Science.gov

Sample records for relative atmospheric water

  1. Relating GRACE terrestrial water storage variations to global fields of atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Humphrey, Vincent; Gudmundsson, Lukas; Isabelle Seneviratne, Sonia

    2015-04-01

    Synoptic, seasonal and inter-annual fluctuations in atmospheric dynamics all influence terrestrial water storage, with impacts on ecosystems functions, human activities and land-climate interactions. Here we explore to which degree atmospheric variables can explain GRACE estimates of terrestrial water storage on different time scales. Since 2012, the most recent GRACE gravity field solutions (Release 05) can be used to monitor global changes in terrestrial water storage with an unprecedented level of accuracy over more than a decade. In addition, the release of associated gridded and post-processed products facilitates comparisons with other global datasets such as land surface model outputs or satellite observations. We investigate how decadal trends, inter-annual fluctuations as well as monthly anomalies of the seasonal cycle of terrestrial water storage can be related to fields of atmospheric forcing, including e.g. precipitation and temperature as estimated in global reanalysis products using statistical techniques. In the majority of the locations with high signal to noise ratio, both short and long-term fluctuations of total terrestrial water storage can be reconstructed to a large degree based on available atmospheric forcing. However, in some locations atmospheric forcing alone is not sufficient to explain the total change in water storage, suggesting strong influence of other processes. Within that framework, the question of an amplification or attenuation of atmospheric forcing through land-surface feedbacks and changes in long term water storage is discussed, also with respect to uncertainties and potential systematic biases in the results.

  2. Effects of atmospheric deposition of energy-related pollutants on water quality: a review and assessment

    SciTech Connect

    Davis, M.J.

    1981-05-01

    The effects on surface-water quality of atmospheric pollutants that are generated during energy production are reviewed and evaluated. Atmospheric inputs from such sources to the aquatic environment may include trace elements, organic compounds, radionuclides, and acids. Combustion is the largest energy-related source of trace-element emissions to the atmosphere. This report reviews the nature of these emissions from coal-fired power plants and discusses their terrestrial and aquatic effects following deposition. Several simple models for lakes and streams are developed and are applied to assess the potential for adverse effects on surface-water quality of trace-element emissions from coal combustion. The probability of acute impacts on the aquatic environment appears to be low; however, more subtle, chronic effects are possible. The character of acid precipitation is reviewed, with emphasis on aquatic effects, and the nature of existing or potential effects on water quality, aquatic biota, and water supply is considered. The response of the aquatic environment to acid precipitation depends on the type of soils and bedrock in a watershed and the chemical characteristics of the water bodies in question. Methods for identifying regions sensitive to acid inputs are reviewed. The observed impact of acid precipitation ranges from no effects to elimination of fish populations. Coal-fired power plants and various stages of the nuclear fuel cycle release radionuclides to the atmosphere. Radioactive releases to the atmosphere from these sources and the possible aquatic effects of such releases are examined. For the nuclear fuel cycle, the major releases are from reactors and reprocessing. Although aquatic effects of atmospheric releases have not been fully quantified, there seems little reason for concern for man or aquatic biota.

  3. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2.

    PubMed

    Morgan, J A; Pataki, D E; Körner, C; Clark, H; Del Grosso, S J; Grünzweig, J M; Knapp, A K; Mosier, A R; Newton, P C D; Niklaus, P A; Nippert, J B; Nowak, R S; Parton, W J; Polley, H W; Shaw, M R

    2004-06-01

    Atmospheric CO2 enrichment may stimulate plant growth directly through (1) enhanced photosynthesis or indirectly, through (2) reduced plant water consumption and hence slower soil moisture depletion, or the combination of both. Herein we describe gas exchange, plant biomass and species responses of five native or semi-native temperate and Mediterranean grasslands and three semi-arid systems to CO2 enrichment, with an emphasis on water relations. Increasing CO2 led to decreased leaf conductance for water vapor, improved plant water status, altered seasonal evapotranspiration dynamics, and in most cases, periodic increases in soil water content. The extent, timing and duration of these responses varied among ecosystems, species and years. Across the grasslands of the Kansas tallgrass prairie, Colorado shortgrass steppe and Swiss calcareous grassland, increases in aboveground biomass from CO2 enrichment were relatively greater in dry years. In contrast, CO2-induced aboveground biomass increases in the Texas C3/C4 grassland and the New Zealand pasture seemed little or only marginally influenced by yearly variation in soil water, while plant growth in the Mojave Desert was stimulated by CO2 in a relatively wet year. Mediterranean grasslands sometimes failed to respond to CO2-related increased late-season water, whereas semiarid Negev grassland assemblages profited. Vegetative and reproductive responses to CO2 were highly varied among species and ecosystems, and did not generally follow any predictable pattern in regard to functional groups. Results suggest that the indirect effects of CO2 on plant and soil water relations may contribute substantially to experimentally induced CO2-effects, and also reflect local humidity conditions. For landscape scale predictions, this analysis calls for a clear distinction between biomass responses due to direct CO2 effects on photosynthesis and those indirect CO2 effects via soil moisture as documented here. PMID:15156395

  4. High Relative Humidity of Water-Rich Atmospheres and Its Implications

    NASA Astrophysics Data System (ADS)

    Ding, F.; Pierrehumbert, R.

    2015-12-01

    The onset of the runaway greenhouse of water vapor is one of the important criteria defining the inner edge of the habitable zone, and has been extensively studied in one-dimensional (1D) radiative-convective models. One limitation of 1D simulations is the assumption of the fully saturated troposphere. In the real atmosphere, sub-saturated regions are created by the large-scale subsidence of air. These regions significantly delay the onset of the runaway greenhouse by playing the role of "radiator fins" that allow more infrared radiation escaping the planet. Here, we show that the degree of sub-saturation in the atmosphere strongly depends on the mass of background non-condensable component (e.g., N2) in an idealized three-dimensional general circulation model (3D GCM). We specially develop the GCM to simulate the climate dynamics of water-rich atmospheres, based on the GFDL finite-volume dynamical core, a two-stream gray-radiation scheme and an energy-conserving convection scheme. Numerical simulation shows that the mid-troposphere becomes more saturated by reducing the background partial pressure from 105 Pa to 500 Pa. The increase in relative humidity can be explained by the increase in static stability of the atmosphere when water vapor becomes dominated. In general, the mass of the background non-condensable components on potentially habitable planets could be regulated by many processes including the volcanic outgassing, stellar wind and impact erosion. These processes may also play an important role in determining the inner edge of the habitable zone besides the stellar spectral type and planetary rotation.

  5. The Relation Between Atmospheric Humidity and Temperature Trends for Stratospheric Water

    NASA Technical Reports Server (NTRS)

    Fueglistaler, S.; Liu, Y. S.; Flannaghan, T. J.; Haynes, P. H.; Dee, D. P.; Read, W. J.; Remsberg, E. E.; Thomason, L. W.; Hurst, D. F.; Lanzante, J. R.; Bernath, P. F.

    2013-01-01

    We analyze the relation between atmospheric temperature and water vapor-a fundamental component of the global climate system-for stratospheric water vapor (SWV). We compare measurements of SWV (and methane where available) over the period 1980-2011 from NOAA balloon-borne frostpoint hygrometer (NOAA-FPH), SAGE II, Halogen Occultation Experiment (HALOE), Microwave Limb Sounder (MLS)/Aura, and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) to model predictions based on troposphere-to-stratosphere transport from ERA-Interim, and temperatures from ERA-Interim, Modern Era Retrospective-Analysis (MERRA), Climate Forecast System Reanalysis (CFSR), Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC), HadAT2, and RICHv1.5. All model predictions are dry biased. The interannual anomalies of the model predictions show periods of fairly regular oscillations, alternating with more quiescent periods and a few large-amplitude oscillations. They all agree well (correlation coefficients 0.9 and larger) with observations for higherfrequency variations (periods up to 2-3 years). Differences between SWV observations, and temperature data, respectively, render analysis of the model minus observation residual difficult. However, we find fairly well-defined periods of drifts in the residuals. For the 1980s, model predictions differ most, and only the calculation with ERA-Interim temperatures is roughly within observational uncertainties. All model predictions show a drying relative to HALOE in the 1990s, followed by a moistening in the early 2000s. Drifts to NOAA-FPH are similar (but stronger), whereas no drift is present against SAGE II. As a result, the model calculations have a less pronounced drop in SWV in 2000 than HALOE. From the mid-2000s onward, models and observations agree reasonably, and some differences can be traced to problems in the temperature data. These results indicate that both SWV and temperature data may still suffer

  6. Relative Influence of Initial Surface and Atmospheric Conditions on Seasonal Water and Energy Balances

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Marshall, Susan; Roads, John O.; Robertson, Franklin R.; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    We constructed and analyzed wet and dry soil moisture composites for the mid-latitude GCIP region of the central US using long climate model simulations made with the NCAR CCM3 and reanalysis products from NCEP. Using the diagnostic composites as a guide, we have completed a series of predictability experiments in which we imposed soil water initial conditions in CCM3 for the GCIP region for June 1 from anomalously wet and dry years, with atmospheric initial conditions taken from June 1 of a year with 'near-normal' soil water, and initial soil water from the near-normal year and atmospheric initial conditions from the wet and dry years. Preliminary results indicate that the initial state of the atmosphere is more important than the initial state of soil water determining the subsequent late spring and summer evolution of sod water over the GCIP region. Surprisingly, neither the composites or the predictability experiments yielded a strong influence of soil moisture on the atmosphere. To explore this further, we have made runs with extreme dry soil moisture initial anomalies imposed over the GCIP region (the soil close to being completely dry). These runs did yield a very strong effect on the atmosphere that persisted for at least three months. We conclude that the magnitude of the initial soil moisture anomaly is crucial, at least in CCM3, and are currently investigating whether a threshold exists, below which little impact is seen. In a complementary study, we compared the impact of the initial condition of snow cover versus the initial atmospheric state over the western US (corresponding to the westward extension of the GAPP program follow-on to GCIP). In this case, the initial prescription of snow cover is far more important than the initial atmospheric state in determining the subsequent evolution of snow cover. We are currently working to understand the very different soil water and snow cover results.

  7. Implications of elevated atmospheric CO2 on plant growth and water relations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Empirical records provide incontestable evidence for the global rise in CO2 concentration in the earth’s atmosphere. Plant growth can be stimulated by elevation of CO2; photosynthesis increases and economic yield is often enhanced. The application of more CO2 can result in less water use. Competitio...

  8. Mars atmospheric water

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Grossman, A. W.; Muhleman, D. O.

    1992-01-01

    We indicate the Dec. 3-4 spectrum averaged over the morning limb of Mars. Two synthetic spectra indicate the expected line emission for 3 precipitable microns of water with a uniform vertical distribution (dotted) and a vertical distribution in which water decreases rapidly above 20 km altitude if Mars atmospheric temperatures are approximately 20 K cooler than implied by the Viking Infrared Thermal Mapping (IRTM) and lander descent observations. Such cooler atmospheric temperatures have been argued on the basis of ground-based microwave observations of Mars atmospheric CO. Our 3 pr micron column abundance for water can be compared to the global value of approximately 6 pr microns, observation for the same season with the Viking MAWD experiment in 1977. We will investigate the latitude and diurnal variations when the data corresponding to the second day of observations are reduced. We also plan to compare these VLA water observations with a very complementary set of Hubble Space Telescope ozone observations. Ultraviolet (220-330 nm) spectra and imates of Mars were obtained on Dec. 13 1990 as part of a general Mars observing program with the Hubble Space Telescope.

  9. Emission, absorption and group delay of microwaves in the atmosphere in relation to water vapour content over the Indian subcontinent

    NASA Technical Reports Server (NTRS)

    Sen, A. K.; Gupta, A. K. D.; Karmakar, P. K.; Barman, S. D.; Bhattacharya, A. B.; Purkait, N.; Gupta, M. K. D.; Sehra, J. S.

    1985-01-01

    The advent of satellite communication for global coverage has apparently indicated a renewed interest in the studies of radio wave propagation through the atmosphere, in the VHF, UHF and microwave bands. The extensive measurements of atmosphere constituents, dynamics and radio meterological parameters during the Middle Atmosphere Program (MAP) have opened up further the possibilities of studying tropospheric radio wave propagation parameters, relevant to Earth/space link design. The three basic parameters of significance to radio propagation are thermal emission, absorption and group delay of the atmosphere, all of which are controlled largely by the water vapor content in the atmosphere, particular at microwave bands. As good emitters are also good absorbers, the atmospheric emission as well as the absorption attains a maximum at the frequency of 22.235 GHz, which is the peak of the water vapor line. The group delay is practically independent of frequency in the VHF, UHF and microwave bands. However, all three parameters exhibit a similar seasonal dependence originating presumably from the seasonal dependence of the water vapor content. Some of the interesting results obtained from analyses of radiosonde data over the Indian subcontinent collected by the India Meteorological Department is presented.

  10. A review of elevated atmospheric CO2 effects on plant growth and water relations: implications for horticulture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Empirical records provide incontestable evidence for the global rise in CO2 concentration in the earth's atmosphere. Plant growth can be stimulated by elevation of CO2; photosynthesis increases and economic yield is often enhanced. The application of more CO2 can increase plant water use efficiency ...

  11. Perspective: Water cluster mediated atmospheric chemistry

    SciTech Connect

    Vaida, Veronica

    2011-07-14

    The importance of water in atmospheric and environmental chemistry initiated recent studies with results documenting catalysis, suppression and anti-catalysis of thermal and photochemical reactions due to hydrogen bonding of reagents with water. Water, even one water molecule in binary complexes, has been shown by quantum chemistry to stabilize the transition state and lower its energy. However, new results underscore the need to evaluate the relative competing rates between reaction and dissipation to elucidate the role of water in chemistry. Water clusters have been used successfully as models for reactions in gas-phase, in aqueous condensed phases and at aqueous surfaces. Opportunities for experimental and theoretical chemical physics to make fundamental new discoveries abound. Work in this field is timely given the importance of water in atmospheric and environmental chemistry.

  12. Stable isotopes of water vapor during the Strasse cruise in the sub-tropical North Atlantic; atmospheric boundary layer composition in relation to local evaporation.

    NASA Astrophysics Data System (ADS)

    Marion, Benetti; Gilles, Reverdin; Catherine, Pierre; Jerome, Demange; Camille, Risi

    2013-04-01

    During the Strasse cruise, a PICARRO L2130-i equipment was installed on the top deck of RV Thalassa with air pumped at an altitude of 20m above the sea surface. With this installation, the isotopic composition of water vapor was continuously measured from mid-August 2012 to mid-Septembre 2012 in the North Atlantic subtropical gyre, mostly around 26°N/36°W. The sea surface water was also regularly collected as well as rain water during a few showers during the cruise. The isotopic composition of these water samples was measured after the cruise at LOCEAN. Two weather packages were continuously measuring relative humidity, air temperature, strength and direction of wind, which provide data close to where the air was pumped, and allow to estimate net evaporation. Radiosondes were also launched during part of the survey in the morning and evening to get information on the lower atmosphere vertical structure. These measurements allow a better understanding of the budget of the atmospheric mixed layer during the cruise in this region of high excess evaporation. In particular, we will comment a two-day event of large deviation in water vapor isotopic composition. We will also discuss to which extent the atmospheric boundary layer acquires its isotopic composition during exchanges with the surface ocean.

  13. Mapping land water and energy balance relations through conditional sampling of remote sensing estimates of atmospheric forcing and surface states

    NASA Astrophysics Data System (ADS)

    Farhadi, Leila; Entekhabi, Dara; Salvucci, Guido

    2016-04-01

    In this study, we develop and apply a mapping estimation capability for key unknown parameters that link the surface water and energy balance equations. The method is applied to the Gourma region in West Africa. The accuracy of the estimation method at point scale was previously examined using flux tower data. In this study, the capability is scaled to be applicable with remotely sensed data products and hence allow mapping. Parameters of the system are estimated through a process that links atmospheric forcing (precipitation and incident radiation), surface states, and unknown parameters. Based on conditional averaging of land surface temperature and moisture states, respectively, a single objective function is posed that measures moisture and temperature-dependent errors solely in terms of observed forcings and surface states. This objective function is minimized with respect to parameters to identify evapotranspiration and drainage models and estimate water and energy balance flux components. The uncertainty of the estimated parameters (and associated statistical confidence limits) is obtained through the inverse of Hessian of the objective function, which is an approximation of the covariance matrix. This calibration-free method is applied to the mesoscale region of Gourma in West Africa using multiplatform remote sensing data. The retrievals are verified against tower-flux field site data and physiographic characteristics of the region. The focus is to find the functional form of the evaporative fraction dependence on soil moisture, a key closure function for surface and subsurface heat and moisture dynamics, using remote sensing data.

  14. Atmospheric correction for inland waters

    NASA Astrophysics Data System (ADS)

    Vidot, Jerome; Santer, Richard P.

    2004-02-01

    Inland waters are an increasingly valuable natural resource with major impacts and benefits for population and environment. As the spatial resolution is improved for "ocean color" satellite sensors, such observations become relevant to monitor water quality for lakes. We first demonstrated that the required atmospheric correction cannot be conducted using the standard algorithms developed for ocean. The ocean color sensors have spectral bands that allow characterization of aerosol over dark land pixels (vegetation in the blue and in the red spectral bands). It is possible to use a representative aerosol model in the atmospheric correction over inland waters after validating the spatial homogeneity of the aerosol model in the lake vicinity. The performance of this new algorithm is illustrated on SeaWiFS scenes of the Balaton (Hungary; the Constance, Germany) lakes. We illustrated the good spatial homogeneity of the aerosols and the meaningfulness of the water leaving radiances derived over these two lakes. We also addressed the specificity of the computation of the Fresnel reflection. The direct to diffuse term of this Fresnel contribution is reduced because of the limited size of the lake. Based on the primary scattering approximation, we propose a simple formulation of this component.

  15. Relative dispersion in the atmosphere

    NASA Astrophysics Data System (ADS)

    LaCasce, Joe; Graff, Lise; Guttu, Sigmund

    2014-05-01

    The relative dispersion of pairs of particles in flows is of central importance when describing environmental dispersion, for example of volcanic ash. Atmospheric relative dispersion was examined previously in two balloon experiments in the Southern Hemisphere (the EOLE and TWERLE experiments). In both cases, the dispersion at scales below 1000 km grew exponentially in time, indicating the kinetic energy spectrum is steep. Subsequent analyses suggested though that the dispersion had a power law dependence on time, implying a shallower kinetic energy spectrum. The results from studies employing synthetic particles advected by reanalysis winds are similarly inconsistent, with indications of exponential growth in some cases and power law growth in others. Here we use a different statistic---the probability density function (PDF) of pair displacements---to study dispersion the dispersion of large numbers of synthetic particles, advected by ERA-Interim reanalysis winds. The particles were deployed in the troposphere and stratosphere, both in the tropics and the extra-tropics. We examine the PDFs for the different deployments and compare them to analytical expressions derived for different turbulent inertial ranges. In line with the earlier balloon experiments, the results indicate exponential growth at the sub-deformation (1000 km) scales. At larger scales, the dispersion is anisotropic (predominantly zonal) and pair motion becomes decorrelated. Structure functions calculated from the wind data are in line with these conclusions.

  16. Profiling atmospheric water vapor by microwave radiometry

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Wilheit, T. T.; Szejwach, G.; Gesell, L. H.; Nieman, R. A.; Niver, D. S.; Krupp, B. M.; Gagliano, J. A.; King, J. L.

    1983-01-01

    High-altitude microwave radiometric observations at frequencies near 92 and 183.3 GHz were used to study the potential of retrieving atmospheric water vapor profiles over both land and water. An algorithm based on an extended kalman-Bucy filter was implemented and applied for the water vapor retrieval. The results show great promise in atmospheric water vapor profiling by microwave radiometry heretofore not attainable at lower frequencies.

  17. On the biogenic origin of dimethylsulfide: Relation between chlorophyll, ATP, organismic DMSP, phytoplankton species, and DMS distribution in Atlantic surface water and atmosphere

    SciTech Connect

    Buergermeister, S.; Zimmermann, R.L.; Georgii, H.W. ); Bingemer, H.G. ); Kirst, G.O.; Janssen, M. ); Ernst, W. )

    1990-11-20

    During a cruise over the Atlantic from 40{degree}S to 50{degree}N in March-April 1987 the concentrations of dimethylsulfide (DMS) in the ocean and atmosphere were measured as well as the distribution of its precursor, dimethylsulfoniopropionate (DMSP), and of several biological parameters such as chlorophyllm, phytoplankton species, and adenosine-5-triphosphate (ATP) in the surface water. The DMS concentration varied in the range 0.2-2 nmol DMS{sup {minus}1} (surface water) and 0.05-3 nmol DMS m{sup {minus}3} (atmosphere) in the region of the remote tropical and subtropical Atlantic and increased to 2-10 nmol DMS{sup {minus}1} (surface water) and 1-8 nmol DMS m{sup {minus}3} (atmosphere) north of 40{degree}N and in the English Channel. Based on these results the mean flux of DMS from the Atlantic to the atmosphere is estimated to be 4-4.65 nmol DMS m{sup {minus}2} min{sup {minus}1}. A moderate diurnal variation of atmospheric DMS was found with a minimum during daytime. The DMS concentration in seawater correlated well with the concentration of DMSP and showed a similar trend to ATP, chlorophyll, and some phytoplankton species.

  18. Tagging Water Sources in Atmospheric Models

    NASA Technical Reports Server (NTRS)

    Bosilovich, M.

    2003-01-01

    Tagging of water sources in atmospheric models allows for quantitative diagnostics of how water is transported from its source region to its sink region. In this presentation, we review how this methodology is applied to global atmospheric models. We will present several applications of the methodology. In one example, the regional sources of water for the North American Monsoon system are evaluated by tagging the surface evaporation. In another example, the tagged water is used to quantify the global water cycling rate and residence time. We will also discuss the need for more research and the importance of these diagnostics in water cycle studies.

  19. Determining Atmospheric Pressure Using a Water Barometer

    NASA Astrophysics Data System (ADS)

    Lohrengel, C. Frederick; Larson, Paul R.

    2012-12-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the mass of the water that is used as the fluid medium in the barometer. Simple calculations based upon the mass of water collected from the barometer yield the mass of the atmosphere per square unit of area at the site where the experiment is conducted.

  20. EDITORIAL: The global atmospheric water cycle

    NASA Astrophysics Data System (ADS)

    Bengtsson, Lennart

    2010-06-01

    vapour in the atmosphere is strongly controlled by the atmospheric circulation. If, for example, we follow a trajectory of water vapour in the atmosphere it shows that it undergoes a complex series of vertical and horizontal motions that can include several events of condensation. At any given time the saturation mixing ratio is determined by the temperature of the latest event of condensation. For this reason it follows that the mixing ratio will increase with temperature broadly following the Clausius-Clapeyron relation (Pierrehumbert et al 2007). The residence time of water vapour in the atmosphere is about a week, as compared with the very long residence time of the greenhouse gases, in particular CO2which includes multi-centennial time scales. Water vapour is, of course, continuously replenished by evaporation from the oceans and the land surfaces but is nevertheless regulated by temperature. In that sense, water vapour should be seen as a part of the response of the climate system to external forcing. Such a change in climate forcing can be due to changes in the concentration of the more persistent greenhouse gases such as CO2. Alternatively it can be due to changes in solar radiation, or to aerosols from volcanic eruptions or due to anthropogenic emissions. The absorption bands in the water vapour spectra are close to saturation, similar to those of CO2, with the absorption mainly occurring in the wings of the spectral bands. The total effect on the radiation balance can be approximated by a logarithmic function of the mixing ratio. This is how the effect of atmospheric water vapour is included in the code for the calculation of long-wave radiation in weather and climate models. In contrast to the well-mixed greenhouse gases, water vapour varies strongly in the atmosphere and this on a small scale in both time and space. The reason is strong vertical motion of different signs that implies sharp gradients in the moisture field. Climate models that have coarse

  1. Assessing Atmospheric Water Injection from Oceanic Impacts

    NASA Technical Reports Server (NTRS)

    Pierazzo, E.

    2005-01-01

    Collisions of asteroids and comets with the Earth s surface are rare events that punctuate the geologic record. Due to the vastness of Earth s oceans, oceanic impacts of asteroids or comets are expected to be about 4 times more frequent than land impacts. The resulting injections of oceanic water into the upper atmosphere can have important repercussions on Earth s climate and atmospheric circulation. However, the duration and overall effect of these large injections are still unconstrained. This work addresses atmospheric injections of large amounts of water in oceanic impacts.

  2. Atmospheric radiation model for water surfaces

    NASA Technical Reports Server (NTRS)

    Turner, R. E.; Gaskill, D. W.; Lierzer, J. R.

    1982-01-01

    An atmospheric correction model was extended to account for various atmospheric radiation components in remotely sensed data. Components such as the atmospheric path radiance which results from singly scattered sky radiation specularly reflected by the water surface are considered. A component which is referred to as the virtual Sun path radiance, i.e. the singly scattered path radiance which results from the solar radiation which is specularly reflected by the water surface is also considered. These atmospheric radiation components are coded into a computer program for the analysis of multispectral remote sensor data over the Great Lakes of the United States. The user must know certain parameters, such as the visibility or spectral optical thickness of the atmosphere and the geometry of the sensor with respect to the Sun and the target elements under investigation.

  3. The relative humidity of Mars' atmosphere

    NASA Technical Reports Server (NTRS)

    Davies, D. W.

    1979-01-01

    As a general rule, Mars' atmosphere contains as much water vapor as it can hold on a daily basis; it reaches saturation at night, and the vapor appears to be distributed throughout the lowest several kilometers. Interesting exceptions to this occur when there are temperature inversions in the arctic springtime and during dust-storm activity. As contrasted to the northern hemisphere there appears to be no local source of water in the southern temperate and arctic areas.

  4. Plant Water Relations.

    ERIC Educational Resources Information Center

    Tomley, David

    1982-01-01

    Some simple field investigations on plant water relations are described which demonstrate links between physiological and external environmental factors. In this way, a more complex picture of a plant and how it functions within its habitat and the effects the environment has on it can be built up. (Author/JN)

  5. Quality of the Ohio River and atmospheric deposition and its relation to corrosion of lock and dam facilities in the lower Ohio River basin near Paducah, Kentucky. Water Resources Investigation

    SciTech Connect

    White, K.D.

    1991-01-01

    The purpose of the report is to evaluate the quality of the Ohio River, atmospheric deposition, and corrosion product samples and their relation to corrosion of Lock and Dam 53 on the Ohio River near Paducah, Kentucky. Chemical determinations of river quality, atmospheric deposition, and corrosion product were performed on samples from Dam 53 and compared to similar determinations at Dam 52 (a control site 19 miles upstream) and to historical data from the region, where available. Statistical methods (summaries and applicable hypothesis tests) were used to help identify water-quality characteristics and environmental factors that have some potential for accelerating corrosion processes at Dam 53.

  6. The seasonal and global behavior of water vapor in the Mars atmosphere - Complete global results of the Viking atmospheric water detector experiment

    NASA Technical Reports Server (NTRS)

    Jakosky, B. M.; Farmer, C. B.

    1982-01-01

    A key question regarding the evolution of Mars is related to the behavior of its volatiles. The present investigation is concerned with the global and seasonal abundances of water vapor in the Mars atmosphere as mapped by the Viking Mars Atmospheric Water Detector (MAWD) instrument for almost 1-1/2 Martian years from June 1976 to April 1979. Attention is given to the implications of the observed variations for determining the relative importance of those processes which may be controlling the vapor cycle on a seasonal basis. The processes considered include buffering of the atmosphere water by a surface or subsurface reservior of ground ice, physically adsorbed water, or chemically bound water. Other processes are related to the supply of water from the residual or seasonal north polar ice cap, the redistribution of the vapor resulting from atmospheric circulation, and control of the vapor holding capacity of the atmosphere by the local atmospheric temperatures.

  7. Profiling of Atmospheric Water Vapor with MIR and LASE

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Racette, P.; Triesly, M. E.; Browell, E. V.; Ismail, S.; Chang, L. A.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    This paper presents the first and the only simultaneous measurements of water vapor by MIR (Millimeter-wave Imaging Radiometer) and LASE (Lidar Atmospheric Sounding Experiment) on board the same ER-2 aircraft. Water vapor is one of the most important constituents in the Earth's atmosphere, as its spatial and temporal variations affect a wide spectrum of meteorological phenomena ranging from the formation of clouds to the development of severe storms. Its concentration, as measured in terms of relative humidity, determines the extinction coefficient of atmospheric aerosol particles and therefore visibility. These considerations point to the need for effective and frequent measurements of the atmospheric water vapor. The MIR and LASE instruments provide measurements of water vapor profiles with two markedly different techniques. LASE can give water vapor profiles with excellent vertical resolution under clear condition, while MIR can retrieve water vapor profiles with a crude vertical resolution even under a moderate cloud cover. Additionally, millimeter-wave measurements are relatively simple and provide better spatial coverage.

  8. Advanced Atmospheric Water Vapor DIAL Detection System

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Elsayed-Ali, Hani E.; DeYoung, Russell J. (Technical Monitor)

    2000-01-01

    Measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The remote sensing Differential Absorption Lidar (DIAL) technique is a powerful method to perform such measurement from aircraft and space. This thesis describes a new advanced detection system, which incorporates major improvements regarding sensitivity and size. These improvements include a low noise advanced avalanche photodiode detector, a custom analog circuit, a 14-bit digitizer, a microcontroller for on board averaging and finally a fast computer interface. This thesis describes the design and validation of this new water vapor DIAL detection system which was integrated onto a small Printed Circuit Board (PCB) with minimal weight and power consumption. Comparing its measurements to an existing DIAL system for aerosol and water vapor profiling validated the detection system.

  9. High-resolution terahertz atmospheric water vapor continuum measurements

    NASA Astrophysics Data System (ADS)

    Slocum, David M.; Goyette, Thomas M.; Giles, Robert H.

    2014-05-01

    The terahertz frequency regime is often used as the `chemical fingerprint' region of the electromagnetic spectrum due to the large number of rotational and vibrational transitions of many molecules of interest. This region of the spectrum has particular utility for applications such as pollution monitoring and the detection of energetic chemicals using remote sensing over long path lengths through the atmosphere. Although there has been much attention to atmospheric effects over narrow frequency windows, accurate measurements across a wide spectrum are lacking. The water vapor continuum absorption is an excess absorption that is unaccounted for in resonant line spectrum simulations. Currently a semiempirical model is employed to account for this absorption, however more measurements are necessary to properly describe the continuum absorption in this region. Fourier Transform Spectroscopy measurements from previous work are enhanced with high-resolution broadband measurements in the atmospheric transmission window at 1.5THz. The transmission of broadband terahertz radiation through pure water vapor as well as air with varying relative humidity levels was recorded for multiple path lengths. The pure water vapor measurements provide accurate determination of the line broadening parameters and experimental measurements of the transition strengths of the lines in the frequency region. Also these measurements coupled with the atmospheric air measurements allow the water vapor continuum absorption to be independently identified at 1.5THz. Simulations from an atmospheric absorption model using parameters from the HITRAN database are compared with the current and previous experimental results.

  10. Atmospheric corrections for satellite water quality studies

    NASA Technical Reports Server (NTRS)

    Piech, K. R.; Schott, J. R.

    1975-01-01

    Variations in the relative value of the blue and green reflectances of a lake can be correlated with important optical and biological parameters measured from surface vessels. Measurement of the relative reflectance values from color film imagery requires removal of atmospheric effects. Data processing is particularly crucial because: (1) lakes are the darkest objects in a scene; (2) minor reflectance changes can correspond to important physical changes; (3) lake systems extend over broad areas in which atmospheric conditions may fluctuate; (4) seasonal changes are of importance; and, (5) effects of weather are important, precluding flights under only ideal weather conditions. Data processing can be accomplished through microdensitometry of scene shadow areas. Measurements of reflectance ratios can be made to an accuracy of plus or minus 12%, sufficient to permit monitoring of important eutrophication indices.

  11. Modeling of Revitalization of Atmospheric Water

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Knox, Jim

    2014-01-01

    The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper describes the testing and modeling of the water desiccant subsystem of the carbon dioxide removal assembly (CDRA). The goal is a full system predictive model of CDRA to guide system optimization and development.

  12. Escape of atmospheres and loss of water

    NASA Technical Reports Server (NTRS)

    Hunten, D. M.; Donahue, T. M.; Walker, J. C. G.; Kasting, J. F.

    1989-01-01

    The properties and limitations of several loss processes for atmospheric gases are presented and discussed. They include thermal loss (Jeans and hydrodynamic); nonthermal loss (all processes involve charged particles); and impact erosion, including thermal escape from a molten body heated by rapid accretion. Hydrodynamic escape, or 'blowoff', is of particular interest because it offers the prospect of processing large quantities of gas and enriching the remainder in heavy elements and isotopes. In a second part, the water budgets and likely evolutionary histories of Venus, Earth and Mars are assessed. Although it is tempting to associate the great D/H enrichment on Venus with loss of a large initial endowment, a steady state with juvenile water (perhaps from comets) is equally probable.

  13. EDITORIAL: The global atmospheric water cycle

    NASA Astrophysics Data System (ADS)

    Bengtsson, Lennart

    2010-06-01

    Water vapour plays a key role in the Earth's energy balance. Almost 50% of the absorbed solar radiation at the surface is used to cool the surface, through evaporation, and warm the atmosphere, through release of latent heat. Latent heat is the single largest factor in warming the atmosphere and in transporting heat from low to high latitudes. Water vapour is also the dominant greenhouse gas and contributes to a warming of the climate system by some 24°C (Kondratev 1972). However, water vapour is a passive component in the troposphere as it is uniquely determined by temperature and should therefore be seen as a part of the climate feedback system. In this short overview, we will first describe the water on planet Earth and the role of the hydrological cycle: the way water vapour is transported between oceans and continents and the return of water via rivers to the oceans. Generally water vapour is well observed and analysed; however, there are considerable obstacles to observing precipitation, in particular over the oceans. The response of the hydrological cycle to global warming is far reaching. Because different physical processes control the change in water vapour and evaporation/precipitation, this leads to a more extreme distribution of precipitation making, in general, wet areas wetter and dry areas dryer. Another consequence is a transition towards more intense precipitation. It is to be expected that the changes in the hydrological cycle as a consequence of climate warming may be more severe that the temperature changes. Water on planet Earth The total amount of available water on the Earth amounts to some 1.5 x 109 km3. The dominant part of this, 1.4 x 109 km3, resides in the oceans. About 29 x 106 km3 are locked up in land ice and glaciers and some 15 x 106 km3 are estimated to exist as groundwater. If all land ice and glaciers were to melt the sea level would rise some 80 m (Baumgartner and Reichel 1975). 13 x 103 km3 of water vapour are found in the

  14. Diurnal and temporal variations of water-soluble dicarboxylic acids and related compounds in aerosols from the northern vicinity of Beijing: implication for photochemical aging during atmospheric transport.

    PubMed

    He, Nannan; Kawamura, Kimitaka; Okuzawa, K; Pochanart, P; Liu, Y; Kanaya, Y; Wang, Z F

    2014-11-15

    Aerosol samples were collected in autumn 2007 on day- and nighttime basis in the northern receptor site of Beijing, China. The samples were analyzed for total carbon (TC) and water-soluble dicarboxylic acids (C2-C12), oxocarboxylic acids (C2-C9), glyoxal and methylglyoxal to better understand the photochemical aging of organic aerosols in the vicinity of Beijing. Concentrations of TC are 50% greater in daytime when winds come from Beijing than in nighttime when winds come from the northern forest areas. Most diacids showed higher concentrations in daytime, suggesting that the organics emitted from the urban Beijing and delivered to the northern vicinity in daytime are subjected to photo-oxidation to result in diacids. However, oxalic acid (C2), which is the most abundant diacid followed by C3 or C4, became on average 30% more abundant in nighttime together with azelaic, ω-oxooctanoic and ω-oxononanoic acids, which are specific oxidation products of biogenic unsaturated fatty acids. Methylglyoxal, an oxidation product of isoprene and a precursor of oxalic acid, also became 29% more abundant in nighttime. Based on a positive correlation between C2 and glyoxylic acid (ωC2) in nighttime when relative humidity significantly enhanced, we propose a nighttime aqueous phase production of C2 via the oxidation of ωC2. We found an increase in the contribution of diacids to TC by 3 folds during consecutive clear days. This study demonstrates that diacids and related compounds are largely produced in the northern vicinity of Beijing via photochemical processing of organic precursors emitted from urban center and forest areas. PMID:25181047

  15. Isotopes in the Arctic atmospheric water cycle

    NASA Astrophysics Data System (ADS)

    Bonne, Jean-Louis; Werner, Martin; Meyer, Hanno; Kipfstuhl, Sepp; Rabe, Benjamin; Behrens, Melanie; Schönicke, Lutz; Steen Larsen, Hans Christian; Masson-Delmotte, Valérie

    2016-04-01

    The ISO-ARC project aims at documenting the Arctic atmospheric hydrological cycle, by assessing the imprint of the marine boundary conditions (e.g. temperature variations, circulation changes, or meltwater input) to the isotopic composition of the atmospheric water cycle (H218O and HDO) with a focus on North Atlantic and Arctic oceans. For this purpose, two continuous monitoring water vapour stable isotopes cavity ring-down spectrometers have been installed in July 2015: on-board the Polarstern research vessel and in the Siberian Lena delta Samoylov research station (N 72° 22', E 126° 29'). The Polarstern measurements cover the summer 2015 Arctic campaign from July to mid-October, including six weeks in the Fram Strait region in July- August, followed by a campaign reaching the North Pole and a transect from the Norwegian Sea to the North Sea. These vapour observations are completed by water isotopic measurements in samples from the surface ocean water for Polarstern and from precipitation in Samoylov and Tiksi (120 km south-east of the station). A custom-made designed automatic calibration system has been implemented in a comparable manner for both vapour instruments, based on the injection of different liquid water standards, which are completely vaporised in dry air at high temperature. Subsequent humidity level can be adjusted from 2000 to at least 30000 ppm. For a better resilience, an independent calibration system has been added on the Samoylov instrument, allowing measurements of one standard at humidity levels ranging from 2000 to 15000 ppm: dry air is introduced in a tank containing a large amount of liquid water standard, undergoing evaporation under a controlled environment. The measurement protocol includes an automatic calibration every 25 hours. First instrument characterisation experiments depict a significant isotope-humidity effect at low humidity, dependant on the isotopic composition of the standard. For ambient air, our first isotope

  16. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. I. ATMOSPHERIC DYNAMICS VIA THE SHALLOW WATER SYSTEM

    SciTech Connect

    Heng, Kevin; Workman, Jared E-mail: jworkman@coloradomesa.edu

    2014-08-01

    Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.

  17. Water and acid soluble trace metals in atmospheric particles

    NASA Technical Reports Server (NTRS)

    Lindberg, S. E.; Harriss, R. C.

    1983-01-01

    Continental aerosols are collected above a deciduous forest in eastern Tennessee and subjected to selective extractions to determine the water-soluble and acid-leachable concentrations of Cd, Mn, Pb, and Zn. The combined contributions of these metals to the total aerosol mass is 0.5 percent, with approximately 70 percent of this attributable to Pb alone. A substantial fraction (approximately 50 percent or more) of the acid-leachable metals is soluble in distilled water. In general, this water-soluble fraction increases with decreasing particle size and with increasing frequency of atmospheric water vapor saturation during the sampling period. The pattern of relative solubilities (Zn being greater than Mn, which is approximately equal to Cd, which is greater than Pb) is found to be similar to the general order of the thermodynamic solubilities of the most probable salts of these elements in continental aerosols with mixed fossil fuel and soil sources.

  18. Atmospheric water on Mars, energy estimates for extraction

    NASA Technical Reports Server (NTRS)

    Meyer, Tom

    1991-01-01

    The Mars atmosphere is considered as a resource for water to support a human expedition. Information obtained from the Viking mission is used to estimate the near-surface water vapor level. The variability over the diurnal cycle is examined and periods of greatest water abundance are identified. Various methods for extracting atmospheric water are discussed including energy costs and the means for optimizing water extraction techniques.

  19. Atmospheric water vapour and cloud water: an overview

    NASA Astrophysics Data System (ADS)

    Ruprecht, E.

    Hydro-meteorological parameters i.e. precipitable water, cloud water and ice content, and precipitation are most variable parameters in the atmosphere. This is the main reason why representative direct measurements of these properties are hardly available. Remote sensing with satellite-borne instruments in particular in the microwave spectral range is a way out of this dilemma. A number of algorithms has been developed. The different methods how to proceed in the development of such algorithms are discussed. Verification of the retrieved products in particular the liquid water path is a great problem, a few ideas will be discussed. Results will be shown for the total precipitable water W and liquid water path LWP over the Atlantic Ocean for different time scales. The structure of the W field is very similar for the same month in different years. But LWP is very variable, even for monthly means (October 1987 and 1989) the differences can be larger than 0.1 kg/m^2.

  20. Determining Atmospheric Pressure Using a Water Barometer

    ERIC Educational Resources Information Center

    Lohrengel, C. Frederick, II; Larson, Paul R.

    2012-01-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…

  1. Thermochemistry of substellar atmospheres: Water, oxygen, sulfur, and phosphorus

    NASA Astrophysics Data System (ADS)

    Visscher, Channon Wayne

    2006-09-01

    Thermochemical equilibrium and kinetic calculations are used to investigate atmospheric chemistry in substellar objects: giant planets, extrasolar giant planets (EGPs), and brown dwarfs. These studies include an assessment of the water and total oxygen inventories in the interiors of Jupiter and Saturn, and detailed modeling of sulfur and phosphorus chemistry in the atmospheres of substellar objects. In the first part of the dissertation, the water and total oxygen abundances in the deep atmospheres of Jupiter and Saturn are determined by considering the effects of H 2 O and O on the chemistry of CO, PH 3 , and SiH 4 . On Jupiter, the observed CO abundance indicates a water abundance of 0.4--1.4 times the protosolar H 2 O/H 2 ratio (8.96 × 10 -4 ). On Saturn, a combination of CO and PH 3 chemical constraints requires a water abundance of 1.9--6.1 times the protosolar abundance. Combining these results with Si mass balance considerations gives a total oxygen abundance of 0.7--1.7 and 3.2--6.4 times the protosolar O/H 2 ratio (1.16 × 10 -3 ) on Jupiter and Saturn, respectively. In both planets, oxygen is less enriched than other heavy elements (such as carbon) relative to hydrogen and the solar system composition. These results provide important constraints for giant planet formation mechanisms and models of tropospheric chemistry. The second part of the dissertation is a detailed study of sulfur and phosphorus chemistry in substellar atmospheres. The chemical behavior of individual S- and P-bearing gases and condensates is determined as a function of temperature, total pressure, and metallicity. Aside from minor amounts of sulfur removed by metal sulfide cloud formation, H 2 S is approximately representative of the sulfur inventory throughout substellar atmospheres. Silicon sulfide (SiS) is a potential tracer of weather in EGPs and L dwarfs. Phosphorus chemistry is considerably more complex than that of sulfur. Disequilibrium abundances of PH 3 approximately

  2. Clouds and climate: Ability of atmospheric particles to uptake water

    NASA Astrophysics Data System (ADS)

    Farnham, Gabriella Joy Engelhart

    converge through oxidative processing. This may support findings of SOA CCN activity with a common hygroscopicity parameter of approximately 0.1. Aged atmospheric particles under sub-saturated conditions remain wet even at low relative humidities. Water uptake by organics was small and generally consistent with laboratory observations. All of this work will help to constrain organic aerosol-water interactions and provide a more accurate assessment for visibility and climate issues.

  3. Formation of Organic Molecules and Water in Warm Disk Atmospheres

    NASA Astrophysics Data System (ADS)

    Najita, Joan R.; Ádámkovics, Máté; Glassgold, Alfred E.

    2011-12-01

    Observations from Spitzer and ground-based infrared spectroscopy reveal significant diversity in the molecular emission from the inner few AU of T Tauri disks. We explore theoretically the possible origin of this diversity by expanding on our earlier thermal-chemical model of disk atmospheres. We consider how variations in grain settling, X-ray irradiation, accretion-related mechanical heating, and the oxygen-to-carbon ratio can affect the thermal and chemical properties of the atmosphere at 0.25-40 AU. We find that these model parameters can account for many properties of the detected molecular emission. The column density of the warm (200-2000 K) molecular atmosphere is sensitive to grain settling and the efficiency of accretion-related heating, which may account, at least in part, for the large range in molecular emission fluxes that have been observed. The dependence of the atmospheric properties on the model parameters may also help to explain trends that have been reported in the literature between molecular emission strength and mid-infrared color, stellar accretion rate, and disk mass. We discuss whether some of the differences between our model results and the observations (e.g., for water) indicate a role for vertical transport and freezeout in the disk midplane. We also discuss how planetesimal formation in the outer disk (beyond the snowline) may imprint a chemical signature on the inner few AU of the disk and speculate on possible observational tracers of this process.

  4. INTRODUCTION: Anticipated changes in the global atmospheric water cycle

    NASA Astrophysics Data System (ADS)

    Allan, Richard P.; Liepert, Beate G.

    2010-06-01

    intensification of precipitation (O'Gorman and Schneider 2009) and analysis of observed and simulated changes in extreme rainfall for Europe (Lenderink and van Mijgaard 2008) and over tropical oceans by Allan et al (2010) appear to corroborate this. Radiative absorption by water vapour (Previdi 2010, Stephens and Ellis 2008) also provides a thermodynamic feedback on the water cycle, and explains why climate model projections of global precipitation and evaporation of around 1-3% K-1 are muted with respect to the expected 7% K-1 increases in low-level moisture. Climate models achieve dynamical responses through reductions in strength of the Walker circulation (Vecchi et al 2006) and small yet systematic changes in the atmospheric boundary layer over the ocean that modify evaporation (Richter and Xie 2008). A further consequence is anticipated sub-tropical drying (Neelin et al 2006, Chou et al 2007); Allan et al (2010) confirm a decline in dry sub-tropical precipitation while the wet regions become wetter both in model simulations and satellite-based observations. Discrepancies between observed and climate model simulated hydrological response to warming (Wentz et al 2007, Yu and Weller 2007) are of immediate concern in understanding and predicting future responses. Over decadal time-scales it is important to establish whether such discrepancies relate to the observing system, climate modeling deficiencies, or are a statistical artifact of the brevity of the satellite records (Liepert and Previdi 2009). Techniques for extracting information on century-scale changes in precipitation are emerging (Smith et al 2009) but are also subject to severe limitations. Past decadal-scale changes in the water cycle may be further influenced by regionally and temporally varying forcings and resulting feedbacks which must be represented realistically by models (Andrews et al 2009). The radiative impact of aerosols and their indirect effects on clouds and precipitation (Liepert et al 2004) provide

  5. INTRODUCTION: Anticipated changes in the global atmospheric water cycle

    NASA Astrophysics Data System (ADS)

    Allan, Richard P.; Liepert, Beate G.

    2010-06-01

    intensification of precipitation (O'Gorman and Schneider 2009) and analysis of observed and simulated changes in extreme rainfall for Europe (Lenderink and van Mijgaard 2008) and over tropical oceans by Allan et al (2010) appear to corroborate this. Radiative absorption by water vapour (Previdi 2010, Stephens and Ellis 2008) also provides a thermodynamic feedback on the water cycle, and explains why climate model projections of global precipitation and evaporation of around 1-3% K-1 are muted with respect to the expected 7% K-1 increases in low-level moisture. Climate models achieve dynamical responses through reductions in strength of the Walker circulation (Vecchi et al 2006) and small yet systematic changes in the atmospheric boundary layer over the ocean that modify evaporation (Richter and Xie 2008). A further consequence is anticipated sub-tropical drying (Neelin et al 2006, Chou et al 2007); Allan et al (2010) confirm a decline in dry sub-tropical precipitation while the wet regions become wetter both in model simulations and satellite-based observations. Discrepancies between observed and climate model simulated hydrological response to warming (Wentz et al 2007, Yu and Weller 2007) are of immediate concern in understanding and predicting future responses. Over decadal time-scales it is important to establish whether such discrepancies relate to the observing system, climate modeling deficiencies, or are a statistical artifact of the brevity of the satellite records (Liepert and Previdi 2009). Techniques for extracting information on century-scale changes in precipitation are emerging (Smith et al 2009) but are also subject to severe limitations. Past decadal-scale changes in the water cycle may be further influenced by regionally and temporally varying forcings and resulting feedbacks which must be represented realistically by models (Andrews et al 2009). The radiative impact of aerosols and their indirect effects on clouds and precipitation (Liepert et al 2004) provide

  6. Natural chlorine and fluorine in the atmosphere, water and precipitation

    NASA Technical Reports Server (NTRS)

    Friend, James P.

    1990-01-01

    The geochemical cycles of chlorine and fluorine are surveyed and summarized as framework for the understanding of the global natural abundances of these species in the atmosphere, water, and precipitation. In the cycles the fluxes into and out of the atmosphere can be balanced within the limits of our knowledge of the natural sources and sinks. Sea salt from the ocean surfaces represent the predominant portion of the source of chlorine. It is also an important source of atmospheric fluorine, but volcanoes are likely to be more important fluorine sources. Dry deposition of sea salt returns about 85 percent of the salt released there. Precipitation removes the remainder. Most of the sea salt materials are considered to be cyclic, moving through sea spray over the oceans and either directly back to the oceans or deposited dry and in precipitation on land, whence it runs off into rivers and streams and returns to the oceans. Most of the natural chlorine in the atmosphere is in the form of particulate chloride ion with lesser amounts as gaseous inorganic chloride and methyl chloride vapor. Fluorine is emitted from volcanoes primarily as HF. It is possible that HF may be released directly form the ocean surface but this has not been confirmed by observation. HCl and most likely HF gases are released into the atmosphere by sea salt aerosols. The mechanism for the release is likely to be the provision of protons from the so-called excess sulfate and HNO3. Sea salt aerosol contains fluorine as F(-), MgF(+), CaF(+), and NaF. The concentrations of the various species of chlorine and fluorine that characterize primarily natural, unpolluted atmospheres are summarized in tables and are discussed in relation to their fluxes through the geochemical cycle.

  7. Effect of Upper Atmospheric Water on Martian Photochemistry and Water Loss

    NASA Astrophysics Data System (ADS)

    Chaffin, M.; Deighan, J.; Stewart, I. F.; Schneider, N. M.

    2014-12-01

    Volatile loss to space may have dominated the history of the Martian climate, removing a substantial fraction of the water initially present on the planet over the last four billion years. Until recently, the atomic H component of this loss was thought to be relatively constant in time, based on arguments from Mariner data that the source of the escaping H was molecular hydrogen, with an atmospheric lifetime of decades. New data gathered by the SPectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) instrument on the European Space Agency's Mars Express mission has shown that H escape varies by more than an order of magnitude in Fall 2007 alone, requiring a different parent molecule for the escaping atomic H. Using a completely new 1D time-dependent photochemical model of the Martian atmosphere, we investigate the effect of transient upper atmospheric water vapor on H and O escape to space and the abundance of minor species throughout the atmosphere. We demonstrate that detached water layers between 40-100 km, recently discovered by the infrared channel of SPICAM, produce an order of magnitude increase in the escape rate of H from the Martian atmosphere to space on a timescale of months. This provides an explanation for the observed H escape variation, adding to evidence that the upper, middle, and lower atmosphere of Mars are more tightly coupled in time than was previously expected. Implications for MAVEN measurements and for reconstructing the history of Martian water loss and the oxidation state of the crust will be discussed. Support for this work was provided by the NASA Earth and Space Science Fellowship Program, Award Number NNX11AP49H.

  8. The travel-related carbon dioxide emissions of atmospheric researchers

    NASA Astrophysics Data System (ADS)

    Stohl, A.

    2008-04-01

    Most atmospheric scientists agree that greenhouse gas emissions have already caused significant changes to the global climate system and that these changes will accelerate in the near future. At the same time, atmospheric scientists who - like other scientists - rely on international collaboration and information exchange travel a lot and, thereby, cause substantial emissions of carbon dioxide (CO2). In this paper, the CO2 emissions of the employees working at an atmospheric research institute (the Norwegian Institute for Air Research, NILU) caused by all types of business travel (conference visits, workshops, field campaigns, instrument maintainance, etc.) were calculated for the years 2005-2007. It is estimated that more than 90% of the emissions were caused by air travel, 3% by ground travel and 5% by hotel usage. The travel-related annual emissions were between 1.9 and 2.4 t CO2 per employee or between 3.9 and 5.5 t CO2 per scientist. For comparison, the total annual per capita CO2 emissions are 4.5 t worldwide, 1.2 t for India, 3.8 t for China, 5.9 t for Sweden and 19.1 t for Norway. The travel-related CO2 emissions of a NILU scientist, occurring in 24 days of a year on average, exceed the global average annual per capita emission. Norway's per-capita CO2 emissions are among the highest in the world, mostly because of the emissions from the oil industry. If the emissions per NILU scientist derived in this paper are taken as representative for the average Norwegian researcher, travel by Norwegian scientists would nevertheless account for a substantial 0.2% of Norway's total CO2 emissions. Since most of the travel-related emissions are due to air travel, water vapor emissions, ozone production and contrail formation further increase the relative importance of NILU's travel in terms of radiative forcing.

  9. The travel-related carbon dioxide emissions of atmospheric researchers

    NASA Astrophysics Data System (ADS)

    Stohl, A.

    2008-11-01

    Most atmospheric scientists agree that greenhouse gas emissions have already caused significant changes to the global climate system and that these changes will accelerate in the near future. At the same time, atmospheric scientists who like other scientists rely on international collaboration and information exchange travel a lot and, thereby, cause substantial emissions of CO2. In this paper, the CO2 emissions of the employees working at an atmospheric research institute (the Norwegian Institute for Air Research, NILU) caused by all types of business travel (conference visits, workshops, field campaigns, instrument maintainance, etc.) were calculated for the years 2005 2007. It is estimated that more than 90% of the emissions were caused by air travel, 3% by ground travel and 5% by hotel usage. The travel-related annual emissions were between 1.9 and 2.4 t CO2 per employee or between 3.9 and 5.5 t CO2 per scientist. For comparison, the total annual per capita CO2 emissions are 4.5 t worldwide, 1.2 t for India, 3.8 t for China, 5.9 t for Sweden and 19.1 t for Norway. The travel-related CO2 emissions of a NILU scientist, occurring in 24 days of a year on average, exceed the global average annual per capita emission. Norway's per-capita CO2 emissions are among the highest in the world, mostly because of the emissions from the oil industry. If the emissions per NILU scientist derived in this paper are taken as representative for the average Norwegian researcher, travel by Norwegian scientists would nevertheless account for a substantial 0.2% of Norway's total CO2 emissions. Since most of the travel-related emissions are due to air travel, water vapor emissions, ozone production and contrail formation further increase the relative importance of NILU's travel in terms of radiative forcing.

  10. Solar geoengineering, atmospheric water vapor transport, and land plants

    NASA Astrophysics Data System (ADS)

    Caldeira, Ken; Cao, Long

    2015-04-01

    This work, using the GeoMIP database supplemented by additional simulations, discusses how solar geoengineering, as projected by the climate models, affects temperature and the hydrological cycle, and how this in turn is related to projected changes in net primary productivity (NPP). Solar geoengineering simulations typically exhibit reduced precipitation. Solar geoengineering reduces precipitation because solar geoengineering reduces evaporation. Evaporation precedes precipitation, and, globally, evaporation equals precipitation. CO2 tends to reduce evaporation through two main mechanisms: (1) CO2 tends to stabilize the atmosphere especially over the ocean, leading to a moister atmospheric boundary layer over the ocean. This moistening of the boundary layer suppresses evaporation. (2) CO2 tends to diminish evapotranspiration, at least in most land-surface models, because higher atmospheric CO2 concentrations allow leaves to close their stomata and avoid water loss. In most high-CO2 simulations, these effects of CO2 which tend to suppress evaporation are masked by the tendency of CO2-warming effect to increase evaporation. In a geoengineering simulation, with the warming effect of CO2 largely offset by the solar geoengineering, the evaporation suppressing characteristics of CO2 are no longer masked and are clearly exhibited. Decreased precipitation in solar geoengineering simulations is a bit like ocean acidification - an effect of high CO2 concentrations that is not offset by solar geoengineering. Locally, precipitation ultimately either evaporates (much of that through the leaves of plants) or runs off through groundwater to streams and rivers. On long time scales, runoff equals precipitation minus evaporation, and thus, water runoff generated at a location is equal to the net atmospheric transport of water to that location. Runoff typically occurs where there is substantial soil moisture, at least seasonally. Locations where there is enough water to maintain

  11. Steam-water relative permeability

    SciTech Connect

    Ambusso, W.; Satik, C.; Home, R.N.

    1997-12-31

    A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.

  12. Relating Global Precipitation to Atmospheric Fronts

    NASA Astrophysics Data System (ADS)

    Catto, J. L.; Jakob, C.; Nicholls, N.

    2012-12-01

    Atmospheric fronts are important for the day-to-day variability of weather in the midlatitudes, particularly during winter when extratropical storm-tracks are at their maximum intensity. Fronts are often associated with heavy rain, and strongly affect the local space-time distribution of rainfall. Although global climate models should be expected to represent the baroclinic systems within which the fronts are embedded, the fronts themselves and precipitation processes within them are of much smaller scale. As a consequence, models with the typical horizontal resolution of contemporary climate models do not necessarily accurately capture these features. A recently developed objective front identification method applied to reanalysis data is combined with global rainfall data to investigate how precipitation and extremes of precipitation around the globe are associated with atmospheric fronts. Having established the observed distribution of fronts and their role in producing precipitation and extremes, the occurrence of fronts and the associated precipitation can then be evaluated in state-of-the-art climate models. This provides a process-oriented method of model evaluation where the errors in the model can be decomposed into contributions from errors in front frequency and errors in frontal and non-frontal precipitation intensity. Finally, how fronts and their associated precipitation, may change in the future, especially the extremes, can be investigated.

  13. Water relations of tetrapod integument.

    PubMed

    Lillywhite, Harvey B

    2006-01-01

    The vertebrate integument represents an evolutionary compromise between the needs for mechanical protection and those of sensing the environment and regulating the exchange of materials and energy. Fibrous keratins evolved as a means of strengthening the integument while simultaneously providing a structural support for lipids, which comprise the principal barrier to cutaneous water efflux in terrestrial taxa. Whereas lipids are of fundamental importance to water barriers, the efficacy of these barriers depends in many cases on structural features that enhance or maintain the integrity of function. Amphibians are exceptional among tetrapods in having very little keratin and a thin stratum corneum. Thus, effective lipid barriers that are present in some specialized anurans living in xeric habitats are external to the epidermis, whereas lipid barriers of amniotes exist as a lipid-keratin complex within the stratum corneum. Amphibians prevent desiccation of the epidermis and underlying tissues either by evaporating water from a superficial aqueous film, which must be replenished, or by shielding the stratum corneum with superficial lipids. Water barrier function in vertebrates generally appears to be relatively fixed, although various species have ;plasticity' to adjust the barrier effectiveness facultatively. While it is clear that both phenotypic plasticity and genetic adaptation can account for covariation between environment and skin resistance to water efflux, studies of the relative importance of these two phenomena are few. Fundamental mechanisms for adjusting the skin water barrier include changes in barrier thickness, composition and physicochemical properties of cutaneous lipids, and/or geometry of the barrier within the epidermis. While cutaneous lipids have been studied extensively in the contexts of disease and cosmetics, relatively little is known about the processes of permeability barrier ontogenesis related to adaptation and environment. Advances in

  14. Thermodynamic modeling of atmospheric aerosols: 0-100% relative humidity

    NASA Astrophysics Data System (ADS)

    Dutcher, Cari S.; Ge, Xinlei; Asato, Caitlin; Wexler, Anthony S.; Clegg, Simon L.

    2013-05-01

    Accurate models of water and solute activities in aqueous atmospheric aerosols are central to predicting aerosol size, optical properties and cloud formation. A powerful method has been recently developed (Dutcher et al. JPC 2011, 2012, 2013) for representing the thermodynamic properties of multicomponent aerosols at low and intermediate levels of RH (< 90%RH) by applying the principles of multilayer sorption to ion hydration in solutions. In that work, statistical mechanics was used to model sorption of a solvent (water), onto each solute or ion in solution as n energetically distinct layers. This corresponds to n hydration layers surrounding each solute molecule. Here, we extend the model to the 100% RH limit and reduce the number of adjustable model parameters, allowing for a unified thermodynamic treatment for a wider range of atmospheric systems. The long-range interactions due to electrostatic screening of ions in solution are included as a mole fraction based Pitzer-Debye-Hückel (PDH) term. Equations for the Gibbs free energy, solvent and solute activity, and solute concentration are derived, yielding remarkable agreement between measured and fitted solute concentration and osmotic coefficients for solutions over the entire 0 to 100% RH range. By relating the values of the energy of sorption in each hydration layer to known short-range Coulombic electrostatic relationships governed by the size and dipole moment of the solute and solvent molecules, it may be possible to reduce the number of parameters for each solute. Modified equations for mixtures that take into account the long range PDH term will also be presented; these equations include no additional parameters.

  15. Atmospheric relative concentrations in building wakes

    SciTech Connect

    Ramsdell, J.V. Jr.; Simonen, C.A.; Smyth, S.B.

    1995-05-01

    This report documents the ARCON95 computer code developed for the U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research for use in control room habitability assessments. The document includes a user`s guide to the code, a description of the technical basis for the code, and a programmer`s guide to the code. The ARCON95 code uses hourly meteorological data and recently developed methods for estimating dispersion in the vicinity of buildings to calculate relative concentrations at control room air intakes that would be exceeded no more five percent of the time. These concentrations are calculated for averaging periods ranging from one hour to 30 days in duration. Relative concentrations calculated by ARCON95 are significantly lower than concentrations calculated using the currently accepted procedure when winds are less than two meters per second. For higher wind speeds, ARCON95 calculates about the same concentrations as the current procedure.

  16. Atmospheric relative concentrations in building wakes

    SciTech Connect

    Ramsdell, J.V. Jr.; Simonen, C.A.

    1997-05-01

    This report documents the ARCON96 computer code developed for the U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation for potential use in control room habitability assessments. It includes a user`s guide to the code, a description of the technical basis for the code, and a programmer`s guide to the code. The ARCON96 code uses hourly meteorological data and recently developed methods for estimating dispersion in the vicinity of buildings to calculate relative concentrations at control room air intakes that would be exceeded no more than five percent of the time. The concentrations are calculated for averaging periods ranging from one hour to 30 days in duration. ARCON96 is a revised version of ARCON95, which was developed for the NRC Office of Nuclear Regulatory Research. Changes in the code permit users to simulate releases from area sources as well as point sources. The method of averaging concentrations for periods longer than 2 hours has also been changed. The change in averaging procedures increases relative concentrations for these averaging periods. In general, the increase in concentrations is less than a factor of two. The increase is greatest for relatively short averaging periods, for example 0 to 8 hours and diminishes as the duration of the averaging period increases.

  17. SAMPLING AND ANALYSIS OF ATMOSPHERIC SULFATES AND RELATED SPECIES

    EPA Science Inventory

    Sampling and analytical methods to measure atmospheric concentrations of sulfur, sulfates and related species are compared for aerosols collected in New York City, Philadelphia, PA., South Charleston, WV., St. Louis, MO., Glendora, CA., and Portland, OR. For the aerosol sampling,...

  18. Factors governing water condensation in the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Colburn, David S.; Pollack, J. B.; Haberle, Robert M.

    1988-01-01

    Modeling results are presented suggesting a diurnal condensation cycle at high altitudes at some seasons and latitudes. In a previous paper, the use of atmospheric optical depth measurements at the Viking lander site to show diurnal variability of water condensation at different seasons of the Mars year was described. Factors influencing the amount of condensation include latitude, season, atmospheric dust content and water vapor content at the observation site. A one-dimensional radiative-convective model is used herein based on the diabatic heating routines under development for the Mars General Circulation Model. The model predicts atmospheric temperature profiles at any latitude, season, time of day and dust load. From these profiles and an estimate of the water vapor, one can estimate the maximum occurring at an early morning hour (AM) and the minimum in the late afternoon (PM). Measured variations in the atmospheric optical density between AM and PM measurements were interpreted as differences in AM and PM condensation.

  19. Isotopic composition of atmospheric moisture from pan water evaporation measurements.

    PubMed

    Devi, Pooja; Jain, Ashok Kumar; Rao, M Someshwer; Kumar, Bhishm

    2015-01-01

    A continuous and reliable time series data of the stable isotopic composition of atmospheric moisture is an important requirement for the wider applicability of isotope mass balance methods in atmospheric and water balance studies. This requires routine sampling of atmospheric moisture by an appropriate technique and analysis of moisture for its isotopic composition. We have, therefore, used a much simpler method based on an isotope mass balance approach to derive the isotopic composition of atmospheric moisture using a class-A drying evaporation pan. We have carried out the study by collecting water samples from a class-A drying evaporation pan and also by collecting atmospheric moisture using the cryogenic trap method at the National Institute of Hydrology, Roorkee, India, during a pre-monsoon period. We compared the isotopic composition of atmospheric moisture obtained by using the class-A drying evaporation pan method with the cryogenic trap method. The results obtained from the evaporation pan water compare well with the cryogenic based method. Thus, the study establishes a cost-effective means of maintaining time series data of the isotopic composition of atmospheric moisture at meteorological observatories. The conclusions drawn in the present study are based on experiments conducted at Roorkee, India, and may be examined at other regions for its general applicability. PMID:26332982

  20. Lidar simulation. [measurement of atmospheric water vapor via optical radar

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The feasibility of measuring atmospheric water vapor via orbital lidar is estimated. The calculation starts with laser radar equations representing backscatter with and without molecular line absorption; the magnitudes of off-line backscatter are demonstrated. Extensive prior data on water line strengths are summarized to indicate the available sensitivity to water vapor concentration. Several lidar situations are considered starting with uniform and perturbed atmospheres at 0, 3, 10 and 20 kM (stratosphere) altitudes. These simulations are indicative of results to be obtained in ground truth measurements (ground-based and airborne). An approximate treatment of polar observations is also given. Vertical atmospheric soundings from orbit and from ground stations are calculated. Errors are discussed as regards their propagation through the lidar equation to render the measured water vapor concentration imprecise; conclusions are given as to required laser energy and feasible altitude resolution.

  1. Using stable isotopes to determine sources of evaporated water to the atmosphere in the Amazon basin

    NASA Astrophysics Data System (ADS)

    Martinelli, Luiz Antonio; Victoria, Reynaldo Luiz; Silveira Lobo Sternberg, Leonel; Ribeiro, Aristides; Zacharias Moreira, Marcelo

    1996-09-01

    The return of water in vapor form from the land to the atmosphere, via plant transpiration and evaporation, is fundamental for the maintenance of the regional water cycle in the Amazon basin. Whereas transpiration, the dominant process, has the extensive vegetation cover as a large single source, evaporation can have several sources, and their relative importance and location are poorly known. The isotopic composition (δ 18O and δD) of water from various sources was used to see whether or not specific sources of water vapor to the atmosphere could be determined. It is well established that natural waters fall on a line called the meteoric water line (MWL; the regression of δ 18O × δD), with slope equal to eight and an intercept equal to ten. When a water body loses water via evaporation the slope become smaller than eight, typically 5-6. We estimated the slope of the regression of δ 18O × δD for several potential sources. We analyzed 1273 samples: 500 of rainfall, 409 of river water, 134 of lake water, 164 of soil water, 40 of throughfall and stemflow water, and 26 of shallow ground-water. We found that large rivers and lakes are likely contributors of evaporated water to the atmosphere. However, as they cover only a small area of the basin, other sources are needed. Probably, evaporated water originates from several small sources that were not detected by the isotopic composition of our data.

  2. The local dispersion relation for magneto-atmospheric waves. [in solar atmosphere

    NASA Technical Reports Server (NTRS)

    Thomas, J. H.

    1982-01-01

    The local dispersion relation for magneto-atmospheric waves is discussed in terms of the linearized theory of waves in a plane-stratified, inviscid, perfectly conducting atmosphere under uniform gravity. The normally used local dispersion relation is demonstrated to not be unique, depending instead on the order of derivation from the fundamental first-order perturbation equations of continuity, momentum, energy, and induction. Furthermore, it is shown that the local dispersion relation predicts that the cutoff frequency decreases with increasing magnetic field strength, while the WKB approximation method projects an increase in the cutoff frequency with increasing magnetic field strength. A new form of the local dispersion relation is developed, and consideration is given to the special case of a global dispersion relation in conditions of an isothermal atmosphere with a horizontal magnetic field.

  3. Fiber-based lidar for atmospheric water-vapor measurements.

    PubMed

    Little, L M; Papen, G C

    2001-07-20

    The design and evaluation of a prototype fiber-based lidar system for autonomous measurement of atmospheric water vapor are presented. The system components are described, along with current limitations and options for improvement. Atmospheric measurements show good agreement with modeled signal returns from 400 to 1000 m but are limited below 400 m as a result of errors in signal processing caused by violation of the assumptions used in the derivation of the differential absorption lidar equation. PMID:18360367

  4. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere.

