoI{sub 2}, the insulator-metal transitions are first order. Moessbauer and XRD data were also collected. Figs, 46 refs.

  2. Adhesion and friction of single-crystal diamond in contact with transition metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    An investigation was conducted to examine the adhesion and friction of single-crystal diamond in contact with various transition metals and the nature of metal transfer to diamond. Sliding friction experiments were conducted with diamond in sliding contact with the metals yttrium, titanium, zirconium, vanadium, iron, cobalt, nickel, tungsten, platinum, rhenium and rhodium. All experiments were conducted with loads of 0.05 to 0.3 N, at a sliding velocity of 0.003 m per minute, in a vacuum of 10 to the -8th Pa, at room temperature, and on the (111) plane of diamond with sliding in the 110 line type direction. The results of the investigation indicate that the coefficient of friction for diamond in contact with various metals is related to the relative chemical activity of the metals in high vacuum. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to the surface of diamond in sliding.

  3. Effects of transition metal ion coordination on the collision-induced dissociation of polyalanines.

    PubMed

    Watson, Heather M; Vincent, John B; Cassady, Carolyn J

    2011-11-01

    Transition metal-polyalanine complexes were analyzed in a high-capacity quadrupole ion trap after electrospray ionization. Polyalanines have no polar amino acid side chains to coordinate metal ions, thus allowing the effects metal ion interaction with the peptide backbone to be explored. Positive mode mass spectra produced from peptides mixed with salts of the first row transition metals Cr(III), Fe(II), Fe(III), Co(II), Ni(II), Cu(I), and Cu(II) yield singly and doubly charged metallated ions. These precursor ions undergo collision-induced dissociation (CID) to give almost exclusively metallated N-terminal product ions whose types and relative abundances depend on the identity of the transition metal. For example, Cr(III)-cationized peptides yield CID spectra that are complex and have several neutral losses, whereas Fe(III)-cationized peptides dissociate to give intense non-metallated products. The addition of Cu(II) shows the most promise for sequencing. Spectra obtained from the CID of singly and doubly charged Cu-heptaalanine ions, [M + Cu - H](+) and [M + Cu](2+) , are complimentary and together provide cleavage at every residue and no neutral losses. (This contrasts with [M + H](+) of heptaalanine, where CID does not provide backbone ions to sequence the first three residues.) Transition metal cationization produces abundant metallated a-ions by CID, unlike protonated peptides that produce primarily b- and y-ions. The prominence of metallated a-ions is interesting because they do not always form from b-ions. Tandem mass spectrometry on metallated (Met = metal) a- and b-ions indicate that [b(n)  + Met - H](2+) lose CO to form [a(n)  + Met - H](2+), mimicking protonated structures. In contrast, [a(n)  + Met - H](2+) eliminate an amino acid residue to form [a(n-1)  + Met - H](2+), which may be useful in sequencing. PMID:22124980

  4. Hybrid uranium-transition-metal oxide cage clusters.

    PubMed

    Ling, Jie; Hobbs, Franklin; Prendergast, Steven; Adelani, Pius O; Babo, Jean-Marie; Qiu, Jie; Weng, Zhehui; Burns, Peter C

    2014-12-15

    Transition-metal based polyoxometalate clusters have been known for decades, whereas those built from uranyl peroxide polyhedra have more recently emerged as a family of complex clusters. Here we report the synthesis and structures of six nanoscale uranyl peroxide cage clusters that contain either tungstate or molybdate polyhedra as part of the cage, as well as phosphate tetrahedra. These transition-metal-uranium hybrid clusters exhibit unique polyhedral connectivities and topologies that include 6-, 7-, 8-, 10-, and 12-membered rings of uranyl polyhedra and uranyl ions coordinated by bidentate peroxide in both trans and cis configurations. The transition-metal polyhedra appear to stabilize unusual units built of uranyl polyhedra, rather than templating their formation. PMID:25434424

  5. Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications.

    PubMed

    Sanpo, Noppakun; Berndt, Christopher C; Wen, Cuie; Wang, James

    2013-03-01

    Transition metals of copper, zinc, chromium and nickel were substituted into cobalt ferrite nanoparticles via a sol-gel route using citric acid as a chelating agent. The microstructure and elemental composition were characterized using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. Phase analysis of transition metal-substituted cobalt ferrite nanoparticles was performed via X-ray diffraction. Surface wettability was measured using the water contact angle technique. The surface roughness of all nanoparticles was measured using profilometry. Moreover, thermogravimetric analysis and differential scanning calorimetry were performed to determine the temperature at which the decomposition and oxidation of the chelating agents took place. Results indicated that the substitution of transition metals influences strongly the microstructure, crystal structure and antibacterial property of the cobalt ferrite nanoparticles. PMID:23137676

  6. Nanodisperse transition metal electrodes (NTME) for electrochemical cells

    DOEpatents

    Striebel, Kathryn A.; Wen, Shi-Jie

    2000-01-01

    Disclosed are transition metal electrodes for electrochemical cells using gel-state and solid-state polymers. The electrodes are suitable for use in primary and secondary cells. The electrodes (either negative electrode or positive electrode) are characterized by uniform dispersion of the transition metal at the nanoscale in the polymer. The transition metal moiety is structurally amorphous, so no capacity fade should occur due to lattice expansion/contraction mechanisms. The small grain size, amorphous structure and homogeneous distribution provide improved charge/discharge cycling performance, and a higher initial discharge rate capability. The cells can be cycled at high current densities, limited only by the electrolyte conductivity. A method of making the electrodes (positive and negative), and their usage in electrochemical cells are disclosed.

  7. Nanodisperse transition metal electrodes (NTME) for electrochemical cells

    SciTech Connect

    Striebel, Kathryn A.; Wen, Shi-Jie

    1998-12-01

    Disclosed are transition metal electrodes for electrochemical cells using gel-state and solid-state polymers. The electrodes are suitable for use in primary and secondary cells. The electrodes (either negative electrode or positive electrode) are characterized by uniform dispersion of the transition metal at the nanoscale in the polymer. The transition metal moiety is structurally amorphous, so no capacity fade should occur due to lattice expansion/contraction mechanisms. The small grain size, amorphous structure and homogeneous distribution provide improved charge/discharge cycling performance, and a higher initial discharge rate capability. The cells can be cycled at high current densities, limited only by the electrolyte conductivity. A method of making the electrodes (positive and negative), and their usage in electrochemical cells are disclosed.

  8. Anharmonic Vibrational Spectroscopy on Metal Transition Complexes

    NASA Astrophysics Data System (ADS)

    Latouche, Camille; Bloino, Julien; Barone, Vincenzo

    2014-06-01

    Advances in hardware performance and the availability of efficient and reliable computational models have made possible the application of computational spectroscopy to ever larger molecular systems. The systematic interpretation of experimental data and the full characterization of complex molecules can then be facilitated. Focusing on vibrational spectroscopy, several approaches have been proposed to simulate spectra beyond the double harmonic approximation, so that more details become available. However, a routine use of such tools requires the preliminary definition of a valid protocol with the most appropriate combination of electronic structure and nuclear calculation models. Several benchmark of anharmonic calculations frequency have been realized on organic molecules. Nevertheless, benchmarks of organometallics or inorganic metal complexes at this level are strongly lacking despite the interest of these systems due to their strong emission and vibrational properties. Herein we report the benchmark study realized with anharmonic calculations on simple metal complexes, along with some pilot applications on systems of direct technological or biological interest.

  9. Phase stability of transition metal dichalcogenide by competing ligand field stabilization and charge density wave

    NASA Astrophysics Data System (ADS)

    C, Santosh K.; Zhang, Chenxi; Hong, Suklyun; Wallace, Robert M.; Cho, Kyeongjae

    2015-09-01

    Transition metal dichalcogenides (TMDs) have been investigated extensively for potential application as device materials in recent years. TMDs are found to be stable in trigonal prismatic (H), octahedral (T), or distorted octahedral (Td) coordination of the transition metal. However, the detailed understanding of stabilities of TMDs in a particular phase is lacking. In this work, the detailed TMD phase stability using first-principles calculations based on density functional theory (DFT) has been investigated to clarify the mechanism of phase stabilities of TMDs, consistent with the experimental observation. Our results indicate that the phase stability of TMDs can be explained considering the relative strength of two competing mechanisms: ligand field stabilization of d-orbitals corresponding to transition metal coordination geometry, and charge density wave (CDW) instability accompanied by a periodic lattice distortion (PLD) causing the phase transition in particular TMDs.

  10. Strong dependence of fluorescence quenching on the transition metal in layered transition metal dichalcogenide nanoflakes for nucleic acid detection.

    PubMed

    Loo, Adeline Huiling; Bonanni, Alessandra; Pumera, Martin

    2016-08-01

    In recent years, the application of transition metal dichalcogenides for the development of biosensors has been receiving widespread attention from researchers, as demonstrated by the surge in studies present in the field. While different transition metal dichalcogenide materials have been employed for the fabrication of fluorescent biosensors with superior performance, no research has been conducted to draw comparisons across materials containing different transition metals. Herein, the performance of MoS2 and WS2 nanoflakes for the fluorescence detection of nucleic acids is assessed. It is discovered that, at the optimal amount, MoS2 and WS2 nanoflakes exhibit a similar degree of fluorescence quenching, at 75% and 71% respectively. However, MoS2 nanoflakes have better performance in the areas of detection range and selectivity than WS2 nanoflakes. The detection range achieved with MoS2 nanoflakes is 9.60-366 nM while 13.3-143 nM with WS2 nanoflakes. In the context of selectivity, MoS2 nanoflakes display a signal difference of 97.8% between complementary and non-complementary DNA targets, whereas WS2 nanoflakes only exhibit 44.3%. Such research is highly beneficial as it delivers vital insights on how the performance of a fluorescent biosensor can be affected by the transition metal present. Furthermore, these insights can assist in the selection of suitable transition metal dichalcogenide materials for utilization in biosensor development. PMID:27241269

  11. Anderson localization effects near the Mott metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Bragança, Helena; Aguiar, M. C. O.; Vučičević, J.; Tanasković, D.; Dobrosavljević, V.

    2015-09-01

    The interplay between Mott and Anderson routes to localization in disordered interacting systems gives rise to different transitions and transport regimes. Here, we investigate the phase diagram at finite temperatures using dynamical mean-field theory combined with typical medium theory, which is an effective theory of the Mott-Anderson metal-insulator transition. We mainly focus on the properties of the coexistence region associated with the Mott phase transition. For weak disorder, the coexistence region is found to be similar to that in the clean case. However, as we increase disorder, Anderson localization effects are responsible for shrinking the coexistence region, and at sufficiently strong disorder (approximately equal to twice the bare bandwidth) it drastically narrows, the critical temperature Tc abruptly goes to zero, and we observe a phase transition in the absence of a coexistence of the metallic and insulating phases. In this regime, the effects of interaction and disorder are found to be of comparable importance for charge localization.

  12. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering.

    PubMed

    Voiry, Damien; Goswami, Anandarup; Kappera, Rajesh; e Silva, Cecilia de Carvalho Castro; Kaplan, Daniel; Fujita, Takeshi; Chen, Mingwei; Asefa, Tewodros; Chhowalla, Manish

    2015-01-01

    Chemical functionalization of low-dimensional materials such as nanotubes, nanowires and graphene leads to profound changes in their properties and is essential for solubilizing them in common solvents. Covalent attachment of functional groups is generally achieved at defect sites, which facilitate electron transfer. Here, we describe a simple and general method for covalent functionalization of two-dimensional transition metal dichalcogenide nanosheets (MoS₂, WS₂ and MoSe₂), which does not rely on defect engineering. The functionalization reaction is instead facilitated by electron transfer between the electron-rich metallic 1T phase and an organohalide reactant, resulting in functional groups that are covalently attached to the chalcogen atoms of the transition metal dichalcogenide. The attachment of functional groups leads to dramatic changes in the optoelectronic properties of the material. For example, we show that it renders the metallic 1T phase semiconducting, and gives it strong and tunable photoluminescence and gate modulation in field-effect transistors. PMID:25515889

  13. Metal-insulator transition near a superconducting state

    NASA Astrophysics Data System (ADS)

    Kaveh, M.; Mott, N. F.

    1992-03-01

    We show that when the metal-insulation transition occurs near a superconducting state it results in a different critical behavior from that of amorphous metals or uncompensated doped semiconductors. This difference results from the enhancement of the effective electron-electron interaction caused by fluctuations to the superconducting state. This explains the recent experiments of Micklitz and co-workers on amorphous superconducting mixtures Ga-Ar and Bi-Kr.

  14. Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene

    NASA Astrophysics Data System (ADS)

    Sahin, H.; Peeters, F. M.

    2013-02-01

    The adsorption characteristics of alkali, alkaline-earth, and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, work function, and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na, and K, adsorb to hollow sites without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene, metalization of silicene takes place. Trends directly related to atomic size, adsorption height, work function, and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline-earth metals on silicene is entirely different from their adsorption on graphene. The adsorption of Be, Mg, and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo, and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic, and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal, and semiconducting behavior. For all metal adsorbates, the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale.

  15. (S)TEM analysis of functional transition metal oxides

    NASA Astrophysics Data System (ADS)

    Chi, Miaofang

    Perovskite vanadates (AVO3) form an ideal family to study the structure-property relationships in transition metal oxides because their physical properties can easily be tailored by varying the A-site cations. (S)TEM is an ideal tool for this type of study due to its capacity for simultaneous imaging and chemical analysis. Determination of the oxidation state of vanadium in complex oxides have been carried out by electron energy loss spectroscopy. SrVO3/LaAlO3 is then studied both experimentally and theoretically as a prototype system. Extra electrons have been detected on the interface layer, and further proven to originate mainly from a change in the local bonding configuration of V at the La-O terminated substrate surface. Cr-containing stainless steel deposited with a LaCrO3 thin-film layer is a promising interconnect material of Solid Oxide Fuel Cells (SOFC). Our investigation on its microstructural evolution reveals that the LaCrO 3 thin film plays a role in inhibiting the growth of an oxide layer on the metal surface and thus protects the surface of the stainless steel. Ca-doped LaCoO3 is a promising SOFC cathode material. The domain structures and the oxidation state of Co in Ca-doped LaCoO3, which are directly related to its mechanical properties and electronic conductivity, are investigated by in-situ TEM and EELS. The formation of microcracks is observed during thermal cycles. Ca-doping in LaCoO3 is shown to not only improve the electronic conductivity of the material, but is also likely to strengthen the grain boundaries. The realization of its application in SOFCs depends on depressing the ferroelastisity to reduce strain formation during thermal cycles. The application of the (S)TEM techniques used for studying the perovskite systems are further extended to other compounds containing transition metal elements. The refractory minerals from Comet 81 P/Wild-2 are studied to investigate the formation of the early solar system. A relatively high Ti3+/Ti 4

  16. New metal atom laser transitions in As, Bi, Ga, Ge, Hg, In, Pb, Sb, and Tl

    NASA Technical Reports Server (NTRS)

    Chou, M. S.; Cool, T. A.

    1976-01-01

    A double discharge technique was used in the investigation. An initial discharge established between parallel arrays of tungsten pin electrodes was followed, after a variable time delay, by a high voltage (180 kV), short duration (50 nsec) secondary discharge between two aluminum main electrodes. Metal compounds, including metal alkyls, hydrides, and halides, were used to obtain the required metal atom concentrations. Twenty-four new laser transitions involving 9 different metal atoms were observed. The observed relations are shown in a number of partial energy-level diagrams.

  17. Transition metals on the (0001) surface of graphite: Fundamental aspects of adsorption, diffusion, and morphology

    SciTech Connect

    Appy, David; Lei, Huaping; Wang, Cai-Zhuang; Tringides, Michael C; Liu, Da-Jiang; Evans, James W; Thiel, Patricia A

    2014-08-01

    In this article, we review basic information about the interaction of transition metal atoms with the (0 0 0 1) surface of graphite, especially fundamental phenomena related to growth. Those phenomena involve adatom-surface bonding, diffusion, morphology of metal clusters, interactions with steps and sputter-induced defects, condensation, and desorption. General traits emerge which have not been summarized previously. Some of these features are rather surprising when compared with metal-on-metal adsorption and growth. Opportunities for future work are pointed out.

  18. Transport studies in 2D transition metal dichalcogenides and black phosphorus.

    PubMed

    Du, Yuchen; Neal, Adam T; Zhou, Hong; Ye, Peide D

    2016-07-01

    Two-dimensional (2D) materials are a new family of materials with interesting physical properties, ranging from insulating hexagonal boron nitride, semiconducting or semi-metallic transition metal dichalcogenides, to gapless metallic graphene. In this review, we provide a brief discussion of transport studies in transition metal dichalcogenides, including both semiconducting and semi-metallic phases, as well as a discussion of the newly emerged narrow bandgap layered material, black phosphorus, in terms of its electrical and quantum transport properties at room and cryogenic temperatures. Ultra-thin layered channel materials with atomic layer thickness in the cross-plane direction, together with relatively high carrier mobility with appropriate passivation techniques, provide the promise for new scientific discoveries and broad device applications. PMID:27187790

  19. Transport studies in 2D transition metal dichalcogenides and black phosphorus

    NASA Astrophysics Data System (ADS)

    Du, Yuchen; Neal, Adam T.; Zhou, Hong; Ye, Peide D.

    2016-07-01

    Two-dimensional (2D) materials are a new family of materials with interesting physical properties, ranging from insulating hexagonal boron nitride, semiconducting or semi-metallic transition metal dichalcogenides, to gapless metallic graphene. In this review, we provide a brief discussion of transport studies in transition metal dichalcogenides, including both semiconducting and semi-metallic phases, as well as a discussion of the newly emerged narrow bandgap layered material, black phosphorus, in terms of its electrical and quantum transport properties at room and cryogenic temperatures. Ultra-thin layered channel materials with atomic layer thickness in the cross-plane direction, together with relatively high carrier mobility with appropriate passivation techniques, provide the promise for new scientific discoveries and broad device applications.

  20. DNA binding and recognition by binuclear transition metal complexes

    NASA Astrophysics Data System (ADS)

    Liu, Changlin; Yan, Rui; Xu, Yan; Yu, Siwang; Liao, Zhanru; Li, Dongfeng; Xu, Hui-Bie F.

    2001-09-01

    The development of small molecules that can bind and recognize DNA with sequence- or stereo-specificity under physiological conditions has been attracting a great interest in chemistry and biochemistry. Here, spectroscopic characterization and gel electrophoresis methods have been utilized to investigate the DNA binding and recognition by a variety of binuclear transition metal complexes. The result indicate that the structures and charges of binuclear transition metal complexes, compositions of coordination spheres, central metal ions and their coordination unsaturation, and separations between two central metal atoms can exert significant effects on the DNA binding and recognition. If there are not intercalative ligands into DNA base pairs or kinetically substitutable ligands by DNA phosphate groups within coordination sphere, the coordination saturation and compact binuclear transition metal complexes weaker bind to DNA than the coordination unsaturation and extended ones to DNA. Since the different transtiometal ions exhibit different affinities to DNA phosphate oxygen atoms, the binding interactions between their binuclear complexes and DNA are controlled by the affinity. He binuclear complexes with one or more negative charges lead to a consequence that they can not efficient associate with DNA, because DNA phosphodiester backbone is negatively charged. Whenthe separations between two central transition metal atoms is more than the distance between two DNA base pairs, the binuclear complexes could bind and recognize the DNA sequence with two or more base pairs. The protonated and positively charged ligands can strengthen the DNA binding and recognition by these binuclear metal complexes. Based on such DNA binding and recognition principles, the binuclear zinc complex designed in the study preferentially bind and recognize the following DNA sequence on pBR322 DNA with binding constant K.

  1. The Electronic Structure of Transition Metal Coated Fullerenes

    NASA Astrophysics Data System (ADS)

    Patton, David C.; Pederson, Mark R.; Kaxiras, Efthimios

    1998-03-01

    Clusters composed of fullerene molecules with an outer shell of transition metal atoms in the composition C_60M_62 (M being a transition metal) have been produced with laser vaporisation techniques(F. Tast, N. Malinowski, S. Frank, M. Heinebrodt, I.M.L. Billas, and T. P. Martin, Z. Phys D 40), 351 (1997).. We have studied several of these very large systems with a parallel version of the all-electron NRLMOL cluster code. Optimized geometries of the metal encased fullerenes C_60Ti_62 and C_60V_62 are presented along with their HOMO-LUMO gaps, electron affinities, ionization energies, and cohesive energies. We compare the stability of these clusters to relaxed met-car structures (e.g. Ti_8C_12) and to relaxed rocksalt metal-carbide fragments (TiC)n with n=8 and 32. In addition to metal-coated fullerenes we consider the possibility of a trilayered structure consisting of a small shell of metal atoms enclosed by a metal coated fullerene. The nature of bonding in these systems is analyzed by studying the electronic charge distributions.

  2. Chromospheric, transition layer and coronal emission of metal deficient stars

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, E.

    1982-01-01

    It is shown that while MgII k line emission decreases for metal deficient stars, the Ly alpha emission increases. The sum of chromospheric hydrogen and metallic emission appears to be independent of metal abundances. The total chromospheric energy loss is estimated to be 0.0004 F sub bol. The chromospheric energy input does not seem to decrease for increasing age. The transition layer emission is reduced for metal deficient stars, but it is not known whether the reduction is larger than can be explained by curve of growth effects only. Coronal X-ray emission was measured for 4 metal deficient stars. Within a 12 limit it could still be consistent with the emission of solar abundance stars.

  3. Growth of transition metals on cerium tungstate model catalyst layers.

    PubMed

    Skála, T; Tsud, N; Stetsovych, V; Mysliveček, J; Matolín, V

    2016-10-01

    Two model catalytic metal/oxide systems were investigated by photoelectron spectroscopy and scanning tunneling microscopy. The mixed-oxide support was a cerium tungstate epitaxial thin layer grown in situ on the W(1 1 0) single crystal. Active particles consisted of palladium and platinum 3D islands deposited on the tungstate surface at 300 K. Both metals were found to interact weakly with the oxide support and the original chemical state of both support and metals was mostly preserved. Electronic and morphological changes are discussed during the metal growth and after post-annealing at temperatures up to 700 K. Partial transition-metal coalescence and self-cleaning from the CO and carbon impurities were observed. PMID:27494195

  4. The Electrochemical Synthesis of Transition-Metal Acetylacetonates

    ERIC Educational Resources Information Center

    Long, S. R.; Browning, S. R.; Lagowski, J. J.

    2008-01-01

    The electrochemical synthesis of transition-metal acetylacetonates described here can form the basis of assisting in the transformation of an entry-level laboratory course into a research-like environment where all members of a class are working on the same problem, but where each member has a personal responsibility for the synthesis and…

  5. Transport properties of transition metal impurities on gold nanowires

    NASA Astrophysics Data System (ADS)

    Pontes, Renato B.; da Silva, Edison Z.; Fazzio, Adalberto; da Silva, Antônio J. R.

    2009-03-01

    Performing first principles density functional theory (DFT) we calculated the electronic and transport properties of a Au thin nanowire with transition metal atoms (Mn, Fe, Ni or Co) bridging the two sides of the Au nanowire. We will show that these systems have strong spin dependent transport properties and that the local symmetry can dramatically change them, leading to a significant spin polarized conductance. This spin dependent transport is also associated with the transition metal in the nanowire, in particular with the d-level positioning. Using Co, for example [1], when the symmetry permits the mixing between the wire s-orbitals with the transition metal d-states, there are interference effects that resemble Fano-like resonances with an anisotropy of 0.07 at the Fermi level. On the other hand, if this symmetry decouples such states, we simply have a sum of independent transmission channels and the calculated anisotropy was 0.23. The anisotropies for the other transition metals, as well as calculated transmittances for two Co impurities will also be presented [1] R. B. Pontes, E. Z. da Silva, A. Fazzio and Antônio J. R. da Silva, J. Am. Chem. Soc. 130 (30), 9897-903, 2008

  6. Finding new ternary transition metal selenides and sulphides

    NASA Astrophysics Data System (ADS)

    Narayan, Awadhesh; Bhutani, Ankita; Eckstein, James N.; Shoemaker, Daniel P.; Wagner, Lucas K.

    The transition metal oxides exhibit many interesting physical properties, and have been explored in detail over time. Recently, the transition metal chalchogenides including selenium and sulfur have been of interest because of their correlated electron properties, as seen in the iron based superconductors and the layered transition metal dichalchogenides. However, the chalchogenides are much less explored than the oxides, and there is an open question of whether there may be new materials heretofore undiscovered. We perform a systematic combined theoretical and experimental search over ternary phase diagrams that are empty in the Inorganic Crystal Structure Database containing cations, transition metals, and one of selenium or sulfur. In these 27 ternary systems, we use a probabilistic model to reduce the likelihood of false negative predictions, which results in a list of 24 candidate materials. We then conduct a variety of synthesis experiments to check the candidate materials for stability. While the prediction method did obtain compositions that are stable, none of the candidate materials formed in our experiments. We come to the conclusion that these phase diagrams are either truly empty or have unusual structures or synthesis requirements. This work was supported by the Center for Emergent Superconductivity, Department of Energy Frontier Research Center under Grant No. DEAC0298CH1088.

  7. Mechanisms of transition-metal gettering in silicon

    SciTech Connect

    Myers, S. M.; Seibt, M.; Schroeter, W.

    2000-10-01

    The atomic process, kinetics, and equilibrium thermodynamics underlying the gettering of transition-metal impurities in Si are reviewed. Methods for mathematical modeling of gettering are discussed and illustrated. Needs for further research are considered. (c) 2000 American Institute of Physics.

  8. Hydroxyapatite substituted by transition metals: experiment and theory.

    PubMed

    Zilm, M E; Chen, L; Sharma, V; McDannald, A; Jain, M; Ramprasad, R; Wei, M

    2016-06-28

    Bioceramics are versatile materials for hard tissue engineering. Hydroxyapatite (HA) is a widely studied biomaterial for bone grafting and tissue engineering applications. The crystal structure of HA allows for a wide range of substitutions, which allows for tailoring materials properties. Transition metals and lanthanides are of interest since substitution in HA can result in magnetic properties. In this study, experimental results were compared to theoretical calculations of HA substituted with a transition metal. Calculation of a 10 atomic percent substitution of a transition metal ion Mn(2+), Fe(2+), and Co(2+) substituted HA samples lead to magnetic moments of 5, 4, and 3 Bohr magnetons, respectively. Hydroxyapatite substituted by transition metals (MHA) was fabricated through an ion exchange procedure and characterized with X-ray diffraction, Fourier transform infra-red spectroscopy (FTIR), X-ray photoelectron spectroscopy, and vibrating sample magnetometer, and results were compared to theoretical calculations. All the substitutions resulted in phase-pure M(2+)HA with lattice parameters and FTIR spectra in good agreement with calculations. Magnetic measurements revealed that the substitution of Mn(2+) has the greatest effect on the magnetic properties of HA followed by the substitution of Fe(2+) and then Co(2+). The present work underlines the power of synergistic theoretical-experimental work in guiding the rational design of materials. PMID:27264723

  9. Epoxy nanocomposites with two-dimensional transition metal dichalcogenide additives.

    PubMed

    Eksik, Osman; Gao, Jian; Shojaee, S Ali; Thomas, Abhay; Chow, Philippe; Bartolucci, Stephen F; Lucca, Don A; Koratkar, Nikhil

    2014-05-27

    Emerging two-dimensional (2D) materials such as transition metal dichalcogenides offer unique and hitherto unavailable opportunities to tailor the mechanical, thermal, electronic, and optical properties of polymer nanocomposites. In this study, we exfoliated bulk molybdenum disulfide (MoS2) into nanoplatelets, which were then dispersed in epoxy polymers at loading fractions of up to 1% by weight. We characterized the tensile and fracture properties of the composite and show that MoS2 nanoplatelets are highly effective at enhancing the mechanical properties of the epoxy at very low nanofiller loading fractions (below 0.2% by weight). Our results show the potential of 2D sheets of transition metal dichalcogenides as reinforcing additives in polymeric composites. Unlike graphene, transition metal dichalcogenides such as MoS2 are high band gap semiconductors and do not impart significant electrical conductivity to the epoxy matrix. For many applications, it is essential to enhance mechanical properties while also maintaining the electrical insulation properties and the high dielectric constant of the polymer material. In such applications, conductive carbon based fillers such as graphene cannot be utilized. This study demonstrates that 2D transition metal dichalcogenide additives offer an elegant solution to such class of problems. PMID:24754702

  10. Luminescent molecular rods - transition-metal alkynyl complexes.

    PubMed

    Yam, Vivian Wing-Wah; Wong, Keith Man-Chung

    2005-01-01

    A number of transition-metal complexes have been reported to exhibit rich luminescence, usually originating from phosphorescence. Such luminescence properties of the triplet excited state with a large Stoke's shift, long lifetime, high luminescence quantum yield as well as lower excitation energy, are envisaged to serve as an ideal candidate in the area of potential applications for chemosensors, dye-sensitized solar cells, flat panel displays, optics, new materials and biological sciences. Organic alkynes (poly-ynes), with extended or conjugatedπ-systems and rigid structure with linear geometry, have become a significant research area due to their novel electronic and physical properties and their potential applications in nanotechnology. Owing to the presence of unsaturated sp-hybridized carbon atoms, the alkynyl unit can serve as a versatile building block in the construction of alkynyl transition-metal complexes, not only throughσ-bonding but also viaπ-bonding interactions. By incorporation of linear alkynyl groups into luminescent transition-metal complexes, the alkynyl moiety with goodσ-donor,π-donor andπ-acceptor abilities is envisaged to tune or perturb the emission behaviors, including emission energy (color), intensity and lifetime by its role as an auxiliary ligand as well as to govern the emission origin from its direct involvement. This review summarizes recent efforts on the synthesis of luminescent rod-like alkynyl complexes with different classes of transition metals and details the effects of the introduction of alkynyl groups on the luminescence properties of the complexes. PMID:22179333

  11. Stable singlet carbenes as mimics for transition metal centers

    PubMed Central

    Martin, David; Soleilhavoup, Michele

    2011-01-01

    This perspective summarizes recent results, which demonstrate that stable carbenes can activate small molecules (CO, H2, NH3 and P4) and stabilize highly reactive intermediates (main group elements in the zero oxidation state and paramagnetic species). These two tasks were previously exclusive for transition metal complexes. PMID:21743834

  12. Relation Between Higher Physical Activity and Public Transit Use

    PubMed Central

    Vernez Moudon, Anne; Kang, Bumjoon; Hurvitz, Philip M.; Zhou, Chuan

    2014-01-01

    Objectives. We isolated physical activity attributable to transit use to examine issues of substitution between types of physical activity and potential confounding of transit-related walking with other walking. Methods. Physical activity and transit use data were collected in 2008 to 2009 from 693 Travel Assessment and Community study participants from King County, Washington, equipped with an accelerometer, a portable Global Positioning System, and a 7-day travel log. Physical activity was classified into transit- and non–transit-related walking and nonwalking time. Analyses compared physical activity by type between transit users and nonusers, between less and more frequent transit users, and between transit and nontransit days for transit users. Results. Transit users had more daily overall physical activity and more total walking than did nontransit users but did not differ on either non–transit-related walking or nonwalking physical activity. Most frequent transit users had more walking time than least frequent transit users. Higher physical activity levels for transit users were observed only on transit days, with 14.6 minutes (12.4 minutes when adjusted for demographics) of daily physical activity directly linked with transit use. Conclusions. Because transit use was directly related to higher physical activity, future research should examine whether substantive increases in transit access and use lead to more physical activity and related health improvements. PMID:24625142

  13. Pressure-induced phase transitions and metallization in VO2

    NASA Astrophysics Data System (ADS)

    Bai, Ligang; Li, Quan; Corr, Serena A.; Meng, Yue; Park, Changyong; Sinogeikin, Stanislav V.; Ko, Changhyun; Wu, Junqiao; Shen, Guoyin

    2015-03-01

    We report the results of pressure-induced phase transitions and metallization in VO2 based on synchrotron x-ray diffraction, electrical resistivity, and Raman spectroscopy. Our isothermal compression experiments at room temperature and 383 K show that the room temperature monoclinic phase (M 1 ,P 21/c ) and the high-temperature rutile phase (R ,P 42/m n m ) of VO2 undergo phase transitions to a distorted M 1 monoclinic phase (M 1' ,P 21/c ) above 13.0 GPa and to an orthorhombic phase (CaCl2-like, P n n m ) above 13.7 GPa, respectively. Upon further compression, both high-pressure phases transform into a new phase (phase X ) above 34.3 and 38.3 GPa at room temperature and 383 K, respectively. The room temperature M 1 -M 1' phase transition structurally resembles the R -CaCl2 phase transition at 383 K, suggesting a second-order displacive type of transition. Contrary to previous studies, our electrical resistivity results, Raman measurements, as well as ab initio calculations indicate that the new phase X , rather than the M 1' phase, is responsible for the metallization under pressure. The metallization mechanism is discussed based on the proposed crystal structure.

  14. Spin induced ferroelectric-like structural transition in a metal

    NASA Astrophysics Data System (ADS)

    Guo, Yanfeng; Feng, Hai; Andrew, Princep; Manuel, Pascal; Yamaura, Kazunari; Andrew, Boothroyd

    2015-03-01

    LiOsO3 represents a previously only known example of ``ferroelectric metal,'' a concept presented by Anderson and Blount in 1965, with the properties being promoted by electron lattice coupling involving Li+ ions displacement in the crystal structure [Y. Shi et al., Nat. Mater. 12, 1024(2013)]. We report that in Pb2CoOsO6, a new ordered double-perovskite with a centrosymmetric monoclinic space group of P21/n, a ferroelectric-like structural transition occurs at ~ 38 K in the metallic state, i.e. a continuous second order transition to a noncentrosymmetric structure (space group: P1) associated by appearance of a nominal unique polar axis along the c-axis. The phase transition is coincident with a magnetic transition at the same temperature which corresponds to a long-range antiferromagnetic order. The magnetic structure analysis and theoretical calculations prove that the antiferromagnetic ordering is the driven force for the structural transition in Pb2CoOsO6 and it represents the first double-perovskite ``ferroelectric metal'' involving a magnetic ordering. United Kingdom Engineering and Physical Sciences Research Council (EPSRC).

  15. Separability Between Valence and Conduction Bands in Transition Metal Clusters

    SciTech Connect

    Apra, Edoardo; Carter, Emily A.; Fortunelli, Alessandro

    2004-07-30

    Simplified theories of transition metal electronic structure have been postulated for many decades. Here we test one such approximation, namely separate treatments of d (valence) and s/p (conduction) electrons in transition metal clusters, within a density functional formalism. Two different basic approaches are considered: (a) an independent-band approximation, in which the d- and s/p-bands interact only via the ?-dependent components of the Kohn-Sham operator; and (b) a more realistic approximation, in which the lowest-energy d- and s/p-orbitals (separately derived) are allowed to interact through explicit off-diagonal coupling matrix elements. Results are presented for the energy differences among three structural forms (icosahedral, cuboctahedral and truncated decahedral) of 13-atom Ni and Pt clusters. We demonstrate that an explicit decoupling of the d- and s/p-bands does not produce accurate results for the clusters considered here, not even for nickel, i.e., the transition metal for which d-s/p mixing should be at its minimum. By contrast, allowing the lowest energy orbitals of the two separate bands to interact improves the results considerably, and assures a fair description of metal-metal bonding. This suggests simplified models that exclude explicit d-s/p coupling should be employed with caution.

  16. Preparation of nanoporous metal foam from high nitrogen transition metal complexes

    DOEpatents

    Tappan, Bryce C.; Huynh, My Hang V.; Hiskey, Michael A.; Son, Steven F.; Oschwald, David M.; Chavez, David E.; Naud, Darren L.

    2006-11-28

    Nanoporous metal foams are prepared by ignition of high nitrogen transition metal complexes. The ammonium salts of iron(III) tris[bi(tetrazolato)-amine], cobalt(III) tris(bi(tetrazolato)amine), and high nitrogen compounds of copper and silver were prepared as loose powders, pressed into pellets and wafers, and ignited under an inert atmosphere to form nanoporous metal foam monoliths having very high surface area and very low density.

  17. Mechanical failure and glass transition in metallic glasses

    SciTech Connect

    Egami, Takeshi

    2011-01-01

    The current majority view on the phenomenon of mechanical failure in metallic glasses appears to be that it is caused by the activity of some structural defects, such as free-volumes or shear transformation zones, and the concentration of such defects is small, only of the order of 1%. However, the recent results compel us to revise this view. Through molecular dynamics simulation it has been shown that mechanical failure is the stress-induced glass transition. According to our theory the concentration of the liquid-like sites (defects) is well over 20% at the glass transition. We suggest that the defect concentration in metallic glasses is actually very high, and percolation of such defects causes atomic avalanche and mechanical failure. In this article we discuss the glass transition, mechanical failure and viscosity from such a point of view.

  18. Transition Metal Nitrides for Electrocatalytic Energy Conversion: Opportunities and Challenges.

    PubMed

    Xie, Junfeng; Xie, Yi

    2016-03-01

    Electrocatalytic energy conversion has been considered as one of the most efficient and promising pathways for realizing energy storage and energy utilization in modern society. To improve electrocatalytic reactions, specific catalysts are needed to lower the overpotential. In the search for efficient alternatives to noble metal catalysts, transition metal nitrides have attracted considerable interest due to their high catalytic activity and unique electronic structure. Over the past few decades, numerous nitride-based catalysts have been explored with respect to their ability to drive various electrocatalytic reactions, such as the hydrogen evolution reaction and the oxygen evolution reaction to achieve water splitting and the oxygen reduction reaction coupled with the methanol oxidation reaction to construct fuel cells or rechargeable Li-O2 batteries. This Minireview provides a brief overview of recent progress on electrocatalysts based on transition metal nitrides, and outlines the current challenges and future opportunities. PMID:26494184

  19. Metal-insulator transition in films of doped semiconductor nanocrystals.

    PubMed

    Chen, Ting; Reich, K V; Kramer, Nicolaas J; Fu, Han; Kortshagen, Uwe R; Shklovskii, B I

    2016-03-01

    To fully deploy the potential of semiconductor nanocrystal films as low-cost electronic materials, a better understanding of the amount of dopants required to make their conductivity metallic is needed. In bulk semiconductors, the critical concentration of electrons at the metal-insulator transition is described by the Mott criterion. Here, we theoretically derive the critical concentration nc for films of heavily doped nanocrystals devoid of ligands at their surface and in direct contact with each other. In the accompanying experiments, we investigate the conduction mechanism in films of phosphorus-doped, ligand-free silicon nanocrystals. At the largest electron concentration achieved in our samples, which is half the predicted nc, we find that the localization length of hopping electrons is close to three times the nanocrystals diameter, indicating that the film approaches the metal-insulator transition. PMID:26618885

  20. Metal-insulator transition in films of doped semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Reich, K. V.; Kramer, Nicolaas J.; Fu, Han; Kortshagen, Uwe R.; Shklovskii, B. I.

    2016-03-01

    To fully deploy the potential of semiconductor nanocrystal films as low-cost electronic materials, a better understanding of the amount of dopants required to make their conductivity metallic is needed. In bulk semiconductors, the critical concentration of electrons at the metal-insulator transition is described by the Mott criterion. Here, we theoretically derive the critical concentration nc for films of heavily doped nanocrystals devoid of ligands at their surface and in direct contact with each other. In the accompanying experiments, we investigate the conduction mechanism in films of phosphorus-doped, ligand-free silicon nanocrystals. At the largest electron concentration achieved in our samples, which is half the predicted nc, we find that the localization length of hopping electrons is close to three times the nanocrystals diameter, indicating that the film approaches the metal-insulator transition.

  1. The transition to the metallic state in low density hydrogen

    SciTech Connect

    McMinis, Jeremy; Morales, Miguel A.; Ceperley, David M.; Kim, Jeongnim

    2015-11-21

    Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work, we use diffusion quantum Monte Carlo to benchmark the transition between paramagnetic and anti-ferromagnetic body centered cubic atomic hydrogen in its ground state. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transition order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of r{sub s} = 2.27(3) a{sub 0}. We compare our results to previously reported density functional theory, Hedin’s GW approximation, and dynamical mean field theory results.

  2. The transition to the metallic state in low density hydrogen

    SciTech Connect

    McMinis, Jeremy; Morales, Miguel A.; Ceperley, David M.; Kim, Jeongnim

    2015-11-18

    Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work we use diffusion quantum Monte Carlo to benchmark the transition between the paramagnetic and anti-ferromagnetic phases of ground state body centered cubic atomic hydrogen. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transition order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of rs = 2.27(3)a0. As a result, we compare our results to previously reported density functional theory, Hedin s GW approximation, and dynamical mean field theory results.

  3. Homogeneous Catalysis by Transition Metal Compounds.

    ERIC Educational Resources Information Center

    Mawby, Roger

    1988-01-01

    Examines four processes involving homogeneous catalysis which highlight the contrast between the simplicity of the overall reaction and the complexity of the catalytic cycle. Describes how catalysts provide circuitous routes in which all energy barriers are relatively low rather than lowering the activation energy for a single step reaction.…

  4. Strain Engineering for Transition Metal Dichalcogenides Based Field Effect Transistors.

    PubMed

    Shen, Tingting; Penumatcha, Ashish V; Appenzeller, Joerg

    2016-04-26

    Using electrical characteristics from three-terminal field-effect transistors (FETs), we demonstrate substantial strain induced band gap tunability in transition metal dichalcogenides (TMDs) in line with theoretical predictions and optical experiments. Devices were fabricated on flexible substrates, and a cantilever sample holder was used to apply uniaxial tensile strain to the various multilayer TMD FETs. Analyzing in particular transfer characteristics, we argue that the modified device characteristics under strain are clear evidence of a band gap reduction of 100 meV in WSe2 under 1.35% uniaxial tensile strain at room temperature. Furthermore, the obtained device characteristics imply that the band gap does not shrink uniformly under strain relative to a reference potential defined by the source/drain contacts. Instead, the band gap change is only related to a change of the conduction band edge of WSe2, resulting in a decrease in the Schottky barrier (SB) for electrons without any change for hole injection into the valence band. Simulations of SB device characteristics are employed to explain this point and to quantify our findings. Last, our experimental results are compared with DFT calculations under strain showing excellent agreement between theoretical predictions and the experimental data presented here. PMID:27043387

  5. Formation of carbyne and graphyne on transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Yuan, Qinghong; Ding, Feng

    2014-10-01

    The electronic and geometric structures of carbyne on various transition metal surfaces were investigated by theoretical calculations. It was found that carbyne on non-active metal surfaces has a polyynic structure, while a polycumulenic structure is more stable on active catalyst surfaces. The self-assembly of carbyne on a metal substrate could lead to the synthesis of graphyne.The electronic and geometric structures of carbyne on various transition metal surfaces were investigated by theoretical calculations. It was found that carbyne on non-active metal surfaces has a polyynic structure, while a polycumulenic structure is more stable on active catalyst surfaces. The self-assembly of carbyne on a metal substrate could lead to the synthesis of graphyne. Electronic supplementary information (ESI) available: Computational details and structural information of carbon chains on Ni(111) and Rh(111) surfaces, carbon island on Cu(111), Ni(111), Rh(111) and Ru(0001) surfaces. See DOI: 10.1039/c4nr03757j

  6. Transition Metal d-Orbital Splitting Diagrams: An Updated Educational Resource for Square Planar Transition Metal Complexes

    ERIC Educational Resources Information Center

    Bo¨rgel, Jonas; Campbell, Michael G.; Ritter, Tobias

    2016-01-01

    The presentation of d-orbital splitting diagrams for square planar transition metal complexes in textbooks and educational materials is often inconsistent and therefore confusing for students. Here we provide a concise summary of the key features of orbital splitting diagrams for square planar complexes, which we propose may be used as an updated…

  7. First-principles calculation of the structural stability of 6d transition metals

    SciTech Connect

    Oestlin, A.; Vitos, L.

