Sample records for relative codon adaptation

  1. Relative codon adaptation: a generic codon bias index for prediction of gene expression.

    PubMed

    Fox, Jesse M; Erill, Ivan

    2010-06-01

    The development of codon bias indices (CBIs) remains an active field of research due to their myriad applications in computational biology. Recently, the relative codon usage bias (RCBS) was introduced as a novel CBI able to estimate codon bias without using a reference set. The results of this new index when applied to Escherichia coli and Saccharomyces cerevisiae led the authors of the original publications to conclude that natural selection favours higher expression and enhanced codon usage optimization in short genes. Here, we show that this conclusion was flawed and based on the systematic oversight of an intrinsic bias for short sequences in the RCBS index and of biases in the small data sets used for validation in E. coli. Furthermore, we reveal that how the RCBS can be corrected to produce useful results and how its underlying principle, which we here term relative codon adaptation (RCA), can be made into a powerful reference-set-based index that directly takes into account the genomic base composition. Finally, we show that RCA outperforms the codon adaptation index (CAI) as a predictor of gene expression when operating on the CAI reference set and that this improvement is significantly larger when analysing genomes with high mutational bias.

  2. A Major Controversy in Codon-Anticodon Adaptation Resolved by a New Codon Usage Index

    PubMed Central

    Xia, Xuhua

    2015-01-01

    Two alternative hypotheses attribute different benefits to codon-anticodon adaptation. The first assumes that protein production is rate limited by both initiation and elongation and that codon-anticodon adaptation would result in higher elongation efficiency and more efficient and accurate protein production, especially for highly expressed genes. The second claims that protein production is rate limited only by initiation efficiency but that improved codon adaptation and, consequently, increased elongation efficiency have the benefit of increasing ribosomal availability for global translation. To test these hypotheses, a recent study engineered a synthetic library of 154 genes, all encoding the same protein but differing in degrees of codon adaptation, to quantify the effect of differential codon adaptation on protein production in Escherichia coli. The surprising conclusion that “codon bias did not correlate with gene expression” and that “translation initiation, not elongation, is rate-limiting for gene expression” contradicts the conclusion reached by many other empirical studies. In this paper, I resolve the contradiction by reanalyzing the data from the 154 sequences. I demonstrate that translation elongation accounts for about 17% of total variation in protein production and that the previous conclusion is due to the use of a codon adaptation index (CAI) that does not account for the mutation bias in characterizing codon adaptation. The effect of translation elongation becomes undetectable only when translation initiation is unrealistically slow. A new index of translation elongation ITE is formulated to facilitate studies on the efficiency and evolution of the translation machinery. PMID:25480780

  3. Does adaptation to vertebrate codon usage relate to flavivirus emergence potential?

    PubMed Central

    Freire, Caio César de Melo

    2018-01-01

    Codon adaptation index (CAI) is a measure of synonymous codon usage biases given a usage reference. Through mutation, selection, and drift, viruses can optimize their replication efficiency and produce more offspring, which could increase the chance of secondary transmission. To evaluate how higher CAI towards the host has been associated with higher viral titers, we explored temporal trends of several historic and extensively sequenced zoonotic flaviviruses and relationships within the genus itself. To showcase evolutionary and epidemiological relationships associated with silent, adaptive synonymous changes of viruses, we used codon usage tables from human housekeeping and antiviral immune genes, as well as tables from arthropod vectors and vertebrate species involved in the flavivirus maintenance cycle. We argue that temporal trends of CAI changes could lead to a better understanding of zoonotic emergences, evolutionary dynamics, and host adaptation. CAI appears to help illustrate historically relevant trends of well-characterized viruses, in different viral species and genetic diversity within a single species. CAI can be a useful tool together with in vivo and in vitro kinetics, phylodynamics, and additional functional genomics studies to better understand species trafficking and viral emergence in a new host. PMID:29385205

  4. Codon adaptation and synonymous substitution rate in diatom plastid genes.

    PubMed

    Morton, Brian R; Sorhannus, Ulf; Fox, Martin

    2002-07-01

    Diatom plastid genes are examined with respect to codon adaptation and rates of silent substitution (Ks). It is shown that diatom genes follow the same pattern of codon usage as other plastid genes studied previously. Highly expressed diatom genes display codon adaptation, or a bias toward specific major codons, and these major codons are the same as those in red algae, green algae, and land plants. It is also found that there is a strong correlation between Ks and variation in codon adaptation across diatom genes, providing the first evidence for such a relationship in the algae. It is argued that this finding supports the notion that the correlation arises from selective constraints, not from variation in mutation rate among genes. Finally, the diatom genes are examined with respect to variation in Ks among different synonymous groups. Diatom genes with strong codon adaptation do not show the same variation in synonymous substitution rate among codon groups as the flowering plant psbA gene which, previous studies have shown, has strong codon adaptation but unusually high rates of silent change in certain synonymous groups. The lack of a similar finding in diatoms supports the suggestion that the feature is unique to the flowering plant psbA due to recent relaxations in selective pressure in that lineage.

  5. Analysis of Synonymous Codon Usage Bias of Zika Virus and Its Adaption to the Hosts

    PubMed Central

    Wang, Hongju; Liu, Siqing; Zhang, Bo

    2016-01-01

    Zika virus (ZIKV) is a mosquito-borne virus (arbovirus) in the family Flaviviridae, and the symptoms caused by ZIKV infection in humans include rash, fever, arthralgia, myalgia, asthenia and conjunctivitis. Codon usage bias analysis can reveal much about the molecular evolution and host adaption of ZIKV. To gain insight into the evolutionary characteristics of ZIKV, we performed a comprehensive analysis on the codon usage pattern in 46 ZIKV strains by calculating the effective number of codons (ENc), codon adaptation index (CAI), relative synonymous codon usage (RSCU), and other indicators. The results indicate that the codon usage bias of ZIKV is relatively low. Several lines of evidence support the hypothesis that translational selection plays a role in shaping the codon usage pattern of ZIKV. The results from a correspondence analysis (CA) indicate that other factors, such as base composition, aromaticity, and hydrophobicity may also be involved in shaping the codon usage pattern of ZIKV. Additionally, the results from a comparative analysis of RSCU between ZIKV and its hosts suggest that ZIKV tends to evolve codon usage patterns that are comparable to those of its hosts. Moreover, selection pressure from Homo sapiens on the ZIKV RSCU patterns was found to be dominant compared with that from Aedes aegypti and Aedes albopictus. Taken together, both natural translational selection and mutation pressure are important for shaping the codon usage pattern of ZIKV. Our findings contribute to understanding the evolution of ZIKV and its adaption to its hosts. PMID:27893824

  6. Genomic adaptation of the ISA virus to Salmo salar codon usage.

    PubMed

    Tello, Mario; Vergara, Francisco; Spencer, Eugenio

    2013-07-05

    The ISA virus (ISAV) is an Orthomyxovirus whose genome encodes for at least 10 proteins. Low protein identity and lack of genetic tools have hampered the study of the molecular mechanism behind its virulence. It has been shown that viral codon usage controls several processes such as translational efficiency, folding, tuning of protein expression, antigenicity and virulence. Despite this, the possible role that adaptation to host codon usage plays in virulence and viral evolution has not been studied in ISAV. Intergenomic adaptation between viral and host genomes was calculated using the codon adaptation index score with EMBOSS software and the Kazusa database. Classification of host genes according to GeneOnthology was performed using Blast2go. A non parametric test was applied to determine the presence of significant correlations among CAI, mortality and time. Using the codon adaptation index (CAI) score, we found that the encoding genes for nucleoprotein, matrix protein M1 and antagonist of Interferon I signaling (NS1) are the ISAV genes that are more adapted to host codon usage, in agreement with their requirement for production of viral particles and inactivation of antiviral responses. Comparison to host genes showed that ISAV shares CAI values with less than 0.45% of Salmo salar genes. GeneOntology classification of host genes showed that ISAV genes share CAI values with genes from less than 3% of the host biological process, far from the 14% shown by Influenza A viruses and closer to the 5% shown by Influenza B and C. As well, we identified a positive correlation (p<0.05) between CAI values of a virus and the duration of the outbreak disease in given salmon farms, as well as a weak relationship between codon adaptation values of PB1 and the mortality rates of a set of ISA viruses. Our analysis shows that ISAV is the least adapted viral Salmo salar pathogen and Orthomyxovirus family member less adapted to host codon usage, avoiding the general behavior of

  7. Genomic adaptation of the ISA virus to Salmo salar codon usage

    PubMed Central

    2013-01-01

    Background The ISA virus (ISAV) is an Orthomyxovirus whose genome encodes for at least 10 proteins. Low protein identity and lack of genetic tools have hampered the study of the molecular mechanism behind its virulence. It has been shown that viral codon usage controls several processes such as translational efficiency, folding, tuning of protein expression, antigenicity and virulence. Despite this, the possible role that adaptation to host codon usage plays in virulence and viral evolution has not been studied in ISAV. Methods Intergenomic adaptation between viral and host genomes was calculated using the codon adaptation index score with EMBOSS software and the Kazusa database. Classification of host genes according to GeneOnthology was performed using Blast2go. A non parametric test was applied to determine the presence of significant correlations among CAI, mortality and time. Results Using the codon adaptation index (CAI) score, we found that the encoding genes for nucleoprotein, matrix protein M1 and antagonist of Interferon I signaling (NS1) are the ISAV genes that are more adapted to host codon usage, in agreement with their requirement for production of viral particles and inactivation of antiviral responses. Comparison to host genes showed that ISAV shares CAI values with less than 0.45% of Salmo salar genes. GeneOntology classification of host genes showed that ISAV genes share CAI values with genes from less than 3% of the host biological process, far from the 14% shown by Influenza A viruses and closer to the 5% shown by Influenza B and C. As well, we identified a positive correlation (p<0.05) between CAI values of a virus and the duration of the outbreak disease in given salmon farms, as well as a weak relationship between codon adaptation values of PB1 and the mortality rates of a set of ISA viruses. Conclusions Our analysis shows that ISAV is the least adapted viral Salmo salar pathogen and Orthomyxovirus family member less adapted to host codon

  8. Pandemic influenza A virus codon usage revisited: biases, adaptation and implications for vaccine strain development

    PubMed Central

    2012-01-01

    Background Influenza A virus (IAV) is a member of the family Orthomyxoviridae and contains eight segments of a single-stranded RNA genome with negative polarity. The first influenza pandemic of this century was declared in April of 2009, with the emergence of a novel H1N1 IAV strain (H1N1pdm) in Mexico and USA. Understanding the extent and causes of biases in codon usage is essential to the understanding of viral evolution. A comprehensive study to investigate the effect of selection pressure imposed by the human host on the codon usage of an emerging, pandemic IAV strain and the trends in viral codon usage involved over the pandemic time period is much needed. Results We performed a comprehensive codon usage analysis of 310 IAV strains from the pandemic of 2009. Highly biased codon usage for Ala, Arg, Pro, Thr and Ser were found. Codon usage is strongly influenced by underlying biases in base composition. When correspondence analysis (COA) on relative synonymous codon usage (RSCU) is applied, the distribution of IAV ORFs in the plane defined by the first two major dimensional factors showed that different strains are located at different places, suggesting that IAV codon usage also reflects an evolutionary process. Conclusions A general association between codon usage bias, base composition and poor adaptation of the virus to the respective host tRNA pool, suggests that mutational pressure is the main force shaping H1N1 pdm IAV codon usage. A dynamic process is observed in the variation of codon usage of the strains enrolled in these studies. These results suggest a balance of mutational bias and natural selection, which allow the virus to explore and re-adapt its codon usage to different environments. Recoding of IAV taking into account codon bias, base composition and adaptation to host tRNA may provide important clues to develop new and appropriate vaccines. PMID:23134595

  9. The Relation of Codon Bias to Tissue-Specific Gene Expression in Arabidopsis thaliana

    PubMed Central

    Camiolo, Salvatore; Farina, Lorenzo; Porceddu, Andrea

    2012-01-01

    The codon composition of coding sequences plays an important role in the regulation of gene expression. Herein, we report systematic differences in the usage of synonymous codons among Arabidopsis thaliana genes that are expressed specifically in distinct tissues. Although we observed that both regionally and transcriptionally associated mutational biases were associated significantly with codon bias, they could not explain the observed differences fully. Similarly, given that transcript abundances did not account for the differences in codon usage, it is unlikely that selection for translational efficiency can account exclusively for the observed codon bias. Thus, we considered the possible evolution of codon bias as an adaptive response to the different abundances of tRNAs in different tissues. Our analysis demonstrated that in some cases, codon usage in genes that were expressed in a broad range of tissues was influenced primarily by the tissue in which the gene was expressed maximally. On the basis of this finding we propose that genes that are expressed in certain tissues might show a tissue-specific compositional signature in relation to codon usage. These findings might have implications for the design of transgenes in relation to optimizing their expression. PMID:22865738

  10. Codon usage bias reveals genomic adaptations to environmental conditions in an acidophilic consortium.

    PubMed

    Hart, Andrew; Cortés, María Paz; Latorre, Mauricio; Martinez, Servet

    2018-01-01

    The analysis of codon usage bias has been widely used to characterize different communities of microorganisms. In this context, the aim of this work was to study the codon usage bias in a natural consortium of five acidophilic bacteria used for biomining. The codon usage bias of the consortium was contrasted with genes from an alternative collection of acidophilic reference strains and metagenome samples. Results indicate that acidophilic bacteria preferentially have low codon usage bias, consistent with both their capacity to live in a wide range of habitats and their slow growth rate, a characteristic probably acquired independently from their phylogenetic relationships. In addition, the analysis showed significant differences in the unique sets of genes from the autotrophic species of the consortium in relation to other acidophilic organisms, principally in genes which code for proteins involved in metal and oxidative stress resistance. The lower values of codon usage bias obtained in this unique set of genes suggest higher transcriptional adaptation to living in extreme conditions, which was probably acquired as a measure for resisting the elevated metal conditions present in the mine.

  11. Genome-wide analysis reveals class and gene specific codon usage adaptation in avian paramyxoviruses 1

    USDA-ARS?s Scientific Manuscript database

    In order to characterize the evolutionary adaptations of avian paramyxovirus 1 (APMV-1) genomes, we have compared codon usage and codon adaptation indexes among groups of Newcastle disease viruses that differ in biological, ecological, and genetic characteristics. We have used available GenBank com...

  12. Detecting Adaptation in Protein-Coding Genes Using a Bayesian Site-Heterogeneous Mutation-Selection Codon Substitution Model.

    PubMed

    Rodrigue, Nicolas; Lartillot, Nicolas

    2017-01-01

    Codon substitution models have traditionally attempted to uncover signatures of adaptation within protein-coding genes by contrasting the rates of synonymous and non-synonymous substitutions. Another modeling approach, known as the mutation-selection framework, attempts to explicitly account for selective patterns at the amino acid level, with some approaches allowing for heterogeneity in these patterns across codon sites. Under such a model, substitutions at a given position occur at the neutral or nearly neutral rate when they are synonymous, or when they correspond to replacements between amino acids of similar fitness; substitutions from high to low (low to high) fitness amino acids have comparatively low (high) rates. Here, we study the use of such a mutation-selection framework as a null model for the detection of adaptation. Following previous works in this direction, we include a deviation parameter that has the effect of capturing the surplus, or deficit, in non-synonymous rates, relative to what would be expected under a mutation-selection modeling framework that includes a Dirichlet process approach to account for across-codon-site variation in amino acid fitness profiles. We use simulations, along with a few real data sets, to study the behavior of the approach, and find it to have good power with a low false-positive rate. Altogether, we emphasize the potential of recent mutation-selection models in the detection of adaptation, calling for further model refinements as well as large-scale applications. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Codon usage bias in phylum Actinobacteria: relevance to environmental adaptation and host pathogenicity.

    PubMed

    Lal, Devi; Verma, Mansi; Behura, Susanta K; Lal, Rup

    2016-10-01

    Actinobacteria are Gram-positive bacteria commonly found in soil, freshwater and marine ecosystems. In this investigation, bias in codon usages of ninety actinobacterial genomes was analyzed by estimating different indices of codon bias such as Nc (effective number of codons), SCUO (synonymous codon usage order), RSCU (relative synonymous codon usage), as well as sequence patterns of codon contexts. The results revealed several characteristic features of codon usage in Actinobacteria, as follows: 1) C- or G-ending codons are used frequently in comparison with A- and U ending codons; 2) there is a direct relationship of GC content with use of specific amino acids such as alanine, proline and glycine; 3) there is an inverse relationship between GC content and Nc estimates, 4) there is low SCUO value (<0.5) for most genes; and 5) GCC-GCC, GCC-GGC, GCC-GAG and CUC-GAC are the frequent context sequences among codons. This study highlights the fact that: 1) in Actinobacteria, extreme GC content and codon bias are driven by mutation rather than natural selection; (2) traits like aerobicity are associated with effective natural selection and therefore low GC content and low codon bias, demonstrating the role of both mutational bias and translational selection in shaping the habitat and phenotype of actinobacterial species. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  14. Codon optimization underpins generalist parasitism in fungi

    PubMed Central

    Badet, Thomas; Peyraud, Remi; Mbengue, Malick; Navaud, Olivier; Derbyshire, Mark; Oliver, Richard P; Barbacci, Adelin; Raffaele, Sylvain

    2017-01-01

    The range of hosts that parasites can infect is a key determinant of the emergence and spread of disease. Yet, the impact of host range variation on the evolution of parasite genomes remains unknown. Here, we show that codon optimization underlies genome adaptation in broad host range parasites. We found that the longer proteins encoded by broad host range fungi likely increase natural selection on codon optimization in these species. Accordingly, codon optimization correlates with host range across the fungal kingdom. At the species level, biased patterns of synonymous substitutions underpin increased codon optimization in a generalist but not a specialist fungal pathogen. Virulence genes were consistently enriched in highly codon-optimized genes of generalist but not specialist species. We conclude that codon optimization is related to the capacity of parasites to colonize multiple hosts. Our results link genome evolution and translational regulation to the long-term persistence of generalist parasitism. DOI: http://dx.doi.org/10.7554/eLife.22472.001 PMID:28157073

  15. A detailed analysis of codon usage patterns and influencing factors in Zika virus.

    PubMed

    Singh, Niraj K; Tyagi, Anuj

    2017-07-01

    Recent outbreaks of Zika virus (ZIKV) in Africa, Latin America, Europe, and Southeast Asia have resulted in serious health concerns. To understand more about evolution and transmission of ZIKV, detailed codon usage analysis was performed for all available strains. A high effective number of codons (ENC) value indicated the presence of low codon usage bias in ZIKV. The effect of mutational pressure on codon usage bias was confirmed by significant correlations between nucleotide compositions at third codon positions and ENCs. Correlation analysis between Gravy values, Aroma values and nucleotide compositions at third codon positions also indicated some influence of natural selection. However, the low codon adaptation index (CAI) value of ZIKV with reference to human and mosquito indicated poor adaptation of ZIKV codon usage towards its hosts, signifying that natural selection has a weaker influence than mutational pressure. Additionally, relative dinucleotide frequencies, geographical distribution, and evolutionary processes also influenced the codon usage pattern to some extent.

  16. Analysis of synonymous codon usage patterns in the genus Rhizobium.

    PubMed

    Wang, Xinxin; Wu, Liang; Zhou, Ping; Zhu, Shengfeng; An, Wei; Chen, Yu; Zhao, Lin

    2013-11-01

    The codon usage patterns of rhizobia have received increasing attention. However, little information is available regarding the conserved features of the codon usage patterns in a typical rhizobial genus. The codon usage patterns of six completely sequenced strains belonging to the genus Rhizobium were analysed as model rhizobia in the present study. The relative neutrality plot showed that selection pressure played a role in codon usage in the genus Rhizobium. Spearman's rank correlation analysis combined with correspondence analysis (COA) showed that the codon adaptation index and the effective number of codons (ENC) had strong correlation with the first axis of the COA, which indicated the important role of gene expression level and the ENC in the codon usage patterns in this genus. The relative synonymous codon usage of Cys codons had the strongest correlation with the second axis of the COA. Accordingly, the usage of Cys codons was another important factor that shaped the codon usage patterns in Rhizobium genomes and was a conserved feature of the genus. Moreover, the comparison of codon usage between highly and lowly expressed genes showed that 20 unique preferred codons were shared among Rhizobium genomes, revealing another conserved feature of the genus. This is the first report of the codon usage patterns in the genus Rhizobium.

  17. Detecting consistent patterns of directional adaptation using differential selection codon models.

    PubMed

    Parto, Sahar; Lartillot, Nicolas

    2017-06-23

    Phylogenetic codon models are often used to characterize the selective regimes acting on protein-coding sequences. Recent methodological developments have led to models explicitly accounting for the interplay between mutation and selection, by modeling the amino acid fitness landscape along the sequence. However, thus far, most of these models have assumed that the fitness landscape is constant over time. Fluctuations of the fitness landscape may often be random or depend on complex and unknown factors. However, some organisms may be subject to systematic changes in selective pressure, resulting in reproducible molecular adaptations across independent lineages subject to similar conditions. Here, we introduce a codon-based differential selection model, which aims to detect and quantify the fine-grained consistent patterns of adaptation at the protein-coding level, as a function of external conditions experienced by the organism under investigation. The model parameterizes the global mutational pressure, as well as the site- and condition-specific amino acid selective preferences. This phylogenetic model is implemented in a Bayesian MCMC framework. After validation with simulations, we applied our method to a dataset of HIV sequences from patients with known HLA genetic background. Our differential selection model detects and characterizes differentially selected coding positions specifically associated with two different HLA alleles. Our differential selection model is able to identify consistent molecular adaptations as a function of repeated changes in the environment of the organism. These models can be applied to many other problems, ranging from viral adaptation to evolution of life-history strategies in plants or animals.

  18. Complex codon usage pattern and compositional features of retroviruses.

    PubMed

    RoyChoudhury, Sourav; Mukherjee, Debaprasad

    2013-01-01

    Retroviruses infect a wide range of organisms including humans. Among them, HIV-1, which causes AIDS, has now become a major threat for world health. Some of these viruses are also potential gene transfer vectors. In this study, the patterns of synonymous codon usage in retroviruses have been studied through multivariate statistical methods on ORFs sequences from the available 56 retroviruses. The principal determinant for evolution of the codon usage pattern in retroviruses seemed to be the compositional constraints, while selection for translation of the viral genes plays a secondary role. This was further supported by multivariate analysis on relative synonymous codon usage. Thus, it seems that mutational bias might have dominated role over translational selection in shaping the codon usage of retroviruses. Codon adaptation index was used to identify translationally optimal codons among genes from retroviruses. The comparative analysis of the preferred and optimal codons among different retroviral groups revealed that four codons GAA, AAA, AGA, and GGA were significantly more frequent in most of the retroviral genes inspite of some differences. Cluster analysis also revealed that phylogenetically related groups of retroviruses have probably evolved their codon usage in a concerted manner under the influence of their nucleotide composition.

  19. Genome-wide comparative analysis of codon usage bias and codon context patterns among cyanobacterial genomes.

    PubMed

    Prabha, Ratna; Singh, Dhananjaya P; Sinha, Swati; Ahmad, Khurshid; Rai, Anil

    2017-04-01

    With the increasing accumulation of genomic sequence information of prokaryotes, the study of codon usage bias has gained renewed attention. The purpose of this study was to examine codon selection pattern within and across cyanobacterial species belonging to diverse taxonomic orders and habitats. We performed detailed comparative analysis of cyanobacterial genomes with respect to codon bias. Our analysis reflects that in cyanobacterial genomes, A- and/or T-ending codons were used predominantly in the genes whereas G- and/or C-ending codons were largely avoided. Variation in the codon context usage of cyanobacterial genes corresponded to the clustering of cyanobacteria as per their GC content. Analysis of codon adaptation index (CAI) and synonymous codon usage order (SCUO) revealed that majority of genes are associated with low codon bias. Codon selection pattern in cyanobacterial genomes reflected compositional constraints as major influencing factor. It is also identified that although, mutational constraint may play some role in affecting codon usage bias in cyanobacteria, compositional constraint in terms of genomic GC composition coupled with environmental factors affected codon selection pattern in cyanobacterial genomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Canine parvovirus type 2 (CPV-2) and Feline panleukopenia virus (FPV) codon bias analysis reveals a progressive adaptation to the new niche after the host jump.

    PubMed

    Franzo, Giovanni; Tucciarone, Claudia Maria; Cecchinato, Mattia; Drigo, Michele

    2017-09-01

    Based on virus dependence from host cell machinery, their codon usage is expected to show a strong relation with the host one. Even if this association has been stated, especially for bacteria viruses, the linkage is considered to be less consistent for more complex organisms and a codon bias adaptation after host jump has never been proven. Canine parvovirus type 2 (CPV-2) was selected as a model because it represents a well characterized case of host jump, originating from Feline panleukopenia virus (FPV). The current study demonstrates that the adaptation to specific tissue and host codon bias affected CPV-2 evolution. Remarkably, FPV and CPV-2 showed a higher closeness toward the codon bias of the tissues they display the higher tropism for. Moreover, after the host jump, a clear and significant trend was evidenced toward a reduction in the distance between CPV-2 and the dog codon bias over time. This evidence was not confirmed for FPV, suggesting that an equilibrium has been reached during the prolonged virus-host co-evolution. Additionally, the presence of an intermediate pattern displayed by some strains infecting wild species suggests that these could have facilitated the host switch also by acting on codon bias. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Revelation of Influencing Factors in Overall Codon Usage Bias of Equine Influenza Viruses

    PubMed Central

    Bhatia, Sandeep; Sood, Richa; Selvaraj, Pavulraj

    2016-01-01

    Equine influenza viruses (EIVs) of H3N8 subtype are culprits of severe acute respiratory infections in horses, and are still responsible for significant outbreaks worldwide. Adaptability of influenza viruses to a particular host is significantly influenced by their codon usage preference, due to an absolute dependence on the host cellular machinery for their replication. In the present study, we analyzed genome-wide codon usage patterns in 92 EIV strains, including both H3N8 and H7N7 subtypes by computing several codon usage indices and applying multivariate statistical methods. Relative synonymous codon usage (RSCU) analysis disclosed bias of preferred synonymous codons towards A/U-ended codons. The overall codon usage bias in EIVs was slightly lower, and mainly affected by the nucleotide compositional constraints as inferred from the RSCU and effective number of codon (ENc) analysis. Our data suggested that codon usage pattern in EIVs is governed by the interplay of mutation pressure, natural selection from its hosts and undefined factors. The H7N7 subtype was found less fit to its host (horse) in comparison to H3N8, by possessing higher codon bias, lower mutation pressure and much less adaptation to tRNA pool of equine cells. To the best of our knowledge, this is the first report describing the codon usage analysis of the complete genomes of EIVs. The outcome of our study is likely to enhance our understanding of factors involved in viral adaptation, evolution, and fitness towards their hosts. PMID:27119730

  2. Codon usage bias in prokaryotic pyrimidine-ending codons is associated with the degeneracy of the encoded amino acids

    PubMed Central

    Wald, Naama; Alroy, Maya; Botzman, Maya; Margalit, Hanah

    2012-01-01

    Synonymous codons are unevenly distributed among genes, a phenomenon termed codon usage bias. Understanding the patterns of codon bias and the forces shaping them is a major step towards elucidating the adaptive advantage codon choice can confer at the level of individual genes and organisms. Here, we perform a large-scale analysis to assess codon usage bias pattern of pyrimidine-ending codons in highly expressed genes in prokaryotes. We find a bias pattern linked to the degeneracy of the encoded amino acid. Specifically, we show that codon-pairs that encode two- and three-fold degenerate amino acids are biased towards the C-ending codon while codons encoding four-fold degenerate amino acids are biased towards the U-ending codon. This codon usage pattern is widespread in prokaryotes, and its strength is correlated with translational selection both within and between organisms. We show that this bias is associated with an improved correspondence with the tRNA pool, avoidance of mis-incorporation errors during translation and moderate stability of codon–anticodon interaction, all consistent with more efficient translation. PMID:22581775

  3. Codon Usage Patterns of Tyrosinase Genes in Clonorchis sinensis.

    PubMed

    Bae, Young-An

    2017-04-01

    Codon usage bias (CUB) is a unique property of genomes and has contributed to the better understanding of the molecular features and the evolution processes of particular gene. In this study, genetic indices associated with CUB, including relative synonymous codon usage and effective numbers of codons, as well as the nucleotide composition, were investigated in the Clonorchis sinensis tyrosinase genes and their platyhelminth orthologs, which play an important role in the eggshell formation. The relative synonymous codon usage patterns substantially differed among tyrosinase genes examined. In a neutrality analysis, the correlation between GC 12 and GC 3 was statistically significant, and the regression line had a relatively gradual slope (0.218). NC-plot, i.e., GC 3 vs effective number of codons (ENC), showed that most of the tyrosinase genes were below the expected curve. The codon adaptation index (CAI) values of the platyhelminth tyrosinases had a narrow distribution between 0.685/0.714 and 0.797/0.837, and were negatively correlated with their ENC. Taken together, these results suggested that CUB in the tyrosinase genes seemed to be basically governed by selection pressures rather than mutational bias, although the latter factor provided an additional force in shaping CUB of the C. sinensis and Opisthorchis viverrini genes. It was also apparent that the equilibrium point between selection pressure and mutational bias is much more inclined to selection pressure in highly expressed C. sinensis genes, than in poorly expressed genes.

  4. Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding.

    PubMed

    Pechmann, Sebastian; Frydman, Judith

    2013-02-01

    The choice of codons can influence local translation kinetics during protein synthesis. Whether codon preference is linked to cotranslational regulation of polypeptide folding remains unclear. Here, we derive a revised translational efficiency scale that incorporates the competition between tRNA supply and demand. Applying this scale to ten closely related yeast species, we uncover the evolutionary conservation of codon optimality in eukaryotes. This analysis reveals universal patterns of conserved optimal and nonoptimal codons, often in clusters, which associate with the secondary structure of the translated polypeptides independent of the levels of expression. Our analysis suggests an evolved function for codon optimality in regulating the rhythm of elongation to facilitate cotranslational polypeptide folding, beyond its previously proposed role of adapting to the cost of expression. These findings establish how mRNA sequences are generally under selection to optimize the cotranslational folding of corresponding polypeptides.

  5. Molecular adaptation in Rubisco: Discriminating between convergent evolution and positive selection using mechanistic and classical codon models.

    PubMed

    Parto, Sahar; Lartillot, Nicolas

    2018-01-01

    Rubisco (Ribulose-1, 5-biphosphate carboxylase/oxygenase) is the most important enzyme on earth, catalyzing the first step of photosynthetic CO2 fixation. So, without it, there would be no storing of the sun's energy in plants. Molecular adaptation of Rubisco to C4 photosynthetic pathway has attracted a lot of attention. C4 plants, which comprise less than 5% of land plants, have evolved more efficient photosynthesis compared to C3 plants. Interestingly, a large number of independent transitions from C3 to C4 phenotype have occurred. Each time, the Rubisco enzyme has been subject to similar changes in selective pressure, thus providing an excellent model for convergent evolution at the molecular level. Molecular adaptation is often identified with positive selection and is typically characterized by an elevated ratio of non-synonymous to synonymous substitution rate (dN/dS). However, convergent adaptation is expected to leave a different molecular signature, taking the form of repeated transitions toward identical or similar amino acids. Here, we used a previously introduced codon-based differential-selection model to detect and quantify consistent patterns of convergent adaptation in Rubisco in eudicots. We further contrasted our results with those obtained by classical codon models based on the estimation of dN/dS. We found that the two classes of models tend to select distinct, although overlapping, sets of positions. This discrepancy in the results illustrates the conceptual difference between these models while emphasizing the need to better discriminate between qualitatively different selective regimes, by using a broader class of codon models than those currently considered in molecular evolutionary studies.

  6. Characterization of codon usage pattern and influencing factors in Japanese encephalitis virus.

    PubMed

    Singh, Niraj K; Tyagi, Anuj; Kaur, Rajinder; Verma, Ramneek; Gupta, Praveen K

    2016-08-02

    Recently, several outbreaks of Japanese encephalitis (JE), caused by Japanese encephalitis virus (JEV), have been reported and it has become cause of concern across the world. In this study, detailed analysis of JEV codon usage pattern was performed. The relative synonymous codon usage (RSCU) values along with mean effective number of codons (ENC) value of 55.30 indicated the presence of low codon usages bias in JEV. The effect of mutational pressure on codon usage bias was confirmed by significant correlations of A3s, U3s, G3s, C3s, GC3s, ENC values, with overall nucleotide contents (A%, U%, G%, C%, and GC%). The correlation analysis of A3s, U3s, G3s, C3s, GC3s, with axis values of correspondence analysis (CoA) further confirmed the role of mutational pressure. However, the correlation analysis of Gravy values and Aroma values with A3s, U3s, G3s, C3s, and GC3s, indicated the presence of natural selection on codon usage bias in addition to mutational pressure. The natural selection was further confirmed by codon adaptation index (CAI) analysis. Additionally, relative dinucleotide frequencies, geographical distribution, and evolutionary processes also influenced the codon usage pattern to some extent. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Non-uniqueness of factors constraint on the codon usage in Bombyx mori.

    PubMed

    Jia, Xian; Liu, Shuyu; Zheng, Hao; Li, Bo; Qi, Qi; Wei, Lei; Zhao, Taiyi; He, Jian; Sun, Jingchen

    2015-05-06

    The analysis of codon usage is a good way to understand the genetic and evolutionary characteristics of an organism. However, there are only a few reports related with the codon usage of the domesticated silkworm, Bombyx mori (B. mori). Hence, the codon usage of B. mori was analyzed here to reveal the constraint factors and it could be helpful to improve the bioreactor based on B. mori. A total of 1,097 annotated mRNA sequences from B. mori were analyzed, revealing there is only a weak codon bias. It also shows that the gene expression level is related to the GC content, and the amino acids with higher general average hydropathicity (GRAVY) and aromaticity (Aromo). And the genes on the primary axis are strongly positively correlated with the GC content, and GC3s. Meanwhile, the effective number of codons (ENc) is strongly correlated with codon adaptation index (CAI), gene length, and Aromo values. However, the ENc values are correlated with the second axis, which indicates that the codon usage in B. mori is affected by not only mutation pressure and natural selection, but also nucleotide composition and the gene expression level. It is also associated with Aromo values, and gene length. Additionally, B. mori has a greater relative discrepancy in codon preferences with Drosophila melanogaster (D. melanogaster) or Saccharomyces cerevisiae (S. cerevisiae) than with Arabidopsis thaliana (A. thaliana), Escherichia coli (E. coli), or Caenorhabditis elegans (C. elegans). The codon usage bias in B. mori is relatively weak, and many influence factors are found here, such as nucleotide composition, mutation pressure, natural selection, and expression level. Additionally, it is also associated with Aromo values, and gene length. Among them, natural selection might play a major role. Moreover, the "optimal codons" of B. mori are all encoded by G and C, which provides useful information for enhancing the gene expression in B. mori through codon optimization.

  8. Multiple Evolutionary Selections Involved in Synonymous Codon Usages in the Streptococcus agalactiae Genome.

    PubMed

    Ma, Yan-Ping; Ke, Hao; Liang, Zhi-Ling; Liu, Zhen-Xing; Hao, Le; Ma, Jiang-Yao; Li, Yu-Gu

    2016-02-24

    Streptococcus agalactiae is an important human and animal pathogen. To better understand the genetic features and evolution of S. agalactiae, multiple factors influencing synonymous codon usage patterns in S. agalactiae were analyzed in this study. A- and U-ending rich codons were used in S. agalactiae function genes through the overall codon usage analysis, indicating that Adenine (A)/Thymine (T) compositional constraints might contribute an important role to the synonymous codon usage pattern. The GC3% against the effective number of codon (ENC) value suggested that translational selection was the important factor for codon bias in the microorganism. Principal component analysis (PCA) showed that (i) mutational pressure was the most important factor in shaping codon usage of all open reading frames (ORFs) in the S. agalactiae genome; (ii) strand specific mutational bias was not capable of influencing the codon usage bias in the leading and lagging strands; and (iii) gene length was not the important factor in synonymous codon usage pattern in this organism. Additionally, the high correlation between tRNA adaptation index (tAI) value and codon adaptation index (CAI), frequency of optimal codons (Fop) value, reinforced the role of natural selection for efficient translation in S. agalactiae. Comparison of synonymous codon usage pattern between S. agalactiae and susceptible hosts (human and tilapia) showed that synonymous codon usage of S. agalactiae was independent of the synonymous codon usage of susceptible hosts. The study of codon usage in S. agalactiae may provide evidence about the molecular evolution of the bacterium and a greater understanding of evolutionary relationships between S. agalactiae and its hosts.

  9. Codon Usage Selection Can Bias Estimation of the Fraction of Adaptive Amino Acid Fixations.

    PubMed

    Matsumoto, Tomotaka; John, Anoop; Baeza-Centurion, Pablo; Li, Boyang; Akashi, Hiroshi

    2016-06-01

    A growing number of molecular evolutionary studies are estimating the proportion of adaptive amino acid substitutions (α) from comparisons of ratios of polymorphic and fixed DNA mutations. Here, we examine how violations of two of the model assumptions, neutral evolution of synonymous mutations and stationary base composition, affect α estimation. We simulated the evolution of coding sequences assuming weak selection on synonymous codon usage bias and neutral protein evolution, α = 0. We show that weak selection on synonymous mutations can give polymorphism/divergence ratios that yield α-hat (estimated α) considerably larger than its true value. Nonstationary evolution (changes in population size, selection, or mutation) can exacerbate such biases or, in some scenarios, give biases in the opposite direction, α-hat < α. These results demonstrate that two factors that appear to be prevalent among taxa, weak selection on synonymous mutations and non-steady-state nucleotide composition, should be considered when estimating α. Estimates of the proportion of adaptive amino acid fixations from large-scale analyses of Drosophila melanogaster polymorphism and divergence data are positively correlated with codon usage bias. Such patterns are consistent with α-hat inflation from weak selection on synonymous mutations and/or mutational changes within the examined gene trees. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. SENCA: A Multilayered Codon Model to Study the Origins and Dynamics of Codon Usage

    PubMed Central

    Pouyet, Fanny; Bailly-Bechet, Marc; Mouchiroud, Dominique; Guéguen, Laurent

    2016-01-01

    Gene sequences are the target of evolution operating at different levels, including the nucleotide, codon, and amino acid levels. Disentangling the impact of those different levels on gene sequences requires developing a probabilistic model with three layers. Here we present SENCA (site evolution of nucleotides, codons, and amino acids), a codon substitution model that separately describes 1) nucleotide processes which apply on all sites of a sequence such as the mutational bias, 2) preferences between synonymous codons, and 3) preferences among amino acids. We argue that most synonymous substitutions are not neutral and that SENCA provides more accurate estimates of selection compared with more classical codon sequence models. We study the forces that drive the genomic content evolution, intraspecifically in the core genome of 21 prokaryotes and interspecifically for five Enterobacteria. We retrieve the existence of a universal mutational bias toward AT, and that taking into account selection on synonymous codon usage has consequences on the measurement of selection on nonsynonymous substitutions. We also confirm that codon usage bias is mostly driven by selection on preferred codons. We propose new summary statistics to measure the relative importance of the different evolutionary processes acting on sequences. PMID:27401173

  11. Multiple Evolutionary Selections Involved in Synonymous Codon Usages in the Streptococcus agalactiae Genome

    PubMed Central

    Ma, Yan-Ping; Ke, Hao; Liang, Zhi-Ling; Liu, Zhen-Xing; Hao, Le; Ma, Jiang-Yao; Li, Yu-Gu

    2016-01-01

    Streptococcus agalactiae is an important human and animal pathogen. To better understand the genetic features and evolution of S. agalactiae, multiple factors influencing synonymous codon usage patterns in S. agalactiae were analyzed in this study. A- and U-ending rich codons were used in S. agalactiae function genes through the overall codon usage analysis, indicating that Adenine (A)/Thymine (T) compositional constraints might contribute an important role to the synonymous codon usage pattern. The GC3% against the effective number of codon (ENC) value suggested that translational selection was the important factor for codon bias in the microorganism. Principal component analysis (PCA) showed that (i) mutational pressure was the most important factor in shaping codon usage of all open reading frames (ORFs) in the S. agalactiae genome; (ii) strand specific mutational bias was not capable of influencing the codon usage bias in the leading and lagging strands; and (iii) gene length was not the important factor in synonymous codon usage pattern in this organism. Additionally, the high correlation between tRNA adaptation index (tAI) value and codon adaptation index (CAI), frequency of optimal codons (Fop) value, reinforced the role of natural selection for efficient translation in S. agalactiae. Comparison of synonymous codon usage pattern between S. agalactiae and susceptible hosts (human and tilapia) showed that synonymous codon usage of S. agalactiae was independent of the synonymous codon usage of susceptible hosts. The study of codon usage in S. agalactiae may provide evidence about the molecular evolution of the bacterium and a greater understanding of evolutionary relationships between S. agalactiae and its hosts. PMID:26927064

  12. Analyzing gene expression from relative codon usage bias in Yeast genome: a statistical significance and biological relevance.

    PubMed

    Das, Shibsankar; Roymondal, Uttam; Sahoo, Satyabrata

    2009-08-15

    Based on the hypothesis that highly expressed genes are often characterized by strong compositional bias in terms of codon usage, there are a number of measures currently in use that quantify codon usage bias in genes, and hence provide numerical indices to predict the expression levels of genes. With the recent advent of expression measure from the score of the relative codon usage bias (RCBS), we have explicitly tested the performance of this numerical measure to predict the gene expression level and illustrate this with an analysis of Yeast genomes. In contradiction with previous other studies, we observe a weak correlations between GC content and RCBS, but a selective pressure on the codon preferences in highly expressed genes. The assertion that the expression of a given gene depends on the score of relative codon usage bias (RCBS) is supported by the data. We further observe a strong correlation between RCBS and protein length indicating natural selection in favour of shorter genes to be expressed at higher level. We also attempt a statistical analysis to assess the strength of relative codon bias in genes as a guide to their likely expression level, suggesting a decrease of the informational entropy in the highly expressed genes.

  13. Analysis of the use of codon pairs in the HE gene of the ISA virus shows a correlation between bias in HPR codon-pair use and mortality rates caused by the virus

    PubMed Central

    2013-01-01

    Background Segment 6 of the ISA virus codes for hemoagglutinin-esterase (HE). This segment is highly variable, with more than 26 variants identified. The major variation is observed in what is called the high polymorphism region (HPR). The role of the different HPR zones in the viral cycle or evolution remains unknown. However viruses that present the HPR0 are avirulent, while viruses with important deletions in this region have been responsible for outbreaks with high mortality rates. In this work, using bioinformatic tools, we examined the influence of different HPRs on the adaptation of HE genes to the host translational machinery and the relationship to observed virulence. Methods Translational efficiency of HE genes and their HPR were estimated analyzing codon-pair bias (CPB), adaptation to host codon use (codon adaptation index - CAI) and the adaptation to available tRNAs (tAI). These values were correlated with reported mortality for the respective ISA virus and the ΔG of RNA folding. tRNA abundance was inferred from tRNA gene numbers identified in the Salmo salar genome using tRNAScan-SE. Statistical correlation between data was performed using a non-parametric test. Results We found that HPR0 contains zones with codon pairs of low frequency and low availability of tRNA with respect to salmon codon-pair usage, suggesting that HPR modifies HE translational efficiency. Although calculating tAI was impossible because one third of tRNAs (~60.000) were tRNA-ala, translational efficiency measured by CPB shows that as HPR size increases, the CPB value of the HE gene decreases (P = 2x10-7, ρ = −0.675, n = 63) and that these values correlate positively with the mortality rates caused by the virus (ρ = 0.829, P = 2x10-7, n = 11). The mortality associated with different virus isolates or their corresponding HPR sizes were not related with the ΔG of HPR RNA folding, suggesting that the secondary structure of HPR RNA does not modify virulence. Conclusions Our

  14. CodonLogo: a sequence logo-based viewer for codon patterns.

    PubMed

    Sharma, Virag; Murphy, David P; Provan, Gregory; Baranov, Pavel V

    2012-07-15

    Conserved patterns across a multiple sequence alignment can be visualized by generating sequence logos. Sequence logos show each column in the alignment as stacks of symbol(s) where the height of a stack is proportional to its informational content, whereas the height of each symbol within the stack is proportional to its frequency in the column. Sequence logos use symbols of either nucleotide or amino acid alphabets. However, certain regulatory signals in messenger RNA (mRNA) act as combinations of codons. Yet no tool is available for visualization of conserved codon patterns. We present the first application which allows visualization of conserved regions in a multiple sequence alignment in the context of codons. CodonLogo is based on WebLogo3 and uses the same heuristics but treats codons as inseparable units of a 64-letter alphabet. CodonLogo can discriminate patterns of codon conservation from patterns of nucleotide conservation that appear indistinguishable in standard sequence logos. The CodonLogo source code and its implementation (in a local version of the Galaxy Browser) are available at http://recode.ucc.ie/CodonLogo and through the Galaxy Tool Shed at http://toolshed.g2.bx.psu.edu/.

  15. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness

    NASA Astrophysics Data System (ADS)

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-06-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development.

  16. Di-codon Usage for Gene Classification

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh N.; Ma, Jianmin; Fogel, Gary B.; Rajapakse, Jagath C.

    Classification of genes into biologically related groups facilitates inference of their functions. Codon usage bias has been described previously as a potential feature for gene classification. In this paper, we demonstrate that di-codon usage can further improve classification of genes. By using both codon and di-codon features, we achieve near perfect accuracies for the classification of HLA molecules into major classes and sub-classes. The method is illustrated on 1,841 HLA sequences which are classified into two major classes, HLA-I and HLA-II. Major classes are further classified into sub-groups. A binary SVM using di-codon usage patterns achieved 99.95% accuracy in the classification of HLA genes into major HLA classes; and multi-class SVM achieved accuracy rates of 99.82% and 99.03% for sub-class classification of HLA-I and HLA-II genes, respectively. Furthermore, by combining codon and di-codon usages, the prediction accuracies reached 100%, 99.82%, and 99.84% for HLA major class classification, and for sub-class classification of HLA-I and HLA-II genes, respectively.

  17. tRNA-mediated codon-biased translation in mycobacterial hypoxic persistence

    NASA Astrophysics Data System (ADS)

    Chionh, Yok Hian; McBee, Megan; Babu, I. Ramesh; Hia, Fabian; Lin, Wenwei; Zhao, Wei; Cao, Jianshu; Dziergowska, Agnieszka; Malkiewicz, Andrzej; Begley, Thomas J.; Alonso, Sylvie; Dedon, Peter C.

    2016-11-01

    Microbial pathogens adapt to the stress of infection by regulating transcription, translation and protein modification. We report that changes in gene expression in hypoxia-induced non-replicating persistence in mycobacteria--which models tuberculous granulomas--are partly determined by a mechanism of tRNA reprogramming and codon-biased translation. Mycobacterium bovis BCG responded to each stage of hypoxia and aerobic resuscitation by uniquely reprogramming 40 modified ribonucleosides in tRNA, which correlate with selective translation of mRNAs from families of codon-biased persistence genes. For example, early hypoxia increases wobble cmo5U in tRNAThr(UGU), which parallels translation of transcripts enriched in its cognate codon, ACG, including the DosR master regulator of hypoxic bacteriostasis. Codon re-engineering of dosR exaggerates hypoxia-induced changes in codon-biased DosR translation, with altered dosR expression revealing unanticipated effects on bacterial survival during hypoxia. These results reveal a coordinated system of tRNA modifications and translation of codon-biased transcripts that enhance expression of stress response proteins in mycobacteria.

  18. tRNA-mediated codon-biased translation in mycobacterial hypoxic persistence

    PubMed Central

    Chionh, Yok Hian; McBee, Megan; Babu, I. Ramesh; Hia, Fabian; Lin, Wenwei; Zhao, Wei; Cao, Jianshu; Dziergowska, Agnieszka; Malkiewicz, Andrzej; Begley, Thomas J.; Alonso, Sylvie; Dedon, Peter C.

    2016-01-01

    Microbial pathogens adapt to the stress of infection by regulating transcription, translation and protein modification. We report that changes in gene expression in hypoxia-induced non-replicating persistence in mycobacteria—which models tuberculous granulomas—are partly determined by a mechanism of tRNA reprogramming and codon-biased translation. Mycobacterium bovis BCG responded to each stage of hypoxia and aerobic resuscitation by uniquely reprogramming 40 modified ribonucleosides in tRNA, which correlate with selective translation of mRNAs from families of codon-biased persistence genes. For example, early hypoxia increases wobble cmo5U in tRNAThr(UGU), which parallels translation of transcripts enriched in its cognate codon, ACG, including the DosR master regulator of hypoxic bacteriostasis. Codon re-engineering of dosR exaggerates hypoxia-induced changes in codon-biased DosR translation, with altered dosR expression revealing unanticipated effects on bacterial survival during hypoxia. These results reveal a coordinated system of tRNA modifications and translation of codon-biased transcripts that enhance expression of stress response proteins in mycobacteria. PMID:27834374

  19. Integrated analysis of individual codon contribution to protein biosynthesis reveals a new approach to improving the basis of rational gene design

    PubMed Central

    Villada, Juan C.; Brustolini, Otávio José Bernardes

    2017-01-01

    Abstract Gene codon optimization may be impaired by the misinterpretation of frequency and optimality of codons. Although recent studies have revealed the effects of codon usage bias (CUB) on protein biosynthesis, an integrated perspective of the biological role of individual codons remains unknown. Unlike other previous studies, we show, through an integrated framework that attributes of codons such as frequency, optimality and positional dependency should be combined to unveil individual codon contribution for protein biosynthesis. We designed a codon quantification method for assessing CUB as a function of position within genes with a novel constraint: the relativity of position-dependent codon usage shaped by coding sequence length. Thus, we propose a new way of identifying the enrichment, depletion and non-uniform positional distribution of codons in different regions of yeast genes. We clustered codons that shared attributes of frequency and optimality. The cluster of non-optimal codons with rare occurrence displayed two remarkable characteristics: higher codon decoding time than frequent–non-optimal cluster and enrichment at the 5′-end region, where optimal codons with the highest frequency are depleted. Interestingly, frequent codons with non-optimal adaptation to tRNAs are uniformly distributed in the Saccharomyces cerevisiae genes, suggesting their determinant role as a speed regulator in protein elongation. PMID:28449100

  20. Analysis of codon usage bias of envelope glycoprotein genes in nuclear polyhedrosis virus (NPV) and its relation to evolution.

    PubMed

    Zhao, Yongchao; Zheng, Hao; Xu, Anying; Yan, Donghua; Jiang, Zijian; Qi, Qi; Sun, Jingchen

    2016-08-24

    Analysis of codon usage bias is an extremely versatile method using in furthering understanding of the genetic and evolutionary paths of species. Codon usage bias of envelope glycoprotein genes in nuclear polyhedrosis virus (NPV) has remained largely unexplored at present. Hence, the codon usage bias of NPV envelope glycoprotein was analyzed here to reveal the genetic and evolutionary relationships between different viral species in baculovirus genus. A total of 9236 codons from 18 different species of NPV of the baculovirus genera were used to perform this analysis. Glycoprotein of NPV exhibits weaker codon usage bias. Neutrality plot analysis and correlation analysis of effective number of codons (ENC) values indicate that natural selection is the main factor influencing codon usage bias, and that the impact of mutation pressure is relatively smaller. Another cluster analysis shows that the kinship or evolutionary relationships of these viral species can be divided into two broad categories despite all of these 18 species are from the same baculovirus genus. There are many elements that can affect codon bias, such as the composition of amino acids, mutation pressure, natural selection, gene expression level, and etc. In the meantime, cluster analysis also illustrates that codon usage bias of virus envelope glycoprotein can serve as an effective means of evolutionary classification in baculovirus genus.

  1. Integrated analysis of individual codon contribution to protein biosynthesis reveals a new approach to improving the basis of rational gene design.

    PubMed

    Villada, Juan C; Brustolini, Otávio José Bernardes; Batista da Silveira, Wendel

    2017-08-01

    Gene codon optimization may be impaired by the misinterpretation of frequency and optimality of codons. Although recent studies have revealed the effects of codon usage bias (CUB) on protein biosynthesis, an integrated perspective of the biological role of individual codons remains unknown. Unlike other previous studies, we show, through an integrated framework that attributes of codons such as frequency, optimality and positional dependency should be combined to unveil individual codon contribution for protein biosynthesis. We designed a codon quantification method for assessing CUB as a function of position within genes with a novel constraint: the relativity of position-dependent codon usage shaped by coding sequence length. Thus, we propose a new way of identifying the enrichment, depletion and non-uniform positional distribution of codons in different regions of yeast genes. We clustered codons that shared attributes of frequency and optimality. The cluster of non-optimal codons with rare occurrence displayed two remarkable characteristics: higher codon decoding time than frequent-non-optimal cluster and enrichment at the 5'-end region, where optimal codons with the highest frequency are depleted. Interestingly, frequent codons with non-optimal adaptation to tRNAs are uniformly distributed in the Saccharomyces cerevisiae genes, suggesting their determinant role as a speed regulator in protein elongation. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  2. The effect of tRNA levels on decoding times of mRNA codons.

    PubMed

    Dana, Alexandra; Tuller, Tamir

    2014-08-01

    The possible effect of transfer ribonucleic acid (tRNA) concentrations on codons decoding time is a fundamental biomedical research question; however, due to a large number of variables affecting this process and the non-direct relation between them, a conclusive answer to this question has eluded so far researchers in the field. In this study, we perform a novel analysis of the ribosome profiling data of four organisms which enables ranking the decoding times of different codons while filtering translational phenomena such as experimental biases, extreme ribosomal pauses and ribosome traffic jams. Based on this filtering, we show for the first time that there is a significant correlation between tRNA concentrations and the codons estimated decoding time both in prokaryotes and in eukaryotes in natural conditions (-0.38 to -0.66, all P values <0.006); in addition, we show that when considering tRNA concentrations, codons decoding times are not correlated with aminoacyl-tRNA levels. The reported results support the conjecture that translation efficiency is directly influenced by the tRNA levels in the cell. Thus, they should help to understand the evolution of synonymous aspects of coding sequences via the adaptation of their codons to the tRNA pool. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Predicting Gene Expression Level from Relative Codon Usage Bias: An Application to Escherichia coli Genome

    PubMed Central

    Roymondal, Uttam; Das, Shibsankar; Sahoo, Satyabrata

    2009-01-01

    We present an expression measure of a gene, devised to predict the level of gene expression from relative codon bias (RCB). There are a number of measures currently in use that quantify codon usage in genes. Based on the hypothesis that gene expressivity and codon composition is strongly correlated, RCB has been defined to provide an intuitively meaningful measure of an extent of the codon preference in a gene. We outline a simple approach to assess the strength of RCB (RCBS) in genes as a guide to their likely expression levels and illustrate this with an analysis of Escherichia coli (E. coli) genome. Our efforts to quantitatively predict gene expression levels in E. coli met with a high level of success. Surprisingly, we observe a strong correlation between RCBS and protein length indicating natural selection in favour of the shorter genes to be expressed at higher level. The agreement of our result with high protein abundances, microarray data and radioactive data demonstrates that the genomic expression profile available in our method can be applied in a meaningful way to the study of cell physiology and also for more detailed studies of particular genes of interest. PMID:19131380

  4. Genome-wide analysis of codon usage bias in Ebolavirus.

    PubMed

    Cristina, Juan; Moreno, Pilar; Moratorio, Gonzalo; Musto, Héctor

    2015-01-22

    Ebola virus (EBOV) is a member of the family Filoviridae and its genome consists of a 19-kb, single-stranded, negative sense RNA. EBOV is subdivided into five distinct species with different pathogenicities, being Zaire ebolavirus (ZEBOV) the most lethal species. The interplay of codon usage among viruses and their hosts is expected to affect overall viral survival, fitness, evasion from host's immune system and evolution. In the present study, we performed comprehensive analyses of codon usage and composition of ZEBOV. Effective number of codons (ENC) indicates that the overall codon usage among ZEBOV strains is slightly biased. Different codon preferences in ZEBOV genes in relation to codon usage of human genes were found. Highly preferred codons are all A-ending triplets, which strongly suggests that mutational bias is a main force shaping codon usage in ZEBOV. Dinucleotide composition also plays a role in the overall pattern of ZEBOV codon usage. ZEBOV does not seem to use the most abundant tRNAs present in the human cells for most of their preferred codons. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Developmental stage related patterns of codon usage and genomic GC content: searching for evolutionary fingerprints with models of stem cell differentiation

    PubMed Central

    2007-01-01

    Background The usage of synonymous codons shows considerable variation among mammalian genes. How and why this usage is non-random are fundamental biological questions and remain controversial. It is also important to explore whether mammalian genes that are selectively expressed at different developmental stages bear different molecular features. Results In two models of mouse stem cell differentiation, we established correlations between codon usage and the patterns of gene expression. We found that the optimal codons exhibited variation (AT- or GC-ending codons) in different cell types within the developmental hierarchy. We also found that genes that were enriched (developmental-pivotal genes) or specifically expressed (developmental-specific genes) at different developmental stages had different patterns of codon usage and local genomic GC (GCg) content. Moreover, at the same developmental stage, developmental-specific genes generally used more GC-ending codons and had higher GCg content compared with developmental-pivotal genes. Further analyses suggest that the model of translational selection might be consistent with the developmental stage-related patterns of codon usage, especially for the AT-ending optimal codons. In addition, our data show that after human-mouse divergence, the influence of selective constraints is still detectable. Conclusion Our findings suggest that developmental stage-related patterns of gene expression are correlated with codon usage (GC3) and GCg content in stem cell hierarchies. Moreover, this paper provides evidence for the influence of natural selection at synonymous sites in the mouse genome and novel clues for linking the molecular features of genes to their patterns of expression during mammalian ontogenesis. PMID:17349061

  6. Molecular mechanisms of adaptation emerging from the physics and evolution of nucleic acids and proteins.

    PubMed

    Goncearenco, Alexander; Ma, Bin-Guang; Berezovsky, Igor N

    2014-03-01

    DNA, RNA and proteins are major biological macromolecules that coevolve and adapt to environments as components of one highly interconnected system. We explore here sequence/structure determinants of mechanisms of adaptation of these molecules, links between them, and results of their mutual evolution. We complemented statistical analysis of genomic and proteomic sequences with folding simulations of RNA molecules, unraveling causal relations between compositional and sequence biases reflecting molecular adaptation on DNA, RNA and protein levels. We found many compositional peculiarities related to environmental adaptation and the life style. Specifically, thermal adaptation of protein-coding sequences in Archaea is characterized by a stronger codon bias than in Bacteria. Guanine and cytosine load in the third codon position is important for supporting the aerobic life style, and it is highly pronounced in Bacteria. The third codon position also provides a tradeoff between arginine and lysine, which are favorable for thermal adaptation and aerobicity, respectively. Dinucleotide composition provides stability of nucleic acids via strong base-stacking in ApG dinucleotides. In relation to coevolution of nucleic acids and proteins, thermostability-related demands on the amino acid composition affect the nucleotide content in the second codon position in Archaea.

  7. Molecular mechanisms of adaptation emerging from the physics and evolution of nucleic acids and proteins

    PubMed Central

    Goncearenco, Alexander; Ma, Bin-Guang; Berezovsky, Igor N.

    2014-01-01

    DNA, RNA and proteins are major biological macromolecules that coevolve and adapt to environments as components of one highly interconnected system. We explore here sequence/structure determinants of mechanisms of adaptation of these molecules, links between them, and results of their mutual evolution. We complemented statistical analysis of genomic and proteomic sequences with folding simulations of RNA molecules, unraveling causal relations between compositional and sequence biases reflecting molecular adaptation on DNA, RNA and protein levels. We found many compositional peculiarities related to environmental adaptation and the life style. Specifically, thermal adaptation of protein-coding sequences in Archaea is characterized by a stronger codon bias than in Bacteria. Guanine and cytosine load in the third codon position is important for supporting the aerobic life style, and it is highly pronounced in Bacteria. The third codon position also provides a tradeoff between arginine and lysine, which are favorable for thermal adaptation and aerobicity, respectively. Dinucleotide composition provides stability of nucleic acids via strong base-stacking in ApG dinucleotides. In relation to coevolution of nucleic acids and proteins, thermostability-related demands on the amino acid composition affect the nucleotide content in the second codon position in Archaea. PMID:24371267

  8. Analysis of base and codon usage by rubella virus.

    PubMed

    Zhou, Yumei; Chen, Xianfeng; Ushijima, Hiroshi; Frey, Teryl K

    2012-05-01

    Rubella virus (RUBV), a small, plus-strand RNA virus that is an important human pathogen, has the unique feature that the GC content of its genome (70%) is the highest (by 20%) among RNA viruses. To determine the effect of this GC content on genomic evolution, base and codon usage were analyzed across viruses from eight diverse genotypes of RUBV. Despite differences in frequency of codon use, the favored codons in the RUBV genome matched those in the human genome for 18 of the 20 amino acids, indicating adaptation to the host. Although usage patterns were conserved in corresponding genes in the diverse genotypes, within-genome comparison revealed that both base and codon usages varied regionally, particularly in the hypervariable region (HVR) of the P150 replicase gene. While directional mutation pressure was predominant in determining base and codon usage within most of the genome (with the strongest tendency being towards C's at third codon positions), natural selection was predominant in the HVR region. The GC content of this region was the highest in the genome (>80%), and it was not clear if selection at the nucleotide level accompanied selection at the amino acid level. Dinucleotide frequency analysis of the RUBV genome revealed that TpA usage was lower than expected, similar to mammalian genes; however, CpG usage was not suppressed, and TpG usage was not enhanced, as is the case in mammalian genes.

  9. Minigene-like inhibition of protein synthesis mediated by hungry codons near the start codon

    PubMed Central

    Jacinto-Loeza, Eva; Vivanco-Domínguez, Serafín; Guarneros, Gabriel; Hernández-Sánchez, Javier

    2008-01-01

    Rare AGA or AGG codons close to the initiation codon inhibit protein synthesis by a tRNA-sequestering mechanism as toxic minigenes do. To further understand this mechanism, a parallel analysis of protein synthesis and peptidyl-tRNA accumulation was performed using both a set of lacZ constructs where AGAAGA codons were moved codon by codon from +2, +3 up to +7, +8 positions and a series of 3–8 codon minigenes containing AGAAGA codons before the stop codon. β-Galactosidase synthesis from the AGAAGA lacZ constructs (in a Pth defective in vitro system without exogenous tRNA) diminished as the AGAAGA codons were closer to AUG codon. Likewise, β-galactosidase expression from the reporter +7 AGA lacZ gene (plus tRNA, 0.25 μg/μl) waned as the AGAAGAUAA minigene shortened. Pth counteracted both the length-dependent minigene effect on the expression of β-galactosidase from the +7 AGA lacZ reporter gene and the positional effect from the AGAAGA lacZ constructs. The +2, +3 AGAAGA lacZ construct and the shortest +2, +3 AGAAGAUAA minigene accumulated the highest percentage of peptidyl-tRNAArg4. These observations lead us to propose that hungry codons at early positions, albeit with less strength, inhibit protein synthesis by a minigene-like mechanism involving accumulation of peptidyl-tRNA. PMID:18583364

  10. Translation efficiencies of synonymous codons are not always correlated with codon usage in tobacco chloroplasts.

    PubMed

    Nakamura, Masayuki; Sugiura, Masahiro

    2007-01-01

    Codon usage in chloroplasts is different from that in prokaryotic and eukaryotic nuclear genomes. However, no experimental approach has been made to analyse the translation efficiency of individual codons in chloroplasts. We devised an in vitro assay for translation efficiencies using synthetic mRNAs, and measured the translation efficiencies of five synonymous codon groups in tobacco chloroplasts. Among four alanine codons (GCN, where N is U, C, A or G), GCU was the most efficient for translation, whereas the chloroplast genome lacks tRNA genes corresponding to GCU. Phenylalanine and tyrosine are each encoded by two codons (UUU/C and UAU/C, respectively). Phenylalanine UUC and tyrosine UAC were translated more than twice as efficiently than UUU and UAU, respectively, contrary to their codon usage, whereas translation efficiencies of synonymous codons for alanine, aspartic acid and asparagine were parallel to their codon usage. These observations indicate that translation efficiencies of individual codons are not always correlated with codon usage in vitro in chloroplasts. This raises an important issue for foreign gene expression in chloroplasts.

  11. Chloroplast DNA codon use: evidence for selection at the psb A locus based on tRNA availability.

    PubMed

    Morton, B R

    1993-09-01

    Codon use in the three sequenced chloroplast genomes (Marchantia, Oryza, and Nicotiana) is examined. The chloroplast has a bias in that codons NNA and NNT are favored over synonymous NNC and NNG codons. This appears to be a consequence of an overall high A + T content of the genome. This pattern of codon use is not followed by the psb A gene of all three genomes and other psb A sequences examined. In this gene, the codon use favors NNC over NNT for twofold degenerate amino acids. In each case the only tRNA coded by the genome is complementary to the NNC codon. This codon use is similar to the codon use by chloroplast genes examined from Chlamydomonas reinhardtii. Since psb A is the major translation product of the chloroplast, this suggests that selection is acting on the codon use of this gene to adapt codons to tRNA availability, as previously suggested for unicellular organisms.

  12. Emergent rules for codon choice elucidated by editing rare arginine codons in Escherichia coli

    PubMed Central

    Napolitano, Michael G.; Landon, Matthieu; Gregg, Christopher J.; Lajoie, Marc J.; Govindarajan, Lakshmi; Mosberg, Joshua A.; Kuznetsov, Gleb; Goodman, Daniel B.; Vargas-Rodriguez, Oscar; Isaacs, Farren J.; Söll, Dieter; Church, George M.

    2016-01-01

    The degeneracy of the genetic code allows nucleic acids to encode amino acid identity as well as noncoding information for gene regulation and genome maintenance. The rare arginine codons AGA and AGG (AGR) present a case study in codon choice, with AGRs encoding important transcriptional and translational properties distinct from the other synonymous alternatives (CGN). We created a strain of Escherichia coli with all 123 instances of AGR codons removed from all essential genes. We readily replaced 110 AGR codons with the synonymous CGU codons, but the remaining 13 “recalcitrant” AGRs required diversification to identify viable alternatives. Successful replacement codons tended to conserve local ribosomal binding site-like motifs and local mRNA secondary structure, sometimes at the expense of amino acid identity. Based on these observations, we empirically defined metrics for a multidimensional “safe replacement zone” (SRZ) within which alternative codons are more likely to be viable. To evaluate synonymous and nonsynonymous alternatives to essential AGRs further, we implemented a CRISPR/Cas9-based method to deplete a diversified population of a wild-type allele, allowing us to evaluate exhaustively the fitness impact of all 64 codon alternatives. Using this method, we confirmed the relevance of the SRZ by tracking codon fitness over time in 14 different genes, finding that codons that fall outside the SRZ are rapidly depleted from a growing population. Our unbiased and systematic strategy for identifying unpredicted design flaws in synthetic genomes and for elucidating rules governing codon choice will be crucial for designing genomes exhibiting radically altered genetic codes. PMID:27601680

  13. Codon usage and amino acid usage influence genes expression level.

    PubMed

    Paul, Prosenjit; Malakar, Arup Kumar; Chakraborty, Supriyo

    2018-02-01

    Highly expressed genes in any species differ in the usage frequency of synonymous codons. The relative recurrence of an event of the favored codon pair (amino acid pairs) varies between gene and genomes due to varying gene expression and different base composition. Here we propose a new measure for predicting the gene expression level, i.e., codon plus amino bias index (CABI). Our approach is based on the relative bias of the favored codon pair inclination among the genes, illustrated by analyzing the CABI score of the Medicago truncatula genes. CABI showed strong correlation with all other widely used measures (CAI, RCBS, SCUO) for gene expression analysis. Surprisingly, CABI outperforms all other measures by showing better correlation with the wet-lab data. This emphasizes the importance of the neighboring codons of the favored codon in a synonymous group while estimating the expression level of a gene.

  14. Analysis of the synonymous codon usage bias in recently emerged enterovirus D68 strains.

    PubMed

    Karniychuk, Uladzimir U

    2016-09-02

    Understanding the codon usage pattern of a pathogen and relationship between pathogen and host's codon usage patterns has fundamental and applied interests. Enterovirus D68 (EV-D68) is an emerging pathogen with a potentially high public health significance. In the present study, the synonymous codon usage bias of 27 recently emerged, and historical EV-D68 strains was analyzed. In contrast to previously studied enteroviruses (enterovirus 71 and poliovirus), EV-D68 and human host have a high discrepancy between favored codons. Analysis of viral synonymous codon usage bias metrics, viral nucleotide/dinucleotide compositional parameters, and viral protein properties showed that mutational pressure is more involved in shaping the synonymous codon usage bias of EV-D68 than translation selection. Computation of codon adaptation indices allowed to estimate expression potential of the EV-D68 genome in several commonly used laboratory animals. This approach requires experimental validation and may provide an auxiliary tool for the rational selection of laboratory animals to model emerging viral diseases. Enterovirus D68 genome compositional and codon usage data can be useful for further pathogenesis, animal model, and vaccine design studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Codon usage patterns in Nematoda: analysis based on over 25 million codons in thirty-two species

    PubMed Central

    2006-01-01

    Background Codon usage has direct utility in molecular characterization of species and is also a marker for molecular evolution. To understand codon usage within the diverse phylum Nematoda, we analyzed a total of 265,494 expressed sequence tags (ESTs) from 30 nematode species. The full genomes of Caenorhabditis elegans and C. briggsae were also examined. A total of 25,871,325 codons were analyzed and a comprehensive codon usage table for all species was generated. This is the first codon usage table available for 24 of these organisms. Results Codon usage similarity in Nematoda usually persists over the breadth of a genus but then rapidly diminishes even within each clade. Globodera, Meloidogyne, Pristionchus, and Strongyloides have the most highly derived patterns of codon usage. The major factor affecting differences in codon usage between species is the coding sequence GC content, which varies in nematodes from 32% to 51%. Coding GC content (measured as GC3) also explains much of the observed variation in the effective number of codons (R = 0.70), which is a measure of codon bias, and it even accounts for differences in amino acid frequency. Codon usage is also affected by neighboring nucleotides (N1 context). Coding GC content correlates strongly with estimated noncoding genomic GC content (R = 0.92). On examining abundant clusters in five species, candidate optimal codons were identified that may be preferred in highly expressed transcripts. Conclusion Evolutionary models indicate that total genomic GC content, probably the product of directional mutation pressure, drives codon usage rather than the converse, a conclusion that is supported by examination of nematode genomes. PMID:26271136

  16. Characterization of the porcine epidemic diarrhea virus codon usage bias.

    PubMed

    Chen, Ye; Shi, Yuzhen; Deng, Hongjuan; Gu, Ting; Xu, Jian; Ou, Jinxin; Jiang, Zhiguo; Jiao, Yiren; Zou, Tan; Wang, Chong

    2014-12-01

    Porcine epidemic diarrhea virus (PEDV) has been responsible for several recent outbreaks of porcine epidemic diarrhea (PED) and has caused great economic loss in the swine-raising industry. Considering the significance of PEDV, a systemic analysis was performed to study its codon usage patterns. The relative synonymous codon usage value of each codon revealed that codon usage bias exists and that PEDV tends to use codons that end in T. The mean ENC value of 47.91 indicates that the codon usage bias is low. However, we still wanted to identify the cause of this codon usage bias. A correlation analysis between the codon compositions (A3s, T3s, G3s, C3s, and GC3s), the ENC values, and the nucleotide contents (A%, T%, G%, C%, and GC%) indicated that mutational bias plays role in shaping the PEDV codon usage bias. This was further confirmed by a principal component analysis between the codon compositions and the axis values. Using the Gravy, Aroma, and CAI values, a role of natural selection in the PEDV codon usage pattern was also identified. Neutral analysis indicated that natural selection pressure plays a more important role than mutational bias in codon usage bias. Natural selection also plays an increasingly significant role during PEDV evolution. Additionally, gene function and geographic distribution also influence the codon usage bias to a degree. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Transcriptome Analysis of Core Dinoflagellates Reveals a Universal Bias towards "GC" Rich Codons.

    PubMed

    Williams, Ernest; Place, Allen; Bachvaroff, Tsvetan

    2017-04-27

    Although dinoflagellates are a potential source of pharmaceuticals and natural products, the mechanisms for regulating and producing these compounds are largely unknown because of extensive post-transcriptional control of gene expression. One well-documented mechanism for controlling gene expression during translation is codon bias, whereby specific codons slow or even terminate protein synthesis. Approximately 10,000 annotatable genes from fifteen "core" dinoflagellate transcriptomes along a range of overall guanine and cytosine (GC) content were used for codonW analysis to determine the relative synonymous codon usage (RSCU) and the GC content at each codon position. GC bias in the analyzed dataset and at the third codon position varied from 51% and 54% to 66% and 88%, respectively. Codons poor in GC were observed to be universally absent, but bias was most pronounced for codons ending in uracil followed by adenine (UA). GC bias at the third codon position was able to explain low abundance codons as well as the low effective number of codons. Thus, we propose that a bias towards codons rich in GC bases is a universal feature of core dinoflagellates, possibly relating to their unique chromosome structure, and not likely a major mechanism for controlling gene expression.

  18. Synonymous codon usage patterns in different parasitic platyhelminth mitochondrial genomes.

    PubMed

    Chen, L; Yang, D Y; Liu, T F; Nong, X; Huang, X; Xie, Y; Fu, Y; Zheng, W P; Zhang, R H; Wu, X H; Gu, X B; Wang, S X; Peng, X R; Yang, G Y

    2013-02-27

    We analyzed synonymous codon usage patterns of the mitochondrial genomes of 43 parasitic platyhelminth species. The relative synonymous codon usage, the effective number of codons (NC) and the frequency of G+C at the third synonymously variable coding position were calculated. Correspondence analysis was used to determine the major variation trends shaping the codon usage patterns. Among the mitochondrial genomes of 19 trematode species, the GC content of third codon positions varied from 0.151 to 0.592, with a mean of 0.295 ± 0.116. In cestodes, the mean GC content of third codon positions was 0.254 ± 0.044. A comparison of the nucleotide composition at 4-fold synonymous sites revealed that, on average, there was a greater abundance of codons ending on U (51.9%) or A (22.7%) than on C (6.3%) or G (19.14%). Twenty-two codons, including UUU, UUA and UUG, were frequently used. In the NC-plot, most of points were distributed well below or around the expected NC curve. In addition to compositional constraints, the degree of hydrophobicity and the aromatic amino acids also influenced codon usage in the mitochondrial genomes of these 43 parasitic platyhelminth species.

  19. Dietary nitrogen alters codon bias and genome composition in parasitic microorganisms.

    PubMed

    Seward, Emily A; Kelly, Steven

    2016-11-15

    Genomes are composed of long strings of nucleotide monomers (A, C, G and T) that are either scavenged from the organism's environment or built from metabolic precursors. The biosynthesis of each nucleotide differs in atomic requirements with different nucleotides requiring different quantities of nitrogen atoms. However, the impact of the relative availability of dietary nitrogen on genome composition and codon bias is poorly understood. Here we show that differential nitrogen availability, due to differences in environment and dietary inputs, is a major determinant of genome nucleotide composition and synonymous codon use in both bacterial and eukaryotic microorganisms. Specifically, low nitrogen availability species use nucleotides that require fewer nitrogen atoms to encode the same genes compared to high nitrogen availability species. Furthermore, we provide a novel selection-mutation framework for the evaluation of the impact of metabolism on gene sequence evolution and show that it is possible to predict the metabolic inputs of related organisms from an analysis of the raw nucleotide sequence of their genes. Taken together, these results reveal a previously hidden relationship between cellular metabolism and genome evolution and provide new insight into how genome sequence evolution can be influenced by adaptation to different diets and environments.

  20. Transcriptome Analysis of Core Dinoflagellates Reveals a Universal Bias towards “GC” Rich Codons

    PubMed Central

    Williams, Ernest; Place, Allen; Bachvaroff, Tsvetan

    2017-01-01

    Although dinoflagellates are a potential source of pharmaceuticals and natural products, the mechanisms for regulating and producing these compounds are largely unknown because of extensive post-transcriptional control of gene expression. One well-documented mechanism for controlling gene expression during translation is codon bias, whereby specific codons slow or even terminate protein synthesis. Approximately 10,000 annotatable genes from fifteen “core” dinoflagellate transcriptomes along a range of overall guanine and cytosine (GC) content were used for codonW analysis to determine the relative synonymous codon usage (RSCU) and the GC content at each codon position. GC bias in the analyzed dataset and at the third codon position varied from 51% and 54% to 66% and 88%, respectively. Codons poor in GC were observed to be universally absent, but bias was most pronounced for codons ending in uracil followed by adenine (UA). GC bias at the third codon position was able to explain low abundance codons as well as the low effective number of codons. Thus, we propose that a bias towards codons rich in GC bases is a universal feature of core dinoflagellates, possibly relating to their unique chromosome structure, and not likely a major mechanism for controlling gene expression. PMID:28448468

  1. tRNAomics: tRNA gene copy number variation and codon use provide bioinformatic evidence of a new anticodon:codon wobble pair in a eukaryote

    PubMed Central

    Iben, James R.; Maraia, Richard J.

    2012-01-01

    tRNA genes are interspersed throughout eukaryotic DNA, contributing to genome architecture and evolution in addition to translation of the transcriptome. Codon use correlates with tRNA gene copy number in noncomplex organisms including yeasts. Synonymous codons impact translation with various outcomes, dependent on relative tRNA abundances. Availability of whole-genome sequences allowed us to examine tRNA gene copy number variation (tgCNV) and codon use in four Schizosaccharomyces species and Saccharomyces cerevisiae. tRNA gene numbers vary from 171 to 322 in the four Schizosaccharomyces despite very high similarity in other features of their genomes. In addition, we performed whole-genome sequencing of several related laboratory strains of Schizosaccharomyces pombe and found tgCNV at a cluster of tRNA genes. We examined for the first time effects of wobble rules on correlation of tRNA gene number and codon use and showed improvement for S. cerevisiae and three of the Schizosaccharomyces species. In contrast, correlation in Schizosaccharomyces japonicus is poor due to markedly divergent tRNA gene content, and much worsened by the wobble rules. In japonicus, some tRNA iso-acceptor genes are absent and others are greatly reduced relative to the other yeasts, while genes for synonymous wobble iso-acceptors are amplified, indicating wobble use not apparent in any other eukaryote. We identified a subset of japonicus-specific wobbles that improves correlation of codon use and tRNA gene content in japonicus. We conclude that tgCNV is high among Schizo species and occurs in related laboratory strains of S. pombe (and expectedly other species), and tRNAome-codon analyses can provide insight into species-specific wobble decoding. PMID:22586155

  2. Evolution of Synonymous Codon Usage in Neurospora tetrasperma and Neurospora discreta

    PubMed Central

    Whittle, C. A.; Sun, Y.; Johannesson, H.

    2011-01-01

    Neurospora comprises a primary model system for the study of fungal genetics and biology. In spite of this, little is known about genome evolution in Neurospora. For example, the evolution of synonymous codon usage is largely unknown in this genus. In the present investigation, we conducted a comprehensive analysis of synonymous codon usage and its relationship to gene expression and gene length (GL) in Neurospora tetrasperma and Neurospora discreta. For our analysis, we examined codon usage among 2,079 genes per organism and assessed gene expression using large-scale expressed sequenced tag (EST) data sets (279,323 and 453,559 ESTs for N. tetrasperma and N. discreta, respectively). Data on relative synonymous codon usage revealed 24 codons (and two putative codons) that are more frequently used in genes with high than with low expression and thus were defined as optimal codons. Although codon-usage bias was highly correlated with gene expression, it was independent of selectively neutral base composition (introns); thus demonstrating that translational selection drives synonymous codon usage in these genomes. We also report that GL (coding sequences [CDS]) was inversely associated with optimal codon usage at each gene expression level, with highly expressed short genes having the greatest frequency of optimal codons. Optimal codon frequency was moderately higher in N. tetrasperma than in N. discreta, which might be due to variation in selective pressures and/or mating systems. PMID:21402862

  3. Automated design of degenerate codon libraries.

    PubMed

    Mena, Marco A; Daugherty, Patrick S

    2005-12-01

    Degenerate codon libraries are frequently used in protein engineering and evolution studies but are often limited to targeting a small number of positions to adequately limit the search space. To mitigate this, codon degeneracy can be limited using heuristics or previous knowledge of the targeted positions. To automate design of libraries given a set of amino acid sequences, an algorithm (LibDesign) was developed that generates a set of possible degenerate codon libraries, their resulting size, and their score relative to a user-defined scoring function. A gene library of a specified size can then be constructed that is representative of the given amino acid distribution or that includes specific sequences or combinations thereof. LibDesign provides a new tool for automated design of high-quality protein libraries that more effectively harness existing sequence-structure information derived from multiple sequence alignment or computational protein design data.

  4. Analyses of clinicopathological, molecular, and prognostic associations of KRAS codon 61 and codon 146 mutations in colorectal cancer: cohort study and literature review

    PubMed Central

    2014-01-01

    Background KRAS mutations in codons 12 and 13 are established predictive biomarkers for anti-EGFR therapy in colorectal cancer. Previous studies suggest that KRAS codon 61 and 146 mutations may also predict resistance to anti-EGFR therapy in colorectal cancer. However, clinicopathological, molecular, and prognostic features of colorectal carcinoma with KRAS codon 61 or 146 mutation remain unclear. Methods We utilized a molecular pathological epidemiology database of 1267 colon and rectal cancers in the Nurse’s Health Study and the Health Professionals Follow-up Study. We examined KRAS mutations in codons 12, 13, 61 and 146 (assessed by pyrosequencing), in relation to clinicopathological features, and tumor molecular markers, including BRAF and PIK3CA mutations, CpG island methylator phenotype (CIMP), LINE-1 methylation, and microsatellite instability (MSI). Survival analyses were performed in 1067 BRAF-wild-type cancers to avoid confounding by BRAF mutation. Cox proportional hazards models were used to compute mortality hazard ratio, adjusting for potential confounders, including disease stage, PIK3CA mutation, CIMP, LINE-1 hypomethylation, and MSI. Results KRAS codon 61 mutations were detected in 19 cases (1.5%), and codon 146 mutations in 40 cases (3.2%). Overall KRAS mutation prevalence in colorectal cancers was 40% (=505/1267). Of interest, compared to KRAS-wild-type, overall, KRAS-mutated cancers more frequently exhibited cecal location (24% vs. 12% in KRAS-wild-type; P < 0.0001), CIMP-low (49% vs. 32% in KRAS-wild-type; P < 0.0001), and PIK3CA mutations (24% vs. 11% in KRAS-wild-type; P < 0.0001). These trends were evident irrespective of mutated codon, though statistical power was limited for codon 61 mutants. Neither KRAS codon 61 nor codon 146 mutation was significantly associated with clinical outcome or prognosis in univariate or multivariate analysis [colorectal cancer-specific mortality hazard ratio (HR) = 0.81, 95% confidence

  5. Amino acid repeats avert mRNA folding through conservative substitutions and synonymous codons, regardless of codon bias.

    PubMed

    Barik, Sailen

    2017-12-01

    A significant number of proteins in all living species contains amino acid repeats (AARs) of various lengths and compositions, many of which play important roles in protein structure and function. Here, I have surveyed select homopolymeric single [(A)n] and double [(AB)n] AARs in the human proteome. A close examination of their codon pattern and analysis of RNA structure propensity led to the following set of empirical rules: (1) One class of amino acid repeats (Class I) uses a mixture of synonymous codons, some of which approximate the codon bias ratio in the overall human proteome; (2) The second class (Class II) disregards the codon bias ratio, and appears to have originated by simple repetition of the same codon (or just a few codons); and finally, (3) In all AARs (including Class I, Class II, and the in-betweens), the codons are chosen in a manner that precludes the formation of RNA secondary structure. It appears that the AAR genes have evolved by orchestrating a balance between codon usage and mRNA secondary structure. The insights gained here should provide a better understanding of AAR evolution and may assist in designing synthetic genes.