    PubMed

    Gorski, Galen; Strong, Courtenay; Good, Stephen P; Bares, Ryan; Ehleringer, James R; Bowen, Gabriel J

    2015-03-17

    Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. We show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration of water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. Our findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry. PMID:25733906

  5. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere

    PubMed Central

    Gorski, Galen; Strong, Courtenay; Good, Stephen P.; Bares, Ryan; Ehleringer, James R.; Bowen, Gabriel J.

    2015-01-01

    Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. We show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration of water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. Our findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry. PMID:25733906

  6. OPERA: An Atmospheric Correction for Land and Water

    NASA Astrophysics Data System (ADS)

    Sterckx, Sindy; Knaeps, Els; Adriaensen, Stefan; Reusen, Ils; De Keukelaere, Liesbeth; Hunter, Peter; Giardino, Claudia; Odermatt, Daniel

    2015-12-01

    Atmospheric correction is one of the most important part of the pre-processing of satellite remotely sensed data used to retrieve bio-geophysical paramters. In this paper we present the scene and sensor generic atmospheric correction scheme ‘OPERA’ allowing to correct both land and water areas in the remote sensing image. OPERA can now be used to correct for atmospheric effects in scenes acquired by MERIS, Landsat-8, hyperspectral sensors and will be applicable to Sentinel-3 and Sentinel-2.

  7. Atmospheric Precorrected Differential Absorption technique to retrieve columnar water vapor

    SciTech Connect

    Schlaepfer, D.; Itten, K.I.; Borel, C.C.; Keller, J.

    1998-09-01

    Differential absorption techniques are suitable to retrieve the total column water vapor contents from imaging spectroscopy data. A technique called Atmospheric Precorrected Differential Absorption (APDA) is derived directly from simplified radiative transfer equations. It combines a partial atmospheric correction with a differential absorption technique. The atmospheric path radiance term is iteratively corrected during the retrieval of water vapor. This improves the results especially over low background albedos. The error of the method for various ground reflectance spectra is below 7% for most of the spectra. The channel combinations for two test cases are then defined, using a quantitative procedure, which is based on MODTRAN simulations and the image itself. An error analysis indicates that the influence of aerosols and channel calibration is minimal. The APDA technique is then applied to two AVIRIS images acquired in 1991 and 1995. The accuracy of the measured water vapor columns is within a range of {+-}5% compared to ground truth radiosonde data.

  8. Atmospheric nitrogen deposition in estuarine and coastal waters: Biogeochemical and water quality impacts

    SciTech Connect

    Paerl, H.W.; Peierls, B.L.; Fogel, M.L.; Aguilar, C. |

    1994-12-31

    Atmospheric deposition (AD) is a significant source of biologically-available ``new`` nitrogen in N-limited estuarine and coastal ocean waters. From 10 to over 50% of ``new`` N inputs are attributable to AD in waters ``downwind`` of emissions. In situ microcosm and mesocosm bioassays indicate that this ``new`` N source can enhance microalgal primary production and may alter community composition. Relative to terrestrial and regenerated N inputs, the dominant AD-N sources, NO{sub 3}k{sup {minus}}, NH{sub 4}{sup {plus}}, and dissolves organic nitrogen (DON) reveal stable N isotope ratios ({delta}{sup 15}N) generally deplete in {sup 15}N. The relatively low {delta}{sup 15}N ratio of AD-N has been used as a tracer of the incorporation and fate of this ``new`` N source in receiving water. Diagnostic biomarker molecules, including proteins and pigments (chlorophylls), indicate rapid algal utilization and transformation of AD-N. Seasonal production and N isotope studies in mixed and stratified North Carolina Atlantic coastal and offshore (i.e. Gulf Stream) waters indicate a marked impact of AD-N on microbial production. AD-N is an important and thus far poorly recognized source of ``new`` N in N-limited waters; these waters characterized a large proportion of the world`s estuarine and coastal zones. AD-N may additionally play a role in recently-noted coastal eutrophication and algal nuisance bloom dynamics.

  9. Investigating the Source, Transport, and Isotope Composition of Water in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Griffis, T. J.; Schultz, N. M.; Lee, X.

    2011-12-01

    The isotope composition of water (liquid and vapor phases) can provide important insights regarding the source of water used by plants, the origins of atmospheric water vapor, and the sources of carbon dioxide. In recent years there have been significant advances in the ability to quantify the isotope composition of water and water vapor using optical isotope techniques. We have used and helped develop some of these techniques to determine the isotope composition of soil and plant waters, to measure the isoflux of water vapor between the land surface and atmosphere, and to examine the isotope composition of water vapor and deuterium excess in the atmospheric boundary layer. In this presentation we will discuss three related issues: 1) Identification and correction of spectral contamination in soil and plant water samples using optical techniques; 2) The benefits and practical limitations of quantifying the isotope composition of evapotranspiration using the eddy covariance approach; and 3) The scientific value and feasibility of tracking the long-term (seasonal and interannual) behavior of the isotope composition of water vapor and deuterium excess in the atmospheric boundary layer. A few short stories will be provided from experiments conducted in the lab, at the field scale, and from a very tall tower at the University of Minnesota from 2008 to 2011.

  10. Geomagnetic field and climate: Causal relations with some atmospheric variables

    NASA Astrophysics Data System (ADS)

    Kilifarska, N. A.; Bakhmutov, V. G.; Mel'nik, G. V.

    2015-09-01

    The relationship between climatic parameters and the Earth's magnetic field has been reported by many authors. However, the absence of a feasible mechanism accounting for this relationship has impeded progress in this research field. Based on the instrumental observations, we reveal the spatiotemporal relationship between the key structures in the geomagnetic field, surface air temperature and pressure fields, ozone, and the specific humidity near the tropopause. As one of the probable explanations of these correlations, we suggest the following chain of the causal relations: (1) modulation of the intensity and penetration depth of energetic particles (galactic cosmic rays (GCRs)) in the Earth's atmosphere by the geomagnetic field; (2) the distortion of the ozone density near the tropopause under the action of GCRs; (3) the change in temperature near the tropopause due to the high absorbing capacity of ozone; (4) the adjustment of the extra-tropical upper tropospheric static stability and, consequently, specific humidity, to the modified tropopause temperature; and (5) the change in the surface air temperature due to the increase/decrease of the water vapor greenhouse effect.

  11. Atmospheric correction of AVIRIS data in ocean waters

    NASA Technical Reports Server (NTRS)

    Terrie, Gregory; Arnone, Robert

    1992-01-01

    Hyperspectral data offers unique capabilities for characterizing the ocean environment. The spectral characterization of the composition of ocean waters can be organized into biological and terrigenous components. Biological photosynthetic pigments in ocean waters have unique spectral ocean color signatures which can be associated with different biological species. Additionally, suspended sediment has different scattering coefficients which result in ocean color signatures. Measuring the spatial distributions of these components in the maritime environments provides important tools for understanding and monitoring the ocean environment. These tools have significant applications in pollution, carbon cycle, current and water mass detection, location of fronts and eddies, sewage discharge and fate etc. Ocean color was used from satellite for describing the spatial variability of chlorophyll, water clarity (K(sub 490)), suspended sediment concentration, currents etc. Additionally, with improved atmospheric correction methods, ocean color results produced global products of spectral water leaving radiance (L(sub W)). Ocean color results clearly indicated strong applications for characterizing the spatial and temporal variability of bio-optical oceanography. These studies were largely the results of advanced atmospheric correction techniques applied to multispectral imagery. The atmosphere contributes approximately 80 percent - 90 percent of the satellite received radiance in the blue-green portion of the spectrum. In deep ocean waters, maximum transmission of visible radiance is achieved at 490nm. Conversely, nearly all of the light is absorbed by the water at wavelengths greater than about 650nm and thus appears black. These spectral ocean properties are exploited by algorithms developed for the atmospheric correction used in satellite ocean color processing. The objective was to apply atmospheric correction techniques that were used for procesing satellite Coastal

  12. Comparing Stable Water Isotope Variation in Atmospheric Moisture Observed over Coastal Water and Forests

    NASA Astrophysics Data System (ADS)

    Lai, C. T.; Rambo, J. P.; Welp, L. R.; Bible, K.; Hollinger, D. Y.

    2014-12-01

    Stable oxygen (δ18O) and hydrogen (δD) isotopologues of atmospheric moisture are strongly influenced by large-scale synoptic weather cycles, surface evapotranspiration and boundary layer mixing. Atmospheric water isotope variation has been shown to empirically relate to relative humidity (Rh) of near surface moisture, and to a less degree, air temperature. Continuous δ18O and δD measurements are becoming more available, providing new opportunities to investigate processes that control isotope variability. This study shows the comparison of δ18O and δD measured at a continental location and over coastal waters for 3 seasons (spring to fall, 2014). The surface moisture isotope measurements were made using two LGR spectroscopy water vapor isotope analyzers (Los Gatos Research Inc.), one operated in an old-growth coniferous forest at Wind River field station, WA (45.8205°N, 121.9519°W), and another sampling marine air over seawater at the Scripps Pier in San Diego, CA (32.8654°N, 117.2536°W), USA. Isotope variations were measured at 1Hz and data were reported as hourly averages with an overall accuracy of ±0.1‰ for δ18O, ±0.5‰ for δ2H. Day-to-day variations in δ18O and δD are shown strongly influenced by synoptic weather events at both locations. Boundary layer mixing between surface moisture and the dry air entrained from the free troposphere exerts a midday maximum and a consistent diel pattern in deuterium excess (dx). At the forest site, surface moisture also interacts with leaf water through transpiration during the day and re-equilibration at night. The latter occurs by retro-diffusion of atmospheric H2O molecules into leaf intercellular space, which becomes intensified as Rh increaes after nightfall, and continues until sunrise, to counter-balance the evaporative isotopic enrichment in leaf water on a daily basis. These vegetation effects lead to negative dx values consistently observed at nighttime in this continental location that were not

  13. The water cycles of water-soluble organic salts of atmospheric importance

    NASA Astrophysics Data System (ADS)

    Peng, Changgeng; Chan, Chak K.

    In this study, the water cycles of nine water-soluble organic salts of atmospheric interest were studied using an electrodynamic balance (EDB) at 25°C. Sodium formate, sodium acetate, sodium succinate, sodium pyruvate and sodium methanesulfonate (Na-MSA) particles crystallize as the relative humidity (RH) decreases and they deliquesce as the RH increases. Sodium oxalate and ammonium oxalate form supersaturated particles at low RH before crystallization but they do not deliquesce even at RH=90%. Sodium malonate and sodium maleate particles neither crystallize nor deliquesce. These two salts absorb and evaporate water reversibly without hysteresis. In most cases, the solid states of single particles resulting from the crystallization of supersaturated droplets do not form the most thermodynamically stable state found in bulk studies. Sodium formate, sodium oxalate, ammonium oxalate, sodium succinate, sodium pyruvate and Na-MSA form anhydrous particles after crystallization. Sodium acetate forms particles with a water/salt molar ratio of 0.5 after crystallization. In salts with several hydrated states including sodium formate and sodium acetate, the particles deliquesce at the lowest deliquescence relative humidity (DRH) of the hydrates. Except sodium oxalate and ammonium oxalate, all the salts studied here are as hygroscopic as typical inorganic hygroscopic aerosols. The hygroscopic organic salts have a growth factor of 1.76-2.18 from RH=10-90%, comparable to that of typical hygroscopic inorganic salts such as NaCl and (NH 4) 2SO 4. Further study of other atmospheric water-soluble organic compounds and their mixtures with inorganic salts is needed to explain the field observations of the hygroscopic growth of ambient aerosols.

  14. Atmospheric solar heating rate in the water vapor bands

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah

    1986-01-01

    The total absorption of solar radiation by water vapor in clear atmospheres is parameterized as a simple function of the scaled water vapor amount. For applications to cloudy and hazy atmospheres, the flux-weighted k-distribution functions are computed for individual absorption bands and for the total near-infrared region. The parameterization is based upon monochromatic calculations and follows essentially the scaling approximation of Chou and Arking, but the effect of temperature variation with height is taken into account in order to enhance the accuracy. Furthermore, the spectral range is extended to cover the two weak bands centered at 0.72 and 0.82 micron. Comparisons with monochromatic calculations show that the atmospheric heating rate and the surface radiation can be accurately computed from the parameterization. Comparisons are also made with other parameterizations. It is found that the absorption of solar radiation can be computed reasonably well using the Goody band model and the Curtis-Godson approximation.

  15. Modelling the budget of middle atmospheric water vapour isotopes

    NASA Astrophysics Data System (ADS)

    Zahn, A.; Franz, P.; Bechtel, C.; Groo, J.-U.; Rckmann, T.

    2006-06-01

    A one-dimensional chemistry model is applied to study the stable hydrogen (D) and stable oxygen isotope (17O, 18O) composition of water vapour in stratosphere and mesosphere. In the troposphere, this isotope composition is determined by "physical'' fractionation effects, that are phase changes (e.g. during cloud formation), diffusion processes (e.g. during evaporation from the ocean), and mixing of air masses. Due to these processes water vapour entering the stratosphere first shows isotope depletions in D/H relative to ocean water, which are ~5 times of those in 18O/16O, and secondly is mass-dependently fractionated (MDF), i.e. changes in the isotope ratio 17O/16O are ~0.52 times of those of 18O/16O. In contrast, in the stratosphere and mesosphere "chemical'' fractionation mechanisms, that are the production of HO due to the oxidation of methane, re-cycling of H2O via the HOx family, and isotope exchange reactions considerably enhance the isotope ratios in the water vapour imported from the troposphere. The model reasonably predicts overall enhancements of the stable isotope ratios in H2O by up to ~25% for D/H, ~8.5% for 17O/16O, and ~14% for 18O/16O in the mesosphere relative to the tropopause values. The 17O/16O and 18O/16O ratios in H2O are shown to be a measure of the relative fractions of HOx that receive the O atom either from the reservoirs O2 or O3. Throughout the middle atmosphere, MDF O2 is the major donator of oxygen atoms incorporated in OH and HO2 and thus in H2O. In the stratosphere the known mass-independent fractionation (MIF) signal in O3 is in a first step transferred to the NOx family and only in a second step to HOx and H2O. In contrast to CO2, O(1D) only plays a minor role in this MIF transfer. The major uncertainty in our calculation arises from poorly quantified isotope exchange reaction rate coefficients and kinetic isotope fractionation factors.

  16. Annual Book of ASTM Standards, Part 23: Water; Atmospheric Analysis.

    ERIC Educational Resources Information Center

    American Society for Testing and Materials, Philadelphia, PA.

    Standards for water and atmospheric analysis are compiled in this segment, Part 23, of the American Society for Testing and Materials (ASTM) annual book of standards. It contains all current formally approved ASTM standard and tentative test methods, definitions, recommended practices, proposed methods, classifications, and specifications. One…

  17. Aquaporins and root water relations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water is one of the most critical resources limiting plant growth and crop productivity, and root water uptake is an important aspect of plant physiology governing plant water use and stress tolerance. Pathways of root water uptake are complex and are affected by root structure and physiological res...

  18. Atmospheric correction for Landsat 8 over case 2 waters

    NASA Astrophysics Data System (ADS)

    Concha, Javier A.; Schott, John R.

    2015-09-01

    The most interaction between humankind and water occurs in coastal and inland waters (Case 2 waters) at a scale of tens or hundred of meters, but there is not yet an ocean color product at this spatial scale. Landsat 8 is a promising candidate to address the remote sensing of these kinds of waters due to its improved signal-to-noise ratio (SNR), spectral resolution, 12-bit quantization, and high spatial resolution. Standard atmospheric correction algorithms developed for heritage ocean color instruments (e.g. MODIS, SeaWiFS) require a sufficient SNR in two bands where the water-leaving signal is negligible, which is not always possible, particularly for Landsat 8's bands. The model-based empirical line method (MoB-ELM) atmospheric algorithm for Landsat 8 imagery does not rely on this assumption. In this work, we evaluate the performance of this algorithm. We compare the MoB-ELM algorithm with in situ data and with three standard atmospheric correction algorithms. The results from our algorithm are comparable with the standard algorithms in some bands when comparing remote-sensing reflectances. When compared with in situ remote-sensing reflectance, the MoB-ELM perform similar to the standard algorithm in most cases. A comparison of retrieved chlorophyll-a concentration was perform as well, showing that the MoB- ELM outperforms the rest at high concentrations commonly found in Case 2 waters. These results show that our atmospheric correction algorithm allows one to use Landsat 8 to study Case 2 waters as an alternative to heritage ocean color satellites.

  19. Water loss from Venus: Implications for the Earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Richardson, S. M.; Pollack, J. B.; Reynolds, R. T.

    1985-01-01

    The atmosphere of Venus outgassed rapidly as a result of planetary heating during accretion, resulting in massive water loss. The processes affecting atmospheric chemistry following accretion have consisted largely of hydrogen escape and internal re-equilibrium. The initial bulk composition of Venus and Earth are assumed to have been roughly similar. Chemical speciation on Venus was controlled by the temperature and oxygen buffering capacity of the surface magma. It is also assumed that the surfaces of planetary bodies of the inner solar system were partly or wholly molten during accretion with a temperature estimated at 1273 to 1573 K. To investigate the range of reasonable initial atmospheric compositions on Venus, limits have to be set for the proportion of total hydrogen and the buffered fugacity of oxygen. Using the C/H ratio of 0.033 set for Earth, virtually all of the water generated during outgassing must later have been lost in order to bring the current CO2/H2O ratio for Venus up to its observed value of 10 sup 4 to 10 sup 5. The proportion of H2O decreases in model atmospheres with successfully higher C/H values, ultimately approaching the depleted values currently observed on Venus. Increasing C/H also results in a rapid increase in CO/H2O and provides an efficient mechanism for water loss by the reaction CO+H2O = CO2 + H2. This reaction, plus water loss mechanisms involving crustal iron, could have removed a very large volume of water from the Venusian atmosphere, even at a low C/H value.

  20. Strong water isotopic anomalies in the martian atmosphere: probing current and ancient reservoirs.

    PubMed

    Villanueva, G L; Mumma, M J; Novak, R E; Käufl, H U; Hartogh, P; Encrenaz, T; Tokunaga, A; Khayat, A; Smith, M D

    2015-04-10

    We measured maps of atmospheric water (H2O) and its deuterated form (HDO) across the martian globe, showing strong isotopic anomalies and a significant high deuterium/hydrogen (D/H) enrichment indicative of great water loss. The maps sample the evolution of sublimation from the north polar cap, revealing that the released water has a representative D/H value enriched by a factor of about 7 relative to Earth's ocean [Vienna standard mean ocean water (VSMOW)]. Certain basins and orographic depressions show even higher enrichment, whereas high-altitude regions show much lower values (1 to 3 VSMOW). Our atmospheric maps indicate that water ice in the polar reservoirs is enriched in deuterium to at least 8 VSMOW, which would mean that early Mars (4.5 billion years ago) had a global equivalent water layer at least 137 meters deep. PMID:25745065

  1. Strong water isotopic anomalies in the martian atmosphere: Probing current and ancient reservoirs

    NASA Astrophysics Data System (ADS)

    Villanueva, G. L.; Mumma, M. J.; Novak, R. E.; Käufl, H. U.; Hartogh, P.; Encrenaz, T.; Tokunaga, A.; Khayat, A.; Smith, M. D.

    2015-04-01

    We measured maps of atmospheric water (H2O) and its deuterated form (HDO) across the martian globe, showing strong isotopic anomalies and a significant high deuterium/hydrogen (D/H) enrichment indicative of great water loss. The maps sample the evolution of sublimation from the north polar cap, revealing that the released water has a representative D/H value enriched by a factor of about 7 relative to Earth’s ocean [Vienna standard mean ocean water (VSMOW)]. Certain basins and orographic depressions show even higher enrichment, whereas high-altitude regions show much lower values (1 to 3 VSMOW). Our atmospheric maps indicate that water ice in the polar reservoirs is enriched in deuterium to at least 8 VSMOW, which would mean that early Mars (4.5 billion years ago) had a global equivalent water layer at least 137 meters deep.

  2. Strong Water Isotopic Anomalies in the Martian Atmosphere: Probing Current and Ancient Reservoirs

    NASA Technical Reports Server (NTRS)

    Villanueva, G. L.; Mumma, M. J.; Novak, R. E.; Käufl, H. U.; Hartogh, P.; Encrenaz, T.; Tokunaga, A.; Khayat, A.; Smith, M. D.

    2015-01-01

    We measured maps of atmospheric water (H2O) and its deuterated form (HDO) across the martian globe, showing strong isotopic anomalies and a significant high deuterium/hydrogen (D/H) enrichment indicative of great water loss. The maps sample the evolution of sublimation from the north polar cap, revealing that the released water has a representative D/H value enriched by a factor of about 7 relative to Earth's ocean [Vienna standard mean ocean water (VSMOW)]. Certain basins and orographic depressions show even higher enrichment, whereas high-altitude regions show much lower values (1 to 3 VSMOW). Our atmospheric maps indicate that water ice in the polar reservoirs is enriched in deuterium to at least 8 VSMOW, which would mean that early Mars (4.5 billion years ago) had a global equivalent water layer at least 137 meters deep.

  3. Heat of freezing for supercooled water: measurements at atmospheric pressure.

    PubMed

    Cantrell, Will; Kostinski, Alexander; Szedlak, Anthony; Johnson, Alexandria

    2011-06-16

    Unlike reversible phase transitions, the amount of heat released upon freezing of a metastable supercooled liquid depends on the degree of supercooling. Although terrestrial supercooled water is ubiquitous and has implications for cloud dynamics and nucleation, measurements of its heat of freezing are scarce. We have performed calorimetric measurements of the heat released by freezing water at atmospheric pressure as a function of supercooling. Our measurements show that the heat of freezing can be considerably below one predicted from a reversible hydrostatic process. Our measurements also indicate that the state of the resulting ice is not fully specified by the final pressure and temperature; the ice is likely to be strained on a variety of scales, implying a higher vapor pressure. This would reduce the vapor gradient between supercooled water and ice in mixed phase atmospheric clouds. PMID:21087023

  4. Atmospheric water uptake by an atacama desert shrub.

    PubMed

    Mooney, H A; Gulmon, S L; Ehleringer, J; Rundel, P W

    1980-08-01

    Nolana mollis, a succulent-leaved shrub of the extreme coastal desert of Chile, has the capacity to condense water on its leaves out of unsaturated atmospheres, Metabolic energy would have to be expended to move this water either from the leaf surface directly to the mesophyll or, when dripped to the soil, from there into the roots. Because of the unusual aridity of its habitat and of the utilization of water-use-efficient metabolism by Nolana, at least during certain periods, such an energy expenditure could be effective. PMID:17821192

  5. Electron deposition in water vapor, with atmospheric applications.

    NASA Technical Reports Server (NTRS)

    Olivero, J. J.; Stagat, R. W.; Green, A. E. S.

    1972-01-01

    Examination of the consequences of electron impact on water vapor in terms of the microscopic details of excitation, dissociation, ionization, and combinations of these processes. Basic electron-impact cross-section data are assembled in many forms and are incorporated into semianalytic functions suitable for analysis with digital computers. Energy deposition in water vapor is discussed, and the energy loss function is presented, along with the 'electron volts per ion pair' and the efficiencies of energy loss in various processes. Several applications of electron and water-vapor interactions in the atmospheric sciences are considered, in particular, H2O comets, aurora and airglow, and lightning.

  6. Follow The Water: The Ultimate WFC3 Exoplanet Atmosphere Survey

    NASA Astrophysics Data System (ADS)

    Bean, Jacob

    2013-10-01

    Recent surveys have revealed an amazing, and yet unexplained, diversity of planets orbiting other stars. Studying the atmospheres of representative exoplanets is the key next step in leveraging these detections to further transform our understanding of planet formation and planetary physics. This is because a planet's atmosphere is a fossil record of its primordial origins and controls its size and appearance.We propose an intensive and comprehensive exoplanet atmosphere Large Treasury survey using the unrivaled capabilities of the WFC3 IR instrument to measure high-precision transmission, dayside emission, and phase-resolved emission spectra over a broad wavelength range for eight planetary Rosetta Stones. These data will yield unprecedented constraints on the abundances of water, elemental abundance ratios, thermal profiles, chemistries, presence of clouds and hazes, and dynamics of exoplanet atmospheres. Just detecting the atmospheres of these planets is not enough anymore. Revealing the fundamental properties of exoplanet atmospheres to investigate their nature and origins requires high-precision spectroscopy that is sensitive to spectral features from multiple chemical species and altitudes, and such data can only be obtained with an intensive HST program. A survey is mandatory to put the individual objects in a broader context, and to get at the underlying physics that results in a diverse array of emergent properties. This Treasury program will have no proprietary period in order to accelerate the progress of the field. This program is urgently needed to prepare for the future characterization of habitable exoplanets using JWST.

  7. Interaction between Late Holocene bottom water conditions in Skagerrak and Kattegat and predominant atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Risebrobakken, B.; Kabel, K.; Jentzen, A.; Moros, M.; Jansen, E.

    2011-12-01

    The brackish and anoxic Baltic Sea is episodically ventilated when major inflow of Atlantic water occurs, Atlantic water that enters the Baltic Sea through Skagerrak and Kattegat. Periods with a stronger flux of Atlantic water increases the bottom water temperatures in Skagerrak, and temperatures and salinities in Kattegat. A tight connection between the major inflow events and the predominant atmospheric forcing over the North Atlantic and Nordic Seas are suggested in literature. How the atmospheric forcing and the inflow events are mechanistically connected is however discussed. To detect how periods of stronger inflow of Atlantic water through Skagerrak and Kattegat are related to the predominant atmospheric forcing at longer time scales, we investigate new high-resolution stable isotope, Mg/Ca and foraminiferal assemblage records documenting bottom water conditions in Skagerrak and Kattegat since approximately 1700 AD. Close to annual resolution through the last 30 years enables validation of our reconstructions towards local instrumental records of bottom water conditions and documented changes in atmospheric forcing. High-resolution stable isotope records covering the last 4000 years supplements the 300-year long records so that changes in climatic conditions in the Skagerrak/Kattegat area at longer time-scales through late Holocene are detected and the dynamical forcing behind these climatic changes investigated.

  8. A new look at the atmospheric water cycle: measurements of water vapor and its main isotopologue using SCIAMACHY

    NASA Astrophysics Data System (ADS)

    Scheepmaker, Remco; Frankenberg, Christian; Aben, Ilse; Schrijver, Hans; Gloudemans, Annemieke; Roeckmann, Thomas; Yoshimura, Kei

    2010-05-01

    Water vapor is by far the most important greenhouse gas in the atmosphere. As a warmer atmosphere can contain more water vapor, a positive feedback effect with respect to climate change is expected. The distribution of water vapor is very inhomogeneous and variable, unlike that of other greenhouse gases. In the light of climate reconstructions and predictions, it is therefore crucial to better understand the water cycle and its response to past and present climate change. The relative abundance of the heavy water isotopologue HDO provides a deeper insight in the water cycle, as evaporation and condensation processes deplete heavy water in the gas phase. In the application of isotopologues, however, the space-borne retrieval of atmospheric water vapor isotopologues near the surface has so far been overlooked. We provide, for the first time (Frankenberg et al., Science 2009), global HDO/H2O abundances using the Scanning Imaging Absorption spectroMeter for Atmospheric CHartography (SCIAMACHY) instrument onboard ENVISAT. This allows for an entirely new perspective on the near-surface distribution of water vapor isotopologues. We are using the 2.3 micron (SWIR) window of SCIAMACHY, which is also used for the first time (Schrijver et al., AMT 2009) to derive total water vapor columns. Because of this wavelength range, and because SCIAMACHY is an absorption spectrometer, we are sensitive down to the lowest parts of the atmosphere where most of the water vapor resides. We further exploit a novel method to correct for the scattering effects of an ice layer on the SWIR detector and in order to further improve the accuracy of our HDO/H2O dataset, we derived an improved spectral linelist for H2O in the 2.3 micron window. The total water vapor columns have been validated with collocated ECMWF data and show good agreement. First results of atmospheric HDO/H2O show an expected latitudinal gradient, but also strong evaporation signals over the Red Sea and highly depleted values

  9. Coupling between plant leaf water and atmospheric vapor: insights from isotopic analyses

    NASA Astrophysics Data System (ADS)

    Rambo, J. P.; Lai, C.

    2012-12-01

    We measured stable isotopic composition of leaf water and atmospheric water vapor in an old growth forest in the Pacific Northwest of U.S.A. in the summer of 2011. A LGR cavity-enhanced absorption spectroscopy analyzer was used to measure hourly 18O/16O and 2H/1H ratios of atmospheric water vapor (δ18Ov and δDv) at three canopy heights (1m, 10m and 60m aboveground). Modeling studies show that transpiration plays an important role in controlling δ18Ov and δDv variation in this forest. Here we use deuterium excess (d = δD - 8 x δ18O), an isotopic tracer independent of the equilibrium process, to investigate H2O molecular diffusion and exchange between leaf water and atmospheric water vapor. We observed a robust diel pattern in the d values of atmospheric vapor (dv); its daily values typically fluctuate from -20‰ at night to +20‰ at midday. We found a strong correlation between dv and relative humidity (h). In under-saturated conditions, dv and h follow a hyperbolic relationship where values of dv increase asymptotically as h decreases. To investigate how h influences the H2O molecular exchange between leaf water and atmospheric water vapor, bulk leaf waters of dominant understory plant species were sampled every two hours for three consecutive days. Stable isotope analysis of leaf water was used to validate Craig-Gordon model calculations. Model comparisons suggest that retrodiffusion of atmospheric H2O molecules into leaf intercellular space must have intensified beginning in the mid-afternoon and continue throughout the night to counter-balance the evaporative isotopic enrichment in leaf water, which typically occurs after sunrise and peaks at midday. H2O molecular exchange occurring between an evaporating surface and water vapor limits the extent of evaporative enrichment of a finite water reservoir. This idea has been illustrated by laboratory experiments but to our best knowledge, never has been tested in field conditions. Our results demonstrate a

  10. Carbon Dioxide in Exoplanetary Atmospheres: Rarely Dominant Compared to Carbon Monoxide and Water in Hot, Hydrogen-dominated Atmospheres

    NASA Astrophysics Data System (ADS)

    Heng, Kevin; Lyons, James R.

    2016-02-01

    We present a comprehensive study of the abundance of carbon dioxide in exoplanetary atmospheres in hot, hydrogen-dominated atmospheres. We construct novel analytical models of systems in chemical equilibrium that include carbon monoxide, carbon dioxide, water, methane and acetylene and relate the equilibrium constants of the chemical reactions to temperature and pressure via the tabulated Gibbs free energies. We prove that such chemical systems may be described by a quintic equation for the mixing ratio of methane. By examining the abundances of these molecules across a broad range of temperatures (spanning equilibrium temperatures from 600 to 2500 K), pressures (via temperature-pressure profiles that explore albedo and opacity variations) and carbon-to-oxygen ratios, we conclude that carbon dioxide is subdominant compared to carbon monoxide and water. Atmospheric mixing does not alter this conclusion if carbon dioxide is subdominant everywhere in the atmosphere. Carbon dioxide and carbon monoxide may attain comparable abundances if the metallicity is greatly enhanced, but this property is negated by temperatures above 1000 K. For hydrogen-dominated atmospheres, our generic result has the implication that retrieval studies may wish to set the subdominance of carbon dioxide as a prior of the calculation and not let its abundance completely roam free as a fitting parameter, because it directly affects the inferred value of the carbon-to-oxygen ratio and may produce unphysical conclusions. We discuss the relevance of these implications for the hot Jupiter WASP-12b and suggest that some of the previous results are chemically impossible. The relative abundance of carbon dioxide to acetylene is potentially a sensitive diagnostic of the carbon-to-oxygen ratio.

  11. Hurricane Isabel, Amount of Atmospheric Water Vapor Observed By AIRS

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Figure 1

    These false-color images show the amount of atmospheric water vapor observed by AIRS two weeks prior to the passage of Hurricane Isabel, and then when it was a Category 5 storm. The region shown includes parts of South America and the West Indies. Puerto Rico is the large island below the upper left corner.

    Total water vapor represents the depth of a layer if all the water vapor in the atmosphere were to condense and fall to the surface. The color bar on the right sides of the plots give the thickness of this layer in millimeters (mm). The first image, from August 28, shows typical tropical water vapor amounts over the ocean: between roughly 25 and 50 mm, or 1 to 2 inches. The highest values of roughly 80 mm, seen as a red blob over South America, corresponds to intense thunderstorms. Thunderstorms pull in water vapor from surrounding regions and concentrate it, with much of it then falling as rain.

    Figure 1 shows total water during the passage of Hurricane Isabel on September 13. The storm is apparent: the ring of moderate values surrounding a very strong maximum of 100 mm. Total water of more than 80 mm is unusual, and these values correspond to the intense thunderstorms contained within Isabel. The thunderstorms--and the large values of total water--are fed by evaporation from the ocean in the hurricane's high winds. The water vapor near the center of the storm does not remain there long, since hurricane rain rates as high 50 mm (2 inches) per hour imply rapid cycling of the water we observe. Away from the storm the amount of total water vapor is rather low, associated with fair weather where air that ascended near the storm's eye returns to earth, having dropped its moisture as rain. Also seen in the second images are two small regions of about 70 mm of total water over south America. These are yet more thunderstorms, though likely much more benign than those in Isabel.

    The

  12. Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data

    SciTech Connect

    Bo-Cai Gao; Goetz, A.F.H. )

    1990-03-20

    High spatial resolution column atmospheric water vapor amounts were derived from spectral data collected by the airborne visible-infrared imaging spectrometer (AVIRIS). The quantitative derivation is made by curve fitting observed spectra with calculated spectra in the 1.14-{mu}m and 0.94-{mu}m water vapor band absorption regions using an atmospheric model, a narrow-band spectral model, and a nonlinear least squares fitting technique. The derivation makes use of the facts that (1) the reflectances of many ground targets vary approximately linearly with wavelength in the 0.94- and 1.14-{mu}m water vapor band absorption regions, (2) the scattered radiation near 1 {mu}m is small compared with the directly reflected radiation when the atmospheric aerosol concentrations are low, and (3) the scattered radiation in the lower part of the atmosphere is subjected to the water vapor absorption. Based on the analyses of an AVIRIS data set that was acquired within an hour of radiosonde launch, it appears that the accuracy approaches the precision. The derived column water vapor amounts are independent of the absolute surface reflectances. It now appears feasible to derive high spatial resolution column water vapor amounts over land areas from satellite altitude with the proposed high resolution imaging spectrometer (HIRIS). Curve fitting of spectra near 1 {mu}m from areas covered with vegetation, using an atmospheric model and a simplified vegetation reflectance model, indicates that both the amount of atmospheric water vapor and the moisture content of vegetation can be retrieved simultaneously because the band centers of liquid water in vegetation and the atmospheric water vapor are offset by approximately 0.05 {mu}m.

  13. NLTE water lines in Betelgeuse-like atmospheres

    NASA Astrophysics Data System (ADS)

    Lambert, J.; Josselin, E.; Ryde, N.; Faure, A.

    2013-05-01

    The interpretation of water lines in red supergiant stellar atmospheres has been much debated over the past decade. The introduction of the so-called MOLspheres to account for near-infrared "extra" absorption has been controversial. We propose that non-LTE effects should be taken into account before considering any extra-photospheric contribution. After a brief introduction on the radiative transfer treatment and the inadequacy of classical treatments in the case of large-scale systems such as molecules, we present a new code, based on preconditioned Krylov subspace methods. Preliminary results suggest that NLTE effects lead to deeper water bands, as well as extra cooling.

  14. Water inventories on Earth and Mars: Clues to atmosphere formation

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1992-01-01

    Water is distributed differently on Earth and on Mars and the differences may have implications for the accretion of the two planets and the formation of their atmospheres. The Earth's mantle appears to contain at least several times the water content of the Martian mantle even accounting for differences in plate tectonics. One explanation is that the Earth's surface melted during accretion, as a result of development of a steam atmosphere, thereby allowing impact-devolitalized water at the surface to dissolve into the Earth's interior. In contrast, because of Mars' smaller size and greater distance from the Sun, the Martian surface may not have melted, so that the devolatilized water could not dissolve into the surface. A second possibility is suggested by the siderophile elements in the Earth's mantle, which indicates the Earth acquired a volatile-rich veneer after the core formed. Mars may have acquired a late volatile-rich veneer, but it did not get folded into the interior as with the Earth, but instead remained as a water rich veneer. This perception of Mars with a wet surface but dry interior is consistent with our knowledge of Mars' geologic history.

  15. Proposed reference model for middle atmosphere water vapor

    NASA Astrophysics Data System (ADS)

    Chiou, E. W.; Remsberg, E. E.; Rodgers, C. D.; Munro, R.; Bevilacqua, R. M.; McCormick, M. P.; Russell, J. M.

    Several new and significant satellite data sets on middle atmosphere water vapor have been produced recently. They include data from the Stratospheric Aerosol and Gas Experiment II (SAGE II) and the Nimbus-7 Stratospheric and Mesospheric Sounder (SAMS) experiment. The SAGE II data provide an estimate of interannual variability of water vapor in the stratosphere. The SAMS data are appropriate for the upper stratosphere and lower mesosphere. We combine these two data sets with those from the Nimbus-7 Limb Infrared Monitor of the Stratosphere (LIMS) experiment to update the COSPAR interim reference model for water vapor. Water vapor profiles from the Spacelab 3 Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment, ground-based microwave, and in situ balloon and aircraft measurements have been used to check the quality of the satellite data sets. The updated reference model is given as a function of latitude and pressure altitude and now covers all four seasons. Tabulations are included for these seasonal water vapor mixing ratios (in ppmv) and their estimated errors (in percent).

  16. Atmospheric cloud water contains a diverse bacterial community

    SciTech Connect

    Kourtev, P. S.; Hill, Kimberly A.; Shepson, Paul B.; Konopka, Allan

    2011-06-15

    Atmospheric cloud water contains an active microbial community which can impact climate, human health and ecosystem processes in terrestrial and aquatic systems. Most studies on the composition of microbial communities in clouds have been performed with orographic clouds that are typically in direct contact with the ground. We collected water samples from cumulus clouds above the upper U.S. Midwest. The cloud water was analyzed for the diversity of bacterial phylotypes by denaturing gradient gel electrophoresis (DGGE) and sequencing of 16S rRNA gene amplicons. DGGE analyses of bacterial communities detected 17e21 bands per sample. Sequencing confirmed the presence of a diverse bacterial community; sequences from seven bacterial phyla were retrieved. Cloud water bacterial communities appeared to be dominated by members of the cyanobacteria, proteobacteria, actinobacteria and firmicutes.

  17. Venus: new microwave measurements show no atmospheric water vapor.

    PubMed

    Janssen, M A; Hills, R E; Thornton, D D; Welch, W J

    1973-03-01

    Two sets of passive radio observations of Venus-measurements of the spectrum of the disk temperature near the 1-centimeter wavelength, and interferometric measurements of the planetary limb darkening at the 1.35-centimeter water vapor resonance-show no evidence of water vapor in the lower atmosphere of Venus. The upper limit of 2 x 10(-3) for the mixing ratio of water vapor is substantially less than the amounts derived from the Venera space probes (0.5 x 10(-2) to 2.5 x 10(-2)). This amount of water vapor cannot produce dense clouds, and it is doubtful that it may contribute significantly to a greenhouse effect. PMID:17842164

  18. Thermal shallow water models of geostrophic turbulence in Jovian atmospheres

    SciTech Connect

    Warneford, Emma S. Dellar, Paul J.

    2014-01-15

    Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [“Equatorial superrotation in shallow atmospheres,” Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their model does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune

  19. Foliar Water Uptake of Tamarix ramosissima from an Atmosphere of High Humidity

    PubMed Central

    Li, Shuang; Xiao, Hong-lang; Zhao, Liang; Zhou, Mao-Xian; Wang, Fang

    2014-01-01

    Many species have been found to be capable of foliar water uptake, but little research has focused on this in desert plants. Tamarix ramosissima was investigated to determine whether its leaves can directly absorb water from high humidity atmosphere and, if they can, to understand the magnitude and importance of foliar water uptake. Various techniques were adopted to demonstrate foliar water uptake under submergence or high atmospheric humidity. The mean increase in leaf water content after submergence was 29.38% and 20.93% for mature and tender leaves, respectively. In the chamber experiment, obvious reverse sap flow occurred when relative humidity (RH) was persistently above 90%. Reverse flow was recorded first in twigs, then in branches and stems. For the stem, the percentage of negative sap flow rate accounting for the maximum value of sap flow reached 10.71%, and its amount accounted for 7.54% of diurnal sap flow. Small rainfall can not only compensate water loss of plant by foliar uptake, but also suppress transpiration. Foliar uptake can appear in the daytime under certain rainfall events. High atmospheric humidity is beneficial for enhancing the water status of plants. Foliar uptake should be an important strategy of water acquisition for desert plants. PMID:24982964

  20. Relations between sulfur and heavy elements in rural atmospheres

    NASA Astrophysics Data System (ADS)

    Navarre, J. L.; Priest, P.; Ronneau, C.

    Sulfur dioxide was used as an indicator of the occurrence of air pollution episodes in a rural area of Belgium. Provided air particulates sampling operations are strictly synchronized with SO 2 immission episodes, correlations appeared between the levels in air of sulfur and the levels of some toxic metals. Comparing the relative proportions of sulfur and metals in air with emission data for combustion sources in Belgium (coal especially) leads to the conclusion that combustion is probably the main source of toxic elements likely to contaminate rural atmospheres. On the other hand, it appears that industrial zone characterization is feasible by comparing the relative proportions of some specific metals in air.

  1. Observations of the Earth's Radiation Budget in relation to atmospheric hydrology. 4: Atmospheric column radiative cooling over the world's oceans

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.; Slingo, Anthony; Webb, Mark J.; Minnett, Peter J.; Daum, Peter H.; Kleinman, Lawrence; Wittmeyer, Ian; Randall, David A.

    1994-01-01

    This paper introduces a simple method for deriving climatological values of the longwave flux emitted from the clear sky atmosphere to the ice-free ocean surface. It is shown using both theory and data from simulations how the ratio of the surface to top-of-atmosphere (TOA) flux is a simple function of water vapor (W) and a validation of the simple relationship is presented based on a limited set of surface flux measurements. The rms difference between the retrieved surface fluxes and the simulated surface fluxes is approximately 6 W/sq m. The clear sky column cooling rate of the atmosphere is derived from the Earth Radiation Budget Experiment (ERBE) values of the clear sky TOA flux and the surface flux retrieved using Special Scanning Microwave Imager (SSM/I) measurements of w together with ERBE clear sky fluxes. The relationship between this column cooling rate, w, and the sea surface temperature (SST) is explored and it is shown how the cooling rate systematically increases as both w and SST increase. The uncertainty implied in these estmates of cooling are approximately +/- 0.2 K/d. The effects of clouds on this longwave cooling are also explored by placing bounds on the possible impact of clouds on the column cooling rate based on certain assumptions about the effect of clouds on the longwave flux to the surface. It is shown how the longwave effects of clouds in a moist atmosphere where the column water vapor exceeds approximately 30 kg/sq m may be estimated from presently available satellite data with an uncertainty estimated to be approximately 0.2 K/d. Based on an approach described in this paper, we show how clouds in these relatively moist regions decrease the column cooling by almost 50% of the clear sky values and the existence of significant longitudinal gradients in column radiative heating across the equatorial and subtropical Pacific Ocean.

  2. The effects of rising atmospheric carbon dioxide on shoot-root nitrogen and water signaling

    PubMed Central

    Easlon, Hsien Ming; Bloom, Arnold J.

    2013-01-01

    Terrestrial higher plants are composed of roots and shoots, distinct organs that conduct complementary functions in dissimilar environments. For example, roots are responsible for acquiring water and nutrients such as inorganic nitrogen from the soil, yet shoots consume the majority of these resources. The success of such a relationship depends on excellent root–shoot communications. Increased net photosynthesis and decreased shoot nitrogen and water use at elevated CO2 fundamentally alter these source–sink relations. Lower than predicted productivity gains at elevated CO2 under nitrogen or water stress may indicate shoot–root signaling lacks plasticity to respond to rising atmospheric CO2 concentrations. The following presents recent research results on shoot–root nitrogen and water signaling, emphasizing the influence that rising atmospheric carbon dioxide levels are having on these source–sink interactions. PMID:23983674

  3. Aqueous-Phase Photochemical Production of Oxidants in Atmospheric Waters.

    NASA Astrophysics Data System (ADS)

    Allen, John Morrison

    1992-01-01

    The photochemical formation and subsequent reactions of oxidants plays an important role in the overall chemistry of the atmosphere. Much of the interest in atmospheric oxidation reactions has been fueled by the environmental consequences of the oxidation of sulfur dioxide (SO _2) forming sulfuric acid (H_2 SO_4). Oxidation reactions also play a crucial role in other atmospheric chemical transformations such as: (1) the destruction of tropospheric ozone, (2) redox cycling of transition metals, and (3) oxidation of organic compounds. Much of the research pertaining to atmospheric oxidant formation and the reactions that these oxidants undergo has centered upon gas-phase photochemical oxidant formation and: (1) subsequent reactions in the gas phase, or (2) partitioning of oxidants into cloud and fog drops and subsequent reactions in the aqueous phase. Only a very limited amount of data is available concerning aqueous -phase photochemical sources of oxidants in cloud and fog drops. The focus of one aspect of the work presented in this dissertation is upon the aqueous-phase sunlight photochemical formation of oxidants in authentic cloud and fog water samples from across the United States and Canada. It will be demonstrated that atmospheric waters typically absorb solar ultraviolet radiation at wavelengths ranging from 290 to 340 nm. This absorption is due to the presence of chemical constituents in the cloud and fog waters that contain chromophoric functional groups that give rise to the formation of: (1) singlet molecular oxygen O_2(^1Delta_ {rm g}), (2) peroxyl radicals (HO _2cdot and RO_2 cdot), (3) peroxides (HOOH, ROOH, and ROOR '), and (4) hydroxyl radical ( cdotOH). This work will demonstrate that aqueous-phase photochemical reactions are a significant and in some cases dominant source of these oxidants in cloud and fog drops. The transition metal catalyzed oxidation of SO _2 to H_2SO _4 by molecular oxygen has been extensively studied. This reaction is thought

  4. Atmosphere and water quality monitoring on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Niu, William

    1990-01-01

    In Space Station Freedom air and water will be supplied in closed loop systems. The monitoring of air and water qualities will ensure the crew health for the long mission duration. The Atmosphere Composition Monitor consists of the following major instruments: (1) a single focusing mass spectrometer to monitor major air constituents and control the oxygen/nitrogen addition for the Space Station; (2) a gas chromatograph/mass spectrometer to detect trace contaminants; (3) a non-dispersive infrared spectrometer to determine carbon monoxide concentration; and (4) a laser particle counter for measuring particulates in the air. An overview of the design and development concepts for the air and water quality monitors is presented.

  5. Rotationally resolved water dimer spectra in atmospheric air and pure water vapour in the 188-258 GHz range.

    PubMed

    Serov, E A; Koshelev, M A; Odintsova, T A; Parshin, V V; Tretyakov, M Yu

    2014-12-21

    New experimental results regarding "warm" water dimer spectra under equilibrium conditions are presented. An almost equidistant series of six peaks corresponding to the merged individual lines of the bound dimer with consecutive rotational quantum numbers is studied in the 188-258 GHz frequency range in water vapour over a broad range of pressures and temperatures relevant to the Earth's atmosphere. The series is a continuation of the sequence detected earlier at lower frequencies at room temperature. The signal-to-noise ratio of the observed spectra allowed investigating their evolution, when water vapour was diluted by atmospheric air with partial pressure from 0 up to 540 Torr. Analysis of the obtained spectra permitted determining the dimerization constant as well as the hydrogen bond dissociation energy and the dimer spectral parameters, including the average coefficient of collisional broadening of individual lines by water vapour and air. The manifestation of metastable states of the dimer in the observed spectra is assessed. The contribution of three possible pair states of water molecules to the second virial coefficient is evaluated over the broad range of temperatures. The work supports the significant role of the water dimer in atmospheric absorption and related processes. PMID:25363156

  6. O the Role of Water Growth in Atmospheric Aerosol

    NASA Astrophysics Data System (ADS)

    Pitchford, Marc Lynn

    1992-01-01

    Atmospheric particle growth by condensation of water vapor was investigated using sophisticated particle growth and compositional measurements made during the Winter of 1990 at Grand Canyon National Park, AZ. Growth measurements by the Tandem Differential Mobility Analyzer (TDMA) and fine particle compositional analysis data were examined to assess the nature of the particles and the applicability of certain growth and composition models. A model was developed to estimate the sulfate to ammonium ion concentration ratio by apportioning measured hydrogen concentrations between organic and sulfate aerosol components. The model had insufficient resolution for this data to determine the ion ratio. The overall volume fraction of soluble material as determined by chemical analysis of particle samples was apportioned between high growth and low growth particles by a model based upon TDMA measured growth data. Growth data indicate the simultaneous presence of two, and occasionally three, types of particles. At relative humidities above about 78%, particles split into two distinguishable growth categories. Most of the particles grew considerably (categorized as more hygroscopic), while a small fraction of the particles grew slightly (categorized as less hygroscopic). On a few days, particles separated by growth at relative humidities in the mid-60% range, with a small fraction of the particles having high growth. At higher relative humidities these particles became indistinguishable from the more hygroscopic particles. Sulfate species dominate the soluble fraction most days, with nitrates occasionally in comparable concentrations. The model to estimate the soluble fraction of the particles in the more and less hygroscopic growth categories also determines the soluble material growth characteristic, which is assumed to be the same for all particles in any individual TDMA measurement. The predicted growth characteristics for the soluble material is in good agreement with

  7. Martian atmospheric chemistry during the time of low water abundance

    NASA Technical Reports Server (NTRS)

    Nair, Hari; Allen, Mark; Yung, Yuk L.; Clancy, R. Todd

    1992-01-01

    The importance of odd hydrogen (or HO(x)) radicals in the catalytic recombination of carbon monoxide and oxygen in the Martian atmosphere is a well known fact. The inclusion of recent chemical kinetics data, specifically temperature-dependent CO2 absorption cross sections, into our one dimensional photochemical model shows that HO(x) is too efficient in this regard. The absorption cross sections of CO2 are smaller than previously assumed; this leads to a reduction in the photolysis rate of CO2 while the photolysis rate of H2O has increased. As a consequence the predicted mixing ratio of CO in our models is substantially less than the observed value of 6.5(10)(exp -4). Simultaneous measurements of water, ozone, and carbon monoxide were obtained in the Martian atmosphere in early Dec. 1990 (L(sub s) for Mars was 344 deg.).

  8. Field and data analysis studies related to the atmospheric environment

    NASA Technical Reports Server (NTRS)

    Kidder, Stanley; Mach, Douglas; Bailey, Jeff; Stewart, Michael; Slaton, Dave; Buechler, Dennis; Botts, Michael; Collins, Laurie

    1994-01-01

    This report summarizes work on a broad array of projects including: (1) applications of meteorological and/or oceanographic satellites; (2) improvement of the current set of NASA/USAF lightning related launch commit criteria rules; (3) the design, building, testing and deployment of a set of cylindrical field mills for aircraft use; (4) the study of marginal electrification storm conditions in relationship to the current launch commit rules for the space shuttle and various other launch vehicles using an instrumented aircraft; (5) support of the DC-8 and ER-2 lightning instrument package as part of both the Tropical Ocean - Global Atmospheric/Coupled Ocean-Atmospheric Response Experiment and the Convection and Moisture Experiment; (6) design of electronic circuitry and microprocessor firmware for the NASA Advanced Ground Based Field Mill; (7) design and testing of electronic and computer instrumentation for atmospheric electricity measurements; (8) simulating observations from a lightning imaging sensor on the Tropical Rainfall Measuring satellite; and (9) supporting scientific visualization and the development of computer software tools.

  9. Improved Atmospheric Correction for AVIRIS Spectra from Inland Waters

    NASA Technical Reports Server (NTRS)

    Gastil, Mary; Melack, John M.

    1998-01-01

    Remote sensing reflectance (Rrs) cannot be measured directly. Comparison of Rrs calculated from field measurements to Rrs calculated from AVIRIS spectra and the atmospheric radiative transfer model modtran provides a measure of the accuracy of our method. That and other comparisons are presented here as a validation of a method of retrieving Rrs from inland waters from AVIRIS radiance. The method of collecting field measurements for Rrs is described in Hamilton, 1993. Retrieval of Rrs from AVIRIS using modtran was developed from Carder, 1993. AVIRIS radiance is reduced by the path radiance modeled by modtran and divided by one-way transmission. Skylight, modeled by modtran, specularly reflected from the lake surface, is then subtracted from this radiance, leaving only that radiance which has come from under water. This water-leaving radiance is then normalized by the downwelling irradiance incident at the surface as modeled by modtran. Our improved retrieval of Rrs has allowed us to fit a single curve to a set of 134 pairs of AVIRIS Rrs and measured chlorophyll gathered on eight experiments at Mono Lake. Previously, spectra from different surveys varied more due to lingering atmospheric effects and/or radiometric calibration imprecision than they varied due to chlorophyll.

  10. Linking Hydrology and Atmospheric Sciences in Continental Water Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    David, C. H.; Gochis, D. J.; Maidment, D. R.; Wilhelmi, O.

    2006-12-01

    Atmospheric observation and model output datasets as well as hydrologic datasets are increasingly becoming available on a continental scale. Although the availability of these datasets could allow large-scale water dynamics modeling, the different objects and semantics used in atmospheric science and hydrology set barriers to their interoperability. Recent work has demonstrated the feasibility for modeling terrestrial water dynamics for the continental United States of America. Continental water dynamics defines the interaction of the hydrosphere, the land surface and subsurface at spatial scales ranging from point to continent. The improved version of the National Hydrographic Dataset (NHDPlus, an integrated suite of geospatial datasets stored in a vector and raster GIS format) was used as hydrologic and elevation data input to the Noah community Land Surface Model, developed at NCAR. Noah was successfully run on a watershed in the Ohio River Basin with NHDPlus inputs. The use of NHDPlus as input data for Noah is a crucial improvement for community modeling efforts allowing users to by-pass much of the time consumed in Digital Elevation Model and hydrological network processing. Furthermore, the community Noah land surface model, in its hydrologically-enhanced configuration, is capable of providing flow inputs for a river dynamics model. Continued enhancement of Noah will, as a consequence, be beneficial to the atmospheric science community as well as to the hydrologic community. Ongoing research foci include using a diversity of weather drivers as an input to Noah, and investigation of how to use land surface model outputs for river forecasting, using both the ArcHydro and OpenMI frameworks.

  11. Water vapor measurement system in global atmospheric sampling program, appendix

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Dudzinski, T. J.

    1982-01-01

    The water vapor measurement system used in the NASA Global Atmospheric Sampling Program (GASP) is described. The system used a modified version of a commercially available dew/frostpoint hygrometer with a thermoelectrically cooled mirror sensor. The modifications extended the range of the hygrometer to enable air sample measurements with frostpoint temperatures down to -80 C at altitudes of 6 to 13 km. Other modifications were made to permit automatic, unattended operation in an aircraft environment. This report described the hygrometer, its integration with the GASP system, its calibration, and operational aspects including measurement errors. The estimated uncertainty of the dew/frostpoint measurements was + or - 1.7 Celsius.

  12. Semivolatile organic compounds in urban and over-water atmospheres

    NASA Astrophysics Data System (ADS)

    Offenberg, John H., Jr.

    Concentrations of semi-volatile organic contaminants were measured both in air and precipitation in and downwind of Chicago, IL and Baltimore, MD as part of the A_tmospheric E_xchange O_ver L_akes and O_ceans_ (AEOLOS) project. Precipitation events were collected simultaneously in the city and over the water to measure increased wet depositional fluxes of polychlorinated biphenyls to Lake Michigan during May and July 1994 and January 1995. Elevated atmospheric concentrations in Chicago, IL increase atmospheric loadings of PCBs to Lake Michigan by at least a factor of two over regional background levels. Precipitation loadings, bidirectional gas exchange and dry deposition combine to increase measured surface water concentrations of PCBs in Lake Michigan during periods of southwesterly winds which transport the urban air mass across the lake. PCB concentrations in surface waters were higher during winter than in spring or summer, but PAH concentrations did not vary significantly with season. However, when placed in historical context, Lake Michigan PCB concentrations have declined ten fold over fourteen years from 1980 to 1994. Size segregated airborne particulate samples collected around and over southern Lake Michigan show geometric mean diameters of polycyclic aromatic hydrocarbons that are correlated with the compound's sub-cooled liquid vapor pressures. More volatile compounds were found on larger particles. The slope of the relationship between GMD and vapor pressure depends on the transit time from the shoreline, suggesting that higher wind speeds induce faster dry deposition of large particles. Measured gas/particle partitioning of these compounds is modeled according to a three dimensional multiple linear regression that includes the influences of vapor pressure, particle size and measured aerosol fractional organic carbon content. Each of these terms is significant in the full model but, addition of the latter two terms appears to be practically

  13. WATER QUALITY EFFECTS RELATED TO BLENDING WATERS IN DISTRIBUTION SYSTEMS

    EPA Science Inventory

    This study was conducted to evaluate the effects of blending two or more waters of different quality and to relate their composition to the corrosive effects and calcium carbonate deposition tendency of the water on distribution systems. The EPA mobile water quality monitoring la...

  14. Water accounting and vulnerability evaluation (WAVE): considering atmospheric evaporation recycling and the risk of freshwater depletion in water footprinting.

    PubMed

    Berger, Markus; van der Ent, Ruud; Eisner, Stephanie; Bach, Vanessa; Finkbeiner, Matthias

    2014-04-15

    Aiming to enhance the analysis of water consumption and resulting consequences along the supply chain of products, the water accounting and vulnerability evaluation (WAVE) model is introduced. On the accounting level, atmospheric evaporation recycling within drainage basins is considered for the first time, which can reduce water consumption volumes by up to 32%. Rather than predicting impacts, WAVE analyzes the vulnerability of basins to freshwater depletion. Based on local blue water scarcity, the water depletion index (WDI) denotes the risk that water consumption can lead to depletion of freshwater resources. Water scarcity is determined by relating annual water consumption to availability in more than 11,000 basins. Additionally, WDI accounts for the presence of lakes and aquifers which have been neglected in water scarcity assessments so far. By setting WDI to the highest value in (semi)arid basins, absolute freshwater shortage is taken into account in addition to relative scarcity. This avoids mathematical artifacts of previous indicators which turn zero in deserts if consumption is zero. As illustrated in a case study of biofuels, WAVE can help to interpret volumetric water footprint figures and, thus, promotes a sustainable use of global freshwater resources. PMID:24660893

  15. Verification of the ASTER/TIR atmospheric correction algorithm based on water surface emissivity retrieved

    NASA Astrophysics Data System (ADS)

    Tonooka, Hideyuki; Palluconi, Frank D.

    2002-02-01

    The standard atmospheric correction algorithm for five thermal infrared (TIR) bands of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is currently based on radiative transfer computations with global assimilation data on a pixel-by-pixel basis. In the present paper, we verify this algorithm using 100 ASTER scenes globally acquired during the early mission period. In this verification, the max-min difference (MMD) of the water surface emissivity retrieved from each scene is used as an atmospheric correction error index, since the water surface emissivity is well known; if the MMD retrieved is large, an atmospheric correction error also will be possibly large. As the results, the error of the MMD retrieved by the standard atmospheric correction algorithm and a typical temperature/emissivity separation algorithm is shown to be remarkably related with precipitable water vapor, latitude, elevation, and surface temperature. It is also mentioned that the expected error on the MMD retrieved is 0.05 for the precipitable water vapor of 3 cm.

  16. Habitability of waterworlds: runaway greenhouses, atmospheric expansion, and multiple climate states of pure water atmospheres.

    PubMed

    Goldblatt, Colin

    2015-05-01

    There are four different stable climate states for pure water atmospheres, as might exist on so-called "waterworlds." I map these as a function of solar constant for planets ranging in size from Mars-sized to 10 Earth-mass. The states are as follows: globally ice covered (Ts ⪅ 245 K), cold and damp (270 ⪅ Ts ⪅ 290 K), hot and moist (350 ⪅ Ts ⪅ 550 K), and very hot and dry (Tsx2A86;900 K). No stable climate exists for 290 ⪅ T s ⪅ 350 K or 550 ⪅ Ts ⪅ 900 K. The union of hot moist and cold damp climates describes the liquid water habitable zone, the width and location of which depends on planet mass. At each solar constant, two or three different climate states are stable. This is a consequence of strong nonlinearities in both thermal emission and the net absorption of sunlight. Across the range of planet sizes, I account for the atmospheres expanding to high altitudes as they warm. The emitting and absorbing surfaces (optical depth of unity) move to high altitude, making their area larger than the planet surface, so more thermal radiation is emitted and more sunlight absorbed (the former dominates). The atmospheres of small planets expand more due to weaker gravity; the effective runaway greenhouse threshold is about 35 W m(-2) higher for Mars, 10 W m(-2) higher for Earth or Venus, but only a few W m(-2) higher for a 10 Earth-mass planet. There is an underlying (expansion-neglected) trend of increasing runaway greenhouse threshold with planetary size (40 W m(-2) higher for a 10 Earth-mass planet than for Mars). Summing these opposing trends means that Venus-sized (or slightly smaller) planets are most susceptible to a runaway greenhouse. The habitable zone for pure water atmospheres is very narrow, with an insolation range of 0.07 times the solar constant. A wider habitable zone requires background gas and greenhouse gas: N2 and CO2 on Earth, which are biologically controlled. Thus, habitability depends on inhabitance. PMID:25984919

  17. Habitability of Waterworlds: Runaway Greenhouses, Atmospheric Expansion, and Multiple Climate States of Pure Water Atmospheres

    PubMed Central

    2015-01-01

    Abstract There are four different stable climate states for pure water atmospheres, as might exist on so-called “waterworlds.” I map these as a function of solar constant for planets ranging in size from Mars-sized to 10 Earth-mass. The states are as follows: globally ice covered (Ts⪅245 K), cold and damp (270⪅Ts⪅290 K), hot and moist (350⪅Ts⪅550 K), and very hot and dry (Tsx2A86;900 K). No stable climate exists for 290⪅Ts ⪅350 K or 550⪅Ts⪅900 K. The union of hot moist and cold damp climates describes the liquid water habitable zone, the width and location of which depends on planet mass. At each solar constant, two or three different climate states are stable. This is a consequence of strong nonlinearities in both thermal emission and the net absorption of sunlight. Across the range of planet sizes, I account for the atmospheres expanding to high altitudes as they warm. The emitting and absorbing surfaces (optical depth of unity) move to high altitude, making their area larger than the planet surface, so more thermal radiation is emitted and more sunlight absorbed (the former dominates). The atmospheres of small planets expand more due to weaker gravity; the effective runaway greenhouse threshold is about 35 W m−2 higher for Mars, 10 W m−2 higher for Earth or Venus, but only a few W m−2 higher for a 10 Earth-mass planet. There is an underlying (expansion-neglected) trend of increasing runaway greenhouse threshold with planetary size (40 W m−2 higher for a 10 Earth-mass planet than for Mars). Summing these opposing trends means that Venus-sized (or slightly smaller) planets are most susceptible to a runaway greenhouse. The habitable zone for pure water atmospheres is very narrow, with an insolation range of 0.07 times the solar constant. A wider habitable zone requires background gas and greenhouse gas: N2 and CO2 on Earth, which are biologically controlled. Thus, habitability depends on inhabitance. Key Words

  18. Atmospheric chemistry. Direct kinetic measurement of the reaction of the simplest Criegee intermediate with water vapor.

    PubMed

    Chao, Wen; Hsieh, Jun-Ting; Chang, Chun-Hung; Lin, Jim Jr-Min

    2015-02-13

    Carbonyl oxides, or Criegee intermediates, are important transient species formed in the reactions of unsaturated hydrocarbons with ozone. Although direct detection of Criegee intermediates has recently been realized, the main atmospheric sink of Criegee intermediates remains unclear. We report ultraviolet absorption spectroscopic measurements of the lifetime of the simplest Criegee intermediate, CH2OO, at various relative humidity levels up to 85% at 298 kelvin. An extremely fast decay rate of CH2OO was observed at high humidity. The observed quadratic dependence of the decay rate on water concentration implied a predominant reaction with water dimer. On the basis of the water dimer equilibrium constant, the effective rate coefficient of the CH2OO + (H2O)2 reaction was determined to be 6.5 (±0.8) × 10(-12) cubic centimeters per second. This work would help modelers to better constrain the atmospheric concentrations of CH2OO. PMID:25569112

  19. Mesoscale Modeling of Water Vapor and Dust in Valles Marineris: Atmospheric Influences on Recurring Slope Lineae.

    NASA Astrophysics Data System (ADS)

    Leung, C. W. S.; Rafkin, S. C.; McEwen, A. S.

    2015-12-01

    Extensive recurring slope lineae (RSL) activity has been detected in Valles Marineris on Mars and coincides with regions where water ice fogs appear [1]. The origin of the water driving RSL flow is not well understood, but observational evidence suggests atmospheric processes play a crucial role [2]. Provided the atmospheric vapor concentration is high enough, water ice fogs can form overnight if the surface temperature cools below the condensation temperature. Correlations between dust storms and flow rates suggest that atmospheric dust opacity, and its influence on air temperature, also has a significant effect on RSL activity. We investigate planetary boundary layer processes that govern the hydrological cycle and dust cycle on Mars using a mesoscale atmospheric model to simulate the distribution of water and dust with respect to regional atmospheric circulations. Our simulations in Valles Marineris show a curious temperature structure, where the inside of the canyon appears warmer relative to the plateaus immediately outside. For a well-mixed atmosphere, this temperature structure indicates that when the atmosphere inside the canyon is saturated and fog is present within Valles Marineris, fog and low-lying clouds should also be present on the cooler surrounding plateaus as well. However, images taken with the Mars Express High Resolution Stereo Camera (HRSC) show instances where water ice fog appeared exclusively inside the canyon. These results have important implications for the origin and concentration of water vapor in Valles Marineris, with possible connections to RSL. The potential temperatures from our simulations show a high level of stability inside the canyon produced dynamically by sinking air. However, afternoon updrafts along the canyon walls indicate that over time, water vapor within the chasm would escape along the sides of the canyon. Again, this suggests a local source or mechanism to concentrate water vapor is needed to explain the fog

  20. Water Deposition into Titan atmosphere from Saturn's E-ring

    NASA Astrophysics Data System (ADS)

    Juhasz, A.; Horanyi, M.; Kempf, S.; Srama, R.

    2013-12-01

    Cassini's discovery of the geologically active regions on the south polar region of Enceladus allowed the identification of these active plumes as the primary source of Saturn's E-ring. Micron and submicron sized ice particles are supplied from the plumes to sustain the entire E-ring. In situ measurements by the Cassini Cosmic Dust Analyzer (CDA) also led to the recognition that the E-ring extends way beyond its originally recognized limits of 4 - 8 Saturn radii (Rs), reaching beyond 20 Rs, engulfing Titan, Saturn's largest moon. Ice grains entrained in the plumes experience radiation pressure and plasma drag perturbations and their orbits slowly evolve outward. Simultaneously, the ice particles are exposed to energetic ion bombardment, leading to their mass loss due to sputtering. Initially micron sized particles from Enceladus take about 500 years to reach the orbit of Titan, arriving there as approximately 0.1-0.3 micron sized particles. Due to their large eccentricities, these small grains enter Titan's atmosphere with speeds v > 1 km/s,sufficiently fast to ablate, delivering on the order of 5 g/s of water. This presentation will discuss the resulting profiles of water vapor deposition rates as function of altitude in Titan's atmosphere.

  1. Cometary Delivery of Lunar Water: Transient Atmosphere Dynamics and Deposition Patterns

    NASA Astrophysics Data System (ADS)

    Prem, Parvathy; Artemieva, N. A.; Pierazzo, E.; Stewart, B. D.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.

    2012-10-01

    Several missions have yielded observations that could indicate the presence of water ice in lunar polar regions. Our work aims to investigate cometary impacts as a mechanism for the delivery of water to permanently shadowed craters (‘cold traps’) at the lunar poles. Of particular interest is the influence of parameters such as impact angle, velocity and location on the long-term retention of cometary water. Our 3D, unsteady simulations use the SOVA hydrocode to model the impact and vaporization of a cometary nucleus composed of pure water ice, 2km in diameter, impacting at 30 km/s. Subsequently, a Direct Simulation Monte Carlo code, designed to handle rarefied planetary flows, is used to simulate the transient water vapor atmosphere that develops. Molecules in this atmosphere collide and migrate across the lunar surface, driven by diurnal variations in surface temperature, and may land in permanently shadowed craters, cold enough to trap water over geological time scales. Here, we discuss the dynamic development of the transient atmosphere and compare initial deposition patterns as gravitationally bound water vapor begins to fall back to the lunar surface, for two different impact angles: 45° and 60° from the horizontal. A greater fraction of water remains gravitationally bound to the Moon in the 60° case, and a less pronounced downrange focusing of the vapor results in a more symmetric initial deposition pattern. On the cold night-side of the Moon, water simply sticks to the surface. However, on the warm day-side, where residence times are much shorter, we observe the development of a relatively dense, low-speed, surface-hugging flow. A particularly interesting depositional feature is the concentration of mass at a point almost antipodal to the point of impact, where a convergence of streamlines results in a shock that channels water to the surface.