    2011-09-15

    The phase stability of the 6d transition metals (elements 103-111) is investigated using first-principles electronic-structure calculations. Comparison with the lighter transition metals reveals that the structural sequence trend is broken at the end of the 6d series. To account for this anomalous behavior, the effect of relativity on the lattice stability is scrutinized, taking different approximations into consideration. It is found that the mass-velocity and Darwin terms give important contributions to the electronic structure, leading to changes in the interstitial charge density and, thus, in the structural energy difference.

  8. Synthesis of organosiloxy: Transition metal polymers

    NASA Technical Reports Server (NTRS)

    Marano, G. A.

    1974-01-01

    The new compound, Mo(OSiPH3)4 (where Ph is C6H5) was synthesized. An overall chemical reaction which accounts for the observed products is given by the redox approach. Results indicate that Mo(OSiPH3)4 is thermally stable up to 230 C and relatively unreactive toward most common acids and bases even at elevated temperatures. Its behavior is not unlike that of Ti(OSiPH3)4.

  9. Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers.

    PubMed

    Li, Wenbin; Li, Ju

    2016-01-01

    Monolayers of transition metal dichalcogenides can exist in several structural polymorphs, including 2H, 1T and 1T'. The low-symmetry 1T' phase has three orientation variants, resulting from the three equivalent directions of Peierls distortion in the parental 1T phase. Using first-principles calculations, we predict that mechanical strain can switch the relative thermodynamic stability between the orientation variants of the 1T' phase. We find that such strain-induced variant switching only requires a few percent elastic strain, which is eminently achievable experimentally with transition metal dichalcogenide monolayers. Calculations indicate that the transformation barrier associated with such variant switching is small (<0.2 eV per chemical formula unit), suggesting that strain-induced variant switching can happen under laboratory conditions. Monolayers of transition metal dichalcogenides with 1T' structure therefore have the potential to be ferroelastic and shape memory materials with interesting domain physics. PMID:26906152

  10. Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers

    PubMed Central

    Li, Wenbin; Li, Ju

    2016-01-01

    Monolayers of transition metal dichalcogenides can exist in several structural polymorphs, including 2H, 1T and 1T′. The low-symmetry 1T′ phase has three orientation variants, resulting from the three equivalent directions of Peierls distortion in the parental 1T phase. Using first-principles calculations, we predict that mechanical strain can switch the relative thermodynamic stability between the orientation variants of the 1T′ phase. We find that such strain-induced variant switching only requires a few percent elastic strain, which is eminently achievable experimentally with transition metal dichalcogenide monolayers. Calculations indicate that the transformation barrier associated with such variant switching is small (<0.2 eV per chemical formula unit), suggesting that strain-induced variant switching can happen under laboratory conditions. Monolayers of transition metal dichalcogenides with 1T′ structure therefore have the potential to be ferroelastic and shape memory materials with interesting domain physics. PMID:26906152

  11. Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers

    DOE PAGESBeta

    Li, Wenbin; Li, Ju

    2016-02-24

    Monolayers of transition metal dichalcogenides can exist in several structural polymorphs, including 2H, 1T and 1T'. The low-symmetry 1T' phase has three orientation variants, resulting from the three equivalent directions of Peierls distortion in the parental 1T phase. Using first-principles calculations, we predict that mechanical strain can switch the relative thermodynamic stability between the orientation variants of the 1T' phase. We find that such strain-induced variant switching only requires a few percent elastic strain, which is eminently achievable experimentally with transition metal dichalcogenide monolayers. Calculations indicate that the transformation barrier associated with such variant switching is small (<0.2 eV permore » chemical formula unit), suggesting that strain-induced variant switching can happen under laboratory conditions. Furthermore, monolayers of transition metal dichalcogenides with 1T' structure therefore have the potential to be ferroelastic and shape memory materials with interesting domain physics.« less

  12. 2D crystals of transition metal dichalcogenide and their iontronic functionalities

    NASA Astrophysics Data System (ADS)

    Zhang, Y. J.; Yoshida, M.; Suzuki, R.; Iwasa, Y.

    2015-12-01

    2D crystals based on transition metal dichalcogenides (TMDs) provide a unique platform of novel physical properties and functionalities, including photoluminescence, laser, valleytronics, spintronics, piezoelectric devices, field effect transistors (FETs), and superconductivity. Among them, FET devices are extremely useful because of voltage-tunable carrier density and Fermi energy. In particular, high density charge accumulation in electric double layer transistor (EDLT), which is a FET device driven by ionic motions, is playing key roles for expanding the functionalities of TMD based 2D crystals. Here, we report several device concepts which were realized by introducing EDLTs in TMDs, taking the advantage of their extremely unique band structures and phase transition phenomena realized simply by thinning to the monolayer level. We address two kinds of TMDs based on group VI and group V transition metals, which basically yield semiconductors and metals, respectively. For each system, we first introduce peculiar characteristics of TMDs achieved by thinning the crystals, followed by the related FET functionalities.

  13. Buckley Prize Talk: The Suprerconductor-(Metal)-Insulator Transition

    NASA Astrophysics Data System (ADS)

    Kapitulnik, Aharon

    2015-03-01

    While the classical theory of phase transitions has been extraordinarily successful, there are several reasons to exercise caution when applying this approach to the zero temperature superconducting transition. First, experimental identification of the relevant phases requires extrapolation to zero temperature, which becomes complicated, especially when one needs to identify sources of dissipation. In addition, since superconductivity may be highly inhomogeneous as appreciable superconducting order parameter may be concentrated in ``superconducting puddles'' due to disorder and/or spontaneous phase separation, the nature of the quantum phase transition to a superconducting state may be highly anomalous, where the system attempts to optimizes the formation of puddles with the Josephson coupling among them to obtain global superconductivity. In this talk we will review some of the consequences of these considerations, emphasizing the possible emergence of anomalous metallic phases close to the superconductor-insulator transition.

  14. X-ray induced insulator-metal transitions in CMR manganites

    SciTech Connect

    Kiryukhin, V.; Casa, D.; Keimer, B.; Hill, J.P.; Vigliante, A.; Tomioka, Y.; Tokura, Y. |

    1997-12-01

    In this work the authors report a study of the photoinduced insulator-to-metal transition in manganese oxide perovskites of the formula Pr{sub 1{minus}x}Ca{sub x}MnO{sub 3}. The transition is closely related to the magnetic field induced insulator-to-metal transition (CMR effect) observed in these materials. It is accompanied by a dramatic change in the magnetic properties and lattice structure: the material changes from an insulating charge-ordered canted antiferromagnet to a ferromagnetic metal. The authors present an investigation of the transport and structural properties of these materials over the course of the transition (which usually takes about an hour to complete). The current-voltage characteristics exhibited by the material during the transition are highly nonlinear, indicating a large inhomogeneity of the transitional state. Possible practical applications of this novel type of transition are briefly discussed. They also report a high resolution X-ray diffraction study of the charge ordering in these materials. The temperature dependent charge ordering structure observed in these compounds is more complex than previously reported.

  15. Molecular orbital analysis of dicarbido-transition-metal cluster compounds

    SciTech Connect

    Halet, J.; Mingos, D.M.P.

    1988-01-01

    Molecular orbital calculations on dicarbido-transition-metal carbonyl cluster compounds have shown that the bonding between C/sub 2/ and the metal cage results primarily from electron donation from the C/sub 2/ sigma/sub rho/- and ..pi..-bonding molecular orbitals and back donation from filled metallic molecular orbitals to the C/sub 2/ ..pi..* orbitals. The bonding therefore follows closely the Chatt-Dewar-Ducanson model that has been established previously for ethyne and ethene complexes but not for interstitial moieties. The C-C separation in the dicarbido clusters depends critically on the geometric constraints imposed by the metal cage and the extent of forward and back donation. In these clusters where the carbon atoms are in adjacent trigonal-prismatic sites the calculated formal bond order is between 1.0 and 1.5, which agrees well with the observed C-C bond lengths.

  16. Transition Metal Transport in Plants and Associated Endosymbionts: Arbuscular Mycorrhizal Fungi and Rhizobia.

    PubMed

    González-Guerrero, Manuel; Escudero, Viviana; Saéz, Ángela; Tejada-Jiménez, Manuel

    2016-01-01

    Transition metals such as iron, copper, zinc, or molybdenum are essential nutrients for plants. These elements are involved in almost every biological process, including photosynthesis, tolerance to biotic and abiotic stress, or symbiotic nitrogen fixation. However, plants often grow in soils with limiting metallic oligonutrient bioavailability. Consequently, to ensure the proper metal levels, plants have developed a complex metal uptake and distribution system, that not only involves the plant itself, but also its associated microorganisms. These microorganisms can simply increase metal solubility in soils and making them more accessible to the host plant, as well as induce the plant metal deficiency response, or directly deliver transition elements to cortical cells. Other, instead of providing metals, can act as metal sinks, such as endosymbiotic rhizobia in legume nodules that requires relatively large amounts to carry out nitrogen fixation. In this review, we propose to do an overview of metal transport mechanisms in the plant-microbe system, emphasizing the role of arbuscular mycorrhizal fungi and endosymbiotic rhizobia. PMID:27524990

  17. Transition Metal Transport in Plants and Associated Endosymbionts: Arbuscular Mycorrhizal Fungi and Rhizobia

    PubMed Central

    González-Guerrero, Manuel; Escudero, Viviana; Saéz, Ángela; Tejada-Jiménez, Manuel

    2016-01-01

    Transition metals such as iron, copper, zinc, or molybdenum are essential nutrients for plants. These elements are involved in almost every biological process, including photosynthesis, tolerance to biotic and abiotic stress, or symbiotic nitrogen fixation. However, plants often grow in soils with limiting metallic oligonutrient bioavailability. Consequently, to ensure the proper metal levels, plants have developed a complex metal uptake and distribution system, that not only involves the plant itself, but also its associated microorganisms. These microorganisms can simply increase metal solubility in soils and making them more accessible to the host plant, as well as induce the plant metal deficiency response, or directly deliver transition elements to cortical cells. Other, instead of providing metals, can act as metal sinks, such as endosymbiotic rhizobia in legume nodules that requires relatively large amounts to carry out nitrogen fixation. In this review, we propose to do an overview of metal transport mechanisms in the plant–microbe system, emphasizing the role of arbuscular mycorrhizal fungi and endosymbiotic rhizobia. PMID:27524990

  18. Synchrotron radiation studies of local structure and bonding in transition metal aluminides and rare earth transition metal magnetic nitrides. Final report, August 1, 1990--July 14, 1993

    SciTech Connect

    Budnick, J.I.; Pease, D.M.

    1995-05-01

    The following areas of study are reported on: bonding and near neighbor force constants in NiAl, CoAl, FeAl via temperature dependent EXAFS; alloys formed when Fe or Ga is microalloyed into a NiAl matrix; EXAFS studies of nitrided versus non nitrided Y{sub 2}Fe{sub 17}; and transition metal x-ray spectra as related to magnetic moments.

  19. The transition to the metallic state in low density hydrogen

    DOE PAGESBeta

    McMinis, Jeremy; Morales, Miguel A.; Ceperley, David M.; Kim, Jeongnim

    2015-11-18

    Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work we use diffusion quantum Monte Carlo to benchmark the transition between the paramagnetic and anti-ferromagnetic phases of ground state body centered cubic atomic hydrogen. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transitionmore » order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of rs = 2.27(3)a0. As a result, we compare our results to previously reported density functional theory, Hedin s GW approximation, and dynamical mean field theory results.« less

  20. Adhesion and friction of transition metals in contact with nonmetallic hard materials

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    Sliding friction experiments were conducted with the metals yttrium, titanium, tantalum, zirconium, vanadium, neodymium, iron, cobalt, nickel, tungsten, platinum, rhenium, ruthenium, and rhodium in sliding contact with single crystal diamond, silicon carbide, pyrolytic boron nitride, and ferrite. Auger electron spectroscopy analysis was conducted with the metals and nonmetals to determine the surface chemistry and the degree of surface cleanliness. The results of the investigation indicate the adhesion and friction of the transition metals in contact with diamond, silicon carbide, boron nitride, and ferrite are related to the relative chemical activity of the metals. The more chemically active the metal, the higher the coefficient of friction and the greater amount of transfer to the nonmetals.

  1. Universal binding energy relations in metallic adhesion

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. H.

    1981-01-01

    Scaling relations which map metallic adhesive binding energy onto a single universal binding energy curve are discussed in relation to adhesion, friction, and wear in metals. The scaling involved normalizing the energy to the maximum binding energy and normalizing distances by a suitable combination of Thomas-Fermi screening lengths. The universal curve was found to be accurately represented by E*(A*)= -(1+beta A) exp (-Beta A*) where E* is the normalized binding energy, A* is the normalized separation, and beta is the normalized decay constant. The calculated cohesive energies of potassium, barium, copper, molybdenum, and samarium were also found to scale by similar relations, suggesting that the universal relation may be more general than for the simple free electron metals.

  2. Extraction of exchange parameters in transition-metal perovskites

    SciTech Connect

    Furrer, A.; Podlesnyak, A.; Krämer, K. W.

    2015-09-15

    When extracting exchange parameters from measured spin-wave dispersion relations there are severe limitations particularly for magnetic compounds such as the transition-metal perovskites, where the nearest-neighbor exchange parameter usually dominates the couplings between the further-distant-neighbor spins. Very precise exchange parameters beyond the nearest-neighbor spins can be obtained by neutron spectroscopic investigations of the magnetic excitation spectra of isolated multimers in magnetically diluted compounds. Moreover, this is exemplified for manganese trimers in the mixed three-and two-dimensional perovskite compounds KMnxZn1-xF3 and K2MnxZn1-xF4, respectively. We show that the small exchange couplings between the second-nearest-neighbor and the third-nearest-neighbor spins can be determined unambiguously and with equal precision as the dominating nearest-neighbor exchange coupling.

  3. RKKY interaction in transition-metal dichalcogenide nanoflakes

    NASA Astrophysics Data System (ADS)

    Avalos-Ovando, Oscar; Mastrogiuseppe, Diego; Ulloa, Sergio

    2015-03-01

    Transition metal dichalcogenides (TMDs) are layered crystals with unique electronic and optical properties, and are promising candidates for a new generation of semiconductor-based devices, mainly when exfoliated to one or a few layers. The process of exfoliation often produces nanoscale samples -flakes- with different shapes and boundaries. These flakes might have applications as quantum dots with novel characteristics. One interesting topic relates to the presence of magnetic impurities and their interaction. In combination with strong spin-orbit coupling and valley degrees of freedom, TMDs might have a great impact in the field of spintronics. Using an effective low-energy two-orbital tight-binding model, we study the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between two magnetic impurities in 2D TMD nanoflakes. We consider different geometries and terminations, analyzing the effect of the sample size. Our results show the behavior of the interaction for impurities sitting at different positions in the flake, and its possible tunability with the electron/hole concentration. The magnetic impurities can be intrinsic to the sample production process or can be introduced extrinsically. Our results can be tested with local probes, such as spin-polarized STM. Supported by NSF DMR MWN/CIAM.

  4. Cross-linking proteins with bimetallic tetracarboxylate compounds of transition metals

    DOEpatents

    Kostic, N.M.; Chen, J.

    1991-03-05

    Stable cross-linked complexes of transition-metal tetracarboxylates and proteins are formed. The preferred transition-metal is rhodium. The protein may be collagen or an enzyme such as a proteolytic enzyme. No Drawings

  5. Cross-linking proteins with bimetallic tetracarboxylate compounds of transition metals

    DOEpatents

    Kostic, Nenad M.; Chen, Jian

    1991-03-05

    Stable cross-linked complexes of transition-metal tetracarboxylates and proteins are formed. The preferred transition-metal is rhodium. The protein may be collagen or an enzyme such as a proteolytic enzyme.

  6. An Alternative Approach to the Teaching of Systematic Transition Metal Chemistry.

    ERIC Educational Resources Information Center

    Hathaway, Brian

    1979-01-01

    Presents an alternative approach to teaching Systematic Transition Metal Chemistry with the transition metal chemistry skeleton features of interest. The "skeleton" is intended as a guide to predicting the chemistry of a selected compound. (Author/SA)

  7. Transition Metal Configurations and Limitations of the Orbital Approximation.

    ERIC Educational Resources Information Center

    Scerri, Eric R.

    1989-01-01

    Points out a misconception that is reinforced in many elementary and advanced chemistry texts. Discusses the general limitations of the orbital concept. Notes misconceptions related to the transition elements and their first ionization energies. (MVL)

  8. Resonant Ultrasound Studies of Complex Transition Metal Oxides

    SciTech Connect

    Dr. Henry Bass; Dr. J. R. Gladden

    2008-08-18

    Department of Energy EPSCoR The University of Mississippi Award: DE-FG02-04ER46121 Resonant Ultrasound Spectroscopy Studies of Complex Transition Metal Oxides The central thrust of this DOE funded research program has been to apply resonant ultrasound spectroscopy (RUS), an elegant and efficient method for determining the elastic stiffness constants of a crystal, to the complex and poorly understood class of materials known as transition metal oxides (TMOs). Perhaps the most interesting and challenging feature of TMOs is their strongly correlated behavior in which spin, lattice, and charge degrees of freedom are strongly coupled. Elastic constants are a measure of the interatomic potentials in a crystal and are thus sensitive probes into the atomic environment. This sensitivity makes RUS an ideal tool to study the coupling of phase transition order parameters to lattice strains. The most significant result of the project has been the construction of a high temperature RUS apparatus capable of making elastic constant measurements at temperatures as high as 1000 degrees Celsius. We have designed and built novel acoustic transducers which can operate as high as 600 degrees Celsius based on lithium niobate piezoelectric elements. For measurement between 600 to 1000 C, a buffer rod system is used in which the samples under test and transducers are separated by a rod with low acoustic attenuation. The high temperature RUS system has been used to study the charge order (CO) transition in transition metal oxides for which we have discovered a new transition occurring about 35 C below the CO transition. While the CO transition exhibits a linear coupling between the strain and order parameter, this new precursor transition shows a different coupling indicating a fundamentally different mechanism. We have also begun a study, in collaboration with the Jet Propulsion Laboratory, to study novel thermoelectric materials at elevated temperatures. These materials include silicon

  9. Controlled incorporation of mid-to-high Z transition metals in CVD diamond

    SciTech Connect

    Biener, M M; Biener, J; Kucheyev, S O; Wang, Y M; El-Dasher, B; Teslich, N E; Hamza, A V; Obloh, H; Mueller-Sebert, W; Wolfer, M; Fuchs, T; Grimm, M; Kriele, A; Wild, C

    2010-01-08

    We report on a general method to fabricate transition metal related defects in diamond. Controlled incorporation of Mo and W in synthetic CVD diamond was achieved by adding volatile metal precursors to the diamond chemical vapor deposition (CVD) growth process. Effects of deposition temperature, grain structure and precursor exposure on the doping level were systematically studied, and doping levels of up to 0.25 at.% have been achieved. The metal atoms are uniformly distributed throughout the diamond grains without any indication of inclusion formation. These results are discussed in context of the kinetically controlled growth process of CVD diamond.

  10. Metallic compounds of scandium-tellurium and related systems

    NASA Astrophysics Data System (ADS)

    Maggard, Paul Anthony, Jr.

    2000-10-01

    Research contributions from our group have evinced significant progress in the solid-state chemistry of the rare-earth metal halides. This thesis presents results of the first extension of this progress into the scandium-tellurium and related ternary systems. The first evidence for the existence of metal-rich compounds in this system was the synthesis of Sc2Te. The internal metal-bonded features of the structure are double quasi-infinite chains of trans-edge-sharing metal octahedra, further augmented on each end by square-pyramids down the chain. These scandium chains have a blade-like shape and are spaced apart by tellurium atoms and a scandium zigzag chain. A second metal-rich compound was uncovered in Sc8Te3. Chains of trans-edge-sharing octahedra are again featured in much of the metal framework, but condensed into 2D sheets. In the Y8Te3 analog there is apparent disorder on some of the internal metal positions within the chains. The metal-richest compound synthesized in the scandium-tellurium system was Sc9Te 2. A higher degree of metal aggregation forms in four trans-edge-sharing metal octahedra chains condensed into 3 x 3 blocks, and linked together to form much thicker 2D sheets compared to Sc8Te3. Interesting distortions were analyzed with relationship to higher symmetry structures. The insertion of later transition metals into the earlier transition-metal framework results in the formation of the compounds Sc5Ni 2Te2, Sc6MTe2 (M = Mn, Fe, Co, Ni), Y5M2Te2 (M = Fe, Co, Ni) and the corresponding hydride, Y5Ni2TeH0.41(1). These compounds contain diverse sheet and columnar metal frameworks. Structural interrelationships among the many known ternary compounds are analyzed. The reaction of small amounts of aluminum into the scandium-tellurium systems revealed new substitution chemistry. The systems Sc5BxB' 3-x (B = Al or Ga; B' = Sn, Sb or Te) contained varied amounts of the triel elements (B) substituted on the same sites for either the tetrel, pnictide or

  11. Novel photoinduced phase transitions in transition metal oxides and diluted magnetic semiconductors

    PubMed Central

    2012-01-01

    Some transition metal oxides have frustrated electronic states under multiphase competition due to strongly correlated d electrons with spin, charge, and orbital degrees of freedom and exhibit drastic responses to external stimuli such as optical excitation. Here, we present photoemission studies on Pr0.55(Ca1 − ySry)0.45MnO3 (y = 0.25), SrTiO3, and Ti1 − xCoxO2 (x = 0.05, 0.10) under laser illumination and discuss electronic structural changes induced by optical excitation in these strongly correlated oxides. We discuss the novel photoinduced phase transitions in these transition metal oxides and diluted magnetic semiconductors on the basis of polaronic pictures such as orbital, ferromagnetic, and ferroelectric polarons. PMID:23092248

  12. Engineering skyrmions in transition-metal multilayers for spintronics

    NASA Astrophysics Data System (ADS)

    Dupé, B.; Bihlmayer, G.; Böttcher, M.; Blügel, S.; Heinze, S.

    2016-06-01

    Magnetic skyrmions are localized, topologically protected spin structures that have been proposed for storing or processing information due to their intriguing dynamical and transport properties. Important in terms of applications is the recent discovery of interface stabilized skyrmions as evidenced in ultra-thin transition-metal films. However, so far only skyrmions at interfaces with a single atomic layer of a magnetic material were reported, which greatly limits their potential for application in devices. Here we predict the emergence of skyrmions in [4d/Fe2/5d]n multilayers, that is, structures composed of Fe biatomic layers sandwiched between 4d and 5d transition-metal layers. In these composite structures, the exchange and the Dzyaloshinskii-Moriya interactions that control skyrmion formation can be tuned separately by the two interfaces. This allows engineering skyrmions as shown based on density functional theory and spin dynamics simulations.

  13. Dynamics and Control in Complex Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Averitt, R. D.

    2014-07-01

    Advances in the synthesis, growth, and characterization of complex transition metal oxides coupled with new experimental techniques in ultrafast optical spectroscopy have ushered in an exciting era of dynamics and control in these materials. Experiments utilizing femtosecond optical pulses can initiate and probe dynamics of the spin, lattice, orbital, and charge degrees of freedom. Major goals include (a) determining how interaction and competition between the relevant degrees of freedom determine macroscopic functionality in transition metal oxides (TMOs) and (b) searching for hidden phases in TMOs by controlling dynamic trajectories in a complex and pliable energy landscape. Advances in creating intense pulses from the far-IR spectrum through the visible spectrum enable mode-selective excitation to facilitate exploration of these possibilities. This review covers recent developments in this emerging field and presents examples that include the cuprates, manganites, and vanadates.

  14. Wetting Transitions of Inert Gases on Alkali Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Bojan, M. J.; McDonald, I. A.; Cole, M. W.; Steele, W. A.

    1996-03-01

    Theoretical and experimental discoveries have been made recently of wetting and prewetting transitions of helium and hydrogen films on alkali metal surfaces [1,2]. New experiments show anomalous nonwetting behavior of Ne on Rb and Cs [3]. Building on earlier work [4], we have done and will describe results from the first Monte Carlo simulations showing wetting transitions for classical gases on alkali metal surfaces. * Research supported by an NSF Materials Research Group grant. 1. R. B.Hallock, J. Low Temp. Phys. 101, 31, 1995 2. M. W. Cole, J. Low Temp. Phys. 101, 25, 1995. 3. G. B. Hess, M. Sabatini, and M. H. W. Chan, unpublished 4. J. E. Finn and P. A. Monson, Phys. Rev. A 39, 6402, 1989.

  15. Engineering skyrmions in transition-metal multilayers for spintronics.

    PubMed

    Dupé, B; Bihlmayer, G; Böttcher, M; Blügel, S; Heinze, S

    2016-01-01

    Magnetic skyrmions are localized, topologically protected spin structures that have been proposed for storing or processing information due to their intriguing dynamical and transport properties. Important in terms of applications is the recent discovery of interface stabilized skyrmions as evidenced in ultra-thin transition-metal films. However, so far only skyrmions at interfaces with a single atomic layer of a magnetic material were reported, which greatly limits their potential for application in devices. Here we predict the emergence of skyrmions in [4d/Fe2/5d]n multilayers, that is, structures composed of Fe biatomic layers sandwiched between 4d and 5d transition-metal layers. In these composite structures, the exchange and the Dzyaloshinskii-Moriya interactions that control skyrmion formation can be tuned separately by the two interfaces. This allows engineering skyrmions as shown based on density functional theory and spin dynamics simulations. PMID:27257020

  16. Engineering skyrmions in transition-metal multilayers for spintronics

    PubMed Central

    Dupé, B.; Bihlmayer, G.; Böttcher, M.; Blügel, S.; Heinze, S.

    2016-01-01

    Magnetic skyrmions are localized, topologically protected spin structures that have been proposed for storing or processing information due to their intriguing dynamical and transport properties. Important in terms of applications is the recent discovery of interface stabilized skyrmions as evidenced in ultra-thin transition-metal films. However, so far only skyrmions at interfaces with a single atomic layer of a magnetic material were reported, which greatly limits their potential for application in devices. Here we predict the emergence of skyrmions in [4d/Fe2/5d]n multilayers, that is, structures composed of Fe biatomic layers sandwiched between 4d and 5d transition-metal layers. In these composite structures, the exchange and the Dzyaloshinskii–Moriya interactions that control skyrmion formation can be tuned separately by the two interfaces. This allows engineering skyrmions as shown based on density functional theory and spin dynamics simulations. PMID:27257020

  17. Tailoring magnetic skyrmions in ultra-thin transition metal films.

    PubMed

    Dupé, Bertrand; Hoffmann, Markus; Paillard, Charles; Heinze, Stefan

    2014-01-01

    Skyrmions in magnetic materials offer attractive perspectives for future spintronic applications since they are topologically stabilized spin structures on the nanometre scale, which can be manipulated with electric current densities that are by orders of magnitude lower than those required for moving domain walls. So far, they were restricted to bulk magnets with a particular chiral crystal symmetry greatly limiting the number of available systems and the adjustability of their properties. Recently, it has been experimentally discovered that magnetic skyrmion phases can also occur in ultra-thin transition metal films at surfaces. Here we present an understanding of skyrmions in such systems based on first-principles electronic structure theory. We demonstrate that the properties of magnetic skyrmions at transition metal interfaces such as their diameter and their stability can be tuned by the structure and composition of the interface and that a description beyond a micromagnetic model is required in such systems. PMID:24893652

  18. Recent Advances in Transition Metal-Catalyzed Glycosylation

    PubMed Central

    McKay, Matthew J.; Nguyen, Hien M.

    2012-01-01

    Having access to mild and operationally simple techniques for attaining carbohydrate targets will be necessary to facilitate advancement in biological, medicinal, and pharmacological research. Even with the abundance of elegant reports for generating glycosidic linkages, stereoselective construction of α- and β-oligosaccharides and glycoconjugates is by no means trivial. In an era where expanded awareness of the impact we are having on the environment drives the state-of-the-art, synthetic chemists are tasked with developing cleaner and more efficient reactions for achieving their transformations. This movement imparts the value that prevention of waste is always superior to its treatment or cleanup. This review will highlight recent advancement in this regard by examining strategies that employ transition metal catalysis in the synthesis of oligosaccharides and glycoconjugates. These methods are mild and effective for constructing glycosidic bonds with reduced levels of waste through utilization of sub-stoichiometric amounts of transition metals to promote the glycosylation. PMID:22924154

  19. Inherited (In)stabilities in Transition Metal Superlattices

    NASA Astrophysics Data System (ADS)

    Rudin, Sven

    2011-03-01

    Many transition metals exhibit a solid phase with a body-centered cubic (bcc) crystal structure. For some elements, e.g., tungsten (W), bcc is the only solid phase; for others, e.g., titanium (Ti), the bcc phase only appears at high temperatures. Titanium's high-temperature bcc phase exhibits soft phonon modes. These reflect the atomic movements upon transformation into the low-temperature phases. One such mode shows atomic displacements that also appear in the top few layers of tungsten's surface reconstruction. Superlattices constructed from alternating nanometer-thick layers of W and Ti would allow the two displacement patterns to interact. The work presented here uses density functional theory calculations to predict how the structure and mechanical response of such superlattices depends on the choice of transition metal elements and the layer thicknesses.

  20. Transition metal catalysis in the generation of natural gas

    SciTech Connect

    Mango, F.D.

    1995-12-31

    The view that natural gas is thermolytic, coming from decomposing organic debris, has remained almost unchallenged for nearly half a century. Disturbing contradictions exist, however: Oil is found at great depth, at temperatures where only gas should exist and oil and gas deposits show no evidence of the thermolytic debris indicative of oil decomposing to gas. Moreover, laboratory attempts to duplicate the composition of natural gas, which is typically between 60 and 95+ wt% methane in C{sub 1}-C{sub 4}, have produced insufficient amounts of methane (10 to 60%). It has been suggested that natural gas may be generated catalytically, promoted by the transition metals in carbonaceous sedimentary rocks. This talk will discuss experimental results that support this hypothesis. Various transition metals, as pure compounds and in source rocks, will be shown to generate a catalytic gas that is identical to natural gas. Kinetic results suggest robust catalytic activity under moderate catagenetic conditions.

  1. Metallic ferromagnetism-insulating charge order transition in doped manganites

    NASA Astrophysics Data System (ADS)

    Phan, Van-Nham; Ninh, Quoc-Huy; Tran, Minh-Tien

    2016-04-01

    We show that an interplay of double exchange and impurity randomness can explain the competition between metal-ferromagnetic and insulating charge ordered states in doped manganites. The double exchange is simplified in the Ising type, whereas the randomness is modeled by the Falicov-Kimball binary distribution. The combined model is considered in a framework of dynamical mean-field theory. Using the Kubo-Greenwood formalism, the transport coefficients are explicitly expressed in terms of single-particle spectral functions. Dividing the system into two sublattices we have pointed out a direct calculation to the checkerboard charge order parameter and the magnetizations. Numerical results show us that the checkerboard charge order can settle inside the ferromagnetic state at low temperature. An insulator-metal transition is also found at the point of the checkerboard charge order-ferromagnetic transition.

  2. Valley-selective harmonic generations in transition metal dichalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Cheng, Jingxin; Jiang, Tao; Shan, Yuwei; Li, Yingguo; Chen, Xianhui; Shen, Y. R.; Liu, Weitao; Wu, Shiwei

    Transition metal dichalcogenide monolayer has emerged as another star in the family of atomically thin two dimensional materials. Different from graphene, the two sublattices in its honeycomb-like structure are occupied by different atoms, leading to the reduced rotational symmetry from six fold to three fold. The reduced symmetry and dimension not only result in many intriguing physics such as valley and excitons, but also lead to rich nonlinear optical phenomena such as strong second harmonic generation. In this talk, we will present a systematic study on linearly and circularly polarized harmonic generations in this wonder material. We show that both the second and third harmonic generations follow the conservation of angular momentum and are valley-selective. Furthermore, these nonlinear optical processes could be used as a powerful imaging tool for studying transition metal dichalcogenide monolayers and other similar 2D materials.

  3. Laser Assisted Additively Manufactured Transition Metal Coating on Aluminum

    NASA Astrophysics Data System (ADS)

    Vora, Hitesh D.; Rajamure, Ravi Shanker; Roy, Anurag; Srinivasan, S. G.; Sundararajan, G.; Banerjee, Rajarshi; Dahotre, Narendra B.

    2016-07-01

    Various physical and chemical properties of surface and subsurface regions of Al can be improved by the formation of transition metal intermetallic phases (Al x TM y ) via coating of the transition metal (TM). The lower equilibrium solid solubility of TM in Al (<1 at.%) is a steep barrier to the formation of solid solutions using conventional alloying methods. In contrast, as demonstrated in the present work, surface engineering via a laser-aided additive manufacturing approach can effectively synthesize TM intermetallic coatings on the surface of Al. The focus of the present work included the development of process control to achieve thermodynamic and kinetic conditions necessary for desirable physical, microstructural and compositional attributes. A multiphysics finite element model was developed to predict the temperature profile, cooling rate, melt depth, dilution of W in Al matrix and corresponding micro-hardness in the coating, and the interface between the coating and the base material and the base material.

  4. A supramolecular microenvironment strategy for transition metal catalysis.

    PubMed

    Kaphan, David M; Levin, Mark D; Bergman, Robert G; Raymond, Kenneth N; Toste, F Dean

    2015-12-01

    A self-assembled supramolecular complex is reported to catalyze alkyl-alkyl reductive elimination from high-valent transition metal complexes [such as gold(III) and platinum(IV)], the central bond-forming elementary step in many catalytic processes. The catalytic microenvironment of the supramolecular assembly acts as a functional enzyme mimic, applying the concepts of enzymatic catalysis to a reactivity manifold not represented in biology. Kinetic experiments delineate a Michaelis-Menten-type mechanism, with measured rate accelerations (k(cat)/k(uncat)) up to 1.9 × 10(7) (here k(cat) and k(uncat) are the Michaelis-Menten enzymatic rate constant and observed uncatalyzed rate constant, respectively). This modality has further been incorporated into a dual catalytic cross-coupling reaction, which requires both the supramolecular microenvironment catalyst and the transition metal catalyst operating in concert to achieve efficient turnover. PMID:26785485

  5. Ductile-to-brittle transition in spallation of metallic glasses

    SciTech Connect

    Huang, X.; Ling, Z.; Dai, L. H.

    2014-10-14

    In this paper, the spallation behavior of a binary metallic glass Cu{sub 50}Zr{sub 50} is investigated with molecular dynamics simulations. With increasing the impact velocity, micro-voids induced by tensile pulses become smaller and more concentrated. The phenomenon suggests a ductile-to-brittle transition during the spallation process. Further investigation indicates that the transition is controlled by the interaction between void nucleation and growth, which can be regarded as a competition between tension transformation zones (TTZs) and shear transformation zones (STZs) at atomic scale. As impact velocities become higher, the stress amplitude and temperature rise in the spall region increase and micro-structures of the material become more unstable. Therefore, TTZs are prone to activation in metallic glasses, leading to a brittle behavior during the spallation process.

  6. Laser Assisted Additively Manufactured Transition Metal Coating on Aluminum

    NASA Astrophysics Data System (ADS)

    Vora, Hitesh D.; Rajamure, Ravi Shanker; Roy, Anurag; Srinivasan, S. G.; Sundararajan, G.; Banerjee, Rajarshi; Dahotre, Narendra B.

    2016-05-01

    Various physical and chemical properties of surface and subsurface regions of Al can be improved by the formation of transition metal intermetallic phases (Al x TM y ) via coating of the transition metal (TM). The lower equilibrium solid solubility of TM in Al (<1 at.%) is a steep barrier to the formation of solid solutions using conventional alloying methods. In contrast, as demonstrated in the present work, surface engineering via a laser-aided additive manufacturing approach can effectively synthesize TM intermetallic coatings on the surface of Al. The focus of the present work included the development of process control to achieve thermodynamic and kinetic conditions necessary for desirable physical, microstructural and compositional attributes. A multiphysics finite element model was developed to predict the temperature profile, cooling rate, melt depth, dilution of W in Al matrix and corresponding micro-hardness in the coating, and the interface between the coating and the base material and the base material.

  7. Meyer Neldel rule application to silicon supersaturated with transition metals

    NASA Astrophysics Data System (ADS)

    García-Hemme, Eric; García-Hernansanz, Rodrigo; Olea, Javier; Pastor, David; del Prado, Alvaro; Mártil, Ignacio; González-Díaz, Germán

    2015-02-01

    This paper presents the results for the transverse conductance across a bilayer formed by supersaturating with diverse transition metals a thin layer of a silicon wafer. The layer is formed by ion implantation and annealed by pulsed laser melting. The transverse conductance is exponentially activated, obtaining values ranging from 0.018 to 0.7 eV for the activation energy and pre-exponential factors of 10-2-1012 S depending on the annealing energy density. A semi-logarithmic plot of the pre-exponential factor versus activation energy shows an almost perfect linear behaviour as stated by the Meyer Neldel rule. The Meyer Neldel energy obtained for implantation with different transition metals and also annealed in different conditions is 22 meV, which is within the range of silicon phonons, thus confirming the hypothesis of the multi excitation entropy theory.

  8. Mechanical properties of 4d transition metals in molten state

    NASA Astrophysics Data System (ADS)

    Singh, Deobrat; Sonvane, Yogesh; Thakor, P. B.

    2016-05-01

    Mechanical properties of 4d transition metals in molten state have been studied in the present study. We have calculated mechanical properties such as isothermal bulk modulus (B), modulus of rigidity (G), Young's modulus (Y) and Hardness have also been calculated from the elastic part of the Phonon dispersion curve (PDC). To describe the structural information, we have used different structure factor S(q) using Percus-Yevick hard sphere (PYHS) reference systems along with our newly constructed parameter free model potential.To see the influence of exchange and correlation effect on the above said properties of 3d liquid transition metals, we have used Sarkar et al (S)local field correction functions. Present results have been found good in agreement with available experimental data.

  9. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Mak, Kin Fai; Shan, Jie

    2016-04-01

    Recent advances in the development of atomically thin layers of van der Waals bonded solids have opened up new possibilities for the exploration of 2D physics as well as for materials for applications. Among them, semiconductor transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se), have bandgaps in the near-infrared to the visible region, in contrast to the zero bandgap of graphene. In the monolayer limit, these materials have been shown to possess direct bandgaps, a property well suited for photonics and optoelectronics applications. Here, we review the electronic and optical properties and the recent progress in applications of 2D semiconductor transition metal dichalcogenides with emphasis on strong excitonic effects, and spin- and valley-dependent properties.

  10. Metal-insulator and charge ordering transitions in oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Singh, Sujay Kumar

    Strongly correlated oxides are a class of materials wherein interplay of various degrees of freedom results in novel electronic and magnetic phenomena. Vanadium oxides are widely studied correlated materials that exhibit metal-insulator transitions (MIT) in a wide temperature range from 70 K to 380 K. In this Thesis, results from electrical transport measurements on vanadium dioxide (VO2) and vanadium oxide bronze (MxV 2O5) (where M: alkali, alkaline earth, and transition metal cations) are presented and discussed. Although the MIT in VO2 has been studied for more than 50 years, the microscopic origin of the transition is still debated since a slew of external parameters such as light, voltage, and strain are found to significantly alter the transition. Furthermore, recent works on electrically driven switching in VO2 have shown that the role of Joule heating to be a major cause as opposed to electric field. We explore the mechanisms behind the electrically driven switching in single crystalline nanobeams of VO2 through DC and AC transport measurements. The harmonic analysis of the AC measurement data shows that non-uniform Joule heating causes electronic inhomogeneities to develop within the nanobeam and is responsible for driving the transition in VO2. Surprisingly, field assisted emission mechanisms such as Poole-Frenkel effect is found to be absent and the role of percolation is also identified in the electrically driven transition. This Thesis also provides a new insight into the mechanisms behind the electrolyte gating induced resistance modulation and the suppression of MIT in VO2. We show that the metallic phase of VO2 induced by electrolyte gating is due to an electrochemical process and can be both reversible and irreversible under different conditions. The kinetics of the redox processes increase with temperature; a complete suppression of the transition and the stabilization of the metallic phase are achievable by gating in the rutile metallic phase

  11. The energetics of ordered intermetallic alloys (of the transition metals)

    SciTech Connect

    Watson, R.E.; Weinert, M.; Davenport, J.W.; Fernando, G.W.; Bennett, L.H.

    1992-10-01

    The atomically ordered phases in ordered transition metal alloys are discussed. This chapter is divided into: physical parameters controlling phase stability (Hume-Rothery, structural maps, Miedema Hamiltonian), wave functions & band theory, comment on entropy terms, cohesive energies (electron promotion energies, Hund`s rule on orbital effects), structural energies/stabilities of elemental solids, total energies and atomic positions, charge transfer (Au alloys, charge tailing), heats of formation of ordered compounds.

  12. The energetics of ordered intermetallic alloys (of the transition metals)

    SciTech Connect

    Watson, R.E.; Weinert, M.; Davenport, J.W. ); Fernando, G.W. . Dept. of Physics); Bennett, L.H. . Metallurgy Div.)