  6. Properties and determinants of codon decoding time distributions

    PubMed Central

    2014-01-01

    Background Codon decoding time is a fundamental property of mRNA translation believed to affect the abundance, function, and properties of proteins. Recently, a novel experimental technology--ribosome profiling--was developed to measure the density, and thus the speed, of ribosomes at codon resolution. Specifically, this method is based on next-generation sequencing, which theoretically can provide footprint counts that correspond to the probability of observing a ribosome in this position for each nucleotide in each transcript. Results In this study, we report for the first time various novel properties of the distribution of codon footprint counts in five organisms, based on large-scale analysis of ribosomal profiling data. We show that codons have distinctive footprint count distributions. These tend to be preserved along the inner part of the ORF, but differ at the 5' and 3' ends of the ORF, suggesting that the translation-elongation stage actually includes three biophysical sub-steps. In addition, we study various basic properties of the codon footprint count distributions and show that some of them correlate with the abundance of the tRNA molecule types recognizing them. Conclusions Our approach emphasizes the advantages of analyzing ribosome profiling and similar types of data via a comparative genomic codon-distribution-centric view. Thus, our methods can be used in future studies related to translation and even transcription elongation. PMID:25572668

  7. Polymorphism in xeroderma pigmentosum complementation group C codon 939 and aflatoxin B1-related hepatocellular carcinoma in the Guangxi population.

    PubMed

    Long, Xi-Dai; Ma, Yun; Zhou, Yuan-Feng; Ma, Ai-Min; Fu, Guo-Hui

    2010-10-01

    Genetic polymorphisms in DNA repair genes may influence individual variations in DNA repair capacity, and this may be associated with the risk and outcome of hepatocellular carcinoma (HCC) related to aflatoxin B1 (AFB1) exposure. In this study, we focused on the polymorphism of xeroderma pigmentosum complementation group C (XPC) codon 939 (rs#2228001), which is involved in nucleotide excision repair. We conducted a case-control study including 1156 HCC cases and 1402 controls without any evidence of hepatic disease to evaluate the associations between this polymorphism and HCC risk and prognosis in the Guangxi population. AFB1 DNA adduct levels, XPC genotypes, and XPC protein levels were tested with a comparative enzyme-linked immunosorbent assay, TaqMan polymerase chain reaction for XPC genotypes, and immunohistochemistry, respectively. Higher AFB1 exposure was observed among HCC patients versus the control group [odds ratio (OR) = 9.88 for AFB1 exposure years and OR = 6.58 for AFB1 exposure levels]. The XPC codon 939 Gln alleles significantly increased HCC risk [OR = 1.25 (95% confidence interval = 1.03-1.52) for heterozygotes of the XPC codon 939 Lys and Gln alleles (XPC-LG) and OR = 1.81 (95% confidence interval = 1.36-2.40) for homozygotes of the XPC codon 939 Gln alleles (XPC-GG)]. Significant interactive effects between genotypes and AFB1 exposure status were also observed in the joint-effects analysis. This polymorphism, moreover, was correlated with XPC expression levels in cancerous tissues (r = -0.369, P < 0.001) and with the overall survival of HCC patients (the median survival times were 30, 25, and 19 months for patients with homozygotes of the XPC codon 939 Lys alleles, XPC-LG, and XPC-GG, respectively), especially under high AFB1 exposure conditions. Like AFB1 exposure, the XPC codon 939 polymorphism was an independent prognostic factor influencing the survival of HCC. Additionally, this polymorphism multiplicatively interacted with the xeroderma

  8. NS1 codon usage adaptation to humans in pandemic Zika virus.

    PubMed

    Freire, Caio César de Melo; Palmisano, Giuseppe; Braconi, Carla T; Cugola, Fernanda R; Russo, Fabiele B; Beltrão-Braga, Patricia Cb; Iamarino, Atila; Lima Neto, Daniel Ferreira de; Sall, Amadou Alpha; Rosa-Fernandes, Livia; Larsen, Martin R; Zanotto, Paolo Marinho de Andrade

    2018-05-10

    Zika virus (ZIKV) was recognised as a zoonotic pathogen in Africa and southeastern Asia. Human infections were infrequently reported until 2007, when the first known epidemic occurred in Micronesia. After 2013, the Asian lineage of ZIKV spread along the Pacific Islands and Americas, causing severe outbreaks with millions of human infections. The recent human infections of ZIKV were also associated with severe complications, such as an increase in cases of Guillain-Barre syndrome and the emergence of congenital Zika syndrome. To better understand the recent and rapid expansion of ZIKV, as well as the presentation of novel complications, we compared the genetic differences between the African sylvatic lineage and the Asian epidemic lineage that caused the recent massive outbreaks. The epidemic lineages have significant codon adaptation in NS1 gene to translate these proteins in human and Aedes aegypti mosquito cells compared to the African zoonotic lineage. Accordingly, a Brazilian epidemic isolate (ZBR) produced more NS1 protein than the MR766 African lineage (ZAF) did, as indicated by proteomic data from infections of neuron progenitor cells-derived neurospheres. Although ZBR replicated more efficiently in these cells, the differences observed in the stoichiometry of ZIKV proteins were not exclusively explained by the differences in viral replication between the lineages. Our findings suggest that natural, silent translational selection in the second half of 20th century could have improved the fitness of Asian ZIKV lineage in human and mosquito cells.

  9. Regions of extreme synonymous codon selection in mammalian genes

    PubMed Central

    Schattner, Peter; Diekhans, Mark

    2006-01-01

    Recently there has been increasing evidence that purifying selection occurs among synonymous codons in mammalian genes. This selection appears to be a consequence of either cis-regulatory motifs, such as exonic splicing enhancers (ESEs), or mRNA secondary structures, being superimposed on the coding sequence of the gene. We have developed a program to identify regions likely to be enriched for such motifs by searching for extended regions of extreme codon conservation between homologous genes of related species. Here we present the results of applying this approach to five mammalian species (human, chimpanzee, mouse, rat and dog). Even with very conservative selection criteria, we find over 200 regions of extreme codon conservation, ranging in length from 60 to 178 codons. The regions are often found within genes involved in DNA-binding, RNA-binding or zinc-ion-binding. They are highly depleted for synonymous single nucleotide polymorphisms (SNPs) but not for non-synonymous SNPs, further indicating that the observed codon conservation is being driven by negative selection. Forty-three percent of the regions overlap conserved alternative transcript isoforms and are enriched for known ESEs. Other regions are enriched for TpA dinucleotides and may contain conserved motifs/structures relating to mRNA stability and/or degradation. We anticipate that this tool will be useful for detecting regions enriched in other classes of coding-sequence motifs and structures as well. PMID:16556911

  10. Synonymous codon usage of genes in polymerase complex of Newcastle disease virus.

    PubMed

    Kumar, Chandra Shekhar; Kumar, Sachin

    2017-06-01

    Newcastle disease virus (NDV) is pathogenic to both avian and non-avian species but extensively finds poultry as its primary host and causes heavy economic losses in the poultry industry. In this study, a total of 186 polymerase complex comprising of nucleoprotein (N), phosphoprotein (P), and large polymerase (L) genes of NDV was analyzed for synonymous codon usage. The relative synonymous codon usage and effective number of codons (ENC) values were used to estimate codon usage variation in each gene. Correspondence analysis (COA) was used to study the major trend in codon usage variation. Analyzing the ENC plot values against GC3s (at synonymous third codon position) we concluded that mutational pressure was the main factor determining codon usage bias than translational selection in NDV N, P, and L genes. Moreover, correlation analysis indicated, that aromaticity of N, P, and L genes also influenced the codon usage variation. The varied distribution of pathotypes for N, P, and L gene clearly suggests that change in codon usage for NDV is pathotype specific. The codon usage preference similarity in N, P, and L gene might be detrimental for polymerase complex functioning. The study represents a comprehensive analysis to date of N, P, and L genes codon usage pattern of NDV and provides a basic understanding of the mechanisms for codon usage bias. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Analysis of codon usage in beta-tubulin sequences of helminths.

    PubMed

    von Samson-Himmelstjerna, G; Harder, A; Failing, K; Pape, M; Schnieder, T

    2003-07-01

    Codon usage bias has been shown to be correlated with gene expression levels in many organisms, including the nematode Caenorhabditis elegans. Here, the codon usage (cu) characteristics for a set of currently available beta-tubulin coding sequences of helminths were assessed by calculating several indices, including the effective codon number (Nc), the intrinsic codon deviation index (ICDI), the P2 value and the mutational response index (MRI). The P2 value gives a measure of translational pressure, which has been shown to be correlated to high gene expression levels in some organisms, but it has not yet been analysed in that respect in helminths. For all but two of the C. elegans beta-tubulin coding sequences investigated, the P2 value was the only index that indicated the presence of codon usage bias. Therefore, we propose that in general the helminth beta-tubulin sequences investigated here are not expressed at high levels. Furthermore, we calculated the correlation coefficients for the cu patterns of the helminth beta-tubulin sequences compared with those of highly expressed genes in organisms such as Escherichia coli and C. elegans. It was found that beta-tubulin cu patterns for all sequences of members of the Strongylida were significantly correlated to those for highly expressed C. elegans genes. This approach provides a new measure for comparing the adaptation of cu of a particular coding sequence with that of highly expressed genes in possible expression systems.Finally, using the cu patterns of the sequences studied, a phylogenetic tree was constructed. The topology of this tree was very much in concordance with that of a phylogeny based on small subunit ribosomal DNA sequence alignments.

  12. Selective forces and mutational biases drive stop codon usage in the human genome: a comparison with sense codon usage.

    PubMed

    Trotta, Edoardo

    2016-05-17

    The three stop codons UAA, UAG, and UGA signal the termination of mRNA translation. As a result of a mechanism that is not adequately understood, they are normally used with unequal frequencies. In this work, we showed that selective forces and mutational biases drive stop codon usage in the human genome. We found that, in respect to sense codons, stop codon usage was affected by stronger selective forces but was less influenced by neutral mutational biases. UGA is the most frequent termination codon in human genome. However, UAA was the preferred stop codon in genes with high breadth of expression, high level of expression, AT-rich coding sequences, housekeeping functions, and in gene ontology categories with the largest deviation from expected stop codon usage. Selective forces associated with the breadth and the level of expression favoured AT-rich sequences in the mRNA region including the stop site and its proximal 3'-UTR, but acted with scarce effects on sense codons, generating two regions, upstream and downstream of the stop codon, with strongly different base composition. By favouring low levels of GC-content, selection promoted labile local secondary structures at the stop site and its proximal 3'-UTR. The compositional and structural context favoured by selection was surprisingly emphasized in the class of ribosomal proteins and was consistent with sequence elements that increase the efficiency of translational termination. Stop codons were also heterogeneously distributed among chromosomes by a mechanism that was strongly correlated with the GC-content of coding sequences. In human genome, the nucleotide composition and the thermodynamic stability of stop codon site and its proximal 3'-UTR are correlated with the GC-content of coding sequences and with the breadth and the level of gene expression. In highly expressed genes stop codon usage is compositionally and structurally consistent with highly efficient translation termination signals.

  13. Genome-wide analysis of codon usage bias in four sequenced cotton species.

    PubMed

    Wang, Liyuan; Xing, Huixian; Yuan, Yanchao; Wang, Xianlin; Saeed, Muhammad; Tao, Jincai; Feng, Wei; Zhang, Guihua; Song, Xianliang; Sun, Xuezhen

    2018-01-01

    Codon usage bias (CUB) is an important evolutionary feature in a genome which provides important information for studying organism evolution, gene function and exogenous gene expression. The CUB and its shaping factors in the nuclear genomes of four sequenced cotton species, G. arboreum (A2), G. raimondii (D5), G. hirsutum (AD1) and G. barbadense (AD2) were analyzed in the present study. The effective number of codons (ENC) analysis showed the CUB was weak in these four species and the four subgenomes of the two tetraploids. Codon composition analysis revealed these four species preferred to use pyrimidine-rich codons more frequently than purine-rich codons. Correlation analysis indicated that the base content at the third position of codons affect the degree of codon preference. PR2-bias plot and ENC-plot analyses revealed that the CUB patterns in these genomes and subgenomes were influenced by combined effects of translational selection, directional mutation and other factors. The translational selection (P2) analysis results, together with the non-significant correlation between GC12 and GC3, further revealed that translational selection played the dominant role over mutation pressure in the codon usage bias. Through relative synonymous codon usage (RSCU) analysis, we detected 25 high frequency codons preferred to end with T or A, and 31 low frequency codons inclined to end with C or G in these four species and four subgenomes. Finally, 19 to 26 optimal codons with 19 common ones were determined for each species and subgenomes, which preferred to end with A or T. We concluded that the codon usage bias was weak and the translation selection was the main shaping factor in nuclear genes of these four cotton genomes and four subgenomes.

  14. Energetics of codon-anticodon recognition on the small ribosomal subunit.

    PubMed

    Almlöf, Martin; Andér, Martin; Aqvist, Johan

    2007-01-09

    Recent crystal structures of the small ribosomal subunit have made it possible to examine the detailed energetics of codon recognition on the ribosome by computational methods. The binding of cognate and near-cognate anticodon stem loops to the ribosome decoding center, with mRNA containing the Phe UUU and UUC codons, are analyzed here using explicit solvent molecular dynamics simulations together with the linear interaction energy (LIE) method. The calculated binding free energies are in excellent agreement with experimental binding constants and reproduce the relative effects of mismatches in the first and second codon position versus a mismatch at the wobble position. The simulations further predict that the Leu2 anticodon stem loop is about 10 times more stable than the Ser stem loop in complex with the Phe UUU codon. It is also found that the ribosome significantly enhances the intrinsic stability differences of codon-anticodon complexes in aqueous solution. Structural analysis of the simulations confirms the previously suggested importance of the universally conserved nucleotides A1492, A1493, and G530 in the decoding process.

  15. Balanced Codon Usage Optimizes Eukaryotic Translational Efficiency

    PubMed Central

    Qian, Wenfeng; Yang, Jian-Rong; Pearson, Nathaniel M.; Maclean, Calum; Zhang, Jianzhi

    2012-01-01

    Cellular efficiency in protein translation is an important fitness determinant in rapidly growing organisms. It is widely believed that synonymous codons are translated with unequal speeds and that translational efficiency is maximized by the exclusive use of rapidly translated codons. Here we estimate the in vivo translational speeds of all sense codons from the budding yeast Saccharomyces cerevisiae. Surprisingly, preferentially used codons are not translated faster than unpreferred ones. We hypothesize that this phenomenon is a result of codon usage in proportion to cognate tRNA concentrations, the optimal strategy in enhancing translational efficiency under tRNA shortage. Our predicted codon–tRNA balance is indeed observed from all model eukaryotes examined, and its impact on translational efficiency is further validated experimentally. Our study reveals a previously unsuspected mechanism by which unequal codon usage increases translational efficiency, demonstrates widespread natural selection for translational efficiency, and offers new strategies to improve synthetic biology. PMID:22479199

  16. Codon usage analysis of photolyase encoding genes of cyanobacteria inhabiting diverse habitats.

    PubMed

    Rajneesh; Pathak, Jainendra; Kannaujiya, Vinod K; Singh, Shailendra P; Sinha, Rajeshwar P

    2017-07-01

    Nucleotide and amino acid compositions were studied to determine the genomic and structural relationship of photolyase gene in freshwater, marine and hot spring cyanobacteria. Among three habitats, photolyase encoding genes from hot spring cyanobacteria were found to have highest GC content. The genomic GC content was found to influence the codon usage and amino acid variability in photolyases. The third position of codon was found to have more effect on amino acid variability in photolyases than the first and second positions of codon. The variation of amino acids Ala, Asp, Glu, Gly, His, Leu, Pro, Gln, Arg and Val in photolyases of three different habitats was found to be controlled by first position of codon (G1C1). However, second position (G2C2) of codon regulates variation of Ala, Cys, Gly, Pro, Arg, Ser, Thr and Tyr contents in photolyases. Third position (G3C3) of codon controls incorporation of amino acids such as Ala, Phe, Gly, Leu, Gln, Pro, Arg, Ser, Thr and Tyr in photolyases from three habitats. Photolyase encoding genes of hot spring cyanobacteria have 85% codons with G or C at third position, whereas marine and freshwater cyanobacteria showed 82 and 60% codons, respectively, with G or C at third position. Principal component analysis (PCA) showed that GC content has a profound effect in separating the genes along the first major axis according to their RSCU (relative synonymous codon usage) values, and neutrality analysis indicated that mutational pressure has resulted in codon bias in photolyase genes of cyanobacteria.

  17. Cloning and expression of codon-optimized recombinant darbepoetin alfa in Leishmania tarentolae T7-TR.

    PubMed

    Kianmehr, Anvarsadat; Golavar, Raziyeh; Rouintan, Mandana; Mahrooz, Abdolkarim; Fard-Esfahani, Pezhman; Oladnabi, Morteza; Khajeniazi, Safoura; Mostafavi, Seyede Samaneh; Omidinia, Eskandar

    2016-02-01

    Darbepoetin alfa is an engineered and hyperglycosylated analog of recombinant human erythropoietin (EPO) which is used as a drug in treating anemia in patients with chronic kidney failure and cancer. This study desribes the secretory expression of a codon-optimized recombinant form of darbepoetin alfa in Leishmania tarentolae T7-TR. Synthetic codon-optimized gene was amplified by PCR and cloned into the pLEXSY-I-blecherry3 vector. The resultant expression vector, pLEXSYDarbo, was purified, digested, and electroporated into the L. tarentolae. Expression of recombinant darbepoetin alfa was evaluated by ELISA, reverse-transcription PCR (RT-PCR), Western blotting, and biological activity. After codon optimization, codon adaptation index (CAI) of the gene raised from 0.50 to 0.99 and its GC% content changed from 56% to 58%. Expression analysis confirmed the presence of a protein band at 40 kDa. Furthermore, reticulocyte experiment results revealed that the activity of expressed darbepoetin alfa was similar to that of its equivalent expressed in Chinese hamster ovary (CHO) cells. These data suggested that the codon optimization and expression in L. tarentolae host provided an efficient approach for high level expression of darbepoetin alfa. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Large-Scale Genomic Analysis of Codon Usage in Dengue Virus and Evaluation of Its Phylogenetic Dependence

    PubMed Central

    Lara-Ramírez, Edgar E.; Salazar, Ma Isabel; López-López, María de Jesús; Salas-Benito, Juan Santiago; Sánchez-Varela, Alejandro

    2014-01-01

    The increasing number of dengue virus (DENV) genome sequences available allows identifying the contributing factors to DENV evolution. In the present study, the codon usage in serotypes 1–4 (DENV1–4) has been explored for 3047 sequenced genomes using different statistics methods. The correlation analysis of total GC content (GC) with GC content at the three nucleotide positions of codons (GC1, GC2, and GC3) as well as the effective number of codons (ENC, ENCp) versus GC3 plots revealed mutational bias and purifying selection pressures as the major forces influencing the codon usage, but with distinct pressure on specific nucleotide position in the codon. The correspondence analysis (CA) and clustering analysis on relative synonymous codon usage (RSCU) within each serotype showed similar clustering patterns to the phylogenetic analysis of nucleotide sequences for DENV1–4. These clustering patterns are strongly related to the virus geographic origin. The phylogenetic dependence analysis also suggests that stabilizing selection acts on the codon usage bias. Our analysis of a large scale reveals new feature on DENV genomic evolution. PMID:25136631

  19. Proteome adaptation to high temperatures in the ectothermic hydrothermal vent Pompeii worm.

    PubMed

    Jollivet, Didier; Mary, Jean; Gagnière, Nicolas; Tanguy, Arnaud; Fontanillas, Eric; Boutet, Isabelle; Hourdez, Stéphane; Segurens, Béatrice; Weissenbach, Jean; Poch, Olivier; Lecompte, Odile

    2012-01-01

    Taking advantage of the massive genome sequencing effort made on thermophilic prokaryotes, thermal adaptation has been extensively studied by analysing amino acid replacements and codon usage in these unicellular organisms. In most cases, adaptation to thermophily is associated with greater residue hydrophobicity and more charged residues. Both of these characteristics are positively correlated with the optimal growth temperature of prokaryotes. In contrast, little information has been collected on the molecular 'adaptive' strategy of thermophilic eukaryotes. The Pompeii worm A. pompejana, whose transcriptome has recently been sequenced, is currently considered as the most thermotolerant eukaryote on Earth, withstanding the greatest thermal and chemical ranges known. We investigated the amino-acid composition bias of ribosomal proteins in the Pompeii worm when compared to other lophotrochozoans and checked for putative adaptive changes during the course of evolution using codon-based Maximum likelihood analyses. We then provided a comparative analysis of codon usage and amino-acid replacements from a greater set of orthologous genes between the Pompeii worm and Paralvinella grasslei, one of its closest relatives living in a much cooler habitat. Analyses reveal that both species display the same high GC-biased codon usage and amino-acid patterns favoring both positively-charged residues and protein hydrophobicity. These patterns may be indicative of an ancestral adaptation to the deep sea and/or thermophily. In addition, the Pompeii worm displays a set of amino-acid change patterns that may explain its greater thermotolerance, with a significant increase in Tyr, Lys and Ala against Val, Met and Gly. Present results indicate that, together with a high content in charged residues, greater proportion of smaller aliphatic residues, and especially alanine, may be a different path for metazoans to face relatively 'high' temperatures and thus a novelty in thermophilic

  20. TTA codons in some genes prevent their expression in a class of developmental, antibiotic-negative, Streptomyces mutants.

    PubMed Central

    Leskiw, B K; Lawlor, E J; Fernandez-Abalos, J M; Chater, K F

    1991-01-01

    In Streptomyces coelicolor A3(2) and the related species Streptomyces lividans 66, aerial mycelium formation and antibiotic production are blocked by mutations in bldA, which specifies a tRNA(Leu)-like gene product which would recognize the UUA codon. Here we show that phenotypic expression of three disparate genes (carB, lacZ, and ampC) containing TTA codons depends strongly on bldA. Site-directed mutagenesis of carB, changing its two TTA codons to CTC (leucine) codons, resulted in bldA-independent expression; hence the bldA product is the principal tRNA for the UUA codon. Two other genes (hyg and aad) containing TTA codons show a medium-dependent reduction in phenotypic expression (hygromycin resistance and spectinomycin resistance, respectively) in bldA mutants. For hyg, evidence is presented that the UUA codon is probably being translated by a tRNA with an imperfectly matched anticodon, giving very low levels of gene product but relatively high resistance to hygromycin. It is proposed that TTA codons may be generally absent from genes expressed during vegetative growth and from the structural genes for differentiation and antibiotic production but present in some regulatory and resistance genes associated with the latter processes. The codon may therefore play a role in developmental regulation. Images PMID:1826053

  1. Genomic characteristics comparisons of 12 food-related filamentous fungi in tRNA gene set, codon usage and amino acid composition.

    PubMed

    Chen, Wanping; Xie, Ting; Shao, Yanchun; Chen, Fusheng

    2012-04-10

    Filamentous fungi are widely exploited in food industry due to their abilities to secrete large amounts of enzymes and metabolites. The recent availability of fungal genome sequences has provided an opportunity to explore the genomic characteristics of these food-related filamentous fungi. In this paper, we selected 12 representative filamentous fungi in the areas of food processing and safety, which were Aspergillus clavatus, A. flavus, A. fumigatus, A. nidulans, A. niger, A. oryzae, A. terreus, Monascus ruber, Neurospora crassa, Penicillium chrysogenum, Rhizopus oryzae and Trichoderma reesei, and did the comparative studies of their genomic characteristics of tRNA gene distribution, codon usage pattern and amino acid composition. The results showed that the copy numbers greatly differed among isoaccepting tRNA genes and the distribution seemed to be related with translation process. The results also revealed that genome compositional variation probably constrained the base choice at the third codon, and affected the overall amino acid composition but seemed to have little effect on the integrated physicochemical characteristics of overall amino acids. The further analysis suggested that the wobble pairing and base modification were the important mechanisms in codon-anticodon interaction. In the scope of authors' knowledge, it is the first report about the genomic characteristics analysis of food-related filamentous fungi, which would be informative for the analysis of filamentous fungal genome evolution and their practical application in food industry. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Evaluating Sense Codon Reassignment with a Simple Fluorescence Screen.

    PubMed

    Biddle, Wil; Schmitt, Margaret A; Fisk, John D

    2015-12-22

    Understanding the interactions that drive the fidelity of the genetic code and the limits to which modifications can be made without breaking the translational system has practical implications for understanding the molecular mechanisms of evolution as well as expanding the set of encodable amino acids, particularly those with chemistries not provided by Nature. Because 61 sense codons encode 20 amino acids, reassigning the meaning of sense codons provides an avenue for biosynthetic modification of proteins, furthering both fundamental and applied biochemical research. We developed a simple screen that exploits the absolute requirement for fluorescence of an active site tyrosine in green fluorescent protein (GFP) to probe the pliability of the degeneracy of the genetic code. Our screen monitors the restoration of the fluorophore of GFP by incorporation of a tyrosine in response to a sense codon typically assigned another meaning in the genetic code. We evaluated sense codon reassignment at four of the 21 sense codons read through wobble interactions in Escherichia coli using the Methanocaldococcus jannaschii orthogonal tRNA/aminoacyl tRNA synthetase pair originally developed and commonly used for amber stop codon suppression. By changing only the anticodon of the orthogonal tRNA, we achieved sense codon reassignment efficiencies between 1% (Phe UUU) and 6% (Lys AAG). Each of the orthogonal tRNAs preferentially decoded the codon traditionally read via a wobble interaction in E. coli with the exception of the orthogonal tRNA with an AUG anticodon, which incorporated tyrosine in response to both the His CAU and His CAC codons with approximately equal frequencies. We applied our screen in a high-throughput manner to evaluate a 10(9)-member combined tRNA/aminoacyl tRNA synthetase library to identify improved sense codon reassigning variants for the Lys AAG codon. A single rapid screen with the ability to broadly evaluate reassignable codons will facilitate

  3. Emergent Rules for Codon Choice Elucidated by Editing Rare Arginine Codons in Escherichia coli

    DTIC Science & Technology

    2016-09-20

    alternative codons are more likely to be viable. To evaluate synonymous and nonsynonymous alternatives to essential AGRs further, we imple- mented a CRISPR ... Crispr -assisted MAGE). First, we designed oligos that changed not only the target AGR codon to NNN but also made several synonymous changes at least 50...nt downstream that would disrupt a 20-bp CRISPR target lo- cus. MAGE was used to replace each AGR with NNN in parallel, and CRISPR /cas9 was used to

  4. DNATagger, colors for codons.

    PubMed

    Scherer, N M; Basso, D M

    2008-09-16

    DNATagger is a web-based tool for coloring and editing DNA, RNA and protein sequences and alignments. It is dedicated to the visualization of protein coding sequences and also protein sequence alignments to facilitate the comprehension of evolutionary processes in sequence analysis. The distinctive feature of DNATagger is the use of codons as informative units for coloring DNA and RNA sequences. The codons are colored according to their corresponding amino acids. It is the first program that colors codons in DNA sequences without being affected by "out-of-frame" gaps of alignments. It can handle single gaps and gaps inside the triplets. The program also provides the possibility to edit the alignments and change color patterns and translation tables. DNATagger is a JavaScript application, following the W3C guidelines, designed to work on standards-compliant web browsers. It therefore requires no installation and is platform independent. The web-based DNATagger is available as free and open source software at http://www.inf.ufrgs.br/~dmbasso/dnatagger/.

  5. Influence of codon usage bias on FGLamide-allatostatin mRNA secondary structure.

    PubMed

    Martínez-Pérez, Francisco; Bendena, William G; Chang, Belinda S W; Tobe, Stephen S

    2011-03-01

    The FGLamide allatostatins (ASTs) are invertebrate neuropeptides which inhibit juvenile hormone biosynthesis in Dictyoptera and related orders. They also show myomodulatory activity. FGLamide AST nucleotide frequencies and codon bias were investigated with respect to possible effects on mRNA secondary structure. 367 putative FGLamide ASTs and their potential endoproteolytic cleavage sites were identified from 40 species of crustaceans, chelicerates and insects. Among these, 55% comprised only 11 amino acids. An FGLamide AST consensus was identified to be (X)(1→16)Y(S/A/N/G)FGLGKR, with a strong bias for the codons UUU encoding for Phe and AAA for Lys, which can form strong Watson-Crick pairing in all peptides analyzed. The physical distance between these codons favor a loop structure from Ser/Ala-Phe to Lys-Arg. Other loop and hairpin loops were also inferred from the codon frequencies in the N-terminal motif, and the first amino acids from the C-terminal motif, or the dibasic potential endoproteolytic cleavage site. Our results indicate that nucleotide frequencies and codon usage bias in FGLamide ASTs tend to favor mRNA folds in the codon sequence in the C-terminal active peptide core and at the dibasic potential endoproteolytic cleavage site. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Genetic and codon usage bias analyses of polymerase genes of equine influenza virus and its relation to evolution.

    PubMed

    Bera, Bidhan Ch; Virmani, Nitin; Kumar, Naveen; Anand, Taruna; Pavulraj, S; Rash, Adam; Elton, Debra; Rash, Nicola; Bhatia, Sandeep; Sood, Richa; Singh, Raj Kumar; Tripathi, Bhupendra Nath

    2017-08-23

    Equine influenza is a major health problem of equines worldwide. The polymerase genes of influenza virus have key roles in virus replication, transcription, transmission between hosts and pathogenesis. Hence, the comprehensive genetic and codon usage bias of polymerase genes of equine influenza virus (EIV) were analyzed to elucidate the genetic and evolutionary relationships in a novel perspective. The group - specific consensus amino acid substitutions were identified in all polymerase genes of EIVs that led to divergence of EIVs into various clades. The consistent amino acid changes were also detected in the Florida clade 2 EIVs circulating in Europe and Asia since 2007. To study the codon usage patterns, a total of 281,324 codons of polymerase genes of EIV H3N8 isolates from 1963 to 2015 were systemically analyzed. The polymerase genes of EIVs exhibit a weak codon usage bias. The ENc-GC3s and Neutrality plots indicated that natural selection is the major influencing factor of codon usage bias, and that the impact of mutation pressure is comparatively minor. The methods for estimating host imposed translation pressure suggested that the polymerase acidic (PA) gene seems to be under less translational pressure compared to polymerase basic 1 (PB1) and polymerase basic 2 (PB2) genes. The multivariate statistical analysis of polymerase genes divided EIVs into four evolutionary diverged clusters - Pre-divergent, Eurasian, Florida sub-lineage 1 and 2. Various lineage specific amino acid substitutions observed in all polymerase genes of EIVs and especially, clade 2 EIVs underwent major variations which led to the emergence of a phylogenetically distinct group of EIVs originating from Richmond/1/07. The codon usage bias was low in all the polymerase genes of EIVs that was influenced by the multiple factors such as the nucleotide compositions, mutation pressure, aromaticity and hydropathicity. However, natural selection was the major influencing factor in defining the

  7. Exploring codon context bias for synthetic gene design of a thermostable invertase in Escherichia coli.

    PubMed

    Pek, Han Bin; Klement, Maximilian; Ang, Kok Siong; Chung, Bevan Kai-Sheng; Ow, Dave Siak-Wei; Lee, Dong-Yup

    2015-01-01

    Various isoforms of invertases from prokaryotes, fungi, and higher plants has been expressed in Escherichia coli, and codon optimisation is a widely-adopted strategy for improvement of heterologous enzyme expression. Successful synthetic gene design for recombinant protein expression can be done by matching its translational elongation rate against heterologous host organisms via codon optimization. Amongst the various design parameters considered for the gene synthesis, codon context bias has been relatively overlooked compared to individual codon usage which is commonly adopted in most of codon optimization tools. In addition, matching the rates of transcription and translation based on secondary structure may lead to enhanced protein folding. In this study, we evaluated codon context fitness as design criterion for improving the expression of thermostable invertase from Thermotoga maritima in Escherichia coli and explored the relevance of secondary structure regions for folding and expression. We designed three coding sequences by using (1) a commercial vendor optimized gene algorithm, (2) codon context for the whole gene, and (3) codon context based on the secondary structure regions. Then, the codon optimized sequences were transformed and expressed in E. coli. From the resultant enzyme activities and protein yield data, codon context fitness proved to have the highest activity as compared to the wild-type control and other criteria while secondary structure-based strategy is comparable to the control. Codon context bias was shown to be a relevant parameter for enhancing enzyme production in Escherichia coli by codon optimization. Thus, we can effectively design synthetic genes within heterologous host organisms using this criterion. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Functional Versatility of AGY Serine Codons in Immunoglobulin Variable Region Genes

    PubMed Central

    Detanico, Thiago; Phillips, Matthew; Wysocki, Lawrence J.

    2016-01-01

    In systemic autoimmunity, autoantibodies directed against nuclear antigens (Ags) often arise by somatic hypermutation (SHM) that converts AGT and AGC (AGY) Ser codons into Arg codons. This can occur by three different single-base changes. Curiously, AGY Ser codons are far more abundant in complementarity-determining regions (CDRs) of IgV-region genes than expected for random codon use or from species-specific codon frequency data. CDR AGY codons are also more abundant than TCN Ser codons. We show that these trends hold even in cartilaginous fishes. Because AGC is a preferred target for SHM by activation-induced cytidine deaminase, we asked whether the AGY abundance was solely due to a selection pressure to conserve high mutability in CDRs regardless of codon context but found that this was not the case. Instead, AGY triplets were selectively enriched in the Ser codon reading frame. Motivated by reports implicating a functional role for poly/autoreactive specificities in antiviral antibodies, we also analyzed mutations at AGY in antibodies directed against a number of different viruses and found that mutations producing Arg codons in antiviral antibodies were indeed frequent. Unexpectedly, however, we also found that AGY codons mutated often to encode nearly all of the amino acids that are reported to provide the most frequent contacts with Ag. In many cases, mutations producing codons for these alternative amino acids in antiviral antibodies were more frequent than those producing Arg codons. Mutations producing each of these key amino acids required only single-base changes in AGY. AGY is the only codon group in which two-thirds of random mutations generate codons for these key residues. Finally, by directly analyzing X-ray structures of immune complexes from the RCSB protein database, we found that Ag-contact residues generated via SHM occurred more often at AGY than at any other codon group. Thus, preservation of AGY codons in antibody genes appears to have been

  9. KRAS exon 2 codon 13 mutation is associated with a better prognosis than codon 12 mutation following lung metastasectomy in colorectal cancer

    PubMed Central

    Renaud, Stéphane; Guerrera, Francesco; Seitlinger, Joseph; Costardi, Lorena; Schaeffer, Mickaël; Romain, Benoit; Mossetti, Claudio; Claire-Voegeli, Anne; Filosso, Pier Luigi; Legrain, Michèle; Ruffini, Enrico; Falcoz, Pierre-Emmanuel; Oliaro, Alberto; Massard, Gilbert

    2017-01-01

    Introduction The utilization of molecular markers as routinely used biomarkers is steadily increasing. We aimed to evaluate the potential different prognostic values of KRAS exon 2 codons 12 and 13 after lung metastasectomy in colorectal cancer (CRC). Results KRAS codon 12 mutations were observed in 116 patients (77%), whereas codon 13 mutations were observed in 34 patients (23%). KRAS codon 13 mutations were associated with both longer time to pulmonary recurrence (TTPR) (median TTPR: 78 months (95% CI: 50.61–82.56) vs 56 months (95% CI: 68.71–127.51), P = 0.008) and improved overall survival (OS) (median OS: 82 months vs 54 months (95% CI: 48.93–59.07), P = 0.009). Multivariate analysis confirmed that codon 13 mutations were associated with better outcomes (TTPR: HR: 0.40 (95% CI: 0.17–0.93), P = 0.033); OS: HR: 0.39 (95% CI: 0.14–1.07), P = 0.07). Otherwise, no significant difference in OS (P = 0.78) or TTPR (P = 0.72) based on the type of amino-acid substitutions was observed among KRAS codon 12 mutations. Materials and Methods We retrospectively reviewed data from 525 patients who underwent a lung metastasectomy for CRC in two departments of thoracic surgery from 1998 to 2015 and focused on 150 patients that had KRAS exon 2 codon 12/13 mutations. Conclusions KRAS exon 2 codon 13 mutations, compared to codon 12 mutations, seem to be associated with better outcomes following lung metastasectomy in CRC. Prospective multicenter studies are necessary to fully understand the prognostic value of KRAS mutations in the lung metastases of CRC. PMID:27911859

  10. Lack of correlation between p53 codon 72 polymorphism and anal cancer risk

    PubMed Central

    Contu, Simone S; Agnes, Grasiela; Damin, Andrea P; Contu, Paulo C; Rosito, Mário A; Alexandre, Claudio O; Damin, Daniel C

    2009-01-01

    AIM: To investigate the potential role of p53 codon 72 polymorphism as a risk factor for development of anal cancer. METHODS: Thirty-two patients with invasive anal carcinoma and 103 healthy blood donors were included in the study. p53 codon 72 polymorphism was analyzed in blood samples through polymerase chain reaction-restriction fragment length polymorphism and DNA sequencing. RESULTS: The relative frequency of each allele was 0.60 for Arg and 0.40 for Pro in patients with anal cancer, and 0.61 for Arg and 0.39 for Pro in normal controls. No significant differences in distribution of the codon 72 genotypes between patients and controls were found. CONCLUSION: These results do not support a role for the p53 codon 72 polymorphism in anal carcinogenesis. PMID:19777616

  11. Proteome Adaptation to High Temperatures in the Ectothermic Hydrothermal Vent Pompeii Worm

    PubMed Central

    Jollivet, Didier; Mary, Jean; Gagnière, Nicolas; Tanguy, Arnaud; Fontanillas, Eric; Boutet, Isabelle; Hourdez, Stéphane; Segurens, Béatrice; Weissenbach, Jean; Poch, Olivier; Lecompte, Odile

    2012-01-01

    Taking advantage of the massive genome sequencing effort made on thermophilic prokaryotes, thermal adaptation has been extensively studied by analysing amino acid replacements and codon usage in these unicellular organisms. In most cases, adaptation to thermophily is associated with greater residue hydrophobicity and more charged residues. Both of these characteristics are positively correlated with the optimal growth temperature of prokaryotes. In contrast, little information has been collected on the molecular ‘adaptive’ strategy of thermophilic eukaryotes. The Pompeii worm A. pompejana, whose transcriptome has recently been sequenced, is currently considered as the most thermotolerant eukaryote on Earth, withstanding the greatest thermal and chemical ranges known. We investigated the amino-acid composition bias of ribosomal proteins in the Pompeii worm when compared to other lophotrochozoans and checked for putative adaptive changes during the course of evolution using codon-based Maximum likelihood analyses. We then provided a comparative analysis of codon usage and amino-acid replacements from a greater set of orthologous genes between the Pompeii worm and Paralvinella grasslei, one of its closest relatives living in a much cooler habitat. Analyses reveal that both species display the same high GC-biased codon usage and amino-acid patterns favoring both positively-charged residues and protein hydrophobicity. These patterns may be indicative of an ancestral adaptation to the deep sea and/or thermophily. In addition, the Pompeii worm displays a set of amino-acid change patterns that may explain its greater thermotolerance, with a significant increase in Tyr, Lys and Ala against Val, Met and Gly. Present results indicate that, together with a high content in charged residues, greater proportion of smaller aliphatic residues, and especially alanine, may be a different path for metazoans to face relatively ‘high’ temperatures and thus a novelty in

  12. A common periodic table of codons and amino acids.

    PubMed

    Biro, J C; Benyó, B; Sansom, C; Szlávecz, A; Fördös, G; Micsik, T; Benyó, Z

    2003-06-27

    A periodic table of codons has been designed where the codons are in regular locations. The table has four fields (16 places in each) one with each of the four nucleotides (A, U, G, C) in the central codon position. Thus, AAA (lysine), UUU (phenylalanine), GGG (glycine), and CCC (proline) were placed into the corners of the fields as the main codons (and amino acids) of the fields. They were connected to each other by six axes. The resulting nucleic acid periodic table showed perfect axial symmetry for codons. The corresponding amino acid table also displaced periodicity regarding the biochemical properties (charge and hydropathy) of the 20 amino acids and the position of the stop signals. The table emphasizes the importance of the central nucleotide in the codons and predicts that purines control the charge while pyrimidines determine the polarity of the amino acids. This prediction was experimentally tested.

  13. Comparison of codon usage bias across Leishmania and Trypanosomatids to understand mRNA secondary structure, relative protein abundance and pathway functions.

    PubMed

    Subramanian, Abhishek; Sarkar, Ram Rup

    2015-10-01

    Understanding the variations in gene organization and its effect on the phenotype across different Leishmania species, and to study differential clinical manifestations of parasite within the host, we performed large scale analysis of codon usage patterns between Leishmania and other known Trypanosomatid species. We present the causes and consequences of codon usage bias in Leishmania genomes with respect to mutational pressure, translational selection and amino acid composition bias. We establish GC bias at wobble position that governs codon usage bias across Leishmania species, rather than amino acid composition bias. We found that, within Leishmania, homogenous codon context coding for less frequent amino acid pairs and codons avoiding formation of folding structures in mRNA are essentially chosen. We predicted putative differences in global expression between genes belonging to specific pathways across Leishmania. This explains the role of evolution in shaping the otherwise conserved genome to demonstrate species-specific function-level differences for efficient survival. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Synonymous codon choices in the extremely GC-poor genome of Plasmodium falciparum: compositional constraints and translational selection.

    PubMed

    Musto, H; Romero, H; Zavala, A; Jabbari, K; Bernardi, G

    1999-07-01

    We have analyzed the patterns of synonymous codon preferences of the nuclear genes of Plasmodium falciparum, a unicellular parasite characterized by an extremely GC-poor genome. When all genes are considered, codon usage is strongly biased toward A and T in third codon positions, as expected, but multivariate statistical analysis detects a major trend among genes. At one end genes display codon choices determined mainly by the extreme genome composition of this parasite, and very probably their expression level is low. At the other end a few genes exhibit an increased relative usage of a particular subset of codons, many of which are C-ending. Since the majority of these few genes is putatively highly expressed, we postulate that the increased C-ending codons are translationally optimal. In conclusion, while codon usage of the majority of P. falciparum genes is determined mainly by compositional constraints, a small number of genes exhibit translational selection.

  15. Partial attenuation of Marek's disease virus by manipulation of Di-codon bias

    USDA-ARS?s Scientific Manuscript database

    All species studied to date demonstrate a preference for certain codons over other synonymous codons (codon bias), a preference which is also observed for pairs of codons (di-codon bias). Previous studies using poliovirus and influenza virus as models have demonstrated the ability to cause attenuat...

  16. Development of a codon optimization strategy using the efor RED reporter gene as a test case

    NASA Astrophysics Data System (ADS)

    Yip, Chee-Hoo; Yarkoni, Orr; Ajioka, James; Wan, Kiew-Lian; Nathan, Sheila

    2018-04-01

    Synthetic biology is a platform that enables high-level synthesis of useful products such as pharmaceutically related drugs, bioplastics and green fuels from synthetic DNA constructs. Large-scale expression of these products can be achieved in an industrial compliant host such as Escherichia coli. To maximise the production of recombinant proteins in a heterologous host, the genes of interest are usually codon optimized based on the codon usage of the host. However, the bioinformatics freeware available for standard codon optimization might not be ideal in determining the best sequence for the synthesis of synthetic DNA. Synthesis of incorrect sequences can prove to be a costly error and to avoid this, a codon optimization strategy was developed based on the E. coli codon usage using the efor RED reporter gene as a test case. This strategy replaces codons encoding for serine, leucine, proline and threonine with the most frequently used codons in E. coli. Furthermore, codons encoding for valine and glycine are substituted with the second highly used codons in E. coli. Both the optimized and original efor RED genes were ligated to the pJS209 plasmid backbone using Gibson Assembly and the recombinant DNAs were transformed into E. coli E. cloni 10G strain. The fluorescence intensity per cell density of the optimized sequence was improved by 20% compared to the original sequence. Hence, the developed codon optimization strategy is proposed when designing an optimal sequence for heterologous protein production in E. coli.

  17. Hand gesture recognition by analysis of codons

    NASA Astrophysics Data System (ADS)

    Ramachandra, Poornima; Shrikhande, Neelima

    2007-09-01

    The problem of recognizing gestures from images using computers can be approached by closely understanding how the human brain tackles it. A full fledged gesture recognition system will substitute mouse and keyboards completely. Humans can recognize most gestures by looking at the characteristic external shape or the silhouette of the fingers. Many previous techniques to recognize gestures dealt with motion and geometric features of hands. In this thesis gestures are recognized by the Codon-list pattern extracted from the object contour. All edges of an image are described in terms of sequence of Codons. The Codons are defined in terms of the relationship between maxima, minima and zeros of curvature encountered as one traverses the boundary of the object. We have concentrated on a catalog of 24 gesture images from the American Sign Language alphabet (Letter J and Z are ignored as they are represented using motion) [2]. The query image given as an input to the system is analyzed and tested against the Codon-lists, which are shape descriptors for external parts of a hand gesture. We have used the Weighted Frequency Indexing Transform (WFIT) approach which is used in DNA sequence matching for matching the Codon-lists. The matching algorithm consists of two steps: 1) the query sequences are converted to short sequences and are assigned weights and, 2) all the sequences of query gestures are pruned into match and mismatch subsequences by the frequency indexing tree based on the weights of the subsequences. The Codon sequences with the most weight are used to determine the most precise match. Once a match is found, the identified gesture and corresponding interpretation are shown as output.

  18. Vertebrate codon bias indicates a highly GC-rich ancestral genome.

    PubMed

    Nabiyouni, Maryam; Prakash, Ashwin; Fedorov, Alexei

    2013-04-25

    Two factors are thought to have contributed to the origin of codon usage bias in eukaryotes: 1) genome-wide mutational forces that shape overall GC-content and create context-dependent nucleotide bias, and 2) positive selection for codons that maximize efficient and accurate translation. Particularly in vertebrates, these two explanations contradict each other and cloud the origin of codon bias in the taxon. On the one hand, mutational forces fail to explain GC-richness (~60%) of third codon positions, given the GC-poor overall genomic composition among vertebrates (~40%). On the other hand, positive selection cannot easily explain strict regularities in codon preferences. Large-scale bioinformatic assessment, of nucleotide composition of coding and non-coding sequences in vertebrates and other taxa, suggests a simple possible resolution for this contradiction. Specifically, we propose that the last common vertebrate ancestor had a GC-rich genome (~65% GC). The data suggest that whole-genome mutational bias is the major driving force for generating codon bias. As the bias becomes prominent, it begins to affect translation and can result in positive selection for optimal codons. The positive selection can, in turn, significantly modulate codon preferences. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Codes in the codons: construction of a codon/amino acid periodic table and a study of the nature of specific nucleic acid-protein interactions.

    PubMed

    Benyo, B; Biro, J C; Benyo, Z

    2004-01-01

    The theory of "codon-amino acid coevolution" was first proposed by Woese in 1967. It suggests that there is a stereochemical matching - that is, affinity - between amino acids and certain of the base triplet sequences that code for those amino acids. We have constructed a common periodic table of codons and amino acids, where the nucleic acid table showed perfect axial symmetry for codons and the corresponding amino acid table also displayed periodicity regarding the biochemical properties (charge and hydrophobicity) of the 20 amino acids and the position of the stop signals. The table indicates that the middle (2/sup nd/) amino acid in the codon has a prominent role in determining some of the structural features of the amino acids. The possibility that physical contact between codons and amino acids might exist was tested on restriction enzymes. Many recognition site-like sequences were found in the coding sequences of these enzymes and as many as 73 examples of codon-amino acid co-location were observed in the 7 known 3D structures (December 2003) of endonuclease-nucleic acid complexes. These results indicate that the smallest possible units of specific nucleic acid-protein interaction are indeed the stereochemically compatible codons and amino acids.

  20. A novel nuclear genetic code alteration in yeasts and the evolution of codon reassignment in eukaryotes

    PubMed Central

    Mühlhausen, Stefanie; Findeisen, Peggy; Plessmann, Uwe; Urlaub, Henning; Kollmar, Martin

    2016-01-01

    The genetic code is the cellular translation table for the conversion of nucleotide sequences into amino acid sequences. Changes to the meaning of sense codons would introduce errors into almost every translated message and are expected to be highly detrimental. However, reassignment of single or multiple codons in mitochondria and nuclear genomes, although extremely rare, demonstrates that the code can evolve. Several models for the mechanism of alteration of nuclear genetic codes have been proposed (including “codon capture,” “genome streamlining,” and “ambiguous intermediate” theories), but with little resolution. Here, we report a novel sense codon reassignment in Pachysolen tannophilus, a yeast related to the Pichiaceae. By generating proteomics data and using tRNA sequence comparisons, we show that Pachysolen translates CUG codons as alanine and not as the more usual leucine. The Pachysolen tRNACAG is an anticodon-mutated tRNAAla containing all major alanine tRNA recognition sites. The polyphyly of the CUG-decoding tRNAs in yeasts is best explained by a tRNA loss driven codon reassignment mechanism. Loss of the CUG-tRNA in the ancient yeast is followed by gradual decrease of respective codons and subsequent codon capture by tRNAs whose anticodon is not part of the aminoacyl-tRNA synthetase recognition region. Our hypothesis applies to all nuclear genetic code alterations and provides several testable predictions. We anticipate more codon reassignments to be uncovered in existing and upcoming genome projects. PMID:27197221

  1. tRNA1Ser(G34) with the anticodon GGA can recognize not only UCC and UCU codons but also UCA and UCG codons.

    PubMed

    Yamada, Yuko; Matsugi, Jitsuhiro; Ishikura, Hisayuki

    2003-04-15

    The tRNA1Ser (anticodon VGA, V=uridin-5-oxyacetic acid) is essential for translation of the UCA codon in Escherichia coli. Here, we studied the translational abilities of serine tRNA derivatives, which have different bases from wild type at the first positions of their anticodons, using synthetic mRNAs containing the UCN (N=A, G, C, or U) codon. The tRNA1Ser(G34) having the anticodon GGA was able to read not only UCC and UCU codons but also UCA and UCG codons. This means that the formation of G-A or G-G pair allowed at the wobble position and these base pairs are noncanonical. The translational efficiency of the tRNA1Ser(G34) for UCA or UCG codon depends on the 2'-O-methylation of the C32 (Cm). The 2'-O-methylation of C32 may give rise to the space necessary for G-A or G-G base pair formation between the first position of anticodon and the third position of codon.

  2. Random codon re-encoding induces stable reduction of replicative fitness of Chikungunya virus in primate and mosquito cells.

    PubMed

    Nougairede, Antoine; De Fabritus, Lauriane; Aubry, Fabien; Gould, Ernest A; Holmes, Edward C; de Lamballerie, Xavier

    2013-02-01

    Large-scale codon re-encoding represents a powerful method of attenuating viruses to generate safe and cost-effective vaccines. In contrast to specific approaches of codon re-encoding which modify genome-scale properties, we evaluated the effects of random codon re-encoding on the re-emerging human pathogen Chikungunya virus (CHIKV), and assessed the stability of the resultant viruses during serial in cellulo passage. Using different combinations of three 1.4 kb randomly re-encoded regions located throughout the CHIKV genome six codon re-encoded viruses were obtained. Introducing a large number of slightly deleterious synonymous mutations reduced the replicative fitness of CHIKV in both primate and arthropod cells, demonstrating the impact of synonymous mutations on fitness. Decrease of replicative fitness correlated with the extent of re-encoding, an observation that may assist in the modulation of viral attenuation. The wild-type and two re-encoded viruses were passaged 50 times either in primate or insect cells, or in each cell line alternately. These viruses were analyzed using detailed fitness assays, complete genome sequences and the analysis of intra-population genetic diversity. The response to codon re-encoding and adaptation to culture conditions occurred simultaneously, resulting in significant replicative fitness increases for both re-encoded and wild type viruses. Importantly, however, the most re-encoded virus failed to recover its replicative fitness. Evolution of these viruses in response to codon re-encoding was largely characterized by the emergence of both synonymous and non-synonymous mutations, sometimes located in genomic regions other than those involving re-encoding, and multiple convergent and compensatory mutations. However, there was a striking absence of codon reversion (<0.4%). Finally, multiple mutations were rapidly fixed in primate cells, whereas mosquito cells acted as a brake on evolution. In conclusion, random codon re

  3. Codon usage bias and tRNA over-expression in Buchnera aphidicola after aromatic amino acid nutritional stress on its host Acyrthosiphon pisum.

    PubMed

    Charles, Hubert; Calevro, Federica; Vinuelas, José; Fayard, Jean-Michel; Rahbe, Yvan

    2006-01-01

    Codon usage bias and relative abundances of tRNA isoacceptors were analysed in the obligate intracellular symbiotic bacterium, Buchnera aphidicola from the aphid Acyrthosiphon pisum, using a dedicated 35mer oligonucleotide microarray. Buchnera is archetypal of organisms living with minimal metabolic requirements and presents a reduced genome with high-evolutionary rate. Codonusage in Buchnera has been overcome by the high mutational bias towards AT bases. However, several lines of evidence for codon usage selection are given here. A significant correlation was found between tRNA relative abundances and codon composition of Buchnera genes. A significant codon usage bias was found for the choice of rare codons in Buchnera: C-ending codons are preferred in highly expressed genes, whereas G-ending codons are avoided. This bias is not explained by GC skew in the bacteria and might correspond to a selection for perfect matching between codon-anticodon pairs for some essential amino acids in Buchnera proteins. Nutritional stress applied to the aphid host induced a significant overexpression of most of the tRNA isoacceptors in bacteria. Although, molecular regulation of the tRNA operons in Buchnera was not investigated, a correlation between relative expression levels and organization in transcription unit was found in the genome of Buchnera.

  4. Genetic Code Optimization for Cotranslational Protein Folding: Codon Directional Asymmetry Correlates with Antiparallel Betasheets, tRNA Synthetase Classes.

    PubMed

    Seligmann, Hervé; Warthi, Ganesh

    2017-01-01

    A new codon property, codon directional asymmetry in nucleotide content (CDA), reveals a biologically meaningful genetic code dimension: palindromic codons (first and last nucleotides identical, codon structure XZX) are symmetric (CDA = 0), codons with structures ZXX/XXZ are 5'/3' asymmetric (CDA = - 1/1; CDA = - 0.5/0.5 if Z and X are both purines or both pyrimidines, assigning negative/positive (-/+) signs is an arbitrary convention). Negative/positive CDAs associate with (a) Fujimoto's tetrahedral codon stereo-table; (b) tRNA synthetase class I/II (aminoacylate the 2'/3' hydroxyl group of the tRNA's last ribose, respectively); and (c) high/low antiparallel (not parallel) betasheet conformation parameters. Preliminary results suggest CDA-whole organism associations (body temperature, developmental stability, lifespan). Presumably, CDA impacts spatial kinetics of codon-anticodon interactions, affecting cotranslational protein folding. Some synonymous codons have opposite CDA sign (alanine, leucine, serine, and valine), putatively explaining how synonymous mutations sometimes affect protein function. Correlations between CDA and tRNA synthetase classes are weaker than between CDA and antiparallel betasheet conformation parameters. This effect is stronger for mitochondrial genetic codes, and potentially drives mitochondrial codon-amino acid reassignments. CDA reveals information ruling nucleotide-protein relations embedded in reversed (not reverse-complement) sequences (5'-ZXX-3'/5'-XXZ-3').

  5. A novel nuclear genetic code alteration in yeasts and the evolution of codon reassignment in eukaryotes.

    PubMed

    Mühlhausen, Stefanie; Findeisen, Peggy; Plessmann, Uwe; Urlaub, Henning; Kollmar, Martin

    2016-07-01

    The genetic code is the cellular translation table for the conversion of nucleotide sequences into amino acid sequences. Changes to the meaning of sense codons would introduce errors into almost every translated message and are expected to be highly detrimental. However, reassignment of single or multiple codons in mitochondria and nuclear genomes, although extremely rare, demonstrates that the code can evolve. Several models for the mechanism of alteration of nuclear genetic codes have been proposed (including "codon capture," "genome streamlining," and "ambiguous intermediate" theories), but with little resolution. Here, we report a novel sense codon reassignment in Pachysolen tannophilus, a yeast related to the Pichiaceae. By generating proteomics data and using tRNA sequence comparisons, we show that Pachysolen translates CUG codons as alanine and not as the more usual leucine. The Pachysolen tRNACAG is an anticodon-mutated tRNA(Ala) containing all major alanine tRNA recognition sites. The polyphyly of the CUG-decoding tRNAs in yeasts is best explained by a tRNA loss driven codon reassignment mechanism. Loss of the CUG-tRNA in the ancient yeast is followed by gradual decrease of respective codons and subsequent codon capture by tRNAs whose anticodon is not part of the aminoacyl-tRNA synthetase recognition region. Our hypothesis applies to all nuclear genetic code alterations and provides several testable predictions. We anticipate more codon reassignments to be uncovered in existing and upcoming genome projects. © 2016 Mühlhausen et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Efficient initiation of mammalian mRNA translation at a CUG codon.

    PubMed Central

    Dasso, M C; Jackson, R J

    1989-01-01

    Nucleotide substitutions were made at the initiation codon of an influenza virus NS cDNA clone in a vector carrying the bacteriophage T7 promoter. When capped mRNA transcripts of these constructs were translated in the rabbit reticulocyte lysate, a change in the initiation codon from...AUAAUGG...to...AUACUGG...reduced the in vitro translational efficiency by only 50-60%, and resulted in only a small increase in the yield of short products presumed to be initiated at downstream sites. Synthesis of the full-length product was initiated exclusively at the mutated codon, with negligible use either of in-frame upstream CUG or GUG codons, or of an in-frame downstream GUG codon. We conclude that CUG has the potential to function as an efficient initiation codon in mammalian systems, at least in certain contexts. Images PMID:2780285

  7. Genomic analysis of codon usage shows influence of mutation pressure, natural selection, and host features on Marburg virus evolution.

    PubMed

    Nasrullah, Izza; Butt, Azeem M; Tahir, Shifa; Idrees, Muhammad; Tong, Yigang

    2015-08-26

    The Marburg virus (MARV) has a negative-sense single-stranded RNA genome, belongs to the family Filoviridae, and is responsible for several outbreaks of highly fatal hemorrhagic fever. Codon usage patterns of viruses reflect a series of evolutionary changes that enable viruses to shape their survival rates and fitness toward the external environment and, most importantly, their hosts. To understand the evolution of MARV at the codon level, we report a comprehensive analysis of synonymous codon usage patterns in MARV genomes. Multiple codon analysis approaches and statistical methods were performed to determine overall codon usage patterns, biases in codon usage, and influence of various factors, including mutation pressure, natural selection, and its two hosts, Homo sapiens and Rousettus aegyptiacus. Nucleotide composition and relative synonymous codon usage (RSCU) analysis revealed that MARV shows mutation bias and prefers U- and A-ended codons to code amino acids. Effective number of codons analysis indicated that overall codon usage among MARV genomes is slightly biased. The Parity Rule 2 plot analysis showed that GC and AU nucleotides were not used proportionally which accounts for the presence of natural selection. Codon usage patterns of MARV were also found to be influenced by its hosts. This indicates that MARV have evolved codon usage patterns that are specific to both of its hosts. Moreover, selection pressure from R. aegyptiacus on the MARV RSCU patterns was found to be dominant compared with that from H. sapiens. Overall, mutation pressure was found to be the most important and dominant force that shapes codon usage patterns in MARV. To our knowledge, this is the first detailed codon usage analysis of MARV and extends our understanding of the mechanisms that contribute to codon usage and evolution of MARV.

  8. Problem-Solving Test: The Effect of Synonymous Codons on Gene Expression

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2009-01-01

    Terms to be familiar with before you start to solve the test: the genetic code, codon, degenerate codons, protein synthesis, aminoacyl-tRNA, anticodon, antiparallel orientation, wobble, unambiguous codons, ribosomes, initiation, elongation and termination of translation, peptidyl transferase, translocation, degenerate oligonucleotides, green…

  9. Differences in codon bias cannot explain differences in translational power among microbes.

    PubMed

    Dethlefsen, Les; Schmidt, Thomas M

    2005-01-06

    Translational power is the cellular rate of protein synthesis normalized to the biomass invested in translational machinery. Published data suggest a previously unrecognized pattern: translational power is higher among rapidly growing microbes, and lower among slowly growing microbes. One factor known to affect translational power is biased use of synonymous codons. The correlation within an organism between expression level and degree of codon bias among genes of Escherichia coli and other bacteria capable of rapid growth is commonly attributed to selection for high translational power. Conversely, the absence of such a correlation in some slowly growing microbes has been interpreted as the absence of selection for translational power. Because codon bias caused by translational selection varies between rapidly growing and slowly growing microbes, we investigated whether observed differences in translational power among microbes could be explained entirely by differences in the degree of codon bias. Although the data are not available to estimate the effect of codon bias in other species, we developed an empirically-based mathematical model to compare the translation rate of E. coli to the translation rate of a hypothetical strain which differs from E. coli only by lacking codon bias. Our reanalysis of data from the scientific literature suggests that translational power can differ by a factor of 5 or more between E. coli and slowly growing microbial species. Using empirical codon-specific in vivo translation rates for 29 codons, and several scenarios for extrapolating from these data to estimates over all codons, we find that codon bias cannot account for more than a doubling of the translation rate in E. coli, even with unrealistic simplifying assumptions that exaggerate the effect of codon bias. With more realistic assumptions, our best estimate is that codon bias accelerates translation in E. coli by no more than 60% in comparison to microbes with very little

  10. Was Wright Right? The Canonical Genetic Code is an Empirical Example of an Adaptive Peak in Nature; Deviant Genetic Codes Evolved Using Adaptive Bridges

    PubMed Central

    2010-01-01

    The canonical genetic code is on a sub-optimal adaptive peak with respect to its ability to minimize errors, and is close to, but not quite, optimal. This is demonstrated by the near-total adjacency of synonymous codons, the similarity of adjacent codons, and comparisons of frequency of amino acid usage with number of codons in the code for each amino acid. As a rare empirical example of an adaptive peak in nature, it shows adaptive peaks are real, not merely theoretical. The evolution of deviant genetic codes illustrates how populations move from a lower to a higher adaptive peak. This is done by the use of “adaptive bridges,” neutral pathways that cross over maladaptive valleys by virtue of masking of the phenotypic expression of some maladaptive aspects in the genotype. This appears to be the general mechanism by which populations travel from one adaptive peak to another. There are multiple routes a population can follow to cross from one adaptive peak to another. These routes vary in the probability that they will be used, and this probability is determined by the number and nature of the mutations that happen along each of the routes. A modification of the depiction of adaptive landscapes showing genetic distances and probabilities of travel along their multiple possible routes would throw light on this important concept. PMID:20711776

  11. Analysis of transcriptome data reveals multifactor constraint on codon usage in Taenia multiceps.

    PubMed

    Huang, Xing; Xu, Jing; Chen, Lin; Wang, Yu; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou

    2017-04-20

    Codon usage bias (CUB) is an important evolutionary feature in genomes that has been widely observed in many organisms. However, the synonymous codon usage pattern in the genome of T. multiceps remains to be clarified. In this study, we analyzed the codon usage of T. multiceps based on the transcriptome data to reveal the constraint factors and to gain an improved understanding of the mechanisms that shape synonymous CUB. Analysis of a total of 8,620 annotated mRNA sequences from T. multiceps indicated only a weak codon bias, with mean GC and GC3 content values of 49.29% and 51.43%, respectively. Our analysis indicated that nucleotide composition, mutational pressure, natural selection, gene expression level, amino acids with grand average of hydropathicity (GRAVY) and aromaticity (Aromo) and the effective selection of amino-acids all contributed to the codon usage in T. multiceps. Among these factors, natural selection was implicated as the major factor affecting the codon usage variation in T. multiceps. The codon usage of ribosome genes was affected mainly by mutations, while the essential genes were affected mainly by selection. In addition, 21codons were identified as "optimal codons". Overall, the optimal codons were GC-rich (GC:AU, 41:22), and ended with G or C (except CGU). Furthermore, different degrees of variation in codon usage were found between T. multiceps and Escherichia coli, yeast, Homo sapiens. However, little difference was found between T. multiceps and Taenia pisiformis. In this study, the codon usage pattern of T. multiceps was analyzed systematically and factors affected CUB were also identified. This is the first study of codon biology in T. multiceps. Understanding the codon usage pattern in T. multiceps can be helpful for the discovery of new genes, molecular genetic engineering and evolutionary studies.

  12. Codon usage bias and tRNA over-expression in Buchnera aphidicola after aromatic amino acid nutritional stress on its host Acyrthosiphon pisum

    PubMed Central

    Charles, Hubert; Calevro, Federica; Vinuelas, José; Fayard, Jean-Michel; Rahbe, Yvan

    2006-01-01

    Codon usage bias and relative abundances of tRNA isoacceptors were analysed in the obligate intracellular symbiotic bacterium, Buchnera aphidicola from the aphid Acyrthosiphon pisum, using a dedicated 35mer oligonucleotide microarray. Buchnera is archetypal of organisms living with minimal metabolic requirements and presents a reduced genome with high-evolutionary rate. Codonusage in Buchnera has been overcome by the high mutational bias towards AT bases. However, several lines of evidence for codon usage selection are given here. A significant correlation was found between tRNA relative abundances and codon composition of Buchnera genes. A significant codon usage bias was found for the choice of rare codons in Buchnera: C-ending codons are preferred in highly expressed genes, whereas G-ending codons are avoided. This bias is not explained by GC skew in the bacteria and might correspond to a selection for perfect matching between codon–anticodon pairs for some essential amino acids in Buchnera proteins. Nutritional stress applied to the aphid host induced a significant overexpression of most of the tRNA isoacceptors in bacteria. Although, molecular regulation of the tRNA operons in Buchnera was not investigated, a correlation between relative expression levels and organization in transcription unit was found in the genome of Buchnera. PMID:16963497

  13. PCR-RFLP to Detect Codon 248 Mutation in Exon 7 of "p53" Tumor Suppressor Gene

    ERIC Educational Resources Information Center

    Ouyang, Liming; Ge, Chongtao; Wu, Haizhen; Li, Suxia; Zhang, Huizhan

    2009-01-01

    Individual genome DNA was extracted fast from oral swab and followed up with PCR specific for codon 248 of "p53" tumor suppressor gene. "Msp"I restriction mapping showed the G-C mutation in codon 248, which closely relates to cancer susceptibility. Students learn the concepts, detection techniques, and research significance of point mutations or…

  14. Nonneutral GC3 and retroelement codon mimicry in Phytophthora.

    PubMed

    Jiang, Rays H Y; Govers, Francine

    2006-10-01

    Phytophthora is a genus entirely comprised of destructive plant pathogens. It belongs to the Stramenopila, a unique branch of eukaryotes, phylogenetically distinct from plants, animals, or fungi. Phytophthora genes show a strong preference for usage of codons ending with G or C (high GC3). The presence of high GC3 in genes can be utilized to differentiate coding regions from noncoding regions in the genome. We found that both selective pressure and mutation bias drive codon bias in Phytophthora. Indicative for selection pressure is the higher GC3 value of highly expressed genes in different Phytophthora species. Lineage specific GC increase of noncoding regions is reminiscent of whole-genome mutation bias, whereas the elevated Phytophthora GC3 is primarily a result of translation efficiency-driven selection. Heterogeneous retrotransposons exist in Phytophthora genomes and many of them vary in their GC content. Interestingly, the most widespread groups of retroelements in Phytophthora show high GC3 and a codon bias that is similar to host genes. Apparently, selection pressure has been exerted on the retroelement's codon usage, and such mimicry of host codon bias might be beneficial for the propagation of retrotransposons.

  15. Stringent Nucleotide Recognition by the Ribosome at the Middle Codon Position

    PubMed Central

    Liu, Wei; Shin, Dongwon; Ng, Martin; Sanbonmatsu, Karissa Y.; Tor, Yitzhak; Cooperman, Barry S.

    2017-01-01

    Accurate translation of the genetic code depends on mRNA:tRNA codon:anticodon base pairing. Here we exploit an emissive, isosteric adenosine surrogate that allows direct measurement of the kinetics of codon:anticodon base formation during protein synthesis. Our results suggest that codon:anticodon base pairing is subject to tighter constraints at the middle position than at the 5′- and 3′-positions, and further suggest a sequential mechanism of formation of the three base pairs in the codon:anticodon helix. PMID:28850078

  16. Stringent Nucleotide Recognition by the Ribosome at the Middle Codon Position.

    PubMed

    Liu, Wei; Shin, Dongwon; Ng, Martin; Sanbonmatsu, Karissa Y; Tor, Yitzhak; Cooperman, Barry S

    2017-08-29

    Accurate translation of the genetic code depends on mRNA:tRNA codon:anticodon base pairing. Here we exploit an emissive, isosteric adenosine surrogate that allows direct measurement of the kinetics of codon:anticodon University of California base formation during protein synthesis. Our results suggest that codon:anticodon base pairing is subject to tighter constraints at the middle position than at the 5'- and 3'-positions, and further suggest a sequential mechanism of formation of the three base pairs in the codon:anticodon helix.

  17. Codon usage bias and phylogenetic analysis of mitochondrial ND1 gene in pisces, aves, and mammals.

    PubMed

    Uddin, Arif; Choudhury, Monisha Nath; Chakraborty, Supriyo

    2018-01-01

    The mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1 (MT-ND1) gene is a subunit of the respiratory chain complex I and involved in the first step of the electron transport chain of oxidative phosphorylation (OXPHOS). To understand the pattern of compositional properties, codon usage and expression level of mitochondrial ND1 genes in pisces, aves, and mammals, we used bioinformatic approaches as no work was reported earlier. In this study, a perl script was used for calculating nucleotide contents and different codon usage bias parameters. The codon usage bias of MT-ND1 was low but the expression level was high as revealed from high ENC and CAI value. Correspondence analysis (COA) suggests that the pattern of codon usage for MT-ND1 gene is not same across species and that compositional constraint played an important role in codon usage pattern of this gene among pisces, aves, and mammals. From the regression equation of GC12 on GC3, it can be inferred that the natural selection might have played a dominant role while mutation pressure played a minor role in influencing the codon usage patterns. Further, ND1 gene has a discrepancy with cytochrome B (CYB) gene in preference of codons as evident from COA. The codon usage bias was low. It is influenced by nucleotide composition, natural selection, mutation pressure, length (number) of amino acids, and relative dinucleotide composition. This study helps in understanding the molecular biology, genetics, evolution of MT-ND1 gene, and also for designing a synthetic gene.

  18. Codon Optimization to Enhance Expression Yields Insights into Chloroplast Translation1[OPEN

    PubMed Central

    Chan, Hui-Ting; Williams-Carrier, Rosalind; Barkan, Alice

    2016-01-01

    Codon optimization based on psbA genes from 133 plant species eliminated 105 (human clotting factor VIII heavy chain [FVIII HC]) and 59 (polio VIRAL CAPSID PROTEIN1 [VP1]) rare codons; replacement with only the most highly preferred codons decreased transgene expression (77- to 111-fold) when compared with the codon usage hierarchy of the psbA genes. Targeted proteomic quantification by parallel reaction monitoring analysis showed 4.9- to 7.1-fold or 22.5- to 28.1-fold increase in FVIII or VP1 codon-optimized genes when normalized with stable isotope-labeled standard peptides (or housekeeping protein peptides), but quantitation using western blots showed 6.3- to 8-fold or 91- to 125-fold increase of transgene expression from the same batch of materials, due to limitations in quantitative protein transfer, denaturation, solubility, or stability. Parallel reaction monitoring, to our knowledge validated here for the first time for in planta quantitation of biopharmaceuticals, is especially useful for insoluble or multimeric proteins required for oral drug delivery. Northern blots confirmed that the increase of codon-optimized protein synthesis is at the translational level rather than any impact on transcript abundance. Ribosome footprints did not increase proportionately with VP1 translation or even decreased after FVIII codon optimization but is useful in diagnosing additional rate-limiting steps. A major ribosome pause at CTC leucine codons in the native gene of FVIII HC was eliminated upon codon optimization. Ribosome stalls observed at clusters of serine codons in the codon-optimized VP1 gene provide an opportunity for further optimization. In addition to increasing our understanding of chloroplast translation, these new tools should help to advance this concept toward human clinical studies. PMID:27465114

  19. Disruption of the Opal Stop Codon Attenuates Chikungunya Virus-Induced Arthritis and Pathology.

    PubMed

    Jones, Jennifer E; Long, Kristin M; Whitmore, Alan C; Sanders, Wes; Thurlow, Lance R; Brown, Julia A; Morrison, Clayton R; Vincent, Heather; Peck, Kayla M; Browning, Christian; Moorman, Nathaniel; Lim, Jean K; Heise, Mark T

    2017-11-14

    of related alphaviruses in mammalian and mosquito hosts. Here, we report that a clinical isolate of a CHIKV strain from the recent outbreak in the Caribbean islands contains a mixture of viruses encoding either the opal termination codon or an arginine mutation. Mutating the opal stop codon to an arginine residue attenuates CHIKV-induced disease in a mouse model. Compared to infection with the opal-containing parental virus, infection with the arginine mutant causes limited swelling and inflammation, as well as dampened recruitment of immune mediators of pathology, including CD4 + T cells and NK cells. We propose that the opal termination codon plays an essential role in the induction of severe CHIKV disease. Copyright © 2017 Jones et al.

  20. Zika Virus Attenuation by Codon Pair Deoptimization Induces Sterilizing Immunity in Mouse Models.

    PubMed

    Li, Penghui; Ke, Xianliang; Wang, Ting; Tan, Zhongyuan; Luo, Dan; Miao, Yuanjiu; Sun, Jianhong; Zhang, Yuan; Liu, Yan; Hu, Qinxue; Xu, Fuqiang; Wang, Hanzhong; Zheng, Zhenhua

    2018-06-20

    Zika virus (ZIKV) infection during the large epidemics in the Americas is related to congenital abnormities or fetal demise. To date, there is no vaccine, antiviral drug, or other modality available to prevent or treat Zika virus infection. Here we designed novel live attenuated ZIKV vaccine candidates using a codon pair deoptimization strategy. Three codon pair-deoptimized ZIKVs (Min E, Min NS1, and Min E+NS1) were de novo synthesized, and recovered by reverse genetics, containing large amounts of underrepresented codon pairs in E gene and/or NS1 gene. Amino acid sequence was 100% unchanged. The codon pair-deoptimized variants had decreased replication fitness in Vero cells (Min NS1 ≫ Min E > Min E+NS1), replicated more efficiently in insect cells than in mammalian cells, and demonstrated diminished virulence in a mouse model. In particular, Min E+NS1, the most restrictive variant, induced sterilizing immunity with a robust neutralizing antibody titer, and a single immunization achieved complete protection against lethal challenge and vertical ZIKV transmission during pregnancy. More importantly, due to the numerous synonymous substitutions in the codon pair-deoptimized strains, reversion to wild-type virulence through gradual nucleotide sequence mutations is unlikely. Our results collectively demonstrate that ZIKV can be effectively attenuated by codon pair deoptimization, highlighting the potential of Min E+NS1 as a safe vaccine candidate to prevent ZIKV infections. IMPORTANCE Due to unprecedented epidemics of Zika virus (ZIKV) across the Americas and the unexpected clinical symptoms including Guillain-Barré syndrome, microcephaly and other birth defects in human, there is an urgent need for ZIKV vaccine development. Here, we provided the first attenuated versions of ZIKV with two important genes (E and/or NS1) that were subjected to codon pair deoptimization. Compared to parental ZIKV, the codon pair-deoptimized ZIKVs were mammalian-attenuated, and preferred

  1. Codon Usage Bias and Determining Forces in Taenia solium Genome.

    PubMed

    Yang, Xing; Ma, Xusheng; Luo, Xuenong; Ling, Houjun; Zhang, Xichen; Cai, Xuepeng

    2015-12-01

    The tapeworm Taenia solium is an important human zoonotic parasite that causes great economic loss and also endangers public health. At present, an effective vaccine that will prevent infection and chemotherapy without any side effect remains to be developed. In this study, codon usage patterns in the T. solium genome were examined through 8,484 protein-coding genes. Neutrality analysis showed that T. solium had a narrow GC distribution, and a significant correlation was observed between GC12 and GC3. Examination of an NC (ENC vs GC3s)-plot showed a few genes on or close to the expected curve, but the majority of points with low-ENC (the effective number of codons) values were detected below the expected curve, suggesting that mutational bias plays a major role in shaping codon usage. The Parity Rule 2 plot (PR2) analysis showed that GC and AT were not used proportionally. We also identified 26 optimal codons in the T. solium genome, all of which ended with either a G or C residue. These optimal codons in the T. solium genome are likely consistent with tRNAs that are highly expressed in the cell, suggesting that mutational and translational selection forces are probably driving factors of codon usage bias in the T. solium genome.

  2. Codon 219 polymorphism of PRNP in healthy caucasians and Creutzfeldt-Jakob disease patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petraroli, R.; Pocchiari, M.

    1996-04-01

    A number of point and insert mutations of the PrP gene (PRNP) have been linked to familial Creutzfeldt-Jakob disease (CJD) and Gerstmann-Straussler-Scheinker disease (GSS). Moreover, the methionine/valine homozygosity at the polymorphic codon 129 of PRNP may cause a predisposition to sporadic and iatrogenic CJD or may control the age at onset of familial cases carrying either the 144-bp insertion or codon 178, codon 198, and codon 210 pathogenic mutations in PRNP. In addition, the association of methionine or valine at codon 129 and the point mutation at codon 178 on the same allele seem to play an important role inmore » determining either fatal familial insomnia or CJD. However, it is noteworthy that a relationship between codon 129 polymorphism and accelerated pathogenesis (early age at onset or shorter duration of the disease) has not been seen in familial CJD patients with codon 200 mutation or in GSS patients with codon 102 mutation, arguing that other, as yet unidentified, gene products or environmental factors, or both, may influence the clinical expression of these diseases. 17 refs.« less

  3. GC-Content of Synonymous Codons Profoundly Influences Amino Acid Usage

    PubMed Central

    Li, Jing; Zhou, Jun; Wu, Ying; Yang, Sihai; Tian, Dacheng

    2015-01-01

    Amino acids typically are encoded by multiple synonymous codons that are not used with the same frequency. Codon usage bias has drawn considerable attention, and several explanations have been offered, including variation in GC-content between species. Focusing on a simple parameter—combined GC proportion of all the synonymous codons for a particular amino acid, termed GCsyn—we try to deepen our understanding of the relationship between GC-content and amino acid/codon usage in more details. We analyzed 65 widely distributed representative species and found a close association between GCsyn, GC-content, and amino acids usage. The overall usages of the four amino acids with the greatest GCsyn and the five amino acids with the lowest GCsyn both vary with the regional GC-content, whereas the usage of the remaining 11 amino acids with intermediate GCsyn is less variable. More interesting, we discovered that codon usage frequencies are nearly constant in regions with similar GC-content. We further quantified the effects of regional GC-content variation (low to high) on amino acid usage and found that GC-content determines the usage variation of amino acids, especially those with extremely high GCsyn, which accounts for 76.7% of the changed GC-content for those regions. Our results suggest that GCsyn correlates with GC-content and has impact on codon/amino acid usage. These findings suggest a novel approach to understanding the role of codon and amino acid usage in shaping genomic architecture and evolutionary patterns of organisms. PMID:26248983

  4. Compositional pressure and translational selection determine codon usage in the extremely GC-poor unicellular eukaryote Entamoeba histolytica.

    PubMed

    Romero, H; Zavala, A; Musto, H

    2000-01-25

    It is widely accepted that the compositional pressure is the only factor shaping codon usage in unicellular species displaying extremely biased genomic compositions. This seems to be the case in the prokaryotes Mycoplasma capricolum, Rickettsia prowasekii and Borrelia burgdorferi (GC-poor), and in Micrococcus luteus (GC-rich). However, in the GC-poor unicellular eukaryotes Dictyostelium discoideum and Plasmodium falciparum, there is evidence that selection, acting at the level of translation, influences codon choices. This is a twofold intriguing finding, since (1) the genomic GC levels of the above mentioned eukaryotes are lower than the GC% of any studied bacteria, and (2) bacteria usually have larger effective population sizes than eukaryotes, and hence natural selection is expected to overcome more efficiently the randomizing effects of genetic drift among prokaryotes than among eukaryotes. In order to gain a new insight about this problem, we analysed the patterns of codon preferences of the nuclear genes of Entamoeba histolytica, a unicellular eukaryote characterised by an extremely AT-rich genome (GC = 25%). The overall codon usage is strongly biased towards A and T in the third codon positions, and among the presumed highly expressed sequences, there is an increased relative usage of a subset of codons, many of which are C-ending. Since an increase in C in third codon positions is 'against' the compositional bias, we conclude that codon usage in E. histolytica, as happens in D. discoideum and P. falciparum, is the result of an equilibrium between compositional pressure and selection. These findings raise the question of why strongly compositionally biased eukaryotic cells may be more sensitive to the (presumed) slight differences among synonymous codons than compositionally biased bacteria.

  5. Evolutionary characterization of Tembusu virus infection through identification of codon usage patterns.

    PubMed

    Zhou, Hao; Yan, Bing; Chen, Shun; Wang, Mingshu; Jia, Renyong; Cheng, Anchun

    2015-10-01

    Tembusu virus (TMUV) is a single-stranded, positive-sense RNA virus. As reported, TMUV infection has resulted in significant poultry losses, and the virus may also pose a threat to public health. To characterize TMUV evolutionarily and to understand the factors accounting for codon usage properties, we performed, for the first time, a comprehensive analysis of codon usage bias for the genomes of 60 TMUV strains. The most recently published TMUV strains were found to be widely distributed in coastal cities of southeastern China. Codon preference among TMUV genomes exhibits a low bias (effective number of codons (ENC)=53.287) and is maintained at a stable level. ENC-GC3 plots and the high correlation between composition constraints and principal component factor analysis of codon usage demonstrated that mutation pressure dominates over natural selection pressure in shaping the TMUV coding sequence composition. The high correlation between the major components of the codon usage pattern and hydrophobicity (Gravy) or aromaticity (Aromo) was obvious, indicating that properties of viral proteins also account for the observed variation in TMUV codon usage. Principal component analysis (PCA) showed that CQW1 isolated from Chongqing may have evolved from GX2013H or GX2013G isolated from Guangxi, thus indicating that TMUV likely disseminated from southeastern China to the mainland. Moreover, the preferred codons encoding eight amino acids were consistent with the optimal codons for human cells, indicating that TMUV may pose a threat to public health due to possible cross-species transmission (birds to birds or birds to humans). The results of this study not only have theoretical value for uncovering the characteristics of synonymous codon usage patterns in TMUV genomes but also have significant meaning with regard to the molecular evolutionary tendencies of TMUV. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Efficient Reassignment of a Frequent Serine Codon in Wild-Type Escherichia coli.

    PubMed

    Ho, Joanne M; Reynolds, Noah M; Rivera, Keith; Connolly, Morgan; Guo, Li-Tao; Ling, Jiqiang; Pappin, Darryl J; Church, George M; Söll, Dieter

    2016-02-19

    Expansion of the genetic code through engineering the translation machinery has greatly increased the chemical repertoire of the proteome. This has been accomplished mainly by read-through of UAG or UGA stop codons by the noncanonical aminoacyl-tRNA of choice. While stop codon read-through involves competition with the translation release factors, sense codon reassignment entails competition with a large pool of endogenous tRNAs. We used an engineered pyrrolysyl-tRNA synthetase to incorporate 3-iodo-l-phenylalanine (3-I-Phe) at a number of different serine and leucine codons in wild-type Escherichia coli. Quantitative LC-MS/MS measurements of amino acid incorporation yields carried out in a selected reaction monitoring experiment revealed that the 3-I-Phe abundance at the Ser208AGU codon in superfolder GFP was 65 ± 17%. This method also allowed quantification of other amino acids (serine, 33 ± 17%; phenylalanine, 1 ± 1%; threonine, 1 ± 1%) that compete with 3-I-Phe at both the aminoacylation and decoding steps of translation for incorporation at the same codon position. Reassignments of different serine (AGU, AGC, UCG) and leucine (CUG) codons with the matching tRNA(Pyl) anticodon variants were met with varying success, and our findings provide a guideline for the choice of sense codons to be reassigned. Our results indicate that the 3-iodo-l-phenylalanyl-tRNA synthetase (IFRS)/tRNA(Pyl) pair can efficiently outcompete the cellular machinery to reassign select sense codons in wild-type E. coli.

