Two Relations to Estimate Membrane Permeability Using Milestoning.
Votapka, Lane W; Lee, Christopher T; Amaro, Rommie E
2016-08-25
Prediction of passive permeation rates of solutes across lipid bilayers is important to drug design, toxicology, and other biological processes such as signaling. The inhomogeneous solubility-diffusion (ISD) equation is traditionally used to relate the position-dependent potential of mean force and diffusivity to the permeability coefficient. The ISD equation is derived via the Smoluchowski equation and assumes overdamped system dynamics. It has been suggested that the complex membrane environment may exhibit more complicated damping conditions. Here we derive a variant of the inhomogeneous solubility diffusion equation as a function of the mean first passage time (MFPT) and show how milestoning, a method that can estimate kinetic quantities of interest, can be used to estimate the MFPT of membrane crossing and, by extension, the permeability coefficient. We further describe a second scheme, agnostic to the damping condition, to estimate the permeability coefficient from milestoning results or other methods that compute a probability of membrane crossing. The derived relationships are tested using a one-dimensional Langevin dynamics toy system confirming that the presented theoretical methods can be used to estimate permeabilities given simulation and milestoning results. PMID:27154639
Two Relations to Estimate Membrane Permeability Using Milestoning
2016-01-01
Prediction of passive permeation rates of solutes across lipid bilayers is important to drug design, toxicology, and other biological processes such as signaling. The inhomogeneous solubility-diffusion (ISD) equation is traditionally used to relate the position-dependent potential of mean force and diffusivity to the permeability coefficient. The ISD equation is derived via the Smoluchowski equation and assumes overdamped system dynamics. It has been suggested that the complex membrane environment may exhibit more complicated damping conditions. Here we derive a variant of the inhomogeneous solubility diffusion equation as a function of the mean first passage time (MFPT) and show how milestoning, a method that can estimate kinetic quantities of interest, can be used to estimate the MFPT of membrane crossing and, by extension, the permeability coefficient. We further describe a second scheme, agnostic to the damping condition, to estimate the permeability coefficient from milestoning results or other methods that compute a probability of membrane crossing. The derived relationships are tested using a one-dimensional Langevin dynamics toy system confirming that the presented theoretical methods can be used to estimate permeabilities given simulation and milestoning results. PMID:27154639
Cross-property relations and permeability estimation in model porous media
Schwartz, L.M.; Martys, N.; Bentz, D.P.; Garboczi, E.J.; Torquato, S. National Institute of Standards and Technology, Building Materials Division, Gaithersburg, Maryland 20899 Princeton Materials Institute, 70 Prospect Avenue, Princeton University, Princeton, New Jersey 08540-5211 )
1993-12-01
Results from a numerical study examining cross-property relations linking fluid permeability to diffusive and electrical properties are presented. Numerical solutions of the Stokes equations in three-dimensional consolidated granular packings are employed to provide a basis of comparison between different permeability estimates. Estimates based on the [Lambda] parameter (a length derived from electrical conduction) and on [ital d][sub [ital c
Estimating three phase relative permeability based on realistic pore scale configurations
NASA Astrophysics Data System (ADS)
Verma, R.; Prodanovic, M.; Wildenschild, D.
2013-12-01
Multiphase (water, oil, gas) flow in porous media is commonly encountered in subsurface. Study of multiphase flows is important in applications such as hydrocarbon recovery, carbon capture and storage, groundwater flow modeling, flow of non-aqueous phase liquids (NAPL), and many others. The problem is notoriously difficult to study, and much effort has gone into understanding the physics of the multiphase flow on the pore scale. In particular, imaging techniques such as x-ray microtomography can now provide 3D microstructure as well as fluid phase configurations at a very high resolution. Using these images, one can validate simulations done by various techniques, such as pore network modeling, the Lattice-Boltzmann method or computational fluid dynamics to name a few. In this work, we present an analysis of several pore-scale images of multiphase flow as well as comparable multiphase flow simulations and show the distribution of various phases in three phase flow situations. We are particularly interested in quantifying spatial configurations, connectivity and relative permeability of the intermediate wetting phase. The rock wettability is one of the key parameters that determines positioning of the phases within the pore space. The wetting phase sticks closer to the wall, while the non-wetting phase is at the center of the pores. In three phase flow, the intermediate wetting phase exists as a layer between the two phases, and this is often the oil phase that we are trying to drain from the system. At the macro scale, this means that the relative permeability is a function of more than one saturation as well as its often complicated spatial configuration. One of the key observations from experiment is high oil relative permeability even at low oil saturations. It is hypothesized that the oil exists as a very thin layer throughout the core sample, and one of the goals of this work is to validate this hypothesis. This layer is rather difficult to observe even with
NASA Astrophysics Data System (ADS)
Oliveira, Leonardo I.; Demond, Avery H.
2003-11-01
The modeling of transport of organic liquid contaminants through the vadose zone often requires three-phase relative permeabilities. Since these are difficult to measure, predictive models are usually used. The objective of this study is to assess the ability of eight common models to predict the drainage relative permeability to oil in a three-phase system (water-oil-air). A comparison of the models' estimates using data set from Oak [Oak, M.J., 1990. Three-phase relative permeability of water-wet Berea. In: Seventh Symposium on Enhanced Oil Recovery, Paper SPE/Doe 20183. Tulsa, OK, April 22-25] showed that they provide very different predictions for the same system. The goodness of the models does not increase with the amount of data or computation that the models require. Also, the calculations showed how different interpretations of the models and of the terminology associated with them can significantly impact the predictions. Thus, considerable error may be introduced into the simulations of organic liquid transport in the vadose zone depending on the selection and interpretation of the three-phase relative permeability model.
Permeability and relative permeability in rocks
Blair, S.C.; Berryman, J.G.
1990-10-01
Important features of the topology of the pore space of rocks can be usefully quantified by analyzing digitized images of rock cross sections. One approach computes statistical correlation functions using modern image processing techniques. These correlation functions contain information about porosity, specific surface area, tortuosity, formation factor, and elastic constants, as well as the fluid permeability and relative permeability. The physical basis of this approach is discussed and examples of the results for various sandstones are presented. The analysis shows that Kozeny-Carman relations and Archie's empirical laws must be modified to account for finite percolation thresholds in order to avoid unphysical behavior in the calculated relative permeabilities. 33 refs., 4 figs., 1 tab.
Relative permeability through fractures
Diomampo, Gracel, P.
2001-08-01
The mechanism of two-phase flow through fractures is of importance in understanding many geologic processes. Currently, two-phase flow through fractures is still poorly understood. In this study, nitrogen-water experiments were done on both smooth and rough parallel plates to determine the governing flow mechanism for fractures and the appropriate methodology for data analysis. The experiments were done using a glass plate to allow visualization of flow. Digital video recording allowed instantaneous measurement of pressure, flow rate and saturation. Saturation was computed using image analysis techniques. The experiments showed that gas and liquid phases flow through fractures in nonuniform separate channels. The localized channels change with time as each phase path undergoes continues breaking and reforming due to invasion of the other phase. The stability of the phase paths is dependent on liquid and gas flow rate ratio. This mechanism holds true for over a range of saturation for both smooth and rough fractures. In imbibition for rough-walled fractures, another mechanism similar to wave-like flow in pipes was also observed. The data from the experiments were analyzed using Darcy's law and using the concept of friction factor and equivalent Reynold's number for two-phase flow. For both smooth- and rough-walled fractures a clear relationship between relative permeability and saturation was seen. The calculated relative permeability curves follow Corey-type behavior and can be modeled using Honarpour expressions. The sum of the relative permeabilities is not equal one, indicating phase interference. The equivalent homogeneous single-phase approach did not give satisfactory representation of flow through fractures. The graphs of experimentally derived friction factor with the modified Reynolds number do not reveal a distinctive linear relationship.
NASA Astrophysics Data System (ADS)
Hiratsuka, Y.; Yamamoto, H.
2014-12-01
CCS (Carbon dioxide Capture and Storage) is a promising option for mitigating climate changes. To predict the behavior of injected CO2 in a deep reservoir, relative permeability of supercritical CO2 and water of the reservoir rock is one of the most fundamental and influential properties. For determining the relative permeability, we employed the unsteady state method, in which the relative permeability is determined based on history matching of transient monitoring data with a multi-phase flow model. The unsteady-state method is relatively simple and short, but obviously its accuracy strongly depends on the flow model assumed in the history matching. In this study, we conducted relative permeability measurements of supercritical CO2-water system for Berea sandstone with the unsteady-state method under a reservoir condition at a 1km depth (P= 9.5MPa, T = 44˚C). Automatic history matching was performed with an inversion simulator iTOUGH2/ECO2N for multi-phase flow system of supercritical CO2, NaCl, and water. A sensitivity analysis of relative permeability parameters for CO2 and water was carried out to better understand the uniqueness and the uncertainty of the optimum solution estimated by the history matching. Among the parameters of the Corey-type curve employed in this study, while the end-point permeability could be optimized in a limited range, the other parameters were correlated and their combinations were not unique. However it was found that any combination of these parameters results in nearly identical shapes of the curve in the range of CO2 saturation in this study (0 to 60%). The optimally estimated curve from the unsteady-method was well comparable with those from the steady-state method acquired in the previous studies. Our experiment also focuses on the impact of injection rate on the estimates of relative permeability, as it is known that the injection rate could have a significant effect on fluid distribution such as viscous fingering with
Relative Permeability of Fractured Rock
Mark D. Habana
2002-06-30
Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.
Relating P-wave attenuation to permeability
Akbar, N.; Dvorkin, J.; Nur, A. . Dept. of Geophysics)
1993-01-01
To relate P-wave attenuation to permeability, the authors examine a three-dimensional (3-D) theoretical model of a cylindrical pore filled with viscous fluid and embedded in an infinite isotropic elastic medium. They calculate both attenuation and permeability as functions of the direction of wave propagation. Attenuation estimates are based on the squirt flow mechanism; permeability is calculated using the Kozeny-Carmen relation. They find that in the case when a plane P-wave propagates parallel to this orientation (Q[sup [minus]1][delta] = 90[degree]), attenuation is always higher than when a wave propagates parallel to this orientation (Q[sup [minus]1][delta] = 0[degree]). The ratio of these two attenuation values Q[sup [minus]1][delta] = 90[degree]/Q[sup [minus]1] = 0[degree] increases with an increasing pore radius and decreasing frequency and saturation. By changing permeability, varying the radius of the pore, they find that the permeability-attenuation relation is characterized by a peak that shifts toward lower permeabilities as frequency decreases. Therefore, the attenuation of a low-frequency wave decreases with increasing permeability. They observe a similar trend on relations between attenuation and permeability experimentally obtained on sandstone samples.
Steam-water relative permeability
Ambusso, W.; Satik, C.; Home, R.N.
1997-12-31
A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.
SINGLE-INTERVAL GAS PERMEABILITY ESTIMATION
Single-interval, steady-steady-state gas permeability testing requires estimation of pressure at a screened interval which in turn requires measurement of friction factors as a function of mass flow rate. Friction factors can be obtained by injecting air through a length of pipe...
Characterization and estimation of permeability correlation structure from performance data
Ershaghi, I.; Al-Qahtani, M.
1997-08-01
In this study, the influence of permeability structure and correlation length on the system effective permeability and recovery factors of 2-D cross-sectional reservoir models, under waterflood, is investigated. Reservoirs with identical statistical representation of permeability attributes are shown to exhibit different system effective permeability and production characteristics which can be expressed by a mean and variance. The mean and variance are shown to be significantly influenced by the correlation length. Detailed quantification of the influence of horizontal and vertical correlation lengths for different permeability distributions is presented. The effect of capillary pressure, P{sub c1} on the production characteristics and saturation profiles at different correlation lengths is also investigated. It is observed that neglecting P{sub c} causes considerable error at large horizontal and short vertical correlation lengths. The effect of using constant as opposed to variable relative permeability attributes is also investigated at different correlation lengths. Next we studied the influence of correlation anisotropy in 2-D reservoir models. For a reservoir under five-spot waterflood pattern, it is shown that the ratios of breakthrough times and recovery factors of the wells in each direction of correlation are greatly influenced by the degree of anisotropy. In fully developed fields, performance data can aid in the recognition of reservoir anisotropy. Finally, a procedure for estimating the spatial correlation length from performance data is presented. Both the production performance data and the system`s effective permeability are required in estimating the correlation length.
Accurate determination of characteristic relative permeability curves
NASA Astrophysics Data System (ADS)
Krause, Michael H.; Benson, Sally M.
2015-09-01
A recently developed technique to accurately characterize sub-core scale heterogeneity is applied to investigate the factors responsible for flowrate-dependent effective relative permeability curves measured on core samples in the laboratory. The dependency of laboratory measured relative permeability on flowrate has long been both supported and challenged by a number of investigators. Studies have shown that this apparent flowrate dependency is a result of both sub-core scale heterogeneity and outlet boundary effects. However this has only been demonstrated numerically for highly simplified models of porous media. In this paper, flowrate dependency of effective relative permeability is demonstrated using two rock cores, a Berea Sandstone and a heterogeneous sandstone from the Otway Basin Pilot Project in Australia. Numerical simulations of steady-state coreflooding experiments are conducted at a number of injection rates using a single set of input characteristic relative permeability curves. Effective relative permeability is then calculated from the simulation data using standard interpretation methods for calculating relative permeability from steady-state tests. Results show that simplified approaches may be used to determine flowrate-independent characteristic relative permeability provided flow rate is sufficiently high, and the core heterogeneity is relatively low. It is also shown that characteristic relative permeability can be determined at any typical flowrate, and even for geologically complex models, when using accurate three-dimensional models.
IMPACT OF CAPILLARY AND BOND NUMBERS ON RELATIVE PERMEABILITY
Kishore K. Mohanty
2002-09-30
Recovery and recovery rate of oil, gas and condensates depend crucially on their relative permeability. Relative permeability in turn depends on the pore structure, wettability and flooding conditions, which can be represented by a set of dimensionless groups including capillary and bond numbers. The effect of flooding conditions on drainage relative permeabilities is not well understood and is the overall goal of this project. This project has three specific objectives: to improve the centrifuge relative permeability method, to measure capillary and bond number effects experimentally, and to develop a pore network model for multiphase flows. A centrifuge has been built that can accommodate high pressure core holders and x-ray saturation monitoring. The centrifuge core holders can operate at a pore pressure of 6.9 MPa (1000 psi) and an overburden pressure of 17 MPa (2500 psi). The effect of capillary number on residual saturation and relative permeability in drainage flow has been measured. A pore network model has been developed to study the effect of capillary numbers and viscosity ratio on drainage relative permeability. Capillary and Reynolds number dependence of gas-condensate flow has been studied during well testing. A method has been developed to estimate relative permeability parameters from gas-condensate well test data.
Relating tortuosity and permeability in microfractured and unfractured porous media
NASA Astrophysics Data System (ADS)
Tokan-Lawal, A.; Wang, W.; Prodanovic, M.
2012-12-01
Permeability estimates are key to any subsurface flow prediction. Several methods are available for estimating (relative) permeability either on Darcy scale (lab measurements) or on pore scale (numerical flow simulation, assuming pore space geometry is known). However, relative permeability measurements in particular can be time consuming, and there is a benefit in having a fast estimate. Thus, a number of permeability estimates are available based on the some known porous medium parameters. The famous Carman Kozeny (1937) model represents the pores as parallel tubes of length equal to the sample length and of a range of radii. This single phase permeability model developed for packings of equal spherical grains relates the absolute permeability to the tortuosity of the medium. Fractures or fracture networks, on the other hand, do not lend themselves to an analytical description akin to pores spaces in-between a packing of spheres. Thus far, the study of flow in fractures has for the most part been limited to fractures in rock with impermeable fractures. The simplest models, such as the cubic law, relate fracture permeability to its average aperture and model fracture as parallel planes which are insufficient to extend to multiphase displacement. In this study, we focus on correlating permeability with geometric tortuosity of both pore space and individual fluid phases for a wide variety of homogeneous as well as microfractured porous samples. We use a combination of lattice-Boltzmann simulation and the level set method based progressive-quasistatic (LSMPQS) algorithm to characterize the capillary dominated flow properties (capillary pressure-saturation and relative permeability-saturation relationships) of the matrix, and when present, the fracture, in samples of different compositions. At the same time, we use image analysis tools to characterize the connectivity and tortuosity of the pore space, as well as individual fluid phases at different saturations
Age-related changes in mouse bone permeability.
Rodriguez-Florez, Naiara; Oyen, Michelle L; Shefelbine, Sandra J
2014-03-21
The determination of lacunar-canalicular permeability is essential for understanding local fluid flow in bone, which may indicate how bone senses changes in the mechanical environment to regulate mechano-adaptation. The estimates of lacunar-canalicular permeability found in the literature vary by up to eight orders of magnitude, and age-related permeability changes have not been measured in non-osteonal mouse bone. The objective of this study is to use a poroelastic approach based on nanoindentation data to characterize lacunar-canalicular permeability in murine bone as a function of age. Nine wild type C57BL/6 mice of different ages (2, 7 and 12 months) were used. Three tibiae from each age group were embedded in epoxy resin, cut in half and indented in the longitudinal direction in the mid-cortex using two spherical fluid indenter tips (R=238 μm and 500 μm). Results suggest that the lacunar-canalicular intrinsic permeability of mouse bone decreases from 2 to 7 months, with no significant changes from 7 to 12 months. The large indenter tip imposed larger contact sizes and sampled larger ranges of permeabilities, particularly for the old bone. This age-related difference in the distribution was not seen for indents with the smaller radius tip. We conclude that the small tip effectively measured lacunar-canalicular permeability, while larger tip indents were influenced by vascular permeability. Exploring the age-related changes in permeability of bone measured by nanoindentation will lead to a better understanding of the role of fluid flow in mechano-transduction. This understanding may help indicate alterations in bone adaptation and remodeling. PMID:24433671
Estimating Plastic Film Permeability Under Field Conditions
Technology Transfer Automated Retrieval System (TEKTRAN)
Fumigant emission is an important air quality and human health concern. Plastic films are used to reduce emissions. Laboratory tests have shown large differences in permeability between various films, including the typical polyethylene films (PEs), virtually impermeable films (VIFs), and semi-impe...
Combining SIP and NMR Measurements to Develop Improved Estimates of Permeability in Sandstone Cores
NASA Astrophysics Data System (ADS)
Keating, K.; Binley, A. M.
2013-12-01
Permeability is traditionally measured in-situ by inducing groundwater flow using pumping, slug, or packer tests; however, these methods require the existence of wells, can be labor intensive and can be constrained by measurement support volumes. Indirect estimates of permeability based on geophysical techniques benefit from relatively short measurement times, do not require fluid extraction, and are non-invasive when made from the surface (or minimally invasive when made in a borehole). However, estimates of permeability based on a single geophysical method often require calibration for rock type, and cannot be used to uniquely determine all of the physical properties required to accurately determine permeability. In this laboratory study we present the first critical step towards developing a method for estimating permeability based on the synergistic coupling of two complementary geophysical methods: spectral induced polarization (SIP) and nuclear magnetic resonance (NMR). To develop an improved model for estimating permeability, laboratory SIP and NMR measurements were collected on a series of sandstone cores, covering a wide range of permeabilities. Current models for estimating permeability from each individual geophysical measurement were compared to independently obtained estimates of permeability. The comparison confirmed previous research showing that estimates from SIP or NMR alone only yield the permeability within order of magnitude accuracy and must be calibrated for rock type. Next, the geophysical parameters determined from SIP and NMR were compared to independent measurements the physical properties of the sandstone cores including gravimetric porosity and pores-size distributions (obtained from mercury injection porosimetry); this comparison was used to evaluate which geophysical parameter more consistently and accurately predicted each physical property. Finally, we present an improved method for estimating permeability in sandstone cores based
Permeability estimation from NMR diffusion measurements in reservoir rocks.
Balzarini, M; Brancolini, A; Gossenberg, P
1998-01-01
It is well known that in restricted geometries, such as in porous media, the apparent diffusion coefficient (D) of the fluid depends on the observation time. From the time dependence of D, interesting information can be derived to characterise geometrical features of the porous media that are relevant in oil industry applications. In particular, the permeability can be related to the surface-to-volume ratio (S/V), estimated from the short time behaviour of D(t), and to the connectivity of the pore space, which is probed by the long time behaviour of D(t). The stimulated spin-echo pulse sequence, with pulsed magnetic field gradients, has been used to measure the diffusion coefficients on various homogeneous and heterogeneous sandstone samples. It is shown that the petrophysical parameters obtained by our measurements are in good agreement with those yielded by conventional laboratory techniques (gas permeability and electrical conductivity). Although the diffusing time is limited by T1, eventually preventing an observation of the real asymptotic behaviour, and the surface-to-volume ratio measured by nuclear magnetic resonance is different from the value obtained by BET because of the different length scales probed, the measurement remains reliable and low-time consuming. PMID:9803918
Can streaming potential data improve permeability estimates in EGS reservoirs?
NASA Astrophysics Data System (ADS)
Vogt, Christian; Klitzsch, Norbert
2013-04-01
We study the capability of streaming potential data to improve the estimation of permeability in fractured geothermal systems. To this end, we simulate a tracer experiment numerically carried out at the Enhanced Geothermal System (EGS) at Soultz-sous-Forêts, France, in 2005. The EGS is located in the Lower Rhine Graben. Here, at approximately 5000 m depth an engineered reservoir was established. The tracer circulation test provides information on hydraulic connectivity between the injection borehole GPK3 and the two production boreholes GPK2 and GPK4. Vogt et al. (2011) performed stochastic inversion approaches to estimate heterogeneous permeability at Soultz in an equivalent porous medium approach and studied the non-uniqueness of the possible pathways in the reservoir. They identified three different possible groups of pathway configurations between GPK2 and GPK3 and corresponding hydraulic properties. Using the Ensemble Kalman Fitler, Vogt et al. (2012) estimated permeability by updating sequentially an ensemble of heterogeneous Monte Carlo reservoir models. Additionally, this approach quantifies the heterogeneously distributed uncertainty. Here, we study whether considering hypothetical streaming potential (SP) data during the stochastic inversion can improve the determination of the hydraulic reservoir properties. In particular, we study whether the three groups are characterized uniquely by their corresponding SP signals along the boreholes and whether the Ensemble Kalman Filter fit could be improved by joint inversion of SP and tracer data. During the actual tracer test, no SP data were recorded. Therefore, this study is based on synthetic data. We find that SP data predominantly yields information on the near field of permeability around the wells. Therefore, SP observations along wells will not help to characterize large-scale reservoir flow paths. However, we investigate whether additional passive SP monitoring from deviated wells around the injection
Perm-Fit: a new program to estimate permeability at high P-T conditions
NASA Astrophysics Data System (ADS)
Moulas, Evangelos; Madonna, Claudio
2016-04-01
Several geological processes are controlled by porous fluid flow. The circulation of porous fluids influences many physical phenomena and in turn it depends on the rock permeability. The permeability of rocks is a physical property that needs to be measured since it depends on many factors such as secondary porosity (fractures etc). We present a numerical approach to estimate permeability using the transient step method (Brace et al., 1968). When a non-reacting, compressible fluid is considered in a relative incompressible solid matrix, the only unknown parameter in the equations of porous flow is permeability. Porosity is assumed to be known and the physical properties of the fluid (compressibility, density, viscosity) are taken from the NIST database. Forward numerical calculations for different values of permeability are used and the results are compared to experimental measurements. The extracted permeability value is the one that minimizes the misfit between experimental and numerical results. The uncertainty on the value of permeability is estimated using a Monte Carlo method. REFERENCES Brace, W.F., Walsh J.B., & Frangos, W.T. 1968: Permeability of Granite under High Pressure, Journal of Geophysical Research, 73, 6, 2225-2236
Permeability Coefficients of Lipophilic Compounds Estimated by Computer Simulations.
Ghaemi, Zhaleh; Alberga, Domenico; Carloni, Paolo; Laio, Alessandro; Lattanzi, Gianluca
2016-08-01
The ability of a drug to cross the intestine-blood barrier is a key quantity for drug design and employment and is normally quantified by the permeability coefficient P, often evaluated in the so-called Caco-2 assay. This assay is based on measuring the initial growth rate of the concentration of the drug beyond the cellular barrier but not its steady-state flux through the membrane. This might lead to confusion since, in the case of lipophilic drugs, the initial slope is strongly affected by the retention of the drug in the membrane. This effect is well known but seldom considered in the assay. Here, we exploit all-atoms molecular dynamics and bias exchange metadynamics to calculate the concentration of two lipophilic drugs across a model membrane as a function of time. This allows estimating both the steady-state flux and the initial slope of the concentration growth and comparing Caco-2 and steady-state estimates of P. We show that our computational procedure is able to reproduce the experimental values, although these may differ from the permeability coefficients by orders of magnitude. Our findings are generalized by a simplified one-dimensional model of the permeation process that may act as a roadmap to assess which measure of membrane permeability would be more appropriate and, consequently, whether retention corrections should be included in estimates based on Caco-2 assays. PMID:27392273
Estimated bounds on rock permeability changes from THM Processes
Berge, P A; Blair, S C; Wang, H F
1998-08-01
We performed THM modeling to estimate bounds on permeability changes in the NFE. For our modeling, we used the TM three-dimensional (3-D) finite-difference code FLAC{sup 3D} version 2.0 (Itasca Consulting Group Inc. 1997) to compute changes in stress and displacement in an elastic model subjected to temperature changes over time. Output from TH modeling (Hardin et al., 1998, Chapter 3) using the code NUFT (Nitao 1993) provided the temperature changes for input to FLAC{sup 3D}. We then estimated how the stress changes could affect permeability. For this report, we chose to base our 3-D THM modeling on a coarser version of the 2-D model we ran for the work described in Chapter 4 of the Near-Field/Altered Zone Models Report (Hardin et al., 1998, Chapter 4). The grid and temperature field were based on those used by the TH code for 50 yr of heating for the reference Case 1 TH model calculated using Total System Performance Assessment-Viability Assessment (TSPA-VA) base-case properties, nominal infiltration, and a point-load repository design (Hardin et al., 1998, Chapter 3). The stress field rotated in the region between and below the drifts after 50 yr of heating. High vertical shear stresses were computed for these regions. The maximum computed displacement was about 7 cm, mainly vertical. Estimates of permeability changes were obtained by analyzing stresses, following a method we developed previously for 2-D models. In our 3-D modeling for this report, we only considered vertical and horizontal fractures. We extended our 2-D method to a simplified 3-D case. We conclude that widespread permeability enhancement is likely for fractures parallel to NS fracture set No.2, the vertical fractures that strike north-south, for regions above the drifts. In some regions just above the drifts, permeability may increase by a minimum of a factor of two and possibly more than a factor of four if slip also occurs along the vertical fractures in EW set No.1, the east-west fractures
Wettability effects on two- and three-fluid relative permeabilities
NASA Astrophysics Data System (ADS)
Bradford, Scott A.; Abriola, Linda M.; Leij, Feike J.
1997-10-01
Specification of relative permeability ( kr)-saturation ( S) relations for all fluid phases is required for the simulation of multiphase flow and transport in porous media. Indirect methods are frequently employed to estimate these kr- S relations owing to the time, expense, and difficulty associated with direct measurements. A common indirect approach uses capillary pressure data in conjunction with a selected pore-size distribution model to estimate kr- S relations. Such methods typically assume perfect wettability of the solid. Natural porous media, however, are composed of a variety of mineral constituents with different adsorptive properties, which can exhibit non-zero contact angles and/or fractional wettability. Consequently, fluid distributions in natural media may be more complex than those predicted by simple pore-size distribution models and, under such conditions, current estimation approaches for kr may be inadequate. In this work, the pore-size distribution model of N.T. Burdine (1953, Relative permeability calculations from pore-size distribution data. Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers 198, 71-77) is extended to incorporate wettability variations. In this model, wetting and less wetting (non-wetting or intermediate) fluid pore classes are used to calculate kr for water or organic. The wettability of the porous medium is used to determine the contributions of the pore classes to kr. For both two- and three-fluid systems, the model predicts that an increase in the contact angle (measured through water) or organic-wet fraction of a medium will be accompanied by an increase in the water kr and a decrease in the organic kr. In three-fluid media, kr values for water and organic depend on both liquid saturations when the solid is imperfectly wetted. The model assumes that wettability variation has no influence on the air kr. Model predictions are shown to be consistent with available experimental data.
NASA Astrophysics Data System (ADS)
Lee, M.; Keehm, Y.
2013-12-01
Direct numerical simulation on pore microstructures from X-ray microtomography is regarded as a good tool to determine and characterize the physical properties of rocks, especially for sandstone. When the same approach is considered for carbonate rocks, we face many difficulties mostly from the heterogeneous nature of carbonates. In this study, we report preliminary results on permeability estimation of carbonate rocks from X-ray tomographic pore microstructures. Since carbonate rocks have quite different types of pore geometry depending on depositional and diagenetic environments, we choose three rock samples with different porosity types: interparticle; vuggy/moldic; and fracture, and obtain high-resolution 3D pore microstructures using X-ray microtomography technique. From the original 3D pore geometry (typically 2,000^3 voxels), we choose various digital sub-blocks to determine local variation and length dependency, and calculate permeability using the Lattice-Boltzmann method. For the interparticle case, the calculated permeability values show very similar trends to clastic sediments, and we can determine a porosity-permeability relation for a given formation as we do with the Koneny-Carman relation. On the other hand, for vuggy or fracture cases, we cannot observe any significant dependence of permeability on porosity. Thus we focus more on the local variation and scale variation of permeability. We perform analyses on percolation probability; local porosity distribution; and direction/length/width of fractures. And we present preliminary conceptual models to determine permeability characteristics. Although the results are from a few limited samples and more detailed researches will be required, our approach will be helpful to estimate and characterize permeability of carbonate rocks, and to investigate scaling and representativeness issues. Acknowledgements: This research was supported by the Basic Research Project of the Korea Institute of Geoscience and
NASA Astrophysics Data System (ADS)
Taylor, Stewart W.; Milly, P. C. D.; Jaffé, Peter R.
1990-09-01
Growth of a biofilm in a porous medium reduces the total volume and the average size of the pores. The change in the pore size distributions is easily quantified when certain geometric assumptions are made. Existing models of permeability or of relative permeability can be manipulated to yield estimates of the resulting reduction in permeability as a function of biofilm thickness. The associated reductions in porosity and specific surface can be estimated as well. Based on a sphere model of the medium, the Kozeny-Carman permeability model predicts physically realistic results for this problem. Using a cut-and-random-rejoin-type model of the medium, the permeability model of Childs and Collis-George yields qualitatively reasonable results for this problem, as does a generalization of the relative permeability model of Mualem. Permeability models of Kozeny-Carman and of Millington and Quirk lead to unrealistic results for a cut-and-random-rejoin-type medium. The Childs and Collis-George and the Mualem models predict that the permeability reduction for a given volume of biomass is greatest when the porous medium has uniform pore sizes.
Tight junction, selective permeability, and related diseases.
Krug, Susanne M; Schulzke, Jörg D; Fromm, Michael
2014-12-01
The tight junction forms a barrier against unlimited paracellular passage but some of the tight junction proteins just do the opposite, they form extracellular channels zigzagging between lateral membranes of neighboring cells. All of these channel-forming proteins and even some of the barrier formers exhibit selectivity, which means that they prefer certain substances over others. All channel formers exhibit at least one of the three types of selectivity: for cations (claudin-2, -10b, -15), for anions (claudin-10a, -17) or for water (claudin-2). Also some, but not all, barrier-forming claudins are charge-selective (claudin-4, -8, -14). Moreover, occludin and tricellulin turned out to be relevant for barrier formation against macromolecule passage. Tight junction proteins are dysregulated or can be genetically defective in numerous diseases, which may lead to three effects: (i) impaired paracellular transport e.g. causing magnesium loss in the kidney, (ii) increased paracellular transport of solutes and water e.g. causing leak-flux diarrhea in the intestine, and (iii) increased permeability to large molecules e.g. unwanted intestinal pathogen uptake fueling inflammatory processes. This review gives an overview on the properties of tight junction proteins featuring selective permeability, and in this context explains how these proteins induce or aggravate diseases. PMID:25220018
Extending Nuclear Magnetic Resonance Data for Permeability Estimation in Fine-Grained Sediments
NASA Astrophysics Data System (ADS)
Daigle, H.; Dugan, B.
2008-12-01
We developed a method for using nuclear magnetic resonance (NMR) T2 data and gamma ray data to estimate lithology-dependent permeability in silt- and clay-rich sediments. This model, based on the Schlumberger-Doll Research (SDR) model, allows for high resolution (<1 m) permeability estimates throughout a logged interval. Our model was calibrated using direct measurements on core samples from Keathley Canyon Lease Block 151 in the northern Gulf of Mexico. From NMR and gamma ray data we are able to determine permeability from 10-18 to 10-14 m2 (0.001 to 10 millidarcies). Thus from discrete core samples and log data we were able to develop a permeability model for the entire sedimentary column (425 m). Lithologic variation was incorporated into the model by varying the A coefficient based on the gamma ray response. This provides a more accurate permeability model than assigning a constant value to A as is typically done. The relationship between A and intrinsic lithologic properties is unclear; simple pore system models suggest that A may be related to specific surface, tortuosity, and pore structure; we investigate simple models to quantify how these properties vary with sediment consolidation and what their relationship is to A. A comprehensive understanding that links NMR data and A to pore-scale properties will provide new constraints on deformation and flow in porous systems, and will contribute to our understanding of sediment properties for fluid flow modeling at local and regional scales.
Blair, S.C.; Berge, P.A.; Berryman, J.G.
1993-08-01
We have developed an image-processing method for characterizing the microstructure of rock and other porous materials, and for providing a quantitative means for understanding the dependence of physical properties on the pore structure. This method is based upon the statistical properties of the microgeometry as observed in scanning electron micrograph (SEM) images of cross sections of porous materials. The method utilizes a simple statistical function, called the spatial correlation function, which can be used to predict bounds on permeability and other physical properties. We obtain estimates of the porosity and specific surface area of the material from the two-point correlation function. The specific surface area can be related to the permeability of porous materials using a Kozeny-Carman relation, and we show that the specific surface area measured on images of sandstones is consistent with the specific surface area used in a simple flow model for computation of permeability. In this paper, we discuss the two-point spatial correlation function and its use in characterizing microstructure features such as pore and grain sizes. We present estimates of permeabilities found using SEM images of several different synthetic and natural sandstones. Comparison of the estimates to laboratory measurements shows good agreement. Finally, we briefly discuss extension of this technique to two-phase flow.
Estimating changes in rock permeability due to thermal-mechanical effects
Wang, H.F.; Blair, S.C.; Berge, P.A.
1997-10-01
This paper presents results of a modeling study of changes in fracture permeability due to thermal-mechanical effects associated with the potential geological repository at Yucca Mountain. a methodology for estimating changes in permeability is developed and applied to the Drift Scale Test (DST) now being conducted in the Exploratory Studies Facility (ESF) at Yucca Mountain. Temperature, stress, and displacement of rock in the heated zone are presented along with predicted zones where slip on fractures may occur. The zones of predicted fracture slip are used as a basis for predicting where permeability may be changed. this new procedure goes beyond previous models that relate stress to strain or displacement, and provides information about rock response that is needed for design of future tests at Yucca Mountain. Our results also contribute to the understanding of coupled processes in the near-field environment of a repository.
Influence of relative permeabilities on chemical enhanced oil recovery
NASA Astrophysics Data System (ADS)
Destefanis, M. F.; Savioli, G. B.
2011-05-01
The main objective of chemical flooding is to mobilize the trapped oil remaining after a secondary recovery by waterflooding. This purpose is achieved by lowering the oil-water interfacial tension and producing partial miscibility between both phases. The chemical partition among phases (phase behavior) influences all other physical properties. In particular, it affects residual saturations determining relative permeability curves. Relative permeabilities rule the flow of each phase through the porous medium, so they play an essential role in oil recovery. Therefore, in this work we study the influence of relative permeabilities on the behavior of a surfactant-polymer flooding for the three different types of phase behavior. This analysis is performed applying the 3D compositional numerical simulator UTCHEM developed at the University of Texas at Austin. From the examples studied, we conclude that the influence of relative permeabilities depends on the type of phase behavior, i.e., as microemulsion relative permeability decreases, oil recovery increases for Types II(+) and III while slightly decreases for Type II(-). Moreover, a better displacement efficiency is observed for Types II(+) and III, because they behave similarly to a miscible displacement.
Effective Permeability and Miniaturization Estimation of Ferrite-loaded Microstrip Patch Antenna
NASA Astrophysics Data System (ADS)
Saini, Ashish; Thakur, Atul; Thakur, Preeti
2016-08-01
Miniaturization of a microstrip patch antenna using composite nanosized ferrite material is proposed in this paper. Detailed simulations were performed to analyze the effect of increase in relative permeability of substrate material on physical size and efficiency of a microstrip antenna. An analytical expression for estimation of the effective relative permeability is established here on the basis of the detailed simulation. Composite nano ferrite (Mn0.5Zn0.35Co0.15Fe2O4 + SrFe12O19) with an average crystallite size of 72 nm was synthesized and characterized for electromagnetic properties. The substrate material was prepared by the co-precipitation method. Matching values of complex permittivity ( ɛ* = 4.1-0.1j) and complex permeability ( μ* = 3.72-0.28j) up to 1 GHz were obtained from the electromagnetic characterization. Measurement of the resonant frequency of the fabricated antenna validates the derived expression of effective relative permeability. It reduces the error in calculation of resonant frequency from 10% to 1%. Simulation and measurement results also confirm that an antenna fabricated with the above parameters can reduce the patch size by almost 44% and increases -10 dB reflection loss bandwidth over a pure dielectric FR4 substrate. Therefore, we propose here an analytical expression for estimation of effective relative permeability and Mn0.5Zn0.35Co0.15Fe2O4 + SrFe12O19 composite nano ferrites as suitable candidate for a high-bandwidth miniaturized antenna in the microwave frequency range.
Effective Permeability and Miniaturization Estimation of Ferrite-loaded Microstrip Patch Antenna
NASA Astrophysics Data System (ADS)
Saini, Ashish; Thakur, Atul; Thakur, Preeti
2016-05-01
Miniaturization of a microstrip patch antenna using composite nanosized ferrite material is proposed in this paper. Detailed simulations were performed to analyze the effect of increase in relative permeability of substrate material on physical size and efficiency of a microstrip antenna. An analytical expression for estimation of the effective relative permeability is established here on the basis of the detailed simulation. Composite nano ferrite (Mn0.5Zn0.35Co0.15Fe2O4 + SrFe12O19) with an average crystallite size of 72 nm was synthesized and characterized for electromagnetic properties. The substrate material was prepared by the co-precipitation method. Matching values of complex permittivity (ɛ* = 4.1-0.1j) and complex permeability (μ* = 3.72-0.28j) up to 1 GHz were obtained from the electromagnetic characterization. Measurement of the resonant frequency of the fabricated antenna validates the derived expression of effective relative permeability. It reduces the error in calculation of resonant frequency from 10% to 1%. Simulation and measurement results also confirm that an antenna fabricated with the above parameters can reduce the patch size by almost 44% and increases -10 dB reflection loss bandwidth over a pure dielectric FR4 substrate. Therefore, we propose here an analytical expression for estimation of effective relative permeability and Mn0.5Zn0.35Co0.15Fe2O4 + SrFe12O19 composite nano ferrites as suitable candidate for a high-bandwidth miniaturized antenna in the microwave frequency range.
NASA Astrophysics Data System (ADS)
Honda, H.; Mitani, Y.; Ikemi, H.; Kitamura, K.
2014-12-01
Recently, it is generally believed that the increase of atmospheric carbon dioxide (CO2) emission has become a major contributing factor of a global warming. Carbon dioxide capture and storage (CCS) is an emerging technology and considered as the promising method to reduce greenhouse gas emissions in the atmosphere. Generally, CCS is intended to apply in oil or natural gas reservoir layers with overlying cap rock. However, in Japan, few proper sites are available for CCS. Therefore, low-permeable rock mass without cap rock is suggested as alternative option. It is required to clarify behavior of CO2 in rock for longitudinal and stable storage of CO2. In order to clarify the properties of permeability and storativity of low permeable rocks, Ainoura sandstone, saturated with water injected with a constant and appropriate flow rate of supercritical CO2, flow pump permeability test under the condition of temperature and pressure of in-situ CO2 reservoir has been conducted. In this experiment, the differential pressure between both ends of specimen changed in 4 stages and finally in stable condition. Furthermore, relative permeability of water and CO2, and specific storage of specimen during CO2 injection has been calculated with theoretical analysis of flow pump permeability test for two phase flow. Using the results of the experiment, 3D core-scale flow-simulation by using TOUGH2 (ECO2N module) has been conducted due to confirm the flow of fluid and CO2 distribution in the specimen. To compare the results of simulation and experimental results, the permeability and storativity properties of carbon dioxide in low permeable rock has been estimated. As a result, low permeable rocks could become an effective storage of supercritical CO2.
NASA Astrophysics Data System (ADS)
Emanuele Rizzo, Roberto; Healy, David; De Siena, Luca
2016-04-01
The success of any predictive model is largely dependent on the accuracy with which its parameters are known. When characterising fracture networks in fractured rock, one of the main issues is accurately scaling the parameters governing the distribution of fracture attributes. Optimal characterisation and analysis of fracture attributes (lengths, apertures, orientations and densities) is fundamental to the estimation of permeability and fluid flow, which are of primary importance in a number of contexts including: hydrocarbon production from fractured reservoirs; geothermal energy extraction; and deeper Earth systems, such as earthquakes and ocean floor hydrothermal venting. Our work links outcrop fracture data to modelled fracture networks in order to numerically predict bulk permeability. We collected outcrop data from a highly fractured upper Miocene biosiliceous mudstone formation, cropping out along the coastline north of Santa Cruz (California, USA). Using outcrop fracture networks as analogues for subsurface fracture systems has several advantages, because key fracture attributes such as spatial arrangements and lengths can be effectively measured only on outcrops [1]. However, a limitation when dealing with outcrop data is the relative sparseness of natural data due to the intrinsic finite size of the outcrops. We make use of a statistical approach for the overall workflow, starting from data collection with the Circular Windows Method [2]. Then we analyse the data statistically using Maximum Likelihood Estimators, which provide greater accuracy compared to the more commonly used Least Squares linear regression when investigating distribution of fracture attributes. Finally, we estimate the bulk permeability of the fractured rock mass using Oda's tensorial approach [3]. The higher quality of this statistical analysis is fundamental: better statistics of the fracture attributes means more accurate permeability estimation, since the fracture attributes feed
Lenormand, R.; Thiele, M.R.
1997-08-01
The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities
NASA Astrophysics Data System (ADS)
Rios, Edmilson Helton; Figueiredo, Irineu; Moss, Adam Keith; Pritchard, Timothy Neil; Glassborow, Brent Anthony; Domingues, Ana Beatriz Guedes; Azeredo, Rodrigo Bagueira de Vasconcellos
2016-07-01
The effect of the selection of different nuclear magnetic resonance (NMR) relaxation times for permeability estimation is investigated for a set of fully brine-saturated rocks acquired from Cretaceous carbonate reservoirs in the North Sea and Middle East. Estimators that are obtained from the relaxation times based on the Pythagorean means are compared with estimators that are obtained from the relaxation times based on the concept of a cumulative saturation cut-off. Select portions of the longitudinal (T1) and transverse (T2) relaxation-time distributions are systematically evaluated by applying various cut-offs, analogous to the Winland-Pittman approach for mercury injection capillary pressure (MICP) curves. Finally, different approaches to matching the NMR and MICP distributions using different mean-based scaling factors are validated based on the performance of the related size-scaled estimators. The good results that were obtained demonstrate possible alternatives to the commonly adopted logarithmic mean estimator and reinforce the importance of NMR-MICP integration to improving carbonate permeability estimates.
NASA Astrophysics Data System (ADS)
Rios, Edmilson Helton; Figueiredo, Irineu; Moss, Adam Keith; Pritchard, Timothy Neil; Glassborow, Brent Anthony; Domingues, Ana Beatriz Guedes; Azeredo, Rodrigo Bagueira de Vasconcellos
2016-04-01
The effect of the selection of different nuclear magnetic resonance (NMR) relaxation times for permeability estimation is investigated for a set of fully brine-saturated rocks acquired from Cretaceous carbonate reservoirs in the North Sea and Middle East. Estimators that are obtained from the relaxation times based on the Pythagorean means are compared with estimators that are obtained from the relaxation times based on the concept of a cumulative saturation cutoff. Select portions of the longitudinal (T1) and transverse (T2) relaxation-time distributions are systematically evaluated by applying various cutoffs, analogous to the Winland-Pittman approach for mercury injection capillary pressure (MICP) curves. Finally, different approaches to matching the NMR and MICP distributions using different mean-based scaling factors are validated based on the performance of the related size-scaled estimators. The good results that were obtained demonstrate possible alternatives to the commonly adopted logarithmic mean estimator and reinforce the importance of NMR-MICP integration to improving carbonate permeability estimates.
Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability
NASA Astrophysics Data System (ADS)
Sourbron, S. P.; Buckley, D. L.
2012-01-01
The tracer-kinetic models developed in the early 1990s for dynamic contrast-enhanced MRI (DCE-MRI) have since become a standard in numerous applications. At the same time, the development of MRI hardware has led to increases in image quality and temporal resolution that reveal the limitations of the early models. This in turn has stimulated an interest in the development and application of a second generation of modelling approaches. They are designed to overcome these limitations and produce additional and more accurate information on tissue status. In particular, models of the second generation enable separate estimates of perfusion and capillary permeability rather than a single parameter Ktrans that represents a combination of the two. A variety of such models has been proposed in the literature, and development in the field has been constrained by a lack of transparency regarding terminology, notations and physiological assumptions. In this review, we provide an overview of these models in a manner that is both physically intuitive and mathematically rigourous. All are derived from common first principles, using concepts and notations from general tracer-kinetic theory. Explicit links to their historical origins are included to allow for a transfer of experience obtained in other fields (PET, SPECT, CT). A classification is presented that reveals the links between all models, and with the models of the first generation. Detailed formulae for all solutions are provided to facilitate implementation. Our aim is to encourage the application of these tools to DCE-MRI by offering researchers a clearer understanding of their assumptions and requirements.
Poroelastic model to relate seismic wave attenuation and dispersion to permeability anisotropy
Parra, J.O.
2000-02-01
A transversely isotropic model with a horizontal axis of symmetry, based on the Biot and squirt-flow mechanisms, predicts seismic waves in poroelastic media. The model estimates velocity dispersion and attenuation of waves propagating in the frequency range of crosswell and high-resolution reverse vertical seismic profiling (VSP) (250--1,250 HZ) for vertical permeability value much greater than horizontal permeability parameters. The model assumes the principal axes of the stiffness constant tensor are aligned with the axes of the permeability and squirt-flow tensors. In addition, the unified Biot and squirt-flow mechanism (BISQ) model is adapted to simulate cracks in permeable media. Under these conditions, the model simulations demonstrate that the preferential direction of fluid flow in a reservoir containing fluid-filled cracks can be determined by analyzing the phase velocity and attenuation of seismic waves propagating at different azimuth and incident angles. As a result, the fast compressional wave can be related to permeability anisotropy in a reservoir. The model results demonstrate that for fast quasi-P-wave propagating perpendicular to fluid-filled cracks, the attenuation is greater than when the wave propagates parallel to the plane of the crack. Theoretical predictions and velocity dispersion of interwell seismic waves in the Kankakee Limestone Formation at the Buckhorn test site (Illinois) demonstrate that the permeable rock matrix surrounding a low-velocity heterogeneity contains vertical cracks.
NASA Astrophysics Data System (ADS)
Zambrano, Miller; Tondi, Emanuele; Mancini, Lucia; Trias, F. Xavier; Arzilli, Fabio; Lanzafame, Gabriele; Aibibula, Nijiati
2016-04-01
In porous rocks strain is commonly localized in narrow Deformation Bands (DBs), where the petrophysical properties are significantly modified with respect the pristine rock. As a consequence, DBs could have an important effect on production and development of porous reservoirs representing baffles zones or, in some cases, contribute to reservoir compartmentalization. Taking in consideration that the decrease of permeability within DBs is related to changes in the porous network properties (porosity, connectivity) and the pores morphology (size distribution, specific surface area), an accurate porous network characterization is useful for understanding both the effect of deformation banding on the porous network and their influence upon fluid flow through the deformed rocks. In this work, a 3D characterization of the microstructure and texture of DBs hosted in porous carbonate grainstones was obtained at the Elettra laboratory (Trieste, Italy) by using two different techniques: phase-contrast synchrotron radiation computed microtomography (micro-CT) and microfocus X-ray micro-CT. These techniques are suitable for addressing quantitative analysis of the porous network and implementing Computer Fluid Dynamics (CFD)experiments in porous rocks. Evaluated samples correspond to grainstones highly affected by DBs exposed in San Vito Lo Capo peninsula (Sicily, Italy), Favignana Island (Sicily, Italy) and Majella Mountain (Abruzzo, Italy). For the analysis, the data were segmented in two main components porous and solid phases. The properties of interest are porosity, connectivity, a grain and/or porous textural properties, in order to differentiate host rock and DBs in different zones. Permeability of DB and surrounding host rock were estimated by the implementation of CFD experiments, permeability results are validated by comparing with in situ measurements. In agreement with previous studies, the 3D image analysis and flow simulation indicate that DBs could be constitute
Estimation of reservoir permeability using gravity change measurements
Hunt, Trevor M.; Kissling, Warwick M.
1994-01-20
Exploitation of a liquid-dominated geothermal system generally results in a transfer of mass that causes measurable changes in gravity. When the rate of mass transfer is controlled by the permeability of the reservoir rocks then analysis of measured gravity changes, using numerical reservoir simulation models, can yield values for reservoir properties. One such case is during the early stages of exploitation, during the formation and expansion of a 2-phase zone. Calculations using MULKOM models show that for Wairakei field the gravity changes associated with permeabilities of 50 and 100 md would be clearly distinguishable (> 50 microgal) in less than 2 years. A measured gravity change of -415 microgal between 1950 and 1961 suggests a permeability of 100 md for rocks in the upper part of the 2-phase zone. This value is consistent with those obtained from well tests.