    1992-01-01

    The atomically ordered phases in ordered transition metal alloys are discussed. This chapter is divided into: physical parameters controlling phase stability (Hume-Rothery, structural maps, Miedema Hamiltonian), wave functions band theory, comment on entropy terms, cohesive energies (electron promotion energies, Hund's rule on orbital effects), structural energies/stabilities of elemental solids, total energies and atomic positions, charge transfer (Au alloys, charge tailing), heats of formation of ordered compounds.

  13. Thermodynamics of the structural transition in metal-organic frameworks.

    PubMed

    Rodriguez, J; Beurroies, I; Coulet, M-V; Fabry, P; Devic, T; Serre, C; Denoyel, R; Llewellyn, P L

    2016-03-01

    A thermodynamic study of the structural large-pore (LP) to narrow pore (NP) transition in various Metal Organic Frameworks (MOFs) is presented. First, the pressure induced transition at a constant temperature is investigated using a Tian-Calvet microcalorimeter set-up equipped with a high pressure cell. This device permits simultaneous measurements of the mechanical work and heat associated with the LP → NP transition. It is shown that MIL-53(Al) and MIL-53(Cr) have similar thermodynamic and mechanical behaviour whilst the MIL-47(V) system is characterized by much higher transition energy and mechanical work. Second, the temperature induced transition at ambient pressure is studied by means of differential scanning calorimetry (DSC) combined with X-ray absorption spectroscopy. This set-up enables one to follow simultaneously the structural changes associated with the phase transition detected by DSC. The MIL-53(Cr)-Br functionalized MOF is chosen here as a case study where both energetics and structural changes are discussed. PMID:26574728

  14. Optical properties of transition metal oxide quantum wells

    SciTech Connect

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.

    2015-01-21

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO{sub 3}/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  15. Optical properties of transition metal oxide quantum wells

    NASA Astrophysics Data System (ADS)

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.

    2015-01-01

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO3/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  16. Theory of the pairbreaking superconductor-metal transition in nanowires

    NASA Astrophysics Data System (ADS)

    Sachdev, Subir

    2009-03-01

    We present a detailed description of a zero temperature phase transition between superconducting and diffusive metallic states in very thin wires due to a Cooper pair breaking mechanism. The dissipative critical theory contains current reducing fluctuations in the guise of both quantum and thermally activated phase slips. A full cross-over phase diagram is computed via an expansion in the inverse number of complex components of the superconducting order parameter (one in the physical case). The fluctuation corrections to the electrical (σ) and thermal (κ) conductivities are determined, and we find that σ has a non-monotonic temperature dependence in the metallic phase which may be consistent with recent experimental results on ultra-narrow wires. In the quantum critical regime, the ratio of the thermal to electrical conductivity displays a linear temperature dependence and thus the Wiedemann-Franz law is obeyed, with a new universal experimentally verifiable Lorenz number. We also examined the influence of quenched disorder on the superconductor-metal transition. The self-consistent pairing eigenmodes of a quasi-one dimensional wire were determined numerically. Our results support the proposal by Hoyos et al./ (Phys. Rev. Lett. 99, 230601 (2007)) that the transition is described by the same strong disorder fixed point describing the onset of ferromagnetism in the quantum Ising model in a transverse field.

  17. Pseudopotentials for quantum Monte Carlo calculations of transition metal oxides

    NASA Astrophysics Data System (ADS)

    Krogel, Jaron; Santana, Juan; Kent, Paul; Reboredo, Fernando

    2015-03-01

    Quantum Monte Carlo calculations of transition metal oxides are partially limited by the availability of high quality pseudopotentials that are both accurate in QMC and compatible with major electronic structure codes, e.g. by not being overly hard in the standard planewave basis. Following insight gained from recent GW calculations, a set of neon core pseudopotentials with small cutoff radii have been created for the early transition metal elements Sc to Zn within the local density approximation of DFT. The pseudopotentials have been tested for energy consistency within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (TM) atoms and the binding curve of each TM-O dimer. The vast majority of the ionization potentials fall within 0.3 eV of the experimental values, with exceptions occurring mainly for atoms with multiple unpaired d electrons where multireference effects are the strongest. The equilibrium bond lengths of the dimers are within 1% of experimental values and the binding energy errors are typically less than 0.3 eV. Given the uniform treatment of the core, the larger deviations occasionally observed may primarily reflect the limitations of a Slater-Jastrow trial wavefunction. This work is supported by the Materials Sciences & Engineering Division of the Office of Basic Energy Sciences, U.S. DOE. Research by PRCK was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  18. Speed limit of the insulator-metal transition in magnetite

    NASA Astrophysics Data System (ADS)

    de Jong, S.; Kukreja, R.; Trabant, C.; Pontius, N.; Chang, C. F.; Kachel, T.; Beye, M.; Sorgenfrei, F.; Back, C. H.; Bräuer, B.; Schlotter, W. F.; Turner, J. J.; Krupin, O.; Doehler, M.; Zhu, D.; Hossain, M. A.; Scherz, A. O.; Fausti, D.; Novelli, F.; Esposito, M.; Lee, W. S.; Chuang, Y. D.; Lu, D. H.; Moore, R. G.; Yi, M.; Trigo, M.; Kirchmann, P.; Pathey, L.; Golden, M. S.; Buchholz, M.; Metcalf, P.; Parmigiani, F.; Wurth, W.; Föhlisch, A.; Schüßler-Langeheine, C.; Dürr, H. A.

    2013-10-01

    As the oldest known magnetic material, magnetite (Fe3O4) has fascinated mankind for millennia. As the first oxide in which a relationship between electrical conductivity and fluctuating/localized electronic order was shown, magnetite represents a model system for understanding correlated oxides in general. Nevertheless, the exact mechanism of the insulator-metal, or Verwey, transition has long remained inaccessible. Recently, three-Fe-site lattice distortions called trimerons were identified as the characteristic building blocks of the low-temperature insulating electronically ordered phase. Here we investigate the Verwey transition with pump-probe X-ray diffraction and optical reflectivity techniques, and show how trimerons become mobile across the insulator-metal transition. We find this to be a two-step process. After an initial 300 fs destruction of individual trimerons, phase separation occurs on a 1.5±0.2 ps timescale to yield residual insulating and metallic regions. This work establishes the speed limit for switching in future oxide electronics.

  19. Soldering of Carbon Materials Using Transition Metal Rich Alloys.

    PubMed

    Burda, Marek; Lekawa-Raus, Agnieszka; Gruszczyk, Andrzej; Koziol, Krzysztof K K

    2015-08-25

    Joining of carbon materials via soldering has not been possible up to now due to lack of wetting of carbons by metals at standard soldering temperatures. This issue has been a severely restricting factor for many potential electrical/electronic and mechanical applications of nanostructured and conventional carbon materials. Here we demonstrate the formation of alloys that enable soldering of these structures. By addition of several percent (2.5-5%) of transition metal such as chromium or nickel to a standard lead-free soldering tin based alloy we obtained a solder that can be applied using a commercial soldering iron at typical soldering temperatures of approximately 350 °C and at ambient conditions. The use of this solder enables the formation of mechanically strong and electrically conductive joints between carbon materials and, when supported by a simple two-step technique, can successfully bond carbon structures to any metal terminal. It has been shown using optical and scanning electron microscope images as well as X-ray diffraction patterns and energy dispersive X-ray mapping that the successful formation of carbon-solder bonds is possible, first, thanks to the uniform nonreactive dispersion of transition metals in the tin-based matrix. Further, during the soldering process, these free elements diffuse into the carbon-alloy border with no formation of brazing-like carbides, which would damage the surface of the carbon materials. PMID:26256042

  20. Transition-metal prion protein attachment: Competition with copper

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Bernholc, Jerry

    2012-02-01

    Prion protein, PrP, is a protein capable of binding copper ions in multiple modes depending on their concentration. Misfolded PrP is implicated in a group of neurodegenerative diseases, which include ``mad cow disease'' and its human form, variant Creutzfeld-Jacob disease. An increasing amount of evidence suggests that attachment of non-copper metal ions to PrP triggers transformations to abnormal forms similar to those observed in prion diseases. In this work, we use hybrid Kohn-Sham/orbital-free density functional theory simulations to investigate copper replacement by other transition metals that bind to PrP, including zinc, iron and manganese. We consider all known copper binding modes in the N-terminal domain of PrP. Our calculations identify modes most susceptible to copper replacement and reveal metals that can successfully compete with copper for attachment to PrP.

  1. Thermophysical Property Measurements of Silicon-Transition Metal Alloys

    NASA Technical Reports Server (NTRS)

    Banish, R. Michael; Erwin, William R.; Sansoucie, Michael P.; Lee, Jonghyun; Gave, Matthew A.

    2014-01-01

    Metals and metallic alloys often have high melting temperatures and highly reactive liquids. Processing reactive liquids in containers can result in significant contamination and limited undercooling. This is particularly true for molten silicon and it alloys. Silicon is commonly termed "the universal solvent". The viscosity, surface tension, and density of several silicon-transition metal alloys were determined using the Electrostatic Levitator system at the Marshall Space Flight Center. The temperature dependence of the viscosity followed an Arrhenius dependence, and the surface tension followed a linear temperature dependence. The density of the melts, including the undercooled region, showed a linear behavior as well. Viscosity and surface tension values were obtain for several of the alloys in the undercooled region.

  2. Method for treating rare earth-transition metal scrap

    DOEpatents

    Schmidt, Frederick A.; Peterson, David T.; Wheelock, John T.; Jones, Lawrence L.

    1992-12-29

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a prefused, rare earth fluoride-bearing flux of CaF.sub.2, CaCl.sub.2 or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy.

  3. Method for treating rare earth-transition metal scrap

    DOEpatents

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.

    1992-12-29

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a rare earth fluoride-bearing flux of CaF[sub 2], CaCl[sub 2] or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy. 3 figs.

  4. A Transition to Metallic Hydrogen: Evidence of the Plasma Phase Transition

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan

    The insulator-metal transition in hydrogen is one of the most outstanding problems in condensed matter physics. The high-pressure metallic phase is now predicted to be liquid atomic from T =0 K to very high temperatures. We have conducted measurements of optical properties of hot dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K in a diamond anvil cell using pulsed laser heating of the sample. We present evidence in two forms: a plateau in the heating curves (average laser power vs temperature) characteristic of a first-order phase transition with latent heat, and changes in transmittance and reflectance characteristic of a metal for temperatures above the plateau temperature. For thick films the reflectance saturates at ~0.5. The phase line of this transition has a negative slope in agreement with theories of the so-called plasma phase transition. The NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H supported this research.

  5. Metal-insulator transition in trans-polyacetylene

    NASA Astrophysics Data System (ADS)

    Conwell, E. M.; Mizes, H. A.; Jeyadev, S.

    1989-07-01

    We have calculated the band structure for a chain of doped trans-polyacetylene using the electronic part of the Su-Schrieffer-Heeger Hamiltonian plus the Coulomb potential arising from ions and charged solitons surrounding the chain. The lattice structure used was that determined by x rays for Na-doped polyacetylene. To agree with a number of experimental observations the donated electrons were taken to be in soliton states at all dopant concentrations. In obtaining the potential of a point charge on a chain in the metallic state, the confinement of the free electrons to a chain was taken into account. Because screening depends on the calculated energy levels, specifically on the density of states at the Fermi energy, η(EF), in the metallic state, which, in turn, depend on the potential used to obtain them, self-consistency was required in the calculations. The energy-level structure was found to depend strongly on the ion spacing, conveniently measured in terms of the average spacing a of C-H's along the chain. For ion spacing 5a, characteristic of the Na-ion-rich regions up to an average dopant concentration of ~6%, the chain remained semiconducting. For ion spacing 4a, which appears to characterize the next phase for Na doping, metallic behavior was found for a doped chain length of ~100 sites or more. Self-consistency was fulfilled with η(EF) equal to the value obtained from the saturation spin susceptibility in the metallic state. In addition to sufficiently long chains that the level spacing is comparable to kT, the metal-insulator transition is found to require considerable overlap of electron wave functions on adjacent solitons and a fairly deep potential well. The transition is best described as a Mott transition. Our model predicts that a sample in the metallic state at room temperature becomes semiconducting at lower temperature. Evidence for this is found in the temperature variation of the spin susceptibility and of ESR linewidth. It is argued that

  6. Disorder and Metal-Insulator Transitions in Weyl Semimetals.

    PubMed

    Chen, Chui-Zhen; Song, Juntao; Jiang, Hua; Sun, Qing-feng; Wang, Ziqiang; Xie, X C

    2015-12-11

    The Weyl semimetal (WSM) is a newly proposed quantum state of matter. It has Weyl nodes in bulk excitations and Fermi arc surface states. We study the effects of disorder and localization in WSMs and find three novel phase transitions. (i) Two Weyl nodes near the Brillouin zone boundary can be annihilated pairwise by disorder scattering, resulting in the opening of a topologically nontrivial gap and a transition from a WSM to a three-dimensional quantum anomalous Hall state. (ii) When the two Weyl nodes are well separated in momentum space, the emergent bulk extended states can give rise to a direct transition from a WSM to a 3D diffusive anomalous Hall metal. (iii) Two Weyl nodes can emerge near the zone center when an insulating gap closes with increasing disorder, enabling a direct transition from a normal band insulator to a WSM. We determine the phase diagram by numerically computing the localization length and the Hall conductivity, and propose that the novel phase transitions can be realized on a photonic lattice. PMID:26705648

  7. Modern Transition-Metal-Catalyzed Carbon-Halogen Bond Formation.

    PubMed

    Petrone, David A; Ye, Juntao; Lautens, Mark

    2016-07-27

    The high utility of halogenated organic compounds has prompted the development of a vast number of transformations which install the carbon-halogen motif. Traditional routes to these building blocks have commonly involved multiple steps, harsh reaction conditions, and the use of stoichiometric and/or toxic reagents. In this regard, using transition metals to catalyze the synthesis of organohalides has become a mature field in itself, and applying these technologies has allowed for a decrease in the production of waste, higher levels of regio- and stereoselectivity, and the ability to produce enantioenriched target compounds. Furthermore, transition metals offer the distinct advantage of possessing a diverse spectrum of mechanistic possibilities which translate to the capability to apply new substrate classes and afford novel and difficult-to-access structures. This Review provides comprehensive coverage of modern transition metal-catalyzed syntheses of organohalides via a diverse array of mechanisms. Attention is given to the seminal stoichiometric organometallic studies which led to the corresponding catalytic processes being realized. By breaking this field down into the synthesis of aryl, vinyl, and alkyl halides, it becomes clear which methods have surfaced as most favored for each individual class. In general, a pronounced shift toward the use of C-H bonds as key functional groups, in addition to methods which proceed by catalytic, radical-based mechanisms has occurred. Although always evolving, this field appears to be heading in the direction of using starting materials with a significantly lower degree of prefunctionalization in addition to less expensive and abundant metal catalysts. PMID:27341176

  8. Mixed-Ligand Approach to Changing the Metal Ratio in Bismuth-Transition Metal Heterometallic Precursors.

    PubMed

    Lieberman, Craig M; Wei, Zheng; Filatov, Alexander S; Dikarev, Evgeny V

    2016-04-18

    A new series of heteroleptic bismuth-transition metal β-diketonates [BiM(hfac)3(thd)2] (M = Mn (1), Co (2), and Ni (3); hfac = hexafluoroacetylacetonate, thd = tetramethylheptanedionate) with Bi:M = 1:1 ratio have been synthesized by stoichiometric reactions between homometallic reagents [Bi(III)(hfac)3] and [M(II)(thd)2]. On the basis of analysis of the metal-ligand interactions in heterometallic structures, the title compounds were formulated as ion-pair {[Bi(III)(thd)2](+)[M(II)(hfac)3](-)} complexes. The direct reaction between homometallic reagents proceeds with a full ligand exchange between main group and transition metal centers, yielding dinuclear heterometallic molecules. In heteroleptic molecules 1-3, the Lewis acidic, coordinatively unsaturated Bi(III) centers are chelated by two bulky, electron-donating thd ligands and maintain bridging interactions with three oxygen atoms of small, electron-withdrawing hfac groups that chelate the neighboring divalent transition metals. Application of the mixed-ligand approach allows one to change the connectivity pattern within the heterometallic assembly and to isolate highly volatile precursors with the proper Bi:M = 1:1 ratio. The mixed-ligand approach employed in this work opens broad opportunities for the synthesis of heterometallic (main group-transition metal) molecular precursors with specific M:M' ratio in the case when homoleptic counterparts either do not exist or afford products with an incorrect metal:metal ratio for the target materials. Heteroleptic complexes obtained in the course of this study represent prospective single-source precursors for the low-temperature preparation of multiferroic perovskite-type oxides. PMID:27054922

  9. Electronic and Structural Properties of Transition - and Transition-Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Chan, Che-Ting

    The electronic and structural properties of transition metals and transition metal surfaces are studied theoretically from first-principles, with emphasis on understanding their properties under different physical and chemical environments. A new general self-consistency procedure for calculating the electronic structure of crystalline solids is developed and applied to extend a first-principles pseudopotential linear combination of atomic orbitals (LCAO) method to full point-by-point self-consistency. This scheme is tested by applying to a study of the structural and electronic properties of Si and W, prototypical systems of very different bonding characters. The importance of self-consistency is investigated. The structural properties of Mo and W in the bcc, fcc and hcp structures are calculated with the new scheme. Equilibrium lattice constants, cohesive energies, bulk moduli, differences in structural energies and Mulliken population analyses are obtained. For both elements, the cohesive energies decrease in the order E(,coh)('bcc) > E(,coh)('fcc) (DBLTURN) E(,coh)('hcp). The results show that the relative stability of the bcc and fcc structures can be explained qualitatively but not quantitatively by the difference in the sum of the electronic eigenvalues. The structural properties of the W(001)(1 x 1) surface are also calculated with the same method. Surface energy, top layer relaxation, and relaxation energy are obtained with good agreement with available experimental data. The electronic structures of PdH and Pd(,4)H are calculated by a pseudopotential mixed basis approach with emphasis on the nature of the Pd-H bonding state and the effect of changing hydrogen concentration. The essential physical nature of the hydride system is summarized in a simple conceptual model. The mixed basis method is then applied to study the electronic structures of monolayer atomic hydrogen at surface and subsurface sites of the Pd(111) surface. Electronic properties and

  10. Heavy Metals and Related Trace Elements.

    ERIC Educational Resources Information Center

    Leland, Harry V.; And Others

    1978-01-01

    Presents a literature review of heavy metals and related trace elements in the environment, covering publications of 1976-77. This review includes: (1) trace treatment in natural water and in sediments; and (2) bioaccumulation and toxicity of trace elements. A list of 466 references is presented. (HM)

  11. Electrocaloric effect of metal-insulator transition in VO{sub 2}

    SciTech Connect

    Matsunami, Daichi; Fujita, Asaya

    2015-01-26

    The electrocaloric effect was observed in association with an electric-field induced metal-insulator transition in VO{sub 2} using a calorimetric measurement under an applied voltage. For a VO{sub 2} plate with a 0.4 mm thickness located in the center of a capacitor-like structure, the metal-insulator transition was manipulated by applying a few volts. The occurrence of a transition in such a thick sample with relatively low voltage indicates that a surface charge accumulation mechanism is effective. The isothermal entropy change reached 94 J kg{sup −1} K{sup −1}, while the adiabatic temperature change was calculated as −3.8 K under a voltage change of 0–3 V. The large entropy change is attributed to correlation of the complex freedom among spin, charge, and lattice.

  12. Effect of Transition Metals on Polysialic Acid Structure and Functions.

    PubMed

    Murthy, Raghavendra Vasudeva; Bharate, Priya; Gade, Madhuri; Sangabathuni, Sivakoti; Kikkeri, Raghavendra

    2016-04-01

    Polysialic acid (PSA) is one of the most abundant glycopolymer present in embryonic brain, and it is known to be involved in key roles such as plasticity in the central nervous system, cell adhesion, migration and localization of neurotrophins. However, in adult brain, its expression is quite low. The exception to this is in Alzheimer's disease (AD) brain, where significantly increased levels of polysilylated neural cell adhesion molecule (PSA-NCAM) have been reported. Here, we confirm the role of PSA as a metal chelator, allowing it to decrease cytotoxicity caused by high levels of transition metals, commonly found in AD brain, and as a regulator of cell behavior. UV-visible (UV-vis) and circular dichroism (CD) spectroscopy, atomic force microscopy (AFM), and isothermal titration calorimetry (ITC) techniques were used to investigate the assembly of PSA-metals complexes. These PSA-metal complexes exhibited less toxicity compared to free metal ions, and in particular, the PSA-Cu(2+) complex synergistically promoted neurite outgrowth in PC12 cells. PMID:26990355

  13. Transition metal complexes of isonicotinic acid (2-hydroxybenzylidene)hydrazide.

    PubMed

    Abou-Melha, Khlood S

    2008-06-01

    A new series of transition metal complexes of Schiff base isonicotinic acid (2-hydroxybenzylidene)hydrazide, HL, have been synthesized. The Schiff base reacted with Cu(II), Ni(II), Co(II), Mn(II), Fe(III) and UO2(II) ions as monobasic tridentate ligand to yield mononuclear complexes of 1:2 (metal:ligand) except that of Cu(II) which form complex of 1:1 (metal:ligand). The ligand and its metal complexes were characterized by elemental analyses, IR, UV-vis, mass and 1H NMR spectra, as well as magnetic moment, conductance measurements, and thermal analyses. All complexes have octahedral configurations except Cu(II) complex which has an extra square planar geometry distorted towards tetrahedral. While, the UO2(II) complex has its favour hepta-coordination. The ligand and its metal complexes were tested against one strain Gram +ve bacteria (Staphylococcus aureus), Gram -ve bacteria (Escherichia coli), and Fungi (Candida albicans). The tested compounds exhibited higher antibacterial activities. PMID:17728178

  14. Transition metal complexes of isonicotinic acid (2-hydroxybenzylidene)hydrazide

    NASA Astrophysics Data System (ADS)

    Abou-Melha, Khlood S.

    2008-06-01

    A new series of transition metal complexes of Schiff base isonicotinic acid (2-hydroxybenzylidene)hydrazide, HL, have been synthesized. The Schiff base reacted with Cu(II), Ni(II), Co(II), Mn(II), Fe(III) and UO 2(II) ions as monobasic tridentate ligand to yield mononuclear complexes of 1:2 (metal:ligand) except that of Cu(II) which form complex of 1:1 (metal:ligand). The ligand and its metal complexes were characterized by elemental analyses, IR, UV-vis, mass and 1H NMR spectra, as well as magnetic moment, conductance measurements, and thermal analyses. All complexes have octahedral configurations except Cu(II) complex which has an extra square planar geometry distorted towards tetrahedral. While, the UO 2(II) complex has its favour hepta-coordination. The ligand and its metal complexes were tested against one strain Gram +ve bacteria ( Staphylococcus aureus), Gram -ve bacteria (Escherichia coli) , and Fungi ( Candida albicans). The tested compounds exhibited higher antibacterial activities.

  15. Electronic Principles Governing the Stability and Reactivity of Ligated Metal and Silicon Encapsulated Transition Metal Clusters

    NASA Astrophysics Data System (ADS)

    Abreu, Marissa Baddick

    A thorough understanding of the underlying electronic principles guiding the stability and reactivity of clusters has direct implications for the identification of stable clusters for incorporation into clusters-assembled materials with tunable properties. This work explores the electronic principles governing the stability and reactivity of two types of clusters: ligated metal clusters and silicon encapsulated transition metal clusters. In the first case, the reactivity of iodine-protected aluminum clusters, Al13Ix - (x=0-4) and Al14Iy- (y=0-5), with the protic species methanol was studied. The symmetrical ground states of Al13Ix- showed no reactivity with methanol but reactivity was achieved in a higher energy isomer of Al 13I2- with iodines on adjacent aluminum atoms -- complementary Lewis acid-base active sites were induced on the opposite side of the cluster capable of breaking the O-H bond in methanol. Al 14Iy- (y=2-5) react with methanol, but only at the ligated adatom site. Reaction of methanol with Al14 - and Al14I- showed that ligation of the adatom was necessary for the reaction to occur there -- revealing the concept of a ligand-activated adatom. In the second case, the study focused heavily on CrSi12, a silicon encapsulated transition metal cluster whose stability and the reason for that stability has been debated heavily in the literature. Calculations of the energetic properties of CrSi n (n=6-16) revealed both CrSi12 and CrSi14 to have enhanced stability relative to other clusters; however CrSi12 lacks all the traditional markers of a magic cluster. Molecular orbital analysis of each of these clusters showed the CNFEG model to be inadequate in describing their stability. Because the 3dz2 orbital of Cr is unfilled in CrSi12, this cluster has only 16 effective valence electrons, meaning that the 18-electron rule is not applicable. The moderate stability of CrSi 12 can be accounted for by the crystal-field splitting of the 3d orbitals, which pushes the

  16. Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae

    PubMed Central

    Begg, Stephanie L.; Eijkelkamp, Bart A.; Luo, Zhenyao; Couñago, Rafael M.; Morey, Jacqueline R.; Maher, Megan J.; Ong, Cheryl-lynn Y.; McEwan, Alastair G.; Kobe, Bostjan; O’Mara, Megan L.; Paton, James C.; McDevitt, Christopher A.

    2015-01-01

    Cadmium is a transition metal ion that is highly toxic in biological systems. Although relatively rare in the Earth’s crust, anthropogenic release of cadmium since industrialization has increased biogeochemical cycling and the abundance of the ion in the biosphere. Despite this, the molecular basis of its toxicity remains unclear. Here we combine metal-accumulation assays, high-resolution structural data and biochemical analyses to show that cadmium toxicity, in Streptococcus pneumoniae, occurs via perturbation of first row transition metal ion homeostasis. We show that cadmium uptake reduces the millimolar cellular accumulation of manganese and zinc, and thereby increases sensitivity to oxidative stress. Despite this, high cellular concentrations of cadmium (~17 mM) are tolerated, with negligible impact on growth or sensitivity to oxidative stress, when manganese and glutathione are abundant. Collectively, this work provides insight into the molecular basis of cadmium toxicity in prokaryotes, and the connection between cadmium accumulation and oxidative stress. PMID:25731976

  17. Comparative study of the synthesis of layered transition metal molybdates

    SciTech Connect

    Mitchell, S.; Gomez-Aviles, A.; Gardner, C.; Jones, W.

    2010-01-15

    Mixed metal oxides (MMOs) prepared by the mild thermal decomposition of layered double hydroxides (LDHs) differ in their reactivity on exposure to aqueous molybdate containing solutions. In this study, we investigate the reactivity of some T-Al containing MMOs (T=Co, Ni, Cu or Zn) towards the formation of layered transition metal molybdates (LTMs) possessing the general formula AT{sub 2}(OH)(MoO{sub 4}){sub 2}.H{sub 2}O, where A=NH{sub 4}{sup +}, Na{sup +} or K{sup +}. The phase selectivity of the reaction was studied with respect to the source of molybdate, the ratio of T to Mo and the reaction pH. LTMs were obtained on reaction of Cu-Al and Zn-Al containing MMOs with aqueous solutions of ammonium heptamolybdate. Rehydration of these oxides in the presence of sodium or potassium molybdate yielded a rehydrated LDH phase as the only crystalline product. The LTM products obtained by the rehydration of MMO precursors were compared with LTMs prepared by direct precipitation from the metal salts in order to study the influence of preparative route on their chemical and physical properties. Differences were noted in the composition, morphology and thermal properties of the resulting products. - Graphical abstract: Mixed metal oxides (MMOs) derived from layered double hydroxide precursors differ in their reactivity on exposure to aqueous molybdate containing solutions. We investigate the influence of the molybdate source, the rehydration pH and the ratio of T/Mo on the reactivity of some T-Al containing MMOs (T=Co, Ni, Cu or Zn) towards the formation of layered transition metal molybdates of general formula AT{sub 2}(OH)(MoO{sub 4}){sub 2}.H{sub 2}O (where A{sup +}=NH{sub 4}{sup +}, K{sup +} or Na{sup +}).

  18. Destabilization effect of transition metal fluorides on sodium borohydride.

    PubMed

    Kalantzopoulos, Georgios N; Guzik, Matylda N; Deledda, Stefano; Heyn, Richard H; Muller, Jiri; Hauback, Bjørn C

    2014-10-14

    The effect of transition metal fluorides on the decomposition of NaBH4 has been investigated for NaBH4 ball milled with TiF3, MnF3 or FeF3. The compounds were examined by thermal programmed desorption with residual gas analysis, thermo gravimetric analysis and volumetric measurements using a Sieverts-type apparatus. The phase formation process during thermal decomposition was studied by in situ synchrotron radiation powder X-ray diffraction on the as-milled powders. NaBF4 was among the products in all mechano-chemical reactions. (11)B-NMR spectra analysis gave NaBF4 : NaBH4 ratios of 1 : 150 for Na-Ti, 1 : 40 for Na-Mn, and 1 : 10 for Na-Fe. Pure NaBH4 possessed a hydrogen release onset temperature of 430 °C. The hydrogen release in the NaBH4-MnF3 system began as low as 130 °C. FeF3 decreased the onset temperature to 161 °C and TiF3 to 200 °C. TiF3 reacted completely with NaBH4 below 320 °C. All the examined systems have negligible emissions of diborane species. H-sorption studies performed at selected temperatures above 300 °C exhibited relatively fast desorption kinetics. Partial hydrogen re-absorption was observed for the Na-Mn and Na-Fe samples. PMID:25140831

  19. Transition metal catalysis in the generation of petroleum and natural gas

    NASA Astrophysics Data System (ADS)

    Mango, Frank D.

    1992-01-01

    Certain ratios of light hydrocarbons remain virtually invariant over the course of petroleum generation, indicating steady-state catalysis rather than thermal cracking as the central feature to the mechanism of petroleum generation. Although the evidence for catalytic intervention is now compelling, the nature of the catalytic agent, its mode of activation and action are not clear. I propose that the transition metals, activated in the lipophilic domains of kerogen, are the catalytic agents in the conversion of normal paraffins into light hydrocarbons and natural gas. The process proceeds through specific catalytic steps involving 3-, 5-, and 6-carbon ring-closures and the cleavage of carbon-carbon bonds in the key steps. This hypothesis is analyzed in the context of published literature on catalysis by Ni, V, Ti, Co, and related transition metals. Activated under anaerobic conditions, these metals express extraordinary catalytic activity in each of the postulated steps. Moreover, metal-catalysis provides a reasonable kinetic pathway through which hydrogen and normal paraffins may combine to form a methane-enriched natural gas. Given the anaerobic conditions of diagenesis and a kerogenous source of hydrogen, it is concluded that the transition metals, under catagenic conditions, are potentially active catalysts in the conversion of hydrogen and paraffins into light hydrocarbons and natural gas.

  20. Transition metal catalysis in the generation of petroleum and natural gas

    SciTech Connect

    Mango, F.D. )

    1992-01-01

    Certain ratios of light hydrocarbons remain virtually invariant over the course of petroleum generation, indicating steady-state catalysis rather than thermal cracking as the central feature to the mechanism of petroleum generation. Although the evidence for catalytic intervention is now compelling, the nature of the catalytic agent, its mode of activation and action are not clear. The author proposes that the transition metals, activated in the lipophilic domains of kerogen, are the catalytic agents in the conversion of normal paraffins into light hydrocarbons and natural gas. The process proceeds through specific catalytic steps involving 3-, 5-, and 6-carbon ring-closures and the cleavage of carbon-carbon bonds in the key steps. This hypothesis is analyzed in the context of published literature on catalysis by Ni, V, Ti, Co, and related transition metals. Activated under anaerobic conditions, these metals express extraordinary catalytic activity in each of the postulated steps. Moreover, metal-catalysis provides a reasonable kinetic pathway through which hydrogen and normal paraffins may combine to form a methane-enriched a natural gas. Given the anaerobic conditions of diagenesis and a kerogenous source of hydrogen, it is concluded that the transition metals, under catagenic conditions, are potentially active catalysts in the conversion of hydrogen and paraffins into light hydrocarbons and natural gas.

  1. Generic relation between the electron work function and Young's modulus of metals

    SciTech Connect

    Hua Guomin; Li Dongyang

    2011-07-25

    In this study, efforts were made to establish a generic relation between the Young's modulus and the electron work function of polycrystalline metals, in which Young's Modulus was defined as the second order derivative of interaction potential with respect to the equilibrium distance. The obtained Young's modulus shows a sextic relation with the work function. Data of Young's modulus and work function of polycrystalline metals, including Alkali earth metals, transition metals, and rare earth metals, can be fitted reasonably well by this derived generic relationship.

  2. Tracking traces of transition metals present in concrete mixtures by inductively-coupled plasma mass spectrometry studies.

    PubMed

    Bassioni, Ghada; Pillay, Alvin E; El Kadi, Mirella; Fegali, Fadi; Fok, Sai Cheong; Stephen, Sasi

    2010-01-01

    Transition metals can have a significant impact in research related to the dosage optimization of superplasticizers. It is known that the presence of transition metals can influence such doses, and the application of a contemporary instrumental method to obtain the profiles of subsisting transition elements in concrete mixtures would be useful. In this work, inductively-coupled plasma mass spectrometry (ICP-MS) is investigated as a possible tool to track traces of transition metals in concrete mixtures. Depth profiling using ICP-MS on proofed and unproofed concrete shows the presence of Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn at trace intensities in the bulk of the samples under investigation. The study demonstrates that the transition metals present in the concrete sample are largely a part of the cement composition and, to a minor degree, a result of exposure to the seawater after curing. The coated concrete samples have a metal distribution pattern similar to the uncoated samples, but slight differences in intensity bear testimony to the very low levels that originate from the exposure to seawater. While X-ray diffraction fails to detect these traces of metals, ICP-MS is successful in detecting ultra-trace intensities to parts per trillion. This method is not only a useful application to track traces of transition metals in concrete, but also provides information to estimate the pore size distribution in a given sample by very simple means. PMID:21173466

  3. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses.

    PubMed

    Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K; Mukherjee, Sundeep

    2016-06-01

    High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe-Co metallic glass system of composition [(Co1-x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent 'Stoner type' magnetization for the amorphous alloys in contrast to 'Heisenberg type' in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study. PMID:27143686

  4. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses

    NASA Astrophysics Data System (ADS)

    Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K.; Mukherjee, Sundeep

    2016-06-01

    High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe–Co metallic glass system of composition [(Co1‑x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent ‘Stoner type’ magnetization for the amorphous alloys in contrast to ‘Heisenberg type’ in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study.

  5. Roles of transition metals interchanging with lithium in electrode materials.

    PubMed

    Kawaguchi, Tomoya; Fukuda, Katsutoshi; Tokuda, Kazuya; Sakaida, Masashi; Ichitsubo, Tetsu; Oishi, Masatsugu; Mizuki, Jun'ichiro; Matsubara, Eiichiro

    2015-06-01

    Roles of antisite transition metals interchanging with Li atoms in electrode materials of Li transition-metal complex oxides were clarified using a newly developed direct labeling method, termed powder diffraction anomalous fine structure (P-DAFS) near the Ni K-edge. We site-selectively investigated the valence states and local structures of Ni in Li0.89Ni1.11O2, where Ni atoms occupy mainly the NiO2 host-layer sites and partially the interlayer Li sites in-between the host layers, during electrochemical Li insertion/extraction in a lithium-ion battery (LIB). The site-selective X-ray near edge structure evaluated via the P-DAFS method revealed that the interlayer Ni atoms exhibited much lower electrochemical activity as compared to those at the host-layer site. Furthermore, the present analyses of site-selective extended X-ray absorption fine structure performed using the P-DAFS method indicates local structural changes around the residual Ni atoms at the interlayer space during the initial charge; it tends to gather to form rock-salt NiO-like domains around the interlayer Ni. The presence of the NiO-like domains in the interlayer space locally diminishes the interlayer distance and would yield strain energy because of the lattice mismatch, which retards the subsequent Li insertion both thermodynamically and kinetically. Such restrictions on the Li insertion inevitably make the NiO-like domains electrochemically inactive, resulting in an appreciable irreversible capacity after the initial charge but an achievement of robust linkage of neighboring NiO2 layers that tend to be dissociated without the Li occupation. The P-DAFS characterization of antisite transition metals interchanging with Li atoms complements the understanding of the detailed charge-compensation and degradation mechanisms in the electrode materials. PMID:25959625

  6. Stacking dependent electronic structures of transition metal dichalcogenides heterobilayer

    NASA Astrophysics Data System (ADS)

    Lee, Yea-Lee; Park, Cheol-Hwan; Ihm, Jisoon

    The systematic study of the electronic structures and optical properties of the transition metal dichalcogenides (TMD) heterobilayers can significantly improve the designing of new electronic and optoelectronic devices. Here, we theoretically study the electronic structures and optical properties of TMD heterobilayers using the first-principles methods. The band structures of TMD heterobilayer are shown to be determined by the band alignments of the each layer, the weak interlayer interactions, and angle dependent stacking patterns. The photoluminescence spectra are investigated using the calculated band structures, and the optical absorption spectra are examined by the GW approximations including the electron-hole interaction through the solution of the Bethe-Salpeter equation. It is expected that the weak interlayer interaction gives rise to the substantial interlayer optical transition which will be corresponding to the interlayer exciton.

  7. Storing excitons in transition-metal dichalcogenides using dark states

    NASA Astrophysics Data System (ADS)

    Gunlycke, Daniel; Tseng, Frank; Simsek, Ergun

    Monolayer transition-metal dichalcogenides exhibit strongly bound excitons confined to two dimensions. One challenge in exploiting these excitons is that they have a finite life time and collapse through electron-hole recombination. We propose that the exciton life time could be extended by transitioning the exciton population into dark states. The symmetry of these dark states require the electron and hole to be spatially separated, which not only causes these states to be optically inactive but also inhibits electron-hole recombination. Based on an atomistic model we call the Triangular Lattice Exciton (3ALE) model, we derive transition matrix elements and approximate selection rules showing that excitons could be transitioned into and out of dark states using a pulsed infrared laser. For illustration, we also present exciton population scenarios based on different recombination decay constants. Longer exciton lifetimes could make these materials candidates for applications in energy management and quantum information processing. This work was supported by the Office of Naval Research, directly and through the Naval Research Laboratory.

  8. Transition metal complexes of an isatinic quinolyl hydrazone

    PubMed Central

    2011-01-01

    Background The importance of the isatinic quinolyl hydrazones arises from incorporating the quinoline ring with the indole ring in the same compound. Quinoline ring has therapeutic and biological activities. On the other hand, isatin (1H-indole-2,3-dione) and its derivatives exhibit a wide range of biological activities. Also, the indole ring occurs in Jasmine flowers and Orange blossoms. Recently, the physiological and biological activities of quinolyl hydrazones arise from their tendency to form metal chelates with transition metal ions. In this context, we have reported to isolate, characterize and study the biological activity of some transition metal complexes of an isatinic quinolyl hydrazone; 3-[2-(4-methyl quinolin-2-yl)hydrazono] indolin-2-one. Results Mono- and binuclear as well as dimeric chelates were obtained from the reaction of a new isatinic quinolyl hydrazone with Fe(III), Co(II), Ni(II), Cu(II), VO(II) and Pd(II) ions. The ligand showed a variety of modes of bonding viz. (NNO)2-, (NO)- and (NO) per each metal ion supporting its ambidentate and flexidentate characters. The mode of bonding and basicity of the ligand depend mainly on the type of the metal cation and its counter anion. All the obtained Pd(II)- complexes have the preferable square planar geometry (D4h- symmetry) and depend mainly on the mole ratio (M:L). Conclusion The effect of the type of the metal ion for the same anion (Cl-) is obvious from either structural diversity of the isolated complexes (Oh, Td and D4h) or the various modes of bonding. The isatinic hydrazone uses its lactim form in all complexes (Cl-) except complex 5 (SO42-) in which it uses its lactam form. The obtained Pd(II)- complexes (dimeric, mono- and binuclear) are affected by the mole ratio (M:L) and have the square planar (D4h) geometry. Also, the antimicrobial activity is highly influenced by the nature of the metal ion and the order for S. aureus bacteria is as follows: Nickel(II) > Vanadyl(II) > Cobalt

  9. Studies of high temperature ternary phases in mixed-metal-rich early transition metal sulfide and phosphide systems

    SciTech Connect

    Marking, G.A.

    1994-01-04

    Investigations of ternary mixed early transition metal-rich sulfide and phosphide systems resulted in the discovery of new structures and new phases. A new series of Zr and Hf - group V transition metal - sulfur K-phases was synthesized and crystallographically characterized. When the group V transition metal was Nb or Ta, the unit cell volume was larger than any previously reported K-phase. The presence of adventitious oxygen was determined in two K-phases through a combination of neutron scattering and X-ray diffraction experiments. A compound Hf{sub 10}Ta{sub 3}S{sub 3} was found to crystallize in a new-structure type similar to the known gamma brasses. This structure is unique in that it is the only reported {open_quotes}stuffed{close_quotes} gamma-brass type structure. The metal components, Hf and Ta, are larger in size and more electropositive than the metals found in normal gamma brasses (e.g. Cu and Zn) and because of the larger metallic radii, sulfur can be incorporated into the structure where it plays an integral role in stabilizing this phase relative to others. X-ray single-crystal, X-ray powder and neutron powder refinements were performed on this structure. A new structure was found in the ternary Nb-Zr-P system which has characteristics in common with many known early transition metal-rich sulfides, selenides, and phosphides. This structure has the simplest known interconnection of the basic building blocks known for this structural class. Anomalous scattering was a powerful tool for differentiating between Zr and Nb when using Mo K{alpha} X-radiation. The compounds ZrNbP and HfNbP formed in the space group Prima with the simple Co{sub 2}Si structure which is among the most common structures found for crystalline solid materials. Solid solution compounds in the Ta-Nb-P, Ta-Zr-P, Nb-Zr-P, Hf-Nb-P, and Hf-Zr-S systems were crystallographically characterized. The structural information corroborated ideas about bonding in metal-rich compounds.