  7. Essentiality, conservation, evolutionary pressure and codon bias in bacterial genomes.

    PubMed

    Dilucca, Maddalena; Cimini, Giulio; Giansanti, Andrea

    2018-07-15

    Essential genes constitute the core of genes which cannot be mutated too much nor lost along the evolutionary history of a species. Natural selection is expected to be stricter on essential genes and on conserved (highly shared) genes, than on genes that are either nonessential or peculiar to a single or a few species. In order to further assess this expectation, we study here how essentiality of a gene is connected with its degree of conservation among several unrelated bacterial species, each one characterised by its own codon usage bias. Confirming previous results on E. coli, we show the existence of a universal exponential relation between gene essentiality and conservation in bacteria. Moreover, we show that, within each bacterial genome, there are at least two groups of functionally distinct genes, characterised by different levels of conservation and codon bias: i) a core of essential genes, mainly related to cellular information processing; ii) a set of less conserved nonessential genes with prevalent functions related to metabolism. In particular, the genes in the first group are more retained among species, are subject to a stronger purifying conservative selection and display a more limited repertoire of synonymous codons. The core of essential genes is close to the minimal bacterial genome, which is in the focus of recent studies in synthetic biology, though we confirm that orthologs of genes that are essential in one species are not necessarily essential in other species. We also list a set of highly shared genes which, reasonably, could constitute a reservoir of targets for new anti-microbial drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Stop Codon Reassignment in the Wild

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, Natalia; Schwientek, Patrick; Tripp, H. James

    Since the discovery of the genetic code and protein translation mechanisms (1), a limited number of variations of the standard assignment between unique base triplets (codons) and their encoded amino acids and translational stop signals have been found in bacteria and phages (2-3). Given the apparent ubiquity of the canonical genetic code, the design of genomically recoded organisms with non-canonical codes has been suggested as a means to prevent horizontal gene transfer between laboratory and environmental organisms (4). It is also predicted that genomically recoded organisms are immune to infection by viruses, under the assumption that phages and their hostsmore » must share a common genetic code (5). This paradigm is supported by the observation of increased resistance of genomically recoded bacteria to phages with a canonical code (4). Despite these assumptions and accompanying lines of evidence, it remains unclear whether differential and non-canonical codon usage represents an absolute barrier to phage infection and genetic exchange between organisms. Our knowledge of the diversity of genetic codes and their use by viruses and their hosts is primarily derived from the analysis of cultivated organisms. Advances in single-cell sequencing and metagenome assembly technologies have enabled the reconstruction of genomes of uncultivated bacterial and archaeal lineages (6). These initial findings suggest that large scale systematic studies of uncultivated microorganisms and viruses may reveal the extent and modes of divergence from the canonical genetic code operating in nature. To explore alternative genetic codes, we carried out a systematic analysis of stop codon reassignments from the canonical TAG amber, TGA opal, and TAA ochre codons in assembled metagenomes from environmental and host-associated samples, single-cell genomes of uncultivated bacteria and archaea, and a collection of phage sequences« less

  9. Model for Codon Position Bias in RNA Editing

    NASA Astrophysics Data System (ADS)

    Liu, Tsunglin; Bundschuh, Ralf

    2005-08-01

    RNA editing can be crucial for the expression of genetic information via inserting, deleting, or substituting a few nucleotides at specific positions in an RNA sequence. Within coding regions in an RNA sequence, editing usually occurs with a certain bias in choosing the positions of the editing sites. In the mitochondrial genes of Physarum polycephalum, many more editing events have been observed at the third codon position than at the first and second, while in some plant mitochondria the second codon position dominates. Here we propose an evolutionary model that explains this bias as the basis of selection at the protein level. The model predicts a distribution of the three positions rather close to the experimental observation in Physarum. This suggests that the codon position bias in Physarum is mainly a consequence of selection at the protein level.

  10. Translation efficiency is determined by both codon bias and folding energy

    PubMed Central

    Tuller, Tamir; Waldman, Yedael Y.; Kupiec, Martin; Ruppin, Eytan

    2010-01-01

    Synonymous mutations do not alter the protein produced yet can have a significant effect on protein levels. The mechanisms by which this effect is achieved are controversial; although some previous studies have suggested that codon bias is the most important determinant of translation efficiency, a recent study suggested that mRNA folding at the beginning of genes is the dominant factor via its effect on translation initiation. Using the Escherichia coli and Saccharomyces cerevisiae transcriptomes, we conducted a genome-scale study aiming at dissecting the determinants of translation efficiency. There is a significant association between codon bias and translation efficiency across all endogenous genes in E. coli and S. cerevisiae but no association between folding energy and translation efficiency, demonstrating the role of codon bias as an important determinant of translation efficiency. However, folding energy does modulate the strength of association between codon bias and translation efficiency, which is maximized at very weak mRNA folding (i.e., high folding energy) levels. We find a strong correlation between the genomic profiles of ribosomal density and genomic profiles of folding energy across mRNA, suggesting that lower folding energies slow down the ribosomes and decrease translation efficiency. Accordingly, we find that selection forces act near uniformly to decrease the folding energy at the beginning of genes. In summary, these findings testify that in endogenous genes, folding energy affects translation efficiency in a global manner that is not related to the expression levels of individual genes, and thus cannot be detected by correlation with their expression levels. PMID:20133581

  11. Codon usage affects the structure and function of the Drosophila circadian clock protein PERIOD.

    PubMed

    Fu, Jingjing; Murphy, Katherine A; Zhou, Mian; Li, Ying H; Lam, Vu H; Tabuloc, Christine A; Chiu, Joanna C; Liu, Yi

    2016-08-01

    Codon usage bias is a universal feature of all genomes, but its in vivo biological functions in animal systems are not clear. To investigate the in vivo role of codon usage in animals, we took advantage of the sensitivity and robustness of the Drosophila circadian system. By codon-optimizing parts of Drosophila period (dper), a core clock gene that encodes a critical component of the circadian oscillator, we showed that dper codon usage is important for circadian clock function. Codon optimization of dper resulted in conformational changes of the dPER protein, altered dPER phosphorylation profile and stability, and impaired dPER function in the circadian negative feedback loop, which manifests into changes in molecular rhythmicity and abnormal circadian behavioral output. This study provides an in vivo example that demonstrates the role of codon usage in determining protein structure and function in an animal system. These results suggest a universal mechanism in eukaryotes that uses a codon usage "code" within genetic codons to regulate cotranslational protein folding. © 2016 Fu et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Overcoming codon-usage bias in heterologous protein expression in Streptococcus gordonii.

    PubMed

    Lee, Song F; Li, Yi-Jing; Halperin, Scott A

    2009-11-01

    One of the limitations facing the development of Streptococcus gordonii into a successful vaccine vector is the inability of this bacterium to express high levels of heterologous proteins. In the present study, we have identified 12 codons deemed as rare codons in S. gordonii and seven other streptococcal species. tRNA genes encoding 10 of the 12 rare codons were cloned into a plasmid. The plasmid was transformed into strains of S. gordonii expressing the fusion protein SpaP/S1, the anti-complement receptor 1 (CR1) single-chain variable fragment (scFv) antibody, or the Toxoplasma gondii cyclophilin C18 protein. These three heterologous proteins contained high percentages of amino acids encoded by rare codons. The results showed that the production of SpaP/S1, anti-CR1 scFv and C18 increased by 2.7-, 120- and 10-fold, respectively, over the control strains. In contrast, the production of the streptococcal SpaP protein without the pertussis toxin S1 fragment was not affected by tRNA gene supplementation, indicating that the increased production of SpaP/S1 protein was due to the ability to overcome the limitation caused by rare codons required for the S1 fragment. The increase in anti-CR1 scFv production was also observed in Streptococcus mutans following tRNA gene supplementation. Collectively, the findings in the present study demonstrate for the first time, to the best of our knowledge, that codon-usage bias exists in Streptococcus spp. and the limitation of heterologous protein expression caused by codon-usage bias can be overcome by tRNA supplementation.

  13. Analysis of phylogeny and codon usage bias and relationship of GC content, amino acid composition with expression of the structural nif genes.

    PubMed

    Mondal, Sunil Kanti; Kundu, Sudip; Das, Rabindranath; Roy, Sujit

    2016-08-01

    Bacteria and archaea have evolved with the ability to fix atmospheric dinitrogen in the form of ammonia, catalyzed by the nitrogenase enzyme complex which comprises three structural genes nifK, nifD and nifH. The nifK and nifD encodes for the beta and alpha subunits, respectively, of component 1, while nifH encodes for component 2 of nitrogenase. Phylogeny based on nifDHK have indicated that Cyanobacteria is closer to Proteobacteria alpha and gamma but not supported by the tree based on 16SrRNA. The evolutionary ancestor for the different trees was also different. The GC1 and GC2% analysis showed more consistency than GC3% which appeared to below for Firmicutes, Cyanobacteria and Euarchaeota while highest in Proteobacteria beta and clearly showed the proportional effect on the codon usage with a few exceptions. Few genes from Firmicutes, Euryarchaeota, Proteobacteria alpha and delta were found under mutational pressure. These nif genes with low and high GC3% from different classes of organisms showed similar expected number of codons. Distribution of the genes and codons, based on codon usage demonstrated opposite pattern for different orientation of mirror plane when compared with each other. Overall our results provide a comprehensive analysis on the evolutionary relationship of the three structural nif genes, nifK, nifD and nifH, respectively, in the context of codon usage bias, GC content relationship and amino acid composition of the encoded proteins and exploration of crucial statistical method for the analysis of positive data with non-constant variance to identify the shape factors of codon adaptation index.

  14. Importance of codon usage for the temporal regulation of viral gene expression

    PubMed Central

    Shin, Young C.; Bischof, Georg F.; Lauer, William A.; Desrosiers, Ronald C.

    2015-01-01

    The glycoproteins of herpesviruses and of HIV/SIV are made late in the replication cycle and are derived from transcripts that use an unusual codon usage that is quite different from that of the host cell. Here we show that the actions of natural transinducers from these two different families of persistent viruses (Rev of SIV and ORF57 of the rhesus monkey rhadinovirus) are dependent on the nature of the skewed codon usage. In fact, the transinducibility of expression of these glycoproteins by Rev and by ORF57 can be flipped simply by changing the nature of the codon usage. Even expression of a luciferase reporter could be made Rev dependent or ORF57 dependent by distinctive changes to its codon usage. Our findings point to a new general principle in which different families of persisting viruses use a poor codon usage that is skewed in a distinctive way to temporally regulate late expression of structural gene products. PMID:26504241

  15. Switches in Genomic GC Content Drive Shifts of Optimal Codons under Sustained Selection on Synonymous Sites

    PubMed Central

    Sun, Yu; Tamarit, Daniel

    2017-01-01

    Abstract The major codon preference model suggests that codons read by tRNAs in high concentrations are preferentially utilized in highly expressed genes. However, the identity of the optimal codons differs between species although the forces driving such changes are poorly understood. We suggest that these questions can be tackled by placing codon usage studies in a phylogenetic framework and that bacterial genomes with extreme nucleotide composition biases provide informative model systems. Switches in the background substitution biases from GC to AT have occurred in Gardnerella vaginalis (GC = 32%), and from AT to GC in Lactobacillus delbrueckii (GC = 62%) and Lactobacillus fermentum (GC = 63%). We show that despite the large effects on codon usage patterns by these switches, all three species evolve under selection on synonymous sites. In G. vaginalis, the dramatic codon frequency changes coincide with shifts of optimal codons. In contrast, the optimal codons have not shifted in the two Lactobacillus genomes despite an increased fraction of GC-ending codons. We suggest that all three species are in different phases of an on-going shift of optimal codons, and attribute the difference to a stronger background substitution bias and/or longer time since the switch in G. vaginalis. We show that comparative and correlative methods for optimal codon identification yield conflicting results for genomes in flux and discuss possible reasons for the mispredictions. We conclude that switches in the direction of the background substitution biases can drive major shifts in codon preference patterns even under sustained selection on synonymous codon sites. PMID:27540085

  16. ChloroMitoCU: Codon patterns across organelle genomes for functional genomics and evolutionary applications.

    PubMed

    Sablok, Gaurav; Chen, Ting-Wen; Lee, Chi-Ching; Yang, Chi; Gan, Ruei-Chi; Wegrzyn, Jill L; Porta, Nicola L; Nayak, Kinshuk C; Huang, Po-Jung; Varotto, Claudio; Tang, Petrus

    2017-06-01

    Organelle genomes are widely thought to have arisen from reduction events involving cyanobacterial and archaeal genomes, in the case of chloroplasts, or α-proteobacterial genomes, in the case of mitochondria. Heterogeneity in base composition and codon preference has long been the subject of investigation of topics ranging from phylogenetic distortion to the design of overexpression cassettes for transgenic expression. From the overexpression point of view, it is critical to systematically analyze the codon usage patterns of the organelle genomes. In light of the importance of codon usage patterns in the development of hyper-expression organelle transgenics, we present ChloroMitoCU, the first-ever curated, web-based reference catalog of the codon usage patterns in organelle genomes. ChloroMitoCU contains the pre-compiled codon usage patterns of 328 chloroplast genomes (29,960 CDS) and 3,502 mitochondrial genomes (49,066 CDS), enabling genome-wide exploration and comparative analysis of codon usage patterns across species. ChloroMitoCU allows the phylogenetic comparison of codon usage patterns across organelle genomes, the prediction of codon usage patterns based on user-submitted transcripts or assembled organelle genes, and comparative analysis with the pre-compiled patterns across species of interest. ChloroMitoCU can increase our understanding of the biased patterns of codon usage in organelle genomes across multiple clades. ChloroMitoCU can be accessed at: http://chloromitocu.cgu.edu.tw/. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  17. Forced Ambiguity of the Leucine Codons for Multiple-Site-Specific Incorporation of a Noncanonical Amino Acid.

    PubMed

    Kwon, Inchan; Choi, Eun Sil

    2016-01-01

    Multiple-site-specific incorporation of a noncanonical amino acid into a recombinant protein would be a very useful technique to generate multiple chemical handles for bioconjugation and multivalent binding sites for the enhanced interaction. Previously combination of a mutant yeast phenylalanyl-tRNA synthetase variant and the yeast phenylalanyl-tRNA containing the AAA anticodon was used to incorporate a noncanonical amino acid into multiple UUU phenylalanine (Phe) codons in a site-specific manner. However, due to the less selective codon recognition of the AAA anticodon, there was significant misincorporation of a noncanonical amino acid into unwanted UUC Phe codons. To enhance codon selectivity, we explored degenerate leucine (Leu) codons instead of Phe degenerate codons. Combined use of the mutant yeast phenylalanyl-tRNA containing the CAA anticodon and the yPheRS_naph variant allowed incorporation of a phenylalanine analog, 2-naphthylalanine, into murine dihydrofolate reductase in response to multiple UUG Leu codons, but not to other Leu codon sites. Despite the moderate UUG codon occupancy by 2-naphthylalaine, these results successfully demonstrated that the concept of forced ambiguity of the genetic code can be achieved for the Leu codons, available for multiple-site-specific incorporation.

  18. Forced Ambiguity of the Leucine Codons for Multiple-Site-Specific Incorporation of a Noncanonical Amino Acid

    PubMed Central

    Kwon, Inchan; Choi, Eun Sil

    2016-01-01

    Multiple-site-specific incorporation of a noncanonical amino acid into a recombinant protein would be a very useful technique to generate multiple chemical handles for bioconjugation and multivalent binding sites for the enhanced interaction. Previously combination of a mutant yeast phenylalanyl-tRNA synthetase variant and the yeast phenylalanyl-tRNA containing the AAA anticodon was used to incorporate a noncanonical amino acid into multiple UUU phenylalanine (Phe) codons in a site-specific manner. However, due to the less selective codon recognition of the AAA anticodon, there was significant misincorporation of a noncanonical amino acid into unwanted UUC Phe codons. To enhance codon selectivity, we explored degenerate leucine (Leu) codons instead of Phe degenerate codons. Combined use of the mutant yeast phenylalanyl-tRNA containing the CAA anticodon and the yPheRS_naph variant allowed incorporation of a phenylalanine analog, 2-naphthylalanine, into murine dihydrofolate reductase in response to multiple UUG Leu codons, but not to other Leu codon sites. Despite the moderate UUG codon occupancy by 2-naphthylalaine, these results successfully demonstrated that the concept of forced ambiguity of the genetic code can be achieved for the Leu codons, available for multiple-site-specific incorporation. PMID:27028506

  19. Numeral series hidden in the distribution of atomic mass of amino acids to codon domains in the genetic code.

    PubMed

    Wohlin, Åsa

    2015-03-21

    The distribution of codons in the nearly universal genetic code is a long discussed issue. At the atomic level, the numeral series 2x(2) (x=5-0) lies behind electron shells and orbitals. Numeral series appear in formulas for spectral lines of hydrogen. The question here was if some similar scheme could be found in the genetic code. A table of 24 codons was constructed (synonyms counted as one) for 20 amino acids, four of which have two different codons. An atomic mass analysis was performed, built on common isotopes. It was found that a numeral series 5 to 0 with exponent 2/3 times 10(2) revealed detailed congruency with codon-grouped amino acid side-chains, simultaneously with the division on atom kinds, further with main 3rd base groups, backbone chains and with codon-grouped amino acids in relation to their origin from glycolysis or the citrate cycle. Hence, it is proposed that this series in a dynamic way may have guided the selection of amino acids into codon domains. Series with simpler exponents also showed noteworthy correlations with the atomic mass distribution on main codon domains; especially the 2x(2)-series times a factor 16 appeared as a conceivable underlying level, both for the atomic mass and charge distribution. Furthermore, it was found that atomic mass transformations between numeral systems, possibly interpretable as dimension degree steps, connected the atomic mass of codon bases with codon-grouped amino acids and with the exponent 2/3-series in several astonishing ways. Thus, it is suggested that they may be part of a deeper reference system. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  20. Species Based Synonymous Codon Usage in Fusion Protein Gene of Newcastle Disease Virus

    PubMed Central

    Kumar, Chandra Shekhar; Kumar, Sachin

    2014-01-01

    Newcastle disease is highly pathogenic to poultry and many other avian species. However, the Newcastle disease virus (NDV) has also been reported from many non-avian species. The NDV fusion protein (F) is a major determinant of its pathogenicity and virulence. The functionalities of F gene have been explored for the development of vaccine and diagnostics against NDV. Although the F protein is well studied but the codon usage and its nucleotide composition from NDV isolated from different species have not yet been explored. In present study, we have analyzed the factors responsible for the determination of codon usage in NDV isolated from four major avian host species. The F gene of NDV is analyzed for its base composition and its correlation with the bias in codon usage. Our result showed that random mutational pressure is responsible for codon usage bias in F protein of NDV isolates. Aromaticity, GC3s, and aliphatic index were not found responsible for species based synonymous codon usage bias in F gene of NDV. Moreover, the low amount of codon usage bias and expression level was further confirmed by a low CAI value. The phylogenetic analysis of isolates was found in corroboration with the relatedness of species based on codon usage bias. The relationship between the host species and the NDV isolates from the host does not represent a significant correlation in our study. The present study provides a basic understanding of the mechanism involved in codon usage among species. PMID:25479071

  1. A Simple Combinatorial Codon Mutagenesis Method for Targeted Protein Engineering.

    PubMed

    Belsare, Ketaki D; Andorfer, Mary C; Cardenas, Frida S; Chael, Julia R; Park, Hyun June; Lewis, Jared C

    2017-03-17

    Directed evolution is a powerful tool for optimizing enzymes, and mutagenesis methods that improve enzyme library quality can significantly expedite the evolution process. Here, we report a simple method for targeted combinatorial codon mutagenesis (CCM). To demonstrate the utility of this method for protein engineering, CCM libraries were constructed for cytochrome P450 BM3 , pfu prolyl oligopeptidase, and the flavin-dependent halogenase RebH; 10-26 sites were targeted for codon mutagenesis in each of these enzymes, and libraries with a tunable average of 1-7 codon mutations per gene were generated. Each of these libraries provided improved enzymes for their respective transformations, which highlights the generality, simplicity, and tunability of CCM for targeted protein engineering.

  2. A model for codon position bias in RNA editing

    NASA Astrophysics Data System (ADS)

    Bundschuh, Ralf; Liu, Tsunglin

    2006-03-01

    RNA editing can be crucial for the expression of genetic information via inserting, deleting, or substituting a few nucleotides at specific positions in an RNA sequence. Within coding regions in an RNA sequence, editing usually occurs with a certain bias in choosing the positions of the editing sites. In the mitochondrial genes of Physarum polycephalum, many more editing events have been observed at the third codon position than at the first and second, while in some plant mitochondria the second codon position dominates. Here we propose an evolutionary model that explains this bias as the basis of selection at the protein level. The model predicts a distribution of the three positions rather close to the experimental observation in Physarum. This suggests that the codon position bias in Physarum is mainly a consequence of selection at the protein level.

  3. Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells.

    PubMed

    Zhao, Fangzhou; Yu, Chien-Hung; Liu, Yi

    2017-08-21

    Codon usage biases are found in all eukaryotic and prokaryotic genomes and have been proposed to regulate different aspects of translation process. Codon optimality has been shown to regulate translation elongation speed in fungal systems, but its effect on translation elongation speed in animal systems is not clear. In this study, we used a Drosophila cell-free translation system to directly compare the velocity of mRNA translation elongation. Our results demonstrate that optimal synonymous codons speed up translation elongation while non-optimal codons slow down translation. In addition, codon usage regulates ribosome movement and stalling on mRNA during translation. Finally, we show that codon usage affects protein structure and function in vitro and in Drosophila cells. Together, these results suggest that the effect of codon usage on translation elongation speed is a conserved mechanism from fungi to animals that can affect protein folding in eukaryotic organisms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Codon usage bias: causative factors, quantification methods and genome-wide patterns: with emphasis on insect genomes.

    PubMed

    Behura, Susanta K; Severson, David W

    2013-02-01

    Codon usage bias refers to the phenomenon where specific codons are used more often than other synonymous codons during translation of genes, the extent of which varies within and among species. Molecular evolutionary investigations suggest that codon bias is manifested as a result of balance between mutational and translational selection of such genes and that this phenomenon is widespread across species and may contribute to genome evolution in a significant manner. With the advent of whole-genome sequencing of numerous species, both prokaryotes and eukaryotes, genome-wide patterns of codon bias are emerging in different organisms. Various factors such as expression level, GC content, recombination rates, RNA stability, codon position, gene length and others (including environmental stress and population size) can influence codon usage bias within and among species. Moreover, there has been a continuous quest towards developing new concepts and tools to measure the extent of codon usage bias of genes. In this review, we outline the fundamental concepts of evolution of the genetic code, discuss various factors that may influence biased usage of synonymous codons and then outline different principles and methods of measurement of codon usage bias. Finally, we discuss selected studies performed using whole-genome sequences of different insect species to show how codon bias patterns vary within and among genomes. We conclude with generalized remarks on specific emerging aspects of codon bias studies and highlight the recent explosion of genome-sequencing efforts on arthropods (such as twelve Drosophila species, species of ants, honeybee, Nasonia and Anopheles mosquitoes as well as the recent launch of a genome-sequencing project involving 5000 insects and other arthropods) that may help us to understand better the evolution of codon bias and its biological significance. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.

  5. Modification of orthogonal tRNAs: unexpected consequences for sense codon reassignment.

    PubMed

    Biddle, Wil; Schmitt, Margaret A; Fisk, John D

    2016-12-01

    Breaking the degeneracy of the genetic code via sense codon reassignment has emerged as a way to incorporate multiple copies of multiple non-canonical amino acids into a protein of interest. Here, we report the modification of a normally orthogonal tRNA by a host enzyme and show that this adventitious modification has a direct impact on the activity of the orthogonal tRNA in translation. We observed nearly equal decoding of both histidine codons, CAU and CAC, by an engineered orthogonal M. jannaschii tRNA with an AUG anticodon: tRNA Opt We suspected a modification of the tRNA Opt AUG anticodon was responsible for the anomalous lack of codon discrimination and demonstrate that adenosine 34 of tRNA Opt AUG is converted to inosine. We identified tRNA Opt AUG anticodon loop variants that increase reassignment of the histidine CAU codon, decrease incorporation in response to the histidine CAC codon, and improve cell health and growth profiles. Recognizing tRNA modification as both a potential pitfall and avenue of directed alteration will be important as the field of genetic code engineering continues to infiltrate the genetic codes of diverse organisms. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Analysis of amino acid and codon usage in Paramecium bursaria.

    PubMed

    Dohra, Hideo; Fujishima, Masahiro; Suzuki, Haruo

    2015-10-07

    The ciliate Paramecium bursaria harbors the green-alga Chlorella symbionts. We reassembled the P. bursaria transcriptome to minimize falsely fused transcripts, and investigated amino acid and codon usage using the transcriptome data. Surface proteins preferentially use smaller amino acid residues like cysteine. Unusual synonymous codon and amino acid usage in highly expressed genes can reflect a balance between translational selection and other factors. A correlation of gene expression level with synonymous codon or amino acid usage is emphasized in genes down-regulated in symbiont-bearing cells compared to symbiont-free cells. Our results imply that the selection is associated with P. bursaria-Chlorella symbiosis. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Comparative evolutionary genomics of Corynebacterium with special reference to codon and amino acid usage diversities.

    PubMed

    Pal, Shilpee; Sarkar, Indrani; Roy, Ayan; Mohapatra, Pradeep K Das; Mondal, Keshab C; Sen, Arnab

    2018-02-01

    The present study has been aimed to the comparative analysis of high GC composition containing Corynebacterium genomes and their evolutionary study by exploring codon and amino acid usage patterns. Phylogenetic study by MLSA approach, indel analysis and BLAST matrix differentiated Corynebacterium species in pathogenic and non-pathogenic clusters. Correspondence analysis on synonymous codon usage reveals that, gene length, optimal codon frequencies and tRNA abundance affect the gene expression of Corynebacterium. Most of the optimal codons as well as translationally optimal codons are C ending i.e. RNY (R-purine, N-any nucleotide base, and Y-pyrimidine) and reveal translational selection pressure on codon bias of Corynebacterium. Amino acid usage is affected by hydrophobicity, aromaticity, protein energy cost, etc. Highly expressed genes followed the cost minimization hypothesis and are less diverged at their synonymous positions of codons. Functional analysis of core genes shows significant difference in pathogenic and non-pathogenic Corynebacterium. The study reveals close relationship between non-pathogenic and opportunistic pathogenic Corynebaterium as well as between molecular evolution and survival niches of the organism.

  8. Insight into pattern of codon biasness and nucleotide base usage in serotonin receptor gene family from different mammalian species.

    PubMed

    Dass, J Febin Prabhu; Sudandiradoss, C

    2012-07-15

    5-HT (5-Hydroxy-tryptamine) or serotonin receptors are found both in central and peripheral nervous system as well as in non-neuronal tissues. In the animal and human nervous system, serotonin produces various functional effects through a variety of membrane bound receptors. In this study, we focus on 5-HT receptor family from different mammals and examined the factors that account for codon and nucleotide usage variation. A total of 110 homologous coding sequences from 11 different mammalian species were analyzed using relative synonymous codon usage (RSCU), correspondence analysis (COA) and hierarchical cluster analysis together with nucleotide base usage frequency of chemically similar amino acid codons. The mean effective number of codon (ENc) value of 37.06 for 5-HT(6) shows very high codon bias within the family and may be due to high selective translational efficiency. The COA and Spearman's rank correlation reveals that the nucleotide compositional mutation bias as the major factors influencing the codon usage in serotonin receptor genes. The hierarchical cluster analysis suggests that gene function is another dominant factor that affects the codon usage bias, while species is a minor factor. Nucleotide base usage was reported using Goldman, Engelman, Stietz (GES) scale reveals the presence of high uracil (>45%) content at functionally important hydrophobic regions. Our in silico approach will certainly help for further investigations on critical inference on evolution, structure, function and gene expression aspects of 5-HT receptors family which are potential antipsychotic drug targets. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Polymorphism at codon 36 of the p53 gene.

    PubMed

    Felix, C A; Brown, D L; Mitsudomi, T; Ikagaki, N; Wong, A; Wasserman, R; Womer, R B; Biegel, J A

    1994-01-01

    A polymorphism at codon 36 in exon 4 of the p53 gene was identified by single strand conformation polymorphism (SSCP) analysis and direct sequencing of genomic DNA PCR products. The polymorphic allele, present in the heterozygous state in genomic DNAs of four of 100 individuals (4%), changes the codon 36 CCG to CCA, eliminates a FinI restriction site and creates a BccI site. Including this polymorphism there are four known polymorphisms in the p53 coding sequence.

  10. Coestimation of recombination, substitution and molecular adaptation rates by approximate Bayesian computation.

    PubMed

    Lopes, J S; Arenas, M; Posada, D; Beaumont, M A

    2014-03-01

    The estimation of parameters in molecular evolution may be biased when some processes are not considered. For example, the estimation of selection at the molecular level using codon-substitution models can have an upward bias when recombination is ignored. Here we address the joint estimation of recombination, molecular adaptation and substitution rates from coding sequences using approximate Bayesian computation (ABC). We describe the implementation of a regression-based strategy for choosing subsets of summary statistics for coding data, and show that this approach can accurately infer recombination allowing for intracodon recombination breakpoints, molecular adaptation and codon substitution rates. We demonstrate that our ABC approach can outperform other analytical methods under a variety of evolutionary scenarios. We also show that although the choice of the codon-substitution model is important, our inferences are robust to a moderate degree of model misspecification. In addition, we demonstrate that our approach can accurately choose the evolutionary model that best fits the data, providing an alternative for when the use of full-likelihood methods is impracticable. Finally, we applied our ABC method to co-estimate recombination, substitution and molecular adaptation rates from 24 published human immunodeficiency virus 1 coding data sets.

  11. Bicluster Pattern of Codon Context Usages between Flavivirus and Vector Mosquito Aedes aegypti: Relevance to Infection and Transcriptional Response of Mosquito Genes

    PubMed Central

    Behura, Susanta K.; Severson, David W.

    2014-01-01

    The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in most of the subtropical and tropical countries. Besides DENV, yellow fever virus (YFV) is also transmitted by A. aegypti. Susceptibility of A. aegypti to West Nile virus (WNV) has also been confirmed. Although studies have indicated correlation of codon bias between flaviviridae and their animal/insect hosts, it is not clear if codon sequences have any relation to susceptibility of A. aegypti to DENV, YFV and WNV. In the current study, usages of codon context sequences (codon pairs for neighboring amino acids) of the vector (A. aegypti) genome as well as the flaviviral genomes are investigated. We used bioinformatics methods to quantify codon context bias in a genome-wide manner of A. aegypti as well as DENV, WNV and YFV sequences. Mutual information statistics was applied to perform bicluster analysis of codon context bias between vector and flaviviral sequences. Functional relevance of the bicluster pattern was inferred from published microarray data. Our study shows that codon context bias of DENV, WNV and YFV sequences varies in a bicluster manner with that of specific sets of genes of A. aegypti. Many of these mosquito genes are known to be differentially expressed in response to flaviviral infection suggesting that codon context sequences of A. aegypti and the flaviviruses may play a role in the susceptible interaction between flaviviruses and this mosquito. The bias inusages of codon context sequences likely has a functional association with susceptibility of A. aegypti to flaviviral infection. The results from this study will allow us to conduct hypothesis driven tests to examine the role of codon contexts bias in evolution of vector-virus interactions at the molecular level. PMID:24838953

  12. Decoding Mechanisms by which Silent Codon Changes Influence Protein Biogenesis and Function

    PubMed Central

    Bali, Vedrana; Bebok, Zsuzsanna

    2015-01-01

    Scope Synonymous codon usage has been a focus of investigation since the discovery of the genetic code and its redundancy. The occurrences of synonymous codons vary between species and within genes of the same genome, known as codon usage bias. Today, bioinformatics and experimental data allow us to compose a global view of the mechanisms by which the redundancy of the genetic code contributes to the complexity of biological systems from affecting survival in prokaryotes, to fine tuning the structure and function of proteins in higher eukaryotes. Studies analyzing the consequences of synonymous codon changes in different organisms have revealed that they impact nucleic acid stability, protein levels, structure and function without altering amino acid sequence. As such, synonymous mutations inevitably contribute to the pathogenesis of complex human diseases. Yet, fundamental questions remain unresolved regarding the impact of silent mutations in human disorders. In the present review we describe developments in this area concentrating on mechanisms by which synonymous mutations may affect protein function and human health. Purpose This synopsis illustrates the significance of synonymous mutations in disease pathogenesis. We review the different steps of gene expression affected by silent mutations, and assess the benefits and possible harmful effects of codon optimization applied in the development of therapeutic biologics. Physiological and medical relevance Understanding mechanisms by which synonymous mutations contribute to complex diseases such as cancer, neurodegeneration and genetic disorders, including the limitations of codon-optimized biologics, provides insight concerning interpretation of silent variants and future molecular therapies. PMID:25817479

  13. Reducing codon redundancy and screening effort of combinatorial protein libraries created by saturation mutagenesis.

    PubMed

    Kille, Sabrina; Acevedo-Rocha, Carlos G; Parra, Loreto P; Zhang, Zhi-Gang; Opperman, Diederik J; Reetz, Manfred T; Acevedo, Juan Pablo

    2013-02-15

    Saturation mutagenesis probes define sections of the vast protein sequence space. However, even if randomization is limited this way, the combinatorial numbers problem is severe. Because diversity is created at the codon level, codon redundancy is a crucial factor determining the necessary effort for library screening. Additionally, due to the probabilistic nature of the sampling process, oversampling is required to ensure library completeness as well as a high probability to encounter all unique variants. Our trick employs a special mixture of three primers, creating a degeneracy of 22 unique codons coding for the 20 canonical amino acids. Therefore, codon redundancy and subsequent screening effort is significantly reduced, and a balanced distribution of codon per amino acid is achieved, as demonstrated exemplarily for a library of cyclohexanone monooxygenase. We show that this strategy is suitable for any saturation mutagenesis methodology to generate less-redundant libraries.

  14. Evidence of translation efficiency adaptation of the coding regions of the bacteriophage lambda.

    PubMed

    Goz, Eli; Mioduser, Oriah; Diament, Alon; Tuller, Tamir

    2017-08-01

    Deciphering the way gene expression regulatory aspects are encoded in viral genomes is a challenging mission with ramifications related to all biomedical disciplines. Here, we aimed to understand how the evolution shapes the bacteriophage lambda genes by performing a high resolution analysis of ribosomal profiling data and gene expression related synonymous/silent information encoded in bacteriophage coding regions.We demonstrated evidence of selection for distinct compositions of synonymous codons in early and late viral genes related to the adaptation of translation efficiency to different bacteriophage developmental stages. Specifically, we showed that evolution of viral coding regions is driven, among others, by selection for codons with higher decoding rates; during the initial/progressive stages of infection the decoding rates in early/late genes were found to be superior to those in late/early genes, respectively. Moreover, we argued that selection for translation efficiency could be partially explained by adaptation to Escherichia coli tRNA pool and the fact that it can change during the bacteriophage life cycle.An analysis of additional aspects related to the expression of viral genes, such as mRNA folding and more complex/longer regulatory signals in the coding regions, is also reported. The reported conclusions are likely to be relevant also to additional viruses. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  15. A System for Anesthesia Drug Administration Using Barcode Technology: The Codonics Safe Label System and Smart Anesthesia Manager.

    PubMed

    Jelacic, Srdjan; Bowdle, Andrew; Nair, Bala G; Kusulos, Dolly; Bower, Lynnette; Togashi, Kei

    2015-08-01

    Many anesthetic drug errors result from vial or syringe swaps. Scanning the barcodes on vials before drug preparation, creating syringe labels that include barcodes, and scanning the syringe label barcodes before drug administration may help to prevent errors. In contrast, making syringe labels by hand that comply with the recommendations of regulatory agencies and standards-setting bodies is tedious and time consuming. A computerized system that uses vial barcodes and generates barcoded syringe labels could address both safety issues and labeling recommendations. We measured compliance of syringe labels in multiple operating rooms (ORs) with the recommendations of regulatory agencies and standards-setting bodies before and after the introduction of the Codonics Safe Label System (SLS). The Codonics SLS was then combined with Smart Anesthesia Manager software to create an anesthesia barcode drug administration system, which allowed us to measure the rate of scanning syringe label barcodes at the time of drug administration in 2 cardiothoracic ORs before and after introducing a coffee card incentive. Twelve attending cardiothoracic anesthesiologists and the OR satellite pharmacy participated. The use of the Codonics SLS drug labeling system resulted in >75% compliant syringe labels (95% confidence interval, 75%-98%). All syringe labels made using the Codonics SLS system were compliant. The average rate of scanning barcodes on syringe labels using Smart Anesthesia Manager was 25% (730 of 2976) over 13 weeks but increased to 58% (956 of 1645) over 8 weeks after introduction of a simple (coffee card) incentive (P < 0.001). An anesthesia barcode drug administration system resulted in a moderate rate of scanning syringe label barcodes at the time of drug administration. Further, adaptation of the system will be required to achieve a higher utilization rate.

  16. Codon usage and expression level of human mitochondrial 13 protein coding genes across six continents.

    PubMed

    Chakraborty, Supriyo; Uddin, Arif; Mazumder, Tarikul Huda; Choudhury, Monisha Nath; Malakar, Arup Kumar; Paul, Prosenjit; Halder, Binata; Deka, Himangshu; Mazumder, Gulshana Akthar; Barbhuiya, Riazul Ahmed; Barbhuiya, Masuk Ahmed; Devi, Warepam Jesmi

    2017-12-02

    The study of codon usage coupled with phylogenetic analysis is an important tool to understand the genetic and evolutionary relationship of a gene. The 13 protein coding genes of human mitochondria are involved in electron transport chain for the generation of energy currency (ATP). However, no work has yet been reported on the codon usage of the mitochondrial protein coding genes across six continents. To understand the patterns of codon usage in mitochondrial genes across six different continents, we used bioinformatic analyses to analyze the protein coding genes. The codon usage bias was low as revealed from high ENC value. Correlation between codon usage and GC3 suggested that all the codons ending with G/C were positively correlated with GC3 but vice versa for A/T ending codons with the exception of ND4L and ND5 genes. Neutrality plot revealed that for the genes ATP6, COI, COIII, CYB, ND4 and ND4L, natural selection might have played a major role while mutation pressure might have played a dominant role in the codon usage bias of ATP8, COII, ND1, ND2, ND3, ND5 and ND6 genes. Phylogenetic analysis indicated that evolutionary relationships in each of 13 protein coding genes of human mitochondria were different across six continents and further suggested that geographical distance was an important factor for the origin and evolution of 13 protein coding genes of human mitochondria. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  17. Codon influence on protein expression in E. coli correlates with mRNA levels

    PubMed Central

    Boël, Grégory; Wong, Kam-Ho; Su, Min; Luff, Jon; Valecha, Mayank; Everett, John K.; Acton, Thomas B.; Xiao, Rong; Montelione, Gaetano T.; Aalberts, Daniel P.; Hunt, John F.

    2016-01-01

    Degeneracy in the genetic code, which enables a single protein to be encoded by a multitude of synonymous gene sequences, has an important role in regulating protein expression, but substantial uncertainty exists concerning the details of this phenomenon. Here we analyze the sequence features influencing protein expression levels in 6,348 experiments using bacteriophage T7 polymerase to synthesize messenger RNA in Escherichia coli. Logistic regression yields a new codon-influence metric that correlates only weakly with genomic codon-usage frequency, but strongly with global physiological protein concentrations and also mRNA concentrations and lifetimes in vivo. Overall, the codon content influences protein expression more strongly than mRNA-folding parameters, although the latter dominate in the initial ~16 codons. Genes redesigned based on our analyses are transcribed with unaltered efficiency but translated with higher efficiency in vitro. The less efficiently translated native sequences show greatly reduced mRNA levels in vivo. Our results suggest that codon content modulates a kinetic competition between protein elongation and mRNA degradation that is a central feature of the physiology and also possibly the regulation of translation in E. coli. PMID:26760206

  18. L-MPZ, a Novel Isoform of Myelin P0, Is Produced by Stop Codon Readthrough*

    PubMed Central

    Yamaguchi, Yoshihide; Hayashi, Akiko; Campagnoni, Celia W.; Kimura, Akio; Inuzuka, Takashi; Baba, Hiroko

    2012-01-01

    Myelin protein zero (P0 or MPZ) is a major myelin protein (∼30 kDa) expressed in the peripheral nervous system (PNS) in terrestrial vertebrates. Several groups have detected a P0-related 36-kDa (or 35-kDa) protein that is expressed in the PNS as an antigen for the serum IgG of patients with neuropathy. The molecular structure and function of this 36-kDa protein are, however, still unknown. We hypothesized that the 36-kDa protein may be derived from P0 mRNA by stop codon readthrough. We found a highly conserved region after the regular stop codon in predicted sequences from the 3′-UTR of P0 in higher animals. MS of the 36-kDa protein revealed that both P0 peptides and peptides deduced from the P0 3′-UTR sequence were found among the tryptic fragments. In transfected cells and in an in vitro transcription/translation system, the 36-kDa molecule was also produced from the identical mRNA that produced P0. We designated this 36-kDa molecule as large myelin protein zero (L-MPZ), a novel isoform of P0 that contains an additional domain at the C terminus. In the PNS, L-MPZ was localized in compact myelin. In transfected cells, just like P0, L-MPZ was localized at cell-cell adhesion sites in the plasma membrane. These results suggest that L-MPZ produced by the stop codon readthrough mechanism is potentially involved in myelination. Since this is the first finding of stop codon readthrough in a common mammalian protein, detailed analysis of L-MPZ expression will help to understand the mechanism of stop codon readthrough in mammals. PMID:22457349

  19. A condition-specific codon optimization approach for improved heterologous gene expression in Saccharomyces cerevisiae

    PubMed Central

    2014-01-01

    Background Heterologous gene expression is an important tool for synthetic biology that enables metabolic engineering and the production of non-natural biologics in a variety of host organisms. The translational efficiency of heterologous genes can often be improved by optimizing synonymous codon usage to better match the host organism. However, traditional approaches for optimization neglect to take into account many factors known to influence synonymous codon distributions. Results Here we define an alternative approach for codon optimization that utilizes systems level information and codon context for the condition under which heterologous genes are being expressed. Furthermore, we utilize a probabilistic algorithm to generate multiple variants of a given gene. We demonstrate improved translational efficiency using this condition-specific codon optimization approach with two heterologous genes, the fluorescent protein-encoding eGFP and the catechol 1,2-dioxygenase gene CatA, expressed in S. cerevisiae. For the latter case, optimization for stationary phase production resulted in nearly 2.9-fold improvements over commercial gene optimization algorithms. Conclusions Codon optimization is now often a standard tool for protein expression, and while a variety of tools and approaches have been developed, they do not guarantee improved performance for all hosts of applications. Here, we suggest an alternative method for condition-specific codon optimization and demonstrate its utility in Saccharomyces cerevisiae as a proof of concept. However, this technique should be applicable to any organism for which gene expression data can be generated and is thus of potential interest for a variety of applications in metabolic and cellular engineering. PMID:24636000

  20. Reassigning stop codons via translation termination: How a few eukaryotes broke the dogma.

    PubMed

    Alkalaeva, Elena; Mikhailova, Tatiana

    2017-03-01

    The genetic code determines how amino acids are encoded within mRNA. It is universal among the vast majority of organisms, although several exceptions are known. Variant genetic codes are found in ciliates, mitochondria, and numerous other organisms. All revealed genetic codes (standard and variant) have at least one codon encoding a translation stop signal. However, recently two new genetic codes with a reassignment of all three stop codons were revealed in studies examining the protozoa transcriptomes. Here, we discuss this finding and the recent studies of variant genetic codes in eukaryotes. We consider the possible molecular mechanisms allowing the use of certain codons as sense and stop signals simultaneously. The results obtained by studying these amazing organisms represent a new and exciting insight into the mechanism of stop codon decoding in eukaryotes. Also see the video abstract here. © 2017 WILEY Periodicals, Inc.

  1. Enhanced expression of codon optimized Mycobacterium avium subsp. paratuberculosis antigens in Lactobacillus salivarius

    USDA-ARS?s Scientific Manuscript database

    We have previously identified the mycobacterial high G+C codon usage bias as a limiting factor in heterologous expression of MAP proteins from Lb.salivarius, and demonstrated that codon optimisation of a synthetic coding gene greatly enhances MAP protein production. Here, we effectively demonstrate ...

  2. The Effect of an Alternate Start Codon on Heterologous Expression of a PhoA Fusion Protein in Mycoplasma gallisepticum

    PubMed Central

    Panicker, Indu S.; Browning, Glenn F.; Markham, Philip F.

    2015-01-01

    While the genomes of many Mycoplasma species have been sequenced, there are no collated data on translational start codon usage, and the effects of alternate start codons on gene expression have not been studied. Analysis of the annotated genomes found that ATG was the most prevalent translational start codon among Mycoplasma spp. However in Mycoplasma gallisepticum a GTG start codon is commonly used in the vlhA multigene family, which encodes a highly abundant, phase variable lipoprotein adhesin. Therefore, the effect of this alternate start codon on expression of a reporter PhoA lipoprotein was examined in M. gallisepticum. Mutation of the start codon from ATG to GTG resulted in a 2.5 fold reduction in the level of transcription of the phoA reporter, but the level of PhoA activity in the transformants containing phoA with a GTG start codon was only 63% of that of the transformants with a phoA with an ATG start codon, suggesting that GTG was a more efficient translational initiation codon. The effect of swapping the translational start codon in phoA reporter gene expression was less in M. gallisepticum than has been seen previously in Escherichia coli or Bacillus subtilis, suggesting the process of translational initiation in mycoplasmas may have some significant differences from those used in other bacteria. This is the first study of translational start codon usage in mycoplasmas and the impact of the use of an alternate start codon on expression in these bacteria. PMID:26010086

  3. Codon-Anticodon Recognition in the Bacillus subtilis glyQS T Box Riboswitch

    PubMed Central

    Caserta, Enrico; Liu, Liang-Chun; Grundy, Frank J.; Henkin, Tina M.

    2015-01-01

    Many amino acid-related genes in Gram-positive bacteria are regulated by the T box riboswitch. The leader RNA of genes in the T box family controls the expression of downstream genes by monitoring the aminoacylation status of the cognate tRNA. Previous studies identified a three-nucleotide codon, termed the “Specifier Sequence,” in the riboswitch that corresponds to the amino acid identity of the downstream genes. Pairing of the Specifier Sequence with the anticodon of the cognate tRNA is the primary determinant of specific tRNA recognition. This interaction mimics codon-anticodon pairing in translation but occurs in the absence of the ribosome. The goal of the current study was to determine the effect of a full range of mismatches for comparison with codon recognition in translation. Mutations were individually introduced into the Specifier Sequence of the glyQS leader RNA and tRNAGly anticodon to test the effect of all possible pairing combinations on tRNA binding affinity and antitermination efficiency. The functional role of the conserved purine 3′ of the Specifier Sequence was also verifiedin this study. We found that substitutions at the Specifier Sequence resulted in reduced binding, the magnitude of which correlates well with the predicted stability of the RNA-RNA pairing. However, the tolerance for specific mismatches in antitermination was generally different from that during decoding, which reveals a unique tRNA recognition pattern in the T box antitermination system. PMID:26229106

  4. B cell Variable genes have evolved their codon usage to focus the targeted patterns of somatic mutation on the complementarity determining regions

    PubMed Central

    Saini, Jasmine; Hershberg, Uri

    2015-01-01

    The exceptional ability of B cells to diversify through somatic mutation and improve affinity of the repertoire towards the antigens is the cornerstone of adaptive immunity. Somatic mutation is not evenly distributed and exhibits certain micro-sequence specificities. We show here that the combination of somatic mutation targeting and the codon usage in human B cell receptor (BCR) Variable (V) genes create expected patterns of mutation and post mutation changes that are focused on their complementarity determining regions (CDR). T cell V genes are also skewed in targeting mutations but to a lesser extent and are lacking the codon usage bias observed in BCRs. This suggests that the observed skew in T cell receptors is due to their amino acid usage, which is similar to that of BCRs. The mutation targeting and the codon bias allow B cell CDRs to diversify by specifically accumulating nonconservative changes. We counted the distribution of mutations to CDR in 4 different human datasets. In all four cases we found that the number of actual mutations in the CDR correlated significantly with the V gene mutation biases to the CDR predicted by our models. Finally, it appears that the mutation bias in V genes indeed relates to their long-term survival in actual human repertoires. We observed that resting repertoires of B cells overexpressed V genes that were especially biased towards focused mutation and change in the CDR. This bias in V gene usage was somewhat relaxed at the height of the immune response to a vaccine, presumably because of the need for a wider diversity in a primary response. However, older patients did not retain this flexibility and were biased towards using only highly skewed V genes at all stages of their response. PMID:25660968

  5. B cell variable genes have evolved their codon usage to focus the targeted patterns of somatic mutation on the complementarity determining regions.

    PubMed

    Saini, Jasmine; Hershberg, Uri

    2015-05-01

    The exceptional ability of B cells to diversify through somatic mutation and improve affinity of the repertoire toward the antigens is the cornerstone of adaptive immunity. Somatic mutation is not evenly distributed and exhibits certain micro-sequence specificities. We show here that the combination of somatic mutation targeting and the codon usage in human B cell receptor (BCR) Variable (V) genes create expected patterns of mutation and post mutation changes that are focused on their complementarity determining regions (CDR). T cell V genes are also skewed in targeting mutations but to a lesser extent and are lacking the codon usage bias observed in BCRs. This suggests that the observed skew in T cell receptors is due to their amino acid usage, which is similar to that of BCRs. The mutation targeting and the codon bias allow B cell CDRs to diversify by specifically accumulating nonconservative changes. We counted the distribution of mutations to CDR in 4 different human datasets. In all four cases we found that the number of actual mutations in the CDR correlated significantly with the V gene mutation biases to the CDR predicted by our models. Finally, it appears that the mutation bias in V genes indeed relates to their long-term survival in actual human repertoires. We observed that resting repertoires of B cells overexpressed V genes that were especially biased toward focused mutation and change in the CDR. This bias in V gene usage was somewhat relaxed at the height of the immune response to a vaccine, presumably because of the need for a wider diversity in a primary response. However, older patients did not retain this flexibility and were biased toward using only highly skewed V genes at all stages of their response. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Ribosome stalling and peptidyl-tRNA drop-off during translational delay at AGA codons

    PubMed Central

    Cruz-Vera, Luis Rogelio; Magos-Castro, Marco Antonio; Zamora-Romo, Efraín; Guarneros, Gabriel

    2004-01-01

    Minigenes encoding the peptide Met–Arg–Arg have been used to study the mechanism of toxicity of AGA codons proximal to the start codon or prior to the termination codon in bacteria. The codon sequences of the ‘mini-ORFs’ employed were initiator, combinations of AGA and CGA, and terminator. Both, AGA and CGA are low-usage Arg codons in ORFs of Escherichia coli but, whilst AGA is translated by the scarce tRNAArg4, CGA is recognized by the abundant tRNAArg2. Overexpression of minigenes harbouring AGA in the third position, next to a termination codon, was deleterious to the cell and led to the accumulation of peptidyl-tRNAArg4 and of the peptidyl-tRNA cognate to the preceding CGA or AGA Arg triplet. The minigenes carrying CGA in the third position were not toxic. Minigene-mediated toxicity and peptidyl-tRNA accumulation were suppressed by overproduction of tRNAArg4 but not by overproduction of peptidyl-tRNA hydrolase, an enzyme that is only active on substrates that have been released from the ribosome. Consistent with these findings, peptidyl-tRNAArg4 was identified to be mainly associated with ribosomes in a stand-by complex. These and previous results support the hypothesis that the primary mechanism of inhibition of protein synthesis by AGA triplets in pth+ cells involves sequestration of tRNAs as peptidyl-tRNA on the stalled ribosome. PMID:15317870

  7. Designing logical codon reassignment - Expanding the chemistry in biology.

    PubMed

    Dumas, Anaëlle; Lercher, Lukas; Spicer, Christopher D; Davis, Benjamin G

    2015-01-01

    Over the last decade, the ability to genetically encode unnatural amino acids (UAAs) has evolved rapidly. The programmed incorporation of UAAs into recombinant proteins relies on the reassignment or suppression of canonical codons with an amino-acyl tRNA synthetase/tRNA (aaRS/tRNA) pair, selective for the UAA of choice. In order to achieve selective incorporation, the aaRS should be selective for the designed tRNA and UAA over the endogenous amino acids and tRNAs. Enhanced selectivity has been achieved by transferring an aaRS/tRNA pair from another kingdom to the organism of interest, and subsequent aaRS evolution to acquire enhanced selectivity for the desired UAA. Today, over 150 non-canonical amino acids have been incorporated using such methods. This enables the introduction of a large variety of structures into proteins, in organisms ranging from prokaryote, yeast and mammalian cells lines to whole animals, enabling the study of protein function at a level that could not previously be achieved. While most research to date has focused on the suppression of 'non-sense' codons, recent developments are beginning to open up the possibility of quadruplet codon decoding and the more selective reassignment of sense codons, offering a potentially powerful tool for incorporating multiple amino acids. Here, we aim to provide a focused review of methods for UAA incorporation with an emphasis in particular on the different tRNA synthetase/tRNA pairs exploited or developed, focusing upon the different UAA structures that have been incorporated and the logic behind the design and future creation of such systems. Our hope is that this will help rationalize the design of systems for incorporation of unexplored unnatural amino acids, as well as novel applications for those already known.

  8. High-level tetracycline resistance mediated by efflux pumps Tet(A) and Tet(A)-1 with two start codons.

    PubMed

    Wang, Weixia; Guo, Qinglan; Xu, Xiaogang; Sheng, Zi-ke; Ye, Xinyu; Wang, Minggui

    2014-11-01

    Efflux is the most common mechanism of tetracycline resistance. Class A tetracycline efflux pumps, which often have high prevalence in Enterobacteriaceae, are encoded by tet(A) and tet(A)-1 genes. These genes have two potential start codons, GTG and ATG, located upstream of the genes. The purpose of this study was to determine the start codon(s) of the class A tetracycline resistance (tet) determinants tet(A) and tet(A)-1, and the tetracycline resistance level they mediated. Conjugation, transformation and cloning experiments were performed and the genetic environment of tet(A)-1 was analysed. The start codons in class A tet determinants were investigated by site-directed mutagenesis of ATG and GTG, the putative translation initiation codons. High-level tetracycline resistance was transferred from the clinical strain of Klebsiella pneumoniae 10-148 containing tet(A)-1 plasmid pHS27 to Escherichia coli J53 by conjugation. The transformants harbouring recombinant plasmids that carried tet(A) or tet(A)-1 exhibited tetracycline MICs of 256-512 µg ml(-1), with or without tetR(A). Once the ATG was mutated to a non-start codon, the tetracycline MICs were not changed, while the tetracycline MICs decreased from 512 to 64 µg ml(-1) following GTG mutation, and to ≤4 µg ml(-1) following mutation of both GTG and ATG. It was presumed that class A tet determinants had two start codons, which are the primary start codon GTG and secondary start codon ATG. Accordingly, two putative promoters were predicted. In conclusion, class A tet determinants can confer high-level tetracycline resistance and have two start codons. © 2014 The Authors.

  9. Exploring synonymous codon usage preferences of disulfide-bonded and non-disulfide bonded cysteines in the E. coli genome.

    PubMed

    Song, Jiangning; Wang, Minglei; Burrage, Kevin

    2006-07-21

    High-quality data about protein structures and their gene sequences are essential to the understanding of the relationship between protein folding and protein coding sequences. Firstly we constructed the EcoPDB database, which is a high-quality database of Escherichia coli genes and their corresponding PDB structures. Based on EcoPDB, we presented a novel approach based on information theory to investigate the correlation between cysteine synonymous codon usages and local amino acids flanking cysteines, the correlation between cysteine synonymous codon usages and synonymous codon usages of local amino acids flanking cysteines, as well as the correlation between cysteine synonymous codon usages and the disulfide bonding states of cysteines in the E. coli genome. The results indicate that the nearest neighboring residues and their synonymous codons of the C-terminus have the greatest influence on the usages of the synonymous codons of cysteines and the usage of the synonymous codons has a specific correlation with the disulfide bond formation of cysteines in proteins. The correlations may result from the regulation mechanism of protein structures at gene sequence level and reflect the biological function restriction that cysteines pair to form disulfide bonds. The results may also be helpful in identifying residues that are important for synonymous codon selection of cysteines to introduce disulfide bridges in protein engineering and molecular biology. The approach presented in this paper can also be utilized as a complementary computational method and be applicable to analyse the synonymous codon usages in other model organisms.

  10. Sense codon emancipation for proteome-wide incorporation of noncanonical amino acids: rare isoleucine codon AUA as a target for genetic code expansion

    PubMed Central

    Bohlke, Nina; Budisa, Nediljko

    2014-01-01

    One of the major challenges in contemporary synthetic biology is to find a route to engineer synthetic organisms with altered chemical constitution. In terms of core reaction types, nature uses an astonishingly limited repertoire of chemistries when compared with the exceptionally rich and diverse methods of organic chemistry. In this context, the most promising route to change and expand the fundamental chemistry of life is the inclusion of amino acid building blocks beyond the canonical 20 (i.e. expanding the genetic code). This strategy would allow the transfer of numerous chemical functionalities and reactions from the synthetic laboratory into the cellular environment. Due to limitations in terms of both efficiency and practical applicability, state-of-the-art nonsense suppression- or frameshift suppression-based methods are less suitable for such engineering. Consequently, we set out to achieve this goal by sense codon emancipation, that is, liberation from its natural decoding function – a prerequisite for the reassignment of degenerate sense codons to a new 21st amino acid. We have achieved this by redesigning of several features of the post-transcriptional modification machinery which are directly involved in the decoding process. In particular, we report first steps towards the reassignment of 5797 AUA isoleucine codons in Escherichia coli using efficient tools for tRNA nucleotide modification pathway engineering. PMID:24433543

  11. Lost in Translation: Bioinformatic Analysis of Variations Affecting the Translation Initiation Codon in the Human Genome.

    PubMed

    Abad, Francisco; de la Morena-Barrio, María Eugenia; Fernández-Breis, Jesualdo Tomás; Corral, Javier

    2018-06-01

    Translation is a key biological process controlled in eukaryotes by the initiation AUG codon. Variations affecting this codon may have pathological consequences by disturbing the correct initiation of translation. Unfortunately, there is no systematic study describing these variations in the human genome. Moreover, we aimed to develop new tools for in silico prediction of the pathogenicity of gene variations affecting AUG codons, because to date, these gene defects have been wrongly classified as missense. Whole-exome analysis revealed the mean of 12 gene variations per person affecting initiation codons, mostly with high (> 0:01) minor allele frequency (MAF). Moreover, analysis of Ensembl data (December 2017) revealed 11,261 genetic variations affecting the initiation AUG codon of 7,205 genes. Most of these variations (99.5%) have low or unknown MAF, probably reflecting deleterious consequences. Only 62 variations had high MAF. Genetic variations with high MAF had closer alternative AUG downstream codons than did those with low MAF. Besides, the high-MAF group better maintained both the signal peptide and reading frame. These differentiating elements could help to determine the pathogenicity of this kind of variation. Data and scripts in Perl and R are freely available at https://github.com/fanavarro/hemodonacion. jfernand@um.es. Supplementary data are available at Bioinformatics online.

  12. An expanded genetic code in mammalian cells with a functional quadruplet codon.

    PubMed

    Niu, Wei; Schultz, Peter G; Guo, Jiantao

    2013-07-19

    We have utilized in vitro evolution to identify tRNA variants with significantly enhanced activity for the incorporation of unnatural amino acids into proteins in response to a quadruplet codon in both bacterial and mammalian cells. This approach will facilitate the creation of an optimized and standardized system for the genetic incorporation of unnatural amino acids using quadruplet codons, which will allow the biosynthesis of biopolymers that contain multiple unnatural building blocks.

  13. Codon Optimizing for Increased Membrane Protein Production: A Minimalist Approach.

    PubMed

    Mirzadeh, Kiavash; Toddo, Stephen; Nørholm, Morten H H; Daley, Daniel O

    2016-01-01

    Reengineering a gene with synonymous codons is a popular approach for increasing production levels of recombinant proteins. Here we present a minimalist alternative to this method, which samples synonymous codons only at the second and third positions rather than the entire coding sequence. As demonstrated with two membrane-embedded transporters in Escherichia coli, the method was more effective than optimizing the entire coding sequence. The method we present is PCR based and requires three simple steps: (1) the design of two PCR primers, one of which is degenerate; (2) the amplification of a mini-library by PCR; and (3) screening for high-expressing clones.

  14. Demonstration of GTG as an alternative initiation codon for the serpin endopin 2B-2.

    PubMed

    Hwang, Shin-Rong; Garza, Christina Z; Wegrzyn, Jill L; Hook, Vivian Y H

    2005-02-18

    This study demonstrates GTG as a novel, alternative initiation codon for translation of bovine endopin 2B-2, a serpin protease inhibitor. Molecular cDNA cloning revealed the endopin 2B-1 and endopin 2B-2 isoforms that are predicted to inhibit papain and elastase. Notably, GTG was demonstrated as the initiation codon for endopin 2B-2, whereas endopin 2B-1 possesses ATG as its initiation codon. GTG mediated in vitro translation of 46kDa endopin 2B-2. GTG also mediated translation of EGFP by in vitro translation and by expression in mammalian cells. Notably, mutagenesis of GTG to GTC resulted in the absence of EGFP expression in cells. GTG produced a lower level of protein expression compared to ATG. The use of GTG as an initiation codon to direct translation of endopin 2B, as well as the heterologous protein EGFP, demonstrates the role of GTG in the regulation of mRNA translation in mammalian cells. Significantly, further analyses of mammalian genomes based on GTG as an alternative initiation codon may predict new candidate gene products expressed by mammalian and human genomes.

  15. Effects of tRNA modification on translational accuracy depend on intrinsic codon-anticodon strength.

    PubMed

    Manickam, Nandini; Joshi, Kartikeya; Bhatt, Monika J; Farabaugh, Philip J

    2016-02-29

    Cellular health and growth requires protein synthesis to be both efficient to ensure sufficient production, and accurate to avoid producing defective or unstable proteins. The background of misreading error frequency by individual tRNAs is as low as 2 × 10(-6) per codon but is codon-specific with some error frequencies above 10(-3) per codon. Here we test the effect on error frequency of blocking post-transcriptional modifications of the anticodon loops of four tRNAs in Escherichia coli. We find two types of responses to removing modification. Blocking modification of tRNA(UUC)(Glu) and tRNA(QUC)(Asp) increases errors, suggesting that the modifications act at least in part to maintain accuracy. Blocking even identical modifications of tRNA(UUU)(Lys) and tRNA(QUA)(Tyr) has the opposite effect of decreasing errors. One explanation could be that the modifications play opposite roles in modulating misreading by the two classes of tRNAs. Given available evidence that modifications help preorder the anticodon to allow it to recognize the codons, however, the simpler explanation is that unmodified 'weak' tRNAs decode too inefficiently to compete against cognate tRNAs that normally decode target codons, which would reduce the frequency of misreading. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Methods for selecting fixed-effect models for heterogeneous codon evolution, with comments on their application to gene and genome data.

    PubMed

    Bao, Le; Gu, Hong; Dunn, Katherine A; Bielawski, Joseph P

    2007-02-08

    Models of codon evolution have proven useful for investigating the strength and direction of natural selection. In some cases, a priori biological knowledge has been used successfully to model heterogeneous evolutionary dynamics among codon sites. These are called fixed-effect models, and they require that all codon sites are assigned to one of several partitions which are permitted to have independent parameters for selection pressure, evolutionary rate, transition to transversion ratio or codon frequencies. For single gene analysis, partitions might be defined according to protein tertiary structure, and for multiple gene analysis partitions might be defined according to a gene's functional category. Given a set of related fixed-effect models, the task of selecting the model that best fits the data is not trivial. In this study, we implement a set of fixed-effect codon models which allow for different levels of heterogeneity among partitions in the substitution process. We describe strategies for selecting among these models by a backward elimination procedure, Akaike information criterion (AIC) or a corrected Akaike information criterion (AICc). We evaluate the performance of these model selection methods via a simulation study, and make several recommendations for real data analysis. Our simulation study indicates that the backward elimination procedure can provide a reliable method for model selection in this setting. We also demonstrate the utility of these models by application to a single-gene dataset partitioned according to tertiary structure (abalone sperm lysin), and a multi-gene dataset partitioned according to the functional category of the gene (flagellar-related proteins of Listeria). Fixed-effect models have advantages and disadvantages. Fixed-effect models are desirable when data partitions are known to exhibit significant heterogeneity or when a statistical test of such heterogeneity is desired. They have the disadvantage of requiring a priori

  17. Combinatorial codon scrambling enables scalable gene synthesis and amplification of repetitive proteins

    NASA Astrophysics Data System (ADS)

    Tang, Nicholas C.; Chilkoti, Ashutosh

    2016-04-01

    Most genes are synthesized using seamless assembly methods that rely on the polymerase chain reaction (PCR). However, PCR of genes encoding repetitive proteins either fails or generates nonspecific products. Motivated by the need to efficiently generate new protein polymers through high-throughput gene synthesis, here we report a codon-scrambling algorithm that enables the PCR-based gene synthesis of repetitive proteins by exploiting the codon redundancy of amino acids and finding the least-repetitive synonymous gene sequence. We also show that the codon-scrambling problem is analogous to the well-known travelling salesman problem, and obtain an exact solution to it by using De Bruijn graphs and a modern mixed integer linear programme solver. As experimental proof of the utility of this approach, we use it to optimize the synthetic genes for 19 repetitive proteins, and show that the gene fragments are amenable to PCR-based gene assembly and recombinant expression.

  18. The role of modifications in codon discrimination by tRNA(Lys)UUU.

    PubMed

    Murphy, Frank V; Ramakrishnan, Venki; Malkiewicz, Andrzej; Agris, Paul F

    2004-12-01

    The natural modification of specific nucleosides in many tRNAs is essential during decoding of mRNA by the ribosome. For example, tRNA(Lys)(UUU) requires the modification N6-threonylcarbamoyladenosine at position 37 (t(6)A37), adjacent and 3' to the anticodon, to bind AAA in the A site of the ribosomal 30S subunit. Moreover, it can only bind both AAA and AAG lysine codons when doubly modified with t(6)A37 and either 5-methylaminomethyluridine or 2-thiouridine at the wobble position (mnm(5)U34 or s(2)U34). Here we report crystal structures of modified tRNA anticodon stem-loops bound to the 30S ribosomal subunit with lysine codons in the A site. These structures allow the rationalization of how modifications in the anticodon loop enable decoding of both lysine codons AAA and AAG.

  19. Association between p53 polymorphism at codon 72 and recurrent spontaneous abortion.

    PubMed

    Zhang, Ying; Wu, Yuan-Yuan; Qiao, Fu-Yuan; Zeng, Wan-Jiang

    2016-06-01

    p53 gene plays an important role in apoptosis, which is necessary for successful invasion of trophoblast cells. The change from an arginine (Arg) to a proline (Pro) at codon 72 can influence the biological activity of p53, which predisposes to an increased risk of recurrent spontaneous abortion (RSA). In order to investigate the association between p53 polymorphism at codon 72 and RSA, we conducted this meta-analysis. Pubmed, Embase and Web of science were used to identify the eligible studies. Odds ratio (OR) with 95% confidence interval (CI) was used to evaluate the strength of the association. Six studies containing 937 cases of RSA and 830 controls were included, and there was one study deviated from Hardy-Weinberg equilibrium (HWE). There was a significant association between p53 polymorphism at codon 72 and RSA in recessive model (Pro/Pro vs. Pro/Arg+Arg/Arg; OR=1.60, 95% CI: 1.14-2.24) and co-dominant model (Pro/Pro vs. Arg/Arg; OR=1.47, 95% CI: 1.02-2.12) whether the study that was deviated from HWE was eliminated or not. A significant association was observed in allelic model (Pro vs. Arg; OR=1.28, 95% CI: 1.04-1.57) after exclusion of the study that was deviated from HWE. No association was noted in recessive model (Pro/Pro+Pro/Arg vs. Arg/Arg; OR=1.05, 95% CI: 0.86-1.30) and co-dominant model (Pro/Arg vs. Arg/Arg; OR=0.96, 95% CI: 0.77-1.19). Subgroup analysis by ethnicity also indicated a significant association between p53 polymorphism at codon 72 and RSA in Caucasian group. No heterogeneity and publication bias were found. Our meta-analysis implied that p53 polymorphism at codon 72 carries high maternal risk of RSA.

  20. Disruption of the Opal Stop Codon Attenuates Chikungunya Virus-Induced Arthritis and Pathology

    PubMed Central

    Jones, Jennifer E.; Long, Kristin M.; Whitmore, Alan C.; Sanders, Wes; Thurlow, Lance R.; Brown, Julia A.; Morrison, Clayton R.; Vincent, Heather; Browning, Christian; Moorman, Nathaniel; Lim, Jean K.

    2017-01-01

    ABSTRACT Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for several significant outbreaks of debilitating acute and chronic arthritis and arthralgia over the past decade. These include a recent outbreak in the Caribbean islands and the Americas that caused more than 1 million cases of viral arthralgia. Despite the major impact of CHIKV on global health, viral determinants that promote CHIKV-induced disease are incompletely understood. Most CHIKV strains contain a conserved opal stop codon at the end of the viral nsP3 gene. However, CHIKV strains that encode an arginine codon in place of the opal stop codon have been described, and deep-sequencing analysis of a CHIKV isolate from the Caribbean identified both arginine and opal variants within this strain. Therefore, we hypothesized that the introduction of the arginine mutation in place of the opal termination codon may influence CHIKV virulence. We tested this by introducing the arginine mutation into a well-characterized infectious clone of a CHIKV strain from Sri Lanka and designated this virus Opal524R. This mutation did not impair viral replication kinetics in vitro or in vivo. Despite this, the Opal524R virus induced significantly less swelling, inflammation, and damage within the feet and ankles of infected mice. Further, we observed delayed induction of proinflammatory cytokines and chemokines, as well as reduced CD4+ T cell and NK cell recruitment compared to those in the parental strain. Therefore, the opal termination codon plays an important role in CHIKV pathogenesis, independently of effects on viral replication. PMID:29138302

  1. Sense codon emancipation for proteome-wide incorporation of noncanonical amino acids: rare isoleucine codon AUA as a target for genetic code expansion.

    PubMed

    Bohlke, Nina; Budisa, Nediljko

    2014-02-01

    One of the major challenges in contemporary synthetic biology is to find a route to engineer synthetic organisms with altered chemical constitution. In terms of core reaction types, nature uses an astonishingly limited repertoire of chemistries when compared with the exceptionally rich and diverse methods of organic chemistry. In this context, the most promising route to change and expand the fundamental chemistry of life is the inclusion of amino acid building blocks beyond the canonical 20 (i.e. expanding the genetic code). This strategy would allow the transfer of numerous chemical functionalities and reactions from the synthetic laboratory into the cellular environment. Due to limitations in terms of both efficiency and practical applicability, state-of-the-art nonsense suppression- or frameshift suppression-based methods are less suitable for such engineering. Consequently, we set out to achieve this goal by sense codon emancipation, that is, liberation from its natural decoding function - a prerequisite for the reassignment of degenerate sense codons to a new 21st amino acid. We have achieved this by redesigning of several features of the post-transcriptional modification machinery which are directly involved in the decoding process. In particular, we report first steps towards the reassignment of 5797 AUA isoleucine codons in Escherichia coli using efficient tools for tRNA nucleotide modification pathway engineering. © 2014 The Authors. FEMS Microbiology Letters published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  2. Translational Redefinition of UGA Codons Is Regulated by Selenium Availability*

    PubMed Central

    Howard, Michael T.; Carlson, Bradley A.; Anderson, Christine B.; Hatfield, Dolph L.

    2013-01-01

    Incorporation of selenium into ∼25 mammalian selenoproteins occurs by translational recoding whereby in-frame UGA codons are redefined to encode the selenium containing amino acid, selenocysteine (Sec). Here we applied ribosome profiling to examine the effect of dietary selenium levels on the translational mechanisms controlling selenoprotein synthesis in mouse liver. Dietary selenium levels were shown to control gene-specific selenoprotein expression primarily at the translation level by differential regulation of UGA redefinition and Sec incorporation efficiency, although effects on translation initiation and mRNA abundance were also observed. Direct evidence is presented that increasing dietary selenium causes a vast increase in ribosome density downstream of UGA-Sec codons for a subset of selenoprotein mRNAs and that the selenium-dependent effects on Sec incorporation efficiency are mediated in part by the degree of Sec-tRNA[Ser]Sec Um34 methylation. Furthermore, we find evidence for translation in the 5′-UTRs for a subset of selenoproteins and for ribosome pausing near the UGA-Sec codon in those mRNAs encoding the selenoproteins most affected by selenium availability. These data illustrate how dietary levels of the trace element selenium can alter the readout of the genetic code to affect the expression of an entire class of proteins. PMID:23696641

  3. Culture adaptation of malaria parasites selects for convergent loss-of-function mutants.

    PubMed

    Claessens, Antoine; Affara, Muna; Assefa, Samuel A; Kwiatkowski, Dominic P; Conway, David J

    2017-01-24

    Cultured human pathogens may differ significantly from source populations. To investigate the genetic basis of laboratory adaptation in malaria parasites, clinical Plasmodium falciparum isolates were sampled from patients and cultured in vitro for up to three months. Genome sequence analysis was performed on multiple culture time point samples from six monoclonal isolates, and single nucleotide polymorphism (SNP) variants emerging over time were detected. Out of a total of five positively selected SNPs, four represented nonsense mutations resulting in stop codons, three of these in a single ApiAP2 transcription factor gene, and one in SRPK1. To survey further for nonsense mutants associated with culture, genome sequences of eleven long-term laboratory-adapted parasite strains were examined, revealing four independently acquired nonsense mutations in two other ApiAP2 genes, and five in Epac. No mutants of these genes exist in a large database of parasite sequences from uncultured clinical samples. This implicates putative master regulator genes in which multiple independent stop codon mutations have convergently led to culture adaptation, affecting most laboratory lines of P. falciparum. Understanding the adaptive processes should guide development of experimental models, which could include targeted gene disruption to adapt fastidious malaria parasite species to culture.

  4. Association between mismatch repair gene MSH3 codons 1036 and 222 polymorphisms and sporadic prostate cancer in the Iranian population.

    PubMed

    Jafary, Fariba; Salehi, Mansoor; Sedghi, Maryam; Nouri, Nayereh; Jafary, Farzaneh; Sadeghi, Farzaneh; Motamedi, Shima; Talebi, Maede

    2012-01-01

    The mismatch repair system (MMR) is a post-replicative DNA repair mechanism whose defects can lead to cancer. The MSH3 protein is an essential component of the system. We postulated that MSH3 gene polymorphisms might therefore be associated with prostate cancer (PC). We studied MSH3 codon 222 and MSH3 codon 1036 polymorphisms in a group of Iranian sporadic PC patients. A total of 60 controls and 18 patients were assessed using the polymerase chain reaction and single strand conformational polymorphism. For comparing the genotype frequencies of patients and controls the chi-square test was applied. The obtained result indicated that there was significantly association between G/A genotype of MSH3 codon 222 and G/G genotype of MSH3 codon 1036 with an increased PC risk (P=0.012 and P=0.02 respectively). Our results demonstrated that MSH3 codon 222 and MSH3 codon 1036 polymorphisms may be risk factors for sporadic prostate cancer in the Iranian population.

  5. Synonymous codon changes in the oncogenes of the cottontail rabbit papillomavirus lead to increased oncogenicity and immunogenicity of the virus

    PubMed Central

    Cladel, Nancy M.; Budgeon, Lynn R.; Hu, Jiafen; Balogh, Karla K.; Christensen, Neil D.

    2013-01-01

    Papillomaviruses use rare codons with respect to the host. The reasons for this are incompletely understood but among the hypotheses is the concept that rare codons result in low protein production and this allows the virus to escape immune surveillance. We changed rare codons in the oncogenes E6 and E7 of the cottontail rabbit papillomavirus to make them more mammalian-like and tested the mutant genomes in our in vivo animal model. While the amino acid sequences of the proteins remained unchanged, the oncogenic potential of some of the altered genomes increased dramatically. In addition, increased immunogenicity, as measured by spontaneous regression, was observed as the numbers of codon changes increased. This work suggests that codon usage may modify protein production in ways that influence disease outcome and that evaluation of synonymous codons should be included in the analysis of genetic variants of infectious agents and their association with disease. PMID:23433866

  6. uORFs with unusual translational start codons autoregulate expression of eukaryotic ornithine decarboxylase homologs

    PubMed Central

    Ivanov, Ivaylo P.; Loughran, Gary; Atkins, John F.

    2008-01-01

    In a minority of eukaryotic mRNAs, a small functional upstream ORF (uORF), often performing a regulatory role, precedes the translation start site for the main product(s). Here, conserved uORFs in numerous ornithine decarboxylase homologs are identified from yeast to mammals. Most have noncanonical evolutionarily conserved start codons, the main one being AUU, which has not been known as an initiator for eukaryotic chromosomal genes. The AUG-less uORF present in mouse antizyme inhibitor, one of the ornithine decarboxylase homologs in mammals, mediates polyamine-induced repression of the downstream main ORF. This repression is part of an autoregulatory circuit, and one of its sensors is the AUU codon, which suggests that translation initiation codon identity is likely used for regulation in eukaryotes. PMID:18626014

  7. Near-cognate suppression of amber, opal and quadruplet codons competes with aminoacyl-tRNAPyl for genetic code expansion

    PubMed Central

    O’Donoghue, Patrick; Prat, Laure; Heinemann, Ilka U.; Ling, Jiqiang; Odoi, Keturah; Liu, Wenshe R.; Söll, Dieter

    2012-01-01

    Over 300 amino acids are found in proteins in nature, yet typically only 20 are genetically encoded. Reassigning stop codons and use of quadruplet codons emerged as the main avenues for genetically encoding non-canonical amino acids (NCAAs). Canonical aminoacyl-tRNAs with near-cognate anticodons also read these codons to some extent. This background suppression leads to ‘statistical protein’ that contains some natural amino acid(s) at a site intended for NCAA. We characterize near-cognate suppression of amber, opal and a quadruplet codon in common Escherichia coli laboratory strains and find that the PylRS/tRNAPyl orthogonal pair cannot completely outcompete contamination by natural amino acids. PMID:23036644

  8. A Novel Method to Predict Highly Expressed Genes Based on Radius Clustering and Relative Synonymous Codon Usage.

    PubMed

    Tran, Tuan-Anh; Vo, Nam Tri; Nguyen, Hoang Duc; Pham, Bao The

    2015-12-01

    Recombinant proteins play an important role in many aspects of life and have generated a huge income, notably in the industrial enzyme business. A gene is introduced into a vector and expressed in a host organism-for example, E. coli-to obtain a high productivity of target protein. However, transferred genes from particular organisms are not usually compatible with the host's expression system because of various reasons, for example, codon usage bias, GC content, repetitive sequences, and secondary structure. The solution is developing programs to optimize for designing a nucleotide sequence whose origin is from peptide sequences using properties of highly expressed genes (HEGs) of the host organism. Existing data of HEGs determined by practical and computer-based methods do not satisfy for qualifying and quantifying. Therefore, the demand for developing a new HEG prediction method is critical. We proposed a new method for predicting HEGs and criteria to evaluate gene optimization. Codon usage bias was weighted by amplifying the difference between HEGs and non-highly expressed genes (non-HEGs). The number of predicted HEGs is 5% of the genome. In comparison with Puigbò's method, the result is twice as good as Puigbò's one, in kernel ratio and kernel sensitivity. Concerning transcription/translation factor proteins (TF), the proposed method gives low TF sensitivity, while Puigbò's method gives moderate one. In summary, the results indicated that the proposed method can be a good optional applying method to predict optimized genes for particular organisms, and we generated an HEG database for further researches in gene design.

  9. eIF1 Loop 2 interactions with Met-tRNAi control the accuracy of start codon selection by the scanning preinitiation complex.

    PubMed

    Thakur, Anil; Hinnebusch, Alan G

    2018-05-01

    The eukaryotic 43S preinitiation complex (PIC), bearing initiator methionyl transfer RNA (Met-tRNA i ) in a ternary complex (TC) with eukaryotic initiation factor 2 (eIF2)-GTP, scans the mRNA leader for an AUG codon in favorable context. AUG recognition evokes rearrangement from an open PIC conformation with TC in a "P OUT " state to a closed conformation with TC more tightly bound in a "P IN " state. eIF1 binds to the 40S subunit and exerts a dual role of enhancing TC binding to the open PIC conformation while antagonizing the P IN state, necessitating eIF1 dissociation for start codon selection. Structures of reconstituted PICs reveal juxtaposition of eIF1 Loop 2 with the Met-tRNA i D loop in the P IN state and predict a distortion of Loop 2 from its conformation in the open complex to avoid a clash with Met-tRNA i We show that Ala substitutions in Loop 2 increase initiation at both near-cognate UUG codons and AUG codons in poor context. Consistently, the D71A-M74A double substitution stabilizes TC binding to 48S PICs reconstituted with mRNA harboring a UUG start codon, without affecting eIF1 affinity for 40S subunits. Relatively stronger effects were conferred by arginine substitutions; and no Loop 2 substitutions perturbed the rate of TC loading on scanning 40S subunits in vivo. Thus, Loop 2-D loop interactions specifically impede Met-tRNA i accommodation in the P IN state without influencing the P OUT mode of TC binding; and Arg substitutions convert the Loop 2-tRNA i clash to an electrostatic attraction that stabilizes P IN and enhances selection of poor start codons in vivo.

  10. Codon 13 KRAS mutation predicts patterns of recurrence in patients undergoing hepatectomy for colorectal liver metastases.