Estimation of In Situ Stress and Permeability from an Extended Leak-off Test
NASA Astrophysics Data System (ADS)
Nghiep Quach, Quoc; Jo, Yeonguk; Chang, Chandong; Song, Insun
2016-04-01
Among many parameters needed to analyze a variety of geomechanical problems related to subsurface CO2 storage projects, two important ones are in situ stress states and permeability of the storage reservoirs and cap rocks. In situ stress is needed for investigating potential risk of fault slip in the reservoir systems and permeability is needed for assessing reservoir flow characteristics and sealing capability of cap rocks. We used an extended leak-off test (XLOT), which is often routinely conducted to assess borehole/casing integrity as well as fracture gradient, to estimate both in situ least principal stress magnitude and in situ permeability in a CO2 storage test site, offshore southeast Korea. The XLOT was conducted at a casing shoe depth (700 m below seafloor) within the cap rock consisting of mudstone, approximately 50 m above the interface between cap rock and storage reservoir. The test depth was cement-grouted and remained for 4 days for curing. Then the hole was further drilled below the casing shoe to create a 4 m open-hole interval at the bottom. Water was injected using hydraulic pump at an approximately constant flowrate into the bottom interval through the casing, during which pressure and flowrate were recorded continuously at the surface. The interval pressure (P) was increased linearly with time (t) as water was injected. At some point, the slope of P-t curve deviated from the linear trend, which indicates leak-off. Pressure reached its peak upon formation breakdown, followed by a gradual pressure decrease. Soon after the formation breakdown, the hole was shut-in by pump shut-off, from which we determined the instantaneous shut-in pressure (ISIP). The ISIP was taken to be the magnitude of the in situ least principal stress (S3), which was determined to be 12.1 MPa. This value is lower than the lithostatic vertical stress, indicating that the S3 is the least horizontal principal stress. The determined S3 magnitude will be used to characterize the
NASA Astrophysics Data System (ADS)
Woith, Heiko; Chiodini, Giovanni; Mangiacapra, Annarita; Wang, Rongjiang
2016-04-01
The hydrothermal system beneath Campi Flegrei is strongly affected by sub-surface processes as manifested by a geothermal "plume" below Solfatara, associated with the formation of mud-pools (Fangaia), fumaroles (Bocca Grande, Pisciarelli), and thermal springs (Agnano). Within the frame of MED-SUV (The MED-SUV project has received funding from the European Union Seventh Framework Programme FP7 under Grant agreement no 308665), pressure transients in the hydrothermal system of Campi Flegrei are being continuously monitored at fumaroles, mudpools, hot springs, and geothermal wells. In total, waterlevel and temperature is recorded at 8 sites across the hydrothermal plume along a profile aligned between Agnano Termal in the East and Fangaia in the West. Autonomous devices are used to record the water level and water temperature at 10 minute intervals. At Fangaia mudpool water level and water temperature are dominantly controlled by rain water. Thus, the pool is refilled episodically. Contrary, the water level at a well producing hot water (82°C) for the Pisciarelli tennis club drops and recovers at nearly regular intervals. The induced water level changes are of the order of 1-2m and 3-4m in case of the mudpool and the hot-water-well, respectively. At first glance, both monitoring sites might seem to be fully useless to access natural changes in the Campi Flegrei fluid system. At a second thought, both timeseries provide a unique opportunity to monitor potential permeability changes in the aquifer system. A similar approach had been proposed to deduce earthquake-related permeability changes from Earth tide variations. Contrary to the indirect Earth tide approach, we have the chance to estimate the hydraulic aquifer properties from our monitoring data directly, since each time series contains a sequence of discrete hydraulic tests - namely drawdown tests and refill experiments. Although our Cooper-Jacob approach is really crude, we obtained reasonable permeability
PARAMETER ESTIMATION OF TWO-FLUID CAPILLARY PRESSURE-SATURATION AND PERMEABILITY FUNCTIONS
Capillary pressure and permeability functions are crucial to the quantitative description of subsurface flow and transport. Earlier work has demonstrated the feasibility of using the inverse parameter estimation approach in determining these functions if both capillary pressure ...
NASA Astrophysics Data System (ADS)
Rizzo, R. E.; Healy, D.; De Siena, L.
2015-12-01
The success of any model prediction is largely dependent on the accuracy with which its parameters are known. In characterising fracture networks in naturally fractured rocks, the main issues are related with the difficulties in accurately up- and down-scaling the parameters governing the distribution of fracture attributes. Optimal characterisation and analysis of fracture attributes (fracture lengths, apertures, orientations and densities) represents a fundamental step which can aid the estimation of permeability and fluid flow, which are of primary importance in a number of contexts ranging from hydrocarbon production in fractured reservoirs and reservoir stimulation by hydrofracturing, to geothermal energy extraction and deeper Earth systems, such as earthquakes and ocean floor hydrothermal venting. This work focuses on linking fracture data collected directly from outcrops to permeability estimation and fracture network modelling. Outcrop studies can supplement the limited data inherent to natural fractured systems in the subsurface. The study area is a highly fractured upper Miocene biosiliceous mudstone formation cropping out along the coastline north of Santa Cruz (California, USA). These unique outcrops exposes a recently active bitumen-bearing formation representing a geological analogue of a fractured top seal. In order to validate field observations as useful analogues of subsurface reservoirs, we describe a methodology of statistical analysis for more accurate probability distribution of fracture attributes, using Maximum Likelihood Estimators. These procedures aim to understand whether the average permeability of a fracture network can be predicted reducing its uncertainties, and if outcrop measurements of fracture attributes can be used directly to generate statistically identical fracture network models.
NASA Astrophysics Data System (ADS)
Iturrarán-Viveros, Ursula; Parra, Jorge O.
2014-08-01
Permeability and porosity are two fundamental reservoir properties which relate to the amount of fluid contained in a reservoir and its ability to flow. The intrinsic attenuation is another important parameter since it is related to porosity, permeability, oil and gas saturation and these parameters significantly affect the seismic signature of a reservoir. We apply Artificial Neural Network (ANN) models to predict permeability (k) and porosity (ϕ) for a carbonate aquifer in southeastern Florida and to predict intrinsic attenuation (1/Q) for a sand-shale oil reservoir in northeast Texas. In this study, the Gamma test (a revolutionary estimator of the noise in a data set) has been used as a mathematically non-parametric nonlinear smooth modeling tool to choose the best input combination of seismic attributes to estimate k and ϕ, and the best combination of well-logs to estimate 1/Q. This saves time during the construction and training of ANN models and also sets a lower bound for the mean squared error to prevent over-training. The Neural Network method successfully delineates a highly permeable zone that corresponds to a high water production in the aquifer. The Gamma test found nonlinear relations that were not visible to linear regression allowing us to generalize the ANN estimations of k, ϕ and 1/Q for their respective sets of patterns that were not used during the learning phase.
A multiple fractal model for estimating permeability of dual-porosity media
NASA Astrophysics Data System (ADS)
Li, Bo; Liu, Richeng; Jiang, Yujing
2016-09-01
A multiple fractal model that considers the fractal properties of both porous matrices and fracture networks is proposed for the permeability of dual-porosity media embedded with randomly distributed fractures. In this model, the aperture distribution is verified to follow the fractal scaling law, and the porous matrix is assumed to comprise a bundle of tortuous capillaries that also follow the fractal scaling law. Analytical expressions for fractal aperture distribution, total flow rate, total equivalent permeability, and dimensionless permeability are established, where the dimensionless permeability is defined as the ratio of permeability of the porous matrices to that of the fracture networks. The dimensionless permeability is closely correlated to the structural parameters (i.e., α, θ, Dtf, Dtp, De, Dp, emax, λmax) of the dual-porosity media, and it is more sensitive to the fractal dimension for the size distribution of fracture aperture than to that for the size distribution of pore/capillary diameter. The maximum pore/capillary diameter has a greater impact on the dimensionless permeability than that of the maximum fracture aperture. The dimensionless permeability of fracture networks constructed by the fractal aperture distribution has close values with those of models with lognormal aperture distribution. The proposed multiple fractal model does not involve any empirical constants that do not have clear physical meanings, which could serve as a quick estimation method for assessing permeability of dual-porosity media.
Estimation of cell membrane permeability of the rat brain using diffusion magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Imae, T.; Shinohara, H.; Sekino, M.; Ueno, S.; Ohsaki, H.; Mima, K.; Ootomo, K.
2008-04-01
We propose a method to noninvasively evaluate the permeability of the cell membrane in the rat brain using diffusion magnetic resonance imaging (MRI). Diffusion MRI reflects the intra- and extracellular diffusion coefficients of water and cell membrane permeability. The images were acquired using a 4.7T MRI system with applications to motion-probing gradients in six directions. Numerical simulations based on the finite-difference method were carried out for estimating diffusion MRI signals with various combinations of membrane permeability and intracellular diffusion coefficient values. We defined an evaluative function as the difference between the signals estimated by simulation and experimentally obtained signals. We found that the combination of membrane permeability and intracellular diffusion coefficient in the simulation corresponding to the minimum value of the evaluative function leads to an estimation of these properties of the rat brain. The estimated intracellular diffusion coefficient and membrane permeability were (1.3±0.1)×10-3mm2/s and 74±23μm/s, respectively. Our method is useful for noninvasively estimating the cell membrane permeability of biological tissues, and is easily applicable to human tissues.
Estimation of Permeability from NMR Logs Based on Formation Classification Method in Tight Gas Sands
NASA Astrophysics Data System (ADS)
Wei, Deng-Feng; Liu, Xiao-Peng; Hu, Xiao-Xin; Xu, Rui; Zhu, Ling-Ling
2015-10-01
The Schlumberger Doll Research (SDR) model and cross plot of porosity versus permeability cannot be directly used in tight gas sands. In this study, the HFU approach is introduced to classify rocks, and determine the involved parameters in the SDR model. Based on the difference of FZI, 87 core samples, drilled from tight gas sandstones reservoirs of E basin in northwest China and applied for laboratory NMR measurements, were classified into three types, and the involved parameters in the SDR model are calibrated separately. Meanwhile, relationships of porosity versus permeability are also established. The statistical model is used to calculate consecutive FZI from conventional logs. Field examples illustrate that the calibrated SDR models are applicable in permeability estimation; models established from routine core analyzed results are effective in reservoirs with permeability lower than 0.3 mD, while the unified SDR model is only valid in reservoirs with permeability ranges from 0.1 to 0.3 mD.
The effective porosity and grain size relations in permeability functions
NASA Astrophysics Data System (ADS)
Urumović, K.; Urumović, K., Sr.
2014-06-01
Hydrogeological parameters of coherent and incoherent deposits are deeply dependent of their granulometric characteristics. These relations were shaped in formulas and defaultly used for calculation of hydraulic conductivity, and are valid only for uniform incoherent materials, mostly sands. In this paper, the results of analyses of permeability and specific surface area as a function of granulometric composition of various sediments - from siltey clays to very well graded gravels are presented. The effective porosity and the referential grain size are presented as fundamental granulometric parameters which express an effect of forces operating fluid movement through the saturated porous media. Suggested procedures for calculating referential grain size and determining effective (flow) porosity result with parameters that reliably determine specific surface area and permeability. These procedures ensure successful appliance of Kozeny-Carman model up to the limits of validity of Darcy's law. The value of an effective porosity in function of referential mean grain size has been calibrated within range from 1.5 μm to 6.0 mm. Reliability of these parameters application in KC model was confirmed by very high correlation between predicted and tested hydraulic conductivity - R2 = 0.99 for sandy and gravelly materials and R2 = 0.70 for clayey-siltey materials. Group representation of hydraulic conductivity (ranged from 10-12 m s-1 up to 10-2 m s-1) presents coefficient of correlation R2 = 0.97, for total sum of 175 samples of various deposits. These results present the new road to researches of porous material's effective porosity, permeability and specific surface area distribution, since these three parameters are critical conditions for successful groundwater flow modelling and contaminant transport. From the practical point of view, it is very important to be able to identify these parameters swiftly, cheaply and very accurately.
Relative Permeabilities: a pore-level model study of the capillary number dependence
Ferer, M.V.; Mason, G.; Bromhal, G.S.; Smith, D.H.
2008-03-01
Relative permeabilities are widely used by the petroleum industry in reservoir simulations of recovery strategies. In recent years, pore level modeling has been used to determine relative permeabilities at zero capillary number for a variety of more and more realistic model porous media. Unfortunately, these studies cannot address the issue of the observed capillary number dependence of the relative permeabilities. Several years ago, we presented a method for determining the relative permeabilities from pore-level modeling at general capillary number. We have used this method to determine the relative permeabilities at several capillary numbers and stable viscosity ratios. In addition, we have determined these relative permeabilities using one of the standard dynamic methods for determining relative permeabilities from core flood experiments. Our results from the two methods are compared with each other and with experimental results.
The effects of viscous forces on three-phase relative permeability
Maloney, D.R.; Mahmood, S.M.; Honarpour, M.M.
1989-04-01
The overall objective of Three-Phase Relative Permeability Project (BE9) is to develop guidelines for improving the accuracy of three-phase relative permeability determinations. This report summarizes previous studies and explains the progress made at NIPER on studying the effect of variations in viscous forces on three-phase relative permeabilities by changing the viscosity of both wetting and nonwetting phases. Significant changes were observed due to viscosity variations. An increase in oil viscosity reduced the relative permeability to gas; an increase in brine/(wetting-phase) viscosity reduced the relative permeability to brine. A slight increase in gas relative permeability was also observed. These observations suggest that the viscosities of both oil and water influence three-phase permeability data. During this study, data scatter was sometimes encountered which was comparable to that of published results. The causes of this scatter are outlined in this report and remedial attempts are discussed. 20 refs., 16 figs., 5 tabs.
Paillet, Frederick L.
1988-01-01
Various conventional geophysical well logs were obtained in conjunction with acoustic tube-wave amplitude and experimental heat-pulse flowmeter measurements in two deep boreholes in granitic rocks on the Canadian shield in southeastern Manitoba. The objective of this study is the development of measurement techniques and data processing methods for characterization of rock volumes that might be suitable for hosting a nuclear waste repository. One borehole, WRA1, intersected several major fracture zones, and was suitable for testing quantitative permeability estimation methods. The other borehole, URL13, appeared to intersect almost no permeable fractures; it was suitable for testing methods for the characterization of rocks of very small permeability and uniform thermo-mechanical properties in a potential repository horizon. Epithermal neutron , acoustic transit time, and single-point resistance logs provided useful, qualitative indications of fractures in the extensively fractured borehole, WRA1. A single-point log indicates both weathering and the degree of opening of a fracture-borehole intersection. All logs indicate the large intervals of mechanically and geochemically uniform, unfractured granite below depths of 300 m in the relatively unfractured borehole, URL13. Some indications of minor fracturing were identified in that borehole, with one possible fracture at a depth of about 914 m, producing a major acoustic waveform anomaly. Comparison of acoustic tube-wave attenuation with models of tube-wave attenuation in infinite fractures of given aperture provide permeability estimates ranging from equivalent single-fractured apertures of less than 0.01 mm to apertures of > 0.5 mm. One possible fracture anomaly in borehole URL13 at a depth of about 914 m corresponds with a thin mafic dike on the core where unusually large acoustic contrast may have produced the observed waveform anomaly. No indications of naturally occurring flow existed in borehole URL13; however
A theoretical model is described for the prediction of relative permeability-saturation (k-S) relations in two-phase (air-water) and three phase (air-oil-water) porous media systems subject to arbitrary saturation paths. Integral expressions for air, water, and oil relative perme...
Effects of phase transformation of steam-water relative permeabilities
Verma, A.K.
1986-03-01
A combined theoretical and experimental study of steam-water relative permeabilities (RPs) was carried out. First, an experimental study of two-phase concurrent flow of steam and water was conducted and a set of RP curves was obtained. These curves were compared with semi-empirical and experimental results obtained by other investigators for two-phase, two-component flow (oil/gas; gas/water; gas/oil). It was found that while the wetting phase RPs were in good agreement, RPs for the steam phase were considerably higher than the non-wetting phase RPs in two-component systems. This enhancement of steam RP is attributed to phase transformation effects at the pore level in flow channels. The effects of phase transformation were studied theoretically. This study indicates that there are two separate mechanisms by which phase transformation affects RP curves: (1) Phase transformation is converging-diverging flow channels can cause an enhancement of steam phase RP. In a channel dominated by steam a fraction of the flowing steam condenses upstream from the constriction, depositing its latent heat of condensation. This heat is conducted through the solid grains around the pore throat, and evaporation takes place downstream from it. Therefore, for a given bulk flow quality; a smaller fraction of steam actually flows through the throat segments. This pore-level effect manifests itself as relative permeability enhancement on a macroscopic level; and (2) phase transformation along the interface of a stagnant phase and the phase flowing around it controls the irreducible phase saturation. Therefore, the irreducible phase saturation in steam-water flow will depend, among other factors, on the boundary conditions of the flow.
A new empirical model for estimating the hydraulic conductivity of low permeability media
NASA Astrophysics Data System (ADS)
Qi, S.; Wen, Z.; Lu, C.; Shu, L.; Shao, J.; Huang, Y.; Zhang, S.; Huang, Y.
2015-05-01
Hydraulic conductivity (K) is one of the significant soil characteristics in terms of flow movement and solute transport. It has been recognized that K is statistically related to the grain-size distribution. Numerous models have been developed to reveal the relationship between K and the grain-size distribution of soil, but most of these are inappropriate for fine-grained media. Therefore, a new empirical model for estimating K of low permeability media was proposed in this study. In total, the values of K of 30 soil samples collected in the Jiangning District of Nanjing were measured using the single-ring infiltrometer method. The new model was developed using the percentages of sand, silt and clay-sized particles, and the first and the second rank moment of the grain-size through the moment method as predictor variables. Multivariate nonlinear regression analysis yielded a coefficient of determination (R2) of 0.75, indicating that this empirical model seems to provide a new approach for the indirect determination of hydraulic conductivity of low permeability media.
Permeability estimation from log-derived porosity II. Via co-kriging
Fang, Jen Ho; Pu, Zhi Wei . Dept. of Geology)
1993-03-01
In paper (I) (given at this meeting), the authors applied fuzzy regression to the problem of permeability estimation from porosity-log data. In this paper, they introduce another novel approach, co-kriging. Co-kriging is a multivariate geostatistical technique designed for characterizing joint spatial correlations between pairs of variables (log-derived porosity vs. core-derived permeability in the context of this paper). In other words, co-kriging yields estimates that use not only the information from direct measurements of the variables being estimated, but also the information from measurements of a second variable. Thus, co-kriging can be used to predict permeability at uncored wells. This is a powerful technique because they usually have more log data than core data. By making use of co-kriging they can make good use of the log-derived porosity data. Results of the study using the data from Chunchula field illustrate the power of this technique.
NASA Astrophysics Data System (ADS)
Chen, X.; Kianinejad, A.; DiCarlo, D. A.
2014-12-01
CO2-brine relative permeability relations are important parameters in modeling scenarios such as CO2 sequestration in saline aquifers and CO2 enhanced recovery in oil reservoir. Many steady-state experimental studies on CO2-brine relative permeability showed that the CO2-brine relative permeability differs greatly from typical oil-brine relative permeability. Particularly, they reported a very small endpoint CO2 relative permeability of 0.1~0.2 at a relative high residual water saturation of 0.4~0.6. In this study, we hypothesize the measured low endpoint CO2 relative permeability in previous studies was an experimental artifact that is primary due to low CO2 viscosity. We conducted steady-state CO2 drainage experiments by co-injecting equlibrated CO2 and brine into a long (60.8 cm) and low permeability (116-mD) Berea sandstone core at 20 °C and 1500 psi. During every experiment, both the overall pressure drop across the core and the pressure drops of the five independent and continuous sections of the core were monitored. The in-situ saturation was measured with a medical X-ray Computed Tomography (CT) scanner. In the center three sections where saturation was uniform, we determined the relative permeability to both brine and CO2 phases. In the entrance and exit sections, both measured pressure gradients and saturation were non-uniform. To cope with this, we make several self-consistent assumptions that reveal the nature of capillary entrance and effect in steady-state two-phase core flooding experiments. Based on these assumptions we determined the relative permeability to CO2 and CO2-brine capillary pressure simultaneously using measured pressure drops. We found: (1) a much higher endpoint CO2 relative permeability of 0.58 at a water saturation of 48%, (2) the entrance region with non-uniform saturation expanded CO2 relative permeability data to much lower water saturation, (3) the determined CO2-brine capillary pressure curve is self-consistent and matches
Permeability Estimation of Porous Rock by Means of Fluid Flow Simulation and Digital Image Analysis
NASA Astrophysics Data System (ADS)
Winardhi, C. W.; Maulana, F. I.; Latief, F. D. E.
2016-01-01
Permeability plays an important role to determine the characteristics of how fluids flow through a porous medium which can be estimated using various methods. Darcy's law and the Kozeny-Carman equation are two of the most utilized methods in estimating permeability. In Darcy's law, permeability can be calculated by applying a pressure gradient between opposing sides of inlet-outlet of a certain direction. The permeability then depends on the fluid viscosity and the flowrate. The Kozeny-Carman equation is an empirical equation which depends on several parameters such as shape factor of the pore, tortuosity, specific surface area, and porosity to determine the permeability. For both methods, digital image obtained by means of Micro CT-Scan is used. In this research, the permeability estimation using the Darcy's law was conducted by simulating fluid flow through the digital image using Lattice Boltzmann Method (LBM). As for the Kozeny-Carman equation, digital image analysis was used to obtain the required parameters. Two Kozeny-Carman equations were used to calculate the permeability of the samples. The first equation (KC1) depends on pore shape factor, porosity, tortuosity, and specific surface area while the second equation (KC2) only depends on pore radius, porosity, and tortuosity. We investigate the methods by first testing on three simple pipe models which vary in the radii. By using the result from Darcy's law as a reference, we compare the results from the Kozeny-Carman equations. From the calculation, KC2 yield smaller difference to the reference. The three methods were then applied to the Fontainebleau sandstone to verify the previous result.
Experimental investigation the effect of nanoparticles on the oil-water relative permeability
NASA Astrophysics Data System (ADS)
Amedi, Hamidreza; Ahmadi, Mohammad-Ali
2016-05-01
This paper presents the effects of the nanosilica particles on the water and oil relative permeability curves at reservoir conditions. Real reservoir crude oil sample was employed as an oil phase in relative permeability measurements. In addition, real carbonate reservoir rock samples were employed as a porous media in core displacement experiments. To determine relative permeability curves, the unsteady-state approach was employed in which Toth et al. method was applied to the recovery data points. By increasing the nanosilica content of the aqueous phase the oil relative permeability increased while the residual oil saturation decreased; however, by increasing the nanosilica concentration in the aqueous solution the water relative permeability decreased. The outcomes of this paper can provide a better understanding regarding chemically enhanced oil recovery (EOR) by nanoparticles. Moreover, relative permeability curves help us in the history matching section of reservoir simulation for any further EOR scenarios.
Estimation of bone permeability considering the morphology of lacuno-canalicular porosity.
Kameo, Yoshitaka; Adachi, Taiji; Sato, Narumichi; Hojo, Masaki
2010-04-01
Load-induced interstitial fluid flow in lacuno-canalicular porosity is believed to play an important role in cellular activities regulating adaptive bone remodeling. To investigate interstitial fluid behavior based on poroelasticity, it is important to determine the anisotropic permeability tensor reflecting the morphological features of the lacuno-canalicular porosity as fluid channels. In this study, we presented an estimation method of trabecular permeability by describing the analytical relationship between the volume orientation (VO) fabric tensor, which represents the canalicular orientation, and the permeability tensor. The relationship showed that the trabecular permeability tensor is proportional to the product of the volume fraction of the interstitial fluid and the VO fabric tensor of the canaliculi. We applied the proposed method to a two-dimensional fluorescent image of a trabecular cross section to quantify the canalicular anisotropy and the trabecular permeability tensor. The results indicated that the canaliculi are predominantly oriented in the radial direction of the trabecula, and the permeability depends strongly on the canalicular morphology. PMID:20142108
A fast nonlinear regression method for estimating permeability in CT perfusion imaging
Bennink, Edwin; Riordan, Alan J; Horsch, Alexander D; Dankbaar, Jan Willem; Velthuis, Birgitta K; de Jong, Hugo W
2013-01-01
Blood–brain barrier damage, which can be quantified by measuring vascular permeability, is a potential predictor for hemorrhagic transformation in acute ischemic stroke. Permeability is commonly estimated by applying Patlak analysis to computed tomography (CT) perfusion data, but this method lacks precision. Applying more elaborate kinetic models by means of nonlinear regression (NLR) may improve precision, but is more time consuming and therefore less appropriate in an acute stroke setting. We propose a simplified NLR method that may be faster and still precise enough for clinical use. The aim of this study is to evaluate the reliability of in total 12 variations of Patlak analysis and NLR methods, including the simplified NLR method. Confidence intervals for the permeability estimates were evaluated using simulated CT attenuation–time curves with realistic noise, and clinical data from 20 patients. Although fixating the blood volume improved Patlak analysis, the NLR methods yielded significantly more reliable estimates, but took up to 12 × longer to calculate. The simplified NLR method was ∼4 × faster than other NLR methods, while maintaining the same confidence intervals (CIs). In conclusion, the simplified NLR method is a new, reliable way to estimate permeability in stroke, fast enough for clinical application in an acute stroke setting. PMID:23881247
Suzuki, Shigejirou; Takaba, Hiromitsu; Yamaguchi, Takeo; Nakao, Shinichi
2000-03-09
A method for estimating gas permeability through a zeolite membrane, using a molecular simulation technique and a theoretical permeation model, is presented. The estimate of permeability is derived from a combination of an absorption isotherm and self-diffusion coefficient based on the adsorption-diffusion model. The adsorption isotherm and self-diffusion coefficients needed for the estimation were calculated using conventional Monte Carlo and molecular dynamics simulations. The calculated self-diffusion coefficient was converted to the mutual diffusion coefficient and the permeability estimated using the Fickian equation. The method was applied to the prediction of permeabilities of methane and ethylene in silicalite at 301 K. Calculated permeabilities were larger than the experimental values by more than an order of magnitude. However, the anisotropic permeability was consistent with the experimental data and the results obtained using a grand canonical ensemble molecular dynamics technique (Pohl et al., Mol.Phys. 1996, 89(6), 1725--1731).
NASA Astrophysics Data System (ADS)
Vogt, C.; Widera, A.
2012-04-01
Reliable information on heterogeneous permeability fields of geothermal reservoirs is of particular interest, even after production started. This information permits the prediction of temperature and pressure variation with time, the optimization of the production rate of the geothermal installation in terms of profit or sustainability, and the detection of optimal locations for additional injection or production wells. Therefore, we study the capability of the data assimilation technique Ensemble Kalman Filter (EnKF) to estimate heterogeneous permeability fields using sparse temperature data from five geothermal wells inside a synthetic reservoir. To simulate the transient temperature variation inside the geothermal system, we use the finite volume software SHEMAT-Suite for solving coupled transient equations for groundwater flow and heat transport in a porous rock matrix. The EnKF is essentially a sequential assimilation procedure which compares observations to predictions by SHEMAT-Suite and adjusts system variables (in this case: permeability, temperature, and hydraulic head) of the numerical simulator according to the error statistics assuming a Gaussian error distribution. For the EnKF, the error statistics are obtained from the mean and variance of a number of realisations. This way, estimated permeability converts in the direction of true permeability assimilation step by assimilation step. We demonstrate that the basic features of the permeability field are reproduced by the EnKF, even when assimilating data from just five wells. In addition, we are able to quantify uncertainty of the permeability estimation. The fit using temperature data is comparable with the fit using tracer concentration data (Vogt et al., 2010). However, different time scales (months respectively years) apply for the two different data types. Optimal fits are obtained when taking into account hydraulic head data in combination with temperature data. We also present the effect of
Estimating the Permeability of Carbonate Rocks using Image Analysis and Effective Medium Theory
NASA Astrophysics Data System (ADS)
Jurgawczynski, M.; Jing, X.; Zimmerman, R. W.
2004-12-01
A methodology was recently developed to estimate the permeability of sedimentary rocks from two-dimensional pore images [Lock et al., J. Appl. Phys., 2002]. The only data required from the images are the areas and perimeters of the individual pores. The hydraulic conductivities of the individual pores are estimated from their areas and perimeters using the hydraulic radius approximation. Stereological correction factors are applied to determine the true cross-sectional shapes from the images, and to determine the true number density of pores per unit area. A constriction factor accounts for the variation of the cross-sectional area along the tube length. The pores are assumed to be arranged in a cubic lattice, after which the effective-medium equation of Kirkpatrick is used to estimate the effective conductance of the pores. Finally, the permeability is estimated from the effective pore conductance and the number density of pores. When applied to several data sets of sandstones, having permeabilities in the range of 20-1400 mD, the permeability estimates were always within roughly a factor of two of the values measured in the laboratory. This methodology is now being applied to a set carbonate rocks, having permeabilities in the range of 0.5 to 25 mD. Carbonates generally have more complex and heterogeneous pore structures than do sandstones. Nevertheless, our preliminary results how that, for rocks that do not contain appreciable amounts of vugs that are unconnected to the main conducting pore space, the method again yields permeabilities within a factor of two of the measured values. However, when applied to vuggy carbonates, the predictions may be too high by several orders of magnitude. The error in these cases arises from including isolated vugs in our calculation of the effective pore conductance. These vugs are easily identified by eye. However, as our aim has been to develop a rapid, objective permeability estimation method that requires little if any
A probabilistic approach for estimating water permeability in pressure-driven membranes.
Boateng, Linkel K; Madarshahian, Ramin; Yoon, Yeomin; Caicedo, Juan M; Flora, Joseph R V
2016-08-01
A probabilistic approach is proposed to estimate water permeability in a cellulose triacetate (CTA) membrane. Water transport across the membrane is simulated in reverse osmosis mode by means of non-equilibrium molecular dynamics (MD) simulations. Different membrane configurations obtained by an annealing MD simulation are considered and simulation results are analyzed by using a hierarchical Bayesian model to obtain the permeability of the different membranes. The estimated membrane permeability is used to predict full-scale water flux by means of a process-level Monte Carlo simulation. Based on the results, the parameters of the model are observed to converge within 5-ns total simulation time. The results also indicate that the use of unique structural configurations in MD simulations is essential to capture realistic membrane properties at the molecular scale. Furthermore, the predicted full-scale water flux based on the estimated permeability is within the same order of magnitude of bench-scale experimental measurement of 1.72×10(-5) m/s. PMID:27444876
NASA Astrophysics Data System (ADS)
GéRard-Marchant, P.; Angulo-Jaramillo, R.; Haverkamp, R.; Vauclin, M.; Groenevelt, P.; Elrick, D. E.
1997-06-01
The in situ determination of the field-saturated hydraulic conductivity of low-permeability porous materials is a major concern for both geotechnics and soil physics with regards to environmental protection or water resources management. Recent early-time single-ring infiltration experiments, involving sequential constant head and falling head conditions, allow its efficient estimation. Nevertheless, the theory on which the interpretation was based was still strictly valid to nondeformable soils and implicity relied on a particular form of the hydraulic conductivity-soil water pressure head relationship. This theory is now extended to deformable materials, without any restrictive hypothesis. A new concept, bulk sorptivity, which characterizes the solid phase movement, is introduced. Field experiments, conducted on two liners of swelling and slowly permeable materials, revealed that neglecting the soil deformation induces an underestimation of the actual coefficient of permeability of the soil.
Estimating large-scale fracture permeability of unsaturatedrockusing barometric pressure data
Wu, Yu-Shu; Zhang, Keni; Liu, Hui-Hai
2005-05-17
We present a three-dimensional modeling study of gas flow inthe unsaturated fractured rock of Yucca Mountain. Our objective is toestimate large-scale fracture permeability, using the changes insubsurface pneumatic pressure in response to barometric pressure changesat the land surface. We incorporate the field-measured pneumatic datainto a multiphase flow model for describing the coupled processes ofliquid and gas flow under ambient geothermal conditions. Comparison offield-measured pneumatic data with model-predicted gas pressures is foundto be a powerful technique for estimating the fracture permeability ofthe unsaturated fractured rock, which is otherwise extremely difficult todetermine on the large scales of interest. In addition, this studydemonstrates that the multi-dimensional-flow effect on estimatedpermeability values is significant and should be included whendetermining fracture permeability in heterogeneous fracturedmedia.
NASA Astrophysics Data System (ADS)
Bolève, A.; Vandemeulebrouck, J.; Grangeon, J.
2012-11-01
In the present study, we propose the combination of two geophysical techniques, which we have applied to a dyke located in southeastern France that has a visible downstream flood area: the self-potential (SP) and hydro-acoustic methods. These methods are sensitive to two different types of signals: electric signals and water-soil pressure disturbances, respectively. The advantages of the SP technique lie in the high rate of data acquisition, which allows assessment of long dykes, and direct diagnosis in terms of leakage area delimitation and quantification. Coupled with punctual hydro-acoustic cartography, a leakage position can be precisely located, therefore allowing specific remediation decisions with regard to the results of the geophysical investigation. Here, the precise localization of leakage from an earth dyke has been identified using SP and hydro-acoustic signals, with the permeability of the preferential fluid flow area estimated by forward SP modeling. Moreover, we propose a general 'abacus' diagram for the estimation of hydraulic permeability of dyke leakage according to the magnitude of over water SP anomalies and the associated uncertainty.
The effect of saturation path on three-phase relative permeability
NASA Astrophysics Data System (ADS)
Kianinejad, Amir; Chen, Xiongyu; DiCarlo, David A.
2015-11-01
Simulation and fluid flow prediction of many petroleum-enhanced oil recovery methods as well as environmental processes such as carbon dioxide (CO2) geological storage or underground water resources remediation requires accurate modeling and determination of relative permeability under different saturation histories. Based on this critical need, several three-phase relative permeability models were developed to predict relative permeability; however, for practical purposes most of them require a variety of parameters introducing undesired complexity to the models. In this work, we attempt to find out if there is a simpler way to express this functionality. To do so, we experimentally measure three-phase, water/oil/gas, relative permeability in a 1 m long water-wet sand pack, under several saturation flow paths to cover the entire three-phase saturation space. We obtain the in situ saturations along the sand pack using a CT scanner and then determine the relative permeabilities of liquid phases directly from the measured in situ saturations using an unsteady state method. The measured data show that at a specific saturation, the oil relative permeability varies significantly (up to two orders of magnitude), depending on the path through saturation space. The three-phase relative permeability data are modeled using standard relative permeability models, Corey-type, and Saturation Weighted Interpolation (SWI). Our measured data suggest that three-phase oil relative permeability in water-wet media is only a function of its own saturation if the residual oil saturation is treated as a function of two saturations. We determine that residual saturation is the key parameter in modeling three-phase relative permeability (effect of saturation history).
Maloney, D.
1993-11-01
This report describes the results from special core analyses and relative permeability measurements conducted on Almond formation and Fontainebleu sandstone plugs. Almond formation plug tests were performed to evaluate multiphase, steady-state,reservoir-condition relative permeability measurement techniques and to examine the effect of temperature on relative permeability characteristics. Some conclusions from this project are as follows: An increase in temperature appeared to cause an increase in brine relative permeability results for an Almond formation plug compared to room temperature results. The plug was tested using steady-state oil/brine methods. The oil was a low-viscosity, isoparaffinic refined oil. Fontainebleu sandstone rock and fluid flow characteristics were measured and are reported. Most of the relative permeability versus saturation results could be represented by one of two trends -- either a k{sub rx} versus S{sub x} or k{sub rx} versus Sy trend where x and y are fluid phases (gas, oil, or brine). An oil/surfactant-brine steady-state relative permeability test was performed to examine changes in oil/brine relative permeability characteristics from changes in fluid IFTS. It appeared that, while low interfacial tension increased the aqueous phase relative permeability, it had no effect on the oil relative permeability. The BOAST simulator was modified for coreflood simulation. The simulator was useful for examining effects of variations in relative permeability and capillary pressure functions. Coreflood production monitoring and separator interface level measurement techniques were developed using X-ray absorption, weight methods, and RF admittance technologies. The three types of separators should be useful for routine and specialized core analysis applications.
Measurement of Relative Permeability Using Single-Step Transient Flow Centrifuge Experiments
NASA Astrophysics Data System (ADS)
van den Berg, E. H.; Perfect, E.; Mayes, M. A.
2007-12-01
Steady-state flow centrifuge methods have been widely used to determine the relative permeability function, krw, of porous media. The centripetal acceleration greatly accelerates the speed at which equilibrium conditions are found in drainage or imbibition experiments. While equilibrium conditions are required by steady- state flow centrifuge methods, transient flow centrifuge methods utilize the time variant adaptation of state variables (e.g. fluid saturation, pressure or flux) to sudden changes in boundary conditions. Transient flow centrifuge experiments were conducted using a commercial rock core ultracentrifuge to displace wetting fluids from an initially fully-saturated sample by non-wetting fluids. The cumulative production of wetting fluid leaving the sample was recorded using an automated digital camera recording system. The time series of cumulative wetting fluid production forms the input for the objective function of inverse numerical modeling efforts and for the independent estimation of krw using an analytical solution for the transient flow of fluids through a porous medium in a centripetal field (the Hagoort method). In this study, single-step transient outflow experiments were run on Berea sandstone cores. The angular velocity was 942 sec-1. Independent laboratory techniques were used to measure the saturated water content, θs, and the intrinsic permeability, ksat. Besides these measurements, synthetic production data were generated with forward simulations of Hydrus-1D using the standard van Genuchten parameters for 'Sand' and 'Silt' soils. The models simulated acceleration of the centrifuge rotor during the first ~95 seconds of the experiment by increasing the angular velocity stepwise in 2.5 second intervals to 733 sec-1. The data were interpreted using a modified version of the Hagoort method in which numerical derivatives are used to compute the slope of the production curve in order to calculate relative saturation and the corresponding krw
NASA Astrophysics Data System (ADS)
Vadapalli, U.; Srivastava, R. P.; Vedanti, N.; Dimri, V. P.
2014-01-01
Permeability of a hydrocarbon reservoir is usually estimated from core samples in the laboratory or from well test data provided by the industry. However, such data is very sparse and as such it takes longer to generate that. Thus, estimation of permeability directly from available porosity logs could be an alternative and far easier approach. In this paper, a method of permeability estimation is proposed for a sandstone reservoir, which considers fractal behavior of pore size distribution and tortuosity of capillary pathways to perform Monte Carlo simulations. In this method, we consider a reservoir to be a mono-dispersed medium to avoid effects of micro-porosity. The method is applied to porosity logs obtained from Ankleshwar oil field, situated in the Cambay basin, India, to calculate permeability distribution in a well. Computed permeability values are in good agreement with the observed permeability obtained from well test data. We also studied variation of permeability with different parameters such as tortuosity fractal dimension (Dt), grain size (r) and minimum particle size (d0), and found that permeability is highly dependent upon the grain size. This method will be extremely useful for permeability estimation, if the average grain size of the reservoir rock is known.
Relative ion permeability of normal and cystic fibrosis nasal epithelium.
Knowles, M; Gatzy, J; Boucher, R
1983-01-01
The raised transepithelial electric potential difference (PD) across respiratory epithelia in cystic fibrosis (CF) has suggested an abnormality in ion permeation. We characterized this abnormality further by measuring in the nasal epithelia of CF and normal subjects the concentration-PD relationship for amiloride, an inhibitor of cell Na+ permeability, and PD responses to superfusion with solutions of different composition. Amiloride was more efficacious in the CF subjects but the ED50 was not different from that of normals (approximately 2 X 10(-6) M). Na+ replacement by choline induced effects similar to those of amiloride, i.e. a greater depolarization in CF subjects. A 10-fold increase in the K+ concentration of the perfusate induced a small (less than 10 mV) depolarization in both subject populations. When Cl- in the perfusate was replaced by gluconate or SO2-(4) the nasal PD of normal subjects hyperpolarized (lumen became more negative) by approximately 35 mV. A significantly smaller response (less than 17 mV) was induced in CF homozygotes but not in heterozygotes (38 mV). The smaller response of CF subjects appears to reflect an absolute decrease in luminal surface Cl- permeability because pretreatment with amiloride did not increase the response to Cl- free solution (7 mV). Accordingly, three abnormalities (decreased Cl- permeability, raised PD, greater amiloride efficacy) have been identified in CF respiratory epithelia. Whereas "excessive" active Na+ transport can account for these abnormalities and the dessication of airway surface liquid, it is possible that a lower lumenal cell membrane Cl- permeability and inhibition of a potential path of Cl- secretion can also explain the observations. PMID:6853720
Chih-Ying Chen
2005-06-30
Two-phase flow through fractured media is important in petroleum, geothermal, and environmental applications. However, the actual physics and phenomena that occur inside fractures are poorly understood, and oversimplified relative permeability curves are commonly used in fractured reservoir simulations. In this work, an experimental apparatus equipped with a high-speed data acquisition system, real-time visualization, and automated image processing technology was constructed to study three transparent analog fractures with distinct surface roughnesses: smooth, homogeneously rough, and randomly rough. Air-water relative permeability measurements obtained in this study were compared with models suggested by earlier studies and analyzed by examining the flow structures. A method to evaluate the tortuosities induced by the blocking phase, namely the channel tortuosity, was proposed from observations of the flow structure images. The relationship between the coefficients of channel tortuosity and the relative permeabilities was studied with the aid of laboratory experiments and visualizations. Experimental data from these fractures were used to develop a broad approach for modeling two-phase flow behavior based on the flow structures. Finally, a general model deduced from these data was proposed to describe two-phase relative permeabilities in both smooth and rough fractures. For the theoretical analysis of liquid-vapor relative permeabilities, accounting for phase transformations, the inviscid bubble train models coupled with relative permeability concepts were developed. The phase transformation effects were evaluated by accounting for the molecular transport through liquid-vapor interfaces. For the steam water relative permeabilities, we conducted steam-water flow experiments in the same fractures as used for air-water experiments. We compared the flow behavior and relative permeability differences between two-phase flow with and without phase transformation effects
Review: Mathematical expressions for estimating equivalent permeability of rock fracture networks
NASA Astrophysics Data System (ADS)
Liu, Richeng; Li, Bo; Jiang, Yujing; Huang, Na
2016-06-01
Fracture networks play a more significant role in conducting fluid flow and solute transport in fractured rock masses, comparing with that of the rock matrix. Accurate estimation of the permeability of fracture networks would help researchers and engineers better assess the performance of projects associated with fluid flow in fractured rock masses. This study provides a review of previous works that have focused on the estimation of equivalent permeability of two-dimensional (2-D) discrete fracture networks (DFNs) considering the influences of geometric properties of fractured rock masses. Mathematical expressions for the effects of nine important parameters that significantly impact on the equivalent permeability of DFNs are summarized, including (1) fracture-length distribution, (2) aperture distribution, (3) fracture surface roughness, (4) fracture dead-end, (5) number of intersections, (6) hydraulic gradient, (7) boundary stress, (8) anisotropy, and (9) scale. Recent developments of 3-D fracture networks are briefly reviewed to underline the importance of utilizing 3-D models in future research.
Factors influencing unsteady relative permeability of a mixed-wet reservoir rock
Mohanty, K.K.; Miller, A.E. )
1991-09-01
Capillarity, viscous fingering, and heterogeneity influence the flow in a core plug and hence affect the relative permeability determined from an unsteady test. Several unsteady water/oil relative permeability tests were carried out in a mixed-wet core while in-situ 3D saturation distribution was monitored by a computerized-tomography (CT) scanner. Results illustrate included in this paper that, in the early part of the Johnson-Bossler-Naumann (JBN) method, relative permeability is dominated by fingering and heterogeneity effects. The later part of this method ({gt}1 PV), however, represents the relative permeability of the end-face saturation and is influenced by the capillary number and throughput. Thus, laboratory results must be scaled to the field on the basis of the flow parameters: end-effect, capillary, instability, and heterogeneity numbers.
Direct measurement of relative permeability in rocks from unsteady-state saturation profiles
NASA Astrophysics Data System (ADS)
Kianinejad, Amir; Chen, Xiongyu; DiCarlo, David A.
2016-08-01
We develop a method to measure liquid relative permeability in rocks directly from transient in situ saturation profiles during gravity drainage experiments. Previously, similar methods have been used for sandpacks; here, this method is extended to rocks by applying a slight overpressure of gas at the inlet. Relative permeabilities are obtained in a 60 cm long vertical Berea sandstone core during gravity drainage, directly from the measured unsteady-state in situ saturations along the core at different times. It is shown that for obtaining relative permeability using this method, if certain criteria are met, the capillary pressure of the rock can be neglected. However, it is essential to use a correct gas pressure gradient along the core. This involves incorporating the pressure drop at the outlet of the core due to capillary discontinuity effects. The method developed in this work obtains relative permeabilities in unsteady-state fashion over a wide range of saturations quickly and accurately.
Vasco, D.W.; Ferretti, Alessandro; Novali, Fabrizio
2008-05-01
Transient pressure variations within a reservoir can be treated as a propagating front and analyzed using an asymptotic formulation. From this perspective one can define a pressure 'arrival time' and formulate solutions along trajectories, in the manner of ray theory. We combine this methodology and a technique for mapping overburden deformation into reservoir volume change as a means to estimate reservoir flow properties, such as permeability. Given the entire 'travel time' or phase field, obtained from the deformation data, we can construct the trajectories directly, there-by linearizing the inverse problem. A numerical study indicates that, using this approach, we can infer large-scale variations in flow properties. In an application to Interferometric Synthetic Aperture (InSAR) observations associated with a CO{sub 2} injection at the Krechba field, Algeria, we image pressure propagation to the northwest. An inversion for flow properties indicates a linear trend of high permeability. The high permeability correlates with a northwest trending fault on the flank of the anticline which defines the field.
NASA Astrophysics Data System (ADS)
Tichauer, Kenneth M.; Osswald, Christian R.; Dosmar, Emily; Guthrie, Micah J.; Hones, Logan; Sinha, Lagnojita; Xu, Xiaochun; Mieler, William F.; St. Lawrence, Keith; Kang-Mieler, Jennifer J.
2015-06-01
Clinical symptoms of diabetic retinopathy are not detectable until damage to the retina reaches an irreversible stage, at least by today's treatment standards. As a result, there is a push to develop new, "sub-clinical" methods of predicting the onset of diabetic retinopathy before the onset of irreversible damage. With diabetic retinopathy being associated with the accumulation of long-term mild damage to the retinal vasculature, retinal blood vessel permeability has been proposed as a key parameter for detecting preclinical stages of retinopathy. In this study, a kinetic modeling approach used to quantify vascular permeability in dynamic contrast-enhanced medical imaging was evaluated in noise simulations and then applied to retinal videoangiography data in a diabetic rat for the first time to determine the potential for this approach to be employed clinically as an early indicator of diabetic retinopathy. Experimental levels of noise were found to introduce errors of less than 15% in estimates of blood flow and extraction fraction (a marker of vascular permeability), and fitting of rat retinal fluorescein angiography data provided stable maps of both parameters.
NASA Astrophysics Data System (ADS)
Rodrigues, L. M.; Anwar, S.
2013-12-01
Over the last two decades, several approaches to characterize porous medium were developed. One of them being the topology based Minkowski functionals, which are basic geometric measures defined for binary image of porous media. By segmenting three-dimensional (3D) pore space representations, it is possible to characterize quantitatively structural features at the pore scale such as porosity, pore mean curvature, specific surficial area, and pore connectivity using these measures. Structural features are believed to strongly control the permeability of porous media; however a rigorous mathematical validation of such relationship between structural features and the hydraulic property is missing in the literature. We hypothesize that rock permeability not only depend on the macroscopic properties such as porosity and grain size distribution but also depend on the structural features of porous media such as pore connectivity, specific surficial area, and pore mean curvature. We aim to develop a relationship between such structural features of porous media that occurs at pore scale with macroscopic properties such as hydraulic conductivity. Our hypothesis is tested by using a numerical scheme for computational fluid dynamics called Lattice Boltzmann method (LBM), which enables the estimation of hydraulic parameters such as tortuosity and permeability which are relatively difficult and time consuming when obtained from laboratory experiments. 3D pore networks with similar porosity but significantly different structural properties are numerically generated using SGeMS. A series of LBM based flow simulations in different 3D pore networks are designed to understand the correlation between the structural property of porous media and its permeability.
Kumar, Niyanta N.; Gautam, Mohan; Lochhead, Jeffrey J.; Wolak, Daniel J.; Ithapu, Vamsi; Singh, Vikas; Thorne, Robert G.
2016-01-01
Intranasal administration provides a non-invasive drug delivery route that has been proposed to target macromolecules either to the brain via direct extracellular cranial nerve-associated pathways or to the periphery via absorption into the systemic circulation. Delivering drugs to nasal regions that have lower vascular density and/or permeability may allow more drug to access the extracellular cranial nerve-associated pathways and therefore favor delivery to the brain. However, relative vascular permeabilities of the different nasal mucosal sites have not yet been reported. Here, we determined that the relative capillary permeability to hydrophilic macromolecule tracers is significantly greater in nasal respiratory regions than in olfactory regions. Mean capillary density in the nasal mucosa was also approximately 5-fold higher in nasal respiratory regions than in olfactory regions. Applying capillary pore theory and normalization to our permeability data yielded mean pore diameter estimates ranging from 13–17 nm for the nasal respiratory vasculature compared to <10 nm for the vasculature in olfactory regions. The results suggest lymphatic drainage for CNS immune responses may be favored in olfactory regions due to relatively lower clearance to the bloodstream. Lower blood clearance may also provide a reason to target the olfactory area for drug delivery to the brain. PMID:27558973
Kumar, Niyanta N; Gautam, Mohan; Lochhead, Jeffrey J; Wolak, Daniel J; Ithapu, Vamsi; Singh, Vikas; Thorne, Robert G
2016-01-01
Intranasal administration provides a non-invasive drug delivery route that has been proposed to target macromolecules either to the brain via direct extracellular cranial nerve-associated pathways or to the periphery via absorption into the systemic circulation. Delivering drugs to nasal regions that have lower vascular density and/or permeability may allow more drug to access the extracellular cranial nerve-associated pathways and therefore favor delivery to the brain. However, relative vascular permeabilities of the different nasal mucosal sites have not yet been reported. Here, we determined that the relative capillary permeability to hydrophilic macromolecule tracers is significantly greater in nasal respiratory regions than in olfactory regions. Mean capillary density in the nasal mucosa was also approximately 5-fold higher in nasal respiratory regions than in olfactory regions. Applying capillary pore theory and normalization to our permeability data yielded mean pore diameter estimates ranging from 13-17 nm for the nasal respiratory vasculature compared to <10 nm for the vasculature in olfactory regions. The results suggest lymphatic drainage for CNS immune responses may be favored in olfactory regions due to relatively lower clearance to the bloodstream. Lower blood clearance may also provide a reason to target the olfactory area for drug delivery to the brain. PMID:27558973
Use of geology in the interpretation of core-scale relative permeability data
Ringrose, P.S.; Jensen, J.L.; Sorbie, K.S.