  10. Multifunctional Ligands in Transition Metal Catalysis (invited 'Focus' article),

    SciTech Connect

    Crabtree, Robert H

    2011-01-01

    Sophisticated ligands are now being designed that do far more than just fulfil their traditional spectator roles by binding to the metal and providing a sterically-defined binding pocket for the substrate in homogeneous transition metal catalysis. This Focus review emphasizes selected cases in which ligands carry additional functional groups that change the properties of the ligand as a result of an external stimulus or undergo catalytically-relevant ligand-based reactivity. These include proton responsive ligands capable of gaining or losing one or more protons, ligands having a hydrogen bonding function, electroresponsive ligands capable of gaining or losing one or more electrons, and photoresponsive ligands capable of undergoing a useful change of properties upon irradiation. Molecular recognition ligands and proton coupled electron transfer (PCET) are briefly discussed.

  11. Dirac cones in transition metal doped boron nitride

    SciTech Connect

    Feng, Min; Cao, Xuewei; Shao, Bin; Zuo, Xu

    2015-05-07

    The transition metal (TM) doped zinc blende boron nitride (c-BN) is studied by using the first principle calculation. TM atoms fill in the interstitials in c-BN and form two-dimensional honeycomb lattice. The generalized gradient approximation and projector augmented wave method are used. The calculated density of states and band structures show that d electrons of TM atoms form impurity bands in the gap of c-BN. When the TM-BN system is in ferromagnetic or non-magnetic state, Dirac cones emerge at the K point in Brillouin zone. When TM is Ti and Co, the Dirac cones are spin polarized and very close to the Fermi level, which makes them promising candidates of Dirac half-metal [H. Ishizuka and Y. Motome, Phys. Rev. Lett. 109, 237207 (2012)]. While TM is Ni and Cu, the system is non-magnetic and Dirac cones located above the Fermi level.

  12. Interaction of hydrogen with transition metal fcc(111) surfaces

    NASA Astrophysics Data System (ADS)

    Löautber, R.; Hennig, D.

    1997-02-01

    The interaction of atomic hydrogen with the fcc(111) surfaces of Pd and Rh was investigated theoretically with an ab initio method, to find out the differences and similiarities between these neighboring metals. At the Rh surface the hcp site of the threefold-coordinated adsorption sites is preferred, while at Pd almost no difference between the hcp and fcc sites was found. For Pd, the occupation of subsurface positions was calculated to be more stable than bulklike positions. The energy gain caused by hydrogen absorption in subsurface positions is only about 100 meV lower than for hydrogen adsorption at the surface. In contrast, for Rh, significant differences between adsorption and absorption were calculated. The diffusion barrier for hydrogen diffusion from surface to subsurface positions was calculated and compared to the diffusion barrier in bulk. The hydrogen-induced work-function changes for the considered 4d transition-metal surfaces were positive for coverage θ=1.

  13. Theoretical study of transition-metal ions bound to benzene

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1992-01-01

    Theoretical binding energies are reported for all first-row and selected second-row transition metal ions (M+) bound to benzene. The calculations employ basis sets of at least double-zeta plus polarization quality and account for electron correlation using the modified coupled-pair functional method. While the bending is predominantly electrostatic, the binding energies are significantly increased by electron correlation, because the donation from the metal d orbitals to the benzene pi* orbitals is not well described at the self-consistent-field level. The uncertainties in the computed binding energies are estimated to be about 5 kcal/mol. Although the calculated and experimental binding energies generally agree to within their combined uncertainties, it is likely that the true binding energies lie in the lower portion of the experimental range. This is supported by the very good agreement between the theoretical and recent experimental binding energies for AgC6H6(+).

  14. Kondo Effects in Single Layer Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Phillips, Michael; Aji, Vivek

    2015-03-01

    Inversion symmetry breaking and strong spin orbit coupling in two dimensional transition metal dichalcogenides leads to interesting new phenomena such as the valley hall and spin hall effects. They display optical circular dichroism and the ability to generate excitation with valley specificity. In this talk we report on the consequences of these properties on correlated states in hole doped systems focussing on the physics of the screening of magnetic impurities. Unlike typical metals, the breaking of inversion symmetry leads to the mixing of a triplet component to the Kondo cloud. Using a variational wave function approach we determine the nature of the many body state. With the ground state in hand we analyze the excitations generated by valley discriminating perturbations. Graduate Student.

  15. Second critical point in first order metal-insulator transitions.

    PubMed

    Kostadinov, Ivan Z; Patton, Bruce R

    2008-11-28

    For first order metal-insulator transitions we show that, together with the dc conductance zero, there is a second critical point where the dielectric constant becomes zero and further turns negative. At this point the metallic reflectivity sharply increases. The two points can be separated by a phase separation state in a 3D disordered system but may tend to merge in 2D. For illustration we evaluate the dielectric function in a simple effective medium approximation and show that at the second point it turns negative. We reproduce the experimental data on a typical Mott insulator such as MnO, demonstrating the presence of the two points clearly. We discuss other experiments for studies of the phase separation state and a similar phase separation in superconductors with insulating inclusions. PMID:19113498

  16. Catalytic graphitization of carbon aerogels by transition metals

    SciTech Connect

    Maldonado-Hodar, F.J.; Moreno-Castilla, C.; Rivera-Utrilla, J.; Hanzawa, Y.; Yamada, Y.

    2000-05-02

    Carbon aerogels and Cr-, Fe-, Co-, and Ni-containing carbon aerogels were obtained by pyrolysis, at temperatures between 500 and 1,800 C, of the corresponding aerogels prepared by the sol-gel method from polymerization of resorcinol with formaldehyde. All samples were characterized by mercury porosimetry, nitrogen adsorption, X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. Results obtained show that carbon aerogels are, essentially, macroporous materials that maintain large pore volumes even after pyrolysis at 1,800 C. For pyrolysis at temperatures higher than 1,000 C, the presence of the transition metals produced graphitized areas with three-dimensional stacking order, as shown by HRTEM, XRD, and Raman spectroscopy. HRTEM also showed that the metal-carbon containing aerogels were formed by polyhedral structures. Cr and Fe seem to be the best catalysts for graphitization of carbon aerogels.

  17. Control of plasmonic nanoantennas by reversible metal-insulator transition.

    PubMed

    Abate, Yohannes; Marvel, Robert E; Ziegler, Jed I; Gamage, Sampath; Javani, Mohammad H; Stockman, Mark I; Haglund, Richard F

    2015-01-01

    We demonstrate dynamic reversible switching of VO2 insulator-to-metal transition (IMT) locally on the scale of 15 nm or less and control of nanoantennas, observed for the first time in the near-field. Using polarization-selective near-field imaging techniques, we simultaneously monitor the IMT in VO2 and the change of plasmons on gold infrared nanoantennas. Structured nanodomains of the metallic VO2 locally and reversibly transform infrared plasmonic dipole nanoantennas to monopole nanoantennas. Fundamentally, the IMT in VO2 can be triggered on femtosecond timescale to allow ultrafast nanoscale control of optical phenomena. These unique features open up promising novel applications in active nanophotonics. PMID:26358623

  18. Transition metal catalysis in the mitochondria of living cells.

    PubMed

    Tomás-Gamasa, María; Martínez-Calvo, Miguel; Couceiro, José R; Mascareñas, José L

    2016-01-01

    The development of transition metal catalysts capable of promoting non-natural transformations within living cells can open significant new avenues in chemical and cell biology. Unfortunately, the complexity of the cell makes it extremely difficult to translate standard organometallic chemistry to living environments. Therefore, progress in this field has been very slow, and many challenges, including the possibility of localizing active metal catalysts into specific subcellular sites or organelles, remain to be addressed. Herein, we report a designed ruthenium complex that accumulates preferentially inside the mitochondria of mammalian cells, while keeping its ability to react with exogenous substrates in a bioorthogonal way. Importantly, we show that the subcellular catalytic activity can be used for the confined release of fluorophores, and even allows selective functional alterations in the mitochondria by the localized transformation of inert precursors into uncouplers of the membrane potential. PMID:27600651

  19. Control of plasmonic nanoantennas by reversible metal-insulator transition

    PubMed Central

    Abate, Yohannes; Marvel, Robert E.; Ziegler, Jed I.; Gamage, Sampath; Javani, Mohammad H.; Stockman, Mark I.; Haglund, Richard F.

    2015-01-01

    We demonstrate dynamic reversible switching of VO2 insulator-to-metal transition (IMT) locally on the scale of 15 nm or less and control of nanoantennas, observed for the first time in the near-field. Using polarization-selective near-field imaging techniques, we simultaneously monitor the IMT in VO2 and the change of plasmons on gold infrared nanoantennas. Structured nanodomains of the metallic VO2 locally and reversibly transform infrared plasmonic dipole nanoantennas to monopole nanoantennas. Fundamentally, the IMT in VO2 can be triggered on femtosecond timescale to allow ultrafast nanoscale control of optical phenomena. These unique features open up promising novel applications in active nanophotonics. PMID:26358623

  20. Transition-metal ion impurities in KTaO3

    NASA Astrophysics Data System (ADS)

    Leung, Kevin

    2002-01-01

    A systematic study of transition-metal impurity centers in pervoskites is undertaken by considering isolated Co2+, Fe3+, and Cu2+ point defects in KTaO3. Within the generalized gradient approximation (GGA), the defect center magnetic moments agree with experiments, except for A-site Fe3+ complexes which exhibit 3μB and 5μB structures competitive in energies. It is argued that the anomaly is an artifact of GGA, which underestimates Fe3+ 3d electron correlations. Large (~1 Å) off-center displacements of K-substituting impurities obtain due to metal-oxygen covalent bonding. These A-site dipoles exhibit relaxation dynamics barriers which agree well with experiments. The Fe3+-OI 2- complex is considered in some detail; it exhibits Fe-O bonds considerably shorter than shell-model predictions.

  1. Ising superconductivity and Majorana fermions in transition-metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Zhou, Benjamin T.; Yuan, Noah F. Q.; Jiang, Hong-Liang; Law, K. T.

    2016-05-01

    In monolayer transition-metal dichalcogenides (TMDs), electrons in opposite K valleys are subject to opposite effective Zeeman fields, which are referred to as Ising spin-orbit coupling (SOC) fields. The Ising SOC, originating from in-plane mirror symmetry breaking, pins the electron spins to the out-of-plane directions, and results in Ising superconducting states with strongly enhanced upper critical fields. Here, we show that the Ising SOC generates equal-spin-triplet Cooper pairs with spin polarized in the in-plane directions. Importantly, the spin-triplet Cooper pairs can induce superconducting pairings in a half-metal wire placed on top of the TMD and result in a topological superconductor with Majorana end states. Direct ways to detect equal-spin triplet Cooper pairs and the differences between Ising superconductors and Rashba superconductors are discussed.

  2. Transition Metal-Free Tryptophan-Selective Bioconjugation of Proteins.

    PubMed

    Seki, Yohei; Ishiyama, Takashi; Sasaki, Daisuke; Abe, Junpei; Sohma, Youhei; Oisaki, Kounosuke; Kanai, Motomu

    2016-08-31

    Chemical modifications of native proteins can facilitate production of supernatural protein functions that are not easily accessible by complementary methods relying on genetic manipulations. However, accomplishing precise control over selectivity while maintaining structural integrity and homogeneity still represents a formidable challenge. Herein, we report a transition metal-free method for tryptophan-selective bioconjugation of proteins that is based on an organoradical and operates under ambient conditions. This method exhibits low levels of cross-reactivity and leaves higher-order structures of the protein and various functional groups therein unaffected. The strategy to target less abundant amino acids contributes to the formation of structurally homogeneous conjugates, which may even be suitable for protein crystallography. The absence of toxic metals and biochemically incompatible conditions allows a rapid functional modulation of native proteins such as antibodies and pathogenic aggregative proteins, and this method may thus easily find therapeutic applications. PMID:27534812

  3. Correlated electron pseudopotentials for 3d-transition metals

    SciTech Connect

    Trail, J. R. Needs, R. J.

    2015-02-14

    A recently published correlated electron pseudopotentials (CEPPs) method has been adapted for application to the 3d-transition metals, and to include relativistic effects. New CEPPs are reported for the atoms Sc − Fe, constructed from atomic quantum chemical calculations that include an accurate description of correlated electrons. Dissociation energies, molecular geometries, and zero-point vibrational energies of small molecules are compared with all electron results, with all quantities evaluated using coupled cluster singles doubles and triples calculations. The CEPPs give better results in the correlated-electron calculations than Hartree-Fock-based pseudopotentials available in the literature.

  4. Cross-plane thermal properties of transition metal dichalcogenides

    SciTech Connect

    Muratore, C.; Varshney, V.; Gengler, J. J.; Hu, J. J.; Bultman, J. E.; Smith, T. M.; Shamberger, P. J.; Roy, A. K.; Voevodin, A. A.; Qiu, B.; Ruan, X.

    2013-02-25

    In this work, we explore the thermal properties of hexagonal transition metal dichalcogenide compounds with different average atomic masses but equivalent microstructures. Thermal conductivity values of sputtered thin films were compared to bulk crystals. The comparison revealed a >10 fold reduction in thin film thermal conductivity. Structural analysis of the films revealed a turbostratic structure with domain sizes on the order of 5-10 nm. Estimates of phonon scattering lengths at domain boundaries based on computationally derived group velocities were consistent with the observed film microstructure, and accounted for the reduction in thermal conductivity compared to values for bulk crystals.

  5. Rare earth-transition metal scrap treatment method

    DOEpatents

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.; Lincoln, L.P.

    1992-02-11

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. 3 figs.

  6. Rare earth-transition metal scrap treatment method

    DOEpatents

    Schmidt, Frederick A.; Peterson, David T.; Wheelock, John T.; Jones, Lawrence L.; Lincoln, Lanny P.

    1992-02-11

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets.

  7. Metal-insulator transition by holographic charge density waves.

    PubMed

    Ling, Yi; Niu, Chao; Wu, Jian-Pin; Xian, Zhuo-Yu; Zhang, Hongbao

    2014-08-29

    We construct a gravity dual for charge density waves (CDWs) in which the translational symmetry along one spatial direction is spontaneously broken. Our linear perturbation calculation on the gravity side produces the frequency dependence of the optical conductivity, which exhibits the two familiar features of CDWs, namely, the pinned collective mode and gapped single-particle excitation. These two features indicate that our gravity dual also provides a new mechanism to implement the metal to insulator phase transition by CDWs, which is further confirmed by the fact that dc conductivity decreases with the decreased temperature below the critical temperature. PMID:25215974

  8. Ionically-mediated electromechanical hysteresis in transition metal oxides

    SciTech Connect

    Kim, Yunseok; Kumar, Amit; Jesse, Stephen; Kalinin, Sergei V

    2012-01-01

    Electromechanical activity, remanent polarization states, and hysteresis loops in paraelectric TiO2 and SrTiO3 are observed. The coupling between the ionic dynamics and incipient ferroelectricity in these materials is analyzed using extended Ginsburg Landau Devonshire (GLD) theory. The possible origins of electromechanical coupling including ionic dynamics, surface-charge induced electrostriction, and ionically-induced ferroelectricity are identified. For the latter, the ionic contribution can change the sign of first order GLD expansion coefficient, rendering material effectively ferroelectric. These studies provide possible explanation for ferroelectric-like behavior in centrosymmetric transition metal oxides.

  9. Correlated electron pseudopotentials for 3d-transition metals

    NASA Astrophysics Data System (ADS)

    Trail, J. R.; Needs, R. J.

    2015-02-01

    A recently published correlated electron pseudopotentials (CEPPs) method has been adapted for application to the 3d-transition metals, and to include relativistic effects. New CEPPs are reported for the atoms Sc - Fe, constructed from atomic quantum chemical calculations that include an accurate description of correlated electrons. Dissociation energies, molecular geometries, and zero-point vibrational energies of small molecules are compared with all electron results, with all quantities evaluated using coupled cluster singles doubles and triples calculations. The CEPPs give better results in the correlated-electron calculations than Hartree-Fock-based pseudopotentials available in the literature.

  10. Theoretical study of electron correlation effects in transition metal dimers

    NASA Astrophysics Data System (ADS)

    Das, Guru P.; Jaffe, Richard L.

    1984-08-01

    Introduction of partially localized orbitals (PLOs) is shown to reduce the number of configurations needed to describe the bonding in transition metal clusters. Using this formalism, estimates are made of the molecular electron correlation energy that arises from including such terms as 3d → 3d', 3p → 3p' and 4s 2 → 4p 2 in the wavefunction. When this estimate of the additional correlation is added to the CAS SCF results of Walch, Bauschlicher, Roos and Nelin improved interaction potentials are obtained for the dimers V 2 and Cr 2.

  11. Ideal tensile strength of B2 transition-metal aluminides

    NASA Astrophysics Data System (ADS)

    Li, Tianshu; Morris, J. W., Jr.; Chrzan, D. C.

    2004-08-01

    The ideal tensile strengths of the B2 -type (CsCl) transition-metal aluminides FeAl , CoAl , and NiAl have been investigated using an ab initio electronic structure total energy method. The three materials exhibit dissimilar mechanical behaviors under the simulated ideal tensile tests along [001], [110], and [111] directions. FeAl is weakest in tension along [001] whereas CoAl and NiAl are strongest in the same direction. The weakness of FeAl along [001] direction is attributed to the instability introduced by the filling of antibonding d states.

  12. Negative ion photoelectron spectroscopy of bare transition metal dimers

    NASA Astrophysics Data System (ADS)

    Barker, Beau J.

    This thesis contains gas phase negative ion photoelectron spectra of Mo2, MoV, CrCu, MoCu and Cu2. Spectra were taken with 488 nm and 514 nm light at a resolution of 4-5 meV. Information such as electron affinities, vibrational frequencies, anharmonicities and bond dissociation energies are reported for the ground and excited electronic states of both the anion and neutral species. Theoretical calculations at the density functional level are also reported for these species. Experiment and theory are used to analyze the bonding in these bare transition metal dimers.

  13. A simple, general route to 2-pyridylidene transition metal complexes.

    PubMed

    Roselló-Merino, Marta; Díez, Josefina; Conejero, Salvador

    2010-12-28

    Pyridinium 2-carboxylates decompose thermally in the presence of a variety of late transition metal precursors to yield the corresponding 2-pyridylidene-like complexes. The mild reaction conditions and structural diversity that can be generated in the heterocyclic ring make this method an attractive alternative for the synthesis of 2-pyridylidene complexes. IR spectra of the Ir(i) carbonyl compounds [IrCl(NHC)(CO)(2)] indicate that these N-heterocyclic carbene ligands are among the strongest σ-electron donors. PMID:21052586

  14. Functionalization of Two-Dimensional Transition-Metal Dichalcogenides.

    PubMed

    Chen, Xin; McDonald, Aidan R

    2016-07-01

    Two-dimensional (2D) layered transition-metal dichalcogenides (TMDs) are a fascinating class of nanomaterials that have the potential for application in catalysis, electronics, photonics, energy storage, and sensing. TMDs are rather inert, and thus pose problems for chemical derivatization. However, to further modify the properties of TMDs and fully harness their capabilities, routes towards their chemical functionalization must be identified. Herein, recent efforts toward the chemical (bond-forming) functionalization of 2D TMDs are critically reviewed. Recent successes are highlighted, along with areas where further detailed analyses and experimentation are required. This burgeoning field is very much in its infancy but has already provided several important breakthroughs. PMID:26848815

  15. Band engineering in transition metal dichalcogenides: Stacked versus lateral heterostructures

    NASA Astrophysics Data System (ADS)

    Guo, Yuzheng; Robertson, John

    2016-06-01

    We calculate a large difference in the band alignments for transition metal dichalcogenide (TMD) heterojunctions when arranged in the stacked layer or lateral (in-plane) geometries, using direct supercell calculations. The stacked case follows the unpinned limit of the electron affinity rule, whereas the lateral geometry follows the strongly pinned limit of alignment of charge neutrality levels. TMDs therefore provide one of the few clear tests of band alignment models, whereas three-dimensional semiconductors give less stringent tests because of accidental chemical trends in their properties.

  16. Transition metal catalysis in the generation of petroleum: A genetic anomaly in Ordovician oils

    SciTech Connect

    Mango, F.D. )

    1992-10-01

    The transition metals, captured from sedimentary waters by chlorophyll, have been proposed as the catalytic agents that convert n-alkane biolipids into the rearranged light hydrocarbons in petroleum. Certain ancient oils (Ordovician) display a depletion in chlorophyll, suggesting that they may have been derived from sedimentary rocks also depleted in transition metals. These oils show anomalously high concentrations of n-heptane relative to their respective rearranged isoalkane and cycloalkane products. This extraordinary enrichment in light n-alkanes appears unique to the chlorophyll-deficient Ordovician oils. The high concentrations of n-heptane may have resulted from the thermal cracking of higher n-alkanes, which are known to be dominant components of the kerogenous precursors to the Ordovician oils. However, the methylhexanes, which have no thermolytic precursors enriched in the kerogenous source, show a proportionate increase in concentration. The contention, therefore, that thermal cracking might explain the n-heptane anomaly is untenable since a kerogenous starting material enriched in n-alkanes and depleted in isoalkanes cannot reasonably crack to a light hydrocarbon product enriched in both n-alkanes and isoalkanes. According to a postulated catalytic cycle, n-alkane and isoalkane concentrations are controlled by the relative rates of two divergent pathways. If the various transition metals that may catalyze these reactions differ in activity, then a unique distribution of metals created by a chlorophyll deficiency could explain the Ordovician anomaly.

  17. He-He and He-metal interactions in transition metals from first-principles

    NASA Astrophysics Data System (ADS)

    Zhang, Pengbo; Zou, Tingting; Zhao, Jijun

    2015-12-01

    We investigated the atomistic mechanism of He-He and He-metal interactions in bcc transition metals (V, Nb, Ta, Cr, Mo, W, and Fe) using first-principles methods. We calculated formation energy and binding energy of He-He pair as function of distance within the host lattices. The strengths of He-He attraction in Cr, Mo, W, and Fe (0.37-1.11 eV) are significantly stronger than those in V, Nb, and Ta (0.06-0.17 eV). Such strong attractions mean that He atoms would spontaneously aggregate inside perfect Cr, Mo, W, and Fe host lattices in absence of defects like vacancies. The most stable configuration of He-He pair is <100> dumbbell in groups VB metals, whereas it adopts close <110> configuration in Cr, Mo, and Fe, and close <111> configuration in W. Overall speaking, the He-He equilibrium distances of 1.51-1.55 Å in the group VIB metals are shorter than 1.65-1.70 Å in the group VB metals. Moreover, the presence of interstitial He significantly facilitates vacancy formation and this effect is more pronounced in the group VIB metals. The present calculations help understand the He-metal/He-He interaction mechanism and make a prediction that He is easier to form He cluster and bubbles in the groups VIB metals and Fe.

  18. Universal binding energy relations in metallic adhesion

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. J.

    1984-01-01

    Rose, Smith, and Ferrante have discovered scaling relations which map the adhesive binding energy calculated by Ferrante and Smith onto a single universal binding energy curve. These binding energies are calculated for all combinations of Al(111), Zn(0001), Mg(0001), and Na(110) in contact. The scaling involves normalizing the energy by the maximum binding energy and normalizing distances by a suitable combination of Thomas-Fermi screening lengths. Rose et al. have also found that the calculated cohesive energies of K, Ba, Cu, Mo, and Sm scale by similar simple relations, suggesting the universal relation may be more general than for the simple free electron metals for which it was derived. In addition, the scaling length was defined more generally in order to relate it to measurable physical properties. Further this universality can be extended to chemisorption. A simple and yet quite accurate prediction of a zero temperature equation of state (volume as a function of pressure for metals and alloys) is presented. Thermal expansion coefficients and melting temperatures are predicted by simple, analytic expressions, and results compare favorably with experiment for a broad range of metals.

  19. Brittle-to-Ductile Transition in Metallic Glass Nanowires.

    PubMed

    Şopu, D; Foroughi, A; Stoica, M; Eckert, J

    2016-07-13

    When reducing the size of metallic glass samples down to the nanoscale regime, experimental studies on the plasticity under uniaxial tension show a wide range of failure modes ranging from brittle to ductile ones. Simulations on the deformation behavior of nanoscaled metallic glasses report an unusual extended strain softening and are not able to reproduce the brittle-like fracture deformation as found in experiments. Using large-scale molecular dynamics simulations we provide an atomistic understanding of the deformation mechanisms of metallic glass nanowires and differentiate the extrinsic size effects and aspect ratio contribution to plasticity. A model for predicting the critical nanowire aspect ratio for the ductile-to-brittle transition is developed. Furthermore, the structure of brittle nanowires can be tuned to a softer phase characterized by a defective short-range order and an excess free volume upon systematic structural rejuvenation, leading to enhanced tensile ductility. The presented results shed light on the fundamental deformation mechanisms of nanoscaled metallic glasses and demarcate ductile and catastrophic failure. PMID:27248329

  20. Transition metal complexes of phyllobilins - a new realm of bioinorganic chemistry.

    PubMed

    Li, Chengjie; Kräutler, Bernhard

    2015-06-14

    Natural cyclic tetrapyrroles feature outstanding capacity for binding transition metal ions, furnishing Nature with the important metallo-porphyrinoid 'Pigments of Life', such as heme, chlorophyll (Chl) and vitamin B12. In contrast, linear tetrapyrroles are not generally ascribed a biologically relevant ability for metal-binding. Indeed, when heme or Chl are degraded to natural linear tetrapyrroles, their central Fe- or Mg-ions are set free. Some linear tetrapyrroles are, however, effective multi-dentate ligands and their transition metal complexes have remarkable chemical properties. The focus of this short review is centred on such complexes of the linear tetrapyrroles derived from natural Chl-breakdown, called phyllobilins. These natural bilin-type compounds are massively produced in Nature and in highly visible processes. Colourless non-fluorescing Chl-catabolites (NCCs) and the related dioxobilin-type NCCs, which typically accumulate in leaves as 'final' products of Chl-breakdown, show low affinity for transition metal-ions. However, NCCs are oxidized in leaves to give less saturated coloured phyllobilins, such as yellow or pink Chl-catabolites (YCCs or PiCCs). YCCs and PiCCs are ligands for various biologically relevant transition metal-ions, such as Zn(ii)-, Ni(ii)- and Cu(ii)-ions. Complexation of Zn(ii)- and Cd(ii)-ions by the effectively tridentate PiCC produces blue metal-complexes that exhibit an intense red fluorescence, thus providing a tool for the sensitive detection of these metal ions. Outlined here are fundamental aspects of structure and metal coordination of phyllobilins, including a comparison with the corresponding properties of bilins. This knowledge may be valuable in the quest of finding possible biological roles of the phyllobilins. Thanks to their capacity for metal-ion coordination, phyllobilins could, e.g., be involved in heavy-metal transport and detoxification, and some of their metal-complexes could act as sensitizers for singlet

  1. Transition metal complexes of phyllobilins – a new realm of bioinorganic chemistry

    PubMed Central

    Li, Chengjie

    2015-01-01

    Natural cyclic tetrapyrroles feature outstanding capacity for binding transition metal ions, furnishing Nature with the important metallo-porphyrinoid ‘Pigments of Life’, such as heme, chlorophyll (Chl) and vitamin B12. In contrast, linear tetrapyrroles are not generally ascribed a biologically relevant ability for metal-binding. Indeed, when heme or Chl are degraded to natural linear tetrapyrroles, their central Fe- or Mg-ions are set free. Some linear tetrapyrroles are, however, effective multi-dentate ligands and their transition metal complexes have remarkable chemical properties. The focus of this short review is centred on such complexes of the linear tetrapyrroles derived from natural Chl-breakdown, called phyllobilins. These natural bilin-type compounds are massively produced in Nature and in highly visible processes. Colourless non-fluorescing Chl-catabolites (NCCs) and the related dioxobilin-type NCCs, which typically accumulate in leaves as ‘final’ products of Chl-breakdown, show low affinity for transition metal-ions. However, NCCs are oxidized in leaves to give less saturated coloured phyllobilins, such as yellow or pink Chl-catabolites (YCCs or PiCCs). YCCs and PiCCs are ligands for various biologically relevant transition metal-ions, such as Zn(ii)-, Ni(ii)- and Cu(ii)-ions. Complexation of Zn(ii)- and Cd(ii)-ions by the effectively tridentate PiCC produces blue metal-complexes that exhibit an intense red fluorescence, thus providing a tool for the sensitive detection of these metal ions. Outlined here are fundamental aspects of structure and metal coordination of phyllobilins, including a comparison with the corresponding properties of bilins. This knowledge may be valuable in the quest of finding possible biological roles of the phyllobilins. Thanks to their capacity for metal-ion coordination, phyllobilins could, e.g., be involved in heavy-metal transport and detoxification, and some of their metal-complexes could act as sensitizers for

  2. A Initio Lcao Electronic Structure Calculations of Layered Transition Metal Compounds.

    NASA Astrophysics Data System (ADS)

    Dawson, William G.

    1987-09-01

    Available from UMI in association with The British Library. In this work the electronic structure of three systems of layered transition metal compounds are examined using an ab initio tight binding (LCAO) method using the Xalpha exchange/correlation approximation: group VI ditellurides, group IV trichalcogenides and quaternary copper oxide defect-perovskites. A chemical pseudopotential argument is presented in order to justify the use of a small basis set of atomic orbitals. The group VI transition metal compounds MoTe_2 and WTe _2 show strong metal-metal interactions and MoTe_2 undergoes an unusual phase transition with the lattice parameter perpendicular to the layers decreasing with increasing temperature. The group IV transition metal trichalcogenides provide a useful series for study due to their quasi-1-dimensional character and the occurrence of two closely related structural variants. The atypical compound ZrTe_3 is given special attention because of its apparent semimetallic nature. The final group of compounds studied are the high Tc superconducting ceramics Ba-La-Cu-O and Ba-Y-Cu-O. The technological importance of compounds with zero resistance and showing the Meissner effect (expelling magnetic fields) above liquid nitrogen temperatures and the, as yet, undefined nature of the mechanism of superconductivity stresses the need to carefully examine the electronic structure of these materials. The role of oxygen vacancies, the charge state of the copper ions and the possibility of structural phase transitions are some of the topics considered here. The use of an atomic-orbital basis allows a comparatively straightforward description of the chemical bonding in a crystal--especially useful when the unit cell contains a large number of atoms.

  3. Effects of d-band shape on the surface reactivity of transition-metal alloys

    NASA Astrophysics Data System (ADS)

    Xin, Hongliang; Vojvodic, Aleksandra; Voss, Johannes; Nørskov, Jens K.; Abild-Pedersen, Frank

    2014-03-01

    The d-band shape of a metal site, governed by the local geometry and composition of materials, plays an important role in determining trends of the surface reactivity of transition-metal alloys. We discuss this phenomenon using the chemisorption of various adsorbates such as C, N, O, and their hydrogenated species on Pd bimetallic alloys as an example. For many alloys, the d-band center, even with consideration of the d-band width and sp electrons, can not describe variations in reactivity from one surface to another. We investigate the effect of the d-band shape, represented by higher moments of the d band, on the local electronic structure of adsorbates, e.g., energy and filling of adsorbate-metal antibonding states. The upper d-band edge ɛu, defined as the highest peak position of the Hilbert transform of the density of states projected onto d orbitals of an active metal site, is identified as an electronic descriptor for the surface reactivity of transition metals and their alloys, regardless of variations in the d-band shape. The utilization of the upper d-band edge with scaling relations enables a considerable reduction of the parameter space in search of improved alloy catalysts and further extends our understanding of the relationship between the electronic structure and chemical reactivity of metal surfaces.

  4. DFT-GGA errors in NO chemisorption energies on (111) transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Mason, Sara E.

    2014-03-01

    We investigate whether well-known DFT-GGA errors in predicting the chemisorption energy (Echem) of CO on transition metal surfaces manifest in analogous NO chemisorption systems. While widely investigated in the case of CO/metal, analogous DFT-GGA errors have long been claimed to be absent in NO/metal chemisorption. Here, we provide theoretical evidence of systematic enhanced back-donation in NO/metal chemisorption at the DFT-GGA level. We use electronic structure analysis to show that the partially filled molecular NO 2π* orbital rehybridizes with the transition metal d-band to form new bonding and anti-bonding states. We relate the back-donation charge transfer associated with chemisorption to the promotion of an electron from the 5σ orbital to the 2π* orbital in the gas-phase NO G2Σ- ← X2Π excitation. We establish linear relationships between Echem and ΔEG ← X and formulate an Echem correction scheme in the style of Mason et al. [Physical Review B 69, 161401(R)]. We apply the NO Echem correction method to the (111) surfaces of Pt, Pd, Rh, and Ir, with NO chemisorption modeled at a coverage of 0.25 ML. We note that the slope of Echemvs. ΔEG ← X and the dipole moment depend strongly on adsorption site for each metal, and we construct an approximate correction scheme which we test using NO/Pt(100) chemisorption.

  5. Electronic and bonding analysis of hardness in pyrite-type transition-metal pernitrides

    NASA Astrophysics Data System (ADS)

    Liu, Z. T. Y.; Gall, D.; Khare, S. V.

    2014-10-01

    Most commonly known hard transition-metal nitrides crystallize in rocksalt structure (B1). The discovery of ultraincompressible pyrite-type PtN2 10 years ago has raised a question about the cause of its exceptional mechanical properties. We answer this question by a systematic computational analysis of the pyrite-type PtN2 and other transition-metal pernitrides (MN2) with density functional theory. Apart from PtN2, the three hardest phases are found among them in the 3d transition-metal period. They are MnN2, CoN2, and NiN2, with computed Vickers hardness (HV) values of 19.9 GPa, 16.5 GPa, and 15.7 GPa, respectively. Harder than all of these is PtN2, with a HV of 23.5 GPa. We found the following trends and correlations that explain the origin of hardness in these pernitrides. (a) Charge transfer from M to N controls the length of the N-N bond, resulting in a correlation with bulk modulus, dominantly by providing Coulomb repulsion between the pairing N atoms. (b) Elastic constant C44, an indicator of mechanical stability and hardness is correlated with total density of states at EF, an indicator of metallicity. (c) Often cited monotonic variation of HV and Pugh's ratio with valence electron concentration found in rocksalt-type early transition-metal nitrides is not evident in this structure. (d) The change in M-M bond strength under a shearing strain indicated by crystal orbital Hamilton population is predictive of hardness. This is a direct connection between a specific bond and shear related mechanical properties. This panoptic view involving ionicity, metallicity, and covalency is essential to obtain a clear microscopic understanding of hardness.

  6. Transition radiation in metal-metal multilayer nanostructures as a medical source of hard x-ray radiation

    SciTech Connect

    Pokrovsky, A. L.; Kaplan, A. E.; Shkolnikov, P. L.

    2006-08-15

    We show that a periodic metal-metal multilayer nanostructure can serve as an efficient source of hard x-ray transition radiation. Our research effort is aimed at developing an x-ray source for medical applications, which is based on using low-energy relativistic electrons. The approach toward choosing radiator-spacer couples for the generation of hard x-ray resonant transition radiation by few-MeV electrons traversing solid multilayer structures for the energies of interest to medicine (30-50 keV) changes dramatically compared with that for soft x-ray radiation. We show that one of the main factors in achieving the required resonant line is the absence of the contrast of the refractive indices between the spacer and the radiator at the far wings of the radiation line; for that purpose, the optimal spacer, as a rule, should have a higher atomic number than the radiator. Having experimental goals in mind, we have considered also the unwanted effects due to bremsstrahlung radiation, absorption and scattering of radiated photons, detector-related issues, and inhibited coherence of transition radiation due to random deviation of spacing between the layers. Choosing as a model example a Mo-Ag radiator-spacer pair of materials, we demonstrate that the x-ray transition radiation line can be well resolved with the use of spatial and frequency filtering.

  7. Irving Langmuir Prize Lecture - A predictive theory of transition metal surface catalysis

    NASA Astrophysics Data System (ADS)

    Norskov, Jens

    2015-03-01

    The lecture will outline a theory of heterogeneous catalysis that allows a detailed understanding of elementary chemical processes at transition metal surfaces and singles out the most important parameters determining catalytic activity and selectivity. It will be shown how scaling relations allow the identification of descriptors of catalytic activity and how they can be used to construct activity and selectivity maps. The maps can be used to define catalyst design rules and examples of their use will be given.

  8. Free energy contributions to the hcp-bcc transformation in transition metals

    SciTech Connect

    Moroni, E.G.; Grimvall, G.; Jarlborg, T.

    1996-04-01

    The electronic and vibrational free energies of some hcp and bcc transition metals are computed {ital ab} {ital initio}. The vibrational part is obtained from a total-energy calculation over lattices with atoms randomly displaced according to a Gaussian distribution. The relative importance of electronic and vibrational excitations in the stabilization of the high-temperature bcc structure is clarified. {copyright} {ital 1996 The American Physical Society.}

  9. Exfoliation of large-area transition metal chalcogenide single layers

    PubMed Central

    Magda, Gábor Zsolt; Pető, János; Dobrik, Gergely; Hwang, Chanyong; Biró, László P.; Tapasztó, Levente

    2015-01-01

    Isolating large-areas of atomically thin transition metal chalcogenide crystals is an important but challenging task. The mechanical exfoliation technique can provide single layers of the highest structural quality, enabling to study their pristine properties and ultimate device performance. However, a major drawback of the technique is the low yield and small (typically < 10 μm) lateral size of the produced single layers. Here, we report a novel mechanical exfoliation technique, based on chemically enhanced adhesion, yielding MoS2 single layers with typical lateral sizes of several hundreds of microns. The idea is to exploit the chemical affinity of the sulfur atoms that can bind more strongly to a gold surface than the neighboring layers of the bulk MoS2 crystal. Moreover, we found that our exfoliation process is not specific to MoS2, but can be generally applied for various layered chalcogenides including selenites and tellurides, providing an easy access to large-area 2D crystals for the whole class of layered transition metal chalcogenides. PMID:26443185

  10. Ultrafast exciton relaxation in monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Thilagam, A.

    2016-04-01

    We examine a mechanism by which excitons undergo ultrafast relaxation in common monolayer transition metal dichalcogenides. It is shown that at densities ≈1 × 1011 cm-2 and temperatures ≤60 K, excitons in well known monolayers (MoS2, MoSe2, WS2, and WSe2) exist as point-like structureless electron-hole quasi-particles. We evaluate the average rate of exciton energy relaxation due to acoustic phonons via the deformation potential and the piezoelectric coupling mechanisms and examine the effect of spreading of the excitonic wavefunction into the region perpendicular to the monolayer plane. Our results show that the exciton relaxation rate is enhanced with increase in the exciton temperature, while it is decreased with increase in the lattice temperature. Good agreements with available experimental data are obtained when the calculations are extrapolated to room temperatures. A unified approach taking into account the deformation potential and piezoelectric coupling mechanisms shows that exciton relaxation induced by phonons is as significant as defect assisted scattering and trapping of excitons by surface states in monolayer transition metal dichalcogenides.

  11. Magnetism In 3d Transition Metals at High Pressures

    SciTech Connect

    Iota, V

    2006-02-09

    This research project examined the changes in electronic and magnetic properties of transition metals and oxides under applied pressures, focusing on complex relationship between magnetism and phase stability in these correlated electron systems. As part of this LDRD project, we developed new measurement techniques and adapted synchrotron-based electronic and magnetic measurements for use in the diamond anvil cell. We have performed state-of-the-art X-ray spectroscopy experiments at the dedicated high-pressure beamline HP-CAT (Sector 16 Advanced Photon Source, Argonne National Laboratory), maintained in collaboration with of University of Nevada, Las Vegas and Geophysical Laboratory of The Carnegie Institution of Washington. Using these advanced measurements, we determined the evolution of the magnetic order in the ferromagnetic 3d transition metals (Fe, Co and Ni) under pressure, and found that at high densities, 3d band broadening results in diminished long range magnetic coupling. Our experiments have allowed us to paint a unified picture of the effects of pressure on the evolution of magnetic spin in 3d electron systems. The technical and scientific advances made during this LDRD project have been reported at a number of scientific meetings and conferences, and have been submitted for publication in technical journals. Both the technical advances and the physical understanding of correlated systems derived from this LDRD are being applied to research on the 4f and 5f electron systems under pressure.

  12. Stabilization of Small Boron Cage by Transition Metal Encapsulation

    NASA Astrophysics Data System (ADS)

    Zhang, Lijun; Lv, Jian; Wang, Yanchao; Ma, Yanming

    2015-03-01

    The discovery of chemically stable fullerene-like structures formed by elements other than carbon has been long-standing desired. On this aspect significant efforts have centered around boron, only one electron deficient compared with carbon. However, during the past decade a large number of experimental and theoretical studies have established that small boron clusters are either planar/quasi-planar or forming double-ring tubular structures. Until recently, two all-boron fullerenes have been independently discovered: B38 proposed by our structure searching calculations and B40 observed in a joint experimental and theoretical study. Here we extend our work to the even smaller boron clusters and propose an effective routine to stabilize them by transition metal encapsulation. By combining swarm-intelligence structure searching and first-principles calculations, we have systematically investigated the energy landscapes of transition-metal-doped MB24 clusters (M = Ti, Zr, Hf, Cr, Mo, W, Fe, Ru and Os). Two stable symmetric endohedral boron cages, MoB24 and WB24 are identified. The stability of them can be rationalized in terms of their unique 18-electron closed-shell electronic structures. Funded by Recruitment Program of Global Experts of China and China Postdoctoral Science Foundation.

  13. Anderson metal-insulator transitions with classical magnetic impurities

    NASA Astrophysics Data System (ADS)

    Jung, Daniel; Kettemann, Stefan; Slevin, Keith

    2016-04-01

    We study numerically the effects of classical magnetic impurities on the Anderson metal-insulator transition. We find that a small concentration of Heisenberg impurities enhances the critical disorder amplitude Wc with increasing exchange coupling strength J . The resulting scaling with J is analyzed which supports an anomalous scaling prediction by Wegner due to the combined breaking of time-reversal and spin-rotational symmetry. Moreover, we find that the presence of magnetic impurities lowers the critical correlation length exponent ν and enhances the multifractality parameter α0. The new value of ν improves the agreement with the value measured in experiments on the metal-insulator transition (MIT) in doped semiconductors like phosphor-doped silicon, where a finite density of magnetic moments is known to exist in the vicinity of the MIT. The results are obtained by a finite-size scaling analysis of the geometric mean of the local density of states which is calculated by means of the kernel polynomial method. We establish this combination of numerical techniques as a method to obtain critical properties of disordered systems quantitatively.