  2. Stable isotope composition of land snail body water and its relation to environmental waters and shell carbonate

    SciTech Connect

    Goodfriend, G.A.; Magaritz, M.; Gat, J.R. )

    1989-12-01

    Day-to-day and within-day (diel) variations in {delta}D and {delta}{sup 18}O of the body water of the land snail, Theba pisana, were studied at a site in the southern coastal plain of Israel. Three phases of variation, which relate to isotopic changes in atmospheric water vapor, were distinguished. The isotopic variations can be explained by isotopic equilibration with atmospheric water vapor and/or uptake of dew derived therefrom. During the winter, when the snails are active, there is only very minor enrichment in {sup 18}O relative to equilibrium with water vapor or dew, apparently as a result of metabolic activity. But this enrichment becomes pronounced after long periods of inactivity. Within-day variation in body water isotopic composition is minor on non-rain days. Shell carbonate is enriched in {sup 18}O by ca. 1-2% relative to equilibrium with body water. In most regions, the isotopic composition of atmospheric water vapor (or dew) is a direct function of that of rain. Because the isotopic composition of snail body water is related to that of atmospheric water vapor and the isotopic composition of shell carbonate in turn is related to that of body water, land snail shell carbonate {sup 18}O should provide a reliable indication of rainfall {sup 18}O. However, local environmental conditions and the ecological properties of the snail species must be taken into account.

  3. Exchange of water vapor between the atmosphere and surface of Mars.

    NASA Technical Reports Server (NTRS)

    Leovy, C. B.

    1973-01-01

    A model for exchange of water from the atmosphere to condensing CO2 caps is developed. The rate of water condensation in the caps is assumed to be proportional to the meridional heat flux. It follows that the amount of water condensed in the caps varies inversely with the amount of CO2 condensed. The seasonal phase of the release of water from the caps is not consistent with observed variations in the abundance of atmospheric water. Seasonal variations of atmospheric water abundance are most consistent with vapor exchange between the atmosphere and permafrost in the subtropics.

  4. Coupled Oxygen and Hydrogen Isotope Analysis of Water Along the Soil-Plant- Atmosphere Continuum

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Webb, E. A.; Longstaffe, F. J.

    2008-12-01

    The oxygen and hydrogen isotope compositions of water within a plant vary with transpiration rates and the isotopic composition of soil water. Both of these parameters are affected by temperature and relative humidity. A controlled-temperature, growth-chamber experiment was conducted to determine the relationships among temperature, relative humidity, soil water evaporation and plant-water isotope composition in cattails and horsetails. Typha, a cattail species that grows in wetland conditions, and Equisetum, a horsetail species that prefers dry soils, were each grown in four chambers at 15, 20, 25 and 30 degrees Celsius. The oxygen and hydrogen isotope compositions of watering water, soil water, vapour in the growth chambers and plant water from the leaves and stems were analyzed throughout the eight-month long artificial growing season. Although the oxygen isotope composition of the watering water remained constant, the soil water, atmospheric vapour and plant water were progressively enriched in oxygen-18 and deuterium in each of the four chambers from low to high temperatures as a result of increasing evaporation. The oxygen isotope composition of plant water along the length of a single stem or leaf was increasingly enriched in the heavier isotopes towards the apex. There was no significant difference in the magnitude of this trend between species. These results indicate that the isotopic composition of plant water is primarily controlled by environmental conditions. The oxygen isotope composition of the water vapour in the growing chamber increased with temperature, consistent with equilibration between the vapour and the oxygen-18 enriched soil and plant water reservoirs. The magnitude and interaction of these variables, as measured for these modern samples of cattails and horsetails, should be useful in calibrating paleoclimate proxies based on fossilized plant materials (e.g., cellulose, phytoliths).

  5. [Water-soluble anions of atmosphere on Tianwan nuclear power station].

    PubMed

    Zhao, Heng-Qiang; He, Ying; Zheng, Xiao-Ling; Chen, Fa-Rong; Pang, Shi-Ping; Wang, Cai-Xia; Wang, Xiao-Ru

    2010-11-01

    Three major water-soluble anions (Cl-, SO4(2-) and NO3-) in the atmosphere of the Tianwan nuclear power station in Lianyungang were determined by ion chromatography from June 2005 to May 2006. The results showed that the annual average concentration of Cl-, SO4(2-) and NO3- in the atmosphere of Tianwan nuclear power station was (33.12 +/- 53.63) microg x m(-3), (53.34 +/- 30.34) microg x m(-3) and (8.34 +/- 4.47) microg x m(-3), respectively. The concentrations of the three water-soluble anions showed evident trend of seasonal variation. The concentrations of Cl-, SO4(2-) reached the highest level in summer and the lowest level in winter, while the concentration of NO3- in autumn and winter was higher than those in summer and spring. Meteorological parameters such as wind direction, wind speed, temperature and relative humidity were studied and showed definite influence to the anions concentration of the atmosphere. This is the first simultaneous monitoring of corrosive anions in the atmosphere of Chinese coastal nuclear power plant, and it will provide basis for the prevention of marine atmospheric corrosion, which will ensure the safely operating of our nuclear power industry. PMID:21250433

  6. Solar XUV and ENA-driven water loss from early Venus' steam atmosphere

    NASA Astrophysics Data System (ADS)

    Lichtenegger, H. I. M.; Kislyakova, K. G.; Odert, P.; Erkaev, N. V.; Lammer, H.; Gröller, H.; Johnstone, C. P.; Elkins-Tanton, L.; Tu, L.; Güdel, M.; Holmström, M.

    2016-05-01

    We present a study on the influence of the upper atmosphere hydrodynamic escape of hydrogen, driven by the solar soft X-ray and extreme ultraviolet radiation (XUV), on an expected outgassed steam atmosphere of early Venus. By assuming that the young Sun was either a weak or moderately active young G star, we estimated the water loss from a hydrogen dominated thermosphere due to the absorption of the solar XUV flux and the precipitation of solar wind produced energetic hydrogen atoms (ENAs). The production of ENAs and their interaction with the hydrodynamic extended upper atmosphere, including collision-related feedback processes, have been calculated by means of Monte Carlo models. ENAs that collide in the upper atmosphere deposit their energy and heat the surrounding atmosphere mainly above the main XUV energy deposition layer. It is shown that precipitating ENAs modify the thermal structure of the upper atmosphere, but the enhancement of the thermal escape rates caused by these energetic hydrogen atoms is negligible. Our results also indicate that the majority of oxygen arising from dissociated H2O molecules is left behind during the first 100 Myr. It is thus suggested that the main part of the remaining oxygen has been absorbed by crustal oxidation.

  7. Mars atmospheric water vapor abundance: 1996-1997

    NASA Astrophysics Data System (ADS)

    Sprague, A. L.; Hunten, D. M.; Doose, L. R.; Hill, R. E.

    2003-05-01

    Measurements of martian atmospheric water vapor made throughout Ls = 18.0°-146.4° (October 3, 1996-July 12, 1997) show changes in Mars humidity on hourly, daily, and seasonal time scales. Because our observing program during the 1996-1997 Mars apparition did not include concomitant measurement of nearby CO 2 bands, high northern latitude data were corrected for dust and aerosol extinction assuming an optical depth of 0.8, consistent with ground-based and HST imaging of northern dust storms. All other measurements with airmass greater than 3.5 were corrected using a total optical depth of 0.5. Three dominant results from this data set are as follows: (1) pre- and post-opposition measurements made with the slit crossing many hours of local time on Mars' Earth-facing disk show a distinct diurnal pattern with highest abundances around and slightly after noon with low abundances in the late afternoon, (2) measurements of water vapor over the Mars Pathfinder landing site (Carl Sagan Memorial Station) on July 12, 1997, found 21 ppt μm in the spatial sector centered near 19° latitude, 36° longitude while abundances around the site varied from as low as 6 to as high as 28 ppt μm, and (3) water vapor abundance is patchy on hourly and daily time scales but follows the usual seasonal trends.

  8. May the continuous trapping of atmospheric water on the permanent South polar cap affect the global atmospheric D/H ratio on Mars?

    NASA Astrophysics Data System (ADS)

    Chassefiere, E.; Montmessin, F.; Fouchet, T.; Forget, F.

    It is generally admitted that thermal escape is the only process responsible for hydrogen isotopic fractionation in Mars atmosphere (enrichment by a factor of 5.5 relative to SMOW value). The aim of the present paper is to show that thermodynamic processes (condensation/ sublimation) may potentially play a significant role in fractionating atmospheric H2O. The cycle of Martian H2O is complex. During northern summer, the North permanent water ice cap is assumed to release a few precipitable microns (pr. μ m), globally averaged, to the atmosphere. Part of this water vapor finally returns to North cap during northern winter, whereas a small fraction (<10%) is trapped in the South permanent carbonic ice cap, which acts as a permanent sink. Water vapor is probably cycled through regolith by adsorption/deposition and further sublimation/desorption. It is believed that the ultimate fate of water molecules released by the North water ice cap, and/or by the permafrost, is to stick to the South carbonic ice cap, with a time scale longer than one seasonal cycle. If so, a molecule released by the North cap must undergo a number of adsorption/desorption and deposition/sublimation cycles, through regolith and polar caps, before being trapped irreversibly in South cap carbonic ice. Recent IR observations of pure water ice on South polar cap by Mars-Express during southern spring show that water, migrating southward together with the edge of the retreating seasonal south CO2 cap, is finally deposited near cap edges in substantial amount. The fraction of this deposited water not released back to the atmosphere at later times (southern summer), therefore incorporated to carbonic ice, is not well known at present time. Because, during southern winter, water vapor above the South permanent cap is much depleted in deuterium, by at least a factor of 3 (Montmessin et al, AGU meeting, 2003), the polar cap tends to be depleted in deuterium (similarly to Earth's case), with a related

  9. Atmospheric attenuation relative to earth-viewing orbital sensors. [atmospheric moisture effects on microwaves

    NASA Technical Reports Server (NTRS)

    Brown, S. C.; Jayroe, R. R., Jr.

    1973-01-01

    Earth viewing space missions offer exciting new possibilities in several earth resources disciplines - geography, hydrology, agriculture, geology, and oceanography, to name a few. A most useful tool in planning experiments and applying space technology to earth observation is a statistical description of atmospheric parameters. Four dimensional atmospheric models and a world wide cloud model are used to produce atmospheric attenuation models to predict degradation effects for all classes of sensors for application to earth sensing experiments from spaceborne platforms. To insure maximum utility and application of these products, the development of an interaction model of microwave energy and atmospheric variables provides a complete description of the effects of atmospheric moisture upon microwaves.

  10. The slant path atmospheric refraction calibrator - An instrument to measure the microwave propagation delays induced by atmospheric water vapor

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.; Bender, Peter L.

    1992-01-01

    The water vapor-induced propagation delay experienced by a radio signal traversing the atmosphere is characterized by the Slant Path Atmospheric Refraction Calibrator (SPARC), which measures the difference in the travel times between an optical and a microwave signal propagating along the same atmospheric path with an accuracy of 15 picosec or better. Attention is given to the theoretical and experimental issues involved in measuring the delay induced by water vapor; SPARC measurements conducted along a 13.35-km ground-based path are presented, illustrating the instrument's stability, precision, and accuracy.

  11. A synthesis of atmospheric mercury depletion event chemistry linking atmosphere, snow and water

    NASA Astrophysics Data System (ADS)

    Steffen, A.; Douglas, T.; Amyot, M.; Ariya, P.; Aspmo, K.; Berg, T.; Bottenheim, J.; Brooks, S.; Cobbett, F.; Dastoor, A.; Dommergue, A.; Ebinghaus, R.; Ferrari, C.; Gardfeldt, K.; Goodsite, M. E.; Lean, D.; Poulain, A.; Scherz, C.; Skov, H.; Sommar, J.; Temme, C.

    2007-07-01

    It was discovered in 1995 that, during the spring time, unexpectedly low concentrations of gaseous elemental mercury (GEM) occurred in the Arctic air. This was surprising for a pollutant known to have a long residence time in the atmosphere; however conditions appeared to exist in the Arctic that promoted this depletion of mercury (Hg). This phenomenon is termed atmospheric mercury depletion events (AMDEs) and its discovery has revolutionized our understanding of the cycling of Hg in Polar Regions while stimulating a significant amount of research to understand its impact to this fragile ecosystem. Shortly after the discovery was made in Canada, AMDEs were confirmed to occur throughout the Arctic, sub-Artic and Antarctic coasts. It is now known that, through a series of photochemically initiated reactions involving halogens, GEM is converted to a more reactive species and is subsequently associated to particles in the air and/or deposited to the polar environment. AMDEs are a means by which Hg is transferred from the atmosphere to the environment that was previously unknown. In this article we review the history of Hg in Polar Regions, the methods used to collect Hg in different environmental media, research results of the current understanding of AMDEs from field, laboratory and modeling work, how Hg cycles around the environment after AMDEs, gaps in our current knowledge and the future impacts that AMDEs may have on polar environments. The research presented has shown that while considerable improvements in methodology to measure Hg have been made the main limitation remains knowing the speciation of Hg in the various media. The processes that drive AMDEs and how they occur are discussed. As well, the roles that the snow pack, oceans, fresh water and the sea ice play in the cycling of Hg are presented. It has been found that deposition of Hg from AMDEs occurs at marine coasts and not far inland and that a fraction of the deposited Hg does not remain in the same

  12. Simulated changes in the atmospheric water balance over South Asia in the eight IPCC AR4 coupled climate models

    NASA Astrophysics Data System (ADS)

    Prasanna, Venkatraman; Yasunari, Tetsuzo

    2011-05-01

    This paper evaluates the performance of eight state-of-art IPCC-AR4 coupled atmosphere-ocean general circulation models in their representation of regional characteristics of atmospheric water balance over South Asia. The results presented here are the regional climate change scenarios of atmospheric water balance components, precipitation, moisture convergence and evaporation ( P, C and E) up to the end of the twenty-second century based on IPCC AR4 modelling experiments conducted for (A1B) future greenhouse gas emission scenario. The AOGCMs, despite their relatively coarse resolution, have shown a reasonable skill in depicting the hydrological cycle over the South Asian region. However, considerable biases do exist with reference to the observed atmospheric water balance and also inter-model differences. The monsoon rainfall and atmospheric water balance changes under A1B scenario are discussed in detail. Spatial patterns of rainfall change projections indicate maximum increase over northwest India in most of the models, but changes in the atmospheric water balance are generally widespread over South Asia. While the scenarios presented in this study are indicative of the expected range of rainfall and water balance changes, it must be noted that the quantitative estimates still have large uncertainties associated with them.

  13. Water-Related Parasitic Diseases in China

    PubMed Central

    Lv, Shan; Tian, Li-Guang; Liu, Qin; Qian, Men-Bao; Fu, Qing; Steinmann, Peter; Chen, Jia-Xu; Yang, Guo-Jing; Yang, Kun; Zhou, Xiao-Nong

    2013-01-01

    Water-related parasitic diseases are directly dependent on water bodies for their spread or as a habitat for indispensable intermediate or final hosts. Along with socioeconomic development and improvement of sanitation, overall prevalence is declining in the China. However, the heterogeneity in economic development and the inequity of access to public services result in considerable burden due to parasitic diseases in certain areas and populations across the country. In this review, we demonstrated three aspects of ten major water-related parasitic diseases, i.e., the biology and pathogenicity, epidemiology and recent advances in research in China. General measures for diseases control and special control strategies are summarized. PMID:23685826

  14. Rapid estimates of relative water content.

    PubMed

    Smart, R E

    1974-02-01

    Relative water content may be accurately estimated using the ratio of tissue fresh weight to tissue turgid weight, termed here relative tissue weight. That relative water content and relative tissue weight are linearly related is demonstrated algebraically. The mean value of r(2) for grapevine (Vitis vinifera L. cv. Shiraz) leaf tissue over eight separate sampling occasions was 0.993. Similarly high values were obtained for maize (Zea mays cv. Cornell M-3) (0.998) and apple (Malus sylvestris cv. Northern Spy) (0.997) using a range of leaf ages. The proposal by Downey and Miller (1971. Rapid measurements of relative turgidity in maize (Zea mays L.). New Phytol. 70: 555-560) that relative water content in maize may be estimated from water uptake was also investigated for grapevine leaves; this was found to be a less reliable estimate than that obtained with relative tissue weight. With either method, there is a need for calibration, although this could be achieved for relative tissue weight at least with only a few subsamples. PMID:16658686

  15. Hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their influence on the water uptake of ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Wu, Z. J.; Nowak, A.; Poulain, L.; Herrmann, H.; Wiedensohler, A.

    2011-12-01

    The hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their effects on ammonium sulfate were investigated using a hygroscopicity tandem differential mobility analyzer (H-TDMA). No hygroscopic growth is observed for disodium oxalate, while ammonium oxalate shows slight growth (growth factor = 1.05 at 90%). The growth factors at 90% RH for sodium acetate, disodium malonate, disodium succinate, disodium tartrate, diammonium tartrate, sodium pyruvate, disodium maleate, and humic acid sodium salt are 1.79, 1.78, 1.69, 1.54, 1.29, 1.70, 1.78, and 1.19, respectively. The hygroscopic growth of mixtures of organic salts with ammonium sulfate, which are prepared as surrogates of atmospheric aerosols, was determined. A clear shift in deliquescence relative humidity to lower RH with increasing organic mass fraction was observed for these mixtures. Above 80% RH, the contribution to water uptake by the organic salts was close to that of ammonium sulfate for the majority of investigated compounds. The observed hygroscopic growth of the mixed particles at RH above the deliquescence relative humidity of ammonium sulfate agreed well with that predicted using the Zdanovskii-Stokes-Robinson (ZSR) mixing rule. Mixtures of ammonium sulfate with organic salts are more hygroscopic than mixtures with organic acids, indicating that neutralization by gas-phase ammonia and/or association with cations of dicarbonxylic acids may enhance the hygroscopicity of the atmospheric particles.

  16. The water relations of trees on karst

    NASA Astrophysics Data System (ADS)

    Schwinning, S.

    2008-05-01

    The ecohydrology of karst has not received much attention, despite the disproportionally large effect that karst ecosystems might have on the availability of global freshwater quantity and quality. Theoretical considerations suggest that the ecohydrology of woody plants in karst, specifically where soil cover is thin and trees take root in the epikarst, could be very different from that of woody plants in systems with deep soils. I explore the mechanistic basis and possible ecohydrologic consequences of these differences, as well as present the results of a field study into the water relations of trees in karst. The study examined the water sources and water relations of Quercus fusiformis (Small) and Juniperus ashei (Buchholz) in the karst region of the eastern Edwards Plateau, Texas (USA). Stable isotope analysis of stem water suggested that both trees used evaporatively enriched water stored in the epikarst. Q. fusiformis had consistently higher predawn water potentials than J. ashei during drought. However, epikarst structure had strong effects on the predawn water potentials experienced during drought. Although the water potentials of both species recovered after drought- breaking rain events, associated shifts in stem water isotope ratios did not indicate significant uptake of rainwater from the shallow soil. A hypothesis is developed to explain this phenomenon invoking a piston-flow mechanism that pushes water stored in macropores into the pseudomatrix and into the presumed active root zones of the trees. The study suggests that tree species of the Edwards Plateau do not commonly reduce aquifer recharge by tapping directly into macropores or perched water tables, but more likely by reducing water storage in the pseudomatrix of the epikarst.

  17. Water Dimers in the Atmosphere II: Results from the VRT(ASP-W)III Potential Surface

    SciTech Connect

    Goldman, N; Saykally, R J; Leforestier, C

    2003-10-01

    We report refined results for the equilibrium constant for water dimerization (K{sub P}), computed as a function of temperature via fully-coupled 6-D calculation of the canonical (H{sub 2}O){sub 2} partition function on VRT(ASP-W)III, the most accurate water dimer potential energy surface currently available. Partial pressure isotherms calculated for a range of temperatures and relative humidities indicate that water dimers can exist in sufficient concentrations (e.g., 10{sup 18}m{sup -3} at 30 C and 100% relative humidity) to affect physical and chemical processes in the atmosphere. The determinations of additional thermodynamic properties ({Delta}G, {Delta}H, {Delta}S, C{sub P}, C{sub V}) for (H{sub 2}O){sub 2} are presented, and the role of quasi-bound states in the calculation of K{sub P} is discussed at length.

  18. Characterization of atmospheric deposition and runoff water in a small suburban catchment.

    PubMed

    Lamprea, Katerine; Ruban, Véronique

    2011-07-01

    A study has been carried out as part of the mission assigned to IRSTV (Research Institute of Urban Sciences and Techniques), a federative research network supported by the Loire Valley Region, with the objective of characterizing atmospheric deposition, roof runoff and street runoff in a small (31 ha) suburban catchment in Nantes equipped with a separate sewer system. Trace metals, polycyclic aromatic hydrocarbons (PAHs) and pesticides were investigated. The characterization of atmospheric deposition reveals a high variability of trace metal concentrations, which could not be explained by rainfall characteristics. The relative abundance order of the metals was as follows: Zn > Cu > Cr approximately Ni > Cd. Organic pollutants, i.e., PAHs and pesticides, were only rarely detected in the atmospheric deposition. Zn and Pb appear to be the major contaminants in runoff water, whereas the concentrations of Ni, Cu, Cr, Cd, PAHs and pesticides tend to remain low. On the whole, concentrations were similar to the lowest range reported in the literature. According to statutory thresholds, runoff water quality is poor because of the high Pb and Zn concentrations. Based on scanning electron microscopy observations, atmospheric particles do not apparently differ from runoff particles, with a predominance of pollen, bacteria and particles resulting from soil erosion. Spherical organic particles produced during fuel combustion have also been observed. PMID:21882566

  19. Loss of Water in Early Earth's Atmosphere and Its Effects on Habitability

    NASA Astrophysics Data System (ADS)

    Airapetian, Vladimir; Glocer, Alex; Khazanov, George

    2015-08-01

    The short wavelength emission from the Sun has a profound impact on the Earth’s atmosphere. High energy photons ionize the atmosphere and produce photoelectrons. This process provides a major contribution to the acceleration of atmospheric ions due to the vertical separation of ions and electrons, and the formation of the resulting ambipolar electric field. Observations and theory suggest that even a relatively small fraction of super-thermal electrons (photoelectrons) produced due to photoionization can drive the ”polar wind” that is responsible for the transport of ionospheric constituents to the Earth’s magnetosphere.The young Sun was a magnetically active star generating powerful radiative output from its chromosphere, transition region and corona which was a few hundred times greater than that observed today. What effects would the photoionization processes due to the X-ray-UV solar flux from early Sun have on the loss of water from the early Earth?We use the Fokker-Plank code coupled with 1D hydrodynamic code to model the effect of intensive short-wavelength (X-rays to UV band) emission from the young Sun (3.8 and 4.4 Ga) on Earth's atmosphere. Our simulations include the photoionization processes of the Earth’s atmosphere forming a population of photoelectrons (E<600 eV), the kinetic effects of their propagation associated and their contribution in ionosphere - magnetosphere energy redistribution. Our coupled simulations show that the ambipolar electric field can drag atmospheric ions of oxygen and hydrogen to the magnetosphere and produce significant mass loss that can affect the loss of water from the early Earth in the first half a billion years. This process became less efficient in the next 0.2-0.3 Ga that could have provided a window of opportunity for origin of life.

  20. Water vapor transport from the Indian monsoon region: the phenomenon of Atmospheric River

    NASA Astrophysics Data System (ADS)

    Raghav R., Sree; Mrudula, G.

    2016-05-01

    An Atmospheric/Tropospheric River (AR/TR) is a relatively narrow corridor of concentrated moisture where horizontal transport occurs in the lower atmosphere. They transport moisture from tropical regions towards the poles across the mid latitudes. Research of Atmospheric River over the Indian Monsoon region is not reported in literature. In this paper an attempt is made to examine the existence of AR in Indian Ocean and surrounding region. Meteorological parameters such as precipitable water, rainfall, air temperature and wind have been analyzed for the same. Analysis shows a clear evidence of the presence of Atmospheric River during the pre-monsoon and monsoon period. It is seen that there are variations in the origin, orientation, duration and also the formation of the river according to the vapor content in the Indian Ocean. During Elnino phase there is a pronounced transport of moisture through an Atmospheric River and also a high intensity transport occurs during monsoon period (JJA), even if moisture prevails over Indian monsoon region during other seasons also. Detailed results and extension to model forecasts will be presented in the paper.

  1. Characteristics of turbulence driven atmospheric blur over coastal water

    NASA Astrophysics Data System (ADS)

    de Jong, Arie N.; Schwering, Piet B. W.; Benoist, Koen W.; Gunter, Willem H.; Vrahimis, George; October, Faith J.

    2014-10-01

    For users of Electro-Optical (EO) sensors at sea, knowledge on their resolution is of key operational importance for the prediction of the obtainable classification ranges. Small targets may be located at ranges of 20 km and more and the present day sensor pixel size may be as small as 10 μrad. In this type of scenarios, sensor resolution will be limited by blur, generated by atmospheric turbulence, easily being greater than 30 μrad (at 20 km range). Predictions of the blur size are generally based upon the theory, developed by Fried [1]. In this theory, the turbulence strength is characterized by the structure parameter for the refractive index Cn 2, of which data are assumed to be available from secondary instruments. The theory predicts the atmospheric Modulation Transfer Function (MTF), which can be incorporated into the total system MTF, used in range performance predictions, as described by Holst [2]. Validation of blur predictions by measurements is a complex effort due to the rapid variations of the blur with time and the problems associated with the simultaneous acquisition of proper Cn 2 data. During the FATMOSE trial, carried out over a range of 15.7 km in the False Bay near Simon's Town (South Africa) from November 2009 to October 2010, these data were collected in a large variety of atmospheric conditions [3]. In stead of the atmospheric MTF, the horizontal and vertical line spread function (LSF) was measured with a camera with 5 μrad resolution. Various methods for the determination of the LSF and the associated problems are discussed in the paper. The width of the LSF is via its Fourier transform directly related to the MTF. Cn 2 data were collected with a standard BLS scintillometer over a nearby range. Additional Cn 2 data were obtained via conversion of the scintillation data from the same camera and from a high speed transmissometer, collecting data over the same range. Comparisons between blur and Beam Wander predictions and measurements from

  2. Metrological challenges for measurements of key climatological observables, Part 4: Atmospheric relative humidity

    PubMed Central

    Lovell-Smith, J W; Feistel, R; Harvey, A H; Hellmuth, O; Bell, S A; Heinonen, M; Cooper, J R

    2016-01-01

    Water in its three ambient phases plays the central thermodynamic role in the terrestrial climate system. Clouds control Earth’s radiation balance, atmospheric water vapour is the strongest “greenhouse” gas, and non-equilibrium relative humidity at the air-sea interface drives evaporation and latent heat export from the ocean. In this paper, we examine the climatologically relevant atmospheric relative humidity, noting fundamental deficiencies in the definition of this key observable. The metrological history of this quantity is reviewed, problems with its current definition and measurement practice are analysed, and options for future improvements are discussed in conjunction with the recent seawater standard TEOS-10. It is concluded that the International Bureau of Weights and Measures, (BIPM), in cooperation with the International Association for the Properties of Water and Steam, IAPWS, along with other international organisations and institutions, can make significant contributions by developing and recommending state-of-the-art solutions for this long standing metrological problem, such as are suggested here. PMID:26877551

  3. Metrological challenges for measurements of key climatological observables. Part 4: atmospheric relative humidity

    NASA Astrophysics Data System (ADS)

    Lovell-Smith, J. W.; Feistel, R.; Harvey, A. H.; Hellmuth, O.; Bell, S. A.; Heinonen, M.; Cooper, J. R.

    2016-02-01

    Water in its three ambient phases plays the central thermodynamic role in the terrestrial climate system. Clouds control Earth’s radiation balance, atmospheric water vapour is the strongest ‘greenhouse’ gas, and non-equilibrium relative humidity at the air-sea interface drives evaporation and latent heat export from the ocean. In this paper, we examine the climatologically relevant atmospheric relative humidity, noting fundamental deficiencies in the definition of this key observable. The metrological history of this quantity is reviewed, problems with its current definition and measurement practice are analysed, and options for future improvements are discussed in conjunction with the recent seawater standard TEOS-10. It is concluded that the International Bureau of Weights and Measures (BIPM), in cooperation with the International Association for the Properties of Water and Steam (IAPWS), along with other international organizations and institutions, can make significant contributions by developing and recommending state-of-the-art solutions, such as are suggested here, for what are long-standing metrological problems.

  4. Enhancing our Understanding of the Arctic Atmospheric Hydrological Cycle using Observations from an International Arctic Water Vapor Isotope Network

    NASA Astrophysics Data System (ADS)

    Masson-Delmotte, V.; Steen-Larsen, H. C.; Werner, M.

    2014-12-01

    Due to the role of water vapor and clouds in positive feedback mechanisms, water vapor is a key player in the future of Arctic climate. Ecosystems and human societies are vulnerable to climate change through even minor changes in precipitation patterns, including the occurrence of extreme events. It is therefore essential to monitor, understand and model correctly the mechanisms of transport of moisture, at the regional scale. Water isotopes - the relative abundance of heavy and light water in the atmosphere - hold the key to understanding the physical processes influencing future Arctic climate. Water isotope observations in the atmosphere are a modern analog to the Rosetta Stone for understanding the processes involved in evaporation, moisture transport, cloud formation and to track moisture origin. Indeed, technological progress now allows continuous, in situ or remote sensing monitoring of water isotopic composition. In parallel, a growing number of atmospheric circulation models are equipped with the explicit modeling of water stable isotopes, allowing evaluation at the process scale. We present here data obtained through national or bi-national initiatives from stations onboard an icebreaker and land based stations in Greenland, Iceland, Svalbard, and Siberia - together forming an emerging international Arctic water vapor isotope network. Using water tagging and back trajectories we show water vapor of Arctic origin to have a high d-excess fingerprint. This show the potential of using water vapor isotopes as tracer for changes in the Arctic hydrological cycle. Using the network of monitoring stations we quantify using the isotopes advection of air masses and the key processes affecting the water vapor en-route between stations. We have successfully used the obtained atmospheric water vapor isotope observations to benchmark isotope-enabled general circulation models. This comparison allows us to address key processes of the atmospheric hydrological cycle for

  5. A new means for observation of small comets and other water-laden bodies entering earth's upper atmosphere

    NASA Technical Reports Server (NTRS)

    Banks, Peter M.

    1989-01-01

    This paper shows that the infrared radiance of comet-associated water vapor clouds described by Frank et al. (1986b) is large relative to natural background emissions. This IR emission arises from scattering of solar radiation and earth-shine and from excitation by upper atmospheric atomic oxygen. As a consequence, observations in space or from high-altitude platforms should provide an unambiguous signature of the entry of such objects into earth's atmosphere.

  6. Remote Sensing of Atmospheric Water Vapour by Pressure Modulation Radiometry.

    NASA Astrophysics Data System (ADS)

    Davis, G. R.

    1987-09-01

    Available from UMI in association with The British Library. Requires signed TDF. The Stratospheric and Mesospheric Sounder (SAMS) was a limb-sounding satellite experiment which used the technique of pressure modulation radiometry to measure the temperature and constituent distributions in the middle atmosphere. Two channels in the SAMS were devoted to the detection of water vapour, but the analysis of these data have produced unexpectedly high mixing ratios in the region of the stratopause. This thesis describes an attempt to resolve the discrepancy between theory and experiment by a laboratory investigation of the pressure modulation of water vapour. The central role of water vapour in the physics and chemistry of the middle atmosphere and previous attempts to measure its abundance are discussed. It is shown that the intercomparison of humidity sensing instruments has not produced a consensus and that the accuracy of the reported measurements is therefore in question. The SAMS water vapour channels are described and the need is shown for a laboratory transmission experiment. The pressure modulation technique is described in chapter 2 and a mathematical formulation is given. The constraints due to contaminant signals and harmonic contributions are considered and the use of the square wave chopping approximation in the interpretation of the measurements is discussed. In chapter 3, the spectroscopy of the H _2O rotation band is considered and it is shown that there are large uncertainties in most aspects of the problem due to the lack of spectroscopic measurements in this spectral region. In particular, the shapes of the collision broadened line wings under both self and foreign broadened conditions are poorly determined, a situation which is especially problematic for pressure modulation radiometry. The pressure modulation of water vapour is investigated in chapter 4 and it is shown by direct measurement of the pressure cycle that the linear model used by previous

  7. A relative performance analysis of atmospheric Laser Doppler Velocimeter methods.

    NASA Technical Reports Server (NTRS)

    Farmer, W. M.; Hornkohl, J. O.; Brayton, D. B.

    1971-01-01

    Evaluation of the effectiveness of atmospheric applications of a Laser Doppler Velocimeter (LDV) at a wavelength of about 0.5 micrometer in conjunction with dual scatter LDV illuminating techniques, or at a wavelength of 10.6 micrometer with local oscillator LDV illuminating techniques. Equations and examples are given to provide a quantitative basis for LDV system selection and performance criteria in atmospheric research. The comparative study shows that specific ranges and conditions exist where performance of one of the methods is superior to that of the other. It is also pointed out that great care must be exercised in choosing system parameters that optimize a particular LDV designed for atmospheric applications.

  8. Novel Cross-Band Relative Absorption (CoBRA) technique For Measuring Atmospheric Species

    NASA Astrophysics Data System (ADS)

    Prasad, N. S.; Pliutau, D.

    2013-12-01

    We describe a methodology called Cross-Band Relative Absorption (CoBRA) we have implemented to significantly reduce interferences due to variations in atmospheric temperature and pressure in molecular mixing ration measurements [1-4]. The interference reduction is achieved through automatic compensation based on selecting spectral line pairs exhibiting similar evolution behavior under varying atmospheric conditions. The method is applicable to a wide range of molecules including CO2 and CH4 which can be matched with O2 or any other well-mixed atmospheric molecule. Such matching results in automatic simultaneous adjustments of the spectral line shapes at all times with a high precision under varying atmospheric conditions of temperature and pressure. We present the results of our selected CoBRA analysis based on line-by-line calculations and the Modern Era Retrospective Analysis for Research and Applications (MERRA) dataset including more recent evaluation of the error contributions due to water vapor interference effects. References: 1) N. S. Prasad, D. Pliutau, 'Cross-band relative absorption technique for the measurement of molecular mixing ratios.', Optics Express, Vol. 21, Issue 11, pp. 13279-13292 (2013) 2) D. Pliutau and N. S. Prasad, "Cross-band Relative Absorption Technique for Molecular Mixing Ratio Determination," in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3L.4. 3) Denis Pliutau; Narasimha S. Prasad; 'Semi-empirical validation of the cross-band relative absorption technique for the measurement of molecular mixing ratios',.Proc. SPIE 8731, Laser Radar Technology and Applications XVIII, 87310L (May 20, 2013); doi:10.1117/12.2016661. 4) Denis Pliutau,; Narasimha S. Prasad; 'Comparative analysis of alternative spectral bands of CO2 and O2 for the sensing of CO2 mixing ratios' Proc. SPIE 8718, Advanced Environmental, Chemical, and Biological Sensing Technologies X, 87180L (May 31, 2013); doi:10.1117/12.2016337.

  9. Seasonal and global behavior of water vapor in the Mars atmosphere: Complete global results of the Viking atmospheric water detector experiment

    SciTech Connect

    Jakosky, B.M.; Farmer, C.B.

    1982-04-10

    The water vapor content of the Mars atmosphere was measured from the Viking Orbiter Mars Atmospheric Water Detectors (MAWD) for a period of more than 1 Martian year, from June 1976 through April 1979. Results are presented in the form of global maps of column abundance for 24 periods throughout each Mars year. The data reduction incorporates spatial and seasonal variations in surface pressure and supplements earlier published versions of less complete data.

  10. International Space Station Atmosphere Control and Supply, Atmosphere Revitalization, and Water Recovery and Management Subsystem - Verification for Node 1

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2007-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 ACS, AR, and WRM design and detailed Element Verification methodologies utilized during the Qualification phase for Node 1.

  11. Water cycles in closed ecological systems: effects of atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Rygalov, Vadim Y.; Fowler, Philip A.; Metz, Joannah M.; Wheeler, Raymond M.; Bucklin, Ray A.; Sager, J. C. (Principal Investigator)

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from 1 to 10 L m-2 d-1 (1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  12. Water cycles in closed ecological systems: effects of atmospheric pressure.

    PubMed

    Rygalov, Vadim Y; Fowler, Philip A; Metz, Joannah M; Wheeler, Raymond M; Bucklin, Ray A

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from ~1 to 10 L m-2 d-1 (~1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems. PMID:12481804

  13. Low-cost and easy experiments about water in the atmosphere

    NASA Astrophysics Data System (ADS)

    Costa, M.; Mazon, J.

    2012-04-01

    Atmospheric water represents only the 0,001% of the total water in the hydrosphere. Despite this tiny percentage, the physical changes water experiences in the atmosphere are essential for the conservation of this substance in our planet. Often, the understanding of the presence of water in the Earth's atmosphere and its physical changes inside this gas layer are difficult for most secondary and primary school students. We present 5 examples of simple practical activities that will facilitate students to think about and understand some important concepts about atmospheric water. Two of the basic principles to bear in mind when designing these activities are the use of cheap and easy to find materials and the simplicity of the construction and development of each activity. This simplicity makes it possible for the students to easily carry the experiments in the classroom or in the laboratory, using only a part of a class session. We think that the use of these kinds of activities enables us to work some basic concepts about atmospheric water with the students which lead to a more meaningful understanding, not only of these concepts but also of many other processes related to this part of the hydrosphere, such as meteorological phenomena, erosion, floods, etc. Here we present a brief description of the five experiments we suggest: 1- a crazy thermometer? Using water at the same temperature of the air, a piece of paper and two thermometers, we can easily "build" a dry and a wet bulb thermometer. Making questions about the differences between the temperatures of both thermometers we can understand what the air's humidity is and how we can calculate it. 2- what are clouds made of? Most of people think that clouds are made of water vapour. Observing what happens with the air above a small container filled with warm water when we approach a tray containing ice, we can conduct a Socratic dialogue that allows us to understand that clouds are made of ice or liquid water

  14. Tm:germanate Fiber Laser for Planetary Water Vapor Atmospheric Profiling

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; De Young, Russell

    2009-01-01

    The atmospheric profiling of water vapor is necessary for finding life on Mars and weather on Earth. The design and performance of a water vapor lidar based on a Tm:germanate fiber laser is presented.

  15. Relation of Chlorofluorocarbon Ground-Water Age Dates to Water Quality in Aquifers of West Virginia

    USGS Publications Warehouse

    McCoy; Kurt, J.; Kozar, Mark D.

    2007-01-01

    The average apparent age of ground water in fractured-bedrock aquifers in West Virginia was determined using chlorofluorocarbon (CFC) dating methods. Since the introduction of CFC gases as refrigerants in the late 1930s, atmospheric concentrations have increased until production ceased in the mid-1990s. CFC dating methods are based on production records that date to the early 1940s, and the preservation of atmospheric CFC concentrations in ground water at the time of recharge. As part of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) and Ambient Ground-Water Monitoring Network (AGN) programs in West Virginia from 1997 to 2005, 80 samples from the Appalachian Plateaus Physiographic Province, 27 samples from the Valley and Ridge Physiographic Province, and 5 samples from the Ohio River alluvial aquifers were collected to estimate ground-water ages in aquifers of West Virginia. Apparent CFC ages of water samples from West Virginia aquifers ranged from 5.8 to 56 years. In the Appalachian Plateaus, topographically driven ground-water flow is evident from apparent ages of water samples from hilltop, hillside, and valley settings (median apparent ages of 12, 14, and 25 years, respectively). Topographic setting was the only factor that was found to be related to apparent ground-water age in the Plateaus at the scale of this study. Similar relations were not found in Valley and Ridge aquifers, indicating that other factors such as bedding or geologic structure may serve larger roles in controlling ground-water flow in that physiographic province. Degradation of CFCs was common in samples collected from methanogenic/anoxic aquifers in the Appalachian Plateaus and suboxic to anoxic aquifers in the Valley and Ridge. CFC contamination was most common in Ohio River alluvial aquifers and carbonate units of the Valley and Ridge, indicating that these highly transmissive surficial aquifers are the most vulnerable to water-quality degradation and may

  16. Latitudinal survey of middle atmospheric water vapor revealed by shipboard microwave spectroscopy. Master's thesis

    SciTech Connect

    Schrader, M.L.

    1994-05-01

    Water vapor is one of the most important greenhouse gases and is an important tracer of atmospheric motions in the middle atmosphere. It also plays an important role in the chemistry of the middle atmosphere and through its photodissociation by solar radiation, it is the major source of hydrogen escaping to space. Ground-based microwave measurements conducted in the 1980s have provided a fair understanding of the seasonal variation of mesospheric water vapor in the northern hemisphere mid-latitudes, but the global distribution of water vapor in the middle atmosphere is only beginning to be revealed by space-based measurements.

  17. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    SciTech Connect

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias R.; Gilles, Marry K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2012-09-25

    Atmospheric ice formation induced by particles with complex chemical and physical properties through heterogeneous nucleation is not well understood. Heterogeneous ice nucleation and water uptake by ambient particles collected from urban environments in Los Angeles and Mexico City are presented. Using a vapour controlled cooling system equipped with an optical microscopy, the range of onset conditions for ice nucleation and water uptake by the collected particles was determined as a function of temperature (200{273 K) and relative humidity with respect to ice (RHice) up to water saturation. Three distinctly different types of authentic atmospheric particles were investigated including soot particles associated with organics/inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn containing inorganic particles apportioned to anthropogenic emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption ne structure spectroscopy (STXM/NEXAFS). Above 230 K, signicant differences in water uptake and immersion freezing effciencies of the different particle types were observed. Below 230 K, the particles exhibited high deposition ice nucleation effciencies and formed ice at RHice values well below homogeneous ice nucleation limits. The data show that the chemical composition of these eld{collected particles plays an important role in determining water uptake and immersion freezing. Heterogeneous ice nucleation rate coeffcients, cumulative ice nuclei (IN) spectrum, and IN activated fraction for deposition ice nucleation are derived. The presented ice nucleation data demonstrate that anthropogenic and marine particles comprising of various chemical and physical properties exhibit distinctly different ice

  18. Seasonal changes of water carbon relations in savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Kutsch, W. L.; Merbold, L.; Archibald, S.

    2011-12-01

    During evolution plant species have developed different strategies to optimize the water carbon relations. These stratgies summarize to ecosystem properties. As an example we show how tropical and subtropical savannas and woodlands can respond flexibly to changes in temperature and water availability and thus optimize carbon and water fluxes between land surface and atmosphere. Several phenomena are presented and discussed in this overview from African flux sites in Zambia, Burkina Faso and South Africa: Pre-rain leaf development: Many trees developed new leaves before the first rain appeared. As a consequence of this early timing of leaf flush, the phenological increase of photosynthetic capacity (Amax) was steeper than in temperate forests. Mid-term response of conductance and photosynthesis to soil water relations: The regulation of canopy conductance was temporally changing in two ways: changes due to phenology during the course of the growing season and short-term (hours to days) acclimation to soil water conditions. The most constant parameter was water use efficiency. It was influenced by water vapour pressure deficit (VPD) during the day, but the VPD response curve of water usage only changed slightly during the course of the growing season, and decreased by about 30% during the transition from wet to dry season. The regulation of canopy conductance and photosynthetic capacity were closely related. This observation meets recent leaf-level findings that stomatal closure triggers down-regulation of Rubisco during drought. Our results may show the effects of these processes on the ecosystem scale. Furthermore, we observed that the close relationship between stomatal conductance and photosynthesis resulted in different temperature optima of GPP that were close to the average daytime temperature. Adaptation of respiration to rain pulses: Finally, the response of respiration to rain pulses showed changes throughout the growing season. The first rain events early

  19. Water solubility in rhyolitic silicate melts at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Ryan, Amy; Russell, Kelly; Nichols, Alexander; Porritt, Lucy; Friedlander, Elizabeth

    2014-05-01

    High temperature (900-1100 °C) experiments have been conducted to measure the solubility of water in a rhyolitic melt at atmospheric pressure (1 atm) and to quantify the magnitude of retrograde solubility at low pressure. Individual cores (1 cm x 1 cm) of crystal- and bubble-free rhyolitic obsidian from Hrafntinnugryggur, Krafla (Iceland) were held in a furnace at 900-1100 °C for 0.25 to 20 hours. During this time, the uniform bubble-free cores vesiculate to produce variably swollen bubble-rich run products. The volume change in each core reflects the volume of bubbles produced in each experiment and depends on the experimental temperature and the time held at that temperature. The run product volumes for isothermal experiments (e.g., 950 °C) increase non-linearly with increasing time (e.g., 0.18 cm3 at 1.5 h, 0.96 cm3 at 12.5 h) until reaching a maximum value, after which the volume does not change appreciably. We take this plateau in the isothermal volume:time curve as coinciding with the 1 atm. solubility limit for the rhyolite at this temperature. With increasing temperature, the slope and final horizontal plateaus of the volume:time curves increase such that samples from the higher temperature suites vesiculate more, as well as more rapidly (e.g., 0.85 cm3 after 0.5 hours, 1.78 cm3 after 1 hour at 1100 °C). The variations in the maximum volume of bubbles produced for each temperature constrain the retrograde solubility of water in the melt at 1 atm. Fourier transform infrared spectroscopy (FTIR) analyses of the residual water content of the glass in the starting material and in the most vesiculated sample from each temperature suite shows a decrease in the water content of the glass from an initial 0.114 wt% (σ 0.013) to 0.098 wt% (σ 0.010), 0.087 wt% (σ 0.009), 0.093 wt% (σ 0.008), 0.090 wt% (σ 0.006) and 0.108 wt% (σ 0.010) for 900 °C, 950 °C, 1000 °C, 1050 °C and 1100 °C respectively. This change in the solubility of water at different

  20. Elevated atmospheric CO2 increases water use efficiency in Florida scrub oak

    NASA Astrophysics Data System (ADS)

    Drake, B. G.; Hayek, L. C.; Johnson, D. P.; Li, J.; Powell, T. L.

    2009-12-01

    Plants are expected to have higher rates of photosynthesis and reduced transpiration as atmospheric CO2 (Ca) continues to rise. But will higher Ca reduce water loss, and increase water use efficiency and soil water in native ecosystems? We tested this question using large (3.0m by 2.8m) open top chambers to expose Florida scrub oak on Merritt Island Wildlife Refuge, Kennedy Space Center, FL, from May 1996 to June 2007 to elevated levels of atmospheric CO2, (Ce = Ca + 350ppm) compared to ambient Ca. Although Ce stimulated total shoot biomass 68% by the end of the study, the effect of Ce on annual growth declined each year (Seiler et al. 2009, Global Change Biology15, 356-367). Compared with the effects of Ca, Ce increased net ecosystem CO2 exchange approximately 70% on average for the entire study, increased leaf area index (LAI) seasonally, reduced evapotranspiration except during mid-summer of some years, and, depending on the relative effect of Ce on LAI, increased volumetric soil water content.. These results are consistent with the observation that continental river discharge has increased as Ca has risen throughout the past 50 years (Gedney et al., Nature, Vol. 439, 16 February 2006).

  1. Flux of water vapor in the terrestrial stratosphere and in the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Leovy, Conway; Hitchman, Matthew; Mccleese, Daniel J.

    1988-01-01

    A summary of the terrestrial satellite data is presented. The observations indicate that at equatorial latitudes, relatively dry air is introduced at the tropopause and carried to the upper stratosphere. At that altitude, any methane present in the ascending air mass is oxidized photochemically into water vapor. This vapor is eventually transported to high latitudes, where it is carried to the lower stratosphere by the descending leg of the diabatic circulation. The Pressure Modulator Infrared Radiometer instrument aboard the Mars Observer should provide a comparable picture of vapor transport in the martian atmosphere.

  2. Tracking atmospheric boundary layer dynamics with water vapor D-excess observations

    NASA Astrophysics Data System (ADS)

    Parkes, Stephen; McCabe, Matthew; Griffiths, Alan; Wang, Lixin

    2015-04-01

    Stable isotope water vapor observations present a history of hydrological processes that have impacted on an air mass. Consequently, there is scope to improve our knowledge of how different processes impact on humidity budgets by determining the isotopic end members of these processes and combining them with in-situ water vapor measurements. These in-situ datasets are still rare and cover a limited geographical expanse, so expanding the available data can improve our ability to define isotopic end members and knowledge about atmospheric humidity dynamics. Using data collected from an intensive field campaign across a semi-arid grassland site in eastern Australia, we combine multiple methods including in-situ stable isotope observations to study humidity dynamics associated with the growth and decay of the atmospheric boundary layer and the stable nocturnal boundary layer. The deuterium-excess (D-excess) in water vapor is traditionally thought to reflect the sea surface temperature and relative humidity at the point of evaporation over the oceans. However, a number of recent studies suggest that land-atmosphere interactions are also important in setting the D-excess of water vapor. These studies have shown a highly robust diurnal cycle for the D-excess over a range of sites that could be exploited to better understand variations in atmospheric humidity associated with boundary layer dynamics. In this study we use surface radon concentrations as a tracer of surface layer dynamics and combine these with the D-excess observations. The radon concentrations showed an overall trend that was inversely proportional to the D-excess, with early morning entrainment of air from the residual layer of the previous day both diluting the radon concentration and increasing the D-excess, followed by accumulation of radon at the surface and a decrease in the D-excess as the stable nocturnal layer developed in the late afternoon and early evening. The stable nocturnal boundary layer

  3. Effects of the gaseous and liquid water content of the atmosphere on range delay and Doppler frequency

    NASA Technical Reports Server (NTRS)

    Flock, W. L.

    1981-01-01

    When high precision is required for range measurement on Earth space paths, it is necessary to correct as accurately as possible for excess range delays due to the dry air, water vapor, and liquid water content of the atmosphere. Calculations based on representative values of atmospheric parameters are useful for illustrating the order of magnitude of the expected delays. Range delay, time delay, and phase delay are simply and directly related. Doppler frequency variations or noise are proportional to the time rate of change of excess range delay. Tropospheric effects were examined as part of an overall consideration of the capability of precision two way ranging and Doppler systems.

  4. Atmospheric constraints on Plant Water Use Efficiency - drivers and regional patterns of change since 1900

    NASA Astrophysics Data System (ADS)

    Groenendijk, M.; Cox, P.; Lambert, F. H.; Booth, B.; Huntingford, C.

    2013-12-01

    Water Use Efficiency (WUE) defines the relationship between land-atmosphere water and carbon fluxes. With this simple mechanism, hydrological and carbon-cycle responses of vegetation to climate change can be more easily quantified. WUE increases with atmospheric carbon dioxide (CO2) concentration but also depends on changes in humidity and temperature. A positive CO2 fertilization effect can be locally constrained by humidity and temperature. By combining observed trends of these three climate variables over the 20th century regional trends in WUE can be calculated. The ecosystem WUEe is defined as a ratio of gross primary production and transpiration fluxes. On the leaf scale this is equal to the atmospheric WUEa, which is a function of the ambient and internal CO2 concentration, the saturated specific humidity (a function of temperature) and relative humidity. Using Fluxnet and CRU TS3.2 observations, and the JULES and HadCM3 models we explore the temporal and spatial variation of WUEe and WUEa, and how they respond to climate change. Leaf level definitions are valid at site level, where WUEe and WUEa simulated with JULES are equal and linearly increasing with atmospheric CO2 concentration for a range of sites. For drier sites lower values of both were simulated. The simulated values are within the same range as values derived from eddy covariance observations. Having shown the near equivalence between WUEe and WUEa for specific sites, we can use the formula for WUEa to estimate the change in global plant WUE over the 20th century, using observed climatological data and CO2 concentrations. The global average WUE increased by 25% since 1900, closely following the atmospheric CO2 concentration. But we identify large regional variation, with regions where WUE increased, but some significant regions where WUE has actually decreased during the last century. Here the CO2 fertilization effect is overtaken by an increasing offsetting temperature and related saturated

  5. Seasonal Water Transport in the Atmosphere of Mars: Applications of a Mars General Circulation Model Using Mars Global Surveyor Data

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1999-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. We present below a summary of progress made during the duration of this JRI. The focus of this JRI has been to investigate seasonal water vapor transport in the atmosphere of Mars and its effects on the planet's present climate. To this end, the primary task has been to adapt a new dynamical processor for the adiabatic tendencies of the atmospheric circulation into the NASA Ames Mars general circulation model (MGCM). Using identical boundary and initial conditions, several comparative tests between the new and old MGCMs have been performed and the nature of the simulated circulations have been diagnosed. With confidence that the updated version of the Ames MGCM produces quite similar mean and eddy circulation statistics, the new climate model is well poised as a tool to pursue fundamental questions related to the spatial and seasonal variations of atmospheric water vapor on Mars, and to explore exchanges of water with non-atmospheric reservoirs and transport within its atmosphere. In particular, the role of surface sources and sinks can be explored, the range of water-vapor saturation altitudes can be investigated, and plausible precipitation mechanisms can be studied, for a range of atmospheric dust loadings, such future investigations can contribute to a comprehensive study of surface inventories, exchange mechanisms, and the relative importance of atmospheric transport Mars' water cycle. A listing of presentations made and manuscripts submitted during the course of this project is provided.

  6. Seasonal Water Transport in the Atmosphere of Mars: Applications of a Mars General Circulation Model Using Mars Global Surveyor Data

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1999-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. We present below a summary of progress made during the duration of this JRI. The focus of this JRI has been to investigate seasonal water vapor transport in the atmosphere of Mars and its effects on the planet's present climate. To this end, the primary task has been to adapt a new dynamical processor for the adiabatic tendencies of the atmospheric circulation into the NASA Ames Mars general circulation model (MGCM). Using identical boundary and initial conditions, several comparative tests between the new and old MGCMs have been performed and the nature of the simulated circulations have been diagnosed. With confidence that the updated version of the Ames MGCM produces quite similar mean and eddy circulation statistics, the new climate model is well poised as a tool to pursue fundamental questions related to the spatial and seasonal variations of atmospheric water vapor on Mars, and to explore exchanges of water with non-atmospheric reservoirs and transport within its atmosphere. In particular, the role of surface sources and sinks can be explored, the range of water-vapor saturation altitudes can be investigated, and plausible precipitation mechanisms can be studied, for a range of atmospheric dust loadings. Such future investigations can contribute to a comprehensive study of surface inventories, exchange mechanisms, and the relative importance of atmospheric transport Mars' water cycle. A listing of presentations made and manuscripts submitted during the course of this project is provided.

  7. Mars global atmospheric oscillations: Transients and dust storm relations

    NASA Technical Reports Server (NTRS)

    Tillman, James E.

    1987-01-01

    It is showed that periods of enhanced quasitidal pressure oscillations occur during the season preceding the global dust storm season during every Martian year. Periods of these oscillations often differ slightly from the diurnal and semidiurnal, and the oscillations may correspond to atmospheric normal modes excited by solar heating. They may also contribute to the initiation of some global dust storms.

  8. Atmospheric Turbulence Relative to Aviation, Missile, and Space Programs

    NASA Technical Reports Server (NTRS)

    Camp, Dennis W. (Editor); Frost, Walter (Editor)

    1987-01-01

    The purpose of the workshop was to bring together various disciplines of the aviation, missile, and space programs involved in predicting, measuring, modeling, and understanding the processes of atmospheric turbulence. Working committees re-examined the current state of knowledge, identified present and future needs, and documented and prioritized integrated and cooperative research programs.

  9. Water-related absorption in fibrous diamonds

    NASA Astrophysics Data System (ADS)

    Zedgenizov, D. A.; Shiryaev, A. A.; Kagi, H.; Navon, O.

    2003-04-01

    Cubic and coated diamonds from several localities (Brasil, Canada, Yakutia) were investigated using spectroscopic techniques. Special emphasis was put on investigation of water-related features of transmission Infra-red and Raman spectra. Presence of molecular water is inferred from broad absorption bands in IR at 3420 and 1640 cm-1. These bands were observed in many of the investigated samples. It is likely that molecular water is present in microinclusions in liquid state, since no clear indications of solid H_2O (ice VI-VII, Kagi et al., 2000) were found. Comparison of absorption by HOH and OH vibrations shows that diamonds can be separated into two principal groups: those containing liquid water (direct proportionality of OH and HOH absorption) and those with stronger absorption by OH group. Fraction of diamonds in every group depends on their provenance. There might be positive correlation between internal pressure in microinclusions (determined using quartz barometer, Navon et al., 1988) and affiliation with diamonds containing liquid water. In many cases absorption by HOH vibration is considerably lower than absorption by hydroxyl (OH) group. This may be explained if OH groups are partially present in mineral and/or melt inclusions. This hypothesis is supported by following fact: in diamonds with strong absorption by silicates and other minerals shape and position of the OH band differs from that in diamonds with low absorption by minerals. Moreover, in Raman spectra of individual inclusions sometimes the broad band at 3100 cm-1 is observed. This band is OH-related. In some samples water distribution is not homogeneous. Central part of the diamond usually contains more water than outer parts, but this is not a general rule for all the samples. Water absorption usually correlated with absorption of other components (carbonates, silicates and others). At that fibrous diamonds with relatively high content of silicates are characterized by molecular water. OH

  10. Measurement of the atmospheric muon depth intensity relation with the NEMO Phase-2 tower

    NASA Astrophysics Data System (ADS)

    Aiello, S.; Ameli, F.; Anghinolfi, M.; Barbarino, G.; Barbarito, E.; Barbato, F.; Beverini, N.; Biagi, S.; Bouhadef, B.; Bozza, C.; Cacopardo, G.; Calamai, M.; Calí, C.; Capone, A.; Caruso, F.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Costa, M.; Cuttone, G.; D'Amato, C.; D'Amico, A.; De Bonis, G.; De Luca, V.; Deniskina, N.; De Rosa, G.; Di Capua, F.; Distefano, C.; Fermani, P.; Flaminio, V.; Fusco, L. A.; Garufi, F.; Giordano, V.; Gmerk, A.; Grasso, R.; Grella, G.; Hugon, C.; Imbesi, M.; Kulikovskiy, V.; Larosa, G.; Lattuada, D.; Leismueller, K. P.; Leonora, E.; Litrico, P.; Lonardo, A.; Longhitano, F.; Lo Presti, D.; Maccioni, E.; Margiotta, A.; Martini, A.; Masullo, R.; Migliozzi, P.; Migneco, E.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Morganti, M.; Musico, P.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Papaleo, R.; Pellegrino, C.; Pellegriti, M. G.; Perrina, C.; Piattelli, P.; Pugliatti, C.; Pulvirenti, S.; Orselli, A.; Raffaelli, F.; Randazzo, N.; Riccobene, G.; Rovelli, A.; Sanguineti, M.; Sapienza, P.; Sciacca, V.; Sgura, I.; Simeone, F.; Sipala, V.; Speziale, F.; Spina, M.; Spitaleri, A.; Spurio, M.; Stellacci, S. M.; Taiuti, M.; Terreni, G.; Trasatti, L.; Trovato, A.; Ventura, C.; Vicini, P.; Viola, S.; Vivolo, D.

    2015-06-01

    The results of the analysis of the data collected with the NEMO Phase-2 tower, deployed at 3500 m depth about 80 km off-shore Capo Passero (Italy), are presented. Čerenkov photons detected with the photomultipliers tubes were used to reconstruct the tracks of atmospheric muons. Their zenith-angle distribution was measured and the results compared with Monte Carlo simulations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is also included. The associated depth intensity relation was evaluated and compared with previous measurements and theoretical predictions. With the present analysis, the muon depth intensity relation has been measured up to 13 km of water equivalent.

  11. Land atmosphere exchange of water and energy in global change modeling

    SciTech Connect

    Dickinson, R.E.

    1995-06-01

    The biosphere is crucially coupled to the atmosphere through exchanges of water and energy and these exchanges are important for the modeling of global climate change. Key surface properties for modeling inputs to the atmosphere are albedo, aerodynamic roughness, canopy resistance to water flux and water holding capacity of soils. This paper indicates how these affect climate models and what are current limitations in specifying them. One of the recent surprises from research in this area is the strong effect these processes can have on the atmospheric hydrological cycle, and especially precipitation. Modeling of the surface energy and water processes determines such important quantities as surface temperature and moisture availability for vegetation and runoff, and in general, the physical environment for the biosphere. Global atmospheric models are still inadequate for provision of realistic inputs of solar energy and precipitation, but are improving. Ultimately, their success depends on improved treatments of the atmospheric hydrological cycle, which is a key question for current climate research.

  12. Atmospheric Dynamics Deduced from UARS Using Middle Atmosphere ISAMS Carbon Monoxide and Upper-Tropospheric MLS Water Vapor and Ice Data

    NASA Technical Reports Server (NTRS)

    Standford, John L.

    2002-01-01

    This project involved analyses of atmospheric constituent data fields, carbon monoxide in the upper stratospheric/lower mesosphere, and water vapor in the upper troposphere. The observational data analyses were compared with atmospheric models.

  13. Atmospheric water vapor transport: Estimation of continental precipitation recycling and parameterization of a simple climate model. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Brubaker, Kaye L.; Entekhabi, Dara; Eagleson, Peter S.

    1991-01-01

    The advective transport of atmospheric water vapor and its role in global hydrology and the water balance of continental regions are discussed and explored. The data set consists of ten years of global wind and humidity observations interpolated onto a regular grid by objective analysis. Atmospheric water vapor fluxes across the boundaries of selected continental regions are displayed graphically. The water vapor flux data are used to investigate the sources of continental precipitation. The total amount of water that precipitates on large continental regions is supplied by two mechanisms: (1) advection from surrounding areas external to the region; and (2) evaporation and transpiration from the land surface recycling of precipitation over the continental area. The degree to which regional precipitation is supplied by recycled moisture is a potentially significant climate feedback mechanism and land surface-atmosphere interaction, which may contribute to the persistence and intensification of droughts. A simplified model of the atmospheric moisture over continents and simultaneous estimates of regional precipitation are employed to estimate, for several large continental regions, the fraction of precipitation that is locally derived. In a separate, but related, study estimates of ocean to land water vapor transport are used to parameterize an existing simple climate model, containing both land and ocean surfaces, that is intended to mimic the dynamics of continental climates.

  14. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias; Gilles, Mary K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2012-09-01

    Ice formation induced by atmospheric particles through heterogeneous nucleation is not well understood. Onset conditions for heterogeneous ice nucleation and water uptake by particles collected in Los Angeles and Mexico City were determined as a function of temperature (200-273 K) and relative humidity with respect to ice (RHice). Four dominant particle types were identified including soot associated with organics, soot with organic and inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn-containing particles apportioned to emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Above 230 K, significant differences in onsets of water uptake and immersion freezing of different particle types were observed. Below 230 K, particles exhibited high deposition ice nucleation efficiencies and formed ice atRHicewell below homogeneous ice nucleation limits. The data suggest that water uptake and immersion freezing are more sensitive to changes in particle chemical composition compared to deposition ice nucleation. The data demonstrate that anthropogenic and marine influenced particles, exhibiting various chemical and physical properties, possess distinctly different ice nucleation efficiencies and can serve as efficient IN at atmospheric conditions typical for cirrus and mixed-phase clouds.

  15. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias; Gilles, Mary K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2011-11-01

    Ice formation induced by atmospheric particles through heterogeneous nucleation is not well understood. Onset conditions for heterogeneous ice nucleation and water uptake by particles collected in Los Angeles and Mexico City were determined as a function of temperature (200-273 K) and relative humidity with respect to ice (RHice). Four dominant particle types were identified including soot associated with organics, soot with organic and inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn-containing particles apportioned to emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Above 230 K, significant differences in onsets of water uptake and immersion freezing of different particle types were observed. Below 230 K, particles exhibited high deposition ice nucleation efficiencies and formed ice atRHicewell below homogeneous ice nucleation limits. The data suggest that water uptake and immersion freezing are more sensitive to changes in particle chemical composition compared to deposition ice nucleation. The data demonstrate that anthropogenic and marine influenced particles, exhibiting various chemical and physical properties, possess distinctly different ice nucleation efficiencies and can serve as efficient IN at atmospheric conditions typical for cirrus and mixed-phase clouds.

  16. Multiple sources of soluble atmospheric iron to Antarctic waters

    NASA Astrophysics Data System (ADS)

    Winton, V. H. L.; Edwards, R.; Delmonte, B.; Ellis, A.; Andersson, P. S.; Bowie, A.; Bertler, N. A. N.; Neff, P.; Tuohy, A.

    2016-03-01

    The Ross Sea, Antarctica, is a highly productive region of the Southern Ocean. Significant new sources of iron (Fe) are required to sustain phytoplankton blooms in the austral summer. Atmospheric deposition is one potential source. The fractional solubility of Fe is an important variable determining Fe availability for biological uptake. To constrain aerosol Fe inputs to the Ross Sea region, fractional solubility of Fe was analyzed in a snow pit from Roosevelt Island, eastern Ross Sea. In addition, aluminum, dust, and refractory black carbon (rBC) concentrations were analyzed, to determine the contribution of mineral dust and combustion sources to the supply of aerosol Fe. We estimate exceptionally high dissolved Fe (dFe) flux of 1.2 × 10-6 g m-2 y-1 and total dissolvable Fe flux of 140 × 10-6 g m-2 y-1 for 2011/2012. Deposition of dust, Fe, Al, and rBC occurs primarily during spring-summer. The observed background fractional Fe solubility of ~0.7% is consistent with a mineral dust source. Radiogenic isotopic ratios and particle size distribution of dust indicates that the site is influenced by local and remote sources. In 2011/2012 summer, relatively high dFe concentrations paralleled both mineral dust and rBC deposition. Around half of the annual aerosol Fe deposition occurred in the austral summer phytoplankton growth season; however, the fractional Fe solubility was low. Our results suggest that the seasonality of dFe deposition can vary and should be considered on longer glacial-interglacial timescales.

  17. Atmospheric constraints on Plant Water Use Efficiency drivers and patterns of changes since 1900

    NASA Astrophysics Data System (ADS)

    Groenendijk, Margriet; Cox, Peter; Booth, Ben; Lambert, Hugo

    2013-04-01

    Water Use Efficiency (WUE) controls the relationship between the ecosystem water and carbon balance. Because WUE responds to environmental changes it can be used as a metric to quantify the effect of climate change on ecosystems. The actual WUEeco is defined as a ratio of gross primary production and transpiration fluxes. On the leaf scale this is equal to the atmospheric WUEatm, which is a function of the ambient and internal CO2 concentration, the saturated specific humidity and relative humidity. Using observations and the JULES and HadCM3 models we explore on which temporal and spatial scales WUEeco and WUEatm are equal, and how they respond to climate change. Leaf level definitions are valid at site level, where annual WUEeco and WUEatm simulated with JULES are equal and linearly increasing with atmospheric CO2 concentration for a range of sites. For drier sites lower values of both were simulated. The simulated values are within the same range as values derived from eddy covariance observations. Having shown the near equivalence between WUEeco and WUEatm for specific sites, we can use the formula for WUEatm to estimate the change in plant WUE over the 20th century, using observed climatological data and CO2 concentrations. In general WUE is found to increase strongly with the CO2 concentration, but this is offset by warming and drying that increases evaporative demand and therefore reduces WUE. As a result we find complex spatio-temporal patterns of changes in WUE, resulting from the differing drivers of climate change and variation. For example, warming due to the reduction in atmospheric aerosol pollution since the late 1980s reduced WUE in some previously heavily-polluted regions despite the ongoing increase in atmospheric CO2. We will describe the methods used to reconstruct WUE from observations, and discuss the spatial and temporal variation of WUE since 1900.

  18. Influence of long-range transboundary transport on atmospheric water vapor mercury collected at the largest city of Tibet.

    PubMed

    Huang, Jie; Kang, Shichang; Tian, Lide; Guo, Junming; Zhang, Qianggong; Cong, Zhiyuan; Sillanpää, Mika; Sun, Shiwei; Tripathee, Lekhendra

    2016-10-01

    Monsoon circulation is an important process that affects long-range transboundary transport of anthropogenic contaminants such as mercury (Hg). During the Indian monsoon season of 2013, a total of 92 and 26 atmospheric water vapor samples were collected at Lhasa, the largest city of the Tibet, for Hg and major ions analysis, respectively. The relatively low pH/high electronic conductivity values, together with the fact that NH4(+) in atmospheric water vapor was even higher than that determined in precipitation of Lhasa, indicated the effects of anthropogenic perturbations through long-range transboundary atmospheric transport. Concentrations of Hg in atmospheric water vapor ranged from 2.5 to 73.7ngL(-1), with an average of 12.5ngL(-1). The elevated Hg and major ions concentrations, and electronic conductivity values were generally associated with weak acidic samples, and Hg mainly loaded with anthropogenic ions such as NH4(+). The results of principal component analysis and trajectory analysis suggested that anthropogenic emissions from the Indian subcontinent may have largely contributed to the determined Hg in atmospheric water vapor. Furthermore, our study reconfirmed that below-cloud scavenging contribution was significant for precipitation Hg in Lhasa, and evaluated that on average 74.1% of the Hg in precipitation could be accounted for by below-cloud scavenging. PMID:27265735

  19. The High Altitude Water Cherenlov (HAWC) Gamma ray Detector Response to Atmospheric Electric Field Variations

    NASA Astrophysics Data System (ADS)

    Lara, A.