1996-09-01
A number of factors, such as wettability, pore-size distribution, and core-scale heterogeneity, are known to affect the measured relative permeability in core plug samples. This paper focuses on the influence of geological structure at the laminaset scale on water-oil imbibition relative permeability curves. The endpoint positions and curve shapes vary as a function of the type of internal heterogeneity, the flow rate, and the assumptions on the pore-scale petrophysics (e.g. wettability). Interaction between the capillary forces and heterogeneity can occur at the cm-dm scale, which results in widely varying two-phase flow behavior for rocks with the same single-phase permeability. The geometry of heterogeneity as expressed in standard geological descriptions (e.g., cross-laminated, ripple-laminated, plane-laminated) can be translated into features of the expected relative permeability behavior for each rock type, thus aiding the interpretation of relative permeability data. The authors illustrate how their findings can help to interpret sets of relative permeability data from the field, using some examples from the Admire sand, El Dorado Field, Kansas.
Special core analyses and relative permeability measurement on Almond formation reservoir rocks
Maloney, D.; Doggett, K.; Brinkmeyer, A.
1993-02-01
This report describes the results from special core analyses and relative permeability measurements conducted on samples of rock from the Almond Formation in Greater Green River Basin of southwestern Wyoming. The core was from Arch Unit Well 121 of Patrick Draw field. Samples were taken from the 4,950 to 4,965 ft depth interval. Thin section evaluation, X-ray diffraction, routine permeability and porosity, capillary pressure and wettability tests were performed to characterize the samples. Fluid flow capacity characteristics were measured during two-phase unsteady- and steady-state and three-phase steady-state relative permeability tests. Test results are presented in tables and graphs. Relative permeability results are compared with those of a 260-mD, fired Berea sandstone sample which was previously subjected to similar tests. Brine relative permeabilities were similar for the two samples, whereas oil and gas relative permeabilities for the Almond formation rock were higher at equivalent saturation conditions compared to Berea results. Most of the tests described in this report were conducted at 74[degrees]F laboratory temperature. Additional tests are planned at 150[degrees]F temperature. Equipment and procedural modifications to perform the elevated temperature tests are described.
Special core analyses and relative permeability measurement on Almond formation reservoir rocks
Maloney, D.; Doggett, K.; Brinkmeyer, A.
1993-02-01
This report describes the results from special core analyses and relative permeability measurements conducted on samples of rock from the Almond Formation in Greater Green River Basin of southwestern Wyoming. The core was from Arch Unit Well 121 of Patrick Draw field. Samples were taken from the 4,950 to 4,965 ft depth interval. Thin section evaluation, X-ray diffraction, routine permeability and porosity, capillary pressure and wettability tests were performed to characterize the samples. Fluid flow capacity characteristics were measured during two-phase unsteady- and steady-state and three-phase steady-state relative permeability tests. Test results are presented in tables and graphs. Relative permeability results are compared with those of a 260-mD, fired Berea sandstone sample which was previously subjected to similar tests. Brine relative permeabilities were similar for the two samples, whereas oil and gas relative permeabilities for the Almond formation rock were higher at equivalent saturation conditions compared to Berea results. Most of the tests described in this report were conducted at 74{degrees}F laboratory temperature. Additional tests are planned at 150{degrees}F temperature. Equipment and procedural modifications to perform the elevated temperature tests are described.
Holditch, S.A.; Yao, C.Y.
1993-08-01
In this research, the authors have developed technology that allows an engineer to better understand mud filtration in low to medium permeability gas reservoirs. They use this knowledge to analyze log data to improve our estimates of formation permeability by layer. By developing accurate permeability profiles of the reservoir layers, they can optimize well completions in layered complex gas reservoirs.
Niibori, Y.; Tochiyama, O.; Chida, T.
1997-12-31
The authors have investigated the characteristic permeability on the basis of some probability density functions of permeability, applying the Monte Carlo method and FEM. It was found that its value does not depend on type of probability density function of permeability, but on the arithmetic mean, the standard deviation and the skewness of permeability. This paper describes the use of the stochastic values of permeability for estimating the rate of radioactivity release to the accessible environment, applying the advection-dispersion model to two-dimensional, heterogeneous media. When a discrete probability density function (referred to as the Bernoulli trials) and the lognormal distribution have common values for the arithmetic mean, the standard deviation and the skewness of permeability, the calculated transport rates (described as the pseudo impulse responses) show good agreements for Peclet number around 10 and the dimensionless standard deviation around 1. Further, it is found that the transport rates apparently depends not only on the arithmetic mean and the standard deviation, but also on the skewness of permeability. When the value of skewness does not follow the lognormal distribution which has only two independent parameters (the mean and the standard deviation), the authors can replicate the three moments estimated from an observed distribution of permeability, by using the Bernoulli trials having three independent parameters.
Estimates of crustal permeability on the Endeavour segment of the Juan de Fuca mid-ocean ridge
NASA Astrophysics Data System (ADS)
Wilcock, William S. D.; McNabb, Alex
1996-02-01
Observational studies of hydrothermal venting on the Endeavour segment of the Juan de Fuca Ridge place strong constraints on the spacing and area of vent fields, the depth of circulation, and the hydrothermal heat flux. A method is described to estimate a uniform crustal permeability from these parameters under the assumptions that upflow is confined to a narrow plume underlying each vent field and downflow can be described by potential flow into a point sink at the base of each plume. For a reasonable range of parameter values, the isotropic permeability of the Endeavour lies in the range 6 × 10 -13 to 6 × 10 -12 m 2. A significant elongation of vent fields along-axis suggests that the permeability structure is strongly anisotropic, with the across-axis permeability about an order of magnitude lower than the permeability in orthogonal directions.
An Experimental Study of CO2-Brine Relative Permeability in Sandstone
NASA Astrophysics Data System (ADS)
Chen, X.; DiCarlo, D. A.
2013-12-01
Accurate determinations of CO2-brine relative permeability are important for modeling potential CO2 storage scenarios. The most common assumption is that CO2-brine relative permeability is likely to be similar to oil-brine relative permeability for water-wet rocks. But recent measurements of CO2-brine relative permeability have differed greatly from oil-brine relative permeability; particularly, the measurements show a very low CO2 end point relative permeability (kr,CO2=0.1~0.2) and a relatively high residual water saturation (Swr>0.4) ( Lee et al. 2010, Zuo et al. 2012, Akbarabadi et al. 2013 and etc.). It has been hypothesized that the differences are related to CO2-brine having a different contact angle from oil-brine. In this study, we hypothesize that the differences are caused by large capillary end effects resulted from the very low CO2 viscosity. We conduct steady-state CO2-brine flow experiments in 2-foot-long and 2.8-inch-diamter Berea sandstone cores at 20 °C and 1500 psi. Four pressure taps drilled on a core allow both the total pressure drop and that across five individual sections to be measured. Three experiments, two drainage and one imbibition, have been conducted so far. Our results show: (1) The relative permeability to both brine and CO2 of the last section (downstream, 15 cm long) is significantly smaller than that of any of the middle three sections. This testifies that the capillary end effect makes the relative permeability under-measured at the end of a core. (2) The values of the middle three sections are very close to each other, which indicate the middle part of our core is free of capillary end effect. (3) The CO2 end point relative permeability is 0.3~0.5, which is much higher than the recent measurements. (4) The brine end point relative permeability during imbibition is about 0.08, which is close to literature data. Reference: Lee, Y.S, Kim, K. H. and Lee, T.H. et al. Analysis of CO2 Endpoint Relative Permeability and Injectivity
Numerical-Simulation-Based Determination of Relative Permeability in Laminated Rocks
NASA Astrophysics Data System (ADS)
Sedaghat, Mohammad H.; Gerke, Kirill; Azizmohammadi, Siroos; Matthai, Stephan
2016-04-01
Reservoir simulation using the extended Darcy's law approach requires relative permeability curves derived either via analytic saturation functions (Corey models etc.) or from special core analysis (SCAL). Since such experimental exploration of the space of influential parameters (pore geometry and wettability) is costly and time consuming, establishing ways to extract ensemble relative permeability from numerical simulation, kri, over the entire range of water saturation is highly desirable. Recent work has highlighted that the shape of relative permeability strongly depends on the balance between viscous, gravitational, and capillary forces. Our work focuses on finding accurate ways to compute ensemble kri(sw) for layered rocks when both capillary and viscous forces are strong. Two methods are proposed: an unsteady state saturation variation (USSV) method and a steady state saturation variation (SSSV) technique. To evaluate these approaches, SCAL data was extracted numerically from a real mm-scale layered sample. Results obtained with a Finite Element-Centered Finite Volume (FECFM) simulator, suggest that either of the approaches work significantly better than conventional unsteady state and JBN (Johnson-Bossler-Naumann) methods. Also, investigating saturation and velocity profiles within the sample indicates that bed-by-bed variations in wettability influence the flow pattern along/across interfaces making equipermeable layers behave like zones with different flow velocity. This dramatically challenges conventional relative permeability models and is addressed in terms of a new variable called relative permeability index.
a Novel Fractal Model for Two-Phase Relative Permeability in Porous Media
NASA Astrophysics Data System (ADS)
Lei, G.; Dong, P. C.; Mo, S. Y.; Gai, S. H.; Wu, Z. S.
2015-03-01
Multiphase flow in porous media is very important in various scientific and engineering fields. It has been shown that relative permeability plays an important role in determination of flow characteristics for multiphase flow. The accurate prediction of multiphase flow in porous media is hence highly important. In this work, a novel predictive model for relative permeability in porous media is developed based on the fractal theory. The predictions of two-phase relative permeability by the current mathematical models have been validated by comparing with available experimental data. The predictions by the proposed model show the same variation trend with the available experimental data and are in good agreement with the existing experiments. Every parameter in the proposed model has clear physical meaning. The proposed relative permeability is expressed as a function of the immobile liquid film thickness, pore structural parameters (pore fractal dimension Df and tortuosity fractal dimension DT) and fluid viscosity ratio. The effects of these parameters on relative permeability of porous media are discussed in detail.
Liu, Qingjie; Shen, Pingping; Wu, Yu-Shu
2004-03-15
A dynamic pore-scale network model is presented for investigating the effects of interfacial tension and oil-water viscosity on relative permeability during chemical flooding. This model takes into account both viscous and capillary forces in analyzing the impact of chemical properties on flow behavior or displacement configuration, as opposed to the conventional or invasion percolation algorithm which incorporates capillary pressure only. The study results indicate that both water and oil relative-permeability curves are dependent strongly on interfacial tension as well as an oil-water viscosity ratio. In particular, water and oil relative-permeability curves are both found to shift upward as interfacial tension is reduced, and they both tend to become linear versus saturation once interfacial tension is at low values. In addition, the oil-water viscosity ratio appears to have only a small effect under conditions of high interfacial tension. When the interfacial tension is low, however, water relative permeability decreases more rapidly (with the increase in the aqueous-phase viscosity) than oil relative permeability. The breakthrough saturation of the aqueous phase during chemical flooding tends to decrease with the reduction of interfacial tension and may also be affected by the oil-water viscosity ratio.
Uncertainty Assessment of Interpolation-Based Three Phase Relative Permeability Models
NASA Astrophysics Data System (ADS)
Ranaee, Ehsan; Giovanni, Porta; Monica, Riva; Alberto, Guadagnini
2013-04-01
A major element affecting uncertainty associated with prediction of three-phase flow in reservoirs is the parameterization of relative permeability. The latter are typically obtained through interpolation of two phase relative permeability data because of intrinsic difficulties related to direct measurements. Here, we discuss and analyze the saturation history dependency of water, oil and gas relative permeabilities and distinguish key features of three- and two- phase flow configurations. We start by investigating the advantages and limitations of several methodologies available in the literature and widely adopted in three-phase flow simulation. This analysis is performed by comparing model outcomes against experimental data published in the literature. The results provided by considering Corey-type equations as input to the aforesaid models is compared against the use of linear interpolation of two-phase measurements from oil-water and oil-gas environment. Our results show that available models typically fail to reproduce the set of experimental results ever the full range of saturations. This analysis suggests that not only saturation history but also wettability, residual oil and trapping behavior of oil during drainage and imbibition are key elements distinguishing between the physics of two- and three-phase settings. These effects should be taken in account to predict three-phase relative permeability. We then propose an alternative formulation to compute oil relative permability under three-phase conditions. Our model takes into account (i) the dependence of three-phase oil relative permeability on the saturation path, and (ii) the effect of wettability observed for three-phase systems. The model is based on a sigmoid-type interpolation of the oil relative permeability-saturation data in a two-phase oil-water system. Three-phase oil relative permeability is then computed through an additional interpolation between the oil-water effective sigmoid curve and
Water Retention Curve and Relative Permeability for Gas Production from Hydrate-Bearing Sediments
NASA Astrophysics Data System (ADS)
Mahabadi, N.; Dai, S.; Seol, Y.; Jang, J.
2014-12-01
Water retention curve (soil water characteristic curve SWCC) and relative permeability equations are important to determine gas and water production for gas hydrate development. However, experimental studies to determine fitting parameters of those equations are not available in the literature. The objective of this research is to obtain reliable parameters for capillary pressure functions and relative permeability equations applicable to hydrate dissociation and gas production. In order to achieve this goal, (1) micro X-ray Computer Tomography (CT) is used to scan the specimen under 10MPa effective stress, (2) a pore network model is extracted from the CT image, (3) hydrate dissociation and gas expansion are simulated in the pore network model, (4) the parameters for the van Genuchten-type soil water characteristic curve and relative permeability equation during gas expansion are suggested. The research outcome will enhance the ability of numerical simulators to predict gas and water production rate.
Flow visualization and relative permeability measurements in rough-walled fractures
Persoff, P.; Pruess, K.
1993-01-01
Two-phase (gas-liquid) flow experiments were done in a natural rock fracture and transparent replicas of natural fractures. Liquid was injected at constant volume flow rate, and gas was injected at either constant mass flow rate or constant pressure. When gas was injected at constant mass flow rate, the gas inlet pressure, and inlet and outlet capillary pressures, generally did not reach steady state but cycled irregularly. Flow visualization showed that this cycling was due to repeated blocking and unblocking of gas flow paths by liquid. Relative permeabilities calculated from flow rate and pressure data show that the sum of the relative permeabilities of the two phases is much less than 1, indicating that each phase interferes strongly with the flow of the other. Comparison of the relative permeability curves with typical curves for porous media (Corey curves) show that the phase interference is stronger in fractures than in typical porous media.
Control of fault geometry and permeability contrast on fault-related hydrothermal fluid flow
NASA Astrophysics Data System (ADS)
Andersen, Christine; Rüpke, Lars; Hasenclever, Jörg; Grevemeyer, Ingo; Petersen, Sven
2015-04-01
High-temperature black smoker systems along slow-spreading ridges such as the Mid-Atlantic Ridge (MAR) are frequently related to tectonic fault zones and therefore are commonly found off axis. While preferential flow of hot fluids along highly permeable, fractured rocks seems intuitive, such efficient flow leads to the entrainment of cold ambient seawater resulting in a drastic decrease in vent temperatures. This temperature drop is difficult to reconcile with high-temperature black smoker activity observed at outcropping fault zones. In our recent study we aim to resolve this apparent contradiction by combining newly acquired seismological data (Grevemeyer et al., 2013) from the high-temperature, off-axis Logatchev 1 hydrothermal field (LHF1) along the MAR with 2D hydrothermal flow modeling. The seismic data shows intense off-axis seismicity with focal mechanisms suggesting a fault zone dipping from LHF1 toward the ridge axis. In order to explain fault-related high-temperature hydrothermal discharge as observed at LHF1, our simulations predict that fault zones need to be just permeable and wide enough to capture and redirect hydrothermal plumes rising from depth but, because they are not isolated conduits, must not be too wide or permeable in order to prevent cooling through mixing with ambient colder fluids. The two controlling parameters fault width and permeability contrast between fault and surrounding rock can be expressed as a single term, the relative transmissibility of the fault zone, which is defined by the product of the two. Low relative fault transmissibility leads to plumes that cross the fault and vent above the heat source rather than at the fault termination at the seafloor. High relative fault transmissibility leads to significantly lower vent exit temperatures than those observed at black smoker systems. Our findings further illustrate the intrinsic relationship between permeability, mass flux and upflow temperature: the higher the permeability
Nagel, W.A.; Walsh, D.J.
1983-12-20
A method for determining the relative permeability of an earth formation surrounding a wellbore having a longitudinal axis comprising the steps of injecting a fluid into the wellbore such that the fluid invades the earth formation, measuring at different points in time a quantity that varies in response to the radius from the wellbore axis of the fluid invasion into the earth formation, determining in response to said quantity measurements the radius from the wellbore axis of the fluid invasion into the earth formation, and determining in response to said radii determinations the relative permeability of the earth formation. A system for performing the method is also disclosed.
NASA Astrophysics Data System (ADS)
Popov, Evgeny; Popov, Yury; Spasennykh, Mikhail; Kozlova, Elena; Chekhonin, Evgeny; Zagranovskaya, Dzhuliya; Belenkaya, Irina; Alekseev, Aleksey
2016-04-01
A practical method of organic-rich intervals identifying within the low-permeable dispersive rocks based on thermal conductivity measurements along the core is presented. Non-destructive non-contact thermal core logging was performed with optical scanning technique on 4 685 full size core samples from 7 wells drilled in four low-permeable zones of the Bazhen formation (B.fm.) in the Western Siberia (Russia). The method employs continuous simultaneous measurements of rock anisotropy, volumetric heat capacity, thermal anisotropy coefficient and thermal heterogeneity factor along the cores allowing the high vertical resolution (of up to 1-2 mm). B.fm. rock matrix thermal conductivity was observed to be essentially stable within the range of 2.5-2.7 W/(m*K). However, stable matrix thermal conductivity along with the high thermal anisotropy coefficient is characteristic for B.fm. sediments due to the low rock porosity values. It is shown experimentally that thermal parameters measured relate linearly to organic richness rather than to porosity coefficient deviations. Thus, a new technique employing the transformation of the thermal conductivity profiles into continuous profiles of total organic carbon (TOC) values along the core was developed. Comparison of TOC values, estimated from the thermal conductivity values, with experimental pyrolytic TOC estimations of 665 samples from the cores using the Rock-Eval and HAWK instruments demonstrated high efficiency of the new technique for the organic rich intervals separation. The data obtained with the new technique are essential for the SR hydrocarbon generation potential, for basin and petroleum system modeling application, and estimation of hydrocarbon reserves. The method allows for the TOC richness to be accurately assessed using the thermal well logs. The research work was done with financial support of the Russian Ministry of Education and Science (unique identification number RFMEFI58114X0008).
A study of relative permeability for steam-water flow in porous media
Ambusso, W.; Satik, C.; Horne, R.
1996-12-31
We report on continuing experimental and numerical efforts to obtain steam-water relative permeability functions and to assess effect of heat transfer and phase change. To achieve these, two sets of steady-state flow experiments were conducted: one with nitrogen and water and another with steam and water. During these experiments, a mixture of nitrogen-water (or steam-water) was injected into a Berea sandstone core. At the onset of steady state conditions, three-dimensional saturation distributions were obtained by using a high resolution X-ray computer tomography scanner. By identifying a length of the core over which a flat saturation profile exists and measuring the pressure gradient associated with this length, we calculated relative permeabilities for nitrogen-water flow experiments. The relative permeability relations obtained in this case were in good agreement with those reported by other investigators. Another attempt was also made to conduct a steamwater flow experiment under adiabatic conditions. This experiment was completed with partial success due to the difficulties encountered during the experiment. The results of this experiment showed that a flat saturation profile actually developed over a substantial length of the core even at a comparatively modest injection rate (6 grams per minute) with low steam quality (4% by mass). The completion of this set of experiments should yield steam-water relative permeability relations in the near future.
A study of relative permeability for steam-water flow in porous media
Ambusso, Willis; Satik, Cengiz; Horne, Roland
1996-01-24
We report on continuing experimental and numerical efforts to obtain steam-water relative permeability functions and to assess effect of heat transfer and phase change. To achieve these, two sets of steady-state flow experiments were conducted: one with nitrogen and water and another with steam and water. During these experiments, a mixture of nitrogen-water (or steam-water) was injected into a Berea sandstone core. At the onset of steady state conditions, three-dimensional saturation distributions were obtained by using a high resolution X-ray computer tomography scanner. By identifying a length of the core over which a flat saturation profile exists and measuring the pressure gradient associated with this length, we calculated relative permeabilities for nitrogen-water flow experiments. The relative permeability relations obtained in this case were in good agreement with those reported by other investigators. Another attempt was also made to conduct a steam-water flow experiment under adiabatic conditions. This experiment was completed with partial success due to the difficulties encountered during the experiment. The results of this experiment showed that a flat saturation profile actually developed over a substantial length of the core even at a comparatively modest injection rate (6 grams per minute) with low steam quality (4% by mass). The completion of this set of experiments should yield steam-water relative permeability relations in the near future.
Changes in pore geometry and relative permeability caused by carbonate precipitation in porous media
NASA Astrophysics Data System (ADS)
Jiang, Fei; Tsuji, Takeshi
2014-11-01
The C O2 behavior within the reservoirs of carbon capture and storage projects is usually predicted from large-scale simulations of the reservoir. A key parameter in reservoir simulation is relative permeability. However, mineral precipitation alters the pore structure over time, and leads correspondingly to permeability changing with time. In this study, we numerically investigate the influence of carbonate precipitation on relative permeability during C O2 storage. The pore spaces in rock samples were extracted by high-resolution microcomputed tomography (CT) scanned images. The fluid velocity field within the three-dimensional pore spaces was calculated by the lattice Boltzmann method, while reactive transport with calcite deposition was modeled by an advection-reaction formulation solved by the finite volume method. To increase the computational efficiency and reduce the processing time, we adopted a graphics processing unit parallel computing technique. The relative permeability of the sample rock was then calculated by a highly optimized two-phase lattice Boltzmann model. We also proposed two pore clogging models. In the first model, the clogging processes are modeled by transforming fluid nodes to solid nodes based on their precipitated mass level. In the second model, the porosity is artificially reduced by adjusting the gray scale threshold of the CT images. The developed method accurately simulates the mineralization process observed in laboratory experiment. Precipitation-induced evolution of pore structure significantly influenced the absolute permeability. The relative permeability, however, was much more influenced by pore reduction in the nonwetting phase than in the wetting phase. The output of the structural changes in pore geometry by this model could be input to C O2 reservoir simulators to investigate the outcome of sequestered C O2 .
Jiang, Fei; Tsuji, Takeshi
2014-11-01
The CO_{2} behavior within the reservoirs of carbon capture and storage projects is usually predicted from large-scale simulations of the reservoir. A key parameter in reservoir simulation is relative permeability. However, mineral precipitation alters the pore structure over time, and leads correspondingly to permeability changing with time. In this study, we numerically investigate the influence of carbonate precipitation on relative permeability during CO_{2} storage. The pore spaces in rock samples were extracted by high-resolution microcomputed tomography (CT) scanned images. The fluid velocity field within the three-dimensional pore spaces was calculated by the lattice Boltzmann method, while reactive transport with calcite deposition was modeled by an advection-reaction formulation solved by the finite volume method. To increase the computational efficiency and reduce the processing time, we adopted a graphics processing unit parallel computing technique. The relative permeability of the sample rock was then calculated by a highly optimized two-phase lattice Boltzmann model. We also proposed two pore clogging models. In the first model, the clogging processes are modeled by transforming fluid nodes to solid nodes based on their precipitated mass level. In the second model, the porosity is artificially reduced by adjusting the gray scale threshold of the CT images. The developed method accurately simulates the mineralization process observed in laboratory experiment. Precipitation-induced evolution of pore structure significantly influenced the absolute permeability. The relative permeability, however, was much more influenced by pore reduction in the nonwetting phase than in the wetting phase. The output of the structural changes in pore geometry by this model could be input to CO_{2} reservoir simulators to investigate the outcome of sequestered CO_{2}. PMID:25493903
Investigating the Relative Permeability of Tight Porous Media Using a Multiscale Network Model
NASA Astrophysics Data System (ADS)
Mehmani, A.; Prodanovic, M.
2013-12-01
Tight reservoirs, such as tight gas sandstone and tight carbonates, are rich sources of oil and gas that can significantly benefit the high global energy demand. However, the petrophysical properties (such as permeability or capillary pressure) of these so called unconventional reservoirs is difficult to quantify in terms of only porosity or saturation. This is mainly due to the high heterogeneity in pore shape, pore configuration, pore interconnectivity and a lack of understanding of fluid physics within said porous media. One unorthodox petrophysical phenomenon that remains inexplicable via conventional models is what is coined as 'permeability jail' (Shanley et al, 2004). By definition, a permeability jail is a range of water saturation in which neither the wetting phase nor the nonwetting phase is capable of moving. We investigate the effects of fluid physics (snap-off, film flow and wettability) and pore connectivity (pore shape and pore connectivity due to cementation and existence of microporosity) on tight rock relative permeability curves. Pore level modeling has become an established approach in investigating the effects of various pore structure features and fluid behaviors in pore scale on macroscopic petrophysical properties. We construct multiscale pore network flow models that contain both macro- (primary) and microporosity (secondary porosity). We first build theoretical network models based on granular packings to isolate the effects of each pore structure feature as well as fluid physics on both drainage and imbibition relative permeability curves. We then extend our method to imaged media to predict the relative permeability curves of Estaillades limestone based on X-ray microtomography images with identified solid, microporous and pore spaces.
NASA Astrophysics Data System (ADS)
Gharbi, Oussama; Blunt, Martin J.
2012-12-01
We use pore network modeling to study the impact of wettability and connectivity on waterflood relative permeability for a set of six carbonate samples. Four quarry samples are studied, Indiana, Portland, Guiting, and Mount Gambier, along with two subsurface samples obtained from a deep saline Middle Eastern aquifer. The pore space is imaged in three dimensions using X-ray microtomography at a resolution of a few microns. The images are segmented into pore and solid, and a topologically representative network of pores and throats is extracted from these images. We then simulate quasi-static displacement in the networks. We represent mixed-wet behavior by varying the oil-wet fraction of the pore space. The relative permeability is strongly dependent on both the wettability and the average coordination number of the network. We show that traditional measures of wettability based on the point where the relative permeability curves cross are not reliable. Good agreement is found between our calculations and measurements of relative permeability on carbonates in the literature. This work helps establish a library of benchmark samples for multiphase flow and transport computations. The implications of the results for field-scale displacement mechanisms are discussed, and the efficiency of waterflooding as an oil recovery process in carbonate reservoirs is assessed depending on the wettability and pore space connectivity.
NASA Astrophysics Data System (ADS)
Osterman, Gordon; Keating, Kristina; Binley, Andrew; Slater, Lee
2016-06-01
We estimate parameters from the Katz and Thompson permeability model using laboratory complex electrical conductivity (CC) and nuclear magnetic resonance (NMR) data to build permeability models parameterized with geophysical measurements. We use the Katz and Thompson model based on the characteristic hydraulic length scale, determined from mercury injection capillary pressure estimates of pore throat size, and the intrinsic formation factor, determined from multisalinity conductivity measurements, for this purpose. Two new permeability models are tested, one based on CC data and another that incorporates CC and NMR data. From measurements made on forty-five sandstone cores collected from fifteen different formations, we evaluate how well the CC relaxation time and the NMR transverse relaxation times compare to the characteristic hydraulic length scale and how well the formation factor estimated from CC parameters compares to the intrinsic formation factor. We find: (1) the NMR transverse relaxation time models the characteristic hydraulic length scale more accurately than the CC relaxation time (R2 of 0.69 and 0.33 and normalized root mean square errors (NRMSE) of 0.16 and 0.21, respectively); (2) the CC estimated formation factor is well correlated with the intrinsic formation factor (NRMSE=0.23). We demonstrate that that permeability estimates from the joint-NMR-CC model (NRMSE=0.13) compare favorably to estimates from the Katz and Thompson model (NRMSE=0.074). This model advances the capability of the Katz and Thompson model by employing parameters measureable in the field giving it the potential to more accurately estimate permeability using geophysical measurements than are currently possible.
Connected pathway relative permeability from pore-scale imaging of imbibition
NASA Astrophysics Data System (ADS)
Berg, S.; Rücker, M.; Ott, H.; Georgiadis, A.; van der Linde, H.; Enzmann, F.; Kersten, M.; Armstrong, R. T.; de With, S.; Becker, J.; Wiegmann, A.
2016-04-01
Pore-scale images obtained from a synchrotron-based X-ray computed micro-tomography (μCT) imbibition experiment in sandstone rock were used to conduct Navier-Stokes flow simulations on the connected pathways of water and oil phases. The resulting relative permeability was compared with steady-state Darcy-scale imbibition experiments on 5 cm large twin samples from the same outcrop sandstone material. While the relative permeability curves display a large degree of similarity, the endpoint saturations for the μCT data are 10% in saturation units higher than the experimental data. However, the two datasets match well when normalizing to the mobile saturation range. The agreement is particularly good at low water saturations, where the oil is predominantly connected. Apart from different saturation endpoints, in this particular experiment where connected pathway flow dominates, the discrepancies between pore-scale connected pathway flow simulations and Darcy-scale steady-state data are minor overall and have very little impact on fractional flow. The results also indicate that if the pore-scale fluid distributions are available and the amount of disconnected non-wetting phase is low, quasi-static flow simulations may be sufficient to compute relative permeability. When pore-scale fluid distributions are not available, fluid distributions can be obtained from a morphological approach, which approximates capillary-dominated displacement. The relative permeability obtained from the morphological approach compare well to drainage steady state whereas major discrepancies to the imbibition steady-state experimental data are observed. The morphological approach does not represent the imbibition process very well and experimental data for the spatial arrangement of the phases are required. Presumably for modeling imbibition relative permeability an approach is needed that captures moving liquid-liquid interfaces, which requires viscous and capillary forces simultaneously.
Estimating permeability using median pore-throat radius obtained from mercury intrusion porosimetry
NASA Astrophysics Data System (ADS)
Gao, Zhiye; Hu, Qinhong
2013-04-01
Mercury intrusion porosimetry (MIP) has been widely used to characterize the pore structure for various types of porous media. Several relationships between permeability and pore structure information (e.g., porosity and pore-size distribution) have been developed in the literature. This work is to introduce a new, and simpler, empirical equation to predict permeability by solely using the median pore-throat radius (r50), which is the pore-throat radius corresponding to 50% mercury saturation. The total of 18 samples used in this work have a wide range of permeability, from 10-6 to 103 mD, which makes the new equation more applicable. The predicted permeabilities by using the new equation are comparable with permeability values obtained from other measurement methods, as shown from ten samples with permeability data measured with nitrogen.
Schlueter, E.M.; Cook, N.G.W. |; Witherspoon, P.A.; Myer, L.R.
1994-04-01
Experiments to study relative permeabilities of a partially saturated rock have been carried out in Berea sandstone using fluids that can be solidified in place. The effective permeability of the spaces not occupied by the wetting fluid (paraffin wax) or the nonwetting fluid (Wood`s metal), have been measured at various saturations after solidifying each of the phases. The tests were conducted on Berea sandstone samples that had an absolute permeability of about 600 md. The shape of the laboratory-derived relative permeability vs. saturation curves measured with the other phase solidified conforms well with typical curves obtained using conventional experimental methods. The corresponding wetting and nonwetting fluid distributions at different saturations are presented and analyzed in light of the role of the pore structure in the invasion process, and their impact on relative permeability and capillary pressure. Irreducible wetting and nonwetting phase fluid distributions are studied. The effect of clay minerals on permeability is also assessed.
Pore scale modeling of porosity-permeability relations in reacting porous media
NASA Astrophysics Data System (ADS)
Raoof, A.; Spiers, C. J.; Hassanizadeh, M.; Nick, H.
2012-12-01
The main objective of this research is to gain a better understanding of the relation between the progress of chemical reactions and porosity/permeability evolution in porous media, such as a reservoir rock in which CO2 is to be stored. The microscopic pore space is modeled using a Multi-Directional Pore Network (MDPN), which allows for a distribution of coordination number ranging between one and 26. This topological property, together with geometrical distributions of pore sizes are used to mimic the microstructure of real porous media at the mm to cm scale. In order to simulate transport of multi-component chemical species, mass balance equations are solved within each element of the network (i.e., pore body and pore throat) . We have considered both advective and diffusive transport processes within the pore spaces together with multi-component chemical reactions, allowing for both equilibrium and kinetic calculations. By averaging over the network domain, we calculate the evolution of porosity and permeability as well as of flux-averaged concentration breakthrough curves. We obtain constitutive relations linking porosity and permeability as they involve during dissolution of calcium carbonate within a calcite-cemented sandstone, under conditions relevant to geological storage of CO2. Effect of distribution of reactive minerals is evaluated and transition between advection- and diffusion- dominated transport is shown to play a key role in determining evolution of porosity and permeability in reservoir rocks.
Pore scale modeling of porosity-permeability relations in reacting porous media
NASA Astrophysics Data System (ADS)
Raoof, A.; Spiers, C. J.; Hassanizadeh, S.; Nick, H. M.
2013-12-01
The main objective of this research is to gain a better understanding of the relation between the progress of chemical reactions and porosity/permeability evolution in porous media, such as a reservoir rock in which CO2 is to be stored. The microscopic pore space is modeled using a Multi-Directional Pore Network (MDPN), which allows for a distribution of coordination number. This topological property, together with geometrical distributions of pore sizes are used to mimic the microstructure of real porous media at the mm to cm scale. In order to simulate transport of multi-component chemical species, mass balance equations are solved within each element of the network (i.e., pore body and pore throat) . We have considered both advective and diffusive transport processes within the pore spaces together with multi-component chemical reactions, allowing for both equilibrium and kinetic calculations. By averaging over the network domain, we calculate the evolution of porosity and permeability as well as of flux-averaged concentration breakthrough curves. We obtain constitutive relations linking porosity and permeability as they involve during dissolution of calcium carbonate within a calcite-cemented sandstone as well as a carbonate rock, under conditions relevant to geological storage of CO2. Effect of distribution of reactive minerals is evaluated and transition between advection- and diffusion- dominated transport is shown to play a key role in determining evolution of porosity and permeability in reservoir rocks.
Quantifying Evaporation and Evaluating Runoff Estimation Methods in a Permeable Pavement System
The U.S. Environmental Protection Agency constructed a 0.4-ha parking lot in Edison, New Jersey, that incorporated permeable pavement in the parking lanes which were designed to receive run-on from the impervious hot-mix asphalt driving lanes. Twelve lined permeable pavement sec...
NASA Astrophysics Data System (ADS)
Yang, Z.; Mohanty, B.
2013-12-01
Describing convective nonwetting phase flow in unsaturated porous media requires knowledge of relative nonwetting pahse permeability. This study was mainly conducted to formulate a general nonwetting pahse relative permeability model for porous media with lognormal pore size distribution based on Kosugi (1999) work for unsaturated relative hydraulic conductivity. The model-data comparison showed that the existing commonly used Burdine and Mualem permeability model could overestimate experimental relative nonwetting phase permeability data. The sensitivity analysis of the permeability model emphasized the importance of different pore tortuosity-connectivity value for gas and water phase. Subsequently, the suggested modified Burdine and Mualem permeability model for (alpha,beta,eta) in the general nonwetting phase permeability model should be (2.5, 2, 1) and (2, 1, 2) respectively. These two suggested models have the lowest mean root mean square error (RMSE) among the investigated permeability models. This finding could present more accurate permeability model parameterization in the multiphase subsurface flow modeling under isothermal and non-isothermal conditions.
Estimating diffusion coefficients in low-permeability porous media using a macropore column
Young, D.F.; Ball, W.P.
1998-09-01
Diffusion coefficients in an aquitard material were measured by conducting miscible solute transport experiments through a specially constructed macropore column. Stainless steel HPLC columns were prepared in a manner that created an annular region of repacked aquitard material and a central core of medium-grained quartz sand. The column transport approach minimizes volatilization and sorption losses that can be problematic when measuring hydrophobic organic chemical diffusion with diffusion-cell methods or column-sectioning techniques. In the transport experiments, solutes (triated water, 1,2,4-trichlorobenzene, and tetrachloroethene) were transported through the central core by convection and hydrodynamic dispersion and through the low-permeability annulus by radial diffusion. All transport parameters were independently measured except for the effective diffusion coefficient in the aquitard material, which was obtained by model fitting. Batch-determined retardation factors agreed very closely with moment-derived retardation factors determined from the column experiments, and no evidence of pore exclusion was found. A model with retarded diffusion was found to apply, and the effective tortuosity factor of the aquitard material was estimated at an average value of 5.1.
Levine, Jonathan S; Goldberg, David S; Lackner, Klaus S; Matter, Juerg M; Supp, Michael G; Ramakrishnan, T S
2014-01-01
To mitigate anthropogenically induced climate change and ocean acidification, net carbon dioxide emissions to the atmosphere must be reduced. One proposed option is underground CO2 disposal. Large-scale injection of CO2 into the Earth's crust requires an understanding of the multiphase flow properties of high-pressure CO2 displacing brine. We present laboratory-scale core flooding experiments designed to measure CO2 endpoint relative permeability for CO2 displacing brine at in situ pressures, salinities, and temperatures. Endpoint drainage CO2 relative permeabilities for liquid and supercritical CO2 were found to be clustered around 0.4 for both the synthetic and natural media studied. These values indicate that relative to CO2, water may not be strongly wetting the solid surface. Based on these results, CO2 injectivity will be reduced and pressure-limited reservoirs will have reduced disposal capacity, though area-limited reservoirs may have increased capacity. Future reservoir-scale modeling efforts should incorporate sensitivity to relative permeability. Assuming applicability of the experimental results to other lithologies and that the majority of reservoirs are pressure limited, geologic carbon sequestration would require approximately twice the number of wells for the same injectivity. PMID:24274391
NASA Astrophysics Data System (ADS)
Lamorski, Krzysztof; Sławiński, Cezary; Barna, Gyöngyi
2014-05-01
There are some important macroscopic properties of the soil porous media such as: saturated permeability and water retention characteristics. These soil characteristics are very important as they determine soil transport processes and are commonly used as a parameters of general models of soil transport processes used extensively for scientific developments and engineering practise. These characteristics are usually measured or estimated using some statistical or phenomenological modelling, i.e. pedotransfer functions. On the physical basis, saturated soil permeability arises from physical transport processes occurring at the pore level. Current progress in modelling techniques, computational methods and X-ray micro-tomographic technology gives opportunity to use direct methods of physical modelling for pore level transport processes. Physically valid description of transport processes at micro-scale based on Navier-Stokes type modelling approach gives chance to recover macroscopic porous medium characteristics from micro-flow modelling. Water microflow transport processes occurring at the pore level are dependent on the microstructure of porous body and interactions between the fluid and the medium. In case of soils, i.e. the medium there exist relatively big pores in which water can move easily but also finer pores are present in which water transport processes are dominated by strong interactions between the medium and the fluid - full physical description of these phenomena is a challenge. Ten samples of different soils were scanned using X-ray computational microtomograph. The diameter of samples was 5 mm. The voxel resolution of CT scan was 2.5 µm. Resulting 3D soil samples images were used for reconstruction of the pore space for further modelling. 3D image threshholding was made to determine the soil grain surface. This surface was triangulated and used for computational mesh construction for the pore space. Numerical modelling of water flow through the
Daigle, Hugh; Rice, Mary Anna; Daigle, Hugh
2015-12-14
Relative permeabilities to water and gas are important parameters for accurate modeling of the formation of methane hydrate deposits and production of methane from hydrate reservoirs. Experimental measurements of gas and water permeability in the presence of hydrate are difficult to obtain. The few datasets that do exist suggest that relative permeability obeys a power law relationship with water or gas saturation with exponents ranging from around 2 to greater than 10. Critical path analysis and percolation theory provide a framework for interpreting the saturation-dependence of relative permeability based on percolation thresholds and the breadth of pore size distributions, which may be determined easily from 3-D images or gas adsorption-desorption hysteresis. We show that the exponent of the permeability-saturation relationship for relative permeability to water is related to the breadth of the pore size distribution, with broader pore size distributions corresponding to larger exponents. Relative permeability to water in well-sorted sediments with narrow pore size distributions, such as Berea sandstone or Toyoura sand, follows percolation scaling with an exponent of 2. On the other hand, pore-size distributions determined from argon adsorption measurements we performed on clays from the Nankai Trough suggest that relative permeability to water in fine-grained intervals may be characterized by exponents as large as 10 as determined from critical path analysis. We also show that relative permeability to the gas phase follows percolation scaling with a quadratic dependence on gas saturation, but the threshold gas saturation for percolation changes with hydrate saturation, which is an important consideration in systems in which both hydrate and gas are present, such as during production from a hydrate reservoir. Our work shows how measurements of pore size distributions from 3-D imaging or gas adsorption may be used to determine relative permeabilities.
Christiansen, R.L.; Kalbus, J.S.; Howarth, S.M.
1997-05-01
This report documents, demonstrates, evaluates, and provides theoretical justification for methods used to convert experimental data into relative permeability relationships. The report facilities accurate determination of relative permeabilities of anhydride rock samples from the Salado Formation at the Waste Isolation Pilot Plant (WIPP). Relative permeability characteristic curves are necessary for WIPP Performance Assessment (PA) predictions of the potential for flow of waste-generated gas from the repository and brine flow into repository. This report follows Christiansen and Howarth (1995), a comprehensive literature review of methods for measuring relative permeability. It focuses on unsteady-state experiments and describes five methods for obtaining relative permeability relationships from unsteady-state experiments. Unsteady-state experimental methods were recommended for relative permeability measurements of low-permeability anhydrite rock samples form the Salado Formation because these tests produce accurate relative permeability information and take significantly less time to complete than steady-state tests. Five methods for obtaining relative permeability relationships from unsteady-state experiments are described: the Welge method, the Johnson-Bossler-Naumann method, the Jones-Roszelle method, the Ramakrishnan-Cappiello method, and the Hagoort method. A summary, an example of the calculations, and a theoretical justification are provided for each of the five methods. Displacements in porous media are numerically simulated for the calculation examples. The simulated product data were processed using the methods, and the relative permeabilities obtained were compared with those input to the numerical model. A variety of operating conditions were simulated to show sensitivity of production behavior to rock-fluid properties.
Flow Rate- and Fracture Property Dependence of Fracture-Matrix Ensemble Relative Permeability
NASA Astrophysics Data System (ADS)
Matthai, S. K.; Lang, P.; Bazrafkan, S.
2012-12-01
The grid-block scale ensemble relative permeability, kri of fractured porous rock with appreciable matrix permeability is of decisive interest to reservoir simulation and the prediction of production, injector-producer water breakthrough, and ultimate recovery. While the dynamic behaviour of naturally fractured reservoirs (NFR) already provides many clues about (pseudo) kri on the inter-well length scale, such data are difficult to interpret because, in the subsurface, the exact fracture geometry is unknown. Here we present numerical simulation results from discrete fracture and matrix (DFM) unstructured grid hybrid FEM-FVM simulation models, predicting the shape of fracture-matrix kri curves. In contrast to our earlier work, we also simulate capillary fracture matrix transfer (CFMT) and without relying the frequently made simplifying assumption that fracture saturation reflects fracture-matrix capillary pressure equilibrium. We also employ a novel discretization of saturation which permits jump discontinuities to develop across the fracture-matrix interface. This increased physical realism permits - for the first time - to test our earlier semi-analytical model of the flow rate dependence of relative permeability, ensuing from CFMT. The sensitivity analysis presented here constrains CMFT-related flow rate dependence of kri and illustrates how it manifests itself in two geometries of layer-restricted well-developed fracture patterns mapped in the field. We have also investigated the dependence of kri on fracture aperture as computed using discrete element analysis for plausible states of in situ stress. Our results indicate that fracture-matrix ensemble relative permeability can be matched with a new semi-analytic model taking into account the fracture-matrix flux ratio, the wetted fracture-matrix interface area as a function of saturation and the breakthrough saturation. However, we also detect a scale dependence of kri requiring a more elaborate treatment.
Three-phase flow in porous media: A review of experimental studies on relative permeability
NASA Astrophysics Data System (ADS)
Alizadeh, A. H.; Piri, M.
2014-09-01
We present a detailed, synthesized review of experimental studies on three-phase relative permeability published since 1980. We provide comprehensive, yet highly focused, analysis of critical aspects of the field and their evolution over the last three decades. In particular, we review the effects of saturation history, wettability, spreading, and layer drainage on the measured flow properties. We also list all the processes, rock types, fluid systems, and measurement techniques in order to provide a clear map for future studies. Behavior of the measured three-phase relative permeabilities with respect to fluid saturations, saturation histories, wettability of rock samples, spreading characteristics, interfacial tensions, and other pertinent properties are carefully discussed. Studies that use a diverse set of experimental techniques and data analysis to deduce relative permeability are included. The experimental techniques that should be utilized to reduce uncertainty are also explored. We interpret the measured properties and outcomes of different studies and compare them to substantiate distinct trends at various saturation ranges and provide ideas for new studies. This is intended to distill a clear image of where the field stands and to allow composition of possible paths for future investigations. The areas of critical relevance that have not been investigated or require further studies are highlighted.
Upscaling porosity-permeability relation in porous media; reactive pore-scale modeling
NASA Astrophysics Data System (ADS)
Raoof, A.; Spiers, C.; Hassanizadeh, S. M.
2012-04-01
The main objective of this research is to gain a better understanding of the relation between porosity-permeability evolution at the local scale and its manifestation at larger (REV) scales. Continuum pore space changes during the progress of chemical reactions in porous media. Such phenomena takes place in reservoir rock in which CO2 is to be stored. In the present approach, the microscopic pore space is modeled using a Multi-Directional Pore Network (MDPN), which allows for a distribution of pore coordination number ranging between one and 26. This topological property, together with geometrical distributions of pore sizes are used to mimic the microstructure of real porous media at the REV scale. In order to simulate transport of multi-component chemical species, mass balance equations are solved within each element of the network (i.e., pore body and pore throat). We have considered both advective and diffusive transport processes within the pore spaces and have used a Reaction Network Simulator to model multi-component chemical reactions, allowing for both equilibrium and kinetic calculations. By averaging over the network domain, we calculate the evolution of porosity and permeability as well as of flux-averaged concentration breakthrough curves. We have obtained constitutive relations linking porosity and permeability as the pore space involve during dissolution of calcium carbonate within calcite-cemented sandstone, under conditions relevant to geological storage of CO2. Results show that transition between advection- and diffusion- dominated transport, along with the distribution of reactive sites between pore bodies and pore throats, play a key role in determining evolution of porosity and permeability.
Relative permeability and trapping of CO2 and water in sandstone rocks at reservoir conditions
NASA Astrophysics Data System (ADS)
Krevor, Samuel C. M.; Pini, Ronny; Zuo, Lin; Benson, Sally M.
2012-02-01
We report the results of an experimental investigation into the multiphase flow properties of CO2 and water in four distinct sandstone rocks: a Berea sandstone and three reservoir rocks from formations into which CO2 injection is either currently taking place or is planned. Drainage relative permeability and residual gas saturations were measured at 50°C and 9 MPa pore pressure using the steady state method in a horizontal core flooding apparatus with fluid distributions observed using x-ray computed tomography. Absolute permeability, capillary pressure curves, and petrological studies were performed on each sample. Relative permeability in the four samples is consistent with general characteristics of drainage in strongly water-wet rocks. Measurements in the Berea sample are also consistent with past measurements in Berea sandstones using both CO2/brine and oil/water fluid systems. Maximum observed saturations and permeabilities are limited by the capillary pressure that can be achieved in the experiment and do not represent endpoint values. It is likely that maximum saturations observed in other studies are limited in the same way and there is no indication that low endpoint relative permeabilities are a characteristic of the CO2/water system. Residual trapping in three of the rocks is consistent with trapping in strongly water-wet systems, and the results from the Berea sample are again consistent with observations in past studies. This confirms that residual trapping can play a major role in the immobilization of CO2 injected into the subsurface. In the Mt. Simon sandstone, a nonmonotonic relationship between initial and residual CO2 saturations is indicative of a rock that is mixed or intermediate wet, and further investigations should be performed to establish the wetting properties of illite-rich rocks. The combined results suggest that the petrophysical properties of the multiphase flow of CO2/water through siliciclastic rocks is for the most part typical
NASA Astrophysics Data System (ADS)
Jiang, Lanlan; Liu, Yu; Teng, Ying; Zhao, Jiafei; Zhang, Yi; Yang, Mingjun; Song, Yongchen
2016-03-01
The purpose of this work is to develop a permeability estimation method for porous media. This method is based on an improved capillary bundle model by introducing some pore geometries. We firstly carried out micro-CT scans to extract the 3D digital model of porous media. Then we applied a maximum ball extraction method to the digital model to obtain the topological and geometrical pore parameters such as the pore radius, the throat radius and length and the average coordination number. We also applied a random walker method to calculate the tortuosity factors of porous media. We improved the capillary bundle model by introducing the pore geometries and tortuosity factors. Finally, we calculated the absolute permeabilities of four kinds of porous media formed of glass beads and compared the results with experiments and several other models to verify the improved model. We found that the calculated permeabilities using this improved capillary bundle model show better agreement with the measured permeabilities than the other methods.
NASA Astrophysics Data System (ADS)
Zarivnyy, Ostap
CO2 flooding has gained increased interest in regard to both light and heavy oil reservoirs, as a means of combining improved oil recovery and geological storage of CO2 in partially depleted oil reservoirs. Distribution and movement of CO2 in oil reservoirs is a function of the relative permeability of three phases of water, oil, and CO2 in oil reservoirs. In general, three-phase relative permeability relations are required with respect to the design of CO2 field projects for accurate predictions via numerical reservoir simulation of CO 2 flood performance and to model production and injection problems. However, a two-phase relative permeability relation is used to generate the three-phase relative permeability relation for use in reservoir simulations. An overview of the available literature indicates few attempts have been made to experimentally determine the three-phase relative permeability relation for CO2-oil-water systems under practical reservoir conditions. This research attempts to investigate the two- and three-phase relative permeability relation of CO2-oil-water systems through a series of carefully designed laboratory experiments. Fourteen experiments in two-phase systems, and four experiments in three-phase systems with heavy and light oils, were conducted in order to study the effect of pressure, temperature, viscosity, and flow rate on the relative permeability relation. It was shown that relative permeability is temperature dependent and increases with an increase in temperature. Pressure and oil viscosity had similar effects, although higher pressure caused a decrease in relative permeability to water in water-oil and water-oil-gas systems. Investigating the effect of flow rate it was found that higher injection flow rate caused increase in relative permeability values. The effect of the injection flow rate on relative permeability behaviour can be explained by the formation of emulsion during the displacement process. A set of new correlations
Studies on quantifying evaporation in permeable pavement systems are limited to few laboratory studies that used a scale to weigh evaporative losses and a field application with a tunnel-evaporation gauge. A primary objective of this research was to quantify evaporation for a la...