  14. Chemical Trends for Transition Metal Compound Bonding to Graphene

    NASA Astrophysics Data System (ADS)

    Lange, Bjoern; Blum, Volker

    2015-03-01

    Transition metal compounds are of interest as catalysts for the hydrogen evolution reaction (HER). However, a perfect candidate to replace expensive platinum has not yet been identified. To tailor a specific compound, several properties come into play. One is the bonding to the underlying substrate, for which π-bonded carbon nanostructures are promising candidates. Here we analyze the bonding of small transition metal compound nanoclusters to a graphene layer for a range of chemical compositions: MxAy (M = Mo, Ti; A = S, O, B, N, C). The clusters are generated by an unbiased random search algorithm. We perform total energy calculations based on density functional theory to identify lowest energy clusters. We calculate binding energies using the PBE and HSE functionals with explicit van der Waals treatment and benchmark those against RPA cluster calculations. Our results indicate that molybdenum-carbides and -nitrides tend to bond tightly to graphene. Mo-oxides and -sulfides show small binding energies, indicating van der Waals bonding.

  15. Anderson metal-insulator transitions with classical magnetic impurities

    SciTech Connect

    Jung, Daniel; Kettemann, Stefan

    2014-08-20

    We study the effects of classical magnetic impurities on the Anderson metal-insulator transition (AMIT) numerically. In particular we find that while a finite concentration of Ising impurities lowers the critical value of the site-diagonal disorder amplitude W{sub c}, in the presence of Heisenberg impurities, W{sub c} is first increased with increasing exchange coupling strength J due to time-reversal symmetry breaking. The resulting scaling with J is compared to analytical predictions by Wegner [1]. The results are obtained numerically, based on a finite-size scaling procedure for the typical density of states [2], which is the geometric average of the local density of states. The latter can efficiently be calculated using the kernel polynomial method [3]. Although still suffering from methodical shortcomings, our method proves to deliver results close to established results for the orthogonal symmetry class [4]. We extend previous approaches [5] by combining the KPM with a finite-size scaling analysis. We also discuss the relevance of our findings for systems like phosphor-doped silicon (Si:P), which are known to exhibit a quantum phase transition from metal to insulator driven by the interplay of both interaction and disorder, accompanied by the presence of a finite concentration of magnetic moments [6].

  16. Anderson metal-insulator transitions with classical magnetic impurities

    NASA Astrophysics Data System (ADS)

    Jung, Daniel; Kettemann, Stefan

    2014-08-01

    We study the effects of classical magnetic impurities on the Anderson metal-insulator transition (AMIT) numerically. In particular we find that while a finite concentration of Ising impurities lowers the critical value of the site-diagonal disorder amplitude Wc, in the presence of Heisenberg impurities, Wc is first increased with increasing exchange coupling strength J due to time-reversal symmetry breaking. The resulting scaling with J is compared to analytical predictions by Wegner [1]. The results are obtained numerically, based on a finite-size scaling procedure for the typical density of states [2], which is the geometric average of the local density of states. The latter can efficiently be calculated using the kernel polynomial method [3]. Although still suffering from methodical shortcomings, our method proves to deliver results close to established results for the orthogonal symmetry class [4]. We extend previous approaches [5] by combining the KPM with a finite-size scaling analysis. We also discuss the relevance of our findings for systems like phosphor-doped silicon (Si:P), which are known to exhibit a quantum phase transition from metal to insulator driven by the interplay of both interaction and disorder, accompanied by the presence of a finite concentration of magnetic moments [6].

  17. Properties of binary transition-metal arsenides (TAs)

    NASA Astrophysics Data System (ADS)

    Saparov, Bayrammurad; Mitchell, Jonathan E.; Sefat, Athena S.

    2012-08-01

    We present thermodynamic and transport properties of transition-metal (T) arsenides, TAs, with T = Sc to Ni (3d), Zr, Nb, Ru (4d), Hf and Ta (5d). Characterization of these binaries is carried out with powder x-ray diffraction, temperature- and field-dependent magnetization and resistivity, temperature-dependent heat capacity, Seebeck coefficient, and thermal conductivity. All binaries show metallic behavior except TaAs and RuAs. TaAs, NbAs, ScAs and ZrAs are diamagnetic, while CoAs, VAs, TiAs, NiAs and RuAs show approximately Pauli paramagnetic behavior. FeAs and CrAs undergo antiferromagnetic ordering below TN ≈ 71 K and TN ≈ 260 K, respectively. MnAs is a ferromagnet below TC ≈ 317 K and undergoes hexagonal-orthorhombic-hexagonal transitions at TS ≈ 317 K and 384 K, respectively. For TAs, Seebeck coefficients vary between + 40 and - 40 μV K-1 in the 2-300 K range, whereas thermal conductivity values stay below 18 W m-1 K-1. The Sommerfeld coefficients γ are less than 10 mJ K-2 mol-1. At room temperature with application of 8 T magnetic field, large positive magnetoresistance is found for TaAs (˜25%), MnAs (˜90%) and NbAs (˜75%).

  18. Ab initio tight-binding Hamiltonian for transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Fang, Shiang; Kuate Defo, Rodrick; Shirodkar, Sharmila N.; Lieu, Simon; Tritsaris, Georgios A.; Kaxiras, Efthimios

    2015-11-01

    We present an accurate ab initio tight-binding Hamiltonian for the transition metal dichalcogenides, MoS2, MoSe2, WS2, WSe2, with a minimal basis (the d orbitals for the metal atoms and p orbitals for the chalcogen atoms) based on a transformation of the Kohn-Sham density functional theory Hamiltonian to a basis of maximally localized Wannier functions. The truncated tight-binding Hamiltonian, with only on-site, first, and partial second neighbor interactions, including spin-orbit coupling, provides a simple physical picture and the symmetry of the main band-structure features. Interlayer interactions between adjacent layers are modeled by transferable hopping terms between the chalcogen p orbitals. The full-range tight-binding Hamiltonian can be reduced to hybrid-orbital k .p effective Hamiltonians near the band extrema that capture important low-energy excitations. These ab initio Hamiltonians can serve as the starting point for applications to interacting many-body physics including optical transitions and Berry curvature of bands, of which we give some examples.

  19. Transition metal oxide as anode interface buffer for impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Tang, Chao; Wang, Xu-Liang; Zhai, Wen-Juan; Liu, Rui-Lan; Rong, Zhou; Pang, Zong-Qiang; Jiang, Bing; Fan, Qu-Li; Huang, Wei

    2015-12-01

    Impedance spectroscopy is a strong method in electric measurement, which also shows powerful function in research of carrier dynamics in organic semiconductors when suitable mathematical physical models are used. Apart from this, another requirement is that the contact interface between the electrode and materials should at least be quasi-ohmic contact. So in this report, three different transitional metal oxides, V2O5, MoO3 and WO3 were used as hole injection buffer for interface of ITO/NPB. Through the impedance spectroscopy and PSO algorithm, the carrier mobilities and I-V characteristics of the NPB in different devices were measured. Then the data curves were compared with the single layer device without the interface layer in order to investigate the influence of transitional metal oxides on the carrier mobility. The careful research showed that when the work function (WF) of the buffer material was just between the work function of anode and the HOMO of the organic material, such interface material could work as a good bridge for carrier injection. Under such condition, the carrier mobility measured through impedance spectroscopy should be close to the intrinsic value. Considering that the HOMO (or LUMO) of most organic semiconductors did not match with the work function of the electrode, this report also provides a method for wide application of impedance spectroscopy to the research of carrier dynamics.

  20. Electron-phonon coupling and structural phase transitions in early transition metal oxides and chalcogenides

    NASA Astrophysics Data System (ADS)

    Farley, Katie Elizabeth

    Pronounced nonlinear variation of electrical transport characteristics as a function of applied voltage, temperature, magnetic field, strain, or photo-excitation is usually underpinned by electronic instabilities that originate from the complex interplay of spin, orbital, and lattice degrees of freedom. This dissertation focuses on two canonical materials that show pronounced discontinuities in their temperature-dependent resistivity as a result of electron---phonon and electron---electron correlations: orthorhombic TaS3 and monoclinic VO2. Strong electron-phonon interactions in transition metal oxides and chalcogenides results in interesting structural and electronic phase transitions. The properties of the material can be changed drastically in response to external stimuli such as temperature, voltage, or light. Understanding the influence these interactions have on the electronic structure and ultimately transport characteristics is of utmost importance in order to take these materials from a fundamental aspect to prospective applications such as low-energy interconnects, steep-slope transistors, and synaptic neural networks. This dissertation describes synthetic routes to nanoscale TaS3 and VO2, develops mechanistic understanding of their electronic instabilities, and in the case of the latter system explores modulation of the electronic and structural phase transition via the incorporation of substitutional dopant atoms. We start in chapter 2 with a detailed study of the synthesis and electronic transport properties of TaS3, which undergoes a Peierls' distortion to form a charge density wave. Scaling this material down to the nanometer-sized regime allows for interrogation of single or discrete phase coherent domains. Using electrical transport and broad band noise measurements, the dynamics of pinning/depinning of the charge density wave is investigated. Chapter 3 provides a novel synthetic approach to produce high-edge-density MoS2 nanorods. MoS2 is a

  1. Metal semiconductor phase transition in vanadium dioxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Lopez Noriega, Rene

    The goal of this research was to improve the understanding of the submicron VO2 formation in the near surface of a host material and to explore the possibility of size effects in the mechanics of the semiconductor to metal phase transition as well as in the optical properties of VO2. By means of ion implantation and thermal processing, we were able to produce variable-sized nanoscale VO2 precipitates embedded in SiO 2. The transition temperatures were found to be correlated with the size of the precipitates, in such a way that for smaller particles, both transitions were thermally delayed. A review of the energy barriers and other features involved in the transition, led us to conclude that regardless of that exact mechanism, the phase transition must proceed in a heterogeneous fashion. Smaller particles were expected to have a lower chance of containing a nucleation site and thus, they need a greater thermal driving force in order to activate them. VO2 precipitates were not only controlled in size but as an unexpected result they turned out to be produced in elongated shapes oriented mainly along the implanted surface. This morphology, which was explained in terms of the Bravais-Friedel law of crystal growth, allowed us to understand the optical properties of the precipitates. We concluded that the optical behavior shown by the particles in the SiO2 matrix, was result of a surface plasmon resonance due to the dielectric confinement and metallic character of the VO2 in the high temperature phase. Beside these contributions to material and physical sciences, we have shown that established results for VO2 doping can be applicable to our submicron particles. We were able to successfully control the width of the hysteresis loop by adding Ti ions before the precipitation. We also reached lower switching temperatures by implanting small quantities of W. Ion implantation also proved to be an easy and convenient way to incorporate VO2 nanoparticles into an optical fiber

  2. Quantum capacitance in thin film vanadium dioxide metal insulator transition

    NASA Astrophysics Data System (ADS)

    Wu, Zhe; Knighton, Talbot; Tarquini, Vinicio; Torres, David; Wang, Tongyu; Sepulveda, Nelson; Huang, Jian

    We present capacitance measurements of the electronic density of states performed in high quality vanadium dioxide (VO2) thin films on sapphire (Al2O3) substrate. These films show the expected metal insulator transition near 60 °C with resistivity changing by 3 orders of magnitude with a hysteresis of 10 °C. To make a capacitive probe, a gate is suspended above the film surface using a flip-chip method with microfabricated supports. The geometric capacitance per-area reached is 40 pF/mm2. Such a large capacitance can be significantly modified by electron interaction and band charging/discharging which appear as an extra term known as the quantum capacitance (Cq). An AC signal applied to the gate allows measurement of the changing density of states (DOS) across the MIT. The DOS abruptly increases as the sample is heated through the transition point. Conversely the low temperature drop of d μ / d n is consistent with an energy gap opening in the insulating phase. These parameters shed light on the transition mechanism. NSF DMR-1105183, NSF ECCS 1306311.

  3. Polynuclear transition metal complexes with thiocarbohydrazide and dithiocarbamates

    NASA Astrophysics Data System (ADS)

    Siddiqi, K. S.; Khan, Sadaf; Nami, Shahab A. A.; El-ajaily, M. M.

    2007-07-01

    Sn(tch) 2{MCl 2} 2 was prepared from the precursor Sn(tch) 2 and MCl 2. It was subsequently allowed to react with diethyldithiocarbamate which yielded the trinuclear complexes of the type Sn(tch) 2{M 2(dtc) 4}, where tch = thiocarbohydrazide, M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and dtc = diethyldithiocarbamate. They were characterized on the basis of microanalytical, thermal (TGA/DSC), spectral (IR, UV-vis, EPR, 1H NMR) studies, conductivity measurement and magnetic moment data. On the basis of spectral data a tetrahedral geometry has been proposed for the halide complexes, Sn(tch) 2{MCl 2} 2 except for Cu(II) which exhibits a square planar coordination although the transition metal ion in Sn(tch) 2{M 2(dtc) 4} achieves an octahedral geometry where the dithiocarbamato moiety acts as a symmetrical bidentate ligand. The bidentate nature has been established by the appearance of a sharp single ν(C-S) around 1000 cm -1. A downfield shift observed in NH a and NH b protons on moving from Sn(tch) 2 to Sn(tch) 2{MCl 2} 2 is due to the drift of electrons toward metal atoms. A two-step pyrolysis has been observed in the Sn(tch) 2{MCl 2} 2 complexes while their dithiocarbamato derivatives exhibit a three-stage degradation pattern. Finally, the in vitro antibacterial activity of Sn(tch) 2{M 2(dtc) 4} and the mononuclear Sn(tch) 2 has been carried out on bacterial strains Escherichia coli and Salmonella typhi. The compounds were found to be active against the test organisms. The activity of the complexes is enhanced with increasing concentration. The maximum activity in both the strains was achieved by cobalt(II) dithiocarbamate complex. Minimum activity was found for Sn(tch) 2 which generally increases with the introduction of transition metal ion in the complex.

  4. Three-fold rotational defects in two-dimensional transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Chang; Björkman, Torbjörn; Komsa, Hannu-Pekka; Teng, Po-Yuan; Yeh, Chao-Hui; Huang, Fei-Sheng; Lin, Kuan-Hung; Jadczak, Joanna; Huang, Ying-Sheng; Chiu, Po-Wen; Krasheninnikov, Arkady V.; Suenaga, Kazu

    2015-04-01

    As defects frequently govern the properties of crystalline solids, the precise microscopic knowledge of defect atomic structure is of fundamental importance. We report a new class of point defects in single-layer transition metal dichalcogenides that can be created through 60° rotations of metal-chalcogen bonds in the trigonal prismatic lattice, with the simplest among them being a three-fold symmetric trefoil-like defect. The defects, which are inherently related to the crystal symmetry of transition metal dichalcogenides, can expand through sequential bond rotations, as evident from in situ scanning transmission electron microscopy experiments, and eventually form larger linear defects consisting of aligned 8-5-5-8 membered rings. First-principles calculations provide insights into the evolution of rotational defects and show that they give rise to p-type doping and local magnetic moments, but weakly affect mechanical characteristics of transition metal dichalcogenides. Thus, controllable introduction of rotational defects can be used to engineer the properties of these materials.

  5. Variable Temperature FTIR Spectroscopy Of Transition Metal Complexes Using The SCN Reporter Ligand.

    NASA Astrophysics Data System (ADS)

    Herber, Rolfe H...

    1989-12-01

    Due to its large oscillator strength, as well as its position in the IR spectrum (ca. 2100 cm-1) which is relatively free of interferences, the CN stretch absorption in transition metal thiocyanate and iso-thiocyanate complexes has long been used as a diagnostic measure of both the ligand binding mode, as well as an indication of molecular point-group symmetry. In bis-SCN complexes of the first-row transition metals having (distorted) D, symmetry, cis complexes are expected to show two absorbances, corresponding to the sym and asym stretching modes, while for trans complexes (D,) having inversion symmetry, the sym stretch should be IR forbidden and Raman allowed, while the asym stretch is IR allowed and Raman forbidden. Similar considerations apply to square planar complexes (Cav and D). In this study, a number of octahedral and square planar transition metal bis-thiocyanate (isothiocyanate) complexes of Mn(II), Fe(II), Co(II), Ni(II),Cu(II), Ru(II) and Pt(II) have been synthesized, and characterized. by variable temperature IR spectroscopy both in KBr and Kel-F grease mull matrices. Depending on the steric requirements of the other ligands, the characteristic signature of the pseudohalide stretching mode is found to depend critically on the (near) degeneracy of the sym and asym CN stretching modes. Low temperature IR data, as well as supporting nmr and Raman spectroscopic results are required to completely characterize the geometry of these inorganic and metal organic complexes.

  6. Comparative study of the synthesis of layered transition metal molybdates

    NASA Astrophysics Data System (ADS)

    Mitchell, S.; Gómez-Avilés, A.; Gardner, C.; Jones, W.

    2010-01-01

    Mixed metal oxides (MMOs) prepared by the mild thermal decomposition of layered double hydroxides (LDHs) differ in their reactivity on exposure to aqueous molybdate containing solutions. In this study, we investigate the reactivity of some T-Al containing MMOs ( T=Co, Ni, Cu or Zn) towards the formation of layered transition metal molybdates (LTMs) possessing the general formula AT2(OH)(MoO 4) 2·H 2O, where A=NH 4+, Na + or K +. The phase selectivity of the reaction was studied with respect to the source of molybdate, the ratio of T to Mo and the reaction pH. LTMs were obtained on reaction of Cu-Al and Zn-Al containing MMOs with aqueous solutions of ammonium heptamolybdate. Rehydration of these oxides in the presence of sodium or potassium molybdate yielded a rehydrated LDH phase as the only crystalline product. The LTM products obtained by the rehydration of MMO precursors were compared with LTMs prepared by direct precipitation from the metal salts in order to study the influence of preparative route on their chemical and physical properties. Differences were noted in the composition, morphology and thermal properties of the resulting products.

  7. K-CO on transition metals: A local ionic interaction

    NASA Astrophysics Data System (ADS)

    Patterson, Charles H.; Schultz, Peter A.; Messmer, Richard P.

    1987-05-01

    The nature of the K-CO interaction on a transition metal surface is addressed when the K:CO stoichiometry is approx. 1. The interaction proposed is transfer of the K 4s electron to CO. A BORN-Haber cycle for this process on a surface has been calculated. The reference state is K plus CO, bound separately to the surface (a). A key point in the cycle is that removal of the electron from K bound to a metal surface (b) is less costly in energy (approx. metal/K surface, i.e., approx. +2.0 eV) than from K in the gas phase (IP = +4.3 eV). This means that the complex is significantly stabilized on the surface. The removed K electron is then transported to the isolated adsorbed CO (c) at a cost of the electron affinity of CO (approx. = 1.5 eV). When the isolated ions are brought together (d) the net stabilization at the equilibrium geometry is approx. - 1.8 eV.

  8. Discovery of elusive structures of multifunctional transition-metal borides.

    PubMed

    Liang, Yongcheng; Wu, Zhaobing; Yuan, Xun; Zhang, Wenqing; Zhang, Peihong

    2016-01-14

    A definitive determination of crystal structures is an important prerequisite for designing and exploiting new functional materials. Even though tungsten and molybdenum borides (TMBx) are the prototype for transition-metal light-element compounds with multiple functionalities, their elusive crystal structures have puzzled scientists for decades. Here, we discover that the long-assumed TMB2 phases with the simple hP3 structure (hP3-TMB2) are in fact a family of complex TMB3 polytypes with a nanoscale ordering along the axial direction. Compared with the energetically unfavorable and dynamically unstable hP3-TMB2 phase, the energetically more favorable and dynamically stable TMB3 polytypes explain the experimental structural parameters, mechanical properties, and X-ray diffraction (XRD) patterns better. We demonstrate that such a structural and compositional modification from the hP3-TMB2 phases to the TMB3 polytypes originates from the relief of the strong antibonding interaction between d electrons by removing one third of metal atoms systematically. These results resolve the longstanding structural mystery of this class of metal borides and uncover a hidden family of polytypic structures. Moreover, these polytypic structures provide an additional hardening mechanism by forming nanoscale interlocks that may strongly hinder the interlayer sliding movements, which promises to open a new avenue towards designing novel superhard nanocomposite materials by exploiting the coexistence of various polytypes. PMID:26660270

  9. Catalytic mechanism of transition-metal compounds on Mg hydrogen sorption reaction.

    PubMed

    Barkhordarian, Gagik; Klassen, Thomas; Bormann, Rüdiger

    2006-06-01

    The catalytic mechanisms of transition-metal compounds during the hydrogen sorption reaction of magnesium-based hydrides were investigated through relevant experiments. Catalytic activity was found to be influenced by four distinct physico-thermodynamic properties of the transition-metal compound: a high number of structural defects, a low stability of the compound, which however has to be high enough to avoid complete reduction of the transition metal under operating conditions, a high valence state of the transition-metal ion within the compound, and a high affinity of the transition-metal ion to hydrogen. On the basis of these results, further optimization of the selection of catalysts for improving sorption properties of magnesium-based hydrides is possible. In addition, utilization of transition-metal compounds as catalysts for other hydrogen storage materials is considered. PMID:16771356

  10. Electronic Relaxation Processes of Transition Metal Atoms in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Kautsch, Andreas; Lindebner, Friedrich; Koch, Markus; Ernst, Wolfgang E.

    2014-06-01

    Spectroscopy of doped superfluid helium nanodroplets (He_N) gives information about the influence of this cold, chemically inert, and least interacting matrix environment on the excitation and relaxation dynamics of dopant atoms and molecules. We present the results from laser induced fluorescence (LIF), photoionization (PI), and mass spectroscopy of Cr and Cu doped He_N. From these results, we can draw a comprehensive picture of the complex behavior of such transition metal atoms in He_N upon photo-excitation. The strong Cr and Cu ground state transitions show an excitation blueshift and broadening with respect to the bare atom transitions which can be taken as indication for the solvation inside the droplet. From the originally excited states the atoms relax to energetically lower states and are ejected from the He_N. The relaxation processes include bare atom spin-forbidden transitions, which clearly bears the signature of the He_N influence. Two-color resonant two-photon ionization (2CR2PI) also shows the formation of bare atoms and small Cr-He_n and Cu-He_n clusters in their ground and metastable states ^c. Currently, Cr dimer excitation studies are in progress and a brief outlook on the available results will be given. C. Callegari and W. E. Ernst, Helium Droplets as Nanocryostats for Molecular Spectroscopy - from the Vacuum Ultraviolet to the Microwave Regime, in Handbook of High-Resolution Spectroscopy, eds. M. Quack and F. Merkt, John Wiley & Sons, Chichester, 2011. A. Kautsch, M. Koch, and W. E. Ernst, J. Phys. Chem. A, 117 (2013) 9621-9625, DOI: 10.1021/jp312336m F. Lindebner, A. Kautsch, M. Koch, and W. E. Ernst, Int. J. Mass Spectrom. (2014) in press, DOI: 10.1016/j.ijms.2013.12.022 M. Koch, A. Kautsch, F. Lackner, and W. E. Ernst, submitted to J. Phys. Chem. A

  11. Electronic, magnetic and topological properties of transition metal oxides

    NASA Astrophysics Data System (ADS)

    Quan, Yundi

    Transition metal oxides have been the ideal platform for designing materials with exotic properties due to the complex interplay between spin, charge, and orbital degrees of freedom which can be fine-tuned by varying pressure, temperature, and external magnetic field to give rise to novel phases. Transition metal oxides are also a challenge from the theoretical point of view. The (semi)local density approximation for the exchange correlation functional that is often used in density functional calculations fails to adequately describe the many-body effects of 3d and 4f electrons thereby leading to underestimated band gaps. Several techniques, such as hybrid functionals, dynamical mean field theory, and DFT+U, have been developed over the past few decades to account for the many-body effects of 3d and 4f electrons. The DFT+U method, which will be used extensively throughout this thesis, has proved to be very successful in modeling gap opening, structure optimization and predicting transport properties. Rare earth nickelates have attracted a lot of attention in recent years due to their complex phase diagram that arises from the competition between spin, charge, and orbital degrees of freedom. Of particular interest is the metal-insulator transition that occurs upon cooling for RNiO3 (R=rare earth, except for La) which was found to be accompanied by symmetry lowering, later theorized as the evidence for charge ordering. By using first principles calculations, we found that the charge difference between Ni ions in the "charge-ordered" phase is negligibly small, while various aspects such as core energy levels, spectral weight immediately above and below the Fermi level, and magnetic moments do differ. Using Wannier function analysis, the charge states of Ni ions in the lower symmetry structure are systematically studied and found to correlated to the number of Wannier charge centers at the Ni site. The same approach was applied to study the charge states of Ag I and Ag

  12. Systematic prediction of high-pressure melting curves of transition metals

    SciTech Connect

    Hieu, Ho Khac

    2014-10-28

    The pressure effects on melting temperatures of transition metals have been studied based on the combination of the modified Lindemann criterion with statistical moment method in quantum statistical mechanics. Numerical calculations have been performed for five transition metals including Cu, Pd, Pt, Ni, and Mn up to pressure 100 GPa. Our results are in good and reasonable agreements with available experimental data. This approach gives us a relatively simple method for qualitatively calculating high-pressure melting temperature. Moreover, it can be used to verify future experimental and theoretical works. This research proposes the potential of the combination of statistical moment method and the modified Lindemann criterion on predicting high-pressure melting of materials.

  13. First-principles prediction of redox potentials in transition-metal compounds with LDA+U

    NASA Astrophysics Data System (ADS)

    Zhou, F.; Cococcioni, M.; Marianetti, C. A.; Morgan, D.; Ceder, G.

    2004-12-01

    First-principles calculations within the local density approximation (LDA) or generalized gradient approximation (GGA), though very successful, are known to underestimate redox potentials, such as those at which lithium intercalates in transition metal compounds. We argue that this inaccuracy is related to the lack of cancellation of electron self-interaction errors in LDA/GGA and can be improved by using the DFT+U method with a self-consistent evaluation of the U parameter. We show that, using this approach, the experimental lithium intercalation voltages of a number of transition metal compounds, including the olivine LixMPO4 ( M=Mn , Fe Co, Ni), layered LixMO2 ( x=Co , Ni) and spinel-like LixM2O4 ( M=Mn , Co), can be reproduced accurately.

  14. Nanoscale dynamics of the Insulator-to-Metal transition in VO2

    NASA Astrophysics Data System (ADS)

    Sternbach, Aaron

    We have improved upon the technique of time resolved scanning near-field optical microscopy to study the development of inhomogeneous phase transitions in the time domain with 20 nanometer spatial resolution and 100 femtosecond temporal resolution. In our present work, we study Vanadium Dioxide (VO2) , which is a canonical correlated electron system that exhibits an insulator-to-metal transition (IMT) above room temperature. We observe inhomogeneous dynamics that are related to mesoscopic strain variations. Our measurement resolves the dynamical evolution of the IMT on length scales that are short compared with the typical sizes of metallic domains in VO2. By using Near-Infrared radiation, measured on a pulse-to-pulse basis, we are able to achieve an unprecedented Signal-to-Noise ratio. Our advances pave a pathway to study a wide range of systems with inhomogeneities properties on the nanoscale with high sensitivity, nanoscopic spatial, and ultrafast temporal resolution.

  15. Synthesis of Binary Magnesium-Transition Metal Oxides via Inverse Coprecipitation

    NASA Astrophysics Data System (ADS)

    Yagi, Shunsuke; Ichikawa, Yuya; Yamada, Ikuya; Doi, Takayuki; Ichitsubo, Tetsu; Matsubara, Eiichiro

    2013-02-01

    Synthesis of binary magnesium-transition metal oxides, MgM2O4 (M: Cr, Mn, Fe, Co) and MgNiO2, was performed by calcination at relatively low temperatures of 500 and 750 °C for 24 h through inverse coprecipitation of carbonate hydroxide precursors. The important roles of the precipitation agent, sodium carbonate, were clarified by considering equilibria in an aqueous solution. The structure parameters of the obtained binary magnesium-transition metal oxide powders, specifically the occupancy of atomic sites, were evaluated from synchrotron X-ray diffraction (XRD) profiles by Rietveld refinement in addition to the magnetic properties at room temperature. The present work provides general guidelines for low-cost and high-volume synthesis of complex oxides, which are easily decomposed at high temperatures.

  16. Insight into insulator-to-metal transition of sulfur-doped silicon by DFT calculations.

    PubMed

    Zhao, Zong-Yan; Yang, Pei-Zhi

    2014-09-01

    Using density functional theory calculations, the mechanism of insulator-to-metal transition of S-doped Si has been systematically investigated. The calculated crystal structure indicates that the gentle lattice distortion is caused by sulfur doping, and this doping effect is gradually weakened with the increase of sulfur concentration. Two distinct impurity energy levels in the band gap are induced by sulfur doping, and their position and width are linearly varying along with the increase of sulfur concentration. Owing to the overlap and dispersion of these impurity energy levels, the insulator-to-metal transition occurs at the sulfur concentration of 2.095 × 10(20) cm(-3), which is consistent with the experimental measurement. Moreover, the defect states related with sulfur doping show delocalization features and are more outstanding at the higher sulfur concentration. The calculated results suggest that S-hyperdoped Si is a suitable candidate for intermediate band solar cells. PMID:25019287

  17. Transition metals and their carbides and nitrides: Trends in electronic and structural properties

    NASA Astrophysics Data System (ADS)

    Grossman, Jeffrey C.; Mizel, Ari; Côté, Michel; Cohen, Marvin L.; Louie, Steven G.

    1999-09-01

    A study of the structural and electronic properties of selected transition metals and their carbides and nitrides is presented. We focus on assessing trends of possible importance for understanding their hardness. Lattice constants, bulk moduli (Bo), and charge densities are calculated using the local density approximation with a pseudopotential plane wave approach. An fcc lattice is employed for the transition metal elements in order to make comparisons and study trends relateable to their carbides and nitrides. Our results show that both increasing the number of valence d electrons and the presence of f electrons in the core lead to larger (Bo). Charge density plots and histograms enable us to explain the nature of the charge distribution in the interstitial region for the different compounds considered. In addition, we include the heavier elements seaborgium, bohrium, and hasnium in order to test further trends. Surprisingly, the calculated Bo for Hs is comparable to that of diamond.

  18. The importance of atomic and molecular correlation on the bonding in transition metal compounds

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Walch, Stephen P.

    1986-01-01

    The determination of accurate spectroscopic parameters for molecular systems containing transition metal atoms is shown to require extensive data sets and a high level correlation treatment, and techniques and their limitations are considered. Extensive results reported on the transition metal atoms, hydrides, oxides, and dimers makes possible the design of a calculation to correctly describe the mixing of different atomic asymptotes, and to give a correct balance between molecular bonding and exchange interactions. Examples considered include the dipole moment of the 2Delta state of NiH, which can help determine the mixture of 3d(8)4s(2) and 3d(9)4s(1) in the NiH wavefunction, and the bonding in CrO, where an equivalent description of the relative energies associated with the Cr 3d-3d atomic exchange and the Cr-O bond is important.

  19. Graphene nucleation on transition metal surface: structure transformation and role of the metal step edge.

    PubMed

    Gao, Junfeng; Yip, Joanne; Zhao, Jijun; Yakobson, Boris I; Ding, Feng

    2011-04-01

    The nucleation of graphene on a transition metal surface, either on a terrace or near a step edge, is systematically explored using density functional theory calculations and applying the two-dimensional (2D) crystal nucleation theory. Careful optimization of the supported carbon clusters, C(N) (with size N ranging from 1 to 24), on the Ni(111) surface indicates a ground state structure transformation from a one-dimensional C chain to a 2D sp(2) C network at N ≈ 10-12. Furthermore, the crucial parameters controlling graphene growth on the metal surface, nucleation barrier, nucleus size, and nucleation rate on a terrace or near a step edge are calculated. In agreement with numerous experimental observations, our analysis shows that graphene nucleation near a metal step edge is superior to that on a terrace. On the basis of our analysis, we propose the use of graphene seeds to synthesize high-quality graphene in large area. PMID:21384854

  20. Anomalous large electrical capacitance of planar microstructures with vanadium dioxide films near the insulator-metal phase transition

    SciTech Connect

    Aliev, V. Sh. Bortnikov, S. G.; Badmaeva, I. A.

    2014-03-31

    The temperature dependence of electrical capacitance of planar microstructures with vanadium dioxide (VO{sub 2}) film near the insulator-metal phase transition has been investigated at the frequency of 1 MHz. Electrical capacitance measurements of the microstructures were performed by the technique based on the using of a two-terminal resistor-capacitor module simulating the VO{sub 2} layer behavior at the insulator-metal phase transition. At temperatures 325–342 K, the anomalous increase in microstructures capacitance was observed. Calculation of electric field in the microstructure showed that VO{sub 2} relative permittivity (ε) reaches ∼10{sup 8} at the percolation threshold. The high value of ε can be explained by the fractal nature of the interface between metal and insulator clusters formed near the insulator-metal phase transition.

  1. Proximity-induced magnetism in transition-metal substituted graphene

    SciTech Connect

    Crook, Charles B.; Constantin, Costel; Ahmed, Towfiq; Zhu, Jian -Xin; Balatsky, Alexander V.; Haraldsen, Jason T.

    2015-08-03

    We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, where the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic and carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction.

  2. Moderate temperature sodium cells. I - Transition metal disulfide cathodes

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.; Pitts, L.; Schiff, R.

    1980-01-01

    TiS2, VS2, and Nb(1.1)S2 transition metal disulfides were evaluated as cathode materials for a moderate temperature rechargeable Na cell operating at 130 C. The 1st discharge of TiS2 results in a capacity of 0.85 eq/mole; approximately half of the Na in the 1st phase spanning the Na range from zero to 0.30 and almost all the Na in the 2nd phase spanning the 0.37 to 0.80 range are rechargeable. VS2 intercalates up to one mole of Na/mole of VS2 in the 1st discharge; the resulting Na(x)VS2 ternary consists of 3 phases in the 3 ranges of Na from zero to 1. Niobium disulfide undergoes a phase change in the 1st discharge; the average rechargeable capacity in extended cycling of this cathode is 0.50 eq/mole.

  3. An Extensive Database of Electronic Structure Calculations between Transition Metals

    NASA Astrophysics Data System (ADS)

    Sayed, Shereef; Papaconstantopoulos, Dimitrios

    Density Functional Theory and its derived application methods, such as the Augmented Plane Wave (APW) method, have shown great success in predicting the fundamental properties of materials. In this work, we apply the APW method to explore the properties of diatomic pairs of transition metals in the CsCl structure, for all possible combinations. A total of 435 compounds have been studied. The predicted Density of States, and Band Structures are presented, along with predicted electron-phonon coupling and Stoner Criterion, in order to identify potential new superconducting or ferromagnetic materials. This work is performed to demonstrate the concept of ``high-throughput'' calculations at the crossing-point of ``Big Data'' and materials science. Us Dept of Energy.

  4. Theoretical ultra-fast spectroscopy in transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Molina-Sanchez, Alejandro; Sangalli, Davide; Marini, Andrea; Wirtz, Ludger

    Semiconducting 2D-materials like the transition metal dichalcogenides (TMDs) MoS2, MoSe2, WS2, WSe2 are promising alternatives to graphene for designing novel opto-electronic devices. The strong spin-orbit interaction along with the breaking of inversion symmetry in single-layer TMDs allow using the valley-index as a new quantum number. The practical use of valley physics depends on the lifetimes of valley-polarized excitons which are affected by scattering at phonons, impurities and by carrier-carrier interactions. The carrier dynamics can be monitored using ultra-fast spectroscopies such as pump-probe experiments. The carrier dynamics is simulated using non-equilibrium Green's function theory in an ab-initio framework. We include carrier relaxation through electron-phonon interaction. We obtain the transient absorption spectra of single-layer TMD and compare our simulations with recent pump-probe experiments

  5. Tightly Bound Trions in Transition Metal Dichalcogenide Heterostructures.

    PubMed

    Bellus, Matthew Z; Ceballos, Frank; Chiu, Hsin-Ying; Zhao, Hui

    2015-06-23

    We report the observation of trions at room temperature in a van der Waals heterostructure composed of MoSe2 and WS2 monolayers. These trions are formed by excitons excited in the WS2 layer and electrons transferred from the MoSe2 layer. Recombination of trions results in a peak in the photoluminescence spectra, which is absent in monolayer WS2 that is not in contact with MoSe2. The trion origin of this peak is further confirmed by the linear dependence of the peak position on excitation intensity. We deduced a zero-density trion binding energy of 62 meV. The trion formation facilitates electrical control of exciton transport in transition metal dichalcogenide heterostructures, which can be utilized in various optoelectronic applications. PMID:26046238

  6. Nonequilibrium carrier dynamics in transition metal dichalcogenide semiconductors

    NASA Astrophysics Data System (ADS)

    Steinhoff, A.; Florian, M.; Rösner, M.; Lorke, M.; Wehling, T. O.; Gies, C.; Jahnke, F.

    2016-09-01

    When exploring new materials for their potential in (opto)electronic device applications, it is important to understand the role of various carrier interaction and scattering processes. In atomically thin transition metal dichalcogenide semiconductors, the Coulomb interaction is known to be much stronger than in quantum wells of conventional semiconductors like GaAs, as witnessed by the 50 times larger exciton binding energy. The question arises, whether this directly translates into equivalently faster carrier–carrier Coulomb scattering of excited carriers. Here we show that a combination of ab initio band-structure and many-body theory predicts Coulomb-mediated carrier relaxation on a sub-100 fs time scale for a wide range of excitation densities, which is less than an order of magnitude faster than in quantum wells.

  7. Two-dimensional, ordered, double transition metals carbides (MXenes)

    NASA Astrophysics Data System (ADS)

    Kent, Paul; Anasori, Babak; Xie, Yu; Beidaghi, Majid; Lu, Jun; Hosler, Brian; Hultman, Lars; Gogotsi, Yury; Barsoum, Michel

    We use density functional theory to predict the existence of two new families of 2D ordered carbides (MXenes), M'2M''C2 and M'2M''2C3, where each M is a different early transition metal. Synthesizing Mo2TiC2Tx, Mo2Ti2C3Tx, and Cr2TiC2Tx (where T is a surface termination), we validated the DFT predictions. Since the Mo and Cr atoms are on the outside, they control the 2D flakes' chemical and electrochemical properties. The latter was proven by showing quite different electrochemical behavior of Mo2TiC2Tx and Ti3C2Tx. This work further expands the family of 2D materials, offering additional choices of structures, chemistries, and ultimately useful properties.

  8. Surfactant-Modified Diffusion on Transition-Metal Surfaces

    SciTech Connect

    FEIBELMAN,PETER J.; KELLOGG,GARY LEE

    1999-12-01

    Wanting to convert surface impurities from a nuisance to a systematically applicable nano-fabrication tool, we have sought to understand how such impurities affect self-diffusion on transition-metal surfaces. Our field-ion microscope experiments reveal that in the presence of surface hydrogen, self-diffusion on Rh(100) is promoted, while on Pt(100), not only is it inhibited, but its mechanism changes. First-principles calculations aimed at learning how oxygen fosters perfect layerwise growth on a growing Pt(111) crystal contradict the idea in the literature that it does so by directly promoting transport over Pt island boundaries. The discovery that its real effect is to burn off adventitious adsorbed carbon monoxide demonstrates the predictive value of state-of-the-art calculation methods.

  9. Intrinsic Inhomogeneity and Multiscale Functionality in Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Bishop, A. R.

    2003-06-01

    We briefly review a perspective of transition metal oxides as correlated electron materials governed by functional multiscale complexity. We emphasize several themes: the prevalence of intrinsic complexity realized in the coexistence or competition among broken-symmetry ground states; the origin of landscapes in coupled spin, charge and lattice (orbital) degrees-of-freedom; the importance of co-existing short- and long-range forces; and the importance of multiscale complexity for key material properties, including hierarchies of functional, connected scales, coupled intrinsic inhomogeneities in spin, charge and lattice, consequent intrinsic multiple timescales, and the importance of multifunctional "electro-elastic" materials. Finally, we suggest that such intrinsic multiscale features are characteristic of wide classes of inorganic, organic, and biological matter.

  10. Two-dimensional inorganic analogues of graphene: transition metal dichalcogenides.

    PubMed

    Jana, Manoj K; Rao, C N R

    2016-09-13

    The discovery of graphene marks a major event in the physics and chemistry of materials. The amazing properties of this two-dimensional (2D) material have prompted research on other 2D layered materials, of which layered transition metal dichalcogenides (TMDCs) are important members. Single-layer and few-layer TMDCs have been synthesized and characterized. They possess a wide range of properties many of which have not been known hitherto. A typical example of such materials is MoS2 In this article, we briefly present various aspects of layered analogues of graphene as exemplified by TMDCs. The discussion includes not only synthesis and characterization, but also various properties and phenomena exhibited by the TMDCs.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'. PMID:27501969

  11. The Role of Carbon in Catalytically Stabilized Transition Metal Sulfides

    SciTech Connect

    Kelty,S.; Berhault, G.; Chianelli, R.

    2007-01-01

    Since WWII considerable progress has been made in understanding the basis for the activity and the selectivity of molybdenum and tungsten based hydrotreating catalysts. Recently, the focus of investigation has turned to the structure of the catalytically stabilized active catalyst. The surface of the catalytically stabilized MoS2 has been shown to be carbided with the formula MoSxCy under hydrotreating conditions. In this paper we review the basis for this finding and present new data extending the concept to the promoted TMS (transition metal sulfides) systems CoMoC and NiMoC. Freshly sulfided CoMoS and NiMoS catalyst have a strong tendency to form the carbided surface phases from any available carbon source.

  12. Three-particle approximation for transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Lægsgaard, J.; Svane, A.

    1997-02-01

    Quasiparticle spectra are calculated for NiO and CuO on the basis of band structures obtained within the ab initio self-interaction-corrected local-spin density (SIC-LSD) and LSD+U approximations. On-site Coulomb correlations are described by a multiband Hubbard model, which is treated within Igarashi's three-particle approximation. The transition-metal d-state spectral weight is split into a main dnL peak and a dn-1 satellite. We show that mean-field band structures in this way can lead to a good description of the experimental photoemission spectra of these compounds. The validity of the three-particle approach is investigated, and it is concluded that the method is best suited for a system which is well orbitally polarized on the mean-field level.

  13. Transition Metal Dichalcogenide Growth via Close Proximity Precursor Supply

    PubMed Central

    O'Brien, Maria; McEvoy, Niall; Hallam, Toby; Kim, Hye-Young; Berner, Nina C.; Hanlon, Damien; Lee, Kangho; Coleman, Jonathan N.; Duesberg, Georg S.