    2015-12-01

    The High Altitude Water Cherenkov (HAWC) observatory is located at 4100 m a.s.l. in Mexico. HAWC's primary purpose is the study of both: galactic and extra-galactic sources of high energy gamma rays. HAWC consists of 300 large water Cherenkov detectors (WCD), each instrumented with 4 photo-multipliers (PMTs). The HAWC scaler system records the rates of individual PMTs giving the opportunity of study relatively low energy transients as solar energetic particles, the solar modulation of galactic cosmic rays and possible variations of the cosmic ray rate due to atmospheric electric field changes. In this work, we present the observations of scaler rate enhancements associated with thunderstorm activity observed at the HAWC site.In particular, we present preliminary results of the analysis of the time coincidence of the electric field changes and the scaler enhancements.

  20. Implications of the high D/H ratio for the sources of water in Venus' atmosphere

    NASA Astrophysics Data System (ADS)

    Grinspoon, D. H.

    1993-06-01

    The abundance ratio of D relative to H in the Venus atmosphere is 120 times greater than that of the earth. A recent reanalysis of collisional ejection has increased estimates of the D escape efficiency by a factor of 10, implying that, for a steady-state Venusian water budget, the D/H ratio of the source water must be 10-15 times higher than that of the earth. It is presently suggested that these observations can be understood either as a result of continuous outgassing from a highly fractionated mantle source, or Rayleigh fractionation after massive outgassing from catastrophic resurfacing of the planet over the last 0.5-1.0 Gyr.

  1. HDO in the Martian atmosphere: implications for the abundance of crustal water.

    PubMed

    Yung, Y L; Wen, J S; Pinto, J P; Allen, M; Pierce, K K; Paulson, S

    1988-01-01

    The physical and chemical processes that lead to the preferential escape of hydrogen over deuterium in the Martian atmosphere are studied in detail using a one-dimensional photochemical model. Comparison of our theory with recent observations of HDO suggests that, averaged over the planet, Mars contains 0.2 m of crustal water that is exchangeable with the atmosphere. Our estimate is considerably lower than recent estimates of subsurface water on Mars based on geomorphological analysis of Viking images. The estimate can be reconciled if only a small fraction of crustal water can exchange with the atmosphere. PMID:11538666

  2. HDO in the Martian atmosphere - implications for the abundance of crustal water

    SciTech Connect

    Yung, Y.L.; Wen, J.S.; Pinto, J.P.; Pierce, K.K.; Allen, M.

    1988-10-01

    A one-dimensional photochemical model is presently used to ascertain the nature of those chemical and physical processes of the Martian atmosphere responsible for the preferential escape of hydrogen over deuterium. A comparison of the present theoretical considerations with recent HDO observations indicates that Mars contains 0.2 m of (globally averaged) crustal water that is exchangeable with the atmosphere. This estimate, which is substantially lower than those obtained for Martian subsurface water on the basis of Viking image-derived geomorphological analyses, can be reconciled only if a small fration of the crustal water is exchangeable with the atmosphere. 67 references.

  3. Computational studies of atmospherically-relevant chemical reactions in water clusters and on liquid water and ice surfaces.

    PubMed

    Gerber, R Benny; Varner, Mychel E; Hammerich, Audrey D; Riikonen, Sampsa; Murdachaew, Garold; Shemesh, Dorit; Finlayson-Pitts, Barbara J

    2015-02-17

    isolated defects where it involves formation of H3O(+)-acid anion contact ion pairs. This behavior is found in simulations of a model of the ice quasi-liquid layer corresponding to large defect concentrations in crystalline ice. The results are in accord with experiments. (iv) Ionization of acids on wet quartz. A monolayer of water on hydroxylated silica is ordered even at room temperature, but the surface lattice constant differs significantly from that of crystalline ice. The ionization processes of HCl and H2SO4 are of high yield and occur in a few picoseconds. The results are in accord with experimental spectroscopy. (v) Photochemical reactions on water and ice. These simulations require excited state quantum chemical methods. The electronic absorption spectrum of methyl hydroperoxide adsorbed on a large ice cluster is strongly blue-shifted relative to the isolated molecule. The measured and calculated adsorption band low-frequency tails are in agreement. A simple model of photodynamics assumes prompt electronic relaxation of the excited peroxide due to the ice surface. SEMD simulations support this, with the important finding that the photochemistry takes place mainly on the ground state. In conclusion, dynamics simulations using quantum chemical potentials are a useful tool in atmospheric chemistry of water media, capable of comparison with experiment. PMID:25647299

  4. Correcting infrared satellite estimates of sea surface temperature for atmospheric water vapor attenuation

    NASA Technical Reports Server (NTRS)

    Emery, William J.; Yu, Yunyue; Wick, Gary A.; Schluessel, Peter; Reynolds, Richard W.

    1994-01-01

    A new satellite sea surface temperature (SST) algorithm is developed that uses nearly coincident measurements from the microwave special sensor microwave imager (SSM/I) to correct for atmospheric moisture attenuation of the infrared signal from the advanced very high resolution radiometer (AVHRR). This new SST algorithm is applied to AVHRR imagery from the South Pacific and Norwegian seas, which are then compared with simultaneous in situ (ship based) measurements of both skin and bulk SST. In addition, an SST algorithm using a quadratic product of the difference between the two AVHRR thermal infrared channels is compared with the in situ measurements. While the quadratic formulation provides a considerable improvement over the older cross product (CPSST) and multichannel (MCSST) algorithms, the SSM/I corrected SST (called the water vapor or WVSST) shows overall smaller errors when compared to both the skin and bulk in situ SST observations. Applied to individual AVHRR images, the WVSST reveals an SST difference pattern (CPSST-WVSST) similar in shape to the water vapor structure while the CPSST-quadratic SST difference appears unrelated in pattern to the nearly coincident water vapor pattern. An application of the WVSST to week-long composites of global area coverage (GAC) AVHRR data demonstrates again the manner in which the WVSST corrects the AVHRR for atmospheric moisture attenuation. By comparison the quadratic SST method underestimates the SST corrections in the lower latitudes and overestimates the SST in th e higher latitudes. Correlations between the AVHRR thermal channel differences and the SSM/I water vapor demonstrate the inability of the channel difference to represent water vapor in the midlatitude and high latitudes during summer. Compared against drifting buoy data the WVSST and the quadratic SST both exhibit the same general behavior with the relatively small differences with the buoy temperatures.

  5. History of water loss and atmospheric O2 buildup on rocky exoplanets near M dwarfs

    NASA Astrophysics Data System (ADS)

    Tian, Feng

    2015-12-01

    It is recently proposed that early stellar luminosity evolution of M dwarfs leads to severe water loss and the buildup of massive O2 atmospheres on rocky exoplanets in the habitable zone of these stars if interactions of such O2 atmospheres with planetary surfaces are inefficient. Here we show that even without considering atmosphere-surface interactions, the existence of a massive O2 atmosphere on such exoplanets is not an unavoidable consequence around M0-M3 stars and depends on stellar XUV properties, the mass of the exoplanets, and most importantly the initial planetary water inventories. In the case of inefficient atmosphere-surface interactions, the distribution of atmospheric O2 contents on these exoplanets should be bi-modal and such a distribution could be verified by future surveys of rocky exoplanets.

  6. Atmospheric Pre-Corrected Differential Absorption Techniques to Retrieve Columnar Water Vapor: Theory and Simulations

    NASA Technical Reports Server (NTRS)

    Borel, Christoph C.; Schlaepfer, Daniel

    1996-01-01

    Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data: (1) Differential absorption techniques based on: (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels; (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels. (2) Non-linear fitting techniques which are based on spectral radiative transfer calculations. The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation, we derived an "Atmospheric Pre-corrected Differential Absorption" (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis. Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better. An extensive data set was created with the radiative transfer code 6S over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than +5%. The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique.

  7. Maintaining Atmospheric Mass and Water Balance Within Reanalysis

    NASA Technical Reports Server (NTRS)

    Takacs, Lawrence L.; Suarez, Max; Todling, Ricardo

    2015-01-01

    This report describes the modifications implemented into the Goddard Earth Observing System Version-5 (GEOS-5) Atmospheric Data Assimilation System (ADAS) to maintain global conservation of dry atmospheric mass as well as to preserve the model balance of globally integrated precipitation and surface evaporation during reanalysis. Section 1 begins with a review of these global quantities from four current reanalysis efforts. Section 2 introduces the modifications necessary to preserve these constraints within the atmospheric general circulation model (AGCM), the Gridpoint Statistical Interpolation (GSI) analysis procedure, and the Incremental Analysis Update (IAU) algorithm. Section 3 presents experiments quantifying the impact of the new procedure. Section 4 shows preliminary results from its use within the GMAO MERRA-2 Reanalysis project. Section 5 concludes with a summary.

  8. Strengthening of the hydrological cycle in future scenarios: atmospheric energy and water balance perspective

    NASA Astrophysics Data System (ADS)

    Alessandri, A.; Fogli, P. G.; Vichi, M.; Zeng, N.

    2012-07-01

    Future climate scenarios experiencing global warming are expected to strengthen hydrological cycle during 21st century by comparison with the last decades of 20th century. We analyze strengthening of the global-scale increase in precipitation from the perspective of changes in whole atmospheric water and energy balances. Furthermore, by combining energy and water equations for the whole atmosphere we profitably obtain constraints for the changes in surface fluxes and for the partitioning at the surface between sensible and latent components. Above approach is applied to investigate difference in strengthening of hydrological cycle in two scenario centennial simulations performed with an Earth System model forced with specified atmospheric concentration pathways. Alongside the medium-high non-mitigation scenario SRES A1B, we considered a new aggressive-mitigation scenario (E1) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K. Quite unexpectedly, mitigation scenario is shown to strengthen hydrological cycle more than SRES A1B till around 2070. Our analysis shows that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to A1B. This appears to be primarily related to the abated aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to A1B. In contrast, last decades of 21st century (21C) show marked increase of global precipitation in A1B compared to E1, despite the fact that the two scenarios display almost same overall increase of radiative imbalance with respect to 20th century. Our results show that radiative cooling is weakly effective in A1B throughout all 21C, so that two distinct mechanisms characterize the diverse strengthening of hydrological cycle in mid and end 21C. It is only through a very large perturbation of surface fluxes that A1B achieves larger increase of global precipitation in the last

  9. Low-level water vapor fields from the VISSR Atmospheric Sounder (VAS) 'split window' channels

    NASA Technical Reports Server (NTRS)

    Chesters, D.; Uccellini, L. W.; Robinson, W. D.

    1983-01-01

    A simple physical algorithm is presented which calculates the water vapor content of the lower troposphere from the 11 and 12 micron (split window) channels on the VISSR Atmospheric Sounder (VAS) on the Geostationary Operational Environmental Satellites. The algorithm is used to analyze a time series of VAS split window radiances observed at 15 km horizontal resolution over eastern North America during a 12 hr period on 13 July 1981. Results of the color coded images of the derived precipitable water fields are found to show vivid water vapor features whose broad structure and evolution are verified by the radiosonde and surface networks. The satellite moisture fields also show significant mesoscale features and rapid developments which are not resolved by the conventional networks. The VAS split window is determined to clearly differentiate those areas in which water vapor extends over a deep layer and is more able to support convective cells from those areas in which water vapor is confined to a shallow layer and is therefore less able to support convection. It is concluded that the VAS split windows can be used operationally to monitor mesoscale developments in the low-level moisture fields over relatively cloud-free areas of the United States.

  10. The Martian atmospheric water cycle as viewed from a terrestrial perspective

    NASA Technical Reports Server (NTRS)

    Zurek, Richard W.

    1988-01-01

    It is noted that the conditions of temperature and pressure that characterize the atmosphere of Mars are similar to those found in the Earth's stratosphere. Of particular significance is the fact that liquid water is unstable in both environments. Thus, it is expected that terrestrial studies of the dynamical behavior of stratospheric water should benefit the understanding of water transport on Mars as well.

  11. Describing the Components of the Water Transport in the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Montmessin, F.; Haberle, R. M.; forget, F.; Rannou, P.; Cabane, M.

    2003-01-01

    In this paper, we examine the meteorological components driving water transport in the Martian atmosphere. A particular emphasis is given to the role of residual mean circulation and water ice clouds in determining the geographical partitioning of water vapor and frost.

  12. The use of coupled atmospheric and hydrological models for water-resources management in headwater basins

    USGS Publications Warehouse

    Leavesley, G.; Hay, L.

    1998-01-01

    Coupled atmospheric and hydrological models provide an opportunity for the improved management of water resources in headwater basins. Issues currently limiting full implementation of coupled-model methodologies include (a) the degree of uncertainty in the accuracy of precipitation and other meteorological variables simulated by atmospheric models, and (b) the problem of discordant scales between atmospheric and bydrological models. Alternative methodologies being developed to address these issues are reviewed.

  13. Atmospheric Water Vapor Transport in NCEP-NCAR Reanalyses: Comparison with River Discharge in the Central United States.

    NASA Astrophysics Data System (ADS)

    Gutowski, William J., Jr.; Chen, Yibin; Ötles, Zekai

    1997-09-01

    The authors extract the water transport produced by the National Centers for Environmental Prediction reanalysis for a 10-yr period, 1984-93, and compare its convergence into two river basins with an independent dataset, river discharge (streamflow). Analysis focuses on two basins in the United States, the Upper Mississippi and the Ohio-Tennessee Basins, where the relatively high density of routine upper-air observations might be expected to give the reanalysis its closest rendition of the actual water transport. Over periods of several years, water input by the atmosphere should match water output from these basins in streamflow. However, in both basins an imbalance between the two with biases with respect to streamflow approaching 40% is found. The accuracy attributed to river discharge measurements averaged over several years and the apparent lack of significant multiyear storage in the basins lead us to conclude that the bias is largely an inaccuracy in the atmospheric transport. Temporal variability of atmospheric input and streamflow output shows somewhat better correspondence, with statistically significant correlations occurring for both basins on interannual and several-day timescales. The overall behavior suggests that the temporal variability of water transport depicted by the reanalysis can be used to gain insight into the actual variability of atmospheric transport, at least for well-observed regions such as the United States.

  14. Water cycle dynamic increases resilience of vegetation under higher atmospheric carbon dioxide concentration

    NASA Astrophysics Data System (ADS)

    Lemordant, L. A.; Gentine, P.; Stéfanon, M.; Drobinski, P. J.; Fatichi, S.

    2015-12-01

    Plant stomata couple the energy, water and carbon cycles. Photosynthesis requires stomata to open to take up carbon dioxide. In the process water vapor is released as transpiration. As atmospheric CO2 concentration rises, for the same amount of CO2 uptake, less water vapor is transpired, translating into higher water use efficiency. Reduced water vapor losses will increase soil water storage if the leaf area coverage remains similar. This will in turn alter the surface energy partitioning: more heat will be dissipated as sensible heat flux, resulting in possibly higher surface temperatures. In contrast with this common hypothesis, our study shows that the water saved during the growing season by increased WUE can be mobilized by the vegetation and help reduce the maximum temperature of mid-latitude heat waves. The large scale meteorological conditions of 2003 are the basis of four regional model simulations coupling an atmospheric model to a surface model. We performed two simulations with respectively 2003 (CTL) and 2100 (FUT) atmospheric CO2 applied to both the atmospheric and surface models. A third (RAD) and a fourth (FER) simulations are run with 2100 CO2 concentration applied to respectively the atmospheric model only and the surface model only. RAD investigates the impact of the radiative forcing, and FER the response to vegetation CO2 fertilization. Our results show that the water saved through higher water use efficiency during the growing season enabled by higher atmospheric carbon dioxide concentrations helps the vegetation to cope during severe heat and dryness conditions in the summer of mid-latitude climate. These results demonstrate that consideration of the vegetation carbon cycle is essential to model the seasonal water cycle dynamic and land-atmosphere interactions, and enhance the accuracy of the model outputs especially for extreme events. They also have important implications for the future of agriculture, water resources management, ecosystems

  15. Seasonal Dependence of the Escape of Water from the Martian Atmosphere

    NASA Astrophysics Data System (ADS)

    Clarke, John

    2014-10-01

    This proposal is to obtain ACS/SBC images and STIS spectra of the extended H Ly alpha and O 1304 emissions from H and O atoms in the atmosphere of Mars to study seasonal changes in the escape rate of H and O atoms, and thereby water. Prior HST observations have revealed a surprising rapid change in the H escape rate in late martian summer following a global dust storm, and have shown that STIS spectra can easily detect superthermal O atoms. The relative degree of influence of seasons and dust storms on the H density and escape flux are not known, and little is known about variations in the hot O density and escape rate. The timing of these observations is key to these scientific goals. Mars is now approaching the Sun, HST can observe Mars over a wide range of seasons from April - Nov 2014, and HST will not be able to observe Mars again until after the prime mission of MAVEN. The observations will also bracket in time the close approach of Comet Siding Spring on 19 Oct. 2014 and see any effects of the energy deposition in the martian upper atmosphere. These observations will provide strong support for the NASA MAVEN mission, scheduled to arrive at Mars in Sept. 2014, and STScI has granted 3 orbits to establish the baseline conditions in the martin atmosphere in late spring 2014, when Mars is far from the Sun.

  16. Both water source and atmospheric water impact leaf wax n-alkane 2H/1H values of hydroponically grown angiosperm trees

    NASA Astrophysics Data System (ADS)

    Tipple, B. J.; Berke, M. A.; Hambach, B.; Roden, J. S.; Ehleringer, J. R.

    2013-12-01

    The extent to which both water source and leaf water 2H-enrichment affect the δ2H values of terrestrial plant leaf waxes is an area of active research as ecologists seek a mechanistic understanding of the environmental determinants of leaf wax isotope values before applying δ2H values of leaf waxes to reconstruct past hydrologic conditions. To elucidate the effects of both water source and atmospheric water vapor on δ2H values of leaf waxes for broad-leaved angiosperms, we analyzed hydrogen isotope ratios of high-molecular weight n-alkanes from two tree species that were grown throughout the spring and summer (five months) in a hydroponic system under controlled atmospheric conditions. Here, 12 subpopulations each of Populus fremontii and Betula occidentalis saplings were grown under one of six source different waters ranging in hydrogen isotope ratio values from -120 to +180 ‰ and under either 40 % or 75 % relative humidity conditions. We found n-alkane δ2H values of both species were linearly related to source water δ2H values with differences in slope associated with differing atmospheric humidity. A Craig-Gordon model was used to predict the δ2H values of leaf water and, by extension, n-alkane δ2H values under the range of growth conditions. The modeled leaf water values were found to be linearly related to observed n-alkane δ2H values with a statistically indistinguishable slope between the high and low humidity treatments. These leaf wax observations support a constant biosynthetic fractionation factor between evaporatively-enriched leaf water and n-alkanes for each species. However, we found the calculated biosynthetic fractionation between modeled leaf-water and n-alkane to be different between the two species. We submit that these dissimilarities were due to model inputs and not differences in the specific-species biochemistry. Nonetheless, these results are significant as they indicated that the δ2H value of atmospheric water vapor and

  17. 3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Späth, Florian; Behrendt, Andreas; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea; Wulfmeyer, Volker

    2016-04-01

    High-resolution three-dimensional (3-D) water vapor data of the atmospheric boundary layer (ABL) are required to improve our understanding of land-atmosphere exchange processes. For this purpose, the scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) was developed as well as new analysis tools and visualization methods. The instrument determines 3-D fields of the atmospheric water vapor number density with a temporal resolution of a few seconds and a spatial resolution of up to a few tens of meters. We present three case studies from two field campaigns. In spring 2013, the UHOH DIAL was operated within the scope of the HD(CP)2 Observational Prototype Experiment (HOPE) in western Germany. HD(CP)2 stands for High Definition of Clouds and Precipitation for advancing Climate Prediction and is a German research initiative. Range-height indicator (RHI) scans of the UHOH DIAL show the water vapor heterogeneity within a range of a few kilometers up to an altitude of 2 km and its impact on the formation of clouds at the top of the ABL. The uncertainty of the measured data was assessed for the first time by extending a technique to scanning data, which was formerly applied to vertical time series. Typically, the accuracy of the DIAL measurements is between 0.5 and 0.8 g m-3 (or < 6 %) within the ABL even during daytime. This allows for performing a RHI scan from the surface to an elevation angle of 90° within 10 min. In summer 2014, the UHOH DIAL participated in the Surface Atmosphere Boundary Layer Exchange (SABLE) campaign in southwestern Germany. Conical volume scans were made which reveal multiple water vapor layers in three dimensions. Differences in their heights in different directions can be attributed to different surface elevation. With low-elevation scans in the surface layer, the humidity profiles and gradients can be related to different land cover such as maize, grassland, and forest as well as different surface layer

  18. The Interaction of Spacecraft Cabin Atmospheric Quality and Water Processing System Performance

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Croomes, Scott D. (Technical Monitor)

    2002-01-01

    Although designed to remove organic contaminants from a variety of waste water streams, the planned U.S.- and present Russian-provided water processing systems onboard the International Space Station (ISS) have capacity limits for some of the more common volatile cleaning solvents used for housekeeping purposes. Using large quantities of volatile cleaning solvents during the ground processing and in-flight operational phases of a crewed spacecraft such as the ISS can lead to significant challenges to the water processing systems. To understand the challenges facing the management of water processing capacity, the relationship between cabin atmospheric quality and humidity condensate loading is presented. This relationship is developed as a tool to determine the cabin atmospheric loading that may compromise water processing system performance. A comparison of cabin atmospheric loading with volatile cleaning solvents from ISS, Mir, and Shuttle are presented to predict acceptable limits to maintain optimal water processing system performance.

  19. Performance modeling of ultraviolet Raman lidar systems for daytime profiling of atmospheric water vapor

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Whiteman, D. N.; Melfi, S. H.; Goldsmith, J. E. M.; Bisson, S. E.; Lapp, M.

    1991-01-01

    We describe preliminary results from a comprehensive computer model developed to guide optimization of a Raman lidar system for measuring daytime profiles of atmospheric water vapor, emphasizing an ultraviolet, solar-blind approach.

  20. A simplified method to estimate atmospheric water vapor using MODIS near-infrared data

    NASA Astrophysics Data System (ADS)

    Wang, Xinming; Gu, Xiaoping; Wu, Zhanping

    2016-03-01

    Atmospheric water vapor plays a significant role in the study of climate change and hydrological cycle processes. In order to acquire the accurate distribution of atmospheric water vapor which is varying with time, location, and altitude, it is necessary to monitor it at high spatial and temporal resolution. Unfortunately, it is difficult to map the spatial distribution of atmospheric water vapor due to the lack of meteorological instrumentation at adequate spatial and temporal observation scales. This paper introduces a simplified method to retrieve Precipitable Water Vapor (PWV) using the ratio of the apparent reflectance values of the 18th and 19th band of Moderate Resolution Imaging Spectroradiometer (MODIS). Compared to the EOS PWV products of the same time and area, the PWV estimated using this simplified method is closer to the radiosonde results which is considered as the true PWV value. Results reveal that this simplified method is applicable over cloud-free atmospheric conditions of the mid-latitude regions.

  1. Contamination of surface-water bodies after reactor accidents by the erosion of atmospherically deposited radionuclides.

    PubMed

    Helton, J C; Muller, A B; Bayer, A

    1985-06-01

    Reactor safety analyses usually do not consider the population risk which might result from the contamination of surface-water bodies after reactor accidents by the erosion of atmospherically deposited radionuclides. This paper is intended to provide perspective on the reasonableness of this omission. Data are presented which are suggestive of the rates at which atmospherically deposited radionuclides might erode into surface-water bodies. These rates are used in the calculation of potential health effects resulting from surface-water contamination due to such erosion. These health effects are compared with predicted health effects due to atmospheric and terrestrial pathways after reactor accidents. The presented results support the belief that the contamination of surface-water bodies after reactor accidents by the erosion of atmospherically deposited radionuclides is not a major contributor to the risk associated with such accidents. PMID:3997527

  2. Atmospheric moisture transport and fresh water flux over oceans derived from spacebased sensors

    NASA Technical Reports Server (NTRS)

    Liu, W. T.; Tang, W.

    2001-01-01

    preliminary results will be shown to demonstrate the application of spacebased IMT and fresh water flux in ocean-atmosphere-land interaction studies, such as the hydrologica balance on Amazon rainfall and Indian monsoon.

  3. Stratospheric Temperatures and Water Loss from Moist Greenhouse Atmospheres of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Kasting, James F.; Chen, Howard; Kopparapu, Ravi K.

    2015-11-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models.

  4. Atmospheric water balance over oceanic regions as estimated from satellite, merged, and reanalysis data

    NASA Astrophysics Data System (ADS)

    Park, Hyo-Jin; Shin, Dong-Bin; Yoo, Jung-Moon

    2013-05-01

    The column integrated atmospheric water balance over the ocean was examined using satellite-based and merged data sets for the period from 2000 to 2005. The data sets for the components of the atmospheric water balance include evaporation from the HOAPS, GSSTF, and OAFlux and precipitation from the HOAPS, CMAP, and GPCP. The water vapor tendency was derived from water vapor data of HOAPS. The product for water vapor flux convergence estimated using satellite observation data was used. The atmospheric balance components from the MERRA reanalysis data were also examined. Residuals of the atmospheric water balance equation were estimated using nine possible combinations of the data sets over the ocean between 60°N and 60°S. The results showed that there was considerable disagreement in the residual intensities and distributions from the different combinations of the data sets. In particular, the residuals in the estimations of the satellite-based atmospheric budget appear to be large over the oceanic areas with heavy precipitation such as the intertropical convergence zone, South Pacific convergence zone, and monsoon regions. The lack of closure of the atmospheric water cycle may be attributed to the uncertainties in the data sets and approximations in the atmospheric water balance equation. Meanwhile, the anomalies of the residuals from the nine combinations of the data sets are in good agreement with their variability patterns. These results suggest that significant consideration is needed when applying the data sets of water budget components to quantitative water budget studies, while climate variability analysis based on the residuals may produce similar results.

  5. Thermal and water relations of desert beetles

    NASA Astrophysics Data System (ADS)

    Cloudsley-Thompson, J.

    2001-11-01

    The physical problems that living organisms have to contend with in hot deserts are primarily extremes of temperature, low humidity, shortage or absence of free water, and the environmental factors that accentuate these - such as strong winds, sand-storms, lack of shade, rocky and impenetrable soils. Climatic factors are particularly important to smaller animals such as arthropods on account of their relatively enormous surface to volume ratios. Nevertheless, beetles (especially Tenebrionidae and, to a lesser extent, Chrysomelidae) are among the most successful animals of the desert, and are often the only ones to be seen abroad during the day. Similar physical problems are experienced by insects in all terrestrial biomes, but they are much enhanced in the desert. Although climatic extremes are often avoided by burrowing habits coupled with circadian and seasonal activity rhythms, as well as reproductive phenology, several species of desert beetle are nevertheless able to withstand thermal extremes that would rapidly cause the death of most other arthropods including insects. The reactions of desert beetles to heat are largely behavioural whilst their responses to water shortage are primarily physiological. The effects of coloration are not discussed. In addition to markedly low rates of transpiration, desert beetles can also withstand a considerable reduction in the water content of their tissues. The study of desert beetles is important because it illustrates many of the solutions evolved by arthropods to the problems engendered, in an extreme form, by life in all terrestrial environments.

  6. Thermal and water relations of desert beetles.

    PubMed

    Cloudsley-Thompson, J L

    2001-11-01

    The physical problems that living organisms have to contend with in hot deserts are primarily extremes of temperature, low humidity, shortage or absence of free water, and the environmental factors that accentuate these--such as strong winds, sand-storms, lack of shade, rocky and impenetrable soils. Climatic factors are particularly important to smaller animals such as arthropods on account of their relatively enormous surface to volume ratios. Nevertheless, beetles (especially Tenebrionidae and, to a lesser extent, Chrysomelidae) are among the most successful animals of the desert, and are often the only ones to be seen abroad during the day. Similar physical problems are experienced by insects in all terrestrial biomes, but they are much enhanced in the desert. Although climatic extremes are often avoided by burrowing habits coupled with circadian and seasonal activity rhythms, as well as reproductive phenology, several species of desert beetle are nevertheless able to withstand thermal extremes that would rapidly cause the death of most other arthropods including insects. The reactions of desert beetles to heat are largely behavioural whilst their responses to water shortage are primarily physiological. The effects of coloration are not discussed. In addition to markedly low rates of transpiration, desert beetles can also withstand a considerable reduction in the water content of their tissues. The study of desert beetles is important because it illustrates many of the solutions evolved by arthropods to the problems engendered, in an extreme form, by life in all terrestrial environments. PMID:11771473

  7. The uncertainty of the atmospheric integrated water vapour estimated from GNSS observations

    NASA Astrophysics Data System (ADS)

    Ning, T.; Wang, J.; Elgered, G.; Dick, G.; Wickert, J.; Bradke, M.; Sommer, M.; Querel, R.; Smale, D.

    2016-01-01

    Within the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) there is a need for an assessment of the uncertainty in the integrated water vapour (IWV) in the atmosphere estimated from ground-based global navigation satellite system (GNSS) observations. All relevant error sources in GNSS-derived IWV are therefore essential to be investigated. We present two approaches, a statistical and a theoretical analysis, for the assessment of the uncertainty of the IWV. The method is valuable for all applications of GNSS IWV data in atmospheric research and weather forecast. It will be implemented to the GNSS IWV data stream for GRUAN in order to assign a specific uncertainty to each data point. In addition, specific recommendations are made to GRUAN on hardware, software, and data processing practices to minimise the IWV uncertainty. By combining the uncertainties associated with the input variables in the estimations of the IWV, we calculated the IWV uncertainties for several GRUAN sites with different weather conditions. The results show a similar relative importance of all uncertainty contributions where the uncertainties in the zenith total delay (ZTD) dominate the error budget of the IWV, contributing over 75 % of the total IWV uncertainty. The impact of the uncertainty associated with the conversion factor between the IWV and the zenith wet delay (ZWD) is proportional to the amount of water vapour and increases slightly for moist weather conditions. The GRUAN GNSS IWV uncertainty data will provide a quantified confidence to be used for the validation of other measurement techniques.

  8. EFFECTS OF ELEVATED ATMOSPHERIC CO2 ON WATER CHEMISTRY AND MOSQUITO (DIPTERA: CULICIDAE) GROWTH UNDER COMPETITIVE CONDITIONS IN CONTAINER HABITATS

    PubMed Central

    Alto, Barry W.; Yanoviak, Stephen P.; Lounibos, L. Philip; Drake, Bert G.

    2012-01-01

    We investigated the direct and indirect effects of elevated atmospheric CO2 on freshwater container habitats and their larval mosquito occupants. We predicted that a doubling of atmospheric CO2 would (1) alter the chemical properties of water in this system, (2) slow degradation of leaf litter, and (3) decrease larval growth of Aedes albopictus (Skuse) mosquitoes raised on that litter under competitive conditions. Effects of elevated CO2 on water quality parameters were not detected, but the presence of leaf litter significantly reduced pH and dissolved oxygen relative to water-filled containers without litter. Degradation rates of oak leaf litter from plants grown under elevated CO2 atmospheres did not differ from breakdown rates of litter from ambient CO2 conditions. Litter from plants grown in an elevated CO2 atmospheres did not influence mosquito population growth, but mosquito production decreased significantly with increasing larval density. Differences among mosquito density treatments influenced survivorship most strongly among male Ae. albopictus and time to emergence most strongly among females, suggesting fundamental sex-determined differences in response to competition. Results of this and other studies indicate that direct and indirect effects of doubled atmospheric CO2 are minimal in artificial containers with freshwater. PMID:22661767

  9. Comparison of Atmospheric Water Vapor in Observational and Model Data Sets

    SciTech Connect

    Boyle, J.S.

    2000-03-01

    The global water vapor distribution for five observational based data sets and three GCM integrations are compared. The variables considered are the mean and standard deviation values of the precipitable water for the entire atmospheric column and the 500 to 300 hPa layer for January and July. The observationally based sets are the radiosonde data of Ross and Elliott, the ERA and NCEP reanalyses, and the NVAP blend of sonde and satellite data. The three GCM simulations all use the NCAR CCM3 as the atmospheric model. They include: a AMIP type simulation using observed SSTs for the period 1979 to 1993, the NCAR CSM 300 year coupled ocean--atmosphere integration, and a CSM integration with a 1% CO2 increase per year. The observational data exhibit some serious inconsistencies. There are geographical patterns of differences related to interannual variations and national instrument biases. It is clear that the proper characterization of water vapor is somewhat uncertain. Some conclusions about these data appear to be robust even given the discrepancies. The ERA data are too dry especially in the upper levels. The observational data evince much better agreement in the data rich Northern Hemisphere compared to the Southern. Distinct biases are quite pronounced over the Southern Ocean. The mean values and particularly the standard deviations of the three reanalyses are very dependent upon the GCM used as the assimilation vehicle for the analyses. This is made clear by the much enhanced tropical variability in the NCEP/DOE/ AMIP reanalyses compared the initial NCEP/NCAR Reanalysis. The NCAR CCM3 shows consistent evidence of a dry bias. The 1% CO2 experiment shows a very similar pattern of disagreement with the sonde data as the other integrations, once account is taken of the warming trend. No new modes of difference are evident in the 1% CO2 experiment. All the CCM3 runs indicated too much Tropical variability especially in the western Tropical Pacific and Southeast Asia

  10. Interactions between atmospheric water vapor, dew and leaf waters in an open-canopy forest using in situ isotopic measurements

    NASA Astrophysics Data System (ADS)

    Berkelhammer, M. B.; Raudzens Bailey, A.; Hu, J.; Still, C. J.; Gochis, D. J.; Hsiao, G.; Barnard, H. R.; Noone, D. C.; Rahn, T.; Turnipseed, A.

    2011-12-01

    The movement of moisture into, out-of and within a forest ecosystem is modulated by feedbacks between plants, soils and atmospheric processes. In this study, fine scale aspects of these interactions are explored using profiles of the isotopic composition of water vapor from within and above the canopy of a ponderosa pine forest in Colorado. Forty-eight isotopic (δD and δ18O) profiles are created each day with measurements beginning prior to the onset of this year's growing season and continuing into the Fall when growth ceases. On many days, there is a pronounced minimum in deuterium-excess (dxs) near-synchronously at all heights in the early morning, which is caused by the condensation and subsequent evaporation of dew. Measurements of near-surface leaf wetness independently validate the presence of dew at the times when these dxs excursions are observed. The interaction between dew and other water pools is characterized using paired measurements of the isotopic composition of dew and leaf waters. Initial results suggest that despite reduced gas flux from the leaves during periods of dew formation, isotopic exchange is occurring between these two pools. Analysis of the diurnal cycle of isotope ratios in vapor also reveals vertical gradients in dxs, whose magnitude varies on diurnal and synoptic timescales as well as in response to changes in ecosystem productivity. The significance of these changes in the vertical gradient is explored using sap flow measurements and surface energy flux data, which delineate transpiration and surface evaporation fluxes, respectively. Lastly, case studies on moisture characteristics in the canopy during convective summer storms are presented. These data are used to elucidate the relative significance of evaporation from hydrometeors and exchange between hydrometeors and antecedent atmospheric moisture. The data reported here were collected in coordination with measurements of the isotopic composition of soil water profiles

  11. Low level water vapor fields from the VISSR Atmospheric Sounder (VAS) 'split window' channels

    NASA Technical Reports Server (NTRS)

    Robinson, W. D.; Chesters, D.; Uccellini, L. W.

    1983-01-01

    The use of the 11 and 12-micron IR-radiometer channels of the VISSR Atmosphere Sounder (VAS) on the GOES to detect water vapor in the lowest 300-400 mb of the troposphere is reported. An algorithm is developed to eliminate the background temperature, allowing the calculation of precipitable water (PW) over both land and water via a single-layer radiative model. This 'split-window' method is demonstrated in a case study, covering the US on July 13, 1981. PW values were calculated from five VAS images and compared with those from radiosonde data and surface measurements. It is shown that the VAS PW images have good resolution (15 km), reveal vivid, continuously evolving details, and differentiate deep, convection-supporting layers from shallow ones. PW ranged from 1.7 to 5.5 g/sq cm (+ or - 1.0 g/sq cm), in good agreement with other measurements. Since this method can detect mesoscale water-vapor fields in relatively clear air, it is considered of great potential value for numerical forecasting.

  12. Bayesian Calibration of a Soil-Root-Plant-Atmosphere Continuum Model Using Soil Moisture and Leaf Water Potential Data

    NASA Astrophysics Data System (ADS)

    Vrugt, Jasper A.; Hopmans, Jan; Hartsough, Pete; Simunek, Jirka; Nasta, Paolo

    2010-05-01

    The current need to better understand plant health in water-limited ecosystems justifies the increasing need for combining soil knowledge with plant expertise, in particular as related to root development and functioning. We will present a numerical modeling approach that simulates the soil-root-plant-atmosphere continuum as a single integrated numerical system, using the HYDRUS model. In this approach, we approximate both the soil and plant conducting tissues by a porous medium, each with conductive and capacitive properties that are a function of water potential. Our modeling system is especially designed to directly link the atmosphere to soil moisture uptake and stress. The model will be tested using data collected for a single white fir tree (CZO-TREE 1) at the Kings River Experimental Watershed, as part of the Critical Zone Observatory (CZO) project in the Southern Sierra mountains in California. Data include soil water content and water potential in 3 spatial dimensions in the root zone, tree stem water content and sap flux, canopy water potential, and atmospheric variables such as net radiation, air temperature and humidity. Our initial results show that our Bayesian calibration of soil, xylem, and root system properties results in fairly accurate simulations of measured soil moisture dynamics. Moreover, our calibrated HYDRUS model predicts independently measured sapflow data quite well.

  13. Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates.

    PubMed

    Csavina, Janae; Field, Jason; Félix, Omar; Corral-Avitia, Alba Y; Sáez, A Eduardo; Betterton, Eric A

    2014-07-15

    Atmospheric particulate have deleterious impacts on human health. Predicting dust and aerosol emission and transport would be helpful to reduce harmful impacts but, despite numerous studies, prediction of dust events and contaminant transport in dust remains challenging. In this work, we show that relative humidity and wind speed are both determinants in atmospheric dust concentration. Observations of atmospheric dust concentrations in Green Valley, AZ, USA, and Juárez, Chihuahua, México, show that PM10 concentrations are not directly correlated with wind speed or relative humidity separately. However, selecting the data for high wind speeds (>4m/s at 10 m elevation), a definite trend is observed between dust concentration and relative humidity: dust concentration increases with relative humidity, reaching a maximum around 25% and it subsequently decreases with relative humidity. Models for dust storm forecasting may be improved by utilizing atmospheric humidity and wind speed as main drivers for dust generation and transport. PMID:24769193

  14. Effect of Wind Speed and Relative Humidity on Atmospheric Dust Concentrations in Semi-Arid Climates

    PubMed Central

    Csavina, Janae; Field, Jason; Félix, Omar; Corral-Avitia, Alba Y.; Sáez, A. Eduardo; Betterton, Eric A.

    2014-01-01

    Atmospheric particulate have deleterious impacts on human health. Predicting dust and aerosol emission and transport would be helpful to reduce harmful impacts but, despite numerous studies, prediction of dust events and contaminant transport in dust remains challenging. In this work, we show that relative humidity and wind speed are both determinants in atmospheric dust concentration. Observations of atmospheric dust concentrations in Green Valley, AZ, USA, and Juárez, Chihuahua, México, show that PM10 concentrations are not directly correlated with wind speed or relative humidity separately. However, selecting the data for high wind speeds (> 4 m/s at 10 m elevation), a definite trend is observed between dust concentration and relative humidity: dust concentration increases with relative humidity, reaching a maximum around 25% and it subsequently decreases with relative humidity. Models for dust storm forecasting may be improved by utilizing atmospheric humidity and wind speed as main drivers for dust generation and transport. PMID:24769193

  15. Atmospheric water mapping with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), Mountain Pass, California

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Green, Robert O.; Carrere, Veronique; Margolis, Jack S.; Alley, Ronald E.; Vane, Gregg; Bruegge, Carol J.; Gary, Bruce L.

    1988-01-01

    Observations are given of the spatial variation of atmospheric precipitable water using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over a desert area in eastern California, derived using a band ratio method and the 940 nm atmospheric water band and 870 nm continuum radiances. The ratios yield total path water from curves of growth supplied by the LOWTRAN 7 atmospheric model. An independent validation of the AVIRIS-derived column abundance at a point is supplied by a spectral hygrometer calibrated with respect to radiosonde observations. Water values conform to topography and fall off with surface elevation. The edge of the water vapor boundary layer defined by topography is thought to have been recovered. The ratio method yields column abundance estimates of good precision and high spatial resolution.

  16. 40 CFR 230.52 - Water-related recreation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Water-related recreation. 230.52... Effects on Human Use Characteristics § 230.52 Water-related recreation. (a) Water-related recreation... disposal of dredged or fill material may adversely modify or destroy water use for recreation by...

  17. 40 CFR 230.52 - Water-related recreation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Water-related recreation. 230.52... Effects on Human Use Characteristics § 230.52 Water-related recreation. (a) Water-related recreation... disposal of dredged or fill material may adversely modify or destroy water use for recreation by...

  18. 40 CFR 230.52 - Water-related recreation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Water-related recreation. 230.52... Effects on Human Use Characteristics § 230.52 Water-related recreation. (a) Water-related recreation... disposal of dredged or fill material may adversely modify or destroy water use for recreation by...

  19. 40 CFR 230.52 - Water-related recreation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Water-related recreation. 230.52... Effects on Human Use Characteristics § 230.52 Water-related recreation. (a) Water-related recreation... disposal of dredged or fill material may adversely modify or destroy water use for recreation by...

  20. 40 CFR 230.52 - Water-related recreation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Water-related recreation. 230.52... Effects on Human Use Characteristics § 230.52 Water-related recreation. (a) Water-related recreation... disposal of dredged or fill material may adversely modify or destroy water use for recreation by...

  1. A Plant-Based Proxy for the Oxygen Isotope Ratio of Atmospheric Water Vapor

    NASA Astrophysics Data System (ADS)

    Helliker, B.

    2007-12-01

    Atmospheric water vapor is a major component of the global hydrological cycle, but the isotopic balance of vapor is largely unknown. It is shown here that the oxygen isotope ratio of leaf water in the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides (Spanish Moss) is controlled by the oxygen isotope ratio of atmospheric water vapor in both field and lab studies. Assuming that the leaf-water isotopic signature (and hence the atmospheric water vapor signature) is recorded in plant organic material, the atmospheric water vapor oxygen isotope ratios for Miami, Florida (USA) were reconstructed for several years from 1878 to 2005 using contemporary and herbarium specimens. T. usneoides ranges from Virginia, USA southwards through the tropics to Argentina, and the CAM epiphytic lifeform is widespread in other species. Therefore, epiphytes may be used to reconstruct the isotope ratio of atmospheric water for spatial scales that span over 60° of latitude and temporal scales that cover the last century of global temperature increase.

  2. Sulfuric acid vapor and other cloud-related gases in the Venus atmosphere - Abundances inferred from observed radio opacity

    NASA Technical Reports Server (NTRS)

    Steffes, P. G.; Eshleman, V. R.

    1982-01-01

    It is suggested that the absorbing characteristics of sulfuric acid vapor appear to reconcile what had been thought to be an inconsistency among measurements and deductions regarding the constituents of the Venus atmosphere and radio occultation, radar reflection, and radio emission measurements of its opacity. Laboratory measurements of sulfuric acid, sulfur dioxide, water vapor, and carbon dioxide are used to model relative contributions to opacity as a function of height in a way that is consistent with observations of the constituents and absorbing properties of the atmosphere. It is concluded that sulfuric acid vapor is likely to be the principal microwave absorber in the 30-50 km altitude range of the middle atmosphere of Venus.

  3. Studies of the Atmospheric Chemsitry of Energy-Related Volatile Organic Compounds and of their Atmospheric Reaction Products

    SciTech Connect

    Roger Atkinson; Janet Arey

    2007-04-14

    The focus of this contract was to investigate selected aspects of the atmospheric chemistry of volatile organic compounds (VOCs) emitted into the atmosphere from energy-related sources as well as from biogenic sources. The classes of VOCs studied were polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs, the biogenic VOCs isoprene, 2-methyl-3-buten-2-ol and cis-3-hexen-1-ol, alkenes (including alkenes emitted from vegetation) and their oxygenated atmospheric reaction products, and a series of oxygenated carbonyl and hydroxycarbonyl compounds formed as atmospheric reaction products of aromatic hydrocarbons and other VOCs. Large volume reaction chambers were used to investigate the kinetics and/or products of photolysis and of the gas-phase reactions of these organic compounds with hydroxyl (OH) radicals, nitrate (NO3) radicals, and ozone (O3), using an array of analytical instrumentation to analyze the reactants and products (including gas chromatography, in situ Fourier transform infrared spectroscopy, and direct air sampling atmospheric pressure ionization tandem mass spectrometry). The following studies were carried out. The photolysis rates of 1- and 2-nitronaphthalene and of eleven isomeric methylnitronaphthalenes were measured indoors using blacklamp irradiation and outdoors using natural sunlight. Rate constants were measured for the gas-phase reactions of OH radicals, Cl atoms and NO3 radicals with naphthalene, 1- and 2-methylnaphthalene, 1- and 2-ethylnaphthalene and the ten dimethylnaphthalene isomers. Rate constants were measured for the gas-phase reactions of OH radicals with four unsaturated carbonyls and with a series of hydroxyaldehydes formed as atmospheric reaction products of other VOCs, and for the gas-phase reactions of O3 with a series of cycloalkenes. Products of the gas-phase reactions of OH radicals and O3 with a series of biogenically emitted VOCs were identified and quantified. Ambient atmospheric measurements of the concentrations of a

  4. Atmospheric correction of aviris data in ocean waters. Final report

    SciTech Connect

    Terrie, G.; Armone, R.

    1992-06-01

    Hyperspectral data offers unique capabilities for characterizing the ocean environment. The spectral characterization of the composition of ocean waters can be organized into biological and terrigenous components. Biological photosynthetic pigments in ocean waters have unique spectral ocean color signatures which can be associated with different biological species. Additionally, suspended sediment has different scattering coefficients which result in ocean color signatures. Measuring the spatial distributions of these components in the maritime environments provides important tools for understanding and monitoring the ocean environment. These tools have significant applications in pollution, carbon cycle, current and water mass detection, location of fronts and eddies, sewage discharge and fate etc.

  5. A pseudoenergy wave-activity relation for ageostrophic and non-hydrostatic moist atmosphere

    NASA Astrophysics Data System (ADS)

    Ran, Ling-Kun; Ping, Fan

    2015-05-01

    By employing the energy-Casimir method, a three-dimensional virtual pseudoenergy wave-activity relation for a moist atmosphere is derived from a complete system of nonhydrostatic equations in Cartesian coordinates. Since this system of equations includes the effects of water substance, mass forcing, diabatic heating, and dissipations, the derived wave-activity relation generalizes the previous result for a dry atmosphere. The Casimir function used in the derivation is a monotonous function of virtual potential vorticity and virtual potential temperature. A virtual energy equation is employed (in place of the previous zonal momentum equation) in the derivation, and the basic state is stationary but can be three-dimensional or, at least, not necessarily zonally symmetric. The derived wave-activity relation is further used for the diagnosis of the evolution and propagation of meso-scale weather systems leading to heavy rainfall. Our diagnosis of two real cases of heavy precipitation shows that positive anomalies of the virtual pseudoenergy wave-activity density correspond well with the strong precipitation and are capable of indicating the movement of the precipitation region. This is largely due to the cyclonic vorticity perturbation and the vertically increasing virtual potential temperature over the precipitation region. Project supported by the National Basic Research Program of China (Grant No. 2013CB430105), the Key Program of the Chinese Academy of Sciences (Grant No. KZZD-EW-05), the National Natural Science Foundation of China (Grant No. 41175060), and the Project of CAMS, China (Grant No. 2011LASW-B15).

  6. The effect of atmospheric water vapor on automatic classification of ERTS data

    NASA Technical Reports Server (NTRS)

    Pitts, D. E.; Mcallum, W. E.; Dillinger, A. E.

    1974-01-01

    Absorption by atmospheric water vapor changes the spectral signatures collected by multispectral scanners if channels are not chosen to avoid the atmospheric water bands. For ERTS (Earth Resources Technology Satellite), the Multispectral Scanner band 7 (MSS 7, .8 to 1.1 micron) is the only band significantly affected. Line-by-line atmospheric absorption calculations showed that this effect can multiply the intensity by factors ranging from .77 to 1.0. If horizontal gradients in atmospheric water exist between training fields and the rest of the scene, errors are introduced in automatic classification of the imagery. The degradation of the classification of corn and soybeans was determined by using actual ERTS data and simulating the absorption effects on the MSS 7 band.

  7. Development and Deployment of Unmanned Aircraft Instrumentation for Measuring Quantities Related to Land Surface-Atmosphere Interactions

    NASA Astrophysics Data System (ADS)

    de Boer, G.; Lawrence, D.; Elston, J.; Argrow, B. M.; Palo, S. E.; Curry, N.; Finamore, W.; Mack, J.; LoDolce, G.; Schmid, B.; Long, C. N.; Bland, G.; Maslanik, J. A.; Gao, R. S.; Telg, H.; Semmer, S.; Maclean, G.; Ivey, M.; Hock, T. F.; Bartram, B.; Bendure, A.; Stachura, M.

    2015-12-01

    Use of unmanned aircraft systems (UAS) in evaluation of geophysical parameters is expanding at a rapid rate. Despite limitation imposed by necessary regulations related to operation of UAS in the federal airspace, several groups have developed and deployed a variety of UAS and the associated sensors to make measurements of the atmosphere, land surface, ocean and cryosphere. Included in this grouping is work completed at the University of Colorado - Boulder, which has an extended history of operating UAS and expanding their use in the earth sciences. Collaborative projects between the department of Aerospace Engineering, the Cooperative Institute for Research in Environmental Sciences (CIRES), the Research and Engineering Center for Unmanned Vehicles (RECUV), the National Oceanographic and Atmospheric Administration (NOAA) and National Centers for Atmospheric Research (NCAR) have resulted in deployment of UAS to a variety of environments, including the Arctic. In this presentation, I will give an overview of some recent efforts lead by the University of Colorado to develop and deploy a variety of UAS. Work presented will emphasize recent campaigns and instrument development and testing related to understanding the land-atmosphere interface. Specifically, information on systems established for evaluating surface radiation (including albedo), turbulent exchange of water vapor, heat and gasses, and aerosol processes will be presented, along with information on the use of terrestrial ecosystem sensing to provide critical measurments for the evaluation of lower atmospheric flux measurements.

  8. Atmospheric mold spore counts in relation to meteorological parameters

    NASA Astrophysics Data System (ADS)

    Katial, R. K.; Zhang, Yiming; Jones, Richard H.; Dyer, Philip D.

    Fungal spore counts of Cladosporium, Alternaria, and Epicoccum were studied during 8 years in Denver, Colorado. Fungal spore counts were obtained daily during the pollinating season by a Rotorod sampler. Weather data were obtained from the National Climatic Data Center. Daily averages of temperature, relative humidity, daily precipitation, barometric pressure, and wind speed were studied. A time series analysis was performed on the data to mathematically model the spore counts in relation to weather parameters. Using SAS PROC ARIMA software, a regression analysis was performed, regressing the spore counts on the weather variables assuming an autoregressive moving average (ARMA) error structure. Cladosporium was found to be positively correlated (P<0.02) with average daily temperature, relative humidity, and negatively correlated with precipitation. Alternaria and Epicoccum did not show increased predictability with weather variables. A mathematical model was derived for Cladosporium spore counts using the annual seasonal cycle and significant weather variables. The model for Alternaria and Epicoccum incorporated the annual seasonal cycle. Fungal spore counts can be modeled by time series analysis and related to meteorological parameters controlling for seasonallity; this modeling can provide estimates of exposure to fungal aeroallergens.

  9. Retrieval of water vapor profiles from atmospheric radio-occultations

    NASA Technical Reports Server (NTRS)

    Juarez, M. de la Torre; Nilsson, P. M.

    2002-01-01

    We illustrate a novel method to extract water vapor with high vertical resolution, using the refractivity profiles without ancillary data. We also discuss the estimated accuracies and sources of error.

  10. Validation of GPS atmospheric water vapor with WVR data in satellite tracking mode

    NASA Astrophysics Data System (ADS)

    Shangguan, M.; Heise, S.; Bender, M.; Dick, G.; Ramatschi, M.; Wickert, J.

    2015-01-01

    Slant-integrated water vapor (SIWV) data derived from GPS STDs (slant total delays), which provide the spatial information on tropospheric water vapor, have a high potential for assimilation to weather models or for nowcasting or reconstruction of the 3-D humidity field with tomographic techniques. Therefore, the accuracy of GPS STD is important, and independent observations are needed to estimate the quality of GPS STD. In 2012 the GFZ (German Research Centre for Geosciences) started to operate a microwave radiometer in the vicinity of the Potsdam GPS station. The water vapor content along the line of sight between a ground station and a GPS satellite can be derived from GPS data and directly measured by a water vapor radiometer (WVR) at the same time. In this study we present the validation results of SIWV observed by a ground-based GPS receiver and a WVR. The validation covers 184 days of data with dry and wet humidity conditions. SIWV data from GPS and WVR generally show good agreement with a mean bias of -0.4 kg m-2 and an rms (root mean square) of 3.15 kg m-2. The differences in SIWV show an elevation dependent on an rms of 7.13 kg m-2 below 15° but of 1.76 kg m-2 above 15°. Nevertheless, this elevation dependence is not observed regarding relative deviations. The relation between the differences and possible influencing factors (elevation angles, pressure, temperature and relative humidity) are analyzed in this study. Besides the elevation, dependencies between the atmospheric humidity conditions, temperature and the differences in SIWV are found.

  11. Warm spells in Northern Europe in relation to atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Tomczyk, Arkadiusz M.; Piotrowski, Piotr; Bednorz, Ewa

    2016-01-01

    This study describes warm spells in Northern Europe and determines the synoptic situations that cause their occurrence. In this article, a relatively warm day was defined as a day when the maximum temperature exceeded the 95th annual percentile, and a warm spell (WS) was considered to be a sequence of at least five relatively warm days. In the analysed multiannual period and within the investigated area, 24 (Kallax) to 53 (Oslo) WSs were observed. The occurrence of WSs was mainly connected with positive anomalies of sea level pressure and a 500-hPa isobaric surface, displaying the presence of high-pressure systems. This occurrence was also accompanied by positive T850 anomalies.

  12. Measurement of leaf relative water content by infrared reflectance

    NASA Technical Reports Server (NTRS)

    Hunt, E. Raymond, Jr.; Rock, Barrett N.; Nobel, Park S.

    1987-01-01

    From basic considerations and Beer's law, a leaf water content index incorporating reflectances of wavelengths from 0.76 to 0.90 microns and from 1.55 to 1.75 microns was developed that relates leaf reflectance to leaf relative water content. For the leaf succulent, Agave deserti, the leaf water content index was not significantly different from the relative water content for either individual leaves or an entire plant. Also, the relative water contents of intact plants of Encelia farinosa and Hilaria rigida in the field were estimated by the leaf water content index; variations in the proportion of living to dead leaf area could cause large errors in the estimate of relative water content. Thus, the leaf water content index may be able to estimate average relative water content of canopies when TM4 and TM5 are measured at a known relative water content and fraction of dead leaf material.

  13. Estimation of the Total Atmospheric Water Vapor Content and Land Surface Temperature Based on AATSR Thermal Data

    PubMed Central

    Zhang, Tangtang; Wen, Jun; van der Velde, Rogier; Meng, Xianhong; Li, Zhenchao; Liu, Yuanyong; Liu, Rong

    2008-01-01

    The total atmospheric water vapor content (TAWV) and land surface temperature (LST) play important roles in meteorology, hydrology, ecology and some other disciplines. In this paper, the ENVISAT/AATSR (The Advanced Along-Track Scanning Radiometer) thermal data are used to estimate the TAWV and LST over the Loess Plateau in China by using a practical split window algorithm. The distribution of the TAWV is accord with that of the MODIS TAWV products, which indicates that the estimation of the total atmospheric water vapor content is reliable. Validations of the LST by comparing with the ground measurements indicate that the maximum absolute derivation, the maximum relative error and the average relative error is 4.0K, 11.8% and 5.0% respectively, which shows that the retrievals are believable; this algorithm can provide a new way to estimate the LST from AATSR data.

  14. Reliability and degradation of oxide VCSELs due to reaction to atmospheric water vapor

    NASA Astrophysics Data System (ADS)

    Dafinca, Alexandru; Weidberg, Anthony R.; McMahon, Steven J.; Grillo, Alexander A.; Farthouat, Philippe; Ziolkowski, Michael; Herrick, Robert W.

    2013-03-01

    850nm oxide-aperture VCSELs are susceptible to premature failure if operated while exposed to atmospheric water vapor, and not protected by hermetic packaging. The ATLAS detector in CERN's Large Hadron Collider (LHC) has had approximately 6000 channels of Parallel Optic VCSELs fielded under well-documented ambient conditions. Exact time-to-failure data has been collected on this large sample, providing for the first time actual failure data at use conditions. In addition, the same VCSELs were tested under a variety of accelerated conditions to allow us to construct a more accurate acceleration model. Failure analysis information will also be presented to show what we believe causes corrosion-related failure for such VCSELs.

  15. Clear water radiances for atmospheric correction of coastal zone color scanner imagery

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.; Clark, D. K.

    1981-01-01

    The possibility of computing the inherent sea surface radiance for regions of clear water from coastal zone color scanner (CZCS) imagery given only a knowledge of the local solar zenith angle is examined. The inherent sea surface radiance is related to the upwelling and downwelling irradiances just beneath the sea surface, and an expression is obtained for a normalized inherent sea surface radiance which is nearly independent of solar zenith angle for low phytoplankton pigment concentrations. An analysis of a data base consisting of vertical profiles of upwelled spectral radiance and pigment concentration, which was used in the development of the CZCS program, confirms the virtual constancy of the normalized inherent sea surface radiance at wavelengths of 520 and 550 nm for cases when the pigment concentration is less than 0.25 mg/cu m. A strategy is then developed for using the normalized inherent sea surface radiance in the atmospheric correction of CZCS imagery.

  16. Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake

    NASA Astrophysics Data System (ADS)

    Mikhailov, E.; Vlasenko, S.; Rose, D.; Pöschl, U.

    2013-01-01

    organic aerosol) we present first mass-based measurements of water uptake over a wide range of relative humidity (1-99.4%) obtained with a new filter-based differential hygroscopicity analyzer (FDHA) technique. For these samples the concentration dependence of κm can be described by a simple KIM model equation based on observable mass growth factors and a total of only six fit parameters summarizing the combined effects of the dilute hygroscopicity parameters, self- and cross-interaction parameters, and solubilities of all involved chemical components. One of the fit parameters represents κm0 and can be used to predict critical dry diameters for the activation of cloud condensation nuclei (CCN) as a function of water vapor supersaturation according to Köhler theory. For sodium chloride and ammonium sulfate reference particles as well as for pristine rainforest aerosols consisting mostly of secondary organic matter, we obtained good agreement between the KIM predictions and measurement data of CCN activation. The application of KIM and mass-based measurement techniques shall help to bridge gaps in the current understanding of water uptake by atmospheric aerosols: (1) the gap between hygroscopicity parameters determined by hygroscopic growth measurements under sub-saturated conditions and by CCN activation measurements at water vapor supersaturation, and (2) the gap between the results of simplified single parameter models widely used in atmospheric or climate science and the results of complex multi-parameter ion- and molecule-interaction models frequently used in physical chemistry and solution thermodynamics (e.g., AIM, E-AIM, ADDEM, UNIFAC, AIOMFAC).

  17. Impact of soil water property parameterization on atmospheric boundary layer simulation

    NASA Astrophysics Data System (ADS)

    Cuenca, Richard H.; Ek, Michael; Mahrt, Larry

    1996-03-01

    Both the form of functional relationships applied for soil water properties and the natural field-scale variability of such properties can significantly impact simulation of the soil-plant-atmosphere system on a diurnal timescale. Various input parameters for soil water properties including effective saturation, residual water content, anerobiosis point, field capacity, and permanent wilting point are incorporated into functions describing soil water retention, hydraulic conductivity, diffusivity, sorptivity, and the plant sink function. The perception of the meaning of these values and their variation within a natural environment often differs from the perspective of the soil physicist, plant physiologist, and atmospheric scientist. This article investigates the sensitivity of energy balance and boundary layer simulation to different soil water property functions using the Oregon State University coupled atmosphere-plant-soil (CAPS) simulation model under bare soil conditions. The soil parameterizations tested in the CAPS model include those of Clapp and Hornberger [1978], van Genuchten [1980], and Cosby et al. [1984] using initial atmospheric conditions from June 16, 1986 in Hydrologic Atmospheric Pilot Experiment-Modélisation du Bilan Hydrique (HAPEX-MOBILHY). For the bare soil case these results demonstrate unexpected model sensitivity to soil water property parameterization in partitioning all components of the diurnal energy balance and corresponding boundary layer development.

  18. The interpretation of data from the Viking Mars Atmospheric Water Detectors (MAWD): Some points for discussion

    NASA Technical Reports Server (NTRS)

    Clifford, Stephen M.

    1988-01-01

    Properly interpreted, water vapor column abundance measurements can provide important insights into many of the processes that govern the diurnal, seasonal, and climatic cycles of atmospheric water on Mars. The uncertain distribution of water vapor complicates this analysis. It is argued that if a significant fraction of the total atmospheric vapor content is concentrated within the lowermost scale height, then the hemispheric asymmetry in zonally averaged topography/air mass might itself explain the observed gradient in the annual and zonally averaged vapor abundance.

  19. Tapping Water from the Atmosphere: The Bureau of Reclamation's Project Skywater (Invited)

    NASA Astrophysics Data System (ADS)

    Harper, K.

    2010-12-01

    . The Atmospheric Water Resources Program could provide the answer by analyzing reclamation projects’ needs for additional water, the availability of related hydrologic and hydrometeorologic data, and the possibility of obtaining reasonably successful results by tapping into the knowledge and skills of its engineers, hydrometeorologists, and hydrologists. But as far as BuRec was concerned, this program—eventually dubbed Project Skywater—would do more than exploit the atmosphere as a water reservoir. It would provide the bureau with a vehicle to expand its portfolio to the entire nation. And as the eastern part of the nation experienced drought conditions in the mid-1960s, the opportunity was ripe for the picking. Therefore, the story of Skywater’s genesis provides an interesting case study in the intersection of water science, technology, and politics at the highest levels of federal government.

  20. Temporal variations in atmospheric water vapor and aerosol optical depth determined by remote sensing

    NASA Technical Reports Server (NTRS)

    Pitts, D. E.; Mcallum, W. E.; Heidt, M.; Jeske, K.; Lee, J. T.; Demonbrun, D.; Morgan, A.; Potter, J.

    1977-01-01

    By automatically tracking the sun, a four-channel solar radiometer was used to continuously measure optical depth and atmospheric water vapor. The design of this simple autotracking solar radiometer is presented. A technique for calculating the precipitable water from the ratio of a water band to a nearby nonabsorbing band is discussed. Studies of the temporal variability of precipitable water and atmospheric optical depth at 0.610, 0.8730 and 1.04 microns are presented. There was good correlation between the optical depth measured using the autotracker and visibility determined from National Weather Service Station data. However, much more temporal structure was evident in the autotracker data than in the visibility data. Cirrus clouds caused large changes in optical depth over short time periods. They appear to be the largest deleterious atmospheric effect over agricultural areas that are remote from urban pollution sources.

  1. Design of Advanced Atmospheric Water Vapor Differential Absorption Lidar (DIAL) Detection System

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1999-01-01

    The measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The lidar atmospheric sensing experiment (LASE) is an instrument designed and operated by the Langley Research Center for high precision water vapor measurements. The design details of a new water vapor lidar detection system that improves the measurement sensitivity of the LASE instrument by a factor of 10 are discussed. The new system consists of an advanced, very low noise, avalanche photodiode (APD) and a state-of-the-art signal processing circuit. The new low-power system is also compact and lightweight so that it would be suitable for space flight and unpiloted atmospheric vehicles (UAV) applications. The whole system is contained on one small printed circuit board (9 x 15 sq cm). The detection system is mounted at the focal plane of a lidar receiver telescope, and the digital output is read by a personal computer with a digital data acquisition card.

  2. Problems of Terminology in the Teaching of Plant Water Relations

    ERIC Educational Resources Information Center

    Bradbeer, Philip A.; And Others

    1976-01-01

    Recommends use by teachers of new terminology regarding plant water relations. Includes definitions and Greek symbols for the following terms: water potential, water potential of cell, osmotic potential, matric potential, and pressure potential. (CS)

  3. Atmospheric studies related to aerospace activities and remote sensing technology

    NASA Technical Reports Server (NTRS)

    Sze, N. D.; Isaacs, R. G.; Ko, M.; Mcelroy, M. B.

    1981-01-01

    Parallel investigations were conducted relating to: the sensitivity of 1-D photochemical model simulated column ozone perturbations due to a projected fleet of 1000 aircraft cruising 7 hours per day at altitudes of 15-16 and 18-19 km to uncertainties in kinetic rate constant data determining modeled OH concentrations and eddy diffusivity profile parameterization and a comparison of the inherent strengths and weaknesses of Eulerian and Langrangian averaging processes in the development of multidimensional models and investigation of approaches to applying the Generalized Lagrangian Mean (GLM) formalism to zonal-mean models. The role of multiple scattering and Earth curvature in the evaluation of diurnally dependent photodissociation rates and trace species variations was examined.

  4. The abundance and distribution of water vapor in Jupiter's atmosphere

    NASA Technical Reports Server (NTRS)

    Bjoraker, Gordon L.; Larson, Harold P.; Kunde, Virgil G.

    1986-01-01

    The atmospheric transmission window between 1800 and 2250 cm(-1) in Jupiter's atmosphere was observed from the Kuiper Airborne Observatory (KAO) and by the infrared spectrometer (IRIS) on Voyager. The vertical distribution of H2O was derived for the 1 to 6 bar portion of Jupiter's troposphere. The spatial variation of H2O was measured using IRIS spectra of the Hot Spots in the North and South Equatorial Belts, the Equatorial Zone, and for an average of the North and South Tropical Zones. The H2O column abundance above the 4 bar level is the same in the zones as in the SEB Hot Spots, about 20 cm-amagat. The NEB Hot Spots are desiccated by a factor of 3 with respect to the rest of Jupiter. For an average between -40 to 40 deg latitude, the H2O mole fraction, qH2O, is saturated for P less than 2 bars, qH2O = 4x10 to the -6 in the 2 to 4 bar range and it increases to 3x10 to the -5 at 6 bars. A similar vertical profile applies to the spatially resolved zone and belt spectra, except that H2O falls off more rapidly at P less than 4 bars in the NEB Hot Spots. The massive H2O cloud at 5 bars, T = 273 K, proposed in solar composition models, is inconsistent with the observations. Instead, a thin H2O ice cloud would form at 2 bars, T = 200 K. The O/H ratio in Jupiter, inferred from H2O measurements in both belts and zones at 6 bars, is depleted by a factor of 50 with respect to the Sun. The implications for the origin of Jupiter of globally depleted O/H, but enhanced C/H and N/H, are discussed.

  5. Development and Validation of Water Vapor Tracers as Diagnostics for the Atmospheric Hydrologic Cycle

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding of the local and remote sources of water vapor can be a valuable diagnostic in understanding the regional atmospheric hydrologic cycle. In the present study, we have implemented passive tracers as prognostic variables to follow water vapor evaporated in predetermined regions until the water tracer precipitates. The formulation of the sources and sinks of tracer water is generally proportional to the prognostic water vapor variable. Because all water has been accounted for in tracers, the water vapor variable provides the validation of the tracer water and the formulation of the sources and sinks. The tracers have been implemented in a GEOS General Circulation Model (GCM) simulation consisting of several summer periods to determine the source regions of precipitation for the United States and India. The recycling of water and interannual variability of the sources of water will be examined. Potential uses in GCM sensitivity studies, predictability studies and data assimilation will be discussed.