NASA Astrophysics Data System (ADS)
Hosa, Aleksandra; Curtis, Andrew; Wood, Rachel
2016-08-01
A common way to simulate fluid flow in porous media is to use Lattice Boltzmann (LB) methods. Permeability predictions from such flow simulations are controlled by parameters whose settings must be calibrated in order to produce realistic modelling results. Herein we focus on the simplest and most commonly used implementation of the LB method: the single-relaxation-time BGK model. A key parameter in the BGK model is the relaxation time τ which controls flow velocity and has a substantial influence on the permeability calculation. Currently there is no rigorous scheme to calibrate its value for models of real media. We show that the standard method of calibration, by matching the flow profile of the analytic Hagen-Poiseuille pipe-flow model, results in a BGK-LB model that is unable to accurately predict permeability even in simple realistic porous media (herein, Fontainebleau sandstone). In order to reconcile the differences between predicted permeability and experimental data, we propose a method to calibrate τ using an enhanced Transitional Markov Chain Monte Carlo method, which is suitable for parallel computer architectures. We also propose a porosity-dependent τ calibration that provides an excellent fit to experimental data and which creates an empirical model that can be used to choose τ for new samples of known porosity. Our Bayesian framework thus provides robust predictions of permeability of realistic porous media, herein demonstrated on the BGK-LB model, and should therefore replace the standard pipe-flow based methods of calibration for more complex media. The calibration methodology can also be extended to more advanced LB methods.
The Relative Permeability of CO2 and Water in Sandstone Rocks at Reservoir Conditions
NASA Astrophysics Data System (ADS)
Krevor, S. C.; Pini, R.; Zuo, L.; Benson, S. M.
2011-12-01
A firm understanding of the multiphase flow properties of CO2 and water in porous media is essential to predicting the long-term fate of CO2 in geologic storage. Recently, pilot-scale and simulation based studies have highlighted the importance that properties of relative permeability, residual saturation, and rock heterogeneity will play in determining the long-term distribution of CO2 in the subsurface. There is a need for more observations to expand the current dataset of experimental work, as well as a discussion of these results in the context of the theory that is used in reservoir-scale predictions of subsurface flow. In this paper we present the results of an experimental investigation into the flow properties of CO2 and water in 4 distinct rock lithologies: a Berea sandstone and 3 reservoir rocks from formations into which CO2 injection is either currently taking place or is planned. Drainage and imbibition relative permeability and end-point saturations were measured using the steady-state method in a high pressure and temperature core-flooding apparatus with fluid distributions observed using X-ray CT. Absolute permeability, capillary pressure curves, and petrological studies were performed on each sample to fully characterize the rocks. The results are discussed in terms of their potential impact on basin-scale modeling of industrial CO2 injection projects. Theoretical explanations for generally low end-point CO2 relative permeabilities are discussed as well as its relevance for reservoir simulations. It is shown that small-scale heterogeneity plays an important role in both the overall saturations of CO2 in a rock as well as the saturation distribution within the rock. Clear evidence of heterogenous flow-properties are observed even in rocks of homogeneous rock lithology. Observations of residual CO2 saturation are discussed in the context of the long-term stability of CO2 injected in the subsurface. The experiments are compared with results reported
NASA Astrophysics Data System (ADS)
Gomila, Rodrigo; Arancibia, Gloria; Nehler, Mathias; Bracke, Rolf; Stöckhert, Ferdinand
2016-04-01
Fault zones and their related structural permeability play a leading role in the migration of fluids through the continental crust. A first approximation to understanding the structural permeability conditions, and the estimation of its hydraulic properties (i.e. palaeopermeability and fracture porosity conditions) of the fault-related fracture mesh is the 2D analysis of its veinlets, usually made in thin-section. Those estimations are based in the geometrical parameters of the veinlets, such as average fracture density, length and aperture, which can be statistically modelled assuming penny-shaped fractures of constant radius and aperture within an anisotropic fracture system. Thus, this model is related to fracture connectivity, its length and to the cube of the fracture apertures. In this way, the estimated values presents their own inaccuracies owing to the method used. Therefore, the study of the real spatial distribution of the veinlets of the fault-related fracture mesh (3D), feasible with the use of micro-CT analyses, is a first order factor to unravel both, the real structural permeability conditions of a fault-zone, together with the validation of previous estimations made in 2D analyses in thin-sections. This early contribution shows the preliminary results of a fault-related fracture mesh and its 3D spatial distribution in the damage zone of the Jorgillo Fault (JF), an ancient subvertical left-lateral strike-slip fault exposed in the Atacama Fault System in northern Chile. The JF is a ca. 20 km long NNW-striking strike-slip fault with sinistral displacement of ca. 4 km. The methodology consisted of the drilling of vertically oriented plugs of 5 mm in diameter located at different distances from the JF core - damage zone boundary. Each specimen was, then, scanned with an x-ray micro-CT scanner (ProCon X-Ray CTalpha) in order to assess the fracture mesh. X-rays were generated in a transmission target x-ray tube with acceleration voltages ranging from 90
Porosity-Permeability Relations in Granular, Fibrous and Tubular Porous Media
NASA Astrophysics Data System (ADS)
Xiao, Feng; Yin, Xiaolong
2011-11-01
A Voronoi diagram-based stochastic geometry generator was developed to generate porous media models of granular, fibrous and tubular types. By adjusting geometry parameters such as number of random seeds and width of channels between grains or radius of fibers/tubes, homogenous and isotropic models of porous media with specified porosity can be accurately generated. The relation of porosity to geometry parameters was proven to be repeatable, and additional manipulations on geometries were built in, including creation of anisotropy and heterogeneity. A parallelized Lattice Boltzmann simulator with nearly ideal speedup was developed and employed to study porosity-permeability relations. Simulation data obtained in the porosity range of 0.01-0.4 revealed that properly normalized permeability in tubular porous media is higher than that in the granular type when porosity becomes greater than 0.1, which can be explained by its more efficient use of the pore space to conduct the flow. Simulation data obtained from fibrous media in solid volume fraction range of 0.01-0.4 agreed with published results, and showed a rapid change with solid volume fraction in the dilute limit. This research is supported by Research Partnership to Secure Energy for America (RPSEA) 09122-29.
[Estimation of the Index Value of Dielectric Permeability inside the Membranes of Purple Bacteria].
Borisov, A Y; Kozlovsky, V S
2015-01-01
The joint application of the precise X-ray data for isolated bacteriochlorophyll complexes of reaction centers and the fundamental formulae for the energy of interaction between two equal dipoles enabled us to suggest a new methodical approach for determination of the values of the index of dielectric permeability in the micro volume enclosing special pairs in Rhodobacter sphaeroides reaction centers. The most probable value for this parameter was thus determined within 1.66-1.76. This approach was generalized for the inner layer of the membranes of purple bacteria and yielded the index value about 1.70-1.85. It is argued that this range of dielectric permeability is adequate for bacterial and plant membranes as well. Low magnitude of this parameter contributes to higher efficiency of energy migration from vast light-harvesting chlorophyll "antenna" to the energy converting reaction centers and hence to higher efficiency of the whole photosynthesis. PMID:26394473
NASA Astrophysics Data System (ADS)
Hyun Jo, Dong; Lee, Rimi; Hyoung Kim, Jin; Oh Jun, Hyoung; Geol Lee, Tae; Hun Kim, Jeong
2015-06-01
Vascular integrity is important in maintaining homeostasis of brain microenvironments. In various brain diseases including Alzheimer’s disease, stroke, and multiple sclerosis, increased paracellular permeability due to breakdown of blood-brain barrier is linked with initiation and progression of pathological conditions. We developed a capacitance sensor array to monitor dielectric responses of cerebral endothelial cell monolayer, which could be utilized to evaluate the integrity of brain microvasculature. Our system measured real-time capacitance values which demonstrated frequency- and time-dependent variations. With the measurement of capacitance at the frequency of 100 Hz, we could differentiate the effects of vascular endothelial growth factor (VEGF), a representative permeability-inducing factor, on endothelial cells and quantitatively analyse the normalized values. Interestingly, we showed differential capacitance values according to the status of endothelial cell monolayer, confluent or sparse, evidencing that the integrity of monolayer was associated with capacitance values. Another notable feature was that we could evaluate the expression of molecules in samples in our system with the reference of real-time capacitance values. We suggest that this dielectric spectroscopy system could be successfully implanted as a novel in vitro assay in the investigation of the roles of paracellular permeability in various brain diseases.
Hyun Jo, Dong; Lee, Rimi; Hyoung Kim, Jin; Oh Jun, Hyoung; Geol Lee, Tae; Hun Kim, Jeong
2015-01-01
Vascular integrity is important in maintaining homeostasis of brain microenvironments. In various brain diseases including Alzheimer's disease, stroke, and multiple sclerosis, increased paracellular permeability due to breakdown of blood-brain barrier is linked with initiation and progression of pathological conditions. We developed a capacitance sensor array to monitor dielectric responses of cerebral endothelial cell monolayer, which could be utilized to evaluate the integrity of brain microvasculature. Our system measured real-time capacitance values which demonstrated frequency- and time-dependent variations. With the measurement of capacitance at the frequency of 100 Hz, we could differentiate the effects of vascular endothelial growth factor (VEGF), a representative permeability-inducing factor, on endothelial cells and quantitatively analyse the normalized values. Interestingly, we showed differential capacitance values according to the status of endothelial cell monolayer, confluent or sparse, evidencing that the integrity of monolayer was associated with capacitance values. Another notable feature was that we could evaluate the expression of molecules in samples in our system with the reference of real-time capacitance values. We suggest that this dielectric spectroscopy system could be successfully implanted as a novel in vitro assay in the investigation of the roles of paracellular permeability in various brain diseases. PMID:26047027
The effect of surface active agents on the relative permeability of brine and gas in porous media
Conway, M.W.; Schraufnagel, R.A.; Smith, K.; Thomas, T.
1995-11-01
All oil and gas producing wells produce hydrocarbon at some residual water saturation. Therefore, the relative permeability to the hydrocarbon at the effective water saturation dictates performance and not the absolute permeability of the formation. Surface active agents are included in most aqueous treating fluids to improve the compatibility of aqueous fluids with the hydrocarbon containing reservoir. A review of the literature indicates very little core flow data to describe the effects to be expected. Traditionally, it is believed that the reduced surface tension will reduce capillary pressure and enhance the recovery of water after the treatment. The reduced water saturation is then believed to result in higher effective gas saturation and higher relative permeability to gas after the treatment. The principal emphasis of this study has been the development of non-damaging stimulation fluids to improve the production of methane from coalbed methane and other low permeability gas reservoirs.
NASA Astrophysics Data System (ADS)
Peters, C. A.; Crandell, L. E.; Um, W.; Jones, K. W.; Lindquist, W. B.
2011-12-01
Geochemical reactions in the subsurface can alter the porosity and permeability of a porous medium through mineral precipitation and dissolution. While effects on porosity are relatively well understood, changes in permeability are more difficult to estimate. In this work, pore-network modeling is used to estimate the permeability of a porous medium using pore and throat size distributions. These distributions can be determined from 2D Scanning Electron Microscopy (SEM) images of thin sections or from 3D X-ray Computed Tomography (CT) images of small cores. Each method has unique advantages as well as unique sources of error. 3D CT imaging has the advantage of reconstructing a 3D pore network without the inherent geometry-based biases of 2D images but is limited by resolutions around 1 μm. 2D SEM imaging has the advantage of higher resolution, and the ability to examine sub-grain scale variations in porosity and mineralogy, but is limited by the small size of the sample of pores that are quantified. A pore network model was created to estimate flow permeability in a sand-packed experimental column investigating reaction of sediments with caustic radioactive tank wastes in the context of the Hanford, WA site. Before, periodically during, and after reaction, 3D images of the porous medium in the column were produced using the X2B beam line facility at the National Synchrotron Light Source (NSLS) at Brookhaven National Lab. These images were interpreted using 3DMA-Rock to characterize the pore and throat size distributions. After completion of the experiment, the column was sectioned and imaged using 2D SEM in backscattered electron mode. The 2D images were interpreted using erosion-dilation to estimate the pore and throat size distributions. A bias correction was determined by comparison with the 3D image data. A special image processing method was developed to infer the pore space before reaction by digitally removing the precipitate. The different sets of pore
Evaluating the relative air permeability of porous media from their water retention curves
NASA Astrophysics Data System (ADS)
Assouline, S.; Tuli, A.; Hopmans, J. W.
2016-05-01
Accurate modeling of water and air flow in porous media requires the definition of the relevant hydraulic properties, namely, the water retention curve (WRC) and the relative hydraulic conductivity function (RHC), as well as the definition of the relative air permeability function (RAP). Capitalizing on the approach developed previously to represent the RHC, a new model allowing the prediction of RAP based on information resulting from the WRC is proposed. The power value ηa in the model is a decreasing exponential function of the coefficient of variation, ɛ, characterizing the pore size distribution of the porous medium, and derived from its WRC. The model was calibrated using data from 22 disturbed and undisturbed soil samples and was validated using data from eight soil types ranging from quartz sand to silty clay loam. The proposed model provided accurate prediction of the soil RAP and performed in some cases (sandy loam and silty clay loam soils) better than available alternative models.
Kelly, John R.; Kennedy, Paul J.; Cryan, John F.; Dinan, Timothy G.; Clarke, Gerard; Hyland, Niall P.
2015-01-01
The emerging links between our gut microbiome and the central nervous system (CNS) are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting preclinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behavior by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a “leaky gut” may facilitate communication between the microbiota and these key signaling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function. PMID:26528128
Electrokinetic effects and fluid permeability
NASA Astrophysics Data System (ADS)
G. Berryman, James
2003-10-01
Fluid permeability of porous media depends mainly on connectivity of the pore space and two physical parameters: porosity and a pertinent length-scale parameter. Electrical imaging methods typically establish connectivity and directly measure electrical conductivity, which can then often be related to porosity by Archie's law. When electrical phase measurements are made in addition to the amplitude measurements, information about the pertinent length scale can then be obtained. Since fluid permeability controls the ability to flush unwanted fluid contaminants from the subsurface, inexpensive maps of permeability could improve planning strategies for remediation efforts. Detailed knowledge of fluid permeability is also important for oil field exploitation, where knowledge of permeability distribution in three dimensions is a common requirement for petroleum reservoir simulation and analysis, as well as for estimates on the economics of recovery.
NASA Astrophysics Data System (ADS)
Hale, V. Cody; McDonnell, Jeffrey J.
2016-02-01
The effect of bedrock permeability and underlying catchment boundaries on stream base flow mean transit time (MTT) and MTT scaling relationships in headwater catchments is poorly understood. Here we examine the effect of bedrock permeability on MTT and MTT scaling relations by comparing 15 nested research catchments in western Oregon; half within the HJ Andrews Experimental Forest and half at the site of the Alsea Watershed Study. The two sites share remarkably similar vegetation, topography, and climate and differ only in bedrock permeability (one poorly permeable volcanic rock and the other more permeable sandstone). We found longer MTTs in the catchments with more permeable fractured and weathered sandstone bedrock than in the catchments with tight, volcanic bedrock (on average, 6.2 versus 1.8 years, respectively). At the permeable bedrock site, 67% of the variance in MTT across catchments scales was explained by drainage area, with no significant correlation to topographic characteristics. The poorly permeable site had opposite scaling relations, where MTT showed no correlation to drainage area but the ratio of median flow path length to median flow path gradient explained 91% of the variance in MTT across seven catchment scales. Despite these differences, hydrometric analyses, including flow duration and recession analysis, and storm response analysis, show that the two sites share relatively indistinguishable hydrodynamic behavior. These results show that similar catchment forms and hydrologic regimes hide different subsurface routing, storage, and scaling behavior—a major issue if only hydrometric data are used to define hydrological similarity for assessing land use or climate change response.
Rapid estimates of relative water content.
Smart, R E
1974-02-01
Relative water content may be accurately estimated using the ratio of tissue fresh weight to tissue turgid weight, termed here relative tissue weight. That relative water content and relative tissue weight are linearly related is demonstrated algebraically. The mean value of r(2) for grapevine (Vitis vinifera L. cv. Shiraz) leaf tissue over eight separate sampling occasions was 0.993. Similarly high values were obtained for maize (Zea mays cv. Cornell M-3) (0.998) and apple (Malus sylvestris cv. Northern Spy) (0.997) using a range of leaf ages. The proposal by Downey and Miller (1971. Rapid measurements of relative turgidity in maize (Zea mays L.). New Phytol. 70: 555-560) that relative water content in maize may be estimated from water uptake was also investigated for grapevine leaves; this was found to be a less reliable estimate than that obtained with relative tissue weight. With either method, there is a need for calibration, although this could be achieved for relative tissue weight at least with only a few subsamples. PMID:16658686
NASA Astrophysics Data System (ADS)
Piri, M.; Akbarabadi, M.
2010-12-01
We present the results of an extensive experimental study on the effects of hysteresis and wetting on permanent capillary trapping and relative permeability of CO2/brine systems. We performed 48 unsteady-state drainage and imbibition full-recirculation flow experiments in two different sandstone rock samples, i.e., Berea and Nugget. A state-of-the-art reservoir condition core-flooding system and a rotated medical CT scanner were utilized to perform the tests through vertically-placed rock samples. Both supercritical CO2/brine and gaseous CO2/brine fluid systems were used. A wide flow rate range of 0.25 to 20 cm3/min for supercritical CO2 and 0.125 to 120 cc/min for gaseous CO2 were used to investigate the variation of irreducible brine saturation (Swirr) with maximum CO2 flow rate and variation of trapped CO2 saturation (SCO2r) with Swirr. The irreducible brine saturation ranged between 0.680 to 0.406 and 0.663 to o.336 for experiments in Berea with supercritical and gaseous CO2, respectively. The trapped CO2 saturation varied between 0.196 to 0.308 and from 0.258 to 0.423 in the subsequent imbibition experiments. For a given Swirr, the amount of trapped supercritical CO2 saturation was less than that of gaseous CO2 in the same sample. This was attributed to brine being less wetting in the presence of supercritical CO2 than in the presence of gaseous CO2. The ratio of SCO2r to initial CO2 saturation was found to be much higher for low initial CO2 saturations. This means that greater fractions of injected CO2 can be permanently trapped at higher initial brine saturations. Maximum CO2 and brine relative permeabilities at the end of drainage and imbibition and also variation of brine relative permeability due to post-imbibition dissolution of trapped CO2 were also studied.
Uncertainty relations for approximation and estimation
NASA Astrophysics Data System (ADS)
Lee, Jaeha; Tsutsui, Izumi
2016-05-01
We present a versatile inequality of uncertainty relations which are useful when one approximates an observable and/or estimates a physical parameter based on the measurement of another observable. It is shown that the optimal choice for proxy functions used for the approximation is given by Aharonov's weak value, which also determines the classical Fisher information in parameter estimation, turning our inequality into the genuine Cramér-Rao inequality. Since the standard form of the uncertainty relation arises as a special case of our inequality, and since the parameter estimation is available as well, our inequality can treat both the position-momentum and the time-energy relations in one framework albeit handled differently.
Laura J. Pyrak-Nolte; Nicholas J. Giordano; David D. Nolte
2004-03-01
The principal challenge of upscaling techniques for multi-phase fluid dynamics in porous media is to determine which properties on the micro-scale can be used to predict macroscopic flow and spatial distribution of phases at core- and field-scales. The most notable outcome of recent theories is the identification of interfacial areas per volume for multiple phases as a fundamental parameter that determines much of the multi-phase properties of the porous medium. A formal program of experimental research was begun to directly test upscaling theories in fluid flow through porous media by comparing measurements of relative permeability and capillary-saturation with measurements of interfacial area per volume. This project on the experimental investigation of relative permeability upscaling has produced a unique combination of three quite different technical approaches to the upscaling problem of obtaining pore-related microscopic properties and using them to predict macroscopic behavior. Several important ''firsts'' have been achieved during the course of the project. (1) Optical coherence imaging, a laser-based ranging and imaging technique, has produced the first images of grain and pore structure up to 1 mm beneath the surface of the sandstone and in a laboratory borehole. (2) Woods metal injection has connected for the first time microscopic pore-scale geometric measurements with macroscopic saturation in real sandstone cores. (3) The micro-model technique has produced the first invertible relationship between saturation and capillary pressure--showing that interfacial area per volume (IAV) provides the linking parameter. IAV is a key element in upscaling theories, so this experimental finding may represent the most important result of this project, with wide ramifications for predictions of fluid behavior in porous media.
Uncertainty relation revisited from quantum estimation theory
Watanabe, Yu; Sagawa, Takahiro; Ueda, Masahito
2011-10-15
We use quantum estimation theory to formulate bounds of errors in quantum measurement for arbitrary quantum states and observables in a finite-dimensional Hilbert space. We prove that the measurement errors of two noncommuting observables satisfy Heisenberg-type uncertainty relation, find the achievable bound, and propose a strategy to achieve it.
System response as a function of relative permeability in geologic CO2 sequestration
NASA Astrophysics Data System (ADS)
Pollyea, R.
2015-12-01
Within the portfolio of risk assessment strategies for carbon capture and sequestration projects, numerical modeling and simulation is frequently utilized for predicting CO2 storage capacity, leakage potential, and geomechanical reservoir integrity. In numerical CO2 injection models, one commonly used approach for simulating the effects of relative permeability (krel) is to apply the van Genuchten (1980) model to the wetting phase and the Corey (1954) model to the non-wetting phase. In this formulation, wetting phase permeability decay is controlled by a phase interference parameter (m), and non-wetting phase permeability decay is controlled by irreducible non-wetting phase saturation (Sgr). Although krel is a well-known phenomenon, there exists much uncertainty in parameterizing krel models and little is known about the influence of parameter space on reservoir performance. This work presents results from a numerical modeling experiment designed to isolate the effects of variability in krel parameters, m and Sgr. A series of CO2 injection simulations is performed for 399 unique combinations of m and Sgr, which vary systematically over a range of 0.1 - 0.99 and 0.01 - 0.50, respectively. CO2 is injected at modest 2.78 kg/s for 10 years into a radially symmetric grid using a beta version of TOUGH3/ECO2N, and all reservoir properties remain constant across the ensemble of 399 simulations. Results from this work show the injection pressure response ranging from ~10 MPa to >60 MPa, where the high end of this range is focused on a narrow portion of the parameter space corresponding to m < 0.3 for all Sgr. Additionally, the maximum CO2 plume radius (defined as CO2 saturation > 0.01) ranges from 550 m to 1250 m, where the high end of this range corresponds with low m and low Sgr. Although the model geometry is quite simple, these results demonstrate enormous variability in the both injection pressure and CO2 plume dimension solely as a function of krel.
NASA Astrophysics Data System (ADS)
Lipsey, Lindsay; Pluymaekers, Maarten; van Wees, Jan-Diederik; Limberger, Jon; Cloetingh, Sierd
2016-04-01
The presence of convective fluid flow in permeable layers can create zones of anomalously high temperature which can be exploited for geothermal energy. Temperature measurements from the Luttelgeest-01 (LTG-01) well in the northern onshore region of the Netherlands indicate variations in the thermal regime that could be indicative of convection. This thermal anomaly coincides with a 600 m interval (4600 - 5200 m) of Dinantian carbonates showing signs of increased fracture permeability of ~60 mD. For the purpose of geothermal energy exploration, it is of interest to know whether or not convection can occur in a particular reservoir, where convection cells are likely to develop and the temperature enhancements in convective upwellings. Three-dimensional numerical simulations provide insight on possible flow and thermal structures within the fractured carbonate interval. The development and number of convection cells is very much a time dependent process. First longitudinal rolls fill the domain, increasing in width until ultimately transforming into a more complex polyhedral structure. The model relaxes into a steady-state five-cell convection pattern. Furthermore, geometric aspects of the carbonate platform itself likely control the shape and location of upwellings. Convective upwellings can create significant temperature enhancements relative to the conductive profile and in agreement with the observations in the Luttelgeest carbonate platform. This enhancement is critically dependent on the aquifer thickness and geothermal gradient. Given a gradient of 39 °C/km and an aquifer thickness of 600 m, a temperature of 203 °C can be obtained at a depth of 4600 m directly above upwelling zones. Contrarily, downwelling zones result in a temperature of 185 °C at the same depth. This demonstrates the strong spatial variability of thermal anomalies in convective fractures aquifers at large depth, which can have a strong effect on exploration opportunity and risk of
Permeability of filter cakes of palm oil in relation to mechanical expression
Kamst, G.F.; Bruinsma, O.S.L.; Graauw, J. de
1997-03-01
Permeability and compressibility data are required for an adequate process model for compressible-cake filtration and mechanical expression. Experimental and modeling results of the permeability of palm-oil filter cakes (a highly compressible viscoelastic material) are combined with compressibility data, leading to a model for the expression step. Permeability measurements show that permeability depends strongly on the quantity of fine particles in the cake. Removal of fine particles from the slurry before expression significantly increases the solid-phase content during expression due to higher permeability. Modeling results of the expression step show that for palm-oil filter cakes there is a pressure above which the attainable mass fraction of solids becomes independent of pressure. Decrease in specific cake resistance has two effects: a higher mass fraction of solids at the same pressure and a higher pressure at which the mass fraction of solids is not affected further.
Generalized Spearman estimators of relative dose.
Morton, R
1981-06-01
In a biological assay the expected response may be transformed to a variable bounded between 0 and 1. If the transformed response is regarded as analogous to the tolerance distribution function, the mean of that distribution may be estimated for the standard and test preparations, and a simple estimator of the relative potency obtained. The special case where the identity transformation is used for a quantal response corresponds to Spearman's estimator, and our generalization has similar unbiasedness properties to that estimator. Asymptotic results are derived when the intervals between dose levels decrease and the sample of each dose level simultaneously increases. These results are evaluated for the case with equal sample sizes at regularly spaced values of the dose metameter. An approximate test for similarity is proposed. If the tolerance distribution is known up to a scale parameter, then the transformation may be chosen so that the estimator is asymptotically fully efficient. An application to the thermal disinfestation of wheat is given. PMID:7272411
Relative Attribute SVM+ Learning for Age Estimation.
Wang, Shengzheng; Tao, Dacheng; Yang, Jie
2016-03-01
When estimating age, human experts can provide privileged information that encodes the facial attributes of aging, such as smoothness, face shape, face acne, wrinkles, and bags under-eyes. In automatic age estimation, privileged information is unavailable to test images. To overcome this problem, we hypothesize that asymmetric information can be explored and exploited to improve the generalizability of the trained model. Using the learning using privileged information (LUPI) framework, we tested this hypothesis by carefully defining relative attributes for support vector machine (SVM+) to improve the performance of age estimation. We term this specific setting as relative attribute SVM+ (raSVM+), in which the privileged information enables separation of outliers from inliers at the training stage and effectively manipulates slack variables and age determination errors during model training, and thus guides the trained predictor toward a generalizable solution. Experimentally, the superiority of raSVM+ was confirmed by comparing it with state-of-the-art algorithms on the face and gesture recognition research network (FG-NET) and craniofacial longitudinal morphological face aging databases. raSVM+ is a promising development that improves age estimation, with the mean absolute error reaching 4.07 on FG-NET. PMID:25850101
Byrnes, Alan P.; Bhattacharya, Saibal; Victorine, John; Stalder, Ken
2007-09-30
Thin (3-40 ft thick), heterogeneous, limestone and dolomite reservoirs, deposited in shallow-shelf environments, represent a significant fraction of the reservoirs in the U.S. midcontinent and worldwide. In Kansas, reservoirs of the Arbuckle, Mississippian, and Lansing-Kansas City formations account for over 73% of the 6.3 BBO cumulative oil produced over the last century. For these reservoirs basic petrophysical properties (e.g., porosity, absolute permeability, capillary pressure, residual oil saturation to waterflood, resistivity, and relative permeability) vary significantly horizontally, vertically, and with scale of measurement. Many of these reservoirs produce from structures of less than 30-60 ft, and being located in the capillary pressure transition zone, exhibit vertically variable initial saturations and relative permeability properties. Rather than being simpler to model because of their small size, these reservoirs challenge characterization and simulation methodology and illustrate issues that are less apparent in larger reservoirs where transition zone effects are minor and most of the reservoir is at saturations near S{sub wirr}. These issues are further augmented by the presence of variable moldic porosity and possible intermediate to mixed wettability and the influence of these on capillary pressure and relative permeability. Understanding how capillary-pressure properties change with rock lithology and, in turn, within transition zones, and how relative permeability and residual oil saturation to waterflood change through the transition zone is critical to successful reservoir management and as advanced waterflood and improved and enhanced recovery methods are planned and implemented. Major aspects of the proposed study involve a series of tasks to measure data to reveal the nature of how wettability and drainage and imbibition oil-water relative permeability change with pore architecture and initial water saturation. Focus is placed on
Factoring Algebraic Error for Relative Pose Estimation
Lindstrom, P; Duchaineau, M
2009-03-09
We address the problem of estimating the relative pose, i.e. translation and rotation, of two calibrated cameras from image point correspondences. Our approach is to factor the nonlinear algebraic pose error functional into translational and rotational components, and to optimize translation and rotation independently. This factorization admits subproblems that can be solved using direct methods with practical guarantees on global optimality. That is, for a given translation, the corresponding optimal rotation can directly be determined, and vice versa. We show that these subproblems are equivalent to computing the least eigenvector of second- and fourth-order symmetric tensors. When neither translation or rotation is known, alternating translation and rotation optimization leads to a simple, efficient, and robust algorithm for pose estimation that improves on the well-known 5- and 8-point methods.
JiangTao Cheng; Ping Yu; William Headley; Nicholas Giordao; Mirela Mustata; Daiquan Chen; Nathan Cooper; David D. Nolte; Laura J. Pyrak-Nolte
2001-12-01
The principal challenge of upscaling techniques for multi-phase fluid dynamics in porous media is to determine which properties on the micro-scale can be used to predict macroscopic flow and spatial distribution of phases at core- and field-scales. The most notable outcome of recent theories is the identification of interfacial areas per volume for multiple phases as a fundamental parameter that determines much of the multi-phase properties of the porous medium. A formal program of experimental research was begun to directly test upscaling theories in fluid flow through porous media by comparing measurements of relative permeability and capillary-saturation with measurements of interfacial area per volume. During this reporting period, we have shown experimentally and theoretically that the optical coherence imaging system is optimized for sandstone. The measurement of interfacial area per volume (IAV), capillary pressure and saturation in two dimensional micro-models structures that are statistically similar to real porous media has shown the existence of a unique relationship among these hydraulic parameters. The measurement of interfacial area per volume on a three-dimensional natural sample, i.e., sandstone, has the same length-scale as the values of IAV determined for the two-dimensional micro-models.
Laura J. Pyrak-Nolte; Ping Yu; JiangTao Cheng; Daiquan Chen; Nicholas Giordano; Mirela Mustata; John Coy; Nathan Cooper; David D. Nolte
2002-12-01
The principal challenge of upscaling techniques for multi-phase fluid dynamics in porous media is to determine which properties on the micro-scale can be used to predict macroscopic flow and spatial distribution of phases at core- and field-scales. The most notable outcome of recent theories is the identification of interfacial areas per volume for multiple phases as a fundamental parameter that determines much of the multi-phase properties of the porous medium. A formal program of experimental research was begun to directly test upscaling theories in fluid flow through porous media by comparing measurements of relative permeability and capillary-saturation with measurements of interfacial area per volume. During this reporting period, we have shown experimentally that the coherence detection can be performed in a borescope. The measurement of interfacial area per volume (IAV), capillary pressure and saturation in two dimensional micro-models structures has shown the existence of a unique relationship among these hydraulic parameters for different pore geometry. The measurement of interfacial area per volume on a three-dimensional natural sample, i.e., sandstone, is essentially completed for imbibition conditions.
NASA Astrophysics Data System (ADS)
Kitamura, Keigo; Takahashi, Miki; Mizoguchi, Kazuo; Masuda, Koji; Ito, Hisao; Song, Sheng-Rong
2010-09-01
Changes in Vp/Vs (Poisson's ratio) around a fault are related to changes in the fluid transport properties of rocks, which play a significant role in seismogenic processes. Here we report a notable relationship between Vp/Vs and the permeability of porous fault-related rocks (Chelungpu fault, Taiwan) by direct and simultaneous measurement of elastic wave velocities (Vp and Vs) and permeability under increasing effective confining pressure (Peff) up to 25 MPa. Vp and Vs for all samples increased with Peff in the range up to 20 MPa, then were nearly constant as Peff increased to 25 MPa. Most silty sandstones with large proportions of fine-grained material showed positive correlations between Vp/Vs and permeability with rising pressure. On the other hand, well-sorted sandstones showed only slight changes in permeability with respect to Vp/Vs with rising pressure. We infer that grain size distributions, in particular the amount of silt- and clay-size grains, are responsible for the change in permeability with pressure as small particles clog pore networks with increasing Peff, causing the decrease in permeability. These findings may be useful to explain changes in permeability and pore pressure in the deep crust.
NASA Astrophysics Data System (ADS)
Kosack, Christian; Vogt, Christian; Rath, Volker; Marquart, Gabriele
2010-05-01
The knowledge of the permeability distribution at depth is of primary concern for any geothermal reservoir engineering. However, permeability might change over orders of magnitude even for a single rock type and is additionally controlled by tectonic or engineered fracturing of the rocks. During reservoir exploration pumping tests are regularly performed where tracer marked water is pumped in one borehole and retrieved at one or a few others. At the European Enhanced Geothermal System (EGS) test site at Soultz-sous-Forêts three wells had been drilled in the granitic bedrock down to 4 to 5 km and were hydraulically stimulated to enhance the hydraulic connectivity between the wells. In July 2005, a tracer circulation test was carried out in order to estimate the changes of the hydraulic properties. Therefore a tracer was injected into the well GPK3 for 19 hours at a rate of 0.015 m3 s-1 and a concentration of 0.389 mol m-3. Tracer concentration was measured in the production wells over the following 5 months, while the produced water was re-injected into GPK3. This experiment demonstrated a good hydraulic connection between GPK3 and one of the production wells, GPK2, while a very low connectivity was observed in the other one, GPK4. We tested three different approaches simulating the pumping experiment with the numerical simulator shemat_suite in a simplified 3D model of the site in order to study their respective potential to estimate a reliable permeability distribution for the Soultz reservoir: A full-physics gradient-based Bayesian inversion, a massive Monte Carlo approach with geostatistic analysis, and an Ensemble-Kalman-Filter (EnKF) assimilation. A common feature in all models is a high permeability zone which acts as main flow area and transports most of the tracer. It is assumed to be associated with the fault zone cutting through the boreholes GPK2 and GPK3. With the Bayesian Inversion we were able to estimate a parameter set consisting of porosity
Corticosterone mediates stress-related increased intestinal permeability in a region-specific manner
Zheng, Gen; Wu, Shu-Pei; Hu, Yongjun; Smith, David E; Wiley, John W.; Hong, Shuangsong
2012-01-01
Background Chronic psychological stress (CPS) is associated with increased intestinal epithelial permeability and visceral hyperalgesia. It is unknown whether corticosterone (CORT) plays a role in mediating alterations of epithelial permeability in response to CPS. Methods Male rats were subjected to 1-hour water avoidance (WA) stress or subcutaneous CORT injection daily for 10 consecutive days in the presence or absence of corticoid-receptor antagonist RU-486. The visceromotor response (VMR) to colorectal distension (CRD) was measured. The in situ single-pass intestinal perfusion was used to measure intestinal permeability in jejunum and colon simultaneously. Key Results We observed significant decreases in the levels of glucocorticoid receptor (GR) and tight junction proteins in the colon but not the jejunum in stressed rats. These changes were largely reproduced by serial CORT injections in control rats and were significantly reversed by RU-486. Stressed and CORT-injected rats demonstrated a 3-fold increase in permeability for PEG-400 (MW) in colon but not jejunum and significant increase in VMR to CRD, which was significantly reversed by RU-486. In addition, no differences in permeability to PEG-4,000 and PEG-35,000 were detected between control and WA groups. Conclusions & Inferences Our findings indicate that CPS was associated with region-specific decrease in epithelial tight junction protein levels in the colon, increased colon epithelial permeability to low-molecular weight macromolecules which were largely reproduced by CORT treatment in control rats and prevented by RU-486. These observations implicate a novel, region-specific role for CORT as a mediator of CPS-induced increased permeability to macromolecules across the colon epithelium. PMID:23336591
Paillet, Frederick L.
1998-01-01
A numerical model of flow in the vicinity of a borehole is used to analyze flowmeter data obtained with high-resolution flowmeters. The model is designed to (1) precisely compute flow in a borehole, (2) approximate the effects of flow in surrounding aquifers on the measured borehole flow, (3) allow for an arbitrary number (N) of entry/exit points connected to M < N far-field aquifers, and (4) be consistent with the practical limitations of flowmeter measurements such as limits of resolution, typical measurement error, and finite measurement periods. The model is used in three modes: (1) a quasi-steady pumping mode where there is no ambient flow, (2) a steady flow mode where ambient differences in far-field water levels drive flow between fracture zones in the borehole, and (3) a cross-borehole test mode where pumping in an adjacent borehole drives flow in the observation borehole. The model gives estimates of transmissivity for any number of fractures in steady or quasi-steady flow experiments that agree with straddle-packer test data. Field examples show how these cross-borehole-type curves can be used to estimate the storage coefficient of fractures and bedding planes and to determine whether fractures intersecting a borehole at different locations are hydraulically connected in the surrounding rock mass.
NASA Astrophysics Data System (ADS)
Jiang, F.
2015-12-01
Wettability is one of the most important factors influencing the multi-phase fluid flow behavior in porous media. However, the role of wettability at pore-scale still remains poorly understood. In this study, we carried out a series of pore-scale simulations of multiphase displacement process to investigate the impact of wettability heterogeneity on trapping, sweep efficiency and relative permeability using lattice Boltzmann method. We first artificially generated mixed-wet bead pack models with varying degree of wettability by introducing spatial heterogeneity. Based on these models, we then calculated the relative permeability curves and performed the drainage and imbibition simulations to obtain the residual non-wetting phase distributions. The results indicate that strong wettability heterogeneity results in a decrease of non-wetting phase permeability due to the pinned interfaces at wettability discontinuities. The wetting phase permeability as well as the sweep efficiency are largely influenced by the degree of wettability rather than the wettability heterogeneity. The non-wetting phase is observed to be less trapped with strong heterogeneity conditions.
NASA Astrophysics Data System (ADS)
Pini, Ronny; Hingerl, Ferdinand; Benson, Sally
2013-04-01
Geological systems are complex and so are the processes that determine the distribution of two (or more) immiscible phases within their porous structure; nevertheless, an empirical relationship between the capillary pressure and saturation, the capillary pressure function, provides the foundation for the theory of multiphase flow in porous media. The simultaneous existence of at least two fluids in a porous rock further implies that the ability of each fluid to flow is reduced by the presence of the other and a so-called relative permeability function has been introduced and defined as the ratio between the effective permeability to the given phase and the absolute permeability of the rock. When coupled to the continuum-scale equations of motion, these two characteristic curves allow for a description of multiphase displacement processes in a variety of natural settings that are related to a wide range of applications, thus including the storage of carbon dioxide into deep saline aquifers. In this study, capillary pressure and relative permeability drainage curves are measured on a single Berea Sandstone core by using three different fluid pairs, namely gCO2/water, gN2/water and scCO2/brine. An important feature of this experimental investigation is that these two multiphase properties are obtained simultaneously during a core-flooding experiment. The applied technique possesses many of the characteristics of a conventional steady-state relative permeability experiment and consists of injecting the nonwetting fluid at increasingly higher flow rates in a core that is initially saturated with the wetting phase, while observing fluid saturations with a medical x-ray CT scanner [Pini et al. 2012]. Injection flow rates are varied so as to cover a sufficiently large range of capillary pressures, whereas fluid-pairs and experimental conditions are selected in order to move across a range interfacial tension values (40-65 mN/m), while maintaining a constant viscosity ratio
Relating permeability and electrical resistivity in fractures using random resistor network models
NASA Astrophysics Data System (ADS)
Kirkby, Alison; Heinson, Graham; Krieger, Lars
2016-03-01
We use random resistor network models to explore the relationship between electrical resistivity and permeability in a fracture filled with an electrically conductive fluid. Fluid flow and current are controlled by both the distribution and the volume of pore space. Therefore, the aperture distribution of fractures must be accurately modeled in order to realistically represent their hydraulic and electrical properties. We have constructed fracture surface pairs based on characteristics measured on rock samples. We use these to construct resistor networks with variable hydraulic and electrical resistance in order to investigate the changes in both properties as a fault is opened. At small apertures, electrical conductivity and permeability increase moderately with aperture until the fault reaches its percolation threshold. Above this point, the permeability increases by 4 orders of magnitude over a change in mean aperture of less than 0.1 mm, while the resistivity decreases by up to a factor of 10 over this aperture change. Because permeability increases at a greater rate than matrix to fracture resistivity ratio, the percolation threshold can also be defined in terms of the matrix to fracture resistivity ratio, M. The value of M at the percolation threshold, MPT, varies with the ratio of rock to fluid resistivity, the fault spacing, and the fault offset. However, MPT is almost always less than 10. Greater M values are associated with fractures above their percolation threshold. Therefore, if such M values are observed over fluid-filled fractures, it is likely that they are open for fluid flow.
Dehoff, Karl J.; Oostrom, Martinus; Zhang, Changyong; Grate, Jay W.
2012-10-29
A series of displacement experiments was conducted using five wetting-nonwetting immiscible fluid pairs in a homogenous and uniform pore network. The micromodel was initially saturated with either polyethylene glycol 200 (PEG) or water as a wetting fluid, which was subsequently displaced by a nonwetting fluid (dodecane, hexadecane, or mineral oil) at different flow rates. The experiments were designed to allow determinations of nonwetting fluid relative permeabilities ( ), fluid saturations ( ), and capillary pressure heads ( ). In the displacements, nonwetting fluid saturations increased with increasing flow rates for all five fluid pairs, and viscous fingering, capillary fingering, and stable displacement were observed. Viscous fingering occurred when PEG was displaced by either dodecane or hexadecane. For the water displacements, capillary fingers were observed at low capillary numbers. Due to unstable fingering phenomena, values for the PEG displacements were smaller than for the water displacements. A fitting exercise using the Brooks-Corey (1964) relationship showed that the fitted entry pressure heads are reasonably close to the computed entry pressure head. The fitted pore geometry factor, S_{n} values for the displacements are considerably lower than what is expected for displacements in homogeneous, highly uniform, porous systems, demonstrating the impact of unstable displacement on the apparent value of S_{n}. It was shown that a continuum-based multiphase model could be used to predict the average behavior for wetting fluid drainage in a pore network as long as independently fitted - and - relations are used. The use of a coupled approach through the Brooks-Corey pore geometry factor underpredicts observed values.
NASA Astrophysics Data System (ADS)
Pini, Ronny; Benson, Sally M.
2013-06-01
Capillary pressure and relative permeability drainage curves are simultaneously measured on a single Berea Sandstone core by using three different fluid pairs, namely gCO 2/water, gN2/water and scCO 2/brine. This novel technique possesses many of the characteristics of a conventional steady-state relative permeability experiment and consists of injecting the nonwetting fluid at increasingly higher flow rates in a core that is initially saturated with the wetting phase, while observing fluid saturations with a medical x-ray CT scanner. Injection flow rates (0.5-75 mL/min) are varied so as to generate a large range of capillary pressures (up to 18 kPa), whereas fluid-pairs and experimental conditions are selected in order to move across a range interfacial tension values (γ12
NASA Astrophysics Data System (ADS)
Tsuji, T.; Jiang, F.
2013-12-01
To predict long-term CO2 behavior within the reservoir in Carbon Capture and Storage (CCS) projects, we usually use reservoir simulation. A key parameter in the reservoir simulation is 'relative permeability'. However, since the relative permeability is significantly influenced by mineral precipitation (e.g., change of pore space), we should consider the time evolution of relative permeability in reservoir simulation. To investigate the influence of carbonate precipitation to the relative permeability during CO2 storage, we develop numerical calculation method. Pore spaces of Berea sandstone were extracted by high-resolution micro-CT scanned images. The fluid velocity field within the 3D pore spaces was then calculated using the two-phase lattice Boltzmann method (LBM). The calcite deposition within the pore space was calculated by using an advection-reaction formulation solved by finite volume method; we modeled the precipitated rock by transferring the fluid node to solid node according to the calcium concentration level. To increase the computation efficiency, we applied the graphics processor unit (GPU) parallel computing technique. The relative permeability of the rock sample is finally calculated separately by a highly optimized two-phase LB model. The calculated permeability variation due to the carbonate precipitation demonstrates that evolution of pore structure significantly influences the absolute permeability, while it only affects the relative permeability of non-wettable phase at low water saturation conditions.
Christiansen, R.L.; Howarth, S.M.
1995-08-01
This report documents a literature review of methods for measuring relative permeability as applied to low permeability anhydrite rock samples from the Salado Formation. About one hundred papers were reviewed, and four methods were identified as promising techniques for measuring the relative permeability of the Salado anhydrite: (1) the unsteady-state high-rate method, (2) the unsteady-state stationary-liquid method, (3) the unsteady-state centrifuge method, and (4) the unsteady-state low-rate method. Except for the centrifuge method, all have been used for low permeability rocks. The unsteady-state high-rate method is preferred for measuring relative permeability of Salado anhydrite, and the unsteady-state stationary-liquid method could be well suited for measuring gas relative permeability of Salado anhydrite. The unsteady-state low-rate method, which combines capillary pressure effects with relative permeability concepts may also prove effective. Likewise, the unsteady-state centrifuge method may be an efficient means for measuring brine relative permeability for Salado anhydrite, especially at high gas saturations.
Udegbunam, E.O.
1991-01-01
This paper presents a FORTRAN program for the determination of two-phase relative permeabilities from unsteady-state displacement data with capillary pressure terms included. The interpretative model employed in this program combines the simultaneous solution of a variant of the fractional flow equation which includes a capillary pressure term and an integro-differential equation derived from Darcy's law without assuming the simplified Buckley-Leverett flow. The incorporation of capillary pressure in the governing equations dispenses with the high flowrate experimental requirements normally employed to overcome capillarity effects. An illustrative example is presented herein which implements this program for the determination of oil/water relative permeabilities from a sandstone core sample. Results obtained compares favorably with results previously given in the literature. ?? 1991.
Persoff, P.; Pruess, K.; Petersen, L.P.
1995-01-01
Small sections (75 mm x 75 mm) of two natural rock fractures from outcrop boulders of Tiva Canyon tuff have been reproduced as transparent replicas. Aperture maps were drawn from images of the replicas filled with dye. Apertures were measured by the areas occupied by liquid drops of known volume. For both these fractures, the average aperture is about 350 {mu}m, while the hydraulic aperture is less (72 and 130 {mu}m). Two-phase (air-water) flow experiments have been conducted in these replicas to measure relative permeability and capillary pressures. The results obtained confirm the results of previous fracture experiments, and theoretical analysis, that the sum of relative permeabilities is much less than 1 at intermediate saturations. The welded tuffs in the vadose zone of Yucca Mountain, Nevada, are being investigated as the potential site of a geological repository for high-level nuclear wastes.
User's Guide for Hysteretic Capillary Pressure and Relative Permeability Functions in iTOUGH2
Doughty, C.A.
2009-08-01
The precursor of TOUGH2, TOUGH, was originally developed with non-hysteretic characteristic curves. Hysteretic capillary pressure functions were implemented in TOUGH in the late 1980s by Niemi and Bodvarsson (1988), and hysteretic capillary pressure and relative permeability functions were added to iTOUGH2 about ten years later by Finsterle et al. (1998). Recently, modifications were made to the iTOUGH2 hysteretic formulation to make it more robust and efficient (Doughty, 2007). Code development is still underway, with the ultimate goal being a hysteretic module that fits into the standard TOUGH2 (Pruess et al., 1991) framework. This document provides a user's guide for the most recent version of the hysteretic code, which runs within iTOUGH2 (Finsterle, 1999a,b,c). The current code differs only slightly from what was presented in Doughty (2007), hence that document provides the basic information on the processes being modeled and how they are conceptualized. This document focuses on a description of the user-specified parameters required to run hysteretic iTOUGH2. In the few instances where the conceptualization differs from that of Doughty (2007), the features described here are the current ones. Sample problems presented in this user's guide use the equation-of-state module ECO2N (Pruess, 2005). The components present in ECO2N are H{sub 2}O, NaCl, and CO{sub 2}. Two fluid phases and one solid phase are considered: an aqueous phase, which primarily consists of liquid H2O and may contain dissolved NaCl and CO{sub 2}; a supercritical phase which primarily consists of CO{sub 2}, but also includes a small amount of gaseous H{sub 2}O; and a solid phase consisting of precipitated NaCl. Details of the ECO2N formulation may be found in Pruess (2005). The aqueous phase is the wetting phase and is denoted ''liquid'', whereas the supercritical phase is the non-wetting phase and is denoted ''gas''. The hysteretic formalism may be applied to other iTOUGH2 equation
Ballelos, E.E.
1982-01-01
This study was designed to investigate the effects of wholebody X-irradiation on the fibrinolytic system, the causes of radiation-induced changes in plasmin (fibrinolytic) activity, and the contribution of increased plasmin activity to increased capillary (endothelial) permeability and hemorrhagic diathesis. The parameters evaluated using adult, male, Rochester ex-Wistar rats were: (1) plasmin, plasminogen, and plasminogen activator levels in plasma within one month after 425, 655, or 885 rad and at 3.5, 7 and 12 months after 425 rad, by a modified caseinolytic method; (2) tissue plasminogen activator activity (TPAA) in heart, kidneys, lungs, liver, pancreas and spleen, by a fibrin plate method (885 rad); (3) vascular permeability, by a radioisotopic method (885 rad); and (4) gross hemorrhagic response, scored for severity. The dose-dependent changes described in plasmin, plasminogen and plasminogen activator were multi-phasic. Epsilon-amino-caproic acid (0.3 gm/kg body weight) prevented the immediate and early radiation effects on these fibrinolytic components, and partially inhibited the later effects (within one month) whether administered only as a single injection before irradiation or maintained by daily water intake thereafter. The kidneys, spleen and pancreas were markedly susceptible to radiation-induced changes in TPAA. The lungs and liver showed significant changes in capillary permeability, which correlated positively with changes in vascular volume and blood plasmin and plasminogen activator levels. Increased plasmin (fibrinolytic) activity, superimposed on a hemostatic apparatus already impaired because of thrombocytopenia, contributed to hemorrhagic diathesis in acute radiation sickness.