    2014-01-01

    Reliable chemical vapour deposition (CVD) of transition metal dichalcogenides (TMDs) is currently a highly pressing research field, as numerous potential applications rely on the production of high quality films on a macroscopic scale. Here, we show the use of liquid phase exfoliated nanosheets and patterned sputter deposited layers as solid precursors for chemical vapour deposition. TMD monolayers were realized using a close proximity precursor supply in a CVD microreactor setup. A model describing the growth mechanism, which is capable of producing TMD monolayers on arbitrary substrates, is presented. Raman spectroscopy, photoluminescence, X-ray photoelectron spectroscopy, atomic force microscopy, transmission electron microscopy, scanning electron microscopy and electrical transport measurements reveal the high quality of the TMD samples produced. Furthermore, through patterning of the precursor supply, we achieve patterned growth of monolayer TMDs in defined locations, which could be adapted for the facile production of electronic device components. PMID:25487822

  14. Transition Metal Dichalcogenide Growth via Close Proximity Precursor Supply

    NASA Astrophysics Data System (ADS)

    O'Brien, Maria; McEvoy, Niall; Hallam, Toby; Kim, Hye-Young; Berner, Nina C.; Hanlon, Damien; Lee, Kangho; Coleman, Jonathan N.; Duesberg, Georg S.

    2014-12-01

    Reliable chemical vapour deposition (CVD) of transition metal dichalcogenides (TMDs) is currently a highly pressing research field, as numerous potential applications rely on the production of high quality films on a macroscopic scale. Here, we show the use of liquid phase exfoliated nanosheets and patterned sputter deposited layers as solid precursors for chemical vapour deposition. TMD monolayers were realized using a close proximity precursor supply in a CVD microreactor setup. A model describing the growth mechanism, which is capable of producing TMD monolayers on arbitrary substrates, is presented. Raman spectroscopy, photoluminescence, X-ray photoelectron spectroscopy, atomic force microscopy, transmission electron microscopy, scanning electron microscopy and electrical transport measurements reveal the high quality of the TMD samples produced. Furthermore, through patterning of the precursor supply, we achieve patterned growth of monolayer TMDs in defined locations, which could be adapted for the facile production of electronic device components.

  15. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras; Coleman, Jonathan N.; Strano, Michael S.

    2012-11-01

    The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS2, MoSe2, WS2 and WSe2 have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.

  16. Transition metal oxide hierarchical nanotubes for energy applications.

    PubMed

    Wei, Wei; Wang, Yongcheng; Wu, Hao; Al-Enizi, Abdullah M; Zhang, Lijuan; Zheng, Gengfeng

    2016-01-15

    We report a general synthetic method for transition metal oxide (TMO) hierarchical nanotube (HNT) structures by a solution-phase cation exchange method from Cu2O nanowire templates. This method leads to the formation of hollow, tubular backbones with secondary, thin nanostructures on the tube surface, which substantially increases the surface reactive sites for electrolyte contacts and electrochemical reactions. As proofs-of-concept, several representative first-row TMO HNTs have been synthesized, including CoOx, NiOx, MnOx, ZnOx and FeOx, with specific surface areas much larger than nanotubes or nanoparticles of corresponding materials. An example of the potential energy storage applications of CoOx HNTs as supercapacitors is also demonstrated. PMID:26629880

  17. Noncollinear exchange interaction in transition metal dichalcogenide edges

    NASA Astrophysics Data System (ADS)

    Ávalos-Ovando, Oscar; Mastrogiuseppe, Diego; Ulloa, Sergio E.

    2016-04-01

    We study the Ruderman-Kittel-Kasuya-Yosida effective exchange interaction between magnetic impurities embedded on the edges of transition metal dichalcogenide flakes, using a three-orbital tight-binding model. Electronic states lying midgap of the bulk structure have a strong one-dimensional (1D) character, localized on the edges of the crystallite. This results in exchange interactions with 1 /r (or slower) decay with distance r , similar to other 1D systems. Most interestingly, however, the strong spin-orbit interaction in these materials results in sizable noncollinear Dzyaloshinskii-Moriya interactions between impurities, comparable in size to the usual Ising and in-plane components. Varying the relevant Fermi energy by doping or gating may allow one to modulate the effective interactions, controlling the possible helical ground state configurations of multiple impurities.

  18. Proximity-induced magnetism in transition-metal substituted graphene

    PubMed Central

    Crook, Charles B.; Constantin, Costel; Ahmed, Towfiq; Zhu, Jian-Xin; Balatsky, Alexander V.; Haraldsen, Jason T.

    2015-01-01

    We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, where the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic and carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction. PMID:26235646

  19. Dynamical mean-field theory for transition metal dioxide molecules

    NASA Astrophysics Data System (ADS)

    Lin, Nan; Zgid, Dominika; Marianetti, Chris; Reichman, David; Millis, Andrew

    2012-02-01

    The utility of the dynamical mean-field approximation in quantum chemistry is investigated in the context of transition metal dioxide molecules including TiO2 and CrO2. The choice of correlated orbitals and correlations to treat dynamically is discussed. The dynamical mean field solutions are compared to state of the art quantum chemical calculations. The dynamical mean-field method is found to capture about 50% of the total correlation energy, and to produce very good results for the d-level occupancies and magnetic moments. We also present the excitation spectrum in these molecules which is inaccessible in many wave-function based methods. Conceptual and technical difficulties will be outlined and discussed.

  20. Observation of Interlayer Phonons in Transition Metal Dichalcogenide Heterostructures

    NASA Astrophysics Data System (ADS)

    He, Rui; Ye, Zhipeng; Ji, Chao; Means-Shively, Casie; Anderson, Heidi; Kidd, Tim; Chiu, Kuan-Chang; Chou, Cheng-Tse; Wu, Jenn-Ming; Lee, Yi-Hsien; Andersen, Trond; Lui, Chun Hung

    Interlayer phonon modes in transition metal dichalcogenide (TMD) heterostructures are observed for the first time. We measured the low-frequency Raman response of MoS2/WSe2 and MoSe2/MoS2 heterobilayers. We discovered a distinct Raman mode (30 - 35 cm-1) that cannot be found in any individual monolayers. By comparing with Raman spectra of Bernal bilayer (2L) MoS2, 2L MoSe2 and 2L WSe2, we identified the new Raman mode as the layer breathing vibration arising from the vertical displacement of the two TMD layers. The layer breathing mode (LBM) only emerges in bilayer regions with atomically close layer-layer proximity and clean interface. In addition, the LBM frequency exhibits noticeable dependence on the rotational angle between the two TMD layers, which implies a change of interlayer separation and interlayer coupling strength with the layer stacking.

  1. Exchange coupling in transition metal monoxides: Electronic structure calculations

    SciTech Connect

    Fischer, Guntram; Daene, Markus W; Ernst, Arthur; Bruno, Patrick; Lueders, Martin; Szotek, Zdzislawa; Temmerman, Walter M; Wolfam, Hergert

    2009-01-01

    An ab initio study of magnetic-exchange interactions in antiferromagnetic and strongly correlated 3d transition metal monoxides is presented. Their electronic structure is calculated using the local self-interaction correction approach, implemented within the Korringa-Kohn-Rostoker band-structure method, which is based on multiple scattering theory. The Heisenberg exchange constants are evaluated with the magnetic force theorem. Based on these the corresponding Neel temperatures TN and spin-wave dispersions are calculated. The Neel temperatures are obtained using mean-field approximation, random-phase approximation and Monte Carlo simulations. The pressure dependence of TN is investigated using exchange constants calculated for different lattice constants. All the calculated results are compared to experimental data.

  2. Metal-semiconductor transition of graphene nanoribbons with different addends

    NASA Astrophysics Data System (ADS)

    Zhang, X. W.; Dai, B.; Liu, J. S.; Yang, G. W.

    2012-02-01

    Using a LCAO method, which is based on spinless sp3 scheme, we have studied the electronic properties of graphene nanoribbons with zigzag edges (ZGNRs) terminated partially by methylene groups. Metal-semiconductor transition is proved when the H atoms at both sides of ZGNRs are partially substituted by methylene groups. Furthermore, when one-third of H atoms are substituted and the distribution of methylenes is symmetric, the band gap comes to about 0.59 eV, which is the widest energy gap in this work. Otherwise, when the addends at both sides are of asymmetric distribution, a band gap of only 0.21 eV is obtained. These results suggest that the addends at the edge of ZGNRs play an important role in modifying the electronic properties.

  3. Interface of transition metal oxides at the atomic scale

    NASA Astrophysics Data System (ADS)

    Shang, Tong-Tong; Liu, Xin-Yu; Gu, Lin

    2016-09-01

    Remarkable phenomena arise at well-defined heterostructures, composed of transition metal oxides, which is absent in the bulk counterpart, providing us a paradigm for exploring the various electron correlation effects. The functional properties of such heterostructures have attracted much attention in the microelectronic and renewable energy fields. Exotic and unexpected states of matter could arise from the reconstruction and coupling among lattice, charge, orbital and spin at the interfaces. Aberration-corrected scanning transmission electron microscopy (STEM) is a powerful tool to visualize the lattice structure and electronic structure at the atomic scale. In the present study some novel phenomena of oxide heterostructures at the atomic scale are summarized and pointed out from the perspective of electron microscopy.

  4. Transition Metals Catalyzed Element-Cyano Bonds Activations

    PubMed Central

    Wang, Rui; Falck, John R.

    2014-01-01

    Cyano group as a versatile functionalized intermediate has been explored for several decades, as it readily transfers to many useful functionalization groups such as amine, amide, acid, etc., which make it possess high popularization and use value in organic synthesis. Reactions involved with element-cyano bond cleavage can provide not only a new cyano group but also a freshly functionalized skeleton in one-pot, consequently making it of high importance. The highlights reviewed herein include H-CN, Si-CN, C-CN, B-CN, Sn-CN, Ge-CN, S-CN, Halo-CN, N-CN, and O-CN bonds cleavages and will summarize progress in such an important research area. This review article will focus on transition metal catalyzed reactions involving element-cyano bond activation. PMID:25558119

  5. Transition Metal Substitution Effects on Metal-to-Polyoxometalate Charge Transfer.

    PubMed

    Glass, Elliot N; Fielden, John; Huang, Zhuangqun; Xiang, Xu; Musaev, Djamaladdin G; Lian, Tianquan; Hill, Craig L

    2016-05-01

    A series of hetero-bimetallic transition metal-substituted polyoxometalates (TMSPs) were synthesized based on the Co(II)-centered ligand [Co(II)W11O39](10-). The eight complex series, [Co(II)(M(x)OHy)W11O39]((12-x-y)-) (M(x)OHy = V(IV)O, Cr(III)(OH2), Mn(II)(OH2), Fe(III)(OH2), Co(II)(OH2), Ni(II)(OH2), Cu(II)(OH2), Zn(II)(OH2)), of which six are reported for the first time, was synthesized starting from [Co(III)W11O39](9-) and studied using spectroscopic, electrochemical, and computational techniques to evaluate the influence of substituted transition metals on the photodynamics of the metal-to-polyoxometalate charge transfer (MPCT) transition. The bimetallic complexes all show higher visible light absorption than the plenary [Co(II)W12O40](6-) and demonstrate the same MPCT transition as the plenary complex, but they have shorter excited-state lifetimes (sub-300 ps in aqueous media). The decreased lifetimes are rationalized on the basis of nonradiative relaxation due to coordinating aqua ligands, increased interaction with cations due to increased negative charge, and the energy gap law, with the strongest single factor appearing to be the charge on the anion. The most promising results are from the Cr- and Fe-substituted systems, which retain excited-state lifetimes at least 50% of that of [Co(II)W12O40](6-) while more than tripling the absorbance at 400 nm. PMID:27082443

  6. Synthesis and characterization of transition metal doped semiconducting nanowires

    NASA Astrophysics Data System (ADS)

    Kaszpurenko, Jason Michael

    The abundance of semiconductors in everyday life has exploded because of their cheapness, ability to do massive calculations, harvest energy and more. For all their utility semiconductors used in calculations suffer because they need an auxiliary way to store the data they've calculated. Magnetic storage has traditionally been the answer to this problem but suffers from slower speeds. Since the 1960's a class of materials known as dilute magnetic semiconductors has tried to combine the advantages of semiconductors with the non-volatile storage properties found in magnets. Often the easiest way to make these materials is by doping semiconductors with transition metal ions. In this study I worked with PbS and ZnSe to create transition metal doped semiconducting nanostructures. The initial studies focus on the synthesis and characterization of PbS nanowires doped with Mn. The wires revealed high quality nanowires with uniform doping concentrations, both axially and radially, with atomic concentrations of 0.18 and 0.01 atomic %. The Mn didn't create any secondary phases and was substitutionally introduced. Zn1-xMn xSe nanostructures were grown with the hopes of achieving a higher Mn doping concentration where we succeeded in achieving dopant levels of x~0.3. To increase carrier concentrations, estimated to be~1016cm -3 for pure ZnSe samples, Al was doped with ZnSe and co-doped with Mn. ZnAlSe nanowires showed carrier concentration ~1019cm -3. Optical studies revealed hole traps with a characteristic time on the order of 1ms in ZnAlSe nanowire samples

  7. Oligomeric rare-earth metal cluster complexes with endohedral transition metal atoms

    SciTech Connect

    Steinberg, Simon; Zimmermann, Sina; Brühmann, Matthias; Meyer, Eva; Rustige, Christian; Wolberg, Marike; Daub, Kathrin; Bell, Thomas; Meyer, Gerd

    2014-11-15

    Comproportionation reactions of rare-earth metal trihalides (RX{sub 3}) with the respective rare-earth metals (R) and transition metals (T) led to the formation of 22 oligomeric R cluster halides encapsulating T, in 19 cases for the first time. The structures of these compounds were determined by single-crystal X-ray diffraction and are composed of trimers ((T{sub 3}R{sub 11})X{sub 15}-type, P6{sub 3}/m), tetramers ((T{sub 4}R{sub 16})X{sub 28}(R{sub 4}) (P-43m), (T{sub 4}R{sub 16})X{sub 20} (P4{sub 2}/nnm), (T{sub 4}R{sub 16})X{sub 24}(RX{sub 3}){sub 4} (I4{sub 1}/a) and (T{sub 4}R{sub 16})X{sub 23} (C2/m) types of structure) and pentamers ((Ru{sub 5}La{sub 14}){sub 2}Br{sub 39}, Cc) of (TR{sub r}){sub n} (n=2–5) clusters. These oligomers are further enveloped by inner (X{sup i}) as well as outer (X{sup a}) halido ligands, which possess diverse functionalities and interconnect like oligomers through i–i, i–a and/or a–i bridges. The general features of the crystal structures for these new compounds are discussed and compared to literature entries as well as different structure types with oligomeric T centered R clusters. Dimers and tetramers originating from the aggregation of (TR{sub 6}) octahedra via common edges are more frequent than trimers and pentamers, in which the (TR{sub r}) clusters share common faces. - Graphical abstract: Rare earth-metal cluster complexes with endohedral transition metal atoms (TR{sub 6}) may connect via common edges or faces to form dimers, trimers, tetramers and pentamers of which the tetramers are the most prolific. Packing effects and electron counts play an important role. - Highlights: • Rare-earth metal cluster complexes encapsulate transition metal atoms. • Oligomers are built via connection of octahedral clusters via common edges or faces. • Dimers through pentamers with closed structures are known. • Tetramers including a tetrahedron of endohedral atoms are the most prolific.

  8. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    DOEpatents

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  9. Ion-Image Interactions and Phase Transition at Electrolyte-Metal Interfaces.

    PubMed

    Lee, Alpha A; Perkin, Susan

    2016-07-21

    The arrangement of ions near a metallic electrode is crucial to energy storage in electrical double-layer capacitors. Classic Poisson-Boltzmann theory predicts that the charge stored in the double layer is a continuous function of applied voltage. However, recent experiments and simulations strongly suggest the presence of a voltage-induced first-order phase transition in the electrical double layer, leading to a hysteretic response: the capacitance-voltage relation is dependent on whether the voltage is increasing or decreasing. By developing a simple analytical model, we show that ion-image interaction could explain this phase transition. Moreover, our model shows that the presence of phase transition depends on the bulk energy of the ionic liquid. Our results justify mixing ionic liquids with solvents as a way to achieve large capacitance and avoid hysteresis. PMID:27383455

  10. Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers

    PubMed Central

    Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Romhányi, Judit; Yushankhai, Viktor; Kataev, Vladislav; Büchner, Bernd; van den Brink, Jeroen; Hozoi, Liviu

    2015-01-01

    A promising route to tailoring the electronic properties of quantum materials and devices rests on the idea of orbital engineering in multilayered oxide heterostructures. Here we show that the interplay of interlayer charge imbalance and ligand distortions provides a knob for tuning the sequence of electronic levels even in intrinsically stacked oxides. We resolve in this regard the d-level structure of layered Sr2IrO4 by electron spin resonance. While canonical ligand-field theory predicts g||-factors less than 2 for positive tetragonal distortions as present in Sr2IrO4, the experiment indicates g|| is greater than 2. This implies that the iridium d levels are inverted with respect to their normal ordering. State-of-the-art electronic-structure calculations confirm the level switching in Sr2IrO4, whereas we find them in Ba2IrO4 to be instead normally ordered. Given the nonpolar character of the metal-oxygen layers, our findings highlight the tetravalent transition-metal 214 oxides as ideal platforms to explore d-orbital reconstruction in the context of oxide electronics. PMID:26105992

  11. Photoinduced energy transfer in transition metal complex oligomers

    SciTech Connect

    1997-06-01

    The work done over the past three years has been directed toward the preparation, characterization and photophysical examination of mono- and bimetallic diimine complexes. The work is part of a broader project directed toward the development of stable, efficient, light harvesting arrays of transition metal complex chromophores. One focus has been the synthesis of rigid bis-bidentate and bis-tridentate bridging ligands. The authors have managed to make the ligand bphb in multigram quantities from inexpensive starting materials. The synthetic approach used has allowed them to prepare a variety of other ligands which may have unique applications (vide infra). They have prepared, characterized and examined the photophysical behavior of Ru(II) and Re(I) complexes of the ligands. Energy donor/acceptor complexes of bphb have been prepared which exhibit nearly activationless energy transfer. Complexes of Ru(II) and Re(I) have also been prepared with other polyunsaturated ligands in which two different long lived (> 50 ns) excited states exist; results of luminescence and transient absorbance measurements suggest the two states are metal-to-ligand charge transfer and ligand localized {pi}{r_arrow}{pi}* triplets. Finally, the authors have developed methods to prepare polymetallic complexes which are covalently bound to various surfaces. The long term objective of this work is to make light harvesting arrays for the sensitization of large band gap semiconductors. Details of this work are provided in the body of the report.

  12. Photoinduced energy transfer in transition metal complex oligomers

    SciTech Connect

    1997-04-01

    The work we have done over the past three years has been directed toward the preparation, characterization and photophysical examination of mono- and bimetallic diimine complexes. The work is part of a broader project directed toward the development of stable, efficient, light harvesting arrays of transition metal complex chromophores. One focus has been the synthesis of rigid bis-bidentate and bis-tridentate bridging ligands. We have managed to make the ligand bphb in multigram quantities from inexpensive starting materials. The synthetic approach used has allowed us prepare a variety of other ligands which may have unique applications (vide infra). We have prepared, characterized and examined the photophysical behavior of Ru(II) and Re(I) complexes of the ligands. Energy donor/acceptor complexes of bphb have been prepared which exhibit nearly activationless energy transfer. Complexes of Ru(II) and Re(I) have also been prepared with other polyunsaturated ligands in which two different long lived ( > 50 ns) excited states exist; results of luminescence and transient absorbance measurements suggest the two states are metal-to-ligand charge transfer and ligand localized {pi}{r_arrow}{pi}* triplets. Finally, we have developed methods to prepare polymetallic complexes which are covalently bound to various surfaces. The long term objective of this work is to make light harvesting arrays for the sensitization of large band gap semiconductors. Details of this work are provided in the body of the report.

  13. GW calculations on post-transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Kang, Youngho; Kang, Gijae; Nahm, Ho-Hyun; Cho, Seong-Ho; Park, Young Soo; Han, Seungwu

    2014-04-01

    In order to establish the reliable GW scheme that can be consistently applied to post-transition-metal oxides (post-TMOs), we carry out comprehensive GW calculations on electronic structures of ZnO, Ga2O3,In2O3, and SnO2, the four representative post-TMOs. Various levels of self-consistency (G0W0, GW0, and QPGW0) and different starting functionals (GGA, GGA + U, and hybrid functional) are tested and their influence on the resulting electronic structure is closely analyzed. It is found that the GW0 scheme with GGA + U as the initial functional turns out to give the best agreement with experiment, implying that describing the position of metal-d level precisely in the ground state plays a critical role for the accurate dielectric property and quasiparticle band gap. Nevertheless, the computation on ZnO still suffers from the shallow Zn-d level and we propose a modified approach (GW0+Ud) that additionally considers an effective Hubbard U term during GW0 iterations and thereby significantly improves the band gap. It is also shown that a GGA + U-based GW0(+Ud) scheme produces an accurate energy gap of crystalline InGaZnO4, implying that this can serve as a standard scheme that can be applied to general structures of post-TMOs.

  14. Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers.

    PubMed

    Bogdanov, Nikolay A; Katukuri, Vamshi M; Romhányi, Judit; Yushankhai, Viktor; Kataev, Vladislav; Büchner, Bernd; van den Brink, Jeroen; Hozoi, Liviu

    2015-01-01

    A promising route to tailoring the electronic properties of quantum materials and devices rests on the idea of orbital engineering in multilayered oxide heterostructures. Here we show that the interplay of interlayer charge imbalance and ligand distortions provides a knob for tuning the sequence of electronic levels even in intrinsically stacked oxides. We resolve in this regard the d-level structure of layered Sr2IrO4 by electron spin resonance. While canonical ligand-field theory predicts g||-factors less than 2 for positive tetragonal distortions as present in Sr2IrO4, the experiment indicates g|| is greater than 2. This implies that the iridium d levels are inverted with respect to their normal ordering. State-of-the-art electronic-structure calculations confirm the level switching in Sr2IrO4, whereas we find them in Ba2IrO4 to be instead normally ordered. Given the nonpolar character of the metal-oxygen layers, our findings highlight the tetravalent transition-metal 214 oxides as ideal platforms to explore d-orbital reconstruction in the context of oxide electronics. PMID:26105992

  15. Investigations into Transition Metal Catalyzed Arene Trifluoromethylation Reactions

    PubMed Central

    Ye, Yingda; Sanford, Melanie S.

    2015-01-01

    Trifluoromethyl-substituted arenes and heteroarenes are widely prevalent in pharmaceuticals and agrochemicals. As a result, the development of practical methods for the formation of aryl–CF3 bonds has become an active field of research. Over the past five years, transition metal catalyzed cross-coupling between aryl–X (X = halide, organometallic, or H) and various “CF3” reagents has emerged as a particularly exciting approach for generating aryl–CF3 bonds. Despite many recent advances in this area, current methods generally suffer from limitations such as poor generality, harsh reaction conditions, the requirement for stoichiometric quantities of metals, and/or the use of costly CF3 sources. This Account describes our recent efforts to address some of these challenges by: (1) developing aryl trifluoromethylation reactions involving high oxidation state Pd intermediates, (2) exploiting AgCF3 for C–H trifluoromethylation, and (3) achieving Cu-catalyzed trifluoromethylation with photogenerated CF3•. PMID:25838638

  16. Green's function approach to edge states in transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Farmanbar, Mojtaba; Amlaki, Taher; Brocks, Geert

    2016-05-01

    The semiconducting two-dimensional transition metal dichalcogenides MX 2 show an abundance of one-dimensional metallic edges and grain boundaries. Standard techniques for calculating edge states typically model nanoribbons, and require the use of supercells. In this paper, we formulate a Green's function technique for calculating edge states of (semi-)infinite two-dimensional systems with a single well-defined edge or grain boundary. We express Green's functions in terms of Bloch matrices, constructed from the solutions of a quadratic eigenvalue equation. The technique can be applied to any localized basis representation of the Hamiltonian. Here, we use it to calculate edge states of MX 2 monolayers by means of tight-binding models. Aside from the basic zigzag and armchair edges, we study edges with a more general orientation, structurally modifed edges, and grain boundaries. A simple three-band model captures an important part of the edge electronic structures. An 11-band model comprising all valence orbitals of the M and X atoms is required to obtain all edge states with energies in the MX 2 band gap. Here, states of odd symmetry with respect to a mirror plane through the layer of M atoms have a dangling-bond character, and tend to pin the Fermi level.

  17. Theoretical research program to predict the properties of molecules and clusters containing transition metal atoms

    NASA Technical Reports Server (NTRS)

    Walch, S.

    1984-01-01

    The primary focus of this research has been the theoretical study of transition metal (TM) chemistry. A major goal of this work is to provide reliable information about the interaction of H atoms with iron metal. This information is needed to understand the effect of H atoms on the processes of embrittlement and crack propagation in iron. The method in the iron hydrogen studies is the cluster method in which the bulk metal is modelled by a finite number of iron atoms. There are several difficulties in the application of this approach to the hydrogen iron system. First the nature of TM-TM and TM-H bonding for even diatomic molecules was not well understood when these studies were started. Secondly relatively large iron clusters are needed to provide reasonable results.

  18. Preparation and magnetic properties of phthalocyanine-based carbon materials containing transition metals

    NASA Astrophysics Data System (ADS)

    Honda, Z.; Sato, S.; Hagiwara, M.; Kida, T.; Sakai, M.; Fukuda, T.; Kamata, N.

    2016-07-01

    A simple method for the preparation of bulk quantities of magnetic carbon materials, which contain uniformly dispersed transition metals (M = Fe, Co, Ni, and Cu) as the magnetic components, is presented. By using highly chlorinated metal phthalocyanine as the building block and potassium as the coupling reagent, phthalocyanine-based carbon materials (PBCMs) containing transition metals were obtained. Our experiments demonstrate the structure of these PBCMs consists of transition metals embedded in graphitic carbon that includes a square planar MN4 magnetic core and the Fe and Co-PBCM possess spontaneous magnetization at room temperature. In addition, carbon-coated transition metal particles were obtained by the Wurtz-type reaction with excess amount of potassium coupling agent. The large transition metal surface area and magnetization of these M-PBCMs are useful for spintronic and catalytic applications.

  19. Transition metal ion FRET to measure short-range distances at the intracellular surface of the plasma membrane

    PubMed Central

    Senning, Eric N.; Aman, Teresa K.

    2016-01-01

    Biological membranes are complex assemblies of lipids and proteins that serve as platforms for cell signaling. We have developed a novel method for measuring the structure and dynamics of the membrane based on fluorescence resonance energy transfer (FRET). The method marries four technologies: (1) unroofing cells to isolate and access the cytoplasmic leaflet of the plasma membrane; (2) patch-clamp fluorometry (PCF) to measure currents and fluorescence simultaneously from a membrane patch; (3) a synthetic lipid with a metal-chelating head group to decorate the membrane with metal-binding sites; and (4) transition metal ion FRET (tmFRET) to measure short distances between a fluorescent probe and a transition metal ion on the membrane. We applied this method to measure the density and affinity of native and introduced metal-binding sites in the membrane. These experiments pave the way for measuring structural rearrangements of membrane proteins relative to the membrane. PMID:26755772

  20. Oxygen activation with transition metal complexes in aqueous solution

    SciTech Connect

    Bakac, Andreja

    2010-04-12

    Coordination to transition-metal complexes changes both the thermodynamics and kinetics of oxygen reduction. Some of the intermediates (superoxo, hydroperoxo, and oxo species) are close analogues of organic oxygen-centered radicals and peroxides (ROO{sm_bullet}, ROOH, and RO{sm_bullet}). Metal-based intermediates are typically less reactive, but more persistent, than organic radicals, which makes the two types of intermediates similarly effective in their reactions with various substrates. The self-exchange rate constant for hydrogen-atom transfer for the couples Cr{sub aq}OO{sup 2+}/Cr{sub aq}OOH{sup 2+} and L{sup 1}(H{sub 2}O)RhOO{sup 2+}/L{sup 1}(H{sub 2}O)RhOOH{sup 2+} was estimated to be 10{sup 1 {+-} 1} M{sup -1} s{sup -1}. The use of this value in the simplified Marcus equation for the Cr{sub aq}O{sup 2+}/Cr{sub aq}OOH{sup 2+} cross reaction provided an upper limit k{sub CrO,CrOH} {le} 10{sup (-2{+-}1)} M{sup -1} s{sup -1} for Cr{sub aq}O{sup 2+}/Cr{sub aq}OH{sup 2+} self-exchange. Even though superoxo complexes react very slowly in bimolecular self-reactions, extremely fast cross reactions with organic counterparts, i.e., acylperoxyl radicals, have been observed. Many of the intermediates generated by the interaction of O{sub 2} with reduced metal complexes can also be accessed by alternative routes, both thermal and photochemical.

  1. Controlling the metal insulator transition using the ferroelectric field effect in rare earth nickelates

    NASA Astrophysics Data System (ADS)

    Marshall, Matthew; Disa, Ankit; Kumah, Divine; Chen, Hanghui; Ismail-Beigi, Sohrab; Walker, Fred; Ahn, Charles

    2013-03-01

    A ferroelectric field effect transistor (FE-FET) modulates conductivity in a non-volatile manner by electrostatically accumulating and depleting charge carriers at the interface between a conducting channel and ferroelectric gate. The rare earth nickelate LaNiO3 is metallic in bulk, while other rare earth nickelates, such as NdNiO3, exhibit metal-insulator transitions and anti-ferromagnetic behavior in the bulk. Here, we show that by coupling the ferroelectric polarization of Pb0.8Zr0.2TiO3 (PZT) to the carriers in a nickelate, we can dynamically induce a metal- insulator transition in ultra-thin films of LaNiO3, and induce large changes in the MIT transition temperature in NdNiO3. Density functional theory is used to determine changes in the physical and electronic Ni-O-Ni bond angle of the nickelate at the interface between PZT and LaNiO3. The effect of the ferroelectric polarization is to decrease the Ni-O-Ni bond angle from 180 degrees and increase the carrier effective mass. Related to this change in electronic structure, we observe a change in resistivity of approximately 80% at room temperature for an ultra-thin 3 unit cell thick film of LaNiO3. Work supported by FENA and the NSF under MRSEC DMR 1119826.

  2. Cooperative phonon effects in the metal-insulator transitions of manganite and nickelate perovskites

    NASA Astrophysics Data System (ADS)

    Brierley, Richard T.; Guzmán Verri, Gian G.; Littlewood, Peter B.

    Metal-insulator transitions in manganite and nickelate perovskites depend on the competition between the electron kinetic energy, which favors the metallic phase, and the electron-phonon coupling and Coulomb interaction, which favor localization. The size of the A-site cation controls the relative rotation of the octahedral structural units of the perovskite in the range of 0 - 15°. This is accompanied by changes in the metal-insulator transition temperature from 0 - 600K . This effect is commonly attributed to modification in the electron bandwidth from changes in orbital overlap. Although previous theoretical studies of these materials include the electron-phonon interaction, they typically do not consider cooperative phonon effects. Using a phenomenological model of the perovskite structure, we show that the long-range anisotropic forces arising from inter-site phonon interactions are modulated by changes in the octahedral rotation. We demonstrate using statistical mechanical calculations that these changes in the strain interaction can capture the variation in transition temperature with tolerance factor observed in both the manganites and nickelates.

  3. Three-fold rotational defects in two-dimensional transition metal dichalcogenides

    PubMed Central

    Lin, Yung-Chang; Björkman, Torbjörn; Komsa, Hannu-Pekka; Teng, Po-Yuan; Yeh, Chao-Hui; Huang, Fei-Sheng; Lin, Kuan-Hung; Jadczak, Joanna; Huang, Ying-Sheng; Chiu, Po-Wen; Krasheninnikov, Arkady V.; Suenaga, Kazu

    2015-01-01

    As defects frequently govern the properties of crystalline solids, the precise microscopic knowledge of defect atomic structure is of fundamental importance. We report a new class of point defects in single-layer transition metal dichalcogenides that can be created through 60° rotations of metal–chalcogen bonds in the trigonal prismatic lattice, with the simplest among them being a three-fold symmetric trefoil-like defect. The defects, which are inherently related to the crystal symmetry of transition metal dichalcogenides, can expand through sequential bond rotations, as evident from in situ scanning transmission electron microscopy experiments, and eventually form larger linear defects consisting of aligned 8–5–5–8 membered rings. First-principles calculations provide insights into the evolution of rotational defects and show that they give rise to p-type doping and local magnetic moments, but weakly affect mechanical characteristics of transition metal dichalcogenides. Thus, controllable introduction of rotational defects can be used to engineer the properties of these materials. PMID:25832503

  4. Low temperature synthesis, photoluminescence, magnetic properties of the transition metal doped wurtzite ZnS nanowires

    SciTech Connect

    Cao, Jian; Han, Donglai; Wang, Bingji; Fan, Lin; Fu, Hao; Wei, Maobin; Feng, Bo; Liu, Xiaoyan; Yang, Jinghai

    2013-04-15

    In this paper, we synthesized the transition metal ions (Mn, Cu, Fe) doped and co-doped ZnS nanowires (NWs) by a one-step hydrothermal method. The results showed that the solid solubility of the Fe{sup 2+} ions in the ZnS NWs was about two times larger than that of the Mn{sup 2+} or Cu{sup 2+} ions in the ZnS NWs. There was no phase transformation from hexagonal to cubic even in a large quantity transition metal ions introduced for all the samples. The Mn{sup 2+}/Cu{sup 2+}/Fe{sup 2+} related emission peaks can be observed in the Mn{sup 2+},Cu{sup 2+} and Fe{sup 2+} doped ZnS NWs. The ferromagnetic properties of the co-doped samples were investigated at room temperature. - graphical abstract: The stable wurtzite ZnS:TM{sup 2+} (TM=Mn, Cu, Fe) nanowires with room temperature ferromagnetism properties were obtained. The different elongation of unit cell caused by the different doped ions was observed. Highlights: ► The transition metal ions doped wurtzite ZnS nanowires were synthesized at 180 °C. ► There was no phase transformation from hexagonal to cubic even in a large quantity introduced for all the samples. ► The room temperature ferromagnetism properties of the co-doped nanowires were investigated.

  5. Size versus electronic factors in transition metal carbide and TCP phase stability

    NASA Astrophysics Data System (ADS)

    Pettifor, D. G.; Seiser, B.; Margine, E. R.; Kolmogorov, A. N.; Drautz, R.

    2013-09-01

    The contributions of atomic size and electronic factors to the structural stability of transition metal carbides and topologically close-packed (TCP) phases are investigated. The hard-sphere model that has been used by Cottrell to rationalize the occurrence of the octahedral and trigonal local coordination polyhedra within the transition metal carbides is shown to have limitations in TiC since density functional theory (DFT) predicts that the second most metastable phase closest to the B1 (NaCl) ground state takes the B? (BN) structure type with 5-atom local coordination polyhedra with very short Ti-C bond lengths. The importance of electronic factors in the TCP phases is demonstrated by DFT predictions that the A15, ? and ? phases are stabilized between groups VI and VII of the elemental transition metals, whereas the ? and Laves phases are destabilized. The origin of this difference is related to the bimodal shape parameter of the electronic density of states by using the bond-order potential expansion of the structural energy within a canonical tight-binding model. The importance of the size factor in the TCP phases is illustrated by the DFT heats of formation for the binary systems Mo-Re, Mo-Ru, Nb-Re and Nb-Ru which show that the ? and Laves phases become more and more stable compared to A15, ? and ? as the size factor increases from Mo-Re through to Nb-Ru.

  6. Generic trend of work functions in transition-metal carbides and nitrides

    SciTech Connect

    Yoshitake, Michiko

    2014-11-15

    Transition-metal carbides and nitrides (TMCs and TMNs) are promising electrode materials for various electronic devices such as metal-oxide-semiconductor field-effect transistors and metal-insulator-metal capacitors. In this paper, the work functions of TMCs and TMNs are discussed systematically. Based upon the origin of the work function, the effect upon transition metal species by different periodic table groups is explained, carbides are compared with nitrides for the same transition metal, and the effect of carbon or nitrogen vacancies is discussed. In addition, a method to estimate the generic trend of the work function is proposed for TMC{sub x}, TMN{sub x}, TMC{sub 1−y}N{sub y} (transition metal carbonitrides), and TM{sub 1−z}TM′{sub z}C (alloy carbides)

  7. Ammonia and hydrazine. Transition-metal-catalyzed hydroamination and metal-free catalyzed functionalization

    SciTech Connect

    Bertrand, Guy

    2012-06-29

    The efficient and selective preparation of organic molecules is critical for mankind. For the future, it is of paramount importance to find catalysts able to transform abundant and cheap feedstocks into useful compounds. Acyclic and heterocyclic nitrogen-containing derivatives are common components of naturally occurring compounds, agrochemicals, cosmetics, and pharmaceuticals; they are also useful intermediates in a number of industrial processes. One of the most widely used synthetic strategies, allowing the formation of an N-C bond, is the addition of an N-H bond across a carbon-carbon multiple bond, the so-called hydroamination reaction. This chemical transformation fulfills the principle of “green chemistry” since it ideally occurs with 100% atom economy. Various catalysts have been found to promote this reaction, although many limitations remain; one of the most prominent is the lack of methods that permit the use of NH3 and NH2NH2 as the amine partners. In fact, ammonia and hydrazine have rarely succumbed to homogeneous catalytic transformations. Considering the low cost and abundance of ammonia (136 million metric tons produced in 2011) and hydrazine, catalysts able to improve the reactivity and selectivity of the NH3- and NH2NH2-hydroamination reaction, and more broadly speaking the functionalization of these chemicals, are highly desirable. In the last funded period, we discovered the first homogeneous catalysts able to promote the hydroamination of alkynes and allenes with ammonia and the parent hydrazine. The key feature of our catalytic systems is that the formation of catalytically inactive Werner complexes is reversible, in marked contrast to most of the known ammonia and hydrazine transition metal complexes. This is due to the peculiar electronic properties of our neutral ancillary ligands, especially their strong donating capabilities. However, our catalysts currently require

  8. Rapid Detection of Transition Metals in Welding Fumes Using Paper-Based Analytical Devices

    PubMed Central

    Volckens, John

    2014-01-01

    Metals in particulate matter (PM) are considered a driving factor for many pathologies. Despite the hazards associated with particulate metals, personal exposures for at-risk workers are rarely assessed due to the cost and effort associated with monitoring. As a result, routine exposure assessments are performed for only a small fraction of the exposed workforce. The objective of this research was to evaluate a relatively new technology, microfluidic paper-based analytical devices (µPADs), for measuring the metals content in welding fumes. Fumes from three common welding techniques (shielded metal arc, metal inert gas, and tungsten inert gas welding) were sampled in two welding shops. Concentrations of acid-extractable Fe, Cu, Ni, and Cr were measured and independently verified using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results from the µPAD sensors agreed well with ICP-OES analysis; the two methods gave statistically similar results in >80% of the samples analyzed. Analytical costs for the µPAD technique were ~50 times lower than market-rate costs with ICP-OES. Further, the µPAD method was capable of providing same-day results (as opposed several weeks for ICP laboratory analysis). Results of this work suggest that µPAD sensors are a viable, yet inexpensive alternative to traditional analytic methods for transition metals in welding fume PM. These sensors have potential to enable substantially higher levels of hazard surveillance for a given resource cost, especially in resource-limited environments. PMID:24515892

  9. Rapid detection of transition metals in welding fumes using paper-based analytical devices.

    PubMed

    Cate, David M; Nanthasurasak, Pavisara; Riwkulkajorn, Pornpak; L'Orange, Christian; Henry, Charles S; Volckens, John

    2014-05-01

    Metals in particulate matter (PM) are considered a driving factor for many pathologies. Despite the hazards associated with particulate metals, personal exposures for at-risk workers are rarely assessed due to the cost and effort associated with monitoring. As a result, routine exposure assessments are performed for only a small fraction of the exposed workforce. The objective of this research was to evaluate a relatively new technology, microfluidic paper-based analytical devices (µPADs), for measuring the metals content in welding fumes. Fumes from three common welding techniques (shielded metal arc, metal inert gas, and tungsten inert gas welding) were sampled in two welding shops. Concentrations of acid-extractable Fe, Cu, Ni, and Cr were measured and independently verified using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results from the µPAD sensors agreed well with ICP-OES analysis; the two methods gave statistically similar results in >80% of the samples analyzed. Analytical costs for the µPAD technique were ~50 times lower than market-rate costs with ICP-OES. Further, the µPAD method was capable of providing same-day results (as opposed several weeks for ICP laboratory analysis). Results of this work suggest that µPAD sensors are a viable, yet inexpensive alternative to traditional analytic methods for transition metals in welding fume PM. These sensors have potential to enable substantially higher levels of hazard surveillance for a given resource cost, especially in resource-limited environments. PMID:24515892

  10. Covalency and the metal-insulator transition in titanate and vanadate perovskites

    NASA Astrophysics Data System (ADS)

    Dang, Hung T.; Millis, Andrew J.; Marianetti, Chris A.

    2014-04-01

    A combination of density functional and dynamical mean-field theory is applied to the perovskites SrVO3, LaTiO3, and LaVO3. We show that DFT + DMFT in conjunction with the standard fully localized-limit (FLL) double-counting predicts that LaTiO3 and LaVO3 are metals even though experimentally they are correlation-driven ("Mott") insulators. In addition, the FLL double counting implies a splitting between oxygen p and transition metal d levels, which differs from experiment. Introducing into the theory an ad hoc double counting correction, which reproduces the experimentally measured insulating gap leads also to a p-d splitting consistent with experiment if the on-site interaction U is chosen in a relatively narrow range (˜6±1 eV). The results indicate that these early transition metal oxides will serve as critical test for the formulation of a general ab initio theory of correlated electron metals.

  11. Quantum classical transition in scale relativity

    NASA Astrophysics Data System (ADS)

    Célérier, Marie-Noëlle; Nottale, Laurent

    2004-01-01

    The theory of scale relativity provides a new insight into the origin of fundamental laws in physics. Its application to microphysics allows us to recover quantum mechanics as mechanics on a non-differentiable (fractal) spacetime. The Schrödinger and Klein-Gordon equations are demonstrated as geodesic equations in this framework. A development of the intrinsic properties of this theory, using the mathematical tool of Hamilton's bi-quaternions, leads us to a derivation of the Dirac equation within the scale-relativity paradigm. The complex form of the wavefunction in the Schrödinger and Klein-Gordon equations follows from the non-differentiability of the geometry, since it involves a breaking of the invariance under the reflection symmetry on the (proper) time differential element (ds harr -ds). This mechanism is generalized for obtaining the bi-quaternionic nature of the Dirac spinor by adding a further symmetry breaking due to non-differentiability, namely the differential coordinate reflection symmetry (dxmgr harr -dxmgr) and by requiring invariance under the parity and time inversion. The Pauli equation is recovered as a non-motion-relativistic approximation of the Dirac equation.