  6. CALCIUM OXIDE SINTERING IN ATMOSPHERES CONTAINING WATER AND CARBON DIOXIDE

    EPA Science Inventory

    The paper gives results of measurements of the effects of water vapor and CO2 on the sintering rate of nascent CaO, as a function of partial pressure and temperature using CaO prepared by rapid decomposition of CaCO3 and CA(OH)2. Each gas strongly catalyzed the sintering process ...

  7. Visualization of Atmospheric Water Vapor Data for SAGE

    NASA Technical Reports Server (NTRS)

    Kung, Mou-Liang; Chu, W. P. (Technical Monitor)

    2000-01-01

    The goal of this project was to develop visualization tools to study the water vapor dynamics using the Stratospheric Aerosol and Gas Experiment 11 (SAGE 11) water vapor data. During the past years, we completed the development of a visualization tool called EZSAGE, and various Gridded Water Vapor plots, tools deployed on the web to provide users with new insight into the water vapor dynamics. Results and experiences from this project, including papers, tutorials and reviews were published on the main Web page. Additional publishing effort has been initiated to package EZSAGE software for CD production and distribution. There have been some major personnel changes since Fall, 1998. Dr. Mou-Liang Kung, a Professor of Computer Science assumed the PI position vacated by Dr. Waldo Rodriguez who was on leave. However, former PI, Dr. Rodriguez continued to serve as a research adviser to this project to assure smooth transition and project completion. Typically in each semester, five student research assistants were hired and trained. Weekly group meetings were held to discuss problems, progress, new research direction, and activity planning. Other small group meetings were also held regularly for different objectives of this project. All student research assistants were required to submit reports for conference submission.

  8. Atmospheric water vapor monitoring from local GNSS networks: comparisons of GNSS data adjustment strategies

    NASA Astrophysics Data System (ADS)

    Capponi, Martina; Fermi, Alessandro; Monti Guarnieri, Andrea; Realini, Eugenio; Venuti, Giovanna

    2016-04-01

    Since many years GNSS has been regarded by the meteorological community as one of the systems for atmospheric water vapor remote sensing. Time series of GNSS wet delays are estimated as by-products of accurate positioning. Their assimilation into numerical weather prediction (NWP) models is being investigated at both research and operational levels, although typically at coarse space resolutions (e.g. few tens of km). A dedicated use of this system for water vapor monitoring at higher resolutions is still under investigation. Ad hoc networks have been designed and implemented to collect data at a high spatial resolution (station inter-distances of 1-10 km), to have an insight into the spatial distribution of GNSS derived wet delays and/or into the impact of such information on high resolution NWP models. Within this research framework the paper reports the comparisons carried out between ZWD time series obtained from the data collected by an Italian and a Japanese dense networks of permanent geodetic GNSS receivers. Tropospheric delays have been estimated by applying different data adjustment strategies: relative positioning and PPP (precise point positioning). For this last strategy two different solutions have been analyzed and compared: the Bernese software batch solution, and the RTNet software Kalman filter solution. Assessment of the results were performed against IGS GNSS delays as well as by comparison with radiosonde-derived precipitable water vapor (PWV).

  9. Estimating the effectiveness of using atmospheric deaerators for decarbonizing makeup water

    NASA Astrophysics Data System (ADS)

    Larin, B. M.; Larin, A. B.

    2015-02-01

    According to the water coolant quality standards, the makeup water supplied to a thermal power plant's (TPP) steam-generating systems must not have any content of free carbonic acid. As a rule, free and partially bound carbonic acid is removed from makeup water supplied to the power-generating boilers at TPPs in atmospheric deaerators. Their performance as decarbonizers can be evaluated by measuring the pH values of water supplied to the deaerator and of the deaerated water. A procedure for calculating the residual concentration of carbonic acid in deaerated water and the decarbonization effect from the change in the pH value (ΔpH) is presented together with an example of calculation carried out by specialists of the Ivanovo State Power Engineering University based on a long-term industrial experiment performed on DSA-300 atmospheric deaerators.

  10. Raman lidar profiling of atmospheric water vapor: Simultaneous measurements with two collocated systems

    NASA Technical Reports Server (NTRS)

    Goldsmith, J. E. M.; Bisson, Scott E.; Ferrare, Richard A.; Evans, Keith D.; Whiteman, David N.; Melfi, S. H.

    1994-01-01

    Raman lidar is a leading candidate for providing the detailed space- and time-resolved measurements of water vapor needed by a variety of atmospheric studies. Simultaneous measurements of atmospheric water vapor are described using two collocated Raman lidar systems. These lidar systems, developed at the NASA/Goddard Space Flight Center and Sandia National Laboratories, acquired approximately 12 hours of simultaneous water vapor data during three nights in November 1992 while the systems were collocated at the Goddard Space Flight Center. Although these lidar systems differ substantially in their design, measured water vapor profiles agreeed within 0.15 g/kg between altitudes of 1 and 5 km. Comparisons with coincident radiosondes showed all instruments agreed within 0.2 g/kg in this same altitude range. Both lidars also clearly showed the advection of water vapor in the middle troposphere and the pronounced increase in water vapor in the nocturnal boundary layer that occurred during one night.

  11. Relating SMMR 37 GHz polarization difference to precipitation and atmospheric carbon dioxide concentration - A reappraisal

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.

    1992-01-01

    The relations of Scanning Multi-channel Microwave Radiometer (SMMR) 37 GHz polarization difference to precipitation and atmospheric carbon dioxide (CO2) concentrations are reviewed. Annual precipitation data, a surrogate for green leaf vegetation density, are compared with the coincident SMMR 37 GHz polarization difference from arid and semi-arid West Africa for 1982-85. The SMMR 37 GHz polarization difference was found to be poorly correlated with precipitation in arid and semi-arid zones, contrary to previous reports. Coincident SMMR 37 GHz polarization difference and atmospheric CO2 concentration data from July 1981 to June 1983 are also reviewed. Previously suggested relations of the SMMR 37 GHz polarization difference to atmospheric CO2 concentrations were found to be heavily biased by winter conditions in the Northern Hemisphere. The use of the SMMR 37 GHz polarization difference for determining green leaf vegetation density, net primary production, atmospheric CO2 draw-down and related processes is questioned.

  12. Atmospheric pre-corrected differential absorption techniques to retrieve columnar water vapor: Theory and simulations

    SciTech Connect

    Borel, C.C.; Schlaepfer, D.

    1996-03-01

    Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data: (1) Differential absorption techniques based on: (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels; and (2) Non-linear fitting techniques which are based on spectral radiative transfer calculations. The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation, we derived an {open_quote}Atmospheric Pre-corrected Differential Absorption{close_quote} (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis. Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better. An extensive data set was created with the radiative transfer code 6S over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than {+-}5%. The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique.

  13. Forests, Water, and the Atmosphere in Northern California: Insights from Sap-Flow Data Analysis and Numerical Atmospheric Model Simulations

    NASA Astrophysics Data System (ADS)

    Link, Percy Anne

    Evapotranspiration cools the land surface by consuming a large fraction of the net radiative energy at the surface. In forested regions, trees actively control the rate of transpiration by modulating stomatal conductance in response to environmental conditions, and species with different stomatal dynamics can affect the atmosphere in distinct ways. Using principal component analysis (PCA) and Markov chain Monte Carlo (MCMC) parameter estimation with direct, tree-level measurements of water use, we show that Douglas-firs ( Pseudotsuga menziesii), a common evergreen needleleaf tree species in the Northern California Coast Range, decrease their transpiration sharply in the summer dry season in response to a dry root zone; and in contrast, broadleaf evergreen tree species, especially Pacific madrones (Arbutus menziesii), transpire maximally in the summer dry season because their transpiration is much less sensitive to a dry root zone and increases continually in response to increasing atmospheric evaporative demand. We scale up these tree-level observations to construct a bottom-up estimate of regional transpiration, and we use these regional estimates along with atmospheric models, one simple and one comprehensive, to quantify the potential impact of species transpiration differences on regional summertime climate. The atmospheric models suggest that these species differences in transpiration could affect the well-mixed atmospheric boundary layer temperature and humidity by 1-1.5 degrees C and 1 g/kg, respectively, and near-surface temperature and humidity by 1.5-2.5 degrees C and 2-3 g/kg, respectively. We further investigate the sensitivity of California climate to evapotranspiration by estimating the sensitivity of wind energy forecasts at a California wind farm to regional-scale perturbations in soil moisture using a regional atmospheric model. These tests show that forecasts at this particular farm are most sensitive to soil moisture in the Central Valley, and

  14. Water security, global change and land-atmosphere feedbacks.

    PubMed

    Dadson, Simon; Acreman, Michael; Harding, Richard

    2013-11-13

    Understanding the competing pressures on water resources requires a detailed knowledge of the future water balance under uncertain environmental change. The need for a robust, scientifically rigorous evidence base for effective policy planning and practice has never been greater. Environmental change includes, but is not limited to, climate change; it also includes land-use and land-cover change, including deforestation for agriculture, and occurs alongside changes in anthropogenic interventions that are used in natural resource management such as the regulation of river flows using dams, which can have impacts that frequently exceed those arising in the natural system. In this paper, we examine the role that land surface models can play in providing a robust scientific basis for making resource management decisions against a background of environmental change. We provide some perspectives on recent developments in modelling in land surface hydrology. Among the range of current land surface and hydrology models, there is a large range of variability, which indicates that the specification and parametrization of several basic processes in the models can be improved. Key areas that require improvement in order to address hydrological applications include (i) the representation of groundwater in models, particularly at the scales relevant to land surface modelling, (ii) the representation of human interventions such as dams and irrigation in the hydrological system, (iii) the quantification and communication of uncertainty, and (iv) improved understanding of the impact on water resources availability of multiple use through treatment, recycling and return flows (and the balance of consumptive and conservative uses). Through a series of examples, we demonstrate that changes in water use could have important reciprocal impacts on climate over a wide area. The effects of water management decisions on climate feedbacks are only beginning to be investigated-they are

  15. Size resolved fog water chemistry and its atmospheric implications

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Gupta, Tarun; Tripathi, Sachchida; Ervens, Barbara; Bhattu, Deepika

    2015-04-01

    Fog is a natural meteorological phenomenon that occurs throughout the world. It usually contains substantial quantity of liquid water and results in severe visibility reduction leading to disruption of normal life. Fog is generally seen as a natural cleansing agent but it also has the potential to form Secondary Organic Aerosol (SOA) via aqueous processing of ambient aerosols. Size- resolved fog water chemistry for inorganics were reported in previous studies but processing of organics inside the fog water and quantification of aqSOA remained a challenge. To assess the organics processing via fog aqueous processing, size resolved fog water samples were collected in two consecutive winter seasons (2012-13, 2013-14) at Kanpur, a heavily polluted urban area of India. Caltech 3 stage fog collector was used to collect the fog droplets in 3 size fraction; coarse (droplet diameter > 22 µm), medium (22> droplet diameter >16 µm) and fine (16> droplet diameter >4 µm). Collected samples were atomized into various instruments such as Aerosol Mass Spectrometer (AMS), Cloud Condensation Nucleus Counter (CCNc), Total Organic Carbon (TOC) and a thermo denuder (TD) for the physico-chemical characterization of soluble constituents. Fine droplets are found to be more enriched with different aerosol species and interestingly contain more aged and less volatile organics compared to other coarser sizes. Organics inside fine droplets have an average O/C = 0.87 compared to O/C of 0.67 and 0.74 of coarse and medium droplets. Metal chemistry and higher residence time of fine droplets are seemed to be the two most likely reasons for this outcome from as the results of a comprehensive modeling carried out on the observed data indicate. CCN activities of the aerosols from fine droplets are also much higher than that of coarse or medium droplets. Fine droplets also contain light absorbing material as was obvious from their 'yellowish' solution. Source apportionment of fog water organics via

  16. Plant water relations I: uptake and transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants, like all living things, are mostly water. Water is the matrix of life, and its availability determines the distribution and productivity of plants on earth. Vascular plants evolved structures that enable them to transport water long distances with little input of energy, but the hollow trach...

  17. Hygiene Fast Facts: Information on Water-Related Hygiene

    MedlinePlus

    ... The CDC Cancel Submit Search The CDC Water, Sanitation & Environmentally-related Hygiene Note: Javascript is disabled or ... please visit this page: About CDC.gov . Water, Sanitation, & Environmentally-related Hygiene Handwashing Keeping Hands Clean Handwashing: ...

  18. Measurement of atmospheric water vapor, leaf liquid water and reflectance with AVIRIS in the Boreal Ecosystem-Atmosphere Study: Initial results

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Conel, James E.; Roberts, Dar A.

    1995-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) acquired data as part of the Boreal Ecosystem-Atmosphere Study (BOREAS) in 1994. Flights occurred over the northern study area (NSA) in the region of 56 degrees north latitude and 98.5 degrees west longitude and over the southern study area (SSA) at 54 degrees north latitude and 105 degrees west longitude. These data will be used to directly derive spectral properties of the surface and atmosphere and to provide supporting data for other instruments, models, and experiments in support of the BOREAS objectives. We present a preliminary evaluation of the AVIRIS data collected in BOREAS in terms of the AVIRIS-derived parameters: water vapor, leaf water, and apparent spectral reflectance.

  19. Abundance and distribution of water vapor in Jupiter's atmosphere

    SciTech Connect

    Bjoraker, G.L.; Larson, H.P.; Kunde, V.G.

    1986-09-01

    The atmospheric transmission window between 1800 and 2250 cm(-1) in Jupiter's atmosphere was observed from the Kuiper Airborne Observatory (KAO) and by the infrared spectrometer (IRIS) on Voyager. The vertical distribution of H/sub 2/O was derived for the 1 to 6 bar portion of Jupiter's troposphere. The spatial variation of H/sub 2/O was measured using IRIS spectra of the Hot Spots in the North and South Equatorial Belts, the Equatorial Zone, and for an average of the North and South Tropical Zones. The H/sub 2/O column abundance above the 4 bar level is the same in the zones as in the SEB Hot Spots, about 20 cm-amagat. The NEB Hot Spots are desiccated by a factor of 3 with respect to the rest of Jupiter. For an average between -40 to 40 deg latitude, the H/sub 2/O mole fraction, qH/sub 2/O, is saturated for P less than 2 bars, qH/sub 2/O = 4x10 to the -6 in the 2 to 4 bar range and it increases to 3x10 to the -5 at 6 bars. A similar vertical profile applies to the spatially resolved zone and belt spectra, except that H/sub 2/O falls off more rapidly at P less than 4 bars in the NEB Hot Spots. The massive H/sub 2/O cloud at 5 bars, T = 273 K, proposed in solar composition models, is inconsistent with the observations. Instead, a thin H/sub 2/O ice cloud would form at 2 bars, T = 200 K. The O/H ratio in Jupiter, inferred from H/sub 2/O measurements in both belts and zones at 6 bars, is depleted by a factor of 50 with respect to the Sun. The implications for the origin of Jupiter of globally depleted O/H, but enhanced C/H and N/H, are discussed.

  20. Size matters in the water uptake and hygroscopic growth of atmospherically relevant multicomponent aerosol particles.

    PubMed

    Laskina, Olga; Morris, Holly S; Grandquist, Joshua R; Qin, Zhen; Stone, Elizabeth A; Tivanski, Alexei V; Grassian, Vicki H

    2015-05-14

    Understanding the interactions of water with atmospheric aerosols is crucial for determining the size, physical state, reactivity, and climate impacts of this important component of the Earth's atmosphere. Here we show that water uptake and hygroscopic growth of multicomponent, atmospherically relevant particles can be size dependent when comparing 100 nm versus ca. 6 μm sized particles. It was determined that particles composed of ammonium sulfate with succinic acid and of a mixture of chlorides typical of the marine environment show size-dependent hygroscopic behavior. Microscopic analysis of the distribution of components within the aerosol particles show that the size dependence is due to differences in the mixing state, that is, whether particles are homogeneously mixed or phase separated, for different sized particles. This morphology-dependent hygroscopicity has consequences for heterogeneous atmospheric chemistry as well as aerosol interactions with electromagnetic radiation and clouds. PMID:25521409

  1. Spatial and temporal variations in plant Water Use Efficiency inferred from tree-ring, eddy covariance and atmospheric observations

    NASA Astrophysics Data System (ADS)

    Groenendijk, Margriet; Cox, Peter M.; Booth, Ben B. B.; Dekker, Stefan C.; Huntingford, Chris

    2016-02-01

    Plant Water Use Efficiency (WUE), which is the ratio of the uptake of carbon dioxide through photosynthesis to the loss of water through transpiration, is a very useful metric of the functioning of the land biosphere. WUE is expected to increase with atmospheric CO2, but to decline with increasing atmospheric evaporative demand - which can arise from increases in near-surface temperature or decreases in relative humidity. We have used Δ13C measurements from tree-rings, along with eddy-covariance measurements from Fluxnet sites, to estimate the sensitivities of WUE to changes in CO2 and atmospheric humidity deficit. This enables us to reconstruct fractional changes in WUE, based on changes in atmospheric climate and CO2, for the entire period of the instrumental global climate record. We estimate that overall WUE increased from 1900 to 2010 by 48 ± 22 %, which is more than double that simulated by the latest Earth System Models. This long-term trend is largely driven by increases in CO2, but significant inter-annual variability and regional differences are evident due to variations in temperature and relative humidity. There are several highly populated regions, such as Western Europe and East Asia, where the rate of increase of WUE has declined sharply in the last two decades.

  2. Spatial and temporal variations in plant water-use efficiency inferred from tree-ring, eddy covariance and atmospheric observations

    NASA Astrophysics Data System (ADS)

    Dekker, Stefan C.; Groenendijk, Margriet; Booth, Ben B. B.; Huntingford, Chris; Cox, Peter M.

    2016-06-01

    Plant water-use efficiency (WUE), which is the ratio of the uptake of carbon dioxide through photosynthesis to the loss of water through transpiration, is a very useful metric of the functioning of the land biosphere. WUE is expected to increase with atmospheric CO2, but to decline with increasing atmospheric evaporative demand - which can arise from increases in near-surface temperature or decreases in relative humidity. We have used Δ13C measurements from tree rings, along with eddy covariance measurements from Fluxnet sites, to estimate the sensitivities of WUE to changes in CO2 and atmospheric humidity deficit. This enables us to reconstruct fractional changes in WUE, based on changes in atmospheric climate and CO2, for the entire period of the instrumental global climate record. We estimate that overall WUE increased from 1900 to 2010 by 48 ± 22 %, which is more than double that simulated by the latest Earth System Models. This long-term trend is largely driven by increases in CO2, but significant inter-annual variability and regional differences are evident due to variations in temperature and relative humidity. There are several highly populated regions, such as western Europe and East Asia, where the rate of increase of WUE has declined sharply in the last 2 decades. Our data-based analysis indicates increases in WUE that typically exceed those simulated by Earth System Models - implying that these models are either underestimating increases in photosynthesis or underestimating reductions in transpiration.

  3. Fluid mechanics simulation of fog formation associated with polluted atmosphere produced by energy related fuel combustion

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liaw, G. S.

    1980-01-01

    It is noted that large quantities of atmospheric aerosols with composition SO4(-2), NO3(-1), and NH4(+1) have been detected in highly industrialized areas. Most aerosol products come from energy-related fuel combustion. Fluid mechanics simulation of both microphysical and macrophysical processes is considered in studying the time dependent evolution of the saturation spectra of condensation nuclei associated with polluted and clean atmospheres during the time periods of advection fog formation. The results demonstrate that the condensation nuclei associated with a polluted atmosphere provide more favorable conditions than condensation nuclei associated with a clean atmosphere to produce dense advection fog, and that attaining a certain degree of supersaturation is not necessarily required for the formation of advection fog having condensation nuclei associated with a polluted atmosphere.

  4. Atmospheric water balance and trend over ocean estimated from satellite, merged and reanalysis data

    NASA Astrophysics Data System (ADS)

    Shin, D. B.; Park, H. J.

    2014-12-01

    The column integrated atmospheric water balance over the ocean was examined using satellite-based and merged datasets for the period from 2000 to 2007. The datasets for the components of the atmospheric water balance include evaporation from the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite data (HOAPS), the Japanese Ocean Flux Data sets with Use of Remote Sensing Observations (J-OFURO2) and the Objectively Analyzed Air-Sea Heat Fluxes (OAFlux) and precipitation from the HOAPS, the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and the Global Precipitation Climatology Project (GPCP). The water vapor tendency was derived from water vapor data of HOAPS. The product for water vapor flux convergence estimated using satellite observation data was used. The atmospheric balance components from the Modern-Era Retrospective analysis for Research and Applications (MERRA) reanalysis data were also examined. Residuals of the atmospheric water balance equation were estimated using nine possible combinations of the datasets over the ocean between 60°N and 60°S. The results showed that there was considerable disagreement in the residual intensities and distributions from the different combinations of the datasets. In particular, the residuals in the estimations of the satellite-based atmospheric budget appear to be large over the oceanic areas with heavy precipitation such as the intertropical convergence zone, South Pacific convergence zone, and monsoon regions. The lack of closure of the atmospheric water cycle may be attributed to the uncertainties in the datasets and approximations in the atmospheric water balance equation. Meanwhile, the anomalies of the residuals from the nine combinations of the datasets are in good agreement with their variability patterns. These results suggest that significant consideration is needed when applying the datasets of water budget components to quantitative water budget studies, while climate

  5. An impact-induced terrestrial atmosphere and iron-water reactions during accretion of the Earth

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.

    1985-01-01

    Shock wave data and theoretical calculations were used to derive models of an impact-generated terrestrial atmosphere during accretion of the Earth. The models showed that impacts of infalling planetesimals not only provided the entire budget of terrestrial water but also led to a continuous depletion of near-surface layers of water-bearing minerals of their structural water. This resulted in a final atmospheric water reservoir comparable to the present day total water budget of the Earth. The interaction of metallic iron with free water at the surface of the accreting Earth is considered. We carried out model calcualtions simulating these processes during accretion. It is assumed that these processes are the prime source of the terrestrial FeO component of silicates and oxides. It is demonstrated that the iron-water reaction would result in the absence of atmospheric/hydrospheric water, if homogeneous accretion is assumed. In order to obtain the necessary amount of terrestrial water, slightly heterogeneous accretion with initially 36 wt% iron planetesimals, as compared with a homogeneous value of 34 wt% is required.

  6. Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for highly turbid waters.

    PubMed

    He, Xianqiang; Bai, Yan; Pan, Delu; Tang, Junwu; Wang, Difeng

    2012-08-27

    Instead of the conventionally atmospheric correction algorithms using the near-infrared and shortwave infrared wavelengths, an alternative practical atmospheric correction algorithm using the ultraviolet wavelength for turbid waters (named UV-AC) is proposed for satellite ocean color imagery in the paper. The principle of the algorithm is based on the fact that the water-leaving radiance at ultraviolet wavelengths can be neglected as compared with that at the visible light wavelengths or even near-infrared wavelengths in most cases of highly turbid waters due to the strong absorption by detritus and colored dissolved organic matter. The UV-AC algorithm uses the ultraviolet band to estimate the aerosol scattering radiance empirically, and it does not need any assumption of the water's optical properties. Validations by both of the simulated data and in situ data show that the algorithm is appropriate for the retrieval of the water-leaving radiance in turbid waters. The UV-AC algorithm can be used for all the current satellite ocean color sensors, and it is especially useful for those ocean color sensors lacking the shortwave infrared bands. Moreover, the algorithm can be used for any turbid waters with negligible water-leaving radiance at ultraviolet wavelength. Based on our work, we recommend the future satellite ocean color remote sensors setting the ultraviolet band to perform the atmospheric correction in turbid waters. PMID:23037125

  7. Transient atmospheres on Charon and water-ice covered KBOs resulting from comet impacts

    NASA Astrophysics Data System (ADS)

    Stern, S. Alan; Gladstone, Randall; Zangari, Amanda; Fleming, Thadeus; Goldstein, David

    2015-01-01

    Evidence from stellar occultation datasets and Charon's H2O-ice dominated surface composition has long suggested a lack of any current atmosphere around this satellite planet. However, impacts from both Kuiper Belt and Oort Cloud comets must from time to time import N2, CH4, and other cometary super-volatiles that can create temporary atmospheres around Charon. Here we estimate the frequency of such cometary impacts on Charon and the imported mass of super-volatiles from each such impact. We then examine the characteristics of such transient atmospheric events, including their column densities, mean molecular weights, scale heights, and loss timescales. We then report on the detectability of such a transient atmosphere by New Horizons, and discuss the generalized case of cometary impact-created transient atmospheres on other satellites of Pluto and water-ice covered KBOs across the Kuiper Belt.

  8. Water loss from terrestrial planets with CO{sub 2}-rich atmospheres

    SciTech Connect

    Wordsworth, R. D.; Pierrehumbert, R. T.

    2013-12-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO{sub 2} can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO{sub 2} atmospheric partial pressures (0.1-1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but X-ray and ultraviolet/ultravoilet luminosity decreases, this places strong limits on water loss for planets like Earth. In contrast, for a CO{sub 2}-rich early Venus, diffusion limits on water loss are only important if clouds caused strong cooling, implying that scenarios where the planet never had surface liquid water are indeed plausible. Around M-stars, water loss is primarily a function of orbital distance, with planets that absorb less flux than ∼270 W m{sup –2} (global mean) unlikely to lose more than one Earth ocean of H{sub 2}O over their lifetimes unless they lose all their atmospheric N{sub 2}/CO{sub 2} early on. Because of the variability of H{sub 2}O delivery during accretion, our results suggest that many 'Earth-like' exoplanets in the habitable zone may have ocean-covered surfaces, stable CO{sub 2}/H{sub 2}O-rich atmospheres, and high mean surface temperatures.

  9. Towards quantitative atmospheric water vapor profiling with differential absorption lidar.

    PubMed

    Dinovitser, Alex; Gunn, Lachlan J; Abbott, Derek

    2015-08-24

    Differential Absorption Lidar (DIAL) is a powerful laser-based technique for trace gas profiling of the atmosphere. However, this technique is still under active development requiring precise and accurate wavelength stabilization, as well as accurate spectroscopic parameters of the specific resonance line and the effective absorption cross-section of the system. In this paper we describe a novel master laser system that extends our previous work for robust stabilization to virtually any number of multiple side-line laser wavelengths for the future probing to greater altitudes. In this paper, we also highlight the significance of laser spectral purity on DIAL accuracy, and illustrate a simple re-arrangement of a system for measuring effective absorption cross-section. We present a calibration technique where the laser light is guided to an absorption cell with 33 m path length, and a quantitative number density measurement is then used to obtain the effective absorption cross-section. The same absorption cell is then used for on-line laser stabilization, while microwave beat-frequencies are used to stabilize any number of off-line lasers. We present preliminary results using ∼300 nJ, 1 μs pulses at 3 kHz, with the seed laser operating as a nanojoule transmitter at 822.922 nm, and a receiver consisting of a photomultiplier tube (PMT) coupled to a 356 mm mirror. PMID:26368258

  10. Venus: implications from microwave spectroscopy of the atmospheric content of water vapor.

    PubMed

    Pollack, J B; Wood, A T

    1968-09-13

    From comparison of theoretical and observed microwave brightness temperatures of Venus at 1.35 centimeters, the center of a water-vapor line, we obtain an upper limit of 0.8 percent for the water-vapor mixing ratio in the lower atmosphere. This limit is consistent with the amount of water vapor detected by Venera 4, the existence of aqueous ice clouds, and a greenhouse effect caused by water vapor and carbon dioxide. The computed spectra suggest that a sensitive procedure for detection of water vapor is examination of the wavelength region between I and 1.4 centimeters. PMID:17812281

  11. Revised Atmospheric Angular Momentum Series Related to Earth's Variable Rotation under Consideration of Surface Topography

    NASA Technical Reports Server (NTRS)

    Zhou, Y. H.; Salstein, D. A.; Chen, J. L.

    2006-01-01

    The atmospheric angular momentum is closely related to variations in the Earth rotation. The atmospheric excitation function (AEF), or namely atmospheric effective angular momentum function, is introduced in studying the atmospheric excitation of the Earth's variable rotation. It may be separated into two portions, i.e, the "wind" terms due to the atmospheric motion relative to the mantle and the "pressure" terms due to the variations of atmospheric mass distribution evident through surface pressure changes. The AEF wind terms during the period of 1948-2004 are re-processed from the NCEP/NCAR (National Centers for Environmental Prediction-National Center for Atmospheric Research) reanalysis 6-hourly wind and pressure fields. Some previous calculations were approximate, in that the wind terms were integrated from an isobaric lower boundary of 1000 hPa. To consider the surface topography effect, however, the AEF is computed by integration using the winds from the Earth's surface to 10 hPa, the top atmospheric model level, instead of from 1000 hPa. For these two cases, only a minor difference, equivalent to approx. 0.004 milliseconds in length-of-day variation, exists with respect to the axial wind term. However, considerable differences, equivalent to 5-6 milliarcseconds in polar motion, are found regarding equatorial wind terms. We further compare the total equatorial AEF (with and without the topographic effect) with the polar motion excitation function (PMEF) during the period of 1980-2003. The equatorial AEF gets generally closer to the PMEF, and improved coherences are found between them when the topography effect is included. Keywords: Atmospheric angular momentum, Atmospheric excitation function, Earth rotation, Topography, Wind, Pressure.

  12. Precipitation chemistry - Atmospheric loadings to the surface waters of the Indian River lagoon basin by rainfall

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.; Madsen, Brooks C.; Maull, Lee A.; Hinkle, C. R.; Knott, William M., III

    1990-01-01

    Rain volume and chemistry monitoring as part of the Kennedy Space Center Long Term Environmental Monitoring Program included the years 1984-1987 as part of the National Atmospheric Deposition Program. Atmospheric deposition in rainfall consisted primarily of sea salt and hydrogen ion, sulfate, nitrate, and ammonium ions. The deposition of nitrogen (a principal plant nutrient) was on the order of 200-300 metric tons per year to the surface waters.

  13. Modeling of Water Flow Processes in the Soil-Plant-Atmosphere System: The Soil-Tree-Atmosphere Continuum Model

    NASA Astrophysics Data System (ADS)

    Massoud, E. C.; Vrugt, J. A.

    2015-12-01

    Trees and forests play a key role in controlling the water and energy balance at the land-air surface. This study reports on the calibration of an integrated soil-tree-atmosphere continuum (STAC) model using Bayesian inference with the DREAM algorithm and temporal observations of soil moisture content, matric head, sap flux, and leaf water potential from the King's River Experimental Watershed (KREW) in the southern Sierra Nevada mountain range in California. Water flow through the coupled system is described using the Richards' equation with both the soil and tree modeled as a porous medium with nonlinear soil and tree water relationships. Most of the model parameters appear to be reasonably well defined by calibration against the observed data. The posterior mean simulation reproduces the observed soil and tree data quite accurately, but a systematic mismatch is observed between early afternoon measured and simulated sap fluxes. We will show how this points to a structural error in the STAC-model and suggest and test an alternative hypothesis for root water uptake that alleviates this problem.

  14. Atmospheric control on isotopic composition and d-excess in water vapor over ocean surface

    NASA Astrophysics Data System (ADS)

    Fan, Naixin

    For decades, stable isotopes of water have been used as proxies to infer the variation of the hydrological cycle. However, it is still not clear how various atmospheric processes quantitatively control kinetic fractionation during evaporation over the ocean. Understanding kinetic fractionation is important in that the interpretation of the isotopic composition record preserved in ice cores and precipitation relies in part on the isotopic information at the moisture source. In addition, the isotopic composition of vapor contains information about variation of atmospheric processes such as turbulence and change in moisture source region which is useful for studying meteorological processes and climate change. In this study the isotopic composition of water vapor in the marine boundary layer (MBL) over the ocean was investigated using a combination of a newly developed marine boundary layer (MBL) model and observational data. The new model has a more realistic MBL structure than previous models and includes new features such as vertical advection of air and diffusion coefficients that vary continuously in the vertical direction. A robust linear relationship between deltaD and delta18O was found in observational oceanic water vapor data and the model can well capture the characteristics of this relationship. The individual role of atmospheric processes or variables on deltaD, delta18O and d-excess was quantitatively investigated and an overview of the combined effect of all the meteorological processes is provided. In particular, we emphasize that the properties of subsiding air (such as its mixing ratio and isotopic values) are crucial to the isotopic composition of surface water vapor. Relative humidity has been used to represent the moisture deficit that drives evaporative isotopic fluxes, however, we argue that it has serious limitations in explaining d-excess variation as latitude varies. We introduce a new quantity Gd=SST-Td, the difference between the sea

  15. Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet.

    PubMed

    Fraine, Jonathan; Deming, Drake; Benneke, Bjorn; Knutson, Heather; Jordán, Andrés; Espinoza, Néstor; Madhusudhan, Nikku; Wilkins, Ashlee; Todorov, Kamen

    2014-09-25

    Transmission spectroscopy has so far detected atomic and molecular absorption in Jupiter-sized exoplanets, but intense efforts to measure molecular absorption in the atmospheres of smaller (Neptune-sized) planets during transits have revealed only featureless spectra. From this it was concluded that the majority of small, warm planets evolve to sustain atmospheres with high mean molecular weights (little hydrogen), opaque clouds or scattering hazes, reducing our ability to observe the composition of these atmospheres. Here we report observations of the transmission spectrum of the exoplanet HAT-P-11b (which has a radius about four times that of Earth) from the optical wavelength range to the infrared. We detected water vapour absorption at a wavelength of 1.4 micrometres. The amplitude of the water absorption (approximately 250 parts per million) indicates that the planetary atmosphere is predominantly clear down to an altitude corresponding to about 1 millibar, and sufficiently rich in hydrogen to have a large scale height (over which the atmospheric pressure varies by a factor of e). The spectrum is indicative of a planetary atmosphere in which the abundance of heavy elements is no greater than about 700 times the solar value. This is in good agreement with the core-accretion theory of planet formation, in which a gas giant planet acquires its atmosphere by accreting hydrogen-rich gas directly from the protoplanetary nebula onto a large rocky or icy core. PMID:25254473

  16. Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet

    NASA Astrophysics Data System (ADS)

    Fraine, Jonathan; Deming, Drake; Benneke, Bjorn; Knutson, Heather; Jordán, Andrés; Espinoza, Néstor; Madhusudhan, Nikku; Wilkins, Ashlee; Todorov, Kamen

    2014-09-01

    Transmission spectroscopy has so far detected atomic and molecular absorption in Jupiter-sized exoplanets, but intense efforts to measure molecular absorption in the atmospheres of smaller (Neptune-sized) planets during transits have revealed only featureless spectra. From this it was concluded that the majority of small, warm planets evolve to sustain atmospheres with high mean molecular weights (little hydrogen), opaque clouds or scattering hazes, reducing our ability to observe the composition of these atmospheres. Here we report observations of the transmission spectrum of the exoplanet HAT-P-11b (which has a radius about four times that of Earth) from the optical wavelength range to the infrared. We detected water vapour absorption at a wavelength of 1.4 micrometres. The amplitude of the water absorption (approximately 250 parts per million) indicates that the planetary atmosphere is predominantly clear down to an altitude corresponding to about 1 millibar, and sufficiently rich in hydrogen to have a large scale height (over which the atmospheric pressure varies by a factor of e). The spectrum is indicative of a planetary atmosphere in which the abundance of heavy elements is no greater than about 700 times the solar value. This is in good agreement with the core-accretion theory of planet formation, in which a gas giant planet acquires its atmosphere by accreting hydrogen-rich gas directly from the protoplanetary nebula onto a large rocky or icy core.

  17. The water cycle in the general circulation model of the martian atmosphere

    NASA Astrophysics Data System (ADS)

    Shaposhnikov, D. S.; Rodin, A. V.; Medvedev, A. S.

    2016-03-01

    Within the numerical general-circulation model of the Martian atmosphere MAOAM (Martian Atmosphere: Observation and Modeling), we have developed the water cycle block, which is an essential component of modern general circulation models of the Martian atmosphere. The MAOAM model has a spectral dynamic core and successfully predicts the temperature regime on Mars through the use of physical parameterizations typical of both terrestrial and Martian models. We have achieved stable computation for three Martian years, while maintaining a conservative advection scheme taking into account the water-ice phase transitions, water exchange between the atmosphere and surface, and corrections for the vertical velocities of ice particles due to sedimentation. The studies show a strong dependence of the amount of water that is actively involved in the water cycle on the initial data, model temperatures, and the mechanism of water exchange between the atmosphere and the surface. The general pattern and seasonal asymmetry of the water cycle depends on the size of ice particles, the albedo, and the thermal inertia of the planet's surface. One of the modeling tasks, which results from a comparison of the model data with those of the TES experiment on board Mars Global Surveyor, is the increase in the total mass of water vapor in the model in the aphelion season and decrease in the mass of water ice clouds at the poles. The surface evaporation scheme, which takes into account the turbulent rise of water vapor, on the one hand, leads to the most complete evaporation of ice from the surface in the summer season in the northern hemisphere and, on the other hand, supersaturates the atmosphere with ice due to the vigorous evaporation, which leads to worse consistency between the amount of the precipitated atmospheric ice and the experimental data. The full evaporation of ice from the surface increases the model sensitivity to the size of the polar cap; therefore, the increase in the

  18. A Large Contribution of Combustion-related Emissions to the Atmospheric Budget of Phosphorus

    NASA Astrophysics Data System (ADS)

    Wang, R.; Balkanski, Y.; Boucher, O.; Ciais, P.; Penuelas, J.; Tao, S.

    2015-12-01

    Atmospheric phosphorus (P) is an important fertilizer for terrestrial plant and marine phytoplankton. Understanding the budget of atmospheric P is helpful to uncovering the Earth's biogeochemical cycle of P. However, this budget was not well balanced in previous studies, with global deposition exceeding estimated emissions from wildfires, fossil fuel combustion, dust, volcanoes, sea-salt and biogenic particles. Here we re-estimate the combustion-related emissions of P into the atmosphere using a new method based on the mass balance (Wang et al., Nature Geoscience, 8, 48-54, 2015). We derive a combustion-related emission of 1.8 Tg P yr-1 (90% confidence from 0.5 to 4.4), comprising over 50% of global atmospheric sources, higher than the 5% previously estimated. Resultant total source to the atmosphere (3.5 Tg P yr-1, 90% confidence from 0.9 to 7.8) translates to a deposition sink of 2.7 Tg P yr-1 over land and 0.8 Tg P yr-1 over the oceans, when prescribed to an atmospheric transport model. P deposition rates observed at a set of measurement stations can be well captured by the model, indicating a near balance of the budget. Our result implies a larger human perturbation on the atmospheric P cycle than thought.

  19. 8. Atmospheric, water, and soil contamination after Chernobyl.

    PubMed

    Yablokov, Alexey V; Nesterenko, Vassily B; Nesterenko, Alexey V

    2009-11-01

    Air particulate activity over all of the Northern Hemisphere reached its highest levels since the termination of nuclear weapons testing--sometimes up to 1 million times higher than before the Chernobyl contamination. There were essential changes in the ionic, aerosol, and gas structure of the surface air in the heavily contaminated territories, as measured by electroconductivity and air radiolysis. Many years after the catastrophe aerosols from forest fires have dispersed hundreds of kilometers away. The Chernobyl radionuclides concentrate in sediments, water, plants, and animals, sometimes 100,000 times more than the local background level. The consequences of such a shock on aquatic ecosystems is largely unclear. Secondary contamination of freshwater ecosystems occurs as a result of Cs-137 and Sr-90 washout by the high waters of spring. The speed of vertical migration of different radionuclides in floodplains, lowland moors, peat bogs, etc., is about 2-4 cm/year. As a result of this vertical migration of radionuclides in soil, plants with deep root systems absorb them and carry the ones that are buried to the surface again. This transfer is one of the important mechanisms, observed in recent years, that leads to increased doses of internal irradiation among people in the contaminated territories. PMID:20002050

  20. Long-living plasmoids from an atmospheric water discharge

    NASA Astrophysics Data System (ADS)

    Versteegh, A.; Behringer, K.; Fantz, U.; Fussmann, G.; Jüttner, B.; Noack, S.

    2008-05-01

    Ball-like plasmoids were generated from discharging a capacitor bank via a water surface. In the autonomous stage after current zero they have diameters up to 0.2 m and lifetimes of some hundreds of milliseconds, thus resembling ball lightning in some way. They were studied by applying high speed cameras, electric probes, calorimetric measurements, and spectroscopy. The plasmoids are found to consist of a true plasma surrounded by a cold envelope. Decreasing electron densities in the order of 1020-1022 m-3 were measured from Stark broadening in the initial (formation) phase. The electron temperature is estimated to be 2000-5000 K during most of the plasmoid's lifetime. The temperature of the neutral particles can exceed 1300 K. Calcium hydroxide molecular band emission is the major source of visible radiation in the autonomous phase. Chemiluminescence reactions between dissociation products of water and dissolved calcium are proposed as a source for this emission. The plasmoid's colder boundary layer consists of electric double layers that may be attributed to the characteristic shape of the balls.

  1. Development of newly designed VHF interferometer system for observing earthquake-related atmospheric anomalies

    PubMed Central

    Yamamoto, Isao; Fujiwara, Hironobu; Kamogawa, Masashi; Iyono, Atsushi; Kroumov, Valeri; Azakami, Takashi

    2009-01-01

    Temporal correlation between atmospheric anomalies and earthquakes has recently been verified statistically through measuring VHF FM radio waves transmitted beyond the line-of-sight. In order to locate the sources of such atmospheric anomalies, we developed a VHF interferometer system (bistatic-radar type) capable of finding the arrival direction of FM radio waves scattered possibly by earthquake-related atmospheric anomalies. In general, frequency modulation of FM radio waves produces ambiguity of arrival direction. However, our system, employing high-sampling rates of the order of kHz, can precisely measure the arrival direction of FM radio waves by stacking received signals. PMID:20009381

  2. Studies of Atmospheric Water in Storms with the Nimbus 7 Scanning Multichannel Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Katsaros, K. B.

    1984-01-01

    The new tools for the study of midlattitude cyclones by atmospheric water channels of the scanning multichannel microwave radiometer (SMMR) on Nimbus 7, were discussed. The integrated atmospheric water vapor, total cloud liquid water and rain data were obtained from the Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR). The frontal structure of several midlattitude cyclones over the North Pacific Ocean as they approached the West Coast of North America were studied. It is found that fronts are consistently located at the leading edge of the strongest gradient in integrated water vapor. The cloud liquid water content has patterns which are consistent with the structure seen in visible and infrared imagery. The rain distribution is a good indicator of frontal location. It is concluded that the onset of rain on the coast can be forecast accurately by simple advection of the SMMR observed rain areas.

  3. Remote sensing of atmospheric water content from Bhaskara SAMIR data. [using statistical linear regression analysis

    NASA Technical Reports Server (NTRS)

    Gohil, B. S.; Hariharan, T. A.; Sharma, A. K.; Pandey, P. C.

    1982-01-01

    The 19.35 GHz and 22.235 GHz passive microwave radiometers (SAMIR) on board the Indian satellite Bhaskara have provided very useful data. From these data has been demonstrated the feasibility of deriving atmospheric and ocean surface parameters such as water vapor content, liquid water content, rainfall rate and ocean surface winds. Different approaches have been tried for deriving the atmospheric water content. The statistical and empirical methods have been used by others for the analysis of the Nimbus data. A simulation technique has been attempted for the first time for 19.35 GHz and 22.235 GHz radiometer data. The results obtained from three different methods are compared with radiosonde data. A case study of a tropical depression has been undertaken to demonstrate the capability of Bhaskara SAMIR data to show the variation of total water vapor and liquid water contents.

  4. An interim reference model for the variability of the middle atmosphere water vapor distribution

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.; Russell, J. M., III; Wu, C.-Y.

    1990-01-01

    A reference model for the middle atmosphere water vapor distribution for some latitudes and seasons was developed using two data sets. One is the seven months of Nimbus LIMS data obtained during November 1978 to May 1979 over the range 64 deg S - 84 deg N latitude and from about 100-mb to 1-mb altitude, and the other is represented by water vapor profiles from 0.2 mb to 0.01 mb in the mid-mesosphere, measured on ground at several fixed mid-latitude sites in the Northern Hemisphere, using microwave-emission techniques. This model provides an interim water vapor profile for the entire vertical range of the middle atmosphere, with accuracies of better than 25 percent. The daily variability of stratospheric water vapor profiles about the monthly mean is demonstrated, and information is provided on the longitudinal variability of LIMS water vapor profiles about the daily, weekly, and monthly zonal means.

  5. Plant water-stress parameterization determines the strength of land-atmosphere coupling

    NASA Astrophysics Data System (ADS)

    Combe, Marie; Vilà-Guerau de Arellano, Jordi; Ouwersloot, Huug G.; Peters, Wouter

    2016-04-01

    Land-surface models that are currently used in numerical weather predictions models and earth system models all assume various plant water-stress parameterizations. We investigate the impact of this variety of parametrizations on the performance of atmospheric models. For this, we use a conceptual framework where a convective atmospheric boundary-layer (ABL) model is coupled to a daytime model for the land surface fluxes of carbon, water, and energy. We first validate our coupled model for a set of surface and upper-atmospheric diurnal observations over a grown maize field in the Netherlands. We then perform a sensitivity analysis of this coupled land-atmosphere system by varying the modeled plant water-stress response from a very insensitive to a sensitive response during dry soil conditions. We first propose and verify a feedback diagram that ties plant water-stress response and large-scale atmospheric conditions to the diurnal cycles of ABL CO2, humidity and temperature. Based on our undertanstanding of the diurnal coupled system, we then explore the impact of the assumed water-stress reponse for the development of a dry spell on a synoptic time scale. We find that during a progressive 3-week soil drying caused by evapotranspiration, an insensitive plant will dampen atmospheric heating because the vegetation continues to transpire while soil moisture is available. In contrast, the sensitive plant reduces its transpiration to prevent soil moisture depletion. But when absolute soil moisture comes close to wilting point, the insensitive plant will suddenly close its stomata causing a switch to a land-atmosphere coupling regime dominated by sensible heat exchange. We find that in both cases, our modeled progressive soil moisture depletion contributes to further atmospheric warming up to 6 K, reduced photosynthesis up to 89 %, and CO2 enrichment up to 30 ppm, but the full impact is strongly delayed for the insensitive plant. Finally, we demonstrate that the assumed

  6. Method and apparatus for simulating atmospheric absorption of solar energy due to water vapor and CO{sub 2}

    DOEpatents

    Sopori, B.L.

    1995-06-20

    A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth`s surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO{sub 2} and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO{sub 2} and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO{sub 2} and moisture. 8 figs.

  7. Strengthening of the hydrological cycle in future scenarios: atmospheric energy and water balance perspective

    NASA Astrophysics Data System (ADS)

    Alessandri, A.; Fogli, P. G.; Vichi, M.; Zeng, N.

    2012-11-01

    Future climate scenarios experiencing global warming are expected to strengthen the hydrological cycle during the 21st century (21C). We analyze the strengthening of the global-scale increase in precipitation from the perspective of changes in whole atmospheric water and energy balances. By combining energy and water equations for the whole atmosphere, we obtain constraints for the changes in surface fluxes and partitioning at the surface between sensible and latent components. We investigate the differences in the strengthening of the hydrological cycle in two centennial simulations performed with an Earth system model forced with specified atmospheric concentration pathways. Alongside the Special Report on Emissions Scenario (SRES) A1B, which is a medium-high non-mitigation scenario, we consider a new aggressive-mitigation scenario (E1) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K. Our results show that the mitigation scenario effectively constrains the global warming with a stabilization below 2 K with respect to the 1950-2000 historical period. On the other hand, the E1 precipitation does not follow the temperature field toward a stabilization path but continues to increase over the mitigation period. Quite unexpectedly, the mitigation scenario is shown to strengthen the hydrological cycle even more than SRES A1B till around 2070. We show that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to A1B. This appears to be primarily related to decreased sulfate aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to A1B. The last decades of the 21C show a marked increase in global precipitation in A1B compared to E1, despite the fact that the two scenarios display almost the same overall increase of radiative imbalance with respect to the 20th century. Our results show that radiative cooling is

  8. Application of Vacuum Swing Adsorption for Carbon Dioxide and Water Vapor Removal from Manned Spacecraft Atmospheres

    NASA Technical Reports Server (NTRS)

    Knox, J.; Fulda, P.; Howard, D.; Ritter, J.; Levan, M.

    2007-01-01

    The design and testing of a vacuum-swing adsorption process to remove metabolic 'water and carbon dioxide gases from NASA's Orion crew exploration vehicle atmosphere is presented. For the Orion spacecraft, the sorbent-based atmosphere revitalization (SBAR) system must remove all metabolic water, a technology approach 1Lhathas not been used in previous spacecraft life support systems. Design and testing of a prototype SBAR in sub-scale and full-scale configurations is discussed. Experimental and analytical investigations of dual-ended and single-ended vacuum desorption are presented. An experimental investigation of thermal linking between adsorbing and desorbing columns is also presented.

  9. Visible and infrared spin scan radiometer atmospheric sounder water vapor and wind fields over Amazonia

    SciTech Connect

    Schmit, T.J.; Brueske, K.F.; Smith, W.L. ); Menzel, W.P. )

    1990-09-20

    Both the mass and motion fields for Amazonia have been depicted using almost exclusively geostationary satellite data. Derived parameters include satellite retrievals of atmospheric temperature and dewpoint temperature, total precipitable water vapor, and cloud and water vapor winds. The capabilities of geostationary satellite data have been demonstrated at least four times a day for the period of May 5-8, 1987, during the Global Tropospheric Experiment/Amazon Boundary Layer Experiment. The satellite-derived information is able to resolve synoptic-scale atmospheric trends in space and time.

  10. Photo-induced fractionation of water isotopomers in the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Cheng, Bing-Ming; Chew, Eh Piew; Liu, Chin-Ping; Bahou, Mohammed; Lee, Yuan-Pern; Yung, Yuk L.; Gerstell, M. F.

    The history and size of the water reservoirs on early Mars can be constrained using isotopic ratios of deuterium to hydrogen. We present new laboratory measurements of the ultraviolet cross-sections of H2O and its isotopomers, and modeling calculations in support of a photo-induced fractionation effect (PHIFE), that reconciles a discrepancy between past theoretical modeling and recent observations. This supports the hypothesis that Mars had an early warm atmosphere and has lost at least a 50-m global layer of water. Likely applications of PHIFE to other planetary atmospheres are sketched.

  11. Photo-induced fractionation of water isotopomers in the Martian atmosphere.

    PubMed

    Cheng, B M; Chew, E P; Liu, C P; Bahou, M; Lee, Y P; Yung, Y L; Gerstell, M F

    1999-12-15

    The history and size of the water reservoirs on early Mars can be constrained using isotopic ratios of deuterium to hydrogen. We present new laboratory measurements of the ultraviolet cross-sections of H2O and its isotopomers, and modeling calculations in support of a photo-induced fractionation effect (PHIFE), that reconciles a discrepancy between past theoretical modeling and recent observations. This supports the hypothesis that Mars had an early warm atmosphere and has lost at least a 50-m global layer of water. Likely applications of PHIFE to other planetary atmospheres are sketched. PMID:11543402

  12. Initialization of soil-water content in regional-scale atmospheric prediction models

    NASA Technical Reports Server (NTRS)

    Smith, Christopher B.; Lakhtakia, Mercedes; Capehart, William J.; Carlson, Toby N.

    1994-01-01

    The purpose of this study is to demonstrate the feasibility of determining the soil-water content fields required as initial conditions for land surface components within atmospheric prediction models. This is done using a model of the hydrologic balance and conventional meteorological observations, land cover, and soils information. A discussion is presented of the subgrid-scale effects, the integration time, and the choice of vegetation type on the soil-water content patterns. Finally, comparisons are made between two The Pennsylvania State University/National Center for Atmospheric Research mesoscale model simulations, one using climatological fields and the other one using the soil-moisture fields produced by this new method.

  13. Continuous Water Vapor Profiles for the Fixed Atmospheric Radiation Measurement Sites

    SciTech Connect

    Jensen, M.; Troyan, D.

    2006-01-09

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the first quarter of Fiscal Year 2006 to complete a continuous time series of the vertical profile of water vapor for selected 30-day periods from each of the fixed ARM sites. In order to accomplish this metric, a new technique devised to incorporate radiosonde data, microwave radiometer data and analysis information from numerical weather forecast models has been developed. The product of this analysis, referred to as the merged sounding value-added product, includes vertical profiles of atmospheric water vapor concentration and several other important thermodynamic state variables at 1-minute time intervals and 266 vertical levels.

  14. Water vapor absorption spectra of the upper atmosphere /45-185 per cm/

    NASA Technical Reports Server (NTRS)

    Augason, G. C.; Mord, A. J.; Witteborn, F. C.; Erickson, E. F.; Swift, C. D.; Caroff, L. J.; Kunz, L. W.

    1975-01-01

    The far IR nighttime absorption spectrum of the earth's atmosphere above 14 km is determined from observations of the bright moon. The spectra were obtained using a Michelson interferometer attached to a 30-cm telescope aboard a high-altitude jet aircraft. Comparison with a single-layer model atmosphere implies a vertical column of 3.4 plus or minus 0.4 microns of precipitable water on 30 August 1971 and 2.4 plus or minus 0.3 microns of precipitable water on 6 January 1972.-

  15. Water vapor absorption spectra of the upper atmosphere (45-185 cm(-1)).

    PubMed

    Augason, G C; Mord, A J; Witteborn, F C; Erickson, E F; Swift, C D; Caroff, L J; Kunz, L W

    1975-09-01

    The far ir nighttime absorption spectrum of the earth's atmosphere above 14 km is determined from observations of the bright moon. The spectra were obtained using a Michelson interferometer attached to a 30-cm telescope aboard a high-altitude jet aircraft. Comparison with a single-layer model atmosphere implies a vertical column of 3.4 +/- 0.4 mum of percipitable water on 30 August 1971 and 2.4 +/- 0.3 mum of precipitable water on 6 January 1972. PMID:20154976

  16. Solvated electrons at the atmospheric pressure plasma–water anodic interface

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, R.; Kawamura, E.; Lichtenberg, A. J.; Lieberman, M. A.; Graves, D. B.

    2016-07-01

    We present results from a particle-in-cell/Monte Carlo model of a dc discharge in argon at atmospheric pressure coupled with a fluid model of an aqueous electrolyte acting as anode to the plasma. The coupled models reveal the structure of the plasma–electrolyte interface and near-surface region, with a special emphasis on solvated or hydrated electrons. Results from the coupled models are in generally good agreement with the experimental results of Rumbach et al (2016 Nat. Commun. 6 7248). Electrons injected from the plasma into the water are solvated, then lost by reaction with water within about 10–20 nm from the surface. The major reaction products are OH‑ and H2. The solvated electron density profile is controlled by the injected electron current density and subsequent reactions with water, and is relatively independent of the external plasma electric field and the salt concentration in the aqueous electrolyte. Simulations of the effects of added scavenger compounds (H2O2, \\text{NO}2- , \\text{NO}2- and H+) on near-surface solvated electron density generally match the experimental results. The generation of near-surface OH‑ following electron-water decomposition in the presence of bulk acid creates a highly basic region (pH ~ 11) very near the surface. In the presence of bulk solution acidity, pH can vary from a very acidic pH 2 away from the surface to a very basic pH 11 over a distance of ~200 nm. High near-surface gradients in aqueous solution properties could strongly affect plasma-liquid applications and challenge theoretical understanding of this complex region.

  17. Microwave plasma source operating with atmospheric pressure air-water mixtures

    NASA Astrophysics Data System (ADS)

    Tatarova, E.; Henriques, J. P.; Felizardo, E.; Lino da Silva, M.; Ferreira, C. M.; Gordiets, B.

    2012-11-01

    The overall performance of a surface wave driven air-water plasma source operating at atmospheric pressure and 2.45 GHz has been analyzed. A 1D model previously developed has been improved in order to describe in detail the creation and loss processes of active species of interest. This model provides a complete characterization of the axial structure of the source, including the discharge and the afterglow zones. The main electron creation channel was found to be the associative ionization process N + O → NO+ + e. The NO(X) relative density in the afterglow plasma jet ranges from 1.2% to 1.6% depending on power and water percentage, according to the model predictions and the measurements. Other types of species such as NO2 and nitrous acid HNO2 have also been detected by mass and Fourier Transform Infrared spectroscopy. The relative population density of O(3P) ground state atoms increases from 8% to 10% in the discharge zone when the input microwave power increases from 200 to 400 W and the water percentage from 1% to 10%. Furthermore, high densities of O2(a1Δg) singlet delta oxygen molecules and OH radicals (1% and 5%, respectively) can be achieved in the discharge zone. In the late afterglow the O2(a1Δg) density is about 0.1% of the total density. This plasma source has a flexible operation and potential for channeling the energy in ways that maximize the density of active species of interest.

  18. Microwave plasma source operating with atmospheric pressure air-water mixtures

    SciTech Connect

    Tatarova, E.; Henriques, J. P.; Felizardo, E.; Lino da Silva, M.; Ferreira, C. M.; Gordiets, B.

    2012-11-01

    The overall performance of a surface wave driven air-water plasma source operating at atmospheric pressure and 2.45 GHz has been analyzed. A 1D model previously developed has been improved in order to describe in detail the creation and loss processes of active species of interest. This model provides a complete characterization of the axial structure of the source, including the discharge and the afterglow zones. The main electron creation channel was found to be the associative ionization process N + O {yields} NO{sup +}+ e. The NO(X) relative density in the afterglow plasma jet ranges from 1.2% to 1.6% depending on power and water percentage, according to the model predictions and the measurements. Other types of species such as NO{sub 2} and nitrous acid HNO{sub 2} have also been detected by mass and Fourier Transform Infrared spectroscopy. The relative population density of O({sup 3}P) ground state atoms increases from 8% to 10% in the discharge zone when the input microwave power increases from 200 to 400 W and the water percentage from 1% to 10%. Furthermore, high densities of O{sub 2}(a{sup 1}{Delta}{sub g}) singlet delta oxygen molecules and OH radicals (1% and 5%, respectively) can be achieved in the discharge zone. In the late afterglow the O{sub 2}(a{sup 1}{Delta}{sub g}) density is about 0.1% of the total density. This plasma source has a flexible operation and potential for channeling the energy in ways that maximize the density of active species of interest.

  19. Long-term measurements of atmospheric point-spread functions over littoral waters as determined by atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    de Jong, Arie N.; Schwering, Piet B. W.; Benoist, Koen W.; Gunter, Willem H.; Vrahimis, George; October, Faith J.

    2012-06-01

    During the FATMOSE trial, held over the False Bay, South Africa) from November 2009 until October 2010, day and night (24/7) high resolution images were collected of point sources at a range of 15.7 km. Simultaneously, data were collected on atmospheric parameters, as relevant for the turbulence conditions: air- and sea temperature, windspeed, relative humidity and the structure parameter for refractive index: Cn 2. The data provide statistical information on the mean value and the variance of the atmospheric point spread function and the associated modulation transfer function during series of consecutive frames. This information allows the prediction of the range performance for a given sensor, target and atmospheric condition, which is of great importance for the user of optical sensors in related operational areas and for the developers of image processing algorithms. In addition the occurrence of "lucky shots" in series of frames is investigated: occasional frames with locally small blur spots. The simultaneously measured short exposure blur and the beam wander are compared with simultaneously collected scintillation data along the same path and the Cn 2 data from a locally installed scintillometer. By using two vertically separated sources, the correlation is determined between the beam wander in their images, providing information on the spatial extension of the atmospheric turbulence (eddy size). Examples are shown of the appearance of the blur spot, including skewness and astigmatism effects, which manifest themselves in the third moment of the spot and its distortion. An example is given of an experiment for determining the range performance for a given camera and a bar target on an outgoing boat in the False Bay.

  20. Nighttime Cirrus Detection using Atmospheric Infrared Sounder Window Channels and Total Column Water Vapor

    NASA Technical Reports Server (NTRS)

    Kahn, Brian H.; Liou, Kuo Nan; Lee, Sung-Yung; Fishbein, Evan F.; DeSouza-Machado, Sergio; Eldering, Annmarie; Fetzer, Eric J.; Hannon, Scott E.; Strow, L. Larrabee

    2005-01-01

    A method of cirrus detection at nighttime is presented that utilizes 3.8 and 10.4 (micro)m infrared (IR) window brightness temperature differences (dBT) and total column precipitable water (PW) measurements. This technique is applied to the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit A (AMSU-A) instrument suite on board EOS-Aqua, where dBT is determined from sets of carefully selected AIRS window channels, while PW is derived from the synergistic AIRS and AMSU-A water vapor retrievals. Simulated and observed dBT for a particular value of PW are not constant; several physical factors impact dBT, including the variability in temperature and relative humidity profiles, surface emissivity, instrument noise, and skin/ near-surface air temperature differences. We simulate clear-sky dBT over a realistic range of PWs using 8350 radiosondes that have varying temperature and relative humidity profiles. Thresholds between cloudy and uncertain sky conditions are derived once the scatter in the clear-sky dBT is determined. Simulations of optically thin cirrus indicate that this technique is most sensitive to cirrus optical depth in the 10 (micro)m window of 0.1-0.15 or greater over the tropical and subtropical oceans, where surface emissivity and skin/near-surface air temperature impacts on the IR radiances are minimal. The method at present is generally valid over oceanic regions only, specifically, the tropics and subtropics. The detection of thin cirrus, and other cloud types, is validated using observations at the Atmospheric Radiation Measurement (ARM) program site located at Manus Island in the tropical western Pacific for 89 coincident EOS-Aqua overpasses. Even though the emphasis of this work is on the detection of thin cirrus at nighttime, this technique is sensitive to a broad cloud morphology. The cloud detection technique agrees with ARM-detected clouds 82-84% of the time, which include thin cirrus, as well as other cloud types. Most of

  1. Evaluation of atmospheric precipitable water from reanalysis products using homogenized radiosonde observations over China

    NASA Astrophysics Data System (ADS)

    Zhao, Tianbao; Wang, Juanhuai; Dai, Aiguo

    2015-10-01

    Many multidecadal atmospheric reanalysis products are available now, but their consistencies and reliability are far from perfect. In this study, atmospheric precipitable water (PW) from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR), NCEP/Department of Energy (DOE), Modern Era Retrospective-Analysis for Research and Applications (MERRA), Japanese 55 year Reanalysis (JRA-55), JRA-25, ERA-Interim, ERA-40, Climate Forecast System Reanalysis (CFSR), and 20th Century Reanalysis version 2 is evaluated against homogenized radiosonde observations over China during 1979-2012 (1979-2001 for ERA-40). Results suggest that the PW biases in the reanalyses are within ˜20% for most of northern and eastern China, but the reanalyses underestimate the observed PW by 20%-40% over western China and by ˜60% over the southwestern Tibetan Plateau. The newer-generation reanalyses (e.g., JRA25, JRA55, CFSR, and ERA-Interim) have smaller root-mean-square error than the older-generation ones (NCEP/NCAR, NCEP/DOE, and ERA-40). Most of the reanalyses reproduce well the observed PW climatology and interannual variations over China. However, few reanalyses capture the observed long-term PW changes, primarily because they show spurious wet biases before about 2002. This deficiency results mainly from the discontinuities contained in reanalysis relative humidity fields in the middle-lower troposphere due to the wet bias in older radiosonde records that are assimilated into the reanalyses. An empirical orthogonal function (EOF) analysis revealed two leading modes that represent the long-term PW changes and El Niño-Southern Oscillation-related interannual variations with robust spatial patterns. The reanalysis products, especially the MERRA and JRA-25, roughly capture these EOF modes, which account for over 50% of the total variance. The results show that even during the post-1979 satellite era, discontinuities in radiosonde data can still

  2. A comparative summary on streamers of positive corona discharges in water and atmospheric pressure gases

    NASA Astrophysics Data System (ADS)

    Tachibana, Kunihide; Motomura, Hideki

    2015-07-01

    From an intention of summarizing present understandings of positive corona discharges in water and atmospheric pressure gases, we tried to observe streamers in those media by reproducing and complementing previously reported results under a common experimental setup. We used a point-to-plane electrode configuration with different combinations of electrode gap (7 and 19 mm length) and pulsed power sources (0.25 and 2.5 ɛs duration). The general features of streamers were similar and the streamer-to-spark transition was also observed in both the media. However, in the details large differences were observed due to inherent nature of the media. The measured propagation speed of streamers in water of 0.035 × 106 ms-1 was much smaller than the speed in gases (air, N2 and Ar) from 0.4 to 1.1 × 106 ms-1 depending on species. In He the discharge looked glow-like and no streamer was observed. The other characteristics of streamers in gases, such as inception voltage, number of branches and thickness did also depend on the species. The thickness and the length of streamers in water were smaller than those in gases. From the volumetric expansion of a streamer in water after the discharge, the molecular density within the streamer medium was estimated to be rarefied from the density of water by about an order of magnitude in the active discharge phase. We derived also the electron density from the analysis of Stark broadened spectral lines of H and O atoms on the order of 1025 m-3 at the earlier time of the streamer propagation. The analyzed background blackbody radiation, rotational temperature of OH band emission and population density of Cu atomic lines yielded a consistent temperature of the streamer medium between 7000 and 10 000 K. Using the present data with a combination of the analysis of static electric field and previously reported results, we discuss the reason for the relatively low streamer inception voltage in water as compared to the large difference in the

  3. The uncertainty of the atmospheric integrated water vapour estimated from GNSS observations

    NASA Astrophysics Data System (ADS)

    Ning, T.; Wang, J.; Elgered, G.; Dick, G.; Wickert, J.; Bradke, M.; Sommer, M.

    2015-08-01

    Within the Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN) there is a need for an assessment of the uncertainty in the Integrated Water Vapour (IWV) in the atmosphere estimated from ground-based GNSS observations. All relevant error sources in GNSS-derived IWV is therefore essential to be investigated. We present two approaches, a statistical and a theoretical analysis, for the assessment of the uncertainty of the IWV. It will be implemented to the GNSS IWV data stream for GRUAN in order to obtain a specific uncertainty for each data point. In addition, specific recommendations are made to GRUAN on hardware, software, and data processing practices to minimize the IWV uncertainty. By combining the uncertainties associated with the input variables in the estimations of the IWV, we calculated the IWV uncertainties for several GRUAN sites with different weather conditions. The results show a similar relative importance of all uncertainty contributions where the uncertainties in the Zenith Total Delay (ZTD) dominate the error budget of the IWV contributing with over 75 % to the total IWV uncertainty. The impact of the uncertainty associated with the conversion factor between the IWV and the Zenith Wet Delay (ZWD) is proportional to the amount of water vapour and increases slightly for moist weather conditions. The GRUAN GNSS IWV uncertainty data will provide a quantified confidence to be used for the validation of other measurement techniques, taking the uncertainty into account from diurnal to decadal time scales.

  4. Discrimination of growth and water stress in wheat by various vegetation indices through a clear a turbid atmosphere

    NASA Technical Reports Server (NTRS)

    Jackson, R. D.; Slater, P. M.; Pinter, P. J. (Principal Investigator)

    1982-01-01

    Reflectance data were obtained over a drought-stressed and a well-watered wheat plot with a hand-held radiometer having bands similar to the MSS bands of the LANDSAT satellites. Data for 48 clear days were interpolated to yield reflectance values for each day of the growing season, from planting until harvest. With an atmospheric path radiance model and LANDSAT-2 calibration data, the reflectance were used to simulate LANDSAT digital counts (not quantized) for the four LANDSAT bands for each day of the growing season, through a clear (approximately 100 km meteorological range) and a turbid (approximately 10 km meteorological range) atmosphere. Several ratios and linear combinations of bands were calculated using the simulated data, then assessed for their relative ability to discriminate vegetative growth and plant stress through the two atmospheres. The results show that water stress was not detected by any of the indices until after growth was retarded, and the sensitivity of the various indices to vegetation depended on plant growth stage and atmospheric path radiance.

  5. Complexes and clusters of water relevant to atmospheric chemistry: H2O complexes with oxidants.

    PubMed

    Sennikov, Petr G; Ignatov, Stanislav K; Schrems, Otto

    2005-03-01

    Experimental observations and data from quantum chemical calculations on complexes between water molecules and small, oxygen-containing inorganic species that play an important role as oxidants in the atmosphere (O(1D), O(3P), O2(X3sigmag), O2(b1sigmag+), O3, HO, HOO, HOOO, and H2O2) are reviewed, with emphasis on their structure, hydrogen bonding, interaction energies, thermodynamic parameters, and infrared spectra. In recent years, weakly bound complexes containing water have increasingly attracted scientific attention. Water in all its phases is a major player in the absorption of solar and terrestrial radiation. Thus, complexes between water and other atmospheric species may have a perceivable influence on the radiative balance and contribute to the greenhouse effect, even though their concentrations are low. In addition, they can play an important role in the chemistry of the Earth's atmosphere, particularly in the oxidation of trace gases. Apart from gas-phase complexes, the interactions of oxidants with ice surfaces have also received considerable advertency lately due to their importance in the chemistry of snow, ice clouds, and ice surfaces (e.g., ice shields in polar regions). In paleoclimate--respectively paleoenvironmental--studies, it is essential to understand the transfer processes from the atmosphere to the ice surface. Consequently, special attention is being paid here to the intercomparison of the properties of binary complexes and the complexes and clusters of more complicated compositions, including oxidants adsorbed on ice surfaces, where ice is considered a kind of large water cluster. Various facts concerning the chemistry of the Earth's atmosphere (concentration profiles and possible influence on radical reactions in the atmosphere) are discussed. PMID:15799459

  6. Response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions

    USGS Publications Warehouse

    Rojstaczer, S.; Riley, F.S.