Relating damage evolution of concrete cooled to cryogenic temperatures to permeability
NASA Astrophysics Data System (ADS)
Kogbara, Reginald B.; Iyengar, Srinath R.; Grasley, Zachary C.; Rahman, Syeda; Masad, Eyad A.; Zollinger, Dan G.
2014-11-01
Typically, 9% Ni steel is used for primary containment of liquefied natural gas (LNG). Utilization of concrete in place of 9% Ni steel for primary containment would lead to significant cost savings. Hence, this study investigates changes in the microstructure of concrete due to cryogenic freezing that would affect its relevant engineering properties for containment. The study also evaluates the effect of aggregate type on the damage potential of concrete subjected to cryogenic freezing. The aim is to investigate design methodologies to produce damage-resistant cryogenic concrete. The study employed four concrete mixture designs involving river sand as fine aggregate, and coarse aggregates with different coefficient of thermal expansion (CTE) values. Specifically, the coarse aggregates were limestone, sandstone, trap rock and lightweight aggregate. Concrete cubes were cured under water for at least 28 days and thereafter frozen from ambient (20 °C) to cryogenic temperature (-165 °C). Acoustic emission (AE) sensors were placed on the concrete cubes during freezing. X-ray computed tomography (XRCT) was employed to study the microstructure of concrete cores, before and after cryogenic freezing. The impact of the microstructural evolution thus obtained from AE and XRCT on relevant engineering properties was determined via water and chloride permeability tests. Microcrack propagation determined from AE correlated with changes in permeability. There were no observable cracks in majority of the concrete mixtures after freezing. This implies that microcracks detected via AE and increased permeability was very well distributed and smaller than the XRCT's resolution. Damage (microcracking) resistance of the concrete with different aggregates was in the order limestone ⩾ trap rock ≫ lightweight aggregate ⩾ sandstone.
Oláh, Gáspár; Herédi, Judit; Menyhárt, Ákos; Czinege, Zsolt; Nagy, Dávid; Fuzik, János; Kocsis, Kitti; Knapp, Levente; Krucsó, Erika; Gellért, Levente; Kis, Zsolt; Farkas, Tamás; Fülöp, Ferenc; Párdutz, Árpád; Tajti, János; Vécsei, László; Toldi, József
2013-01-01
Cortical spreading depression (CSD) involves a slowly-propagating depolarization wave in the cortex, which can appear in numerous pathophysiological conditions, such as migraine with aura, stroke, and traumatic brain injury. Neurons and glial cells are also depolarized transiently during the phenomena. CSD is followed by a massive increase in glutamate release and by changes in the brain microcirculation. The aim of this study was to investigate the effects of two N-methyl-D-aspartate receptor antagonists, endogenous kynurenic acid (KYNA) and dizocilpine, on CSD and the related blood–brain barrier (BBB) permeability in rats. In intact animals, KYNA hardly crosses the BBB but has some positive features as compared with its precursor L-Kynurenine, which is frequently used in animal studies (KYNA cannot be metabolized to excitotoxic agents such as 3-hydroxy-L-kynurenine and quinolinic acid). We therefore investigated the possible effects of peripherally administered KYNA. Repetitive CSD waves were elicited by the application of 1 M KCl solution to the cortex. Direct current-electrocorticograms were measured for 1 hour. Four parameters of the waves were compared. Evans blue dye and fluorescent microscopy were used to study the possible changes in the permeability of the BBB. The results demonstrated that N-methyl-D-aspartate receptor antagonists can reduce the number of CSD waves and decrease the permeability of the BBB during CSD. These results suggest that KYNA itself or its derivatives may offer a new approach in the therapy of migraines. PMID:24068867
EXPOSURE RELATED DOSE ESTIMATING MODEL (ERDEM)
ERDEM is a physiologically-based pharmacokinetic (PBPK) model with a graphical user interface (GUI) front end. Such a mathematical model was needed to make reliable estimates of the chemical dose to organs of animals or humans because of uncertainties of making route-to route, lo...
Li, Xiaolong; Lu, Yan; Sun, Yi; Zhang, Qi
2015-01-01
Objective: Our objective is to explore the effect of curcumin on permeability of coronary artery and expression of related proteins in rat coronary atherosclerosis heart disease model. Methods: 45 healthy male Wistar rats of clean grade were selected and divided into treatment group, model control group and blank control group. The rats in the treatment group and model control group received high-fat diet for 12 weeks and intraperitoneal injection of VD3 to establish rat coronary atherosclerosis heart disease model. After modeling, the rats in the treatment group received gavage of 100 mg/(kg·d) curcimin, and the rats in the model control group and blank control group received gavage of 5 ml/(kg·d) distilled water, the intervention time was 4 weeks. After intervention, the rats were killed, and the hearts were dissected to obtain the samples of coronary artery. After embedding and frozen section, immunofluorescence method was used to detect the change of endarterium permeability in 3 groups, Western blot was used to detect matrix metalloproteinase-9 (MMP-9) and CD40L in coronary artery tissue, and enzyme linked immunosorbent assay (ELISA) was used to detect serum tumor necrosis factor-α (TNF-α) and C reaction protein (CRP). Results: After modeling, compared with the blank control group, total cholesterol (TC), triglyceride (TG) and low density lipoprotein cholesterin (LDL-c) in the treatment group and model control group were significantly higher (P<0.05), however, high density lipoprotein cholesterin (HDL-c) was significantly lower. The pathological sections showed that there was lipidosis in rat coronary artery in treatment group and model control group, indicating that the modeling was successful. Immunofluorescence showed that there was only a little fluorochrome permeability in artery in blank control group, there was some fluorochrome permeability in artery in the treatment group and there was a lot of fluorochrome permeability in artery in the model
Dunn, T.L.
1996-03-01
This research is to provide improved strategies for enhanced oil recovery from the Tensleep Sandstone oil reservoirs in the Bighorn and Wind River basins, Wyoming. Because of the great range of API gravities of the oils produced from these reservoirs, the proposed study concentrates on understanding the spatial variation and anisotropy of relative permeability within the Tensleep Sandstone. This research will associate those spatial distributions and anisotropies with the depositional subfacies and zones of diagenetic alteration found within the sandstone. The associations of the above with pore geometry will link relative permeability with the dimensions of lithofacies and authigenic mineral facies. Hence, the study is to provide criteria for scaling this parameter on a range of scales, from the laboratory to the basin-wide scale of subfacies distribution. Effects of depositional processes and burial diagenesis will be investigated. Image analysis of pore systems will be done to produce algorithms for estimating relative permeability from petrographic analyses of core and well cuttings. In addition, these studies are being coupled with geochemical modeling and coreflood experiments to investigate the potential for wellbore scaling and formation damage anticipated during EOR, eg., CO{sub 2} flooding. This will provide a regional basis for EOR strategies for the largest potential target reservoir in Wyoming; results will have application to all eolian reservoirs through correlations of relative permeability variation and anisotropy with eolian depositional lithofacies.
NASA Astrophysics Data System (ADS)
Akbarabadi, Morteza; Piri, Mohammad
2013-02-01
We present the results of an experimental study on the effects of hysteresis on capillary trapping and relative permeability of CO2/brine systems at reservoir conditions. We performed thirty unsteady- and steady-state drainage and imbibition full-recirculation flow experiments in three different sandstone rock samples, low- and high-permeability Berea and Nugget sandstones. The experiments were carried out at various flow rates with both supercritical CO2 (scCO2)/brine and gaseous CO2 (gCO2)/brine fluid systems. The unsteady-state experiments were carried out with a wide range of flow rates to establish a broad range of initial brine saturations (Swi). This allowed investigation of the sensitivity of residual trapped CO2 saturation (S) to changes in Swi. The values were successfully compared with those available in the literature. For a given Swi, the trapped scCO2 saturation was less than that of gCO2 in the same sample. This was attributed to brine being less wetting in the presence of scCO2 than in the presence of gCO2. Post-imbibition dissolution of trapped CO2 and formation of dissolution front was also investigated. During the steady-state experiments, scCO2 and brine were co-injected with monotonically increasing or decreasing fractional flows to perform drainage and imbibition processes. We carried out seven sets of steady-state flow tests with various trajectories generating a comprehensive group of relative permeability hysteresis curves. The scanning curves revealed distinct features with potentially important implications for storage of scCO2 in geological formations. For both series of experiments, the ratio of S to initial CO2 saturation (1- Swi) was found to be much higher for low initial CO2 saturations. The results indicate that very promising fractions (about 49 to 83%) of the initial CO2 saturation can be stored through capillary trapping.
Naderkhani, Elenaz; Vasskog, Terje; Flaten, Gøril Eide
2015-06-20
A prerequisite for successful oral drug therapy is the drug's ability to cross the gastrointestinal barrier. Considering the increasing number of new chemical entities in modern drug discovery, reliable and fast in vitro models are required for early and efficient prediction of intestinal permeability. To mimic the intestinal environment, use of biorelevant media may provide valuable information on in vivo drug permeation. The present study aims at improving the novel biomimetic phospholipid vesicle-based permeation assay's (PVPAbiomimetic) biorelevance by investigating the applicability of the biorelevant media; fasted state simulated intestinal fluid (FaSSIF) and fed state simulated intestinal fluid (FeSSIF). The FaSSIF and FeSSIF's influence on the permeability of the model drugs acyclovir, indomethacin, griseofulvin and nadolol was then assessed. The barriers' robustness in terms of storage stability was also evaluated. The barriers were found to maintain their integrity in presence of FaSSIF and FeSSIF. The model drugs showed changes in permeability in presence of the different simulated intestinal fluids that were in agreement with previous reports. Moreover, the barrier showed improved storage stability by maintaining its integrity for 6months. Altogether, this study moves the PVPAbiomimetic an important step towards a better in vitro permeability model for use in drug development. PMID:25840125
Relating space radiation environments to risk estimates
NASA Technical Reports Server (NTRS)
Curtis, Stanley B.
1993-01-01
A number of considerations must go into the process of determining the risk of deleterious effects of space radiation to travelers. Among them are (1) determination of the components of the radiation environment (particle species, fluxes and energy spectra) which will encounter, (2) determination of the effects of shielding provided by the spacecraft and the bodies of the travelers which modify the incident particle spectra and mix of particles, and (3) determination of relevant biological effects of the radiation in the organs of interest. The latter can then lead to an estimation of risk from a given space scenario. Clearly, the process spans many scientific disciplines from solar and cosmic ray physics to radiation transport theeory to the multistage problem of the induction by radiation of initial lesions in living material and their evolution via physical, chemical, and biological processes at the molecular, cellular, and tissue levels to produce the end point of importance.
Relating space radiation environments to risk estimates
Curtis, S.B. ||
1993-12-31
A number of considerations must go into the process of determining the risk of deleterious effects of space radiation to travelers. Among them are (1) determination of the components of the radiation environment (particle species, fluxes and energy spectra) which will encounter, (2) determination of the effects of shielding provided by the spacecraft and the bodies of the travelers which modify the incident particle spectra and mix of particles, and (3) determination of relevant biological effects of the radiation in the organs of interest. The latter can then lead to an estimation of risk from a given space scenario. Clearly, the process spans many scientific disciplines from solar and cosmic ray physics to radiation transport theeory to the multistage problem of the induction by radiation of initial lesions in living material and their evolution via physical, chemical, and biological processes at the molecular, cellular, and tissue levels to produce the end point of importance.
NASA Astrophysics Data System (ADS)
Vogt, C.; Marquart, G.; Kosack, C.; Wolf, A.; Clauser, C.
2012-08-01
We present an estimation of the permeability fields of the reservoir at the Enhanced Geothermal System (EGS) at Soultz-sous-Forêts, France, based on the data assimilation technique Ensemble Kalman Filter (EnKF). To this end, we assimilate data from a tracer circulation experiment performed in 2005. Using a 3-D numerical simulation of fluid transport and chemical tracer dispersion, we advance the tracer in time and control the concentration. With the EnKF we obtain reliable fits for concentration data recorded in both existing production boreholes, GPK2 and GPK4. As an alternative to discrete fracture networks, our heterogeneous equivalent porous medium approach thus can also characterize the hydraulically fractured zone of the engineered geothermal system. We present best estimates for permeabilities (10-14 m2-10-12 m2for the fracture zone) and the corresponding uncertainty which is about one order of magnitude. After comparing our results to results from a massive Monte Carlo and from a gradient-based Bayesian approach, it becomes clear that only the EnKF of this three approaches is able to fit concentrations at GPK2 and GPK4 simultaneously. Based on the EnKF estimates obtained, a long-term performance prediction including an uncertainty analysis for the reservoir (as it was in 2005) yields no thermal breakthrough in the system within at least 50 years of operation. Our study demonstrates the efficiency of the EnKF when estimating the permeability distribution in an EGS reservoir even with sparse data available.
Relating space radiation environments to risk estimates
Curtis, S.B.
1991-10-01
This lecture will provide a bridge from the physical energy or LET spectra as might be calculated in an organ to the risk of carcinogenesis, a particular concern for extended missions to the moon or beyond to Mars. Topics covered will include (1) LET spectra expected from galactic cosmic rays, (2) probabilities that individual cell nuclei in the body will be hit by heavy galactic cosmic ray particles, (3) the conventional methods of calculating risks from a mixed environment of high and low LET radiation, (4) an alternate method which provides certain advantages using fluence-related risk coefficients (risk cross sections), and (5) directions for future research and development of these ideas.
NASA Astrophysics Data System (ADS)
Landry, C. J.; Karpyn, Z. T.; Ayala, O.
2014-05-01
We present a pore-scale study of two-phase relative permeability in homogenous-wet porous media, and porous media altered to a mixed-wet state. A Shan-Chen type multicomponent lattice Boltzmann (LB) model is employed to determine pore-scale fluid distributions and relative permeability. Mixed-wet states are created by altering the wettability of solid surfaces in contact with the nonwetting phase at the end of steady state simulation of initially homogenous-wet porous media. To ensure accurate representation of fluid-solid interfacial areas, we compare LB simulation results to experimental measurements of interfacial fluid-fluid and fluid-solid areas determined by X-ray computed microtomography imaging of water and oil distributions in bead packs. The LB simulations are found to match experimental trends observed for fluid-fluid and fluid-solid interfacial area-saturation relationships. The relative permeability of both fluids in the homogenous-wet porous media was found to decrease with a decreasing contact angle. The relative permeability of both fluids in the altered, mixed-wet porous media was found to decrease for all mixed-wet states in comparison to the initial homogenous-wet states. The nonwetting phase relative permeability decreased significantly, while the wetting phase experienced only a minor decrease. The significance of the decrease was found to be dependent on the distribution of the unaltered solid surfaces, with less dependence on the severity of alteration.
NASA Astrophysics Data System (ADS)
Darwish, M. A.; Saafan, S. A.; El-Kony, D.; Salahuddin, N. A.
2015-07-01
Ferrite nanoparticles - having the compositions Li(x/2)(Ni0.5Zn0.5)(1-x)Fe(2+x/2)O4 (x=0, 0.2, 0.3) - have been prepared by the co-precipitation method. The prepared powders have been divided into groups and sintered at different temperatures (373 K, 1074 K and 1473 K). X-Ray diffraction analysis (XRD) for all samples has confirmed the formation of the desired ferrites with crystallite sizes within the nanoscale (<100 nm). The dc conductivity, the relative permeability and the magnetization of the ferrite samples have been investigated and according to the results, the sample Li0.15(Ni0.5Zn0.5)0.7 Fe2.15O4 sintered at 1473 K has been chosen to prepare the composites. The particle size of this sample has been recalculated by using JEOL JEM-100SX transmission electron microscope and it has been found about 64.7 nm. Then, a pure epoxy sample and four pristine epoxy resin /Li0.15(Ni0.5Zn0.5)0.7 Fe2.15O4 composites have been prepared using different ferrite contents (20%, 30%, 40%, and 50%) wt.%. These samples have been characterized by Fourier transform infrared (FTIR) spectroscopy and their dc conductivity, relative permeability and magnetization have also been investigated. The obtained results indicate that the investigated composites may be promising candidates for practical applications such as EMI suppressor and high frequency applications.
Soil Water Retention and Relative Permeability for Full Range of Saturation
Zhang, Z. F.
2010-09-28
Common conceptual models for unsaturated flow often rely on the oversimplified representation of medium pores as a bundle of cylindrical capillaries and assume that the matric potential is attributed to capillary forces only. The adsorptive surface forces are ignored. It is often assumed that aqueous flow is negligible when a soil is near or at the residual water content. These models are successful at high and medium water contents but often give poor results at low water contents. These models do not apply to conditions at which water content is less than the residual water content. We extend the lower bound of existing water-retention functions and conductivity models from residual water content to the oven-dry condition (i.e., zero water content) by defining a state-dependent, residual-water content for a soil drier than a critical value. Furthermore, a hydraulic conductivity model for smooth uniform spheres was modified by introducing a correction factor to describe the film flow-induced hydraulic conductivity for natural porous media. The total unsaturated hydraulic conductivity is the sum of those due to capillary and film flow. The extended retention and conductivity models were verified with six datasets from the literature. Results show that, when the soil is at high and intermediate water content, there is no difference between the un-extended and the extended models; when the soil is at low water content, the un-extended models overestimate the water content but under-estimate the conductivity while the extended models match the retention and conductivity measurements well.
The Relative Performance of Targeted Maximum Likelihood Estimators
Porter, Kristin E.; Gruber, Susan; van der Laan, Mark J.; Sekhon, Jasjeet S.
2011-01-01
There is an active debate in the literature on censored data about the relative performance of model based maximum likelihood estimators, IPCW-estimators, and a variety of double robust semiparametric efficient estimators. Kang and Schafer (2007) demonstrate the fragility of double robust and IPCW-estimators in a simulation study with positivity violations. They focus on a simple missing data problem with covariates where one desires to estimate the mean of an outcome that is subject to missingness. Responses by Robins, et al. (2007), Tsiatis and Davidian (2007), Tan (2007) and Ridgeway and McCaffrey (2007) further explore the challenges faced by double robust estimators and offer suggestions for improving their stability. In this article, we join the debate by presenting targeted maximum likelihood estimators (TMLEs). We demonstrate that TMLEs that guarantee that the parametric submodel employed by the TMLE procedure respects the global bounds on the continuous outcomes, are especially suitable for dealing with positivity violations because in addition to being double robust and semiparametric efficient, they are substitution estimators. We demonstrate the practical performance of TMLEs relative to other estimators in the simulations designed by Kang and Schafer (2007) and in modified simulations with even greater estimation challenges. PMID:21931570
Estimates of Preventability and Their Relation to Health Behavior.
ERIC Educational Resources Information Center
Poole, Gary D.
It was hypothesized that a person's estimates of the preventability of health problems would be related to health behaviors such that a person who engages in healthful behavior should make higher estimates of preventability. A study was conducted to investigate the relationship between causal attribution of health problems and health-related…
NASA Astrophysics Data System (ADS)
Ingebritsen, S.; Gleeson, T.
2014-12-01
Existing data and models support a distinction between the hydrodynamics of the brittle upper crust, where topography, permeability contrasts, and magmatic heat sources dominate patterns of flow and externally derived (meteoric) fluids are common, and the ductile lower crust, dominated by devolatilization reactions and internally derived fluids. The permeability structure of the uppermost (~<1 km) crust is highly heterogeneous, and controls include primary lithology, porosity, rheology, geochemistry, and tectonic and time-temperature histories of the rocks. Systematic permeability differences among original lithologies persist to contact-metamorphic depths of 3-10 km, but are not evident at regional-metamorphic depths of 10-30+ km - presumably because, at such depths, metamorphic textures become largely independent of the original lithology. Permeability can vary in time as well as space, and its temporal evolution may be gradual or abrupt: streamflow responses to moderate to large earthquakes demonstrate that dynamic stresses can instantaneously change permeability by factors of up to 20 on a regional scale, whereas a 10-fold decrease in the permeability of a package of shale in a compacting basin may require 107years. Temporal variation is enhanced by strong chemical and thermal disequilibrium; thus lab experiments involving hydrothermal flow in crystalline rocks under pressure, temperature, and chemistry gradients often result in 10-fold permeability decreases over daily to sub-annual time scales. Recent research on enhanced geothermal reservoirs, ore-forming systems, and the hydrologic effects of earthquakes consistently shows that shear dislocation caused by tectonic forcing or fluid injection can increase near-to intermediate-field permeability by factors of 100 to 1000. Nonetheless, considering permeability as static parameter is often a reasonable assumption for low-temperature hydrogeologic investigations with time scales of days to decades.
The pH dependency of relative ion permeabilities in the crayfish giant axon.
Strickholm, A; Wallin, B G; Shrager, P
1969-07-01
The dependence of the membrane potential on potassium, chloride, and sodium ions, was determined at the pH's of 6.0, 7.5, and 9.0 for the resting and depolarized crayfish ventral nerve cord giant axon. In normal saline (external potassium = 5.4 mM), the dependence of the membrane potential on the external potassium ions decreased with lowered pH while that for chloride increased. In contrast, in the potassium depolarized axon (external potassium = 25 mM), the dependence of the membrane potential on external potassium was minimum around pH 7.5 and increased in either more acidic or basic pH. In addition, the dependence of the membrane potential on external chloride in the depolarized axon was maximum at pH 7.5 and decreased in either more acidic or basic pH. The sodium dependency of the membrane potential was small and relatively unaffected by pH or depolarization. The data are interpreted as indicating a reversible surface membrane protein-phospholipid conformation change which occurs in the transition from the resting to the depolarized axon. PMID:5791546
NASA Astrophysics Data System (ADS)
Tsang, Y. W.; Huang, K.; Bodvarsson, G. S.
Air-injection tests were used to investigate the flow characteristics of the fractured volcanic tuffs at Yucca Mountain, Nevada, the potential site for a high-level nuclear waste repository. Because the tuff matrix pores are saturated over 90% with water and the matrix permeability is on the order of microdarcies, the air component of flow is mainly in the fractures. Air-injection tests can therefore help to determine the flow characteristics and heterogeneity structure of the densely fractured welded tuff. The tests were carried out in the Exploratory Studies Facility, an 8 km long underground tunnel at the Yucca Mountain site, in twelve 40 m long boreholes, forming three clusters within a cubic rock volume of approximately 40 meters on each edge. Each borehole in the test block was packed off (or isolated) into four sections (or zones) by inflatable packers. The in situ field tests consisted of constant-rate air injection into one of the isolated borehole zones while the pressure response was monitored in all the isolated zones. The pressure data showed an almost universal response in all monitored zones to injection into any borehole-zone, indicating that the fractures are well connected for airflow. Air-injection tests were performed in succession for all isolated zones. A simultaneous inversion was performed for the pressure response of all the monitoring zones for all the injection tests in the test block. TOUGH2, a 3D numerical code for multiphase, multicomponent transport, was used for this purpose. Spatially variable fracture permeability was used as an adjustable parameter to fit the simulated pressure responses to those measured, assuming fixed fracture porosity. For most of the pneumatic experiments, the calculated pressure changes matched the data well, and the estimated permeability ranged over four orders of magnitude, from 10-15 m2 to 10-11 m2.
NASA Astrophysics Data System (ADS)
Hsu, S. Y.; Tsai, J. P.; Chang, L. C.
2014-12-01
The flow of three immiscible fluids - water, NAPL, air - in porous media is important in many subsurface processes. To model the three-fluid flow, the relation of relative permeability-saturation-capillary pressure (k-S-P) of three fluids is of central importance. In this experimental study, we directly measure the k-S-P of the water (wetting phase) when three fluids are coexist in a micromodel during the water drainage and imbibition. The results show that the sequence of the non-wetting fluids (air and NAPL) entering into the micromodel affects the fluid distributions as well as the relative permeability of water. During the drainage process, the relative permeability of water dropped drastically when the pathway of water from inlet to outlet of the micromodel was visually blocked by the non-wetting fluids. At this stage, the relative permeability of water was low but not down to zero. The water was still able to move via corner flows or thin-film flows. During the imbibition process, the water displaced two non-wetting liquids via both "snap-off" and "piston-type" motions. The relative permeability of water jumped when the water pathway was formed again. In addition, we found that the well-known scaling format proposed by Parker et al. [1] might fail when the interfaces between the most non-wetting (air) and the most wetting (water) fluids occurs in the three-fluids system. References[1] J. C. Parker, R. J. Lenhard, and T. Kuppusamy, Water Resources Research, 23, 4, 618-624 (1987)
Minimax Quantum Tomography: Estimators and Relative Entropy Bounds
NASA Astrophysics Data System (ADS)
Ferrie, Christopher; Blume-Kohout, Robin
2016-03-01
A minimax estimator has the minimum possible error ("risk") in the worst case. We construct the first minimax estimators for quantum state tomography with relative entropy risk. The minimax risk of nonadaptive tomography scales as O (1 /√{N }) —in contrast to that of classical probability estimation, which is O (1 /N )—where N is the number of copies of the quantum state used. We trace this deficiency to sampling mismatch: future observations that determine risk may come from a different sample space than the past data that determine the estimate. This makes minimax estimators very biased, and we propose a computationally tractable alternative with similar behavior in the worst case, but superior accuracy on most states.
Minimax Quantum Tomography: Estimators and Relative Entropy Bounds.
Ferrie, Christopher; Blume-Kohout, Robin
2016-03-01
A minimax estimator has the minimum possible error ("risk") in the worst case. We construct the first minimax estimators for quantum state tomography with relative entropy risk. The minimax risk of nonadaptive tomography scales as O(1/sqrt[N])-in contrast to that of classical probability estimation, which is O(1/N)-where N is the number of copies of the quantum state used. We trace this deficiency to sampling mismatch: future observations that determine risk may come from a different sample space than the past data that determine the estimate. This makes minimax estimators very biased, and we propose a computationally tractable alternative with similar behavior in the worst case, but superior accuracy on most states. PMID:26991163
Estimating Relative Positions of Outer-Space Structures
NASA Technical Reports Server (NTRS)
Balian, Harry; Breckenridge, William; Brugarolas, Paul
2009-01-01
A computer program estimates the relative position and orientation of two structures from measurements, made by use of electronic cameras and laser range finders on one structure, of distances and angular positions of fiducial objects on the other structure. The program was written specifically for use in determining errors in the alignment of large structures deployed in outer space from a space shuttle. The program is based partly on equations for transformations among the various coordinate systems involved in the measurements and on equations that account for errors in the transformation operators. It computes a least-squares estimate of the relative position and orientation. Sequential least-squares estimates, acquired at a measurement rate of 4 Hz, are averaged by passing them through a fourth-order Butterworth filter. The program is executed in a computer aboard the space shuttle, and its position and orientation estimates are displayed to astronauts on a graphical user interface.
Surprise Calculator: Estimating relative entropy and Surprise between samples
NASA Astrophysics Data System (ADS)
Seehars, Sebastian
2016-05-01
The Surprise is a measure for consistency between posterior distributions and operates in parameter space. It can be used to analyze either the compatibility of separately analyzed posteriors from two datasets, or the posteriors from a Bayesian update. The Surprise Calculator estimates relative entropy and Surprise between two samples, assuming they are Gaussian. The software requires the R package CompQuadForm to estimate the significance of the Surprise, and rpy2 to interface R with Python.
Huber's M-estimation in relative GPS positioning: computational aspects
NASA Astrophysics Data System (ADS)
Chang, X.-W.; Guo, Y.
2005-08-01
When GPS signal measurements have outliers, using least squares (LS) estimation is likely to give poor position estimates. One of the typical approaches to handle this problem is to use robust estimation techniques. We study the computational issues of Huber’s M-estimation applied to relative GPS positioning. First for code-based relative positioning, we use simulation results to show that Newton’s method usually converges faster than the iteratively reweighted least squares (IRLS) method, which is often used in geodesy for computing robust estimates of parameters. Then for code- and carrier-phase-based relative positioning, we present a recursive modified Newton method to compute Huber’s M-estimates of the positions. The structures of the model are exploited to make the method efficient, and orthogonal transformations are used to ensure numerical reliability of the method. Economical use of computer memory is also taken into account in designing the method. Simulation results show that the method is effective.
NASA Astrophysics Data System (ADS)
Zuo, L.; Krevor, S. C.; Falta, R. W.; Benson, S. M.
2011-12-01
Saline aquifers and depleted oil and gas fields have been considered as preferred geological sequestration options for carbon dioxide to reduce greenhouse gas emissions. Given the high solubility of CO2 in water, over time, the fraction of CO2 in the subsurface may be dominated by dissolved CO2. CO2 laden brine may permeate cap rocks and carry dissolved CO2 to shallower depths, if there is an upward pressure gradient from the reservoir to the overlying groundwater aquifers. This kind of non-hydrostatic pressure gradients can be caused by gas injection in deeper formations, or groundwater depletion. Such upward flows will depressurize the brine and the dissolved CO2 will come out of solution as pressure drops. We present the results of an experimental investigation into the effects of CO2 exsolution on multiphase flow properties in a CO2-water system with various reservoir rocks and a risk assessment of CO2 leakage due to exsolution in carbon sequestration. The relative permeability of exsolved CO2 and water was measured in a core-flooding apparatus during depressurization with X-ray computed tomography. Very low relative permeabilities of CO2 and water are measured in the exsolution experiments, compared to the relative permeabilities derived from steady-state drainage measurements in the same cores, even when the CO2 saturation is as high as 40%. The large relative permeability reduction in both the CO2 and water phases is hypothesized to result from the presence of a disconnected exsolution gas phase in this flow system. After the CO2 was exsolved, a CO2-saturated water flooding experiment demonstrated the durability and the stability of the low water mobility in the presence of the exsolution gas phase, while the water mobility returned to normal after all of the exsolved CO2 dissolved by a fresh water. A large pressure drop across the core, which is 4~5 times higher than the pressure drop predicted by the drainage relative permeability, was maintained over 120
Permeability extraction: A sonic log inversion
Akbar, N.; Kim, J.J.
1994-12-31
In this paper the authors provide the missing important link between permeability and acoustic velocities by generating a permeability-dependent synthetic sonic log in a carbonate reservoir. The computations are based on Akbar`s theory that relates wave velocity to frequency, rock properties (e.g., lithology, permeability, and porosity), and fluid saturation and properties (viscosity, density, and compressibility). An inverted analytical expression of the theory is used to extract permeability from sonic velocity. The synthetic sonic and the computed permeability are compared with the observed sonic log and with plug permeability, respectively. The results demonstrate, as predicted by theory, that permeability can be related directly to acoustic velocities.
Relative azimuth inversion by way of damped maximum correlation estimates
Ringler, A.T.; Edwards, J.D.; Hutt, C.R.; Shelly, F.
2012-01-01
Horizontal seismic data are utilized in a large number of Earth studies. Such work depends on the published orientations of the sensitive axes of seismic sensors relative to true North. These orientations can be estimated using a number of different techniques: SensOrLoc (Sensitivity, Orientation and Location), comparison to synthetics (Ekstrom and Busby, 2008), or by way of magnetic compass. Current methods for finding relative station azimuths are unable to do so with arbitrary precision quickly because of limitations in the algorithms (e.g. grid search methods). Furthermore, in order to determine instrument orientations during station visits, it is critical that any analysis software be easily run on a large number of different computer platforms and the results be obtained quickly while on site. We developed a new technique for estimating relative sensor azimuths by inverting for the orientation with the maximum correlation to a reference instrument, using a non-linear parameter estimation routine. By making use of overlapping windows, we are able to make multiple azimuth estimates, which helps to identify the confidence of our azimuth estimate, even when the signal-to-noise ratio (SNR) is low. Finally, our algorithm has been written as a stand-alone, platform independent, Java software package with a graphical user interface for reading and selecting data segments to be analyzed.
Estimating body related soft biometric traits in video frames.
Arigbabu, Olasimbo Ayodeji; Ahmad, Sharifah Mumtazah Syed; Adnan, Wan Azizun Wan; Yussof, Salman; Iranmanesh, Vahab; Malallah, Fahad Layth
2014-01-01
Soft biometrics can be used as a prescreening filter, either by using single trait or by combining several traits to aid the performance of recognition systems in an unobtrusive way. In many practical visual surveillance scenarios, facial information becomes difficult to be effectively constructed due to several varying challenges. However, from distance the visual appearance of an object can be efficiently inferred, thereby providing the possibility of estimating body related information. This paper presents an approach for estimating body related soft biometrics; specifically we propose a new approach based on body measurement and artificial neural network for predicting body weight of subjects and incorporate the existing technique on single view metrology for height estimation in videos with low frame rate. Our evaluation on 1120 frame sets of 80 subjects from a newly compiled dataset shows that the mentioned soft biometric information of human subjects can be adequately predicted from set of frames. PMID:25121120
Estimating Body Related Soft Biometric Traits in Video Frames
Arigbabu, Olasimbo Ayodeji; Ahmad, Sharifah Mumtazah Syed; Adnan, Wan Azizun Wan; Yussof, Salman; Iranmanesh, Vahab; Malallah, Fahad Layth
2014-01-01
Soft biometrics can be used as a prescreening filter, either by using single trait or by combining several traits to aid the performance of recognition systems in an unobtrusive way. In many practical visual surveillance scenarios, facial information becomes difficult to be effectively constructed due to several varying challenges. However, from distance the visual appearance of an object can be efficiently inferred, thereby providing the possibility of estimating body related information. This paper presents an approach for estimating body related soft biometrics; specifically we propose a new approach based on body measurement and artificial neural network for predicting body weight of subjects and incorporate the existing technique on single view metrology for height estimation in videos with low frame rate. Our evaluation on 1120 frame sets of 80 subjects from a newly compiled dataset shows that the mentioned soft biometric information of human subjects can be adequately predicted from set of frames. PMID:25121120
Lenhard, Robert J.; Oostrom, Mart )
1998-01-01
A parametric two-phase, oil-water relative permeability/capillary pressure model for petroleum engineering and environmental applications is developed for porous media in which the smaller pores are strongly water-wet and the larger pores tend to be intermediate- or oil-wet. A saturation index, which can vary from 0 to 1, is used to distinguish those pores that are strongly water-wet from those that have intermediate- or oil-wet characteristics. The capillary pressure submodel is capable of describing main-drainage and hysteretic saturation-path saturations for positive and negative oil-water capillary pressures. At high oil-water capillary pressures, an asymptote is approached as the water saturation approaches the residual water saturation. At low oil-water capillary pressures (i.e., negative), another asymptote is approached as the oil saturation approaches the residual oil saturation. Hysteresis in capillary pressure relations, including water entrapment, is modeled. Relative permeabilities are predicted using parameters that describe main drainage capillary pressure relations and accounting for how water and oil are distributed throughout the pore spaces of a porous medium with mixed wettability. The capillary pressure submodel is tested against published experimental data, and an example of how to use the relative permeability/capillary pressure model for a hypothetical saturation-path scenario involving several imbibition and drainage paths is given. Features of the model are also explained. Results suggest that the proposed model is capable of predicting relative permeability/capillary pressure characteristics of porous media mixed wettability.
NASA Astrophysics Data System (ADS)
Wassermann, Jérôme; Sabroux, Jean-Christophe; Richon, Patrick; Pontreau, Sébastien; Guillon, Sophie; Pili, Eric
2010-05-01
The Roselend tunnel was drilled in the fifties by blasting in the micashists, granites and gneisses of the Méraillet massif (French Alps). It is situated on the shore of the Roselend reservoir Lake near its dam. Several tectonic shear fractures related to the Alpine orogeny intersect the dead end tunnel (with length of 128 m and section about 2 m), indeed the fracture density varies from 0.45 to 1 fracture per meter along the tunnel (Dezayes and Villemin 2002). Some fractures are partially or totally filled with secondary minerals. The flow rates of percolating water through the fractured medium are seasonal dependent. Large fractures drain a large fluid volume unlike small ones that drain limited fluid volume (Patriarche et al. 2007). The Roselend underground laboratory allows the study of the geochemical and geophysical responses of a fractured rock mass to periodic sollicitations due to water level variations of the nearby Roselend reservoir Lake. The tunnel was instrumented in the nineties to understand the relationship between radon (Rn-222) concentration and water level variations of the Roselend reservoir Lake (Trique et al. 1999). In order to characterize the geometry and the extent of the EDZ, core drilling and permeability measurements through pneumatic testing are performed along the Roselend tunnel. Drilled core analysis consists of direct observations at a macroscopic scale of fractures (density of fractures from EDZ) and also at a microscopic scale via thin sections. Method of pressure build-up in wells (Jakubick and Franz 1993, Bossart et al. 2002) is used to determine permeability profile along each borehole and hence to precise the extent and geometry of the EDZ. A strong correlation is observed between permeability profiles and the density of fractures estimated from core analysis. The extent of the EDZ appears to be about one tunnel radius i.e. one meter around the tunnel corridor. Another experiment consisting of continuous differential
Impact of permeability on seismoelectric transfer function of P waves
NASA Astrophysics Data System (ADS)
Holzhauer, J.; Bordes, C.; Oppermann, F.; Brito, D.; Yaramanci, U.
2012-04-01
Recent developments in the understanding of seismoelectrics have shown its potential relevance for porous media characterization with particular focus on permeability estimations. According to promising theoretical and numerical studies, permeability should influence the seismoelectric transfer function at higher frequencies. The dynamic seismoelectric transfer function E(ω)/ ü(ω), where E relates to the coseismic electric field induced by the seismic particle acceleration ü, is expected to increase with increasing permeabilities when crossing the Biot transition frequency. Still, only few experiments have been developed on that matter so far. To address the transfer function dependence on permeability, we adapted a column experiment to comply with steady-state permeability estimations. These observations were run in-situ, during the fluid-balancing phase prior to seismoelectric measurements. The 50 cm-long column had previously been carefully filled with perfectly rounded glass beads. The use of sorted glass beads is expected to achieve similar porosities reproducible throughout the experiment, opposed to varying permeabilities depending on the introduced particle size. The acoustic source delivered compressional waves with an optimal effect limited to the [1-3] kHz frequency range. These limitations are due to strong seismic attenuation in uncompacted porous media on one side, and to the dilemma of observing propagation in downsized laboratory setup on the other. First results validated the experimental protocol in terms of porosity/permeability independence: for particle size varying between 100 μm and 500 μm, permeability varied by a factor 20, with a maximum by 5.10-11 m2, while porosity remained by 39 ± 2 % during the whole experiment. Further investigations are being led regarding the normalised transfer function, corrected for both the fluid conductivity and the seismic energy. For that purpose, we compare the dependence of our measured transfer
Space-to-Space Based Relative Motion Estimation Using Direct Relative Orbit Parameters
NASA Astrophysics Data System (ADS)
Bennett, T.; Schaub, H.
There has been an increasing interest in space-based space situational awareness around satellite assets and the tracking of orbital debris. Of particular interest is the space-based tracking of objects near critical circular orbit regimes, for example near the Geostationary belt or the International Space Station. Relative orbit descriptions such as the Clohessy-Wiltshire equations describe the motion using time-varying Cartesian or curvilinear coordinates. Orbit element differences describe the unperturbed motion using constant variations of inertial orbit elements. With perturbations these only vary slowly, but can be challenging to estimate. Linearized Relative Orbit Elements (LROEs) employ invariants of the linearized relative motion, are thus constant for the unperturbed linear case, and share the benefit of the CW equations in that they directly related to space-based relative motion measurements. The variational LROE equations enable the relative orbit to be directly propagated including perturbation forces. Utilization of the invariant-inspired relative motion parameters exhibits exciting applications in relative motion sensing and control. Many methods of relative motion estimation involve the direct estimation of time-evolving position and velocity variables. Developed is an angles-only relative orbit Extended Kalman filter (EKF) navigation approach that directly estimates these nominally constant LROEs. The proposed variational equations and filtering scheme enables direct estimation of geometric parameters with clear geometric insight. Preliminary numerical simulation results demonstrate the relative orbit insight gained and speed of convergence. EKF implementations often exhibit significant sensitivity to initial conditions, however, initial results show that the LROE filter converges within fractions of an orbit with initialization errors that exceed 100 percent. The manuscript presents the invariants of motion, develops the variational equations for
Worldwide Estimates Relative to Five Continental-Scale Populations
Steele, Christopher D; Court, Denise Syndercombe; Balding, David J
2014-01-01
We estimate the population genetics parameter (also referred to as the fixation index) from short tandem repeat (STR) allele frequencies, comparing many worldwide human subpopulations at approximately the national level with continental-scale populations. is commonly used to measure population differentiation, and is important in forensic DNA analysis to account for remote shared ancestry between a suspect and an alternative source of the DNA. We estimate comparing subpopulations with a hypothetical ancestral population, which is the approach most widely used in population genetics, and also compare a subpopulation with a sampled reference population, which is more appropriate for forensic applications. Both estimation methods are likelihood-based, in which is related to the variance of the multinomial-Dirichlet distribution for allele counts. Overall, we find low values, with posterior 97.5 percentiles when comparing a subpopulation with the most appropriate population, and even for inter-population comparisons we find . These are much smaller than single nucleotide polymorphism-based inter-continental estimates, and are also about half the magnitude of STR-based estimates from population genetics surveys that focus on distinct ethnic groups rather than a general population. Our findings support the use of up to 3% in forensic calculations, which corresponds to some current practice. PMID:26460400
Chinma, C E; Ariahu, C C; Alakali, J S
2015-04-01
The effect of temperature and relative humidity on the water vapour permeability (WVP) and mechanical properties of cassava starch and soy protein concentrate (SPC) based edible films containing 20 % glycerol level were studied. Tensile strength and elastic modulus of edible films increased with increase in temperature and decreased with increase in relative humidity, while elongation at break decreased. Water vapour permeability of the films increased (2.6-4.3 g.mm/m(2).day.kPa) with increase in temperature and relative humidity. The temperature dependence of water vapour permeation of cassava starch-soy protein concentrate films followed Arrhenius relationship. Activation energy (Ea) of water vapour permeation of cassava starch-soy protein concentrate edible films ranged from 1.9 to 5.3 kJ/mol (R (2) ≥ 0.93) and increased with increase in SPC addition. The Ea values were lower for the bio-films than for polyvinylidene chloride, polypropylene and polyethylene which are an indication of low water vapour permeability of the developed biofilms compared to those synthetic films. PMID:25829623
NASA Astrophysics Data System (ADS)
Liu, Hui-Hai
2014-05-01
In clay or other low-permeability media, water flow becomes non-Darcian and characterized by the non-linear relationship between water flux and hydraulic gradient. This work is devoted to addressing a number of key issues related to geological disposal of high-level nuclear waste in clay/shale formations. It is demonstrated that water flow velocity in the damaged zone (often considered as a potential preferential advection paths in a repository) surrounding the tunnel is extremely small, as a result of non-Darcian flow behavior, such that solute transport is dominated by diffusion, rather than advection. The finding is also consistent with the often-observed existence of persistent abnormal pressures in shale formations. While relative permeability is the key parameter for modeling the unsaturated flow process, without incorporating non-Darcian flow behavior, significant errors can occur in the determination of relative permeability values from traditional measurement methods. An approach for dealing with temperature impact on non-Darcian flow and a formulation to calculate non-Darcian water flux in an anisotropic medium are presented, taking into consideration that a geological repository is subject to temperature evolution in the near field as a result of heat generated by nuclear waste, and that shale formations are generally anisotropic.
Multiple Component Event-Related Potential (mcERP) Estimation
NASA Technical Reports Server (NTRS)
Knuth, K. H.; Clanton, S. T.; Shah, A. S.; Truccolo, W. A.; Ding, M.; Bressler, S. L.; Trejo, L. J.; Schroeder, C. E.; Clancy, Daniel (Technical Monitor)
2002-01-01
We show how model-based estimation of the neural sources responsible for transient neuroelectric signals can be improved by the analysis of single trial data. Previously, we showed that a multiple component event-related potential (mcERP) algorithm can extract the responses of individual sources from recordings of a mixture of multiple, possibly interacting, neural ensembles. McERP also estimated single-trial amplitudes and onset latencies, thus allowing more accurate estimation of ongoing neural activity during an experimental trial. The mcERP algorithm is related to informax independent component analysis (ICA); however, the underlying signal model is more physiologically realistic in that a component is modeled as a stereotypic waveshape varying both in amplitude and onset latency from trial to trial. The result is a model that reflects quantities of interest to the neuroscientist. Here we demonstrate that the mcERP algorithm provides more accurate results than more traditional methods such as factor analysis and the more recent ICA. Whereas factor analysis assumes the sources are orthogonal and ICA assumes the sources are statistically independent, the mcERP algorithm makes no such assumptions thus allowing investigators to examine interactions among components by estimating the properties of single-trial responses.
Sahach, V F; Vavilova, H L; Strutyns'ka, N A; Rudyk, O V
2004-01-01
An age-related increase in the sensitivity of the mitochondrial permeability transition pore (MPTP) to inductors of it's opening, Ca2+ ions and phenylarsineoxide (PAO) was studied in experiments in vitro on isolated heart mitochondria of adult and old rats. Two indices were measured spectrophotometrically (lambda = 520 nm) by a decrease in an optical density (OD), resulting from mitochondrial swelling and a release of mitochondrial unidentified substances (mitochondrial factor, MF) registered also spectrophotometrically in a range of waves lambda = 230-260 nm. Dose-dependent effect of Ca2+ (10(-7)-10(-4) mol/l) and PAO (10(-8)-10(-4) mol/l) on swelling of the mitochondria were observed in samples from both adult and old rats. Swelling of the mitochondria from the heart of old rats induced by application of the above inductors was more intensive than the respective effect in samples from adult rats. In samples from the heart of both adult and old rats Ca2+ ions within the tested concentration range (10(-7)-10(-4) mol/l) evoked the release of MF in a dose-dependent manner. Mitochondria from the heart of old rats were found to be capable of releasing some amounts of MF in the absence of the MPTP inductors PAO. When this inductor was applied in a 10(-9) to 10(-4) mol/l concentration range, isolated mitochondria from the heart of old rats released unidentified substances with the absorption peaks at two wavelength, lambda = 230 nm and lambda = 240-245 nm. The former peak was found to be Cyclosporin A-insensitive, while the latter peak could be practically completely inhibited by this antibiotic. The concentrations of tested solutions (10(-7) mol/l CaCl2 and 10(-9) mol/l PAO), at which the release of the factor from the mitochondria of the old rat heart was observed, were significantly lower than those in adult rats. Our experimental data show that mitochondria isolated from the heart tissue of old rats demonstrate significantly higher sensitivity to inductors of MPTP
NASA Astrophysics Data System (ADS)
Akbarabadi, Morteza; Piri, Mohammad
2015-03-01
In this study we performed three categories of steady- and unsteady-state core-flooding experiments to investigate capillary trapping, relative permeability, and capillary pressure, in a scCO2 + SO2/brine/limestone system at elevated temperature and pressure conditions, i.e., 60 °C and 19.16 MPa. We used a Madison limestone core sample acquired from the Rock Springs Uplift in southwest Wyoming. We carried out two sets of steady-state drainage-imbibition relative permeability experiments with different initial brine saturations to study hysteresis. We found that the final scCO2 + SO2 drainage relative permeability was very low, i.e., 0.04. We also observed a rapid reduction in the scCO2-rich phase imbibition relative permeability curve, which resulted in a high residual trapping. The results showed that between 62.8% and more than 76% of the initial scCO2 + SO2 at the end of drainage was trapped by capillary trapping mechanism (trapping efficiency). We found that at higher initial brine saturations, the trapping efficiency was higher. The maximum initial and residual scCO2-rich phase saturations at the end of primary drainage and imbibition were 0.525 and 0.329, respectively. Each drainage-imbibition cycle was followed by a dissolution process to re-establish Sw = 1. The dissolution brine relative permeabilities for both cycles were also obtained. We characterized the scCO2 + SO2/brine capillary pressure hysteresis behavior through unsteady-state primary drainage, imbibition, and secondary drainage experiments. We observed negative imbibition capillary pressure curve indicative of possible wettability alteration throughout the experiments due to contact with scCO2 + SO2/brine fluid system. The trapping results were compared to those reported in literature for other carbonate core samples. We noticed slightly more residual trapping in our sample, which might be attributed to heterogeneity, different viscosity ratio, and pore-space topologies. The impact of dynamic
Seismic waves increase permeability.
Elkhoury, Jean E; Brodsky, Emily E; Agnew, Duncan C
2006-06-29
Earthquakes have been observed to affect hydrological systems in a variety of ways--water well levels can change dramatically, streams can become fuller and spring discharges can increase at the time of earthquakes. Distant earthquakes may even increase the permeability in faults. Most of these hydrological observations can be explained by some form of permeability increase. Here we use the response of water well levels to solid Earth tides to measure permeability over a 20-year period. At the time of each of seven earthquakes in Southern California, we observe transient changes of up to 24 degrees in the phase of the water level response to the dilatational volumetric strain of the semidiurnal tidal components of wells at the Piñon Flat Observatory in Southern California. After the earthquakes, the phase gradually returns to the background value at a rate of less than 0.1 degrees per day. We use a model of axisymmetric flow driven by an imposed head oscillation through a single, laterally extensive, confined, homogeneous and isotropic aquifer to relate the phase response to aquifer properties. We interpret the changes in phase response as due to changes in permeability. At the time of the earthquakes, the permeability at the site increases by a factor as high as three. The permeability increase depends roughly linearly on the amplitude of seismic-wave peak ground velocity in the range of 0.21-2.1 cm s(-1). Such permeability increases are of interest to hydrologists and oil reservoir engineers as they affect fluid flow and might determine long-term evolution of hydrological and oil-bearing systems. They may also be interesting to seismologists, as the resulting pore pressure changes can affect earthquakes by changing normal stresses on faults. PMID:16810253
Oostrom, Mart ); Lenhard, Robert J.