  12. Ternary Amides Containing Transition Metals for Hydrogen Storage: A Case Study with Alkali Metal Amidozincates.

    PubMed

    Cao, Hujun; Richter, Theresia M M; Pistidda, Claudio; Chaudhary, Anna-Lisa; Santoru, Antonio; Gizer, Gökhan; Niewa, Rainer; Chen, Ping; Klassen, Thomas; Dornheim, Martin

    2015-11-01

    The alkali metal amidozincates Li4 [Zn(NH2)4](NH2)2 and K2[Zn(NH2)4] were, to the best of our knowledge, studied for the first time as hydrogen storage media. Compared with the LiNH2-2 LiH system, both Li4 [Zn(NH2)4](NH2)2-12 LiH and K2[Zn(NH2)4]-8 LiH systems showed improved rehydrogenation performance, especially K2[Zn(NH2)4]-8 LiH, which can be fully hydrogenated within 30 s at approximately 230 °C. The absorption properties are stable upon cycling. This work shows that ternary amides containing transition metals have great potential as hydrogen storage materials. PMID:26463124

  13. X-ray absorption to determine the metal oxidation state of transition metal compounds

    NASA Astrophysics Data System (ADS)

    Jiménez-Mier, J.; Olalde-Velasco, P.; Carabalí-Sandoval, G.; Herrera-Pérez, G.; Chavira, E.; Yang, W.-L.; Denlinger, J.

    2013-07-01

    We present three examples where x-ray absorption at the transition metal L2,3 edges is used to investigate the valence states of various strongly correlated (SC) and technological relevant materials. Comparison with ligand field multiplet calculations is needed to determine the metal oxidation states. The examples are CrF2, the La1-xSrxCoO3 family and YVO3. For CrF2 the results indicate a disproportionation reaction that generates Cr+, Cr2+ and Cr3+ in different proportions that can be quantified directly from the x-ray spectra. Additionally, it is shown that Co2+ is present in the catalytic La1-xSrxCoO3 perovskite family. Finally, surface effects that change the vanadium valence are also found in YVO3 nanocrystals.

  14. Solubility Behavior and Phase Stability of Transition Metal Oxides in Alkaline Hydrothermal Environments

    SciTech Connect

    S.E. Ziemniak

    2000-05-18

    The solubility behavior of transition metal oxides in high temperature water is interpreted by recognizing three types of chemical reaction equilibria: metal oxide hydration/dehydration, metal oxide dissolution and metal ion hydroxocomplex formation. The equilibria are quantified using thermodynamic concepts and the thermochemical properties of the metal oxides/ions representative of the most common constituents of construction metal alloys, i.e., element shaving atomic numbers between Z = 22 (Ti) and Z = 30 (Zn), are summarized on the basis of metal oxide solubility studies conducted in the laboratory. Particular attention is devoted to the uncharged metal ion hydrocomplex, M{sup Z}(OH){sub Z}(aq), since its thermochemical properties define minimum solubilities of the metal oxide at a given temperature. Experimentally-extracted values of standard partial molal entropy (S{sup 0}) for the transition metal ion neutral hydroxocomplex are shown to be influenced by ligand field stabilization energies and complex symmetry.

  15. Evaluation of transition metal oxide as carrier-selective contacts for silicon heterojunction solar cells

    SciTech Connect

    Ding, L.; Boccard, Matthieu; Holman, Zachary; Bertoni, M.

    2015-04-06

    "Reducing light absorption in the non-active solar cell layers, while enabling the extraction of the photogenerated minority carriers at quasi-Fermi levels are two key factors to improve current generation and voltage, and therefore efficiency of silicon heterojunction solar devices. To address these two critical aspects, transition metal oxide materials have been proposed as alternative to the n- and p-type amorphous silicon used as electron and hole selective contacts, respectively. Indeed, transition metal oxides such as molybdenum oxide, titanium oxide, nickel oxide or tungsten oxide combine a wide band gap typically over 3 eV with a band structure and theoretical band alignment with silicon that results in high transparency to the solar spectrum and in selectivity for the transport of only one carrier type. Improving carrier extraction or injection using transition metal oxide has been a topic of investigation in the field of organic solar cells and organic LEDs; from these pioneering works a lot of knowledge has been gained on materials properties, ways to control these during synthesis and deposition, and their impact on device performance. Recently, the transfer of some of this knowledge to silicon solar cells and the successful application of some metal oxide to contact heterojunction devices have gained much attention. In this contribution, we investigate the suitability of various transition metal oxide films (molybdenum oxide, titanium oxide, and tungsten oxide) deposited either by thermal evaporation or sputtering as transparent hole or electron selective transport layer for silicon solar cells. In addition to systematically characterize their optical and structural properties, we use photoemission spectroscopy to relate compound stoichiometry to band structure and characterize band alignment to silicon. The direct silicon/metal oxide interface is further analyzed by quasi-steady state photoconductance decay method to assess the quality of surface

  16. Equilibrium atomic properties of transition and rare-earth metals. (in Ukrainian)

    NASA Astrophysics Data System (ADS)

    Yakibchuk, P. M.

    Within the framework of the recently proposed nonlocal model potential the formulas for binding energy and equilibrium atomic radia of transition and rare--earth metals are received. Numerical calculation of the above characteristics for the 4d-transition metals is carried out for such an approach.

  17. Ligational behavior of Schiff bases towards transition metal ion and metalation effect on their antibacterial activity

    NASA Astrophysics Data System (ADS)

    Devi, Jai; Batra, Nisha; Malhotra, Rajesh

    2012-11-01

    New Schiff bases pyrazine-2-carboxylicacid (phenyl-pyridin-2-yl-methylene)-hydrazide (Hpch-bp) HL1 and pyrazine-2-carboxylicacid (pyridin-2-ylmethylene)-hydrazide (Hpch-pc) HL2 derived from condensation of pyrazine carboxylic hydrazide (Hpch) with 2-benzoyl pyridine (bp) or pyridine 2-carbaldehyde (pc) and their transition metal complexes of type ML(1-2)2 have been synthesized, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). Characterization of ligands and their metal complexes was carried out by elemental analysis, conductimetric studies, magnetic susceptibility, spectroscopic techniques (IR, UV-VIS, NMR, ESR, Mass) and thermogravimetric analysis. The physico-chemical studies revealed octahedral geometry or distorted octahedral geometry around metal ion. These azomethine Schiff base ligands acted as tridentate ? coordinating through carbonyl, azomethine and pyridine nitrogen present in the ligand. The thermodynamic and thermal properties of the complexes have been investigated and it was observed on the basis of these studies that thermal stability of complexes follows the order Mn < Zn < Cu < Co < Ni. The ligands and their complexes were tested for in vitro antibacterial activity at different concentrations against bacteria viz. Gram positive Bacillus subtilis, Micrococcus luteus and Gram negative Pseudomonas aeruginosa, Pseudomonas mendocina. A marked enhancement in biocidal activity of the ligands under similar experimental conditions was observed as a consequence of coordination with metal ions. The trend of growth inhibition in the complexes was found to be in the order: Cu > Mn > Ni > Co > Zn.

  18. Synthesis and characterization of two dimensional transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Gao, Jian

    Two-dimensional transition metal dichalcogenides (TMDs) are an emerging class of atomically thin semiconductors that show potential in next-generation electronics, optoelectronics, and energy storage batteries. The successful synthesis and doping of TMDs is the key to their applications. I have synthesized monolayer MoS2, WS2, and multilayer ReS2 flakes by CVD, and studied an unprecedented one-pot synthesis for transition-metal substitution doping in large-area, synthetic monolayer TMDs. Electron microscopy, optical and electronic transport characterization and ab initio calculations indicate that our doping strategy preserves the attractive qualities of TMD monolayers, including semiconducting transport and strong direct-gap luminescence. The Re doping of MoS2 greatly improve the contact quality (one of the biggest issue in TMDs) and the FET shows Ohmic contact even at low temperature (4K). These results potentially enables next-generation optoelectronic technology in the atomically-thin regime. Besides, TMDs are generally considered to be 'air-stable', however, we have found that they exhibit poor long-term stability in air in morphology, chemical states, photo-emission, and demonstrated a potential solution to this problem by encapsulation of the monolayer sheet with transparent parylene C. Synthetic TMDs tend to grow parallel to the growth substrate, however, high performance energy conversion and storage devices prefer flakes with high exposed surface area. Therefore by choosing the right precursors and appropriate tuning of the CVD growth conditions, we have grown vertical ReS2 nanosheets on various growth substrates. We show that these structural features of the vertically grown ReS2 sheets can be exploited to significantly improve their performance as electrochemical catalysts in Lithium-Sulfur (Li-S) batteries and in hydrogen evolution reactions (HER). After 300 cycles, the specific capacity of the Li-S battery with vertical-ReS2 catalyst is retained above

  19. Electron Scattering at Surfaces and Interfaces of Transition Metals

    NASA Astrophysics Data System (ADS)

    Zheng, Pengyuan

    The effect of surfaces on the electron transport at reduced scales is attracting continuous interest due to its broad impact on both the understanding of materials properties and their application for nanoelectronics. The size dependence of for conductor's electrical resistivity rho due to electron surface scattering is most commonly described within the framework of Fuchs and Sondheimer (FS) and their various extensions, which uses a phenomenological scattering parameter p to define the probability of electrons being elastically (i.e. specularly) scattered by the surface without causing an increase of rho at reduced size. However, a basic understanding of what surface chemistry and structure parameters determine the specularity p is still lacking. In addition, the assumption of a spherical Fermi surface in the FS model is too simple for transition metals to give accurate account of the actual surface scattering effect. The goal of this study is to develop an understanding of the physics governing electron surface/interface scattering in transition metals and to study the significance of their Fermi surface shape on surface scattering. The advancement of the scientific knowledge in electron surface and interface scattering of transition metals can provide insights into how to design high-conductivity nanowires that will facilitate the viable development of advanced integrated circuits, thermoelectric power generation and spintronics. Sequential in situ and ex situ transport measurements as a function of surface chemistry demonstrate that electron surface/interface scattering can be engineered by surface doping, causing a decrease in the rho. For instance, the rho of 9.3-nm-thick epitaxial and polycrystalline Cu is reduced by 11--13% when coated with 0.75 nm Ni. This is due to electron surface scattering which exhibits a specularity p = 0.7 for the Cu-vacuum interface that transitions to completely diffuse (p = 0) when exposed to air. In contrast, Ni-coated surfaces

  20. DPP dyes as ligands in transition-metal complexes.

    PubMed

    Lorenz, Ingo-Peter; Limmert, Michael; Mayer, Peter; Piotrowski, Holger; Langhals, Heinz; Poppe, Martin; Polborn, Kurt

    2002-09-01

    The DPP dyes (=diketopyrrolopyrrole) 1 are deprotonated to give the corresponding dianions 2. These are treated with two moles of the transition-metal complexes [L(n)MX]=[(Ph(3)P)(2)MX] (M=Cu, Ag; X=Cl, NO(3)), [(Ph(3)P)AuCl], [(Et(3)P)AuCl], [(tBuNC)AuCl], [(Ph(3)P)(2)PdCl(2)], and [(Ph(3)P)(2)PtCl(2)] to give the novel bismetalated DPP dyes [L(n)MN[C(3)R(1)(O)](2)NML(n)] (4-10). In comparison with the starting materials, these compounds show better solubilities, high fluorescence quantum yields (Phi > or = 80 %), and bathochromic absorptions. The compounds 4 c, 5 a, 6 b, 6 c, 6 e, 7 c, and 8 c were characterized by X-ray crystallography. The copper and silver atoms in 4 c and 5 a are trigonal planar and are surrounded by the P atoms of the phosphane ligands and the N atom of the DPP dianion 2. Both metals are somewhat forced out-of-plane, and the P(2)M plane and the phenyl planes of R1 are twisted by > or = 70 degrees and < or = 25 degrees, respectively, towards the chromophore plane. The gold atoms in 6-8 are linearly coordinated to one N and one P (6 b, c, e, 7 c) or one C atom (8 c), respectively. The gold atoms are only slightly pressed out-of-plane, and the P substituents are staggered so that there is enough space for the planarization of R(1) into the plane of the chromophore. Compound 8 c shows intermolecular d(10)-d(10) interactions between Au(I) centers of different molecules, and these interactions lead to infinite chains of parallel orientated molecules in a gauche conformation of neighbors (torsion angle=150 degrees) in the crystal. PMID:12360946

  1. Voltage controlled magnetism in 3d transitional metals

    NASA Astrophysics Data System (ADS)

    Wang, Weigang

    2015-03-01

    Despite having attracted much attention in multiferroic materials and diluted magnetic semiconductors, the impact of an electric field on the magnetic properties remains largely unknown in 3d transitional ferromagnets (FMs) until recent years. A great deal of effort has been focused on the voltage-controlled magnetic anisotropy (VCMA) effect where the modulation of anisotropy field is understood by the change of electron density among different d orbitals of FMs in the presence of an electric field. Here we demonstrate another approach to alter the magnetism by electrically controlling the oxidation state of the 3d FM at the FM/oxide interface. The thin FM film sandwiched between a heavy metal layer and a gate oxide can be reversibly changed from an optimally-oxidized state with a strong perpendicular magnetic anisotropy to a metallic state with an in-plane magnetic anisotropy, or to a fully-oxidized state with nearly zero magnetization, depending on the polarity and time duration of the applied electric fields. This is a voltage controlled magnetism (VCM) effect, where both the saturation magnetization and anisotropy field of the 3d FM layer can be simultaneously controlled by voltage in a non-volatile fashion. We will also discuss the impact of this VCM effect on magnetic tunnel junctions and spin Hall switching experiments. This work, in collaboration with C. Bi, Y.H. Liu, T. Newhouse-Illige, M. Xu, M. Rosales, J.W. Freeland, O. Mryasov, S. Zhang, and S.G.E. te Velthuis, was supported in part by NSF (ECCS-1310338) and by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.

  2. Transition-metal embedded carbon nitride monolayers: high-temperature ferromagnetism and half-metallicity

    NASA Astrophysics Data System (ADS)

    Choudhuri, Indrani; Kumar, Sourabh; Mahata, Arup; Rawat, Kuber Singh; Pathak, Biswarup

    2016-07-01

    High-temperature ferromagnetic materials with planar surfaces are promising candidates for spintronics applications. Using state-of-the-art density functional theory (DFT) calculations, transition metal (TM = Cr, Mn, and Fe) incorporated graphitic carbon nitride (TM@gt-C3N4) systems are investigated as possible spintronics devices. Interestingly, ferromagnetism and half-metallicity were observed in all of the TM@gt-C3N4 systems. We find that Cr@gt-C3N4 is a nearly half-metallic ferromagnetic material with a Curie temperature of ~450 K. The calculated Curie temperature is noticeably higher than other planar 2D materials studied to date. Furthermore, it has a steel-like mechanical stability and also possesses remarkable dynamic and thermal (500 K) stability. The calculated magnetic anisotropy energy (MAE) in Cr@gt-C3N4 is as high as 137.26 μeV per Cr. Thereby, such material with a high Curie temperature can be operated at high temperatures for spintronics devices.High-temperature ferromagnetic materials with planar surfaces are promising candidates for spintronics applications. Using state-of-the-art density functional theory (DFT) calculations, transition metal (TM = Cr, Mn, and Fe) incorporated graphitic carbon nitride (TM@gt-C3N4) systems are investigated as possible spintronics devices. Interestingly, ferromagnetism and half-metallicity were observed in all of the TM@gt-C3N4 systems. We find that Cr@gt-C3N4 is a nearly half-metallic ferromagnetic material with a Curie temperature of ~450 K. The calculated Curie temperature is noticeably higher than other planar 2D materials studied to date. Furthermore, it has a steel-like mechanical stability and also possesses remarkable dynamic and thermal (500 K) stability. The calculated magnetic anisotropy energy (MAE) in Cr@gt-C3N4 is as high as 137.26 μeV per Cr. Thereby, such material with a high Curie temperature can be operated at high temperatures for spintronics devices. Electronic supplementary information (ESI

  3. Voltage-induced Metal-Insulator Transitions in Perovskite Oxide Thin Films Doped with Strongly Correlelated Electrons

    NASA Astrophysics Data System (ADS)

    Wang, Yudi; Gil Kim, Soo; Chen, I.-Wei

    2007-03-01

    We have observed a reversible metal-insulator transition in perovskite oxide thin films that can be controlled by charge trapping pumped by a bipolar voltage bias. In the as-fabricated state, the thin film is metallic with a very low resistance comparable to that of the metallic bottom electrode, showing decreasing resistance with decreasing temperature. This metallic state switches to a high-resistance state after applying a voltage bias: such state is non-ohmic showing a negative temperature dependence of resistance. Switching at essentially the same voltage bias was observed down to 2K. The metal-insulator transition is attributed to charge trapping that disorders the energy of correlated electron states in the conduction band. By increasing the amount of charge trapped, which increases the disorder relative to the band width, increasingly more insulating states with a stronger temperature dependence of resistivity are accessed. This metal-insulator transition provides a platform to engineer new nonvolatile memory that does not require heat (as in phase transition) or dielectric breakdown (as in most other oxide resistance devices).

  4. The chromospheric and transition layer emission of stars with different metal abundances

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, E.

    1981-01-01

    Preliminary results on observations of chromospheric and transition layer emission of stars with different metal abundances are reported. Metal deficient stars generally show reduced emission in the Mg II resonance lines and also in the other chromospheric and transition layer emission lines. This is interpreted as showing that energy fluxes other than acoustic fluxes must at least be coresponsible for the coronal and transition layer heating.

  5. Transition metal activation and functionalization of carbon-hydrogen bonds

    SciTech Connect

    Jones, W.D.

    1992-06-01

    We are investigating the fundamental thermodynamic and kinetic factors that influence carbon-hydrogen bond activation at homogeneous transition metal centers and the conversion of hydrocarbons into functionalized products of potential use to the chemical industry. Advances have been made in both understanding the interactions of hydrocarbons with metals and in the functionalization of hydrocarbons. We have found that RhCl(PR{sub 3}){sub 2}(CNR) complexes can catalyze the insertion of isonitriles into the C-H bonds or arenes upon photolysis. The mechanism of these reactions was found to proceed by way of initial phosphine dissociation, followed by C-H activation and isonitrile insertion. We have also examined reactions of a series of arenes with (C{sub 5}Me{sub 5})Rh(PMe{sub 3})PhH and begun to map out the kinetic and thermodynamic preferences for arene coordination. The effects of resonance, specifically the differences in the Hueckel energies of the bound vs free ligand, are now believed to fully control the C-H activation/{eta}{sup 2}-coordination equilibria. We have begun to examine the reactions of rhodium isonitrile pyrazolylborates for alkane and arene C-H bond activation. A new, labile, carbodiimide precursor has been developed for these studies. We have completed studies of the reactions of (C{sub 5}Me{sub 5})Rh(PMe{sub 3})H{sub 2} with D{sub 2} and PMe{sub 3} that indicate that both {eta}{sup 5} {yields} {eta}{sup 3} ring slippage and metal to ring hydride migration occur more facilely than thermal reductive elimination of H{sub 2}. We have examined the reactions of heterocycles with (C{sub 5}Me{sub 5})Rh(PMe{sub 3})PhH and found that pyrrole and furan undergo C-H or N-H activation. Thiophene, however, undergoes C-S bond oxidative addition, and the mechanism of activation has been shown to proceed through sulfur coordination prior to C-S insertion.

  6. Exploring Undergraduates' Understanding of Transition Metals Chemistry with the Use of Cognitive and Confidence Measures

    ERIC Educational Resources Information Center

    Sreenivasulu, Bellam; Subramaniam, R.

    2014-01-01

    Compared to studies on school students' understanding of various topics in the sciences, studies involving university students have received relatively less attention in the science education literature. In this study, we investigated university students' understanding of transition metals chemistry, a topic in inorganic chemistry, which…

  7. Computational Study of Metal Contacts to Monolayer Transition-Metal Dichalcogenide Semiconductors

    NASA Astrophysics Data System (ADS)

    Kang, Jiahao; Liu, Wei; Sarkar, Deblina; Jena, Debdeep; Banerjee, Kaustav

    2014-07-01

    Among various 2D materials, monolayer transition-metal dichalcogenide (mTMD) semiconductors with intrinsic band gaps (1-2 eV) are considered promising candidates for channel materials in next-generation transistors. Low-resistance metal contacts to mTMDs are crucial because currently they limit mTMD device performances. Hence, a comprehensive understanding of the atomistic nature of metal contacts to these 2D crystals is a fundamental challenge, which is not adequately addressed at present. In this paper, we report a systematic study of metal-mTMD contacts with different geometries (top contacts and edge contacts) by ab initio density-functional theory calculations, integrated with Mulliken population analysis and a semiempirical van der Waals dispersion potential model (which is critical for 2D materials and not well treated before). Particularly, In, Ti, Au, and Pd, contacts to monolayer MoS2 and WSe2 as well as Mo-MoS2 and W-WSe2 contacts are evaluated and categorized, based on their tunnel barriers, Schottky barriers, and orbital overlaps. Moreover, going beyond Schottky theory, new physics in such contact interfaces is revealed, such as the metallization of mTMDs and abnormal Fermi level pinning. Among the top contacts to MoS2, Ti and Mo show great potential to form favorable top contacts, which are both n-type contacts, while for top contacts to WSe2, W or Pd exhibits the most advantages as an n- or p-type contact, respectively. Moreover, we find that edge contacts can be highly advantageous compared to top contacts in terms of electron injection efficiency. Our formalism and the results provide guidelines that would be invaluable for designing novel 2D semiconductor devices.

  8. Dislocations and Plasticity in bcc Transition Metals at High Pressure

    SciTech Connect

    Yang, L H; Tang, M; Moriarty, J A

    2009-01-23

    Using first-principles electronic structure calculations, quantum-based atomistic simulations and atomistically informed dislocation dynamics (DD) simulations, we have studied individual dislocation behavior and the multiscale modeling of single-crystal plasticity in the prototype bcc transition metals Ta, Mo and V under both ambient and high pressure conditions. The primary focus in this work is on the pressure-dependent structure, mobility and interaction of a/2<111> screw dislocations, which dominate the plastic deformation properties of these materials. At the electronic scale, first-principles calculations of elasticity, ideal strength and generalized stacking fault energy surfaces have been used to validate quantum-based multi-ion interatomic potentials. At the atomistic scale, these potentials have been used in flexible Green's function boundary condition simulations to study the core structure, Peierls stress {tau}{sub P}, thermally activated kink-pair formation and mobility below {tau}{sub P}, and phonon-drag mobility above {tau}{sub P}. These results have then been distilled into analytic velocity laws and used directly in predictive microscale DD simulations of flow stress and resolved yield stress over wide ranges of pressure, temperature and strain rate.

  9. Magnetic Exchange Couplings in Transition Metal Complexes from DFT

    NASA Astrophysics Data System (ADS)

    Peralta, Juan

    In this talk I will review our current efforts for the evaluation of magnetic exchange couplings in transition metal complexes from density functional theory. I will focus on the performance of different DFT approximations, including a variety of hybrid density functionals, and show that hybrid density functionals containing approximately 30% Hartree-Fock type exchange are in general among the best choice in terms of accuracy. I will also describe a novel computational method to evaluate exchange coupling parameters using analytic self-consistent linear response theory. This method avoids the explicit evaluation of energy differences, which can become impractical for large systems. Our approach is based on the evaluation of the transversal magnetic torque between two magnetic centers for a given spin configuration using explicit constraints of the local magnetization direction via Lagrange multipliers. This method is applicable in combination with any modern density functional with a noncollinear spin generalization and can be utilized as a ``black-box''. I will show proof-of-concept calculations in frustrated Fe7IIIdisk-shaped clusters, and dinuclear CuII, FeIII, and heteronuclear complexes. NSF DMR-1206920.

  10. Correlations in rare-earth transition-metal permanent magnets

    SciTech Connect

    Skomski, R. Manchanda, P.; Kashyap, A.

    2015-05-07

    It is investigated how electron-electron correlations affect the intrinsic properties of rare-earth transition-metal magnets. Focusing on orbital moment and anisotropy, we perform model calculations for 3d-4f alloys and density-functional theory (DFT) calculations for NdCo{sub 5}. On an independent-electron level, the use of a single Slater determinant with broken spin symmetry introduces Hund's rule correlations, which govern the behavior of rare-earth ions and of alloys described by the local spin density approximation (LSDA) and LSDA + U approximations to DFT. By contrast, rare-earth ions in intermetallics involve configuration interactions between two or more Slater determinants and lead to phenomena such as spin-charge distribution. Analyzing DFT as a Legendre transformation and using Bethe's crystal-field theory, we show that the corresponding density functionals are very different from familiar LSDA-type expressions and outline the effect of spin-charge separation on the magnetocrystalline anisotropy.

  11. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers

    SciTech Connect

    Sivadas, Nikhil; Daniels, Matthew W.; Swendsen, Robert H.; Okamoto, Satoshi; Xiao, Di

    2015-06-16

    Layered transition-metal trichalcogenides with the chemical formula ABX3 have attracted recent interest as potential candidates for two-dimensional magnets. Using first-principles calculations within density functional theory, we investigate the magnetic ground states of monolayers of Mn- and Cr-based semiconducting trichalcogenides.We show that the second and third nearest-neighbor exchange interactions (J2 and J3) between magnetic ions, which have been largely overlooked in previous theoretical studies, are crucial in determining the magnetic ground state. Specifically, we find that monolayer CrSiTe3 is an antiferromagnet with a zigzag spin texture due to significant contribution from J3, whereas CrGeTe3 is a ferromagnet with a Curie temperature of 106 K. Monolayers of Mn compounds (MnPS3 and MnPSe3) always show antiferromagnetic N eel order. We identify the physical origin of various exchange interactions, and demonstrate that strain can be an effective knob for tuning the magnetic properties. Possible magnetic ordering in the bulk is also discussed. In conclusion, our study suggests that ABX3 can be a promising platform to explore two-dimensional magnetic phenomena.

  12. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers

    DOE PAGESBeta

    Sivadas, Nikhil; Daniels, Matthew W.; Swendsen, Robert H.; Okamoto, Satoshi; Xiao, Di

    2015-06-16

    Layered transition-metal trichalcogenides with the chemical formula ABX3 have attracted recent interest as potential candidates for two-dimensional magnets. Using first-principles calculations within density functional theory, we investigate the magnetic ground states of monolayers of Mn- and Cr-based semiconducting trichalcogenides.We show that the second and third nearest-neighbor exchange interactions (J2 and J3) between magnetic ions, which have been largely overlooked in previous theoretical studies, are crucial in determining the magnetic ground state. Specifically, we find that monolayer CrSiTe3 is an antiferromagnet with a zigzag spin texture due to significant contribution from J3, whereas CrGeTe3 is a ferromagnet with a Curie temperaturemore » of 106 K. Monolayers of Mn compounds (MnPS3 and MnPSe3) always show antiferromagnetic N eel order. We identify the physical origin of various exchange interactions, and demonstrate that strain can be an effective knob for tuning the magnetic properties. Possible magnetic ordering in the bulk is also discussed. In conclusion, our study suggests that ABX3 can be a promising platform to explore two-dimensional magnetic phenomena.« less

  13. Metal-insulator transitions in IZO, IGZO, and ITZO films

    SciTech Connect

    Makise, Kazumasa; Hidaka, Kazuya; Ezaki, Syohei; Asano, Takayuki; Shinozaki, Bunju; Tomai, Shigekazu; Yano, Koki; Nakamura, Hiroaki

    2014-10-21

    In this study, we measured the low-temperature resistivity of amorphous two- and three-dimensional (2D and 3D) indium-zinc oxide, indium-gallium-zinc oxide, and indium-tin-zinc oxide films with a wide range of carrier densities. To determine their critical characteristics at the metal-insulator transition (MIT), we used the Ioffe–Regel criterion. We found that the MIT occurs in a narrow range between k{sub F}ℓ =0.13 and k{sub F}ℓ =0.25, where k{sub F} and ℓ are the Fermi wave number and electron mean free path, respectively. For films in the insulating region, we analyzed ρ(T) using a procedure proposed by Zabrodskii and Zinov'eva. This analysis confirmed the occurrence of Mott and Efros–Shklovskii (ES) variable-range hopping. The materials studied show crossover behavior from exp(T{sub Mott}/T){sup 1/4} or exp(T{sub Mott}/T){sup 1/3} for Mott hopping conduction to exp(T{sub ES}/T){sup 1/2} for ES hopping conduction with decreasing temperature. For both 2D and 3D materials, we found that the relationship between T{sub Mott} and T{sub ES} satisfies T{sub ES}∝T{sub Mott}{sup 2/3}.

  14. Spin-orbit engineering in transition metal dichalcogenide alloy monolayers.

    PubMed

    Wang, Gang; Robert, Cedric; Suslu, Aslihan; Chen, Bin; Yang, Sijie; Alamdari, Sarah; Gerber, Iann C; Amand, Thierry; Marie, Xavier; Tongay, Sefaattin; Urbaszek, Bernhard

    2015-01-01

    Binary transition metal dichalcogenide monolayers share common properties such as a direct optical bandgap, spin-orbit splittings of hundreds of meV, light-matter interaction dominated by robust excitons and coupled spin-valley states. Here we demonstrate spin-orbit-engineering in Mo(1-x)WxSe2 alloy monolayers for optoelectronics and applications based on spin- and valley-control. We probe the impact of the tuning of the conduction band spin-orbit spin-splitting on the bright versus dark exciton population. For MoSe2 monolayers, the photoluminescence intensity decreases as a function of temperature by an order of magnitude (4-300 K), whereas for WSe2 we measure surprisingly an order of magnitude increase. The ternary material shows a trend between these two extreme behaviours. We also show a non-linear increase of the valley polarization as a function of tungsten concentration, where 40% tungsten incorporation is sufficient to achieve valley polarization as high as in binary WSe2. PMID:26657930

  15. APCVD Transition Metal Oxides - Functional Layers in "Smart windows"

    NASA Astrophysics Data System (ADS)

    Gesheva, K. A.; Ivanova, T. M.; Bodurov, G. K.

    2014-11-01

    Transition metal oxides (TMO) exhibit electrochromic effect. Under a small voltage they change their optical transmittance from transparent to collored (absorbing) state. The individual material can manifest its electrochromic properties only when it is part of electrochromic (EC) multilayer system. Smart window is controlling the energy of solar flux entering the building or car and makes the interiors comfortable and energy utilization more effective. Recently the efforts of material researchers in this field are directed to price decreasing. APCVD technology is considered as promissing as this process permits flowthrough large-scale production process. The paper presents results on device optimization based on WO3-MoO3 working electrode. Extensive research reveals that WO3-MoO3 structure combines positive features of single oxides: excellent electrochromic performance of WO3 and better kinetic properties of MoO3 deposition. The achieved color efficiency of APCVD WO3-MoO3 films is 200cm2/C and optical modulation of 65-70% are practically favorable electrochromic characteristics. To respond to low cost requirement, the expensive hexacarbonyl can be replaced with acetylacetonate. We have started with this precursor to fabricate mixed WxV1-xO3 films. The films possess excellent surface coverage and high growth-rate. CVD deposition of VO2, a promissing thermochromic thin film material is also presented.

  16. Formation of metastable excited states during sputtering of transition metals

    SciTech Connect

    Wucher, A.; Sroubek, Z.

    1997-01-01

    We propose a simple model which treats the formation of metastable excited neutral atoms during sputtering of a transition metal as a two step process. First, the energy deposited into the electronic system of the solid by electronic energy losses of all moving particles in the collision cascade is considered to lead to a locally altered equilibrium electronic state of the solid. It is found that this step is dominated by collective interaction with the conduction band electrons rather than by electron promotion in binary atom-atom collisions. Second, sputtered excited atoms are assumed to be formed by resonant neutralization of excited ions (reflecting the altered equilibrium state) while crossing the surface. It is shown that this model explains the total as well as the velocity dependent excitation probability observed in recent experiments on sputtered neutral silver atoms, which cannot be understood in terms of existing theories describing the formation of excited states in sputtering. {copyright} {ital 1996} {ital The American Physical Society}

  17. Exciton radiative lifetime in transition metal dichalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Robert, C.; Lagarde, D.; Cadiz, F.; Wang, G.; Lassagne, B.; Amand, T.; Balocchi, A.; Renucci, P.; Tongay, S.; Urbaszek, B.; Marie, X.

    2016-05-01

    We have investigated the exciton dynamics in transition metal dichalcogenide monolayers using time-resolved photoluminescence experiments performed with optimized time resolution. For MoS e2 monolayer, we measure τrad0=1.8 ±0.2 ps at T =7 K that we interpret as the intrinsic radiative recombination time. Similar values are found for WS e2 monolayers. Our detailed analysis suggests the following scenario: at low temperature (T ≲50 K ), the exciton oscillator strength is so large that the entire light can be emitted before the time required for the establishment of a thermalized exciton distribution. For higher lattice temperatures, the photoluminescence dynamics is characterized by two regimes with very different characteristic times. First the photoluminescence intensity drops drastically with a decay time in the range of the picosecond driven by the escape of excitons from the radiative window due to exciton-phonon interactions. Following this first nonthermal regime, a thermalized exciton population is established gradually yielding longer photoluminescence decay times in the nanosecond range. Both the exciton effective radiative recombination and nonradiative recombination channels including exciton-exciton annihilation control the latter. Finally the temperature dependence of the measured exciton and trion dynamics indicates that the two populations are not in thermodynamical equilibrium.

  18. Self-Limiting Layer Synthesis of Transition Metal Dichalcogenides

    PubMed Central

    Kim, Youngjun; Song, Jeong-Gyu; Park, Yong Ju; Ryu, Gyeong Hee; Lee, Su Jeong; Kim, Jin Sung; Jeon, Pyo Jin; Lee, Chang Wan; Woo, Whang Je; Choi, Taejin; Jung, Hanearl; Lee, Han-Bo-Ram; Myoung, Jae-Min; Im, Seongil; Lee, Zonghoon; Ahn, Jong-Hyun; Park, Jusang; Kim, Hyungjun

    2016-01-01

    This work reports the self-limiting synthesis of an atomically thin, two dimensional transition metal dichalcogenides (2D TMDCs) in the form of MoS2. The layer controllability and large area uniformity essential for electronic and optical device applications is achieved through atomic layer deposition in what is named self-limiting layer synthesis (SLS); a process in which the number of layers is determined by temperature rather than process cycles due to the chemically inactive nature of 2D MoS2. Through spectroscopic and microscopic investigation it is demonstrated that SLS is capable of producing MoS2 with a wafer-scale (~10 cm) layer-number uniformity of more than 90%, which when used as the active layer in a top-gated field-effect transistor, produces an on/off ratio as high as 108. This process is also shown to be applicable to WSe2, with a PN diode fabricated from a MoS2/WSe2 heterostructure exhibiting gate-tunable rectifying characteristics. PMID:26725854

  19. Transition Metal Oxide Alloys as Potential Solar Energy Conversion Materials

    SciTech Connect

    Toroker, Maytal; Carter, Emily A.

    2013-02-21

    First-row transition metal oxides (TMOs) are inexpensive potentia alternative materials for solar energy conversion devices. However, some TMOs, such as manganese(II) oxide, have band gaps that are too large for efficiently absorbing solar energy. Other TMOs, such as iron(II) oxide, have conduction and valence band edges with the same orbital character that may lead to unfavorably high electron–hole recombination rates. Another limitation of iron(II) oxide is that the calculated valence band edge is not positioned well for oxidizing water. We predict that key properties, including band gaps, band edge positions, and possibly electron–hole recombination rates, may be improved by alloying TMOs that have different band alignments. A new metric, the band gap center offset, is introduced for simple screening of potential parent materials. The concept is illustrated by calculating the electronic structure of binary oxide alloys that contain manganese, nickel, iron, zinc, and/or magnesium, within density functional theory (DFT)+U and hybrid DFT theories. We conclude that alloys of iron(II) oxide are worth evaluating further as solar energy conversion materials.

  20. Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating

    PubMed Central

    Shi, Wu; Ye, Jianting; Zhang, Yijin; Suzuki, Ryuji; Yoshida, Masaro; Miyazaki, Jun; Inoue, Naoko; Saito, Yu; Iwasa, Yoshihiro

    2015-01-01

    Functionalities of two-dimensional (2D) crystals based on semiconducting transition metal dichalcogenides (TMDs) have now stemmed from simple field effect transistors (FETs) to a variety of electronic and opto-valleytronic devices, and even to superconductivity. Among them, superconductivity is the least studied property in TMDs due to methodological difficulty accessing it in different TMD species. Here, we report the systematic study of superconductivity in MoSe2, MoTe2 and WS2 by ionic gating in different regimes. Electrostatic gating using ionic liquid was able to induce superconductivity in MoSe2 but not in MoTe2 because of inefficient electron accumulation limited by electronic band alignment. Alternative gating using KClO4/polyethylene glycol enabled a crossover from surface doping to bulk doping, which induced superconductivities in MoTe2 and WS2 electrochemically. These new varieties greatly enriched the TMD superconductor families and unveiled critical methodology to expand the capability of ionic gating to other materials. PMID:26235962

  1. Spin-orbit engineering in transition metal dichalcogenide alloy monolayers

    PubMed Central

    Wang, Gang; Robert, Cedric; Suslu, Aslihan; Chen, Bin; Yang, Sijie; Alamdari, Sarah; Gerber, Iann C.; Amand, Thierry; Marie, Xavier; Tongay, Sefaattin; Urbaszek, Bernhard

    2015-01-01

    Binary transition metal dichalcogenide monolayers share common properties such as a direct optical bandgap, spin-orbit splittings of hundreds of meV, light–matter interaction dominated by robust excitons and coupled spin-valley states. Here we demonstrate spin-orbit-engineering in Mo(1−x)WxSe2 alloy monolayers for optoelectronics and applications based on spin- and valley-control. We probe the impact of the tuning of the conduction band spin-orbit spin-splitting on the bright versus dark exciton population. For MoSe2 monolayers, the photoluminescence intensity decreases as a function of temperature by an order of magnitude (4–300 K), whereas for WSe2 we measure surprisingly an order of magnitude increase. The ternary material shows a trend between these two extreme behaviours. We also show a non-linear increase of the valley polarization as a function of tungsten concentration, where 40% tungsten incorporation is sufficient to achieve valley polarization as high as in binary WSe2. PMID:26657930

  2. Defect-induced semiconductor to metal transition in graphene monoxide.

    PubMed

    Woo, Jungwook; Yun, Kyung-Han; Cho, Sung Beom; Chung, Yong-Chae

    2014-07-14

    This study investigates the influence of point defects on the geometric and electronic structure of graphene monoxide (GMO) via density functional theory calculations. In aspects of defect formation energy, GMOs with oxygen vacancies and bridge interstitial defects are more likely to form when compared to GMOs with defects such as carbon vacancies and hollow interstitial defects. It was also found that the oxygen vacancy or the hollow interstitial defect induces local tensile strain around the defective site and this strain increases the band gap energy of the defective GMO. In addition, the band gaps of GMO with carbon vacancies or bridge interstitial defects decreased mainly due to the dangling bonds, not due to the strain effect. It is noted that the dangling bond derived from the defects forms the defect-level in the band gap of GMO. The semiconductor to metal transition by the band gap change (0-0.7 eV) implies the possibility for band gap engineering of GMO by vacancies and interstitial defects. PMID:24886723

  3. Magnetic brightening of dark excitons in transitional metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Xiao; Lu, Zhengguang; Cao, Ting; Zhang, Fan; Hone, James; Louie, Steven G.; Li, Zhiqiang; Smirnov, Dmitry; Heinz, Tony

    Transitional metal dichalcogenides (TMDC) in the MX2 (M = Mo, W, X = S, Se) family represent an excellent platform to study of excitonic effects. At monolayer thickness, these materials exhibit both direct band-gap character and enhanced excitonic interactions. Theoretical studies suggest that both the valence and conduction bands are split and exhibit spin polarized character at the K/K' valleys. The lowest energy band-edge excitons are predicted to have different spin configurations for different materials in this family. When the lowest lying exciton has parallel electron and hole spin, radiative decay is forbidden and the state is dark. Here we demonstrate that by applying an in-plane magnetic field we can perturb the exciton spin configuration and brighten this state, allowing it to undergo radiative decay. We identify such a brightened dark state by the emergence of a new emission peak lying below the absorption peak, with a strength growing with applied in-plane magnetic field. On the other hand, for monolayer MoSe2, where no low-lying dark state is expected, we do not see the growth of a new emission feature under application of an in-plane magnetic field. Our experimental findings are in agreement with the calculated properties of dark excitons based on GW plus Bethe-Salpeter equation approach

  4. Exciton-polariton condensation in transition metal dichalcogenide bilayer heterostructure

    NASA Astrophysics Data System (ADS)

    Lee, Ki Hoon; Jeong, Jae-Seung; Min, Hongki; Chung, Suk Bum

    For the bilayer heterostructure system in an optical microcavity, the interplay of the Coulomb interaction and the electron-photon coupling can lead to the emergence of quasiparticles consisting of the spatially indirect exciton and cavity photons known as dipolariton, which can form the Bose-Einstein condensate above a threshold density. Additional physics comes into play when each layer of the bilayer system consists of the transition metal dichalcogenide (TMD) monolayer. The TMD monolayer band structure in the low energy spectrum has two valley components with nontrivial Berry phase, which gives rise to a selection rule in the exciton-polariton coupling, e.g. the exciton from one (the other) valley can couple only to the clockwise (counter-clockwise) polarized photon. We investigate possible condensate phases of exciton-polariton in the bilayer TMD microcavity changing relevant parameters such as detuning, excitation density and interlayer distance. This work was supported in part by the Institute for Basic Science of Korea (IBS) under Grant IBS-R009-Y1 and by the National Research Foundation of Korea (NRF) under the Basic Science Research Program Grant No. 2015R1D1A1A01058071.

  5. Magneto-optics in transition metal diselenide monolayers

    NASA Astrophysics Data System (ADS)

    Wang, G.; Bouet, L.; Glazov, M. M.; Amand, T.; Ivchenko, E. L.; Palleau, E.; Marie, X.; Urbaszek, B.