    1990-01-01

    The response to Earth tides is strongly governed by a dimensionless aquifer frequency Q???u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q???u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q???u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q???u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. -from Authors

  7. DIURNAL WATER RELATIONS OF WALNUT TREES: IMPLICATIONS FOR REMOTE SENSING

    EPA Science Inventory

    Leaf water content (LWC), relative water content (RWC) and water potential (LWP) were measured as indicators of diurnal change in tree water status in an experimental walnut orchard receiving two irrigation treatments: 00% and 33% of potential evapotranspiration (PET). WP had the...

  8. Atmospheric contamination in the city of Valencia: relation to noise and climate.

    PubMed

    Morales Suárez-Varela, M M; Escrivá-Peyró, C; Orden-Gil, A L; Mañes-Vinuesa, J; Font, G; Llopis-González, A

    1990-01-01

    A qualitative and quantitative study is made of the polycyclic aromatic hydrocarbons (PAH), nitrogen oxide, and sulfur dioxide in the atmosphere of the city of Valencia for the period 1988-1989; an analysis is made of their concentrations during the year in terms of season and noise levels. Eleven sampling points in the city were used to determine PAH composition by reverse-phase, high-resolution liquid chromatography with fluorimetric detection, employing an acetonitrile-water gradient; nitrogen oxides and sulfur dioxide were determined by the Valencia city government. Environmental noise levels were determined using a BK 2221 integrated precision sonometer, and temperature values were obtained from the city Meteorological Institute. Daily PAH values varied between 0.1769 and 2.0916 micrograms/m3, whereas the figures for nitrogen oxide were between 91.5 and 100.67 micrograms/m3 during 1982-1989 (only one value, 58.01 micrograms/m3, is available for 1988-1989, corresponding to the Mercadona sampling point), and between 17.33 and 129.36 micrograms/m3 for sulfur dioxide for a total of 9 sampling points; the highest concentrations were recorded in the winter and spring months, the association between PAH and temperature being statistically significant (p less than or equal to .05). The relation to noise was also significant (p less than or equal to .005), Fluoranthene was the predominant PAH in all samples analyzed. PMID:1702152

  9. Continental scale atmospheric and terrestrial water budget modeling and comparison to GRACE

    NASA Astrophysics Data System (ADS)

    Fersch, B.; Kunstmann, H.; Sneeuw, N.; Devaraju, B.

    2009-04-01

    Estimation of large scale water balances is still an unsolved challenge in hydrological sciences, particularly for data spare regions. The GRACE satellite mission (launched in 2002) provides a completely new opportunity to investigate seasonal large scale water mass changes based on measurements of gravitational acceleration differences. Our study aims at determining the potential of GRACE data for hydrological applications. Our approach assumes that vertically integrated atmospheric moisture convergence equals 1) precipitated minus evapotranspired water masses and therefore equals 2) aggregated surface runoff minus water storage changes. Using observed basin runoff, this interrelation allows us to compare GRACE derived water storage changes with modeled atmospheric moisture convergences. As regional atmospheric modeling is expected to yield more accurate meteorological fields than global model results, we use the WRF model for a dynamic downscaling of global atmospheric fields and hence derive high resolution fields of air pressure, horizontal moisture flux divergence, precipitation minus evapotranspiration, soil water storage, etc. Our study focuses on sensitivities and uncertainties of regionally modeled atmospheric mass and moisture fluxes due to specific model setup, origin of global driving data (NCEP vs. ECMWF) and spatial resolution. This is performed for four regions: Australia, Sahara, Siberia and the Amazon. The first three regions are characterized by a simplified hydrological mass balance, i.e. either evaporation or precipitation is close to zero. Central Australia represents a region with no outlet, meaning runoff is negligible. The Sahara also has zero runoff and for the dry periods evapotranspiration is close to zero. Siberia, comprising the catchments of Lena and Yenisei has negligible evapotranspiration for the winter months. The basin of the Amazon is representative for regions with high precipitation and evaporation terms. For the years 2003 to

  10. Diurnal variation of atmospheric water vapor at Gale crater: Analysis from ground-based measurements

    NASA Astrophysics Data System (ADS)

    Martinez, German; McConnochie, Timothy; Renno, Nilton; Meslin, Pierre-Yves; Fischer, Erik; Vicente-Retortillo, Alvaro; Borlina, Caue; Kemppinen, Osku; Genzer, Maria; Harri, Ari-Matti; de la Torre-Juárez, Manuel; Zorzano, Mari-Paz; Martin-Torres, Javier; Bridges, Nathan; Maurice, Sylvestre; Gasnault, Olivier; Gomez-Elvira, Javier; Wiens, Roger

    2016-04-01

    We analyze measurements obtained by Curiosity's Rover Environmental Monitoring Station (REMS) and ChemCam (CCAM) instruments to shed light on the hydrological cycle at Gale crater. In particular, we use nighttime REMS measurements taken when the atmospheric volume mixing ratio (VMR) and its uncertainty are the lowest (between 05:00 and 06:00 LTST) [1], and daytime CCAM passive sky measurements taken when the VMR is expected to be the highest (between 10:00 and 14:00 LTST) [2]. VMR is calculated from simultaneous REMS measurements of pressure (P), temperature (T) and relative humidity (RH) at 1.6 m (VMR is defined as RH×es(T)/P , where es is the saturation water vapor pressure over ice). The REMS relative humidity sensor has recently been recalibrated (June 2015), providing RH values slightly lower than those in the previous calibration (Dec 2014). The full diurnal cycle of VMR cannot be analyzed using only REMS data because the uncertainty in daytime VMR derived from REMS measurements is extremely high. Daytime VMR is inferred by fitting the output of a multiple-scattering discrete-ordinates radiative transfer model to CCAM passive sky observations [3]. CCAM makes these observations predominately in the vicinity of 11:00 - 12:00 LTST, but occasionally in the early morning near 08:00 LTST. We find that throughout the Martian year, the daytime VMR is higher than at night, with a maximum day-to-night ratio of about 6 during winter. Various processes might explain the differences between nighttime REMS and daytime CCAM VMR values. Potential explanations include: (i) surface nighttime frost formation followed by daytime sublimation [1], (ii) surface nighttime adsorption of water vapor by the regolith followed by daytime desorption and (iii) large scale circulations changing vertical H2O profiles at different times of the year. Potential formation of surface frost can only occur in late fall and winter [1], coinciding with the time when the diurnal amplitude of the near

  11. Tracer water transport and subgrid precipitation variation within atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.

    1988-01-01

    A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.

  12. Escape of H and D from Mars' Atmosphere and the Evolution of its Crustal Water Reservoirs

    NASA Technical Reports Server (NTRS)

    Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The evolution of water on Mars involves preferential escape of hydrogen over deuterium, producing its deuterium rich atmosphere with a D/H ratio 5.2 times that of terrestrial water. In the past decade, several estimates have been made of the magnitudes of current and ancient crustal water reservoirs on Mars that freely exchange with its atmosphere. Some of the differences in the magnitudes of the reservoirs are influenced by differences in the following basic parameters: composition of H, D, H2 and HD at the exobase; thermal history of the atmosphere; escape mechanisms; and the D/H ratio of earlier epochs as inferred from meteorites. The dominant escape mechanism used in the estimates is Jeans escape. However, the Jeans escape flux is enhanced considerably when atmospheric winds and rotation are applied at the exobase . This constraint is of particular importance because the enhancement of the D escape flux can be an order of magnitude greater than the enhancement of the H escape flux. This preferential enhancement of the D escape flux over that of H means that a great deal more H must escape (than in the case without winds and rotation) to attain the same D/H ratio in the today's atmosphere. Another new constraint on reservoir magnitudes comes from the recent interpretation of Martian meteorite data, which suggests that the D/H ratio was 2 times that of terrestrial water at the end of the heavy bombardment period (1). These two constraints together lead to larger current and ancient crustal water reservoirs. Applying Rayleigh fractionation, new estimates of the sizes of the water reservoirs are made using the above constraints along with plausible values for hydrogen and deuterium densities, temperatures, wind speeds and rotation rates at the exobase.

  13. Escape of H and D From Mars' Atmosphere and the Evolution of its Crustal Water Reservoirs

    NASA Astrophysics Data System (ADS)

    Hartle, R. E.

    2001-12-01

    The evolution of water on Mars involves preferential escape of hydrogen over deuterium, producing its deuterium rich atmosphere with a D/H ratio 5.2 times that of terrestrial water. In the past decade, several estimates have been made of the magnitudes of current and ancient crustal water reservoirs on Mars that freely exchange with its atmosphere. Some of the differences in the magnitudes of the reservoirs are influenced by differences in the following basic parameters: composition of H, D, H2 and HD at the exobase; thermal history of the atmosphere; escape mechanisms; and the D/H ratio of earlier epochs as inferred from meteorites. The dominant escape mechanism used in the estimates is Jeans escape. However, the Jeans escape flux is enhanced considerably when atmospheric winds and rotation are applied at the exobase . This constraint is of particular importance because the enhancement of the D escape flux can be an order of magnitude greater than the enhancement of the H escape flux. This preferential enhancement of the D escape flux over that of H means that a great deal more H must escape (than in the case without winds and rotation) to attain the same D/H ratio in the today's atmosphere. Another new constraint on reservoir magnitudes comes from the recent interpretation of Martian meteorite data, which suggests that the D/H ratio was 2 times that of terrestrial water at the end of the heavy bombardment period (1). These two constraints together lead to larger current and ancient crustal water reservoirs. Applying Rayleigh fractionation, new estimates of the sizes of the water reservoirs are made using the above constraints along with plausible values for hydrogen and deuterium densities, temperatures, wind speeds and rotation rates at the exobase. (1) Leshin, L. A., 27, 2017-2020, 2000.

  14. Trajectory mapping of middle atmospheric water vapor by a mini network of NDACC instruments

    NASA Astrophysics Data System (ADS)

    Lainer, M.; Kämpfer, N.; Tschanz, B.; Nedoluha, G. E.; Ka, S.; Oh, J. J.

    2015-08-01

    The important task to observe the global coverage of middle atmospheric trace gases like water vapor or ozone usually is accomplished by satellites. Climate and atmospheric studies rely upon the knowledge of trace gas distributions throughout the stratosphere and mesosphere. Many of these gases are currently measured from satellites, but it is not clear whether this capability will be maintained in the future. This could lead to a significant knowledge gap of the state of the atmosphere. We explore the possibilities of mapping middle atmospheric water vapor in the Northern Hemisphere by using Lagrangian trajectory calculations and water vapor profile data from a small network of five ground-based microwave radiometers. Four of them are operated within the frame of NDACC (Network for the Detection of Atmospheric Composition Change). Keeping in mind that the instruments are based on different hardware and calibration setups, a height-dependent bias of the retrieved water vapor profiles has to be expected among the microwave radiometers. In order to correct and harmonize the different data sets, the Microwave Limb Sounder (MLS) on the Aura satellite is used to serve as a kind of traveling standard. A domain-averaging TM (trajectory mapping) method is applied which simplifies the subsequent validation of the quality of the trajectory-mapped water vapor distribution towards direct satellite observations. Trajectories are calculated forwards and backwards in time for up to 10 days using 6 hourly meteorological wind analysis fields. Overall, a total of four case studies of trajectory mapping in different meteorological regimes are discussed. One of the case studies takes place during a major sudden stratospheric warming (SSW) accompanied by the polar vortex breakdown; a second takes place after the reformation of stable circulation system. TM cases close to the fall equinox and June solstice event from the year 2012 complete the study, showing the high potential of a

  15. Trajectory mapping of middle atmospheric water vapor by a mini network of NDACC instruments

    NASA Astrophysics Data System (ADS)

    Lainer, M.; Kämpfer, N.; Tschanz, B.; Nedoluha, G. E.; Ka, S.; Oh, J. J.

    2015-04-01

    The important task to observe the global coverage of middle atmospheric trace gases like water vapor or ozone usually is accomplished by satellites. Climate and atmospheric studies rely upon the knowledge of trace gas distributions throughout the stratosphere and mesosphere. Many of these gases are currently measured from satellites, but it is not clear whether this capability will be maintained in the future. This could lead to a significant knowledge gap of the state of the atmosphere. We explore the possibilities of mapping middle atmospheric water vapor in the Northern Hemisphere by using Lagrangian trajectory calculations and water vapor profile data from a small network of five ground-based microwave radiometers. Four of them are operated within the frame of NDACC (Network for the Detection of Atmospheric Composition Change). Keeping in mind that the instruments are based on different hardware and calibration setups, a height dependent bias of the retrieved water vapor profiles has to be expected among the microwave radiometers. In order to correct and harmonize the different datasets, the Microwave Limb Sounder (MLS) on the Aura satellite is used to serve as a kind of travelling standard. A domain-averaging TM (trajectory mapping) method is applied which simplifies the subsequent validation of the quality of the trajectory mapped water vapor distribution towards direct satellite observations. Trajectories are calculated forwards and backwards in time for up to 10 days using 6 hourly meteorological wind analysis fields. Overall, a total of four case studies of trajectory mapping in different meteorological regimes are discussed. One of the case studies takes place during a major sudden stratospheric warming (SSW) accompanied by the polar vortex breakdown, a second takes place after the reformation of stable circulation system. TM cases close to the fall equinox and June solstice event from the year 2012 complete the study, showing the high potential of a

  16. Atmospheric water vapor flux, bifurcation of the thermohaline circulation, and climate change

    SciTech Connect

    Wang, H.; Birchfield, G.E.

    1992-10-01

    Latitudinal heat transport in the ocean and atmosphere represents a fundamental process of the Earth`s climate system. The ocean component of heat transport is effected by the thermohaline circulation. Changes in this circulation have a significant effect on global climate. Paleoclimate evidence from the Greenland ice and deep sea sediment core suggests during much of glacial time the climate system oscillated between two different states. The role of atmospheric hydrological cycle on the global thermohaline circulation and the feedback to the climate system through changes in the ocean`s latitudinal heat transport, with a simple coupled ocean-atmosphere energy-salt balance model is addressed here. Two components of the atmospheric hydrological cycle, i.e., latitudinal water vapor transport and the net flux of water vapor from the Atlantic to the Pacific Ocean appear to play separate roles. If the inter-basin transport is sufficiently large, small changes in water vapor transport over the North Atlantic can effect bifurcation or a rapid transition between two different equilibria in the global thermohaline circulation. If the inter-basin transport is from the Pacific to the Atlantic and sufficiently large, latitudinal vapor transport in the North Pacific controls the bifurcations. For intermediate values of inter-basin transport, no rapid transitions occur in either basin. For estimated values of water vapor transport for the present climate the model asserts that while vapor transport from the Atlantic to the Pacific Ocean is sufficiently large to make the North Atlantic the dominant region for deep water production, latitudinal water vapor transport is sufficiently low that the thermohaline circulation appears stable, i.e., far from a bifurcation point. This conclusion is supported to some extent by the fact that the high latitude temperature of the atmosphere as recorded in the Greenland ice cores has changes little over the last 9000 years. 31 refs., 5 figs.

  17. Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere

    PubMed

    Sellers; Dickinson; Randall; Betts; Hall; Berry; Collatz; Denning; Mooney; Nobre; Sato; Field; Henderson-Sellers

    1997-01-24

    Atmospheric general circulation models used for climate simulation and weather forecasting require the fluxes of radiation, heat, water vapor, and momentum across the land-atmosphere interface to be specified. These fluxes are calculated by submodels called land surface parameterizations. Over the last 20 years, these parameterizations have evolved from simple, unrealistic schemes into credible representations of the global soil-vegetation-atmosphere transfer system as advances in plant physiological and hydrological research, advances in satellite data interpretation, and the results of large-scale field experiments have been exploited. Some modern schemes incorporate biogeochemical and ecological knowledge and, when coupled with advanced climate and ocean models, will be capable of modeling the biological and physical responses of the Earth system to global change, for example, increasing atmospheric carbon dioxide. PMID:8999789

  18. Detection of carbon monoxide and water absorption lines in an exoplanet atmosphere.

    PubMed

    Konopacky, Quinn M; Barman, Travis S; Macintosh, Bruce A; Marois, Christian

    2013-03-22

    Determining the atmospheric structure and chemical composition of an exoplanet remains a formidable goal. Fortunately, advancements in the study of exoplanets and their atmospheres have come in the form of direct imaging--spatially resolving the planet from its parent star--which enables high-resolution spectroscopy of self-luminous planets in jovian-like orbits. Here, we present a spectrum with numerous, well-resolved molecular lines from both water and carbon monoxide from a massive planet orbiting less than 40 astronomical units from the star HR 8799. These data reveal the planet's chemical composition, atmospheric structure, and surface gravity, confirming that it is indeed a young planet. The spectral lines suggest an atmospheric carbon-to-oxygen ratio that is greater than that of the host star, providing hints about the planet's formation. PMID:23493423

  19. Sunlight photochemistry of retort-water organonitrogen compounds in an inert atmosphere

    SciTech Connect

    Blatchley, E.R. III; Daughton, C.G.; Thomas, J.F.

    1986-04-01

    The elevated temperature of an oil-shale codisposal process will enhance the atmospheric emission of volatile components. Important among the organic compounds are the nitrogen heterocycles and aromatic primary amines, which are chacterized by malodor and low order thresholds and by resistance to biotreatment. Atmospheric lifetimes are determined by various transport (e.g., dispersion, washout) and transformation phenomena. Photochemical alteration will be the major transformation process. Those compounds that degrade quickly may increase the atmospheric NO/sub x/ concentration, giving the potential for photochemical smog formation. Those with longer lifetimes may present health and aesthetic problems. The broad spectrum of compound types and isomers present in process-water headspace samples may result in a range of atmospheric lifetimes. The work reported here is the first investigation of vapor-phase atmospheric photoreactions leading to degradation of organonitrogen compounds emitted from process waters. Only direct photochemical reactions were studied. Headspace samples (65/sup 0/C) were generated in an inert atmosphere (N/sub 2/ gas) and exposed to atmospheric radiation in Tedlar gas-sampling bags. Headspace composition was monitored by capillary gas chromatography with flame thermionic or flame ionization detection. Time-course headspace analyses compared exposed and unexposed samples, and individual compounds were monitored to determine the degree of individual photochemical losses. Under these conditions, the alkylpyridines did not photodegrade, in contrast to other nitrogen heterocycles (e.g., pyrrole) and aromatic primary amines. This is significant because alkylpyridines comprise the largest portion of organonitrogen compounds emitted from process waters. It is anticipated that indirect photoreactions (e.g., radical-mediated) will be more extensive and important. 35 refs., 6 figs., 1 tab.

  20. Anisotropic light scattering in an inhomogeneous atmosphere. Invariance relations and integrals of radiative transfer equation

    SciTech Connect

    Yanovitskii, E.G.

    1981-01-01

    The general invariance principle (GIP) for arbitrary plane inhomogeneous atmospheres is formulated on the basis of ideas contained in (V. V. Ivanov, Sov. Astron. 19, 137 (1975)). All the known invariance relations follow as particular cases from the GIP. The problem of diffuse light reflection by a semi-infinite atmosphere and the Milne problem are analyzed in detail. The existence of a number of integrals, quadratic with respect to intensity, of the transfer equation is shown, the majority of which are invariant relative to optical depth.

  1. Atmospheric aqueous-phase photoreactivity: correlation between the hydroxyl radical photoformation and pesticide degradation rate in atmospherically relevant waters.

    PubMed

    Charbouillot, Tiffany; Brigante, Marcello; Deguillaume, Laurent; Mailhot, Gilles

    2012-01-01

    In the present study, we investigated the correlation between the hydroxyl radical formation rate (R(˙OH) ) and the degradation of a pesticide (mesotrione) in synthetic cloud water solutions and in two real atmospheric cloud waters collected at the top of puy de Dôme station (France). Using terephthalic acid as the hydroxyl radical chemical probe, we established the linear correlation between the photogenerated hydroxyl radical under polychromatic wavelengths and the pesticide degradation rate: (M s(-1)) = (1.61 ± 0.15) × 10(-1) (M s(-1)). Moreover, the formation rate of hydroxyl radical in two natural cloud waters was estimated considering H(2)O(2) and NO(3)(-) and the difference between the predicted values and those experimentally obtained could be attributed to the presence of other photochemical sources: iron-complexes and total organic matter. The organic constituents could play a dual role of sources and scavengers of photoformed hydroxyl radicals in the aqueous phase. PMID:21988772

  2. Water in planetary and cometary atmospheres: H2O/HDO transmittance and fluorescence models

    NASA Astrophysics Data System (ADS)

    Villanueva, G. L.; Mumma, M. J.; Bonev, B. P.; Novak, R. E.; Barber, R. J.; Disanti, M. A.

    2012-02-01

    We developed a modern methodology to retrieve water (H2O) and deuterated water (HDO) in planetary and cometary atmospheres, and constructed an accurate spectral database that combines theoretical and empirical results. On the basis of a greatly expanded set of spectroscopic parameters, we built a full non-resonance cascade fluorescence model and computed fluorescence efficiencies for H2O (500 million lines) and HDO (700 million lines). The new line list was also integrated into an advanced terrestrial radiative transfer code (LBLRTM) and adapted to the CO2 rich atmosphere of Mars, for which we adopted the complex Robert-Bonamy formalism for line shapes. We retrieved water and D/H in the atmospheres of Mars, comet C/2007 W1 (Boattini), and Earth by applying the new formalism to spectra obtained with the high-resolution spectrograph NIRSPEC/Keck II atop Mauna Kea (Hawaii). The new model accurately describes the complex morphology of the water bands and greatly increases the accuracy of the retrieved abundances (and the D/H ratio in water) with respect to previously available models. The new model provides improved agreement of predicted and measured intensities for many H2O lines already identified in comets, and it identifies several unassigned cometary emission lines as new emission lines of H2O. The improved spectral accuracy permits retrieval of more accurate rotational temperatures and production rates for cometary water.

  3. Water Planetary and Cometary Atmospheres: H2O/HDO Transmittance and Fluorescence Models

    NASA Technical Reports Server (NTRS)

    Villanueva, G. L.; Mumma, M. J.; Bonev, B. P.; Novak, R. E.; Barber, R. J.; DiSanti, M. A.

    2012-01-01

    We developed a modern methodology to retrieve water (H2O) and deuterated water (HDO) in planetary and cometary atmospheres, and constructed an accurate spectral database that combines theoretical and empirical results. Based on a greatly expanded set of spectroscopic parameters, we built a full non-resonance cascade fluorescence model and computed fluorescence efficiencies for H2O (500 million lines) and HDO (700 million lines). The new line list was also integrated into an advanced terrestrial radiative transfer code (LBLRTM) and adapted to the CO2 rich atmosphere of Mars, for which we adopted the complex Robert-Bonamy formalism for line shapes. We then retrieved water and D/H in the atmospheres of Mars, comet C/2007 WI, and Earth by applying the new formalism to spectra obtained with the high-resolution spectrograph NIRSPEC/Keck II atop Mauna Kea (Hawaii). The new model accurately describes the complex morphology of the water bands and greatly increases the accuracy of the retrieved abundances (and the D/H ratio in water) with respect to previously available models. The new model provides improved agreement of predicted and measured intensities for many H2O lines already identified in comets, and it identifies several unassigned cometary emission lines as new emission lines of H2O. The improved spectral accuracy permits retrieval of more accurate rotational temperatures and production rates for cometary water.

  4. Possible relation of water structural relaxation to water anomalies

    PubMed Central

    Mallamace, Francesco; Corsaro, Carmelo; Stanley, H. Eugene

    2013-01-01

    The anomalous behavior of thermodynamic response functions is an unsolved problem in the physics of water. The mechanism that gives rise to the dramatic indefinite increase at low temperature in the heat capacity, the compressibility, and the coefficient of thermal expansion, is unknown. We explore this problem by analyzing both new and existing experimental data on the power spectrum S(Q, ω) of bulk and confined water at ambient pressure. When decreasing the temperature, we find that the liquid undergoes a structural transformation coinciding with the onset of an extended hydrogen bond network. This network onset seems to give rise to the marked viscoelastic behavior, consistent with the interesting possibility that the sound velocity and response functions of water depend upon both the frequency and wave vector. PMID:23483053

  5. Possible relation of water structural relaxation to water anomalies.

    PubMed

    Mallamace, Francesco; Corsaro, Carmelo; Stanley, H Eugene

    2013-03-26

    The anomalous behavior of thermodynamic response functions is an unsolved problem in the physics of water. The mechanism that gives rise to the dramatic indefinite increase at low temperature in the heat capacity, the compressibility, and the coefficient of thermal expansion, is unknown. We explore this problem by analyzing both new and existing experimental data on the power spectrum S(Q, ω) of bulk and confined water at ambient pressure. When decreasing the temperature, we find that the liquid undergoes a structural transformation coinciding with the onset of an extended hydrogen bond network. This network onset seems to give rise to the marked viscoelastic behavior, consistent with the interesting possibility that the sound velocity and response functions of water depend upon both the frequency and wave vector. PMID:23483053

  6. Modeling plant-atmosphere carbon and water fluxes along a CO2 gradient

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At short time scales (hourly to daily), plant photosynthesis and transpiration respond nonlinearly to atmospheric CO2 concentration and vapor pressure deficit, depending on plant water status and thus soil moisture. Modeling vegetation and soil responses to different values of CO2 at multiple time s...

  7. Canopy-scale kinetic fractionation of atmospheric carbon dioxide and water vapour isotopes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The isotopic fluxes of carbon dioxide (CO2) and water vapour (H2O) between the atmosphere and terrestrial plants provide powerful constraints on carbon sequestration on land 1-2, changes in vegetation cover 3 and the Earth’s Dole effect 4. Past studies, relying mainly on leaf-scale observations, hav...

  8. OXYGEN ISOTOPES IN ATMOSPHERIC SULFATES, SULFUR DIOXIDE, AND WATER VAPORS FIELD MEASUREMENTS, JULY 1975

    EPA Science Inventory

    Oxygen isotope ratios were determined for atmospheric samples of sulfate aerosols, sulfur dioxide, and water vapor collected simultaneously during a six-day period in July, 1975, at St. Louis, MO; Auburn, IL; and Glasgow, IL. The collection sites were located about 100km apart. C...

  9. Response of Earth's atmosphere to increases in solar flux and implications for loss of water from Venus.

    PubMed

    Kasting, J F; Pollack, J B; Ackerman, T P

    1984-01-01

    A one-dimensional radiative-convective model is used to compute temperature and water vapor profiles as functions of solar flux for an Earth-like atmosphere. The troposphere is assumed to be fully saturated, with a moist adiabatic lapse rate, and changes in cloudiness are neglected. Predicted surface temperatures increase monotonically from -1 to 111 degrees C as the solar flux is increased from 0.81 to 1.45 times its present value. Surface temperatures corresponding to high solar fluxes may be underestimated, however, owing to neglect of H2O continuum absorption outside of the 8- to 12-micrometers window region. These results imply that the surface temperature of a primitive water-rich Venus should have been at least 80-100 degrees C and may have been much higher. The existence of liquid water at the surface depends on poorly known aspects of H2O continuum absorption and on uncertainties concerning relative humidity and cloudiness. In any case, water vapor should have been a major atmospheric constituent at all altitudes, leading to the rapid hydrodynamic escape of hydrogen. The oxygen left behind by this process was presumably consumed by reactions with reduced minerals in the crust. Both the loss of oxygen and the presently observed enrichment of the deuterium-to-hydrogen ratio are most easily explained if oceans of liquid water were initially present. PMID:11541985

  10. Observational Evidence for the Impacts of Vegetation Cover Change on Summer Atmospheric Water Vapor over Northern China

    NASA Astrophysics Data System (ADS)

    Jiang, B.; Liang, S.

    2012-12-01

    summer PW after excluding the influences of the atmospheric circulations, accounting for as high as 45% of the total PW variance. The summer vegetation greenness on western part of Northern China, particularly on the southern TP, north of Xinjiang province, and central region of Inner Mongolia, has significant (>80%) and positive correlations with summer PW. Besides, the Equilibrium Feedback Assessment (EFA) analysis results also have the similar pattern. We speculate that the relative sufficient water in these mountain areas is good for the growth of vegetation in summer, and the increased vegetation greenness strengths Evapotranspiration (ET) and surface thermal effects, which warm air temperature and enhance the capacity of water vapor holding subsequently. This study demonstrates the important role of land cover in hydrological cycle in the arid/semi-arid region.

  11. A comparison of water vapor line parameters for modeling the Venus deep atmosphere

    NASA Astrophysics Data System (ADS)

    Bailey, Jeremy

    2009-06-01

    The discovery of the near infrared windows into the Venus deep atmosphere has enabled the use of remote sensing techniques to study the composition of the Venus atmosphere below the clouds. In particular, water vapor absorption lines can be observed in a number of the near-infrared windows allowing measurement of the H 2O abundance at several different levels in the lower atmosphere. Accurate determination of the abundance requires a good database of spectral line parameters for the H 2O absorption lines at the high temperatures (up to ˜700 K) encountered in the Venus deep atmosphere. This paper presents a comparison of a number of H 2O line lists that have been, or that could potentially be used, to analyze Venus deep atmosphere water abundances and shows that there are substantial discrepancies between them. For example, the early high-temperature list used by Meadows and Crisp [Meadows, V.S., Crisp, D., 1996. J. Geophys. Res. 101 (E2), 4595-4622] had large systematic errors in line intensities. When these are corrected for using the more recent high-temperature BT2 list of Barber et al. [Barber, R.J., Tennyson, J., Harris, G.J., Tolchenov, R.N., 2006. Mon. Not. R. Astron. Soc. 368, 1087-1094] their value of 45±10 ppm for the water vapor mixing ratio reduces to 27±6 ppm. The HITRAN and GEISA lists used for most other studies of Venus are deficient in "hot" lines that become important in the Venus deep atmosphere and also show evidence of systematic errors in line intensities, particularly for the 8000 to 9500 cm -1 region that includes the 1.18 μm window. Water vapor mixing ratios derived from these lists may also be somewhat overestimated. The BT2 line list is recommended as being the most complete and accurate current representation of the H 2O spectrum at Venus temperatures.

  12. Riparian ecohydrology: regulation of water flux from the ground to the atmosphere in the Middle Rio Grande, New Mexico

    NASA Astrophysics Data System (ADS)

    Cleverly, James R.; Dahm, Clifford N.; Thibault, James R.; McDonnell, Dianne E.; Allred Coonrod, Julie E.

    2006-10-01

    During the previous decade, the south-western United States has faced declining water resources and escalating forest fires due to long-term regional drought. Competing demands for water resources require a careful accounting of the basin water budget. Water lost to the atmosphere through riparian evapotranspiration (ET) is believed to rank in the top third of water budget depletions. To better manage depletions in a large river system, patterns of riparian ET must be better understood. This paper provides a general overview of the ecological, hydrological, and atmospheric issues surrounding riparian ET in the Middle Rio Grande (MRG) of New Mexico. Long-term measurements of ET, water table depth, and micro-meteorological conditions have been made at sites dominated by native cottonwood (Populus deltoides) forests and non-native saltcedar (Tamarix chinensis) thickets along the MRG. Over periods longer than one week, groundwater and leaf area index (LAI) dynamics relate well with ET rates. Evapotranspiration from P. deltoides forests was unaffected by annual drought conditions in much of the MRG where the water table is maintained within 3 m of the surface. Evapotranspiration from a dense Tamarix chinensis thicket did not decline with increasing groundwater depth; instead, ET increased by 50%, from 6 mm/day to 9 mm/day, as the water table receded at nearly 7 cm/day. Leaf area index of the T. chinensis thicket, likewise, increased during groundwater decline. Leaf area index can be manipulated as well following removal of non-native species. When T. chinensis and non-native Russian olive (Elaeagnus angustifolia) were removed from a P. deltoides understory, water salvaged through reduced ET was 26 cm/yr in relation to ET measured at reference sites. To investigate correlates to short-term variations in ET, stepwise multiple linear regression was used to evaluate atmospheric conditions under which ET is elevated or depressed. At the P. deltoides-dominated sites, ET

  13. Water Ice Clouds in the Martian Atmosphere: A View from MGS TES

    NASA Technical Reports Server (NTRS)

    Hale, A. S.; Tamppari, L. K.; Christensen, P. R.; Smith, M. D.; Bass, Deborah; Qu, Zheng; Pearl, J. C.

    2005-01-01

    We use the method of Tamppari et al. to map water ice clouds in the Martian atmosphere. This technique was originally developed to analyze the broadband Viking IRTM channels and we have now applied it to the TES data. To do this, the TES spectra are convolved to the IRTM bandshapes and spatial resolutions, enabling use of the same processing techniques as were used in Tamppari et al.. This retrieval technique relies on using the temperature difference recorded in the 20 micron and 11 micron IRTM bands (or IRTM convolved TES bands) to map cold water ice clouds above the warmer Martian surface. Careful removal of surface contributions to the observed radiance is therefore necessary, and we have used both older Viking-derived basemaps of the surface emissivity and albedo, and new MGS derived basemaps in order the explore any possible differences on cloud retrieval due to differences in surface contribution removal. These results will be presented in our poster. Our previous work has concentrated primarily on comparing MGS TES to Viking data; that work saw that large-scale cloud features, such as the aphelion cloud belt, are quite repeatable from year to year, though small scale behavior shows some variation. Comparison of Viking and MGS era cloud maps will be presented in our poster. In the current stage of our study, we have concentrated our efforts on close analysis of water ice cloud behavior in the northern summer of the three MGS mapping years on relatively small spatial scales, and present our results below. Additional information is included in the original extended abstract.

  14. Low-level water vapor fields from the VISSR atmospheric sounder (VAS) split window channels at 11 and 12 microns. [visible infrared spin scan radiometer

    NASA Technical Reports Server (NTRS)

    Chesters, D.; Uccellini, L.; Robinson, W.

    1982-01-01

    A series of high-resolution water vapor fields were derived from the 11 and 12 micron channels of the VISSR Atmospheric Sounder (VAS) on GOES-5. The low-level tropospheric moisture content was separated from the surface and atmospheric radiances by using the differential adsorption across the 'split window' along with the average air temperature from imbedded radiosondes. Fields of precipitable water are presented in a time sequence of five false color images taken over the United States at 3-hour intervals. Vivid subsynoptic and mesoscale patterns evolve at 15 km horizontal resolution over the 12-hour observing period. Convective cloud formations develop from several areas of enhanced low-level water vapor, especially where the vertical water vapor gradient relatively strong. Independent verification at radiosonde sites indicates fairly good absolute accuracy, and the spatial and temporal continuity of the water vapor features indicates very good relative accuracy. Residual errors are dominated by radiometer noise and unresolved clouds.

  15. Evaluation of Tropospheric Water Vapor Simulations from the Atmospheric Model Intercomparison Project

    NASA Technical Reports Server (NTRS)

    Gaffen, Dian J.; Rosen, Richard D.; Salstein, David A.; Boyle, James S.

    1997-01-01

    Simulations of humidity from 28 general circulation models for the period 1979-88 from the Atmospheric Model Intercomparison Project are compared with observations from radiosondes over North America and the globe and with satellite microwave observations over the Pacific basin. The simulations of decadal mean values of precipitable water (W) integrated over each of these regions tend to be less moist than the real atmosphere in all three cases; the median model values are approximately 5% less than the observed values. The spread among the simulations is larger over regions of high terrain, which suggests that differences in methods of resolving topographic features are important. The mean elevation of the North American continent is substantially higher in the models than is observed, which may contribute to the overall dry bias of the models over that area. The authors do not find a clear association between the mean topography of a model and its mean W simulation, however, which suggests that the bias over land is not purely a matter of orography. The seasonal cycle of W is reasonably well simulated by the models, although over North America they have a tendency to become moister more quickly in the spring than is observed. The interannual component of the variability of W is not well captured by the models over North America. Globally, the simulated W values show a signal correlated with the Southern Oscillation index but the observations do not. This discrepancy may be related to deficiencies in the radiosonde network, which does not sample the tropical ocean regions well. Overall, the interannual variability of W, as well as its climatology and mean seasonal cycle, are better described by the median of the 28 simulations than by individual members of the ensemble. Tests to learn whether simulated precipitable water, evaporation, and precipitation values may be related to aspects of model formulation yield few clear signals, although the authors find, for

  16. Water Quality Considerations and Related Dishwashing Problems.

    ERIC Educational Resources Information Center

    McClelland, Nina I.

    A number of the chemical and physical factors which cause dishwashing problems are presented in a series of charts. Water quality considerations are vital, but the importance of good housekeeping and proper operating practices cannot and must not be minimized. Topics discussed include--(1) dissolved minerals, (2) dissolved gases, (3) detergents,…

  17. Sources of Atmospheric Pollutants Impacting Air and Water Quality in the Lake Tahoe Basin

    NASA Astrophysics Data System (ADS)

    Gertler, A. W.; Cahill, T. A.; Gillies, J.; Kuhns, H.

    2008-12-01

    Starting in the second half of the 20th century, decline in Lake Tahoe's water clarity and degradation in the basin's air quality have become major concerns due to its unique scenic features. Gaseous and particulate nitrogen (N) and particulate phosphorus (P) loading via direct atmospheric deposition and sediment transport to the lake have also been implicated as responsible for its eutrophication and decline in water clarity. Estimates suggest that atmospheric N deposition contributes 55% of the total N loading to the lake, while atmospheric P deposition contributes 15% of the total P loading. In order to improve both air quality and, as a consequence, water quality, it is necessary to develop an understanding of the sources of the atmospheric pollutants. Once this is accomplished, it is possible to implement cost-effective strategies to reduce this impact. This paper summarizes the findings of a series of studies performed to determine the levels and sources of ambient air pollutants in the basin. Projects have included the development of a Tahoe-specific emissions inventory, long-term measurements of road dust resuspension, modeling to determine the fraction of pollutants coming from in-basin vs. out-of-basin sources, particulate source apportionment, and estimates of nitric acid deposition. These studies found that the pollutants most closely connected to the decline in water quality come largely from within basin sources, as opposed to those coming from the Central Valley and upwind urban areas of California. These results indicate regulators need to control pollutant emissions within the Tahoe basin in order to reduce the impact of atmospheric pollutants on both air and water quality.

  18. Relation between plasma plume density and gas flow velocity in atmospheric pressure plasma

    SciTech Connect

    Yambe, Kiyoyuki; Taka, Shogo; Ogura, Kazuo

    2014-04-15

    We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and copper foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. To study the properties of the plasma plume, the plasma plume current is estimated from the difference in currents on the circuit, and the drift velocity is measured using a photodetector. The relation of the plasma plume density n{sub plu}, which is estimated from the current and the drift velocity, and the gas flow velocity v{sub gas} is examined. It is found that the dependence of the density on the gas flow velocity has relations of n{sub plu} ∝ log(v{sub gas}). However, the plasma plume density in the laminar flow is higher than that in the turbulent flow. Consequently, in the laminar flow, the density increases with increasing the gas flow velocity.

  19. Relation of the double-ITCZ bias to the atmospheric energy budget in climate models

    NASA Astrophysics Data System (ADS)

    Adam, Ori; Schneider, Tapio; Brient, Florent; Bischoff, Tobias

    2016-07-01

    We examine how tropical zonal mean precipitation biases in current climate models relate to the atmospheric energy budget. Both hemispherically symmetric and antisymmetric tropical precipitation biases contribute to the well-known double-Intertropical Convergence Zone (ITCZ) bias; however, they have distinct signatures in the energy budget. Hemispherically symmetric biases in tropical precipitation are proportional to biases in the equatorial net energy input; hemispherically antisymmetric biases are proportional to the atmospheric energy transport across the equator. Both relations can be understood within the framework of recently developed theories. Atmospheric net energy input biases in the deep tropics shape both the symmetric and antisymmetric components of the double-ITCZ bias. Potential causes of these energetic biases and their variation across climate models are discussed.

  20. Significant contribution of combustion-related emissions to the atmospheric phosphorus budget

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Balkanski, Yves; Boucher, Olivier; Ciais, Philippe; Peñuelas, Josep; Tao, Shu

    2015-01-01

    Atmospheric phosphorus fertilizes plants and contributes to Earth's biogeochemical phosphorus cycle. However, calculations of the global budget of atmospheric phosphorus have been unbalanced, with global deposition exceeding estimated emissions from dust and sea-salt transport, volcanic eruptions, biogenic sources and combustion of fossil fuels, biofuels and biomass, the latter of which thought to contribute about 5% of total emissions. Here we use measurements of the phosphorus content of various fuels and estimates of the partitioning of phosphorus during combustion to calculate phosphorus emissions to the atmosphere from all combustion sources. We estimate combustion-related emissions of 1.8 Tg P yr-1, which represent over 50% of global atmospheric sources of phosphorus. Using these estimates in atmospheric transport model simulations, we find that the total global emissions of atmospheric phosphorus (3.5 Tg P yr-1) translate to a depositional sink of 2.7 Tg P yr-1 over land and 0.8 Tg P yr-1 over the oceans. The modelled spatial patterns of phosphorus deposition agree with observations from globally distributed measurement stations, and indicate a near balance of the phosphorus budget. Our finding suggests that the perturbation of the global phosphorus cycle by anthropogenic emissions is larger thanpreviously thought.

  1. Precipitation recycling in West Africa - regional modeling, evaporation tagging and atmospheric water budget analysis

    NASA Astrophysics Data System (ADS)

    Arnault, Joel; Kunstmann, Harald; Knoche, Hans-Richard

    2015-04-01

    Many numerical studies have shown that the West African monsoon is highly sensitive to the state of the land surface. It is however questionable to which extend a local change of land surface properties would affect the local climate, especially with respect to precipitation. This issue is traditionally addressed with the concept of precipitation recycling, defined as the contribution of local surface evaporation to local precipitation. For this study the West African monsoon has been simulated with the Weather Research and Forecasting (WRF) model using explicit convection, for the domain (1°S-21°N, 18°W-14°E) at a spatial resolution of 10 km, for the period January-October 2013, and using ERA-Interim reanalyses as driving data. This WRF configuration has been selected for its ability to simulate monthly precipitation amounts and daily histograms close to TRMM (Tropical Rainfall Measuring Mission) data. In order to investigate precipitation recycling in this WRF simulation, surface evaporation tagging has been implemented in the WRF source code as well as the budget of total and tagged atmospheric water. Surface evaporation tagging consists in duplicating all water species and the respective prognostic equations in the source code. Then, tagged water species are set to zero at the lateral boundaries of the simulated domain (no inflow of tagged water vapor), and tagged surface evaporation is considered only in a specified region. All the source terms of the prognostic equations of total and tagged water species are finally saved in the outputs for the budget analysis. This allows quantifying the respective contribution of total and tagged atmospheric water to atmospheric precipitation processes. The WRF simulation with surface evaporation tagging and budgets has been conducted two times, first with a 100 km2 tagged region (11-12°N, 1-2°W), and second with a 1000 km2 tagged region (7-16°N, 6°W -3°E). In this presentation we will investigate hydro-atmospheric

  2. Relative spectral absorption of solar radiation by water vapor and cloud droplets

    NASA Technical Reports Server (NTRS)

    Davies, R.; Ridgway, W. L.

    1983-01-01

    A moderate (20/cm) spectral resolution model which accounts for both the highly variable spectral transmission of solar radiation through water vapor within and above cloud, as well as the more slowly varying features of absorption and anisotropic multiple scattering by the cloud droplets, is presented. Results from this model as applied to the case of a typical 1 km thick stratus cloud in a standard atmosphere, with cloud top altitude of 2 km and overhead sun, are discussed, showing the relative importance of water vapor above the cloud, water vapor within the cloud, and cloud droplets on the spectral absorption of solar radiation.

  3. Mission Objectives Of The Atmospheric Composition Related Sentinels S5p, S4, And S5

    NASA Astrophysics Data System (ADS)

    Ingmann, Paul; Veihelmann, Ben; Langen, Jorg; Meijer, Yasjka

    2013-12-01

    Atmospheric chemistry observations from space have been made for over 30 years, in the beginning mainly by US missions. These missions have always been motivated by the concern about a number of environmental issues. At present European instruments like GOME-2 on MetOp/EPS-A and -B and OMI on NASA's Aura are in space and, despite being designed for research purposes, perform routine observations. The space instruments have helped improving our understanding of processes that govern stratospheric ozone depletion, climate change and the transport of pollutants. However, long-term continuous time series of atmospheric trace gas data have been limited to stratospheric ozone and a few related species. According to current planning, meteorological satellites will maintain these observations over the next decade. They will also add some measurements of tropospheric trace gases critical for climate forcing. However, as their measurements have been motivated by meteorology, vertical sensitivities and accuracies are marginal for atmospheric chemistry applications. With the exception of stratospheric ozone, reliable long-term space-based monitoring of atmospheric constituents with quality attributes sufficient to serve atmospheric chemistry applications still need to be established. The need for a GMES atmospheric service (GAS), its scope and high level requirements were laid down in an orientation papers organised by the European Commission and then updated by an Implementation Group (IG) [1], backed by four working groups, advising the Commission on scope, architecture, in situ and space requirements. The goal of GAS is to provide coherent information on atmospheric variables in support of European policies and for the benefit of European citizens. Services cover air quality, climate change/forcing, stratospheric ozone and solar radiation. To meet the needs of the user community atmospheric composition mission concepts for GEO and LEO have been defined usually referred to

  4. Global Gray Water Footprint and Water Pollution Levels Related to Anthropogenic Nitrogen Loads to Fresh Water.

    PubMed

    Mekonnen, Mesfin M; Hoekstra, Arjen Y

    2015-11-01

    This is the first global assessment of nitrogen-related water pollution in river basins with a specification of the pollution by economic sector, and by crop for the agricultural sector. At a spatial resolution of 5 by 5 arc minute, we estimate anthropogenic nitrogen (N) loads to freshwater, calculate the resultant gray water footprints (GWFs), and relate the GWFs per river basin to runoff to calculate the N-related water pollution level (WPL) per catchment. The accumulated global GWF related to anthropogenic N loads in the period 2002-2010 was 13×10(12) m3/y. China contributed about 45% to the global total. Three quarters of the GWF related to N loads came from diffuse sources (agriculture), 23% from domestic point sources and 2% from industrial point sources. Among the crops, production of cereals had the largest contribution to the N-related GWF (18%), followed by vegetables (15%) and oil crops (11%). The river basins with WPL>1 (where the N load exceeds the basin's assimilation capacity), cover about 17% of the global land area, contribute about 9% of the global river discharge, and provide residence to 48% of the global population. PMID:26440220

  5. Fortnightly atmospheric tides forced by spring and neap tides in coastal waters

    PubMed Central

    Iwasaki, Shinsuke; Isobe, Atsuhiko; Miyao, Yasuyuki

    2015-01-01

    The influence of sea surface temperature (SST) on atmospheric processes over the open ocean has been well documented. However, atmospheric responses to SST in coastal waters are poorly understood. Oceanic stratification (and consequently, SST) in coastal waters largely depends on the fortnightly spring–neap tidal cycle, because of variations in vertical tidal mixing. Here we investigate how changes in SST during the fortnightly tidal cycle affect the lower-level atmosphere over the Seto Inland Sea, Japan. We use a combination of in situ measurements, satellite observations and a regional atmospheric model. We find that the SST in summer shows cool (warm) anomalies over most of the inland sea during spring (neap) tides. Additionally, surface air temperature is positively correlated with the SST as it varies during the fortnightly tidal cycle. Moreover, the fortnightly spring–neap cycle also influences the surface wind speed because the atmospheric boundary layer becomes stabilized or destabilized in response to the difference between air temperature and SST. PMID:25984948

  6. Water on Mars: isotopic constraints on exchange between the atmosphere and surface.

    PubMed

    Kass, D M; Yung, Y L

    1999-12-15

    Using a new measurement of the D/H fractionation efficiency and new estimates of the water loss, we calculate that Mars has the equivalent of a approximately 9 m global water layer in a reservoir that exchanges with the atmosphere. The measured D/H enrichment is about 5 times the terrestrial value, but without exchange, the atmosphere converges on an enrichment of 50 in about 0.5 Ma. Due to the large buffering reservoir and the rapid loss rate (10(-3) pr-micrometers yr-1), the small atmospheric reservoir, averaging 10 pr-micrometers, is unlikely to be in continuous isotopic equilibrium with the full 9 m exchangeable reservoir. Instead, it presumably equilibrates during periods of high obliquity; the atmospheric D/H ratio is expected to be enriched in between such periods. If isotopic exchange with a small (4 mm global layer) reservoir occurs under current conditions, it possible for the atmospheric D/H ratio to be within 10% of its long term equilibrium. PMID:11543401

  7. Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling

    SciTech Connect

    Boone, Eric J.; Laskin, Alexander; Laskin, Julia; Wirth, Christopher; Shepson, Paul B.; Stirm, Brian H.; Pratt, Kerri A.

    2015-07-21

    Cloud water and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry with nanospray desorption electrospray ionization and direct infusion electrospray ionization were utilized to compare the organic composition of the particle and cloud water samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloud water, showing the significant influence of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloud water samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloud water when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.

  8. Atmospheric depression-mediated water temperature changes affect the vertical movement of chum salmon Oncorhynchus keta.

    PubMed

    Kitagawa, Takashi; Hyodo, Susumu; Sato, Katsufumi

    2016-08-01

    The Sanriku coastal area, Japan, is one of the southern-most natural spawning regions of chum salmon Oncorhynchus keta. Here, we report their behavioral response to changes in ambient temperature after the passage of an atmospheric depression during the early spawning season. Before the passage, all electrically tagged fish moved vertically for several hours to depths below the shallow thermocline at >100 m. However, during the atmospheric depression, the salmon shortened the duration of their vertical movements and spent most time at the surface. The water column was homogenous at <150 m deep except for the surface. The descending behavior may have been discontinued because the cooler water below the thermocline was no longer in a thermally defined layer, due to strong vertical mixing by high wave action. Instead, they likely spent time within the cooler water temperatures at the surface of bays to minimize metabolic energy cost during migration. PMID:27236419

  9. Alexandrite lidar for the atmospheric water vapor detection and development of powerful tunable sources in IR

    NASA Technical Reports Server (NTRS)

    Uchiumi, M.; Maeda, M.; Muraoka, K.; Uchino, O.

    1992-01-01

    New tunable solid-state lasers, such as alexandrite and Ti-sapphire lasers, provide a powerful technique to detect various molecules in the atmosphere whose absorption bands are in the infrared region. The differential absorption lidar (DIAL) system to measure the tropospheric water vapor has been investigated by many authors, in an early stage, by dye and ruby lasers. Using the alpha band of water vapor, the longest detection range can be obtained with high accuracy, and the alexandrite laser is the most suitable laser for this purpose. In this paper, we describe the detection of water vapor in the atmosphere by an alexandrite lidar, and the development of powerful tunable sources based on Raman lasers in the infrared region.

  10. Marine sediment tolerances for remote sensing of atmospheric aerosols over water

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.

    1982-01-01

    In surveying the literature, it is pointed out that there is a need to quantify the turbidity below which reflectance from the water column is negligible in comparison with atmospheric effects to allow the monitoring of aerosol optical depth over water bodies. Data that partially satisfy this need are presented. Laboratory measurements of reflectance upwelled from the water column are given for mixtures with various types of sediment at wavelengths between 400 and 1600 nm. The results of the study described here are a quantitative endorsement of the recommendations of Morell and Gordon (1980).

  11. SPECIAL ISSUE OF ATMOSPHERIC ENVIRONMENT FOR PARTICULATE MATTER SUPERSITES PROGRAM AND RELATED STUDIES

    EPA Science Inventory

    This special issue of Atmospheric Environment provides a selection of papers that were presented at the 2005 AAAR PM Supersites Program and Related Studies International Specialty Conference held in Atlanta, GA, 7-11 February 2005. Topics of papers in this issue range from the e...

  12. Contrasting extremes in water-related stresses determine species survival

    NASA Astrophysics Data System (ADS)

    Bartholomeus, R. P.; Witte, J. P. M.; van Bodegom, P. M.; van Dam, J. C.; Aerts, R.

    2012-04-01

    In temperate climates, soil moisture, in concert with nutrient availability and soil acidity, is the most important environmental filter in determining local plant species composition, as it determines the availability of both oxygen and water to plant roots. These resources are indispensable for meeting the physiological demands of plants. Especially the occurrence of both excessive dry and wet moisture conditions at a particular site has strong implications for the survival of species, because plants need traits that allow them to respond to such counteracting conditions. However, adapting to one stress may go at the cost of the other, i.e. there exists a trade-off in the tolerance for wet conditions and the tolerance for dry conditions. Until now, both large-scale (global) and plot-scale effects of soil moisture conditions on plant species composition have mostly been investigated through indirect environmental measures, which do not include the key soil physical and plant physiological processes in the soil-plant-atmosphere system. Moreover, researchers only determined effects of one of the water-related stresses, i.e. either oxygen or drought stress. In order to quantify both oxygen and drought stress with causal measures, we focused on interacting meteorological, soil physical, microbial, and plant physiological processes in the soil-plant-atmosphere system. We simulated these plant stresses with a novel, process-based approach, incorporating in detail the interacting processes in the soil-plant-atmosphere interface. High variability and extremes in resource availability can be highly detrimental to plant species ('you can only die once'). We show that co-occurrence of oxygen and drought stress reduces the percentage of specialists within a vegetation plot. The percentage of non-specialists within a vegetation plot, however, decreases significantly with increasing stress as long as only one of the stresses prevails, but increases significantly with an

  13. Transport of water in a transient impact-generated lunar atmosphere

    NASA Astrophysics Data System (ADS)

    Prem, P.; Artemieva, N. A.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.

    2015-07-01

    In recent decades, several missions have detected signs of water and other volatiles in cold, permanently shadowed craters near the lunar poles. Observations suggest that some of these volatiles could have been delivered by comet impacts and therefore, understanding the impact delivery mechanism becomes key to explaining the origin and distribution of lunar water. During impact, the constituent ices of a comet nucleus vaporize; a significant part of this vapor remains gravitationally bound to the Moon, transforming the tenuous, collisionless lunar exosphere into a collisionally thick, transient atmosphere. Here, we use numerical simulations to investigate the physical processes governing volatile transport in the transient atmosphere generated after a comet impact, with a focus on how these processes influence the accumulation of water in polar cold traps. It is observed that the transient atmosphere maintains a certain characteristic structure for at least several Earth days after impact, during which time volatile transport occurs primarily through low-altitude winds that sweep over the lunar day-side. Meanwhile, reconvergence of vapor antipodal to the point of impact results in preferential redistribution of water in the vicinity of the antipode. Due to the quantity of vapor that remains gravitationally bound, the atmosphere is sufficiently dense that lower layers are shielded from photodestruction, prolonging the lifetime of water molecules and allowing greater amounts of water to reach cold traps. Short-term ice deposition patterns are markedly non-uniform and the variations that arise in simulated volatile abundance between different cold traps could potentially explain variations that have been observed through remote sensing.

  14. Liquid water on Mars - An energy balance climate model for CO2/H2O atmospheres

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.; Callegari, A. J.; Hsieh, C. T.; Ziegler, W.

    1981-01-01

    A simple climatic model is developed for a Mars atmosphere containing CO2 and sufficient liquid water to account for the observed hydrologic surface features by the existence of a CO2/H2O greenhouse effect. A latitude-resolved climate model originally devised for terrestrial climate studies is applied to Martian conditions, with the difference between absorbed solar flux and emitted long-wave flux to space per unit area attributed to the divergence of the meridional heat flux and the poleward heat flux assumed to equal the atmospheric eddy heat flux. The global mean energy balance is calculated as a function of atmospheric pressure to assess the CO2/H2O greenhouse liquid water hypothesis, and some latitude-resolved cases are examined in detail in order to clarify the role of atmospheric transport and temperature-albedo feedback. It is shown that the combined CO2/H2O greenhouse at plausible early surface pressures may account for climates hot enough to support a hydrological cycle and running water at present-day insolation and visible albedo levels.

  15. Reactions Between Water Soluble Organic Acids and Nitrates in Atmospheric Aerosols: Recycling of Nitric Acid and Formation of Organic Salts

    SciTech Connect

    Wang, Bingbing; Laskin, Alexander

    2014-03-25

    Atmospheric particles often include a complex mixture of nitrate and secondary organic materials accumulated within the same individual particles. Nitrate as an important inorganic component can be chemically formed in the atmosphere. For instance, formation of sodium nitrate (NaNO3) and calcium nitrate Ca(NO3)2 when nitrogen oxide and nitric acid (HNO3) species react with sea salt and calcite, respectively. Organic acids contribute a significant fraction of photochemically formed secondary organics that can condense on the preexisting nitrate-containing particles. Here, we present a systematic microanalysis study on chemical composition of laboratory generated particles composed of water soluble organic acids and nitrates (i.e. NaNO3 and Ca(NO3)2) investigated using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and Fourier transform infrared micro-spectroscopy (micro-FTIR). The results show that water-soluble organic acids can react with nitrates releasing gaseous HNO3 during dehydration process. These reactions are attributed to acid displacement of nitrate with weak organic acids driven by the evaporation of HNO3 into gas phase due to its relatively high volatility. The reactions result in significant nitrate depletion and formation of organic salts in mixed organic acids/nitrate particles that in turn may affect their physical and chemical properties relevant to atmospheric environment and climate. Airborne nitrate concentrations are estimated by thermodynamic calculations corresponding to various nitrate depletions in selected organic acids of atmospheric relevance. The results indicate a potential mechanism of HNO3 recycling, which may further affect concentrations of gas- and aerosol-phase species in the atmosphere and the heterogeneous reaction chemistry between them.

  16. Spaceborne lidar system for measurements of atmospheric water vapor and aerosols

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Ismail, S.; Mccormick, M. P.; Swissler, T. J.

    1985-01-01

    The inclusion of a differential absorption lidar (DIAL) system as part of the NASA Earth Observing System (EOS) is proposed. Functioning at 720 nm, the DIAL could provide atmospheric water vapor profiles in the troposphere and stratosphere, and provide data for characterizing the physical properties of clouds. The use of frequency doubling of the laser could also open a window on the 355 nm region, and thereby molecular density and temperature profiles. The date would be of use in studies of the global hydrological cycle, the global radiation balance, climate, meteorology, and atmospheric structure and transport phenomena.

  17. Estimation of absolute water surface temperature based on atmospherically corrected thermal infrared multispectral scanner digital data

    NASA Technical Reports Server (NTRS)

    Anderson, James E.

    1986-01-01

    Airborne remote sensing systems, as well as those on board Earth orbiting satellites, sample electromagnetic energy in discrete wavelength regions and convert the total energy sampled into data suitable for processing by digital computers. In general, however, the total amount of energy reaching a sensor system located at some distance from the target is composed not only of target related energy, but, in addition, contains a contribution originating from the atmosphere itself. Thus, some method must be devised for removing or at least minimizing the effects of the atmosphere. The LOWTRAN-6 Program was designed to estimate atmospheric transmittance and radiance for a given atmospheric path at moderate spectral resolution over an operational wavelength region from 0.25 to 28.5 microns. In order to compute the Thermal Infrared Multispectral Scanner (TIMS) digital values which were recorded in the absence of the atmosphere, the parameters derived from LOWTRAN-6 are used in a correction equation. The TIMS data were collected at 1:00 a.m. local time on November 21, 1983, over a recirculating cooling pond for a power plant in southeastern Mississippi. The TIMS data were analyzed before and after atmospheric corrections were applied using a band ratioing model to compute the absolute surface temperature of various points on the power plant cooling pond. The summarized results clearly demonstrate the desirability of applying atmospheric corrections.

  18. Flared natural gas-based onsite atmospheric water harvesting (AWH) for oilfield operations

    NASA Astrophysics Data System (ADS)

    Wikramanayake, Enakshi D.; Bahadur, Vaibhav

    2016-03-01

    Natural gas worth tens of billions of dollars is flared annually, which leads to resource waste and environmental issues. This work introduces and analyzes a novel concept for flared gas utilization, wherein the gas that would have been flared is instead used to condense atmospheric moisture. Natural gas, which is currently being flared, can alternatively power refrigeration systems to generate the cooling capacity for large scale atmospheric water harvesting (AWH). This approach solves two pressing issues faced by the oil-gas industry, namely gas flaring, and sourcing water for oilfield operations like hydraulic fracturing, drilling and water flooding. Multiple technical pathways to harvest atmospheric moisture by using the energy of natural gas are analyzed. A modeling framework is developed to quantify the dependence of water harvest rates on flared gas volumes and ambient weather. Flaring patterns in the Eagle Ford Shale in Texas and the Bakken Shale in North Dakota are analyzed to quantify the benefits of AWH. Overall, the gas currently flared annually in Texas and North Dakota can harvest enough water to meet 11% and 65% of the water consumption in the Eagle Ford and the Bakken, respectively. Daily harvests of upto 30 000 and 18 000 gallons water can be achieved using the gas currently flared per well in Texas and North Dakota, respectively. In fifty Bakken sites, the water required for fracturing or drilling a new well can be met via onsite flared gas-based AWH in only 3 weeks, and 3 days, respectively. The benefits of this concept are quantified for the Eagle Ford and Bakken Shales. Assessments of the global potential of this concept are presented using data from countries with high flaring activity. It is seen that this waste-to-value conversion concept offers significant economic benefits while addressing critical environmental issues pertaining to oil-gas production.

  19. High Resolution Mass Spectrometry of Organic Nitrogen Species in Atmospheric Fog and Cloud Waters

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Mazzoleni, L.; Collett, J.; Anastasio, C.; Rowchowdhury, U.; Zhang, Q.

    2007-12-01

    Past studies have shown that organic nitrogen (ON) species are ubiquitous in atmospheric particles and water droplets and they are significant components of both wet and dry depositions. However, very little is known about the characteristics of this class of compounds and the roles that they play in atmospheric chemistry. To fill in this gap, we have developed a method that allows us to bulk-characterize and quantify organic nitrogen species in atmospheric aqueous phases using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). We evaluated this method by analyzing a suite of ON compounds including amino acids, amines, proteins, amides, and nitriles. The mass spectra of these compounds show similar structures to those in the NIST database, though with more fragmentation due to the higher vaporization/ionization temperature (~ 600 oC). The elemental compositions determined from the high resolution mass spectra agree well with the theoretical values. With this method, we analyzed a number of fog waters collected from the Central Valley of California and cloud waters from the Whiteface Mountain of New York. A large fraction of water soluble materials in both fog and cloud waters was identified to be organic, of which a significant portion contains nitrogen. On average, ON accounts for ~ 20% and 5%, respectively, of the total nitrogen (= NH4+ + NO3- + NO2- + ON) in the Central Valley fog and Whiteface Mountain cloud waters. Water soluble organic matter (WSOM) in the Central Valley fog and Whiteface Mountain cloud waters show highly oxygenated properties with mass spectra resemble those of highly aged organic aerosols sampled in rural areas and humic/fulvic acids. Finally, we will attempt to extend pertinent data analysis techniques to in-situ AMS data for ON characterization in ambient aerosols.

  20. Nitrogen Transport from Atmospheric Deposition and Contaminated Groundwater to Surface Waters on a Watershed Scale.

    NASA Astrophysics Data System (ADS)

    Showers, W. J.; Demaster, D.

    2005-12-01

    Increasing nitrate contamination of surface water and groundwater is a problem in regions of intensive agriculture and near urban wastewater treatment facilities that land-apply biosolids. The 15N composition of groundwater nitrate has been used to assess potential sources of nitrogen contamination. But because of transformations of nitrogen within the hydrological system, contaminant source tracing with nitrogen isotopes has been complicated. We have used multiple isotope tracers of nitrate (15N, 17O, 18O) to distinguish between different N contamination sources, areas of extensive denitrification, and areas of atmospheric N deposition on the NC coastal plain and piedmont. Areas of extensive denitrification are often associated with hydric soils. The distribution of hydric soils on field and watershed scales correlates with surface and ground water quality degradation. The distribution of hydric soils may thus be an important element in prediction of environmental impacts of agriculture. Transport of atmospheric nitrogen into surface waters as indicated by the 17O of nitrate is event driven. Most surface waters in our study area have low concentrations of nitrate 17O, indicating that the importance of atmospheric N has been overestimated in riverine N flux from watersheds. However, when the atmospheric N flux is integrated over a discharge event, atmospheric N can approach 25 % of the total N riverine flux in urban areas. More work needs to be completed with multiple isotopic tracers and GIS analysis on watershed scales. Using a GIS / isotope approach, areas where the isotopic signature has been affected by denitrification can be predicted, and remediation efforts can be focused on potential areas of N contamination where extensive denitrification is unlikely to occur.

  1. Satellite Retrieval of Atmospheric Water Budget over Gulf of Mexico- Caribbean Basin: Seasonal Variability

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Santos, Pablo; Einaudi, Franco (Technical Monitor)

    2001-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system designed to obtain the atmospheric water budget over the open ocean. A combination of hourly-sampled monthly datasets derived from the GOES-8 5 Imager and the DMSP 7-channel passive microwave radiometer (SSM/I) have been acquired for the Gulf of Mexico-Caribbean Sea basin. Whereas the methodology is being tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the SSM/I passive microwave signals in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, we have sought to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is partly validated by first cross-checking all the algorithm components through multiple-algorithm retrieval intercomparisons. More fundamental validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithm to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin. Total columnar atmospheric water budget results will be presented for an extended annual cycle consisting of the months of October-97, January-98, April-98, July-98, October-98, and January-1999. These results are used to emphasize

  2. The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques

    NASA Astrophysics Data System (ADS)

    Fahey, D. W.; Gao, R.-S.; Möhler, O.; Saathoff, H.; Schiller, C.; Ebert, V.; Krämer, M.; Peter, T.; Amarouche, N.; Avallone, L. M.; Bauer, R.; Bozóki, Z.; Christensen, L. E.; Davis, S. M.; Durry, G.; Dyroff, C.; Herman, R. L.; Hunsmann, S.; Khaykin, S. M.; Mackrodt, P.; Meyer, J.; Smith, J. B.; Spelten, N.; Troy, R. F.; Vömel, H.; Wagner, S.; Wienhold, F. G.

    2014-09-01

    The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques was conducted at the aerosol and cloud simulation chamber AIDA (Aerosol Interaction and Dynamics in the Atmosphere) at the Karlsruhe Institute of Technology, Germany, in October 2007. The overall objective was to intercompare state-of-the-art and prototype atmospheric hygrometers with each other and with independent humidity standards under controlled conditions. This activity was conducted as a blind intercomparison with coordination by selected referees. The effort was motivated by persistent discrepancies found in atmospheric measurements involving multiple instruments operating on research aircraft and balloon platforms, particularly in the upper troposphere and lower stratosphere, where water vapor reaches its lowest atmospheric values (less than 10 ppm). With the AIDA chamber volume of 84 m3, multiple instruments analyzed air with a common water vapor mixing ratio, by extracting air into instrument flow systems, by locating instruments inside the chamber, or by sampling the chamber volume optically. The intercomparison was successfully conducted over 10 days during which pressure, temperature, and mixing ratio were systematically varied (50 to 500 hPa, 185 to 243 K, and 0.3 to 152 ppm). In the absence of an accepted reference instrument, the absolute accuracy of the instruments was not established. To evaluate the intercomparison, the reference value was taken to be the ensemble mean of a core subset of the measurements. For these core instruments, the agreement between 10 and 150 ppm of water vapor is considered good with variation about the reference value of about ±10% (±1σ). In the region of most interest between 1 and 10 ppm, the core subset agreement is fair with variation about the reference value of ±20% (±1σ). The upper limit of precision was also derived for each instrument from the reported data. The implication for atmospheric measurements is that the

  3. Aquatic Ecosystem Exposure Associated with Atmospheric Mercury Deposition: Importance of Watershed and Water Body Hot Spots and Hot Moments

    NASA Astrophysics Data System (ADS)

    Knightes, C. D.; Golden, H. E.

    2008-12-01

    Atmospheric deposition of divalent mercury (Hg(II)) is the often the primary driving force for mercury contamination in fish tissue, resulting in mercury exposure to wildlife and humans. In lake systems associated with small watersheds, direct deposition to the water surface is typically the dominant mercury loading source; however, in lake systems with large watersheds and river systems, these inputs may be relatively small compared to loadings from the watershed via erosion and surface runoff. Within each system, transformation of the deposited mercury into the environmentally relevant form, methylmercury (MeHg), proceeds at different rates largely regulated by physical characteristics such as watershed land use types and water body hydraulic residence times, as water body chemistry, such as pH and trophic status Therefore, to fully represent mercury exposure in aquatic ecosystems, we must couple watershed models with water body models and explore where, why, and when hot spots and hot moments of transformation and transport occur. Here we link the simulated atmospheric mercury deposition results from the Community Multi-Scale Air Quality (CMAQ) model, a spatially distributed grid-based watershed mercury (Hg) model (GBMM), and the Water Quality Analysis Simulation Program (WASP). We use this multi-media modeling framework to simulate mercury species cycling over time for the different river reaches and watersheds within the Cape Fear River Basin, North Carolina. Through these simulations we investigate the importance of specific watershed and surface water system characteristics in simulating MeHg exposure concentrations. Because GBMM is a spatially-distributed model we are able to investigate the importance of such factors (i.e., watershed area, land-use types, and land-use percentages) in transporting and transforming deposited mercury. We present how particular land-use types and land-use change influence total loading and total mercury concentrations, how

  4. A review of the Southern Oscillation - Oceanic-atmospheric circulation changes and related rainfall anomalies

    NASA Technical Reports Server (NTRS)

    Kousky, V. E.; Kagano, M. T.; Cavalcanti, I. F. A.