1998-01-01
To test and evaluate the ability of commonly used constitutive relations to predict multi-fluid flow, predictions for a numerical flow and transport simulator are compared to experimental data. Three quantitative experiments were conducted in one meter-long vertical columns. The columns were filled with either a uniform sand, a sand with a broad particle-size distribution, or with a layered system where a layer of a coarse-textured uniform sand was placed between two layers of a finer-textured uniform sand. After establishing a variably water-saturated condition, a slug of a light nonaqueous-phase liquid (LNAPL) was injected uniformly at a constant rate. Water and LNAPL saturations were measured as a function of time and elevation with a dual energy gamma-radiation system. The infiltration and redistribution of the LNAPL were simulated with nonhysteretic and hysteretic parametric relative permeability saturation-pressure (k-S-P ) models. The models were calibrated using two-phase air water retention data and an established scaling theory. The nonhysteretic Brooks Corey k-S-P model, which utilizes the Burdine relative permeability model, yielded predictions that closely matched the experimental data. Use of the nonhysteretic and hysteretic k-S-P models, based on the van Genuchten S-P relations and k-S relations derived from the Mualem relative permeability model, did not agree as well with the experimental data as those obtained with the Brooks-Corey k-S-P model. Explanations for the differences in performance of the three tested parametric k-S-P models are proposed.
Orr, G.; Goodnight, R.; Lean, J.S.
1986-11-01
The movement of intravitreally injected tritiated water from the vitreous to the choroid was accelerated by the removal of intervening retina. Both rate of transfer and peak choroidal levels of the tracer were increased, but the proportion of the intravitreal dose recovered was unaltered. In contrast, the movement of tritiated water after diffuse damage to the retinal pigment epithelium by sodium iodate was similar to that of control eyes. The main resistance to the diffusion of this tracer from the vitreous to the choroid is the retina. The differential permeability of the retina and the retinal pigment epithelium may have a role in normal retinal adhesion.
NASA Astrophysics Data System (ADS)
Diliberto, Iole Serena; Cangemi, Marianna; Gagliano, Antonina Lisa; Inguaggiato, Salvatore; Madonia, Paolo; Pedone, Maria; Fabio Pisciotta, Antonino
2016-04-01
Vulcano, the southernmost island of the Aeolian archipelago (Italy), is presently characterized by active fumarolic fields located along the rim of La Fossa cone and the shoreline of the Baia di Levante beach, in the northern portion of the island.The Baia di Levante fumarolic vents are fed by a shallow hydrothermal aquifer heated by magmatic gases rising from the deep down, with a spatial distribution strongly affected by the local fracture network. These fractures are the expression of a deformation field, dominated by a northward motion to Lipari, abruptly decaying to the Vulcanello peninsula, immediately northward of the Baia di Levante beach. Variable rates of fluid transfer to the surface, following permeability changes affecting the fracture network are among the results of stress field variations over time which induce fluctuations in the pressure state of the hydrothermal system. Under these conditions, increments in hydrothermal gas flow, able to cause an increase of gas hazard, could be determined by a rearrangement of the shallow permeability distribution induced by changes in the deformation field. In this case not associated to any variation in the volcanic activity state. Since 2009 an huge gas flow increment has been noticed in some undersea vents of the Baia di Levante area, leading to increase of gas hazard in their immediate surroundings. On the contrary, the acquired data from the INGV volcanic surveillance program didn't suggest any correlated increase of the magmatic fluid component in the degassing activity.In July 2015, we carried out multi-parametric geochemical surveys in this area, based on direct (thermocouple) and indirect (thermal infrared camera and pyrometer) soil temperature, soil CO2 flux, atmospheric concentration of CO2 and H2S measurements at low elevation (one meter a.s.l.). The chemical and isotopic composition of low temperature fumarole gases was determined too.The comparison of the new data with previous surveys carried out
Prevalence Estimates of Combat-Related PTSD: A Critical Review
Richardson, Lisa K.; Frueh, B. Christopher; Acierno, Ronald
2010-01-01
Objective To provide a critical review of prevalence estimates of combat-related PTSD among military personnel and veterans, and of the relevant factors that may account for the variability of estimates within and across cohorts, including methodological and conceptual factors accounting for differences in prevalence rates across nations, conflicts/wars, and studies. Method We examined MEDLINE and PsycINFO databases for literature on combat-related PTSD. The following terms were used independently and in combinations in this search: PTSD, combat, veterans, military, epidemiology, prevalence. Results The point prevalence of combat-related PTSD in US military veterans since the Vietnam War ranges from about 2 – 17%. Studies of recent conflicts suggest that combat-related PTSD afflicts between 4 – 17% of US Iraq War veterans, but only 3 – 6% of returning UK Iraq War veterans. Thus, the prevalence range is narrower and tends to have a lower ceiling among combat veterans of non-US Western nations. Variability in prevalence is likely due to differences in sampling strategies; measurement strategies; inclusion and measurement of the DSM-IV clinically significant impairment criterion; timing and latency of assessment and potential for recall bias; and combat experiences. Prevalence rates are also likely affected by issues related to PTSD course, chronicity, and comorbidity; symptom overlap with other psychiatric disorders; and sociopolitical and cultural factors that may vary over time and by nation. Conclusions The disorder represents a significant and costly illness to veterans, their families, and society as a whole. However, further carefully conceptualized research is needed to advance our understanding of disorder prevalence, as well as associated information on course, phenomenology, protective factors, treatment, and economic costs. PMID:20073563
Pharmacokinetic parameter estimations by minimum relative entropy method.
Amisaki, T; Eguchi, S
1995-10-01
For estimating pharmacokinetic parameters, we introduce the minimum relative entropy (MRE) method and compare its performance with least squares methods. There are several variants of least squares, such as ordinary least squares (OLS), weighted least squares, and iteratively reweighted least squares. In addition to these traditional methods, even extended least squares (ELS), a relatively new approach to nonlinear regression analysis, can be regarded as a variant of least squares. These methods are different from each other in their manner of handling weights. It has been recognized that least squares methods with an inadequate weighting scheme may cause misleading results (the "choice of weights" problem). Although least squares with uniform weights, i.e., OLS, is rarely used in pharmacokinetic analysis, it offers the principle of least squares. The objective function of OLS can be regarded as a distance between observed and theoretical pharmacokinetic values on the Euclidean space RN, where N is the number of observations. Thus OLS produces its estimates by minimizing the Euclidean distance. On the other hand, MRE works by minimizing the relative entropy which expresses discrepancy between two probability densities. Because pharmacokinetic functions are not density function in general, we use a particular form of the relative entropy whose domain is extended to the space of all positive functions. MRE never assumes any distribution of errors involved in observations. Thus, it can be a possible solution to the choice of weights problem. Moreover, since the mathematical form of the relative entropy, i.e., an expectation of the log-ratio of two probability density functions, is different from that of a usual Euclidean distance, the behavior of MRE may be different from those of least squares methods. To clarify the behavior of MRE, we have compared the performance of MRE with those of ELS and OLS by carrying out an intensive simulation study, where four pharmaco
Estimation of Relative Elasticities of Substitution and Relative Compensation for Part-Time Faculty.
ERIC Educational Resources Information Center
Tuckman, Howard P.; Katz, David A.
1981-01-01
Using data from 881 higher education institutions and a mathematical model, researchers related the estimated compensation rates of part-time faculty members to their institutional types and sexes. Results indicate a growing compensation gap between part- and full-time faculty and increasing substitutability of part- for full-time teachers. (RW)
Being surveyed can change later behavior and related parameter estimates
Zwane, Alix Peterson; Zinman, Jonathan; Van Dusen, Eric; Pariente, William; Null, Clair; Miguel, Edward; Kremer, Michael; Hornbeck, Richard; Giné, Xavier; Duflo, Esther; Devoto, Florencia; Crepon, Bruno; Banerjee, Abhijit
2011-01-01
Does completing a household survey change the later behavior of those surveyed? In three field studies of health and two of microlending, we randomly assigned subjects to be surveyed about health and/or household finances and then measured subsequent use of a related product with data that does not rely on subjects' self-reports. In the three health experiments, we find that being surveyed increases use of water treatment products and take-up of medical insurance. Frequent surveys on reported diarrhea also led to biased estimates of the impact of improved source water quality. In two microlending studies, we do not find an effect of being surveyed on borrowing behavior. The results suggest that limited attention could play an important but context-dependent role in consumer choice, with the implication that researchers should reconsider whether, how, and how much to survey their subjects. PMID:21245314
Being surveyed can change later behavior and related parameter estimates.
Zwane, Alix Peterson; Zinman, Jonathan; Van Dusen, Eric; Pariente, William; Null, Clair; Miguel, Edward; Kremer, Michael; Karlan, Dean S; Hornbeck, Richard; Giné, Xavier; Duflo, Esther; Devoto, Florencia; Crepon, Bruno; Banerjee, Abhijit
2011-02-01
Does completing a household survey change the later behavior of those surveyed? In three field studies of health and two of microlending, we randomly assigned subjects to be surveyed about health and/or household finances and then measured subsequent use of a related product with data that does not rely on subjects' self-reports. In the three health experiments, we find that being surveyed increases use of water treatment products and take-up of medical insurance. Frequent surveys on reported diarrhea also led to biased estimates of the impact of improved source water quality. In two microlending studies, we do not find an effect of being surveyed on borrowing behavior. The results suggest that limited attention could play an important but context-dependent role in consumer choice, with the implication that researchers should reconsider whether, how, and how much to survey their subjects. PMID:21245314
NASA Astrophysics Data System (ADS)
Niu, B.; Al-Menhali, A.; Krevor, S. C.
2014-12-01
Successful industrial scale carbon dioxide injection into deep saline aquifers will be dependent on the ability to model the flow of the fluid and to quantify the impact of various trapping mechanisms. The effectiveness of the models is in turn dependent on high quality laboratory measurements of basic multiphase flow properties such as relative permeability and residual trapping at reservoir conditions. Compared with typical oil-brine systems, however, a unique defining characteristic of the CO2-brine system is its combination of high viscosity ratio and low density ratio. This combination of properties results in unique complications for experiments with CO2 and brine and unique flow conditions must be used to achieve the combined goals of observations across a large saturation range and the avoidance of the effects of heterogeneity as well as capillary forces and gravity segregation. We have simulated the corefloods experiments at various conditions and calculated with different interpretation techniques: Steady state method, JBN-type method and history matching. As one of the essential mechanisms for CO2 storage underground, residual trapping refers to the trapping of CO2 through capillary forces within the pore space of a permeable aquifer. There are few studies that have observed the trapping characteristics for CO2-brine systems in permeable rocks, including the impact of reservoir conditions, and this remains a major uncertainty for geologic CO2 storage. This work presents results from a core-flooding laboratory that has been recently developed at Imperial College dedicated to observations of CO2-brine systems. The apparatus includes high precision pumps, accurate temperature control and a rotating X-ray CT scanner that allows experiments to be performed in both vertical and horizontal directions. The proper approach to measuring relative permeability for CO2-brine system is proposed and demonstrated. The changes in residual trapping correlated to pressure
Avraam, D.G.; Payatakes, A.C.
1999-03-01
The pore-scale flow mechanisms and the relative permeabilities during steady-state two-phase flow in a glass model pore network were studied experimentally for the case of strong wettability ({theta}{sub e} < 10{degree}). The capillary number, the fluid flow rate ratio, and the viscosity ratio were changed systematically, while all other parameters were kept constant. The flow mechanisms at the microscopic and macroscopic scales were examined visually and videorecorded. As in the case of intermediate wettability, the authors observed that over a broad range of values of the system parameters the pore-scale flow mechanisms include many strongly nonlinear phenomena, specifically, breakup, coalescence, stranding, mobilization, etc. Such microscopically irreversible phenomena cause macroscopic nonlinearity and irreversibility, which make an Onsager-type theory inappropriate for this class of flows. The main effects of strong wettability are that it changes the domains of the system parameter values where the various flow regimes are observed and increases the relative permeability values, whereas the qualitative aspects of the flow remain the same. Currently, a new true-to-mechanism model is being developed for this class of flows.
Buchenauer, Dean A.; Karnesky, Richard A.
2015-09-01
An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.
Permeability within basaltic oceanic crust
NASA Astrophysics Data System (ADS)
Fisher, Andrew T.
1998-05-01
Water-rock interactions within the seafloor are responsible for significant energy and solute fluxes between basaltic oceanic crust and the overlying ocean. Permeability is the primary hydrologic property controlling the form, intensity, and duration of seafloor fluid circulation, but after several decades of characterizing shallow oceanic basement, we are still learning how permeability is created and distributed and how it changes as the crust ages. Core-scale measurements of basaltic oceanic crust yield permeabilities that are quite low (generally 10-22 to 10-17 m²), while in situ measurements in boreholes suggest an overlapping range of values extending several orders of magnitude higher (10-18 to 10-13 m²). Additional indirect estimates include calculations made from borehole temperature and flow meter logs (10-16 to 10-11 m²), numerical models of coupled heat and fluid flow at the ridge crest and within ridge flanks (10-16 to 10-9 m²), and several other methods. Qualitative indications of permeability within the basaltic oceanic crust come from an improved understanding of crustal stratigraphy and patterns of alteration and tectonic modification seen in ophiolites, seafloor samples and boreholes. Difficulties in reconciling the wide range of estimated permeabilities arise from differences in experimental scale and critical assumptions regarding the nature and distribution of fluid flow. Many observations and experimental and modeling results are consistent with permeability varying with depth into basement and with primary basement lithology. Permeability also seems to be highly heterogeneous and anisotropic throughout much of the basaltic crust, as within crystalline rocks in general. A series of focused experiments is required to resolve permeability in shallow oceanic basement and to directly couple upper crustal hydrogeology to magmatic, tectonic, and geochemical crustal evolution.
Technology Transfer Automated Retrieval System (TEKTRAN)
Dual-permeability models are increasingly used to quantify the transport of solutes and microorganisms in soils with preferential flow. An ability to accurately determine the model parameters and their variation with preferential pathway characteristics is crucial for predicting the transport of mi...
Relating the Hadamard Variance to MCS Kalman Filter Clock Estimation
NASA Technical Reports Server (NTRS)
Hutsell, Steven T.
1996-01-01
The Global Positioning System (GPS) Master Control Station (MCS) currently makes significant use of the Allan Variance. This two-sample variance equation has proven excellent as a handy, understandable tool, both for time domain analysis of GPS cesium frequency standards, and for fine tuning the MCS's state estimation of these atomic clocks. The Allan Variance does not explicitly converge for the nose types of alpha less than or equal to minus 3 and can be greatly affected by frequency drift. Because GPS rubidium frequency standards exhibit non-trivial aging and aging noise characteristics, the basic Allan Variance analysis must be augmented in order to (a) compensate for a dynamic frequency drift, and (b) characterize two additional noise types, specifically alpha = minus 3, and alpha = minus 4. As the GPS program progresses, we will utilize a larger percentage of rubidium frequency standards than ever before. Hence, GPS rubidium clock characterization will require more attention than ever before. The three sample variance, commonly referred to as a renormalized Hadamard Variance, is unaffected by linear frequency drift, converges for alpha is greater than minus 5, and thus has utility for modeling noise in GPS rubidium frequency standards. This paper demonstrates the potential of Hadamard Variance analysis in GPS operations, and presents an equation that relates the Hadamard Variance to the MCS's Kalman filter process noises.
The role of geology in the behavior and choice of permeability predictors
Ball, L.D.; Corbett, P.W.M.; Jensen, J.L.; Lewis, J.J.M.
1997-03-01
For effective flow-simulation models, it may be important to estimate permeability accurately over several scales of geological heterogeneity. Critical to the data analysis and permeability prediction are the volume of investigation and sampling interval of each petrophysical tool and how each relates to these geological scales. The authors examine these issues in the context of the As Sarah Field, Sirte Basin, Libya. A geological study of this braided fluvial reservoir has revealed heterogeneity at a series of scales. This geological hierarchy in turn possessed a corresponding hierarchy of permeability variation.The link between the geology and permeability was found to be very important in understanding well logs and core data and subsequent permeability upscaling. They found that the small scale (cm) permeability variability was better predicted using a flushed-zone resistivity, R{sub xo}, tool, rather than a wireline porosity measurement. The perm-resistivity correlation was strongest when the probe permeabilities were averaged to best match the window size of the wireline R{sub xo}. This behavior was explained by the geological variation present at this scale. For the larger scale geological heterogeneity, the production flowmeter highlighted discrepancies between flow data and averaged permeability. This yielded a layered sedimentological model interpretation and a change in averaging for permeability prediction at the bedset scale (ms-10 x ms).
Quantitation of small intestinal permeability during normal human drug absorption
2013-01-01
Background Understanding the quantitative relationship between a drug’s physical chemical properties and its rate of intestinal absorption (QSAR) is critical for selecting candidate drugs. Because of limited experimental human small intestinal permeability data, approximate surrogates such as the fraction absorbed or Caco-2 permeability are used, both of which have limitations. Methods Given the blood concentration following an oral and intravenous dose, the time course of intestinal absorption in humans was determined by deconvolution and related to the intestinal permeability by the use of a new 3 parameter model function (“Averaged Model” (AM)). The theoretical validity of this AM model was evaluated by comparing it to the standard diffusion-convection model (DC). This analysis was applied to 90 drugs using previously published data. Only drugs that were administered in oral solution form to fasting subjects were considered so that the rate of gastric emptying was approximately known. All the calculations are carried out using the freely available routine PKQuest Java (http://www.pkquest.com) which has an easy to use, simple interface. Results Theoretically, the AM permeability provides an accurate estimate of the intestinal DC permeability for solutes whose absorption ranges from 1% to 99%. The experimental human AM permeabilities determined by deconvolution are similar to those determined by direct human jejunal perfusion. The small intestinal pH varies with position and the results are interpreted in terms of the pH dependent octanol partition. The permeability versus partition relations are presented separately for the uncharged, basic, acidic and charged solutes. The small uncharged solutes caffeine, acetaminophen and antipyrine have very high permeabilities (about 20 x 10-4 cm/sec) corresponding to an unstirred layer of only 45 μm. The weak acid aspirin also has a large AM permeability despite its low octanol partition at pH 7.4, suggesting
State Medicaid Pharmacy Payments and Their Relation to Estimated Costs
Adams, E. Kathleen; Kreling, David H.; Gondek, Kathleen
1994-01-01
Although prescription drugs do not appear to be a primary source of recent surges in Medicaid spending, their share of Medicaid expenditures has risen despite efforts to control costs. As part of a general concern with prescription drug policy, Congress mandated a study of the adequacy of Medicaid payments to pharmacies. In this study, several data sources were used to develop 1991 estimates of average pharmacy ingredient and dispensing costs. A simulation was used to estimate the amounts States pay. Nationally, simulated payments averaged 96 percent of estimated costs overall but were lower for dispensing costs (79 percent) and higher for ingredient costs (102 percent). PMID:10137796
Babchin, A J; Bentsen, R; Faybishenko, B; Geilikman, M B
2016-07-01
The objective of the current paper is to extend the theoretical approach and an analytical solution, which was proposed by Babchin and Faybishenko (2014), for the evaluation of a capillary pressure (Pc) curve in porous media based on the apparent specific surface area, using an explicit combination of the relative permeability functions for the wetting and nonwetting phases. Specifically, in the current paper, the authors extended this approach by the application of two types of capillary bundle models with different formulations of effective capillary radius formulae. The application of the new models allowed the authors to improve the results of calculations of the effective average contact angle given in the paper by Babchin and Faybishenko (2014). The validation of the new models for calculations of the Pc curve is also given in this paper using the results of a specifically designed core experiment, which was originally conducted by Ayub and Bentsen (2001). PMID:26211849
NASA Astrophysics Data System (ADS)
Lázaro-Mancilla, O.; Gómez-Treviño, E.
2000-03-01
This paper presents a method for inverting ground penetrating radargrams in terms of one-dimensional profiles. We resort to a special type of linearization of the damped E-field wave equation to solve the inverse problem. The numerical algorithm for the inversion is iterative and requires the solution of several forward problems, which we evaluate using the matrix propagation approach. Analytical expressions for the derivatives with respect to physical properties are obtained using the self-adjoint Green's function method. We consider three physical properties of materials; namely dielectrical permittivity, magnetic permeability and electrical conductivity. The inverse problem is solved minimizing the quadratic norm of the residuals using quadratic programming optimization. In the iterative process to speed up convergence we use the Levenberg-Mardquardt method. The special type of linearization is based on an integral equation that involves derivatives of the electric field with respect to magnetic permeability, electrical conductivity and dielectric permittivity; this equation is the result of analyzing the implication of the scaling properties of the electromagnetic field. The ground is modeled using thin horizontal layers to approximate general variations of the physical properties. We show that standard synthetic radargrams due to dielectric permittivity contrasts can be matched using electrical conductivity or magnetic permeability variations. The results indicate that it is impossible to differentiate one property from the other using GPR data.
Estimated Perennial Streams of Idaho and Related Geospatial Datasets
Rea, Alan; Skinner, Kenneth D.
2009-01-01
The perennial or intermittent status of a stream has bearing on many regulatory requirements. Because of changing technologies over time, cartographic representation of perennial/intermittent status of streams on U.S. Geological Survey (USGS) topographic maps is not always accurate and (or) consistent from one map sheet to another. Idaho Administrative Code defines an intermittent stream as one having a 7-day, 2-year low flow (7Q2) less than 0.1 cubic feet per second. To establish consistency with the Idaho Administrative Code, the USGS developed regional regression equations for Idaho streams for several low-flow statistics, including 7Q2. Using these regression equations, the 7Q2 streamflow may be estimated for naturally flowing streams anywhere in Idaho to help determine perennial/intermittent status of streams. Using these equations in conjunction with a Geographic Information System (GIS) technique known as weighted flow accumulation allows for an automated and continuous estimation of 7Q2 streamflow at all points along a stream, which in turn can be used to determine if a stream is intermittent or perennial according to the Idaho Administrative Code operational definition. The selected regression equations were applied to create continuous grids of 7Q2 estimates for the eight low-flow regression regions of Idaho. By applying the 0.1 ft3/s criterion, the perennial streams have been estimated in each low-flow region. Uncertainty in the estimates is shown by identifying a 'transitional' zone, corresponding to flow estimates of 0.1 ft3/s plus and minus one standard error. Considerable additional uncertainty exists in the model of perennial streams presented in this report. The regression models provide overall estimates based on general trends within each regression region. These models do not include local factors such as a large spring or a losing reach that may greatly affect flows at any given point. Site-specific flow data, assuming a sufficient period of
Extension of synthetic estimation filters for relative position measurements
NASA Technical Reports Server (NTRS)
Monroe, Stanley E., Jr.; Juday, Richard D.
1988-01-01
The construction of synthetic estimation filters (SEF) for out-of-plane rotation is reported. When images corresponding to rotations between the angles which were used to construct the estimator were input to the simulator, the yaw measurement accuracy was a little better than one-half of a degree over the five degree range. If individual phase-only filters were used and the only criteria for yaw angle was 'best correlation', 11 filter would be required for the same range and accuracy. The technique proposed here is invariant to translation.
Experimental investigation of the permeability for unconsolidated porous media
Lei, S.Y.; Jia, L.Q.; Xia, C.M.; Zheng, G.Y.
1997-07-01
A device was constructed to investigate the permeability of unconsolidated media at low flow rate and small pressure drop. The stability and reliability of the device have been verified through repeated experiments on a given porous medium. The experimental investigation on the porous media demonstrated that the permeability-porosity relation is unique for a given medium. Experiments with the narrow screened sands show that conventional hydrodynamics theory and dimension analysis can not be applied satisfactorily in the study of the capillary porous media. For screened sand whose particle size ranges from 0.10mm to 0.45mm and size rate is 1:1.25, the permeability can be estimated from formula k = 4.89 x 10{sup {minus}4} d{sup 1.465} {phi}{sup 4.69} where k and d are limited in m{sup 2} and m, respectively.
NASA Astrophysics Data System (ADS)
Austin Suthanthiraraj, Pearlson Prashanth
We present the results of an extensive experimental study on the effects of hysteresis on permanent capillary trapping and relative permeability of CO2/brine and supercritical (sc)CO2+SO2/brine systems. We performed numerous unsteady- and steady-state drainage and imbibition full-recirculation flow experiments in three different sandstone rock samples, i.e., low and high-permeability Berea, Nugget sandstones, and Madison limestone carbonate rock sample. A state-of-the-art reservoir conditions core-flooding system was used to perform the tests. The core-flooding apparatus included a medical CT scanner to measure in-situ saturations. The scanner was rotated to the horizontal orientation allowing flow tests through vertically-placed core samples with about 3.8 cm diameter and 15 cm length. Both scCO2 /brine and gaseous CO2 (gCO2)/brine fluid systems were studied. The gaseous and supercritical CO2/brine experiments were carried out at 3.46 and 11 MPa back pressures and 20 and 55°C temperatures, respectively. Under the above-mentioned conditions, the gCO2 and scCO2 have 0.081 and 0.393 gr/cm3 densities, respectively. During unsteady-state tests, the samples were first saturated with brine and then flooded with CO2 (drainage) at different maximum flow rates. The drainage process was then followed by a low flow rate (0.375 cm 3/min) imbibition until residual CO2 saturation was achieved. Wide flow rate ranges of 0.25 to 20 cm3/min for scCO2 and 0.125 to 120 cm3min for gCO2 were used to investigate the variation of initial brine saturation (Swi) with maximum CO2 flow rate and variation of trapped CO2 saturation (SCO2r) with Swi. For a given Swi, the trapped scCO2 saturation was less than that of gCO2 in the same sample. This was attributed to brine being less wetting in the presence of scCO2 than in the presence of gCO 2. During the steady-state experiments, after providing of fully-brine saturated core, scCO2 was injected along with brine to find the drainage curve and as
Changes in airway permeability and responsiveness after exposure to ozone. [Sheep
Abraham, W.M.; Delehunt, J.C.; Yerger, L.; Marchette, B.; Oliver, W. Jr.
1984-06-01
The relationship between airway responsiveness and the permeability of histamine through the airways in conscious sheep after exposure to ozone (O/sub 3/ was examined). Airway responsiveness was assessed by measuring the change from baseline in mean pulmonary flow resistance following a controlled 2-min inhalation challenge with 1% histamine, containing 200 ..mu..Ci/ml of (/sup 3/H)histamine. The rate of appearance of the (/sup 3/H)histamine in the plasma during inhalation challenge was used to estimate airway permeability. To perturb the airways, conscious sheep were exposed to either 0.5 or 1.0 ppm O/sub 3/ for 2 hr via an endotracheal tube. Airway responsiveness and airway permeability were measured prior to and 1 day after exposure. In six sheep exposed to 0.5 ppm O/sub 3/, increased airway responsiveness and airway permeability were obseved 1 day after exposure. Four of seven sheep exposed to 1.0 ppm O/sub 3/ had enhanced airway responsiveness and airway permeability, while the remaining three sheep showed corresponding decreases in airway responsiveness and airway permeability. Since the O/sub 3/-induced directional changes in airway responsiveness paralleled the directional changes in airway permeability in both the positive and negative directions, it was concluded that changes in airway responsiveness to inhaled histamine following exposure to O/sub 3/ may be related to concomitant changes in airway permeability to this agent.
Permeability of Clay Concretes
NASA Astrophysics Data System (ADS)
Solomon, F.; Ekolu, S. O.
2015-11-01
This paper presents an investigation on the effect of clay addition on water permeability and air permeability of concretes. Clay concrete mixes consisted of 0 to 40% clay content incorporated as cement replacement. Flow methods using triaxial cells and air permeameters were used for measuring the injected water and air flows under pressure. It was found that the higher the clay content in the mixture, the greater the permeability. At higher water-cement ratios (w/c), the paste matrix is less dense and easily allows water to ingress into concrete. But at high clay contents of 30 to 40% clay, the variation in permeability was significantly diminished among different concrete mixtures. It was confirmed that air permeability results were higher than the corresponding water permeability values when all permeability coefficients were converted to intrinsic permeability values.
EPA Permeable Surface Research
EPA recognizes permeable surfaces as an effective post-construction infiltration-based Best Management Practice to mitigate the adverse effects of stormwater runoff. The professional user community conceptually embraces permeable surfaces as a tool for making runoff more closely...
Neubig, R R; Cohen, J B
1980-06-10
A quantitative analysis of nicotine acetylcholine receptor function in Torpedo postsynaptic membranes is presented. 22Na+ efflux induced by carbamylcholine (Carb) and the partial agonist phenyltrimethylammonium (PTA) is assessed by determining dose-response relations using three approaches: (1) a filtration assay measuring responses on the 10-s time scale, (2) the same filtration assay after blocking different fractions of the receptor sites with alpha-bungarotoxin (alpha-BgTx), and (3) a rapid-mix quenched-flow technique which permits measurement of the initial rate of 22Na+ efflux on the millisecond time scale. The concentrations of agonist producing half-maximal responses in these three assays at 4 degrees C are 13, 150, and 600 microM, respectively, for Carb and 50, 50, and 200 microM, respectively, for PTA. The rate constants for 22Na+ efflux are 1.3 x 10(-4) s-1 in the absence of agonst and 65 s-1 and 0.8 s-1 in the presence of maximal concentrations of Carb and PTA, respectively, representing a stimulation of 5 x 10(5) by Carb. The Hill coefficient for the Carb response, expressed as rate constants for 22N+ efflux, is 1.97 +/- 0.06 for Carb concentrations between 3 microM and 1 mM. The inhibition of the agonist-stimulated 22Na+ efflux by alpha-BgTx is compatible with two alpha-BgTx (and acetylcholine) sites per functional unit. Inhibition of Carb responses (slow assay) by d-tubocurarine appears competitive with a KI approximately 0.5 microM, while responses to PTA are inhibited noncompetitively with KI = 0.3 microM. This paradox is due to the presence of spare receptors and to complexities in the binding of dTC to the nicotinic acetylcholine receptor. Determination of responses without the complication of spare receptors allows a meaningful comparison to direct measurements of agonist and antagonist binding in the same system. A model is proposed to account for both binding and response. PMID:7397104
Calabrò, P S; Moraci, N; Suraci, P
2012-03-15
This paper presents the results of laboratory column tests aimed at defining the optimum weight ratio of zero-valent iron (ZVI)/pumice granular mixtures to be used in permeable reactive barriers (PRBs) for the removal of nickel from contaminated groundwater. The tests were carried out feeding the columns with aqueous solutions of nickel nitrate at concentrations of 5 and 50 mg/l using three ZVI/pumice granular mixtures at various weight ratios (10/90, 30/70 and 50/50), for a total of six column tests; two additional tests were carried out using ZVI alone. The most successful compromise between reactivity (higher ZVI content) and long-term hydraulic performance (higher Pumice content) seems to be given by the ZVI/pumice granular mixture with a 30/70 weight ratio. PMID:21885195
Leaf Relative Water Content Estimated from Leaf Reflectance and Transmittance
NASA Technical Reports Server (NTRS)
Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert
2016-01-01
Remotely sensing the water status of plants and the water content of canopies remain long term goals of remote sensing research. In the research we report here, we used optical polarization techniques to monitor the light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both change nonlinearly. The result show that the nonlinearities cancel in the ratio R/T, which appears linearly related to RWC for RWC less than 90%. The results suggest that potentially leaf water status and perhaps even canopy water status could be monitored starting from leaf and canopy optical measurements.
Theoretical studies of permeability inversion from seismoelectric logs
NASA Astrophysics Data System (ADS)
Hu, H.; Guan, W.; Zhao, W.
2012-04-01
Permeability is one of the most important parameters for evaluating the level of difficulty in oil and gas exploitation. A quick, continuous and accurate in-situ estimate of reservoir permeability is highly significant. Stoneley wave logs have been used to determine formation permeability (Tang and Cheng, 1996). However, the inversion errors of this method are too big in low-permeability formations, especially in high-porosity and low-permeability formations resulting from the high clay content in pores. In this study, we propose to invert permeability by using the full waveforms of seismoelectric logs with low frequencies. This method is based on the relationship of permeability with the ratio of the electric excitation intensity to the pressure field's (REP) with respect to the Stoneley wave in seismoelectric logs. By solving the governing equations for electrokinetic coupled wavefields in homogeneous fluid-saturated porous media (Pride, 1994), we calculate the full waveforms of the borehole seismoelectric wavefields excited by a point pressure source and investigate frequency-dependent excitation intensities of the mode waves and excitation intensities of the real branch points in seismoelectric logs. It is found that the REP's phase, which reflects the phase discrepancy between the Stoneley-wave-induced electric field and the acoustic pressure, is sensitive to formation permeability. To check the relation between permeability and REP's phase qualitatively, an approximate expression of the tangent of the REP's argument is derived theoretically as tan(θEP) ≈-ωc/ω = -φη/ (2πfα ∞ρfκ0), where θEPdenotes the arguments of the REP and their principal value is the REP's phase,ω is the angular frequency,ωc is a critical angular frequency that separates the low-frequency viscous flow from the high-frequency inertial flow, φ is the porosity, α∞ is the tortuosity, κ0 is the Darcy permeability, ρf and η are the density and the viscosity of the pore
PERMEABILITY OF BACTERIAL SPORES I.
Black, S. H.; Gerhardt, Philipp
1961-01-01
Black, S. H. (The University of Michigan, Ann Arbor) and Philipp Gerhardt. Permeability of bacterial spores. I. Characterization of glucose uptake. J. Bacteriol. 82:743–749. 1961.—The total uptake of glucose by masses of clean, dormant spores was measured to assess their permeability. After correction for intercellular space, packed spores of Bacillus cereus strain terminalis were found in 87 determinations to be permeated by glucose to 40% of their weight. The glucose uptake was relatively independent of environmental variables, and thus was concluded to occur principally through a process of passive diffusion. PMID:13869665
Estimating relative abundances of proteins from shotgun proteomics data
2012-01-01
Background Spectral counting methods provide an easy means of identifying proteins with differing abundances between complex mixtures using shotgun proteomics data. The crux spectral-counts command, implemented as part of the Crux software toolkit, implements four previously reported spectral counting methods, the spectral index (SIN), the exponentially modified protein abundance index (emPAI), the normalized spectral abundance factor (NSAF), and the distributed normalized spectral abundance factor (dNSAF). Results We compared the reproducibility and the linearity relative to each protein’s abundance of the four spectral counting metrics. Our analysis suggests that NSAF yields the most reproducible counts across technical and biological replicates, and both SIN and NSAF achieve the best linearity. Conclusions With the crux spectral-counts command, Crux provides open-source modular methods to analyze mass spectrometry data for identifying and now quantifying peptides and proteins. The C++ source code, compiled binaries, spectra and sequence databases are available at http://noble.gs.washington.edu/proj/crux-spectral-counts. PMID:23164367
Permeability-porosity data sets for sandstones
Nelson, P.H.
2004-01-01
Due to the variable nature of permeability-porosity relations, core should be obtained and permeability (k) and porosity (??) should be determined on core plugs in the laboratory for the formation of interest. A catalog of k versus (??) data sets is now available on the Web. Examples from the catalog are considered to illustrate some aspects of k versus ?? dependencies in siliciclastic reservoirs.
2D and 3D imaging resolution trade-offs in quantifying pore throats for prediction of permeability
Beckingham, Lauren E.; Peters, Catherine A.; Um, Wooyong; Jones, Keith W.; Lindquist, W.Brent
2013-09-03
Although the impact of subsurface geochemical reactions on porosity is relatively well understood, changes in permeability remain difficult to estimate. In this work, pore-network modeling was used to predict permeability based on pore- and pore-throat size distributions determined from analysis of 2D scanning electron microscopy (SEM) images of thin sections and 3D X-ray computed microtomography (CMT) data. The analyzed specimens were a Viking sandstone sample from the Alberta sedimentary basin and an experimental column of reacted Hanford sediments. For the column, a decrease in permeability due to mineral precipitation was estimated, but the permeability estimates were dependent on imaging technique and resolution. X-ray CT imaging has the advantage of reconstructing a 3D pore network while 2D SEM imaging can easily analyze sub-grain and intragranular variations in mineralogy. Pore network models informed by analyses of 2D and 3D images at comparable resolutions produced permeability esti- mates with relatively good agreement. Large discrepancies in predicted permeabilities resulted from small variations in image resolution. Images with resolutions 0.4 to 4 lm predicted permeabilities differ- ing by orders of magnitude. While lower-resolution scans can analyze larger specimens, small pore throats may be missed due to resolution limitations, which in turn overestimates permeability in a pore-network model in which pore-to-pore conductances are statistically assigned. Conversely, high-res- olution scans are capable of capturing small pore throats, but if they are not actually flow-conducting predicted permeabilities will be below expected values. In addition, permeability is underestimated due to misinterpreting surface-roughness features as small pore throats. Comparison of permeability pre- dictions with expected and measured permeability values showed that the largest discrepancies resulted from the highest resolution images and the best predictions of
Implementation of Biofilm Permeability Models for Mineral Reactions in Saturated Porous Media
Freedman, Vicky L.; Saripalli, Kanaka P.; Bacon, Diana H.; Meyer, Philip D.
2005-02-22
An approach based on continuous biofilm models is proposed for modeling permeability changes due to mineral precipitation and dissolution in saturated porous media. In contrast to the biofilm approach, implementation of the film depositional models within a reactive transport code requires a time-dependent calculation of the mineral films in the pore space. Two different methods for this calculation are investigated. The first method assumes a direct relationship between changes in mineral radii (i.e., surface area) and changes in the pore space. In the second method, an effective change in pore radii is calculated based on the relationship between permeability and grain size. Porous media permeability is determined by coupling the film permeability models (Mualem and Childs and Collis-George) to a volumetric model that incorporates both mineral density and reactive surface area. Results from single mineral dissolution and single mineral precipitation simulations provide reasonable estimates of permeability, though they under predict the magnitude of permeability changes relative to the Kozeny and Carmen model. However, a comparison of experimental and simulated data show that the Mualem film model is the only one that can replicate the oscillations in permeability that occur as a result of simultaneous dissolution and precipitation reactions occurring within the porous media.
NASA Astrophysics Data System (ADS)
Pape, H.; Clauser, C.; Iffland, J.
Permeability is one of the key rock properties for the management of hydrocarbon and geothermal reservoirs as well as for aquifers. The fundamental equation for estimating permeability is the Kozeny-Carman equation. It is based on a capillary bundle model and relates permeability to porosity, tortuosity and an effective hydraulic pore radius which is defined by this equation. Whereas in clean sands the effective pore radius can be replaced by the specific surface or by the grain radius in a simple way, the resulting equations for permeability cannot be applied to consolidated rocks. Based on a fractal model for porous media, equations were therefore developed which adjust the measure of the specific surface and of the grain radius to the resolution length appropriate for the hydraulic process. These equations are calibrated by a large data set for permeability, formation factor, and porosity determined on sedimentary rocks. This fractal model yields tortuosity and effective pore radius as functions of porosity as well as a general permeability-porosity relationship, the coefficients of which are characteristic for different rock types. It can be applied to interpret the diagenetic evolution of the pore space of sedimentary rocks due to mechanical and chemical compaction with respect to porosity and permeability.
A permeability and compliance contrast measured hydrogeologically on the San Andreas Fault
NASA Astrophysics Data System (ADS)
Xue, Lian; Brodsky, Emily E.; Erskine, Jon; Fulton, Patrick M.; Carter, Reed
2016-03-01
Hydrogeologic properties of fault zones are critical to faulting processes; however, they are not well understood and difficult to measure in situ, particularly in low-permeability fractured bedrock formations. Analysis of continuous water level response to Earth tides in monitoring wells provides a method to measure the in situ hydrogeologic properties. We utilize four monitoring wells within the San Andreas Fault zone near Logan Quarry to study the fault zone hydrogeologic architecture by measuring the water level tidal response. The specific storage and permeability inferred from the tidal response suggest that there is a difference in properties at different distances from the fault. The sites closer to the fault have higher specific storage and higher permeability than farther from the fault. This difference of properties might be related to the fault zone fracture distribution decreasing away from the fault. Although permeability channels near faults have been documented before, the difference in specific storage near the fault is a new observation. The inferred compliance contrast is consistent with prior estimates of elastic moduli in the near-fault environment, but the direct measurements are new. The combination of measured permeability and storage yields a diffusivity of about 10-2 m2/s at all the sites both near and far from the fault as a result of the competing effects of permeability and specific storage. This uniform diffusivity structure suggests that the permeability contrast might not efficiently trap fluids during the interseismic period.
Committee neural network model for rock permeability prediction
NASA Astrophysics Data System (ADS)
Bagheripour, Parisa
2014-05-01
Quantitative formulation between conventional well log data and rock permeability, undoubtedly the most critical parameter of hydrocarbon reservoir, could be a potent tool for solving problems associated with almost all tasks involved in petroleum engineering. The present study proposes a novel approach in charge of the quest for high-accuracy method of permeability prediction. At the first stage, overlapping of conventional well log data (inputs) was eliminated by means of principal component analysis (PCA). Subsequently, rock permeability was predicted from extracted PCs using multi-layer perceptron (MLP), radial basis function (RBF), and generalized regression neural network (GRNN). Eventually, a committee neural network (CNN) was constructed by virtue of genetic algorithm (GA) to enhance the precision of ultimate permeability prediction. The values of rock permeability, derived from the MPL, RBF, and GRNN models, were used as inputs of CNN. The proposed CNN combines results of different ANNs to reap beneficial advantages of all models and consequently producing more accurate estimations. The GA, embedded in the structure of the CNN assigns a weight factor to each ANN which shows relative involvement of each ANN in overall prediction of rock permeability from PCs of conventional well logs. The proposed methodology was applied in Kangan and Dalan Formations, which are the major carbonate reservoir rocks of South Pars Gas Field-Iran. A group of 350 data points was used to establish the CNN model, and a group of 245 data points was employed to assess the reliability of constructed CNN model. Results showed that the CNN method performed better than individual intelligent systems performing alone.
Zhou, Yuefang; Chu, Weijing; Lei, Ming; Li, Jin; Du, Wei; Zhao, Chunshun
2014-10-01
A new continuous dissolution-permeation system, consisting of an intrinsic dissolution apparatus and an Ussing chamber, was developed for screening and identification of high-bioavailability polymorphisms at pre-formulation stages. Three different solid forms of two model drugs (agomelatine and carbamazepine) were used to confirm the system's predictive ability. Ranks for cumulative permeation of the three solids were: Form III>Form I>Form II for agomelatine, and Form III>Form I>the dihydrate form for carbamazepine. Regression analysis of these parameters and published pharmacokinetics confirmed linear IVIVCs (most correlation coefficients >0.9). To confirm dissolution-absorption relationships, permeability coefficients were calculated. Relatively constant values among various polymorphisms for each drug supported a linear dependency between polymorphism-increased dissolution and polymorphism-enhanced permeation. A combined analysis of intrinsic dissolution rates and permeability coefficients revealed that both drugs are of the BCS II class and have dissolution-limited absorption. In conclusion, our new system was valuable not only for high-bioavailability polymorphism screening, but also for drug classification within the BCS system. PMID:25014368
Cornaglia, G; Russell, K; Satta, G; Fontana, R
1995-01-01
The roles of outer membrane permeability and Bush group 1 beta-lactamase activity in determining Enterobacter cloacae susceptibility to either meropenem or imipenem were investigated. A beta-lactamase-deficient strain was obtained by mutagenesis from a clinical isolate of E. cloacae, and a porin-deficient strain was selected from this mutant with cefoxitin. Both strains were transformed with the plasmid pAA20R, which contained the gene coding for the carbapenem-hydrolyzing CphA beta-lactamase, and the carbapenem permeability coefficients were measured by the Zimmermann and Rosselet technique (W. Zimmermann and A. Rosselet, Antimicrob. Agents Chemother. 12:368-372, 1977). The permeability coefficient of meropenem was roughly half that of imipenem in the normally permeable strain and almost seven times lower than that of imipenem in the porin-deficient strain. In the porin-deficient strain, the virtual absence of porins caused the MICs of meropenem to increase from 8 to 16 times, while it did not affect the MICs of imipenem. Conversely, the beta-lactamase affected imipenem but not meropenem activity: meropenem showed a similar activity in the parent strain and in the beta-lactamase-deficient mutant with both a low- and high-density inoculum, whereas imipenem was 16 times less active against the parent strain when the high-density inoculum was used. It is concluded that outer membrane permeability and stability to group 1 beta-lactamase have different impacts on the activities of meropenem and imipenem against E. cloacae. PMID:7726496
Ghazali, Farid Bin Che
2003-01-01
This is an update on the present integrated knowledge regarding dentine permeability that assumed a role in dentine sensitivity and contribute clinically to the effective bonding properties of restorative dental materials. This paper will attempt to refer to in vivo and in vitro studies of dentine permeability and the various interrelated factors governing it. PMID:23365497
Compact rock material gas permeability properties
NASA Astrophysics Data System (ADS)
Wang, Huanling; Xu, Weiya; Zuo, Jing
2014-09-01
Natural compact rocks, such as sandstone, granite, and rock salt, are the main materials and geological environment for storing underground oil, gas, CO2, shale gas, and radioactive waste because they have extremely low permeabilities and high mechanical strengths. Using the inert gas argon as the fluid medium, the stress-dependent permeability and porosity of monzonitic granite and granite gneiss from an underground oil storage depot were measured using a permeability and porosity measurement system. Based on the test results, models for describing the relationships among the permeability, porosity, and confining pressure of rock specimens were analyzed and are discussed. A power law is suggested to describe the relationship between the stress-dependent porosity and permeability; for the monzonitic granite and granite gneiss (for monzonitic granite (A-2), the initial porosity is approximately 4.05%, and the permeability is approximately 10-19 m2; for the granite gneiss (B-2), the initial porosity is approximately 7.09%, the permeability is approximately 10-17 m2; and the porosity-sensitivity exponents that link porosity and permeability are 0.98 and 3.11, respectively). Compared with moderate-porosity and high-porosity rocks, for which φ > 15%, low-porosity rock permeability has a relatively lower sensitivity to stress, but the porosity is more sensitive to stress, and different types of rocks show similar trends. From the test results, it can be inferred that the test rock specimens' permeability evolution is related to the relative particle movements and microcrack closure.
NASA Astrophysics Data System (ADS)
Mori, H.; Trevisan, L.; Sakaki, T.; Cihan, A.; Smits, K. M.; Illangasekare, T. H.
2013-12-01
Multiphase flow models can be used to improve our understanding of the complex behavior of supercritical CO2 (scCO2) in deep saline aquifers to make predictions for the stable storage strategies. These models rely on constitutive relationships such as capillary pressure (Pc) - saturation (Sw) and relative permeability (kr) - saturation (Sw) as input parameters. However, for practical application of these models, such relationships for scCO2 and brine system are not readily available for geological formations. This is due to the complicated and expensive traditional methods often used to obtain these relationships in the laboratory through high pressure and/or high-temperature controls. A method that has the potential to overcome the difficulty in conducting such experiments is to replicate scCO2 and brine with surrogate fluids that capture the density and viscosity effects to obtain the constitutive relationships under ambient conditions. This study presents an investigation conducted to evaluate this method. An assessment of the method allows us to evaluate the prediction accuracy of multiphase models using the constitutive relationships developed from this approach. With this as a goal, the study reports multiple laboratory column experiments conducted to measure these relationships. The obtained relationships were then used in the multiphase flow simulator TOUGH2 T2VOC to explore capillary trapping mechanisms of scCO2. A comparison of the model simulation to experimental observation was used to assess the accuracy of the measured constitutive relationships. Experimental data confirmed, as expected, that the scaling method cannot be used to obtain the residual and irreducible saturations. The results also showed that the van Genuchten - Mualem model was not able to match the independently measured kr data obtained from column experiments. Simulated results of fluid saturations were compared with saturation measurements obtained using x-ray attenuations. This
Dunn, T.L.
1996-10-01
This multidisciplinary study was designed to provide improvements in advanced reservoir characterization techniques. This goal was accomplished through: (1) an examination of the spatial variation and anisotropy of relative permeability in the Tensleep Sandstone reservoirs of Wyoming; (2) the placement of that variation and anisotropy into paleogeographic, and depositional regional frameworks; (3) the development of pore-system imagery techniques for the calculation of relative permeability; and (4) reservoir simulations testing the impact of relative permeability anisotropy and spatial variation on Tensleep Sandstone reservoir enhanced oil recovery. Concurrent efforts were aimed at understanding the spatial and dynamic alteration in sandstone reservoirs that is caused by rock-fluid interaction during CO{sub 2} enhanced oil recovery processes. The work focused on quantifying the interrelationship of fluid-rock interaction with lithologic characterization and with fluid characterization in terms of changes in chemical composition and fluid properties. This work establishes new criteria for the susceptibility of Tensleep Sandstone reservoirs to formation alteration that results in wellbore scale damage. This task was accomplished by flow experiments using core material; examination of regional trends in water chemistry; examination of local water chemistry trends the at field scale; and chemical modeling of both the experimental and reservoir systems.
Dunn, T.L.
1995-07-01
The principal focus of this project is to evaluate the importance of relative permeability anisotropy with respect to other known geologic and engineering production concepts. This research is to provide improved strategies for enhanced oil recovery from the Tensleep Sandstone oil reservoirs in the Bighorn and Wind River basins, Wyoming. The Tensleep Sandstone contains the largest potential reserves within reservoirs which are candidates for EOR processes in the State of Wyoming. Although this formation has produced billions of barrels of oil, in some fields, as little as one in seven barrels of discovered oil is recoverable by current primary and secondary techniques. Because of the great range of {degree}API gravities of the oils produced from the Tensleep Sandstone reservoirs, the proposed study concentrates on establishing an understanding of the spatial variation and anisotropy of relative permeability within the Tensleep Sandstone. This research is to associate those spatial distributions and anisotropies with the depositional subfacies and zones of diagenetic alteration found within the Tensleep Sandstone. In addition, these studies are being coupled with geochemical modeling and coreflood experiments to investigate the potential for wellbore scaling and formation damage anticipated during EOR processes (e.g., C0{sub 2} flooding). This multidisciplinary project will provide a regional basis for EOR strategies which can be clearly mapped and efficiently applied to the largest potential target reservoir in the State of Wyoming. Additionally, the results of this study have application to all eolian reservoirs through the correlations of relative permeability variation and anisotropy with eolian depositional lithofacies.
NASA Astrophysics Data System (ADS)
Bui, H. T.; Ho, L. T.; Ushijima, K.; Nur, A.