    PubMed

    Margonis, Georgios A; Kim, Yuhree; Sasaki, Kazunari; Samaha, Mario; Amini, Neda; Pawlik, Timothy M

    2016-09-01

    Investigations regarding the impact of tumor biology after surgical management of colorectal liver metastasis have focused largely on overall survival. We investigated the impact of codon-specific KRAS mutations on the rates and patterns of recurrence in patients after surgery for colorectal liver metastasis (CRLM). All patients who underwent curative-intent surgery for CRLM between 2002 and 2015 at Johns Hopkins who had available data on KRAS mutation status were identified. Clinico-pathologic data, recurrence patterns, and recurrence-free survival (RFS) were assessed using univariable and multivariable analyses. A total of 512 patients underwent resection only (83.2%) or resection plus radiofrequency ablation (16.8%). Although 5-year overall survival was 64.6%, 284 (55.5%) patients recurred with a median RFS time of 18.1 months. The liver was the initial recurrence site for 181 patients, whereas extrahepatic recurrence was observed in 162 patients. Among patients with an extrahepatic recurrence, 102 (63%) had a lung recurrence. Although overall KRAS mutation was not associated with overall RFS (P = 0.186), it was independently associated with a worse extrahepatic (P = 0.004) and lung RFS (P = 0.007). Among patients with known KRAS codon-specific mutations, patients with codon 13 KRAS mutation had a worse 5-year extrahepatic RFS (P = 0.01), whereas codon 12 mutations were not associated with extrahepatic (P = 0.11) or lung-specific recurrence rate (P = 0.24). On multivariable analysis, only codon 13 mutation independently predicted worse overall extrahepatic RFS (P = 0.004) and lung-specific RFS (P = 0.023). Among patients undergoing resection of CRLM, overall KRAS mutation was not associated with RFS. KRAS codon 13 mutations, but not codon 12 mutations, were associated with a higher risk for overall extrahepatic recurrence and lung-specific recurrence. Cancer 2016. © 2016 American Cancer Society. Cancer 2016;122:2698-2707. © 2016

  11. Modifications modulate anticodon loop dynamics and codon recognition of E. coli tRNA(Arg1,2).

    PubMed

    Cantara, William A; Bilbille, Yann; Kim, Jia; Kaiser, Rob; Leszczyńska, Grażyna; Malkiewicz, Andrzej; Agris, Paul F

    2012-03-02

    Three of six arginine codons are read by two tRNA(Arg) isoacceptors in Escherichia coli. The anticodon stem and loop of these isoacceptors (ASL(Arg1,2)) differs only in that the position 32 cytidine of tRNA(Arg1) is posttranscriptionally modified to 2-thiocytidine (s(2)C(32)). The tRNA(Arg1,2) are also modified at positions 34 (inosine, I(34)) and 37 (2-methyladenosine, m(2)A(37)). To investigate the roles of modifications in the structure and function, we analyzed six ASL(Arg1,2) constructs differing in their array of modifications by spectroscopy and codon binding assays. Thermal denaturation and circular dichroism spectroscopy indicated that modifications contribute thermodynamic and base stacking properties, resulting in more order but less stability. NMR-derived structures of the ASL(Arg1,2) showed that the solution structures of the ASLs were nearly identical. Surprisingly, none possessed the U-turn conformation required for effective codon binding on the ribosome. Yet, all ASL(Arg1,2) constructs efficiently bound the cognate CGU codon. Three ASLs with I(34) were able to decode CGC, whereas only the singly modified ASL(Arg1,2)(ICG) with I(34) was able to decode CGA. The dissociation constants for all codon bindings were physiologically relevant (0.4-1.4 μM). However, with the introduction of s(2)C(32) or m(2)A(37) to ASL(Arg1,2)(ICG), the maximum amount of ASL bound to CGU and CGC was significantly reduced. These results suggest that, by allowing loop flexibility, the modifications modulate the conformation of the ASL(Arg1,2), which takes one structure free in solution and two others when bound to the cognate arginyl-tRNA synthetase or to codons on the ribosome where modifications reduce or restrict binding to specific codons. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. ANT: Software for Generating and Evaluating Degenerate Codons for Natural and Expanded Genetic Codes.

    PubMed

    Engqvist, Martin K M; Nielsen, Jens

    2015-08-21

    The Ambiguous Nucleotide Tool (ANT) is a desktop application that generates and evaluates degenerate codons. Degenerate codons are used to represent DNA positions that have multiple possible nucleotide alternatives. This is useful for protein engineering and directed evolution, where primers specified with degenerate codons are used as a basis for generating libraries of protein sequences. ANT is intuitive and can be used in a graphical user interface or by interacting with the code through a defined application programming interface. ANT comes with full support for nonstandard, user-defined, or expanded genetic codes (translation tables), which is important because synthetic biology is being applied to an ever widening range of natural and engineered organisms. The Python source code for ANT is freely distributed so that it may be used without restriction, modified, and incorporated in other software or custom data pipelines.

  13. High-resolution melting analysis of gyrA codon 84 and grlA codon 80 mutations conferring resistance to fluoroquinolones in Staphylococcus pseudintermedius isolates from canine clinical samples.

    PubMed

    Loiacono, Monica; Martino, Piera A; Albonico, Francesca; Dell'Orco, Francesca; Ferretti, Manuela; Zanzani, Sergio; Mortarino, Michele

    2017-09-01

    Staphylococcus pseudintermedius is an opportunistic pathogen of dogs and cats. A high-resolution melting analysis (HRMA) protocol was designed and tested on 42 clinical isolates with known fluoroquinolone (FQ) susceptibility and gyrA codon 84 and grlA codon 80 mutation status. The HRMA approach was able to discriminate between FQ-sensitive and FQ-resistant strains and confirmed previous reports that the main mutation site associated with FQ resistance in S. pseudintermedius is located at position 251 (Ser84Leu) of gyrA. Routine, HRMA-based FQ susceptibility profiles may be a valuable tool to guide therapy. The FQ resistance-predictive power of the assay should be tested in a significantly larger number of isolates.

  14. Stop codon readthrough generates a C-terminally extended variant of the human vitamin D receptor with reduced calcitriol response

    PubMed Central

    Loughran, Gary; Jungreis, Irwin; Tzani, Ioanna; Power, Michael; Dmitriev, Ruslan I.; Ivanov, Ivaylo P.; Kellis, Manolis; Atkins, John F.

    2018-01-01

    Although stop codon readthrough is used extensively by viruses to expand their gene expression, verified instances of mammalian readthrough have only recently been uncovered by systems biology and comparative genomics approaches. Previously, our analysis of conserved protein coding signatures that extend beyond annotated stop codons predicted stop codon readthrough of several mammalian genes, all of which have been validated experimentally. Four mRNAs display highly efficient stop codon readthrough, and these mRNAs have a UGA stop codon immediately followed by CUAG (UGA_CUAG) that is conserved throughout vertebrates. Extending on the identification of this readthrough motif, we here investigated stop codon readthrough, using tissue culture reporter assays, for all previously untested human genes containing UGA_CUAG. The readthrough efficiency of the annotated stop codon for the sequence encoding vitamin D receptor (VDR) was 6.7%. It was the highest of those tested but all showed notable levels of readthrough. The VDR is a member of the nuclear receptor superfamily of ligand-inducible transcription factors, and it binds its major ligand, calcitriol, via its C-terminal ligand-binding domain. Readthrough of the annotated VDR mRNA results in a 67 amino acid–long C-terminal extension that generates a VDR proteoform named VDRx. VDRx may form homodimers and heterodimers with VDR but, compared with VDR, VDRx displayed a reduced transcriptional response to calcitriol even in the presence of its partner retinoid X receptor. PMID:29386352

  15. Overcoming codon bias: a method for high-level overexpression of Plasmodium and other AT-rich parasite genes in Escherichia coli.

    PubMed

    Baca, A M; Hol, W G

    2000-02-01

    Parasite genes often use codons which are rarely used in the highly expressed genes of Escherichia coli, possibly resulting in translational stalling and lower yields of recombinant protein. We have constructed the "RIG" plasmid to overcome the potential codon-bias problem seen in Plasmodium genes. RIG contains the genes that encode three tRNAs (Arg, Ile, Gly), which recognise rare codons found in parasite genes. When co-transformed into E. coli along with expression plasmids containing parasite genes, RIG can greatly increase levels of overexpressed protein. Codon frequency analysis suggests that RIG may be applied to a variety of protozoan and helminth genes.

  16. Gene composer: database software for protein construct design, codon engineering, and gene synthesis.

    PubMed

    Lorimer, Don; Raymond, Amy; Walchli, John; Mixon, Mark; Barrow, Adrienne; Wallace, Ellen; Grice, Rena; Burgin, Alex; Stewart, Lance

    2009-04-21

    To improve efficiency in high throughput protein structure determination, we have developed a database software package, Gene Composer, which facilitates the information-rich design of protein constructs and their codon engineered synthetic gene sequences. With its modular workflow design and numerous graphical user interfaces, Gene Composer enables researchers to perform all common bio-informatics steps used in modern structure guided protein engineering and synthetic gene engineering. An interactive Alignment Viewer allows the researcher to simultaneously visualize sequence conservation in the context of known protein secondary structure, ligand contacts, water contacts, crystal contacts, B-factors, solvent accessible area, residue property type and several other useful property views. The Construct Design Module enables the facile design of novel protein constructs with altered N- and C-termini, internal insertions or deletions, point mutations, and desired affinity tags. The modifications can be combined and permuted into multiple protein constructs, and then virtually cloned in silico into defined expression vectors. The Gene Design Module uses a protein-to-gene algorithm that automates the back-translation of a protein amino acid sequence into a codon engineered nucleic acid gene sequence according to a selected codon usage table with minimal codon usage threshold, defined G:C% content, and desired sequence features achieved through synonymous codon selection that is optimized for the intended expression system. The gene-to-oligo algorithm of the Gene Design Module plans out all of the required overlapping oligonucleotides and mutagenic primers needed to synthesize the desired gene constructs by PCR, and for physically cloning them into selected vectors by the most popular subcloning strategies. We present a complete description of Gene Composer functionality, and an efficient PCR-based synthetic gene assembly procedure with mis-match specific endonuclease

  17. Gene Composer: database software for protein construct design, codon engineering, and gene synthesis

    PubMed Central

    Lorimer, Don; Raymond, Amy; Walchli, John; Mixon, Mark; Barrow, Adrienne; Wallace, Ellen; Grice, Rena; Burgin, Alex; Stewart, Lance

    2009-01-01

    Background To improve efficiency in high throughput protein structure determination, we have developed a database software package, Gene Composer, which facilitates the information-rich design of protein constructs and their codon engineered synthetic gene sequences. With its modular workflow design and numerous graphical user interfaces, Gene Composer enables researchers to perform all common bio-informatics steps used in modern structure guided protein engineering and synthetic gene engineering. Results An interactive Alignment Viewer allows the researcher to simultaneously visualize sequence conservation in the context of known protein secondary structure, ligand contacts, water contacts, crystal contacts, B-factors, solvent accessible area, residue property type and several other useful property views. The Construct Design Module enables the facile design of novel protein constructs with altered N- and C-termini, internal insertions or deletions, point mutations, and desired affinity tags. The modifications can be combined and permuted into multiple protein constructs, and then virtually cloned in silico into defined expression vectors. The Gene Design Module uses a protein-to-gene algorithm that automates the back-translation of a protein amino acid sequence into a codon engineered nucleic acid gene sequence according to a selected codon usage table with minimal codon usage threshold, defined G:C% content, and desired sequence features achieved through synonymous codon selection that is optimized for the intended expression system. The gene-to-oligo algorithm of the Gene Design Module plans out all of the required overlapping oligonucleotides and mutagenic primers needed to synthesize the desired gene constructs by PCR, and for physically cloning them into selected vectors by the most popular subcloning strategies. Conclusion We present a complete description of Gene Composer functionality, and an efficient PCR-based synthetic gene assembly procedure with mis

  18. Codon optimisation to improve expression of a Mycobacterium avium ssp. paratuberculosis-specific membrane-associated antigen by Lactobacillus salivarius.

    PubMed

    Johnston, Christopher; Douarre, Pierre E; Soulimane, Tewfik; Pletzer, Daniel; Weingart, Helge; MacSharry, John; Coffey, Aidan; Sleator, Roy D; O'Mahony, Jim

    2013-06-01

    Subunit and DNA-based vaccines against Mycobacterium avium ssp. paratuberculosis (MAP) attempt to overcome inherent issues associated with whole-cell formulations. However, these vaccines can be hampered by poor expression of recombinant antigens from a number of disparate hosts. The high G+C content of MAP invariably leads to a codon bias throughout gene expression. To investigate if the codon bias affects recombinant MAP antigen expression, the open reading frame of a MAP-specific antigen MptD (MAP3733c) was codon optimised for expression against a Lactobacillus salivarius host. Of the total 209 codons which constitute MAP3733c, 172 were modified resulting in a reduced G+C content from 61% for the native gene to 32.7% for the modified form. Both genes were placed under the transcriptional control of the PnisA promoter; allowing controlled heterologous expression in L. salivarius. Expression was monitored using fluorescence microscopy and microplate fluorometry via GFP tags translationally fused to the C-termini of the two MptD genes. A > 37-fold increase in expression was observed for the codon-optimised MAP3733synth variant over the native gene. Due to the low cost and improved expression achieved, codon optimisation significantly improves the potential of L. salivarius as an oral vaccine stratagem against Johne's disease. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. A method for multi-codon scanning mutagenesis of proteins based on asymmetric transposons.

    PubMed

    Liu, Jia; Cropp, T Ashton

    2012-02-01

    Random mutagenesis followed by selection or screening is a commonly used strategy to improve protein function. Despite many available methods for random mutagenesis, nearly all generate mutations at the nucleotide level. An ideal mutagenesis method would allow for the generation of 'codon mutations' to change protein sequence with defined or mixed amino acids of choice. Herein we report a method that allows for mutations of one, two or three consecutive codons. Key to this method is the development of a Mu transposon variant with asymmetric terminal sequences. As a demonstration of the method, we performed multi-codon scanning on the gene encoding superfolder GFP (sfGFP). Characterization of 50 randomly chosen clones from each library showed that more than 40% of the mutants in these three libraries contained seamless, in-frame mutations with low site preference. By screening only 500 colonies from each library, we successfully identified several spectra-shift mutations, including a S205D variant that was found to bear a single excitation peak in the UV region.

  20. Influence of certain forces on evolution of synonymous codon usage bias in certain species of three basal orders of aquatic insects.

    PubMed

    Selva Kumar, C; Nair, Rahul R; Sivaramakrishnan, K G; Ganesh, D; Janarthanan, S; Arunachalam, M; Sivaruban, T

    2012-12-01

    Forces that influence the evolution of synonymous codon usage bias are analyzed in six species of three basal orders of aquatic insects. The rationale behind choosing six species of aquatic insects (three from Ephemeroptera, one from Plecoptera, and two from Odonata) for the present analysis is based on phylogenetic position at the basal clades of the Order Insecta facilitating the understanding of the evolution of codon bias and of factors shaping codon usage patterns in primitive clades of insect lineages and their subtle differences in some of their ecological and environmental requirements in terms of habitat-microhabitat requirements, altitudinal preferences, temperature tolerance ranges, and consequent responses to climate change impacts. The present analysis focuses on open reading frames of the 13 protein-coding genes in the mitochondrial genome of six carefully chosen insect species to get a comprehensive picture of the evolutionary intricacies of codon bias. In all the six species, A and T contents are observed to be significantly higher than G and C, and are used roughly equally. Since transcription hypothesis on codon usage demands A richness and T poorness, it is quite likely that mutation pressure may be the key factor associated with synonymous codon usage (SCU) variations in these species because the mutation hypothesis predicts AT richness and GC poorness in the mitochondrial DNA. Thus, AT-biased mutation pressure seems to be an important factor in framing the SCU variation in all the selected species of aquatic insects, which in turn explains the predominance of A and T ending codons in these species. This study does not find any association between microhabitats and codon usage variations in the mitochondria of selected aquatic insects. However, this study has identified major forces, such as compositional constraints and mutation pressure, which shape patterns of codon usage in mitochondrial genes in the primitive clades of insect lineages.

  1. Stop codons in the hepatitis B surface proteins are enriched during antiviral therapy and are associated with host cell apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colledge, Danielle; Soppe, Sally; Yuen, Lilly

    Premature stop codons in the hepatitis B virus (HBV) surface protein can be associated with nucleos(t)ide analogue resistance due to overlap of the HBV surface and polymerase genes. The aim of this study was to determine the effect of the replication of three common surface stop codon variants on the hepatocyte. Cell lines were transfected with infectious HBV clones encoding surface stop codons rtM204I/sW196*, rtA181T/sW172*, rtV191I/sW182*, and a panel of substitutions in the surface proteins. HBsAg was measured by Western blotting. Proliferation and apoptosis were measured using flow cytometry. All three surface stop codon variants were defective in HBsAg secretion.more » Cells transfected with these variants were less proliferative and had higher levels of apoptosis than those transfected with variants that did not encode surface stop codons. The most cytopathic variant was rtM204I/sW196*. Replication of HBV encoding surface stop codons was toxic to the cell and promoted apoptosis, exacerbating disease progression. - Highlights: •Under normal circumstances, HBV replication is not cytopathic. •Premature stop codons in the HBV surface protein can be selected and enriched during nucleos(t)ide analogue therapy. •Replication of these variants can be cytopathic to the cell and promote apoptosis. •Inadequate antiviral therapy may actually promote disease progression.« less

  2. Analysis of adaptive evolution in Lyssavirus genomes reveals pervasive diversifying selection during species diversification.

    PubMed

    Voloch, Carolina M; Capellão, Renata T; Mello, Beatriz; Schrago, Carlos G

    2014-11-19

    Lyssavirus is a diverse genus of viruses that infect a variety of mammalian hosts, typically causing encephalitis. The evolution of this lineage, particularly the rabies virus, has been a focus of research because of the extensive occurrence of cross-species transmission, and the distinctive geographical patterns present throughout the diversification of these viruses. Although numerous studies have examined pattern-related questions concerning Lyssavirus evolution, analyses of the evolutionary processes acting on Lyssavirus diversification are scarce. To clarify the relevance of positive natural selection in Lyssavirus diversification, we conducted a comprehensive scan for episodic diversifying selection across all lineages and codon sites of the five coding regions in lyssavirus genomes. Although the genomes of these viruses are generally conserved, the glycoprotein (G), RNA-dependent RNA polymerase (L) and polymerase (P) genes were frequently targets of adaptive evolution during the diversification of the genus. Adaptive evolution is particularly manifest in the glycoprotein gene, which was inferred to have experienced the highest density of positively selected codon sites along branches. Substitutions in the L gene were found to be associated with the early diversification of phylogroups. A comparison between the number of positively selected sites inferred along the branches of RABV population branches and Lyssavirus intespecies branches suggested that the occurrence of positive selection was similar on the five coding regions of the genome in both groups.

  3. Analysis of Adaptive Evolution in Lyssavirus Genomes Reveals Pervasive Diversifying Selection during Species Diversification

    PubMed Central

    Voloch, Carolina M.; Capellão, Renata T.; Mello, Beatriz; Schrago, Carlos G.

    2014-01-01

    Lyssavirus is a diverse genus of viruses that infect a variety of mammalian hosts, typically causing encephalitis. The evolution of this lineage, particularly the rabies virus, has been a focus of research because of the extensive occurrence of cross-species transmission, and the distinctive geographical patterns present throughout the diversification of these viruses. Although numerous studies have examined pattern-related questions concerning Lyssavirus evolution, analyses of the evolutionary processes acting on Lyssavirus diversification are scarce. To clarify the relevance of positive natural selection in Lyssavirus diversification, we conducted a comprehensive scan for episodic diversifying selection across all lineages and codon sites of the five coding regions in lyssavirus genomes. Although the genomes of these viruses are generally conserved, the glycoprotein (G), RNA-dependent RNA polymerase (L) and polymerase (P) genes were frequently targets of adaptive evolution during the diversification of the genus. Adaptive evolution is particularly manifest in the glycoprotein gene, which was inferred to have experienced the highest density of positively selected codon sites along branches. Substitutions in the L gene were found to be associated with the early diversification of phylogroups. A comparison between the number of positively selected sites inferred along the branches of RABV population branches and Lyssavirus intespecies branches suggested that the occurrence of positive selection was similar on the five coding regions of the genome in both groups. PMID:25415197

  4. Analysis of Serine Codon Conservation Reveals Diverse Phenotypic Constraints on Hepatitis C Virus Glycoprotein Evolution

    PubMed Central

    Koutsoudakis, George; Urbanowicz, Richard A.; Mirza, Deeman; Ginkel, Corinne; Riebesehl, Nina; Calland, Noémie; Albecka, Anna; Price, Louisa; Hudson, Natalia; Descamps, Véronique; Backx, Matthijs; McClure, C. Patrick; Duverlie, Gilles; Pecheur, Eve-Isabelle; Dubuisson, Jean; Perez-del-Pulgar, Sofia; Forns, Xavier; Steinmann, Eike; Tarr, Alexander W.; Pietschmann, Thomas

    2014-01-01

    Serine is encoded by two divergent codon types, UCN and AGY, which are not interchangeable by a single nucleotide substitution. Switching between codon types therefore occurs via intermediates (threonine or cysteine) or via simultaneous tandem substitutions. Hepatitis C virus (HCV) chronically infects 2 to 3% of the global population. The highly variable glycoproteins E1 and E2 decorate the surface of the viral envelope, facilitate cellular entry, and are targets for host immunity. Comparative sequence analysis of globally sampled E1E2 genes, coupled with phylogenetic analysis, reveals the signatures of multiple archaic codon-switching events at seven highly conserved serine residues. Limited detection of intermediate phenotypes indicates that associated fitness costs restrict their fixation in divergent HCV lineages. Mutational pathways underlying codon switching were probed via reverse genetics, assessing glycoprotein functionality using multiple in vitro systems. These data demonstrate selection against intermediate phenotypes can act at the structural/functional level, with some intermediates displaying impaired virion assembly and/or decreased capacity for target cell entry. These effects act in residue/isolate-specific manner. Selection against intermediates is also provided by humoral targeting, with some intermediates exhibiting increased epitope exposure and enhanced neutralization sensitivity, despite maintaining a capacity for target cell entry. Thus, purifying selection against intermediates limits their frequencies in globally sampled strains, with divergent functional constraints at the protein level restricting the fixation of deleterious mutations. Overall our study provides an experimental framework for identification of barriers limiting viral substitutional evolution and indicates that serine codon-switching represents a genomic “fossil record” of historical purifying selection against E1E2 intermediate phenotypes. PMID:24173227

  5. The significance of p53 codon 72 polymorphism for the development of cervical adenocarcinomas

    PubMed Central

    Andersson, S; Rylander, E; Strand, A; Sällström, J; Wilander, E

    2001-01-01

    Infection with the human papillomavirus is an important co-factor in the development of cervical carcinomas. Accordingly, HPV DNA is recognised in most of these tumours. Polymorphism of the p53 gene, codon 72, is also considered a risk factor in the development of cervical carcinoma. However, this finding is contradicted by several observers. In the present investigation, 111 cases of adenocarcinoma of the cervix collected through the Swedish Cancer Registry and 188 controls (females with normal cytology at organised gynaecological screening) were analysed with regard to p53, codon 72, polymorphism using a PCR- and SSCP-based technique. In the controls, 9% showed pro/pro, 44% pro/arg and 47% arg/arg, whereas in the invasive adenocarcinomas, the corresponding figures were 0%, 29% and 71%, respectively. The difference was statistically significant (P = 0.001). HPV DNA was identified in 86 tumours (HPV 18 in 48, HPV 16 in 31 and HPV of unknown type in 7 cases) and 25 tumours were HPV negative. The p53, codon 72, genotypes observed in HPV-positive and HPV-negative cervical adenocarcinomas were not statistically different (P = 0.690). The results indicate that women homozygotic for arg/arg in codon 72 of the p53 gene are at an increased risk for the development of cervical adenocarcinomas. However, this genetic disposition seems to be unrelated to the HPV infection. © 2001 Cancer Research Campaign  http://www.bjcancer.com PMID:11710828

  6. [Protein S3 in the human 80S ribosome adjoins mRNA from 3'-side of the A-site codon].

    PubMed

    Molotkov, M V; Graĭfer, D M; Popugaeva, E A; Bulygin, K N; Meshchaninova, M I; Ven'iaminova, A G; Karpova, G G

    2007-01-01

    The protein environment of mRNA 3' of the A-site codon (the decoding site) in the human 80S ribosome was studied using a set of oligoribonucleotide derivatives bearing a UUU triplet at the 5'-end and a perfluoroarylazide group at one of the nucleotide residues at the 3'-end of this triplet. Analogues of mRNA were phased into the ribosome using binding at the tRNAPhe P-site, which recognizes the UUU codon. Mild UV irradiation of ribosome complexes with tRNAPhe and mRNA analogues resulted in the predominant crosslinking of the analogues with the 40S subunit components, mainly with proteins and, to a lesser extent, with rRNA. Among the 40S subunit ribosomal proteins, the S3 protein was the main target for modification in all cases. In addition, minor crosslinking with the S2 protein was observed. The crosslinking with the S3 and S2 proteins occurred both in triple complexes and in the absence of tRNA. Within triple complexes, crosslinking with S15 protein was also found, its efficiency considerably falling when the modified nucleotide was moved from positions +5 to +12 relative to the first codon nucleotide in the P-site. In some cases, crosslinking with the S30 protein was observed, it was most efficient for the derivative containing a photoreactive group at the +7 adenosine residue. The results indicate that the S3 protein in the human ribosome plays a key role in the formation of the mRNA binding site 3' of the codon in the decoding site.

  7. Most Used Codons per Amino Acid and per Genome in the Code of Man Compared to Other Organisms According to the Rotating Circular Genetic Code

    PubMed Central

    Castro-Chavez, Fernando

    2011-01-01

    My previous theoretical research shows that the rotating circular genetic code is a viable tool to make easier to distinguish the rules of variation applied to the amino acid exchange; it presents a precise and positional bio-mathematical balance of codons, according to the amino acids they codify. Here, I demonstrate that when using the conventional or classic circular genetic code, a clearer pattern for the human codon usage per amino acid and per genome emerges. The most used human codons per amino acid were the ones ending with the three hydrogen bond nucleotides: C for 12 amino acids and G for the remaining 8, plus one codon for arginine ending in A that was used approximately with the same frequency than the one ending in G for this same amino acid (plus *). The most used codons in man fall almost all the time at the rightmost position, clockwise, ending either in C or in G within the circular genetic code. The human codon usage per genome is compared to other organisms such as fruit flies (Drosophila melanogaster), squid (Loligo pealei), and many others. The biosemiotic codon usage of each genomic population or ‘Theme’ is equated to a ‘molecular language’. The C/U choice or difference, and the G/A difference in the third nucleotide of the most used codons per amino acid are illustrated by comparing the most used codons per genome in humans and squids. The human distribution in the third position of most used codons is a 12-8-2, C-G-A, nucleotide ending signature, while the squid distribution in the third position of most used codons was an odd, or uneven, distribution in the third position of its most used codons: 13-6-3, U-A-G, as its nucleotide ending signature. These findings may help to design computational tools to compare human genomes, to determine the exchangeability between compatible codons and amino acids, and for the early detection of incompatible changes leading to hereditary diseases. PMID:22997484

  8. Codon bias and gene ontology in holometabolous and hemimetabolous insects.

    PubMed

    Carlini, David B; Makowski, Matthew

    2015-12-01

    The relationship between preferred codon use (PCU), developmental mode, and gene ontology (GO) was investigated in a sample of nine insect species with sequenced genomes. These species were selected to represent two distinct modes of insect development, holometabolism and hemimetabolism, with an aim toward determining whether the differences in developmental timing concomitant with developmental mode would be mirrored by differences in PCU in their developmental genes. We hypothesized that the developmental genes of holometabolous insects should be under greater selective pressure for efficient translation, manifest as increased PCU, than those of hemimetabolous insects because holometabolism requires abundant protein expression over shorter time intervals than hemimetabolism, where proteins are required more uniformly in time. Preferred codon sets were defined for each species, from which the frequency of PCU for each gene was obtained. Although there were substantial differences in the genomic base composition of holometabolous and hemimetabolous insects, both groups exhibited a general preference for GC-ending codons, with the former group having higher PCU averaged across all genes. For each species, the biological process GO term for each gene was assigned that of its Drosophila homolog(s), and PCU was calculated for each GO term category. The top two GO term categories for PCU enrichment in the holometabolous insects were anatomical structure development and cell differentiation. The increased PCU in the developmental genes of holometabolous insects may reflect a general strategy to maximize the protein production of genes expressed in bursts over short time periods, e.g., heat shock proteins. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 686-698, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  9. The Enterococcus faecalis EbpA Pilus Protein: Attenuation of Expression, Biofilm Formation, and Adherence to Fibrinogen Start with the Rare Initiation Codon ATT

    PubMed Central

    Montealegre, Maria Camila; La Rosa, Sabina Leanti; Roh, Jung Hyeob; Harvey, Barrett R.

    2015-01-01

    ABSTRACT The endocarditis and biofilm-associated pili (Ebp) are important in Enterococcus faecalis pathogenesis, and the pilus tip, EbpA, has been shown to play a major role in pilus biogenesis, biofilm formation, and experimental infections. Based on in silico analyses, we previously predicted that ATT is the EbpA translational start codon, not the ATG codon, 120 bp downstream of ATT, which is annotated as the translational start. ATT is rarely used to initiate protein synthesis, leading to our hypothesis that this codon participates in translational regulation of Ebp production. To investigate this possibility, site-directed mutagenesis was used to introduce consecutive stop codons in place of two lysines at positions 5 and 6 from the ATT, to replace the ATT codon in situ with ATG, and then to revert this ATG to ATT; translational fusions of ebpA to lacZ were also constructed to investigate the effect of these start codons on translation. Our results showed that the annotated ATG does not start translation of EbpA, implicating ATT as the start codon; moreover, the presence of ATT, compared to the engineered ATG, resulted in significantly decreased EbpA surface display, attenuated biofilm, and reduced adherence to fibrinogen. Corroborating these findings, the translational fusion with the native ATT as the initiation codon showed significantly decreased expression of β-galactosidase compared to the construct with ATG in place of ATT. Thus, these results demonstrate that the rare initiation codon of EbpA negatively regulates EbpA surface display and negatively affects Ebp-associated functions, including biofilm and adherence to fibrinogen. PMID:26015496

  10. Elevation of the Yields of Very Long Chain Polyunsaturated Fatty Acids via Minimal Codon Optimization of Two Key Biosynthetic Enzymes

    PubMed Central

    Zheng, Desong; Sun, Quanxi; Liu, Jiang; Li, Yaxiao; Hua, Jinping

    2016-01-01

    Eicosapentaenoic acid (EPA, 20:5Δ5,8,11,14,17) and Docosahexaenoic acid (DHA, 22:6Δ4,7,10,13,16,19) are nutritionally beneficial to human health. Transgenic production of EPA and DHA in oilseed crops by transferring genes originating from lower eukaryotes, such as microalgae and fungi, has been attempted in recent years. However, the low yield of EPA and DHA produced in these transgenic crops is a major hurdle for the commercialization of these transgenics. Many factors can negatively affect transgene expression, leading to a low level of converted fatty acid products. Among these the codon bias between the transgene donor and the host crop is one of the major contributing factors. Therefore, we carried out codon optimization of a fatty acid delta-6 desaturase gene PinD6 from the fungus Phytophthora infestans, and a delta-9 elongase gene, IgASE1 from the microalga Isochrysis galbana for expression in Saccharomyces cerevisiae and Arabidopsis respectively. These are the two key genes encoding enzymes for driving the first catalytic steps in the Δ6 desaturation/Δ6 elongation and the Δ9 elongation/Δ8 desaturation pathways for EPA/DHA biosynthesis. Hence expression levels of these two genes are important in determining the final yield of EPA/DHA. Via PCR-based mutagenesis we optimized the least preferred codons within the first 16 codons at their N-termini, as well as the most biased CGC codons (coding for arginine) within the entire sequences of both genes. An expression study showed that transgenic Arabidopsis plants harbouring the codon-optimized IgASE1 contained 64% more elongated fatty acid products than plants expressing the native IgASE1 sequence, whilst Saccharomyces cerevisiae expressing the codon optimized PinD6 yielded 20 times more desaturated products than yeast expressing wild-type (WT) PinD6. Thus the codon optimization strategy we developed here offers a simple, effective and low-cost alternative to whole gene synthesis for high expression of

  11. Single nucleotide polymorphisms of Helicobacter pylori dupA that lead to premature stop codons.

    PubMed

    Moura, Sílvia B; Costa, Rafaella F A; Anacleto, Charles; Rocha, Gifone A; Rocha, Andreia M C; Queiroz, Dulciene M M

    2012-06-01

     The detection of the putative disease-specific Helicobacter pylori marker duodenal ulcer promoting gene A (dupA) is currently based on PCR detection of jhp0917 and jhp0918 that form the gene. However, mutations that lead to premature stop codons that split off the dupA leading to truncated products cannot be evaluated by PCR. We directly sequence the complete dupA of 75 dupA-positive strains of H. pylori isolated from patients with gastritis (n = 26), duodenal ulcer (n = 29), and gastric carcinoma (n = 20), to search for frame-shifting mutations that lead to stop codon. Thirty-four strains had single nucleotide mutations in dupA that lead to premature stop codon creating smaller products than the predicted 1839 bp product and, for this reason, were considered as dupA-negative. Intact dupA was more frequently observed in strains isolated from duodenal ulcer patients (65.5%) than in patients with gastritis only (46.2%) or with gastric carcinoma (50%). In logistic analysis, the presence of the intact dupA independently associated with duodenal ulcer (OR = 5.06; 95% CI = 1.22-20.96, p = .02).  We propose the primer walking methodology as a simple technique to sequence the gene. When we considered as dupA-positive only those strains that carry dupA gene without premature stop codons, the gene was associated with duodenal ulcer and, therefore, can be used as a marker for this disease in our population. © 2012 Blackwell Publishing Ltd.

  12. Diverse expression levels of two codon-optimized genes that encode human papilloma virus type 16 major protein L1 in Hansenula polymorpha.

    PubMed

    Liu, Cunbao; Yang, Xu; Yao, Yufeng; Huang, Weiwei; Sun, Wenjia; Ma, Yanbing

    2014-05-01

    Two versions of an optimized gene that encodes human papilloma virus type 16 major protein L1 were designed according to the codon usage frequency of Pichia pastoris. Y16 was highly expressed in both P. pastoris and Hansenula polymorpha. M16 expression was as efficient as that of Y16 in P. pastoris, but merely detectable in H. polymorpha even though transcription levels of M16 and Y16 were similar. H. polymorpha had a unique codon usage frequency that contains many more rare codons than Saccharomyces cerevisiae or P. pastoris. These findings indicate that even codon-optimized genes that are expressed well in S. cerevisiae and P. pastoris may be inefficiently expressed in H. polymorpha; thus rare codons must be avoided when universal optimized gene versions are designed to facilitate expression in a variety of yeast expression systems, especially H. polymorpha is involved.

  13. Tail-extension following the termination codon is critical for release of the nascent chain from membrane-bound ribosomes in a reticulocyte lysate cell-free system.

    PubMed

    Takahara, Michiyo; Sakaue, Haruka; Onishi, Yukiko; Yamagishi, Marifu; Kida, Yuichiro; Sakaguchi, Masao

    2013-01-11

    Nascent chain release from membrane-bound ribosomes by the termination codon was investigated using a cell-free translation system from rabbit supplemented with rough microsomal membrane vesicles. Chain release was extremely slow when mRNA ended with only the termination codon. Tail extension after the termination codon enhanced the release of the nascent chain. Release reached plateau levels with tail extension of 10 bases. This requirement was observed with all termination codons: TAA, TGA and TAG. Rapid release was also achieved by puromycin even in the absence of the extension. Efficient translation termination cannot be achieved in the presence of only a termination codon on the mRNA. Tail extension might be required for correct positioning of the termination codon in the ribosome and/or efficient recognition by release factors. Copyright © 2012. Published by Elsevier Inc.

  14. Convergent local adaptation to climate in distantly related conifers.

    PubMed

    Yeaman, Sam; Hodgins, Kathryn A; Lotterhos, Katie E; Suren, Haktan; Nadeau, Simon; Degner, Jon C; Nurkowski, Kristin A; Smets, Pia; Wang, Tongli; Gray, Laura K; Liepe, Katharina J; Hamann, Andreas; Holliday, Jason A; Whitlock, Michael C; Rieseberg, Loren H; Aitken, Sally N

    2016-09-23

    When confronted with an adaptive challenge, such as extreme temperature, closely related species frequently evolve similar phenotypes using the same genes. Although such repeated evolution is thought to be less likely in highly polygenic traits and distantly related species, this has not been tested at the genome scale. We performed a population genomic study of convergent local adaptation among two distantly related species, lodgepole pine and interior spruce. We identified a suite of 47 genes, enriched for duplicated genes, with variants associated with spatial variation in temperature or cold hardiness in both species, providing evidence of convergent local adaptation despite 140 million years of separate evolution. These results show that adaptation to climate can be genetically constrained, with certain key genes playing nonredundant roles. Copyright © 2016, American Association for the Advancement of Science.

  15. Prion protein gene analysis in three kindreds with fatal familial insomnia (FFI): Codon 178 mutation and codon 129 polymorphism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medori, R.; Tritschler, H.J.

    1993-10-01

    Fatal familial insomnia (FFI) is a disease linked to a GAC(Asp) [yields] AAC(Asn) mutation in codon 178 of the prion protein (PrP) gene. FFI is characterized clinically by untreatable progressive insomnia, dysautonomia, and motor dysfunctions and is characterized pathologically by selective thalamic atrophy. The authors confirmed the 178[sup Asn] mutation in the PrP gene of a third FFI family of French ancestry. Three family members who are under 40 years of age and who inherited the mutation showed only reduced perfusion in the basal ganglia on single photon emission computerized tomography. Some FFI features differ from the clinical and neuropathologicmore » findings associated with 178[sup Asn] reported elsewhere. However, additional intragenic mutations accounting for the phenotypic differences were not observed in two affected individuals. In other sporadic and familial forms of Creutzfeldt-Jakob disease and Gerstmann-Straeussler syndrome, Met or Val homozygosity at polymorphic codon 129 is associated with a more severe phenotype, younger age at onset, and faster progression. In FFI, young and old individuals at disease onset had 129[sup Met/Val]. Moreover, of five 178[sup Asn] individuals who are above age-at-onset range and who are well, two have 129[sup Met] and three have 129[sup Met/Val], suggesting that polymorphic site 129 does not modulate FFI phenotypic expression. Genetic heterogeneity and environment may play an important role in inter- and intrafamilial variability of the 178[sup Asn] mutation. 32 refs., 5 figs., 1 tab.« less

  16. Experience with the use of the Codonics Safe Label System(™) to improve labelling compliance of anaesthesia drugs.

    PubMed

    Ang, S B L; Hing, W C; Tung, S Y; Park, T

    2014-07-01

    The Codonics Safe Labeling System(™) (http://www.codonics.com/Products/SLS/flash/) is a piece of equipment that is able to barcode scan medications, read aloud the medication and the concentration and print a label of the appropriate concentration in the appropriate colour code. We decided to test this system in our facility to identify risks, benefits and usability. Our project comprised a baseline survey (25 anaesthesia cases during which 212 syringes were prepared from 223 drugs), an observational study (47 cases with 330 syringes prepared) and a user acceptability survey. The baseline compliance with all labelling requirements was 58%. In the observational study the compliance using the Codonics system was 98.6% versus 63.8% with conventional labelling. In the user acceptability survey the majority agreed the Codonics machine was easy to use, more legible and adhered with better security than the conventional preprinted label. However, most were neutral when asked about the likelihood of flexibility and customisation and were dissatisfied with the increased workload. Our findings suggest that the Codonics labelling machine is user-friendly and it improved syringe labelling compliance in our study. However, staff need to be willing to follow proper labelling workflow rather than batch label during preparation. Future syringe labelling equipment developers need to concentrate on user interface issues to reduce human factor and workflow problems. Support logistics are also an important consideration prior to implementation of any new labelling system.

  17. Preferences of AAA/AAG codon recognition by modified nucleosides, τm5s2U34 and t6A37 present in tRNALys.

    PubMed

    Sonawane, Kailas D; Kamble, Asmita S; Fandilolu, Prayagraj M

    2017-12-27

    Deficiency of 5-taurinomethyl-2-thiouridine, τm 5 s 2 U at the 34th 'wobble' position in tRNA Lys causes MERRF (Myoclonic Epilepsy with Ragged Red Fibers), a neuromuscular disease. This modified nucleoside of mt tRNA Lys , recognizes AAA/AAG codons during protein biosynthesis process. Its preference to identify cognate codons has not been studied at the atomic level. Hence, multiple MD simulations of various molecular models of anticodon stem loop (ASL) of mt tRNA Lys in presence and absence of τm 5 s 2 U 34 and N 6 -threonylcarbamoyl adenosine (t 6 A 37 ) along with AAA and AAG codons have been accomplished. Additional four MD simulations of multiple ASL mt tRNA Lys models in the context of ribosomal A-site residues have also been performed to investigate the role of A-site in recognition of AAA/AAG codons. MD simulation results show that, ASL models in presence of τm 5 s 2 U 34 and t 6 A 37 with codons AAA/AAG are more stable than the ASL lacking these modified bases. MD trajectories suggest that τm 5 s 2 U recognizes the codons initially by 'wobble' hydrogen bonding interactions, and then tRNA Lys might leave the explicit codon by a novel 'single' hydrogen bonding interaction in order to run the protein biosynthesis process smoothly. We propose this model as the 'Foot-Step Model' for codon recognition, in which the single hydrogen bond plays a crucial role. MD simulation results suggest that, tRNA Lys with τm 5 s 2 U and t 6 A recognizes AAA codon more preferably than AAG. Thus, these results reveal the consequences of τm 5 s 2 U and t 6 A in recognition of AAA/AAG codons in mitochondrial disease, MERRF.

  18. A Novel Frameshift Mutation at Codons 138/139 (HBB: c.417_418insT) on the β-Globin Gene Leads to β-Thalassemia.

    PubMed

    Jiang, Fan; Huang, Lv-Yin; Chen, Gui-Lan; Zhou, Jian-Ying; Xie, Xing-Mei; Li, Dong-Zhi

    2017-01-01

    We describe a new β-thalassemic mutation in a Chinese subject. This allele develops by insertion of one nucleotide (+T) between codons 138 and 139 in the third exon of the β-globin gene. The mutation causes a frameshift that leads to a termination codon at codon 139. In the heterozygote, this allele has the phenotype of classical β-thalassemia (β-thal) minor.

  19. Efficient Coproduction of Mannanase and Cellulase by the Transformation of a Codon-Optimized Endomannanase Gene from Aspergillus niger into Trichoderma reesei.

    PubMed

    Sun, Xianhua; Xue, Xianli; Li, Mengzhu; Gao, Fei; Hao, Zhenzhen; Huang, Huoqing; Luo, Huiying; Qin, Lina; Yao, Bin; Su, Xiaoyun

    2017-12-20

    Cellulase and mannanase are both important enzyme additives in animal feeds. Expressing the two enzymes simultaneously within one microbial host could potentially lead to cost reductions in the feeding of animals. For this purpose, we codon-optimized the Aspergillus niger Man5A gene to the codon-usage bias of Trichoderma reesei. By comparing the free energies and the local structures of the nucleotide sequences, one optimized sequence was finally selected and transformed into the T. reesei pyridine-auxotrophic strain TU-6. The codon-optimized gene was expressed to a higher level than the original one. Further expressing the codon-optimized gene in a mutated T. reesei strain through fed-batch cultivation resulted in coproduction of cellulase and mannanase up to 1376 U·mL -1 and 1204 U·mL -1 , respectively.

  20. CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons.

    PubMed

    Billon, Pierre; Bryant, Eric E; Joseph, Sarah A; Nambiar, Tarun S; Hayward, Samuel B; Rothstein, Rodney; Ciccia, Alberto

    2017-09-21

    Standard CRISPR-mediated gene disruption strategies rely on Cas9-induced DNA double-strand breaks (DSBs). Here, we show that CRISPR-dependent base editing efficiently inactivates genes by precisely converting four codons (CAA, CAG, CGA, and TGG) into STOP codons without DSB formation. To facilitate gene inactivation by induction of STOP codons (iSTOP), we provide access to a database of over 3.4 million single guide RNAs (sgRNAs) for iSTOP (sgSTOPs) targeting 97%-99% of genes in eight eukaryotic species, and we describe a restriction fragment length polymorphism (RFLP) assay that allows the rapid detection of iSTOP-mediated editing in cell populations and clones. To simplify the selection of sgSTOPs, our resource includes annotations for off-target propensity, percentage of isoforms targeted, prediction of nonsense-mediated decay, and restriction enzymes for RFLP analysis. Additionally, our database includes sgSTOPs that could be employed to precisely model over 32,000 cancer-associated nonsense mutations. Altogether, this work provides a comprehensive resource for DSB-free gene disruption by iSTOP. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Comprehensive analysis of the codon usage patterns in the envelope glycoprotein E2 gene of the classical swine fever virus

    PubMed Central

    Chi, Xiaojuan; Wang, Song; Ma, Yanmei; Chen, Jilong

    2017-01-01

    The classical swine fever virus (CSFV), circulating worldwide, is a highly contagious virus. Since the emergence of CSFV, it has caused great economic loss in swine industry. The envelope glycoprotein E2 gene of the CSFV is an immunoprotective antigen that induces the immune system to produce neutralizing antibodies. Therefore, it is essential to study the codon usage of the E2 gene of the CSFV. In this study, 140 coding sequences of the E2 gene were analyzed. The value of effective number of codons (ENC) showed low codon usage bias in the E2 gene. Our study showed that codon usage could be described mainly by mutation pressure ENC plot analysis combined with principal component analysis (PCA) and translational selection-correlation analysis between the general average hydropathicity (Gravy) and aromaticity (Aroma), and nucleotides at the third position of codons (A3s, T3s, G3s, C3s and GC3s). Furthermore, the neutrality analysis, which explained the relationship between GC12s and GC3s, revealed that natural selection had a key role compared with mutational bias during the evolution of the E2 gene. These results lay a foundation for further research on the molecular evolution of CSFV. PMID:28880881

  2. Comprehensive analysis of the codon usage patterns in the envelope glycoprotein E2 gene of the classical swine fever virus.

    PubMed

    Chen, Ye; Li, Xinxin; Chi, Xiaojuan; Wang, Song; Ma, Yanmei; Chen, Jilong

    2017-01-01

    The classical swine fever virus (CSFV), circulating worldwide, is a highly contagious virus. Since the emergence of CSFV, it has caused great economic loss in swine industry. The envelope glycoprotein E2 gene of the CSFV is an immunoprotective antigen that induces the immune system to produce neutralizing antibodies. Therefore, it is essential to study the codon usage of the E2 gene of the CSFV. In this study, 140 coding sequences of the E2 gene were analyzed. The value of effective number of codons (ENC) showed low codon usage bias in the E2 gene. Our study showed that codon usage could be described mainly by mutation pressure ENC plot analysis combined with principal component analysis (PCA) and translational selection-correlation analysis between the general average hydropathicity (Gravy) and aromaticity (Aroma), and nucleotides at the third position of codons (A3s, T3s, G3s, C3s and GC3s). Furthermore, the neutrality analysis, which explained the relationship between GC12s and GC3s, revealed that natural selection had a key role compared with mutational bias during the evolution of the E2 gene. These results lay a foundation for further research on the molecular evolution of CSFV.

  3. Demonstration of GTG as an endogenous initiation codon for a human mRNA transcript revealed by molecular cloning of the serpin endopin 2B.

    PubMed

    Hwang, Shin-Rong; Garza, Christina Z; Wegrzyn, Jill; Hook, Vivian Y H

    2004-08-16

    This study demonstrates utilization of the novel GTG initiation codon for translation of a human mRNA transcript that encodes the serpin endopin 2B, a protease inhibitor. Molecular cloning revealed the nucleotide sequence of the human endopin 2B cDNA. Its deduced primary sequence shows high homology to bovine endopin 2A that possesses cross-class protease inhibition of elastase and papain. Notably, the human endopin 2B cDNA sequence revealed GTG as the predicted translation initiation codon; the predicted translation product of 46 kDa endopin 2B was produced by in vitro translation of 35S-endopin 2B with mammalian (rabbit) protein translation components. Importantly, bioinformatic studies demonstrated the presence of the entire human endopin 2B cDNA sequence with GTG as initiation codon within the human genome on chromosome 14. Further evidence for GTG as a functional initiation codon was illustrated by GTG-mediated in vitro translation of the heterologous protein EGFP, and by GTG-mediated expression of EGFP in mammalian PC12 cells. Mutagenesis of GTG to GTC resulted in the absence of EGFP expression in PC12 cells, indicating the function of GTG as an initiation codon. In addition, it was apparent that the GTG initiation codon produces lower levels of translated protein compared to ATG as initiation codon. Significantly, GTG-mediated translation of endopin 2B demonstrates a functional human gene product not previously predicted from initial analyses of the human genome. Further analyses based on GTG as an alternative initiation codon may predict new candidate genes of the human genome.

  4. Enhanced expression of codon optimized Mycobacterium avium subsp. paratuberculosis antigens in Lactobacillus salivarius.

    PubMed

    Johnston, Christopher D; Bannantine, John P; Govender, Rodney; Endersen, Lorraine; Pletzer, Daniel; Weingart, Helge; Coffey, Aidan; O'Mahony, Jim; Sleator, Roy D

    2014-01-01

    It is well documented that open reading frames containing high GC content show poor expression in A+T rich hosts. Specifically, G+C-rich codon usage is a limiting factor in heterologous expression of Mycobacterium avium subsp. paratuberculosis (MAP) proteins using Lactobacillus salivarius. However, re-engineering opening reading frames through synonymous substitutions can offset codon bias and greatly enhance MAP protein production in this host. In this report, we demonstrate that codon-usage manipulation of MAP2121c can enhance the heterologous expression of the major membrane protein (MMP), analogous to the form in which it is produced natively by MAP bacilli. When heterologously over-expressed, antigenic determinants were preserved in synthetic MMP proteins as shown by monoclonal antibody mediated ELISA. Moreover, MMP is a membrane protein in MAP, which is also targeted to the cellular surface of recombinant L. salivarius at levels comparable to MAP. Additionally, we previously engineered MAP3733c (encoding MptD) and show herein that MptD displays the tendency to associate with the cytoplasmic membrane boundary under confocal microscopy and the intracellularly accumulated protein selectively adheres to the MptD-specific bacteriophage fMptD. This work demonstrates there is potential for L. salivarius as a viable antigen delivery vehicle for MAP, which may provide an effective mucosal vaccine against Johne's disease.

  5. Expression of codon-optmized phosphoenolpyruvate carboxylase gene from Glaciecola sp. HTCC2999 in Escherichia coli and its application for C4 chemical production.

    PubMed

    Park, Soohyun; Pack, Seung Pil; Lee, Jinwon

    2012-08-01

    We examined the expression of the phosphoenolpyruvate carboxylase (PEPC) gene from marine bacteria in Escherichia coli using codon optimization. The codon-optimized PEPC gene was expressed in the E. coli K-12 strain W3110. SDS-PAGE analysis revealed that the codon-optimized PEPC gene was only expressed in E. coli, and measurement of enzyme activity indicated the highest PEPC activity in the E. coli SGJS112 strain that contained the codon-optimized PEPC gene. In fermentation assays, the E. coli SGJS112 produced the highest yield of oxaloacetate using glucose as the source and produced a 20-times increase in the yield of malate compared to the control. We concluded that the codon optimization enabled E. coli to express the PEPC gene derived from the Glaciecola sp. HTCC2999. Also, the expressed protein exhibited an enzymatic activity similar to that of E. coli PEPC and increased the yield of oxaloacetate and malate in an E. coli system.

  6. Accounting for adaptation and intensity in projecting heat wave-related mortality.

    PubMed

    Wang, Yan; Nordio, Francesco; Nairn, John; Zanobetti, Antonella; Schwartz, Joel D

    2018-02-01

    How adaptation and intensity of heat waves affect heat wave-related mortality is unclear, making health projections difficult. We estimated the effect of heat waves, the effect of the intensity of heat waves, and adaptation on mortality in 209 U.S. cities with 168 million people during 1962-2006. We improved the standard time-series models by incorporating the intensity of heat waves using excess heat factor (EHF) and estimating adaptation empirically using interactions with yearly mean summer temperature (MST). We combined the epidemiological estimates for heat wave, intensity, and adaptation with the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model dataset to project heat wave-related mortality by 2050. The effect of heat waves increased with its intensity. Adaptation to heat waves occurred, which was shown by the decreasing effect of heat waves with MST. However, adaptation was lessened as MST increased. Ignoring adaptation in projections would result in a substantial overestimate of the projected heat wave-related mortality (by 277-747% in 2050). Incorporating the empirically estimated adaptation into projections would result in little change in the projected heat wave-related mortality between 2006 and 2050. This differs regionally, however, with increasing mortality over time for cities in the southern and western U.S. but decreasing mortality over time for the north. Accounting for adaptation is important to reduce bias in the projections of heat wave-related mortality. The finding that the southern and western U.S. are the areas that face increasing heat-related deaths is novel, and indicates that more regional adaptation strategies are needed. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Thermostable proteins bioprocesses: The activity of restriction endonuclease-methyltransferase from Thermus thermophilus (RM.TthHB27I) cloned in Escherichia coli is critically affected by the codon composition of the synthetic gene.

    PubMed

    Krefft, Daria; Papkov, Aliaksei; Zylicz-Stachula, Agnieszka; Skowron, Piotr M

    2017-01-01

    Obtaining thermostable enzymes (thermozymes) is an important aspect of biotechnology. As thermophiles have adapted their genomes to high temperatures, their cloned genes' expression in mesophiles is problematic. This is mainly due to their high GC content, which leads to the formation of unfavorable secondary mRNA structures and codon usage in Escherichia coli (E. coli). RM.TthHB27I is a member of a family of bifunctional thermozymes, containing a restriction endonuclease (REase) and a methyltransferase (MTase) in a single polypeptide. Thermus thermophilus HB27 (T. thermophilus) produces low amounts of RM.TthHB27I with a unique DNA cleavage specificity. We have previously cloned the wild type (wt) gene into E. coli, which increased the production of RM.TthHB27I over 100-fold. However, its enzymatic activities were extremely low for an ORF expressed under a T7 promoter. We have designed and cloned a fully synthetic tthHB27IRM gene, using a modified 'codon randomization' strategy. Codons with a high GC content and of low occurrence in E. coli were eliminated. We incorporated a stem-loop circuit, devised to negatively control the expression of this highly toxic gene by partially hiding the ribosome-binding site (RBS) and START codon in mRNA secondary structures. Despite having optimized 59% of codons, the amount of produced RM.TthHB27I protein was similar for both recombinant tthHB27IRM gene variants. Moreover, the recombinant wt RM.TthHB27I is very unstable, while the RM.TthHB27I resulting from the expression of the synthetic gene exhibited enzymatic activities and stability equal to the native thermozyme isolated from T. thermophilus. Thus, we have developed an efficient purification protocol using the synthetic tthHB27IRM gene variant only. This suggests the effect of co-translational folding kinetics, possibly affected by the frequency of translational errors. The availability of active RM.TthHB27I is of practical importance in molecular biotechnology, extending

  8. Biochemical features of genetic Creutzfeldt-Jakob disease with valine-to-isoleucine substitution at codon 180 on the prion protein gene.

    PubMed

    Ito, Yoko; Sanjo, Nobuo; Hizume, Masaki; Kobayashi, Atsushi; Ohgami, Tetsuya; Satoh, Katsuya; Hamaguchi, Tsuyoshi; Yamada, Masahito; Kitamoto, Tetsuyuki; Mizusawa, Hidehiro; Yokota, Takanori

    2018-02-19

    Valine-to-isoleucine substitution at codon 180 of the prion protein gene is only observed in patients with Creutzfeldt-Jakob disease and accounts for approximately half of all cases of genetic prion disease in Japan. In the present study, we investigated the biochemical characteristics of valine-to-isoleucine substitution at codon 180 in the prion protein gene, using samples obtained from the autopsied brains of seven patients with genetic Creutzfeldt-Jakob disease exhibiting this mutation (diagnoses confirmed via neuropathological examination). Among these patients, we observed an absence of diglycosylated and monoglycosylated forms of PrP res at codon 181. Our findings further indicated that the abnormal prion proteins were composed of at least three components, although smaller carboxyl-terminal fragments were predominant. Western blot analyses revealed large amounts of PrP res in the cerebral neocortices, where neuropathological examination revealed marked spongiosis. Relatively smaller amounts of PrP res were detected in the hippocampus, where milder spongiosis was observed, than in the cerebral neocortex. These findings indicate that abnormal prion proteins in the neocortex are associated with severe toxicity, resulting in severe spongiosis. Our findings further indicate that the valine-to-isoleucine substitution is not a polymorphism, but rather an authentic pathogenic mutation associated with specific biochemical characteristics that differ from those observed in sporadic Creutzfeldt-Jakob disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Expression-Linked Patterns of Codon Usage, Amino Acid Frequency, and Protein Length in the Basally Branching Arthropod Parasteatoda tepidariorum

    PubMed Central

    Whittle, Carrie A.; Extavour, Cassandra G.

    2016-01-01

    Abstract Spiders belong to the Chelicerata, the most basally branching arthropod subphylum. The common house spider, Parasteatoda tepidariorum, is an emerging model and provides a valuable system to address key questions in molecular evolution in an arthropod system that is distinct from traditionally studied insects. Here, we provide evidence suggesting that codon usage, amino acid frequency, and protein lengths are each influenced by expression-mediated selection in P. tepidariorum. First, highly expressed genes exhibited preferential usage of T3 codons in this spider, suggestive of selection. Second, genes with elevated transcription favored amino acids with low or intermediate size/complexity (S/C) scores (glycine and alanine) and disfavored those with large S/C scores (such as cysteine), consistent with the minimization of biosynthesis costs of abundant proteins. Third, we observed a negative correlation between expression level and coding sequence length. Together, we conclude that protein-coding genes exhibit signals of expression-related selection in this emerging, noninsect, arthropod model. PMID:27017527

  10. Characterization of Variant Creutzfeldt-Jakob Disease Prions in Prion Protein-humanized Mice Carrying Distinct Codon 129 Genotypes*

    PubMed Central

    Takeuchi, Atsuko; Kobayashi, Atsushi; Ironside, James W.; Mohri, Shirou; Kitamoto, Tetsuyuki

    2013-01-01

    To date, all clinical variant Creutzfeldt-Jakob disease (vCJD) patients are homozygous for methionine at polymorphic codon 129 (129M/M) of the prion protein (PrP) gene. However, the appearance of asymptomatic secondary vCJD infection in individuals with a PRNP codon 129 genotype other than M/M and transmission studies using animal models have raised the concern that all humans might be susceptible to vCJD prions, especially via secondary infection. To reevaluate this possibility and to analyze in detail the transmission properties of vCJD prions to transgenic animals carrying distinct codon 129 genotype, we performed intracerebral inoculation of vCJD prions to humanized knock-in mice carrying all possible codon 129 genotypes (129M/M, 129M/V, or 129V/V). All humanized knock-in mouse lines were susceptible to vCJD infection, although the attack rate gradually decreased from 129M/M to 129M/V and to 129V/V. The amount of PrP deposition including florid/amyloid plaques in the brain also gradually decreased from 129M/M to 129M/V and to 129V/V. The biochemical properties of protease-resistant abnormal PrP in the brain and transmissibility of these humanized mouse-passaged vCJD prions upon subpassage into knock-in mice expressing bovine PrP were not affected by the codon 129 genotype. These results indicate that individuals with the 129V/V genotype may be more susceptible to secondary vCJD infection than expected and may lack the neuropathological characteristics observed in vCJD patients with the 129M/M genotype. Besides the molecular typing of protease-resistant PrP in the brain, transmission studies using knock-in mice carrying bovine PrP may aid the differential diagnosis of secondary vCJD infection, especially in individuals with the 129V/V genotype. PMID:23792955

  11. Characterization of variant Creutzfeldt-Jakob disease prions in prion protein-humanized mice carrying distinct codon 129 genotypes.

    PubMed

    Takeuchi, Atsuko; Kobayashi, Atsushi; Ironside, James W; Mohri, Shirou; Kitamoto, Tetsuyuki

    2013-07-26

    To date, all clinical variant Creutzfeldt-Jakob disease (vCJD) patients are homozygous for methionine at polymorphic codon 129 (129M/M) of the prion protein (PrP) gene. However, the appearance of asymptomatic secondary vCJD infection in individuals with a PRNP codon 129 genotype other than M/M and transmission studies using animal models have raised the concern that all humans might be susceptible to vCJD prions, especially via secondary infection. To reevaluate this possibility and to analyze in detail the transmission properties of vCJD prions to transgenic animals carrying distinct codon 129 genotype, we performed intracerebral inoculation of vCJD prions to humanized knock-in mice carrying all possible codon 129 genotypes (129M/M, 129M/V, or 129V/V). All humanized knock-in mouse lines were susceptible to vCJD infection, although the attack rate gradually decreased from 129M/M to 129M/V and to 129V/V. The amount of PrP deposition including florid/amyloid plaques in the brain also gradually decreased from 129M/M to 129M/V and to 129V/V. The biochemical properties of protease-resistant abnormal PrP in the brain and transmissibility of these humanized mouse-passaged vCJD prions upon subpassage into knock-in mice expressing bovine PrP were not affected by the codon 129 genotype. These results indicate that individuals with the 129V/V genotype may be more susceptible to secondary vCJD infection than expected and may lack the neuropathological characteristics observed in vCJD patients with the 129M/M genotype. Besides the molecular typing of protease-resistant PrP in the brain, transmission studies using knock-in mice carrying bovine PrP may aid the differential diagnosis of secondary vCJD infection, especially in individuals with the 129V/V genotype.

  12. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces

    PubMed Central

    Romero, Héctor; Zavala, Alejandro; Musto, Héctor

    2000-01-01

    The patterns of synonymous codon choices of the completely sequenced genome of the bacterium Chlamydia trachomatis were analysed. We found that the most important source of variation among the genes results from whether the sequence is located on the leading or lagging strand of replication, resulting in an over representation of G or C, respectively. This can be explained by different mutational biases associated to the different enzymes that replicate each strand. Next we found that most highly expressed sequences are located on the leading strand of replication. From this result, replicational-transcriptional selection can be invoked. Then, when the genes located on the leading strand are studied separately, the correspondence analysis detects a principal trend which discriminates between lowly and highly expressed sequences, the latter displaying a different codon usage pattern than the former, suggesting selection for translation, which is reinforced by the fact that Ks values between orthologous sequences from C.trachomatis and Chlamydia pneumoniae are much smaller in highly expressed genes. Finally, synonymous codon choices appear to be influenced by the hydropathy of each encoded protein and by the degree of amino acid conservation. Therefore, synonymous codon usage in C.trachomatis seems to be the result of a very complex balance among different factors, which rises the problem of whether the forces driving codon usage patterns among microorganisms are rather more complex than generally accepted. PMID:10773076

  13. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces.

    PubMed

    Romero, H; Zavala, A; Musto, H

    2000-05-15

    The patterns of synonymous codon choices of the completely sequenced genome of the bacterium Chlamydia trachomatis were analysed. We found that the most important source of variation among the genes results from whether the sequence is located on the leading or lagging strand of replication, resulting in an over representation of G or C, respectively. This can be explained by different mutational biases associated to the different enzymes that replicate each strand. Next we found that most highly expressed sequences are located on the leading strand of replication. From this result, replicational-transcriptional selection can be invoked. Then, when the genes located on the leading strand are studied separately, the correspondence analysis detects a principal trend which discriminates between lowly and highly expressed sequences, the latter displaying a different codon usage pattern than the former, suggesting selection for translation, which is reinforced by the fact that Ks values between orthologous sequences from C. trachomatis and Chlamydia pneumoniae are much smaller in highly expressed genes. Finally, synonymous codon choices appear to be influenced by the hydropathy of each encoded protein and by the degree of amino acid conservation. Therefore, synonymous codon usage in C.trachomatis seems to be the result of a very complex balance among different factors, which rises the problem of whether the forces driving codon usage patterns among microorganisms are rather more complex than generally accepted.

  14. Mistranslation: from adaptations to applications.

    PubMed

    Hoffman, Kyle S; O'Donoghue, Patrick; Brandl, Christopher J

    2017-11-01

    The conservation of the genetic code indicates that there was a single origin, but like all genetic material, the cell's interpretation of the code is subject to evolutionary pressure. Single nucleotide variations in tRNA sequences can modulate codon assignments by altering codon-anticodon pairing or tRNA charging. Either can increase translation errors and even change the code. The frozen accident hypothesis argued that changes to the code would destabilize the proteome and reduce fitness. In studies of model organisms, mistranslation often acts as an adaptive response. These studies reveal evolutionary conserved mechanisms to maintain proteostasis even during high rates of mistranslation. This review discusses the evolutionary basis of altered genetic codes, how mistranslation is identified, and how deviations to the genetic code are exploited. We revisit early discoveries of genetic code deviations and provide examples of adaptive mistranslation events in nature. Lastly, we highlight innovations in synthetic biology to expand the genetic code. The genetic code is still evolving. Mistranslation increases proteomic diversity that enables cells to survive stress conditions or suppress a deleterious allele. Genetic code variants have been identified by genome and metagenome sequence analyses, suppressor genetics, and biochemical characterization. Understanding the mechanisms of translation and genetic code deviations enables the design of new codes to produce novel proteins. Engineering the translation machinery and expanding the genetic code to incorporate non-canonical amino acids are valuable tools in synthetic biology that are impacting biomedical research. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Comparative Genomic Analysis MERS CoV Isolated from Humans and Camels with Special Reference to Virus Encoded Helicase.

    PubMed

    Alnazawi, Mohamed; Altaher, Abdallah; Kandeel, Mahmoud

    2017-01-01

    Middle East Respiratory Syndrome Coronavirus (MERS CoV) is a new emerging viral disease characterized by high fatality rate. Understanding MERS CoV genetic aspects and codon usage pattern is important to understand MERS CoV survival, adaptation, evolution, resistance to innate immunity, and help in finding the unique aspects of the virus for future drug discovery experiments. In this work, we provide comprehensive analysis of 238 MERS CoV full genomes comprised of human (hMERS) and camel (cMERS) isolates of the virus. MERS CoV genome shaping seems to be under compositional and mutational bias, as revealed by preference of A/T over G/C nucleotides, preferred codons, nucleotides at the third position of codons (NT3s), relative synonymous codon usage, hydropathicity (Gravy), and aromaticity (Aromo) indices. Effective number of codons (ENc) analysis reveals a general slight codon usage bias. Codon adaptation index reveals incomplete adaptation to host environment. MERS CoV showed high ability to resist the innate immune response by showing lower CpG frequencies. Neutrality evolution analysis revealed a more significant role of mutation pressure in cMERS over hMERS. Correspondence analysis revealed that MERS CoV genomes have three genetic clusters, which were distinct in their codon usage, host, and geographic distribution. Additionally, virtual screening and binding experiments were able to identify three new virus-encoded helicase binding compounds. These compounds can be used for further optimization of inhibitors.

  16. Divergence and codon usage bias of Betanodavirus, a neurotropic pathogen in fish.

    PubMed

    He, Mei; Teng, Chun-Bo

    2015-02-01

    Betanodavirus is a small bipartite RNA virus of global economical significance that can cause severe neurological disorders to an increasing number of marine fish species. Herein, to further the understanding of the evolution of betanodavirus, Bayesian coalescent analyses were conducted to the time-stamped entire coding sequences of their RNA polymerase and coat protein genes. Similar moderate nucleotide substitution rates were then estimated for the two genes. According to age calculations, the divergence of the two genes into the four genotypes initiated nearly simultaneously at ∼700 years ago, despite the different scenarios, whereas the seven analyzed chimeric isolates might be the outcomes of a single genetic reassortment event taking place in the early 1980s in Southern Europe. Furthermore, codon usage bias analyses indicated that each gene had influences in addition to mutational bias and codon choice of betanodavirus was not completely complied with that of fish host. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster

    PubMed Central

    Dunn, Joshua G; Foo, Catherine K; Belletier, Nicolette G; Gavis, Elizabeth R; Weissman, Jonathan S

    2013-01-01

    Ribosomes can read through stop codons in a regulated manner, elongating rather than terminating the nascent peptide. Stop codon readthrough is essential to diverse viruses, and phylogenetically predicted to occur in a few hundred genes in Drosophila melanogaster, but the importance of regulated readthrough in eukaryotes remains largely unexplored. Here, we present a ribosome profiling assay (deep sequencing of ribosome-protected mRNA fragments) for Drosophila melanogaster, and provide the first genome-wide experimental analysis of readthrough. Readthrough is far more pervasive than expected: the vast majority of readthrough events evolved within D. melanogaster and were not predicted phylogenetically. The resulting C-terminal protein extensions show evidence of selection, contain functional subcellular localization signals, and their readthrough is regulated, arguing for their importance. We further demonstrate that readthrough occurs in yeast and humans. Readthrough thus provides general mechanisms both to regulate gene expression and function, and to add plasticity to the proteome during evolution. DOI: http://dx.doi.org/10.7554/eLife.01179.001 PMID:24302569

  18. Factors influencing readthrough therapy for frequent cystic fibrosis premature termination codons

    PubMed Central

    Pranke, Iwona; Bidou, Laure; Martin, Natacha; Blanchet, Sandra; Hatton, Aurélie; Karri, Sabrina; Cornu, David; Costes, Bruno; Chevalier, Benoit; Tondelier, Danielle; Coupet, Matthieu; Edelman, Aleksander; Fanen, Pascale; Namy, Olivier; Sermet-Gaudelus, Isabelle

    2018-01-01

    Premature termination codons (PTCs) are generally associated with severe forms of genetic diseases. Readthrough of in-frame PTCs using small molecules is a promising therapeutic approach. Nonetheless, the outcome of preclinical studies has been low and variable. Treatment efficacy depends on: 1) the level of drug-induced readthrough, 2) the amount of target transcripts, and 3) the activity of the recoded protein. The aim of the present study was to identify, in the cystic fibrosis transmembrane conductance regulator (CFTR) model, recoded channels from readthrough therapy that may be enhanced using CFTR modulators. First, drug-induced readthrough of 15 PTCs was measured using a dual reporter system under basal conditions and in response to gentamicin and negamycin. Secondly, exon skipping associated with these PTCs was evaluated with a minigene system. Finally, incorporated amino acids were identified by mass spectrometry and the function of the predicted recoded CFTR channels corresponding to these 15 PTCs was measured. Nonfunctional channels were subjected to CFTR-directed ivacaftor-lumacaftor treatments. The results demonstrated that CFTR modulators increased activity of recoded channels, which could also be confirmed in cells derived from a patient. In conclusion, this work will provide a framework to adapt treatments to the patient's genotype by identifying the most efficient molecule for each PTC and the recoded channels needing co-therapies to rescue channel function. PMID:29497617

  19. The relative entropy is fundamental to adaptive resolution simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreis, Karsten; Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz; Potestio, Raffaello, E-mail: potestio@mpip-mainz.mpg.de

    Adaptive resolution techniques are powerful methods for the efficient simulation of soft matter systems in which they simultaneously employ atomistic and coarse-grained (CG) force fields. In such simulations, two regions with different resolutions are coupled with each other via a hybrid transition region, and particles change their description on the fly when crossing this boundary. Here we show that the relative entropy, which provides a fundamental basis for many approaches in systematic coarse-graining, is also an effective instrument for the understanding of adaptive resolution simulation methodologies. We demonstrate that the use of coarse-grained potentials which minimize the relative entropy withmore » respect to the atomistic system can help achieve a smoother transition between the different regions within the adaptive setup. Furthermore, we derive a quantitative relation between the width of the hybrid region and the seamlessness of the coupling. Our results do not only shed light on the what and how of adaptive resolution techniques but will also help setting up such simulations in an optimal manner.« less

  20. The relative entropy is fundamental to adaptive resolution simulations

    NASA Astrophysics Data System (ADS)

    Kreis, Karsten; Potestio, Raffaello

    2016-07-01

    Adaptive resolution techniques are powerful methods for the efficient simulation of soft matter systems in which they simultaneously employ atomistic and coarse-grained (CG) force fields. In such simulations, two regions with different resolutions are coupled with each other via a hybrid transition region, and particles change their description on the fly when crossing this boundary. Here we show that the relative entropy, which provides a fundamental basis for many approaches in systematic coarse-graining, is also an effective instrument for the understanding of adaptive resolution simulation methodologies. We demonstrate that the use of coarse-grained potentials which minimize the relative entropy with respect to the atomistic system can help achieve a smoother transition between the different regions within the adaptive setup. Furthermore, we derive a quantitative relation between the width of the hybrid region and the seamlessness of the coupling. Our results do not only shed light on the what and how of adaptive resolution techniques but will also help setting up such simulations in an optimal manner.

  1. Identification and codon reading properties of 5-cyanomethyl uridine, a new modified nucleoside found in the anticodon wobble position of mutant haloarchaeal isoleucine tRNAs

    PubMed Central

    Mandal, Debabrata; Köhrer, Caroline; Su, Dan; Babu, I. Ramesh; Chan, Clement T.Y.; Liu, Yuchen; Söll, Dieter; Blum, Paul; Kuwahara, Masayasu; Dedon, Peter C.; RajBhandary, Uttam L.

    2014-01-01

    Most archaea and bacteria use a modified C in the anticodon wobble position of isoleucine tRNA to base pair with A but not with G of the mRNA. This allows the tRNA to read the isoleucine codon AUA without also reading the methionine codon AUG. To understand why a modified C, and not U or modified U, is used to base pair with A, we mutated the C34 in the anticodon of Haloarcula marismortui isoleucine tRNA (tRNA2Ile) to U, expressed the mutant tRNA in Haloferax volcanii, and purified and analyzed the tRNA. Ribosome binding experiments show that although the wild-type tRNA2Ile binds exclusively to the isoleucine codon AUA, the mutant tRNA binds not only to AUA but also to AUU, another isoleucine codon, and to AUG, a methionine codon. The G34 to U mutant in the anticodon of another H. marismortui isoleucine tRNA species showed similar codon binding properties. Binding of the mutant tRNA to AUG could lead to misreading of the AUG codon and insertion of isoleucine in place of methionine. This result would explain why most archaea and bacteria do not normally use U or a modified U in the anticodon wobble position of isoleucine tRNA for reading the codon AUA. Biochemical and mass spectrometric analyses of the mutant tRNAs have led to the discovery of a new modified nucleoside, 5-cyanomethyl U in the anticodon wobble position of the mutant tRNAs. 5-Cyanomethyl U is present in total tRNAs from euryarchaea but not in crenarchaea, eubacteria, or eukaryotes. PMID:24344322

  2. Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus

    PubMed Central

    2011-01-01

    Background Major Histocompatibility Complex (MHC) genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations. Results We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA), DRA and DQA, in the genus Equus with the addition of novel alleles identified in plains zebra (E. quagga, formerly E. burchelli). We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, DRA allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the DQA locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (dN/dS) averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (dN codon models allowed for variable rates of selection across codon sites at both loci and, at the DQA, supported the hypothesis of positive selection acting on specific sites. Conclusions Observations of elevated genetic diversity and trans-species polymorphisms supported the conclusion that balancing selection may be acting on these loci. Furthermore, at the DQA, positive selection was occurring at antigen binding

  3. Reduce Manual Curation by Combining Gene Predictions from Multiple Annotation Engines, a Case Study of Start Codon Prediction

    PubMed Central

    Ederveen, Thomas H. A.; Overmars, Lex; van Hijum, Sacha A. F. T.

    2013-01-01

    Nowadays, prokaryotic genomes are sequenced faster than the capacity to manually curate gene annotations. Automated genome annotation engines provide users a straight-forward and complete solution for predicting ORF coordinates and function. For many labs, the use of AGEs is therefore essential to decrease the time necessary for annotating a given prokaryotic genome. However, it is not uncommon for AGEs to provide different and sometimes conflicting predictions. Combining multiple AGEs might allow for more accurate predictions. Here we analyzed the ab initio open reading frame (ORF) calling performance of different AGEs based on curated genome annotations of eight strains from different bacterial species with GC% ranging from 35–52%. We present a case study which demonstrates a novel way of comparative genome annotation, using combinations of AGEs in a pre-defined order (or path) to predict ORF start codons. The order of AGE combinations is from high to low specificity, where the specificity is based on the eight genome annotations. For each AGE combination we are able to derive a so-called projected confidence value, which is the average specificity of ORF start codon prediction based on the eight genomes. The projected confidence enables estimating likeliness of a correct prediction for a particular ORF start codon by a particular AGE combination, pinpointing ORFs notoriously difficult to predict start codons. We correctly predict start codons for 90.5±4.8% of the genes in a genome (based on the eight genomes) with an accuracy of 81.1±7.6%. Our consensus-path methodology allows a marked improvement over majority voting (9.7±4.4%) and with an optimal path ORF start prediction sensitivity is gained while maintaining a high specificity. PMID:23675487

  4. Adaptive Evolution Is Substantially Impeded by Hill–Robertson Interference in Drosophila

    PubMed Central

    Castellano, David; Coronado-Zamora, Marta; Campos, Jose L.; Barbadilla, Antonio; Eyre-Walker, Adam

    2016-01-01

    Hill–Robertson interference (HRi) is expected to reduce the efficiency of natural selection when two or more linked selected sites do not segregate freely, but no attempt has been done so far to quantify the overall impact of HRi on the rate of adaptive evolution for any given genome. In this work, we estimate how much HRi impedes the rate of adaptive evolution in the coding genome of Drosophila melanogaster. We compiled a data set of 6,141 autosomal protein-coding genes from Drosophila, from which polymorphism levels in D. melanogaster and divergence out to D. yakuba were estimated. The rate of adaptive evolution was calculated using a derivative of the McDonald–Kreitman test that controls for slightly deleterious mutations. We find that the rate of adaptive amino acid substitution at a given position of the genome is positively correlated to both the rate of recombination and the mutation rate, and negatively correlated to the gene density of the region. These correlations are robust to controlling for each other, for synonymous codon bias and for gene functions related to immune response and testes. We show that HRi diminishes the rate of adaptive evolution by approximately 27%. Interestingly, genes with low mutation rates embedded in gene poor regions lose approximately 17% of their adaptive substitutions whereas genes with high mutation rates embedded in gene rich regions lose approximately 60%. We conclude that HRi hampers the rate of adaptive evolution in Drosophila and that the variation in recombination, mutation, and gene density along the genome affects the HRi effect. PMID:26494843

  5. Chloroplast genes transferred to the nuclear plant genome have adjusted to nuclear base composition and codon usage.

    PubMed Central

    Oliver, J L; Marín, A; Martínez-Zapater, J M

    1990-01-01

    During plant evolution, some plastid genes have been moved to the nuclear genome. These transferred genes are now correctly expressed in the nucleus, their products being transported into the chloroplast. We compared the base compositions, the distributions of some dinucleotides and codon usages of transferred, nuclear and chloroplast genes in two dicots and two monocots plant species. Our results indicate that transferred genes have adjusted to nuclear base composition and codon usage, being now more similar to the nuclear genes than to the chloroplast ones in every species analyzed. PMID:2308837

  6. Dynamic Convergent Evolution Drives the Passage Adaptation across 48 Years' History of H3N2 Influenza Evolution.

    PubMed

    Chen, Hui; Deng, Qiang; Ng, Sock Hoon; Lee, Raphael Tze Chuen; Maurer-Stroh, Sebastian; Zhai, Weiwei

    2016-12-01

    Influenza viruses are often propagated in a diverse set of culturing media and additional substitutions known as passage adaptation can cause extra evolution in the target strain, leading to ineffective vaccines. Using 25,482 H3N2 HA1 sequences curated from Global Initiative on Sharing All Influenza Data and National Center for Biotechnology Information databases, we found that passage adaptation is a very dynamic process that changes over time and evolves in a seesaw like pattern. After crossing the species boundary from bird to human in 1968, the influenza H3N2 virus evolves to be better adapted to the human environment and passaging them in embryonated eggs (i.e., an avian environment) leads to increasingly stronger positive selection. On the contrary, passage adaptation to the mammalian cell lines changes from positive selection to negative selection. Using two statistical tests, we identified 19 codon positions around the receptor binding domain strongly contributing to passage adaptation in the embryonated egg. These sites show strong convergent evolution and overlap extensively with positively selected sites identified in humans, suggesting that passage adaptation can confound many of the earlier studies on influenza evolution. Interestingly, passage adaptation in recent years seems to target a few codon positions in antigenic surface epitopes, which makes it difficult to produce antigenically unaltered vaccines using embryonic eggs. Our study outlines another interesting scenario whereby both convergent and adaptive evolution are working in synchrony driving viral adaptation. Future studies from sequence analysis to vaccine production need to take careful consideration of passage adaptation. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Genotyping of K-ras codons 12 and 13 mutations in colorectal cancer by capillary electrophoresis.

    PubMed

    Chen, Yen-Ling; Chang, Ya-Sian; Chang, Jan-Gowth; Wu, Shou-Mei

    2009-06-26

    Point mutations of the K-ras gene located in codons 12 and 13 cause poor responses to the anti-epidermal growth factor receptor (anti-EGFR) therapy of colorectal cancer (CRC) patients. Besides, mutations of K-ras gene have also been proven to play an important role in human tumor progression. We established a simple and effective capillary electrophoresis (CE) method for simultaneous point mutation detection in codons 12 and 13 of K-ras gene. We combined one universal fluorescence-based nonhuman-sequence primer and two fragment-oriented primers in one tube, and performed this two-in-one polymerase chain reaction (PCR). PCR fragments included wild type and seven point mutations at codons 12 and 13 of K-ras gene. The amplicons were analyzed by single-strand conformation polymorphism (SSCP)-CE method. The CE analysis was performed by using a 1x Tris-borate-EDTA (TBE) buffer containing 1.5% (w/v) hydroxyethylcellulose (HEC) (MW 250,000) under reverse polarity with 15 degrees C and 30 degrees C. Ninety colorectal cancer patients were blindly genotyped using this developed method. The results showed good agreement with those of DNA sequencing method. The SSCP-CE was feasible for mutation screening of K-ras gene in populations.

  8. Codon Optimization of the Human Papillomavirus E7 Oncogene Induces a CD8+ T Cell Response to a Cryptic Epitope Not Harbored by Wild-Type E7

    PubMed Central

    Lorenz, Felix K. M.; Wilde, Susanne; Voigt, Katrin; Kieback, Elisa; Mosetter, Barbara; Schendel, Dolores J.; Uckert, Wolfgang

    2015-01-01

    Codon optimization of nucleotide sequences is a widely used method to achieve high levels of transgene expression for basic and clinical research. Until now, immunological side effects have not been described. To trigger T cell responses against human papillomavirus, we incubated T cells with dendritic cells that were pulsed with RNA encoding the codon-optimized E7 oncogene. All T cell receptors isolated from responding T cell clones recognized target cells expressing the codon-optimized E7 gene but not the wild type E7 sequence. Epitope mapping revealed recognition of a cryptic epitope from the +3 alternative reading frame of codon-optimized E7, which is not encoded by the wild type E7 sequence. The introduction of a stop codon into the +3 alternative reading frame protected the transgene product from recognition by T cell receptor gene-modified T cells. This is the first experimental study demonstrating that codon optimization can render a transgene artificially immunogenic through generation of a dominant cryptic epitope. This finding may be of great importance for the clinical field of gene therapy to avoid rejection of gene-corrected cells and for the design of DNA- and RNA-based vaccines, where codon optimization may artificially add a strong immunogenic component to the vaccine. PMID:25799237

  9. The helicase Ded1p controls use of near-cognate translation initiation codons in 5' UTRs.

    PubMed

    Guenther, Ulf-Peter; Weinberg, David E; Zubradt, Meghan M; Tedeschi, Frank A; Stawicki, Brittany N; Zagore, Leah L; Brar, Gloria A; Licatalosi, Donny D; Bartel, David P; Weissman, Jonathan S; Jankowsky, Eckhard

    2018-06-27

    The conserved and essential DEAD-box RNA helicase Ded1p from yeast and its mammalian orthologue DDX3 are critical for the initiation of translation 1 . Mutations in DDX3 are linked to tumorigenesis 2-4 and intellectual disability 5 , and the enzyme is targeted by a range of viruses 6 . How Ded1p and its orthologues engage RNAs during the initiation of translation is unknown. Here we show, by integrating transcriptome-wide analyses of translation, RNA structure and Ded1p-RNA binding, that the effects of Ded1p on the initiation of translation are connected to near-cognate initiation codons in 5' untranslated regions. Ded1p associates with the translation pre-initiation complex at the mRNA entry channel and repressing the activity of Ded1p leads to the accumulation of RNA structure in 5' untranslated regions, the initiation of translation from near-cognate start codons immediately upstream of these structures and decreased protein synthesis from the corresponding main open reading frames. The data reveal a program for the regulation of translation that links Ded1p, the activation of near-cognate start codons and mRNA structure. This program has a role in meiosis, in which a marked decrease in the levels of Ded1p is accompanied by the activation of the alternative translation initiation sites that are seen when the activity of Ded1p is repressed. Our observations indicate that Ded1p affects translation initiation by controlling the use of near-cognate initiation codons that are proximal to mRNA structure in 5' untranslated regions.

  10. Cancer, Warts, or Asymptomatic Infections: Clinical Presentation Matches Codon Usage Preferences in Human Papillomaviruses

    PubMed Central

    Félez-Sánchez, Marta; Trösemeier, Jan-Hendrik; Bedhomme, Stéphanie; González-Bravo, Maria Isabel; Kamp, Christel; Bravo, Ignacio G.