    1984-01-01

    The region of South America is emphasized in the present consideration of the Southern Oscillation (SO) oceanic and atmospheric circulation changes. The persistence of climate anomalies associated with El Nino-SO events is due to strong atmosphere-ocean coupling. Once initiated, the SO follows a certain sequence of events with clearly defined effects on tropical and subtropical rainfall. Excessive rainfall related to the SO in the central and eastern Pacific, Peru, Ecuador, and southern Brazil, are complemented by drought in Australia, Indonesia, India, West Africa, and northeast Brazil. El Nino-SO events are also associated with dramatic changes in the tropospheric flow pattern over a broad area of both hemispheres.

  5. A CloudSat Perspective of the Atmospheric Water Cycle and Precipitation: Recent Progress and Grand Challenges

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.; Im, Eastwood; Vane, Deborah

    2012-01-01

    Summary Global - mean precipitation - is controlled by Earth's energy balance and is a quantifiable consequence of the water vapor feedback. Predictability rests on the degree to which the water vapor feedback is predictable. Regional scale - to a significant extent, changes are shaped by atmospheric circulation changes but we do not know the extent to which regional scale changes are predictable. The impacts of changes to atmospheric circulation on regional scale water cycle changes can be dramatic. Process - scale - significant biases to the CHARACTER of precipitation (frequency and intensity) is related to how the precipitation process is parameterized in models. Aerosol - We still do not know the extent to which the water cycle is influenced by aerosol but anecdotal evidence is building. The character of precipitation is affected by the way aerosol influence clouds and thus affects the forcing of the climate system through the albedo effect. Observations - we still have a way to go and need to approach the problem in a more integrated way (tie clouds, aerosol and precipitation together and then link to soil moisture, etc). Globally our capabilities seriously lag behind the science and model development.

  6. Differentiating atmospheric and mineral sources of sulfur during snowmelt using δ 34S, 35S activity, and δ 18O of sulfate and water as tracers

    NASA Astrophysics Data System (ADS)

    Shanley, J. B.; Mayer, B.; Mitchell, M. J.; Michel, R. L.; Bailey, S.; Kendall, C.

    2003-12-01

    The biogeochemical cycling of sulfur was studied during the 2000 snowmelt at Sleepers River Research Watershed in northeastern Vermont, USA using a combination of isotopic, chemical, and hydrometric measurements. The snowpack and 10 streams of varying size and land use were sampled for sulfate concentrations and isotopic analyses of 35S, δ 34S, and δ 18O of sulfate. Values of δ 18O of water were measured at one of the streams. Apportionment of atmospheric and mineral S sources based on δ 34S was possible at 7 of the 10 streams. Weathering of S-containing minerals was a major contributor to sulfate flux in streamwater, but atmospheric contributions exceeded 50% in several of the streams at peak snowmelt and averaged 41% overall. In contrast, δ 18Osulfate values of streamwater remained significantly lower than those of atmospheric sulfate throughout the melt period, indicating that atmospheric sulfate undergoes microbial redox reactions in the soil that replace the oxygen of atmospheric sulfate with isotopically lighter oxygen from soil water. Streamwater 35S activities were low relative to those of the snowpack; the youngest 35S-ages of the atmospheric S component in each of the 7 streams ranged from 184 to 320 days. Atmospheric S contributions to streamwater, as determined by δ 34S values, co-varied both with 35S activity and new water contributions as determined by δ 18Owater. However, the δ 18Osulfate and 35S ages clearly show that this new water carries very little of the atmospheric sulfate entering with the current snowmelt to the stream. Most incoming atmospheric sulfate first cycles through the organic soil S pool and ultimately reaches the stream as pedogenic sulfate.

  7. Future land-use related water demand in California

    NASA Astrophysics Data System (ADS)

    Wilson, Tamara S.; Sleeter, Benjamin M.; Cameron, D. Richard

    2016-05-01

    Water shortages in California are a growing concern amidst ongoing drought, earlier spring snowmelt, projected future climate warming, and currently mandated water use restrictions. Increases in population and land use in coming decades will place additional pressure on already limited available water supplies. We used a state-and-transition simulation model to project future changes in developed (municipal and industrial) and agricultural land use to estimate associated water use demand from 2012 to 2062. Under current efficiency rates, total water use was projected to increase 1.8 billion cubic meters (+4.1%) driven primarily by urbanization and shifts to more water intensive crops. Only if currently mandated 25% reductions in municipal water use are continuously implemented would water demand in 2062 balance to water use levels in 2012. This is the first modeling effort of its kind to examine regional land-use related water demand incorporating historical trends of both developed and agricultural land uses.

  8. North American Water and Energy Balances Under a Doubling of Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Hostetler, S. W.; Schuetz, A.; Alder, J. R.

    2009-12-01

    e have produced 100-yr equilibrium simulations over North America for present-day conditions and for a doubling of atmospheric CO2 using the RegCM3 regional climate model. The long simulations are being analyzed in an attempt to understand changes in the mean state and variability of climate, and to investigate responses related to ENSO. The model was run on the 50 km grid adopted by the North American Regional Climate Change Assessment Program and includes 23 vertical atmospheric levels, and a fully coupled land surface scheme (Biosphere-Atmosphere Transfer Scheme, BATS). Boundary conditions were derived from our coupled atmosphere-ocean general circulation model (GENESIS-MOM, A/OGCM). Our analyses are regionalized over the 22 US Fish and Wildlife Service ecoregions for North America.

  9. Relative Radiometric Normalization and Atmospheric Correction of a SPOT 5 Time Series

    PubMed Central

    Hajj, Mahmoud El; Bégué, Agnès; Lafrance, Bruno; Hagolle, Olivier; Dedieu, Gérard; Rumeau, Matthieu

    2008-01-01

    Multi-temporal images acquired at high spatial and temporal resolution are an important tool for detecting change and analyzing trends, especially in agricultural applications. However, to insure a reliable use of this kind of data, a rigorous radiometric normalization step is required. Normalization can be addressed by performing an atmospheric correction of each image in the time series. The main problem is the difficulty of obtaining an atmospheric characterization at a given acquisition date. In this paper, we investigate whether relative radiometric normalization can substitute for atmospheric correction. We develop an automatic method for relative radiometric normalization based on calculating linear regressions between unnormalized and reference images. Regressions are obtained using the reflectances of automatically selected invariant targets. We compare this method with an atmospheric correction method that uses the 6S model. The performances of both methods are compared using 18 images from of a SPOT 5 time series acquired over Reunion Island. Results obtained for a set of manually selected invariant targets show excellent agreement between the two methods in all spectral bands: values of the coefficient of determination (r2 exceed 0.960, and bias magnitude values are less than 2.65. There is also a strong correlation between normalized NDVI values of sugarcane fields (r2 = 0.959). Despite a relative error of 12.66% between values, very comparable NDVI patterns are observed.

  10. The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques

    NASA Astrophysics Data System (ADS)

    Fahey, D. W.; Gao, R.-S.; Möhler, O.; Saathoff, H.; Schiller, C.; Ebert, V.; Krämer, M.; Peter, T.; Amarouche, N.; Avallone, L. M.; Bauer, R.; Bozóki, Z.; Christensen, L. E.; Davis, S. M.; Durry, G.; Dyroff, C.; Herman, R. L.; Hunsmann, S.; Khaykin, S. M.; Mackrodt, P.; Meyer, J.; Smith, J. B.; Spelten, N.; Troy, R. F.; Vömel, H.; Wagner, S.; Wienhold, F. G.

    2014-04-01

    The AquaVIT-1 Intercomparison of Atmospheric Water Vapor Measurement Techniques was conducted at the aerosol and cloud simulation chamber AIDA at the Karlsruhe Institute of Technology, Germany, in October 2007. The overall objective was to intercompare state-of-the-art and prototype atmospheric hygrometers with each other and with independent humidity standards under controlled conditions. This activity was conducted as a blind intercomparison with coordination by selected referees. The effort was motivated by persistent discrepancies found in atmospheric measurements involving multiple instruments operating on research aircraft and balloon platforms, particularly in the upper troposphere and lower stratosphere where water vapor reaches its lowest atmospheric values (less than 10 ppm). With the AIDA chamber volume of 84 m3, multiple instruments analyzed air with a common water vapor mixing ratio, either by extracting air into instrument flow systems, locating instruments inside the chamber, or sampling the chamber volume optically. The intercomparison was successfully conducted over 10 days during which pressure, temperature, and mixing ratio were systematically varied (50 to 500 hPa, 185 to 243 K, and 0.3 to 152 ppm). In the absence of an accepted reference instrument, the reference value was taken to be the ensemble mean of a core subset of the measurements. For these core instruments, the agreement between 10 and 150 ppm of water vapor is considered good with variation about the reference value of about ±10% (±1σ). In the region of most interest between 1 and 10 ppm, the core subset agreement is fair with variation about the reference value of ±20% (±1σ). The upper limit of precision was also derived for each instrument from the reported data. These results indicate that the core instruments, in general, have intrinsic skill to determine unknown water vapor mixing ratios with an accuracy of at least ±20%. The implication for atmospheric measurements is

  11. Comparison of atmospheric water vapour content with GNSS, Radiosonde, Microwave radiometer, and Lidar

    NASA Astrophysics Data System (ADS)

    Sohn, D.; Park, K.

    2012-12-01

    The increased amount of saturated water vapor due to the Earth's temperature rise frequently causes abnormal meteorological phenomena such as local severe rainfall in Korea. The National Institute of Meteorological Research of Korea Meteorological Administration (KMA) conducted observation experiments using a variety of water-vapor measuring equipments to improve the accuracy of weather forecasts and accurately measure the precipitable water vapor in the atmosphere. Equipments used were GNSS, water vapor radiometers (WVR), radiosonde, and LiDAR. For GNSS measurements we used two receivers that can collect not only GPS but also GLONASS signals: Trimble NetR5 and Septentrio PolaRx4. The two WVR makers are Raidometrics and RPG. For radiosonde observations, KMA launched Vaisala GPSondes every 6 hours during the experiment period. The LiDAR system was made locally by Hanbat University in Daejeon. Thus, we could obtain collocation experiment results from 6 different kinds of water vapor measurement and analyze the characteristics of each device.

  12. A process-based evapotranspiration model incorporating coupled soil water-atmospheric controls

    NASA Astrophysics Data System (ADS)

    Haghighi, Erfan; Kirchner, James

    2016-04-01

    Despite many efforts to develop evapotranspiration models (in the framework of the Penman-Monteith equation) with improved parametrizations of various resistance terms to water vapor transfer into the atmosphere, evidence suggests that estimates of evapotranspiration and its partitioning are prone to bias. Much of this bias could arise from the exclusion of surface hydro-thermal properties and of physical interactions close to the surface where heat and water vapor fluxes originate. Recent progress has been made in mechanistic modeling of surface-turbulence interactions, accounting for localized heat and mass exchange rates from bare soil surfaces covered by protruding obstacles. We seek to extend these results partially vegetated surfaces, to improve predictive capabilities and accuracy of remote sensing techniques quantifying evapotranspiration fluxes. The governing equations of liquid water, water vapor, and energy transport dynamics in the soil-plant-atmosphere system are coupled to resolve diffusive vapor fluxes from isolated pores (plant stomata and soil pores) across a near-surface viscous sublayer, explicitly accounting for pore-scale transport mechanisms and environmental forcing. Preliminary results suggest that this approach offers unique opportunities for directly linking transport properties in plants and adjacent bare soil with resulting plant transpiration and localized bare soil evaporation rates. It thus provides an essential building block for interpreting and upscaling results to field and landscape scales for a range of vegetation cover and atmospheric conditions.

  13. GPS meteorology - Remote sensing of atmospheric water vapor using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Bevis, Michael; Businger, Steven; Herring, Thomas A.; Rocken, Christian; Anthes, Richard A.; Ware, Randolph H.

    1992-01-01

    We present a new approach to remote sensing of water vapor based on the Global Positioning System (GPS). Geodesists and geophysicists have devised methods for estimating the extent to which signals propagating from GPS satellites to ground-based GPS receivers are delayed by atmospheric water vapor. This delay is parameterized in terms of a time-varying zenith wet delay (ZWD) which is retrieved by stochastic filtering of the GPS data. Given surface temperature and pressure readings at the GPS receiver, the retrieved ZWD can be transformed with very little additional uncertainty into an estimate of the integrated water vapor (IWV) overlying that receiver. Networks of continuously operating GPS receivers are being constructed by geodesists, geophysicists, and government and military agencies, in order to implement a wide range of positioning capabilities. These emerging GPS networks offer the possibility of observing the horizontal distribution of IWV or, equivalently, precipitate water with unprecedented coverage and a temporal resolution of the order of 10 min. These measurements could be utilized in operational weather forecasting and in fundamental research into atmospheric storm systems, the hydrologic cycle, atmospheric chemistry, and global climate change.

  14. Chlorophyll concentration estimates for coastal water using pixel-based atmospheric correction of Landsat images

    NASA Astrophysics Data System (ADS)

    Kouba, Eric

    Ocean color analysis is more challenging for coastal regions than the global ocean due the effects of optical brightness, shallow and turbid water, higher phytoplankton growth rates, and the complex geometry of coastal bays and estuaries. Also, one of the key atmospheric correction assumptions (zero water leaving radiance in the near infrared) is not valid for these complex conditions. This makes it difficult to estimate the spectral radiance noise caused by atmospheric aerosols, which can vary rapidly with time and space. This study conducts pixel-based atmospheric correction of Landsat-7 ETM+ images over the Texas coast. Precise satellite orbit data, operational weather data, and climate data are combined to create interpolated arrays of viewing angles and atmospheric profiles. These arrays vary with time and location, allowing calculation of the Rayleigh and aerosol radiances separately for all pixels. The resulting normalized water-leaving radiances are then compared with in situ chlorophyll fluorescence measurements from five locations inside a set of Texas coastal bays: the Mission-Aransas National Estuarine Research Reserve. Curve-fitting analysis shows it is possible to estimate chlorophyll-a surface area concentrations by using ETM+ water-leaving radiance values and a third-order polynomial equation. Two pairs of ETM+ bands are identified as inputs (Bands 1 and 3, and the Log10 values of Bands 3 and 4), both achieving good performance (R2 of 0.69). Further research efforts are recommended to obtain additional data, identify better curve fitting equations, and potentially extend the radiative transfer model into the water column.

  15. Chlorophyll Concentration Estimates for Coastal Waters using Pixel-Based Atmospheric Correction of Landsat Images

    NASA Astrophysics Data System (ADS)

    Kouba, E.; Xie, H.

    2014-12-01

    Ocean color analysis is more challenging for coastal regions than the global ocean due the effects of optical brightness, shallow and turbid water, higher phytoplankton growth rates, and the complex geometry of coastal bays and estuaries. Also, one of the key atmospheric correction assumptions (zero water leaving radiance in the near infrared) is not valid for these complex conditions. This makes it difficult to estimate the spectral radiance noise caused by atmospheric aerosols, which can vary rapidly with time and space. This project evaluated using Landsat-7 ETM+ observations over a set of coastal bays, and allowing atmospheric correction calculations to vary with time and location as much as practical. Precise satellite orbit vector data was combined with operational weather and climate data to create interpolated arrays of atmospheric profiles which varied with time and location, allowing separate calculation of the Rayleigh and aerosol radiance corrections for all pixels. The resulting normalized water-leaving radiance values were compared with chlorophyll fluorescence measurements made at five in-situ stations inside a set of Texas coastal bays: the Mission-Aransas National Estuarine Research Reserve. Curve-fitting analysis showed it was possible to estimate chlorophyll surface area concentrations by using ETM+ water-leaving radiance values and a third-order polynomial equation. Two pairs of ETM+ bands were identified as inputs (Bands 1 and 3, and the Log10 values of Bands 3 and 4), both achieving R2 of 0.69. Additional research efforts were recommended to obtain additional data, identify better curve fitting equations, and potentially extend the radiative transfer model into the water column.

  16. Spatial and temporal variations in plant water-use efficiency inferred from tree-ring, eddy covariance and atmospheric observations

    DOE PAGESBeta

    Dekker, Stefan C.; Groenendijk, Margriet; Booth, Ben B. B.; Huntingford, Chris; Cox, Peter M.

    2016-06-28

    Plant water-use efficiency (WUE), which is the ratio of the uptake of carbon dioxide through photosynthesis to the loss of water through transpiration, is a very useful metric of the functioning of the land biosphere. WUE is expected to increase with atmospheric CO2, but to decline with increasing atmospheric evaporative demand – which can arise from increases in near-surface temperature or decreases in relative humidity. We have used Δ13C measurements from tree rings, along with eddy covariance measurements from Fluxnet sites, to estimate the sensitivities of WUE to changes in CO2 and atmospheric humidity deficit. This enables us to reconstructmore » fractional changes in WUE, based on changes in atmospheric climate and CO2, for the entire period of the instrumental global climate record. We estimate that overall WUE increased from 1900 to 2010 by 48 ± 22 %, which is more than double that simulated by the latest Earth System Models. This long-term trend is largely driven by increases in CO2, but significant inter-annual variability and regional differences are evident due to variations in temperature and relative humidity. Here, there are several highly populated regions, such as western Europe and East Asia, where the rate of increase of WUE has declined sharply in the last 2 decades. Our data-based analysis indicates increases in WUE that typically exceed those simulated by Earth System Models – implying that these models are either underestimating increases in photosynthesis or underestimating reductions in transpiration.« less

  17. An improved atmospheric correction algorithm for applying MERIS data to very turbid inland waters

    NASA Astrophysics Data System (ADS)

    Jaelani, Lalu Muhamad; Matsushita, Bunkei; Yang, Wei; Fukushima, Takehiko

    2015-07-01

    Atmospheric correction (AC) is a necessary process when quantitatively monitoring water quality parameters from satellite data. However, it is still a major challenge to carry out AC for turbid coastal and inland waters. In this study, we propose an improved AC algorithm named N-GWI (new standard Gordon and Wang's algorithms with an iterative process and a bio-optical model) for applying MERIS data to very turbid inland waters (i.e., waters with a water-leaving reflectance at 864.8 nm between 0.001 and 0.01). The N-GWI algorithm incorporates three improvements to avoid certain invalid assumptions that limit the applicability of the existing algorithms in very turbid inland waters. First, the N-GWI uses a fixed aerosol type (coastal aerosol) but permits aerosol concentration to vary at each pixel; this improvement omits a complicated requirement for aerosol model selection based only on satellite data. Second, it shifts the reference band from 670 nm to 754 nm to validate the assumption that the total absorption coefficient at the reference band can be replaced by that of pure water, and thus can avoid the uncorrected estimation of the total absorption coefficient at the reference band in very turbid waters. Third, the N-GWI generates a semi-analytical relationship instead of an empirical one for estimation of the spectral slope of particle backscattering. Our analysis showed that the N-GWI improved the accuracy of atmospheric correction in two very turbid Asian lakes (Lake Kasumigaura, Japan and Lake Dianchi, China), with a normalized mean absolute error (NMAE) of less than 22% for wavelengths longer than 620 nm. However, the N-GWI exhibited poor performance in moderately turbid waters (the NMAE values were larger than 83.6% in the four American coastal waters). The applicability of the N-GWI, which includes both advantages and limitations, was discussed.

  18. Altitude profile of atmospheric muons in a location with relatively high cut-off rigidity

    NASA Astrophysics Data System (ADS)

    Arslan, Halil; Bektasoglu, Mehmet

    2015-12-01

    We have investigated the differential and integrated muon fluxes, muon charge ratios and the zenith angle dependence of the integrated muon intensities at sea level and various depths in the atmosphere of Tsukuba, Japan, for muons with momenta below 400 GeV/c using the Geant4 simulation package. The simulated sea level muon spectrum and charge ratio have been seen to be in good agreement, throughout the momentum interval of the interest, with those from the measurements made by the BESS-TeV spectrometer. Integrated muon intensities have been found to increase as the atmospheric depth decreases up to slightly above 200 g/cm2, and then they have a trend to decrease at lower atmospheric depths. Muon charge ratios at each of the atmospheric depth of interest have been shown to have a very similar behavior with the one at sea level. Simulation results for the zenith angle dependence of muon intensity have been quite compatible with the existing information in the literature for sea level. It has also been shown that the zenith angular dependence of muon intensity has a tendency to disappear (to obey the sec θ distribution) as the atmospheric depth decreases for muons with relatively low (high) momenta.

  19. Optimal residential water conservation strategies considering related energy in California

    NASA Astrophysics Data System (ADS)

    Escriva-Bou, Alvar; Lund, Jay R.; Pulido-Velazquez, Manuel

    2015-06-01

    Although most freshwater resources are used in agriculture, residential water use is a much more energy intensive user. Based on this, we analyze the increased willingness to adopt water conservation strategies if energy cost is included in the customers' utility function. Using a Water-Energy-CO2 emissions model for household water end uses and probability distribution functions for parameters affecting water and water-related energy use in 10 different locations in California, this research introduces a probabilistic two-stage optimization model considering technical and behavioral decision variables to obtain the most economical strategies to minimize household water and water-related energy bills and costs given both water and energy price shocks. Results can provide an upper bound of household savings for customers with well-behaved preferences, and show greater adoption rates to reduce energy intensive appliances when energy is accounted, resulting in an overall 24% reduction in indoor water use that represents a 30% reduction in water-related energy use and a 53% reduction in household water-related CO2 emissions. Previous use patterns and water and energy rate structures can affect greatly the potential benefits for customers and so their behavior. Given that water and energy are somewhat complementary goods for customers, we use results of the optimization to obtain own-price and cross-price elasticities of residential water use by simulating increases in water and energy prices. While the results are highly influenced by assumptions due to lack of empirical data, the method presented has no precedent in the literature and hopefully will stimulate the collection of additional relevant data.

  20. The periodic wetting of leaves enhances water relations and growth of the long-lived conifer Araucaria angustifolia.

    PubMed

    Cassana, F F; Dillenburg, L R

    2013-01-01

    The importance of foliar absorption of water and atmospheric solutes in conifers was recognised in the 1970s, and the importance of fog as a water source in forest environments has been recently demonstrated. Araucaria angustifolia (Araucariaceae) is an emergent tree species that grows in montane forests of southern Brazil, where rainfall and fog are frequent events, leading to frequent wetting of the leaves. Despite anatomical evidence in favour of leaf water absorption, there is no information on the existence and physiological significance of a such process. In this study, we test the hypothesis that the use of atmospheric water by leaves takes place and is physiologically relevant for the species, by comparing growth, water relations and nutritional status between plants grown under two conditions of soil water (well-watered and water-stressed plants) and three types of leaf spraying (none, water and nutrient solution spray). Leaf spraying had a greater effect in improving plant water relations when plants were under water stress. Plant growth was more responsive to water available to the leaves than to the roots, and was equally increased by both types of leaf spraying, with no interaction with soil water status. Spraying leaves with nutrient solution increased shoot ramification and raised the concentrations of N, P, K, Zn, Cu and Fe in the roots. Our results provide strong indications that water and nutrients are indeed absorbed by leaves of A. angustifolia, and that this process might be as important as water uptake by its roots. PMID:22672733

  1. A bimodel climate response controlled by water vapor transport in a coupled ocean-atmosphere box model

    NASA Astrophysics Data System (ADS)

    Birchfield, G. Edward; Wang, Huaxiao; Wyant, Matthew

    1990-06-01

    The importance of the hydrological cycle as a controlling factor on the magnitude of the thermohaline circulation is illustrated in a simple one-hemisphere coupled ocean-atmosphere box model. The ocean model includes differential surface heating and evaporation, horizontal and vertical exchange of heat and salt between boxes, and a simply parameterized thermohaline circulation. Surface heat fluxes and evaporation are determined through the coupled ocean and energy balance atmosphere models which treat fluxes of long- and short-wave radiation and sensible and latent heat. Two parameters represent the most important physics: µ controls the magnitude of the thermohaline circulation; ɛ controls the strength of the hydrological cycle. For fixed µ, two regimes are distinguished. One, associated with small values of ɛ, has weak latitudinal water vapor transport in the atmosphere, a strong thermohaline circulation with sinking in high latitudes, upwelling in low latitudes, and strong latitudinal transport of heat by the ocean. The second regime for larger ɛ is characterized by strong latitudinal water vapor transport which, by reducing the surface salinity in high latitudes, shuts down the thermohaline circulation and has reduced ocean and net latitudinal heat transport. The bimodal response in the model is shown to be the consequence of a shift in the mechanism of supply of salt to the high-latitude surface ocean from predominantly thermohaline transport, a nonlinear process, to or from predominantly eddy mixing transport, a linear process. In climatological terms, the bimodality represents two distinct climate regimes, one with an active ocean meridional circulation and relatively warm ocean and atmosphere temperatures in high latitudes, and the other with a less active ocean circulation and an increased latitudinal temperature gradient in atmosphere and ocean. The regime with an active thermohaline circulation tends to be less stable than the other, exhibiting over

  2. 20-micron transparency and atmospheric water vapor at the Wyoming Infrared Observatory

    NASA Technical Reports Server (NTRS)

    Grasdalen, G. L.; Gehrz, R. D.; Hackwell, J. A.; Freedman, R.

    1985-01-01

    The atmospheric transparency at 19.5 and 23 microns from the Wyoming Infrared Observatory over the past six years has been examined. It is found that the transparency is largely controlled by the season. Four months: June, July, August, and September have very poor 20-micron transparency. During the rest of the year the transparency is usually quite good at 19.5 microns and moderately good at 23 microns. Using rawinsonde data and theoretical calculations for the expected infrared transparency, the measures of 20-micron transparency were calibrated in terms of atmospheric water-vapor content. The water vapor over the Wyoming Infrared Observatory is found to compare favorably with that above other proposed or developed sites: Mauna Kea, Mount Graham, and Wheeler Peak.

  3. Iron in East Antarctic snow: Implications for atmospheric iron deposition and algal production in Antarctic waters

    NASA Astrophysics Data System (ADS)

    Edwards, Ross; Sedwick, Peter

    To evaluate the deposition and solubility of aerosol iron in the Antarctic seasonal sea ice zone (SSIZ), iron was measured in snow samples collected from three areas in the SSIZ (Prydz Bay, Dumont d'Urville Sea and Ross Sea) and one continental area (Princess Elizabeth Land) of East Antarctica. Concentrations of total-dissolvable iron (that soluble at pH ˜2) ranged from 20-2950 pg g-1, with the lowest concentrations measured in snow from the Dumont d'Urville Sea. Using estimates of snow accumulation rates, we calculate atmospheric iron deposition fluxes of 0.017-0.11 mg m-2 yr-1 (0.30-2.0 µmol m-2 yr-1), which are generally lower than previously published estimates. Measurements of iron in filtered meltwaters of snow samples from Prydz Bay and Princess Elizabeth Land suggest that ˜10-90% of the total atmospheric iron is readily soluble. Assuming our results to be broadly representative of atmospheric deposition over seasonally ice-covered, high-nutrient Antarctic waters, we use our mean estimates of atmospheric iron deposition (1.1 µmol m-2 yr-1) and solubility (32%) to calculate that atmospheric iron potentially supports annual phytoplankton production of 1.1 × 1012 mole C in the Antarctic SSIZ, which is less than 5% of the estimated total annual primary production in this ocean region.

  4. Coupled atmospheric, land surface, and subsurface modeling: Exploring water and energy feedbacks in three-dimensions

    NASA Astrophysics Data System (ADS)

    Davison, Jason H.; Hwang, Hyoun-Tae; Sudicky, Edward A.; Lin, John C.

    2015-12-01

    Human activities amplified by climate change pose a significant threat to the sustainability of water resources. Coupled climate-hydrologic simulations commonly predict these threats by combining shallow 1-D land surface models (LSMs) with traditional 2-D and 3-D hydrology models. However, these coupled models limit the moisture and energy-feedback dynamics to the shallow near-surface. This paper presents a novel analysis by applying an integrated variably-saturated subsurface/surface hydrology and heat transport model, HydroGeoSphere (HGS), as a land surface model (LSM). Furthermore, this article demonstrates the coupling of HGS to a simple 0-D atmospheric boundary layer (ABL) model. We then applied our coupled HGS-ABL model to three separate test cases and reproduced the strong correlation between the atmospheric energy balance to the depth of the groundwater table. From our simulations, we found that conventional LSMs may overestimate surface temperatures for extended drought periods because they underestimate the heat storage in the groundwater zone. Our final test case of the atmospheric response to drought conditions illustrated that deeper roots buffered the atmosphere better than shallow roots by maintaining higher latent heat fluxes, lower sensible heat fluxes, and lower surface and atmospheric temperatures.

  5. Twenty-first Century Challenges in Water Resources - A Land-Atmosphere Interaction Perspective

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Dirmeyer, P.; Lawrence, D. M.

    2012-12-01

    Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models show skill in simulating the 20th century observed warming rate (0.08 K/decade, global average). In the 21st century, the projected warming rate is significantly higher. For example, the 21st century global average temperature trend is four times higher in the 4.5 watts/m2 Representative Concentration Pathway (RCP 4.5), and nine times higher in 8.5 watts/m2 Representative Concentration Pathway (RCP 8.5), compared to the 20th century simulated temperature trend. In this study, we have investigated changes in land-atmosphere interactions, which have important consequences for fresh water availability in the 21st century. A multi-model analysis of results from 16 CMIP5 climate models that have detailed land surface schemes has been examined. A correlation between changes in annual evapotranspiration and temperature (a surrogate for available energy) or changes in precipitation (a surrogate for water availability) among different climate simulations; a total of 103 climate realizations is used as metric to study land-atmosphere interactions. We found that in the highest emission scenario (RCP 8.5), the earth system could potentially see a major change during the 21st century, where much of the land surface will transition to a predominantly water-limited system, i.e., despite increases in precipitation the land surface transitions to a drier state (water-limited). Details of the transition from water and energy limited systems in the 20th century to only water limited systems in the 21st century is presented. Results from the intermediate emissions scenario (RCP4.5) will be also discussed. These results have important consequences for fresh water availability, such as decreased water availability for ground water recharge and runoff.

  6. Maximum Evaporation Rates of Water Droplets Approaching Obstacles in the Atmosphere Under Icing Conditions

    NASA Technical Reports Server (NTRS)

    Lowell, H. H.

    1953-01-01

    When a closed body or a duct envelope moves through the atmosphere, air pressure and temperature rises occur ahead of the body or, under ram conditions, within the duct. If cloud water droplets are encountered, droplet evaporation will result because of the air-temperature rise and the relative velocity between the droplet and stagnating air. It is shown that the solution of the steady-state psychrometric equation provides evaporation rates which are the maximum possible when droplets are entrained in air moving along stagnation lines under such conditions. Calculations are made for a wide variety of water droplet diameters, ambient conditions, and flight Mach numbers. Droplet diameter, body size, and Mach number effects are found to predominate, whereas wide variation in ambient conditions are of relatively small significance in the determination of evaporation rates. The results are essentially exact for the case of movement of droplets having diameters smaller than about 30 microns along relatively long ducts (length at least several feet) or toward large obstacles (wings), since disequilibrium effects are then of little significance. Mass losses in the case of movement within ducts will often be significant fractions (one-fifth to one-half) of original droplet masses, while very small droplets within ducts will often disappear even though the entraining air is not fully stagnated. Wing-approach evaporation losses will usually be of the order of several percent of original droplet masses. Two numerical examples are given of the determination of local evaporation rates and total mass losses in cases involving cloud droplets approaching circular cylinders along stagnation lines. The cylinders chosen were of 3.95-inch (10.0+ cm) diameter and 39.5-inch 100+ cm) diameter. The smaller is representative of icing-rate measurement cylinders, while with the larger will be associated an air-flow field similar to that ahead of an airfoil having a leading-edge radius

  7. Inter-Annual Variability of Atmospheric Water Vapor as seen from the TOVS Pathfinder Path a Data Set

    NASA Technical Reports Server (NTRS)

    Mehta, Amita; Susskind, Joel

    1999-01-01

    The atmospheric water vapor is a major greenhouse gas and plays a critical role in determining energy and water cycle in the climate system. A new, global, long-term (1985-98) water vapor data set derived from the TIROS Operational Vertical Sounder (TOVS) Path A system will be introduced in the presentation. An assessment of the accuracy of the TOVS Path A water vapor data will he presented. The focus of this oral presentation will be on the inter-annual variability of the water vapor distribution in the atmosphere. Also, water vapor distribution observed during 1997/98 ENSO event will be shown.

  8. Atmospheric parameters, spectral indexes and their relation to CPV spectral performance

    NASA Astrophysics Data System (ADS)

    Núñez, Rubén; Antón, Ignacio; Askins, Steve; Sala, Gabriel

    2014-09-01

    Air Mass and atmosphere components (basically aerosol (AOD) and precipitable water (PW)) define the absorption of the sunlight that arrive to Earth. Radiative models such as SMARTS or MODTRAN use these parameters to generate an equivalent spectrum. However, complex and expensive instruments (as AERONET network devices) are needed to obtain AOD and PW. On the other hand, the use of isotype cells is a convenient way to characterize spectrally a place for CPV considering that they provide the photocurrent of the different internal subcells individually. Crossing data from AERONET station and a Tri-band Spectroheliometer, a model that correlates Spectral Mismatch Ratios and atmospheric parameters is proposed. Considering the amount of stations of AERONET network, this model may be used to estimate the spectral influence on energy performance of CPV systems close to all the stations worldwide.

  9. Atmospheric parameters, spectral indexes and their relation to CPV spectral performance

    SciTech Connect

    Núñez, Rubén Antón, Ignacio Askins, Steve Sala, Gabriel

    2014-09-26

    Air Mass and atmosphere components (basically aerosol (AOD) and precipitable water (PW)) define the absorption of the sunlight that arrive to Earth. Radiative models such as SMARTS or MODTRAN use these parameters to generate an equivalent spectrum. However, complex and expensive instruments (as AERONET network devices) are needed to obtain AOD and PW. On the other hand, the use of isotype cells is a convenient way to characterize spectrally a place for CPV considering that they provide the photocurrent of the different internal subcells individually. Crossing data from AERONET station and a Tri-band Spectroheliometer, a model that correlates Spectral Mismatch Ratios and atmospheric parameters is proposed. Considering the amount of stations of AERONET network, this model may be used to estimate the spectral influence on energy performance of CPV systems close to all the stations worldwide.

  10. Water Vapor Tacers as Diagnostics of the Regional Atmospheric Hydrologic Cycle

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding of the local and remote sources of water vapor can be a valuable diagnostic in understanding the regional atmospheric hydrologic cycle, especially in North America where moisture transport and local evaporation are important sources of water for precipitation. In the present study, we have implemented passive tracers as prognostic variables to follow water vapor evaporated in predetermined regions until the water tracer precipitates. All evaporative sources of water are accounted for by tracers, and the water vapor variable provides the validation of the tracer water and the formulation of the sources and sinks. The Geostationary Operational Environmental Satellites General Circulation Model (GEOS GCM) is used to simulate several summer periods to determine the source regions of precipitation for the United States and India. Using this methodology, a detailed analysis of the recycling of water, interannual variability of the sources of water and links to the Great Plains low-level jet and North American monsoon will be presented. Potential uses in GCM sensitivity studies, predictability studies and data assimilation especially regarding the North American monsoon and GEWEX America Prediction Project (GAPP) will be discussed.

  11. Long-term observation of water-soluble chemical components in the bulk atmospheric aerosols collected at Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Handa, Daishi; Somada, Yuka; Ijyu, Moriaki; Azechi, Sotaro; Nakaema, Fumiya; Arakaki, Takemitsu; Tanahara, Akira

    2010-05-01

    The economic development and population growth in recent Asia spread air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. The study of the long-range transported air pollution from Asian continent has gained a special attention in Japan because of increase in photochemical oxidants in relatively remote islands. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location in Asia is well suited for studying long-range transport of air pollutants in East Asia because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. Bulk aerosol samples were collected on quartz filters by using a high volume air sampler. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations and dissolved organic carbon (DOC) in the bulk aerosols collected at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. We will report water-soluble chemical components data of anions, cations and DOC in bulk atmospheric aerosols collected at CHAAMS during August, 2005 to April, 2010. Seasonal variation of water-soluble chemical components showed that the concentrations were relatively low in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian Continent, the concentrations of water-soluble chemical components were much higher compared to the other directions. In addition, we calculated background concentration of water-soluble chemical components at Okinawa

  12. Detection of Atmospheric Water Deposits in Porous Media Using the TDR Technique

    PubMed Central

    Nakonieczna, Anna; Kafarski, Marcin; Wilczek, Andrzej; Szypłowska, Agnieszka; Janik, Grzegorz; Albert, Małgorzata; Skierucha, Wojciech

    2015-01-01

    Investigating the intensity of atmospheric water deposition and its diurnal distribution is essential from the ecological perspective, especially regarding dry geographic regions. It is also important in the context of monitoring the amount of moisture present within building materials in order to protect them from excessive humidity. The objective of this study was to test a constructed sensor and determine whether it could detect and track changes in the intensity of atmospheric water deposition. An operating principle of the device is based on the time-domain reflectometry technique. Two sensors of different plate volumes were manufactured. They were calibrated at several temperatures and tested during field measurements. The calibration turned out to be temperature independent. The outdoor measurements indicated that the upper limits of the measurement ranges of the sensors depended on the volumes of the plates and were equal to 1.2 and 2.8 mm H2O. The respective sensitivities were equal to 3.2 × 10−3 and 7.5 × 10−3 g·ps−1. The conducted experiments showed that the construction of the designed device and the time-domain reflectometry technique were appropriate for detecting and tracing the dynamics of atmospheric water deposition. The obtained outcomes were also collated with the readings taken in an actual soil sample. For this purpose, an open container sensor, which allows investigating atmospheric water deposition in soil, was manufactured. It turned out that the readings taken by the porous ceramic plate sensor reflected the outcomes of the measurements performed in a soil sample. PMID:25871717

  13. Microwave radiometer studies of atmospheric water over the oceans, volume 1

    NASA Technical Reports Server (NTRS)

    Katsaros, Kristina B.

    1992-01-01

    Since Seasat carried the Scanning Multichannel Microwave Radiometer (SMMR) into space, shortly followed by the SMMR on Nimbus 7, a new type of data source on atmospheric water vapor and other meteorological parameters has been available for analysis of weather systems over the ocean. Since 1987, the Scanning Multichannel Microwave/Imager (SMM/I) has provided similar data. A collection of work using this data is presented.

  14. Global scale water isotope observations and the impact of the terrestrial biosphere on atmospheric hydrology

    NASA Astrophysics Data System (ADS)

    Noone, D. `; Brown, D.; Worden, J.

    2007-12-01

    Water isotope measurements are known to be extremely useful for identifying hydrologic exchange processes at both single site scales and at larger scales from networks of, for instance, precipitation. Recent advances in observational techniques have allowed the development of a global scale dataset of the HDO to H2O isotope ratio in lower troposphere from spacecraft. The HDO estimates are found though a spectroscopic retrieval based on high resolution and well calibrated infrared spectra obtained from the Tropospheric Emission Spectrometer (TES) on NASA's Aura spacecraft. With these global scale observations available almost every two days, the ability to use isotopes to understand the impact of the terrestrial biosphere on atmospheric hydrology has become a possibility at not just local scales but for large geographic regions. Simulating the isotope exchange in global climate models continues to advance, but now such models can for the first time be validated and tested with observations. Further, with models, the importance of the processes identified in the observational data can be assessed in detail. Of particular interest is identifying the terrestrial source of atmospheric water vapor, and specifically continental evapotransipration. Using a combination of the satellite observations and model simulations, we identify the terrestrial source of atmospheric water, and demonstrate its importance is larger than previously recognized. This can be deduced from the observations since the isotopic signature of transpired water reflects the isotopic composition of precipitation, while that of oceanic origin reflects the disequilibrium fractionation during evaporation from the ocean. Based on these results and guided by model simulations, we speculate that should the land use characteristics of the tropical continental regions change, and reflect more arid environments, the impacts on the atmospheric hydrology and climate is more than of just local in extent. The use

  15. Numerical simulations of the formation and evolution of water ice clouds in the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Michelangeli, Diane V.; Toon, Owen B.; Haberle, Robert M.; Pollack, James B.

    1993-01-01

    A model of the formation, evolution, and description of Martian water ice clouds is developed which well reproduces the physical processes governing the microphysics of water ice cloud formation on Mars. The model is used to show that the cloud properties are most sensitive to the temperature profile, the number of days for which condensation previously occurred, the contact angle, and the presence of incoming meteoritic debris at the top of the atmosphere. The AM-PM differences in optical depths measured at the Viking Lander site were successfully simulated with the model, obtaining total column optical depths of ice of a few tenths in agreement with observations.

  16. Millimeter-wave imaging radiometer for cloud, precipitation and atmospheric water vapor studies

    NASA Technical Reports Server (NTRS)

    Racette, P. E.; Dod, L. R.; Shiue, J. C.; Adler, R. F.; Jackson, D. M.; Gasiewski, A. J.; Zacharias, D. S.

    1992-01-01

    A millimeter-wave imaging radiometer (MIR) developed by NASA Goddard Space Flight Center is described. The MIR is a nine-channel total power radiometer developed for atmospheric research. Three dual-pass band channels are centered about the strongly opaque 183-GHz water vapor absorption line; the frequencies are 183 +/- 1, +/- 3, and +/- 7 GHz. Another channel is located on the wing of this band at 150 GHz. These four channels have varying degrees of opacity from which the water vapor profile can be inferred. The design and salient characteristics of this instrument are discussed, together with its expected benefits.

  17. Sparsity-driven tomographic reconstruction of atmospheric water vapor using GNSS and InSAR observations

    NASA Astrophysics Data System (ADS)

    Heublein, Marion; Alshawaf, Fadwa; Zhu, Xiao Xiang; Hinz, Stefan

    2016-04-01

    An accurate knowledge of the 3D distribution of water vapor in the atmosphere is a key element for weather forecasting and climate research. On the other hand, as water vapor causes a delay in the microwave signal propagation within the atmosphere, a precise determination of water vapor is required for accurate positioning and deformation monitoring using Global Navigation Satellite Systems (GNSS) and Interferometric Synthetic Aperture Radar (InSAR). However, due to its high variability in time and space, the atmospheric water vapor distribution is difficult to model. Since GNSS meteorology was introduced about twenty years ago, it has increasingly been used as a geodetic technique to generate maps of 2D Precipitable Water Vapor (PWV). Moreover, several approaches for 3D tomographic water vapor reconstruction from GNSS-based estimates using the simple least squares adjustment were presented. In this poster, we present an innovative and sophisticated Compressive Sensing (CS) concept for sparsity-driven tomographic reconstruction of 3D atmospheric wet refractivity fields using data from GNSS and InSAR. The 2D zenith wet delay (ZWD) estimates are obtained by a combination of point-wise estimates of the wet delay using GNSS observations and partial InSAR wet delay maps. These ZWD estimates are aggregated to derive realistic wet delay input data of 100 points as if corresponding to 100 GNSS sites within an area of 100 km × 100 km in the test region of the Upper Rhine Graben. The made-up ZWD values can be mapped into different elevation and azimuth angles. Using the Cosine transform, a sparse representation of the wet refractivity field is obtained. In contrast to existing tomographic approaches, we exploit sparsity as a prior for the regularization of the underdetermined inverse system. The new aspects of this work include both the combination of GNSS and InSAR data for water vapor tomography and the sophisticated CS estimation. The accuracy of the estimated 3D water

  18. Materials, methods and devices to detect and quantify water vapor concentrations in an atmosphere

    SciTech Connect

    Allendorf, Mark D; Robinson, Alex L

    2014-12-09

    We have demonstrated that a surface acoustic wave (SAW) sensor coated with a nanoporous framework material (NFM) film can perform ultrasensitive water vapor detection at concentrations in air from 0.05 to 12,000 ppmv at 1 atmosphere pressure. The method is extendable to other MEMS-based sensors, such as microcantilevers, or to quartz crystal microbalance sensors. We identify a specific NFM that provides high sensitivity and selectivity to water vapor. However, our approach is generalizable to detection of other species using NFM to provide sensitivity and selectivity.

  19. Evolution of water reservoirs on Mars from D/H ratios in the atmosphere and crust.

    PubMed

    Donahue, T M

    1995-03-30

    Ancient fluvial networks on the surface of Mars suggest that it was warm and wet over three billion years ago. Surface features resembling massive outflow channels provide evidence that, even more recently, the martian crust contained the equivalent of a planet-wide reservoir of water several hundred metres deep. But arguments based on the isotopic fraction and present-day escape rate of hydrogen in the martian atmosphere require only 0.5 metres of crustal water today and about six metres in the past. An additional constraint on the evolution of the isotopic composition of martian water has recently been obtained from measurements of the deuterium to hydrogen ratio of hydrous minerals in the SNC meteorites--meteorites that almost certainly originated on Mars. Here I show that these new data require that the modern crustal reservoirs of martian water must be quite large, at least several metres in global-equivalent depth. The deuterium enrichment of the present martian atmosphere then implies that the reservoir of crustal water on ancient Mars was several hundred metres deep, consistent with the geological evidence. PMID:7700352

  20. Water vapor in the middle atmosphere of Mars during the global dust storm in 2007

    NASA Astrophysics Data System (ADS)

    Fedorova, Anna; Bertaux, Jean-Loup; Montmessin, Franck; Korablev, Oleg; Dzuban, Ilya; Maltagliati, Luca; Clarke, John

    2015-04-01

    Recent observations of the Martian hydrogen corona in the UV H Ly-α emission by Hubble Space Telescope (HST) [Clarke et al., 2014] and the SPICAM UV spectrometer on Mars Express [Chaffin et al., 2014] reported its rapid change an order of magnitude for the short period of a few months in 2007 (MY 28), which is inconsistent with the existing models. One proposed explanation of observed decrease in coronal emission is that during the global dust storm water vapor can be transported to higher altitudes where the rate of photodissociation by near-UV sunlight increases, providing an additional source of hydrogen for the upper atmosphere. Since 2004 the SPICAM IR spectrometer on Mars-Express carries out measurements of the vertical distribution of water vapor in the 1.38 µm band and aerosol properties in the middle atmosphere of Mars by means of solar occultations. We presents here vertical profiles of water vapor at Ls = 250-310° during the dust storm of MY28. SPICAM observations confirm the increase of the H2O content at 60 km from Ls=268° to Ls=285° an order of magnitude for the northern hemisphere and in 3-4 times for the southern hemisphere. Nevertheless, the photochemical modeling is required to estimate a contribution of observed water abundance to the hydrogen corona. The interannual variability of water vapor vertical distribution for the southern summer season will be also presented.

  1. Differential Absorption Measurements of Atmospheric Water Vapor with a Coherent Lidar at 2050.532 nm

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Dharamsi, Amin; Davis, Richard E.; Petros, Mulugeta; McCarthy, John C.

    1999-01-01

    Wind and water vapor are two major factors driving the Earth's atmospheric circulation, and direct measurement of these factors is needed for better understanding of basic atmospheric science, weather forecasting, and climate studies. Coherent lidar has proved to be a valuable tool for Doppler profiling of wind fields, and differential absorption lidar (DIAL) has shown its effectiveness in profiling water vapor. These two lidar techniques are generally considered distinctly different, but this paper explores an experimental combination of the Doppler and DIAL techniques for measuring both wind and water vapor with an eye-safe wavelength based on a solid-state laser material. Researchers have analyzed and demonstrated coherent DIAL water vapor measurements at 10 micrometers wavelength based on CO2 lasers. The hope of the research presented here is that the 2 gm wavelength in a holmium or thulium-based laser may offer smaller packaging and more rugged operation that the CO2-based approach. Researchers have extensively modeled 2 um coherent lasers for water vapor profiling, but no published demonstration is known. Studies have also been made, and results published on the Doppler portion, of a Nd:YAG-based coherent DIAL operating at 1.12 micrometers. Eye-safety of the 1.12 micrometer wavelength may be a concern, whereas the longer 2 micrometer and 10 micrometer systems allow a high level of eyesafety.

  2. A moist Boussinesq shallow water equations set for testing atmospheric models

    NASA Astrophysics Data System (ADS)

    Zerroukat, M.; Allen, T.

    2015-06-01

    The shallow water equations have long been used as an initial test for numerical methods applied to atmospheric models with the test suite of Williamson et al. [1] being used extensively for validating new schemes and assessing their accuracy. However the lack of physics forcing within this simplified framework often requires numerical techniques to be reworked when applied to fully three dimensional models. In this paper a novel two-dimensional shallow water equations system that retains moist processes is derived. This system is derived from three-dimensional Boussinesq approximation of the hydrostatic Euler equations where, unlike the classical shallow water set, we allow the density to vary slightly with temperature. This results in extra (or buoyancy) terms for the momentum equations, through which a two-way moist-physics dynamics feedback is achieved. The temperature and moisture variables are advected as separate tracers with sources that interact with the mean-flow through a simplified yet realistic bulk moist-thermodynamic phase-change model. This moist shallow water system provides a unique tool to assess the usually complex and highly non-linear dynamics-physics interactions in atmospheric models in a simple yet realistic way. The full non-linear shallow water equations are solved numerically on several case studies and the results suggest quite realistic interaction between the dynamics and physics and in particular the generation of cloud and rain.

  3. Atmospheric transport and deposition, an additional input pathway for triazine herbicides to surface waters

    SciTech Connect

    Muir, D.C.G.; Rawn, D.F.

    1996-10-01

    Although surface runoff from treated fields is regarded as the major route of entry of triazine herbicides to surface waters, other pathways such as deposition via precipitation, gas absorption and dryfall may also be important. Triazine herbicides have been detected in precipitation but there has been only a very limited amount of work on gas phase and aerosols. To examine the importance of atmospheric inputs concentrations of atrazine, cyanazine and terbuthylazine in gas phase/aerosols, precipitation, and surface waters were determined (along with other herbicides) using selected ion GC-MS. Atrazine was detected at low ng/L concentrations in surface waters (<0.04-5.3 ng/L) and precipitation (0.1-53 ng/L), and at 0.02-0.1 ng/m{sup 3} in air. Cyanazine and terbuthylazine were detected in air and infrequently in water. Highest atrazine concentrations in air were found during June each year on both gas phase and particles. Concentrations of atrazine in surface waters at both locations increased during June, even in the absence of precipitation or overland flow, presumably due to inputs from dryfall and to gas areas and boreal forest lakes due to transport and deposition. Ecological risk assessment of triazines, especially for pristine aquatic environments should include consideration of this atmospheric pathway.

  4. Retrieval of Marine Water Constituents Using Atmospherically Corrected AVIRIS Hyperspectral Data

    NASA Technical Reports Server (NTRS)

    Bagheri, Sima; Peters, Steef

    2004-01-01

    This paper reports on the validation of bio-optical models in estuarine and nearshore (case 2) waters of New Jersey-New York to retrieve accurate water-leaving radiance spectra and chlorophyll concentration from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imaging spectrometer data. MODTRAN-4 was applied to remove the effects of the atmosphere so as to infer the water-leaving radiance. The study area - Hudson/Raritan of New York and New Jersey (Figure 1) is an extremely complex estuarine system where tidal and wind-driven currents are modified by freshwater discharges from the Hudson, Raritan, Hackensack, and Passaic rivers. Over the last century, the estuarine water quality has degraded in part due to eutrophication, which has disrupted the preexisting natural balance, resulting in phytoplankton blooms of both increased frequency and intensity, increasing oxygen demand, and leading to episodes of hypoxia. As the end result, a thematic map of chlorophyll-a concentration was generated using an atmospherically corrected AVIRIS ratio image. This thematic map serves as an indication of phytoplankton concentration. Such maps are important input into the geographic information system (GIS) for use as a management tool for monitoring water resources.

  5. Transport of Mars atmospheric water into high northern latitudes during a polar warming

    NASA Technical Reports Server (NTRS)

    Barnes, J. R.; Hollingsworth, J. L.

    1988-01-01

    Several numerical experiments were conducted with a simplified tracer transport model in order to attempt to examine the poleward transport of Mars atmospheric water during a polar warming like that which occurred during the winter solstice dust storm of 1977. The flow for the transport experiments was taken from numerical simulations with a nonlinear beta-plane dynamical model. Previous studies with this model have demonstrated that a polar warming having essential characteristics like those observed during the 1977 dust storm can be produced by a planetary wave mechanism analogous to that responsible for terrestrial sudden stratospheric warmings. Several numerical experiments intended to simulate water transport in the absence of any condensation were carried out. These experiments indicate that the flow during a polar warming can transport very substantial amounts of water to high northern latitudes, given that the water does not condense and fall out before reaching the polar region.

  6. Observing atmospheric water in storms with the Nimbus 7 scanning multichannel microwave radiometer

    NASA Technical Reports Server (NTRS)

    Katsaros, K. B.; Lewis, R. M.

    1984-01-01

    Employing data on integrated atmospheric water vapor, total cloud liquid water and rain rate obtainable from the Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR), we study the frontal structure of several mid-latitude cyclones over the North Pacific Ocean as they approach the West Coast of North America in the winter of 1979. The fronts, analyzed with all available independent data, are consistently located at the leading edge of the strongest gradient in integrated water vapor. The cloud liquid water content, which unfortunately has received very little in situ verification, has patterns which are consistent with the structure seen in visible and infrared imagery. The rain distribution is also a good indicator of frontal location and rain amounts are generally within a factor of two of what is observed with rain gauges on the coast. Furthermore, the onset of rain on the coast can often be accurately forecast by simple advection of the SMMR observed rain areas.

  7. Bio-Decontamination of Water and Surfaces by DC Discharges in Atmospheric Air

    NASA Astrophysics Data System (ADS)

    Machala, Zdenko; Tarabová, Barbora; Pelach, Michal; Šipoldová, Zuzana; Hensel, Karol; Janda, Mário; Šikurová, Libuša

    Two types of DC-driven atmospheric air discharges, including a streamer corona and a transient spark with short high current pulses of limited energy, were employed for bio-decontamination of water and various surfaces (agar plates, plastic foils, human teeth) contaminated by bacteria or spores (Salmonella typhimurium, Bacillus cereus). Both discharges generate cold non-equilibrium plasma. The discharges combined with the electro-spraying of the treated water through the needle electrode lead to fast and efficient bio-decontamination. Experiments comparing direct and indirect plasma effects, oxidation stress measurements in the cell membranes, and chemical changes induced in the treated water enable assessment of the plasma agents being responsible for microbial inactivation. Radicals and reactive oxygen species seem to be dominant biocidal agents, although deeper understanding of the plasma-induced water chemistry and of the temporal evolution of the bio-inactivation processes is needed.

  8. Production and Scavenging Mechanism of OH Radical in Atmospheric Water Droplets and Natural Water

    NASA Astrophysics Data System (ADS)

    Sakugawa, H.; Arakaki, T.; Takeda, K.; Nakatani, N.; Miyake, T.; Takedoi, H.; Masuda, N.; Hashimoto, N.

    2001-12-01

    Photochemical production rate of liquid phase OH radical was measured by irradiation of artificial sunlight to water samples and then trapping of generated OH radical to benzene followed by HPLC determination of phenol, which was generated by the reaction of OH radical with benzene. Scavenging rate was also determined by similar manner through the reaction of benzene with the radical. Analytical instrument, which automatically determines the production or scavenging rate of liquid phase OH radical, was developed in this study. Four water samples per hour can be subject to the analysis using this analyzer. Using the auto analyzer of OH radical, we determined production and scavenging rates of OH radical in rain, dew, drinking water and river waters in Hiroshima Prefecture and the Seto Inland Sea waters, western Japan. Photochemical production rate of OH radical was 1 nM/h to hundreds nM/h (for summer time noon condition at 34 \\deg N) for rain, dew (formed on Teflon sheet), drinking water (natural mineral water) and seawater, whereas the rate was μ M/h levels for dew (formed on pine tree needles), river and drinking water (tap water). Major producer of aqueous OH radical was found to be fluorescent organic matter, nitrite, nitrate, and hypochlorite. Fluorescent organic matter that is composed of yet uncharacterized number of organic compounds contributed to most of OH production in rain, river and seawaters studied whereas nitrite, nitrate and hypochlorite were major contributors (ave. 99, 83 and 99%) for the radical production in dew, natural mineral water and tap water, respectively. Scavenging rate constant of OH radical in rain and dew was also estimated to be the order of 105/s and thus the lifetime of OH radical was in the order of microseconds. Assuming all the OH radicals were generated by aqueous photochemical reactions, the steady state concentration of OH radical in rain and dew was about 1\\times10-15M for both rain and dew waters. Major sink of OH

  9. Warming of waters in an East Greenland fjord prior to glacier retreat: mechanisms and connection to large-scale atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Christoffersen, P.; Mugford, R. I.; Heywood, K. J.; Joughin, I.; Dowdeswell, J. A.; Syvitski, J. P. M.; Luckman, A.; Benham, T. J.

    2011-09-01

    Hydrographic data acquired in Kangerdlugssuaq Fjord and adjacent seas in 1993 and 2004 are used together with reanalysis from the NEMO ocean modelling framework to elucidate water-mass change and ice-ocean-atmosphere interactions in East Greenland. The hydrographic data show that the fjord contains warm subtropical waters and that fjord waters in 2004 were considerably warmer than in 1993. The ocean reanalysis shows that the warm properties of fjord waters in 2004 are related to a major peak in oceanic shoreward heat flux into a cross-shelf trough on the outer continental shelf. The heat flux into this trough varies according to seasonal exchanges with the atmosphere as well as from deep seasonal intrusions of subtropical waters. Both mechanisms contribute to high (low) shoreward heat flux when winds from the northeast are weak (strong). The combined effect of surface heating and inflow of subtropical waters is seen in the hydrographic data, which were collected after periods when along-shore coastal winds from the north were strong (1993) and weak (2004). The latter data were furthermore acquired during the early phase of a prolonged retreat of Kangerdlugssuaq Glacier. We show that coastal winds vary according to the pressure gradient defined by a semi-permanent atmospheric high-pressure system over Greenland and a persistent atmospheric low situated near Iceland. The magnitude of this pressure gradient is controlled by longitudinal variability in the position of the Icelandic Low.

  10. The Role of Plant Water Storage on Water Fluxes within the Coupled Soil-Plant-Atmosphere System

    NASA Astrophysics Data System (ADS)

    Huang, C. W.; Duman, T.; Parolari, A.; Katul, G. G.

    2015-12-01

    Plant water storage (PWS) contributes to whole-plant transpiration (up to 50%), especially in large trees and during severe drought conditions. PWS also can impact water-carbon economy as well as the degree of resistance to drought. A 1-D porous media model is employed to accommodate transient water flow through the plant hydraulic system. This model provides a mechanistic representation of biophysical processes constraining water transport, accounting for plant hydraulic architecture and the nonlinear relation between stomatal aperture and leaf water potential when limited by soil water availability. Water transport within the vascular system from the stem base to the leaf-lamina is modeled using Richards's equation, parameterized with the hydraulic properties of the plant tissues. For simplicity, the conducting flow in the radial direction is not considered here and the capacitance at the leaf-lamina is assumed to be independent of leaf water potential. The water mass balance in the leaf lamina sets the upper boundary condition for the flow system, which links the leaf-level transpiration to the leaf water potential. Thus, the leaf-level gas exchange can be impacted by soil water availability through the water potential gradient from the leaf lamina to the soil, and vice versa. The root water uptake is modeled by a multi-layered macroscopic scheme to account for possible hydraulic redistribution (HR) in certain conditions. The main findings from the model calculations are that (1) HR can be diminished by the residual water potential gradient from roots to leaves at night due to aboveground capacitance, tree height, nocturnal transpiration or the combination of the three. The degree of reduction depends on the magnitude of residual water potential gradient; (2) nocturnal refilling to PWS elevates the leaf water potential that subsequently delays the onset of drought stress at the leaf; (3) Lifting water into the PWS instead of HR can be an advantageous strategy

  11. The isotope composition of water vapour: A powerful tool to study transport and chemistry of middle atmospheric water vapour

    NASA Astrophysics Data System (ADS)

    Bechtel, Ch.; Zahn, A.

    2003-07-01

    A one-dimensional chemistry model is applied to study the stable hydrogen (D) and stable oxygen isotope (17O, 18O) composition of water vapour in stratosphere and mesosphere. The stable isotope ratios of tropospheric H2O are determined by "physical'' fractionation effects, i.e. phase changes, diffusion processes, and mixing of air masses. Due to these processes water vapour entering the stratosphere (i) is mass-dependently fractionated (MDF), i.e. shifts in the isotope ratio 17O/16O are ~0.52 times of those of 18O/16O and (ii) shows isotope shifts in D/H, which are ~5 times of those in 18O/16O. In stratosphere and mesosphere "chemical'' fractionation, that are the oxidation of methane, re-cycling of H2O via the HOx family, and isotope exchange reactions are shown to considerably enhance the isotope ratios in the imported tropospheric H2O. Enrichments relative to the isotope ratios at the tropopause are used to derive the partitioning of tropospheric (unmodified), re-cycled and in situ generated H2O. The model reasonably predicts overall increases of the stable isotope ratios in H2O by ~23% for D/H, ~8.5% for 17O/16O, and ~14% for 18O/16O. The17O/16O and 18O/16O ratios in H2O are shown to be a measure of the partitioning of HOx that receives its O atom either from the reservoirs O2 or O3. In the entire middle atmosphere, MDF O2 is the major donator of oxygen atoms incorporated in OH and HO2 and thus in H2O. It is demonstrated that in the stratosphere mass-independent fractionation (MIF) in O3 in a first step is transferred to the NOx family and only in a second step to HOx and H2O. In contrast to CO2, O(1D) only plays a minor role in this MIF transfer. The major uncertainty in our calculation arises from the many badly quantified isotope exchange reactions and kinetic isotope fractionation factors.

  12. Charts expressing the time, velocity, and altitude relations for an airplane diving in a standard atmosphere

    NASA Technical Reports Server (NTRS)

    Pearson, H A

    1937-01-01

    In this report charts are given showing the relation between time, velocities, and altitude for airplanes having various terminal velocities diving in a standard atmosphere. The range of starting altitudes is from 8,000 to 32,000 feet, and the terminal velocities vary from 150 to 550 miles per hour. A comparison is made between an experimental case and the results obtained from the charts. Examples pointing out the use of the charts are included.

  13. Atmospheric study relating to pad lift-off and entry landing. [effects of midlatitude temperature gradients

    NASA Technical Reports Server (NTRS)

    King, R. L.

    1977-01-01

    A relationship between the atmospheric general circulation and geophysical hydrodynamic experiments was sought by attempting to find a relationship between wave number and temperature gradient at mid-latitudes at 500 mb. To this end data were gathered from four winter seasons and analyzed. The statistical analysis failed to provide convincing support for the hypothesis of a direct relationship between wave number and temperature gradient, although an indication that the transient waves may be so related was noted.

  14. Thermodynamics of the formaldehyde-water and formaldehyde-ice systems for atmospheric applications.

    PubMed

    Barret, Manuel; Houdier, Stephan; Domine, Florent

    2011-01-27

    Formaldehyde (HCHO) is a species involved in numerous key atmospheric chemistry processes that can significantly impact the oxidative capacity of the atmosphere. Since gaseous HCHO is soluble in water, the water droplets of clouds and the ice crystals of snow exchange HCHO with the gas phase and the partitioning of HCHO between the air, water, and ice phases must be known to understand its chemistry. This study proposes thermodynamic formulations for the partitioning of HCHO between the gas phase and the ice and liquid water phases. A reanalysis of existing data on the vapor-liquid equilibrium has shown the inadequacy of the Henry's law formulation, and we instead propose the following equation to predict the mole fraction of HCHO in liquid water at equilibrium, X(HCHO,liq), as a function of the partial pressure P(HCHO) (Pa) and temperature T (K): X(HCHO,liq) = 1.700 × 10(-15) e((8014/T))(P(HCHO))(1.105). Given the paucity of data on the gas-ice equilibrium, the solubility of HCHO and the diffusion coefficient (D(HCHO)) in ice were measured by exposing large single ice crystals to low P(HCHO). Our recommended value for D(HCHO) over the temperature range 243-266 K is D(HCHO) = 6 × 10(-12) cm(2) s(-1). The solubility of HCHO in ice follows the relationship X(HCHO,ice) = 9.898 × 10(-13) e((4072/T))(P(HCHO))(0.803). Extrapolation of these data yields the P(HCHO) versus 1/T phase diagram for the H(2)O-HCHO system. The comparison of our results to existing data on the partitioning of HCHO between the snow and the atmosphere in the high arctic highlights the interplay between thermodynamic equilibrium and kinetics processes in natural systems. PMID:21171657

  15. Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS) - Total Water

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Born in the Atlantic, Hurricane Frances became a category 4 hurricane on August 31, 2004. Expectations are the hurricane will hit the Space Coast of Florida in Brevard County early Sunday morning.

    This movie is a time-series of maps that show AIRS observations of the total amount of water vapor present in the atmospheric column above each point of the Earth's surface. If all the water vapor in the column were forced to fall as rain, the depth of the resulting puddle on the surface at that point is equal to the value shown on the map. Fifty millimeters (mm) is about 2 inches. The large band of maximum water vapor in the neighborhood of the equator is the Intertropical Convergence Zone (ITCZ), a region of strong convection and powerful thunderstorms.

    This movie shows the total precipitable water vapor from August 23 through September 2, 2004. You can see Hurricane Frances as it moves through the Caribbean toward Florida, and the changes in intensity are visible. The eye has been marked with a red spot. The water vapor encompassed by the hurricane is also the result of the very strong convection which is an integral part of the formation and intensification of tropical storms. If you look at the last frame of the movie in the lower right corner, you can see the emergence of a new tropical storm. Ivan makes its debut in the Atlantic.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft

  16. A STUDY ON LEGIONELLA PNEUMOPHILA, WATER CHEMISTRY, AND ATMOSPHERIC CONDITIONS IN COOLING TOWERS AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Smith, C.; Brigmon, R.

    2009-10-20

    Legionnaires disease is a pneumonia caused by the inhalation of the bacterium Legionella pneumophila. The majority of illnesses have been associated with cooling towers since these devices can harbor and disseminate the bacterium in the aerosolized mist generated by these systems. Historically, Savannah River Site (SRS) cooling towers have had occurrences of elevated levels of Legionella in all seasons of the year and in patterns that are difficult to predict. Since elevated Legionella in cooling tower water are a potential health concern a question has been raised as to the best control methodology. In this work we analyze available chemical, biological, and atmospheric data to determine the best method or key parameter for control. The SRS 4Q Industrial Hygiene Manual, 4Q-1203, 1 - G Cooling Tower Operation and the SRNL Legionella Sampling Program, states that 'Participation in the SRNL Legionella Sampling Program is MANDATORY for all operating cooling towers'. The resulting reports include L. pneumophila concentration information in cells/L. L. pneumophila concentrations >10{sup 7} cells/L are considered elevated and unsafe so action must be taken to reduce these densities. These remedial actions typically include increase biocide addition or 'shocking'. Sometimes additional actions are required if the problem persists including increase tower maintenance (e.g. cleaning). Evaluation of 14 SRS cooling towers, seven water quality parameters, and five Legionella serogroups over a three-plus year time frame demonstrated that cooling tower water Legionella densities varied widely though out this time period. In fact there was no one common consistent significant variable across all towers. The significant factors that did show up most frequently were related to suspended particulates, conductivity, pH, and dissolved oxygen, not chlorine or bromine as might be expected. Analyses of atmospheric data showed that there were more frequent significant elevated Legionella

  17. On Sensitivity of Spectral Radiative Fluxes to Atmospheric Water Vapor in the 940 nm Region (Numerical Simulation)

    SciTech Connect

    Zhuravleva, T.B.; Firsov, K.M.

    2005-03-18

    Water vapor is well known to be a critical component in many aspects of atmospheric research, such as radiative transfer and cloud and aerosol processes. This requires both improved measurements of the columnar water vapor and its profiles in the atmosphere in a wide range of conditions, and adjustment of water vapor parameterizations in radiation codes including the perfection of spectroscopic parameters. In this paper we will present the results of comparison of our calculations and downward solar fluxes measured with Rotating Shadowband Spectroradiometer under conditions of horizontally homogeneous clouds. We also will discuss the sensitivity of atmospheric radiation characteristics to variations of water vapor in the band 940 nm: these results may be useful for development of new methods of retrieval of the total column water vapor content (WVC) in the atmosphere from data of radiation observations.