2006-12-01
Determination of porosity and permeability plays a key role either in characterization of a reservoir or in development of an oil field. Their distribution helps to predict the major faults or fractured zones that are related to high porosity area in order to reduce drilling hazards. Porosity and permeability of the rock can be determined directly from the core sample or obtained from well log data such as: sonic, density, neutron or resistivity. These input parameters depend not only on porosity (?) but also on the rock matrix, fluids contained in the rocks, clay mineral component, or geometry of pore structures. Therefore, it is not easy to estimate exactly porosity and permeability since having corrected those values by conventional well log interpretation method. In this study, the Artificial Neural Networks (ANNs) have been used to derive porosity and permeability directly from well log data for Vung Dong oil prospect, southern offshore Vietnam. Firstly, we designed a training patterns for ANNs from neutron porosity, bulk density, P-sonic, deep resistivity, shallow resistivity and MSFL log curves. Then, ANNs were trained by core samples data for porosity and permeability. Several ANNs paradigms have been tried on a basis of trial and error. The batch back- propagation algorithm was found more proficient in training porosity network meanwhile the quick propagation algorithm is more effective in the permeability network. Secondly, trained ANNs was tested and applied for real data set of some wells to calculate and reveal the distribution maps of porosity or permeability. Distributions of porosity and permeability have been correlated with seismic data interpretation to map the faults and fractured zones in the study. The ANNs showed good results of porosity and permeability distribution with high reliability, fast, accurate and low cost features. Therefore, the ANNs should be widely applied in oil and gas industry.
Permeability of granular aggregate of soft gel: Application to the partially molten system
NASA Astrophysics Data System (ADS)
Takashima, Shinichiro; Kurita, Kei
2008-03-01
In the upper part of the Earth there exists a region where the rock is partially molten. The magmatic melt rises through the partially molten region as a form of permeable flow. The timescale and efficiency of the melt migration are controlled by the permeability, which is a function of the melt fraction and the distribution of the melt at the grain scale. Using gel as an analog of the solid phase of the partially molten system, the permeability and the electrical conductivity were measured. With deformation the gel deforms into a polyhedron due to its high deformability, and the fluid phase exists at edge and corner regions. The morphology of the mixture system is similar to that of the partially molten system controlled by the interfacial energy. Both of the permeability and the electrical conductivity obey power-law functions of the liquid fraction. The permeability is close to Kozeny-Carman type permeability and the electrical conductivity obeys Archie's law at higher liquid fraction (about 10% to 30%). They reduce drastically with reduction of the liquid fraction at lower liquid fraction (about 2% to 10%). These behaviors are considered to result from dispersion of pseudo-dihedral angle. The permeability in the upper mantle would behave like that of the gel-fluid system because the dispersion of dihedral angle exists due to poly-mineralic solid phase of the upper mantle and anisotropic interfacial energy. Also, the permeability is found to be proportional to the square of the electrical conductivity. This relation is useful to estimate the permeability at depth from the electrical conductivity measurement.
Calibrating NMR measured porosity/permeability relationships using µXRCT measurements
NASA Astrophysics Data System (ADS)
Mason, H. E.; Smith, M. M.; Hao, Y.; Carroll, S.
2015-12-01
Carbonate reservoirs have garnered interest for potential use in carbon capture and storage (CCS) activities. To be suitable for long term carbon dioxide (CO2) storage, they must possess sufficient permeability either through existing connected pore space, or due to reactivity with CO2-acidified fluids. Adequate assessment of the target formation permeability will rely on accurate downhole well-logging tools. Primary among these tools is nuclear magnetic resonance (NMR) well-logging. Application of this tool relies on our ability to relate the porosity and pore distributions measured by NMR to permeability. These methods are challenging to apply in carbonate reservoirs with complex mineralogies where pores sizes often span orders of magnitudes. We have assessed the ability of NMR methods to measure permeability using rocks from the Weyburn-Midale CO2 Monitoring and Storage Project Saskatchewan, Canada and the Arbuckle injection zone at the Wellington CO2 storage demonstration site, Kansas. Results of laboratory measured permeability values of these rocks indicate that the standard NMR methods for predicting permeability values can produce values off by orders of magnitude within the same flow units. In this presentation, we present the results of a combined NMR and micro X-ray computed tomography (μXRCT) study of these rock cores to better estimate downhole permeability values of carbonate rocks. The results of the study suggest that the dramatic differences in predicted permeability values derive from large differences in the matrix porosity, pore network tortuosities, and mineralogy of the various rock units. We will present new laboratory measurements, and methodologies aimed at producing a universal NMR calibration procedure for determining permeability in carbonate reservoirs. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Lennernäs, H; Lee, I D; Fagerholm, U; Amidon, G L
1997-07-01
The goal of this study was to determine the most appropriate hydrodynamic model for the Loc-I-Gut in-vivo perfusion system. The general mixing-tank-in-series model, which can approximate single mixing tank and laminar and plug-flow hydrodynamics, was fitted to the observed experimental residence-time distribution curves for the non-absorbable marker [14C]PEG 4000. The residence-time distribution analysis shows that the hydrodynamics of the perfusion solution within the jejunal segment in man is well approximately by a model containing on average between 1-2 mixing tanks in series. The solution is well mixed when using perfusion rates of 2.0, 3.0 and 6.0 mL min-1. The average mean residence time estimates from the fitted residence-time distribution were 12 +/- 7.6, 15 +/- 4.2 and 7.7 +/- 4.6 min, respectively, at these three perfusion rates. The mean volumes of the segment (Vs) were 25 +/- 15, 45 +/- 12 and 46 +/- 27 mL, respectively. There were no statistical differences between 2.0, 3.0 and 6.0 mL min-1 in respect of the number of mixing tanks (n) and mean residence times. This residence-time distribution analysis indicates that the luminal fluid in the Loc-I-Gut perfusion system is well-mixed, and that permeability calculations based on the well-mixed assumption most closely approximate the actual local (average) membrane permeability within the perfused segment. PMID:9255711
The Relation between Factor Score Estimates, Image Scores, and Principal Component Scores
ERIC Educational Resources Information Center
Velicer, Wayne F.
1976-01-01
Investigates the relation between factor score estimates, principal component scores, and image scores. The three methods compared are maximum likelihood factor analysis, principal component analysis, and a variant of rescaled image analysis. (RC)
Pressure sensitivity of low permeability sandstones
Kilmer, N.H.; Morrow, N.R.; Pitman, J.K.
1987-01-01
Detailed core analysis has been carried out on 32 tight sandstones with permeabilities ranging over four orders of magnitude (0.0002 to 4.8 mD at 5000 psi confining pressure). Relationships between gas permeability and net confining pressure were measured for cycles of loading and unloading. For some samples, permeabilities were measured both along and across bedding planes. Large variations in stress sensitivity of permeability were observed from one sample to another. The ratio of permeability at a nominal confining pressure of 500 psi to that at 5000 psi was used to define a stress sensitivity ratio. For a given sample, confining pressure vs permeability followed a linear log-log relationship, the slope of which provided an index of pressure sensitivity. This index, as obtained for first unloading data, was used in testing relationships between stress sensitivity and other measured rock properties. Pressure sensitivity tended to increase with increase in carbonate content and depth, and with decrease in porosity, permeability and sodium feldspar. However, scatter in these relationships increased as permeability decreased. Tests for correlations between pressure sensitivity and various linear combinations of variables are reported. Details of pore structure related to diagenetic changes appears to be of much greater significance to pressure sensitivity than mineral composition. ?? 1987.
Inference of permeability heterogeneity from joint inversion of transient flow and temperature data
NASA Astrophysics Data System (ADS)
Zhang, Zhishuai; Jafarpour, Behnam; Li, Lianlin
2014-06-01
Characterization of the rock permeability distribution in compartmentalized deep aquifers, enhanced geothermal systems, and hydrocarbon reservoirs is important for predicting the flow and transport behavior in these formations. Reliable prediction of the fluid flow and transport processes can, in turn, lead to effective development of the subsurface energy and environmental resources. In deep formations where thermal gradients are significant, the transient temperature data can provide valuable information about the permeability distribution with depth and about the vertical fluid displacement. This paper examines the importance of temperature data in resolving the distribution of permeability with depth by jointly, and individually, integrating the transient temperature and flow data. We demonstrate that when estimating permeability distributions in deep geothermal reservoirs, incorporating temperature data can increase the resolution of the permeability distribution profile with depth. To illustrate the importance of temperature measurements, we adopt a coupled transient heat and fluid flow as a forward model to predict the heat and fluid transport in a geothermal reservoir and develop an adjoint model for efficient computation of the gradient information for model calibration. We perform a series of numerical experiments for integration of flow and pressure data alone, temperature data alone, and flow and pressure jointly with temperature data. In each case, we apply the maximum A-posteriori (MAP) method and the randomized maximum likelihood (RML) method for inversion and uncertainty quantification. Analysis of the sensitivity of temperature and production data to heterogeneous permeability distributions reveals that the temperature of fluid, even when measured at the surface, is sensitive to the permeability distribution in the vertical extent of the reservoir. Hence, temperature measurements can be augmented with flow-related data to enhance the resolution of
Permeability of compacting porous lavas
NASA Astrophysics Data System (ADS)
Ashwell, P. A.; Kendrick, J. E.; Lavallée, Y.; Kennedy, B. M.; Hess, K.-U.; Aulock, F. W.; Wadsworth, F. B.; Vasseur, J.; Dingwell, D. B.
2015-03-01
The highly transient nature of outgassing commonly observed at volcanoes is in part controlled by the permeability of lava domes and shallow conduits. Lava domes generally consist of a porous outer carapace surrounding a denser lava core with internal shear zones of variable porosity. Here we examine densification using uniaxial compression experiments on variably crystalline and porous rhyolitic dome lavas from the Taupo Volcanic Zone. Experiments were conducted at 900°C and an applied stress of 3 MPa to 60% strain, while monitoring acoustic emissions to track cracking. The evolution of the porous network was assessed via X-ray computed tomography, He-pycnometry, and relative gas permeability. High starting connected porosities led to low apparent viscosities and high strain rates, initially accompanied by abundant acoustic emissions. As compaction ensued, the lavas evolved; apparent viscosity increased and strain rate decreased due to strain hardening of the suspensions. Permeability fluctuations resulted from the interplay between viscous flow and brittle failure. Where phenocrysts were abundant, cracks had limited spatial extent, and pore closure decreased axial and radial permeability proportionally, maintaining the initial anisotropy. In crystal-poor lavas, axial cracks had a more profound effect, and permeability anisotropy switched to favor axial flow. Irrespective of porosity, both crystalline samples compacted to a threshold minimum porosity of 17-19%, whereas the crystal-poor sample did not achieve its compaction limit. This indicates that unconfined loading of porous dome lavas does not necessarily form an impermeable plug and may be hindered, in part by the presence of crystals.
Particle filter-based relative rolling estimation algorithm for non-cooperative infrared spacecraft
NASA Astrophysics Data System (ADS)
Li, Zhengzhou; Ge, Fengzeng; Chen, Wenhao; Shao, Wanxing; Liu, Bing; Cheng, Bei
2016-09-01
The issue of feature point mismatching among infrared image sequence would bring big challenge to estimating the relative motion of non-cooperative spacecraft for it couldn't provide the prior knowledge about its geometric structure and motion pattern. The paper introduces particle filter to precisely match the feature points within a desired region predicted by a kinetic equation, and presents a least square estimation-based algorithm to measure the relative rolling motion of non-cooperative spacecraft. The state transition equation and the measurement update equation of non-cooperative spacecraft are represented by establishing its kinetic equations, and then the relative pose measurement is converted to the maximum posteriori probability estimation via assuming the uncertainties about geometric structure and motion pattern as random and time-varying variables. These uncertainties would be interpreted and even solved through continuously measuring the image feature points of the rotating non-cooperative infrared spacecraft. Subsequently, the feature point is matched within a predicted region among sequence infrared image using particle filter algorithm to overcome the position estimation noise caused by the uncertainties of geometric structure and motion pattern. Finally, the position parameters including rotation motion are estimated by means of solving the minimum error of feature point mismatching using least square estimate theory. Both simulated and real infrared image sequences are induced in the experiment to evaluate the performance of the relative rolling estimation, and the experimental data show that the rolling motion estimated by the proposed algorithm is more robust to the feature extraction noise and various rotation speed. Meanwhile, the relative rolling estimation error would increase dramatically with distance and rotation speed increasing.
[Application of spatial relative risk estimation in communicable disease risk evaluation].
Zhang, Yewu; Guo, Qing; Wang, Xiaofeng; Yu, Meng; Su, Xuemei; Dong, Yan; Zhang, Chunxi
2015-05-01
This paper summaries the application of adaptive kernel density algorithm in the spatial relative risk estimation of communicable diseases by using the reported data of infectious diarrhea (other than cholera, dysentery, typhoid and paratyphoid) in Ludian county and surrounding area in Yunnan province in 2013. Statistically significant fluctuations in an estimated risk function were identified through the use of asymptotic tolerance contours, and finally these data were visualized though disease mapping. The results of spatial relative risk estimation and disease mapping showed that high risk areas were in southeastern Shaoyang next to Ludian. Therefore, the spatial relative risk estimation of disease by using adaptive kernel density algorithm and disease mapping technique is a powerful method in identifying high risk population and areas. PMID:26080648
Permeability Barrier Generation in the Martian Lithosphere
NASA Astrophysics Data System (ADS)
Schools, Joe; Montési, Laurent
2015-11-01
Permeability barriers develop when a magma produced in the interior of a planet rises into the cooler lithosphere and crystallizes more rapidly than the lithosphere can deform (Sparks and Parmentier, 1991). Crystallization products may then clog the porous network in which melt is propagating, reducing the permeability to almost zero, i.e., forming a permeability barrier. Subsequent melts cannot cross the barrier. Permeability barriers have been useful to explain variations in crustal thickness at mid-ocean ridges on Earth (Magde et al., 1997; Hebert and Montési, 2011; Montési et al., 2011). We explore here under what conditions permeability barriers may form on Mars.We use the MELTS thermodynamic calculator (Ghiorso and Sack, 1995; Ghiorso et al., 2002; Asimow et al., 2004) in conjunction with estimated Martian mantle compositions (Morgan and Anders, 1979; Wänke and Dreibus, 1994; Lodders and Fegley, 1997; Sanloup et al., 1999; Taylor 2013) to model the formation of permeability barriers in the lithosphere of Mars. In order to represent potential past and present conditions of Mars, we vary the lithospheric thickness, mantle potential temperature (heat flux), oxygen fugacity, and water content.Our results show that permeability layers can develop in the thermal boundary layer of the simulated Martian lithosphere if the mantle potential temperature is higher than ~1500°C. The various Martian mantle compositions yield barriers in the same locations, under matching variable conditions. There is no significant difference in barrier location over the range of accepted Martian oxygen fugacity values. Water content is the most significant influence on barrier development as it reduces the temperature of crystallization, allowing melt to rise further into the lithosphere. Our lower temperature and thicker lithosphere model runs, which are likely the most similar to modern Mars, show no permeability barrier generation. Losing the possibility of having a permeability
Lunar electrical conductivity and magnetic permeability
NASA Technical Reports Server (NTRS)
Dyal, P.; Parkin, C. W.; Daily, W. D.
1975-01-01
Improved analytical techniques are applied to a large Apollo magnetometer data set to yield values of electroconductivity, temperature, magnetic permeability, and iron abundance. Average bulk electroconductivity of the moon is calculated to be .0007 mho/m; a rapid increase with depth to about .003 mho/m within 250 km is indicated. The temperature profile, obtained from the electroconductivity profile for olivine, indicates high lunar temperatures at relatively shallow depths. Magnetic permeability of the moon relative to its environment is calculated to be 1.008 plus or minus .005; a permeability relative to free space of 1.012 plus 0.011, minus 0.008 is obtained. Lunar iron abundances corresponding to this permeability value are 2.5 plus 2.3, minus 1.7 wt% free iron and 5.0-13.5 wt% total iron for a moon composed of a combination of free iron, olivine, and orthopyroxene.
A Poroelastic Description of Permeability Evolution
NASA Astrophysics Data System (ADS)
Hassanzadegan, Alireza; Zimmermann, Günter
2014-07-01
Pore pressure changes in a geothermal reservoir, as a result of injection and/or production of water, result in changes of stress acting on the reservoir rock and, consequently, changes in the mechanical and transport properties of the rock. Bulk modulus and permeability were measured at different pressures and temperatures. An outcropping equivalent of Rotliegend reservoir rock in the North German Basin (Flechtinger sandstone) was used to perform hydrostatic tests and steady state fluid flow tests. Permeability measurements were conducted while cycling confining pressure; the dependence of permeability on stress was determined at a constant downstream pressure of 1 MPa. Also, temperature was increased stepwise from 30 to 140 °C and crack porosity was calculated at different temperatures. Although changes in the volumes of cracks are not significant, the cracks control fluid flow pathways and, consequently, the permeability of the rock. A new model was derived which relates microstructure of porosity, the stress-strain curve, and permeability. Porosity change was described by the first derivative of the stress-strain curve. Permeability evolution was ascribed to crack closure and was related to the second derivative of the stress-strain curve. The porosity and permeability of Flechtinger sandstone were reduced by increasing the effective pressure and decreased after each pressure cycle.
Skewness of cloud droplet spectrum and an improved estimation for its relative dispersion
NASA Astrophysics Data System (ADS)
Liu, Yu; Lu, Chunsong; Li, Weiliang
2016-05-01
The relative dispersion of the cloud droplet spectrum is a very important parameter in describing and modeling cloud microphysical processes. Based on the definition of skewness as well as theoretical and data analyses, a linear fitting relationship (α = 2.91ɛ-0.59) between skewness (α) and relative dispersion (ɛ) is established and a new method is developed to estimate the relative dispersion of the cloud droplet spectrum. The new method does not depend on any assumption of a particular distribution for the cloud droplet spectrum and has broader applicability than the previous methods. Comparisons of the three methods for the relative dispersion with the observed data supported the following conclusions. (1) The skewness of the cloud droplet spectrum is asymmetrically distributed. An assumption of zero skewness in quantifying the relative dispersion inevitably results in relatively large deviations from the observations. Errors of the estimated relative dispersion due to the omission of the skewness term are not solely related to the skewness, but rather to the product of the skewness and relative dispersion. (2) The use of the assumption that the cloud droplet spectrum takes a gamma distribution is similar to the assumption that the skewness is twice the relative dispersion. This leads to a better accuracy in estimating the relative dispersion than that with zero skewness assumption. (3) Comparisons with observations show that the new method is more accurate than the one under gamma distribution assumption and is the best among all the three methods. (4) It is believed that finding a better correlation between the skewness and the relative dispersion would further reduce the deviations for the estimated relative dispersion.
Exploring the scale-dependent permeability of fractured andesite
NASA Astrophysics Data System (ADS)
Heap, Michael J.; Kennedy, Ben M.
2016-08-01
Extension fractures in volcanic systems exist on all scales, from microscopic fractures to large fissures. They play a fundamental role in the movement of fluids and distribution of pore pressure, and therefore exert considerable influence over volcanic eruption recurrence. We present here laboratory permeability measurements for porous (porosity = 0.03-0.6) andesites before (i.e., intact) and after failure in tension (i.e., the samples host a throughgoing tensile fracture). The permeability of the intact andesites increases with increasing porosity, from 2 ×10-17 to 5 ×10-11 m2. Following fracture formation, the permeability of the samples (the equivalent permeability) falls within a narrow range, 2- 6 ×10-11 m2, regardless of their initial porosity. However, laboratory measurements on fractured samples likely overestimate the equivalent permeability due to the inherent scale-dependence of permeability. To explore this scale-dependence, we first determined the permeability of the tensile fractures using a two-dimensional model that considers flow in parallel layers. Our calculations highlight that tensile fractures in low-porosity samples are more permeable (as high as 3.5 ×10-9 m2) than those in high-porosity samples (as low as 4.1 ×10-10 m2), a difference that can be explained by an increase in fracture tortuosity with porosity. We then use our fracture permeability data to model the equivalent permeability of fractured rock (with different host rock permeabilities, from 10-17 to 10-11 m2) with increasing lengthscale. We highlight that our modelling approach can be used to estimate the equivalent permeability of numerous scenarios at andesitic stratovolcanoes in which the fracture density and width and host rock porosity or permeability are known. The model shows that the equivalent permeability of fractured andesite depends heavily on the initial host rock permeability and the scale of interest. At a given lengthscale, the equivalent permeability of high-permeability
Oxygen Evolution and the Permeability of the Outer Envelope of Isolated Whole Chloroplasts 1
Robinson, J. Michael; Stocking, C. R.
1968-01-01
A rapid oxygraph method of studying the permeability of the envelope of isolated chloroplasts was used. The outer envelope of aqueously isolated whole spinach (Spinacia oleracea L.) chloroplasts in buffer is readily permeable to 3-phosphoglyceric acid, which induces an immediate light dependent oxygen evolution. This light dependent oxygen evolution was completely eliminated by swelling these plastids in an osmotically dilute solution. Exogenous adenosine diphosphate, but not inorganic phosphate, strongly stimulated this oxygen evolution. This indicated that the chloroplast envelope is relatively permeable to adenosine diphosphate. Oxygen evolution and swelling studies indicated that the chloroplast envelope is relatively impermeable to NADP and to ferredoxin. A method is described whereby the percent of whole chloroplasts present in a chloroplast preparation may be rapidly estimated. PMID:16656943
Optical investigation of effective permeability of dilute magnetic dielectrics with magnetic field
NASA Astrophysics Data System (ADS)
Banerjee, Ananya; Sarkar, A.
2016-05-01
The prime objective of this paper is to investigate the magnetic nature of dilute magnetic dielectrics (DMD) under variation of external magnetic field. The said variation is studied over developed nano-sized Gadolinium Oxide as a DMD system. The observed experimental field variation of the effective magnetic permeability is analyzed results of optical experiment. The experiment records the variation of Brewster angle of incident polarized LASER beam from the surface of developed DMD specimen with applied out of plane external magnetic field. The effective refractive index and hence relative magnetic permeability were estimated following electro-magnetic theory. The overall results obtained and agreement between theory and experiment are good.
Change-point detection in time-series data by relative density-ratio estimation.
Liu, Song; Yamada, Makoto; Collier, Nigel; Sugiyama, Masashi
2013-07-01
The objective of change-point detection is to discover abrupt property changes lying behind time-series data. In this paper, we present a novel statistical change-point detection algorithm based on non-parametric divergence estimation between time-series samples from two retrospective segments. Our method uses the relative Pearson divergence as a divergence measure, and it is accurately and efficiently estimated by a method of direct density-ratio estimation. Through experiments on artificial and real-world datasets including human-activity sensing, speech, and Twitter messages, we demonstrate the usefulness of the proposed method. PMID:23500502
NASA Technical Reports Server (NTRS)
Wahba, Grace; Deepak, A. (Editor)
1988-01-01
The problem of merging direct and remotely sensed (indirect) data with forecast data to get an estimate of the present state of the atmosphere for the purpose of numerical weather prediction is examined. To carry out this merging optimally, it is necessary to provide an estimate of the relative weights to be given to the observations and forecast. It is possible to do this dynamically from the information to be merged, if the correlation structure of the errors from the various sources is sufficiently different. Some new statistical approaches to doing this are described, and conditions quantified in which such estimates are likely to be good.
Fluid permeability of deformable fracture networks
Brown, S.R.; Bruhn, R.L.
1997-04-01
The authors consider the problem of defining the fracture permeability tensor for each grid lock in a rock mass from maps of natural fractures. For this purpose they implement a statistical model of cracked rock due to M. Oda [1985], where the permeability tensor is related to the crack geometry via a volume average of the contribution from each crack in the population. In this model tectonic stress is implicitly coupled to fluid flow through an assumed relationship between crack aperture and normal stress across the crack. The authors have included the following enhancements to the basic model: (1) a realistic model of crack closure under stress has been added along with the provision to apply tectonic stresses to the fracture system in any orientation, the application of stress results in fracture closure and consequently a reduction in permeability; (2) the fracture permeability can be superimposed onto an arbitrary anisotropic matrix permeability; (3) the fracture surfaces are allowed to slide under the application of shear stress, causing fractures to dilate and result in a permeability increase. Through an example, the authors demonstrate that significant changes in permeability magnitudes and orientations are possible when tectonic stress is applied to a fracture system.
Simulating perforation permeability damage and cleanup
Morris, J P; Lomov, I N; Glenn, L A
2000-12-15
Completion of cased and cemented wells by shaped charge perforation causes its own damage to the formation, potentially reducing well productivity. In practice it is found that underbalance conditions clean up the damaged zone to some extent, however, the mechanisms of these processes are poorly understood. Most hydrocodes typically used to simulate rock response to shaped charge penetration do not provide permeability estimates. Furthermore, the time scales for formation clean up are potentially much longer than the period of jet penetration. We have developed a simple, yet accurate model for the evolution of porosity and permeability which can easily be incorporated into existing hydrocodes using information from the history of each cell. In addition, we have developed a code that efficiently simulates fines migration during the post-shot surge period using initial conditions taken directly from hydrocode simulations of jet penetration. Results from a one-dimensional model simulation are in excellent agreement with measured permeability distributions. We also present two-dimensional numerical results which qualitatively reproduce experimentally obtained permeability maps for different values of underbalance. Although initial results have been promising, further comparison with experiment is essential to tune the coupling between the hydrocode and fines migration simulator. Currently the permeability model is most appropriate for high permeability sandstones (such as Berea), but with little effort, the model can be extended to other rock types, given sufficient experimental data.
Simulating Perforation Permeability Damage and Cleanup
Morris, J.P.; Lomov, I.N.; Glenn, L.A.
2000-09-01
Completion of cased and cemented wells by shaped charge perforation causes its own damage to the formation, potentially reducing well productivity. In practice it is found that underbalance conditions clean up the damaged zone to some extent, however, the mechanisms of these processes are poorly understood. Most hydrocodes typically used to simulate rock response to shaped charge penetration do not provide permeability estimates. Furthermore, the time scales for formation clean up are potentially much longer than the period of jet penetration. We have developed a simple, yet accurate model for the evolution of porosity and permeability which can easily be incorporated into existing hydrocodes using information from the history of each cell. In addition, we have developed a code that efficiently simulates fines migration during the post-shot surge period using initial conditions taken directly from hydrocode simulations of jet penetration. Results from a one-dimensional model simulation are in excellent agreement with measured fines and permeability distributions. We also present two-dimensional numerical results which qualitatively reproduce experimentally obtained permeability maps for different values of underbalance. Although initial results have been promising, further comparison with experiment is essential to tune the coupling between the hydrocode and fines migration simulator. Currently the permeability model is most appropriate for high permeability sandstones (such as Berea), but with little effort, the model can be extended to other rock types, given sufficient experimental data.
Rutqvist, J.
2014-09-19
The purpose of this paper is to (i) review field data on stress-induced permeability changes in fractured rock; (ii) describe estimation of fractured rock stress-permeability relationships through model calibration against such field data; and (iii) discuss observations of temperature and chemically mediated fracture closure and its effect on fractured rock permeability. The field data that are reviewed include in situ block experiments, excavation-induced changes in permeability around tunnels, borehole injection experiments, depth (and stress) dependent permeability, and permeability changes associated with a large-scale rock-mass heating experiment. Data show how the stress-permeability relationship of fractured rock very much depends on local in situ conditions, such as fracture shear offset and fracture infilling by mineral precipitation. Field and laboratory experiments involving temperature have shown significant temperature-driven fracture closure even under constant stress. Such temperature-driven fracture closure has been described as thermal overclosure and relates to better fitting of opposing fracture surfaces at high temperatures, or is attributed to chemically mediated fracture closure related to pressure solution (and compaction) of stressed fracture surface asperities. Back-calculated stress-permeability relationships from field data may implicitly account for such effects, but the relative contribution of purely thermal-mechanical and chemically mediated changes is difficult to isolate. Therefore, it is concluded that further laboratory and in situ experiments are needed to increase the knowledge of the true mechanisms behind thermally driven fracture closure, and to further assess the importance of chemical-mechanical coupling for the long-term evolution of fractured rock permeability.
Rutqvist, J.
2014-09-19
The purpose of this paper is to (i) review field data on stress-induced permeability changes in fractured rock; (ii) describe estimation of fractured rock stress-permeability relationships through model calibration against such field data; and (iii) discuss observations of temperature and chemically mediated fracture closure and its effect on fractured rock permeability. The field data that are reviewed include in situ block experiments, excavation-induced changes in permeability around tunnels, borehole injection experiments, depth (and stress) dependent permeability, and permeability changes associated with a large-scale rock-mass heating experiment. Data show how the stress-permeability relationship of fractured rock very much depends on localmore » in situ conditions, such as fracture shear offset and fracture infilling by mineral precipitation. Field and laboratory experiments involving temperature have shown significant temperature-driven fracture closure even under constant stress. Such temperature-driven fracture closure has been described as thermal overclosure and relates to better fitting of opposing fracture surfaces at high temperatures, or is attributed to chemically mediated fracture closure related to pressure solution (and compaction) of stressed fracture surface asperities. Back-calculated stress-permeability relationships from field data may implicitly account for such effects, but the relative contribution of purely thermal-mechanical and chemically mediated changes is difficult to isolate. Therefore, it is concluded that further laboratory and in situ experiments are needed to increase the knowledge of the true mechanisms behind thermally driven fracture closure, and to further assess the importance of chemical-mechanical coupling for the long-term evolution of fractured rock permeability.« less
NASA Astrophysics Data System (ADS)
Qiao, Bing; Tang, Shuren; Ma, Kexin; Liu, Zhenya
2013-10-01
The capacity to acquire the relative position and attitude information between the chaser and the target satellites in real time is one of the necessary prerequisites for the successful implementation of autonomous rendezvous and docking. This paper addresses a vision based relative position and attitude estimation algorithm for the final phase of spacecraft rendezvous and docking. By assuming that the images of feature points on the target satellite lie within the convex regions, the estimation of the relative position and attitude is converted into solving a convex optimization problem in which the dual quaternion method is employed to represent the rotational and translational transformation between the chaser body frame and the target body frame. Due to the point-to-region correspondence instead of the point-to-point correspondence is used, the proposed estimation algorithm shows good performance in robustness which is verified through computer simulations.
Estimation of straylight in the eye and its relation to visual function
NASA Astrophysics Data System (ADS)
Ayama, Miyoshi; Yamazaki, Ryosuke; Nakanoya, Shin-ichi; Tashiro, Tomonori; Ishikawa, Tomoharu; Ohnuma, Kazuhiko; Shinoda, Hiroyuki; Araki, Keisuke
2015-04-01
Relative amount of straylight in the eye of individual observers was estimated using a psychophysical method proposed by Shinoda et al. Asymptotic illuminance of disturbing light presented in front of observer's eye to blur different sizes of the gap in the Landolt C was measured with the haze filters of which haze factors were known. From the relation between the haze factor and the asymptotic illuminance of the disturbing light for the average observer, the relative haze factor of each observer's eye was estimated. White and colored LEDs ( λ p = 645, 530, and 480 nm) were used as the disturbing lights. The four different disturbing lights showed similar tendencies among nine young observers with healthy eyes. The ability to read colored characters was also examined for six observers in the same group. A negative correlation was found between the estimation of straylight in the eye and reading performance.
Relative orbit estimation and formation keeping control of satellite formations in low Earth orbits
NASA Astrophysics Data System (ADS)
Zeng, Guoqiang; Hu, Min; Yao, Hong
2012-07-01
A new relative orbit estimation method and practical control scheme for satellite formation keeping is developed. We present the general formation description method based on the relative orbital elements and employ the extended particle filter for the relative orbit estimation using the relative distance, elevation, and azimuth measurements. The stability of the formation configuration is analyzed in the presence of the J2 perturbation and atmospheric drag. We propose a new control scheme for formation keeping, including the triple-impulse strategy for the in-plane motion, the single-impulse maneuver for the cross-track motion, and the time-optimal aerodynamic control for the along-track separation. The full analytical fuel-optimal triple-impulse solutions are then derived, which do not cause additional along-track drift compared with the conventional dual-impulse method. Effects of the thruster errors are also analyzed. Furthermore, the time-optimal aerodynamic control law for the along-track drift is presented. Simulation results show that the relative position estimation errors are within 2×10-2 m, and that of the relative velocity estimation are within 1×10-4 m/s. Moreover, the triple-impulse strategy is simple and effective, and the along-track aerodynamic control precision is under 50 m.
NASA Astrophysics Data System (ADS)
Patton, J. C.; Hornbuckle, B. K.
2013-12-01
Microwave radiation emitted by Earth's land surface is primarily determined by soil moisture and vegetation. One of the effects of vegetation on surface microwave emissions is often termed the "vegetation optical thickness" or "vegetation opacity" and is often abbreviated as tau. Retrievals of soil moisture from microwave radiometer measurements requires knowledge of tau. The Soil Moisture and Ocean Salinity (SMOS) satellite measures microwave radiation at multiple incidence angles, enabling the simultaneous retrieval of soil moisture and tau. Other soil moisture satellites, such as the upcoming Soil Moisture Active Passive (SMAP) satellite, only measure at single incidence angles and may need auxiliary sources of tau data in order to retrieve soil moisture. One proposed method for estimating tau for these satellites is by relating reflectance data, e.g. the normalized difference vegetation index, to vegetation water content (VWC), then relating VWC to tau. VWC and tau can be related through the b parameter, i.e. tau = b x VWC. Values of b for different land cover types have been estimated from tower (~1 m) and airplane (~10-100 m) data, but have not been measured at the satellite scale (~10 km). Estimating b at the satellite scale from measurements at smaller scales is difficult because the effective value of b in a satellite pixel may not be well represented by linear weighted average based on the fraction of each land cover type in the pixel. However, by relating county crop yields, estimated by the USDA National Agricultural Statistics Service, to measurements of SMOS tau, and by using certain allometric relationships, such as the ratio of water to dry matter and the harvest index of crops, we can estimate b at the satellite scale. We have used this method to estimate b for each Iowa county for the years 2010-2012. Initial results suggest that b may change year to year; our current estimates for b in Iowa range from 0.065 in 2010 to 0.100 in 2012. These
Dexter, Troy A; Kowalewski, Michał
2013-12-01
Quantitative estimates of growth rates can augment ecological and paleontological applications of body-size data. However, in contrast to body-size estimates, assessing growth rates is often time-consuming, expensive, or unattainable. Here we use an indirect approach, a jackknife-corrected parametric bootstrap, for efficient approximation of growth rates using nearest living relatives with known age-size relationships. The estimate is developed by (1) collecting a sample of published growth rates of closely related species, (2) calculating the average growth curve using those published age-size relationships, (3) resampling iteratively these empirically known growth curves to estimate the standard errors and confidence bands around the average growth curve, and (4) applying the resulting estimate of uncertainty to bracket age-size relationships of the species of interest. This approach was applied to three monophyletic families (Donacidae, Mactridae, and Semelidae) of mollusk bivalves, a group characterized by indeterministic shell growth, but widely used in ecological, paleontological, and geochemical research. The resulting indirect estimates were tested against two previously published geochemical studies and, in both cases, yielded highly congruent age estimates. In addition, a case study in applied fisheries was used to illustrate the potential of the proposed approach for augmenting aquaculture management practices. The resulting estimates of growth rates place body size data in a constrained temporal context and confidence intervals associated with resampling estimates allow for assessing the statistical uncertainty around derived temporal ranges. The indirect approach should allow for improved evaluation of diverse research questions, from sustainability of industrial shellfish harvesting to climatic interpretations of stable isotope proxies extracted from fossil skeletons. PMID:24071629
NASA Astrophysics Data System (ADS)
Boulin, P. F.; Bretonnier, P.; Gland, N.
2010-12-01
Very low permeability geomaterials (order of nanoDarcy (10-21 m2)), such as clays rocks, are studied for many industrial applications such as production from unconventional reserves of oil and gas, CO2 geological storage and deep geological disposal of high-level long-lived nuclear wastes. For these last two applications, clay efficiency as barrier relies mainly on their very low permeability. Laboratory measurement of low permeability to water (below 10-19 m2) remains a technical challenge. Some authors argue that steady state methods are irrelevant due to the time required to stabilize water fluxes in such low permeability media. Most of the authors measuring low permeabilities use a transient technique called pulse decay. This study aims to compare objectively these different types of permeability tests performed on a single clay sample. For the steady state method, a high precision pump was used to impose a pressure gradient and to measure the small resulting water flow rate at steady state. We show that with a suitable set-up, the steady state method enables to measure a very low permeability of 8 10-22 m2 in a period of three days. For a comparable duration, the pulse decay test, most commonly used for such low permeability measurements, provides only an average estimate of the permeability. Permeability measurements by pulse decay require to perform simulations to interpret the pressure relaxation signals. Many uncertainties remain such as the determination of the reservoirs storage factor, micro leakage effect, or the determination of the initial pulse pressure. All these uncertainties have a very significant impact on the determination of sample permeability and specific storage. Opposite to the wide-spread idea that transient techniques are required to measure very low permeability, we show that direct steady state measurement of water permeability with suitable equipments can be much faster and more accurate than measurement by pulse decay, especially in
Permeability of Two Parachute Fabrics - Measurements, Modeling, and Application
NASA Technical Reports Server (NTRS)
Cruz, Juan R.; O'Farrell, Clara; Hennings, Elsa; Runnells, Paul
2016-01-01
Two parachute fabrics, described by Parachute Industry Specifications PIA-C-7020D Type I and PIA-C-44378D Type I, were tested to obtain their permeabilities in air (i.e., flow-through volume of air per area per time) over the range of differential pressures from 0.146 psf (7 Pa) to 25 psf (1197 Pa). Both fabrics met their specification permeabilities at the standard differential pressure of 0.5 inch of water (2.60 psf, 124 Pa). The permeability results were transformed into an effective porosity for use in calculations related to parachutes. Models were created that related the effective porosity to the unit Reynolds number for each of the fabrics. As an application example, these models were used to calculate the total porosities for two geometrically-equivalent subscale Disk-Gap-Band (DGB) parachutes fabricated from each of the two fabrics, and tested at the same operating conditions in a wind tunnel. Using the calculated total porosities and the results of the wind tunnel tests, the drag coefficient of a geometrically-equivalent full-scale DGB operating on Mars was estimated.
Mohagheghi, Fatemeh; Bigdeli, Mohammad Reza; Rasoulian, Bahram; Hashemi, Payman; Pour, Marzyeh Rashidi
2011-01-15
Recent studies suggest that olive extracts suppress inflammation and reduce stress oxidative injury. We sought to extend these observations in an in vivo study of rat cerebral ischemia-reperfusion injury. Four groups, each of 18 Wister rats, were studied. One (control) group received distilled water, while three treatment groups received oral olive leaf extract (50, 75 and 100mg/kg/day respectively). After 30 days, blood lipid profiles were determined, before a 60 min period of middle cerebral artery occlusion (MCAO). After 24h reperfusion, neurological deficit scores, infarct volume, brain edema, and blood-brain barrier permeability were each assessed in subgroups of six animals drawn from each main group. Olive leaf extract reduced the LDL/HDL ratio in doses 50, 75, and 100mg/kg/day in comparison to the control group (P<0.001), and offered cerebroprotection from ischemia-reperfusion. For controls vs. doses of 50mg/kg/day vs. 75 mg/kg/day vs. 100mg/kg/day, attenuated corrected infarct volumes were 209.79 ± 33.05 mm(3) vs. 164.36 ± 13.44 mm(3) vs. 123.06 ± 28.83 mm(3) vs. 94.71 ± 33.03 mm(3); brain water content of the infarcted hemisphere 82.33 ± 0.33% vs. 81.33 ± 0.66% vs. 80.75 ± 0.6% vs. 80.16 ± 0.47%, and blood-brain barrier permeability of the infarcted hemisphere 11.22 ± 2.19 μg/g vs. 9.56 ± 1.74 μg/g vs. 6.99 ± 1.48 μg/g vs. 5.94 ± 1.73 μg/g tissue (P<0.05 and P<0.01 for measures in doses 75 and 100mg/kg/day vs. controls respectively). Oral administration of olive leaf extract reduces infarct volume, brain edema, blood-brain barrier permeability, and improves neurologic deficit scores after transient middle cerebral artery occlusion in rats. PMID:21183324
Fracture and healing in magmas: a dual role on permeability evolution
NASA Astrophysics Data System (ADS)
Lamur, Anthony; Lavallée, Yan; Wall, Richard; Ashworth, James; Kendrick, Jackie; Wadsworth, Fabian
2016-04-01
The development of a permeable network in silicic volcanic conduits controls outgassing and plays a major role on the subsequent eruptive behaviour. Efficient outgassing, at higher permeabilities, is achieved through the coalescence of pores and fractures. Whilst the relationship between permeability and increasing connected porosity is now relatively well constrained, the effects of fractures have, on the other hand, rarely been investigated. Here, we present the results of an experimental study focusing on the impacts of tensile fracturing and healing on permeability. Permeability measurements have been performed on over 60 disk-shaped samples (26 mm diameter, 13 mm thickness) with connected porosities ranging from 2 to 45%. Our results for unfractured samples display the same porosity-permeability trend as previous studies and permeabilities span from 10‑15 at low porosities to over 5x10‑12 m2 at higher porosities. These samples were then broken via Brazilian tests and the resultant permeability of the rocks were then measured across the fracture zone. Whilst high porosity samples reached permeabilities of about 5x10‑10 m2 (2 orders of magnitude higher than intact samples), low porosity samples, on the other hand, reached permeabilities around 5x10‑12 m2 (more than 3 orders of magnitude above intact samples). Our results show that fracturing favours the development of a permeable network that adheres to a different permeability-porosity relationship than previously presented, and that this effect is emphasized in magmas with low connected porosities. The effect of fracture healing by diffusion on permeability has been investigated through a series of experiments on borosilicate standard glass (NIST 717a). These experiments were conducted at 560oC (viscosity of 1010.33 Pa.s) on pairs of columns pressed and held in contact at constant load for times varying between 0.5s and 15000 s before being pulled apart at a strain rate of 10‑3s‑1. Using Maxwell
NASA Astrophysics Data System (ADS)
Peng, Sheng; Marone, Federica; Dultz, Stefan
2014-03-01
Resolution selection when using X-ray microcomputed tomography should be made based on the compromise between accuracy and representativeness. The question is then how accurate is accurate enough, that is, how small a pore is small enough to be ignored without generating misleading results on pore representation and subsequent flow properties such as permeability. In this study, synchrotron X-ray microcomputed tomographic scans of a Berea sandstone sample were acquired for two resolutions (with 1.85 and 5.92 μm pixel width). Higher resolution images resolve more small pores, and have similar large pores as the lower resolution images. Pore characterization and permeability estimation were conducted based on these two sets of images. The pore parameters and permeability were also measured for another larger sample from the same rock fragment through laboratory experiments. The comparison between the different resolution image analyses and the laboratory measurement indicates that small pores contribute to larger porosity, smaller tortuosity, and larger surface area, but do not influence permeability significantly. Therefore, relatively low resolution (pixel width up to 5.92 μm) can be used for Berea sandstone when permeability is the focus. However, use of even lower resolution needs to be careful since lower resolution not only excludes more small pores, but also has the potential to overestimate the pore size and thereby the permeability. Kozeny-Carman equation was used to estimate the permeability with geometric and diffusional tortuosity. The results indicate that the latter tortuosity can serve better for the permeability estimation than the former.
Estimating one's own and one's relatives' multiple intelligence: a study from Argentina.
Furnham, Adrian; Chamorro-Premuzic, Tomas
2005-05-01
Participants from Argentina (N = 217) estimated their own, their partner's, their parents' and their grandparents' overall and multiple intelligences. The Argentinean data showed that men gave higher overall estimates than women (M = 110.4 vs. 105.1) as well as higher estimates on mathematical and spatial intelligence. Participants thought themselves slightly less bright than their fathers (2 IQ points) but brighter than their mothers (6 points), their grandfathers (8 points), but especially their grandmothers (11 points). Regressions showed that participants thought verbal and mathematical IQ to be the best predictors of overall IQ. Results were broadly in agreement with other studies in the area. A comparison was also made with British data using the same questionnaire. British participants tended to give significantly higher self-estimates than for relatives, though the pattern was generally similar. Results are discussed in terms of the studies in the field. PMID:15875453
Variability of permeability with diameter of conduit
NASA Astrophysics Data System (ADS)
Adegoke, J. A.; Olowofela, J. A.
2008-05-01
An entry length is always observed before laminar flow is achieved in fluid flowing in a conduit. This depends on the Reynolds number of the flow and the degree of smoothness of the conduit. This work examined this region and the point where laminar flow commences in the context of flow through conduit packed with porous material like beads, of known porosity. Using some theoretical assumptions, it is demonstrated that permeability varies from zero at wall-fluid boundary to maximum at mid-stream, creating a permeability profile similar to the velocity profile. An equation was obtained to establish this. We also found that peak values of permeability increase with increasing porosity, and therefore entry length increases with increasing porosity with all other parameters kept constant. A plot of peak permeability versus porosity revealed that they are linearly related.
Permeability of rayon based polymer composites
NASA Technical Reports Server (NTRS)
Stokes, E. H.
1992-01-01
Several types of anomalous rayon based phenolic behavior have been observed in post-fired nozzles and exit cones. Many of these events have been shown to be related to the development of internal gas pressure within the material. The development of internal gas pressure is a function of the amount of gas produced within the material and the rate at which that gas is allowed to escape. The latter property of the material is referred to as the material's permeability. The permeability of two dimensional carbonized rayon based phenolic composites is a function of material direction, temperature, and stress/strain state. Recently significant differences in the permeability of these materials has been uncovered which may explain their inconsistent performance. This paper summarizes what is known about the permeability of these materials to date and gives possible implications of these finding to the performance of these materials in an ablative environment.
Permeability-porosity relationships of subduction zone sediments
Gamage, K.; Screaton, E.; Bekins, B.; Aiello, I.
2011-01-01
Permeability-porosity relationships for sediments from the northern Barbados, Costa Rica, Nankai, and Peru subduction zones were examined based on sediment type, grain size distribution, and general mechanical and chemical compaction history. Greater correlation was observed between permeability and porosity in siliciclastic sediments, diatom oozes, and nannofossil chalks than in nannofossil oozes. For siliciclastic sediments, grouping of sediments by percentage of clay-sized material yields relationships that are generally consistent with results from other marine settings and suggests decreasing permeability as percentage of clay-sized material increases. Correction of measured porosities for smectite content improved the correlation of permeability-porosity relationships for siliciclastic sediments and diatom oozes. The relationship between permeability and porosity for diatom oozes is very similar to the relationship in siliciclastic sediments, and permeabilities of both sediment types are related to the amount of clay-size particles. In contrast, nannofossil oozes have higher permeability values by 1.5 orders of magnitude than siliciclastic sediments of the same porosity and show poor correlation between permeability and porosity. More indurated calcareous sediments, nannofossil chalks, overlap siliciclastic permeabilities at the lower end of their measured permeability range, suggesting similar consolidation patterns at depth. Thus, the lack of correlation between permeability and porosity for nannofossil oozes is likely related to variations in mechanical and chemical compaction at shallow depths. This study provides the foundation for a much-needed global database with fundamental properties that relate to permeability in marine settings. Further progress in delineating controls on permeability requires additional carefully documented permeability measurements on well-characterized samples. ?? 2010 Elsevier B.V.
Yousefi, Siavash; Wang, Ruikang K
2014-11-21
In an optical coherence tomography (OCT) scan from a living tissue, red blood cells (RBCs) are the major source of backscattering signal from moving particles within microcirculatory system. Measuring the concentration and velocity of RBC particles allows assessment of RBC flux and flow, respectively, to assess tissue perfusion and oxygen/nutrition exchange rates within micro-structures. In this paper, we propose utilizing spectral estimation techniques to simultaneously quantify bi-directional particle flow and relative flux by spectral estimation of the received OCT signal from moving particles within capillary tubes embedded in tissue mimicking phantoms. The proposed method can be directly utilized for in vivo quantification of capillaries and microvessels. Compared to the existing methods in the literature that can either quantify flow direction or power, our proposed method allows simultaneous flow (velocity) direction and relative flux (power) estimation. PMID:25327449
NASA Astrophysics Data System (ADS)
Yousefi, Siavash; Wang, Ruikang K.
2014-11-01
In an optical coherence tomography (OCT) scan from a living tissue, red blood cells (RBCs) are the major source of backscattering signal from moving particles within microcirculatory system. Measuring the concentration and velocity of RBC particles allows assessment of RBC flux and flow, respectively, to assess tissue perfusion and oxygen/nutrition exchange rates within micro-structures. In this paper, we propose utilizing spectral estimation techniques to simultaneously quantify bi-directional particle flow and relative flux by spectral estimation of the received OCT signal from moving particles within capillary tubes embedded in tissue mimicking phantoms. The proposed method can be directly utilized for in vivo quantification of capillaries and microvessels. Compared to the existing methods in the literature that can either quantify flow direction or power, our proposed method allows simultaneous flow (velocity) direction and relative flux (power) estimation.
Yousefi, Siavash
2014-01-01
In an optical coherence tomography (OCT) scan from a living tissue, red blood cells (RBCs) are the major source of backscattering signal from moving particles within microcirculatory system. Measuring the concentration and velocity of RBC particles allows assessment of RBC flux and flow, respectively, to assess tissue perfusion and oxygen/nutrition exchange rates within micro-structures. In this paper, we propose utilizing spectral estimation techniques to simultaneously quantify bi-directional particle flow and relative flux by spectral estimation of the received OCT signal from moving particles within capillary tubes embedded in tissue mimicking phantoms. The proposed method can be directly utilized for in vivo quantification of capillaries and microvessels. Compared to the existing methods in the literature that can either quantify flow direction or power, our proposed method allows simultaneous flow (velocity) direction and relative flux (power) estimation. PMID:25327449
Lee, Eugenia E.; Stewart, Barclay; Zha, Yuanting A.; Groen, Thomas A.; Burkle, Frederick M.; Kushner, Adam L.
2016-01-01
Background: Climate extremes will increase the frequency and severity of natural disasters worldwide. Climate-related natural disasters were anticipated to affect 375 million people in 2015, more than 50% greater than the yearly average in the previous decade. To inform surgical assistance preparedness, we estimated the number of surgical procedures needed. Methods: The numbers of people affected by climate-related disasters from 2004 to 2014 were obtained from the Centre for Research of the Epidemiology of Disasters database. Using 5,000 procedures per 100,000 persons as the minimum, baseline estimates were calculated. A linear regression of the number of surgical procedures performed annually and the estimated number of surgical procedures required for climate-related natural disasters was performed. Results: Approximately 140 million people were affected by climate-related natural disasters annually requiring 7.0 million surgical procedures. The greatest need for surgical care was in the People’s Republic of China, India, and the Philippines. Linear regression demonstrated a poor relationship between national surgical capacity and estimated need for surgical care resulting from natural disaster, but countries with the least surgical capacity will have the greatest need for surgical care for persons affected by climate-related natural disasters. Conclusion: As climate extremes increase the frequency and severity of natural disasters, millions will need surgical care beyond baseline needs. Countries with insufficient surgical capacity will have the most need for surgical care for persons affected by climate-related natural disasters. Estimates of surgical are particularly important for countries least equipped to meet surgical care demands given critical human and physical resource deficiencies. PMID:27617165
NASA Astrophysics Data System (ADS)
Okubo, C. H.