    2015-01-01

    Viruses rely completely on the hosts’ machinery for translation of viral transcripts. However, for most viruses infecting humans, codon usage preferences (CUPrefs) do not match those of the host. Human papillomaviruses (HPVs) are a showcase to tackle this paradox: they present a large genotypic diversity and a broad range of phenotypic presentations, from asymptomatic infections to productive lesions and cancer. By applying phylogenetic inference and dimensionality reduction methods, we demonstrate first that genes in HPVs are poorly adapted to the average human CUPrefs, the only exception being capsid genes in viruses causing productive lesions. Phylogenetic relationships between HPVs explained only a small proportion of CUPrefs variation. Instead, the most important explanatory factor for viral CUPrefs was infection phenotype, as orthologous genes in viruses with similar clinical presentation displayed similar CUPrefs. Moreover, viral genes with similar spatiotemporal expression patterns also showed similar CUPrefs. Our results suggest that CUPrefs in HPVs reflect either variations in the mutation bias or differential selection pressures depending on the clinical presentation and expression timing. We propose that poor viral CUPrefs may be central to a trade-off between strong viral gene expression and the potential for eliciting protective immune response. PMID:26139833

  11. Cloning, Codon Optimization, and Expression of Yersinia intermedia Phytase Gene in E. coli.

    PubMed

    Mirzaei, Maryam; Saffar, Behnaz; Shareghi, Behzad

    2016-06-01

    Phytate is an anti-nutritional factor in plants, which catches the most phosphorus contents and some vital minerals. Therefore, Phytase is added mainly as an additive to the monogastric animals' foods to hydrolyze phytate and increase absorption of phosphorus. Y. intermedia phytase is a new phytase with special characteristics such as high specific activity, pH stability, and thermostability. Our aim was to clone, express, and characterizea codon optimized Y. intermedia phytase gene in E. coli . The Y. intermedia phytase gene was optimized according to the codon usage in E. coli . The sequence was synthesized and sub-cloned in pET-22b (+) vector and transformed into E. coli Bl21 (DE3). The protein was expressed in the presence of IPTG at a final concentration of 1 mM at 30°C. The purification of recombinant protein was performed by Ni 2+ affinity chromatography. Phytase activity and stability were determined in various pH and temperatures. The codon optimized Y. intermedia phytase gene was sub-cloned successfully.The expression was confirmed by SDS-PAGE and Western blot analysis. The recombinant enzyme (approximately 45 kDa) was purified. Specific activity of enzyme was 3849 (U.mg -1 ) with optimal pH 5 and optimal temperature of 55°C. Thermostability (80°C for 15 min) and pH stability (3-6) of the enzyme were 56 and more than 80%, respectively. The results of the expression and enzyme characterization revealed that the optimized Y. intermedia phytase gene has a good potential to be produced commercially andto be applied in animals' foodsindustry.

  12. Directional bias of illusory stream caused by relative motion adaptation.

    PubMed

    Tomimatsu, Erika; Ito, Hiroyuki

    2016-07-01

    Enigma is an op-art painting that elicits an illusion of rotational streaming motion. In the present study, we tested whether adaptation to various motion configurations that included relative motion components could be reflected in the directional bias of the illusory stream. First, participants viewed the center of a rotating Enigma stimulus for adaptation. There was no physical motion on the ring area. During the adaptation period, the illusory stream on the ring was mainly seen in the direction opposite to that of the physical rotation. After the physical rotation stopped, the illusory stream on the ring was mainly seen in the same direction as that of the preceding physical rotation. Moreover, adapting to strong relative motion induced a strong bias in the illusory motion direction in the subsequently presented static Enigma stimulus. The results suggest that relative motion detectors corresponding to the ring area may produce the illusory stream of Enigma. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Translation initiation at an upstream CUG codon regulates the expression of Hibiscus chlorotic ringspot virus coat protein.

    PubMed

    Koh, Dora Chin-Yen; Wang, Xiaoxing; Wong, Sek-Man; Liu, D X

    2006-12-01

    Viruses depend heavily on host cells for replication and exploit the host translation machinery for its gene expression using various unorthodox translation mechanisms. According to the conventional scanning model, only the 5'-proximal gene in the viral RNA is accessible to the ribosomes whereas other genes are silent. In this study, we use a model plant RNA virus, Hibiscus chlorotic ringspot virus (HCRSV), to investigate various translation mechanisms involved in regulation of the expression of internal genes. The 3'-end 1.2kb region of HCRSV genomic and subgenomic RNAs were shown to encode four polypeptides of 38, 27, 25 and 22.5kDa. Mutagenesis studies revealed that a CUG codon ((2570)CUG) is the initiation codon for p27, the longest of the three co-C-terminal products (p27, p25 and p22.5), and translation of p25 and p22.5 was initiated at (2603)AUG and (2666)AUG, respectively. Translation initiation of the p27 expression at the (2570)CUG codon regulates the expression of p38, the viral coat protein through a leaky scanning mechanism and mutational analysis of an upstream open reading frame (ORF) demonstrated that initiation of the p27 expression at this CUG codon (instead of an AUG) may play a role in maintaining the ratio of p27 and p38. In addition, a previously identified internal ribosome entry site was shown to control the expression of p27 and p38 in the subgenomic RNA 2.

  14. On Relevance of Codon Usage to Expression of Synthetic and Natural Genes in Escherichia coli

    PubMed Central

    Supek, Fran; Šmuc, Tomislav

    2010-01-01

    A recent investigation concluded that codon bias did not affect expression of green fluorescent protein (GFP) variants in Escherichia coli, while stability of an mRNA secondary structure near the 5′ end played a dominant role. We demonstrate that combining the two variables using regression trees or support vector regression yields a biologically plausible model with better support in the GFP data set and in other experimental data: codon usage is relevant for protein levels if the 5′ mRNA structures are not strong. Natural E. coli genes had weaker 5′ mRNA structures than the examined set of GFP variants and did not exhibit a correlation between the folding free energy of 5′ mRNA structures and protein expression. PMID:20421604

  15. Color-deficient cone mosaics associated with Xq28 opsin mutations: A stop codon versus gene deletions

    PubMed Central

    Wagner-Schuman, Melissa; Neitz, Jay; Rha, Jungtae; Williams, David R.; Neitz, Maureen; Carroll, Joseph

    2010-01-01

    Our understanding of the etiology of red-green color vision defects is evolving. While missense mutations within the long- (L-) and middle-wavelength sensitive (M-) photopigments and gross rearrangements within the L/M-opsin gene array are commonly associated with red-green defects, recent work using adaptive optics retinal imaging has shown that different genotypes can have distinct consequences for the cone mosaic. Here we examined the cone mosaic in red-green color deficient individuals with multiple X-chromosome opsin genes that encode L opsin, as well as individuals with a single X-chromosome opsin gene that encodes L opsin and a single patient with a novel premature termination codon in his M-opsin gene and a normal L-opsin gene. We observed no difference in cone density between normal trichomats and multiple or single gene dichromats. In addition, we demonstrate different phenotypic effects of a nonsense mutation versus the previously described deleterious polymorphism, (LIAVA), both of which differ from multiple and single gene dichromats. Our results help refine the relationship between opsin genotype and cone photoreceptor mosaic phenotype. PMID:20854834

  16. [Analysis of prevalence of point mutations in codon 12 of oncogene K-ras from non-cancerous samples of cervical cytology positive for type 16 or 18 PVH].

    PubMed

    Golijow, C D; Mourón, S A; Gómez, M A; Dulout, F N

    1999-12-01

    Ninety-one non cancerous samples from genital specimens positives for VPH 16 or 18 and 27 non-infected samples as controls were studied. Mutations at codon 12 in K-ras gene was analyzed using enriched alelic PCR technique. Among the samples studied 17.58% showed mutations in this codon. Significant differences were observed between the control group (negative DNA-HPV) and positives DNA-HPV samples (p < 0.01). No differences were found between both viral types in relation to the mutation frequency. The presence of mutations in the K-ras gene in non cancerous cytological samples point out new questions about the role of mutations in proto-oncogenes and the development of cervical cancer.

  17. The codon 72 polymorphism of the TP53 gene and endometriosis risk: a meta-analysis.

    PubMed

    Feng, Yi; Wu, Yuan-Yuan; Li, Li; Luo, Zhi-Juan; Lin, Zhong; Zhou, Ying-Hui; Yi, Tao; Lin, Xiao-Juan; Zhao, Qian-Ying; Zhao, Xia

    2015-09-01

    Endometriosis is a chronic, inflammatory and common gynaecological disease. This study investigated the association between TP53 codon 72 polymorphism and the risk of endometriosis. A search for relevant articles was conducted in PubMed, Embase, CNKI, Wanfang, Weipu databases and Google Scholar. The strength of the relationships between TP53 codon 72 polymorphism and the risk of endometriosis was assessed by odds ratios (OR) and with 95% confidence intervals (CI). Sixteen case-control studies in 15 articles were included. Significant association was found in the dominant model (CC + GC versus GG) with an OR of 1.38 and 95% CI (1.14, 1.67). The results suggested that individuals who carried CC homozygote and heterozygote GC might have a 38% increased endometriosis risk when compared with the homozygote GG. In the subgroup analysis by ethnicity, significantly increased risk was observed among Asians (OR = 1.62, 95% CI = 1.18-2.23, P = 0.003) and Latin Americans (OR = 1.54, 95% CI = 1.16-2.03, P = 0.002) but not in Caucasians (OR = 1.02, 95% CI = 0.80-1.30) for the dominant model. The current meta-analysis suggested that TP53 codon 72 polymorphism was associated with the endometriosis risk, especially in Asians and Latin Americans. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  18. Translational Control of the SigR-Directed Oxidative Stress Response in Streptomyces via IF3-Mediated Repression of a Noncanonical GTC Start Codon

    PubMed Central

    Feeney, Morgan A.; Chandra, Govind; Findlay, Kim C.; Paget, Mark S. B.

    2017-01-01

    ABSTRACT The major oxidative stress response in Streptomyces is controlled by the sigma factor SigR and its cognate antisigma factor RsrA, and SigR activity is tightly controlled through multiple mechanisms at both the transcriptional and posttranslational levels. Here we show that sigR has a highly unusual GTC start codon and that this leads to another level of SigR regulation, in which SigR translation is repressed by translation initiation factor 3 (IF3). Changing the GTC to a canonical start codon causes SigR to be overproduced relative to RsrA, resulting in unregulated and constitutive expression of the SigR regulon. Similarly, introducing IF3* mutations that impair its ability to repress SigR translation has the same effect. Thus, the noncanonical GTC sigR start codon and its repression by IF3 are critical for the correct and proper functioning of the oxidative stress regulatory system. sigR and rsrA are cotranscribed and translationally coupled, and it had therefore been assumed that SigR and RsrA are produced in stoichiometric amounts. Here we show that RsrA can be transcribed and translated independently of SigR, present evidence that RsrA is normally produced in excess of SigR, and describe the factors that determine SigR-RsrA stoichiometry. PMID:28611250

  19. Adaptive Evolution Is Substantially Impeded by Hill-Robertson Interference in Drosophila.

    PubMed

    Castellano, David; Coronado-Zamora, Marta; Campos, Jose L; Barbadilla, Antonio; Eyre-Walker, Adam

    2016-02-01

    Hill-Robertson interference (HRi) is expected to reduce the efficiency of natural selection when two or more linked selected sites do not segregate freely, but no attempt has been done so far to quantify the overall impact of HRi on the rate of adaptive evolution for any given genome. In this work, we estimate how much HRi impedes the rate of adaptive evolution in the coding genome of Drosophila melanogaster. We compiled a data set of 6,141 autosomal protein-coding genes from Drosophila, from which polymorphism levels in D. melanogaster and divergence out to D. yakuba were estimated. The rate of adaptive evolution was calculated using a derivative of the McDonald-Kreitman test that controls for slightly deleterious mutations. We find that the rate of adaptive amino acid substitution at a given position of the genome is positively correlated to both the rate of recombination and the mutation rate, and negatively correlated to the gene density of the region. These correlations are robust to controlling for each other, for synonymous codon bias and for gene functions related to immune response and testes. We show that HRi diminishes the rate of adaptive evolution by approximately 27%. Interestingly, genes with low mutation rates embedded in gene poor regions lose approximately 17% of their adaptive substitutions whereas genes with high mutation rates embedded in gene rich regions lose approximately 60%. We conclude that HRi hampers the rate of adaptive evolution in Drosophila and that the variation in recombination, mutation, and gene density along the genome affects the HRi effect. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. The highly conserved codon following the slippery sequence supports -1 frameshift efficiency at the HIV-1 frameshift site.

    PubMed

    Mathew, Suneeth F; Crowe-McAuliffe, Caillan; Graves, Ryan; Cardno, Tony S; McKinney, Cushla; Poole, Elizabeth S; Tate, Warren P

    2015-01-01

    HIV-1 utilises -1 programmed ribosomal frameshifting to translate structural and enzymatic domains in a defined proportion required for replication. A slippery sequence, U UUU UUA, and a stem-loop are well-defined RNA features modulating -1 frameshifting in HIV-1. The GGG glycine codon immediately following the slippery sequence (the 'intercodon') contributes structurally to the start of the stem-loop but has no defined role in current models of the frameshift mechanism, as slippage is inferred to occur before the intercodon has reached the ribosomal decoding site. This GGG codon is highly conserved in natural isolates of HIV. When the natural intercodon was replaced with a stop codon two different decoding molecules-eRF1 protein or a cognate suppressor tRNA-were able to access and decode the intercodon prior to -1 frameshifting. This implies significant slippage occurs when the intercodon is in the (perhaps distorted) ribosomal A site. We accommodate the influence of the intercodon in a model of frame maintenance versus frameshifting in HIV-1.

  1. Mannose-binding lectin codon 54 gene polymorphism in relation to risk of nosocomial invasive fungal infection in preterm neonates in the neonatal intensive care unit.

    PubMed

    Aydemir, Cumhur; Onay, Huseyin; Oguz, Serife Suna; Ozdemir, Taha Resid; Erdeve, Omer; Ozkinay, Ferda; Dilmen, Ugur

    2011-09-01

    Preterm neonates are susceptible to infection due to a combination of sub-optimal immunity and increased exposure to invasive organisms. Invasive fungal infections are associated with significant morbidity and mortality among preterm infants cared for in the neonatal intensive care unit (NICU). Mannose-binding lectin (MBL) is a component of the innate immune system, which may be especially important in the neonatal setting. The objective of this study was to investigate the presence of any association between MBL gene polymorphism and nosocomial invasive fungal infection in preterm neonates. Codon 54 (B allele) polymorphism in exon 1 of the MBL gene was investigated in 31 patients diagnosed as nosocomial invasive fungal infection and 30 control preterm neonates. AB genotype was determined in 26% and 30% of patient and control groups, respectively, and the difference was not statistically significant. AA genotype was determined in 74% of the patient group and in 67% of the control group, and the difference was not statistically significant. B allele frequency was not different significantly in the patient group (13%) compared to the control group (18%). In our study, no relationship was found between MBL codon 54 gene polymorphism and the risk of nosocomial invasive fungal infection in preterm neonates in NICU.

  2. A Stem-Loop Structure in Potato Leafroll Virus Open Reading Frame 5 (ORF5) Is Essential for Readthrough Translation of the Coat Protein ORF Stop Codon 700 Bases Upstream.

    PubMed

    Xu, Yi; Ju, Ho-Jong; DeBlasio, Stacy; Carino, Elizabeth J; Johnson, Richard; MacCoss, Michael J; Heck, Michelle; Miller, W Allen; Gray, Stewart M

    2018-06-01

    Translational readthrough of the stop codon of the capsid protein (CP) open reading frame (ORF) is used by members of the Luteoviridae to produce their minor capsid protein as a readthrough protein (RTP). The elements regulating RTP expression are not well understood, but they involve long-distance interactions between RNA domains. Using high-resolution mass spectrometry, glutamine and tyrosine were identified as the primary amino acids inserted at the stop codon of Potato leafroll virus (PLRV) CP ORF. We characterized the contributions of a cytidine-rich domain immediately downstream and a branched stem-loop structure 600 to 700 nucleotides downstream of the CP stop codon. Mutations predicted to disrupt and restore the base of the distal stem-loop structure prevented and restored stop codon readthrough. Motifs in the downstream readthrough element (DRTE) are predicted to base pair to a site within 27 nucleotides (nt) of the CP ORF stop codon. Consistent with a requirement for this base pairing, the DRTE of Cereal yellow dwarf virus was not compatible with the stop codon-proximal element of PLRV in facilitating readthrough. Moreover, deletion of the complementary tract of bases from the stop codon-proximal region or the DRTE of PLRV prevented readthrough. In contrast, the distance and sequence composition between the two domains was flexible. Mutants deficient in RTP translation moved long distances in plants, but fewer infection foci developed in systemically infected leaves. Selective 2'-hydroxyl acylation and primer extension (SHAPE) probing to determine the secondary structure of the mutant DRTEs revealed that the functional mutants were more likely to have bases accessible for long-distance base pairing than the nonfunctional mutants. This study reveals a heretofore unknown combination of RNA structure and sequence that reduces stop codon efficiency, allowing translation of a key viral protein. IMPORTANCE Programmed stop codon readthrough is used by many

  3. Simultaneous identification of 36 mutations in KRAS codons 61and 146, BRAF, NRAS, and PIK3CA in a single reaction by multiplex assay kit

    PubMed Central

    2013-01-01

    Background Retrospective analyses in the West suggest that mutations in KRAS codons 61 and 146, BRAF, NRAS, and PIK3CA are negative predictive factors for cetuximab treatment in colorectal cancer patients. We developed a novel multiplex kit detecting 36 mutations in KRAS codons 61 and 146, BRAF, NRAS, and PIK3CA using Luminex (xMAP) assay in a single reaction. Methods Tumor samples and clinical data from Asian colorectal cancer patients treated with cetuximab were collected. We investigated KRAS, BRAF, NRAS, and PIK3CA mutations using both the multiplex kit and direct sequencing methods, and evaluated the concordance between the 2 methods. Objective response, progression-free survival (PFS), and overall survival (OS) were also evaluated according to mutational status. Results In total, 82 of 83 samples (78 surgically resected specimens and 5 biopsy specimens) were analyzed using both methods. All multiplex assays were performed using 50 ng of template DNA. The concordance rate between the methods was 100%. Overall, 49 (59.8%) patients had all wild-type tumors, 21 (25.6%) had tumors harboring KRAS codon 12 or 13 mutations, and 12 (14.6%) had tumors harboring KRAS codon 61, KRAS codon 146, BRAF, NRAS, or PIK3CA mutations. The response rates in these patient groups were 38.8%, 4.8%, and 0%, respectively. Median PFS in these groups was 6.1 months (95% confidence interval (CI): 3.1–9.2), 2.7 months (1.2–4.2), and 1.6 months (1.5–1.7); median OS was 13.8 months (9.2–18.4), 8.2 months (5.7–10.7), and 6.3 months (1.3–11.3), respectively. Statistically significant differences in both PFS and OS were found between patients with all wild-type tumors and those with KRAS codon 61, KRAS codon 146, BRAF, NRAS, or PIK3CA mutations (PFS: 95% CI, 0.11–0.44; P < 0.0001; OS: 95% CI, 0.15–0.61; P < 0.0001). Conclusions Our newly developed multiplex kit is practical and feasible for investigation of a range of sample types. Moreover, mutations in KRAS

  4. Enhanced phosphoserine insertion during Escherichia coli protein synthesis via partial UAG codon reassignment and release factor 1 deletion

    PubMed Central

    Heinemann, Ilka U.; Rovner, Alexis J.; Aerni, Hans R.; Rogulina, Svetlana; Cheng, Laura; Olds, William; Fischer, Jonathan T.; Söll, Dieter; Isaacs, Farren J.; Rinehart, Jesse

    2012-01-01

    Genetically encoded phosphoserine incorporation programmed by the UAG codon was achieved by addition of engineered elongation factor and an archaeal aminoacyl-tRNA synthetase to the normal Escherichia coli translation machinery (Park (2011) Science 333, 1151). However, protein yield suffers from expression of the orthogonal phosphoserine translation system and competition with release factor 1 (RF-1). In a strain lacking RF-1, phosphoserine phosphatase, and where 7 UAG codons residing in essential genes were converted to UAA, phosphoserine incorporation into GFP and WNK4 was significantly elevated, but with an accompanying loss in cellular fitness and viability. PMID:22982858

  5. Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11

    PubMed Central

    Li, Manqing; Kao, Elaine; Gao, Xia; Sandig, Hilary; Limmer, Kirsten; Pavon-Eternod, Mariana; Jones, Thomas E.; Landry, Sebastien; Pan, Tao; Weitzman, Matthew D.; David, Michael

    2013-01-01

    In mammals, one of the most pronounced consequences of viral infection is the induction of type I interferons, cytokines with potent antiviral activity. Schlafen (Slfn) genes are a subset of interferon-stimulated early response genes (ISGs) that are also induced directly by pathogens via the interferon regulatory factor 3 (IRF3) pathway1. However, many ISGs are of unknown or incompletely understood function. Here we show that human SLFN11 potently and specifically abrogates the production of retroviruses such as human immunodeficiency virus 1 (HIV-1). Our study revealed that SLFN11 has no effect on the early steps of the retroviral infection cycle, including reverse transcription, integration and transcription. Rather, SLFN11 acts at the late stage of virus production by selectively inhibiting the expression of viral proteins in a codon-usage-dependent manner. We further find that SLFN11 binds transfer RNA, and counteracts changes in the tRNA pool elicited by the presence of HIV. Our studies identified a novel antiviral mechanism within the innate immune response, in which SLFN11 selectively inhibits viral protein synthesis in HIV-infected cells by means of codon-bias discrimination. PMID:23000900

  6. Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11.

    PubMed

    Li, Manqing; Kao, Elaine; Gao, Xia; Sandig, Hilary; Limmer, Kirsten; Pavon-Eternod, Mariana; Jones, Thomas E; Landry, Sebastien; Pan, Tao; Weitzman, Matthew D; David, Michael

    2012-11-01

    In mammals, one of the most pronounced consequences of viral infection is the induction of type I interferons, cytokines with potent antiviral activity. Schlafen (Slfn) genes are a subset of interferon-stimulated early response genes (ISGs) that are also induced directly by pathogens via the interferon regulatory factor 3 (IRF3) pathway. However, many ISGs are of unknown or incompletely understood function. Here we show that human SLFN11 potently and specifically abrogates the production of retroviruses such as human immunodeficiency virus 1 (HIV-1). Our study revealed that SLFN11 has no effect on the early steps of the retroviral infection cycle, including reverse transcription, integration and transcription. Rather, SLFN11 acts at the late stage of virus production by selectively inhibiting the expression of viral proteins in a codon-usage-dependent manner. We further find that SLFN11 binds transfer RNA, and counteracts changes in the tRNA pool elicited by the presence of HIV. Our studies identified a novel antiviral mechanism within the innate immune response, in which SLFN11 selectively inhibits viral protein synthesis in HIV-infected cells by means of codon-bias discrimination.

  7. The Elusive Nature of Adaptive Mitochondrial DNA Evolution of an Arctic Lineage Prone to Frequent Introgression

    PubMed Central

    Melo-Ferreira, José; Vilela, Joana; Fonseca, Miguel M.; da Fonseca, Rute R.; Boursot, Pierre; Alves, Paulo C.

    2014-01-01

    Mitochondria play a fundamental role in cellular metabolism, being responsible for most of the energy production of the cell in the oxidative phosphorylation (OXPHOS) pathway. Mitochondrial DNA (mtDNA) encodes for key components of this process, but its direct role in adaptation remains far from understood. Hares (Lepus spp.) are privileged models to study the impact of natural selection on mitogenomic evolution because 1) species are adapted to contrasting environments, including arctic, with different metabolic pressures, and 2) mtDNA introgression from arctic into temperate species is widespread. Here, we analyzed the sequences of 11 complete mitogenomes (ten newly obtained) of hares of temperate and arctic origins (including two of arctic origin introgressed into temperate species). The analysis of patterns of codon substitutions along the reconstructed phylogeny showed evidence for positive selection in several codons in genes of the OXPHOS complexes, most notably affecting the arctic lineage. However, using theoretical models, no predictable effect of these differences was found on the structure and physicochemical properties of the encoded proteins, suggesting that the focus of selection may lie on complex interactions with nuclear encoded peptides. Also, a cloverleaf structure was detected in the control region only from the arctic mtDNA lineage, which may influence mtDNA replication and transcription. These results suggest that adaptation impacted the evolution of hare mtDNA and may have influenced the occurrence and consequences of the many reported cases of massive mtDNA introgression. However, the origin of adaptation remains elusive. PMID:24696399

  8. Expression of codon optimized genes in microbial systems: current industrial applications and perspectives

    PubMed Central

    Elena, Claudia; Ravasi, Pablo; Castelli, María E.; Peirú, Salvador; Menzella, Hugo G.

    2014-01-01

    The efficient production of functional proteins in heterologous hosts is one of the major bases of modern biotechnology. Unfortunately, many genes are difficult to express outside their original context. Due to their apparent “silent” nature, synonymous codon substitutions have long been thought to be trivial. In recent years, this dogma has been refuted by evidence that codon replacement can have a significant impact on gene expression levels and protein folding. In the past decade, considerable advances in the speed and cost of gene synthesis have facilitated the complete redesign of entire gene sequences, dramatically improving the likelihood of high protein expression. This technology significantly impacts the economic feasibility of microbial-based biotechnological processes by, for example, increasing the volumetric productivities of recombinant proteins or facilitating the redesign of novel biosynthetic routes for the production of metabolites. This review discusses the current applications of this technology, particularly those regarding the production of small molecules and industrially relevant recombinant enzymes. Suggestions for future research and potential uses are provided as well. PMID:24550894

  9. Novel mutation at the initiation codon in the Norrie disease gene in two Japanese families.

    PubMed

    Isashiki, Y; Ohba, N; Yanagita, T; Hokita, N; Doi, N; Nakagawa, M; Ozawa, M; Kuroda, N

    1995-01-01

    We have identified a new mutation of Norrie disease (ND) gene in two Japanese males from unrelated families; they showed typical ocular features of ND but no mental retardation or hearing impairment. A mutation was found in both patients at the initiation codon of exon 2 of the ND gene (ATG to GTG), with otherwise normal nucleotide sequences. Their mothers had the normal and mutant types of the gene, which was expected for heterozygotes of the disease. The mutation of the initiation codon would cause the failure of ND gene expression or a defect in translation thereby truncating the amino terminus of ND protein. In view of the rarity and marked heterogeneity of mutations in the ND gene, the present apparently unrelated Japanese families who have lived in the same area for over two centuries presumably share the origin of the mutation.

  10. Extensive frameshift at all AGG and CCC codons in the mitochondrial cytochrome c oxidase subunit 1 gene of Perkinsus marinus (Alveolata; Dinoflagellata).

    PubMed

    Masuda, Isao; Matsuzaki, Motomichi; Kita, Kiyoshi

    2010-10-01

    Diverse mitochondrial (mt) genetic systems have evolved independently of the more uniform nuclear system and often employ modified genetic codes. The organization and genetic system of dinoflagellate mt genomes are particularly unusual and remain an evolutionary enigma. We determined the sequence of full-length cytochrome c oxidase subunit 1 (cox1) mRNA of the earliest diverging dinoflagellate Perkinsus and show that this gene resides in the mt genome. Apparently, this mRNA is not translated in a single reading frame with standard codon usage. Our examination of the nucleotide sequence and three-frame translation of the mRNA suggest that the reading frame must be shifted 10 times, at every AGG and CCC codon, to yield a consensus COX1 protein. We suggest two possible mechanisms for these translational frameshifts: a ribosomal frameshift in which stalled ribosomes skip the first bases of these codons or specialized tRNAs recognizing non-triplet codons, AGGY and CCCCU. Regardless of the mechanism, active and efficient machinery would be required to tolerate the frameshifts predicted in Perkinsus mitochondria. To our knowledge, this is the first evidence of translational frameshifts in protist mitochondria and, by far, is the most extensive case in mitochondria.

  11. Genetic variation in codons 167, 198 and 200 of the beta-tubulin gene in whipworms (Trichuris spp.) from a range of domestic animals and wildlife.

    PubMed

    Hansen, Tina V A; Nejsum, Peter; Olsen, Annette; Thamsborg, Stig Milan

    2013-03-31

    A recurrent problem in the control of whipworm (Trichuris spp.) infections in many animal species and man is the relatively low efficacy of treatment with a single application of benzimidazoles (BZs). The presence of single nucleotide polymorphisms (SNPs) in codons 167, 198 and 200 in the beta-tubulin gene has been associated with BZ anthelmintic resistance in intestinal nematodes of veterinary importance. We hypothesized that the low susceptibility to BZ could be related to a natural tolerance or induced resistance caused by BZ-resistant associated SNPs. The aim of the present study was therefore to investigate the presence of these SNPs in the beta-tubulin gene of Trichuris spp. obtained from a range of animals. DNA was extracted from a total of 121 Trichuris spp. adult whipworm specimens obtained from 6 different host species. The number of worms from each host was pig: 31, deer: 21, sheep: 18, mouse: 17, dog: 19 and Arabian camels: 14. A pooled sample of Trichuris eggs from 3 moose was also used. In order to amplify the beta-tubulin fragments which covered codons 167, 198 and 200 of the gene, degenerate primers were designed. The sequences obtained were used to design species specific primers and used to amplify a ~476 bp fragment of the beta-tubulin gene. The PCR products were sequenced, analysed and evaluated. We did not identify SNPs in codons 167, 198 or 200 that led to amino acid substitutions in any of the studied Trichuris spp., but genetic variation expected to be related to species differences was observed. The cluster analysis showed close evolutionary relationship between Trichuris spp. from ruminants and between mouse and dog whereas the pig-derived worms, T. suis, clustered with T. trichiura obtained from Genbank. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Utilisation of ISA Reverse Genetics and Large-Scale Random Codon Re-Encoding to Produce Attenuated Strains of Tick-Borne Encephalitis Virus within Days.

    PubMed

    de Fabritus, Lauriane; Nougairède, Antoine; Aubry, Fabien; Gould, Ernest A; de Lamballerie, Xavier

    2016-01-01

    Large-scale codon re-encoding is a new method of attenuating RNA viruses. However, the use of infectious clones to generate attenuated viruses has inherent technical problems. We previously developed a bacterium-free reverse genetics protocol, designated ISA, and now combined it with large-scale random codon-re-encoding method to produce attenuated tick-borne encephalitis virus (TBEV), a pathogenic flavivirus which causes febrile illness and encephalitis in humans. We produced wild-type (WT) and two re-encoded TBEVs, containing 273 or 273+284 synonymous mutations in the NS5 and NS5+NS3 coding regions respectively. Both re-encoded viruses were attenuated when compared with WT virus using a laboratory mouse model and the relative level of attenuation increased with the degree of re-encoding. Moreover, all infected animals produced neutralizing antibodies. This novel, rapid and efficient approach to engineering attenuated viruses could potentially expedite the development of safe and effective new-generation live attenuated vaccines.

  13. MACARON: A python framework to identify and re-annotate multi-base affected codons in whole genome/exome sequence data.

    PubMed

    Khan, Waqasuddin; Saripella, Ganapathi Varma-; Ludwig, Thomas; Cuppens, Tania; Thibord, Florian; Génin, Emmanuelle; Deleuze, Jean-Francois; Trégouët, David-Alexandre

    2018-05-03

    Predicted deleteriousness of coding variants is a frequently used criterion to filter out variants detected in next-generation sequencing projects and to select candidates impacting on the risk of human diseases. Most available dedicated tools implement a base-to-base annotation approach that could be biased in presence of several variants in the same genetic codon. We here proposed the MACARON program that, from a standard VCF file, identifies, re-annotates and predicts the amino acid change resulting from multiple single nucleotide variants (SNVs) within the same genetic codon. Applied to the whole exome dataset of 573 individuals, MACARON identifies 114 situations where multiple SNVs within a genetic codon induce an amino acid change that is different from those predicted by standard single SNV annotation tool. Such events are not uncommon and deserve to be studied in sequencing projects with inconclusive findings. MACARON is written in python with codes available on the GENMED website (www.genmed.fr). david-alexandre.tregouet@inserm.fr. Supplementary data are available at Bioinformatics online.

  14. Orthogonal combinatorial mutagenesis: a codon-level combinatorial mutagenesis method useful for low multiplicity and amino acid-scanning protocols

    PubMed Central

    Gaytán, Paul; Yáñez, Jorge; Sánchez, Filiberto; Soberón, Xavier

    2001-01-01

    We describe here a method to generate combinatorial libraries of oligonucleotides mutated at the codon-level, with control of the mutagenesis rate so as to create predictable binomial distributions of mutants. The method allows enrichment of the libraries with single, double or larger multiplicity of amino acid replacements by appropriate choice of the mutagenesis rate, depending on the concentration of synthetic precursors. The method makes use of two sets of deoxynucleoside-phosphoramidites bearing orthogonal protecting groups [4,4′-dimethoxytrityl (DMT) and 9-fluorenylmethoxycarbonyl (Fmoc)] in the 5′ hydroxyl. These phosphoramidites are divergently combined during automated synthesis in such a way that wild-type codons are assembled with commercial DMT-deoxynucleoside-methyl-phosphoramidites while mutant codons are assembled with Fmoc-deoxynucleoside-methyl-phosphoramidites in an NNG/C fashion in a single synthesis column. This method is easily automated and suitable for low mutagenesis rates and large windows, such as those required for directed evolution and alanine scanning. Through the assembly of three oligonucleotide libraries at different mutagenesis rates, followed by cloning at the polylinker region of plasmid pUC18 and sequencing of 129 clones, we concluded that the method performs essentially as intended. PMID:11160911

  15. Effect of the nucleotides surrounding the start codon on the translation of foot-and-mouth disease virus RNA.

    PubMed

    Ma, X X; Feng, Y P; Gu, Y X; Zhou, J H; Ma, Z R

    2016-06-01

    As for the alternative AUGs in foot-and-mouth disease virus (FMDV), nucleotide bias of the context flanking the AUG(2nd) could be used as a strong signal to initiate translation. To determine the role of the specific nucleotide context, dicistronic reporter constructs were engineered to contain different versions of nucleotide context linking between internal ribosome entry site (IRES) and downstream gene. The results indicate that under FMDV IRES-dependent mechanism, the nucleotide contexts flanking start codon can influence the translation initiation efficiencies. The most optimal sequences for both start codons have proved to be UUU AUG(1st) AAC and AAG AUG(2nd) GAA.

  16. Effect of Polymorphisms at Codon 146 of the Goat PRNP Gene on Susceptibility to Challenge with Classical Scrapie by Different Routes.

    PubMed

    Papasavva-Stylianou, Penelope; Simmons, Marion Mathieson; Ortiz-Pelaez, Angel; Windl, Otto; Spiropoulos, John; Georgiadou, Soteria

    2017-11-15

    This report presents the results of experimental challenges of goats with scrapie by both the intracerebral (i.c.) and oral routes, exploring the effects of polymorphisms at codon 146 of the goat PRNP gene on resistance to disease. The results of these studies illustrate that while goats of all genotypes can be infected by i.c. challenge, the survival distribution of the animals homozygous for asparagine at codon 146 was significantly shorter than those of animals of all other genotypes (chi-square value, 10.8; P = 0.001). In contrast, only those animals homozygous for asparagine at codon 146 (NN animals) succumbed to oral challenge. The results also indicate that any cases of infection in non-NN animals can be detected by the current confirmatory test (immunohistochemistry), although successful detection with the rapid enzyme-linked immunosorbent assay (ELISA) was more variable and dependent on the polymorphism. Together with data from previous studies of goats exposed to infection in the field, these data support the previously reported observations that polymorphisms at this codon have a profound effect on susceptibility to disease. It is concluded that only animals homozygous for asparagine at codon 146 succumb to scrapie under natural conditions. IMPORTANCE In goats, like in sheep, there are PRNP polymorphisms that are associated with susceptibility or resistance to scrapie. However, in contrast to the polymorphisms in sheep, they are more numerous in goats and may be restricted to certain breeds or geographical regions. Therefore, eradication programs must be specifically designed depending on the identification of suitable polymorphisms. An initial analysis of surveillance data suggested that such a polymorphism in Cypriot goats may lie in codon 146. In this study, we demonstrate experimentally that NN animals are highly susceptible after i.c. inoculation. The presence of a D or S residue prolonged incubation periods significantly, and prions were detected

  17. Idiosyncratic recognition of UUG/UUA codons by modified nucleoside 5-taurinomethyluridine, τm5U present at 'wobble' position in anticodon loop of tRNALeu: A molecular modeling approach.

    PubMed

    Kamble, Asmita S; Fandilolu, Prayagraj M; Sambhare, Susmit B; Sonawane, Kailas D

    2017-01-01

    Lack of naturally occurring modified nucleoside 5-taurinomethyluridine (τm5U) at the 'wobble' 34th position in tRNALeu causes mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). The τm5U34 specifically recognizes UUG and UUA codons. Structural consequences of τm5U34 to read cognate codons have not been studied so far in detail at the atomic level. Hence, 50ns multiple molecular dynamics (MD) simulations of various anticodon stem loop (ASL) models of tRNALeu in presence and absence of τm5U34 along with UUG and UUA codons were performed to explore the dynamic behaviour of τm5U34 during codon recognition process. The MD simulation results revealed that τm5U34 recognizes G/A ending codons by 'wobble' as well as a novel 'single' hydrogen bonding interactions. RMSD and RMSF values indicate the comparative stability of the ASL models containing τm5U34 modification over the other models, lacking τm5U34. Another MD simulation study of 55S mammalian mitochondrial rRNA with tRNALeu showed crucial interactions between the A-site residues, A918, A919, G256 and codon-anticodon bases. Thus, these results could improve our understanding about the decoding efficiency of human mt tRNALeu with τm5U34 to recognize UUG and UUA codons.

  18. Alignment-based and alignment-free methods converge with experimental data on amino acids coded by stop codons at split between nuclear and mitochondrial genetic codes.

    PubMed

    Seligmann, Hervé

    2018-05-01

    Genetic codes mainly evolve by reassigning punctuation codons, starts and stops. Previous analyses assuming that undefined amino acids translate stops showed greater divergence between nuclear and mitochondrial genetic codes. Here, three independent methods converge on which amino acids translated stops at split between nuclear and mitochondrial genetic codes: (a) alignment-free genetic code comparisons inserting different amino acids at stops; (b) alignment-based blast analyses of hypothetical peptides translated from non-coding mitochondrial sequences, inserting different amino acids at stops; (c) biases in amino acid insertions at stops in proteomic data. Hence short-term protein evolution models reconstruct long-term genetic code evolution. Mitochondria reassign stops to amino acids otherwise inserted at stops by codon-anticodon mismatches (near-cognate tRNAs). Hence dual function (translation termination and translation by codon-anticodon mismatch) precedes mitochondrial reassignments of stops to amino acids. Stop ambiguity increases coded information, compensates endocellular mitogenome reduction. Mitochondrial codon reassignments might prevent viral infections. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Protein expression of preferred human codon-optimized Gaussia luciferase genes with an artificial open-reading frame in mammalian and bacterial cells.

    PubMed

    Inouye, Satoshi; Suzuki, Takahiro

    2016-12-01

    The protein expressions of three preferred human codon-optimized Gaussia luciferase genes (pGLuc, EpGLuc, and KpGLuc) were characterized in mammalian and bacterial cells by comparing them with those of wild-type Gaussia luciferase gene (wGLuc) and human codon-optimized Gaussia luciferase gene (hGLuc). Two synthetic genes of EpGLuc and KpGLuc containing the complete preferred human codons have an artificial open-reading frame; however, they had the similar protein expression levels to those of pGLuc and hGLuc in mammalian cells. In bacterial cells, the protein expressions of pGLuc, EpGLuc, and KpGLuc with approximately 65% GC content were the same and showed approximately 60% activities of wGLuc and hGLuc. The artificial open-reading frame in EpGLuc and KpGLuc did not affect the protein expression in mammalian and bacterial cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Evolutionary interpretations of mycobacteriophage biodiversity and host-range through the analysis of codon usage bias.

    PubMed

    Esposito, Lauren A; Gupta, Swati; Streiter, Fraida; Prasad, Ashley; Dennehy, John J

    2016-10-01

    In an genomics course sponsored by the Howard Hughes Medical Institute (HHMI), undergraduate students have isolated and sequenced the genomes of more than 1,150 mycobacteriophages, creating the largest database of sequenced bacteriophages able to infect a single host, Mycobacterium smegmatis , a soil bacterium. Genomic analysis indicates that these mycobacteriophages can be grouped into 26 clusters based on genetic similarity. These clusters span a continuum of genetic diversity, with extensive genomic mosaicism among phages in different clusters. However, little is known regarding the primary hosts of these mycobacteriophages in their natural habitats, nor of their broader host ranges. As such, it is possible that the primary host of many newly isolated mycobacteriophages is not M. smegmatis , but instead a range of closely related bacterial species. However, determining mycobacteriophage host range presents difficulties associated with mycobacterial cultivability, pathogenicity and growth. Another way to gain insight into mycobacteriophage host range and ecology is through bioinformatic analysis of their genomic sequences. To this end, we examined the correlations between the codon usage biases of 199 different mycobacteriophages and those of several fully sequenced mycobacterial species in order to gain insight into the natural host range of these mycobacteriophages. We find that UPGMA clustering tends to match, but not consistently, clustering by shared nucleotide sequence identify. In addition, analysis of GC content, tRNA usage and correlations between mycobacteriophage and mycobacterial codon usage bias suggests that the preferred host of many clustered mycobacteriophages is not M. smegmatis but other, as yet unknown, members of the mycobacteria complex or closely allied bacterial species.

  1. Evolutionary interpretations of mycobacteriophage biodiversity and host-range through the analysis of codon usage bias

    PubMed Central

    Esposito, Lauren A.; Gupta, Swati; Streiter, Fraida; Prasad, Ashley

    2016-01-01

    In an genomics course sponsored by the Howard Hughes Medical Institute (HHMI), undergraduate students have isolated and sequenced the genomes of more than 1,150 mycobacteriophages, creating the largest database of sequenced bacteriophages able to infect a single host, Mycobacterium smegmatis, a soil bacterium. Genomic analysis indicates that these mycobacteriophages can be grouped into 26 clusters based on genetic similarity. These clusters span a continuum of genetic diversity, with extensive genomic mosaicism among phages in different clusters. However, little is known regarding the primary hosts of these mycobacteriophages in their natural habitats, nor of their broader host ranges. As such, it is possible that the primary host of many newly isolated mycobacteriophages is not M. smegmatis, but instead a range of closely related bacterial species. However, determining mycobacteriophage host range presents difficulties associated with mycobacterial cultivability, pathogenicity and growth. Another way to gain insight into mycobacteriophage host range and ecology is through bioinformatic analysis of their genomic sequences. To this end, we examined the correlations between the codon usage biases of 199 different mycobacteriophages and those of several fully sequenced mycobacterial species in order to gain insight into the natural host range of these mycobacteriophages. We find that UPGMA clustering tends to match, but not consistently, clustering by shared nucleotide sequence identify. In addition, analysis of GC content, tRNA usage and correlations between mycobacteriophage and mycobacterial codon usage bias suggests that the preferred host of many clustered mycobacteriophages is not M. smegmatis but other, as yet unknown, members of the mycobacteria complex or closely allied bacterial species. PMID:28348827

  2. The TGA codons are present in the open reading frame of selenoprotein P cDNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, K.E.; Lloyd, R.S.; Read, R.

    1991-03-11

    The TGA codon in DNA has been shown to direct incorporation of selenocysteine into protein. Several proteins from bacteria and animals contain selenocysteine in their primary structures. Each of the cDNA clones of these selenoproteins contains one TGA codon in the open reading frame which corresponds to the selenocysteine in the protein. A cDNA clone for selenoprotein P (SeP), obtained from a {gamma}ZAP rat liver library, was sequenced by the dideoxy termination method. The correct reading frame was determined by comparison of the deduced amino acid sequence with the amino acid sequence of several peptides from SeP. Using SeP labelledmore » with {sup 75}Se in vivo, the selenocysteine content of the peptides was verified by the collection of carboxymethylated {sup 77}Se-selenocysteine as it eluted from the amino acid analyzer and determination of the radioactivity contained in the collected samples. Ten TGA codons are present in the open reading frame of the cDNA. Peptide fragmentation studies and the deduced sequence indicate that selenium-rich regions are located close to the carboxy terminus. Nine of the 10 selenocysteines are located in the terminal 26% of the sequence with four in the terminal 15 amino acids. The deduced sequence codes for a protein of 385 amino acids. Cleavage of the signal peptide gives the mature protein with 366 amino acids and a calculated mol wt of 41,052 Da. Searches of PIR and SWISSPROT protein databases revealed no similarity with glutathione peroxidase or other selenoproteins.« less

  3. Living colors in the gray mold pathogen Botrytis cinerea: codon-optimized genes encoding green fluorescent protein and mCherry, which exhibit bright fluorescence.

    PubMed

    Leroch, Michaela; Mernke, Dennis; Koppenhoefer, Dieter; Schneider, Prisca; Mosbach, Andreas; Doehlemann, Gunther; Hahn, Matthias

    2011-05-01

    The green fluorescent protein (GFP) and its variants have been widely used in modern biology as reporters that allow a variety of live-cell imaging techniques. So far, GFP has rarely been used in the gray mold fungus Botrytis cinerea because of low fluorescence intensity. The codon usage of B. cinerea genes strongly deviates from that of commonly used GFP-encoding genes and reveals a lower GC content than other fungi. In this study, we report the development and use of a codon-optimized version of the B. cinerea enhanced GFP (eGFP)-encoding gene (Bcgfp) for improved expression in B. cinerea. Both the codon optimization and, to a smaller extent, the insertion of an intron resulted in higher mRNA levels and increased fluorescence. Bcgfp was used for localization of nuclei in germinating spores and for visualizing host penetration. We further demonstrate the use of promoter-Bcgfp fusions for quantitative evaluation of various toxic compounds as inducers of the atrB gene encoding an ABC-type drug efflux transporter of B. cinerea. In addition, a codon-optimized mCherry-encoding gene was constructed which yielded bright red fluorescence in B. cinerea.

  4. Identification of seven haplotypes of the caprine PrP gene at codons 127, 142, 154, 211, 222 and 240 in French Alpine and Saanen breeds and their association with classical scrapie.

    PubMed

    Barillet, F; Mariat, D; Amigues, Y; Faugeras, R; Caillat, H; Moazami-Goudarzi, K; Rupp, R; Babilliot, J M; Lacroux, C; Lugan, S; Schelcher, F; Chartier, C; Corbière, F; Andréoletti, O; Perrin-Chauvineau, C

    2009-03-01

    In sheep, susceptibility to scrapie is mainly influenced by polymorphisms of the PrP gene. In goats, there are to date few data related to scrapie susceptibility association with PrP gene polymorphisms. In this study, we first investigated PrP gene polymorphisms of the French Alpine and Saanen breeds. Based on PrP gene open reading frame sequencing of artificial insemination bucks (n=404), six encoding mutations were identified at codons 127, 142, 154, 211, 222 and 240. However, only seven haplotypes could be detected: four (GIH(154)RQS, GIRQ(211)QS, GIRRK(222)S and GIRRQP(240)) derived from the wild-type allele (G(127)I(142)R(154)R(211)Q(222)S(240)) by a single-codon mutation, and two (S(127)IRRQP(240) and GM(142)RRQP(240)) by a double-codon mutation. A case-control study was then implemented in a highly affected Alpine and Saanen breed herd (90 cases/164 controls). Mutations at codon 142 (I/M), 154 (R/H), 211 (R/Q) and 222 (Q/K) were found to induce a significant degree of protection towards natural scrapie infection. Compared with the baseline homozygote wild-type genotype I(142)R(154)R(211)Q(222)/IRRQ goats, the odds of scrapie cases in IRQ(211)Q/IRRQ and IRRK(222)/IRRQ heterozygous animals were significantly lower [odds ratio (OR)=0.133, P<0.0001; and OR=0.048, P<0.0001, respectively]. The heterozygote M(142)RRQ/IRRQ genotype was only protective (OR=0.243, P=0.0186) in goats also PP(240) homozygous at codon 240. However, mutated allele frequencies in French Alpine and Saanen breeds were low (0.5-18.5 %), which prevent us from assessing the influence of all the possible genotypes in natural exposure conditions.

  5. Methods used in adaptation of health-related guidelines: A systematic survey.

    PubMed

    Abdul-Khalek, Rima A; Darzi, Andrea J; Godah, Mohammad W; Kilzar, Lama; Lakis, Chantal; Agarwal, Arnav; Abou-Jaoude, Elias; Meerpohl, Joerg J; Wiercioch, Wojtek; Santesso, Nancy; Brax, Hneine; Schünemann, Holger; Akl, Elie A

    2017-12-01

    Adaptation refers to the systematic approach for considering the endorsement or modification of recommendations produced in one setting for application in another as an alternative to de novo development. To describe and assess the methods used for adapting health-related guidelines published in peer-reviewed journals, and to assess the quality of the resulting adapted guidelines. We searched Medline and Embase up to June 2015. We assessed the method of adaptation, and the quality of included guidelines. Seventy-two papers were eligible. Most adapted guidelines and their source guidelines were published by professional societies (71% and 68% respectively), and in high-income countries (83% and 85% respectively). Of the 57 adapted guidelines that reported any detail about adaptation method, 34 (60%) did not use a published adaptation method. The number (and percentage) of adapted guidelines fulfilling each of the ADAPTE steps ranged between 2 (4%) and 57 (100%). The quality of adapted guidelines was highest for the "scope and purpose" domain and lowest for the "editorial independence" domain (respective mean percentages of the maximum possible scores were 93% and 43%). The mean score for "rigor of development" was 57%. Most adapted guidelines published in peer-reviewed journals do not report using a published adaptation method, and their adaptation quality was variable.

  6. The MSPDBL2 Codon 591 Polymorphism Is Associated with Lumefantrine In Vitro Drug Responses in Plasmodium falciparum Isolates from Kilifi, Kenya

    PubMed Central

    Okombo, John; Mwai, Leah; Kiara, Steven M.; Pole, Lewa; Tetteh, Kevin K. A.; Nzila, Alexis; Marsh, Kevin

    2014-01-01

    The mechanisms of drug resistance development in the Plasmodium falciparum parasite to lumefantrine (LUM), commonly used in combination with artemisinin, are still unclear. We assessed the polymorphisms of Pfmspdbl2 for associations with LUM activity in a Kenyan population. MSPDBL2 codon 591S was associated with reduced susceptibility to LUM (P = 0.04). The high frequency of Pfmspdbl2 codon 591S in Kenya may be driven by the widespread use of lumefantrine in artemisinin combination therapy (Coartem). PMID:25534732

  7. Meningocerebrovascular amyloidosis associated with a novel transthyretin mis-sense mutation at codon 18 (TTRD 18G)

    PubMed Central

    Vidal, R.; Garzuly, F.; Budka, H.; Lalowski, M.; Linke, R. P.; Brittig, F.; Frangione, B.; Wisniewski, T.

    1996-01-01

    We describe a novel transthyretin mutation at codon 18 where Asp is replaced by Gly (D18G) in a Hungarian kindred. This mutation is associated with meningocerebrovascular amyloidosis, producing dementia, ataxia, and spasticity. Fifty different transthyretin mutations are related to amyloid deposition, typically producing a peripheral neuropathy or cardiac dysfunction. These symptoms are absent in this family. Up to now, amyloid-beta (A beta), cystatin C, and prion proteins have been known to be deposited as amyloid in the brain, leading to stroke or dementia. With this report we establish that transthyretin amyloid deposition can also produce central nervous system dysfunction as the major clinical symptom. Images Figure 2 Figure 4 PMID:8579098

  8. Idiosyncratic recognition of UUG/UUA codons by modified nucleoside 5-taurinomethyluridine, τm5U present at ‘wobble’ position in anticodon loop of tRNALeu: A molecular modeling approach

    PubMed Central

    Kamble, Asmita S.; Fandilolu, Prayagraj M.; Sambhare, Susmit B.; Sonawane, Kailas D.

    2017-01-01

    Lack of naturally occurring modified nucleoside 5-taurinomethyluridine (τm5U) at the ‘wobble’ 34th position in tRNALeu causes mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). The τm5U34 specifically recognizes UUG and UUA codons. Structural consequences of τm5U34 to read cognate codons have not been studied so far in detail at the atomic level. Hence, 50ns multiple molecular dynamics (MD) simulations of various anticodon stem loop (ASL) models of tRNALeu in presence and absence of τm5U34 along with UUG and UUA codons were performed to explore the dynamic behaviour of τm5U34 during codon recognition process. The MD simulation results revealed that τm5U34 recognizes G/A ending codons by ‘wobble’ as well as a novel ‘single’ hydrogen bonding interactions. RMSD and RMSF values indicate the comparative stability of the ASL models containing τm5U34 modification over the other models, lacking τm5U34. Another MD simulation study of 55S mammalian mitochondrial rRNA with tRNALeu showed crucial interactions between the A-site residues, A918, A919, G256 and codon-anticodon bases. Thus, these results could improve our understanding about the decoding efficiency of human mt tRNALeu with τm5U34 to recognize UUG and UUA codons. PMID:28453549

  9. A codon-optimized green fluorescent protein for live cell imaging in Zymoseptoria tritici☆

    PubMed Central

    Kilaru, S.; Schuster, M.; Studholme, D.; Soanes, D.; Lin, C.; Talbot, N.J.; Steinberg, G.

    2015-01-01

    Fluorescent proteins (FPs) are powerful tools to investigate intracellular dynamics and protein localization. Cytoplasmic expression of FPs in fungal pathogens allows greater insight into invasion strategies and the host-pathogen interaction. Detection of their fluorescent signal depends on the right combination of microscopic setup and signal brightness. Slow rates of photo-bleaching are pivotal for in vivo observation of FPs over longer periods of time. Here, we test green-fluorescent proteins, including Aequorea coerulescens GFP (AcGFP), enhanced GFP (eGFP) from Aequorea victoria and a novel Zymoseptoria tritici codon-optimized eGFP (ZtGFP), for their usage in conventional and laser-enhanced epi-fluorescence, and confocal laser-scanning microscopy. We show that eGFP, expressed cytoplasmically in Z. tritici, is significantly brighter and more photo-stable than AcGFP. The codon-optimized ZtGFP performed even better than eGFP, showing significantly slower bleaching and a 20–30% further increase in signal intensity. Heterologous expression of all GFP variants did not affect pathogenicity of Z. tritici. Our data establish ZtGFP as the GFP of choice to investigate intracellular protein dynamics in Z. tritici, but also infection stages of this wheat pathogen inside host tissue. PMID:26092799

  10. A theoretical thermochemical study of solute-solvent dielectric effects in the displacement of codon-anticodon base pairs

    NASA Astrophysics Data System (ADS)

    Monajjemi, M.; Razavian, M. H.; Mollaamin, F.; Naderi, F.; Honarparvar, B.

    2008-12-01

    Quantum-chemical solvent effect theories describe the electronic structure of a molecular subsystem embedded in a solvent or other molecular environment. The solvation of biomolecules is important in molecular biology, since numerous processes involve proteins interacting in changing solvent-solute systems. In this theoretical study, we focus on mRNA-tRNA base pairs as a fundamental step in protein synthesis influenced by hydrogen bonding between two antiparallel trinucleotides, namely, the mRNA codon and tRNA anticodon. We use the mean reaction field theories, which describe electrostatic and polarization interactions between solute and solvent in the AAA, UUU, AAG, and UUC triplex sequences optimized in various solvent media such as water, dimethylsulfoxide, methanol, ethanol, and cyclopean using the self-consistent reaction field model. This process depends on either the reaction potential function of the solvent or charge transfer operators that appear in solute-solvent interaction. Because of codon and anticodon biological criteria, we performed nonempirical quantum-mechanical calculations at the BLYP and B3LYP/3-21G, 6-31G, and 6-31G* levels of theory in the gas phase and five solvents at three temperatures. Finally, to obtain more information, we calculated thermochemical parameters to find that the dielectric constant of solvents plays an important role in the displacement of amino acid sequences on codon-anticodon residues in proteins, which can cause some mutations in humans.

  11. Adaptation of Panic-Related Psychopathology Measures to Russian

    ERIC Educational Resources Information Center

    Kotov, Roman; Schmidt, Norman B.; Zvolensky, Michael J.; Vinogradov, Alexander; Antipova, Anna V.

    2005-01-01

    The study reports results of adaptation of panic-related psychopathology measures to Russian, including the Anxiety Sensitivity Index (ASI), the Agoraphobic Cognitions Questionnaire (ACQ), and the Mobility Inventory for Agoraphobia (MIA). Psychometric properties (e.g., reliability, factor structure, endorsement) and external validity of the…

  12. TP53 codon 72 polymorphism and susceptibility to cervical cancer in the Chinese population: an update meta-analysis

    PubMed Central

    Li, Bing; Wang, Xin; Chen, Hong; Shang, Li-Xin; Wu, Nan

    2015-01-01

    Background: Although many epidemiologic studies investigated the TP53 codon 72 polymorphism and its association with cervical cancer (CC), definite conclusions cannot be drawn. Aim of the study: To evaluate the association between TP53 codon 72 polymorphism and risk of cervical cancer in the Chinese population. Methods: A computerized literature search was carried out in PubMed, Springer Link, Ovid, Chinese Biomedical Database (CBM), Chinese National Knowledge Infrastructure (CNKI), and Chinese Wanfang Database to collect relevant articles. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to calculate the strength of association. Results: A total of 16 studies including 1684 CC cases and 1178 controls were involved in this meta-analysis. Overall, significant increased association was found between the Pro/Pro carriers and CC risk when all studies in Chinese population pooled into the meta-analysis (heterozygous model: OR = 1.22, 95% CI: 1.01-1.46). In subgroup analyses stratified by ethnicity and source of controls, the same results were observed in Han and in hospital-based studies. Conclusion: Our results suggest that the TP53 codon 72 polymorphism may be potential biomarkers for CC risk in the Chinese population, especially for Han Chinese, and studies with wider spectrum of population are required for definite conclusions. PMID:26309559

  13. Mutation at codon 442 in the rpoB gene of Mycobacterium leprae does not confer resistance to rifampicin.

    PubMed

    Lavania, Mallika; Hena, Abu; Reja, Hasanoor; Nigam, Astha; Biswas, Nibir Kumar; Singh, Itu; Turankar, Ravindra P; Gupta, Ud; Kumar, Senthil; Rewaria, Latika; Patra, Pradip K R; Sengupta, Utpal; Bhattacharya, Basudeb

    2016-03-01

    Rifampicin is the major drug in the treatment of leprosy. The rifampicin resistance of Mycobacterium leprae results from a mutation in the rpoB gene, encoding the β subunit of RNA polymerase. As M. leprae is a non-cultivable organism observation of its growth using mouse food-pad (MFP) is the only Gold Standard assay used for confirmation of "in-vivo" drug resistance. Any mutation at molecular level has to be verified by MFP assay for final confirmation of drug resistance in leprosy. In the present study, M. leprae strains showing a mutation only at codon 442 Gln-His and along with mutation either at codon 424 Val-Gly or at 438 Gln-Val within the Rifampicin Resistance Determining Region (RRDR) confirmed by DNA sequencing and by high resolution melting (HRM) analysis were subjected for its growth in MFP. The M. leprae strain having the new mutation at codon 442 Gln-His was found to be sensitive to all the three drugs and strains having additional mutations at 424 Val-Gly and 438 Gln-Val were conferring resistance with Multi drug therapy (MDT) in MFP. These results indicate that MFP is the gold standard method for confirming the mutations detected by molecular techniques.

  14. Codon-Resolution Analysis Reveals a Direct and Context-Dependent Impact of Individual Synonymous Mutations on mRNA Level

    PubMed Central

    Chen, Siyu; Li, Ke; Cao, Wenqing; Wang, Jia; Zhao, Tong; Huan, Qing; Yang, Yu-Fei; Wu, Shaohuan; Qian, Wenfeng

    2017-01-01

    Abstract Codon usage bias (CUB) refers to the observation that synonymous codons are not used equally frequently in a genome. CUB is stronger in more highly expressed genes, a phenomenon commonly explained by stronger natural selection on translational accuracy and/or efficiency among these genes. Nevertheless, this phenomenon could also occur if CUB regulates gene expression at the mRNA level, a hypothesis that has not been tested until recently. Here, we attempt to quantify the impact of synonymous mutations on mRNA level in yeast using 3,556 synonymous variants of a heterologous gene encoding green fluorescent protein (GFP) and 523 synonymous variants of an endogenous gene TDH3. We found that mRNA level was positively correlated with CUB among these synonymous variants, demonstrating a direct role of CUB in regulating transcript concentration, likely via regulating mRNA degradation rate, as our additional experiments suggested. More importantly, we quantified the effects of individual synonymous mutations on mRNA level and found them dependent on 1) CUB and 2) mRNA secondary structure, both in proximal sequence contexts. Our study reveals the pleiotropic effects of synonymous codon usage and provides an additional explanation for the well-known correlation between CUB and gene expression level. PMID:28961875

  15. The MSPDBL2 codon 591 polymorphism is associated with lumefantrine in vitro drug responses in Plasmodium falciparum isolates from Kilifi, Kenya.

    PubMed

    Ochola-Oyier, Lynette Isabella; Okombo, John; Mwai, Leah; Kiara, Steven M; Pole, Lewa; Tetteh, Kevin K A; Nzila, Alexis; Marsh, Kevin

    2015-03-01

    The mechanisms of drug resistance development in the Plasmodium falciparum parasite to lumefantrine (LUM), commonly used in combination with artemisinin, are still unclear. We assessed the polymorphisms of Pfmspdbl2 for associations with LUM activity in a Kenyan population. MSPDBL2 codon 591S was associated with reduced susceptibility to LUM (P = 0.04). The high frequency of Pfmspdbl2 codon 591S in Kenya may be driven by the widespread use of lumefantrine in artemisinin combination therapy (Coartem). Copyright © 2015, Ochola-Oyier et al.

  16. Using social network analysis to evaluate health-related adaptation decision-making in Cambodia.

    PubMed

    Bowen, Kathryn J; Alexander, Damon; Miller, Fiona; Dany, Va

    2014-01-30

    Climate change adaptation in the health sector requires decisions across sectors, levels of government, and organisations. The networks that link these different institutions, and the relationships among people within these networks, are therefore critical influences on the nature of adaptive responses to climate change in the health sector. This study uses social network research to identify key organisational players engaged in developing health-related adaptation activities in Cambodia. It finds that strong partnerships are reported as developing across sectors and different types of organisations in relation to the health risks from climate change. Government ministries are influential organisations, whereas donors, development banks and non-government organisations do not appear to be as influential in the development of adaptation policy in the health sector. Finally, the study highlights the importance of informal partnerships (or 'shadow networks') in the context of climate change adaptation policy and activities. The health governance 'map' in relation to health and climate change adaptation that is developed in this paper is a novel way of identifying organisations that are perceived as key agents in the decision-making process, and it holds substantial benefits for both understanding and intervening in a broad range of climate change-related policy problems where collaboration is paramount for successful outcomes.

  17. Using Social Network Analysis to Evaluate Health-Related Adaptation Decision-Making in Cambodia

    PubMed Central

    Bowen, Kathryn J.; Alexander, Damon; Miller, Fiona; Dany, Va

    2014-01-01

    Climate change adaptation in the health sector requires decisions across sectors, levels of government, and organisations. The networks that link these different institutions, and the relationships among people within these networks, are therefore critical influences on the nature of adaptive responses to climate change in the health sector. This study uses social network research to identify key organisational players engaged in developing health-related adaptation activities in Cambodia. It finds that strong partnerships are reported as developing across sectors and different types of organisations in relation to the health risks from climate change. Government ministries are influential organisations, whereas donors, development banks and non-government organisations do not appear to be as influential in the development of adaptation policy in the health sector. Finally, the study highlights the importance of informal partnerships (or ‘shadow networks’) in the context of climate change adaptation policy and activities. The health governance ‘map’ in relation to health and climate change adaptation that is developed in this paper is a novel way of identifying organisations that are perceived as key agents in the decision-making process, and it holds substantial benefits for both understanding and intervening in a broad range of climate change-related policy problems where collaboration is paramount for successful outcomes. PMID:24487452

  18. Enhanced expression of lipase I from Galactomyces geotrichum by codon optimisation in Pichia pastoris.

    PubMed

    Qiao, Hanzhen; Zhang, Wenfei; Guan, Wutai; Chen, Fang; Zhang, Shihai; Deng, Zixiao

    2017-10-01

    Relatively poor heterologous protein yields have limited the commerical applications of Galactomyces geotrichum lipase I (GGl I) efficacy trials. To address this, we have redesigned the GGl I gene to preferentially match codon frequencies of Pichia pastoris (P. pastoris) while retaining the same amino acid sequence. The wild type and codon optimised GGl I (GGl I-wt and GGl I-op) were synthesised and cloned into pPICZαA with an N-terminal 6 × His tag sequence and expressed in P. pastoris X 33. The hydrolytic activity of GGl I-op was 150 U/mL, whereas the activity of the GGl I-wt could not be detected. GGl I-op recombinant proteins were purified by Ni-affinity chromatography and then characterised. The identity and purity of GGl I were confirmed by SDS-PAGE, MALDI-TOF mass spectrometry and Western blot analysis. Enzymatic deglycosylation was used to show that the lipase is a glycosylated protein, containing ∼10% sugar. The molecular weight (MW) of the GGl I secreted by recombinant P. pastoris was approximated at 63 kDa. The optimum pH and temperature of the recombinant lipase were 8.0 and 35 °C, respectively. The enzyme was active over a broad pH range (7.0-9.0) and temperature range (20 °C-45 °C). The lipase showed high activity toward medium- and long-chain fatty acid methyl esters (C8-C16) and retained much of its activity in the presence of Tween-80 and Trition X-100. Lipase activity was stimulated by Mg 2+ , Ca 2+ , Mn 2+ and Cu 2+ and inhibited by Fe 2+ , Fe 3+ , Zn 2+ and Co 2+ . This lipase may prove useful to the detergent industry and in organic synthesis reactions. Copyright © 2017. Published by Elsevier Inc.

  19. Life without tRNAIle-lysidine synthetase: translation of the isoleucine codon AUA in Bacillus subtilis lacking the canonical tRNA2Ile

    PubMed Central

    Köhrer, Caroline; Mandal, Debabrata; Gaston, Kirk W.; Grosjean, Henri; Limbach, Patrick A.; RajBhandary, Uttam L.

    2014-01-01

    Translation of the isoleucine codon AUA in most prokaryotes requires a modified C (lysidine or agmatidine) at the wobble position of tRNA2Ile to base pair specifically with the A of the AUA codon but not with the G of AUG. Recently, a Bacillus subtilis strain was isolated in which the essential gene encoding tRNAIle-lysidine synthetase was deleted for the first time. In such a strain, C34 at the wobble position of tRNA2Ile is expected to remain unmodified and cells depend on a mutant suppressor tRNA derived from tRNA1Ile, in which G34 has been changed to U34. An important question, therefore, is how U34 base pairs with A without also base pairing with G. Here, we show (i) that unlike U34 at the wobble position of all B. subtilis tRNAs of known sequence, U34 in the mutant tRNA is not modified, and (ii) that the mutant tRNA binds strongly to the AUA codon on B. subtilis ribosomes but only weakly to AUG. These in vitro data explain why the suppressor strain displays only a low level of misreading AUG codons in vivo and, as shown here, grows at a rate comparable to that of the wild-type strain. PMID:24194599

  20. Mutation at Tyrosine in AMLRY (GILRY Like) Motif of Yeast eRF1 on Nonsense Codons Suppression and Binding Affinity to eRF3

    PubMed Central

    Akhmaloka; Susilowati, Prima Endang; Subandi; Madayanti, Fida

    2008-01-01

    Termination translation in Saccharomyces cerevisiae is controlled by two interacting polypeptide chain release factors, eRF1 and eRF3. Two regions in human eRF1, position at 281-305 and position at 411-415, were proposed to be involved on the interaction to eRF3. In this study we have constructed and characterized yeast eRF1 mutant at position 410 (correspond to 415 human eRF1) from tyrosine to serine residue resulting eRF1(Y410S). The mutations did not affect the viability and temperature sensitivity of the cell. The stop codons suppression of the mutant was analyzed in vivo using PGK-stop codon-LACZ gene fusion and showed that the suppression of the mutant was significantly increased in all of codon terminations. The suppression on UAG codon was the highest increased among the stop codons by comparing the suppression of the wild type respectively. In vitro interaction between eRF1 (mutant and wild type) to eRF3 were carried out using eRF1-(His)6 and eRF1(Y410S)-(His)6 expressed in Escherichia coli and indigenous Saccharomyces cerevisiae eRF3. The results showed that the binding affinity of eRF1(Y410S) to eRF3 was decreased up to 20% of the wild type binding affinity. Computer modeling analysis using Swiss-Prot and Amber version 9.0 programs revealed that the overall structure of eRF1(Y410S) has no significant different with the wild type. However, substitution of tyrosine to serine triggered the structural change on the other motif of C-terminal domain of eRF1. The data suggested that increasing stop codon suppression and decreasing of the binding affinity of eRF1(Y410S) were probably due to the slight modification on the structure of the C-terminal domain. PMID:18463713

  1. Examination of food chain-derived Listeria monocytogenes strains of different serotypes reveals considerable diversity in inlA genotypes, mutability, and adaptation to cold temperatures.

    PubMed

    Kovacevic, Jovana; Arguedas-Villa, Carolina; Wozniak, Anna; Tasara, Taurai; Allen, Kevin J

    2013-03-01

    Listeria monocytogenes strains belonging to serotypes 1/2a and 4b are frequently linked to listeriosis. While inlA mutations leading to premature stop codons (PMSCs) and attenuated virulence are common in 1/2a, they are rare in serotype 4b. We observed PMSCs in 35% of L. monocytogenes isolates (n = 54) recovered from the British Columbia food supply, including serotypes 1/2a (30%), 1/2c (100%), and 3a (100%), and a 3-codon deletion (amino acid positions 738 to 740) seen in 57% of 4b isolates from fish-processing facilities. Caco-2 invasion assays showed that two isolates with the deletion were significantly more invasive than EGD-SmR (P < 0.0001) and were either as (FF19-1) or more (FE13-1) invasive than a clinical control strain (08-5578) (P = 0.006). To examine whether serotype 1/2a was more likely to acquire mutations than other serotypes, strains were plated on agar with rifampin, revealing 4b isolates to be significantly more mutable than 1/2a, 1/2c, and 3a serotypes (P = 0.0002). We also examined the ability of 33 strains to adapt to cold temperature following a downshift from 37°C to 4°C. Overall, three distinct cold-adapting groups (CAG) were observed: 46% were fast (<70 h), 39% were intermediate (70 to 200 h), and 15% were slow (>200 h) adaptors. Intermediate CAG strains (70%) more frequently possessed inlA PMSCs than did fast (20%) and slow (10%) CAGs; in contrast, 87% of fast adaptors lacked inlA PMSCs. In conclusion, we report food chain-derived 1/2a and 4b serotypes with a 3-codon deletion possessing invasive behavior and the novel association of inlA genotypes encoding a full-length InlA with fast cold-adaptation phenotypes.

  2. Contribution of single amino acid and codon substitutions to the production and secretion of a lipase by Bacillus subtilis.

    PubMed

    Skoczinski, Pia; Volkenborn, Kristina; Fulton, Alexander; Bhadauriya, Anuseema; Nutschel, Christina; Gohlke, Holger; Knapp, Andreas; Jaeger, Karl-Erich

    2017-09-25

    Bacillus subtilis produces and secretes proteins in amounts of up to 20 g/l under optimal conditions. However, protein production can be challenging if transcription and cotranslational secretion are negatively affected, or the target protein is degraded by extracellular proteases. This study aims at elucidating the influence of a target protein on its own production by a systematic mutational analysis of the homologous B. subtilis model protein lipase A (LipA). We have covered the full natural diversity of single amino acid substitutions at 155 positions of LipA by site saturation mutagenesis excluding only highly conserved residues and qualitatively and quantitatively screened about 30,000 clones for extracellular LipA production. Identified variants with beneficial effects on production were sequenced and analyzed regarding B. subtilis growth behavior, extracellular lipase activity and amount as well as changes in lipase transcript levels. In total, 26 LipA variants were identified showing an up to twofold increase in either amount or activity of extracellular lipase. These variants harbor single amino acid or codon substitutions that did not substantially affect B. subtilis growth. Subsequent exemplary combination of beneficial single amino acid substitutions revealed an additive effect solely at the level of extracellular lipase amount; however, lipase amount and activity could not be increased simultaneously. Single amino acid and codon substitutions can affect LipA secretion and production by B. subtilis. Several codon-related effects were observed that either enhance lipA transcription or promote a more efficient folding of LipA. Single amino acid substitutions could improve LipA production by increasing its secretion or stability in the culture supernatant. Our findings indicate that optimization of the expression system is not sufficient for efficient protein production in B. subtilis. The sequence of the target protein should also be considered as an

  3. Mutation-Specific RAS Oncogenicity Explains N-RAS Codon 61 Selection in Melanoma

    PubMed Central

    Burd, Christin E.; Liu, Wenjin; Huynh, Minh V.; Waqas, Meriam A.; Gillahan, James E.; Clark, Kelly S.; Fu, Kailing; Martin, Brit L.; Jeck, William R.; Souroullas, George P.; Darr, David B.; Zedek, Daniel C.; Miley, Michael J.; Baguley, Bruce C.; Campbell, Sharon L.

    2014-01-01

    N-RAS mutation at codon 12, 13 or 61 is associated with transformation; yet, in melanoma, such alterations are nearly exclusive to codon 61. Here, we compared the melanoma susceptibility of an N-RasQ61R knock-in allele to similarly designed K-RasG12D and N-RasG12D alleles. With concomitant p16INK4a inactivation, K-RasG12D or N-RasQ61R expression efficiently promoted melanoma in vivo, whereas N-RasG12D did not. Additionally, N-RasQ61R mutation potently cooperated with Lkb1/Stk11 loss to induce highly metastatic disease. Functional comparisons of N-RasQ61R and N-RasG12D revealed little difference in the ability of these proteins to engage PI3K or RAF. Instead, N-RasQ61R showed enhanced nucleotide binding, decreased intrinsic GTPase activity and increased stability when compared to N-RasG12D. This work identifies a faithful model of human N-RAS mutant melanoma, and suggests that the increased melanomagenecity of N-RasQ61R over N-RasG12D is due to heightened abundance of the active, GTP-bound form rather than differences in the engagement of downstream effector pathways. PMID:25252692

  4. Comparative Mitogenomics of Plant Bugs (Hemiptera: Miridae): Identifying the AGG Codon Reassignments between Serine and Lysine

    PubMed Central

    Wang, Pei; Song, Fan; Cai, Wanzhi

    2014-01-01

    Insect mitochondrial genomes are very important to understand the molecular evolution as well as for phylogenetic and phylogeographic studies of the insects. The Miridae are the largest family of Heteroptera encompassing more than 11,000 described species and of great economic importance. For better understanding the diversity and the evolution of plant bugs, we sequence five new mitochondrial genomes and present the first comparative analysis of nine mitochondrial genomes of mirids available to date. Our result showed that gene content, gene arrangement, base composition and sequences of mitochondrial transcription termination factor were conserved in plant bugs. Intra-genus species shared more conserved genomic characteristics, such as nucleotide and amino acid composition of protein-coding genes, secondary structure and anticodon mutations of tRNAs, and non-coding sequences. Control region possessed several distinct characteristics, including: variable size, abundant tandem repetitions, and intra-genus conservation; and was useful in evolutionary and population genetic studies. The AGG codon reassignments were investigated between serine and lysine in the genera Adelphocoris and other cimicomorphans. Our analysis revealed correlated evolution between reassignments of the AGG codon and specific point mutations at the antidocons of tRNALys and tRNASer(AGN). Phylogenetic analysis indicated that mitochondrial genome sequences were useful in resolving family level relationship of Cimicomorpha. Comparative evolutionary analysis of plant bug mitochondrial genomes allowed the identification of previously neglected coding genes or non-coding regions as potential molecular markers. The finding of the AGG codon reassignments between serine and lysine indicated the parallel evolution of the genetic code in Hemiptera mitochondrial genomes. PMID:24988409

  5. Influence of TP53 Codon 72 Polymorphism Alone or in Combination with HDM2 SNP309 on Human Infertility and IVF Outcome.

    PubMed

    Chan, Ying; Zhu, Baosheng; Jiang, Hongguo; Zhang, Jinman; Luo, Ying; Tang, Wenru

    2016-01-01

    To evaluate the association of the TP53 codon 72 (rs 1042522) alone or in combination with HDM2 SNP309 (rs 2279744) polymorphisms with human infertility and IVF outcome, we collected 1450 infertility women undergoing their first controlled ovarian stimulation for IVF treatment and 250 fertile controls in the case-control study. Frequencies, distribution, interaction of genes, and correlation with infertility and IVF outcome of clinical pregnancy were analyzed. We found a statistically significant association between TP53 codon 72 polymorphism and IVF outcome (52.10% vs. 47.40%, OR = 0.83, 95%CI:0.71-0.96, p = 0.01). No significant difference was shown between TP53 codon 72, HDM2 SNP309 polymorphisms, human infertility, and between the combination of two genes polymorphisms and the clinical pregnancy outcome of IVF. The data support C allele as a protective factor for IVF pregnancy outcome. Further researches should be focused on the mechanism of these associations.

  6. Effect of KRAS codon13 mutations in patients with advanced colorectal cancer (advanced CRC) under oxaliplatin containing chemotherapy. Results from a translational study of the AIO colorectal study group

    PubMed Central

    2012-01-01

    Background To evaluate the value of KRAS codon 13 mutations in patients with advanced colorectal cancer (advanced CRC) treated with oxaliplatin and fluoropyrimidines. Methods Tumor specimens from 201 patients with advanced CRC from a randomized, phase III trial comparing oxaliplatin/5-FU vs. oxaliplatin/capecitabine were retrospectively analyzed for KRAS mutations. Mutation data were correlated to response data (Overall response rate, ORR), progression-free survival (PFS) and overall survival (OS). Results 201 patients were analysed for KRAS mutation (61.2% males; mean age 64.2 ± 8.6 years). KRAS mutations were identified in 36.3% of tumors (28.8% in codon 12, 7.4% in codon 13). The ORR in codon 13 patients compared to codon 12 and wild type patients was significantly lower (p = 0.008). There was a tendency for a better overall survival in KRAS wild type patients compared to mutants (p = 0.085). PFS in all patients was not different in the three KRAS genetic groups (p = 0.72). However, we found a marked difference in PFS between patients with codon 12 and 13 mutant tumors treated with infusional 5-FU versus capecitabine based regimens. Conclusions Our data suggest that the type of KRAS mutation may be of clinical relevance under oxaliplatin combination chemotherapies without the addition of monoclonal antibodies in particular when overall response rates are important. Trial registration number 2002-04-017 PMID:22876876

  7. Ribosomal scanning past the primary initiation codon as a mechanism for expression of CTL epitopes encoded in alternative reading frames

    PubMed Central

    1996-01-01

    An increasing amount of evidence has shown that epitopes restricted to MHC class I molecules and recognized by CTL need not be encoded in a primary open reading frame (ORF). Such epitopes have been demonstrated after stop codons, in alternative reading frames (RF) and within introns. We have used a series of frameshifts (FS) introduced into the Influenza A/PR/8 /34 nucleoprotein (NP) gene to confirm the previous in vitro observations of cryptic epitope expression, and show that they are sufficiently expressed to prime immune responses in vivo. This presentation is not due to sub-dominant epitopes, transcription from cryptic promoters beyond the point of the FS, or internal initiation of translation. By introducing additional mutations to the construct exhibiting the most potent presentation, we have identified initiation codon readthrough (termed scanthrough here, where the scanning ribosome bypasses the conventional initiation codon, initiating translation further downstream) as the likely mechanism of epitope production. Further mutational analysis demonstrated that, while it should operate during the expression of wild-type (WT) protein, scanthrough does not provide a major source of processing substrate in our system. These findings suggest (i) that the full array of self- and pathogen-derived epitopes available during thymic selection and infection has not been fully appreciated and (ii) that cryptic epitope expression should be considered when the specificity of a CTL response cannot be identified or in therapeutic situations when conventional CTL targets are limited, as may be the case with latent viral infections and transformed cells. Finally, initiation codon readthrough provides a plausible explanation for the presentation of exocytic proteins by MHC class I molecules. PMID:8879204

  8. RNA editing makes mistakes in plant mitochondria: editing loses sense in transcripts of a rps19 pseudogene and in creating stop codons in coxI and rps3 mRNAs of Oenothera.

    PubMed Central

    Schuster, W; Brennicke, A

    1991-01-01

    An intact gene for the ribosomal protein S19 (rps19) is absent from Oenothera mitochondria. The conserved rps19 reading frame found in the mitochondrial genome is interrupted by a termination codon. This rps19 pseudogene is cotranscribed with the downstream rps3 gene and is edited on both sides of the translational stop. Editing, however, changes the amino acid sequence at positions that were well conserved before editing. Other strange editings create translational stops in open reading frames coding for functional proteins. In coxI and rps3 mRNAs CGA codons are edited to UGA stop codons only five and three codons, respectively, downstream to the initiation codon. These aberrant editings in essential open reading frames and in the rps19 pseudogene appear to have been shifted to these positions from other editing sites. These observations suggest a requirement for a continuous evolutionary constraint on the editing specificities in plant mitochondria. Images PMID:1762921

  9. Nasal variation in relation to high-altitude adaptations among Tibetans and Andeans.

    PubMed

    Butaric, Lauren N; Klocke, Ross P

    2018-05-01

    High-altitude (>2500 m) populations face several pressures, including hypoxia and cold-dry air, resulting in greater respiratory demand to obtain more oxygen and condition inspired air. While cardiovascular and pulmonary adaptations to high-altitude hypoxia have been extensively studied, adaptations of upper-respiratory structures, e.g., nasal cavity, remain untested. This study investigates whether nasal morphology presents adaptations to hypoxic (larger noses) and/or cold-dry (tall/narrow noses) conditions among high-altitude samples. CT scans of two high- and four low-altitude samples from diverse climates were collected (n = 130): high-altitude Tibetans and Peruvians; low-altitude Peruvians, Southern Chinese (temperate), Mongolian-Buriats (cold-dry), and Southeast Asians (hot-wet). Facial and nasal distances were calculated from 3D landmarks placed on digitally-modeled crania. Temperature, precipitation, and barometric pressure data were also obtained. Principal components analysis and analyses of variance primarily indicate size-related differences among the cold-dry (Mongolian-Buriats) and hot-wet (Southeast Asians) adapted groups. Two-block partial least squares (PLS) analysis show weak relationships between size-standardized nasal dimensions and environmental variables. However, among PLS1 (85.90% of covariance), Tibetans display relatively larger nasal cavities related to lower temperatures and barometric pressure; regression analyses also indicate high-altitude Tibetans possess relatively larger internal nasal breadths and heights for their facial size. Overall, nasal differences relate to climate among the cold-dry and hot-wet groups. Specific nasal adaptations were not identified among either Peruvian group, perhaps due to their relatively recent migration history and population structure. However, high-altitude Tibetans seem to exhibit a compromise in nasal morphology, serving in increased oxygen uptake, and air-conditioning processes. © 2018

  10. Human tRNA(Lys3)(UUU) is pre-structured by natural modifications for cognate and wobble codon binding through keto-enol tautomerism.