    2015-09-01

    We perform photoluminescence experiments at 4 K on two different transition metal diselenide monolayers (MLs), namely MoSe2 and WSe2 in magnetic fields Bz up to 9 T applied perpendicular to the sample plane. In MoSe2 MLs the valley polarization of the neutral and the charged exciton (trion) can be tuned by the magnetic field, independent of the excitation laser polarization. In the investigated WSe2 ML sample the evolution of the trion valley polarization depends both on the applied magnetic field and the excitation laser helicity, while the neutral exciton valley polarization depends only on the latter. Remarkably, we observe a reversal of the sign of the trion polarization between WSe2 and MoSe2. For both systems we observe a clear Zeeman splitting for the neutral exciton and the trion of about ±2 meV at {{B}z}\\mp 9 T. The extracted Landé-factors for both exciton complexes in both materials are g≈ -4.

  6. Induce magnetism into silicene by embedding transition-metal atoms

    SciTech Connect

    Sun, Xiaotian; Wang, Lu E-mail: yyli@suda.edu.cn; Lin, Haiping; Hou, Tingjun; Li, Youyong E-mail: yyli@suda.edu.cn

    2015-06-01

    Embedding transition-metal (TM) atoms into nonmagnetic nanomaterials is an efficient way to induce magnetism. Using first-principles calculations, we systematically investigated the structural stability and magnetic properties of TM atoms from Sc to Zn embedded into silicene with single vacancy (SV) and double vacancies (DV). The binding energies for different TM atoms correlate with the TM d-shell electrons. Sc, Ti, and Co show the largest binding energies of as high as 6 eV, while Zn has the lowest binding energy of about 2 eV. The magnetic moment of silicene can be modulated by embedding TM atoms from V to Co, which mainly comes from the 3d orbitals of TM along with partly contributions from the neighboring Si atoms. Fe atom on SV and Mn atom on DV have the largest magnetic moment of more than 3 μB. In addition, we find that doping of N or C atoms on the vacancy site could greatly enhance the magnetism of the systems. Our results provide a promising approach to design silicene-based nanoelectronics and spintronics device.

  7. Proximity-induced magnetism in transition-metal substituted graphene

    DOE PAGESBeta

    Crook, Charles B.; Constantin, Costel; Ahmed, Towfiq; Zhu, Jian -Xin; Balatsky, Alexander V.; Haraldsen, Jason T.

    2015-08-03

    We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, wheremore » the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic and carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction.« less

  8. Effective tight-binding model for transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Ho, Yen-Hung; Cazalilla, Miguel; Ochoa, Hector

    For transition metal dichalcogenides, various band models have been developed to describe the novel subband features. In this work, we propose a new effective minimum-band model by preforming a canonical transformation on the full-band Hamiltonian. We found that, depending on the form of transformation, both the Γ- and K-valley electrons can be well captured, including the frequency and band effective mass. And, for the full-band parameters used, starting from Wannier function basis set leads to a better result than from Slater-Koster basis set. A close inspection of the transformation projection also enables us to extract the modification on the site energy, as well as the orbital hopping between several nearest neighboring atoms. Instead of pure empirical fitting, our effective models preserve rich orbital physics inside, which is shown to be versatile in studying a variety of fundamental physical properties. Ministry of Science and Technology of Taiwan (NSC 102-2112-M-007-024-MY5).

  9. Interactions between lasers and two-dimensional transition metal dichalcogenides.

    PubMed

    Lu, Junpeng; Liu, Hongwei; Tok, Eng Soon; Sow, Chorng-Haur

    2016-05-01

    The recent increasing research interest in two-dimensional (2D) layered materials has led to an explosion of in the discovery of novel physical and chemical phenomena in these materials. Among the 2D family, group-VI transition metal dichalcogenides (TMDs), such as represented by MoS2 and WSe2, are remarkable semiconductors with sizable energy band gaps, which make the TMDs promising building blocks for new generation optoelectronics. On the other hand, the specificity and tunability of the band gaps can generate particularly strong light-matter interactions between TMD crystals and specific photons, which can trigger complex and interesting phenomena such as photo-scattering, photo-excitation, photo-destruction, photo-physical modification, photochemical reaction and photo-oxidation. Herein, we provide an overview of the phenomena explained by various interactions between lasers and the 2D TMDs. Characterizations of the optical fundamentals of the TMDs via laser spectroscopies are reviewed. Subsequently, photoelectric conversion devices enabled by laser excitation and the functionality extension and performance improvement of the TMDs materials via laser modification are comprehensively summarized. Finally, we conclude the review by discussing the prospects for further development in this research area. PMID:27141556

  10. Strain engineering of electronic properties of transition metal dichalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Maniadaki, Aristea E.; Kopidakis, Georgios; Remediakis, Ioannis N.

    2016-02-01

    We present Density Functional Theory (DFT) results for the electronic and dielectric properties of single-layer (2D) semiconducting transition metal dichalcogenides MX2 (M=Mo, W; X=S, Se, Te) under isotropic, uniaxial (along the zigzag and armchair directions), and shear strain. Electronic band gaps decrease while dielectric constants increase for heavier chalcogens X. The direct gaps of equilibrium structures often become indirect under certain types of strain, depending on the material. The effects of strain and of broken symmetry on the band structure are discussed. Gaps reach maximum values at small compressive strains or in equilibrium, and decrease with larger strains. In-plane dielectric constants generally increase with strain, reaching a minimum value at small compressive strains. The out-of-plane constants exhibit a similar behavior under shear strain but under isotropic and uniaxial strain they increase with compression and decrease with tension, thus exhibiting a monotonic behavior. These DFT results are theoretically explained using only structural parameters and equilibrium dielectric constants. Our findings are consistent with available experimental data.

  11. Self-Limiting Layer Synthesis of Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Kim, Youngjun; Song, Jeong-Gyu; Park, Yong Ju; Ryu, Gyeong Hee; Lee, Su Jeong; Kim, Jin Sung; Jeon, Pyo Jin; Lee, Chang Wan; Woo, Whang Je; Choi, Taejin; Jung, Hanearl; Lee, Han-Bo-Ram; Myoung, Jae-Min; Im, Seongil; Lee, Zonghoon; Ahn, Jong-Hyun; Park, Jusang; Kim, Hyungjun

    2016-01-01

    This work reports the self-limiting synthesis of an atomically thin, two dimensional transition metal dichalcogenides (2D TMDCs) in the form of MoS2. The layer controllability and large area uniformity essential for electronic and optical device applications is achieved through atomic layer deposition in what is named self-limiting layer synthesis (SLS); a process in which the number of layers is determined by temperature rather than process cycles due to the chemically inactive nature of 2D MoS2. Through spectroscopic and microscopic investigation it is demonstrated that SLS is capable of producing MoS2 with a wafer-scale (~10 cm) layer-number uniformity of more than 90%, which when used as the active layer in a top-gated field-effect transistor, produces an on/off ratio as high as 108. This process is also shown to be applicable to WSe2, with a PN diode fabricated from a MoS2/WSe2 heterostructure exhibiting gate-tunable rectifying characteristics.

  12. Synthesis of millimeter-scale transition metal dichalcogenides single crystals

    DOE PAGESBeta

    Gong, Yongji; Ye, Gonglan; Lei, Sidong; Shi, Gang; Vajtai, Robert; Pantelides, Sokrates T.; Zhou, Wu; Li, Bo; Ajayan, Pullikel M.

    2016-02-10

    The emergence of semiconducting transition metal dichalcogenide (TMD) atomic layers has opened up unprecedented opportunities in atomically thin electronics. Yet the scalable growth of TMD layers with large grain sizes and uniformity has remained very challenging. Here is reported a simple, scalable chemical vapor deposition approach for the growth of MoSe2 layers is reported, in which the nucleation density can be reduced from 105 to 25 nuclei cm-2, leading to millimeter-scale MoSe2 single crystals as well as continuous macrocrystalline films with millimeter size grains. The selective growth of monolayers and multilayered MoSe2 films with well-defined stacking orientation can also bemore » controlled via tuning the growth temperature. In addition, periodic defects, such as nanoscale triangular holes, can be engineered into these layers by controlling the growth conditions. The low density of grain boundaries in the films results in high average mobilities, around ≈42 cm2 V-1 s-1, for back-gated MoSe2 transistors. This generic synthesis approach is also demonstrated for other TMD layers such as millimeter-scale WSe2 single crystals.« less

  13. Magnetic Behavior of 3d Transition Metals in Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Miao, Maosheng; Lambrecht, Walter R. L.

    2002-03-01

    The magnetic properties of cubic silicon carbide (SiC) doped by first row transition metals (TM) are studied within the local spin density functional approach using the linearized muffin-tin orbital method in the atomic sphere approximation. It is found that the couplings between the TM d orbitals and the dangling bond states are stronger for the Si site doping, which gives a larger e-t2 splitting. The stronger coupling also delocalizes the t2 states and hence reduces the spin polarization. As a result the TMs tend to have a low spin configuration at the Si site and a high spin one at the C site. On the other hand, the strong couplings lower the formation energy at the Si site and TMs prefer to dope the Si site in both the Si-rich and C-rich limits. For Si site doping, Cr and Mn exhibit the most pronounced magnetic behavior with Cr favoring ferromagnetic and Mn antiferromagnetic nearest neighbor coupling.

  14. Valency configuration of transition metal impurities in ZnO

    SciTech Connect

    Petit, Leon; Schulthess, Thomas C; Svane, Axel; Temmerman, Walter M; Szotek, Zdzislawa; Janotti, Anderson

    2006-01-01

    We use the self-interaction corrected local spin-density approximation to investigate the ground state valency configuration of transition metal (TM=Mn, Co) impurities in n- and p-type ZnO. We find that in pure Zn{sub 1-x}TM{sub x}O, the localized TM{sup 2+} configuration is energetically favored over the itinerant d-electron configuration of the local spin density (LSD) picture. Our calculations indicate furthermore that the (+/0) donor level is situated in the ZnO gap. Consequently, for n-type conditions, with the Fermi energy {epsilon}F close to the conduction band minimum, TM remains in the 2+ charge state, while for p-type conditions, with {epsilon}F close to the valence band maximum, the 3+ charge state is energetically preferred. In the latter scenario, modeled here by co-doping with N, the additional delocalized d-electron charge transfers into the entire states at the top of the valence band, and hole carriers will only exist, if the N concentration exceeds the TM impurity concentration.

  15. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides.

    PubMed

    Palummo, Maurizia; Bernardi, Marco; Grossman, Jeffrey C

    2015-05-13

    Light emission in two-dimensional (2D) transition metal dichalcogenides (TMDs) changes significantly with the number of layers and stacking sequence. While the electronic structure and optical absorption are well understood in 2D-TMDs, much less is known about exciton dynamics and radiative recombination. Here, we show first-principles calculations of intrinsic exciton radiative lifetimes at low temperature (4 K) and room temperature (300 K) in TMD monolayers with the chemical formula MX2 (X = Mo, W, and X = S, Se), as well as in bilayer and bulk MoS2 and in two MX2 heterobilayers. Our results elucidate the time scale and microscopic origin of light emission in TMDs. We find radiative lifetimes of a few picoseconds at low temperature and a few nanoseconds at room temperature in the monolayers and slower radiative recombination in bulk and bilayer than in monolayer MoS2. The MoS2/WS2 and MoSe2/WSe2 heterobilayers exhibit very long-lived (∼20-30 ns at room temperature) interlayer excitons constituted by electrons localized on the Mo-based and holes on the W-based monolayer. The wide radiative lifetime tunability, together with the ability shown here to predict radiative lifetimes from computations, hold unique potential to manipulate excitons in TMDs and their heterostructures for application in optoelectronics and solar energy conversion. PMID:25798735

  16. Strain engineered optoelectronic properties of transition metal dichalcogenides lateral heterostructures

    NASA Astrophysics Data System (ADS)

    Lee, Jaekwang; Yoon, Mina

    2015-03-01

    Most three-dimensional bulk-scale materials rarely survive beyond 1% strain, while recently spotlighted two-dimensional (2-D) materials can sustain a high elastic strain (up to 10%) to optimize optical quantities such as band gaps and absorption spectra governing optoelectronic device performance. Despite the enormous interest in strained 2-D materials, most researches are focused on single materials or vertical heterostructures where precise control of stacking orientation is challenging. Here, using first-principles density-functional calculations, we explore how uniaxial tensile strains modify overall electronic and optical properties of transition metal dichalcogenides lateral heterostructures, such as MoX2/WX2 (X =S, Se). Based on the detailed optoelectronic information, we predict the optimal strain condition for maximal power efficiency. Furthermore, we find that uniaxial tensile strain readily develops a continuously varying direct-bandgap across the lateral heterojunctions, which results in the broad range absorption of solar spectrum useful for future optoelectronic devices. This research was conducted at the CNMS, which is sponsored at Oak Ridge National Laboratory (ORNL) by the Office of Basic Energy Sciences, U.S. Department of Energy; a portion of theory work was supported by the LDRD Program of ORNL.

  17. Defect engineering of two-dimensional transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Lin, Zhong; Carvalho, Bruno R.; Kahn, Ethan; Lv, Ruitao; Rao, Rahul; Terrones, Humberto; Pimenta, Marcos A.; Terrones, Mauricio

    2016-06-01

    Two-dimensional transition metal dichalcogenides (TMDs), an emerging family of layered materials, have provided researchers a fertile ground for harvesting fundamental science and emergent applications. TMDs can contain a number of different structural defects in their crystal lattices which significantly alter their physico-chemical properties. Having structural defects can be either detrimental or beneficial, depending on the targeted application. Therefore, a comprehensive understanding of structural defects is required. Here we review different defects in semiconducting TMDs by summarizing: (i) the dimensionalities and atomic structures of defects; (ii) the pathways to generating structural defects during and after synthesis and, (iii) the effects of having defects on the physico-chemical properties and applications of TMDs. Thus far, significant progress has been made, although we are probably still witnessing the tip of the iceberg. A better understanding and control of defects is important in order to move forward the field of Defect Engineering in TMDs. Finally, we also provide our perspective on the challenges and opportunities in this emerging field.

  18. Surface Phonon Dispersion of the Layered Transition-metal Oxides

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Ismail; Matzdorf, R.; Plummer, E. W.; Kimura, T.; Tokura, Y.

    2000-03-01

    Transition-metal oxides exhibit strong coupling between the charge and spin of the electrons and the lattice. Creating a surface by cleaving a single crystal breaks the symmetry of the lattice and disturbs the correlated system without changing the stoichiometry, providing the opportunity to study the response of electronic, structural, and magnetic properties. We have utilized electron-energy loss sprectroscopy (EELS) to study the electronic and lattice excitations of the Sr_2RuO4 and La_0.5Sr_1.5MnO4 surfaces. For both of these materials there are many more than three modes; three dominate surface optical phonons with small dispersion and with higher energies compared to those in the bulk materials. However, these phonons show completely different temperature dependence for different samples. The surface phonons become soft for Sr_2RuO4 while they become stiff for La_0.5Sr_1.5MnO4 with increasing temparature. The change of phonon energy of La_0.5Sr_1.5MnO4 with temperature is also in opposite direction to that of (La, Ca)MnO_4( Zhang et al., Surf. Sci. 393, 64(1997) * LMER Corp. for U.S. DOE under contract No. DE-AC05-96OR22464). These behaviors will be discussed in terms of the electronic, magnetic, and structural properties.

  19. Spinodal nanodecomposition in semiconductors doped with transition metals

    NASA Astrophysics Data System (ADS)

    Dietl, T.; Sato, K.; Fukushima, T.; Bonanni, A.; Jamet, M.; Barski, A.; Kuroda, S.; Tanaka, M.; Hai, Pham Nam; Katayama-Yoshida, H.

    2015-10-01

    This review presents the recent progress in computational materials design, experimental realization, and control methods of spinodal nanodecomposition under three- and two-dimensional crystal-growth conditions in spintronic materials, such as magnetically doped semiconductors. The computational description of nanodecomposition, performed by combining first-principles calculations with kinetic Monte Carlo simulations, is discussed together with extensive electron microscopy, synchrotron radiation, scanning probe, and ion beam methods that have been employed to visualize binodal and spinodal nanodecomposition (chemical phase separation) as well as nanoprecipitation (crystallographic phase separation) in a range of semiconductor compounds with a concentration of transition metal (TM) impurities beyond the solubility limit. The role of growth conditions, codoping by shallow impurities, kinetic barriers, and surface reactions in controlling the aggregation of magnetic cations is highlighted. According to theoretical simulations and experimental results the TM-rich regions appear in the form of either nanodots (the dairiseki phase) or nanocolumns (the konbu phase) buried in the host semiconductor. Particular attention is paid to Mn-doped group III arsenides and antimonides, TM-doped group III nitrides, Mn- and Fe-doped Ge, and Cr-doped group II chalcogenides, in which ferromagnetic features persisting up to above room temperature correlate with the presence of nanodecomposition and account for the application-relevant magneto-optical and magnetotransport properties of these compounds. Finally, it is pointed out that spinodal nanodecomposition can be viewed as a new class of bottom-up approach to nanofabrication.

  20. Measurements of ultrafast luminescence dynamics in transition metal dichalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Robert, Cedric; Wang, Gang; Lagarde, Delphine; Balocchi, Andrea; Amand, Thierry; Renucci, Pierre; Cadiz, Fabian; Urbaszek, Bernhard; Marie, Xavier

    We report time resolved photoluminescence (PL) measurements using a synchro-scan streak camera system with sub-ps time resolution, the fastest detector currently available for PL. The strong electron-hole Coulomb interaction in monolayer (ML) transition metal dichalcogenides results in excitons with high binding energies and oscillator strength. Therefore very short intrinsic radiative lifetimes can be expected. Here measurements with few ps time resolution are crucial. In our experiment we excite the ML sample with a fs laser pulse in a cryostat (T=4-300 K). In the model system ML MoSe2 we can separate spectrally the neutral and the charged exciton and perform detailed time-resolved PL studies on each complex. For the neutral exciton we resolve a PL emission time as short as 2ps, previous measurements were limited by the detector time-resolution. This short time depends on the experimental conditions such as temperature and applied external fields. We will discuss the different competing relaxation and recombination mechanisms, such as the intrinsic radiative recombination, the escape from the light cone through phonon scattering, the interplay between bright and dark exciton states and the possible transfer from the neutral to the charged exciton at lower energy.

  1. Self-Limiting Layer Synthesis of Transition Metal Dichalcogenides.

    PubMed

    Kim, Youngjun; Song, Jeong-Gyu; Park, Yong Ju; Ryu, Gyeong Hee; Lee, Su Jeong; Kim, Jin Sung; Jeon, Pyo Jin; Lee, Chang Wan; Woo, Whang Je; Choi, Taejin; Jung, Hanearl; Lee, Han-Bo-Ram; Myoung, Jae-Min; Im, Seongil; Lee, Zonghoon; Ahn, Jong-Hyun; Park, Jusang; Kim, Hyungjun

    2016-01-01

    This work reports the self-limiting synthesis of an atomically thin, two dimensional transition metal dichalcogenides (2D TMDCs) in the form of MoS2. The layer controllability and large area uniformity essential for electronic and optical device applications is achieved through atomic layer deposition in what is named self-limiting layer synthesis (SLS); a process in which the number of layers is determined by temperature rather than process cycles due to the chemically inactive nature of 2D MoS2. Through spectroscopic and microscopic investigation it is demonstrated that SLS is capable of producing MoS2 with a wafer-scale (~10 cm) layer-number uniformity of more than 90%, which when used as the active layer in a top-gated field-effect transistor, produces an on/off ratio as high as 10(8). This process is also shown to be applicable to WSe2, with a PN diode fabricated from a MoS2/WSe2 heterostructure exhibiting gate-tunable rectifying characteristics. PMID:26725854

  2. Correlations in rare-earth transition-metal permanent magnets

    NASA Astrophysics Data System (ADS)

    Skomski, R.; Manchanda, P.; Kashyap, A.

    2015-05-01

    It is investigated how electron-electron correlations affect the intrinsic properties of rare-earth transition-metal magnets. Focusing on orbital moment and anisotropy, we perform model calculations for 3d-4f alloys and density-functional theory (DFT) calculations for NdCo5. On an independent-electron level, the use of a single Slater determinant with broken spin symmetry introduces Hund's rule correlations, which govern the behavior of rare-earth ions and of alloys described by the local spin density approximation (LSDA) and LSDA + U approximations to DFT. By contrast, rare-earth ions in intermetallics involve configuration interactions between two or more Slater determinants and lead to phenomena such as spin-charge distribution. Analyzing DFT as a Legendre transformation and using Bethe's crystal-field theory, we show that the corresponding density functionals are very different from familiar LSDA-type expressions and outline the effect of spin-charge separation on the magnetocrystalline anisotropy.

  3. Non-volatile memory based on transition metal perovskite oxide resistance switching

    NASA Astrophysics Data System (ADS)

    Nian, Yibo

    Driven by the non-volatile memory market looking for new advanced materials, this dissertation focuses on the study of non-volatile resistive random access memory (RRAM) based on transition metal perovskite oxides. Pr0.7Ca0.3MnO3 (PCMO), one of the representative materials in this family, has demonstrated a large range of resistance change when short electrical pulses with different polarity are applied. Such electrical-pulse-induced resistance (EPIR), with attractive features such as fast response, low power, high-density and non-volatility, makes PCMO and related materials promising candidates for non-volatile RRAM application. The objective of this work is to investigate, optimize and understand the properties of this universal EPIR behavior in transition metal perovskite oxide, represented by PCMO thin film devices. The research work includes fabrication of PCMO thin film devices, characterization of these EPIR devices as non-volatile memories, and investigation of their resistive switching mechanisms. The functionality of this perovskite oxide RRAM, including pulse magnitude/width dependence, power consumption, retention, endurance and radiation-hardness has been investigated. By studying the "shuttle tail" in hysteresis switching loops of oxygen deficient devices, a diffusion model with oxygen ions/vacancies as active agents at the metal/oxide interface is proposed for the non-volatile resistance switching effect in transition metal perovskite oxide thin films. The change of EPIR switching behavior after oxygen/argon ion implantation also shows experiment support for the proposed model. Furthermore, the universality, scalability and comparison with other non-volatile memories are discussed for future application.

  4. The use of molecular dynamics for the thermodynamic properties of simple and transition metals

    SciTech Connect

    Straub, G.K.

    1987-04-01

    The technique of computer simulation of the molecular dynamics in metallic systems to calculate thermodynamic properties is discussed. The nature of a metal as determined by its electronic structure is used to determine the total adiabatic potential. The effective screened ion-ion interaction can then be used in a molecular dynamics simulation. The method for the construction of a molecular dynamics ensemble, its relation to the canonical ensemble, and the definition of thermodynamic functions from the Helmholtz free energy is given. The method for the analysis of the molecular dynamics results from quasiharmonic lattice dynamics and the decomposition in terms of harmonic and anharmonic contributions is given for solids. For fluid phase metals, procedures for calculating the thermodynamics and determining the constant of entropy are presented. The solid-fluid phase boundary as a function of pressure and temperature is determined using the results of molecular dynamics. Throughout, examples and results for metallic sodium are used. The treatment of the transition metal electronic d-states in terms of an effective pair-wise interaction is also discussed and the phonon dispersion curves of Al, Ni, and Cu are calculated.

  5. A transition in mechanisms of size dependent electrical transport at nanoscale metal-oxide interfaces

    SciTech Connect

    Hou, Jiechang; Nonnenmann, Stephen S.; Qin, Wei; Bonnell, Dawn A.

    2013-12-16

    As device miniaturization approaches nanoscale dimensions, interfaces begin to dominate electrical properties. Here the system archetype Au/SrTiO{sub 3} is used to examine the origin of size dependent transport properties along metal-oxide interfaces. We demonstrate that a transition between two classes of size dependent electronic transport mechanisms exists, defined by a critical size ε. At sizes larger than ε an edge-related tunneling effect proportional to 1/D (the height of the supported Au nanoparticle) is observed; interfaces with sizes smaller than ε exhibit random fluctuations in current. The ability to distinguish between these mechanisms is important to future developments in nanoscale device design.

  6. Transition-metal embedded carbon nitride monolayers: high-temperature ferromagnetism and half-metallicity.

    PubMed

    Choudhuri, Indrani; Kumar, Sourabh; Mahata, Arup; Rawat, Kuber Singh; Pathak, Biswarup

    2016-08-01

    High-temperature ferromagnetic materials with planar surfaces are promising candidates for spintronics applications. Using state-of-the-art density functional theory (DFT) calculations, transition metal (TM = Cr, Mn, and Fe) incorporated graphitic carbon nitride (TM@gt-C3N4) systems are investigated as possible spintronics devices. Interestingly, ferromagnetism and half-metallicity were observed in all of the TM@gt-C3N4 systems. We find that Cr@gt-C3N4 is a nearly half-metallic ferromagnetic material with a Curie temperature of ∼450 K. The calculated Curie temperature is noticeably higher than other planar 2D materials studied to date. Furthermore, it has a steel-like mechanical stability and also possesses remarkable dynamic and thermal (500 K) stability. The calculated magnetic anisotropy energy (MAE) in Cr@gt-C3N4 is as high as 137.26 μeV per Cr. Thereby, such material with a high Curie temperature can be operated at high temperatures for spintronics devices. PMID:27321785

  7. Measurements of Schottky barrier heights formed from metals and 2D transition metal dichalcogedides

    NASA Astrophysics Data System (ADS)

    Kim, Changsik; Moon, Inyong; Nam, Seunggeol; Cho, Yeonchoo; Shin, Hyeon-Jin; Park, Seongjun; Yoo, Won Jong

    Schottky barrier height (SBH) is an important parameter that needs to be considered for designing electronic devices. However, for two dimensional (2D) materials based devices, SBH control is limited by 2D structure induced quantum confinement and 2D surface induced Fermi level pinning. In this work, we explore differences in measuring SBH between 2D and 3D materials. Recently, low temperature I-V measurement has been reported to extract SBH based on thermionic emission equation for Schottky diode. However, 2D devices are not real Schottky diode in that both source and drain metal electrodes make Schottky contact. According to our experimental results, SBH extracted from linear slope of ln (I/T3/2) against 1/T show widely diverse values, dependent on applied voltage bias and tested temperature which affect carrier transport including tunneling or thermionic emission across the metal-2D material interface. In this work, we wish to demonstrate the method to determine SBH and Fermi level pinning which are attributed to 2D transition metal dichalcogedides, differently from conventional 3D materials. .

  8. Proposing late transition metal complexes as frustrated Lewis pairs--a computational investigation.

    PubMed

    Pal, Amrita; Vanka, Kumar

    2013-10-14

    There has been considerable interest in recent times to develop transition metal complex systems that can demonstrate metal-ligand cooperativity. It has recently been shown (Wass et al., J. Am. Chem. Soc., 2011, 133, 18463) that early transition metals can cooperate with ligands carrying phosphines as pendant groups, working as metal analogues to frustrated Lewis pairs (FLPs) to mediate in a variety of important reactions. What the current work attempts to do is to show how this concept of metal containing FLPs can be expanded to include late transition metal complexes as well: complexes that have been modified from existing systems that serve as efficient catalysts for homogeneous polymerization. A modified palladium complex has been considered in this regard as an example of a potential late transition metal FLP and studied with full quantum mechanical calculations. The calculations indicate that this complex would be effective at catalyzing ammonia borane dehydrogenation. The possibility of competing side reactions such as reductive elimination have also been considered, and it has been found that such processes would also yield stable products which could act as an FLP in catalyzing reactions such as the dehydrogenation of ammonia borane. The current work therefore expands the scope of metal containing FLPs to include late transition metals and demonstrates computationally the potential of such complexes for exhibiting metal-ligand cooperativity. PMID:23912196

  9. Electrocatalytic reduction of carbon dioxide on post-transition metal and metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    White, James L.

    The electroreduction of carbon dioxide to liquid products is an important component in the utilization of CO2 and in the high-density storage of intermittent renewable energy in the form of chemical bonds. Materials based on indium and tin, which yield predominantly formic acid, have been investigated in order to gain a greater understanding of the electrochemically active species and the mechanism of CO2 reduction on these heavy post-transition metals, since prior studies on the bulk metals did not provide thermodynamically sensible reaction pathways. Nanoparticles of the oxides and hydroxides of tin and indium have been prepared and characterized by transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, and various electrochemical methods in order to obtain structural information and analyze the role of various surface species on the CO2 reduction pathway. On both indium and tin, metastable surface-bound hydroxides bound CO2 and formed metal carbonates, which can then be reduced electrochemically. The relevant oxidation state of tin was suggested to be SnII rather than SnIV, necessitating a pre reduction to generate the CO2-binding species. Metallic indium nanoparticles partially oxidized in air and became highly efficient CO2 reduction electrocatalysts. Unit Faradaic efficiencies for formate, much higher than on bulk indium, were achieved with only 300 mV of overpotential on these particles, which possessed an oxyhydroxide shell surrounding a conductive metallic core. Alloys and mixed-metal oxide and hydroxide particles of tin and indium have also been studied for their carbon dioxide electrocatalytic capabilities, especially in comparison to the pure metal species. Additionally, a solar-driven indium-based CO2 electrolyzer was developed to investigate the overall efficiency for intermittent energy storage. The three flow cells were powered by a commercial photovoltaic array and had a maximum conversion efficiency of incident

  10. New chemistry for the growth of first-row transition metal films by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Klesko, Joseph Peter

    redox non-innocent nature of a series of recently-reported 1,4-di-tert-butyl-1,3-diazabutadienyl complexes. Other metal complexes using the same ligand system are subsequently evaluated for use as ALD precursors. Finally, a novel approach is described for the stoichiometric control of first-row transition metal manganese and cobalt borate films, whereby the film composition is governed by the elements present in a single precursor. Computational techniques such as density functional theory (DFT) using nucleus-independent chemical shift (NICS) are used to determine the electronic structure and predict the relative reducing power of organic coreagents. Potential ALD precursors are analyzed by 1H and 13C NMR, IR, thermogravimetric and differential thermal analyses (TGA/DTA), melting point and solid state decomposition measurements, magnetic susceptibility measurements, preparative sublimation studies, and solution-screening reactions. Deposition parameters are optimized for successful ALD processes. The composition and surface morphology of the resultant films are studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES), X-ray diffractometry (XRD), time-of-flight elastic recoil detection analysis (TOF-ERDA), ultraviolet-visible spectroscopy (UV-Vis), and four-point probe resistivity measurements.

  11. CHARACTERIZATION OF METAL BENZOTRIAZOLES AND RELATED POLYMERS

    EPA Science Inventory

    Benzotriazole (bta-H) is a well-known corrosion inhibitor for copper, copper-alloy, and other metal surfaces. Typical uses are to deactivate surfaces of computer hard drives and other internal metal computer parts, and for treatment of apparel hardware such as zippers and buttons...

  12. Stoichiometry determined exchange interactions in amorphous ternary transition metal oxides: Theory and experiment

    SciTech Connect

    Hu, Shu-jun; Yan, Shi-shen Zhang, Yun-peng; Zhao, Ming-wen; Kang, Shi-shou; Mei, Liang-mo

    2014-07-28

    Amorphous transition metal oxides exhibit exotic transport and magnetic properties, while the absence of periodic structure has long been a major obstacle for the understanding of their electronic structure and exchange interaction. In this paper, we have formulated a theoretical approach, which combines the melt-quench approach and the spin dynamic Monte-Carlo simulations, and based on it, we explored amorphous Co{sub 0.5}Zn{sub 0.5}O{sub 1−y} ternary transition metal oxides. Our theoretical results reveal that the microstructure, the magnetic properties, and the exchange interactions of Co{sub 0.5}Zn{sub 0.5}O{sub 1−y} are strongly determined by the oxygen stoichiometry. In the oxygen-deficient sample (y > 0), we have observed the long-range ferromagnetic spin ordering which is associated with the non-stoichiometric cobalt-rich region rather than metallic clusters. On the other hand, the microstructure of stoichiometric sample takes the form of continuous random networks, and no long-range ferromagnetism has been observed in it. Magnetization characterization of experimental synthesized Co{sub 0.61}Zn{sub 0.39}O{sub 1−y} films verifies the relation between the spin ordering and the oxygen stoichiometry. Furthermore, the temperature dependence of electrical transport shows a typical feature of semiconductors, in agreement with our theoretical results.

  13. Chemistry of guanidinate-stabilised diboranes: transition-metal-catalysed dehydrocoupling and hydride abstraction.

    PubMed

    Wagner, Arne; Litters, Sebastian; Elias, Jana; Kaifer, Elisabeth; Himmel, Hans-Jörg

    2014-09-22

    Herein, we analyse the catalytic boron-boron dehydrocoupling reaction that leads from the base-stabilised diborane(6) [H2 B(hpp)]2 (hpp=1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidinate) to the base-stabilised diborane(4) [H2 B(hpp)]2 . A number of potential transition-metal precatalysts was studied, including transition-metal complexes of the product diborane(4). The synthesis and structural characterisation of two further examples of such complexes is presented. The best results for the dehydrocoupling reactions were obtained with precatalysts of Group 9 metals in the oxidation state of +I. The active catalyst is formed in situ through a multistep process that involves reduction of the precatalyst by the substrate [H2 B(hpp)]2 , and mechanistic investigations indicate that both heterogeneous and (slower) homogeneous reaction pathways play a role in the dehydrocoupling reaction. In addition, hydride abstraction from [H2 B(hpp)]2 and related diboranes is analysed and the possibility for subsequent deprotonation is discussed by probing the protic character of the cationic boron-hydrogen compounds with NMR spectroscopic analysis. PMID:25168516

  14. The biological chemistry of the transition metal "transportome" of Cupriavidus metallidurans.

    PubMed

    Nies, Dietrich H

    2016-05-01

    This review tries to illuminate how the bacterium Cupriavidus metallidurans CH34 is able to allocate essential transition metal cations to their target proteins although these metals have similar charge-to-surface ratios and chemical features, exert toxic effects, compete with each other, and occur in the bacterial environment over a huge range of concentrations and speciations. Central to this ability is the "transportome", the totality of all interacting metal import and export systems, which, as an emergent feature, transforms the environmental metal content and speciation into the cellular metal mélange. In a kinetic flow equilibrium resulting from controlled uptake and efflux reactions, the periplasmic and cytoplasmic metal content is adjusted in a way that minimizes toxic effects. A central core function of the transportome is to shape the metal ion composition using high-rate and low-specificity reactions to avoid time and/or energy-requiring metal discrimination reactions. This core is augmented by metal-specific channels that may even deliver metals all the way from outside of the cell to the cytoplasm. This review begins with a description of the basic chemical features of transition metal cations and the biochemical consequences of these attributes, and which transition metals are available to C. metallidurans. It then illustrates how the environment influences the metal content and speciation, and how the transportome adjusts this metal content. It concludes with an outlook on the fate of metals in the cytoplasm. By generalization, insights coming from C. metallidurans shed light on multiple transition metal homoeostatic mechanisms in all kinds of bacteria including pathogenic species, where the "battle" for metals is an important part of the host-pathogen interaction. PMID:27065183

  15. Electrically induced insulator to metal transition in epitaxial SmNiO{sub 3} thin films

    SciTech Connect

    Shukla, Nikhil Dasgupta, Sandeepan; Datta, Suman; Joshi, Toyanath; Borisov, Pavel; Lederman, David

    2014-07-07

    We report on the electrically induced insulator to metal transition (IMT) in SmNiO{sub 3} thin films grown on (001) LaAlO{sub 3} by pulsed laser deposition. The behavior of the resistivity as a function of temperature suggests that the primary transport mechanism in the SmNiO{sub 3} insulating state is dominated by Efros-Shklovskii variable range hopping (ES-VRH). Additionally, the magnetic transition in the insulating state of SmNiO{sub 3} modifies the characteristics of the ES-VRH transport. Systematic DC and pulsed current-voltage measurements indicate that current-induced joule heating is the fundamental mechanism driving the electrically induced IMT in SmNiO{sub 3}. These transport properties are explained in context of the IMT in SmNiO{sub 3} being related to the strong electron-lattice coupling.

  16. Use of multi-transition-metal-ion-exchanged zeolite 13X catalysts in methane emissions abatement

    SciTech Connect

    Hui, K.S.; Chao, C.Y.H.; Kwong, C.W.; Wan, M.P.

    2008-04-15

    Methane is a potent greenhouse gas. It has a global warming potential (GWP) 23 times greater than carbon dioxide. Reducing methane emissions would lead to substantial economic and environmental benefits. This study investigated the performance of multi-transition-metal-(Cu, Cr, Ni, and Co)-ion-exchanged zeolite 13X catalysts in methane emissions abatement. The catalytic activity in methane combustion using multi-ion-exchanged catalysts was studied with different parameters including the molar percentage of metal loading, the space velocity, and the inlet methane concentration under atmospheric pressure and at a relatively low reaction temperature of 500 C. The performance of the catalysts was determined in terms of the apparent activation energy, the number of active sites of the catalyst, and the BET surface area of the catalyst. This study showed that multi-ion-exchanged catalysts outperformed single-ion-exchanged and acidified 13X catalysts and that lengthening the residence time led to a higher methane conversion percentage. The enhanced catalytic activity in the multi-ion-exchanged catalysts was attributed to the presence of exchanged transition ions instead of acid sites in the catalyst. The catalytic activity of the catalysts was influenced by the metal loading amount, which played an important role in affecting the apparent activation energy for methane combustion, the active sites, and the BET surface area of the catalyst. Increasing the amount of metal loading in the catalyst decreased the apparent activation energy for methane combustion and also the BET surface area of the catalyst. An optimized metal loading amount at which the highest catalytic activity was observed due to the combined effects of the various factors was determined. (author)

  17. Recent advances in transition metal-catalyzed Csp2-monofluoro-, difluoro-, perfluoromethylation and trifluoromethylthiolation

    PubMed Central

    Landelle, Grégory; Panossian, Armen; Pazenok, Sergiy; Vors, Jean-Pierre

    2013-01-01

    Summary In the last few years, transition metal-mediated reactions have joined the toolbox of chemists working in the field of fluorination for Life-Science oriented research. The successful execution of transition metal-catalyzed carbon–fluorine bond formation has become a landmark achievement in fluorine chemistry. This rapidly growing research field has been the subject of some excellent reviews. Our approach focuses exclusively on transition metal-catalyzed reactions that allow the introduction of –CFH2, –CF2H, –CnF2 n +1 and –SCF3 groups onto sp² carbon atoms. Transformations are discussed according to the reaction-type and the metal employed. The review will not extend to conventional non-transition metal methods to these fluorinated groups. PMID:24367416

  18. Oxide Wizard: an EELS application to characterize the white lines of transition metal edges.

    PubMed

    Yedra, Lluís; Xuriguera, Elena; Estrader, Marta; López-Ortega, Alberto; Baró, Maria D; Nogués, Josep; Roldan, Manuel; Varela, Maria; Estradé, Sònia; Peiró, Francesca

    2014-06-01

    Physicochemical properties of transition metal oxides are directly determined by the oxidation state of the metallic cations. To address the increasing need to accurately evaluate the oxidation states of transition metal oxide systems at the nanoscale, here we present "Oxide Wizard." This script for Digital Micrograph characterizes the energy-loss near-edge structure and the position of the transition metal edges in the electron energy-loss spectrum. These characteristics of the edges can be linked to the oxidation states of transition metals with high spatial resolution. The power of the script is demonstrated by mapping manganese oxidation states in Fe3O4/Mn3O4 core/shell nanoparticles with sub-nanometer resolution in real space. PMID:24750576

  19. Photoluminescence properties of Jahn-Teller transition-metal ions

    NASA Astrophysics Data System (ADS)

    Sanz-Ortiz, Marta N.; Rodríguez, Fernando

    2009-09-01

    This work investigates the influence of electron-phonon coupling associated with E ⊗e and T ⊗e Jahn-Teller (JT) effect in different transition-metal (TM) ions on de-excitation phenomena through nonradiative multiphonon relaxation, i.e., photoluminescence (PL) quenching. We developed a configurational curve model which is able to predict from the absorption spectrum whether a given JT-TM ion is PL or quenched. The prediction is made on the basis of an adapted Dexter-Klick-Russell parameter for JT systems, defined in terms of spectroscopic parameters through ΛJT=αΔeabs/Eabs, where Δeabs refers to the splitting of the parent octahedral Eg states by the JT distortion in E ⊗e (α =3/4) or T ⊗e (α =1/4), and Eabs is the energy of the first absorption band involving electronic transition between Eg and T2g. We show that PL in any JT-TM ion occurs whenever ΛJT<0.1 or is quenched if ΛJT>0.2. This result is noteworthy since it allows us to establish structural requirements for the JT-TM ion and the host crystal to be PL. Although PL properties of materials containing TM ions depend on a variety of structural factors such as the electronic configuration, the site symmetry, and the crystal field produced by neighboring atoms, the present model achieves this goal through a simple spectroscopic parameter: ΛJT. In this work we correlated the PL properties of different sixfold-coordinated JT systems such as Ti3+, Cu2+, Mn3+, Cr2+, Fe2+, Co3+, and Ni3+ in halides and oxides with ΛJT obtained from their respective absorption spectra. From this analysis we conclude that depending on the nature of the JT coupling and its strength, PL is either strongly favored or quenched in T ⊗e while it is mostly quenched in E ⊗e systems due to the larger JT distortion.

  20. Enhanced Pseudocapacitance in Multicomponent Transition-Metal Oxides by Local Distortion of Oxygen Octahedra.

    PubMed

    Lee, Hyeon Jeong; Lee, Ji Hoon; Chung, Sung-Yoon; Choi, Jang Wook

    2016-03-14

    Anomalously high pseudocapacitance of a metal oxide was observed when Ni, Co, and Mn were mixed in a solid solution. Analysis by X-ray absorption near-edge spectroscopy (XANES) identified a wider redox swing of Ni as the origin of the enlarged pseudocapacitance. Ab initio DFT calculations revealed that aliovalent species resulting from the copresence of multiple transition metals can generate permanent local distortions of [NiO6 ] octahedra. As this type of distortion breaks the degenerate eg level of Ni(2+) , the Jahn-Teller lattice instability necessary for the Ni(2+/3+) redox flip can be effectively diminished during charge-discharge, thus resulting in the significantly increased capacitance. Our findings highlight the importance of understanding structure-property correlation related to local structural distortions in improving the performance of pseudocapacitors. PMID:26890879