  18. Diagnosis of Systematic Errors in Atmospheric River Forecasts Using Satellite Observations of Integrated Water Vapor

    NASA Astrophysics Data System (ADS)

    Wick, G. A.; Neiman, P. J.; Ralph, F. M.

    2010-12-01

    Atmospheric rivers are long, narrow, filamentary structures of water vapor flux in the atmosphere responsible for 90% of the meridional poleward water vapor transport in less than 10% of the earth’s circumference. Studies have shown that these atmospheric rivers were present and an important contributor to recent major winter flooding events along the US west coast. Previous work at the NOAA Earth System Research Laboratory developed objective characteristics for the identification of atmospheric river (AR) events in integrated water vapor (IWV) retrievals from the Special Sensor Microwave Imager (SSM/I). These techniques have been extended in the development of an automated AR detection procedure in which potential AR are first identified through thresholding and location of strong gradients in the IWV data, and then further distinguished through the image processing technique of skeletonization and determination of feature width and length. This tool, providing identification of the AR axis, its width, and an estimate of strength based on the IWV magnitude, is applicable both to satellite-derived and numerical weather prediction (NWP) fields of IWV. Given the important hydrological impact of AR events, understanding whether or not these phenomena are well forecast is of significant interest. We have applied the automated AR detection tool to multiple seasons of observations from the SSM/I and corresponding forecast fields from several of the operational NWP models included in the THORPEX Interactive Grand Global Ensemble (TIGGE) to evaluate and compare the ability of the models to accurately reproduce the frequency, size and intensity of AR events. Results are presented as a function of forecast lead time in terms of quantities including probability of detection and false alarm rate. Overall, the frequency and timing of events is generally well forecast though the occurrence of landfall tends to be overestimated, particularly at longer forecast lead times.

  19. Hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their influence on the water uptake of ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Wu, Z. J.; Nowak, A.; Poulain, L.; Herrmann, H.; Wiedensohler, A.

    2011-03-01

    The hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their effects on ammonium sulfate was investigated using a hygroscopicity tandem differential mobility analyzer (H-TDMA). No hygroscopic growth is observed for sodium oxalate, while ammonium oxalate shows slight growth (growth factor = 1.05 at 90%). The growth factors at 90% RH for sodium acetate, sodium malonate, sodium succinate, sodium tartrate, ammonium tartrate, sodium pyruvate, sodium maleate, and humic acid sodium salt are 1.79, 1.78, 1.69, 1.54, 1.29, 1.70, 1.78, and 1.19, respectively. The mixtures of organic salts with ammonium sulfate, which are prepared simulating the atmospheric aerosols, are determined. A clear shift in DRH of mixture to lower RH is observed with increasing organic mass fraction. Above RH = 80%, the humidograms of the different mixtures are quite close to that of pure ammonium sulfate. Köhler theory is used to predict the effective hygroscopicity parameter, κ, for mixtures at 90% RH. The results show that Köhler theory underestimated kappa for mixtures without considering the water solubility of ammonium oxalate. However, if the water solubility of ammonium oxalate is taken into account, the results show a much better agreement with those derived from H-TDMA measurements.

  20. Comparison of upper tropospheric water vapor from GOES, Raman lidar, and Cross-chain Loran Atmospheric Sounding System measurements

    NASA Technical Reports Server (NTRS)

    Soden, B. J.; Ackerman, S. A.; Starr, D. O'C.; Melfi, S. H.; Ferrare, R. A.

    1994-01-01

    Observations of upper tropospheric relative humidity obtained from Raman lidar and Cross-chain Loran Atmospheric Sounding System (CLASS) sonde instruments obtained during the First ISCCP Regional Experiment (FIRE) Cirrus-II field program are compared with satellite measurements from the GOES 6.7-micron channel. The 6.7-micron channel is sensitive to water vapor integrated over a broad layer in the upper troposphere (roughly 500-200 mbar). Instantaneous measurements of the upper tropospheric relative humidity from GOES are shown to agree to within roughly 6% of the nearest lidar observations and 9% of the nearest CLASS observations. The CLASS data exhibit a slight yet systematic dry bias in upper tropospheric humidity, a result which is consistent with previous radiosonde intercomparisons. Temporal stratification of the CLASS data indicates that the magnitude of the bias is dependent upon the time of day, suggesting a solar heating effect in the radiosonde sensor. Using CLASS profiles, the impact of vertical variability in relative humidity upon the GOES upper tropospheric humidity measurements is also examined. The upper tropospheric humidity inferred from the GOES 6.7-micron channel is demonstrated to agree to within roughly 5% of the relative humidity vertically averaged over the depth of atmosphere to which the 6.7-micron channel is sensitive. The results of this study encourage the use of satellite measurements in the 6.7-micron channel to quantitatively describe the distribution and temporal evolution of the upper tropospheric humidity field.

  1. Development of a 266 nm Raman lidar for profiling atmospheric water vapor

    NASA Astrophysics Data System (ADS)

    Uesugi, T.; Tsuda, T.; Yabuki, M.; Liu, Y.

    2014-12-01

    It is projected that localized extreme weather events could increase due to the effects of global warming, resulting in severe weather disasters, such as a torrential rain, floods, and so on. Understanding water vapor's behavior in the atmosphere is essen- tial to understand a fundamental mechanism of these weather events. Therefore, continuous monitoring system to measure the atmospheric water vapor with good spatio-temporal resolution is required. We have developed several water vapor Raman lidar systems employing the laser wavelengths of 355 and 532 nm. However, the signal-to-noise ratio of the Raman lidar strongly depends on the sky background because of the detection of the weak inelastic scattering of light by molecules. Therefore, these systems were mainly used during nighttime. Hence, we have newly developed a water vapor Raman lidar using a quadrupled Nd:YAG laser at a wavelength of 266 nm. This wavelength is in the ultraviolet (UV) range below 300 nm known as the "solar-blind" region, because practically all radiation at these wavelengths is absorbed by the ozone layer in the stratosphere. It has the advantage of having no daytime solar background radiation in the system. The lidar is equipped with a 25 cm receiving telescope and is used for measuring the light separated into an elastic backscatter signal and vibrational Raman signals of nitrogen and water vapor at wavelengths of 266.1, 283.6, and 294.6 nm, respectively. This system can be used for continuous water vapor measurements in the lower troposphere. This study introduces the design of the UV lidar system and shows the preliminary results of water vapor profiles.

  2. Impact of Water Retention Curves on Evaporation Under Diurnal Atmospheric Forcing

    NASA Astrophysics Data System (ADS)

    Ciocca, F.; Lunati, I.; Parlange, M. B.

    2014-12-01

    Water retention and unsaturated hydraulic conductivity curves dictate soil moisture dynamics, whose accurate description in both the liquid and vapor phases is crucial to properly estimate soil water evaporation. When classical water retention curves that approach infinitely negative matric potentials at nonzero residual water content (e.g. Van Genuchten or Brooks Corey) are employed to model soil moisture dynamics, evaporation from arid soil is not satisfactorily described because no soil drying below residual water content is allowed. Ciocca et al., GRL, [2014] showed how, for the isothermal case, more physically sound dynamics are predicted by employing modified retention models allowing the drying below the residual water content by vapor diffusion. The impact of these modified water retention models on the description of the moisture dynamics is numerically investigated in a more complex and realistic framework, in which a diurnal atmospheric forcing is applied at the soil surface and the soil heat dynamics (coupled to the moisture dynamics) are considered. For different soils, results are compared both with predictions from the classical retention curves and with a steady (i.e. not diurnally oscillating) atmospheric forcing. The impact of the significantly larger vapor fluxes predicted by the modified retention models on the soil temperature and consequently on the latent, sensible and ground heat fluxes is presented. A detailed analysis of the hourly liquid, vapor and temperature dynamics with depth is provided in order to assess whether the modified retention curves may help to reconcile the theory with some still debated field experimental results (e.g. soil moisture content rises at midday) without invoking for any empirical liquid gain and/or vapor enhancement factor.

  3. Historical trends in occurrence and atmospheric inputs of halogenated volatile organic compounds in untreated ground water used as a source of drinking water

    USGS Publications Warehouse

    Shapiro, S.D.; Busenberg, E.; Focazio, M.J.; Plummer, L.N.

    2004-01-01

    Analyses of samples of untreated ground water from 413 community-, non-community- (such as restaurants), and domestic-supply wells throughout the US were used to determine the frequency of detection of halogenated volatile organic compounds (VOCs) in drinking-water sources. The VOC data were compiled from archived chromatograms of samples analyzed originally for chlorofluorocarbons (CFCs) by purge-and-trap gas chromatography with an electron-capture detector (GC-ECD). Concentrations of the VOCs could not be ascertained because standards were not routinely analyzed for VOCs other than trichloromonofluoromethane (CFC-11), dichlorodifluoromethane (CFC-12) and 1,1,2-trichloro-1,2,2-trifluoroethane (CFC-113). Nevertheless, the peak areas associated with the elution times of other VOCs on the chromatograms can be classified qualitatively to assess concentrations at a detection limit on the order of parts per quadrillion. Three or more VOCs were detected in 100% (percent) of the chromatograms, and 77.2% of the samples contained 10 or more VOCs. The maximum number of VOCs detected in any sample was 24. Modeled ground-water residence times, determined from concentrations of CFC-12, were used to assess historical trends in the cumulative occurrence of all VOCs detected in this analysis, as well as the occurrence of individual VOCs, such as CFC-11, carbon tetrachloride (CCl4), chloroform and tetrachloroethene (PCE). The detection frequency for all of the VOCs detected has remained relatively constant from approximately 1940 to 2000; however, the magnitude of the peak areas on the chromatograms for the VOCs in the water samples has increased from 1940 to 2000. For CFC-11, CCl4, chloroform and PCE, small peaks decrease from 1940 to 2000, and large peaks increase from 1940 to 2000. The increase in peak areas on the chromatograms from analyses of more recently recharged water is consistent with reported increases in atmospheric concentrations of the VOCs. Approximately 44% and 6

  4. Large-scale atmospheric carbon and surface water dynamics inferred from satellite-based observations

    NASA Astrophysics Data System (ADS)

    Jensen, K.; McDonald, K. C.; Krakauer, N.; Schroeder, R.

    2013-12-01

    The sensitivity of Earth's wetlands to observed shifts in global precipitation and temperature patterns and their ability to produce large quantities of climate-active gases are key global change questions. Surface inundation is a crucial state variable that affects the rate of land-atmosphere carbon exchange and the partitioning of carbon between CO2 and CH4. Ground observation networks of large-scale inundation patterns are sparse because they require large fiscal, technological and human resources. Thus, satellite remote sensing products for global inundation dynamics, as well as total water storage and atmospheric carbon, can provide a complete synoptic view of past and current carbon - surface water dynamics over large areas that otherwise could not be assessed. We present results from a correlative analysis between spaceborne measurements of CO2 and CH4 as observed by SCIAMACHY and AIRS, water storage (derived from gravity anomalies provided by NASA's GRACE mission), and inundated water fraction derived from a combination of active and passive microwave remote sensing datasets. A general assessment is conducted globally, and further time-series analysis is focused on four regions of interest: North Amazon, Congo, Ob, and Ganges-Brahmaputra river basins. This analysis was supported by a grant from the NASA Terrestrial Ecology Program and the development of the inundation datasets was supported by the NASA MEaSUREs program.

  5. Experiments with the Mesoscale Atmospheric Simulation System (MASS) using the synthetic relative humidity

    NASA Technical Reports Server (NTRS)

    Chang, Chia-Bo

    1994-01-01

    This study is intended to examine the impact of the synthetic relative humidity on the model simulation of mesoscale convective storm environment. The synthetic relative humidity is derived from the National Weather Services surface observations, and non-conventional sources including aircraft, radar, and satellite observations. The latter sources provide the mesoscale data of very high spatial and temporal resolution. The synthetic humidity data is used to complement the National Weather Services rawinsonde observations. It is believed that a realistic representation of initial moisture field in a mesoscale model is critical for the model simulation of thunderstorm development, and the formation of non-convective clouds as well as their effects on the surface energy budget. The impact will be investigated based on a real-data case study using the mesoscale atmospheric simulation system developed by Mesoscale Environmental Simulations Operations, Inc. The mesoscale atmospheric simulation system consists of objective analysis and initialization codes, and the coarse-mesh and fine-mesh dynamic prediction models. Both models are a three dimensional, primitive equation model containing the essential moist physics for simulating and forecasting mesoscale convective processes in the atmosphere. The modeling system is currently implemented at the Applied Meteorology Unit, Kennedy Space Center. Two procedures involving the synthetic relative humidity to define the model initial moisture fields are considered. It is proposed to perform several short-range (approximately 6 hours) comparative coarse-mesh simulation experiments with and without the synthetic data. They are aimed at revealing the model sensitivities should allow us both to refine the specification of the observational requirements, and to develop more accurate and efficient objective analysis schemes. The goal is to advance the MASS (Mesoscal Atmospheric Simulation System) modeling expertise so that the model

  6. Bronchitis in two integrated steel works: III. Respiratory symptoms and ventilatory capacity related to atmospheric pollution

    PubMed Central

    Lowe, C. R.; Campbell, H.; Khosla, T.

    1970-01-01

    Lowe, C. R., Campbell, H., and Khosla, T.(1970).Brit. J. industr. Med.,27, 121-129. Bronchitis in two integrated steel works. III. Respiratory symptoms and ventilatory capacity related to atmospheric pollution. This is the third in a series of papers presenting the results of an epidemiological study of respiratory symptomatology and lung function among men employed in two integrated steel works in South Wales. In this paper measurements of atmospheric pollution are related to respiratory symptoms and ventilatory capacity among 10 449 men who spent the greater part of their working hours in one or other of 114 defined working areas. The problem has been explored in three different ways. In the first, each man was assigned the mean value of sulphur dioxide and respirable dust for the area in which he was working and this was related to his ventilatory capacity (FEV1·0), age, smoking habits, and the number of years he had spent in his present department. In the second, the 114 working areas were divided into four sub-groups, according to defined levels of atmospheric pollution, and the prevalence of chronic bronchitis and mean FEV1·0 in the four sub-groups was examined. In the third way, the mean atmospheric pollution levels in each of the 114 areas were related to the prevalence of bronchitis and to the mean FEV1·0, age, and smoking habits in those areas. The analysis demonstrates very clearly the over-riding importance of cigarette smoking in the aetiology of chronic bronchitis, but, so far as the main purpose of the survey is concerned, it is concluded that, if there is any relation between respiratory disability and atmospheric pollution in the two steel works, it is so slight that none of the three approaches to the problem was sensitive enough to detect it. The implications of this are discussed in the light of the levels of pollution that were recorded in and around the two works. PMID:5428631

  7. Direct atmospheric deposition of water-soluble nitrogen to the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Talbot, R. W.

    2000-12-01

    Measurements were made at New Castle, New Hampshire, on the shore of the Gulf of Maine from 1994 to 1997 to assess direct atmospheric deposition of water-soluble nitrogen to the surface waters of the gulf. Daily dry deposition was highly variable and ranged from ˜ 1 to 144 μmol N m-2 d-1 (median 16 μmol N m-2 d-1). Wet deposition dominated dry deposition, contributing 80-90% of the total flux annually. Wet deposition was also highly variable and ranged from 3 to 4264 μmol N m-2 d-1 (median 214 μmol N m-2 d-1). Fog water nitrogen deposition could contribute as much as large precipitation nitrogen deposition events, in excess of 500 μmol N m-2d-1. Dissolved organic nitrogen (DON) in precipitation constituted only a small fraction (3%) of the total precipitation nitrogen flux most of the year, except in spring where it comprised 14%, on average, of the total. The total atmospheric direct nitrogen (ADN) deposition numbers reported here do not include the contributions of fog and DON as they were not sampled regularly over the course of this study. The total ADN flux ranged from 1 to 4262 μmol N m-2 d-1 (median 23 μmol N m-2 d-1), depositing 52 mmol N m-2 yr-1 to the surface waters of the Gulf of Maine, 3% of the total N input to those waters annually. However, this deposition was highly episodic with events over 500 μmol N m-2 d-1 occurring in 8% of the days sampled but contributing 56% of the total measured flux and events in excess of 1000 μmol N m-2 d-1 occurring in 2% of the samples and contributing 22% of the total measured flux. It is these large events that may influence biological productivity of the Gulf of Maine. The annual wet deposition of inorganic N measured at New Castle exceeded that reported by two National Atmospheric Deposition Program (NADP) sites by 42% on average of that reported from Cape Cod, Massachusetts, and by 69% ofthat at Mt. Dessert Island, Maine. Estimates of the episodic atmospheric nitrogen flux to the surface waters of the

  8. Atmospheric energy and water balance perspective to projection of global-scale precipitation increase: may mitigation policies unexpectedly amplify precipitation?

    NASA Astrophysics Data System (ADS)

    Alessandri, A.; Fogli, P.; Vichi, M.; Zeng, N.

    2012-12-01

    Future climate scenarios experiencing global warming are expected to strengthen hydrological cycle during 21st century by comparison with the last decades of 20th century. From the perspective of changes in whole atmospheric water and energy budgets, we analyze strengthening of the hydrological cycle as measured by the increase in global-scale precipitation. Furthermore, by combining energy and water equations for the whole atmosphere we profitably obtain constraints for the changes in surface fluxes and for the partitioning at the surface between sensible and latent components. Above approach is applied to investigate difference in precipitation increase in two scenario centennial simulations performed with an Earth System model forced with specified atmospheric concentration pathways. Alongside medium-high non-mitigation scenario (baseline), we considered an aggressive-mitigation scenario (E1) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2K. Quite unexpectedly, mitigation scenario is shown to strengthen hydrological cycle more than baseline till around 2070, that is a couple of decades after that mitigation of global temperature was already well established in E1. Our analysis shows that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to baseline. This appears to be primarily related to the abated aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to baseline. In contrast, last decades of 21st century (21C) show marked increase of global precipitation in baseline compared to E1, despite the fact that the two scenarios display almost same overall increase of radiative imbalance with respect to 20th century. Our results show that radiative cooling is weakly effective in baseline throughout all 21C, so that two distinct mechanisms characterize the diverse strengthening of hydrological cycle in

  9. Prospective testing of atmospheric pre-earthquake signal alerts and their relation to seismicity

    NASA Astrophysics Data System (ADS)

    Kafatos, M.; Ouzounov, D. P.; Pulinets, S. A.

    2013-12-01

    We present results from our prospective testing of atmospheric pre-earthquake signals (combining gas/radon- gamma sensor at Chapman University; ground air temperature, humidity, latent heat and thermal radiation from the NRT CEESMO satellite data center at Chapman, as well as NOAA/POESS and NASA/AIRS satellites) observed during 2012-2013 and related to seismic activities in Southern California and Mexico/USA overall region. We designed our approach utilizing the predictions of the theoretical model of Lithosphere-Atmosphere-Ionosphere coupling (Pulinets and Ouzounov, 2011), operating between the crust and the atmosphere/ ionosphere. Our data processing was designed as a sensor web analysis (not yet fully operational and automated as of this time). The system is designed to reveal pre-earthquake atmospheric anomalies for the selected observations in prospective mode above approximately M ~ 5. Tests were obtained for several alerts for California (including M5.7 of 05.24.13 and M5.5. of 08.26.12) and for Baja California (Mexico) (including M6.4 of 12.14.12 and M6.3 of 09.25.12). All alerts have been registered in advance. Several days and up to 3 weeks before the observed earthquakes, we were able to detect atmospheric pre-earthquake signals in proximity with the epicenters over the main fault structures (over land and ocean). Radon data provided alert information in the near zone of specific observations only. We discuss the skill scores of issued alerts, practical usefulness of the presented methodology and future developments and implications.

  10. Water Clouds in the Atmosphere of a Jupiter-Like Brown Dwarf

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    Lying a mere 7.2 light-years away, WISE 0855 is the nearest known planetary-mass object. This brown dwarf, a failed star just slightly more massive than Jupiter, is also the coldest known compact body outside of our solar system and new observations have now provided us with a first look at its atmosphere.Temperaturepressure profiles of Jupiter, WISE 0855, and what was previously the coldest extrasolar object with a 5-m spectrum, Gl 570D. Thicker lines show the location of each objects 5-m photospheres. WISE 0855s and Jupiters photospheres are near the point where water starts to condense out into clouds (dashed line). [Skemer et al. 2016]Challenging ObservationsWith a chilly temperature of 250 K, the brown dwarf WISE 0855 is the closest thing weve been able to observe to a body resembling Jupiters ~130 K. WISE 0855 therefore presents an intriguing opportunity to directly study the atmosphere of an object whose physical characteristics are similar to our own gas giants.But studying the atmospheric characteristics of such a body is tricky. WISE 0855 is too cold and faint to be able to obtain traditional optical or near-infrared ( 2.5 m) spectroscopy of it. Luckily, like Jupiter, the opacity of its gas allows thermal emission from its deep atmosphere to escape through an atmospheric window around ~5 m.A team of scientists led by Andrew Skemer (UC Santa Cruz) set out to observe WISE 0855 in this window with the Gemini-North telescope and the Gemini Near-Infrared Spectrograph. Though WISE 0855 is five times fainter than the faintest object previously detected with ground-based 5-m spectroscopy, the dry air of Mauna Kea (and a lot of patience!) allowed the team to obtain unprecedented spectra of this object.WISE 0855s spectrum shows absorption features consistent with water vapor, and its best fit by a cloudy brown-dwarf model. [Skemer et al. 2016]Water Clouds FoundExoplanets and brown dwarfs cooler than ~350 K are expected to form water ice clouds in upper atmosphere

  11. Heat treatment's effects on hydroxyapatite powders in water vapor and air atmosphere

    NASA Astrophysics Data System (ADS)

    Karabulut, A.; Baştan, F. E.; Erdoǧan, G.; Üstel, F.

    2015-03-01

    Hydroxyapatite (HA; Ca10(PO4)6(OH)2) is the main chemical constituent of bone tissue (~70%) as well as HA which is a calcium phosphate based ceramic material forms inorganic tissue of bone and tooth as hard tissues is used in production of prosthesis for synthetic bone, fractured and broken bone restoration, coating of metallic biomaterials and dental applications because of its bio compatibility. It is known that Hydroxyapatite decomposes with high heat energy after heat treatment. Therefore hydroxyapatite powders that heated in water vapor will less decomposed phases and lower amorphous phase content than in air atmosphere. In this study high purity hydroxyapatite powders were heat treated with open atmosphere furnace and water vapor atmosphere with 900, 1000, 1200 °C. Morphology of same powder size used in this process by SEM analyzed. Chemical structures of synthesized coatings have been examined by XRD. The determination of particle size and morphological structure of has been characterized by Particle Sizer, and SEM analysis, respectively. Weight change of sample was recorded by thermogravimetric analysis (TGA) during heating and cooling.

  12. A moist Boussinesq shallow water equations set for testing atmospheric models

    SciTech Connect

    Zerroukat, M. Allen, T.

    2015-06-01

    The shallow water equations have long been used as an initial test for numerical methods applied to atmospheric models with the test suite of Williamson et al. being used extensively for validating new schemes and assessing their accuracy. However the lack of physics forcing within this simplified framework often requires numerical techniques to be reworked when applied to fully three dimensional models. In this paper a novel two-dimensional shallow water equations system that retains moist processes is derived. This system is derived from three-dimensional Boussinesq approximation of the hydrostatic Euler equations where, unlike the classical shallow water set, we allow the density to vary slightly with temperature. This results in extra (or buoyancy) terms for the momentum equations, through which a two-way moist-physics dynamics feedback is achieved. The temperature and moisture variables are advected as separate tracers with sources that interact with the mean-flow through a simplified yet realistic bulk moist-thermodynamic phase-change model. This moist shallow water system provides a unique tool to assess the usually complex and highly non-linear dynamics–physics interactions in atmospheric models in a simple yet realistic way. The full non-linear shallow water equations are solved numerically on several case studies and the results suggest quite realistic interaction between the dynamics and physics and in particular the generation of cloud and rain. - Highlights: • Novel shallow water equations which retains moist processes are derived from the three-dimensional hydrostatic Boussinesq equations. • The new shallow water set can be seen as a more general one, where the classical equations are a special case of these equations. • This moist shallow water system naturally allows a feedback mechanism from the moist physics increments to the momentum via buoyancy. • Like full models, temperature and moistures are advected as tracers that interact

  13. First Detection of Molecular Hydrogen in the Atmosphere of Mars: Implications for Evolution of Water

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, V. A.; Feldman, P. D.

    2001-11-01

    We observed Mars using the Far Ultraviolet Spectroscopic Explorer (FUSE) and obtained a high-quality spectrum at 904-1186 Å with resolution of 0.2 Å. The spectrum consists of many lines of H, O, N, C, Ar, He (in the second order), O+, N+, C+, and bands of CO and N2. Four H2 lines at 1071.62, 1090.45, 1118.61, and 1166.76 Å were detected. Their intensities ( 0.3 R) were corrected for air mass, contribution of the airglow at Mars' limb, selfabsorption, and resulted in the H2 column abundance of (1.56+/-0.17)x1013 cm-2 above 140 km. We developed a model which calculates self-consistently the density profiles of CO2, N2, CO, O, H2, H, HD, D, and 14 ions at 80-300 km for low, medium, and high solar activity. H2 forms in the lower atmosphere and is delivered to the upper atmosphere by eddy and molecular diffusion. Removal of H2 from the upper atmosphere is due to the reactions with CO2+, O+, CO+, N2+, N+, O(1D), ionization, and photoelectron dissociation. The observed H2 abundance corresponds to the H2 mixing ratio of 15+/-4 ppm in the lower atmosphere, which is smaller by a factor of 2.7 than the predictions of the recent models. By fitting the HST observation of D, our model gives HD/H2=0.29 HDO/H2O which is in reasonable agreement with the recent data on deuterium fractionation in the lower atmosphere. The isotope fractionation factor for hydrogen escape varies from 0.053 at solar minimum to 0.128 at solar maximum with a mean value of 0.09. Coupled with the abundance of ice of 14 m in the polar caps and the D/H ratio of 1.9 at the end of hydrodynamic escape, this results in a loss of 30 m of water in the last 4 Ga. If the initial D/H was at the terrestrial value, then more than 1 km of water was lost by hydrodynamic escape. Most probably, the initially accreted H2 and that released in the reaction of Fe + H2O could escape hydrodynamically. This supports the hypothesis that initially Mars was even more rich in water than Earth. An alternative interpretation, with no

  14. Trapping of water vapor from an atmosphere by condensed silicate matter formed by high-temperature pulse vaporization

    NASA Technical Reports Server (NTRS)

    Gerasimov, M. V.; Dikov, Yu. P.; Yakovlev, O. I.; Wlotzka, F.

    1993-01-01

    The origin of planetary atmospheres is thought to be the result of bombardment of a growing planet by massive planetesimals. According to some models, the accumulation of released water vapor and/or carbon dioxide can result in the formation of a dense and hot primordial atmosphere. Among source and sink processes of atmospheric water vapor the formation of hydroxides was considered mainly as rehydration of dehydrated minerals (foresterite and enstatite). From our point of view, the formation of hydroxides is not limited to rehydration. Condensation of small silicate particles in a spreading vapor cloud and their interaction with a wet atmosphere can also result in the origin of hydrated phases which have no genetic connections with initial water bearing minerals. We present results of two experiments of a simulated interaction of condensed silicate matter which originated during vaporization of dry clinopyroxene in a wet helium atmosphere.

  15. Aquaporins: Highly Regulated Channels Controlling Plant Water Relations1

    PubMed Central

    Chaumont, François; Tyerman, Stephen D.

    2014-01-01

    Plant growth and development are dependent on tight regulation of water movement. Water diffusion across cell membranes is facilitated by aquaporins that provide plants with the means to rapidly and reversibly modify water permeability. This is done by changing aquaporin density and activity in the membrane, including posttranslational modifications and protein interaction that act on their trafficking and gating. At the whole organ level aquaporins modify water conductance and gradients at key “gatekeeper” cell layers that impact on whole plant water flow and plant water potential. In this way they may act in concert with stomatal regulation to determine the degree of isohydry/anisohydry. Molecular, physiological, and biophysical approaches have demonstrated that variations in root and leaf hydraulic conductivity can be accounted for by aquaporins but this must be integrated with anatomical considerations. This Update integrates these data and emphasizes the central role played by aquaporins in regulating plant water relations. PMID:24449709

  16. Aviation Trends Related to Atmospheric Environment Safety Technologies Project Technical Challenges

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.; Withrow, Colleen A.; Barr, Lawrence C.; Evans, Joni K.; Leone, Karen M.; Jones, Sharon M.

    2014-01-01

    Current and future aviation safety trends related to the National Aeronautics and Space Administration's Atmospheric Environment Safety Technologies Project's three technical challenges (engine icing characterization and simulation capability; airframe icing simulation and engineering tool capability; and atmospheric hazard sensing and mitigation technology capability) were assessed by examining the National Transportation Safety Board (NTSB) accident database (1989 to 2008), incidents from the Federal Aviation Administration (FAA) accident/incident database (1989 to 2006), and literature from various industry and government sources. The accident and incident data were examined for events involving fixed-wing airplanes operating under Federal Aviation Regulation (FAR) Parts 121, 135, and 91 for atmospheric conditions related to airframe icing, ice-crystal engine icing, turbulence, clear air turbulence, wake vortex, lightning, and low visibility (fog, low ceiling, clouds, precipitation, and low lighting). Five future aviation safety risk areas associated with the three AEST technical challenges were identified after an exhaustive survey of a variety of sources and include: approach and landing accident reduction, icing/ice detection, loss of control in flight, super density operations, and runway safety.

  17. 1. SHOWING RELATION OF FIRE CONTROL BUILDING, WATER TANK, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SHOWING RELATION OF FIRE CONTROL BUILDING, WATER TANK, AND TOWER, LOOKING SOUTH - Boswell Bay White Alice Site, Fire Control Building, Chugach National Forest, Cordova, Valdez-Cordova Census Area, AK

  18. Treatment of gastric cancer cells with nonthermal atmospheric plasma generated in water.

    PubMed

    Chen, Zhitong; Lin, Li; Cheng, Xiaoqian; Gjika, Eda; Keidar, Michael

    2016-01-01

    Nonthermal atmospheric plasma (NTAP) can be applied to living tissues and cells as a novel technology for cancer therapy. The authors report on a NTAP argon solution generated in deionized (DI) water for treating human gastric cancer cells (NCI-N87). Our findings show that the plasma generated in DI water with 30-min duration has the strongest effect on apoptosis in precultured human gastric cancer cells. This result can be attributed to the presence of reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced in water during treatment. Furthermore, the data show that the elevated levels of RNS may play a more significant role than ROS in the rate of cell death. PMID:27604078

  19. Water ice nucleation characteristics of JSC Mars-1 regolith simulant under simulated Martian atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Phebus, Bruce D.; Johnson, Alexandria V.; Mar, Brendan; Stone, Bradley M.; Colaprete, Anthony; Iraci, Laura T.

    2011-04-01

    Water ice clouds in the Martian atmosphere are governed by parameters such as number density and particle size distribution that in turn affect how they influence the climate. With some of the underlying properties of cloud formation well known only for Earth, extrapolations to Mars are potentially misleading. We report here continued laboratory experiments to identify critical onset conditions for water ice formation under Martian cloud forming temperatures and water partial pressures (155-182 K, 7.6 × 10-5 to 7.7 × 10-3 Pa H2O). By observing the 3 μm infrared band to monitor nucleation and growth, we observe significant temperature dependence in the nucleation of ice on JSC Mars-1 regolith simulant, with critical saturation ratios, Scrit, as high as 3.8 at 155 K. At temperatures below ˜180 K, ice nucleation on JSC Mars-1 requires significant supersaturation, potentially impacting the Martian hydrological cycle.

  20. Validating AIRS upper atmosphere water vapor retrievals using aircraft and balloon in situ measurements

    NASA Astrophysics Data System (ADS)

    Hagan, D. E.; Webster, C. R.; Farmer, C. B.; May, R. D.; Herman, R. L.; Weinstock, E. M.; Christensen, L. E.; Lait, L. R.; Newman, P. A.

    2004-11-01

    This paper provides an initial assessment of the accuracy of the Atmospheric Infrared Sounder (AIRS) water vapor retrievals from 500 to 100 mbar. AIRS satellite measurements are compared with accurate aircraft (NASA WB57) and balloon in situ water vapor measurements obtained during the NASA Pre-Aura Validation Experiment (Pre-AVE) in Costa Rica during Jan. 2004. AIRS retrieval (each pressure level of a single footprint) of water vapor amount agrees with the in situ measurements to ~25% or better if matched closely in time (1 hr) and space (50-100 km). Both AIRS and in situ measurements observe similar significant variation in moisture amount over a two-day period, associated with large-scale changes in weather patterns.

  1. Water Ice Clouds and Dust in the Martian Atmosphere Observed by Mars Climate Sounder

    NASA Technical Reports Server (NTRS)

    Benson, Jennifer L.; Kass, David; Heavens, Nicholas; Kleinbohl, Armin

    2011-01-01

    The water ice clouds are primarily controlled by the temperature structure and form at the water condensation level. Clouds in all regions presented show day/night differences. Cloud altitude varies between night and day in the SPH and tropics: (1) NPH water ice opacity is greater at night than day at some seasons (2) The diurnal thermal tide controls the daily variability. (3) Strong day/night changes indicate that the amount of gas in the atmosphere varies significantly. See significant mixtures of dust and ice at the same altitude planet-wide (1) Points to a complex radiative and thermal balance between dust heating (in the visible) and ice heating or cooling in the infrared. Aerosol layering: (1) Early seasons reveal a zonally banded spatial distribution (2) Some localized longitudinal structure of aerosol layers (3) Later seasons show no consistent large scale organization

  2. Warming of waters in an East Greenland fjord prior to glacier retreat: mechanisms and connection to large-scale atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Christoffersen, P.; Mugford, R. I.; Heywood, K. J.; Joughin, I.; Dowdeswell, J. A.; Syvitski, J. P. M.; Luckman, A.; Benham, T. J.

    2011-05-01

    Hydrographic data acquired in Kangerlugssuaq Fjord and adjacent seas in 1993 and 2004 are used together with ocean reanalysis to elucidate water mass change and ice-ocean-atmosphere interactions in East Greenland. The hydrographic data show substantial warming of fjord waters between 1993 and 2004 and warm subsurface conditions coincide with the rapid retreat of Kangerlugssuaq Glacier in 2004-2005. The ocean reanalysis shows that the warm properties of fjord waters in 2004 are related to a major peak in oceanic shoreward heat flux into a cross-shelf trough on the outer continental shelf. The heat flux into this trough varies according to seasonal exchanges with the atmosphere as well as from deep seasonal intrusions of subtropical waters. Both mechanisms contribute to high (low) shoreward heat flux when winds from the northeast are weak (strong). The combined effect of surface heating and inflow of subtropical waters is seen in the hydrographic data, which were collected after periods when along-shore coastal winds from the north were strong (1993) and weak (2004). We show that coastal winds vary according to the pressure gradient defined by a semi-permanent atmospheric pressure system over Greenland and a persistent atmospheric low situated near Iceland. The magnitude of this pressure gradient is controlled by longitudinal variability in the position of the Icelandic Low.

  3. Quantifying biological and atmospheric processes with in-situ measurements of carbon dioxide and water vapor isotopes (Invited)

    NASA Astrophysics Data System (ADS)

    Lee, X.

    2010-12-01

    The ability to make real-time, high-frequency measurements of CO2 and H2O isotopes in the atmosphere opens a new channel of scientific pursuit. The objectives of this paper are (1) to examine practical issues on using these measurements in biospheric and atmospheric research, and (2) to compare two different perspectives on isotopic surface-air fluxes. From the user’s perspective, three issues should be resolved in order to further realize the power of these in-situ measurements. The first one is related to instrument calibration. By their nature, isotopologue measurements by optical methods are prone to biases from nonlinear concentration dependence. Overcoming the nonlinear effect via calibration is important for the measurement of the isotopic abundance of CO2 or H2O and even more so for the measurement of the isotopic signal of their fluxes. Further, a portable calibration system is essential for deployment in remote sites. The second challenge that researchers face is instrument cost. We envision the development of a new flux network with real-time observations of isotopic fluxes of CO2 and H2O to help diagnose changes in atmospheric and biospheric processes. This can become a realistic goal if the instrument cost is brought down to a level comparable to that of broadband infrared analyzers. Third, speed of detection also deserves attention. In-situ measurements of CO2 and H2O isotope ratios in ambient air, especially if made on a long-term basis and calibrated precisely, can aid atmospheric inverse analysis of land carbon sink and the tracking of water transport in the atmosphere. Ambient monitoring alone is however not very useful in ecological studies. To measure the source/sink signature properly, one should interface the isotopic analyzer with a plant or soil chamber, deploy it in the gradient-diffusion mode either over a plant canopy or over the soil surface inside the canopy, or combine it with a sonic anemometer for direct eddy covariance measurement

  4. The atmospheric role in the Arctic water cycle: A review on processes, past and future changes, and their impacts

    NASA Astrophysics Data System (ADS)

    Vihma, Timo; Screen, James; Tjernström, Michael; Newton, Brandi; Zhang, Xiangdong; Popova, Valeria; Deser, Clara; Holland, Marika; Prowse, Terry

    2016-03-01

    Atmospheric humidity, clouds, precipitation, and evapotranspiration are essential components of the Arctic climate system. During recent decades, specific humidity and precipitation have generally increased in the Arctic, but changes in evapotranspiration are poorly known. Trends in clouds vary depending on the region and season. Climate model experiments suggest that increases in precipitation are related to global warming. In turn, feedbacks associated with the increase in atmospheric moisture and decrease in sea ice and snow cover have contributed to the Arctic amplification of global warming. Climate models have captured the overall wetting trend but have limited success in reproducing regional details. For the rest of the 21st century, climate models project strong warming and increasing precipitation, but different models yield different results for changes in cloud cover. The model differences are largest in months of minimum sea ice cover. Evapotranspiration is projected to increase in winter but in summer to decrease over the oceans and increase over land. Increasing net precipitation increases river discharge to the Arctic Ocean. Over sea ice in summer, projected increase in rain and decrease in snowfall decrease the surface albedo and, hence, further amplify snow/ice surface melt. With reducing sea ice, wind forcing on the Arctic Ocean increases with impacts on ocean currents and freshwater transport out of the Arctic. Improvements in observations, process understanding, and modeling capabilities are needed to better quantify the atmospheric role in the Arctic water cycle and its changes.

  5. The observed relationship between the south pole 225-GHz atmospheric opacity and the water vapor column density

    NASA Astrophysics Data System (ADS)

    Chamberlin, Richard A.; Bally, John

    1995-05-01

    We compare our previously reported measurements of South Pole 225 GHz atmospheric opacity, τ, to the column of precipitable water vapor ( PWV) which was derived from concurrent upper air soundings. From this comparison we found that τ=(2.8±0.1)×10-2+(6.9±0.2)×10-2× PWV with τ in units of nepers/airmass and PWV in units of mm of precipitable H2O. We compared our results to predictions from Grossman's AT atmospheric transparency model which is widely used in the radio astronomy community. The coefficient of the second term of the above relation, 0.069, was consistent with the predictions from the model; however, the first term, 0.028, which represents the dry air opacity, was about five to ten times larger than expected. Most of this discrepancy between the observed and the predicted dry air opacity can be accounted for by including contributions from continuum emission from N2 and O2 as is done in Liebe's MPM atmospheric model.

  6. Atmospheric modeling related to Thematic Mapper scan geometry. [atmospheric effects on satellite-borne photography of LANDSAT D

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Gleason, J. M.; Cicone, R. C.

    1976-01-01

    A simulation study was carried out to characterize atmospheric effects in LANDSAT-D Thematic Mapper data. In particular, the objective was to determine if any differences would result from using a linear vs. a conical scanning geometry. Insight also was gained about the overall effect of the atmosphere on Thematic Mapper signals, together with the effects of time of day. An added analysis was made of the geometric potential for direct specular reflections (sun glint). The ERIM multispectral system simulation model was used to compute inband Thematic Mapper radiances, taking into account sensor, atmospheric, and surface characteristics. Separate analyses were carried out for the thermal band and seven bands defined in the reflective spectral region. Reflective-region radiances were computed for 40 deg N, 0 deg, and 40 deg S latitudes; June, Mar., and Dec. days; and 9:30 and 11:00 AM solar times for both linear and conical scan modes. Also, accurate simulations of solar and viewing geometries throughout Thematic Mapper orbits were made. It is shown that the atmosphere plays an important role in determining Thematic Mapper radiances, with atmospheric path radiance being the major component of total radiances for short wavelengths and decreasing in importance as wavelength increases. Path radiance is shown to depend heavily on the direct radiation scattering angle and on haze content. Scan-angle-dependent variations were shown to be substantial, especially for the short-wavelength bands.

  7. Association of water spectral indices with plant and soil water relations in contrasting wheat genotypes

    PubMed Central

    Gutierrez, Mario; Reynolds, Matthew P.; Klatt, Arthur R.

    2010-01-01

    Spectral reflectance indices can be used to estimate the water status of plants in a rapid, non-destructive manner. Water spectral indices were measured on wheat under a range of water-deficit conditions in field-based yield trials to establish their relationship with water relations parameters as well as available volumetric soil water (AVSW) to indicate soil water extraction patterns. Three types of wheat germplasm were studied which showed a range of drought adaptation; near-isomorphic sister lines from an elite/elite cross, advanced breeding lines, and lines derived from interspecific hybridization with wild relatives (synthetic derivative lines). Five water spectral indices (one water index and four normalized water indices) based on near infrared wavelengths were determined under field conditions between the booting and grain-filling stages of crop development. Among all water spectral indices, one in particular, which was denominated as NWI-3, showed the most consistent associations with water relations parameters and demonstrated the strongest associations in all three germplasm sets. NWI-3 showed a strong linear relationship (r2 >0.6–0.8) with leaf water potential (ψleaf) across a broad range of values (–2.0 to –4.0 MPa) that were determined by natural variation in the environment associated with intra- and inter-seasonal affects. Association observed between NWI-3 and canopy temperature (CT) was consistent with the idea that genotypes with a better hydration status have a larger water flux (increased stomatal conductance) during the day. NWI-3 was also related to soil water potential (ψsoil) and AVSW, indicating that drought-adapted lines could extract more water from deeper soil profiles to maintain favourable water relations. NWI-3 was sufficiently sensitive to detect genotypic differences (indicated by phenotypic and genetic correlations) in water status at the canopy and soil levels indicating its potential application in precision phenotyping

  8. The escaping "pneuma" - gas of ancient earthquake concepts in relation to animal, atmospheric and thermal precursors

    NASA Astrophysics Data System (ADS)

    Helmut, Tributsch

    2013-04-01

    The escaping "pneuma" - gas of ancient earthquake concepts in relation to animal, atmospheric and thermal precursors Helmut Tributsch Present affiliation: Carinthian University for Applied Sciences, Bio-mimetics program, Europastrasse 4, 9524 Villach, Austria, helmut.tributsch@alice.it Retired from: Free University Berlin, Institute for physical and theoretical chemistry, Takustr. 3, 14195 Berlin, Germany. For two thousand years ancient European and medieval (including islamic) natural philosophers have considered a dry, warm gas, the "pneuma" ( breath, exhalation), escaping from the earth, as precursor and trigger of earthquakes. Also in China an escaping gas or breath (the qi) was considered the cause of earthquake, first in a document from 780 BC. We know today that escaping gas is not causing earthquakes. But it may be that natural phenomena that supported such a pneuma-concept have again and again been observed. The unpolluted environment and the largely absence of distracting artificial stimuli may have allowed the recognition of distinct earthquake precursors, such as described by ancient observers: (1) the sun becomes veiled and has a dim appearance, turns reddish or dark (2) a narrow long stretched cloud becomes visible, like a line drawn by a ruler, (3) earthquakes preceded by a thin streak of cloud stretching over a wide space. (4) earthquakes in the morning sometimes preceded by a still and a strong frost, (5) a surf - line of the air sea is forming (near the horizon). The described phenomena may be interpreted as a kind of smog forming above the ground prior to an earthquake, a smog exhaled from the ground, which is triggering water condensation, releasing latent heat, changing visibility, temperature, heat conduction and radiation properties. This could perfectly match the phenomenon, which is at the origin of satellite monitored temperature anomalies preceding earthquakes. Based on a few examples it will be shown that the time window of temperature

  9. Modeling Caspian Sea water level oscillations under different scenarios of increasing atmospheric carbon dioxide concentrations

    PubMed Central

    2012-01-01

    The rapid rise of Caspian Sea water level (about 2.25 meters since 1978) has caused much concern to all five surrounding countries, primarily because flooding has destroyed or damaged buildings and other engineering structures, roads, beaches and farm lands in the coastal zone. Given that climate, and more specifically climate change, is a primary factor influencing oscillations in Caspian Sea water levels, the effect of different climate change scenarios on future Caspian Sea levels was simulated. Variations in environmental parameters such as temperature, precipitation, evaporation, atmospheric carbon dioxide and water level oscillations of the Caspian sea and surrounding regions, are considered for both past (1951-2006) and future (2025-2100) time frames. The output of the UKHADGEM general circulation model and five alternative scenarios including A1CAI, BIASF, BIMES WRE450 and WRE750 were extracted using the MAGICC SCENGEN Model software (version 5.3). The results suggest that the mean temperature of the Caspian Sea region (Bandar-E-Anzali monitoring site) has increased by ca. 0.17°C per decade under the impacts of atmospheric carbon dioxide changes (r=0.21). The Caspian Sea water level has increased by ca. +36cm per decade (r=0.82) between the years 1951-2006. Mean results from all modeled scenarios indicate that the temperature will increase by ca. 3.64°C and precipitation will decrease by ca. 10% (182 mm) over the Caspian Sea, whilst in the Volga river basin, temperatures are projected to increase by ca. 4.78°C and precipitation increase by ca. 12% (58 mm) by the year 2100. Finally, statistical modeling of the Caspian Sea water levels project future water level increases of between 86 cm and 163 cm by the years 2075 and 2100, respectively. PMID:23369617

  10. Major water-related episodes on the lowlands of Mars

    NASA Astrophysics Data System (ADS)

    Fairén, A. G.; Dohm, J. M.; Baker, V. R.

    2003-04-01

    Throughout the recorded history of Mars, liquid water has distinctly shaped its landscape, including the prominent circum-Chryse and the northwestern slope valleys outflow channel systems (Dohm et al., 2001), and the extremely flat northern plains topography at the distal reaches of these outflow channel systems. Paleotopographic reconstructions of the Tharsis magmatic complex reveal the existence of an Europe-sized Noachian drainage basin and subsequent aquifer system in eastern Tharsis. This basin is proposed to source the magmatic-triggered outburst floods that sculpted the circum-Chryse and NSVs outflow channel systems (Dohm, et al., 2001), entrained boulders, rock, and sediment during passage, and ponded to form sequentially through time various hypothesized oceans, seas, and lakes in the northern plains (Parker et al., 1993; Baker et al., 1991; Scott et al., 1995; Head et al., 1999) and glaciers and rock glaciers and lacustrine environments such as in the southern hemisphere (Baker, 2001). The floodwaters decreased in volume with time due to inadequate groundwater recharge of the Tharsis aquifer system. Basing on the ideas of episodic greenhouse atmosphere and water stability on the lowlands of Mars (Baker et al., 1991), a conceptual scheme for water evolution and associated geomorphologic features on the northern plains can be proposed. This model highlights Tharsis-triggered flood inundations and their direct impact on shaping the northern plains, as well as making possible the existence of fossil and/or extant life. Martian topography, as observed from the Mars Orbiter Laser Altimeter, corresponds well to these ancient flood inundations, including the approximated shorelines that have been proposed for the northern plains (Parker et al., 1993). Stratigraphy, geomorphology, and topography record at least one great Noachian/early Hesperian northern plains ocean (Fairén and De Pablo, 2002), best portrayed by the martian dichotomy boundary or Contact 1, but

  11. Field and Laboratory Studies of Reactions between Atmospheric Water Soluble Organic Acids and Inorganic Particles

    SciTech Connect

    Wang, Bingbing; Kelly, Stephen T.; Sellon, Rachel E.; Shilling, John E.; Tivanski, Alexei V.; Moffet, Ryan C.; Gilles, Mary K.; Laskin, Alexander

    2013-06-25

    Atmospheric inorganic particles undergo complex heterogeneous reactions that change their physicochemical properties. Depletion of chloride in sea salt particles was reported in previous field studies and was attributed to the acid displacement of chlorides with inorganic acids, such as nitric and sulfuric acids [1-2]. Recently, we showed that NaCl can react with water soluble organic acids (WSOA) and release gaseous hydrochloric acid (HCl) resulting in formation of organic salts [3]. A similar mechanism is also applicable to mixed WSOA/nitrate particles where multi-phase reactions are driven by the volatility of nitric acid. Furthermore, secondary organic material, which is a complex mixture of carboxylic acids, exhibits the same reactivity towards chlorides and nitrates. Here, we present a systematic study of reactions between atmospheric relevant WSOA, SOM, and inorganic salts including NaCl, NaNO3, and Ca(NO3)2 using complementary micro-spectroscopy analysis.

  12. Soil Water and Shallow Groundwater Relations in an Agricultural Hillslope

    NASA Astrophysics Data System (ADS)

    Logsdon, S. D.; Schilling, K. E.

    2007-12-01

    our understanding of the relations of soil water to water table fluctuations in an agricultural field.

  13. The Effect of Stratospheric Water Vapor in Large Volcanic Eruptions on Climate and Atmospheric Composition

    NASA Astrophysics Data System (ADS)

    Case, P. A.; Tsigaridis, K.; LeGrande, A. N.

    2015-12-01

    Large, explosive volcanic eruptions that inject material into the stratosphere have a significant impact on atmospheric composition and climate. Understanding and generalizing these effects is crucial to the development of climate models. Previously, volcanic forcing was crudely parameterized in all climate models which may be a source of large error in past-climate simulations. Here we investigate how water vapor, in addition to sulfur dioxide, from volcanic eruptions affect atmospheric chemistry and climate using NASA's atmospheric general circulation model GISS Model-E2. Three simulations were considered: a control run with no eruption, a run with a summertime dry eruption of 18 Tg of SO2, and a run with a summertime eruption containing 150 MT of water vapor in addition to 18 Tg of SO2.These amounts roughly approximate the mass of water and SO2 injected during the 1991 Mt. Pinatubo eruption. They were also injected at the same geographic location, directly into 10-layers of the lower to mid stratosphere. Each simulation was set in a pre-industrial atmosphere and monthly averages from the control were subtracted from the data in order to avoid signals from anthropogenic and meteorological effects, respectively. Comparing the dry and wet eruptions, there is a quicker forming but shorter lived sulfate aerosol population from the eruption containing water vapor. It was also observed that the aerosols spread more evenly between the Northern and Southern hemispheres when water was added to the eruption, compared to the dry eruption which was mostly contained in the Northern hemisphere. These differences more rapidly increase sulfate aerosol optical depth and cause a climatic effect of a quicker, shorter-lived decrease in surface temperatures and increase in stratospheric temperatures. The quicker signal from the wet eruption matches observations more closely than that of the dry eruption. This understanding will help in generalizing the climatic effects of volcanoes

  14. Methane release from seeps offshore W-Svalbard: Considerations to extrapolate fluxes into the water/atmosphere

    NASA Astrophysics Data System (ADS)

    Greinert, J.; Veloso, M.; Mienert, J.; Sommer, S.; Bussmann, I.; Haren, H.

    2012-04-01

    Increased (5-100 nM) and sometimes strongly increased (> 100 nM) methane concentrations in the water column, at the sea surface and even in the atmosphere (8 ppm) have been reported from Arctic areas. Some increases are clearly related to localized methane seep sites, others show a strong link to river runoff or to a widely spread (diffuse) methane release from degrading organic matter possibly linked to thawing permafrost. An important question in the marine science community is if the warming of the Arctic is already accelerating methane fluxes from the seabed into the water column and whether we are experiencing a significant flux into the atmosphere. Marine methane fluxes from localized seep sites have been studied for several decades already and the general biogeochemical processes and transport mechanisms have been identified (e.g. AOM, carbonate precipitation, bubble release, sea-atmosphere fluxes) and are fairly well understood. But we still know very little about the temporal variability of methane release and the link to thawing offshore permafrost is still very un-researched. Two areas, the Eastern Siberian Shelf and W-Spitzbergen have been targeted by repeated research cruises to gain more knowledge about this topic. Here, we present work from W-Spitzbergen carried out from 2009 to 2011. Since the discovery of methane seepage offshore Svalbard in 2008 (Westbrook et al., 2008), there has been an international effort to study this area by geophysical, oceanographic, visual and geochemical methods. Repeated hydroacoustic surveys with singlebeam and multibeam systems proved that bubble release in seep areas, at the upper gas hydrate boundary and the shelf edge has been continuous over the three years period. However, specific bubble releasing vents do show intermediate activity with episodic or cyclic release. In addition to this inconstant release, changing currents and internal waves physically influence the methane distribution in the water column, in

  15. Sensitivity of a mesoscale model to initial specification of relative humidity, liquid water and vertical motion

    NASA Technical Reports Server (NTRS)

    Kalb, M. W.; Perkey, D. J.

    1985-01-01

    The influence of synoptic scale initial conditions on the accuracy of mesoscale precipitation modeling is investigated. Attention is focused on the relative importance of the water vapor, cloud water, rain water, and vertical motion, with the analysis carried out using the Limited Area Mesoscale Prediction System (LAMPS). The fully moist primitive equation model has 15 levels and a terrain-following sigma coordinate system. A K-theory approach was implemented to model the planetary boundary layer. A total of 15 sensitivity simulations were run to investigate the effects of the synoptic initial conditions of the four atmospheric variables. The absence of synoptic cloud and rain water amounts in the initialization caused a 2 hr delay in the onset of precipitation. The delay was increased if synoptic-scale vertical motion was used instead of mesoscale values. Both the delays and a choice of a smoothed moisture field resulted in underestimations of the total rainfall.

  16. Atmospheric processes governing the changes in water isotopologues during ENSO events from model and satellite measurements

    NASA Astrophysics Data System (ADS)

    Sutanto, S. J.; Hoffmann, G.; Worden, J.; Scheepmaker, R. A.; Aben, I.; Röckmann, T.

    2015-07-01

    ENSO (El Niño-Southern Oscillation) has profound effects on the global water cycle, which can be examined at the process level by investigating the associated water isotopologues. Many isotope-based studies are aimed at understanding ENSO variability in the tropics, however, focusing principally on near-surface processes and isotopologue signals. The goal of the present study is to investigate the atmospheric processes governing the changes in the isotopic composition of water vapor both near the surface and at midtroposphere in the Pacific region during ENSO events, using a combination of remote sensing data and model simulations. For the lower atmosphere (i.e., 1000 hPa), our results show that rainout processes, less rain reevaporation of falling droplets, and increase of convective updrafts and diffusive exchange within the convective systems contribute to "the isotope amount effect" and isotopically deplete the water vapor during wet conditions, in agreement with previous studies. However, we find that the ENSO-associated isotopic signal in the midtroposphere (i.e., 500 hPa) diverges from the near-surface response. Analysis suggests that transport of enriched water vapor from lower atmospheric layers through convective updrafts controls the enrichment of midtropospheric water vapor over the Pacific Ocean. In the observations, a strong positive correlation between the increase of convective precipitation and the isotopic composition of water vapor clearly points to such a mechanism (R of 0.7-0.8 in the Central Pacific and 0.5-0.6 in the West Pacific). Model results confirm this mechanisms though producing slightly lower correlation values, with R values of 0.6 in the Central Pacific and 0.5 in the West Pacific. However, the distinction between convective and stratiform precipitation remains a result of model-dependent parameterization. Our analysis suggests that two issues should be investigated in more detail in further studies: (1) the equilibrium and

  17. Tracing atmospheric nitrate in groundwater using triple oxygen isotopes: evaluation based on bottled drinking water

    NASA Astrophysics Data System (ADS)

    Nakagawa, F.; Suzuki, A.; Daita, S.; Ohyama, T.; Komatsu, D. D.; Tsunogai, U.

    2013-06-01

    The stable isotopic compositions of nitrate dissolved in 49 brands of bottled drinking water collected worldwide were measured, to trace the fate of atmospheric nitrate (NO3- atm) that had been deposited into subaerial ecosystems, using the 17O anomalies (Δ17O) of nitrate as tracers. The use of bottled water enables collection of groundwater recharged at natural, background watersheds. The nitrate in groundwater had small Δ17O values ranging from -0.2‰ to +4.5‰ n = 49). The average Δ17O value and average mixing ratio of atmospheric nitrate to total nitrate in the groundwater samples were estimated to be 0.8‰ and 3.1%, respectively. These findings indicated that the majority of atmospheric nitrate had undergone biological processing before being exported from the surface ecosystem to the groundwater. Moreover, the concentrations of atmospheric nitrate were estimated to range from less than 0.1 μmol L-1 to 8.5 μmol L-1 with higher NO3-atm concentrations being obtained for those recharged in rocky, arid or elevated areas with little vegetation and lower NO3-atm concentrations being obtained for those recharged in forested areas with high levels of vegetation. Additionally, many of the NO3-atm-depleted samples were characterized by elevated δ15N values of more than +10‰. Uptake by plants and/or microbes in forested soils subsequent to deposition and the progress of denitrification within groundwater likely plays a significant role in the removal of NO3-atm.

  18. Tracing atmospheric nitrate in groundwater using triple oxygen isotopes: evaluation based on bottled drinking water

    NASA Astrophysics Data System (ADS)

    Tsunogai, U.; Suzuki, A.; Daita, S.; Ohyama, T.; Komatsu, D. D.; Nakagawa, F.

    2012-11-01

    The stable isotopic compositions of nitrate dissolved in 49 types of bottled drinking water collected worldwide were determined, to trace the fate of atmospheric nitrate (NO3-atm) that had been deposited into subaerial ecosystems, using the 17O anomalies (Δ17O) of nitrate as tracers. The use of bottled water enables collection of groundwater recharged at natural, background watersheds. The nitrate in groundwater had small Δ17O values ranging from -0.2‰ to +4.5‰ (n = 49). The average Δ17O value and average mixing ratio of atmospheric nitrate to total nitrate in the groundwater samples were estimated to be 0.8‰ and 3.1%, respectively. These findings indicated that the majority of atmospheric nitrate had undergone biological processing before being exported from the surface ecosystem to the groundwater. Moreover, the concentrations of atmospheric nitrate were estimated to range from less than 0.1 μmol l-1 to 8.5 μmol l-1, with higher NO3-atm concentrations being obtained for those recharged in rocky, arid or elevated areas with little vegetation and lower NO3-atm concentrations being obtained for those recharged in forested areas with high levels of vegetation. Additionally, many of the NO3-atm-depleted samples were characterized by elevated δ15N values of more than +10‰. Uptake by plants and/or microbes in forested soils subsequent to deposition and the progress of denitrification within groundwater likely plays a significant role in the removal of NO3-atm.

  19. Laser scattering diagnostics of an argon atmospheric-pressure plasma jet in contact with vaporized water

    NASA Astrophysics Data System (ADS)

    Seo, B. H.; Kim, J. H.; You, S. J.; Seong, D. J.

    2015-12-01

    The radial profiles of the electron density, electron temperature, and molecular rotational temperature are investigated in an argon atmospheric-pressure plasma jet in contact with vaporized water, which is driven by a 13.56 MHz radio frequency by means of the Thomson and Raman laser scattering methods. There is a distinct difference in the radial profiles of the plasma parameters between plasmas in contact with water and those without water contact. In the case of plasmas without vaporized water contact, all the parameters have a single-peak distribution with maximum values at the center of the discharge. In the case of plasmas in contact with vaporized water, all parameters have double-peak distributions; a neighboring peak appears beside the main peak. The new peak may have originated from the ripple of the water surface, which works as a cathode, and the peak of the ripple offers a sharp curvature point, playing the role of a pin. Our experimental results and the underlying physics are described in detail.

  20. Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions.

    PubMed

    Terada, Naoki; Kulikov, Yuri N; Lammer, Helmut; Lichtenegger, Herbert I M; Tanaka, Takashi; Shinagawa, Hiroyuki; Zhang, Tielong

    2009-01-01

    The upper limits of the ion pickup and cold ion outflow loss rates from the early martian atmosphere shortly after the Sun arrived at the Zero-Age-Main-Sequence (ZAMS) were investigated. We applied a comprehensive 3-D multi-species magnetohydrodynamic (MHD) model to an early martian CO(2)-rich atmosphere, which was assumed to have been exposed to a solar XUV [X-ray and extreme ultraviolet (EUV)] flux that was 100 times higher than today and a solar wind that was about 300 times denser. We also assumed the late onset of a planetary magnetic dynamo, so that Mars had no strong intrinsic magnetic field at that early period. We found that, due to such extreme solar wind-atmosphere interaction, a strong magnetic field of about approximately 4000 nT was induced in the entire dayside ionosphere, which could efficiently protect the upper atmosphere from sputtering loss. A planetary obstacle ( approximately ionopause) was formed at an altitude of about 1000 km above the surface due to the drag force and the mass loading by newly created ions in the highly extended upper atmosphere. We obtained an O(+) loss rate by the ion pickup process, which takes place above the ionopause, of about 1.5 x 10(28) ions/s during the first < or =150 million years, which is about 10(4) times greater than today and corresponds to a water loss equivalent to a global martian ocean with a depth of approximately 8 m. Consequently, even if the magnetic protection due to the expected early martian magnetic dynamo is neglected, ion pickup and sputtering were most likely not the dominant loss processes for the planet's initial atmosphere and water inventory. However, it appears that the cold ion outflow into the martian tail, due to the transfer of momentum from the solar wind to the ionospheric plasma, could have removed a global ocean with a depth of 10-70 m during the first < or =150 million years after the Sun arrived at the ZAMS. PMID:19216683

  1. Atmospheric Deposition And MediterraneAN sea water productiviTy (Thales - ADAMANT) An overview

    NASA Astrophysics Data System (ADS)

    Christodoulaki, Sylvia; Petihakis, George; Triantafyllou, George; Pitta, Paraskevi; Papadimitriou, Vassileios; Tsiaras, Konstantinos; Mihalopoulos, Nikolaos; Kanakidou, Maria

    2015-04-01

    In the marine environment the salinity and biological pumps sequester atmospheric carbon dioxide. The biological pump is directly related to marine primary production which is controlled by nutrient availability mainly of iron, nitrogen and phosphorus. The Mediterranean Sea, especially the eastern basin is one of the most oligotrophic seas. The nitrogen (N) to phosphorus (P) ratio is unusually high, especially in the eastern basin (28:1) and primary production is limited by phosphorus availability. ADAMANT project contributes to new knowledge into how nutrients enter the marine environment through atmospheric deposition, how they are assimilated by organisms and how this influences carbon and nutrient fluxes. Experimental work has been combined with atmospheric and marine models. Important knowledge is obtained on nutrients deposition through mesocosm experiments on their uptake by the marine systems and their effects on the marine carbon cycle and food chain. Kinetic parameters of adsorption of acidic and organic volatile compounds in atmospheric samples of dust and marine salts are estimated in conjunction with solubility of N and P in mixtures contained in dust. Atmospheric and oceanographic models are coupled to create a system that is able to holistically simulate the effects of atmospheric deposition on the marine environment over time, beginning from the pre-industrial era until the future years (hind cast, present and forecast simulations). This research has been co-financed by the European Union (European Social Fund) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework - Research Funding Program: THALES, Investing in knowledge society through European Social Fund.

  2. Leaf Relative Water Content Estimated from Leaf Reflectance and Transmittance

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2016-01-01

    Remotely sensing the water status of plants and the water content of canopies remain long term goals of remote sensing research. In the research we report here, we used optical polarization techniques to monitor the light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both change nonlinearly. The result show that the nonlinearities cancel in the ratio R/T, which appears linearly related to RWC for RWC less than 90%. The results suggest that potentially leaf water status and perhaps even canopy water status could be monitored starting from leaf and canopy optical measurements.

  3. Water relations, thallus structure and photosynthesis in Negev Desert lichens

    NASA Technical Reports Server (NTRS)

    Palmer, R. J. Jr; Friedmann, E. I.

    1990-01-01

    The role of lichen thallus structure in water relations and photosynthesis was studied in Ramalina maciformis (Del.) Bory and Teloschistes lacunosus (Rupr.) Sav. Water-vapour adsorption and photosynthesis are dependent upon thallus integrity and are significantly lower in crushed thalli. Cultured phycobiont (Trebouxia sp.) cells are capable of photosynthesis over the same relative humidity range (> 80% RH) as are intact lichens. Thus, water-vapour adsorption by the thallus and physiological adaptation of the phycobiont contribute to the ability of these lichens to photosynthesize in an arid environment. Despite differences in their anatomical structure and water-uptake characteristics, their CO2 incorporation is similar. The two lichens use liquid water differently and they occupy different niches.

  4. High-resolution atmospheric water vapor measurements with a scanning differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Späth, F.; Behrendt, A.; Muppa, S. K.; Metzendorf, S.; Riede, A.; Wulfmeyer, V.

    2014-11-01

    The scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) is presented. The UHOH DIAL is equipped with an injection-seeded frequency-stabilized high-power Ti:sapphire laser operated at 818 nm with a repetition rate of 250 Hz. A scanning transceiver unit with a 80 cm primary mirror receives the atmospheric backscatter signals. The system is capable of water vapor measurements with temporal resolutions of a few seconds and a range resolution between 30 and 300 m at daytime. It allows to investigate surface-vegetation-atmosphere exchange processes with high resolution. In this paper, we present the design of the instrument and illustrate its performance with recent water vapor measurements taken in Stuttgart-Hohenheim and in the frame of the HD(CP)2 Observational Prototype Experiment (HOPE). HOPE was located near research center Jülich, in western Germany, in spring 2013 as part of the project "High Definition of Clouds and Precipitation for advancing Climate Prediction" (HD(CP)2). Scanning measurements reveal the 3-dimensional structures of the water vapor field. The influence of uncertainties within the calculation of the absorption cross-section at wavelengths around 818 nm for the WV retrieval is discussed. Radiosonde intercomparisons show a very small bias between the instruments of only (-0.04 ± 0.11) g m-3 or (-1.0 ± 2.3) % in the height range of 0.5 to 3 km.

  5. Simple Evaluation Method of Atmospheric Plasma Irradiation Dose using pH of Water

    NASA Astrophysics Data System (ADS)

    Koga, Kazunori; Sarinont, Thapanut; Amano, Takaaki; Seo, Hyunwoong; Itagaki, Naho; Nakatsu, Yoshimichi; Tanaka, Akiyo; Shiratani, Masaharu

    2015-09-01

    Atmospheric discharge plasmas are promising for agricultural productivity improvements and novel medical therapies, because plasma provides high flux of short-lifetime reactive species at low temperature, leading to low damage to living body. For the plasma-bio applications, various kinds of plasma systems are employed, thus common evaluation methods are needed to compare plasma irradiation dose quantitatively among the systems. Here we offer simple evaluation method of plasma irradiation dose using pH of water. Experiments were carried out with a scalable DBD device. 300 μl of deionized water was prepared into the quartz 96 microwell plate at 3 mm below electrode. The pH value has been measured just after 10 minutes irradiation. The pH value was evaluated as a function of plasma irradiation dose. Atmospheric air plasma irradiation decreases pH of water with increasing the dose. We also measured concentrations of chemical species such as nitrites, nitrates and H2O2. The results indicate our method is promising to evaluate plasma irradiation dose quantitatively.

  6. Photon and Water Mediated Sulfur Oxide and Acid Chemistry in the Atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Kroll, Jay A.; Vaida, Veronica

    2014-06-01

    Sulfur compounds have been observed in the atmospheres of a number of planetary bodies in our solar system including Venus, Earth, Mars, Io, Europa, and Callisto. The global cloud cover on Venus located at an altitude between 50 and 80 kilometers is composed primarily of sulfuric acid (H_2SO_4) and water. Planetary photochemical models have attempted to explain observations of sulfuric acid and sulfur oxides with significant discrepancies remaining between models and observation. In particular, high SO_2 mixing ratios are observed above 90 km which exceed model predictions by orders of magnitude. Work recently done in the Vaida lab has shown red light can drive photochemistry through overtone pumping for acids like H_2SO_4 and has been successful in explaining much of the sulfur chemistry in Earth's atmosphere. Water can have a number of interesting effects such as catalysis, suppression, and anti-catalysis of thermal and photochemical processes. We investigate the role of water complexes in the hydration of sulfur oxides and dehydration of sulfur acids and present spectroscopic studies to document such effects. We investigate these reactions using FTIR and UV/Vis spectroscopy and will report on our findings.

  7. An automated analyzer to measure surface-atmosphere exchange fluxes of water soluble inorganic aerosol compounds and reactive trace gases.

    PubMed

    Thomas, Rick M; Trebs, Ivonne; Otjes, René; Jongejan, Piet A C; Ten Brink, Harry; Phillips, Gavin; Kortner, Michael; Meixner, Franz X; Nemitz, Eiko

    2009-03-