    PubMed

    Vendeix, Franck A P; Murphy, Frank V; Cantara, William A; Leszczyńska, Grażyna; Gustilo, Estella M; Sproat, Brian; Malkiewicz, Andrzej; Agris, Paul F

    2012-03-02

    Human tRNA(Lys3)(UUU) (htRNA(Lys3)(UUU)) decodes the lysine codons AAA and AAG during translation and also plays a crucial role as the primer for HIV-1 (human immunodeficiency virus type 1) reverse transcription. The posttranscriptional modifications 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U(34)), 2-methylthio-N(6)-threonylcarbamoyladenosine (ms(2)t(6)A(37)), and pseudouridine (Ψ(39)) in the tRNA's anticodon domain are critical for ribosomal binding and HIV-1 reverse transcription. To understand the importance of modified nucleoside contributions, we determined the structure and function of this tRNA's anticodon stem and loop (ASL) domain with these modifications at positions 34, 37, and 39, respectively (hASL(Lys3)(UUU)-mcm(5)s(2)U(34);ms(2)t(6)A(37);Ψ(39)). Ribosome binding assays in vitro revealed that the hASL(Lys3)(UUU)-mcm(5)s(2)U(34);ms(2)t(6)A(37);Ψ(39) bound AAA and AAG codons, whereas binding of the unmodified ASL(Lys3)(UUU) was barely detectable. The UV hyperchromicity, the circular dichroism, and the structural analyses indicated that Ψ(39) enhanced the thermodynamic stability of the ASL through base stacking while ms(2)t(6)A(37) restrained the anticodon to adopt an open loop conformation that is required for ribosomal binding. The NMR-restrained molecular-dynamics-derived solution structure revealed that the modifications provided an open, ordered loop for codon binding. The crystal structures of the hASL(Lys3)(UUU)-mcm(5)s(2)U(34);ms(2)t(6)A(37);Ψ(39) bound to the 30S ribosomal subunit with each codon in the A site showed that the modified nucleotides mcm(5)s(2)U(34) and ms(2)t(6)A(37) participate in the stability of the anticodon-codon interaction. Importantly, the mcm(5)s(2)U(34)·G(3) wobble base pair is in the Watson-Crick geometry, requiring unusual hydrogen bonding to G in which mcm(5)s(2)U(34) must shift from the keto to the enol form. The results unambiguously demonstrate that modifications pre-structure the anticodon as a key

  11. Structural insights into eRF3 and stop codon recognition by eRF1

    PubMed Central

    Cheng, Zhihong; Saito, Kazuki; Pisarev, Andrey V.; Wada, Miki; Pisareva, Vera P.; Pestova, Tatyana V.; Gajda, Michal; Round, Adam; Kong, Chunguang; Lim, Mengkiat; Nakamura, Yoshikazu; Svergun, Dmitri I.; Ito, Koichi; Song, Haiwei

    2009-01-01

    Eukaryotic translation termination is mediated by two interacting release factors, eRF1 and eRF3, which act cooperatively to ensure efficient stop codon recognition and fast polypeptide release. The crystal structures of human and Schizosaccharomyces pombe full-length eRF1 in complex with eRF3 lacking the GTPase domain revealed details of the interaction between these two factors and marked conformational changes in eRF1 that occur upon binding to eRF3, leading eRF1 to resemble a tRNA molecule. Small-angle X-ray scattering analysis of the eRF1/eRF3/GTP complex suggested that eRF1's M domain contacts eRF3's GTPase domain. Consistently, mutation of Arg192, which is predicted to come in close contact with the switch regions of eRF3, revealed its important role for eRF1's stimulatory effect on eRF3's GTPase activity. An ATP molecule used as a crystallization additive was bound in eRF1's putative decoding area. Mutational analysis of the ATP-binding site shed light on the mechanism of stop codon recognition by eRF1. PMID:19417105

  12. Two cloned β thalassemia genes are associated with amber mutations at codon 39

    PubMed Central

    Pergolizzi, Robert; Spritz, Richard A.; Spence, Sally; Goossens, Michel; Kan, Yuet Wai; Bank, Arthur

    1981-01-01

    Two β globin genes from patients with the β+ thalassemia phenotype have been cloned and sequenced. A single nucleotide change from CAG to TAG (an amber mutation) at codon 39 is the only difference from normal in both genes analyzed. The results are consistent with the assumption that both patients are doubly heterozygous for β+ and β° thalassemia, and that we have isolated and analyzed the β° thalassemia gene. Images PMID:6278453

  13. Codon optimization of antigen coding sequences improves the immune potential of DNA vaccines against avian influenza virus H5N1 in mice and chickens.

    PubMed

    Stachyra, Anna; Redkiewicz, Patrycja; Kosson, Piotr; Protasiuk, Anna; Góra-Sochacka, Anna; Kudla, Grzegorz; Sirko, Agnieszka

    2016-08-26

    Highly pathogenic avian influenza viruses are a serious threat to domestic poultry and can be a source of new human pandemic and annual influenza strains. Vaccination is the main strategy of protection against influenza, thus new generation vaccines, including DNA vaccines, are needed. One promising approach for enhancing the immunogenicity of a DNA vaccine is to maximize its expression in the immunized host. The immunogenicity of three variants of a DNA vaccine encoding hemagglutinin (HA) from the avian influenza virus A/swan/Poland/305-135V08/2006 (H5N1) was compared in two animal models, mice (BALB/c) and chickens (broilers and layers). One variant encoded the wild type HA while the other two encoded HA without proteolytic site between HA1 and HA2 subunits and differed in usage of synonymous codons. One of them was enriched for codons preferentially used in chicken genes, while in the other modified variant the third position of codons was occupied in almost 100 % by G or C nucleotides. The variant of the DNA vaccine containing almost 100 % of the GC content in the third position of codons stimulated strongest immune response in two animal models, mice and chickens. These results indicate that such modification can improve not only gene expression but also immunogenicity of DNA vaccine. Enhancement of the GC content in the third position of the codon might be a good strategy for development of a variant of a DNA vaccine against influenza that could be highly effective in distant hosts, such as birds and mammals, including humans.

  14. Designed Reduction of Streptococcus pneumoniae Pathogenicity via Synthetic Changes in Virulence Factor Codon-pair Bias

    PubMed Central

    Coleman, J. Robert; Papamichail, Dimitris; Yano, Masahide; García-Suárez, María del Mar

    2011-01-01

    In this study, we used a previously described method of controlling gene expression with computer-based gene design and de novo DNA synthesis to attenuate the virulence of Streptococcus pneumoniae. We produced 2 S. pneumoniae serotype 3 (SP3) strains in which the pneumolysin gene (ply) was recoded with underrepresented codon pairs while retaining its amino acid sequence and determined their ply expression and pneumolysin production in vitro and their virulence in a mouse pulmonary infection model. Expression of ply and production of pneumolysin of the recoded SP3 strains were decreased, and the recoded SP3 strains were less virulent in mice than the wild-type SP3 strain or a Δply SP3 strain. Further studies showed that the least virulent recoded strain induced a markedly reduced inflammatory response in the lungs compared with the wild-type or Δply strain. These findings suggest that reducing pneumococcal virulence gene expression by altering codon-pair bias could hold promise for rational design of live-attenuated pneumococcal vaccines. PMID:21343143

  15. Adaptation to Climate Change: A Comparative Analysis of Modeling Methods for Heat-Related Mortality

    PubMed Central

    Hondula, David M.; Bunker, Aditi; Ibarreta, Dolores; Liu, Junguo; Zhang, Xinxin; Sauerborn, Rainer

    2017-01-01

    Background: Multiple methods are employed for modeling adaptation when projecting the impact of climate change on heat-related mortality. The sensitivity of impacts to each is unknown because they have never been systematically compared. In addition, little is known about the relative sensitivity of impacts to “adaptation uncertainty” (i.e., the inclusion/exclusion of adaptation modeling) relative to using multiple climate models and emissions scenarios. Objectives: This study had three aims: a) Compare the range in projected impacts that arises from using different adaptation modeling methods; b) compare the range in impacts that arises from adaptation uncertainty with ranges from using multiple climate models and emissions scenarios; c) recommend modeling method(s) to use in future impact assessments. Methods: We estimated impacts for 2070–2099 for 14 European cities, applying six different methods for modeling adaptation; we also estimated impacts with five climate models run under two emissions scenarios to explore the relative effects of climate modeling and emissions uncertainty. Results: The range of the difference (percent) in impacts between including and excluding adaptation, irrespective of climate modeling and emissions uncertainty, can be as low as 28% with one method and up to 103% with another (mean across 14 cities). In 13 of 14 cities, the ranges in projected impacts due to adaptation uncertainty are larger than those associated with climate modeling and emissions uncertainty. Conclusions: Researchers should carefully consider how to model adaptation because it is a source of uncertainty that can be greater than the uncertainty in emissions and climate modeling. We recommend absolute threshold shifts and reductions in slope. https://doi.org/10.1289/EHP634 PMID:28885979

  16. Adaptation to Climate Change: A Comparative Analysis of Modeling Methods for Heat-Related Mortality.

    PubMed

    Gosling, Simon N; Hondula, David M; Bunker, Aditi; Ibarreta, Dolores; Liu, Junguo; Zhang, Xinxin; Sauerborn, Rainer

    2017-08-16

    Multiple methods are employed for modeling adaptation when projecting the impact of climate change on heat-related mortality. The sensitivity of impacts to each is unknown because they have never been systematically compared. In addition, little is known about the relative sensitivity of impacts to "adaptation uncertainty" (i.e., the inclusion/exclusion of adaptation modeling) relative to using multiple climate models and emissions scenarios. This study had three aims: a ) Compare the range in projected impacts that arises from using different adaptation modeling methods; b ) compare the range in impacts that arises from adaptation uncertainty with ranges from using multiple climate models and emissions scenarios; c ) recommend modeling method(s) to use in future impact assessments. We estimated impacts for 2070-2099 for 14 European cities, applying six different methods for modeling adaptation; we also estimated impacts with five climate models run under two emissions scenarios to explore the relative effects of climate modeling and emissions uncertainty. The range of the difference (percent) in impacts between including and excluding adaptation, irrespective of climate modeling and emissions uncertainty, can be as low as 28% with one method and up to 103% with another (mean across 14 cities). In 13 of 14 cities, the ranges in projected impacts due to adaptation uncertainty are larger than those associated with climate modeling and emissions uncertainty. Researchers should carefully consider how to model adaptation because it is a source of uncertainty that can be greater than the uncertainty in emissions and climate modeling. We recommend absolute threshold shifts and reductions in slope. https://doi.org/10.1289/EHP634.

  17. Regulation of translation by upstream translation initiation codons of surfactant protein A1 splice variants

    PubMed Central

    Tsotakos, Nikolaos; Silveyra, Patricia; Lin, Zhenwu; Thomas, Neal; Vaid, Mudit

    2014-01-01

    Surfactant protein A (SP-A), a molecule with roles in lung innate immunity and surfactant-related functions, is encoded by two genes in humans: SFTPA1 (SP-A1) and SFTPA2 (SP-A2). The mRNAs from these genes differ in their 5′-untranslated regions (5′-UTR) due to differential splicing. The 5′-UTR variant ACD′ is exclusively found in transcripts of SP-A1, but not in those of SP-A2. Its unique exon C contains two upstream AUG codons (uAUGs) that may affect SP-A1 translation efficiency. The first uAUG (u1) is in frame with the primary start codon (p), but the second one (u2) is not. The purpose of this study was to assess the impact of uAUGs on SP-A1 expression. We employed RT-qPCR to determine the presence of exon C-containing SP-A1 transcripts in human RNA samples. We also used in vitro techniques including mutagenesis, reporter assays, and toeprinting analysis, as well as in silico analyses to determine the role of uAUGs. Exon C-containing mRNA is present in most human lung tissue samples and its expression can, under certain conditions, be regulated by factors such as dexamethasone or endotoxin. Mutating uAUGs resulted in increased luciferase activity. The mature protein size was not affected by the uAUGs, as shown by a combination of toeprint and in silico analysis for Kozak sequence, secondary structure, and signal peptide and in vitro translation in the presence of microsomes. In conclusion, alternative splicing may introduce uAUGs in SP-A1 transcripts, which in turn negatively affect SP-A1 translation, possibly affecting SP-A1/SP-A2 ratio, with potential for clinical implication. PMID:25326576

  18. The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Michele A; Lauro, Federico M; Williams, Timothy J

    2009-01-01

    Psychrophilic archaea are abundant and perform critical roles throughout the Earth's expansive cold biosphere. Here we report the first complete genome sequence for a psychrophilic methanogenic archaeon, Methanococcoides burtonii. The genome sequence was manually annotated including the use of a five-tiered evidence rating (ER) system that ranked annotations from ER1 (gene product experimentally characterized from the parent organism) to ER5 (hypothetical gene product) to provide a rapid means of assessing the certainty of gene function predictions. The genome is characterized by a higher level of aberrant sequence composition (51%) than any other archaeon. In comparison to hyper/thermophilic archaea, which aremore » subject to selection of synonymous codon usage, M. burtonii has evolved cold adaptation through a genomic capacity to accommodate highly skewed amino-acid content, while retaining codon usage in common with its mesophilic Methanosarcina cousins. Polysaccharide biosynthesis genes comprise at least 3.3% of protein coding genes in the genome, and Cell wall, membrane, envelope biogenesis COG genes are overrepresented. Likewise, signal transduction (COG category T) genes are overrepresented and M. burtonii has a high 'IQ' (a measure of adaptive potential) compared to many methanogens. Numerous genes in these two overrepresented COG categories appear to have been acquired from - and -Proteobacteria, as do specific genes involved in central metabolism such as a novel B form of aconitase. Transposases also distinguish M. burtonii from other archaea, and their genomic characteristics indicate they have an important role in evolving the M. burtonii genome. Our study reveals a capacity for this model psychrophile to evolve through genome plasticity (including nucleotide skew, horizontal gene transfer and transposase activity) that enables adaptation to the cold, and to the biological and physical changes that have occurred over the last several thousand years

  19. The i6A37 tRNA modification is essential for proper decoding of UUX-Leucine codons during rpoS and iraP translation

    PubMed Central

    Aubee, Joseph I.; Olu, Morenike

    2016-01-01

    The translation of rpoS (σS), the general stress/stationary phase sigma factor, is tightly regulated at the post-transcriptional level by several factors via mechanisms that are not clearly defined. One of these factors is MiaA, the enzyme necessary for the first step in the N6-isopentyl-2-thiomethyladenosinemethyladenosine 37 (ms2i6A37) tRNA modification. We tested the hypothesis that an elevated UUX-Leucine/total leucine codon ratio can be used to identify transcripts whose translation would be sensitive to loss of the MiaA-dependent modification. We identified iraP as another candidate MiaA-sensitive gene, based on the UUX-Leucine/total leucine codon ratio. An iraP-lacZ fusion was significantly decreased in the absence of MiaA, consistent with our predictive model. To determine the role of MiaA in UUX-Leucine decoding in rpoS and iraP, we measured β-galactosidase-specific activity of miaA− rpoS and iraP translational fusions upon overexpression of leucine tRNAs. We observed suppression of the MiaA effect on rpoS, and not iraP, via overexpression of tRNALeuX but not tRNALeuZ. We also tested the hypothesis that the MiaA requirement for rpoS and iraP translation is due to decoding of UUX-Leucine codons within the rpoS and iraP transcripts, respectively. We observed a partial suppression of the MiaA requirement for rpoS and iraP translational fusions containing one or both UUX-Leucine codons removed. Taken together, this suggests that MiaA is necessary for rpoS and iraP translation through proper decoding of UUX-Leucine codons and that rpoS and iraP mRNAs are both modification tunable transcripts (MoTTs) via the presence of the modification. PMID:26979278

  20. Adaptation of orientation vectors of otolith-related central vestibular neurons to gravity.

    PubMed

    Eron, Julia N; Cohen, Bernard; Raphan, Theodore; Yakushin, Sergei B

    2008-09-01

    Behavioral experiments indicate that central pathways that process otolith-ocular and perceptual information have adaptive capabilities. Because polarization vectors of otolith afferents are directly related to the electro-mechanical properties of the hair cell bundle, it is unlikely that they change their direction of excitation. This indicates that the adaptation must take place in central pathways. Here we demonstrate for the first time that otolith polarization vectors of canal-otolith convergent neurons in the vestibular nuclei have adaptive capability. A total of 10 vestibular-only and vestibular-plus-saccade neurons were recorded extracellularly in two monkeys before and after they were in side-down positions for 2 h. The spatial characteristics of the otolith input were determined from the response vector orientation (RVO), which is the projection of the otolith polarization vector, onto the head horizontal plane. The RVOs had no specific orientation before animals were in side-down positions but moved toward the gravitational axis after the animals were tilted for extended periods. Vector reorientations varied from 0 to 109 degrees and were linearly related to the original deviation of the RVOs from gravity in the position of adaptation. Such reorientation of central polarization vectors could provide the basis for changes in perception and eye movements related to prolonged head tilts relative to gravity or in microgravity.

  1. Molecular mimicry of human tRNALys anti-codon domain by HIV-1 RNA genome facilitates tRNA primer annealing

    PubMed Central

    Jones, Christopher P.; Saadatmand, Jenan; Kleiman, Lawrence; Musier-Forsyth, Karin

    2013-01-01

    The primer for initiating reverse transcription in human immunodeficiency virus type 1 (HIV-1) is tRNALys3. Host cell tRNALys is selectively packaged into HIV-1 through a specific interaction between the major tRNALys-binding protein, human lysyl-tRNA synthetase (hLysRS), and the viral proteins Gag and GagPol. Annealing of the tRNA primer onto the complementary primer-binding site (PBS) in viral RNA is mediated by the nucleocapsid domain of Gag. The mechanism by which tRNALys3 is targeted to the PBS and released from hLysRS prior to annealing is unknown. Here, we show that hLysRS specifically binds to a tRNA anti-codon-like element (TLE) in the HIV-1 genome, which mimics the anti-codon loop of tRNALys and is located proximal to the PBS. Mutation of the U-rich sequence within the TLE attenuates binding of hLysRS in vitro and reduces the amount of annealed tRNALys3 in virions. Thus, LysRS binds specifically to the TLE, which is part of a larger LysRS binding domain in the viral RNA that includes elements of the Psi packaging signal. Our results suggest that HIV-1 uses molecular mimicry of the anti-codon of tRNALys to increase the efficiency of tRNALys3 annealing to viral RNA. PMID:23264568

  2. Preschooler Sleep Patterns Related to Cognitive and Adaptive Functioning

    ERIC Educational Resources Information Center

    Keefe-Cooperman, Kathleen; Brady-Amoon, Peggy

    2014-01-01

    Research Findings: Preschoolers' sleep patterns were examined related to cognitive and adaptive functioning. The sample consisted of 874 typically developing preschool children with a mean age of 40.01 months. Parent/caregiver reports of children's sleep pattern factors, Stanford-Binet 5 intelligence scale scores, and Behavior Assessment System…

  3. Highly Predictive Reprogramming of tRNA Modifications Is Linked to Selective Expression of Codon-Biased Genes

    PubMed Central

    2016-01-01

    Cells respond to stress by controlling gene expression at several levels, with little known about the role of translation. Here, we demonstrate a coordinated translational stress response system involving stress-specific reprogramming of tRNA wobble modifications that leads to selective translation of codon-biased mRNAs representing different classes of critical response proteins. In budding yeast exposed to four oxidants and five alkylating agents, tRNA modification patterns accurately distinguished among chemically similar stressors, with 14 modified ribonucleosides forming the basis for a data-driven model that predicts toxicant chemistry with >80% sensitivity and specificity. tRNA modification subpatterns also distinguish SN1 from SN2 alkylating agents, with SN2-induced increases in m3C in tRNA mechanistically linked to selective translation of threonine-rich membrane proteins from genes enriched with ACC and ACT degenerate codons for threonine. These results establish tRNA modifications as predictive biomarkers of exposure and illustrate a novel regulatory mechanism for translational control of cell stress response. PMID:25772370

  4. Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis)

    PubMed Central

    BANERJI, JULIAN

    2015-01-01

    The present treatment of childhood T-cell leukemias involves the systemic administration of prokary-otic L-asparaginase (ASNase), which depletes plasma Asparagine (Asn) and inhibits protein synthesis. The mechanism of therapeutic action of ASNase is poorly understood, as are the etiologies of the side-effects incurred by treatment. Protein expression from genes bearing Asn homopolymeric coding regions (N-hCR) may be particularly susceptible to Asn level fluctuation. In mammals, N-hCR are rare, short and conserved. In humans, misfunctions of genes encoding N-hCR are associated with a cluster of disorders that mimic ASNase therapy side-effects which include impaired glycemic control, dislipidemia, pancreatitis, compromised vascular integrity, and neurological dysfunction. This paper proposes that dysregulation of Asn homeostasis, potentially even by ASNase produced by the microbiome, may contribute to several clinically important syndromes by altering expression of N-hCR bearing genes. By altering amino acid abundance and modulating ribosome translocation rates at codon repeats, the microbiomic environment may contribute to genome decoding and to shaping the proteome. We suggest that impaired translation at poly Asn codons elevates diabetes risk and severity. PMID:26178806

  5. Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis).

    PubMed

    Banerji, Julian

    2015-09-01

    The present treatment of childhood T-cell leukemias involves the systemic administration of prokaryotic L-asparaginase (ASNase), which depletes plasma Asparagine (Asn) and inhibits protein synthesis. The mechanism of therapeutic action of ASNase is poorly understood, as are the etiologies of the side-effects incurred by treatment. Protein expression from genes bearing Asn homopolymeric coding regions (N-hCR) may be particularly susceptible to Asn level fluctuation. In mammals, N-hCR are rare, short and conserved. In humans, misfunctions of genes encoding N-hCR are associated with a cluster of disorders that mimic ASNase therapy side-effects which include impaired glycemic control, dislipidemia, pancreatitis, compromised vascular integrity, and neurological dysfunction. This paper proposes that dysregulation of Asn homeostasis, potentially even by ASNase produced by the microbiome, may contribute to several clinically important syndromes by altering expression of N-hCR bearing genes. By altering amino acid abundance and modulating ribosome translocation rates at codon repeats, the microbiomic environment may contribute to genome decoding and to shaping the proteome. We suggest that impaired translation at poly Asn codons elevates diabetes risk and severity.

  6. [Association between HRE-2 gene polymorphism at codon 655 and genetic susceptibility of colorectal cancer].

    PubMed

    Liang, Xia; Zhang, Yong-jing; Liu, Bing; Ni, Qin; Jin, Ming-juan; Ma, Xin-yuan; Yao, Kai-yan; Li, Qi-long; Chen, Kun

    2009-06-01

    To explore the distribution of HER-2 genetic polymorphism at codon 655 and its association with susceptibility of colorectal cancer in Chinese. A population-based case-control study was carried out. 292 patients with colorectal cancer and 842 healthy controls were interviewed. Meanwhile, the genetic polymorphism of HRE-2 was detected using polymerase chain reaction-restriction fragment length polymorphism. The frequencies of Ile/Val+Val/Val genotypes and Val allele were both higher in cases (25.34% and 13.36%) than those in controls (18.41% and 9.74%) (P<0.05). Compared with Ile/Ile genotype, Ile/Val+Val/Val genotypes were significantly associated with colorectal cancer [ORadjusted=1.54, 95% CI: 1.11-2.14]. The adjusted odds ratio of interactions between this polymorphism and smoking, alcohol drinking were 1.43 (95%CI: 0.88-2.30) and 1.29 (95%CI: 0.73-2.29), respectively. The present findings suggest that HER-2 genetic polymorphism at codon 655 may be associated with the risk of colorectal cancer in Chinese. In addition, there are no interactions between this polymorphism and smoking, alcohol drinking, respectively.

  7. Adaptive management of watersheds and related resources

    USGS Publications Warehouse

    Williams, Byron K.

    2009-01-01

    The concept of learning about natural resources through the practice of management has been around for several decades and by now is associated with the term adaptive management. The objectives of this paper are to offer a framework for adaptive management that includes an operational definition, a description of conditions in which it can be usefully applied, and a systematic approach to its application. Adaptive decisionmaking is described as iterative, learning-based management in two phases, each with its own mechanisms for feedback and adaptation. The linkages between traditional experimental science and adaptive management are discussed.

  8. Molecular screening of the Hbs Constant Spring (codon 142, TAA>CAA, α2) and Paksé (codon 142, TAA>TAT, α2) mutations in Thailand.

    PubMed

    Pichanun, Dalad; Munkongdee, Thongperm; Klamchuen, Sumonmaln; Butthep, Punnee; Winichagoon, Pranee; Fucharoen, Suthat; Svasti, Saovaros

    2010-01-01

    Hb Constant Spring [Hb CS, α142(H19)Term] and Hb Paksé [α142(H19)Term] occur from the mutation in the termination codon of the α2-globin gene, TAA>CAA (→Gln) and TAA>TAT (→Tyr), respectively. They are the most common nondeletional α-thalassemia (α-thal) variants causing Hb H disease in Southeast Asia. In this study, 587 cord blood samples were screened for the Hb CS and Hb Paksé mutations by a dot-blot hybridization technique using oligonucleotide probes specific for each mutation. The results showed that the prevalence of Hb CS and Hb Paksé in Central Thailand are 5.80 and 0.51%, respectively, which is in concordance with the results from previous studies.

  9. Mutagenesis of the three bases preceding the start codon of the beta-galactosidase mRNA and its effect on translation in Escherichia coli.

    PubMed Central

    Hui, A; Hayflick, J; Dinkelspiel, K; de Boer, H A

    1984-01-01

    The effect on the translation efficiency of various mutations in the three bases (the -1 triplet) that precede the AUG start codon of the beta-galactosidase mRNA in Escherichia coli was studied. Of the 39 mutants examined, the level of expression varies over a 20-fold range. The most favorable combinations of bases in the -1 triplet are UAU and CUU. The expression levels in the mutants with UUC, UCA or AGG as the -1 triplet are 20-fold lower than those with UAU or CUU. In general, a U residue immediately preceding the start codon is more favorable for expression than any other base; furthermore, an A residue at the -2 position enhances the translation efficiency in most instances. In both cases, however, the degree of enhancement depends on its context, i.e. the neighboring bases. Although the rules derived from this study are complex, the results show that mutations in any of the three bases preceding the start codon can strongly affect the translational efficiency of the beta-galactosidase mRNA. PMID:6425057

  10. Individual and age-related variation in chromatic contrast adaptation

    PubMed Central

    Elliott, Sarah L.; Werner, John S.; Webster, Michael A.

    2012-01-01

    Precortical color channels are tuned primarily to the LvsM (stimulation of L and M cones varied, but S cone stimulation held constant) or SvsLM (stimulation of S cones varied, but L and M cone stimulation held constant) cone-opponent (cardinal) axes, but appear elaborated in the cortex to form higher-order mechanisms tuned to both cardinal and intermediate directions. One source of evidence for these higher-order mechanisms has been the selectivity of color contrast adaptation for noncardinal directions, yet the degree of this selectivity has varied widely across the small sample of observers tested in previous studies. This study explored the possible bases for this variation, and in particular tested whether it reflected age-related changes in the distribution or tuning of color mechanisms. Observers included 15 younger (18–22 years of age) and 15 older individuals (66–82), who adapted to temporal modulations along one of four chromatic axes (two cardinal and two intermediate axes) and then matched the hue and contrast of test stimuli lying along eight different directions in the equiluminant plane. All observers exhibited aftereffects that were selective for both the cardinal and intermediate directions, although selectivity was weaker for the intermediate axes. The degree of selectivity increased with the magnitude of adaptation for all axes, and thus adaptation strength alone may account for much of the variance in selectivity among observers. Older observers showed a stronger magnitude of adaptation thus, surprisingly, more conspicuous evidence for higher-order mechanisms. For both age groups the aftereffects were well predicted by response changes in chromatic channels with linear spectral sensitivities, and there was no evidence for weakened channel tuning with aging. The results suggest that higher-order mechanisms may become more exposed in observers or conditions in which the strength of adaptation is greater, and that both chromatic contrast

  11. Unmasking Hb Paksé (codon 142, TAA>TAT, α2) and its combinations in patients also carrying Hb Constant Spring (codon 142, TAA>CAA, α2) in northern Thailand.

    PubMed

    Pornprasert, Sakorn; Panyasai, Sitthichai; Treesuwan, Kallayanee

    2012-01-01

    The incidence of Hb Paksé (codon 142, TAA>TAT, α2) might have been underestimated due to misidentifying some cases as Hb Constant Spring (Hb CS, codon 142, TAA>CAA, α2) since both abnormal hemoglobins (Hbs) migrate to the same position on Hb electrophoresis or chromatography. Multiplex asymmetric allele-specific polymerase chain reaction (PCR) for identification of Hb CS and Hb Paksé, and a real-time PCR (ReTi-PCR) with SYBR Green1 high resolution melting (HRM) analysis, for detection of the α-thalassemia-1 (α-thal-1) Southeast Asian (- -(SEA)/) type deletion, were performed on 114 blood samples collected from subjects who lived in northern Thailand. These samples were previously identified as carrying Hb CS by capillary electrophoresis (CE) or high performance liquid chromatography (HPLC). Five out of 114 (4.4%) samples were found to carry Hb Paksé with four different genotypes including Hb Paksé trait, compound Hb CS/Hb Paksé, Hb H-Hb Paksé disease and Hb H-Hb Paksé-Hb E disease. These results suggested that Hb Paksé and its various combinations can be misidentified as Hb CS. Although the clinical symptoms of Hb Paksé and Hb CS are similar, to prevent erroneous epidemiological data on Hb CS as well as underestimating the prevalence of Hb Paksé in northern Thailand, DNA analysis is recommended to be performed in all cases when peaks of Hb CS/Hb Paksé are detected on CE or HPLC.

  12. Beta 2 adrenergic receptor polymorphisms, at codons 16 and 27, and bronchodilator responses in adult Venezuelan asthmatic patients.

    PubMed

    Larocca, Nancy; Moreno, Dolores; Garmendia, Jenny Valentina; Velasquez, Olga; Martin-Rojo, Joana; Talamo, Carlos; Garcia, Alexis; De Sanctis, Juan Bautista

    2013-12-01

    One of the gene polymorphisms often studied in asthmatic patients is the β2 adrenergic receptor (ADRβ2). Even though in the Venezuelan Mestizo population there is a high incidence of asthma, there are no direct reports of ADRβ2 gene polymorphism, and treatment response. The aim of this study was to assess, in this population, the gene frequency of ADRβ2 polymorphisms at codons 16 Arg/Gly and 27 Gln/Glu, allergen sensitization, and its relationship to bronchodilator response. Purified genomic DNA was obtained form 105 Mestizo asthmatic and 100 Mestizo healthy individuals from Venezuela. The two polymorphisms were assessed by PCR-RFLP. Patient sensitization to aeroallergens and their response to bronchodilatation were correlated. Significant differences between patients and controls were recorded in: 1) the prevalence of Arg/Arg at codon 16 (28.6% in patients vs. 47% in controls, P<0.01), 2) the frequency of heterozygotes Arg/Gly (55% in patients vs. 35% in controls, P<0.01). Conversely, no differences in polymorphism frequencies were found at codon 27. The haplotypes Arg/Gly-Gln/Gln were more common in patients than controls (P <0.01), whereas the Arg/Arg-Gln/Glu combination prevailed in the control group (P<0.01). The Arg/Gly and Gln/Glu genotypes were associated with better responses after salbutamol. The asthmatic homozygotes Arg/Arg have higher sensitivity to aeroallergens. The difference in Arg/Arg frequency between groups suggests that this could be a protective genotype although the asthmatic group had a higher sensitivity to aeroallergens. The asthmatic heterozygotes had better bronchodilator responses than the homozygotes.

  13. Molecular mimicry of human tRNALys anti-codon domain by HIV-1 RNA genome facilitates tRNA primer annealing.

    PubMed

    Jones, Christopher P; Saadatmand, Jenan; Kleiman, Lawrence; Musier-Forsyth, Karin

    2013-02-01

    The primer for initiating reverse transcription in human immunodeficiency virus type 1 (HIV-1) is tRNA(Lys3). Host cell tRNA(Lys) is selectively packaged into HIV-1 through a specific interaction between the major tRNA(Lys)-binding protein, human lysyl-tRNA synthetase (hLysRS), and the viral proteins Gag and GagPol. Annealing of the tRNA primer onto the complementary primer-binding site (PBS) in viral RNA is mediated by the nucleocapsid domain of Gag. The mechanism by which tRNA(Lys3) is targeted to the PBS and released from hLysRS prior to annealing is unknown. Here, we show that hLysRS specifically binds to a tRNA anti-codon-like element (TLE) in the HIV-1 genome, which mimics the anti-codon loop of tRNA(Lys) and is located proximal to the PBS. Mutation of the U-rich sequence within the TLE attenuates binding of hLysRS in vitro and reduces the amount of annealed tRNA(Lys3) in virions. Thus, LysRS binds specifically to the TLE, which is part of a larger LysRS binding domain in the viral RNA that includes elements of the Psi packaging signal. Our results suggest that HIV-1 uses molecular mimicry of the anti-codon of tRNA(Lys) to increase the efficiency of tRNA(Lys3) annealing to viral RNA.

  14. Prophylactic thyroidectomy for asymptomatic 3-year-old boy with positive multiple endocrine neoplasia type 2A mutation (codon 634).

    PubMed

    Jesić, Maja D; Tancić-Gajić, Milina; Jesić, Milos M; Zivaljević, Vladan; Sajić, Silvija; Vujović, Svetlana; Damjanović, Svetozar

    2014-01-01

    The multiple endocrine neoplasia type 2A (MEN 2A) syndrome, comprising medullary thyroid carcinoma (MTC), pheochromocytoma and primary hyperparathyroidism (PHPT) is most frequently caused by codon 634 activating mutations of the RET (rearranged during transfection) proto-oncogene on chromosome 10. For this codon-mutation carriers, earlier thyroidectomy (before the age of 5 years) would be advantageous in limiting the potential for the development of MTC as well as parathyroid adenomas. This is a case report of 3-year-old boy from the MEN 2A family (the boy's father and grandmother and paternal aunt) in which cysteine substitutes for phenylalanine at codon 634 in exon 11 of the RET proto-oncogene, who underwent thyroidectomy solely on the basis of genetic information. A boy had no thyromegaly, thyroidal irregularities or lymphadenopathy and no abnormality on the neck ultrasound examination. The pathology finding of thyroid gland was negative for MTC. Two years after total thyroidectomy, 5-year-old boy is healthy with permanent thyroxine replacement. His serum calcitonin level is < 2 pg/ml (normal < 13 pg/ml), has normal serum calcium and parathyroid hormone levels and negative urinary catecholamines. Long-term follow-up of this patient is required to determine whether very early thyroidectomy improves the long-term outcome of PHPT. Children with familial antecedents of MEN 2A should be genetically studied for the purpose of determining the risk of MTC and assessing the possibilities of making prophylactic thyroidectomy before the age of 5 years.

  15. Using Student Writing and Lexical Analysis to Reveal Student Thinking about the Role of Stop Codons in the Central Dogma

    PubMed Central

    Prevost, Luanna B.; Smith, Michelle K.; Knight, Jennifer K.

    2016-01-01

    Previous work has shown that students have persistent difficulties in understanding how central dogma processes can be affected by a stop codon mutation. To explore these difficulties, we modified two multiple-choice questions from the Genetics Concept Assessment into three open-ended questions that asked students to write about how a stop codon mutation potentially impacts replication, transcription, and translation. We then used computer-assisted lexical analysis combined with human scoring to categorize student responses. The lexical analysis models showed high agreement with human scoring, demonstrating that this approach can be successfully used to analyze large numbers of student written responses. The results of this analysis show that students’ ideas about one process in the central dogma can affect their thinking about subsequent and previous processes, leading to mixed models of conceptual understanding. PMID:27909016

  16. Analysis of TP53 codon 72 polymorphism in HPV-positive and HPV-negative penile carcinoma.

    PubMed

    Tornesello, Maria Lina; Duraturo, Maria Luisa; Guida, Valentina; Losito, Simona; Botti, Gerardo; Pilotti, Silvana; Stefanon, Bernardina; De Palo, Giuseppe; Buonaguro, Luigi; Buonaguro, Franco M

    2008-09-28

    The association of the p53 polymorphism at codon 72 and susceptibility to develop human papillomavirus (HPV)-related cancer has been investigated in several studies with controversial results. In this study, 78 penile squamous cell carcinoma biopsies (n=17 from Uganda, n=61 from Italy) and blood samples from 150 healthy controls (n=57 from Uganda, n=93 from Italy) have been analyzed for the arginine and proline allele distribution. Among Ugandan cases the heterozygous, proline homozygous and arginine homozygous genotype frequency was 41.2%, 52.9% and 5.9%, respectively, and among controls was 40.3%, 54.4%, and 5.3%, respectively (P=0.9917). Conversely, among Italian cases genotype distribution was 42.6%, 4.9%, and 52.5%, and among controls was 34.4%, 7.5%, and 58.1%, respectively (P=0.5343). No significant differences in arginine and proline allele distribution were observed when the cases were stratified by HPV status. Therefore, no evidence of association between homozygosity for p53 arginine and HPV-related or HPV-unrelated penile squamous cell carcinoma was observed neither among Ugandan nor among Italian populations.

  17. Photic niche invasions: phylogenetic history of the dim-light foraging augochlorine bees (Halictidae)

    PubMed Central

    Tierney, Simon M.; Sanjur, Oris; Grajales, Grethel G.; Santos, Leandro M.; Bermingham, Eldredge; Wcislo, William T.

    2012-01-01

    Most bees rely on flowering plants and hence are diurnal foragers. From this ancestral state, dim-light foraging in bees requires significant adaptations to a new photic environment. We used DNA sequences to evaluate the phylogenetic history of the most diverse clade of Apoidea that is adapted to dim-light environments (Augochlorini: Megalopta, Megaloptidia and Megommation). The most speciose lineage, Megalopta, is distal to the remaining dim-light genera, and its closest diurnal relative (Xenochlora) is recovered as a lineage that has secondarily reverted to diurnal foraging. Tests for adaptive protein evolution indicate that long-wavelength opsin shows strong evidence of stabilizing selection, with no more than five codons (2%) under positive selection, depending on analytical procedure. In the branch leading to Megalopta, the amino acid of the single positively selected codon is conserved among ancestral Halictidae examined, and is homologous to codons known to influence molecular structure at the chromophore-binding pocket. Theoretically, such mutations can shift photopigment λmax sensitivity and enable visual transduction in alternate photic environments. Results are discussed in light of the available evidence on photopigment structure, morphological specialization and biogeographic distributions over geological time. PMID:21795273

  18. Photic niche invasions: phylogenetic history of the dim-light foraging augochlorine bees (Halictidae).

    PubMed

    Tierney, Simon M; Sanjur, Oris; Grajales, Grethel G; Santos, Leandro M; Bermingham, Eldredge; Wcislo, William T

    2012-02-22

    Most bees rely on flowering plants and hence are diurnal foragers. From this ancestral state, dim-light foraging in bees requires significant adaptations to a new photic environment. We used DNA sequences to evaluate the phylogenetic history of the most diverse clade of Apoidea that is adapted to dim-light environments (Augochlorini: Megalopta, Megaloptidia and Megommation). The most speciose lineage, Megalopta, is distal to the remaining dim-light genera, and its closest diurnal relative (Xenochlora) is recovered as a lineage that has secondarily reverted to diurnal foraging. Tests for adaptive protein evolution indicate that long-wavelength opsin shows strong evidence of stabilizing selection, with no more than five codons (2%) under positive selection, depending on analytical procedure. In the branch leading to Megalopta, the amino acid of the single positively selected codon is conserved among ancestral Halictidae examined, and is homologous to codons known to influence molecular structure at the chromophore-binding pocket. Theoretically, such mutations can shift photopigment λ(max) sensitivity and enable visual transduction in alternate photic environments. Results are discussed in light of the available evidence on photopigment structure, morphological specialization and biogeographic distributions over geological time.

  19. Adaptive sampling in research on risk-related behaviors.

    PubMed

    Thompson, Steven K; Collins, Linda M

    2002-11-01

    This article introduces adaptive sampling designs to substance use researchers. Adaptive sampling is particularly useful when the population of interest is rare, unevenly distributed, hidden, or hard to reach. Examples of such populations are injection drug users, individuals at high risk for HIV/AIDS, and young adolescents who are nicotine dependent. In conventional sampling, the sampling design is based entirely on a priori information, and is fixed before the study begins. By contrast, in adaptive sampling, the sampling design adapts based on observations made during the survey; for example, drug users may be asked to refer other drug users to the researcher. In the present article several adaptive sampling designs are discussed. Link-tracing designs such as snowball sampling, random walk methods, and network sampling are described, along with adaptive allocation and adaptive cluster sampling. It is stressed that special estimation procedures taking the sampling design into account are needed when adaptive sampling has been used. These procedures yield estimates that are considerably better than conventional estimates. For rare and clustered populations adaptive designs can give substantial gains in efficiency over conventional designs, and for hidden populations link-tracing and other adaptive procedures may provide the only practical way to obtain a sample large enough for the study objectives.

  20. Expression of a codon-optimized Aspergillus niger pectin methylesterase gene in the methylotrophic yeast Candida boidinii.

    PubMed

    Kawaguchi, Kosuke; Yurimoto, Hiroya; Sakai, Yasuyoshi

    2014-01-01

    A codon-optimized Aspergillus niger pectin methylesterase (PME) gene was expressed in the methylotrophic yeast Canidia boidinii. The PME-producing strains showed better growth on pectin than the wild-type strains, suggesting that the PME-producing strains could efficiently utilize methyl ester moieties of pectin. On the other hand, overproduction of PME negatively affected the proliferation of C. boidinii on leaves of Arabidopsis thaliana.

  1. ACB-PCR measurement of spontaneous and furan-induced H-ras codon 61 CAA to CTA and CAA to AAA mutation in B6C3F1 mouse liver.

    PubMed

    Banda, Malathi; Recio, Leslie; Parsons, Barbara L

    2013-10-01

    Furan is a rodent liver carcinogen, but the mode of action for furan hepatocarcinogenicity is unclear. H-ras codon 61 mutations have been detected in spontaneous liver tumors of B6C3F1 mice, and the fraction of liver tumors carrying H-ras codon 61 CAA to AAA mutation increased in furan-treated mice. Allele-specific competitive blocker PCR (ACB-PCR) has been used previously to quantify early, carcinogen-induced increases in tumor-associated mutations. The present pilot study investigated whether furan drives clonal expansion of pre-existing H-ras mutant cells in B6C3F1 mouse liver. H-ras codon 61 CAA to CTA and CAA to AAA mutations were measured in DNA isolated from liver tissue of female mice treated with 0, 1, 2, 4, or 8 mg furan/kg body weight, five days per week for three weeks, using five mice per treatment group. Spontaneous levels of mutation were low, with two of five control mice having an H-ras codon 61 CTA or AAA mutant fraction (MF) greater than 10(-5) . Several furan-treated mice had H-ras codon 61 AAA or CTA MFs greater than those measured in control mice and lower bound estimates of induced MF were calculated. However, no statistically-significant differences were observed between treatment groups. Therefore, while sustained exposure to furan is carcinogenic, at the early stage of carcinogenesis examined in this study (three weeks), there was not a significant expansion of H-ras mutant cells. Copyright © 2013 Wiley Periodicals, Inc.

  2. Physiology-driven adaptive virtual reality stimulation for prevention and treatment of stress related disorders.

    PubMed

    Cosić, Kresimir; Popović, Sinisa; Kukolja, Davor; Horvat, Marko; Dropuljić, Branimir

    2010-02-01

    The significant proportion of severe psychological problems related to intensive stress in recent large peacekeeping operations underscores the importance of effective methods for strengthening the prevention and treatment of stress-related disorders. Adaptive control of virtual reality (VR) stimulation presented in this work, based on estimation of the person's emotional state from physiological signals, may enhance existing stress inoculation training (SIT). Physiology-driven adaptive VR stimulation can tailor the progress of stressful stimuli delivery to the physiological characteristics of each individual, which is indicated for improvement in stress resistance. Following an overview of physiology-driven adaptive VR stimulation, its major functional subsystems are described in more detail. A specific algorithm of stimuli delivery applicable to SIT is outlined.

  3. The Genome Sequence of the psychrophilic archaeon, Methanococcoides burtonii: the Role of Genome Evolution in Cold-adaptation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Michelle A.; Lauro, Federico M.; Williams, Timothy J.

    2009-04-01

    Psychrophilic archaea are abundant and perform critical roles throughout the Earth's expansive cold biosphere. Here we report the first complete genome sequence for a psychrophilic methanogenic archaeon, Methanococcoides burtonii. The genome sequence was manually annotated including the use of a five tiered Evidence Rating system that ranked annotations from Evidence Rating (ER) 1 (gene product experimentally characterized from the parent organism) to ER5 (hypothetical gene product) to provide a rapid means of assessing the certainty of gene function predictions. The genome is characterized by a higher level of aberrant sequence composition (51%) than any other archaeon. In comparison to hyper/thermophilicmore » archaea which are subject to selection of synonymous codon usage, M. burtonii has evolved cold adaptation through a genomic capacity to accommodate highly skewed amino acid content, while retaining codon usage in common with its mesophilic Methanosarcina cousins. Polysaccharide biosynthesis genes comprise at least 3.3% of protein coding genes in the genome, and Cell wall/membrane/envelope biogenesis COG genes are over-represented. Likewise, signal transduction (COG category T) genes are over-represented and M. burtonii has a high 'IQ' (a measure of adaptive potential) compared to many methanogens. Numerous genes in these two over-represented COG categories appear to have been acquired from {var_epsilon}- and {delta}-proteobacteria, as do specific genes involved in central metabolism such as a novel B form of aconitase. Transposases also distinguish M. burtonii from other archaea, and their genomic characteristics indicate they play an important role in evolving the M. burtonii genome. Our study reveals a capacity for this model psychrophile to evolve through genome plasticity (including nucleotide skew, horizontal gene transfer and transposase activity) that enables adaptation to the cold, and to the biological and physical changes that have occurred over

  4. Research in adaptive management: working relations and the research process.

    Treesearch

    Amanda C. Graham; Linda E. Kruger

    2002-01-01

    This report analyzes how a small group of Forest Service scientists participating in efforts to implement adaptive management approach working relations, and how they understand and apply the research process. Nine scientists completed a questionnaire to assess their preferred mode of thinking (the Herrmann Brain Dominance Instrument), engaged in a facilitated...

  5. Codon-optimized filovirus DNA vaccines delivered by intramuscular electroporation protect cynomolgus macaques from lethal Ebola and Marburg virus challenges.

    PubMed

    Grant-Klein, Rebecca J; Altamura, Louis A; Badger, Catherine V; Bounds, Callie E; Van Deusen, Nicole M; Kwilas, Steven A; Vu, Hong A; Warfield, Kelly L; Hooper, Jay W; Hannaman, Drew; Dupuy, Lesley C; Schmaljohn, Connie S

    2015-01-01

    Cynomolgus macaques were vaccinated by intramuscular electroporation with DNA plasmids expressing codon-optimized glycoprotein (GP) genes of Ebola virus (EBOV) or Marburg virus (MARV) or a combination of codon-optimized GP DNA vaccines for EBOV, MARV, Sudan virus and Ravn virus. When measured by ELISA, the individual vaccines elicited slightly higher IgG responses to EBOV or MARV than did the combination vaccines. No significant differences in immune responses of macaques given the individual or combination vaccines were measured by pseudovirion neutralization or IFN-γ ELISpot assays. Both the MARV and mixed vaccines were able to protect macaques from lethal MARV challenge (5/6 vs. 6/6). In contrast, a greater proportion of macaques vaccinated with the EBOV vaccine survived lethal EBOV challenge in comparison to those that received the mixed vaccine (5/6 vs. 1/6). EBOV challenge survivors had significantly higher pre-challenge neutralizing antibody titers than those that succumbed.

  6. Expression of chicken parvovirus VP2 in chicken embryo fibroblasts requires codon optimization for production of naked DNA and vectored meleagrid herpesvirus type 1 vaccines.

    PubMed

    Spatz, Stephen J; Volkening, Jeremy D; Mullis, Robert; Li, Fenglan; Mercado, John; Zsak, Laszlo

    2013-10-01

    Meleagrid herpesvirus type 1 (MeHV-1) is an ideal vector for the expression of antigens from pathogenic avian organisms in order to generate vaccines. Chicken parvovirus (ChPV) is a widespread infectious virus that causes serious disease in chickens. It is one of the etiological agents largely suspected in causing Runting Stunting Syndrome (RSS) in chickens. Initial attempts to express the wild-type gene encoding the capsid protein VP2 of ChPV by insertion into the thymidine kinase gene of MeHV-1 were unsuccessful. However, transient expression of a codon-optimized synthetic VP2 gene cloned into the bicistronic vector pIRES2-Ds-Red2, could be demonstrated by immunocytochemical staining of transfected chicken embryo fibroblasts (CEFs). Red fluorescence could also be detected in these transfected cells since the red fluorescent protein gene is downstream from the internal ribosome entry site (IRES). Strikingly, fluorescence could not be demonstrated in cells transiently transfected with the bicistronic vector containing the wild-type or non-codon-optimized VP2 gene. Immunocytochemical staining of these cells also failed to demonstrate expression of wild-type VP2, indicating that the lack of expression was at the RNA level and the VP2 protein was not toxic to CEFs. Chickens vaccinated with a DNA vaccine consisting of the bicistronic vector containing the codon-optimized VP2 elicited a humoral immune response as measured by a VP2-specific ELISA. This VP2 codon-optimized bicistronic cassette was rescued into the MeHV-1 genome generating a vectored vaccine against ChPV disease.

  7. Child with RET proto-oncogene codon 634 mutation.

    PubMed

    İnce, Dilek; Demirağ, Bengü; Ataseven, Eda; Oymak, Yeşim; Tuhan, Hale; Karakuş, Osman Zeki; Hazan, Filiz; Abacı, Ayhan; Özer, Erdener; Mutafoglu, Kamer; Olgun, Nur

    2017-01-01

    İnce D, Demirağ B, Ataseven E, Oymak Y, Tuhan H, Karakuş OZ, Hazan F, Abacı A, Özer E, Mutafoglu K, Olgun N. Child with RET proto-oncogene codon 634 mutation. Turk J Pediatr 2017; 59: 590-593. Herein we reported a 7-year-old child with RET proto-oncogene c634 mutation. Her mother had been diagnosed with medullary thyroid carcinoma (MTC), and treated six years ago. Heterozygous mutation of the RET proto-oncogene at c634 had been detected in her mother. Genetic analysis showed the presence of the same mutation in our patient. Thyroid functions were normal. Serum calcitonin level was found mildly elevated. Parathormone (PTH) and carcinoembrionic antigen (CEA) levels were normal. Prophylactic thyroidectomy and sampling of cervical lymph nodes were performed. Histopathologic examination revealed hyperplasia in thyroid C cells, and reactive lymphadenopathy. The risk of MTC has been reported 100% through the life of patients with RET proto-oncogene mutation. It has been reported that particularly patients with c634 mutation have more risk of occurence of metastatic and progressive/recurrent MTC. Prophylactic `thyroidectomy, cervical lymph node dissection` before 5-years-of-age should be considered for these patients.

  8. Codon 141 polymorphisms of the ovine prion protein gene affect the phenotype of classical scrapie transmitted from goats to sheep.

    PubMed

    Konold, Timm; Phelan, Laura J; Donnachie, Ben R; Chaplin, Melanie J; Cawthraw, Saira; González, Lorenzo

    2017-05-04

    A study to investigate transmission of classical scrapie via goat milk was carried out in sheep: firstly, lambs were challenged orally with goat scrapie brain homogenate to confirm transmission of scrapie from goats to sheep. In the second study phase, milk from scrapie-infected goats was fed to lambs. Lambs were selected according to their prion protein gene (PRNP) genotype, which was either VRQ/VRQ or ARQ/ARQ, with or without additional polymorphisms at codon 141 (FF 141 , LF 141 or LL 141 ) of the ovine PRNP. This report describes the clinical, pathological and molecular phenotype of goat scrapie in those sheep that progressed to clinical end-stage. Ten sheep (six VRQ/VRQ and four ARQ/ARQ, of which three FF 141 and one LL 141 ) challenged with one of two scrapie brain homogenates, and six pairs of sheep (ARQ, of which five LL 141 and seven LF 141 ) fed milk from six different goats, developed clinical disease, which was characterised by a pruritic (all VRQ/VRQ and LL 141 sheep) or a non-pruritic form (all LF 141 and FF 141 sheep). Immunohistochemical (IHC) examination revealed that the pattern of intra- and extracellular accumulation of disease-associated prion protein in the brain was also dependent on PRNP polymorphisms at codon 141, which was similar in VRQ and LL 141 sheep but different from LF 141 and FF 141 sheep. The influence of codon 141 was also seen in discriminatory Western blot (WB), with LF 141 and FF 141 sheep showing a bovine spongiform encephalopathy-like profile (diminished reactivity with P4 antibody) on brain tissue. However, discriminatory WB in lymphoid tissues, and IHC pattern and profile both in lymphoid and brain tissue was consistent with classical scrapie in all sheep. This study provided further evidence that the clinical presentation and the pathological and molecular phenotypes of scrapie in sheep are influenced by PRNP polymorphisms, particularly at codon 141. Differences in the truncation of disease-associated prion protein

  9. Comparative analysis of KRAS codon 12, 13, 18, 61, and 117 mutations using human MCF10A isogenic cell lines

    PubMed Central

    Stolze, Britta; Reinhart, Stefanie; Bulllinger, Lars; Fröhling, Stefan; Scholl, Claudia

    2015-01-01

    KRAS mutations occur in one third of human cancers and cluster in several hotspots, with codons 12 and 13 being most commonly affected. It has been suggested that the position and type of amino acid exchange influence the transforming capacity of mutant KRAS proteins. We used MCF10A human mammary epithelial cells to establish isogenic cell lines that express different cancer-associated KRAS mutations (G12C, G12D, G12V, G13C, G13D, A18D, Q61H, K117N) at physiological or elevated levels, and investigated the biochemical and functional consequences of the different variants. The overall effects of low-expressing mutants were moderate compared to overexpressed variants, but allowed delineation of biological functions that were related to specific alleles rather than KRAS expression level. None of the mutations induced morphological changes, migratory abilities, or increased phosphorylation of ERK, PDK1, and AKT. KRAS-G12D, G12V, G13D, and K117N mediated EGF-independent proliferation, whereas anchorage-independent growth was primarily induced by K117N and Q61H. Both codon 13 mutations were associated with increased EGFR expression. Finally, global gene expression analysis of MCF10A-G13D versus MCF10A-G12D revealed distinct transcriptional changes. Together, we describe a useful resource for investigating the function of multiple KRAS mutations and provide insights into the differential effects of these variants in MCF10A cells. PMID:25705018

  10. Adaptive relative pose control of spacecraft with model couplings and uncertainties

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Zheng, Zewei

    2018-02-01

    The spacecraft pose tracking control problem for an uncertain pursuer approaching to a space target is researched in this paper. After modeling the nonlinearly coupled dynamics for relative translational and rotational motions between two spacecraft, position tracking and attitude synchronization controllers are developed independently by using a robust adaptive control approach. The unknown kinematic couplings, parametric uncertainties, and bounded external disturbances are handled with adaptive updating laws. It is proved via Lyapunov method that the pose tracking errors converge to zero asymptotically. Spacecraft close-range rendezvous and proximity operations are introduced as an example to validate the effectiveness of the proposed control approach.

  11. Acting Bicultural versus Feeling Bicultural: Cultural Adaptation and School-Related Attitudes among U.S. Latina/o Youth

    ERIC Educational Resources Information Center

    Acevedo-Polakovich, Ignacio D.; Quirk, Kelley M.; Cousineau, Jennifer R.; Saxena, Suchita R.; Gerhart, James I.

    2014-01-01

    This study examines whether incorporating a multidimensional perspective to the study of the relation between cultural adaptation and academic attitudes among Latinas/os in the United States can clarify this relation. Hypotheses about the relation between cultural adaptation and academic attitudes were examined using data provided by U.S. Latina/o…

  12. AUU-to-AUG mutation in the initiator codon of the translation initiation factor IF3 abolishes translational autocontrol of its own gene (infC) in vivo.

    PubMed Central

    Butler, J S; Springer, M; Grunberg-Manago, M

    1987-01-01

    We previously showed that Escherichia coli translation initiation factor IF3 regulates the expression of its own gene infC at the translational level in vivo. Here we create two alterations in the infC gene and test their effects on translational autocontrol of infC expression in vivo by measuring beta-galactosidase activity expressed from infC-lacZ gene fusions under conditions of up to 4-fold derepression or 3-fold repression of infC expression. Replacement of the infC promoter with the trp promoter deletes 120 nucleotides of the infC mRNA 5' to the translation initiation site without affecting autogenous translational control. Mutation of the unusual AUU initiator codon of infC to the more common AUG initiator codon abolishes translation initiation factor IF3-dependent repression and derepression of infC expression in vivo. These results establish the AUU initiator codon of infC as an essential cis-acting element in autogenous translational control of translation initiation factor IF3 expression in vivo. PMID:2954162

  13. AUU-to-AUG mutation in the initiator codon of the translation initiation factor IF3 abolishes translational autocontrol of its own gene (infC) in vivo.

    PubMed

    Butler, J S; Springer, M; Grunberg-Manago, M

    1987-06-01

    We previously showed that Escherichia coli translation initiation factor IF3 regulates the expression of its own gene infC at the translational level in vivo. Here we create two alterations in the infC gene and test their effects on translational autocontrol of infC expression in vivo by measuring beta-galactosidase activity expressed from infC-lacZ gene fusions under conditions of up to 4-fold derepression or 3-fold repression of infC expression. Replacement of the infC promoter with the trp promoter deletes 120 nucleotides of the infC mRNA 5' to the translation initiation site without affecting autogenous translational control. Mutation of the unusual AUU initiator codon of infC to the more common AUG initiator codon abolishes translation initiation factor IF3-dependent repression and derepression of infC expression in vivo. These results establish the AUU initiator codon of infC as an essential cis-acting element in autogenous translational control of translation initiation factor IF3 expression in vivo.

  14. Association of TP53 codon 72 and CDH1 genetic polymorphisms with colorectal cancer risk in Bangladeshi population.

    PubMed

    Rivu, Sanzana Fareen; Apu, Mohd Nazmul Hasan; Shabnaz, Samia; Nahid, Noor Ahmed; Islam, Md Reazul; Al-Mamun, Mir Md Abdullah; Nahar, Zabun; Rabbi, Sikder Nahidul Islam; Ahmed, Maizbha Uddin; Islam, Mohammad Safiqul; Hasnat, Abul

    2017-08-01

    Till now no pharmacogenetic study of TP53 codon 72 (Arg72Pro) and CDH1 rs16260 (-160Crelating those with colorectal cancer. So the aim of the study is to determine whether there is an elevated risk of colorectal cancer development with TP53 codon 72 and CDH1 rs16260 genetic polymorphism in Bangladeshi population for the first time. To investigate the association of these two SNPs, we conducted a case-control study with 288 colorectal cancer patients and 295 healthy volunteers by using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method. We found an increased risk of association between Arg/Pro heterozygosity (adjusted OR=2.58, 95% CI=1.77-3.77, p<0.05) and Pro/Pro mutant homozygosity (adjusted OR=2.92, 95% CI=1.78-4.78, p<0.05) along with the combined genotype (Arg/Pro+Pro/Pro) (adjusted OR=2.70, 95% CI=1.90-3.82, p<0.05) and colorectal cancer predisposition. In case of CDH1 rs16260 polymorphism, C/A heterozygous and A/A mutant homozygous are significantly (p<0.05) found to be associated with colorectal cancer risk with adjusted OR of 1.94 and 2.63, respectively. The combined genotype of C/A and A/A was also found to be strongly associated with colorectal cancer risk compared to C/C genotype (adjusted OR=2.02, 95% CI=1.42-2.87, p<0.05). In conclusion, heterozygosity and mutant homozygosity as well as the combination of both TP53 Arg72Pro and CDH1 rs16260 polymorphisms are responsible to increase the risk of colorectal cancer development in Bangladeshi population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. [Positioning of mRNA 3' of the a site bound codon on the human 80S ribosome].

    PubMed

    Molotkov, M V; Graĭfer, D M; Demeshkina, N A; Repkova, M N; Ven'iaminova, A G; Karpova, G G

    2005-01-01

    Short mRNA analogues carrying a UUU triplet at the 5'-termini and a perfluorophenylazide group at either the N7 atom of the guanosine or the C5 atom of the uridine 3' of the triplet were applied to study positioning of mRNA 3' of the A site codon. Complexes of 80S ribosomes with the mRNA analogues were obtained in the presence of tRNAPhe that directed UUU codon to the P site and consequently provided placement of the nucleotide with cross-linker in positions +9 or +12 with respect to the first nucleotide of the P site bound codon. Both types mRNA analogues cross-linked to the 18S rRNA and 40S proteins under mild UV-irradiation. Cross-linking patterns in the complexes where modified nucleotides of the mRNA analogues were in position +7 were analyzed for comparison (cross-linking to the 18S rRNA in such complexes has been studied previously). The efficiency of cross-linking to the ribosomal components depended on the nature of the modified nucleotide in the mRNA analogue and its position on the ribosome, extent of cross-linking to the 18S rRNA being decreased drastically when the modified nucleotide was moved from position +7 to position +12. The nucleotides of 18S rRNA cross-linked to mRNA analogues were determined. Modified nucleotides in positions +9 and +12 cross-linked to the invariant dinucleotide A1824/A1825 and to variable A1823 in the 3'-minidomain of 18S rRNA as well as to protein S15. The same ribosomal components have been found earlier to cross-link to modified mRNA nucleotides in positions from +4 to +7. Besides, all mRNA analogues cross-linked to the invariant nucleotide c1698 in the 3'-minidomain and to and the conserved region 605-620 closing helix 18 in the 5'-domain.

  16. Coexistence of two different mutations in codon 12 of the Kras gene in colorectal cancer: Report of a case supporting the concept of tumoral heterogeneity.

    PubMed

    Improta, Giuseppina; Zupa, Angela; Possidente, Luciana; Tartarone, Alfredo; Pedicini, Piernicola; Nappi, Antonio; Molinari, Sergio; Fraggetta, Filippo; Vita, Giulia

    2013-05-01

    Evaluation of the mutational status of KRAS is a crucial step for the correct therapeutic approach in treating advanced colorectal cancer as the identification of wild-type KRAS tumors leads to more specific and less toxic treatments for patients. Although several studies have highlighted the differences between primary and metastatic tumors, the possibility of two or more mutations in the same codon has seldom been reported. The present study reports an additional case of an advanced adenocarcinoma of the colon showing two somatic mutations (p.G12D and p.G12V) in the same codon (codon 12) of exon 2 of the KRAS gene, thus supporting the possibility of two differing clonal origins of the tumor. Although the clinical significance of multiple mutations remains unknown at present, based on the limited data available in the literature, this rare event appears to be associated with a more aggressive disease, as in the present case. This case report demonstrates the existence of intratumoral heterogeneity and the coexistence of distinct clones within a tumor that may have profound clinical implications for disease progression and therapeutic responses.

  17. HMG CoA lyase deficiency: identification of five causal point mutations in codons 41 and 42, including a frequent Saudi Arabian mutation, R41Q.

    PubMed Central

    Mitchell, G A; Ozand, P T; Robert, M F; Ashmarina, L; Roberts, J; Gibson, K M; Wanders, R J; Wang, S; Chevalier, I; Plöchl, E; Miziorko, H

    1998-01-01

    The hereditary deficiency of 3-hydroxy-3-methylglutaryl (HMG) CoA lyase (HL; OMIM 246450 [http://www3.ncbi.nlm.nih. gov:80/htbin-post/Omim/dispmim?246450]) results in episodes of hypoketotic hypoglycemia and coma and is reported to be frequent and clinically severe in Saudi Arabia. We found genetic diversity among nine Saudi HL-deficient probands: six were homozygous for the missense mutation R41Q, and two were homozygous for the frameshift mutation F305fs(-2). In 32 non-Saudi HL-deficient probands, we found three R41Q alleles and also discovered four other deleterious point mutations in codons 41 and 42: R41X, D42E, D42G, and D42H. In purified mutant recombinant HL, all four missense mutations in codons 41 and 42 cause a marked decrease in HL activity. We developed a screening procedure for HL missense mutations that yields residual activity at levels comparable to those obtained using purified HL peptides. Codons 41 and 42 are important for normal HL catalysis and account for a disproportionate 21 (26%) of 82 of mutant alleles in our group of HL-deficient probands. PMID:9463337

  18. Adaptive Memory: Young Children Show Enhanced Retention of Fitness-Related Information

    ERIC Educational Resources Information Center

    Aslan, Alp; Bauml, Karl-Heinz T.

    2012-01-01

    Evolutionary psychologists propose that human cognition evolved through natural selection to solve adaptive problems related to survival and reproduction, with its ultimate function being the enhancement of reproductive fitness. Following this proposal and the evolutionary-developmental view that ancestral selection pressures operated not only on…

  19. Evolutionary analysis of Old World arenaviruses reveals a major adaptive contribution of the viral polymerase.

    PubMed

    Pontremoli, Chiara; Forni, Diego; Cagliani, Rachele; Pozzoli, Uberto; Riva, Stefania; Bravo, Ignacio G; Clerici, Mario; Sironi, Manuela

    2017-10-01

    The Old World (OW) arenavirus complex includes several species of rodent-borne viruses, some of which (i.e., Lassa virus, LASV and Lymphocytic choriomeningitis virus, LCMV) cause human diseases. Most LCMV and LASV infections are caused by rodent-to-human transmissions. Thus, viral evolution is largely determined by events that occur in the wildlife reservoirs. We used a set of human- and rodent-derived viral sequences to investigate the evolutionary history underlying OW arenavirus speciation, as well as the more recent selective events that accompanied LASV spread in West Africa. We show that the viral RNA polymerase (L protein) was a major positive selection target in OW arenaviruses and during LASV out-of-Nigeria migration. No evidence of selection was observed for the glycoprotein, whereas positive selection acted on the nucleoprotein (NP) during LCMV speciation. Positively selected sites in L and NP are surrounded by highly conserved residues, and the bulk of the viral genome evolves under purifying selection. Several positively selected sites are likely to modulate viral replication/transcription. In both L and NP, structural features (solvent exposed surface area) are important determinants of site-wise evolutionary rate variation. By incorporating several rodent-derived sequences, we also performed an analysis of OW arenavirus codon adaptation to the human host. Results do not support a previously hypothesized role of codon adaptation in disease severity for non-Nigerian strains. In conclusion, L and NP represent the major selection targets and possible determinants of disease presentation; these results suggest that field surveys and experimental studies should primarily focus on these proteins. © 2017 John Wiley & Sons Ltd.

  20. Adaptive relative pose control for autonomous spacecraft rendezvous and proximity operations with thrust misalignment and model uncertainties

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Zheng, Zewei

    2017-04-01

    An adaptive relative pose control strategy is proposed for a pursue spacecraft in proximity operations on a tumbling target. Relative position vector between two spacecraft is required to direct towards the docking port of the target while the attitude of them must be synchronized. With considering the thrust misalignment of pursuer, an integrated controller for relative translational and relative rotational dynamics is developed by using norm-wise adaptive estimations. Parametric uncertainties, unknown coupled dynamics, and bounded external disturbances are compensated online by adaptive update laws. It is proved via Lyapunov stability theory that the tracking errors of relative pose converge to zero asymptotically. Numerical simulations including six degrees-of-freedom rigid body dynamics are performed to demonstrate the effectiveness of the proposed controller.

  1. The Relation Between Intellectual Functioning and Adaptive Behavior in the Diagnosis of Intellectual Disability.

    PubMed

    Tassé, Marc J; Luckasson, Ruth; Schalock, Robert L

    2016-12-01

    Intellectual disability originates during the developmental period and is characterized by significant limitations both in intellectual functioning and in adaptive behavior as expressed in conceptual, social, and practical adaptive skills. In this article, we present a brief history of the diagnostic criteria of intellectual disability for both the DSM-5 and AAIDD. The article also (a) provides an update of the understanding of adaptive behavior, (b) dispels two thinking errors regarding mistaken temporal or causal link between intellectual functioning and adaptive behavior, (c) explains that there is a strong correlational, but no causative, relation between intellectual functioning and adaptive behavior, and (d) asserts that once a question of determining intellectual disability is raised, both intellectual functioning and adaptive behavior are assessed and considered jointly and weighed equally in the diagnosis of intellectual disability. We discuss the problems created by an inaccurate statement that appears in the DSM-5 regarding a causal link between deficits in intellectual functioning and adaptive behavior and propose an immediate revision to remove this erroneous and confounding statement.

  2. Molecular mechanism of codon recognition by tRNA species with modified uridine in the first position of the anticodon.

    PubMed Central

    Yokoyama, S; Watanabe, T; Murao, K; Ishikura, H; Yamaizumi, Z; Nishimura, S; Miyazawa, T

    1985-01-01

    Proton NMR analyses have been made to elucidate the conformational characteristics of modified nucleotides as found in the first position of the anticodon of tRNA [derivatives of 5-methyl-2-thiouridine 5'-monophosphate (pxm5s2U) and derivatives of 5-hydroxyuridine 5'-monophosphate (pxo5U)]. In pxm5s2U, the C3'-endo form is extraordinarily more stable than the C2'-endo form for the ribose ring, because of the combined effects of the 2-thiocarbonyl group and the 5-substituent. By contrast, in pxo5U, the C2'-endo form is much more stable than the C3'-endo form, because of the interaction between the 5-substituent and the 5'-phosphate group. The enthalpy differences between the C2'-endo form and the C3'-endo form have been obtained as 1.1, -0.7, and 0.1 kcal/mol (1 cal = 4.184 J) for pxm5s2U, pxo5U, and unmodified uridine 5'-monophosphate, respectively. These findings lead to the conclusion that xm5s2U in the first position of the anticodon exclusively takes the C3'-endo form to recognize adenosine (but not uridine) as the third letter of the codon, whereas xo5U takes the C2'-endo form as well as the C3'-endo form to recognize adenosine, guanosine, and uridine as the third letter of the codon on ribosome. Accordingly, the biological significance of such modifications of uridine to xm5s2U/xo5U is in the regulation of the conformational rigidity/flexibility in the first position of the anticodon so as to guarantee the correct and efficient translation of codons in protein biosynthesis. PMID:3860833

  3. Suppression of Amber Codons in Caulobacter crescentus by the Orthogonal Escherichia coli Histidyl-tRNA Synthetase/tRNAHis Pair

    PubMed Central

    Ko, Jae-hyeong; Llopis, Paula Montero; Heinritz, Jennifer; Jacobs-Wagner, Christine; Söll, Dieter

    2013-01-01

    While translational read-through of stop codons by suppressor tRNAs is common in many bacteria, archaea and eukaryotes, this phenomenon has not yet been observed in the α-proteobacterium Caulobacter crescentus. Based on a previous report that C. crescentus and Escherichia coli tRNAHis have distinctive identity elements, we constructed E. coli tRNAHis CUA, a UAG suppressor tRNA for C. crescentus. By examining the expression of three UAG codon- containing reporter genes (encoding a β-lactamase, the fluorescent mCherry protein, or the C. crescentus xylonate dehydratase), we demonstrated that the E. coli histidyl-tRNA synthetase/tRNAHis CUA pair enables in vivo UAG suppression in C. crescentus. E. coli histidyl-tRNA synthetase (HisRS) or tRNAHis CUA alone did not achieve suppression; this indicates that the E. coli HisRS/tRNAHis CUA pair is orthogonal in C. crescentus. These results illustrate that UAG suppression can be achieved in C. crescentus with an orthogonal aminoacyl-tRNA synthetase/suppressor tRNA pair. PMID:24386240

  4. Selection of functional 2A sequences within foot-and-mouth disease virus; requirements for the NPGP motif with a distinct codon bias.

    PubMed

    Kjær, Jonas; Belsham, Graham J

    2018-01-01

    Foot-and-mouth disease virus (FMDV) has a positive-sense ssRNA genome including a single, large, open reading frame. Splitting of the encoded polyprotein at the 2A/2B junction is mediated by the 2A peptide (18 residues long), which induces a nonproteolytic, cotranslational "cleavage" at its own C terminus. A conserved feature among variants of 2A is the C-terminal motif N 16 P 17 G 18 /P 19 , where P 19 is the first residue of 2B. It has been shown previously that certain amino acid substitutions can be tolerated at residues E 14 , S 15 , and N 16 within the 2A sequence of infectious FMDVs, but no variants at residues P 17 , G 18 , or P 19 have been identified. In this study, using highly degenerate primers, we analyzed if any other residues can be present at each position of the NPG/P motif within infectious FMDV. No alternative forms of this motif were found to be encoded by rescued FMDVs after two, three, or four passages. However, surprisingly, a clear codon preference for the wt nucleotide sequence encoding the NPGP motif within these viruses was observed. Indeed, the codons selected to code for P 17 and P 19 within this motif were distinct; thus the synonymous codons are not equivalent. © 2018 Kjær and Belsham; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  5. Adapting to Changing Memory Retrieval Demands: Evidence from Event-Related Potentials

    ERIC Educational Resources Information Center

    Benoit, Roland G.; Werkle-Bergner, Markus; Mecklinger, Axel; Kray, Jutta

    2009-01-01

    This study investigated preparatory processes involved in adapting to changing episodic memory retrieval demands. Event-related potentials (ERPs) were recorded while participants performed a general old/new recognition task and a specific task that also required retrieval of perceptual details. The relevant task remained either constant or changed…

  6. Mannose-Binding Lectin Codon 54 Gene Polymorphism and Vulvovaginal Candidiasis: A Systematic Review and Meta-Analysis

    PubMed Central

    Nedovic, Bojan; Posteraro, Brunella; Leoncini, Emanuele; Amore, Rosarita; Sanguinetti, Maurizio; Boccia, Stefania

    2014-01-01

    Mannose-binding lectin (MBL) plays a key role in the human innate immune response. It has been shown that polymorphisms in the MBL2 gene, particularly at codon 54 (variant allele B; wild-type allele designated as A), impact upon host susceptibility to Candida infection. This systematic review and meta-analysis were performed to assess the association between MBL2 codon 54 genotype and vulvovaginal candidiasis (VVC) or recurrent VVC (RVVC). Studies were searched in MEDLINE, SCOPUS, and ISI Web of Science until April 2013. Five studies including 704 women (386 cases and 318 controls) were part of the meta-analysis, and pooled ORs were calculated using the random effects model. For subjects with RVVC, ORs of AB versus AA and of BB versus AA were 4.84 (95% CI 2.10–11.15; P for heterogeneity = 0.013; I 2 = 68.6%) and 12.68 (95% CI 3.74–42.92; P for heterogeneity = 0.932, I 2 = 0.0%), respectively. For subjects with VVC, OR of AB versus AA was 2.57 (95% CI 1.29–5.12; P for heterogeneity = 0.897; I 2 = 0.0%). This analysis indicates that heterozygosity for the MBL2 allele B increases significantly the risk for both diseases, suggesting that MBL may influence the women's innate immunity in response to Candida. PMID:25143944

  7. Transgenic rice expressing a codon-modified synthetic CP4-EPSPS confers tolerance to broad-spectrum herbicide, glyphosate.

    PubMed

    Chhapekar, Sushil; Raghavendrarao, Sanagala; Pavan, Gadamchetty; Ramakrishna, Chopperla; Singh, Vivek Kumar; Phanindra, Mullapudi Lakshmi Venkata; Dhandapani, Gurusamy; Sreevathsa, Rohini; Ananda Kumar, Polumetla

    2015-05-01

    Highly tolerant herbicide-resistant transgenic rice was developed by expressing codon-modified synthetic CP4--EPSPS. The transformants could tolerate up to 1% commercial glyphosate and has the potential to be used for DSR (direct-seeded rice). Weed infestation is one of the major biotic stress factors that is responsible for yield loss in direct-seeded rice (DSR). Herbicide-resistant rice has potential to improve the efficiency of weed management under DSR. Hence, the popular indica rice cultivar IR64, was genetically modified using Agrobacterium-mediated transformation with a codon-optimized CP4-EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) gene, with N-terminal chloroplast targeting peptide from Petunia hybrida. Integration of the transgenes in the selected rice plants was confirmed by Southern hybridization and expression by Northern and herbicide tolerance assays. Transgenic plants showed EPSPS enzyme activity even at high concentrations of glyphosate, compared to untransformed control plants. T0, T1 and T2 lines were tested by herbicide bioassay and it was confirmed that the transgenic rice could tolerate up to 1% of commercial Roundup, which is five times more in dose used to kill weeds under field condition. All together, the transgenic rice plants developed in the present study could be used efficiently to overcome weed menace.

  8. HEALTH CONDITIONS LINKED TO AGE-RELATED MACULAR DEGENERATION ASSOCIATED WITH DARK ADAPTATION.

    PubMed

    Laíns, Inês; Miller, John B; Mukai, Ryo; Mach, Steven; Vavvas, Demetrios; Kim, Ivana K; Miller, Joan W; Husain, Deeba

    2018-06-01

    To determine the association between dark adaption (DA) and different health conditions linked with age-related macular degeneration (AMD). Cross-sectional study, including patients with AMD and a control group. Age-related macular degeneration was graded according to the Age-Related Eye Disease Study (AREDS) classification. We obtained data on medical history, medications, and lifestyle. Dark adaption was assessed with the extended protocol (20 minutes) of AdaptDx (MacuLogix). For analyses, the right eye or the eye with more advanced AMD was selected. Multivariate linear and logistic regressions were performed, accounting for age and AMD stage. Seventy-eight subjects (75.6% AMD; 24.4% controls) were included. Multivariate assessments revealed that body mass index (BMI; β = 0.30, P = 0.045), taking AREDS vitamins (β = 5.51, P < 0.001), and family history of AMD (β = 2.68, P = 0.039) were significantly associated with worse rod intercept times. Abnormal DA (rod intercept time ≥ 6.5 minutes) was significantly associated with family history of AMD (β = 1.84, P = 0.006), taking AREDS supplements (β = 1.67, P = 0.021) and alcohol intake (β = 0.07, P = 0.017). Besides age and AMD stage, a higher body mass index, higher alcohol intake, and a family history of AMD seem to impair DA. In this cohort, the use of AREDS vitamins was also statistically linked with impaired DA, most likely because of an increased severity of disease in subjects taking them.

  9. Codon 62 (GTG>GCG, Val→Ala) (α1) (HBA1: c.188T>C) causing nondeletional α-thalassemia in a Chinese family.

    PubMed

    Liao, Can; Tang, Hai-Shen; Li, Ru; Li, Dong-Zhi

    2013-01-01

    We report a novel α-globin gene point mutation detected during newborn screening for hemoglobinopathies. Sequence analyses identified a GTG>GCG substitution at codon 62 of the α1-globin gene. This mutation causes a silent α-thalassemia (α-thal).

  10. Career Adapt-Abilities Scale-USA Form: Psychometric Properties and Relation to Vocational Identity

    ERIC Educational Resources Information Center

    Porfeli, Erik J.; Savickas, Mark L.

    2012-01-01

    This article reports construction and initial validation of the United States form of the Career Adapt-Abilities Scale (CAAS). The CAAS consists of four scales, each with six items, which measure concern, control, curiosity, and confidence as psychosocial resources for managing occupational transitions, developmental tasks, and work traumas.…

  11. Using Student Writing and Lexical Analysis to Reveal Student Thinking about the Role of Stop Codons in the Central Dogma

    ERIC Educational Resources Information Center

    Prevost, Luanna B.; Smith, Michelle K.; Knight, Jennifer K.

    2016-01-01

    Previous work has shown that students have persistent difficulties in understanding how central dogma processes can be affected by a stop codon mutation. To explore these difficulties, we modified two multiple-choice questions from the Genetics Concept Assessment into three open-ended questions that asked students to write about how a stop codon…

  12. The time course of symbolic number adaptation: oscillatory EEG activity and event-related potential analysis.

    PubMed

    Hsu, Yi-Fang; Szűcs, Dénes

    2012-02-15

    Several functional magnetic resonance imaging (fMRI) studies have used neural adaptation paradigms to detect anatomical locations of brain activity related to number processing. However, currently not much is known about the temporal structure of number adaptation. In the present study, we used electroencephalography (EEG) to elucidate the time course of neural events in symbolic number adaptation. The numerical distance of deviants relative to standards was manipulated. In order to avoid perceptual confounds, all levels of deviants consisted of perceptually identical stimuli. Multiple successive numerical distance effects were detected in event-related potentials (ERPs). Analysis of oscillatory activity further showed at least two distinct stages of neural processes involved in the automatic analysis of numerical magnitude, with the earlier effect emerging at around 200ms and the later effect appearing at around 400ms. The findings support for the hypothesis that numerical magnitude processing involves a succession of cognitive events. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  13. A methodological survey identified eight proposed frameworks for the adaptation of health related guidelines.

    PubMed

    Darzi, Andrea; Abou-Jaoude, Elias A; Agarwal, Arnav; Lakis, Chantal; Wiercioch, Wojtek; Santesso, Nancy; Brax, Hneine; El-Jardali, Fadi; Schünemann, Holger J; Akl, Elie A

    2017-06-01

    five key steps strategy for adaptation of guidelines to the local context. The SGR method consists of nine steps and takes into consideration both methodological gaps and context-specific normative issues in source guidelines. We identified through searching personal files two abandoned methods. We identified and described eight proposed frameworks for the adaptation of health-related guidelines. There is a need to evaluate these different frameworks to assess rigor, efficiency, and transparency of their proposed processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Does Stress-Related Growth Really Matter for Adolescents' Day-to-Day Adaptive Functioning?

    ERIC Educational Resources Information Center

    Mansfield, Cade D.; Diamond, Lisa M.

    2017-01-01

    Adolescent stress-related growth refers to enhancement in an adolescent's cognitive-affective or social resources as a result of experiencing stressors. We tested whether adolescents reporting high levels of stress-related growth showed superior adaptation outcomes on a day-to-day basis. Participants (n = 91; females = 46, age = 14) completed a…

  15. Practice and Age-Related Loss of Adaptability in Sensorimotor Performance

    PubMed Central

    Sosnoff, Jacob J.; Voudrie, Stefani J.

    2009-01-01

    The purpose of the present investigation was to examine whether the ability to adapt to task constraints is influenced by short-term practice in older adults. Young (18–29 years old) and old (65–75 years old) adults produced force output to a constant force target and a 1-Hz sinusoidal force target by way of the index finger flexion. Participants completed each task 5 times per session for 5 concurrent sessions. The amount and structure of force variability was calculated using linear and nonlinear analyses. As expected, there was a decrease in the magnitude of variability (coefficient of variation) in both tasks and task-related change in the structure of force variability (approximate entropy) with training across groups. The authors found older adults to have a greater amount of variability than their younger counterparts in both tasks. Older adults also demonstrated an increase in the structure of force output in the constant task but a decrease in structure in the sinusoidal task. Age differences in the adaptability to task constraints persisted throughout practice. The authors propose that older adults' ability to adapt sensorimotor output to task demands is not a result of lack of familiarity with the task but that it is, instead, characteristic of the aging process. PMID:19201684

  16. Mutations in Global Regulators Lead to Metabolic Selection during Adaptation to Complex Environments

    PubMed Central

    Saxer, Gerda; Krepps, Michael D.; Merkley, Eric D.; Ansong, Charles; Deatherage Kaiser, Brooke L.; Valovska, Marie-Thérèse; Ristic, Nikola; Yeh, Ping T.; Prakash, Vittal P.; Leiser, Owen P.; Nakhleh, Luay; Gibbons, Henry S.; Kreuzer, Helen W.; Shamoo, Yousif

    2014-01-01

    Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes if many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased genetic and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that subtle modulations of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order metabolic selection that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism, and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a “one-step” mechanism of adaptation to a novel environment, which highlights the importance of global resource management

  17. Filipinos in the Navy: Service, Interpersonal Relations, and Cultural Adaptation

    DTIC Science & Technology

    1977-01-01

    conversation. Between people of equal social standing it would be natural to expect that the number of occasions when each party starts the conversation...would be equal . A deviation from this one-to-one ratio is likely to reflect on the inequality of social relations. Thus, we asked the Filipino...NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) American equal opportunity Filipino cultural adaptation

  18. Adaptation and evolution of deep-sea scale worms (Annelida: Polynoidae): insights from transcriptome comparison with a shallow-water species

    NASA Astrophysics Data System (ADS)

    Zhang, Yanjie; Sun, Jin; Chen, Chong; Watanabe, Hiromi K.; Feng, Dong; Zhang, Yu; Chiu, Jill M. Y.; Qian, Pei-Yuan; Qiu, Jian-Wen

    2017-04-01

    Polynoid scale worms (Polynoidae, Annelida) invaded deep-sea chemosynthesis-based ecosystems approximately 60 million years ago, but little is known about their genetic adaptation to the extreme deep-sea environment. In this study, we reported the first two transcriptomes of deep-sea polynoids (Branchipolynoe pettiboneae, Lepidonotopodium sp.) and compared them with the transcriptome of a shallow-water polynoid (Harmothoe imbricata). We determined codon and amino acid usage, positive selected genes, highly expressed genes and putative duplicated genes. Transcriptome assembly produced 98,806 to 225,709 contigs in the three species. There were more positively charged amino acids (i.e., histidine and arginine) and less negatively charged amino acids (i.e., aspartic acid and glutamic acid) in the deep-sea species. There were 120 genes showing clear evidence of positive selection. Among the 10% most highly expressed genes, there were more hemoglobin genes with high expression levels in both deep-sea species. The duplicated genes related to DNA recombination and metabolism, and gene expression were only enriched in deep-sea species. Deep-sea scale worms adopted two strategies of adaptation to hypoxia in the chemosynthesis-based habitats (i.e., rapid evolution of tetra-domain hemoglobin in Branchipolynoe or high expression of single-domain hemoglobin in Lepidonotopodium sp.).

  19. Adaptation and evolution of deep-sea scale worms (Annelida: Polynoidae): insights from transcriptome comparison with a shallow-water species

    PubMed Central

    Zhang, Yanjie; Sun, Jin; Chen, Chong; Watanabe, Hiromi K.; Feng, Dong; Zhang, Yu; Chiu, Jill M.Y.; Qian, Pei-Yuan; Qiu, Jian-Wen

    2017-01-01

    Polynoid scale worms (Polynoidae, Annelida) invaded deep-sea chemosynthesis-based ecosystems approximately 60 million years ago, but little is known about their genetic adaptation to the extreme deep-sea environment. In this study, we reported the first two transcriptomes of deep-sea polynoids (Branchipolynoe pettiboneae, Lepidonotopodium sp.) and compared them with the transcriptome of a shallow-water polynoid (Harmothoe imbricata). We determined codon and amino acid usage, positive selected genes, highly expressed genes and putative duplicated genes. Transcriptome assembly produced 98,806 to 225,709 contigs in the three species. There were more positively charged amino acids (i.e., histidine and arginine) and less negatively charged amino acids (i.e., aspartic acid and glutamic acid) in the deep-sea species. There were 120 genes showing clear evidence of positive selection. Among the 10% most highly expressed genes, there were more hemoglobin genes with high expression levels in both deep-sea species. The duplicated genes related to DNA recombination and metabolism, and gene expression were only enriched in deep-sea species. Deep-sea scale worms adopted two strategies of adaptation to hypoxia in the chemosynthesis-based habitats (i.e., rapid evolution of tetra-domain hemoglobin in Branchipolynoe or high expression of single-domain hemoglobin in Lepidonotopodium sp.). PMID:28397791

  20. Adaptive evolution of the matrix extracellular phosphoglycoprotein in mammals

    PubMed Central

    2011-01-01

    Background Matrix extracellular phosphoglycoprotein (MEPE) belongs to a family of small integrin-binding ligand N-linked glycoproteins (SIBLINGs) that play a key role in skeleton development, particularly in mineralization, phosphate regulation and osteogenesis. MEPE associated disorders cause various physiological effects, such as loss of bone mass, tumors and disruption of renal function (hypophosphatemia). The study of this developmental gene from an evolutionary perspective could provide valuable insights on the adaptive diversification of morphological phenotypes in vertebrates. Results Here we studied the adaptive evolution of the MEPE gene in 26 Eutherian mammals and three birds. The comparative genomic analyses revealed a high degree of evolutionary conservation of some coding and non-coding regions of the MEPE gene across mammals indicating a possible regulatory or functional role likely related with mineralization and/or phosphate regulation. However, the majority of the coding region had a fast evolutionary rate, particularly within the largest exon (1467 bp). Rodentia and Scandentia had distinct substitution rates with an increased accumulation of both synonymous and non-synonymous mutations compared with other mammalian lineages. Characteristics of the gene (e.g. biochemical, evolutionary rate, and intronic conservation) differed greatly among lineages of the eight mammalian orders. We identified 20 sites with significant positive selection signatures (codon and protein level) outside the main regulatory motifs (dentonin and ASARM) suggestive of an adaptive role. Conversely, we find three sites under selection in the signal peptide and one in the ASARM motif that were supported by at least one selection model. The MEPE protein tends to accumulate amino acids promoting disorder and potential phosphorylation targets. Conclusion MEPE shows a high number of selection signatures, revealing the crucial role of positive selection in the evolution of this

  1. Relating farmer's perceptions of climate change risk to adaptation behaviour in Hungary.

    PubMed

    Li, Sen; Juhász-Horváth, Linda; Harrison, Paula A; Pintér, László; Rounsevell, Mark D A

    2017-01-01

    Understanding how farmers perceive climate change risks and how this affects their willingness to adopt adaptation practices is critical for developing effective climate change response strategies for the agricultural sector. This study examines (i) the perceptual relationships between farmers' awareness of climate change phenomena, beliefs in climate change risks and actual adaptation behaviour, and (ii) how these relationships may be modified by farm-level antecedents related to human, social, financial capitals and farm characteristics. An extensive household survey was designed to investigate the current pattern of adaptation strategies and collect data on these perceptual variables and their potential antecedents from private landowners in Veszprém and Tolna counties, Hungary. Path analysis was used to explore the causal connections between variables. We found that belief in the risk of climate change was heightened by an increased awareness of directly observable climate change phenomena (i.e. water shortages and extreme weather events). The awareness of extreme weather events was a significant driver of adaptation behaviour. Farmers' actual adaptation behaviour was primarily driven by financial motives and managerial considerations (i.e. the aim of improving profit and product sales; gaining farm ownership and the amount of land managed; and, the existence of a successor), and stimulated by an innovative personality and the availability of information from socio-agricultural networks. These results enrich the empirical evidence in support of improving understanding of farmer decision-making processes, which is critical in developing well-targeted adaptation policies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Robust adaptive relative position and attitude control for spacecraft autonomous proximity.

    PubMed

    Sun, Liang; Huo, Wei; Jiao, Zongxia

    2016-07-01

    This paper provides new results of the dynamical modeling and controller designing for autonomous close proximity phase during rendezvous and docking in the presence of kinematic couplings and model uncertainties. A globally defined relative motion mechanical model for close proximity operations is introduced firstly. Then, in spite of the kinematic couplings and thrust misalignment between relative rotation and relative translation, robust adaptive relative position and relative attitude controllers are designed successively. Finally, stability of the overall system is proved that the relative position and relative attitude are uniformly ultimately bounded, and the size of the ultimate bound can be regulated small enough by control system parameters. Performance of the controlled overall system is demonstrated via a representative numerical example. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  3. High rate of adaptation of mammalian proteins that interact with Plasmodium and related parasites

    PubMed Central

    Telis, Natalie; Petrov, Dmitri A.

    2017-01-01

    Plasmodium parasites, along with their Piroplasm relatives, have caused malaria-like illnesses in terrestrial mammals for millions of years. Several Plasmodium-protective alleles have recently evolved in human populations, but little is known about host adaptation to blood parasites over deeper evolutionary timescales. In this work, we analyze mammalian adaptation in ~500 Plasmodium- or Piroplasm- interacting proteins (PPIPs) manually curated from the scientific literature. We show that (i) PPIPs are enriched for both immune functions and pleiotropy with other pathogens, and (ii) the rate of adaptation across mammals is significantly elevated in PPIPs, compared to carefully matched control proteins. PPIPs with high pathogen pleiotropy show the strongest signatures of adaptation, but this pattern is fully explained by their immune enrichment. Several pieces of evidence suggest that blood parasites specifically have imposed selection on PPIPs. First, even non-immune PPIPs that lack interactions with other pathogens have adapted at twice the rate of matched controls. Second, PPIP adaptation is linked to high expression in the liver, a critical organ in the parasite life cycle. Finally, our detailed investigation of alpha-spectrin, a major red blood cell membrane protein, shows that domains with particularly high rates of adaptation are those known to interact specifically with P. falciparum. Overall, we show that host proteins that interact with Plasmodium and Piroplasm parasites have experienced elevated rates of adaptation across mammals, and provide evidence that some of this adaptation has likely been driven by blood parasites. PMID:28957326

  4. A Generalized Michaelis-Menten Equation in Protein Synthesis: Effects of Mis-Charged Cognate tRNA and Mis-Reading of Codon.

    PubMed

    Dutta, Annwesha; Chowdhury, Debashish

    2017-05-01

    The sequence of amino acid monomers in the primary structure of a protein is decided by the corresponding sequence of codons (triplets of nucleic acid monomers) on the template messenger RNA (mRNA). The polymerization of a protein, by incorporation of the successive amino acid monomers, is carried out by a molecular machine called ribosome. We develop a stochastic kinetic model that captures the possibilities of mis-reading of mRNA codon and prior mis-charging of a tRNA. By a combination of analytical and numerical methods, we obtain the distribution of the times taken for incorporation of the successive amino acids in the growing protein in this mathematical model. The corresponding exact analytical expression for the average rate of elongation of a nascent protein is a 'biologically motivated' generalization of the Michaelis-Menten formula for the average rate of enzymatic reactions. This generalized Michaelis-Menten-like formula (and the exact analytical expressions for a few other quantities) that we report here display the interplay of four different branched pathways corresponding to selection of four different types of tRNA.

  5. Mutation at embB Codon 306, a Potential Marker for the Identification of Multidrug Resistance Associated with Ethambutol in Mycobacterium tuberculosis

    PubMed Central

    Cuevas-Córdoba, Betzaida; Juárez-Eusebio, Dulce María; Almaraz-Velasco, Raquel; Muñiz-Salazar, Raquel; Laniado-Laborin, Rafael

    2015-01-01

    Ethambutol inhibits arabinogalactan and lipoarabinomannan biosynthesis in mycobacteria. The occurrence of mutations in embB codon 306 in ethambutol-susceptible isolates and their absence in resistant isolates has raised questions regarding the utility of this codon as a potential marker for resistance against ethambutol. The characterization of mutations on embB 306 will contribute to a better understanding of the mechanisms of resistance to this drug; therefore, the purpose of this study was to investigate the association between embB 306 mutations and first-line drug resistance profiles in tuberculosis isolates. We sequenced the region surrounding the embB 306 codon in 175 tuberculosis clinical isolates, divided according to drug sensitivity, in three groups: 110 were resistant to at least one first-line drug, of which 61 were resistant to ethambutol (EMBr), 49 were sensitive to ethambutol (EMBs) but were resistant to another drug, and 65 were pansensitive isolates (Ps). The associations between embB 306 mutations and phenotypic resistance to all first-line drugs were determined, and their validity and safety as a diagnostic marker were assessed. One of the Ps isolates (1/65), one of the EMBs isolates (1/49), and 20 of the EMBr isolates (20/61) presented with an embB 306 mutation. Four different single-nucleotide polymorphisms (SNPs) at embB 306 were associated with simultaneous resistance to ethambutol, isoniazid, and rifampin (odds ratio [OR], 17.7; confidence interval [CI], 5.6 to 56.1) and showed a positive predictive value of 82%, with a specificity of 97% for diagnosing multidrug resistance associated with ethambutol, indicating its potential as a molecular marker for several drugs. PMID:26124153

  6. Adaptive nonlinear robust relative pose control of spacecraft autonomous rendezvous and proximity operations.

    PubMed

    Sun, Liang; Huo, Wei; Jiao, Zongxia

    2017-03-01

    This paper studies relative pose control for a rigid spacecraft with parametric uncertainties approaching to an unknown tumbling target in disturbed space environment. State feedback controllers for relative translation and relative rotation are designed in an adaptive nonlinear robust control framework. The element-wise and norm-wise adaptive laws are utilized to compensate the parametric uncertainties of chaser and target spacecraft, respectively. External disturbances acting on two spacecraft are treated as a lumped and bounded perturbation input for system. To achieve the prescribed disturbance attenuation performance index, feedback gains of controllers are designed by solving linear matrix inequality problems so that lumped disturbance attenuation with respect to the controlled output is ensured in the L 2 -gain sense. Moreover, in the absence of lumped disturbance input, asymptotical convergence of relative pose are proved by using the Lyapunov method. Numerical simulations are performed to show that position tracking and attitude synchronization are accomplished in spite of the presence of couplings and uncertainties. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Schizophrenia and vitamin D related genes could have been subject to latitude-driven adaptation.

    PubMed

    Amato, Roberto; Pinelli, Michele; Monticelli, Antonella; Miele, Gennaro; Cocozza, Sergio

    2010-11-11

    Many natural phenomena are directly or indirectly related to latitude. Living at different latitudes, indeed, has its consequences with being exposed to different climates, diets, light/dark cycles, etc. In humans, one of the best known examples of genetic traits following a latitudinal gradient is skin pigmentation. Nevertheless, also several diseases show latitudinal clinals such as hypertension, cancer, dismetabolic conditions, schizophrenia, Parkinson's disease and many more. We investigated, for the first time on a wide genomic scale, the latitude-driven adaptation phenomena. In particular, we selected a set of genes showing signs of latitude-dependent population differentiation. The biological characterization of these genes showed enrichment for neural-related processes. In light of this, we investigated whether genes associated to neuropsychiatric diseases were enriched by Latitude-Related Genes (LRGs). We found a strong enrichment of LRGs in the set of genes associated to schizophrenia. In an attempt to try to explain this possible link between latitude and schizophrenia, we investigated their associations with vitamin D. We found in a set of vitamin D related genes a significant enrichment of both LRGs and of genes involved in schizophrenia. Our results suggest a latitude-driven adaptation for both schizophrenia and vitamin D related genes. In addition we confirm, at a molecular level, the link between schizophrenia and vitamin D. Finally, we discuss a model in which schizophrenia is, at least partly, a maladaptive by-product of latitude dependent adaptive changes in vitamin D metabolism.

  8. Base compositions of genes encoding alpha-actin and lactate dehydrogenase-A from differently adapted vertebrates show no temperature-adaptive variation in G + C content.

    PubMed

    Ream, Rachael A; Johns, Glenn C; Somero, George N

    2003-01-01

    There is a long-standing debate in molecular evolution concerning the putative importance of GC content in adapting the thermal stabilities of DNA and RNA. Most studies of this relationship have examined broad-scale compositional patterns, for example, total GC percentages in genomes and occurrence of GC-rich isochores. Few studies have systematically examined the GC contents of individual orthologous genes from differently thermally adapted species. When this has been done, the emphasis has been on comparing large numbers of genes in only a few species. We have approached the GC-adaptation temperature hypothesis in a different manner by examining patterns of base composition of genes encoding lactate dehydrogenase-A (ldh-a) and alpha-actin (alpha-actin) from 51 species of vertebrates whose adaptation temperatures ranged from -1.86 degrees C (Antarctic fishes) to approximately 45 degrees C (desert reptile). No significant positive correlation was found between any index of GC content (GC content of the entire sequence, GC content of the third codon position [GC(3)], and GC content at fourfold degenerate sites [GC(4)]) and any index of adaptation temperature (maximal, mean, or minimal body temperature). For alpha-actin, slopes of regression lines for all comparisons did not differ significantly from zero. For ldh-a, negative correlations between adaptation temperature and total GC content, GC(3), and GC(4) were observed but were shown to be due entirely to phylogenetic influences (as revealed by independent contrast analyses). This comparison of GC content across a wide range of ectothermic ("cold-blooded") and endothermic ("warm-blooded") vertebrates revealed that frogs of the genus Xenopus, which have commonly been used as a representative cold-blooded species, in fact are outliers among ectotherms for the alpha-actin analyses, raising concern about the appropriateness of choosing these amphibians as representative of ectothermic vertebrates in general. Our study

  9. Speed Controls in Translating Secretory Proteins in Eukaryotes - an Evolutionary Perspective

    PubMed Central

    Mahlab, Shelly; Linial, Michal

    2014-01-01

    Protein translation is the most expensive operation in dividing cells from bacteria to humans. Therefore, managing the speed and allocation of resources is subject to tight control. From bacteria to humans, clusters of relatively rare tRNA codons at the N′-terminal of mRNAs have been implicated in attenuating the process of ribosome allocation, and consequently the translation rate in a broad range of organisms. The current interpretation of “slow” tRNA codons does not distinguish between protein translations mediated by free- or endoplasmic reticulum (ER)-bound ribosomes. We demonstrate that proteins translated by free- or ER-bound ribosomes exhibit different overall properties in terms of their translation efficiency and speed in yeast, fly, plant, worm, bovine and human. We note that only secreted or membranous proteins with a Signal peptide (SP) are specified by segments of “slow” tRNA at the N′-terminal, followed by abundant codons that are considered “fast.” Such profiles apply to 3100 proteins of the human proteome that are composed of secreted and signal peptide (SP)-assisted membranous proteins. Remarkably, the bulks of the proteins (12,000), or membranous proteins lacking SP (3400), do not have such a pattern. Alternation of “fast” and “slow” codons was found also in proteins that translocate to mitochondria through transit peptides (TP). The differential clusters of tRNA adapted codons is not restricted to the N′-terminal of transcripts. Specifically, Glycosylphosphatidylinositol (GPI)-anchored proteins are unified by clusters of low adapted tRNAs codons at the C′-termini. Furthermore, selection of amino acids types and specific codons was shown as the driving force which establishes the translation demands for the secretory proteome. We postulate that “hard-coded” signals within the secretory proteome assist the steps of protein maturation and folding. Specifically, “speed control” signals for delaying the translation

  10. An initiator codon mutation in SDE2 causes recessive embryonic lethality in Holstein cattle.

    PubMed

    Fritz, Sébastien; Hoze, Chris; Rebours, Emmanuelle; Barbat, Anne; Bizard, Méline; Chamberlain, Amanda; Escouflaire, Clémentine; Vander Jagt, Christy; Boussaha, Mekki; Grohs, Cécile; Allais-Bonnet, Aurélie; Philippe, Maëlle; Vallée, Amélie; Amigues, Yves; Hayes, Benjamin J; Boichard, Didier; Capitan, Aurélien

    2018-04-18

    Researching depletions in homozygous genotypes for specific haplotypes among the large cohorts of animals genotyped for genomic selection is a very efficient strategy to map recessive lethal mutations. In this study, by analyzing real or imputed Illumina BovineSNP50 (Illumina Inc., San Diego, CA) genotypes from more than 250,000 Holstein animals, we identified a new locus called HH6 showing significant negative effects on conception rate and nonreturn rate at 56 d in at-risk versus control mating. We fine-mapped this locus in a 1.1-Mb interval and analyzed genome sequence data from 12 carrier and 284 noncarrier Holstein bulls. We report the identification of a strong candidate mutation in the gene encoding SDE2 telomere maintenance homolog (SDE2), a protein essential for genomic stability in eukaryotes. This A-to-G transition changes the initiator ATG (methionine) codon to ACG because the gene is transcribed on the reverse strand. Using RNA sequencing and quantitative reverse-transcription PCR, we demonstrated that this mutation does not significantly affect SDE2 splicing and expression level in heterozygous carriers compared with control animals. Initiation of translation at the closest in-frame methionine codon would truncate the SDE2 precursor by 83 amino acids, including the cleavage site necessary for its activation. Finally, no homozygote for the G allele was observed in a large population of nearly 29,000 individuals genotyped for the mutation. The low frequency (1.3%) of the derived allele in the French population and the availability of a diagnostic test on the Illumina EuroG10K SNP chip routinely used for genomic evaluation will enable rapid and efficient selection against this deleterious mutation. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Childhood Depression: Relation to Adaptive, Clinical and Predictor Variables

    PubMed Central

    Garaigordobil, Maite; Bernarás, Elena; Jaureguizar, Joana; Machimbarrena, Juan M.

    2017-01-01

    The study had two goals: (1) to explore the relations between self-assessed childhood depression and other adaptive and clinical variables (2) to identify predictor variables of childhood depression. Participants were 420 students aged 7–10 years old (53.3% boys, 46.7% girls). Results revealed: (1) positive correlations between depression and clinical maladjustment, school maladjustment, emotional symptoms, internalizing and externalizing problems, problem behaviors, emotional reactivity, and childhood stress; and (2) negative correlations between depression and personal adaptation, global self-concept, social skills, and resilience (sense of competence and affiliation). Linear regression analysis including the global dimensions revealed 4 predictors of childhood depression that explained 50.6% of the variance: high clinical maladjustment, low global self-concept, high level of stress, and poor social skills. However, upon introducing the sub-dimensions, 9 predictor variables emerged that explained 56.4% of the variance: many internalizing problems, low family self-concept, high anxiety, low responsibility, low personal self-assessment, high social stress, few aggressive behaviors toward peers, many health/psychosomatic problems, and external locus of control. The discussion addresses the importance of implementing prevention programs for childhood depression at early ages. PMID:28572787

  12. Euglena gracilis chloroplast DNA: analysis of a 1.6 kb intron of the psb C gene containing an open reading frame of 458 codons.

    PubMed

    Montandon, P E; Vasserot, A; Stutz, E

    1986-01-01

    We retrieved a 1.6 kbp intron separating two exons of the psb C gene which codes for the 44 kDa reaction center protein of photosystem II. This intron is 3 to 4 times the size of all previously sequenced Euglena gracilis chloroplast introns. It contains an open reading frame of 458 codons potentially coding for a basic protein of 54 kDa of yet unknown function. The intron boundaries follow consensus sequences established for chloroplast introns related to class II and nuclear pre-mRNA introns. Its 3'-terminal segment has structural features similar to class II mitochondrial introns with an invariant base A as possible branch point for lariat formation.

  13. Adaptive control system having hedge unit and related apparatus and methods

    NASA Technical Reports Server (NTRS)

    Johnson, Eric Norman (Inventor); Calise, Anthony J. (Inventor)

    2003-01-01

    The invention includes an adaptive control system used to control a plant. The adaptive control system includes a hedge unit that receives at least one control signal and a plant state signal. The hedge unit generates a hedge signal based on the control signal, the plant state signal, and a hedge model including a first model having one or more characteristics to which the adaptive control system is not to adapt, and a second model not having the characteristic(s) to which the adaptive control system is not to adapt. The hedge signal is used in the adaptive control system to remove the effect of the characteristic from a signal supplied to an adaptation law unit of the adaptive control system so that the adaptive control system does not adapt to the characteristic in controlling the plant.

  14. Using Student Writing and Lexical Analysis to Reveal Student Thinking about the Role of Stop Codons in the Central Dogma.

    PubMed

    Prevost, Luanna B; Smith, Michelle K; Knight, Jennifer K

    2016-01-01

    Previous work has shown that students have persistent difficulties in understanding how central dogma processes can be affected by a stop codon mutation. To explore these difficulties, we modified two multiple-choice questions from the Genetics Concept Assessment into three open-ended questions that asked students to write about how a stop codon mutation potentially impacts replication, transcription, and translation. We then used computer-assisted lexical analysis combined with human scoring to categorize student responses. The lexical analysis models showed high agreement with human scoring, demonstrating that this approach can be successfully used to analyze large numbers of student written responses. The results of this analysis show that students' ideas about one process in the central dogma can affect their thinking about subsequent and previous processes, leading to mixed models of conceptual understanding. © 2016 L. B. Prevost et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Improved Prefusion Stability, Optimized Codon Usage, and Augmented Virion Packaging Enhance the Immunogenicity of Respiratory Syncytial Virus Fusion Protein in a Vectored-Vaccine Candidate

    PubMed Central

    Liang, Bo; Ngwuta, Joan O.; Surman, Sonja; Kabatova, Barbora; Liu, Xiang; Lingemann, Matthias; Liu, Xueqiao; Yang, Lijuan; Herbert, Richard; Swerczek, Joanna; Chen, Man; Moin, Syed M.; Kumar, Azad; McLellan, Jason S.; Kwong, Peter D.; Graham, Barney S.; Collins, Peter L.

    2017-01-01

    ABSTRACT Respiratory syncytial virus (RSV) is the most important viral agent of severe pediatric respiratory tract disease worldwide, but it lacks a licensed vaccine or suitable antiviral drug. A live attenuated chimeric bovine/human parainfluenza virus type 3 (rB/HPIV3) was developed previously as a vector expressing RSV fusion (F) protein to confer bivalent protection against RSV and HPIV3. In a previous clinical trial in virus-naive children, rB/HPIV3 was well tolerated but the immunogenicity of wild-type RSV F was unsatisfactory. We previously modified RSV F with a designed disulfide bond (DS) to increase stability in the prefusion (pre-F) conformation and to be efficiently packaged in the vector virion. Here, we further stabilized pre-F by adding both disulfide and cavity-filling mutations (DS-Cav1), and we also modified RSV F codon usage to have a lower CpG content and a higher level of expression. This RSV F open reading frame was evaluated in rB/HPIV3 in three forms: (i) pre-F without vector-packaging signal, (ii) pre-F with vector-packaging signal, and (iii) secreted pre-F ectodomain trimer. Despite being efficiently expressed, the secreted pre-F was poorly immunogenic. DS-Cav1 stabilized pre-F, with or without packaging, induced higher titers of pre-F specific antibodies in hamsters, and improved the quality of RSV-neutralizing serum antibodies. Codon-optimized RSV F containing fewer CpG dinucleotides had higher F expression, replicated more efficiently in vivo, and was more immunogenic. The combination of DS-Cav1 pre-F stabilization, optimized codon usage, reduced CpG content, and vector packaging significantly improved vector immunogenicity and protective efficacy against RSV. This provides an improved vectored RSV vaccine candidate suitable for pediatric clinical evaluation. IMPORTANCE RSV and HPIV3 are the first and second leading viral causes of severe pediatric respiratory disease worldwide. Licensed vaccines or suitable antiviral drugs are not

  16. [Correlation of codon biases and potential secondary structures with mRNA translation efficiency in unicellular organisms].

    PubMed

    Vladimirov, N V; Likhoshvaĭ, V A; Matushkin, Iu G

    2007-01-01

    Gene expression is known to correlate with degree of codon bias in many unicellular organisms. However, such correlation is absent in some organisms. Recently we demonstrated that inverted complementary repeats within coding DNA sequence must be considered for proper estimation of translation efficiency, since they may form secondary structures that obstruct ribosome movement. We have developed a program for estimation of potential coding DNA sequence expression in defined unicellular organism using its genome sequence. The program computes elongation efficiency index. Computation is based on estimation of coding DNA sequence elongation efficiency, taking into account three key factors: codon bias, average number of inverted complementary repeats, and free energy of potential stem-loop structures formed by the repeats. The influence of these factors on translation is numerically estimated. An optimal proportion of these factors is computed for each organism individually. Quantitative translational characteristics of 384 unicellular organisms (351 bacteria, 28 archaea, 5 eukaryota) have been computed using their annotated genomes from NCBI GenBank. Five potential evolutionary strategies of translational optimization have been determined among studied organisms. A considerable difference of preferred translational strategies between Bacteria and Archaea has been revealed. Significant correlations between elongation efficiency index and gene expression levels have been shown for two organisms (S. cerevisiae and H. pylori) using available microarray data. The proposed method allows to estimate numerically the coding DNA sequence translation efficiency and to optimize nucleotide composition of heterologous genes in unicellular organisms. http://www.mgs.bionet.nsc.ru/mgs/programs/eei-calculator/.

  17. Mutations in global regulators lead to metabolic selection during adaptation to complex environments

    DOE PAGES

    Saxer, Gerda; Krepps, Michael D.; Merkley, Eric D.; ...

    2014-12-11

    Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Unlike adaptation to a single limiting resource, adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes since many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased geneticmore » and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that a subtle modulation of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order “metabolic selection” that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a “one-step” mechanism of adaptation to a novel

  18. Translational resistivity/conductivity of coding sequences during exponential growth of Escherichia coli.

    PubMed

    Takai, Kazuyuki

    2017-01-21

    Codon adaptation index (CAI) has been widely used for prediction of expression of recombinant genes in Escherichia coli and other organisms. However, CAI has no mechanistic basis that rationalizes its application to estimation of translational efficiency. Here, I propose a model based on which we could consider how codon usage is related to the level of expression during exponential growth of bacteria. In this model, translation of a gene is considered as an analog of electric current, and an analog of electric resistance corresponding to each gene is considered. "Translational resistance" is dependent on the steady-state concentration and the sequence of the mRNA species, and "translational resistivity" is dependent only on the mRNA sequence. The latter is the sum of two parts: one is the resistivity for the elongation reaction (coding sequence resistivity), and the other comes from all of the other steps of the decoding reaction. This electric circuit model clearly shows that some conditions should be met for codon composition of a coding sequence to correlate well with its expression level. On the other hand, I calculated relative frequency of each of the 61 sense codon triplets translated during exponential growth of E. coli from a proteomic dataset covering over 2600 proteins. A tentative method for estimating relative coding sequence resistivity based on the data is presented. Copyright © 2016. Published by Elsevier Ltd.

  19. Adaptive evolution and functional constraint at TLR4 during the secondary aquatic adaptation and diversification of cetaceans.

    PubMed

    Shen, Tong; Xu, Shixia; Wang, Xiaohong; Yu, Wenhua; Zhou, Kaiya; Yang, Guang

    2012-03-24

    Cetaceans (whales, dolphins and porpoises) are a group of adapted marine mammals with an enigmatic history of transition from terrestrial to full aquatic habitat and rapid radiation in waters around the world. Throughout this evolution, the pathogen stress-response proteins must have faced challenges from the dramatic change of environmental pathogens in the completely different ecological niches cetaceans occupied. For this reason, cetaceans could be one of the most ideal candidate taxa for studying evolutionary process and associated driving mechanism of vertebrate innate immune systems such as Toll-like receptors (TLRs), which are located at the direct interface between the host and the microbial environment, act at the first line in recognizing specific conserved components of microorganisms, and translate them rapidly into a defense reaction. We used TLR4 as an example to test whether this traditionally regarded pattern recognition receptor molecule was driven by positive selection across cetacean evolutionary history. Overall, the lineage-specific selection test showed that the dN/dS (ω) values along most (30 out of 33) examined cetartiodactylan lineages were less than 1, suggesting a common effect of functional constraint. However, some specific codons made radical changes, fell adjacent to the residues interacting with lipopolysaccharides (LPS), and showed parallel evolution between independent lineages, suggesting that TLR4 was under positive selection. Especially, strong signatures of adaptive evolution on TLR4 were identified in two periods, one corresponding to the early evolutionary transition of the terrestrial ancestors of cetaceans from land to semi-aquatic (represented by the branch leading to whale + hippo) and from semi-aquatic to full aquatic (represented by the ancestral branch leading to cetaceans) habitat, and the other to the rapid diversification and radiation of oceanic dolphins. This is the first study thus far to characterize the TLR

  20. Adaptive evolution and functional constraint at TLR4 during the secondary aquatic adaptation and diversification of cetaceans

    PubMed Central

    2012-01-01

    Background Cetaceans (whales, dolphins and porpoises) are a group of adapted marine mammals with an enigmatic history of transition from terrestrial to full aquatic habitat and rapid radiation in waters around the world. Throughout this evolution, the pathogen stress-response proteins must have faced challenges from the dramatic change of environmental pathogens in the completely different ecological niches cetaceans occupied. For this reason, cetaceans could be one of the most ideal candidate taxa for studying evolutionary process and associated driving mechanism of vertebrate innate immune systems such as Toll-like receptors (TLRs), which are located at the direct interface between the host and the microbial environment, act at the first line in recognizing specific conserved components of microorganisms, and translate them rapidly into a defense reaction. Results We used TLR4 as an example to test whether this traditionally regarded pattern recognition receptor molecule was driven by positive selection across cetacean evolutionary history. Overall, the lineage-specific selection test showed that the dN/dS (ω) values along most (30 out of 33) examined cetartiodactylan lineages were less than 1, suggesting a common effect of functional constraint. However, some specific codons made radical changes, fell adjacent to the residues interacting with lipopolysaccharides (LPS), and showed parallel evolution between independent lineages, suggesting that TLR4 was under positive selection. Especially, strong signatures of adaptive evolution on TLR4 were identified in two periods, one corresponding to the early evolutionary transition of the terrestrial ancestors of cetaceans from land to semi-aquatic (represented by the branch leading to whale + hippo) and from semi-aquatic to full aquatic (represented by the ancestral branch leading to cetaceans) habitat, and the other to the rapid diversification and radiation of oceanic dolphins. Conclusions This is the first study thus

  1. ANCAC: amino acid, nucleotide, and codon analysis of COGs--a tool for sequence bias analysis in microbial orthologs.

    PubMed

    Meiler, Arno; Klinger, Claudia; Kaufmann, Michael

    2012-09-08

    The COG database is the most popular collection of orthologous proteins from many different completely sequenced microbial genomes. Per definition, a cluster of orthologous groups (COG) within this database exclusively contains proteins that most likely achieve the same cellular function. Recently, the COG database was extended by assigning to every protein both the corresponding amino acid and its encoding nucleotide sequence resulting in the NUCOCOG database. This extended version of the COG database is a valuable resource connecting sequence features with the functionality of the respective proteins. Here we present ANCAC, a web tool and MySQL database for the analysis of amino acid, nucleotide, and codon frequencies in COGs on the basis of freely definable phylogenetic patterns. We demonstrate the usefulness of ANCAC by analyzing amino acid frequencies, codon usage, and GC-content in a species- or function-specific context. With respect to amino acids we, at least in part, confirm the cognate bias hypothesis by using ANCAC's NUCOCOG dataset as the largest one available for that purpose thus far. Using the NUCOCOG datasets, ANCAC connects taxonomic, amino acid, and nucleotide sequence information with the functional classification via COGs and provides a GUI for flexible mining for sequence-bias. Thereby, to our knowledge, it is the only tool for the analysis of sequence composition in the light of physiological roles and phylogenetic context without requirement of substantial programming-skills.

  2. Mycobacterium tuberculosis embB codon 306 mutations confer moderately increased resistance to ethambutol in vitro and in vivo.

    PubMed

    Plinke, Claudia; Walter, Kerstin; Aly, Sahar; Ehlers, Stefan; Niemann, Stefan

    2011-06-01

    Ethambutol (EMB) is a major component of the first-line therapy of tuberculosis. Mutations in codon 306 of embB (embB306) were suggested as a major resistance mechanism in clinical isolates. To directly analyze the impact of individual embB306 mutations on EMB resistance, we used allelic exchange experiments to generate embB306 mutants of M. tuberculosis H37Rv. The level of EMB resistance conferred by particular mutations was measured in vitro and in vivo after EMB therapy by daily gavage in a mouse model of aerogenic tuberculosis. The wild-type embB306 ATG codon was replaced by embB306 ATC, ATA, or GTG, respectively. All of the obtained embB306 mutants exhibited a 2- to 4-fold increase in EMB MIC compared to the wild-type H37Rv. In vivo, the one selected embB306 GTG mutant required a higher dose of ethambutol to restrict its growth in the lung compared to wild-type H37Rv. These experiments demonstrate that embB306 point mutations enhance the EMB MIC in vitro to a moderate, but significant extent, and reduce the efficacy of EMB treatment in the animal model. We propose that conventional EMB susceptibility testing, in combination with embB306 genotyping, may guide dose adjustment to avoid clinical treatment failure in these low-level resistant strains.

  3. A transducer for microbial sensory rhodopsin that adopts GTG as a start codon is identified in Haloarcula marismortui.

    PubMed

    Fu, Hsu-Yuan; Lu, Yen-Hsu; Yi, Hsiu-Ping; Yang, Chii-Shen

    2013-04-05

    Microbial sensory rhodopsins are known to mediate phototaxis, and all of the known sensory rhodopsins execute this function with a specific cognate transducer that has two-transmembrane (2-TM) regions. In the genome of Haloarcula marismortui, a total of six rhodopsin genes were annotated, and we previously showed three of them to be the ion type and suggested the other three as sensory type, even though the candidate transducer gene, htr, for HmSRI was missing the 2-TM region that is found in all of the other known transducers. Here we showed this htr gene featured a preceding 2-TM region when the alternative start codon GTG located 291 nucleotides upstream of the original annotated open reading frame (ORF) was introduced and it is named as htrI in this study. Overexpression of HmHtrI exhibited it existed as a membrane protein and several biophysical assays confirmed it functionally interacted with HmSRI. Together with our previous reverse-transcriptase-PCR results and phototaxis measurements, the new ORF of original predicted soluble htr gene product was a membrane protein with a 2-TM region, HmHtrI; and it serves as the cognate transducer for HmSRI. HmHtrI therefore is the first transducer for the sensory rhodopsin adopted start codon other than ATG. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Novel Codon Insert in HIV Type 1 Clade B Reverse Transcriptase Associated with Low-Level Viremia During Antiretroviral Therapy

    PubMed Central

    Gianella, Sara; Vazquez, Homero; Ignacio, Caroline; Zweig, Adam C.; Richman, Douglas D.; Smith, Davey M.

    2014-01-01

    Abstract We investigated the pol genotype in two phylogenetically and epidemiologically linked partners, who were both experiencing persistent low-level viremia during antiretroviral therapy. In one partner we identified a new residue insertion between codon 248 and 249 of the HIV-1 RNA reverse transcriptase (RT) coding region (HXB2 numbering). We then investigated the potential impact of identified mutations in RT and antiretroviral binding affinity using a novel computational approach. PMID:24020934

  5. Heterozygous genotype at codon 129 correlates with prolonged disease course in Heidenhain variant sporadic CJD: case report.

    PubMed

    Townley, Ryan A; Dawson, Elliot T; Drubach, Daniel A

    2018-02-01

    Sporadic Creutzfeldt-Jakob disease (sCJD) is a rapid and fatal neurodegenerative disease defined by misfolded prion proteins accumulating in the brain. A minority of cases initially present with posterior cortical atrophy (PCA) phenotype, also known as Heidenhain variant or visual variant CJD. This case provides further evidence of sCJD presenting as PCA. The case also provides evidence for early DWI changes and cortical atrophy over 30 months before neurologic decline and subsequent death. The prolonged disease course correlates with prion protein codon 129 heterozygosity and coexistence of multiple prion strains.

  6. Dengue Virus Type 3 Adaptive Changes during Epidemics in São Jose de Rio Preto, Brazil, 2006–2007

    PubMed Central

    Bosch, Irene; Schimitt, Diane; Calzavara-Silva, Carlos E.; de A Zanotto, Paolo M.; Nogueira, Maurício L.

    2013-01-01

    Global dengue virus spread in tropical and sub-tropical regions has become a major international public health concern. It is evident that DENV genetic diversity plays a significant role in the immunopathology of the disease and that the identification of polymorphisms associated with adaptive responses is important for vaccine development. The investigation of naturally occurring genomic variants may play an important role in the comprehension of different adaptive strategies used by these mutants to evade the human immune system. In order to elucidate this role we sequenced the complete polyprotein-coding region of thirty-three DENV-3 isolates to characterize variants circulating under high endemicity in the city of São José de Rio Preto, Brazil, during the onset of the 2006-07 epidemic. By inferring the evolutionary history on a local-scale and estimating rates of synonymous (dS) and nonsynonimous (dN) substitutions, we have documented at least two different introductions of DENV-3 into the city and detected 10 polymorphic codon sites under significant positive selection (dN/dS > 1) and 8 under significant purifying selection (dN/dS < 1). We found several polymorphic amino acid coding sites in the envelope (15), NS1 (17), NS2A (11), and NS5 (24) genes, which suggests that these genes may be experiencing relatively recent adaptive changes. Furthermore, some polymorphisms correlated with changes in the immunogenicity of several epitopes. Our study highlights the existence of significant and informative DENV variability at the spatio-temporal scale of an urban outbreak. PMID:23667626

  7. [Comparison of protective properties of the smallpox DNA-vaccine based on the variola virus A30L gene and its variant with modified codon usage].

    PubMed

    Maksiutov, R A; Shchelkunov, S N

    2011-01-01

    Efficacy of candidate DNA-vaccines based on the variola virus natural gene A30L and artificial gene A30Lopt with modified codon usage, optimized for expression in mammalian cells, was tested. The groups of mice were intracutaneously immunized three times with three-week intervals with candidate DNA-vaccines: pcDNA_A30L or pcDNA_A30Lopt, and in three weeks after the last immunization all mice in the groups were intraperitoneally infected by the ectromelia virus K1 strain in 10 LD50 dose for the estimation of protection. It was shown that the DNA-vaccines based on natural gene A30L and codon-optimized gene A30Lopt elicited virus, thereby neutralizing the antibody response and protected mice from lethal intraperitoneal challenge with the ectromelia virus with lack of statistically significant difference.

  8. Nevirapine resistance mutation at codon 181 of the HIV-1 reverse transcriptase confers stavudine resistance by increasing nucleotide substrate discrimination and phosphorolytic activity.

    PubMed

    Blanca, Giuseppina; Baldanti, Fausto; Paolucci, Stefania; Skoblov, Alexander Yu; Victorova, Lyubov; Hübscher, Ulrich; Gerna, Giuseppe; Spadari, Silvio; Maga, Giovanni

    2003-05-02

    Recombinant HIV-1 reverse transcriptase (RT) carrying non-nucleoside inhibitors (NNRTIs) resistance mutation at codon 181 showed reduced incorporation and high efficiency of phosphorolytic removal of stavudine, a nucleoside RT inhibitor. These results reveal a new mechanism for cross-resistance between different classes of HIV-1 RT inhibitors.

  9. A novel mutation in the FGB: c.1105C>T turns the codon for amino acid Bβ Q339 into a stop codon causing hypofibrinogenemia.

    PubMed

    Marchi, Rita; Brennan, Stephen; Meyer, Michael; Rojas, Héctor; Kanzler, Daniela; De Agrela, Marisela; Ruiz-Saez, Arlette

    2013-03-01

    Routine coagulation tests on a 14year-old male with frequent epistaxis showed a prolonged thrombin time together with diminished functional (162mg/dl) and gravimetric (122mg/dl) fibrinogen concentrations. His father showed similar aberrant results and sequencing of the three fibrinogen genes revealed a novel heterozygous nonsense mutation in the FGB gene c.1105C>T, which converts the codon for residue Bβ 339Q to stop, causing deletion of Bβ chain residues 339-461. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and RP-HPLC (reverse-phase high-pressure liquid chromatography) of purified fibrinogen showed only normal Aα, Bβ, and γ chains, indicating that molecules with the truncated 37,990Da β chain were not secreted into plasma. Functional analysis showed impaired fibrin polymerization, fibrin porosity, and elasticity compared to controls. By laser scanning confocal microscopy the patient's fibers were slightly thinner than normal. Electrospray ionization mass spectrometry (ESI MS) presented normal sialylation of the oligosaccharide chains, and liver function tests showed no evidence of liver dysfunction that might explain the functional abnormalities. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. mRNA 3' of the A site bound codon is located close to protein S3 on the human 80S ribosome.

    PubMed

    Molotkov, Maxim V; Graifer, Dmitri M; Popugaeva, Elena A; Bulygin, Konstantin N; Meschaninova, Maria I; Ven'yaminova, Aliya G; Karpova, Galina G

    2006-07-01

    Ribosomal proteins neighboring the mRNA downstream of the codon bound at the decoding site of human 80S ribosomes were identified using three sets of mRNA analogues that contained a UUU triplet at the 5' terminus and a perfluorophenylazide cross-linker at guanosine, adenosine or uridine residues placed at various locations 3' of this triplet. The positions of modified mRNA nucleotides on the ribosome were governed by tRNA(Phe) cognate to the UUU triplet targeted to the P site. Upon mild UV-irradiation, the mRNA analogues cross-linked preferentially to the 40S subunit, to the proteins and to a lesser extent to the 18S rRNA. Cross-linked nucleotides of 18S rRNA were identified previously. In the present study, it is shown that among the proteins the main target for cross-linking with all the mRNA analogues tested was protein S3 (homologous to prokaryotic S3, S3p); minor cross-linking to protein S2 (S5p) was also detected. Both proteins cross-linked to mRNA analogues in the ternary complexes as well as in the binary complexes (without tRNA). In the ternary complexes protein S15 (S19p) also cross-linked, the yield of the cross-link decreased significantly when the modified nucleotide moved from position +5 to position +12 with respect to the first nucleotide of the P site bound codon. In several ternary complexes minor cross-linking to protein S30 was likewise detected. The results of this study indicate that S3 is a key protein at the mRNA binding site neighboring mRNA downstream of the codon at the decoding site in the human ribosome.

  11. Pathologic and biochemical characterization of PrPSc from elk with PRNP polymorphisms at codon 132 after experimental infection with the chronic wasting disease agent

    USDA-ARS?s Scientific Manuscript database

    The Rocky Mountain elk (Cervus elaphus nelsoni) prion protein gene (PRNP) is polymorphic at codon 132, with leucine (L132) and methionine (M132) allelic variants present in the population. In elk experimentally inoculated with the chronic wasting disease (CWD) agent, different incubation periods are...

  12. Adaptive functioning in pediatric epilepsy: contributions of seizure-related variables and parental anxiety.

    PubMed

    Kerne, Valerie; Chapieski, Lynn

    2015-02-01

    Young people with epilepsy are less likely to achieve the level of independence attained by their peers. We examined the seizure-related variables that placed a group of 97 pediatric patients with intractable seizures at risk for poor adaptive functioning. Analyses evaluated both the direct effects of the medical variables and indirect effects that were mediated through increased parental anxiety about their child's epilepsy. Higher numbers of anticonvulsants, presence of seizures that secondarily generalize, longer duration of seizure disorder, and younger age at onset were all identified as risk factors for poor adaptive functioning. Depending on the specific behavioral domain of adaptive functioning, the effects were sometimes direct and sometimes indirect. Lower levels of parental education and positive family history of seizures were associated with higher levels of parental anxiety. Interventions that target parental anxiety about seizures may mitigate the deleterious effects of epilepsy on social development. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allgaier, M.; Reddy, A.; Park, J. I.

    2009-11-15

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Small-subunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence datamore » from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, {approx}10% were putative cellulases mostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50 C and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.« less

  14. Targeted Discovery of Glycoside Hydrolases from a Switchgrass-Adapted Compost Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Amitha; Allgaier, Martin; Park, Joshua I.

    2011-05-11

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Smallsubunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence datamore » from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, ,10percent were putative cellulasesmostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50uC and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.« less

  15. Frequency of puncture holes in peritoneal dialysis catheters related to the beta cap adapter.

    PubMed

    Ohashi, Yasushi; Kansal, Sheru; Schreiber, Martin

    2012-01-01

    Between November 2009 and September 2011, 12 patients (6 women, 6 men) undergoing continuous peritoneal dialysis (PD) or automated PD developed puncture-like holes in the PD catheter near the interface of the adapter with the superior aspect of the Silastic PD catheter The adapter is used to connect the PD catheter to the PD transfer set. Over the course of 23 months, the 12 patients presented to the PD unit with 19 separate instances of catheter holes, for an event rate of 0.23 holes per patient-year Data including socio-demographic information, PD modality, need for antibiotic treatment, event recurrence, infectious complications, and time from catheter placement were collected from patients whose catheters did and did not develop holes. We observed no differences between patients whose catheters developed holes and those whose catheters did not. The location of the individual holes suggested a relationship between the adapter and the catheter holes. The holes, which led to increased patient morbidity and costs, may be related to structural changes made in 2006 to the adapter.

  16. Levels of H-ras codon 61 CAA to AAA mutation: response to 4-ABP-treatment and Pms2-deficiency.

    PubMed

    Parsons, Barbara L; Delongchamp, Robert R; Beland, Frederick A; Heflich, Robert H

    2006-01-01

    DNA mismatch repair (MMR) deficiencies result in increased frequencies of spontaneous mutation and tumor formation. In the present study, we tested the hypothesis that a chemically-induced mutational response would be greater in a mouse with an MMR-deficiency than in the MMR-proficient mouse models commonly used to assay for chemical carcinogenicity. To accomplish this, the induction of H-ras codon 61 CAA-->AAA mutation was examined in Pms2 knockout mice (Pms2-/-, C57BL/6 background) and sibling wild-type mice (Pms2+/+). Groups of five or six neonatal male mice were treated with 0.3 micromol 4-aminobiphenyl (4-ABP) or the vehicle control, dimethylsulfoxide. Eight months after treatment, liver DNAs were isolated and analysed for levels of H-ras codon 61 CAA-->AAA mutation using allele-specific competitive blocker-PCR. In Pms2-proficient and Pms2-deficient mice, 4-ABP treatment caused an increase in mutant fraction (MF) from 1.65x10(-5) to 2.91x10(-5) and from 3.40x10(-5) to 4.70x10(-5), respectively. Pooling data from 4-ABP-treated and control mice, the approximately 2-fold increase in MF observed in Pms2-deficient as compared with Pms2-proficient mice was statistically significant (P=0.0207) and consistent with what has been reported previously in terms of induction of G:C-->T:A mutation in a Pms2-deficient background. Pooling data from both genotypes, the increase in H-ras MF in 4-ABP-treated mice, as compared with control mice, did not reach the 95% confidence level of statistical significance (P=0.0606). The 4-ABP treatment caused a 1.76-fold and 1.38-fold increase in average H-ras MF in Pms2-proficient and Pms2-deficient mice, respectively. Furthermore, the levels of induced mutation in Pms2-proficient and Pms2-deficient mice were nearly identical (1.26x10(-5) and 1.30x10(-5), respectively). We conclude that Pms2-deficiency does not result in an amplification of the H-ras codon 61 CAA-->AAA mutational response induced by 4-ABP.

  17. Testing the Adaptation to Poverty-Related Stress Model: Predicting Psychopathology Symptoms in Families Facing Economic Hardship

    ERIC Educational Resources Information Center

    Wadsworth, Martha E.; Raviv, Tali; Santiago, Catherine DeCarlo; Etter, Erica M.

    2011-01-01

    This study tested the Adaptation to Poverty-related Stress Model and its proposed relations between poverty-related stress, effortful and involuntary stress responses, and symptoms of psychopathology in an ethnically diverse sample of low-income children and their parents. Prospective Hierarchical Linear Modeling analyses conducted with 98…

  18. Immune-escape mutations and stop-codons in HBsAg develop in a large proportion of patients with chronic HBV infection exposed to anti-HBV drugs in Europe.

    PubMed

    Colagrossi, Luna; Hermans, Lucas E; Salpini, Romina; Di Carlo, Domenico; Pas, Suzan D; Alvarez, Marta; Ben-Ari, Ziv; Boland, Greet; Bruzzone, Bianca; Coppola, Nicola; Seguin-Devaux, Carole; Dyda, Tomasz; Garcia, Federico; Kaiser, Rolf; Köse, Sukran; Krarup, Henrik; Lazarevic, Ivana; Lunar, Maja M; Maylin, Sarah; Micheli, Valeria; Mor, Orna; Paraschiv, Simona; Paraskevis, Dimitros; Poljak, Mario; Puchhammer-Stöckl, Elisabeth; Simon, François; Stanojevic, Maja; Stene-Johansen, Kathrine; Tihic, Nijaz; Trimoulet, Pascale; Verheyen, Jens; Vince, Adriana; Lepej, Snjezana Zidovec; Weis, Nina; Yalcinkaya, Tülay; Boucher, Charles A B; Wensing, Annemarie M J; Perno, Carlo F; Svicher, Valentina

    2018-06-01

    HBsAg immune-escape mutations can favor HBV-transmission also in vaccinated individuals, promote immunosuppression-driven HBV-reactivation, and increase fitness of drug-resistant strains. Stop-codons can enhance HBV oncogenic-properties. Furthermore, as a consequence of the overlapping structure of HBV genome, some immune-escape mutations or stop-codons in HBsAg can derive from drug-resistance mutations in RT. This study is aimed at gaining insight in prevalence and characteristics of immune-associated escape mutations, and stop-codons in HBsAg in chronically HBV-infected patients experiencing nucleos(t)ide analogues (NA) in Europe. This study analyzed 828 chronically HBV-infected European patients exposed to ≥ 1 NA, with detectable HBV-DNA and with an available HBsAg-sequence. The immune-associated escape mutations and the NA-induced immune-escape mutations sI195M, sI196S, and sE164D (resulting from drug-resistance mutation rtM204 V, rtM204I, and rtV173L) were retrieved from literature and examined. Mutations were defined as an aminoacid substitution with respect to a genotype A or D reference sequence. At least one immune-associated escape mutation was detected in 22.1% of patients with rising temporal-trend. By multivariable-analysis, genotype-D correlated with higher selection of ≥ 1 immune-associated escape mutation (OR[95%CI]:2.20[1.32-3.67], P = 0.002). In genotype-D, the presence of ≥ 1 immune-associated escape mutations was significantly higher in drug-exposed patients with drug-resistant strains than with wild-type virus (29.5% vs 20.3% P = 0.012). Result confirmed by analysing drug-naïve patients (29.5% vs 21.2%, P = 0.032). Strong correlation was observed between sP120T and rtM204I/V (P < 0.001), and their co-presence determined an increased HBV-DNA. At least one NA-induced immune-escape mutation occurred in 28.6% of patients, and their selection correlated with genotype-A (OR[95%CI]:2.03[1.32-3.10],P = 0.001). Finally

  19. Sensitive Dual Color in vivo Bioluminescence Imaging Using a New Red Codon Optimized Firefly Luciferase and a Green Click Beetle Luciferase

    DTIC Science & Technology

    2011-04-01

    Sensitive Dual Color In Vivo Bioluminescence Imaging Using a New Red Codon Optimized Firefly Luciferase and a Green Click Beetle Luciferase Laura...20 nm). Spectral unmixing algorithms were applied to the images where good separation of signals was observed. Furthermore, HEK293 cells that...spectral emissions using a suitable spectral unmixing algorithm . This new D-luciferin-dependent reporter gene couplet opens up the possibility in the future

  20. Introgression of Novel Traits from a Wild Wheat Relative Improves Drought Adaptation in Wheat1[W

    PubMed Central

    Placido, Dante F.; Campbell, Malachy T.; Folsom, Jing J.; Cui, Xinping; Kruger, Greg R.; Baenziger, P. Stephen; Walia, Harkamal

    2013-01-01

    Root architecture traits are an important component for improving water stress adaptation. However, selection for aboveground traits under favorable environments in modern cultivars may have led to an inadvertent loss of genes and novel alleles beneficial for adapting to environments with limited water. In this study, we elucidate the physiological and molecular consequences of introgressing an alien chromosome segment (7DL) from a wild wheat relative species (Agropyron elongatum) into cultivated wheat (Triticum aestivum). The wheat translocation line had improved water stress adaptation and higher root and shoot biomass compared with the control genotypes, which showed significant drops in root and shoot biomass during stress. Enhanced access to water due to higher root biomass enabled the translocation line to maintain more favorable gas-exchange and carbon assimilation levels relative to the wild-type wheat genotypes during water stress. Transcriptome analysis identified candidate genes associated with root development. Two of these candidate genes mapped to the site of translocation on chromosome 7DL based on single-feature polymorphism analysis. A brassinosteroid signaling pathway was predicted to be involved in the novel root responses observed in the A. elongatum translocation line, based on the coexpression-based gene network generated by seeding the network with the candidate genes. We present an effective and highly integrated approach that combines root phenotyping, whole-plant physiology, and functional genomics to discover novel root traits and the underlying genes from a wild related species to improve drought adaptation in cultivated wheat. PMID:23426195

  1. Positions of Trp Codons in the Leader Peptide-Coding Region of the at Operon Influence Anti-Trap Synthesis and trp Operon Expression in Bacillus licheniformis▿

    PubMed Central

    Levitin, Anastasia; Yanofsky, Charles

    2010-01-01

    Tryptophan, phenylalanine, tyrosine, and several other metabolites are all synthesized from a common precursor, chorismic acid. Since tryptophan is a product of an energetically expensive biosynthetic pathway, bacteria have developed sensing mechanisms to downregulate synthesis of the enzymes of tryptophan formation when synthesis of the amino acid is not needed. In Bacillus subtilis and some other Gram-positive bacteria, trp operon expression is regulated by two proteins, TRAP (the tryptophan-activated RNA binding protein) and AT (the anti-TRAP protein). TRAP is activated by bound tryptophan, and AT synthesis is increased upon accumulation of uncharged tRNATrp. Tryptophan-activated TRAP binds to trp operon leader RNA, generating a terminator structure that promotes transcription termination. AT binds to tryptophan-activated TRAP, inhibiting its RNA binding ability. In B. subtilis, AT synthesis is upregulated both transcriptionally and translationally in response to the accumulation of uncharged tRNATrp. In this paper, we focus on explaining the differences in organization and regulatory functions of the at operon's leader peptide-coding region, rtpLP, of B. subtilis and Bacillus licheniformis. Our objective was to correlate the greater growth sensitivity of B. licheniformis to tryptophan starvation with the spacing of the three Trp codons in its at operon leader peptide-coding region. Our findings suggest that the Trp codon location in rtpLP of B. licheniformis is designed to allow a mild charged-tRNATrp deficiency to expose the Shine-Dalgarno sequence and start codon for the AT protein, leading to increased AT synthesis. PMID:20061467

  2. Evolutionary Relationships among Actinophages and a Putative Adaptation for Growth in Streptomyces spp.

    PubMed Central

    Hendrix, Roger W.; Dedrick, Rebekah; Mitchell, Kaitlin; Ko, Ching-Chung; Russell, Daniel; Bell, Emma; Gregory, Matthew; Bibb, Maureen J.; Pethick, Florence; Jacobs-Sera, Deborah; Herron, Paul; Buttner, Mark J.; Hatfull, Graham F.

    2013-01-01

    The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, ϕHau3, and SV1 were isolated previously and have been exploited as tools for understanding and genetically manipulating Streptomyces spp. We also extracted five apparently intact prophages from recent Streptomyces spp. genome projects and, together with six phage genomes in the database, we analyzed all 19 Streptomyces phage genomes with a view to understanding their relationships to each other and to other actinophages, particularly the mycobacteriophages. Fifteen of the Streptomyces phages group into four clusters of related genomes. Although the R4-like phages do not share nucleotide sequence similarity with other phages, they clearly have common ancestry with cluster A mycobacteriophages, sharing many protein homologues, common gene syntenies, and similar repressor-stoperator regulatory systems. The R4-like phage ϕHau3 and the prophage StrepC.1 (from Streptomyces sp. strain C) appear to have hijacked a unique adaptation of the streptomycetes, i.e., use of the rare UUA codon, to control translation of the essential phage protein, the terminase. The Streptomyces venezuelae generalized transducing phage SV1 was used to predict the presence of other generalized transducing phages for different Streptomyces species. PMID:23995638

  3. Energetics, adaptation, and adaptability.

    PubMed

    Ulijaszek, Stanley J

    1996-01-01

    Energy capture and conversion are fundamental to human existence, and over the past three decades biological anthropologists have used a number of approaches which incorporate energetics measures in studies of human population biology. Human groups can vary enormously in their energy expenditure. This review considers evidence for genetic adaptation and presents models for physiological adaptability to reduced physiological energy availability and/or negative energy balance. In industrialized populations, different aspects of energy expenditure have been shown to have a genetic component, including basal metabolic rate, habitual physical activity level, mechanical efficiency of work performance, and thermic effect of food. Metabolic adaptation to low energy intakes has been demonstrated in populations in both developing and industrialized nations. Thyroid hormone-related effects on energy metabolic responses to low physiological energy availability are unified in a model, linking energetic adaptability in physical activity and maintenance metabolism. Negative energy balance has been shown to be associated with reduced reproductive function in women experiencing seasonal environments in some developing countries. Existing models relating negative energy balance to menstrual or ovulatory function are largely descriptive, and do not propose any physiological mechanisms for this phenomenon. A model is proposed whereby reduced physiological energy availability could influence ovulatory function via low serum levels of the amino acid aspartate and reduced sympathetic nervous system activity. © 1996 Wiley-Liss, Inc. Copyright © 1996 Wiley-Liss, Inc.

  4. Adaptive memory: young children show enhanced retention of fitness-related information.

    PubMed

    Aslan, Alp; Bäuml, Karl-Heinz T

    2012-01-01

    Evolutionary psychologists propose that human cognition evolved through natural selection to solve adaptive problems related to survival and reproduction, with its ultimate function being the enhancement of reproductive fitness. Following this proposal and the evolutionary-developmental view that ancestral selection pressures operated not only on reproductive adults, but also on pre-reproductive children, the present study examined whether young children show superior memory for information that is processed in terms of its survival value. In two experiments, we found such survival processing to enhance retention in 4- to 10-year-old children, relative to various control conditions that also required deep, meaningful processing but were not related to survival. These results suggest that, already in very young children, survival processing is a special and extraordinarily effective form of memory encoding. The results support the functional-evolutionary proposal that young children's memory is "tuned" to process and retain fitness-related information. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. The Emotions of Socialization-Related Learning: Understanding Workplace Adaptation as a Learning Process.

    ERIC Educational Resources Information Center

    Reio, Thomas G., Jr.

    The influence of selected discrete emotions on socialization-related learning and perception of workplace adaptation was examined in an exploratory study. Data were collected from 233 service workers in 4 small and medium-sized companies in metropolitan Washington, D.C. The sample members' average age was 32.5 years, and the sample's racial makeup…

  6. Translation of the first upstream ORF in the hepatitis B virus pregenomic RNA modulates translation at the core and polymerase initiation codons

    PubMed Central

    Chen, Augustine; Kao, Y. F.; Brown, Chris M.

    2005-01-01

    The human hepatitis B virus (HBV) has a compact genome encoding four major overlapping coding regions: the core, polymerase, surface and X. The polymerase initiation codon is preceded by the partially overlapping core and four or more upstream initiation codons. There is evidence that several mechanisms are used to enable the synthesis of the polymerase protein, including leaky scanning and ribosome reinitiation. We have examined the first AUG in the pregenomic RNA, it precedes that of the core. It initiates an uncharacterized short upstream open reading frame (uORF), highly conserved in all HBV subtypes, we designated the C0 ORF. This arrangement suggested that expression of the core and polymerase may be affected by this uORF. Initiation at the C0 ORF was confirmed in reporter constructs in transfected cells. The C0 ORF had an inhibitory role in downstream expression from the core initiation site in HepG2 cells and in vitro, but also stimulated reinitiation at the polymerase start when in an optimal context. Our results indicate that the C0 ORF is a determinant in balancing the synthesis of the core and polymerase proteins. PMID:15731337

  7. Activation of K-ras by codon 13 mutations in C57BL/6 X C3H F1 mouse tumors induced by exposure to 1,3-butadiene.

    PubMed

    Goodrow, T; Reynolds, S; Maronpot, R; Anderson, M

    1990-08-01

    1,3-Butadiene has been detected in urban air, gasoline vapors, and cigarette smoke. It has been estimated that 65,000 workers are exposed to this chemical in occupational settings in the United States. Lymphomas, lung, and liver tumors were induced in female and male C57BL/6 X C3H F1 (hereafter called B6C3F1) mice by inhalation of 6.25 to 625 ppm 1,3-butadiene for 1 to 2 years. The objective of this study was to examine these tumors for the presence of activated protooncogenes by the NIH 3T3 transfection and nude mouse tumorigenicity assays. Transfection of DNA isolated from 7 of 9 lung tumors and 7 of 12 liver tumors induced morphological transformation of NIH 3T3 cells. Southern blot analysis indicated that the transformation induced by 6 lung and 3 liver tumor DNA samples was due to transfer of a K-ras oncogene. Four of the 7 liver tumors that were positive upon transfection contained an activated H-ras gene. The identity of the transforming gene in one of the lung tumors has not been determined but was not a member of the ras family or a met or raf gene. Eleven 1,3-butadiene-induced lymphomas were examined for transforming genes using the nude mouse tumorigenicity assay. Activated K-ras genes were detected in 2 of the 11 lymphomas assayed. DNA sequencing of polymerase chain reaction-amplified ras gene exons revealed that 9 of 11 of the activating K-ras mutations were G to C transversions in codon 13. One liver tumor contained an activated K-ras gene with mutations in both codons 60 and 61. The activating mutation in one of the K-ras genes from a lymphoma was not identified but DNA sequence analysis of amplified regions in proximity to codons 12, 13, and 61 demonstrated that the mutation was not located in or near these codons. Activation of K-ras genes by codon 13 mutations has not been found in any lung or liver tumors or lymphomas from untreated B6C3F1 mice. Thus, the K-ras activation found in 1,3-butadiene-induced B6C3F1 mouse tumors probably occurred as a

  8. Genomic signatures of adaptation to wine biological ageing conditions in biofilm-forming flor yeasts.

    PubMed

    Coi, A L; Bigey, F; Mallet, S; Marsit, S; Zara, G; Gladieux, P; Galeote, V; Budroni, M; Dequin, S; Legras, J L

    2017-04-01

    The molecular and evolutionary processes underlying fungal domestication remain largely unknown despite the importance of fungi to bioindustry and for comparative adaptation genomics in eukaryotes. Wine fermentation and biological ageing are performed by strains of S. cerevisiae with, respectively, pelagic fermentative growth on glucose and biofilm aerobic growth utilizing ethanol. Here, we use environmental samples of wine and flor yeasts to investigate the genomic basis of yeast adaptation to contrasted anthropogenic environments. Phylogenetic inference and population structure analysis based on single nucleotide polymorphisms revealed a group of flor yeasts separated from wine yeasts. A combination of methods revealed several highly differentiated regions between wine and flor yeasts, and analyses using codon-substitution models for detecting molecular adaptation identified sites under positive selection in the high-affinity transporter gene ZRT1. The cross-population composite likelihood ratio revealed selective sweeps at three regions, including in the hexose transporter gene HXT7, the yapsin gene YPS6 and the membrane protein coding gene MTS27. Our analyses also revealed that the biological ageing environment has led to the accumulation of numerous mutations in proteins from several networks, including Flo11 regulation and divalent metal transport. Together, our findings suggest that the tuning of FLO11 expression and zinc transport networks are a distinctive feature of the genetic changes underlying the domestication of flor yeasts. Our study highlights the multiplicity of genomic changes underlying yeast adaptation to man-made habitats and reveals that flor/wine yeast lineage can serve as a useful model for studying the genomics of adaptive divergence. © 2017 John Wiley & Sons Ltd.

  9. Trick-or-Treat Candy-Getters and Hornet Scare Devices: Second Graders Make Creative Inventions Related to Animal Adaptations

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Baldwin, Samantha; Schell, Robert

    2009-01-01

    This repeated measures study examined second graders' (n = 21) performance in creating inventions related to animal adaptations for simple products under two conditions that alternated each week for a six-week period. In the analogy condition, students used form and function analogy object boxes to learn about animal adaptations, applying these…

  10. Using brain potentials to understand prism adaptation: the error-related negativity and the P300

    PubMed Central

    MacLean, Stephane J.; Hassall, Cameron D.; Ishigami, Yoko; Krigolson, Olav E.; Eskes, Gail A.

    2015-01-01

    Prism adaptation (PA) is both a perceptual-motor learning task as well as a promising rehabilitation tool for visuo-spatial neglect (VSN)—a spatial attention disorder often experienced after stroke resulting in slowed and/or inaccurate motor responses to contralesional targets. During PA, individuals are exposed to prism-induced shifts of the visual-field while performing a visuo-guided reaching task. After adaptation, with goggles removed, visuomotor responding is shifted to the opposite direction of that initially induced by the prisms. This visuomotor aftereffect has been used to study visuomotor learning and adaptation and has been applied clinically to reduce VSN severity by improving motor responding to stimuli in contralesional (usually left-sided) space. In order to optimize PA's use for VSN patients, it is important to elucidate the neural and cognitive processes that alter visuomotor function during PA. In the present study, healthy young adults underwent PA while event-related potentials (ERPs) were recorded at the termination of each reach (screen-touch), then binned according to accuracy (hit vs. miss) and phase of exposure block (early, middle, late). Results show that two ERP components were evoked by screen-touch: an error-related negativity (ERN), and a P300. The ERN was consistently evoked on miss trials during adaptation, while the P300 amplitude was largest during the early phase of adaptation for both hit and miss trials. This study provides evidence of two neural signals sensitive to visual feedback during PA that may sub-serve changes in visuomotor responding. Prior ERP research suggests that the ERN reflects an error processing system in medial-frontal cortex, while the P300 is suggested to reflect a system for context updating and learning. Future research is needed to elucidate the role of these ERP components in improving visuomotor responses among individuals with VSN. PMID:26124715

  11. Using brain potentials to understand prism adaptation: the error-related negativity and the P300.

    PubMed

    MacLean, Stephane J; Hassall, Cameron D; Ishigami, Yoko; Krigolson, Olav E; Eskes, Gail A

    2015-01-01

    Prism adaptation (PA) is both a perceptual-motor learning task as well as a promising rehabilitation tool for visuo-spatial neglect (VSN)-a spatial attention disorder often experienced after stroke resulting in slowed and/or inaccurate motor responses to contralesional targets. During PA, individuals are exposed to prism-induced shifts of the visual-field while performing a visuo-guided reaching task. After adaptation, with goggles removed, visuomotor responding is shifted to the opposite direction of that initially induced by the prisms. This visuomotor aftereffect has been used to study visuomotor learning and adaptation and has been applied clinically to reduce VSN severity by improving motor responding to stimuli in contralesional (usually left-sided) space. In order to optimize PA's use for VSN patients, it is important to elucidate the neural and cognitive processes that alter visuomotor function during PA. In the present study, healthy young adults underwent PA while event-related potentials (ERPs) were recorded at the termination of each reach (screen-touch), then binned according to accuracy (hit vs. miss) and phase of exposure block (early, middle, late). Results show that two ERP components were evoked by screen-touch: an error-related negativity (ERN), and a P300. The ERN was consistently evoked on miss trials during adaptation, while the P300 amplitude was largest during the early phase of adaptation for both hit and miss trials. This study provides evidence of two neural signals sensitive to visual feedback during PA that may sub-serve changes in visuomotor responding. Prior ERP research suggests that the ERN reflects an error processing system in medial-frontal cortex, while the P300 is suggested to reflect a system for context updating and learning. Future research is needed to elucidate the role of these ERP components in improving visuomotor responses among individuals with VSN.

  12. Projection of temperature-related mortality due to cardiovascular disease in beijing under different climate change, population, and adaptation scenarios.

    PubMed

    Zhang, Boya; Li, Guoxing; Ma, Yue; Pan, Xiaochuan

    2018-04-01

    Human health faces unprecedented challenges caused by climate change. Thus, studies of the effect of temperature change on total mortality have been conducted in numerous countries. However, few of those studies focused on temperature-related mortality due to cardiovascular disease (CVD) or considered future population changes and adaptation to climate change. We present herein a projection of temperature-related mortality due to CVD under different climate change, population, and adaptation scenarios in Beijing, a megacity in China. To this end, 19 global circulation models (GCMs), 3 representative concentration pathways (RCPs), 3 socioeconomic pathways, together with generalized linear models and distributed lag non-linear models, were used to project future temperature-related CVD mortality during periods centered around the years 2050 and 2070. The number of temperature-related CVD deaths in Beijing is projected to increase by 3.5-10.2% under different RCP scenarios compared with that during the baseline period. Using the same GCM, the future daily maximum temperatures projected using the RCP2.6, RCP4.5, and RCP8.5 scenarios showed a gradually increasing trend. When population change is considered, the annual rate of increase in temperature-related CVD deaths was up to fivefold greater than that under no-population-change scenarios. The decrease in the number of cold-related deaths did not compensate for the increase in that of heat-related deaths, leading to a general increase in the number of temperature-related deaths due to CVD in Beijing. In addition, adaptation to climate change may enhance rather than ameliorate the effect of climate change, as the increase in cold-related CVD mortality greater than the decrease in heat-related CVD mortality in the adaptation scenarios will result in an increase in the total number of temperature-related CVD mortalities. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Recombinational DSBs-intersected genes converge on specific disease- and adaptability-related pathways.

    PubMed

    Yang, Zhi-Kai; Luo, Hao; Zhang, Yanming; Wang, Baijing; Gao, Feng

    2018-05-03

    The budding yeast Saccharomyces cerevisiae is a model species powerful for studying the recombination of eukaryotes. Although many recombination studies have been performed for this species by experimental methods, the population genomic study based on bioinformatics analyses is urgently needed to greatly increase the range and accuracy of recombination detection. Here, we carry out the population genomic analysis of recombination in S. cerevisiae to reveal the potential rules between recombination and evolution in eukaryotes. By population genomic analysis, we discover significantly more and longer recombination events in clinical strains, which indicates that adverse environmental conditions create an obviously wider range of genetic combination in response to the selective pressure. Based on the analysis of recombinational DSBs-intersected genes (RDIGs), we find that RDIGs significantly converge on specific disease- and adaptability-related pathways, indicating that recombination plays a biologically key role in the repair of DSBs related to diseases and environmental adaptability, especially the human neurological disorders (NDs). By evolutionary analysis of RDIGs, we find that the RDIGs highly prevailing in populations of yeast tend to be more evolutionarily conserved, indicating the accurate repair of DSBs in these RDIGs is critical to ensure the eukaryotic survival or fitness. fgao@tju.edu.cn. Supplementary data are available at Bioinformatics online.

  14. Mapping Heat-related Risks for Community-based Adaptation Planning under Uncertainty

    NASA Astrophysics Data System (ADS)

    Bai, Yingjiu; Kaneko, Ikuyo; Kobayashi, Hikaru; Kurihara, Kazuo; Sasaki, Hidetaka; Murata, Akihiko; Takayabu, Izuru

    2016-04-01

    Climate change is leading to more frequent and intense heat waves. Recently, epidemiologic findings on heat-related health impacts have reinforced our understanding of the mortality impacts of extreme heat. This research has several aims: 1) to promote climate prediction services with spatial and temporal information on heat-related risks, using GIS (Geographical Information System), and digital mapping techniques; 2) to propose a visualization approach to articulating the evolution of local heat-health responses over time and the evaluation of new interventions for the implementation of valid community-based adaptation strategies and reliable actionable planning; and 3) to provide an appropriate and simple method of adjusting bias and quantifying the uncertainty in future outcomes, so that regional climate projections may be transcribed into useful forms for a wide variety of different users. Following the 2003 European heat wave, climatologists, medical specialists, and social scientists expedited efforts to revise and integrate risk governance frameworks for communities to take appropriate and effective actions themselves. Recently, the Coupled Model Intercomparison Project (CMIP) methodology has made projections possible for anyone wanting to openly access state-of-the-art climate model outputs and climate data to provide the backbone for decisions. Furthermore, the latest high-solution regional climate model (RCM) has been a huge increase in the volumes of data available. In this study, we used high-quality hourly projections (5-km resolution) from the Non-Hydrostatic Regional Climate Model (NHRCM-5km), following the SRES-A1B scenario developed by the Meteorological Research Institute (MRI) and observational data from the Automated Meteorological Data Acquisition System, Japan Meteorological Agency (JMA). The NHRCM-5km is a dynamic downscaling of results from the MRI-AGCM3.2S (20-km resolution), an atmospheric general circulation model (AGCM) driven by the

  15. Towards More Comprehensive Projections of Urban Heat-Related Mortality: Estimates for New York City under Multiple Population, Adaptation, and Climate Scenarios.

    PubMed

    Petkova, Elisaveta P; Vink, Jan K; Horton, Radley M; Gasparrini, Antonio; Bader, Daniel A; Francis, Joe D; Kinney, Patrick L

    2017-01-01

    High temperatures have substantial impacts on mortality and, with growing concerns about climate change, numerous studies have developed projections of future heat-related deaths around the world. Projections of temperature-related mortality are often limited by insufficient information to formulate hypotheses about population sensitivity to high temperatures and future demographics. The present study derived projections of temperature-related mortality in New York City by taking into account future patterns of adaptation or demographic change, both of which can have profound influences on future health burdens. We adopted a novel approach to modeling heat adaptation by incorporating an analysis of the observed population response to heat in New York City over the course of eight decades. This approach projected heat-related mortality until the end of the 21st century based on observed trends in adaptation over a substantial portion of the 20th century. In addition, we incorporated a range of new scenarios for population change until the end of the 21st century. We then estimated future heat-related deaths in New York City by combining the changing temperature-mortality relationship and population scenarios with downscaled temperature projections from the 33 global climate models (GCMs) and two Representative Concentration Pathways (RCPs). The median number of projected annual heat-related deaths across the 33 GCMs varied greatly by RCP and adaptation and population change scenario, ranging from 167 to 3,331 in the 2080s compared with 638 heat-related deaths annually between 2000 and 2006. These findings provide a more complete picture of the range of potential future heat-related mortality risks across the 21st century in New York City, and they highlight the importance of both demographic change and adaptation responses in modifying future risks. Citation: Petkova EP, Vink JK, Horton RM, Gasparrini A, Bader DA, Francis JD, Kinney PL. 2017. Towards more

  16. Correction of murine Rag2 severe combined immunodeficiency by lentiviral gene therapy using a codon-optimized RAG2 therapeutic transgene.

    PubMed

    van Til, Niek P; de Boer, Helen; Mashamba, Nomusa; Wabik, Agnieszka; Huston, Marshall; Visser, Trudi P; Fontana, Elena; Poliani, Pietro Luigi; Cassani, Barbara; Zhang, Fang; Thrasher, Adrian J; Villa, Anna; Wagemaker, Gerard

    2012-10-01

    Recombination activating gene 2 (RAG2) deficiency results in severe combined immunodeficiency (SCID) with complete lack of T and B lymphocytes. Initial gammaretroviral gene therapy trials for other types of SCID proved effective, but also revealed the necessity of safe vector design. We report the development of lentiviral vectors with the spleen focus forming virus (SF) promoter driving codon-optimized human RAG2 (RAG2co), which improved phenotype amelioration compared to native RAG2 in Rag2(-/-) mice. With the RAG2co therapeutic transgene, T-cell receptor (TCR) and immunoglobulin repertoire, T-cell mitogen responses, plasma immunoglobulin levels and T-cell dependent and independent specific antibody responses were restored. However, the thymus double positive T-cell population remained subnormal, possibly due to the SF virus derived element being sensitive to methylation/silencing in the thymus, which was prevented by replacing the SF promoter by the previously reported silencing resistant element (ubiquitous chromatin opening element (UCOE)), and also improved B-cell reconstitution to eventually near normal levels. Weak cellular promoters were effective in T-cell reconstitution, but deficient in B-cell reconstitution. We conclude that immune functions are corrected in Rag2(-/-) mice by genetic modification of stem cells using the UCOE driven codon-optimized RAG2, providing a valid optional vector for clinical implementation.

  17. DYNAMISM OF DOT SUBRETINAL DRUSENOID DEPOSITS IN AGE-RELATED MACULAR DEGENERATION DEMONSTRATED WITH ADAPTIVE OPTICS IMAGING.

    PubMed

    Zhang, Yuhua; Wang, Xiaolin; Godara, Pooja; Zhang, Tianjiao; Clark, Mark E; Witherspoon, C Douglas; Spaide, Richard F; Owsley, Cynthia; Curcio, Christine A

    2018-01-01

    To investigate the natural history of dot subretinal drusenoid deposits (SDD) in age-related macular degeneration, using high-resolution adaptive optics scanning laser ophthalmoscopy. Six eyes of four patients with intermediate age-related macular degeneration were studied at baseline and 1 year later. Individual dot SDD within the central 30° retina were examined with adaptive optics scanning laser ophthalmoscopy and optical coherence tomography. A total of 269 solitary SDD were identified at baseline. Over 12.25 ± 1.18 months, all 35 Stage 1 SDD progressed to advanced stages. Eighteen (60%) Stage 2 lesions progressed to Stage 3 and 12 (40%) remained at Stage 2. Of 204 Stage 3 SDD, 12 (6.4%) disappeared and the rest remained. Twelve new SDD were identified, including 6 (50%) at Stage 1, 2 (16.7%) at Stage 2, and 4 (33.3%) at Stage 3. The mean percentage of the retina affected by dot SDD, measured by the adaptive optics scanning laser ophthalmoscopy, increased in 5/6 eyes (from 2.31% to 5.08% in the most changed eye) and decreased slightly in 1/6 eye (from 10.67% to 10.54%). Dynamism, the absolute value of the areas affected by new and regressed lesions, ranged from 0.7% to 9.3%. Adaptive optics scanning laser ophthalmoscopy reveals that dot SDD, like drusen, are dynamic.

  18. ANCAC: amino acid, nucleotide, and codon analysis of COGs – a tool for sequence bias analysis in microbial orthologs

    PubMed Central

    2012-01-01

    Background The COG database is the most popular collection of orthologous proteins from many different completely sequenced microbial genomes. Per definition, a cluster of orthologous groups (COG) within this database exclusively contains proteins that most likely achieve the same cellular function. Recently, the COG database was extended by assigning to every protein both the corresponding amino acid and its encoding nucleotide sequence resulting in the NUCOCOG database. This extended version of the COG database is a valuable resource connecting sequence features with the functionality of the respective proteins. Results Here we present ANCAC, a web tool and MySQL database for the analysis of amino acid, nucleotide, and codon frequencies in COGs on the basis of freely definable phylogenetic patterns. We demonstrate the usefulness of ANCAC by analyzing amino acid frequencies, codon usage, and GC-content in a species- or function-specific context. With respect to amino acids we, at least in part, confirm the cognate bias hypothesis by using ANCAC’s NUCOCOG dataset as the largest one available for that purpose thus far. Conclusions Using the NUCOCOG datasets, ANCAC connects taxonomic, amino acid, and nucleotide sequence information with the functional classification via COGs and provides a GUI for flexible mining for sequence-bias. Thereby, to our knowledge, it is the only tool for the analysis of sequence composition in the light of physiological roles and phylogenetic context without requirement of substantial programming-skills. PMID:22958836

  19. Functional analysis of a proline to serine mutation in codon 453 of the thyroid hormone receptor {beta}1 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozata, M.; Suzuki, Satoru; Takeda, Teiji

    Mutations in the gene encoding human thyroid hormone receptor {beta}(hTR{beta}) have been associated with generalized resistance to thyroid hormone (GRTH). This disorder is associated with significant behavoral abnormalities. We examined the hTR{beta} gene in a family with members who manifest inappropriately normal TSH, elevated free T{sub 4}, and free and total T{sub 3}. Sequence analysis showed a cytosine to thymine transition at nucleotide 1642 in one allele of the index patient`s genomic DNA. This altered proline to serine at codon 453. The resulting mutant receptor when expressed in vitro bound DNA with high affinity, but the T{sub 3} affinity ofmore » the receptor was impaired. The mutant TR demonstrated a dominant negative effect when cotransfected with two isoforms of wild-type receptor and also in the presence of TR variant {alpha}2 in COS-1 cells. Mutations of codon 453 occur more frequently than at other sites, and four different amino acid substitutions have been reported. Significant differences in phenotype occur among affected individuals, varying from normality to moderately severe GRTH. There is no clear correlation between K{sub a} or in vitro function of the mutant receptor, and phenotype. This study extends the association between GRTH and illness, and indicates that early diagnosis and counseling are needed in families with TR{beta}1 abnormalities. 34 refs., 5 figs., 2 tabs.« less

  20. Improving the active expression of transglutaminase in Streptomyces lividans by promoter engineering and codon optimization.

    PubMed

    Liu, Song; Wang, Miao; Du, Guocheng; Chen, Jian

    2016-10-28

    Transglutaminases (TGase), which are synthesized as a zymogen (pro-TGase) in Streptomyces sp., are important enzymes in the food industry. Because this pro-peptide is essential for the correct folding of Streptomyces TGase, TGase is usually expressed in an inactive pro-TGase form, which is then converted to active TGase by the addition of activating proteases in vitro. In this study, Streptomyces hygroscopicus TGase was actively produced by Streptomyces lividans through promoter engineering and codon optimization. A gene fragment (tg1, 2.6 kb) that encoded the pro-TGase and its endogenous promoter region, signal peptide and terminator was amplified from S. hygroscopicus WSH03-13 and cloned into plasmid pIJ86, which resulted in pIJ86/tg1. After fermentation for 2 days, S. lividans TK24 that harbored pIJ86/tg1 produced 1.8 U/mL of TGase, and a clear TGase band (38 kDa) was detected in the culture supernatant. These results indicated that the pro-TGase was successfully expressed and correctly processed into active TGase in S. lividans TK24 by using the TGase promoter. Based on deletion analysis, the complete sequence of the TGase promoter is restricted to the region from -693 to -48. We also identified a negative element (-198 to -148) in the TGase promoter, and the deletion of this element increased the TGase production by 81.3 %, in contrast to the method by which S. lividans expresses pIJ86/tg1. Combining the deletion of the negative element of the promoter and optimization of the gene codons, the yield and productivity of TGase reached 5.73 U/mL and 0.14 U/mL/h in the recombinant S. lividans, respectively. We constructed an active TGase-producing strain that had a high yield and productivity, and the optimized TGase promoter could be a good candidate promoter for the expression of other proteins in Streptomyces.

  1. Molecular evolution of the enzymes involved in the sphingolipid metabolism of Leishmania: selection pressure in relation to functional divergence and conservation.

    PubMed

    Mandlik, Vineetha; Shinde, Sonali; Singh, Shailza

    2014-06-21

    Selection pressure governs the relative mutability and the conservedness of a protein across the protein family. Biomolecules (DNA, RNA and proteins) continuously evolve under the effect of evolutionary pressure that arises as a consequence of the host parasite interaction. IPCS (Inositol phosphorylceramide synthase), SPL (Sphingosine-1-P lyase) and SPT (Serine palmitoyl transferase) represent three important enzymes involved in the sphingolipid metabolism of Leishmania. These enzymes are responsible for maintaining the viability and infectivity of the parasite and have been classified as druggable targets in the parasite metabolome. The present work relates to the role of selection pressure deciding functional conservedness and divergence of the drug targets. IPCS and SPL protein families appear to diverge from the SPT family. The three protein families were largely under the influence of purifying selection and were moderately conserved baring two residues in the IPCS protein which were under the influence of positive selection. To further explore the selection pressure at the codon level, codon usage bias indices were calculated to analyze genes for their synonymous codon usage pattern. IPCS gene exhibited slightly lower codon bias as compared to SPL and SPT protein families. Evolutionary tracing of the proposed drug targets has been done with a viewpoint that the amino-acids lining the drug binding pocket should have a lower evolvability. Sites under positive selection (HIS20 and CYS30 of IPCS) should be avoided during devising strategies for inhibitor design.

  2. Protein encoding genes in an ancient plant: analysis of codon usage, retained genes and splice sites in a moss, Physcomitrella patens

    PubMed Central

    Rensing, Stefan A; Fritzowsky, Dana; Lang, Daniel; Reski, Ralf

    2005-01-01

    Background The moss Physcomitrella patens is an emerging plant model system due to its high rate of homologous recombination, haploidy, simple body plan, physiological properties as well as phylogenetic position. Available EST data was clustered and assembled, and provided the basis for a genome-wide analysis of protein encoding genes. Results We have clustered and assembled Physcomitrella patens EST and CDS data in order to represent the transcriptome of this non-seed plant. Clustering of the publicly available data and subsequent prediction resulted in a total of 19,081 non-redundant ORF. Of these putative transcripts, approximately 30% have a homolog in both rice and Arabidopsis transcriptome. More than 130 transcripts are not present in seed plants but can be found in other kingdoms. These potential "retained genes" might have been lost during seed plant evolution. Functional annotation of these genes reveals unequal distribution among taxonomic groups and intriguing putative functions such as cytotoxicity and nucleic acid repair. Whereas introns in the moss are larger on average than in the seed plant Arabidopsis thaliana, position and amount of introns are approximately the same. Contrary to Arabidopsis, where CDS contain on average 44% G/C, in Physcomitrella the average G/C content is 50%. Interestingly, moss orthologs of Arabidopsis genes show a significant drift of codon fraction usage, towards the seed plant. While averaged codon bias is the same in Physcomitrella and Arabidopsis, the distribution pattern is different, with 15% of moss genes being unbiased. Species-specific, sensitive and selective splice site prediction for Physcomitrella has been developed using a dataset of 368 donor and acceptor sites, utilizing a support vector machine. The prediction accuracy is better than those achieved with tools trained on Arabidopsis data. Conclusion Analysis of the moss transcriptome displays differences in gene structure, codon and splice site usage in

  3. Age-related changes in gait adaptability in response to unpredictable obstacles and stepping targets.

    PubMed

    Caetano, Maria Joana D; Lord, Stephen R; Schoene, Daniel; Pelicioni, Paulo H S; Sturnieks, Daina L; Menant, Jasmine C

    2016-05-01

    A large proportion of falls in older people occur when walking. Limitations in gait adaptability might contribute to tripping; a frequently reported cause of falls in this group. To evaluate age-related changes in gait adaptability in response to obstacles or stepping targets presented at short notice, i.e.: approximately two steps ahead. Fifty older adults (aged 74±7 years; 34 females) and 21 young adults (aged 26±4 years; 12 females) completed 3 usual gait speed (baseline) trials. They then completed the following randomly presented gait adaptability trials: obstacle avoidance, short stepping target, long stepping target and no target/obstacle (3 trials of each). Compared with the young, the older adults slowed significantly in no target/obstacle trials compared with the baseline trials. They took more steps and spent more time in double support while approaching the obstacle and stepping targets, demonstrated poorer stepping accuracy and made more stepping errors (failed to hit the stepping targets/avoid the obstacle). The older adults also reduced velocity of the two preceding steps and shortened the previous step in the long stepping target condition and in the obstacle avoidance condition. Compared with their younger counterparts, the older adults exhibited a more conservative adaptation strategy characterised by slow, short and multiple steps with longer time in double support. Even so, they demonstrated poorer stepping accuracy and made more stepping errors. This reduced gait adaptability may place older adults at increased risk of falling when negotiating unexpected hazards. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Basis of genetic adaptation to heavy metal stress in the acidophilic green alga Chlamydomonas acidophila.

    PubMed

    Puente-Sánchez, Fernando; Díaz, Silvia; Penacho, Vanessa; Aguilera, Angeles; Olsson, Sanna

    2018-07-01

    To better understand heavy metal tolerance in Chlamydomonas acidophila, an extremophilic green alga, we assembled its transcriptome and measured transcriptomic expression before and after Cd exposure in this and the neutrophilic model microalga Chlamydomonas reinhardtii. Genes possibly related to heavy metal tolerance and detoxification were identified and analyzed as potential key innovations that enable this species to live in an extremely acid habitat with high levels of heavy metals. In addition we provide a data set of single orthologous genes from eight green algal species as a valuable resource for comparative studies including eukaryotic extremophiles. Our results based on differential gene expression, detection of unique genes and analyses of codon usage all indicate that there are important genetic differences in C. acidophila compared to C. reinhardtii. Several efflux family proteins were identified as candidate key genes for adaptation to acid environments. This study suggests for the first time that exposure to cadmium strongly increases transposon expression in green algae, and that oil biosynthesis genes are induced in Chlamydomonas under heavy metal stress. Finally, the comparison of the transcriptomes of several acidophilic and non-acidophilic algae showed that the Chlamydomonas genus is polyphyletic and that acidophilic algae have distinctive aminoacid usage patterns. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Initial Evidence for Adaptive Selection on the NADH Subunit Two of Freshwater Dolphins by Analyses of Mitochondrial Genomes.

    PubMed

    Caballero, Susana; Duchêne, Sebastian; Garavito, Manuel F; Slikas, Beth; Baker, C Scott

    2015-01-01

    A small number of cetaceans have adapted to an entirely freshwater environment, having colonized rivers in Asia and South America from an ancestral origin in the marine environment. This includes the 'river dolphins', early divergence from the odontocete lineage, and two species of true dolphins (Family Delphinidae). Successful adaptation to the freshwater environment may have required increased demands in energy involved in processes such as the mitochondrial osmotic balance. For this reason, riverine odontocetes provide a compelling natural experiment in adaptation of mammals from marine to freshwater habitats. Here we present initial evidence of positive selection in the NADH dehydrogenase subunit 2 of riverine odontocetes by analyses of full mitochondrial genomes, using tests of selection and protein structure modeling. The codon model with highest statistical support corresponds to three discrete categories for amino acid sites, those under positive, neutral, and purifying selection. With this model we found positive selection at site 297 of the NADH dehydrogenase subunit 2 (dN/dS>1.0,) leading to a substitution of an Ala or Val from the ancestral state of Thr. A phylogenetic reconstruction of 27 cetacean mitogenomes showed that an Ala substitution has evolved at least four times in cetaceans, once or more in the three 'river dolphins' (Families Pontoporidae, Lipotidae and Inidae), once in the riverine Sotalia fluviatilis (but not in its marine sister taxa), once in the riverine Orcaella brevirostris from the Mekong River (but not in its marine sister taxa) and once in two other related marine dolphins. We located the position of this amino acid substitution in an alpha-helix channel in the trans-membrane domain in both the E. coli structure and Sotalia fluviatilis model. In E. coli this position is located in a helix implicated in a proton translocation channel of respiratory complex 1 and may have a similar role in the NADH dehydrogenases of cetaceans.

  6. Cognitive control adjustments in healthy older and younger adults: Conflict adaptation, the error-related negativity (ERN), and evidence of generalized decline with age.

    PubMed

    Larson, Michael J; Clayson, Peter E; Keith, Cierra M; Hunt, Isaac J; Hedges, Dawson W; Nielsen, Brent L; Call, Vaughn R A

    2016-03-01

    Older adults display alterations in neural reflections of conflict-related processing. We examined response times (RTs), error rates, and event-related potential (ERP; N2 and P3 components) indices of conflict adaptation (i.e., congruency sequence effects) a cognitive control process wherein previous-trial congruency influences current-trial performance, along with post-error slowing, correct-related negativity (CRN), error-related negativity (ERN) and error positivity (Pe) amplitudes in 65 healthy older adults and 94 healthy younger adults. Older adults showed generalized slowing, had decreased post-error slowing, and committed more errors than younger adults. Both older and younger adults showed conflict adaptation effects; magnitude of conflict adaptation did not differ by age. N2 amplitudes were similar between groups; younger, but not older, adults showed conflict adaptation effects for P3 component amplitudes. CRN and Pe, but not ERN, amplitudes differed between groups. Data support generalized declines in cognitive control processes in older adults without specific deficits in conflict adaptation. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Towards More Comprehensive Projections of Urban Heat-Related Mortality: Estimates for New York City Under Multiple Population, Adaptation, and Climate Scenarios

    NASA Technical Reports Server (NTRS)

    Petkova, Elisaveta P.; Vink, Jan K.; Horton, Radley M.; Gasparrini, Antonio; Bader, Daniel A.; Francis, Joe D.; Kinney, Patrick L.

    2016-01-01

    High temperatures have substantial impacts on mortality and, with growing concerns about climate change, numerous studies have developed projections of future heat-related deaths around the world. Projections of temperature-related mortality are often limited by insufficient information necessary to formulate hypotheses about population sensitivity to high temperatures and future demographics. This study has derived projections of temperature-related mortality in New York City by taking into account future patterns of adaptation or demographic change, both of which can have profound influences on future health burdens. We adopt a novel approach to modeling heat adaptation by incorporating an analysis of the observed population response to heat in New York City over the course of eight decades. This approach projects heat-related mortality until the end of the 21st century based on observed trends in adaptation over a substantial portion of the 20th century. In addition, we incorporate a range of new scenarios for population change until the end of the 21st century. We then estimate future heat-related deaths in New York City by combining the changing temperature-mortality relationship and population scenarios with downscaled temperature projections from the 33 global climate models (GCMs) and two Representative Concentration Pathways (RCPs).The median number of projected annual heat-related deaths across the 33 GCMs varied greatly by RCP and adaptation and population change scenario, ranging from 167 to 3331 in the 2080s compared to 638 heat-related deaths annually between 2000 and 2006.These findings provide a more complete picture of the range of potential future heat-related mortality risks across the 21st century in New York, and highlight the importance of both demographic change and adaptation responses in modifying future risks.

  8. HRAS mutations in Costello syndrome: detection of constitutional activating mutations in codon 12 and 13 and loss of wild-type allele in malignancy.

    PubMed

    Estep, Anne L; Tidyman, William E; Teitell, Michael A; Cotter, Philip D; Rauen, Katherine A

    2006-01-01

    Costello syndrome (CS) is a complex developmental disorder involving characteristic craniofacial features, failure to thrive, developmental delay, cardiac and skeletal anomalies, and a predisposition to develop neoplasia. Based on similarities with other cancer syndromes, we previously hypothesized that CS is likely due to activation of signal transduction through the Ras/MAPK pathway [Tartaglia et al., 2003]. In this study, the HRAS coding region was sequenced for mutations in a large, well-characterized cohort of 36 CS patients. Heterogeneous missense point mutations predicting an amino acid substitution were identified in 33/36 (92%) patients. The majority (91%) had a 34G --> A transition in codon 12. Less frequent mutations included 35G --> C (codon 12) and 37G --> T (codon 13). Parental samples did not have an HRAS mutation supporting the hypothesis of de novo heterogeneous mutations. There is phenotypic variability among patients with a 34G --> A transition. The most consistent features included characteristic facies and skin, failure to thrive, developmental delay, musculoskeletal abnormalities, visual impairment, cardiac abnormalities, and generalized hyperpigmentation. The two patients with 35G --> C had cardiac arrhythmias whereas one patient with a 37G --> T transversion had an enlarged aortic root. Of the patients with a clinical diagnosis of CS, neoplasia was the most consistent phenotypic feature for predicating an HRAS mutation. To gain an understanding of the relationship between constitutional HRAS mutations and malignancy, HRAS was sequenced in an advanced biphasic rhabdomyosarcoma/fibrosarcoma from an individual with a 34G --> A mutation. Loss of the wild-type HRAS allele was observed, suggesting tumorigenesis in CS patients is accompanied by additional somatic changes affecting HRAS. Finally, due to phenotypic overlap between CS and cardio-facio-cutaneous (CFC) syndromes, the HRAS coding region was sequenced in a well-characterized CFC cohort

  9. Towards More Comprehensive Projections of Urban Heat-Related Mortality: Estimates for New York City under Multiple Population, Adaptation, and Climate Scenarios

    PubMed Central

    Petkova, Elisaveta P.; Vink, Jan K.; Horton, Radley M.; Gasparrini, Antonio; Bader, Daniel A.; Francis, Joe D.; Kinney, Patrick L.

    2016-01-01

    Background: High temperatures have substantial impacts on mortality and, with growing concerns about climate change, numerous studies have developed projections of future heat-related deaths around the world. Projections of temperature-related mortality are often limited by insufficient information to formulate hypotheses about population sensitivity to high temperatures and future demographics. Objectives: The present study derived projections of temperature-related mortality in New York City by taking into account future patterns of adaptation or demographic change, both of which can have profound influences on future health burdens. Methods: We adopted a novel approach to modeling heat adaptation by incorporating an analysis of the observed population response to heat in New York City over the course of eight decades. This approach projected heat-related mortality until the end of the 21st century based on observed trends in adaptation over a substantial portion of the 20th century. In addition, we incorporated a range of new scenarios for population change until the end of the 21st century. We then estimated future heat-related deaths in New York City by combining the changing temperature–mortality relationship and population scenarios with downscaled temperature projections from the 33 global climate models (GCMs) and two Representative Concentration Pathways (RCPs). Results: The median number of projected annual heat-related deaths across the 33 GCMs varied greatly by RCP and adaptation and population change scenario, ranging from 167 to 3,331 in the 2080s compared with 638 heat-related deaths annually between 2000 and 2006. Conclusions: These findings provide a more complete picture of the range of potential future heat-related mortality risks across the 21st century in New York City, and they highlight the importance of both demographic change and adaptation responses in modifying future risks. Citation: Petkova EP, Vink JK, Horton RM, Gasparrini A, Bader

  10. The Effects of Reflective Activities on Skill Adaptation in a Work-Related Instrumental Learning Setting

    ERIC Educational Resources Information Center

    Roessger, Kevin M.

    2014-01-01

    In work-related instrumental learning contexts, the role of reflective activities is unclear. Kolb's experiential learning theory and Mezirow's transformative learning theory predict skill adaptation as an outcome. This prediction was tested by manipulating reflective activities and assessing participants' response and error rates during novel…

  11. Translation attenuation via 3′ terminal codon usage in bovine csn1s2 is responsible for the difference in αs2- and β-casein profile in milk

    PubMed Central

    Kim, Julie J; Yu, Jaeju; Bag, Jnanankur; Bakovic, Marica; Cant, John P

    2015-01-01

    The rate of secretion of αs2-casein into bovine milk is approximately 25% of that of β-casein, yet mammary expression of their respective mRNA transcripts (csn1s2 and csn2) is not different. Our objective was to identify molecular mechanisms that explain the difference in translation efficiency between csn1s2 and csn2. Cell-free translational efficiency of csn2 was 5 times that of csn1s2. Transcripts of csn1s2 distributed into heavier polysomes than csn2 transcripts, indicating an attenuation of elongation and/or termination. Stimulatory and inhibitory effects of the 5′ and 3′ UTRs on translational efficiency were different with luciferase and casein sequences in the coding regions. Substituting the 5′ and 3′ UTRs from csn2 into csn1s2 did not improve csn1s2 translation, implicating the coding region itself in the translation difference. Deletion of a 28-codon fragment from the 3′ terminus of the csn1s2 coding region, which displays codons with low correlations to cell fitness, increased translation to a par with csn2. We conclude that the usage of the last 28 codons of csn1s2 is the main regulatory element that attenuates its expression and is responsible for the differential translational expression of csn1s2 and csn2. PMID:25826667

  12. Adaptive molecular evolution of the two-pore channel 1 gene TPC1 in the karst-adapted genus Primulina (Gesneriaceae)

    PubMed Central

    Tao, Junjie; Feng, Chao; Ai, Bin; Kang, Ming

    2016-01-01

    Background and Aims Limestone karst areas possess high floral diversity and endemism. The genus Primulina, which contributes to the unique calcicole flora, has high species richness and exhibit specific soil-based habitat associations that are mainly distributed on calcareous karst soils. The adaptive molecular evolutionary mechanism of the genus to karst calcium-rich environments is still not well understood. The Ca2+-permeable channel TPC1 was used in this study to test whether its gene is involved in the local adaptation of Primulina to karst high-calcium soil environments. Methods Specific amplification and sequencing primers were designed and used to amplify the full-length coding sequences of TPC1 from cDNA of 76 Primulina species. The sequence alignment without recombination and the corresponding reconstructed phylogeny tree were used in molecular evolutionary analyses at the nucleic acid level and amino acid level, respectively. Finally, the identified sites under positive selection were labelled on the predicted secondary structure of TPC1. Key Results Seventy-six full-length coding sequences of Primulina TPC1 were obtained. The length of the sequences varied between 2220 and 2286 bp and the insertion/deletion was located at the 5′ end of the sequences. No signal of substitution saturation was detected in the sequences, while significant recombination breakpoints were detected. The molecular evolutionary analyses showed that TPC1 was dominated by purifying selection and the selective pressures were not significantly different among species lineages. However, significant signals of positive selection were detected at both TPC1 codon level and amino acid level, and five sites under positive selective pressure were identified by at least three different methods. Conclusions The Ca2+-permeable channel TPC1 may be involved in the local adaptation of Primulina to karst Ca2+-rich environments. Different species lineages suffered similar selective pressure

  13. No evidence of correlation between p53 codon 72 polymorphism and risk of bladder or breast carcinoma in Tunisian patients.

    PubMed

    Mabrouk, Imed; Baccouche, Sami; El-Abed, Rym; Mokdad-Gargouri, Raja; Mosbah, Ali; Saïd, Salem; Daoud, Jamel; Frikha, Mounir; Jlidi, Rachid; Gargouri, Ali

    2003-12-01

    The TP53 gene, frequently mutated in human cancers, carries several polymorphisms. The one most informative and studied concerns codon 72; a single base changes the CGC (arginine) to CCC (proline). The arginine form was considered to be a significant risk factor in the development of cancer. However, various reports on this polymorphism are controversial. We carried out the same investigation in two groups of patients, a group with bladder cancer and another with breast cancer, and in healthy controls in two regions of our country, using an improved PCR-RFLP method. The number of Arg/Arg, Arg/Pro, and Pro/Pro genotypes was as follows: 21, 23, 3 and 13, 19, 2 for patients (total 47) and controls (34), respectively, in the first group; 18, 9, 3 and 19, 26, 4 for patients (30) and controls (49), respectively, in the second group. Statistical analysis of the genotype and allele frequencies did not reveal any difference between patients and controls in both groups except for a weak difference between the homozygotes to heterozygotes in the second group with a chi square of 4.1 (P = 0.045); the number of breast cancer patients is actually low (30) and should be increased in order to assess such a conclusion. Our overall results are therefore not consistent with a high risk associated with TP53 codon 72 polymorphism in breast and in bladder cancers.

  14. Trauma Related Guilt Inventory - psychometric properties of the Polish adaptation (TRGI-PL).

    PubMed

    Popiel, Agnieszka; Zawadzki, Bogdan

    2015-01-01

    AIM : Although various aspects of guilt are frequent problems of patients suffering from PTSD, they have been included into the diagnostic criteria for PTSD just in the present version DSM-5. Kubany proposed a cognitive conceptualization of guilt in PTSD followed by development of the Trauma Related Guilt Inventory (TRGI). The aim of the paper is to present psychometric properties of the Polish version of the inventory - the TRGI-PL. A Polish adaptation of the Trauma-Related Guilt Inventory was applied to a sample of 280 motor vehicle (MVA) participants (147 females, 133 males of age from 18 to 80 (M=34,93, SD=13,71) within 1-24 months after a MVA (M=10,18, SD=6,23). Validation of the Polish version was done by analyzing the internal structure of the instrument and comparing the emotional and cognitive aspects of guilt assessed by the TRGI with PTSD symptoms, post-traumatic cognitions and responsibility for MVA and subjective agreement with the judgment. The model with four latent factors: Distress, Hindsight-Bias/Responsibility, Wrongdoing and Insufficient Justification scales showed acceptable fit (Satorra-Bentler chi2=518,62, df=203, p<0,01, RMSEA=0,079, CFI=0,96, GFI=0,97), what confirms the four-factor structure of guilt, obtained in the studies on original TRGI version. Reliability coefficients are similar to original version. Correlations with other PTSD measures showed satisfactory convergent and discriminative validity. The Polish adaptation of the Trauma-Related Guilt Inventory is a reliable and valid tool for assessing guilt as a multidimensional phenomenon, comprising emotional and several cognitive characteristics, in trauma survivors.

  15. Performance of adaptive DD-OFDM multicore fiber links and its relation with intercore crosstalk.

    PubMed

    Alves, Tiago M F; Luís, Ruben S; Puttnam, Benjamin J; Cartaxo, Adolfo V T; Awaji, Yoshinari; Wada, Naoya

    2017-07-10

    Adaptive direct-detection (DD) orthogonal frequency-division multiplexing (OFDM) is proposed to guarantee signal quality over time in weakly-coupled homogenous multicore fiber (MCFs) links impaired by stochastic intercore crosstalk (ICXT). For the first time, the received electrical power of the ICXT and the performance of the adaptive DD-OFDM MCF link are experimentally monitored quasi-simultaneously over a 210 hour period. Experimental results show that the time evolution of the error vector magnitude due to the ICXT can be suitably estimated from the normalized power of the detected crosstalk. The detected crosstalk results from the beating between the carrier in the test core and ICXT originating from the carrier and modulated signal from interfering core. The results show that the operation of DD-OFDM systems employing fixed modulation can be severely impaired by the presence of ICXT that may unpredictable vary in both power and frequency. The system may suffer from deleterious impact of moderate ICXT levels over a time duration of several hours or from peak ICXT levels occurring over a number of minutes. Such power fluctuations can lead to large variations in bit error ratio (BER) for static modulation schemes. Here, we show that BER fluctuations may be minimized by the use of adaptive modulation techniques and that in particular, the adaptive OFDM is a viable solution to guarantee link quality in MCF-based systems. An experimental model of an adaptive DD-OFDM MCF link shows an average throughput of 12 Gb/s that represents a reduction of only 9% compared to the maximum throughput measured without ICXT and an improvement of 23% relative to throughput obtained with static modulation.

  16. Oxaloacetate and malate production in engineered Escherichia coli by expression of codon-optimized phosphoenolpyruvate carboxylase2 gene from Dunaliella salina.

    PubMed

    Park, Soohyun; Chang, Kwang Suk; Jin, Eonseon; Pack, Seung Pil; Lee, Jinwon

    2013-01-01

    A new phosphoenolpyruvate carboxylase (PEPC) gene of Dunaliella salina is identified using homology analysis was conducted using PEPC gene of Chlamydomonas reinhardtii and Arabidopsis thaliana. Recombinant E. coli SGJS115 with increased production of malate and oxaloacetate was developed by introducing codon-optimized phosphoenolpyruvate carboxylase2 (OPDSPEPC2) gene of Dunaliella salina. E. coli SGJS115 yielded a 9.9 % increase in malate production. In addition, E. coli SGJS115 exhibited two times increase in the yield of oxaloacetate over the E. coli SGJS114 having identified PEPC2 gene obtained from Dunaliella salina.

  17. Transcriptomic Analyses Elucidate Adaptive Differences of Closely Related Strains of Pseudomonas aeruginosa in Fuel.

    PubMed

    Gunasekera, Thusitha S; Bowen, Loryn L; Zhou, Carol E; Howard-Byerly, Susan C; Foley, William S; Striebich, Richard C; Dugan, Larry C; Ruiz, Oscar N

    2017-05-15

    Pseudomonas aeruginosa can utilize hydrocarbons, but different strains have various degrees of adaptation despite their highly conserved genome. P. aeruginosa ATCC 33988 is highly adapted to hydrocarbons, while P. aeruginosa strain PAO1, a human pathogen, is less adapted and degrades jet fuel at a lower rate than does ATCC 33988. We investigated fuel-specific transcriptomic differences between these strains in order to ascertain the underlying mechanisms utilized by the adapted strain to proliferate in fuel. During growth in fuel, the genes related to alkane degradation, heat shock response, membrane proteins, efflux pumps, and several novel genes were upregulated in ATCC 33988. Overexpression of alk genes in PAO1 provided some improvement in growth, but it was not as robust as that of ATCC 33988, suggesting the role of other genes in adaptation. Expression of the function unknown gene PA5359 from ATCC 33988 in PAO1 increased the growth in fuel. Bioinformatic analysis revealed that PA5359 is a predicted lipoprotein with a conserved Yx(FWY)xxD motif, which is shared among bacterial adhesins. Overexpression of the putative resistance-nodulation-division (RND) efflux pump PA3521 to PA3523 increased the growth of the ATCC 33988 strain, suggesting a possible role in fuel tolerance. Interestingly, the PAO1 strain cannot utilize n -C 8 and n -C 10 The expression of green fluorescent protein (GFP) under the control of alkB promoters confirmed that alk gene promoter polymorphism affects the expression of alk genes. Promoter fusion assays further confirmed that the regulation of alk genes was different in the two strains. Protein sequence analysis showed low amino acid differences for many of the upregulated genes, further supporting transcriptional control as the main mechanism for enhanced adaptation. IMPORTANCE These results support that specific signal transduction, gene regulation, and coordination of multiple biological responses are required to improve the survival

  18. Transcriptomic Analyses Elucidate Adaptive Differences of Closely Related Strains of Pseudomonas aeruginosa in Fuel

    PubMed Central

    Gunasekera, Thusitha S.; Bowen, Loryn L.; Zhou, Carol E.; Howard-Byerly, Susan C.; Foley, William S.; Striebich, Richard C.; Dugan, Larry C.

    2017-01-01

    ABSTRACT Pseudomonas aeruginosa can utilize hydrocarbons, but different strains have various degrees of adaptation despite their highly conserved genome. P. aeruginosa ATCC 33988 is highly adapted to hydrocarbons, while P. aeruginosa strain PAO1, a human pathogen, is less adapted and degrades jet fuel at a lower rate than does ATCC 33988. We investigated fuel-specific transcriptomic differences between these strains in order to ascertain the underlying mechanisms utilized by the adapted strain to proliferate in fuel. During growth in fuel, the genes related to alkane degradation, heat shock response, membrane proteins, efflux pumps, and several novel genes were upregulated in ATCC 33988. Overexpression of alk genes in PAO1 provided some improvement in growth, but it was not as robust as that of ATCC 33988, suggesting the role of other genes in adaptation. Expression of the function unknown gene PA5359 from ATCC 33988 in PAO1 increased the growth in fuel. Bioinformatic analysis revealed that PA5359 is a predicted lipoprotein with a conserved Yx(FWY)xxD motif, which is shared among bacterial adhesins. Overexpression of the putative resistance-nodulation-division (RND) efflux pump PA3521 to PA3523 increased the growth of the ATCC 33988 strain, suggesting a possible role in fuel tolerance. Interestingly, the PAO1 strain cannot utilize n-C8 and n-C10. The expression of green fluorescent protein (GFP) under the control of alkB promoters confirmed that alk gene promoter polymorphism affects the expression of alk genes. Promoter fusion assays further confirmed that the regulation of alk genes was different in the two strains. Protein sequence analysis showed low amino acid differences for many of the upregulated genes, further supporting transcriptional control as the main mechanism for enhanced adaptation. IMPORTANCE These results support that specific signal transduction, gene regulation, and coordination of multiple biological responses are required to improve the

  19. Online adaptation of a c-VEP Brain-computer Interface(BCI) based on error-related potentials and unsupervised learning.

    PubMed

    Spüler, Martin; Rosenstiel, Wolfgang; Bogdan, Martin

    2012-01-01

    The goal of a Brain-Computer Interface (BCI) is to control a computer by pure brain activity. Recently, BCIs based on code-modulated visual evoked potentials (c-VEPs) have shown great potential to establish high-performance communication. In this paper we present a c-VEP BCI that uses online adaptation of the classifier to reduce calibration time and increase performance. We compare two different approaches for online adaptation of the system: an unsupervised method and a method that uses the detection of error-related potentials. Both approaches were tested in an online study, in which an average accuracy of 96% was achieved with adaptation based on error-related potentials. This accuracy corresponds to an average information transfer rate of 144 bit/min, which is the highest bitrate reported so far for a non-invasive BCI. In a free-spelling mode, the subjects were able to write with an average of 21.3 error-free letters per minute, which shows the feasibility of the BCI system in a normal-use scenario. In addition we show that a calibration of the BCI system solely based on the detection of error-related potentials is possible, without knowing the true class labels.

  20. Age-related macular degeneration-associated silent polymorphisms in HtrA1 impair its ability to antagonize insulin-like growth factor 1.

    PubMed

    Jacobo, Sarah Melissa P; Deangelis, Margaret M; Kim, Ivana K; Kazlauskas, Andrius

    2013-05-01

    Synonymous single nucleotide polymorphisms (SNPs) within a transcript's coding region produce no change in the amino acid sequence of the protein product and are therefore intuitively assumed to have a neutral effect on protein function. We report that two common variants of high-temperature requirement A1 (HTRA1) that increase the inherited risk of neovascular age-related macular degeneration (NvAMD) harbor synonymous SNPs within exon 1 of HTRA1 that convert common codons for Ala34 and Gly36 to less frequently used codons. The frequent-to-rare codon conversion reduced the mRNA translation rate and appeared to compromise HtrA1's conformation and function. The protein product generated from the SNP-containing cDNA displayed enhanced susceptibility to proteolysis and a reduced affinity for an anti-HtrA1 antibody. The NvAMD-associated synonymous polymorphisms lie within HtrA1's putative insulin-like growth factor 1 (IGF-1) binding domain. They reduced HtrA1's abilities to associate with IGF-1 and to ameliorate IGF-1-stimulated signaling events and cellular responses. These observations highlight the relevance of synonymous codon usage to protein function and implicate homeostatic protein quality control mechanisms that may go awry in NvAMD.

  1. Influence of ethanol adaptation on Salmonella enterica serovar Enteritidis survival in acidic environments and expression of acid tolerance-related genes.

    PubMed

    He, Shoukui; Cui, Yan; Qin, Xiaojie; Zhang, Fen; Shi, Chunlei; Paoli, George C; Shi, Xianming

    2018-06-01

    Cross-protection to environmental stresses by ethanol adaptation in Salmonella poses a great threat to food safety because it can undermine food processing interventions. The ability of Salmonella enterica serovar Enteritidis (S. Enteritidis) to develop acid resistance following ethanol adaptation (5% ethanol for 1 h) was evaluated in this study. Ethanol-adapted S. Enteritidis mounted cross-tolerance to malic acid (a two-fold increase in minimum bactericidal concentration), but not to acetic, ascorbic, lactic, citric and hydrochloric acids. The population of S. Enteritidis in orange juice (pH 3.77) over a 48-h period was not significantly (p > 0.05) influenced by ethanol adaptation. However, an increased survival by 0.09-1.02 log CFU/ml was noted with ethanol-adapted cells of S. Enteritidis compared to non-adapted cells in apple juice (pH 3.57) stored at 25 °C (p < 0.05), but not at 4 °C. RT-qPCR revealed upregulation of two acid tolerance-related genes, rpoS (encoding σ S ) and SEN1564A (encoding an acid shock protein), following ethanol adaptation. The relative expression level of the acid resistance gene hdeB did not change. The resistance phenotypes and transcriptional profiles of S. Enteritidis suggest some involvement of rpoS and SEN1564A in the ethanol-induced acid tolerance mechanism. Copyright © 2017. Published by Elsevier Ltd.

  2. Age-related change in fast adaptation mechanisms measured with the scotopic full-field ERG.

    PubMed

    Tillman, Megan A; Panorgias, Athanasios; Werner, John S

    2016-06-01

    To quantify the response dynamics of fast adaptation mechanisms of the scotopic ERG in younger and older adults using full-field m-sequence flash stimulation. Scotopic ERGs were measured for a series of flashes separated by 65 ms over a range of 260 ms in 16 younger (20-26, 22.2 ± 2.1; range mean ±1 SD) and 16 older (65-85, 71.2 ± 7) observers without retinal pathology. A short-wavelength (λ peak = 442 nm) LED was used for scotopic stimulation, and the flashes ranged from 0.0001 to 0.01 cd s m(-2). The complete binary kernel series was derived from the responses to the m-sequence flash stimulation, and the first- and second-order kernel responses were analyzed. The first-order kernel represented the response to a single, isolated flash, while the second-order kernels reflected the adapted flash responses that followed a single flash by one or more base intervals. B-wave amplitudes of the adapted flash responses were measured and plotted as a function of interstimulus interval to describe the recovery of the scotopic ERG. A linear function was fitted to the linear portion of the recovery curve, and the slope of the line was used to estimate the rate of fast adaptation recovery. The amplitudes of the isolated flash responses and rates of scotopic fast adaptation recovery were compared between the younger and older participants using a two-way ANOVA. The isolated flash responses and rates of recovery were found to be significantly lower in the older adults. However, there was no difference between the two age groups in response amplitude or recovery rate after correcting for age-related changes in the density of the ocular media. These results demonstrated that the rate of scotopic fast adaptation recovery of normal younger and older adults is similar when stimuli are equated for retinal illuminance.

  3. NUDT15 codon 139 is the best pharmacogenetic marker for predicting thiopurine-induced severe adverse events in Japanese patients with inflammatory bowel disease: a multicenter study.

    PubMed

    Kakuta, Yoichi; Kawai, Yosuke; Okamoto, Daisuke; Takagawa, Tetsuya; Ikeya, Kentaro; Sakuraba, Hirotake; Nishida, Atsushi; Nakagawa, Shoko; Miura, Miki; Toyonaga, Takahiko; Onodera, Kei; Shinozaki, Masaru; Ishiguro, Yoh; Mizuno, Shinta; Takahara, Masahiro; Yanai, Shunichi; Hokari, Ryota; Nakagawa, Tomoo; Araki, Hiroshi; Motoya, Satoshi; Naito, Takeo; Moroi, Rintaro; Shiga, Hisashi; Endo, Katsuya; Kobayashi, Taku; Naganuma, Makoto; Hiraoka, Sakiko; Matsumoto, Takayuki; Nakamura, Shiro; Nakase, Hiroshi; Hisamatsu, Tadakazu; Sasaki, Makoto; Hanai, Hiroyuki; Andoh, Akira; Nagasaki, Masao; Kinouchi, Yoshitaka; Shimosegawa, Tooru; Masamune, Atsushi; Suzuki, Yasuo

    2018-06-19

    Despite NUDT15 variants showing significant association with thiopurine-induced adverse events (AEs) in Asians, it remains unclear which variants of NUDT15 or whether additional genetic variants should be tested to predict AEs. To clarify the best pharmacogenetic test to be used clinically, we performed association studies of NUDT15 variants and haplotypes with AEs, genome-wide association study (GWAS) to discover additional variants, and ROC analysis to select the model to predict severe AEs. Overall, 2630 patients with inflammatory bowel disease (IBD) were enrolled and genotyped for NUDT15 codon 139; 1291 patients were treated with thiopurines. diplotypes were analyzed in 970 patients, and GWASs of AEs were performed with 1221 patients using population-optimized genotyping array and imputation. We confirmed the association of NUDT15 p.Arg139Cys with leukopenia and alopecia (p = 2.20E-63, 1.32E-69, OR = 6.59, 12.1, respectively), and found a novel association with digestive symptoms (p = 6.39E-04, OR = 1.89). Time to leukopenia was significantly shorter, and when leukopenia was diagnosed, thiopurine doses were significantly lower in Arg/Cys and Cys/Cys than in Arg/Arg. In GWASs, no additional variants were found to be associated with thiopurine-induced AEs. Despite strong correlation of leukopenia frequency with estimated enzyme activities based on the diplotypes (r 2  = 0.926, p = 0.0087), there were no significant differences in the AUCs of diplotypes from those of codon 139 to predict severe AEs (AUC = 0.916, 0.921, for acute severe leukopenia, AUC = 0.990, 0.991, for severe alopecia, respectively). Genotyping of NUDT15 codon 139 was sufficient to predict acute severe leukopenia and alopecia in Japanese patients with IBD.

  4. DARK ADAPTATION IN DINEUTES

    PubMed Central

    Clark, Leonard B.

    1938-01-01

    The level of dark adaptation of the whirligig beetle can be measured in terms of the threshold intensity calling forth a response. The course of dark adaptation was determined at levels of light adaptation of 6.5, 91.6, and 6100 foot-candles. All data can be fitted by the same curve. This indicates that dark adaptation follows parts of the same course irrespective of the level of light adaptation. The intensity of the adapting light determines the level at which dark adaptation will begin. The relation between log aI 0 (instantaneous threshold) and log of adapting light intensity is linear over the range studied. PMID:19873056

  5. Climate adaptation

    NASA Astrophysics Data System (ADS)

    Kinzig, Ann P.

    2015-03-01

    This paper is intended as a brief introduction to climate adaptation in a conference devoted otherwise to the physics of sustainable energy. Whereas mitigation involves measures to reduce the probability of a potential event, such as climate change, adaptation refers to actions that lessen the impact of climate change. Mitigation and adaptation differ in other ways as well. Adaptation does not necessarily have to be implemented immediately to be effective; it only needs to be in place before the threat arrives. Also, adaptation does not necessarily require global, coordinated action; many effective adaptation actions can be local. Some urban communities, because of land-use change and the urban heat-island effect, currently face changes similar to some expected under climate change, such as changes in water availability, heat-related morbidity, or changes in disease patterns. Concern over those impacts might motivate the implementation of measures that would also help in climate adaptation, despite skepticism among some policy makers about anthropogenic global warming. Studies of ancient civilizations in the southwestern US lends some insight into factors that may or may not be important to successful adaptation.

  6. Natural Selection on Genes Related to Cardiovascular Health in High-Altitude Adapted Andeans.

    PubMed

    Crawford, Jacob E; Amaru, Ricardo; Song, Jihyun; Julian, Colleen G; Racimo, Fernando; Cheng, Jade Yu; Guo, Xiuqing; Yao, Jie; Ambale-Venkatesh, Bharath; Lima, João A; Rotter, Jerome I; Stehlik, Josef; Moore, Lorna G; Prchal, Josef T; Nielsen, Rasmus

    2017-11-02

    The increase in red blood cell mass (polycythemia) due to the reduced oxygen availability (hypoxia) of residence at high altitude or other conditions is generally thought to be beneficial in terms of increasing tissue oxygen supply. However, the extreme polycythemia and accompanying increased mortality due to heart failure in chronic mountain sickness most likely reduces fitness. Tibetan highlanders have adapted to high altitude, possibly in part via the selection of genetic variants associated with reduced polycythemic response to hypoxia. In contrast, high-altitude-adapted Quechua- and Aymara-speaking inhabitants of the Andean Altiplano are not protected from high-altitude polycythemia in the same way, yet they exhibit other adaptive features for which the genetic underpinnings remain obscure. Here, we used whole-genome sequencing to scan high-altitude Andeans for signals of selection. The genes showing the strongest evidence of selection-including BRINP3, NOS2, and TBX5-are associated with cardiovascular development and function but are not in the response-to-hypoxia pathway. Using association mapping, we demonstrated that the haplotypes under selection are associated with phenotypic variations related to cardiovascular health. We hypothesize that selection in response to hypoxia in Andeans could have vascular effects and could serve to mitigate the deleterious effects of polycythemia rather than reduce polycythemia itself. Copyright © 2017. Published by Elsevier Inc.

  7. Evolutionary blueprint for host- and niche-adaptation in Staphylococcus aureus clonal complex CC30

    PubMed Central

    McGavin, Martin J.; Arsic, Benjamin; Nickerson, Nicholas N.

    2012-01-01

    Staphylococcus aureus clonal complex CC30 has caused infectious epidemics for more than 60 years, and, therefore, provides a model system to evaluate how evolution has influenced the disease potential of closely related strains. In previous multiple genome comparisons, phylogenetic analyses established three major branches that evolved from a common ancestor. Clade 1, comprised of historic pandemic phage type 80/81 methicillin susceptible S. aureus (MSSA), and Clade 2 comprised of contemporary community acquired methicillin resistant S. aureus (CA-MRSA) were hyper-virulent in murine infection models. Conversely, Clade 3 strains comprised of contemporary hospital associated MRSA (HA-MRSA) and clinical MSSA exhibited attenuated virulence, due to common single nucleotide polymorphisms (SNP's) that abrogate production of α-hemolysin Hla, and interfere with signaling of the accessory gene regulator agr. We have now completed additional in silico genome comparisons of 15 additional CC30 genomes in the public domain, to assess the hypothesis that Clade 3 has evolved to favor niche adaptation. In addition to SNP's that influence agr and hla, other common traits of Clade 3 include tryptophan auxotrophy due to a di-nucleotide deletion within trpD, a premature stop codon within isdH encoding an immunogenic cell surface protein involved in iron acquisition, loss of a genomic toxin–antitoxin (TA) addiction module, acquisition of S. aureus pathogenicity islands SaPI4, and SaPI2 encoding toxic shock syndrome toxin tst, and increased copy number of insertion sequence ISSau2, which appears to target transcription terminators. Compared to other Clade 3 MSSA, S. aureus MN8, which is associated with Staphylococcal toxic shock syndrome, exhibited a unique ISSau2 insertion, and enhanced production of toxic shock syndrome toxin encoded by SaPI2. Cumulatively, our data support the notion that Clade 3 strains are following an evolutionary blueprint toward niche-adaptation. PMID:22919639

  8. Spectral Tuning of Killer Whale (Orcinus orca) Rhodopsin: Evidence for Positive Selection and Functional Adaptation in a Cetacean Visual Pigment.

    PubMed

    Dungan, Sarah Z; Kosyakov, Alexander; Chang, Belinda S W

    2016-02-01

    Cetaceans have undergone a remarkable evolutionary transition that was accompanied by many sensory adaptations, including modification of the visual system for underwater environments. Recent sequencing of cetacean genomes has made it possible to begin exploring the molecular basis of these adaptations. In this study we use in vitro expression methods to experimentally characterize the first step of the visual transduction cascade, the light activation of rhodopsin, for the killer whale. To investigate the spectral effects of amino acid substitutions thought to correspond with absorbance shifts relative to terrestrial mammals, we used the orca gene as a background for the first site-directed mutagenesis experiments in a cetacean rhodopsin. The S292A mutation had the largest effect, and was responsible for the majority of the spectral difference between killer whale and bovine (terrestrial) rhodopsin. Using codon-based likelihood models, we also found significant evidence for positive selection in cetacean rhodopsin sequences, including on spectral tuning sites we experimentally mutated. We then investigated patterns of ecological divergence that may be correlated with rhodopsin functional variation by using a series of clade models that partitioned the data set according to phylogeny, habitat, and foraging depth zone. Only the model partitioning according to depth was significant. This suggests that foraging dives might be a selective regime influencing cetacean rhodopsin divergence, and our experimental results indicate that spectral tuning may be playing an adaptive role in this process. Our study demonstrates that combining computational and experimental methods is crucial for gaining insight into the selection pressures underlying molecular evolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Cultural adaptation of the Tuberculosis-related stigma scale to Brazil.

    PubMed

    Crispim, Juliane de Almeida; Touso, Michelle Mosna; Yamamura, Mellina; Popolin, Marcela Paschoal; Garcia, Maria Concebida da Cunha; Santos, Cláudia Benedita Dos; Palha, Pedro Fredemir; Arcêncio, Ricardo Alexandre

    2016-06-01

    The process of stigmatization associated with TB has been undervalued in national research as this social aspect is important in the control of the disease, especially in marginalized populations. This paper introduces the stages of the process of cultural adaptation in Brazil of the Tuberculosis-related stigma scale for TB patients. It is a methodological study in which the items of the scale were translated and back-translated with semantic validation with 15 individuals of the target population. After translation, the reconciled back-translated version was compared with the original version by the project coordinator in Southern Thailand, who approved the final version in Brazilian Portuguese. The results of the semantic validation conducted with TB patients enable the identification that, in general, the scale was well accepted and easily understood by the participants.

  10. [Assessing work-related stress: an Italian adaptation of the HSE Management Standards Work-Related Stress Indicator Tool].

    PubMed

    Marcatto, Francesco; D'Errico, Giuseppe; Di Blas, Lisa; Ferrante, Donatella

    2011-01-01

    The aim of this paper is to present a preliminary validation of an Italian adaptation of the HSE Management Standards Work-Related Stress Indicator Tool (IT), an instrument for assessing work-related stress at the organizational level, originally developed in Britain by the Health and Safety Executive. A scale that assesses the physical work environment has been added to the original version of the IT. 190 employees of the University of Trieste have been enrolled in the study. A confirmatory analysis showed a satisfactory fit of the eight-factors structure of the instrument. Further psychometric analysis showed adequate internal consistency of the IT scales and good criterion validity, as evidenced by the correlations with self-perception of stress, work satisfaction and motivation. In conclusion, the Indicator Tool proved to be a valid and reliable instrument for the assessment of work-related stress at the organizational level, and it is also compatible with the instructions provided by the Ministry of Labour and Social Policy (Circular letter 18/11/2010).

  11. A more accurate detection of codon 72 polymorphism and LOH of the TP53 gene.

    PubMed

    Baccouche, Sami; Mabrouk, Imed; Said, Salem; Mosbah, Ali; Jlidi, Rachid; Gargouri, Ali

    2003-01-10

    The polymorphism at codon 72 of the TP53 gene has been extensively studied for its involvement in cancerogenesis and loss of heterozygosity (LOH) detection. Usually, the exon 4 of the TP53 gene is amplified by polymerase chain reaction (PCR) on DNA extracted from blood and tumor tissues, then digested by AccII. In the case of heterozygosity, the comparison of AccII profile from blood and tumor DNA PCR products allowed the identification of a potential LOH in the TP53 locus. This method can be hindered by a partial AccII digestion and/or DNA contamination of non-tumor cells. To circumvent these problems, we have developed a new approach by using the AccII restriction site between exon 4 and exon 6. The PCR amplification of exon 4-6, followed by AccII digestion allowed us to detect without ambiguity any LOH case.

  12. Second generation codon optimized minicircle (CoMiC) for nonviral reprogramming of human adult fibroblasts.

    PubMed

    Diecke, Sebastian; Lisowski, Leszek; Kooreman, Nigel G; Wu, Joseph C

    2014-01-01

    The ability to induce pluripotency in somatic cells is one of the most important scientific achievements in the fields of stem cell research and regenerative medicine. This technique allows researchers to obtain pluripotent stem cells without the controversial use of embryos, providing a novel and powerful tool for disease modeling and drug screening approaches. However, using viruses for the delivery of reprogramming genes and transcription factors may result in integration into the host genome and cause random mutations within the target cell, thus limiting the use of these cells for downstream applications. To overcome this limitation, various non-integrating techniques, including Sendai virus, mRNA, minicircle, and plasmid-based methods, have recently been developed. Utilizing a newly developed codon optimized 4-in-1 minicircle (CoMiC), we were able to reprogram human adult fibroblasts using chemically defined media and without the need for feeder cells.

  13. Genetic Adaptation vs. Ecophysiological Plasticity of Photosynthetic-Related Traits in Young Picea glauca Trees along a Regional Climatic Gradient

    PubMed Central

    Benomar, Lahcen; Lamhamedi, Mohammed S.; Rainville, André; Beaulieu, Jean; Bousquet, Jean; Margolis, Hank A.

    2016-01-01

    Assisted population migration (APM) is the intentional movement of populations within a species range to sites where future environmental conditions are projected to be more conducive to growth. APM has been proposed as a proactive adaptation strategy to maintain forest productivity and to reduce the vulnerability of forest ecosystems to projected climate change. The validity of such a strategy will depend on the adaptation capacity of populations, which can partially be evaluated by the ecophysiological response of different genetic sources along a climatic gradient. This adaptation capacity results from the compromise between (i) the degree of genetic adaptation of seed sources to their environment of origin and (ii) the phenotypic plasticity of functional trait which can make it possible for transferred seed sources to positively respond to new growing conditions. We examined phenotypic variation in morphophysiological traits of six seed sources of white spruce (Picea glauca [Moench] Voss) along a regional climatic gradient in Québec, Canada. Seedlings from the seed sources were planted at three forest sites representing a mean annual temperature (MAT) gradient of 2.2°C. During the second growing season, we measured height growth (H2014) and traits related to resources use efficiency and photosynthetic rate (Amax). All functional traits showed an adaptive response to the climatic gradient. Traits such as H2014, Amax, stomatal conductance (gs), the ratio of mesophyll to stomatal conductance, water use efficiency, and photosynthetic nitrogen-use efficiency showed significant variation in both physiological plasticity due to the planting site and seed source variation related to local genetic adaptation. However, the amplitude of seed source variation was much less than that related to plantation sites in the area investigated. The six seed sources showed a similar level of physiological plasticity. H2014, Amax and gs, but not carboxylation capacity (Vcmax), were

  14. Relating adaptive genetic traits to climate for Sandberg bluegrass from the intermountain western United States

    Treesearch

    Richard C. Johnson; Matthew E. Horning; Erin Espeland; Ken Vance-Borland

    2015-01-01

    Genetic variation for potentially adaptive traits of the key restoration species Sandberg bluegrass (Poa secunda J. Presl) was assessed over the intermountain western United States in relation to source population climate. Common gardens were established at two intermountain west sites with progeny from two maternal parents from each of 130 wild populations. Data were...

  15. Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection.

    PubMed

    DeWeber, Jefferson T; Wagner, Tyler

    2018-06-01

    Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30-day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species' distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold-water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid-century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation actions. Our

  16. Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection

    USGS Publications Warehouse

    DeWeber, Jefferson T.; Wagner, Tyler

    2018-01-01

    Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30‐day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species’ distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold‐water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid‐century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation

  17. A novel homozygous stop-codon mutation in human HFE responsible for nonsense-mediated mRNA decay.

    PubMed

    Padula, Maria Carmela; Martelli, Giuseppe; Larocca, Marilena; Rossano, Rocco; Olivieri, Attilio

    2014-09-01

    HFE-hemochromatosis (HH) is an autosomal disease characterized by excessive iron absorption. Homozygotes for H63D variant, and still less H63D heterozygotes, generally do not express HH phenotype. The data collected in our previous study in the province of Matera (Basilicata, Italy) underlined that some H63D carriers showed altered iron metabolism, without additional factors. In this study, we selected a cohort of 10/22 H63D carriers with severe biochemical iron overload (BIO). Additional analysis was performed for studying HFE exons, exon-intron boundaries, and untranslated regions (UTRs) by performing DNA extraction, PCR amplification and sequencing. The results showed a novel substitution (NM_000410.3:c.847C>T) in a patient exon 4 (GenBankJQ478433); it introduces a premature stop-codon (PTC). RNA extraction and reverse-transcription were also performed. Quantitative real-time PCR was carried out for verifying if our aberrant mRNA is targeted for nonsense-mediated mRNA decay (NMD); we observed that patient HFE mRNA was expressed much less than calibrator, suggesting that the mutated HFE protein cannot play its role in iron metabolism regulation, resulting in proband BIO. Our finding is the first evidence of a variation responsible for a PTC in iron cycle genes. The genotype-phenotype correlation observed in our cases could be related to the additional mutation. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. The Relations of Employability Skills to Career Adaptability among Technical School Students

    ERIC Educational Resources Information Center

    de Guzman, Allan B.; Choi, Kyoung Ok

    2013-01-01

    This two pronged study reports the initial validation of the psychometric properties and factor structure of the Career Adapt-Abilities Scale (CAAS) in the context of Papua New Guinea (PNG) and the investigation of the relationship between employability skills and career adaptability. Results of the study revealed that CAAS can be a valid and…

  19. Critical roles for a genetic code alteration in the evolution of the genus Candida.

    PubMed

    Silva, Raquel M; Paredes, João A; Moura, Gabriela R; Manadas, Bruno; Lima-Costa, Tatiana; Rocha, Rita; Miranda, Isabel; Gomes, Ana C; Koerkamp, Marian J G; Perrot, Michel; Holstege, Frank C P; Boucherie, Hélian; Santos, Manuel A S

    2007-10-31

    During the last 30 years, several alterations to the standard genetic code have been discovered in various bacterial and eukaryotic species. Sense and nonsense codons have been reassigned or reprogrammed to expand the genetic code to selenocysteine and pyrrolysine. These discoveries highlight unexpected flexibility in the genetic code, but do not elucidate how the organisms survived the proteome chaos generated by codon identity redefinition. In order to shed new light on this question, we have reconstructed a Candida genetic code alteration in Saccharomyces cerevisiae and used a combination of DNA microarrays, proteomics and genetics approaches to evaluate its impact on gene expression, adaptation and sexual reproduction. This genetic manipulation blocked mating, locked yeast in a diploid state, remodelled gene expression and created stress cross-protection that generated adaptive advantages under environmental challenging conditions. This study highlights unanticipated roles for codon identity redefinition during the evolution of the genus Candida, and strongly suggests that genetic code alterations create genetic barriers that speed up speciation.

  20. SU-E-J-57: First Development of Adapting to Intrafraction Relative Motion Between Prostate and Pelvic Lymph Nodes Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Y; Colvill, E; O’Brien, R

    2015-06-15

    Purpose Large intrafraction relative motion of multiple targets is common in advanced head and neck, lung, abdominal, gynaecological and urological cancer, jeopardizing the treatment outcomes. The objective of this study is to develop a real-time adaptation strategy, for the first time, to accurately correct for the relative motion of multiple targets by reshaping the treatment field using the multi-leaf collimator (MLC). Methods The principle of tracking the simultaneously treated but differentially moving tumor targets is to determine the new aperture shape that conforms to the shifted targets. Three dimensional volumes representing the individual targets are projected to the beam’s eyemore » view. The leaf openings falling inside each 2D projection will be shifted according to the measured motion of each target to form the new aperture shape. Based on the updated beam shape, new leaf positions will be determined with optimized trade-off between the target underdose and healthy tissue overdose, and considerations of the physical constraints of the MLC. Taking a prostate cancer patient with pelvic lymph node involvement as an example, a preliminary dosimetric study was conducted to demonstrate the potential treatment improvement compared to the state-of- art adaptation technique which shifts the whole beam to track only one target. Results The world-first intrafraction adaptation system capable of reshaping the beam to correct for the relative motion of multiple targets has been developed. The dose in the static nodes and small bowel are closer to the planned distribution and the V45 of small bowel is decreased from 110cc to 75cc, corresponding to a 30% reduction by this technique compared to the state-of-art adaptation technique. Conclusion The developed adaptation system to correct for intrafraction relative motion of multiple targets will guarantee the tumour coverage and thus enable PTV margin reduction to minimize the high target dose to the adjacent

  1. Adapting to the Changing Climate: An Assessment of Local Health Department Preparations for Climate Change-Related Health Threats, 2008-2012

    PubMed Central

    Roser-Renouf, Connie; Maibach, Edward W.; Li, Jennifer

    2016-01-01

    Background Climate change poses a major public health threat. A survey of U.S. local health department directors in 2008 found widespread recognition of the threat, but limited adaptive capacity, due to perceived lack of expertise and other resources. Methods We assessed changes between 2008 and 2012 in local public health departments' preparedness for the public health threats of climate change, in light of increasing national polarization on the issue, and widespread funding cutbacks for public health. A geographically representative online survey of directors of local public health departments was conducted in 2011–2012 (N = 174; response rate = 50%), and compared to the 2008 telephone survey results (N = 133; response rate = 61%). Results Significant polarization had occurred: more respondents in 2012 were certain that the threat of local climate change impacts does/does not exist, and fewer were unsure. Roughly 10% said it is not a threat, compared to 1% in 2008. Adaptation capacity decreased in several areas: perceived departmental expertise in climate change risk assessment; departmental prioritization of adaptation; and the number of adaptation-related programs and services departments provided. In 2008, directors' perceptions of local impacts predicted the number of adaptation-related programs and services their departments offered, but in 2012, funding predicted programming and directors' impact perceptions did not. This suggests that budgets were constraining directors' ability to respond to local climate change-related health threats. Results also suggest that departmental expertise may mitigate funding constraints. Strategies for overcoming these obstacles to local public health departments' preparations for climate change are discussed. PMID:26991658

  2. Adapting to the Changing Climate: An Assessment of Local Health Department Preparations for Climate Change-Related Health Threats, 2008-2012.

    PubMed

    Roser-Renouf, Connie; Maibach, Edward W; Li, Jennifer

    2016-01-01

    Climate change poses a major public health threat. A survey of U.S. local health department directors in 2008 found widespread recognition of the threat, but limited adaptive capacity, due to perceived lack of expertise and other resources. We assessed changes between 2008 and 2012 in local public health departments' preparedness for the public health threats of climate change, in light of increasing national polarization on the issue, and widespread funding cutbacks for public health. A geographically representative online survey of directors of local public health departments was conducted in 2011-2012 (N = 174; response rate = 50%), and compared to the 2008 telephone survey results (N = 133; response rate = 61%). Significant polarization had occurred: more respondents in 2012 were certain that the threat of local climate change impacts does/does not exist, and fewer were unsure. Roughly 10% said it is not a threat, compared to 1% in 2008. Adaptation capacity decreased in several areas: perceived departmental expertise in climate change risk assessment; departmental prioritization of adaptation; and the number of adaptation-related programs and services departments provided. In 2008, directors' perceptions of local impacts predicted the number of adaptation-related programs and services their departments offered, but in 2012, funding predicted programming and directors' impact perceptions did not. This suggests that budgets were constraining directors' ability to respond to local climate change-related health threats. Results also suggest that departmental expertise may mitigate funding constraints. Strategies for overcoming these obstacles to local public health departments' preparations for climate change are discussed.

  3. [Behavioral types in relation to burnout, mobbing, personality, and adaptation of self-conduct in health care workers].

    PubMed

    Domínguez Fernández, Julián Manuel; Padilla Segura, Inés; Domínguez Fernández, Javier; Domínguez Padilla, María

    2013-04-01

    To define the different patterns of behavior among workers in health care in Ceuta. Cross-sectional and descriptive. SITES AND PARTICIPANTS: 200 randomly selected workers in the Ceuta Health Care Area using a stratified sampling of workplace, job and sex. The instruments used were the MBI, the LIPT by Leymann, a reduced version of the Pinillos CEP, Musitu self concept and adaptation behavior, all adapted in the context of occupational health examinations. Principal components analysis allowed us to define 5 components, one strictly related to the scale of mobbing with 85% of weight; another for burnout with 70% weight; a third to adaptation and family satisfaction with a weight of 64%; a fourth with adaptation, control, emotional self, professional achievement and occupational self-weight of 52%; and a fifth component defined by social evaluations in the levels of extraversion and social adjustment with 73%. Highlights five different behavioral characteristics peculiar interest for clinical work are highlighted: burnout, mobbing, family work satisfaction; individual occupational and sociable satisfaction. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  4. High-level expression of the Penicillium notatum glucose oxidase gene in Pichia pastoris using codon optimization.

    PubMed

    Gao, Zhaowei; Li, Zhuofu; Zhang, Yuhong; Huang, Huoqing; Li, Mu; Zhou, Liwei; Tang, Yunming; Yao, Bin; Zhang, Wei

    2012-03-01

    The glucose oxidase (GOD) gene from Penicillium notatum was expressed in Pichia pastoris. The 1,815 bp gene, god-w, encodes 604 amino acids. Recombinant GOD-w had optimal activity at 35-40°C and pH 6.2 and was stable, from pH 3 to 7 maintaining >75% maximum activity after incubation at 50°C for 1 h. GOD-w worked as well as commercial GODs to improve bread making. To achieve high-level expression of recombinant GOD in P. pastoris, 272 nucleotides involving 228 residues were mutated, consistent with the codon bias of P. pastoris. The optimized recombinant GOD-m yielded 615 U ml(-1) (2.5 g protein l(-1)) in a 3 l fermentor--410% higher than GOD-w (148 U ml(-1)), and thus is a low-cost alternative for the bread baking industry.

  5. Molecular Mechanism of Scanning and Start Codon Selection in Eukaryotes

    PubMed Central

    Hinnebusch, Alan G.

    2011-01-01

    Summary: The correct translation of mRNA depends critically on the ability to initiate at the right AUG codon. For most mRNAs in eukaryotic cells, this is accomplished by the scanning mechanism, wherein the small (40S) ribosomal subunit attaches to the 5′ end of the mRNA and then inspects the leader base by base for an AUG in a suitable context, using complementarity with the anticodon of methionyl initiator tRNA (Met-tRNAiMet) as the key means of identifying AUG. Over the past decade, a combination of yeast genetics, biochemical analysis in reconstituted systems, and structural biology has enabled great progress in deciphering the mechanism of ribosomal scanning. A robust molecular model now exists, describing the roles of initiation factors, notably eukaryotic initiation factor 1 (eIF1) and eIF1A, in stabilizing an “open” conformation of the 40S subunit with Met-tRNAiMet bound in a low-affinity state conducive to scanning and in triggering rearrangement into a “closed” conformation incompatible with scanning, which features Met-tRNAiMet more tightly bound to the “P” site and base paired with AUG. It has also emerged that multiple DEAD-box RNA helicases participate in producing a single-stranded “landing pad” for the 40S subunit and in removing the secondary structure to enable the mRNA to traverse the 40S mRNA-binding channel in the single-stranded form for base-by-base inspection in the P site. PMID:21885680

  6. Adaptive style and differences in parent and child report of health-related quality of life in children with cancer.

    PubMed

    Jurbergs, Nichole; Russell, Kathryn M W; Long, Alanna; Phipps, Sean

    2008-01-01

    The objective of this study was to examine the self-reported health-related quality of life (HRQL) of children with cancer, and the consistency between child and parent reports of child HRQL, as a function of the child's adaptive style. Participants included 199 children with cancer, 108 healthy children, and their parents. Children completed self-report measures of HRQL and adaptive style. Measures of adaptive style were used to categorize children as high anxious, low anxious, defensive high anxious or repressor. Parents completed measures reporting their children's HRQL. Adaptive style was a significant predictor of child-reported HRQL, particularly on the psychosocial scales, with children identified as repressors reporting the best HRQL. Adaptive style was also predictive of discrepancies between parent and child report of child HRQL. Repressor and low anxious children reported better HRQL than did their parents, while high anxious children reported poorer HRQL, regardless of health status. Adaptive style is a significant determinant of self-reported HRQL in children, particularly in psychosocial domains, while health status (i.e. cancer patient vs healthy control) is predictive only of physical health domains. Researchers and clinicians should be aware of the impact of child adaptive style when assessing HRQL outcomes using self- or parent report.

  7. Age-Related Changes of Adaptive and Neuropsychological Features in Persons with Down Syndrome

    PubMed Central

    Ghezzo, Alessandro; Salvioli, Stefano; Solimando, Maria Caterina; Palmieri, Alice; Chiostergi, Chiara; Scurti, Maria; Lomartire, Laura; Bedetti, Federica; Cocchi, Guido; Follo, Daniela; Pipitone, Emanuela; Rovatti, Paolo; Zamberletti, Jessica; Gomiero, Tiziano; Castellani, Gastone; Franceschi, Claudio

    2014-01-01

    Down Syndrome (DS) is characterised by premature aging and an accelerated decline of cognitive functions in the vast majority of cases. As the life expectancy of DS persons is rapidly increasing, this decline is becoming a dramatic health problem. The aim of this study was to thoroughly evaluate a group of 67 non-demented persons with DS of different ages (11 to 66 years), from a neuropsychological, neuropsychiatric and psychomotor point of view in order to evaluate in a cross-sectional study the age-related adaptive and neuropsychological features, and to possibly identify early signs predictive of cognitive decline. The main finding of this study is that both neuropsychological functions and adaptive skills are lower in adult DS persons over 40 years old, compared to younger ones. In particular, language and short memory skills, frontal lobe functions, visuo-spatial abilities and adaptive behaviour appear to be the more affected domains. A growing deficit in verbal comprehension, along with social isolation, loss of interest and greater fatigue in daily tasks, are the main features found in older, non demented DS persons evaluated in our study. It is proposed that these signs can be alarm bells for incipient dementia, and that neuro-cognitive rehabilitation and psycho-pharmacological interventions must start as soon as the fourth decade (or even earlier) in DS persons, i.e. at an age where interventions can have the greatest efficacy. PMID:25419980

  8. Proteome analysis of the plant pathogen Xylella fastidiosa reveals major cellular and extracellular proteins and a peculiar codon bias distribution.

    PubMed

    Smolka, Marcus Bustamante; Martins-de-Souza, Daniel; Martins, Daniel; Winck, Flavia Vischi; Santoro, Carlos Eduardo; Castellari, Rafael Ramos; Ferrari, Fernanda; Brum, Itaraju Junior; Galembeck, Eduardo; Della Coletta Filho, Helvécio; Machado, Marcos Antonio; Marangoni, Sergio; Novello, Jose Camillo

    2003-02-01

    The bacteria Xylella fastidiosa is the causative agent of a number of economically important crop diseases, including citrus variegated chlorosis. Although its complete genome is already sequenced, X. fastidiosa is very poorly characterized by biochemical approaches at the protein level. In an initial effort to characterize protein expression in X. fastidiosa we used one- and two-dimensional gel electrophoresis and mass spectrometry to identify the products of 142 genes present in a whole cell extract and in an extracellular fraction of the citrus isolated strain 9a5c. Of particular interest for the study of pathogenesis are adhesion and secreted proteins. Homologs to proteins from three different adhesion systems (type IV fimbriae, mrk pili and hsf surface fibrils) were found to be coexpressed, the last two being detected only as multimeric complexes in the high molecular weight region of one-dimensional electrophoresis gels. Using a procedure to extract secreted proteins as well as proteins weakly attached to the cell surface we identified 30 different proteins including toxins, adhesion related proteins, antioxidant enzymes, different types of proteases and 16 hypothetical proteins. These data suggest that the intercellular space of X. fastidiosa colonies is a multifunctional microenvironment containing proteins related to in vivo bacterial survival and pathogenesis. A codon usage analysis of the most expressed proteins from the whole cell extract revealed a low biased distribution, which we propose is related to the slow growing nature of X. fastidiosa. A database of the X. fastidiosa proteome was developed and can be accessed via the internet (URL: www.proteome.ibi.unicamp.br).

  9. Bibliography of Selected Literature in the 1970s Related to Crises, Family Stress, Coping and Adaptation.

    ERIC Educational Resources Information Center

    Chesser, Barbara

    This bibliography of literature from the 1970s related to crises, family stress, coping, and adaptation contains references of particular interest to professionals in the areas of counseling, education, and family social, psychological and health services. The bibliography is divided into 26 categories; references are classified according to major…

  10. Implications of movement-related cortical potential for understanding neural adaptations in muscle strength tasks

    PubMed Central

    2014-01-01

    This systematic review aims to provide information about the implications of the movement-related cortical potential (MRCP) in acute and chronic responses to the counter resistance training. The structuring of the methods of this study followed the proposals of the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses). It was performed an electronically search in Pubmed/Medline and ISI Web of Knowledge data bases, from 1987 to 2013, besides the manual search in the selected references. The following terms were used: Bereitschaftspotential, MRCP, strength and force. The logical operator “AND” was used to combine descriptors and terms used to search publications. At the end, 11 studies attended all the eligibility criteria and the results demonstrated that the behavior of MRCP is altered because of different factors such as: force level, rate of force development, fatigue induced by exercise, and the specific phase of muscular action, leading to an increase in the amplitude in eccentric actions compared to concentric actions, in acute effects. The long-term adaptations demonstrated that the counter resistance training provokes an attenuation in the amplitude in areas related to the movement, which may be caused by neural adaptation occurred in the motor cortex. PMID:24602228

  11. Tailoring Nutritional Advice for Mexicans Based on Prevalence Profiles of Diet-Related Adaptive Gene Polymorphisms

    PubMed Central

    Ojeda-Granados, Claudia; Panduro, Arturo; Gonzalez-Aldaco, Karina; Sepulveda-Villegas, Maricruz; Rivera-Iñiguez, Ingrid

    2017-01-01

    Diet-related adaptive gene (DRAG) polymorphisms identified in specific populations are associated with chronic disorders in carriers of the adaptive alleles due to changes in dietary and lifestyle patterns in recent times. Mexico’s population is comprised of Amerindians (AM) and Mestizos who have variable AM, European (EUR) and African genetic ancestry and an increased risk of nutrition-related chronic diseases. Nutritional advice based on the Mexican genome and the traditional food culture is needed to develop preventive and therapeutic strategies. Therefore, we aimed to provide a prevalence profile of several DRAG polymorphisms in the Mexican population, including Central West (CW) Mexico subpopulations. Geographic heat maps were built using ArcGIS10 (Esri, Redlands, CA, USA) software, based on the published data of the MTHFR C677T (rs1801133), ABCA1 Arg230Cys (rs9282541), APOE T388C (rs429358)/C526T (rs7412), LCT C-13910T (rs4988235) polymorphisms and AMY1 copy number variation (CNV). Also, new data obtained by allelic discrimination-real-time polymerase chain reaction (RT-PCR) assays for the MTHFR, ABCA1, and APOE polymorphisms as well as the AMY1 CNV in the CW Mexico subpopulations with different proportions of AM and EUR ancestry were included. In the CW region, the highest frequency of the MTHFR 677T, ABCA1 230C and APOE ε4 adaptive alleles was observed in the AM groups, followed by Mestizos with intermediate AM ancestry. The LCT-13910T allele frequency was highest in Mestizos-EUR but extremely low in AM, while the AMY1 diploid copy number was 6.82 ± 3.3 copies. Overall, the heat maps showed a heterogeneous distribution of the DRAG polymorphisms, in which the AM groups revealed the highest frequencies of the adaptive alleles followed by Mestizos. Given these genetic differences, genome-based nutritional advice should be tailored in a regionalized and individualized manner according to the available foods and Mexican traditional food culture that may lead

  12. The factorial structure of job-related affective well-being: Polish adaptation of the Warr's measure.

    PubMed

    Mielniczuk, Emilia; Łaguna, Mariola

    2018-02-16

    The first aim of the study reported in this article was to test the factorial structure of job-related affect in a Polish sample. The second aim was to develop the Polish adaptation of the Warr's job-related affective well-being measure published in 1990, which is designed to assess 4 types of affect at work: anxiety, comfort, depression, enthusiasm. A longitudinal study design with 2 measurement times was used for verifying the psychometric properties of the Polish version of the measure. The final sample consisted of 254 Polish employees from different professions. Participants were asked to fill in a set of questionnaires consisting of measures capturing job-related affective well-being, mood, and turnover intention. The first step of analysis was to test the theoretically-based structure of the job-related affective well-being measure in a Polish sample. The confirmatory factor analysis revealed that a 4-factor model best describes the structure of the measure in comparison to 5 alternative models. Next, reliability of this measure was assessed. All scales achieved good internal consistency and acceptable test-retest reliability after 2 weeks. Finally, the convergent and discriminant validity as well as the criterion and predictive validity of all job-related affective well-being scales was confirmed, based on correlations between job-related affect and mood as well as turnover intention. The results suggest that the Polish adaptation of Warr's job-related affective well-being measure can be used by scientists as well as by practitioners who aim at assessing 4 types of affective well-being at a work context. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  13. Sequence analysis of MHC class I α2 from sockeye salmon (Oncorhynchus nerka).

    PubMed

    McClelland, Erin K; Ming, Tobi J; Tabata, Amy; Miller, Kristina M

    2011-09-01

    Most studies assessing adaptive MHC diversity in salmon populations have focused on the classical class II DAB or DAA loci, as these have been most amenable to single PCR amplifications due to their relatively low level of sequence divergence. Herein, we report the characterization of the classical class I UBA α2 locus based on collections taken throughout the species range of sockeye salmon (Oncorhynchus nerka). Through use of multiple lineage-specific primer sets, denaturing gradient gel electrophoresis and sequencing, we identified thirty-four alleles from three highly divergent lineages. Sequence identity between lineages ranged from 30.0% to 56.8% but was relatively high within lineages. Allelic identity within the antigen recognition site (ARS) was greater than for the longer sequence. Global positive selection on UBA was seen at the sequence level (dN:dS = 1.012) with four codons under positive selection and 12 codons under negative selection. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  14. Analysis of four families with the Stickler syndrome by linkage studies. Identification of a new premature stop codon in the COL2A1 gene in a family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonaventure, J.; Lasselin, C.; Toutain, A.

    1994-09-01

    The Stickler syndrome is an arthro-ophthalmopathy which associates progressive myopia with vitreal degeneration and retinal detachment. Cleft palate, cranio-facial abnormalities, deafness and osteoarthritis are often associated symptoms. Genetic heterogeneity of this autosomal dominant disease was consistent with its large clinical variability. Linkage studies have provided evidence for cosegregation of the disease with COL2A1, the gene coding for type II collagen, in about 50% of the families. Four additional families are reported here. Linkage analyses by using a VNTR located in the 3{prime} region of the gene were achieved. In three families, positive lod scores were obtained with a cumulative maximalmore » value of 3.5 at a recombination fraction of 0. In one of these families, single strand conformation analysis of 25 exons disclosed a new mutation in exon 42. Codon for glutamic acid at position a1-803 was converted into a stop codon. The mutation was detected in DNA samples from all the affected members of the family but not in the unaffected. This result confirms that most of the Stickler syndromes linked to COL2A1 are due to premature stop codons. In a second family, an abnormal SSCP pattern of exon 34 was detected in all the affected individuals. The mutation is likely to correspond to a splicing defect in the acceptor site of intron 33. In one family the disease did not segregate with the COL2A1 locus. Further linkage studies with intragenic dimorphic sites in the COL10A1 gene and highly polymorphic markers close to the COL9A1 locus indicated that this disorder did not result from defects in these two genes.« less

  15. Unlike type 2 diabetes, type 1 does not interact with the codon 54 polymorphism of the fatty acid binding protein 2 gene.

    PubMed

    Georgopoulos, Angeliki; Aras, Omer; Noutsou, Marina; Tsai, Michael Y

    2002-08-01

    In type 2 diabetes, the threonine (Thr) for alanine (Ala) codon 54 polymorphism of the fatty acid binding protein 2 gene is associated with elevated fasting and postprandial triglycerides and dyslipidemia when compared with the wild type (Ala-54/Ala-54). To assess whether this is the case in patients with type 1 diabetes, who usually do not manifest the metabolic syndrome, we screened 181 patients with similar glycemic control as the type 2 patients. Thirty percent were heterozygous, and 9% were homozygous for the polymorphism. Mean (+/-SEM) fasting plasma triglyceride levels in patients with the wild type (n = 84), those heterozygous for Ala-54/Thr-54 (n = 44), and those homozygous for the Thr-54 (n = 13) were 1.0 +/- 0.07, 1.1 +/- 0.17, and 1.2 +/- 0.23 mmol/liter, respectively. In addition, there were no differences in total, low-density lipoprotein, high-density lipoprotein, and non-high density lipoprotein cholesterol among the three groups. After a fat load, the postprandial area under the curve of triglyceride in plasma, chylomicrons, and very low-density lipoprotein were similar between the wild type (n = 18) and the Thr-54 homozygotes (n = 12). In conclusion, in contrast to type 2, type 1 diabetes does not interact with the codon 54 polymorphism of the fatty acid binding protein 2 gene to cause hypertriglyceridemia/dyslipidemia. Insulin resistance could account possibly for this difference.

  16. The adaptation of Escherichia coli cells grown in simulated microgravity for an extended period is both phenotypic and genomic.

    PubMed

    Tirumalai, Madhan R; Karouia, Fathi; Tran, Quyen; Stepanov, Victor G; Bruce, Rebekah J; Ott, C Mark; Pierson, Duane L; Fox, George E

    2017-01-01

    Microorganisms impact spaceflight in a variety of ways. They play a positive role in biological systems, such as waste water treatment but can be problematic through buildups of biofilms that can affect advanced life support. Of special concern is the possibility that during extended missions, the microgravity environment will provide positive selection for undesirable genomic changes. Such changes could affect microbial antibiotic sensitivity and possibly pathogenicity. To evaluate this possibility, Escherichia coli (lac plus) cells were grown for over 1000 generations on Luria Broth medium under low-shear modeled microgravity conditions in a high aspect rotating vessel. This is the first study of its kind to grow bacteria for multiple generations over an extended period under low-shear modeled microgravity. Comparisons were made to a non-adaptive control strain using growth competitions. After 1000 generations, the final low-shear modeled microgravity-adapted strain readily outcompeted the unadapted lac minus strain. A portion of this advantage was maintained when the low-shear modeled microgravity strain was first grown in a shake flask environment for 10, 20, or 30 generations of growth. Genomic sequencing of the 1000 generation strain revealed 16 mutations. Of the five changes affecting codons, none were neutral. It is not clear how significant these mutations are as individual changes or as a group. It is concluded that part of the long-term adaptation to low-shear modeled microgravity is likely genomic. The strain was monitored for acquisition of antibiotic resistance by VITEK analysis throughout the adaptation period. Despite the evidence of genomic adaptation, resistance to a variety of antibiotics was never observed.

  17. Peripheral Changes Associated With Delayed Dark Adaptation in Age-related Macular Degeneration.

    PubMed

    Laíns, Inês; Park, Dong Ho; Mukai, Ryo; Silverman, Rebecca; Oellers, Patrick; Mach, Steven; Kim, Ivana K; Vavvas, Demetrios G; Miller, Joan W; Miller, John B; Husain, Deeba

    2018-06-01

    To study the association between peripheral changes in age-related macular degeneration (AMD) and dark adaptation (DA). Prospective, cross-sectional study. We recruited patients with AMD and a control group (>50 years) without any vitreoretinal disease. Ultra-widefield (UWF) pseudocolor and fundus autofluorescence (FAF) were obtained, and were assessed by 2 graders for the presence of several peripheral changes in perimacular, midperipheral, and far-peripheral zones. All participants were also imaged with 7-field color fundus photographs used for AMD staging (Age-Related Eye Disease Study classification system). Both eyes of study participants were tested with a dark adaptation (DA) extended protocol (20 minutes). Multilevel mixed-effect models (accounting for correlated outcomes between 2 eyes) were used for analyses. We included 128 eyes (n = 72 patients), 75% with AMD and the remainder controls. The presence of reticular pigmentary changes in the midperipheral (ß = 4.3, P = .012) and far-peripheral zones (ß = 8.4, P < .001) was associated with delayed rod-intercept times (RITs), even after adjusting for confounding factors. The presence, number, and extent of peripheral classic drusen did not show a similar association (P ≥ .148). The presence of a mottled decreased FAF pattern in the midperipheral zone was also associated with prolonged RITs (β = 4.4, P = .031). Our results suggest an association between DA and the presence of peripheral reticular pigmentary changes, as well as the presence of a peripheral mottled decreased FAF pattern. This provides new insights on the clinical significance of peripheral changes in AMD, and their contribution to impairments on DA. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Gary; Detter, John C; Bruce, David C

    We present here the complete 2.4 MB genome of the actinobacterial thermophile, Acidothermus cellulolyticus 11B, that surprisingly reveals thermophilic amino acid usage in only the cytosolic subproteome rather than its whole proteome. Thermophilic amino acid usage in the partial proteome implies a recent, ongoing evolution of the A. cellulolyticus genome since its divergence about 200-250 million years ago from its closest phylogenetic neighbor Frankia, a mesophilic plant symbiont. Differential amino acid usage in the predicted subproteomes of A. cellulolyticus likely reflects a stepwise evolutionary process of modern thermophiles in general. An unusual occurrence of higher G+C in the non-coding DNAmore » than in the transcribed genome reinforces a late evolution from a higher G+C common ancestor. Comparative analyses of the A. cellulolyticus genome with those of Frankia and other closely-related actinobacteria revealed that A. cellulolyticus genes exhibit reciprocal purine preferences at the first and third codon positions, perhaps reflecting a subtle preference for the dinucleotide AG in its mRNAs, a possible adaptation to a thermophilic environment. Other interesting features in the genome of this cellulolytic, hot-springs dwelling prokaryote reveal streamlining for adaptation to its specialized ecological niche. These include a low occurrence of pseudo genes or mobile genetic elements, a flagellar gene complement previously unknown in this organism, and presence of laterally-acquired genomic islands of likely ecophysiological value. New glycoside hydrolases relevant for lignocellulosic biomass deconstruction were identified in the genome, indicating a diverse biomass-degrading enzyme repertoire several-fold greater than previously characterized, and significantly elevating the industrial value of this organism.« less

  19. Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Gary; Detter, Chris; Bruce, David

    We present here the complete 2.4 MB genome of the actinobacterial thermophile, Acidothermus cellulolyticus lIB, that surprisingly reveals thermophilic amino acid usage in only the cytosolic subproteome rather than its whole proteome. Thermophilic amino acid usage in the partial proteome implies a recent, ongoing evolution of the A. cellulolyticus genome since its divergence about 200-250 million years ago from its closest phylogenetic neighbor Frankia, a mesophilic plant symbiont. Differential amino acid usage in the predicted subproteomes of A. cellulolyticus likely reflects a stepwise evolutionary process of modern thermophiles in general. An unusual occurrence of higher G+C in the non-coding DNAmore » than in the transcribed genome reinforces a late evolution from a higher G+C common ancestor. Comparative analyses of the A. cellulolyticus genome with those of Frankia and other closely-related actinobacteria revealed that A. cellulolyticus genes exhibit reciprocal purine preferences at the first and third codon positions, perhaps reflecting a subtle preference for the dinucleotide AG in its mRNAs, a possible adaptation to a thermophilic environment. Other interesting features in the genome of this cellulolytic, hot-springs dwelling prokaryote reveal streamlining for adaptation to its specialized ecological niche. These include a low occurrence of pseudogenes or mobile genetic elements, a flagellar gene complement previously unknown in this organism, and presence of laterally-acquired genomic islands of likely ecophysiological value. New glycoside hydrolases relevant for lignocellulosic biomass deconstruction were identified in the genome, indicating a diverse biomass-degrading enzyme repertoire several-fold greater than previously characterized, and significantly elevating the industrial value of this organism.« less

  20. Adaptive Heat Engine.

    PubMed

    Allahverdyan, A E; Babajanyan, S G; Martirosyan, N H; Melkikh, A V

    2016-07-15

    A major limitation of many heat engines is that their functioning demands on-line control and/or an external fitting between the environmental parameters (e.g., temperatures of thermal baths) and internal parameters of the engine. We study a model for an adaptive heat engine, where-due to feedback from the functional part-the engine's structure adapts to given thermal baths. Hence, no on-line control and no external fitting are needed. The engine can employ unknown resources; it can also adapt to results of its own functioning that make the bath temperatures closer. We determine resources of adaptation and relate them to the prior information available about the environment.