2010-12-01
In order to gain more insight into the effect of faulting on the potential for fluid flow through tuff, fault-related changes in host rock permeability are investigated within the Joe Lott Tuff Member of the Mount Belknap Volcanics in southwestern Utah. The study area is located along the southern flank of the Clear Creek downwarp in the Sevier Valley region. The Joe Lott Tuff is a partially welded, crystal-poor, rhyolite ash-flow tuff of Miocene age. Results from two- and three-dimensional mapping of the gas permeability around two faults are presented here. These faults exhibit maximum displacements of up to several 10s of cm, with a predominantly normal sense of offset and a minor dextral strike-slip component. Deformation along these faults has been previously estimated to have occurred during the late Miocene to Pleistocene at a maximum burial depth of several hundred meters. Both faults are exposed along vertical cliffs, which offer unobstructed views of the fault planes and surrounding damage zones. Measurements of gas permeability are taken in semi-controlled grid patterns around each fault using a portable field permeameter. A low-permeability, roughly 10-cm-thick weathering rind is present along many surfaces of both outcrops. Permeability measurements of the nonweathered host rock are obtained by drilling through this surficial weathering rind. At distances greater than 5 m from the fault plane, gas permeability is found to be within the range of 1600 ± 1000 mD. Within 1 m of the fault plane, gas permeability decreases to as low as 20 mD. Microstructural observations reveal that this decrease in near-fault permeability is due to cataclasis and repacking of the tuff grains, as well as silica deposition within the remaining pore space. These observations provide a basis for developing numerical models in support of predicting fault-related changes in the permeability of tuff.
Characterizing average permeability in oil and gas formations
Rollins, J.B. ); Holditch, S.A.; Lee, W.J. )
1992-03-01
This paper reports that permeability in a formation frequently follows a unimodal probability distribution. In many formations, particularly sedimentary ones, the permeability distribution is similar to the log-normal distribution. Theoretical considerations, field cases, and a reservoir simulation example show that the median, rather than the arithmetic mean, is the appropriate measure of central tendency or average value of the permeability distribution in a formation. Use of the correct estimate of average permeability is of particular importance in the classification of tight gas formations under statues in the 1978 Natural Gas Policy Act (NGPA).
A General and Flexible Approach to Estimating the Social Relations Model Using Bayesian Methods
ERIC Educational Resources Information Center
Ludtke, Oliver; Robitzsch, Alexander; Kenny, David A.; Trautwein, Ulrich
2013-01-01
The social relations model (SRM) is a conceptual, methodological, and analytical approach that is widely used to examine dyadic behaviors and interpersonal perception within groups. This article introduces a general and flexible approach to estimating the parameters of the SRM that is based on Bayesian methods using Markov chain Monte Carlo…
Martínez-Martínez, Víctor; Baladrón, Carlos; Gomez-Gil, Jaime; Ruiz-Ruiz, Gonzalo; Navas-Gracia, Luis M; Aguiar, Javier M; Carro, Belén
2012-01-01
This paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed. PMID:23202032
Martínez-Martínez, Víctor; Baladrón, Carlos; Gomez-Gil, Jaime; Ruiz-Ruiz, Gonzalo; Navas-Gracia, Luis M.; Aguiar, Javier M.; Carro, Belén
2012-01-01
This paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed. PMID:23202032
Frutiger, Jérôme; Marcarie, Camille; Abildskov, Jens; Sin, Gürkan
2016-11-15
This study presents new group contribution (GC) models for the prediction of Lower and Upper Flammability Limits (LFL and UFL), Flash Point (FP) and Auto Ignition Temperature (AIT) of organic chemicals applying the Marrero/Gani (MG) method. Advanced methods for parameter estimation using robust regression and outlier treatment have been applied to achieve high accuracy. Furthermore, linear error propagation based on covariance matrix of estimated parameters was performed. Therefore, every estimated property value of the flammability-related properties is reported together with its corresponding 95%-confidence interval of the prediction. Compared to existing models the developed ones have a higher accuracy, are simple to apply and provide uncertainty information on the calculated prediction. The average relative error and correlation coefficient are 11.5% and 0.99 for LFL, 15.9% and 0.91 for UFL, 2.0% and 0.99 for FP as well as 6.4% and 0.76 for AIT. Moreover, the temperature-dependence of LFL property was studied. A compound specific proportionality constant (K(LFL)) between LFL and temperature is introduced and an MG GC model to estimate K(LFL) is developed. Overall the ability to predict flammability-related properties including the corresponding uncertainty of the prediction can provide important information for a qualitative and quantitative safety-related risk assessment studies. PMID:27453258
ERIC Educational Resources Information Center
Friedman, Alinda; Montello, Daniel R.
2006-01-01
The authors examined whether absolute and relative judgments about global-scale locations and distances were generated from common representations. At the end of a 10-week class on the regional geography of the United States, participants estimated the latitudes of 16 North American cities and all possible pairwise distances between them. Although…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-19
... opportunity to participate in a voluntary consent agreement (70 FR 4958) referred to as the Air Compliance... AGENCY 40 CFR Part 60 Call for Information: Information Related to the Development of Emission-Estimating... quality-assured emissions and process data that are relevant to developing...
Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates
Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approx...
The objective of the report is: (1) to compare alternative ozone exposure indices that relate well to plant response and are useful in developing future standards for ozone; (2) to estimate standard errors and confidence intervals of regression coefficients and exposure levels of...
NASA Astrophysics Data System (ADS)
Kutemi, Titilope F.
The steady-state flow technique was employed to measure the flow rate of clean dry air through thirty core plugs (approximately 1" diameter) of the Ellenburger dolomite, drilled normal and parallel to the dominant fractures. Porosity was estimated by the method of imbibition. Electrical parameters (electrical conductivity and dielectric permittivity) were calculated from electrical resistance and capacitance measured as a function of frequency (100 Hz, 120 Hz, 1 KHz, and 10 KHz) and saturation (dry/ambient and brine saturated conditions). Another set of permeability data obtained by the method of pressure decay on similar samples was used for correlation. Anisotropies of permeability and electromagnetic parameters were established. Empirical relations between porosity (phi), permeability (k), electrical conductivity (sigma), and dielectric permittivity (epsilon) were defined via cross-plots and linear regressions. Prediction of k from sigma and epsilon was attempted; k from sigma was modeled from a combination of the Archie's relation and the Carman-Kozeny relation. Anisotropic EM responses are sensitive to saturation. Anisotropies of conductivity and permeability were observed to be controlled by the pore micro-structure. Although the rock is fractured, the fracture density appears insufficient to dominate the effects of primary structures in these samples of the Ellenburger dolomite. Model-based prediction of permeability from conductivity is generally unreliable, and is attributed to the underlying assumptions of the models, which are not consistent with the properties of the samples used for this study. Permeability was not predictable from dielectric permittivity.
Estimation of insurance related losses resulting from coastal flooding in France
NASA Astrophysics Data System (ADS)
Naulin, J. P.; Moncoulon, D.; Le Roy, S.; Pedreros, R.; Idier, D.; Oliveros, C.
2015-04-01
A model has been developed in order to estimate insurance-related losses caused by coastal flooding in France. The deterministic part of the model aims at identifying the potentially flood-impacted sectors and the subsequent insured losses a few days after the occurrence of a storm surge event on any part of the French coast. This deterministic component is a combination of three models: a hazard model, a vulnerability model and a damage model. The first model uses the PREVIMER system to estimate the water level along the coast. A storage-cell flood model propagates these water levels over the land and thus determines the probable inundated areas. The vulnerability model, for its part, is derived from the insurance schedules and claims database; combining information such as risk type, class of business and insured values. The outcome of the vulnerability and hazard models are then combined with the damage model to estimate the event damage and potential insured losses. This system shows satisfactory results in the estimation of the magnitude of the known losses related to the flood caused by the Xynthia storm. However, it also appears very sensitive to the water height estimated during the flood period, conditioned by the junction between sea water levels and coastal topography for which the accuracy is still limited in the system.
Estimation of insurance-related losses resulting from coastal flooding in France
NASA Astrophysics Data System (ADS)
Naulin, J. P.; Moncoulon, D.; Le Roy, S.; Pedreros, R.; Idier, D.; Oliveros, C.
2016-01-01
A model has been developed in order to estimate insurance-related losses caused by coastal flooding in France. The deterministic part of the model aims at identifying the potentially flood-impacted sectors and the subsequent insured losses a few days after the occurrence of a storm surge event on any part of the French coast. This deterministic component is a combination of three models: a hazard model, a vulnerability model, and a damage model. The first model uses the PREVIMER system to estimate the water level resulting from the simultaneous occurrence of a high tide and a surge caused by a meteorological event along the coast. A storage-cell flood model propagates these water levels over the land and thus determines the probable inundated areas. The vulnerability model, for its part, is derived from the insurance schedules and claims database, combining information such as risk type, class of business, and insured values. The outcome of the vulnerability and hazard models are then combined with the damage model to estimate the event damage and potential insured losses. This system shows satisfactory results in the estimation of the magnitude of the known losses related to the flood caused by the Xynthia storm. However, it also appears very sensitive to the water height estimated during the flood period, conditioned by the junction between seawater levels and coastal topography, the accuracy for which is still limited by the amount of information in the system.
Kernel PLS Estimation of Single-trial Event-related Potentials
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Trejo, Leonard J.
2004-01-01
Nonlinear kernel partial least squaes (KPLS) regressior, is a novel smoothing approach to nonparametric regression curve fitting. We have developed a KPLS approach to the estimation of single-trial event related potentials (ERPs). For improved accuracy of estimation, we also developed a local KPLS method for situations in which there exists prior knowledge about the approximate latency of individual ERP components. To assess the utility of the KPLS approach, we compared non-local KPLS and local KPLS smoothing with other nonparametric signal processing and smoothing methods. In particular, we examined wavelet denoising, smoothing splines, and localized smoothing splines. We applied these methods to the estimation of simulated mixtures of human ERPs and ongoing electroencephalogram (EEG) activity using a dipole simulator (BESA). In this scenario we considered ongoing EEG to represent spatially and temporally correlated noise added to the ERPs. This simulation provided a reasonable but simplified model of real-world ERP measurements. For estimation of the simulated single-trial ERPs, local KPLS provided a level of accuracy that was comparable with or better than the other methods. We also applied the local KPLS method to the estimation of human ERPs recorded in an experiment on co,onitive fatigue. For these data, the local KPLS method provided a clear improvement in visualization of single-trial ERPs as well as their averages. The local KPLS method may serve as a new alternative to the estimation of single-trial ERPs and improvement of ERP averages.
Effects of a limited class of nonlinearities on estimates of relative weights
NASA Astrophysics Data System (ADS)
Richards, Virginia M.
2002-02-01
Perturbation analyses have been applied in recent years to determine the relative contribution of individual stimulus components in detection and discrimination tasks. Responses to stimulus samples are compared to stimulus parameters to determine the details of the decision rule. Often, a linear model is assumed and it is of interest to determine the relative contribution of different stimulus elements to the decision. Here, biases in estimated relative weights are considered for the case where the decision variable is given by D=(∑(αiXin)k)m and the stimulus components, the Xi, are normally distributed, of equal variance, and mutually independent. The αi are the ``true'' combination weights, and n, k, and m are positive reals. The method used to estimate relative weights is the correlation coefficient between the Xi and the observer's responses. Estimates of relative αi do not depend on m but may depend on the mean values of the Xi and the values of n and k (a dependence on the variance, σi2, holds even for linear transformations).
Comparison of structural and least-squares lines for estimating geologic relations
Williams, G.P.; Troutman, B.M.
1990-01-01
Two different goals in fitting straight lines to data are to estimate a "true" linear relation (physical law) and to predict values of the dependent variable with the smallest possible error. Regarding the first goal, a Monte Carlo study indicated that the structural-analysis (SA) method of fitting straight lines to data is superior to the ordinary least-squares (OLS) method for estimating "true" straight-line relations. Number of data points, slope and intercept of the true relation, and variances of the errors associated with the independent (X) and dependent (Y) variables influence the degree of agreement. For example, differences between the two line-fitting methods decrease as error in X becomes small relative to error in Y. Regarding the second goal-predicting the dependent variable-OLS is better than SA. Again, the difference diminishes as X takes on less error relative to Y. With respect to estimation of slope and intercept and prediction of Y, agreement between Monte Carlo results and large-sample theory was very good for sample sizes of 100, and fair to good for sample sizes of 20. The procedures and error measures are illustrated with two geologic examples. ?? 1990 International Association for Mathematical Geology.
Absolute magnitude estimation and relative judgement approaches to subjective workload assessment
NASA Technical Reports Server (NTRS)
Vidulich, Michael A.; Tsang, Pamela S.
1987-01-01
Two rating scale techniques employing an absolute magnitude estimation method, were compared to a relative judgment method for assessing subjective workload. One of the absolute estimation techniques used was an unidimensional overall workload scale and the other was the multidimensional NASA-Task Load Index technique. Thomas Saaty's Analytic Hierarchy Process was the unidimensional relative judgment method used. These techniques were used to assess the subjective workload of various single- and dual-tracking conditions. The validity of the techniques was defined as their ability to detect the same phenomena observed in the tracking performance. Reliability was assessed by calculating test-retest correlations. Within the context of the experiment, the Saaty Analytic Hierarchy Process was found to be superior in validity and reliability. These findings suggest that the relative judgment method would be an effective addition to the currently available subjective workload assessment techniques.
NASA Technical Reports Server (NTRS)
Galante, Joseph M.; Van Eepoel, John; D' Souza, Chris; Patrick, Bryan
2016-01-01
The Raven ISS Hosted Payload will feature several pose measurement sensors on a pan/tilt gimbal which will be used to autonomously track resupply vehicles as they approach and depart the International Space Station. This paper discusses the derivation of a Relative Navigation Filter (RNF) to fuse measurements from the different pose measurement sensors to produce relative position and attitude estimates. The RNF relies on relative translation and orientation kinematics and careful pose sensor modeling to eliminate dependence on orbital position information and associated orbital dynamics models. The filter state is augmented with sensor biases to provide a mechanism for the filter to estimate and mitigate the offset between the measurements from different pose sensors.
NASA Technical Reports Server (NTRS)
Galante, Joseph M.; Van Eepoel, John; D'Souza, Chris; Patrick, Bryan
2016-01-01
The Raven ISS Hosted Payload will feature several pose measurement sensors on a pan/tilt gimbal which will be used to autonomously track resupply vehicles as they approach and depart the International Space Station. This paper discusses the derivation of a Relative Navigation Filter (RNF) to fuse measurements from the different pose measurement sensors to produce relative position and attitude estimates. The RNF relies on relative translation and orientation kinematics and careful pose sensor modeling to eliminate dependence on orbital position information and associated orbital dynamics models. The filter state is augmented with sensor biases to provide a mechanism for the filter to estimate and mitigate the offset between the measurements from different pose sensors
Two scale analysis applied to low permeability sandstones
NASA Astrophysics Data System (ADS)
Davy, Catherine; Song, Yang; Nguyen Kim, Thang; Adler, Pierre
2015-04-01
Low permeability materials are often composed of several pore structures of various scales, which are superposed one to another. It is often impossible to measure and to determine the macroscopic properties in one step. In the low permeability sandstones that we consider, the pore space is essentially made of micro-cracks between grains. These fissures are two dimensional structures, which aperture is roughly on the order of one micron. On the grain scale, i.e., on the scale of 1 mm, the fissures form a network. These two structures can be measured by using two different tools [1]. The density of the fissure networks is estimated by trace measurements on the two dimensional images provided by classical 2D Scanning Electron Microscopy (SEM) with a pixel size of 2.2 micron. The three dimensional geometry of the fissures is measured by X-Ray micro-tomography (micro-CT) in the laboratory, with a voxel size of 0.6x0.6x0.6microns3. The macroscopic permeability is calculated in two steps. On the small scale, the fracture transmissivity is calculated by solving the Stokes equation on several portions of the measured fissures by micro-CT. On the large scale, the density of the fissures is estimated by three different means based on the number of intersections with scanlines, on the surface density of fissures and on the intersections between fissures per unit surface. These three means show that the network is relatively isotropic and they provide very close estimations of the density. Then, a general formula derived from systematic numerical computations [2] is used to derive the macroscopic dimensionless permeability which is proportional to the fracture transmissivity. The combination of the two previous results yields the dimensional macroscopic permeability which is found to be in acceptable agreement with the experimental measurements. Some extensions of these preliminary works will be presented as a tentative conclusion. References [1] Z. Duan, C. A. Davy, F
Comparison of different techniques for streamflow-related extremes estimation in ungauged catchments
NASA Astrophysics Data System (ADS)
Rossi, Giuseppe; Caporali, Enrica; Chiarello, Valentina
2013-04-01
High and low flows and associated floods and droughts are natural phenomena caused by opposite meteorological extremes, affected by various, but similar catchment processes. Knowledge of peak flow and low flow discharges is fundamental in all water-related studies and infrastructures design. They are estimated starting from measurements of river discharges at stream gauging stations. The lack of observations at the site of interest as well as the inaccuracy of the measurements, however, bring inevitably to the necessity of developing predictive models. Regional analysis is the classical approach to estimate river flow characteristics at sites where little or no data exists. Once the homogeneous regions are defined, specific interpolation techniques are needed to regionalize the hydrological variables. Particularly, two different techniques are chosen here for estimating streamflow-related variables: the top-kriging and the multivariate analysis. Top-kriging is chosen because it is directly connected to the hydrographic network structure and geometric organization, while the Multivariate analysis, based on natural logarithms of seven geomorphoclimatic characteristics, is able to take into account the catchment properties. These methods are applied over the geographical space of Tuscany Region, in Central Italy. The results are validated using a cross-validation procedure, and are compared even with classical interpolation approaches (e.g. the ordinary kriging). With the aim to define the most suitable procedure for streamflow extremes estimation, the results are compared through different error measurement methods (mean square error, mean relative error, etc.).
ERIC Educational Resources Information Center
Sandy, Leo R.
1998-01-01
Discusses the concept of permeability as knowledge flow into and out of the classroom and applies it to three college courses taught by the author at Plymouth State College (New Hampshire). Experiential knowledge comes into the classroom through interviews, guest speakers, and panel presentations, and flows out through service-learning students…
Use of soil catena field data for estimating relative ages of moraines
Birkeland, P.W.; Berry, M.E. ); Swanson, D.K. )
1991-03-01
Soils at the crests of moraines are commonly used to estimate the relative ages of moraines. However, for various pedologic and geomorphic reasons, soil development at crest sites may not truly reflect the time since moraine formation; for example, some crest soils on moraines of greatly different age are similar in morphology and development. Soil catena data for soils at several sites aligned downslope from the crest can greatly improve on the usefulness of soil data for estimating moraine ages. For this purpose, the authors use the weighted mean catena profile development index, which condenses field data for all of the soils in each catena into a single value.
Parameter estimation and tests of General Relativity with GW transients in Advanced LIGO
NASA Astrophysics Data System (ADS)
Vitale, Salvatore
2016-03-01
The Advanced LIGO observatories have successfully completed their first observation run. Data were collected from September 2015 to January 2016, with a sensitivity a few times better than initial instruments in the hundreds of Hertz band. Bayesian parameter estimation and model selection algorithms can be used to estimate the astrophysical parameters of gravitational-wave sources, as well as to perform tests of General Relativity in its strong-field dynamical regime. In this talk we will describe the methods devised to characterize transient gravitational wave sources and their applications in the advanced gravitational-wave detector era.
Predicting permeability and electrical conductivity of sedimentary rocks from microgeometry
Schlueter, E.M.; Cook, N.G.W. California Univ., Berkeley, CA . Dept. of Materials Science and Mineral Engineering); Zimmerman, R.W.; Witherspoon, P.A. )
1991-02-01
The determination of hydrologic parameters that characterize fluid flow through rock masses on a large scale (e.g., hydraulic conductivity, capillary pressure, and relative permeability) is crucial to activities such as the planning and control of enhanced oil recovery operations, and the design of nuclear waste repositories. Hydraulic permeability and electrical conductivity of sedimentary rocks are predicted from the microscopic geometry of the pore space. The cross-sectional areas and perimeters of the individual pores are estimated from two-dimensional scanning electron micrographs of rock sections. The hydraulic and electrical conductivities of the individual pores are determined from these geometrical parameters, using Darcy's law and Ohm's law. Account is taken of the fact that the cross-sections are randomly oriented with respect to the channel axes, and for possible variation of cross-sectional area along the length of the pores. The effective medium theory from solid-state physics is then used to determine an effective average conductance of each pore. Finally, the pores are assumed to be arranged on a cubic lattice, which allows the calculation of overall macroscopic values for the permeability and the electrical conductivity. Preliminary results using Berea, Boise, Massilon and Saint-Gilles sandstones show reasonably close agreement between the predicted and measured transport properties. 12 refs., 5 figs., 1 tab.
How number line estimation skills relate to neural activations in single digit subtraction problems.
Berteletti, I; Man, G; Booth, J R
2015-02-15
The Number Line (NL) task requires judging the relative numerical magnitude of a number and estimating its value spatially on a continuous line. Children's skill on this task has been shown to correlate with and predict future mathematical competence. Neurofunctionally, this task has been shown to rely on brain regions involved in numerical processing. However, there is no direct evidence that performance on the NL task is related to brain areas recruited during arithmetical processing and that these areas are domain-specific to numerical processing. In this study, we test whether 8- to 14-year-old's behavioral performance on the NL task is related to fMRI activation during small and large single-digit subtraction problems. Domain-specific areas for numerical processing were independently localized through a numerosity judgment task. Results show a direct relation between NL estimation performance and the amount of the activation in key areas for arithmetical processing. Better NL estimators showed a larger problem size effect than poorer NL estimators in numerical magnitude (i.e., intraparietal sulcus) and visuospatial areas (i.e., posterior superior parietal lobules), marked by less activation for small problems. In addition, the direction of the activation with problem size within the IPS was associated with differences in accuracies for small subtraction problems. This study is the first to show that performance in the NL task, i.e. estimating the spatial position of a number on an interval, correlates with brain activity observed during single-digit subtraction problem in regions thought to be involved in numerical magnitude and spatial processes. PMID:25497398
NASA Astrophysics Data System (ADS)
Guéguen, Y.; Gavrilenko, P.; Le Ravalec, M.
1996-05-01
Permeability is a transport property which is currently measured in Darcy units. Although this unit is very convenient for most purposes, its use prevents from recognizing that permeability has units of length squared. Physically, the square root of permeability can thus be seen as a characteristic length or a characteristic pore size. At the laboratory scale, the identification of this characteristic length is a good example of how experimental measurements and theoretical modelling can be integrated. Three distinct identifications are of current use, relying on three different techniques: image analysis of thin sections, mercury porosimetry and nitrogen adsorption. In each case, one or several theoretical models allow us to derive permeability from the experimental data (equivalent channel models, statistical models, effective media models, percolation and network models). Permeability varies with pressure and temperature and this is a decisive point for any extrapolation to crustal conditions. As far as pressure is concerned, most of the effect is due to cracks and a model which does not incorporate this fact will miss its goal. Temperature induced modifications can be the result of several processes: thermal cracking (due to thermal expansion mismatch and anisotropy, or to fluid pressure build up), and pressure solution are the two main ones. Experimental data on pressure and temperature effects are difficult to obtain but they are urgently needed. Finally, an important issue is: up to which point are these small scale data and models relevant when considering formations at the oil reservoir scale, or at the crust scale? At larger scales the identification of the characteristic scale is also a major goal which is examined.
NASA Technical Reports Server (NTRS)
Adler, R. F.; Mack, R. A.
1984-01-01
Observational studies of thunderstorm cloud height-rainfall rate and cloud height-volume rainfall rate relations are reviewed with significant variations being noted among climatological regimes. Analysis of the Florida (summer) and Oklahoma (spring) relations are made using a one-dimensional cloud model to ascertain the important factors in determining the individual cloud-rain relations and the differences between the two regimes. In general, the observed relations are well simulated by the model-based calculations. The generally lower predicted rain rates in Oklahoma (as compared to Florida) result from lower precipitation efficiencies which are due to a combination of larger entrainment (related to larger vertical wind shear) and drier environment. The generally steeper slope of the Oklahoma rain rate height curves is shown to be due to a stronger variation in maximum vertical velocity with cloud top height, which, in turn, is related to the greater static stability in the range of cloud tops. The impact of the regime-to-regime variations on empirical rain estimation schemes based on satellite-observed cloud height or cloud temperature information is discussed and a rain estimation approach based on model-generated cloud-rain relations is outlined.
Quantifying tight-gas sandstone permeability via critical path analysis
NASA Astrophysics Data System (ADS)
Ghanbarian, Behzad; Torres-Verdín, Carlos; Skaggs, Todd H.
2016-06-01
Rock permeability has been actively investigated over the past several decades by the geosciences community. However, its accurate estimation still presents significant technical challenges, particularly in spatially complex rocks. In this short communication, we apply critical path analysis (CPA) to estimate permeability in porous rocks from measured mercury intrusion porosimetry and electrical conductivity data. Theoretical estimations of various CPA-based models are then compared to experimental measurements using eighteen tight-gas sandstones. Except for two of the samples, we find permeability estimations performed with the Skaggs model (assuming pore diameter independent of its length) more accurate than other models, within a factor of two of the measured permeabilities. We discuss some plausible sources of the uncertainties.
The Prevalence of Age-Related Eye Diseases and Visual Impairment in Aging: Current Estimates
Klein, Ronald; Klein, Barbara E. K.
2013-01-01
Purpose. To examine prevalence of five age-related eye conditions (age-related cataract, AMD, open-angle glaucoma, diabetic retinopathy [DR], and visual impairment) in the United States. Methods. Review of published scientific articles and unpublished research findings. Results. Cataract, AMD, open-angle glaucoma, DR, and visual impairment prevalences are high in four different studies of these conditions, especially in people over 75 years of age. There are disparities among racial/ethnic groups with higher age-specific prevalence of DR, open-angle glaucoma, and visual impairment in Hispanics and blacks compared with whites, higher prevalence of age-related cataract in whites compared with blacks, and higher prevalence of late AMD in whites compared with Hispanics and blacks. The estimates are based on old data and do not reflect recent changes in the distribution of age and race/ethnicity in the United States population. There are no epidemiologic estimates of prevalence for many visually-impairing conditions. Conclusions. Ongoing prevalence surveys designed to provide reliable estimates of visual impairment, AMD, age-related cataract, open-angle glaucoma, and DR are needed. It is important to collect objective data on these and other conditions that affect vision and quality of life in order to plan for health care needs and identify areas for further research. PMID:24335069
Water Permeability of Asymmetric Planar Lipid Bilayers
Krylov, Andrey V.; Pohl, Peter; Zeidel, Mark L.; Hill, Warren G.
2001-01-01
To understand how plasma membranes may limit water flux, we have modeled the apical membrane of MDCK type 1 cells. Previous experiments demonstrated that liposomes designed to mimic the inner and outer leaflet of this membrane exhibited 18-fold lower water permeation for outer leaflet lipids than inner leaflet lipids (Hill, W.G., and M.L. Zeidel. 2000. J. Biol. Chem. 275:30176–30185), confirming that the outer leaflet is the primary barrier to permeation. If leaflets in a bilayer resist permeation independently, the following equation estimates single leaflet permeabilities: 1/PAB = 1/PA + 1/PB (Eq. l), where PAB is the permeability of a bilayer composed of leaflets A and B, PA is the permeability of leaflet A, and PB is the permeability of leaflet B. Using for the MDCK leaflet–specific liposomes gives an estimated value for the osmotic water permeability (Pf) of 4.6 × 10−4 cm/s (at 25°C) that correlated well with experimentally measured values in intact cells. We have now constructed both symmetric and asymmetric planar lipid bilayers that model the MDCK apical membrane. Water permeability across these bilayers was monitored in the immediate membrane vicinity using a Na+-sensitive scanning microelectrode and an osmotic gradient induced by addition of urea. The near-membrane concentration distribution of solute was used to calculate the velocity of water flow (Pohl, P., S.M. Saparov, and Y.N. Antonenko. 1997. Biophys. J. 72:1711–1718). At 36°C, Pf was 3.44 ± 0.35 × 10−3 cm/s for symmetrical inner leaflet membranes and 3.40 ± 0.34 × 10−4 cm/s for symmetrical exofacial membranes. From , the estimated permeability of an asymmetric membrane is 6.2 × 10−4 cm/s. Water permeability measured for the asymmetric planar bilayer was 6.7 ± 0.7 × 10−4 cm/s, which is within 10% of the calculated value. Direct experimental measurement of Pf for an asymmetric planar membrane confirms that leaflets in a bilayer offer independent and additive resistances to
The permeability of gabbro in oceanic core complexes
NASA Astrophysics Data System (ADS)
Titarenko, S.; McCaig, A. M.
2013-12-01
In IODP Expedition 340T, a thermal gradient of about 100 °C km-1 was measured in IODP Hole U1309D (Blackman et al. 2013), located in 1.2 My old gabbroic crust in the footwall of an oceanic detachment fault in the Atlantis Massif, just west of the mid-Atlantic Ridge at 30° N. The gradient is linear below 748 mbsf, indicating an essentially conductive regime, and slightly concave above that depth, suggesting slow, long-term downward flow of seawater in surrounding rocks. The lack of any vigorous hydrothermal circulation at this site is remarkable considering that the serpentinite-hosted Lost City Hydrothermal Field (LCHF) is located only 5 km to the south, and has been venting highly alkaline fluids at 40-90 °C for at least the last 140,000 years. We have created a 2-D topographic model of the Atlantis Massif using a N-S profile through the LCHF and the drillhole location, and modelled hydrothermal circulation using Comsol Multiphysics. A maximum permeability of 10-17 m2 below 750 mbsf, and a basal heatflow of 0.22 Wm-1 are required at the drillhole location to suppress hydrothermal circulation and preserve the observed conductive thermal gradient at depth. The concave gradient above this depth can be closely fitted over long time periods with a layer 750 m thick of higher permeability, ~3x 10-14 m2. Fluid vents at the site of the LCHF and in a small knoll north of the drill hole, and enters the seafloor everywhere else, including the drillhole location. Model vent temperatures are only about 20 °C however, much less that at the LCHF. A model with a deeper permeable zone beneath the LCHF, with a permeability of 10-15 m2 or more, is required to match simultaneously both observed vent temperatures and the drillhole gradient. This deep permeable zone is hosted in serpentinite but is most likely related to active faulting related to the Atlantis Transform Fault, not lithological control on permeability. Data from the flanks of both fast and intermediate spreading
Han, Min; Fu, Shao; Gao, Jian-Qing; Fang, Xiao-Ling
2009-06-01
In the present study, ginsenoside Rg(1) (Rg(1)), a naturally occurring drug which is hardly absorbed in gastrointestinal (GI) tract due to its high hydrophilicity and low membrane permeability, was incorporated in different compositions of water-in-oil microemulsions (MEs). And parallel artificial membrane permeability assay (PAMPA) that have been mainly utilized for the evaluation of in vitro permeability of early drug candidates was introduced in present study, as well as rat in vivo pharmacokinetics and in vitro permeability measurements, to investigate the effect of w/o ME on Rg(1) absorption. Correlation between various models as mentioned above was further performed to estimate the feasibility of PAMPA in the application of pharmaceutical preparation studies. After being administrated intraduodenally to rats, most of MEs can enhance the intestinal absorption of Rg(1) to various extents with relative bioavailability (F(re)) ranging from 268 to 1270% using drug solution as control. This enhanced absorption of Rg(1) may be related to its increased membrane permeability induced by ME as exhibited in the PAMPA and rat in vitro permeability measurements. Meanwhile, rat in vivo pharmacokinetics-PAMPA correlation (r(2)=0.6082) is significant (p<0.05) for ME, representing a potential prospect for the application of PAMPA in the study of pharmaceutical preparation in some conditions. PMID:19483317
Worldwide F(ST) estimates relative to five continental-scale populations.
Steele, Christopher D; Court, Denise Syndercombe; Balding, David J
2014-11-01
We estimate the population genetics parameter FST (also referred to as the fixation index) from short tandem repeat (STR) allele frequencies, comparing many worldwide human subpopulations at approximately the national level with continental-scale populations. FST is commonly used to measure population differentiation, and is important in forensic DNA analysis to account for remote shared ancestry between a suspect and an alternative source of the DNA. We estimate FST comparing subpopulations with a hypothetical ancestral population, which is the approach most widely used in population genetics, and also compare a subpopulation with a sampled reference population, which is more appropriate for forensic applications. Both estimation methods are likelihood-based, in which FST is related to the variance of the multinomial-Dirichlet distribution for allele counts. Overall, we find low FST values, with posterior 97.5 percentiles < 3% when comparing a subpopulation with the most appropriate population, and even for inter-population comparisons we find FST < 5%. These are much smaller than single nucleotide polymorphism-based inter-continental FST estimates, and are also about half the magnitude of STR-based estimates from population genetics surveys that focus on distinct ethnic groups rather than a general population. Our findings support the use of FST up to 3% in forensic calculations, which corresponds to some current practice. PMID:26460400
Lipponen, Jukka A; Tarvainen, Mika P; Laitinen, Tomi; Karjalainen, Pasi A; Vanninen, Joonas; Koponen, Timo; Laitinen, Tiina M
2013-12-01
Continuous electrocardiogram, blood pressure and carotid artery ultrasound video were analyzed from 15 diabetics and 28 healthy controls. By using these measurements artery elasticity, overall baroreflex sensitivity (BRS) assessed between RR and systolic blood pressure variation, and neural BRS assessed between RR and artery diameter variation were estimated. In addition, BRS was estimated using traditional and causal methods which enable separation of feedforward and feedback variation. The aim of this study was to analyze overall and neural BRS in relation to artery stiffness and to validate the causal BRS estimation method in assessing these two types of BRS within the study population. The most significant difference between the healthy and diabetic groups (p < 0.0007) was found for the overall BRS estimated using the causal method. The difference between the groups was also significant for neural BRS (p < 0.0018). However neural BRS was normal in some old diabetics, which indicates normal functioning of autonomic nervous system (ANS), even though the elasticity in arteries of these subjects was reduced. The noncausal method overestimated neural BRS in low BRS values when compared to causal BRS. In conclusion, neural BRS estimated using the causal method is proposed as the best marker of ANS functioning. PMID:24168896
2013-01-01
Background Clonal propagation is a particular reproductive system found in both the plant and animal kingdoms, from human parasites to clonally propagated crops. Clonal diversity provides information about plant and animal evolutionary history, i.e. how clones spread, or the age of a particular clone. In plants, this could provide valuable information about agrobiodiversity dynamics and more broadly about the evolutionary history of a particular crop. We studied the evolutionary history of yam, Dioscorea rotundata. In Africa, Yam is cultivated by tuber clonal propagation. Results We used 12 microsatellite markers to identify intra-clonal diversity in yam varieties. We then used this diversity to assess the relative ages of clones. Using simulations, we assessed how Approximate Bayesian Computation could use clonal diversity to estimate the age of a clone depending on the size of the sample, the number of independent samples and the number of markers. We then applied this approach to our particular dataset and showed that the relative ages of varieties could be estimated, and that each variety could be ranked by age. Conclusions We give a first estimation of clone age in an approximate Bayesian framework. However the precise estimation of clone age depends on the precision of the mutation rate. We provide useful information on agrobiodiversity dynamics and suggest recurrent creation of varietal diversity in a clonally propagated crop. PMID:24219837
EPA Permeable Surface Research - Poster
EPA recognizes permeable surfaces as an effective post-construction infiltration-based Best Management Practice to mitigate the adverse effects of stormwater runoff. The professional user community conceptually embraces permeable surfaces as a tool for making runoff more closely...
NASA Astrophysics Data System (ADS)
Liu, Junhong; Gu, Defeng; Ju, Bing; Lai, Yuwang; Yi, Dongyun
2015-04-01
A method of estimating the relative clocks between two spaceborne global positioning system (GPS) receivers based on the single-difference (SD) observations is investigated in this paper. Especially, the advantages of introducing a double-difference (DD) solution constraint, including the orbits and ambiguities, are discussed with the simulated data and the real data of Gravity Recovery And Climate Experiment (GRACE) satellites. The theoretical accuracy analysis shows that the accuracy of the relative clocks is improved and the edge effects are eliminated with a DD solution constraint. The simulations indicate a potential accuracy improvement of at least 30% of the relative clocks with the constraint. Furthermore, one month's real data is processed and the overlapping data arcs are used to validate the accuracy of the relative clock solutions. The average overlapping root mean square (RMS) of the relative clock solutions is approximate 99 ps and 31 ps without and with the DD solution constraint, respectively. Moreover, the jumps of the day boundaries are weakened evidently by adding the DD solution constraint. This paper demonstrates that the accuracy and stability of the estimated relative clocks between two low earth orbit (LEO) satellites from SD observations are improved obviously with the DD solution constraint.
Using 7Be measurements to estimate the relative contributions of interrill and rill erosion
NASA Astrophysics Data System (ADS)
Zhang, Feng-Bao; Yang, Ming-Yi; Walling, Des E.; Zhang, Bo
2014-02-01
Rapid and reliable methods for estimating the relative contribution of interrill and rill erosion during a rainfall event are needed to provide an improved understanding of soil erosion processes and to develop process-based soil erosion prediction models. Use of the radionuclide 7Be in controlled experiments provides a means of addressing this need and this paper reports an experimental study aimed at refining and testing procedures employed to estimate the relative contribution of the two components of erosion. Four experimental plots (area 5 × 2 m and 10°, 15°, 20°, and 25° slope), filled with a loessial soil, manually tilled, and kept free of weeds with herbicides, were subjected to high intensity rainfall (91.8-120.6 mm h- 1), in order to induce rill development. The evolution of the rill network was documented photographically during the rainfall events and the runoff and sediment output from the plots were collected and measured. The sediment was recovered from the runoff and its mass and 7Be activity were measured. The Yang model, reported previously, was used to estimate the relative contributions of interrill and rill erosion from the 7Be activity of the exported sediment and this model was further refined to take account of the dynamic growth of the rills during the rainfall event. The results from the experiments were also used to develop a simple empirical linear model for estimating the relative contributions of interrill and rill erosion from the 7Be measurements. A comparison of the results provided by the three models showed some differences in the estimates of the magnitude of the relative contributions, although their trend during the event was similar. The estimates provided by the empirical linear model tended to be higher than those obtained using the refined model and lower than those generated by the Yang model, but were closer to those provided by the refined model which was seen as being theoretically the most accurate model. The
Fluids, fault zone permeability and two distinct types of pseudotachylyte
NASA Astrophysics Data System (ADS)
Bjornerud, M.
2010-12-01
The comparative rarity of pseudotachylyte in ancient fault zones is surprising in light of estimates that ca. 90% of the energy budget of an earthquake is expended in frictional heating. One explanation is that frictional melting (pseudotachylyte generation) is suppressed after the initial rupture on a fault zone because fluids infiltrate the zone and thermal pressurization of these fluids inhibits melting in subsequent seismic events. While this seems plausible for many of the iconic occurrences of pseudotachylyte in otherwise undamaged crystalline rocks, some pseudotachylytes clearly formed in host rocks in which permeability was apparently high and fluids were present at the time of frictional melting. In these fault zones, cataclasites and pseudotachylyte commonly have mutually cross cutting relationships, and both types of fault rock have been complexly intruded into the surrounding damage zone. In contrast, cataclasites associated with pseudotachylyte in pristine crystalline rocks occur in smaller volumes and have simpler geometries, typically limited to the margins of fault veins or in dilational jogs. These observations suggest that there may be two distinct physical circumstances under which frictional melting may occur and thus two distinct genetic types of pseudotachylyte. Classic “dry” pseudotachylytes (e.g., Holsnøy, Bergen Arcs, Norway; Gole Larghe Fault, Italy) probably represent the initial seismic rupture of intact, low-permeability rock at high effective stress in the absence of fluids. When fluids are present, however (e.g., central Otago, New Zealand; Nojima fault, Japan), the potential for frictional melting depends on the relative rates at which heat and fluids can escape from a fault zone. Geophysical models of dynamic weakening mechanisms during earthquakes (Rempel and Rice, JGR, 2006) show that thermal pressurization occurs when the hydraulic diffusivity is effectively less than thermal diffusivity, while melting occurs when thermal
Permeability of continental crust influenced by internal and external forcing
Rojstaczer, S.A.; Ingebritsen, S.E.; Hayba, D.O.
2008-01-01
The permeability of continental crust is so highly variable that it is often considered to defy systematic characterization. However, despite this variability, some order has been gleaned from globally compiled data. What accounts for the apparent coherence of mean permeability in the continental crust (and permeability-depth relations) on a very large scale? Here we argue that large-scale crustal permeability adjusts to accommodate rates of internal and external forcing. In the deeper crust, internal forcing - fluxes induced by metamorphism, magmatism, and mantle degassing - is dominant, whereas in the shallow crust, external forcing - the vigor of the hydrologic cycle - is a primary control. Crustal petrologists have long recognized the likelihood of a causal relation between fluid flux and permeability in the deep, ductile crust, where fluid pressures are typically near-lithostatic. It is less obvious that such a relation should pertain in the relatively cool, brittle upper crust, where near-hydrostatic fluid pressures are the norm. We use first-order calculations and numerical modeling to explore the hypothesis that upper-crustal permeability is influenced by the magnitude of external fluid sources, much as lower-crustal permeability is influenced by the magnitude of internal fluid sources. We compare model-generated permeability structures with various observations of crustal permeability. ?? 2008 The Authors Journal compilation ?? 2008 Blackwell Publishing Ltd.
Techniques for estimating peak-flow frequency relations for North Dakota streams
Williams-Sether, Tara
1992-01-01
This report presents techniques for estimating peak-flow frequency relations for North Dakota streams. In addition, a generalized skew coefficient analysis was completed for North Dakota to test the validity of using the generalized skew coefficient map in Bulletin 17B of the Hydrology Subcommittee of the Interagency Advisory Committee on Water Data, 1982, 'Guidelines for Determining Flood Flow Frequency.' The analysis indicates that the generalized skew coefficient map in Bulletin 17B provides accurate estimates of generalized skew coefficient values for natural-flow streams in North Dakota. Peak-flow records through 1988 for 192 continuous- and partial-record streamflow gaging stations that had 10 or more years of record were used in a generalized least-squares regression analysis that relates peak flows for selected recurrence intervals to selected basin characteristics. Peak-flow equations were developed for recurrence intervals of 2, 10, 15, 25, 50, 100, and 500 years for three hydrologic regions in North Dakota. The peak-flow equations are applicable to natural-flow streams that have drainage areas of less than or equal to 1,000 square miles. The standard error of estimate for the three hydrologic regions ranges from 60 to 70 percent for the 100-year peak-flow equations. Methods are presented for transferring peak-flow data from gaging stations to ungaged sites on the same stream and for determining peak flows for ungaged sites on ungaged streams. Peak-flow relations, weighted estimates of peak flow, and selected basin characteristics are tabulated for the 192 gaging stations used in the generalized skew coefficient and regression analyses. Peak-flow relations also are provided for 63 additional gaging stations that were not used in the generalized skew coefficient and regression analyses. These 63 gaging stations generally represent streams that are significantly controlled by regulation and those that have drainage areas greater than 1,000 square miles.
Chun, Jaehun; Jones, Anthony M.; McCloy, John S.
2012-07-23
Existing approaches for prediction of the tensor permeability of polycrystalline ferrites may not provide reasonable estimates of demagnetized permeability below the spin resonance (i.e., low-field loss region) or in cases of partial magnetization. We propose an approach which solves the coupled Landau-Lifshitz-Gilbert equation for the dynamic magnetic fields including the minimization of free energy to determine the equilibrium magnetization direction. Unlike previous models, we employ a Monte-Carlo approach to easily calculate the (ensemble) averages of permeability over various domain/grain structures and magnetic anisotropy conditions. Material differences, such as those resulting from different preparation methods, are expressed by using probability density functions (p.d.f.) for anisotropy angle (easy axis angle), grain demagnetization factor (ng), and domain demagnetization factor (nd). Effects on the permeability tensor of grain and domain demagnetization factors and anisotropy field relative to saturation magnetization are discussed for the partially magnetized states for polycrystalline ferrites. It is found that the grain structure (i.e., grain demagnetization distribution) has a smaller effect on the frequency dependent permeability than does the same distribution of domains (i.e., domain demagnetization distribution).
Use of artifical neural nets to predict permeability in Hugoton Field
Thompson, K.A.; Franklin, M.H.; Olson, T.M.
1996-12-31
One of the most difficult tasks in petrophysics is establishing a quantitative relationship between core permeability and wireline logs. This is a tough problem in Hugoton Field, where a complicated mix of carbonates and clastics further obscure the correlation. One can successfully model complex relationships such as permeability-to-logs using artificial neural networks. Mind and Vision, Inc.`s neural net software was used because of its orientation toward depth-related data (such as logs) and its ability to run on a variety of log analysis platforms. This type of neural net program allows the expert geologist to select a few (10-100) points of control to train the {open_quotes}brainstate{close_quotes} using logs as predicters and core permeability as {open_quotes}truth{close_quotes}. In Hugoton Field, the brainstate provides an estimate of permeability at each depth in 474 logged wells. These neural net-derived permeabilities are being used in reservoir characterization models for fluid saturations. Other applications of this artificial neural network technique include deterministic relationships of logs to: core lithology, core porosity, pore type, and other wireline logs (e.g., predicting a sonic log from a density log).
Use of artifical neural nets to predict permeability in Hugoton Field
Thompson, K.A.; Franklin, M.H.; Olson, T.M. )
1996-01-01
One of the most difficult tasks in petrophysics is establishing a quantitative relationship between core permeability and wireline logs. This is a tough problem in Hugoton Field, where a complicated mix of carbonates and clastics further obscure the correlation. One can successfully model complex relationships such as permeability-to-logs using artificial neural networks. Mind and Vision, Inc.'s neural net software was used because of its orientation toward depth-related data (such as logs) and its ability to run on a variety of log analysis platforms. This type of neural net program allows the expert geologist to select a few (10-100) points of control to train the [open quotes]brainstate[close quotes] using logs as predicters and core permeability as [open quotes]truth[close quotes]. In Hugoton Field, the brainstate provides an estimate of permeability at each depth in 474 logged wells. These neural net-derived permeabilities are being used in reservoir characterization models for fluid saturations. Other applications of this artificial neural network technique include deterministic relationships of logs to: core lithology, core porosity, pore type, and other wireline logs (e.g., predicting a sonic log from a density log).
Permeability and selectivity of reverse osmosis membranes: correlation to swelling revisited.
Dražević, Emil; Košutić, Krešimir; Freger, Viatcheslav
2014-02-01
Membrane swelling governs both rejection of solutes and permeability of polymeric membranes, however very few data have been available on swelling in water of salt-rejecting reverse osmosis (RO) membranes. This study assesses swelling, thickness and their relation to water permeability for four commercial polyamide (PA) RO membranes (SWC4+, ESPA1, XLE and BW30) using atomic force microscopy (AFM) and attenuated total reflection Fourier transform IR spectroscopy (ATR-FTIR). ATR-FTIR offered a significantly improved estimate of the actual barrier thickness of PA, given AFM is biased by porosity ("fluffy parts") or wiggling of the active layer or presence of a coating layer. Thus obtained intrinsic permeability (permeability times thickness) and selectivity of aromatic polyamides plotted versus swelling falls well on a general trend, along with previously reported data on several common materials showing RO and NF selectivity. The observed general trend may be rationalized by viewing the polymers as a random composite medium containing molecularly small pores. The results suggest that the combination of a rigid low dielectric matrix, limiting the pore size, with multiple hydrophilic H-bonding sites may be a common feature of RO/NF membranes, allowing both high permeability and selectivity. PMID:24216230
Methodology to estimate the relative pressure field from noisy experimental velocity data
NASA Astrophysics Data System (ADS)
Bolin, C. D.; Raguin, L. G.
2008-11-01
The determination of intravascular pressure fields is important to the characterization of cardiovascular pathology. We present a two-stage method that solves the inverse problem of estimating the relative pressure field from noisy velocity fields measured by phase contrast magnetic resonance imaging (PC-MRI) on an irregular domain with limited spatial resolution, and includes a filter for the experimental noise. For the pressure calculation, the Poisson pressure equation is solved by embedding the irregular flow domain into a regular domain. To lessen the propagation of the noise inherent to the velocity measurements, three filters - a median filter and two physics-based filters - are evaluated using a 2-D Couette flow. The two physics-based filters outperform the median filter for the estimation of the relative pressure field for realistic signal-to-noise ratios (SNR = 5 to 30). The most accurate pressure field results from a filter that applies in a least-squares sense three constraints simultaneously: consistency between measured and filtered velocity fields, divergence-free and additional smoothness conditions. This filter leads to a 5-fold gain in accuracy for the estimated relative pressure field compared to without noise filtering, in conditions consistent with PC-MRI of the carotid artery: SNR = 5, 20 x 20 discretized flow domain (25 X 25 computational domain).
Estimation of Relative Protein-RNA Binding Strengths from Fluctuations in the Bound State.
Ghaemi, Zhaleh; Guzman, Irisbel; Baek, Jung-Un Julia; Gruebele, Martin; Luthey-Schulten, Zaida
2016-09-13
Protein-RNA complexes are increasingly important in our understanding of cell signaling, metabolism, and transcription. Electrostatic interactions play dominant role in stabilizing such complexes. Using conventional computational approaches, very long simulations of both bound and unbound states are required to obtain accurate estimates of complex dissociation constants (Kd). Here, we derive a simple formula that offers an alternative approach based on the theory of fluctuations. Our method extracts a strong correlate to experimental Kd values using short molecular dynamics simulations of the bound complex only. To test our method, we compared the computed relative Kd values to our experimentally measured values for the U1A-Stem Loop 2 (SL2) RNA complex, which is one of the most-studied protein-RNA complexes. Additionally we also included several experimental values from the literature, to enlarge the data set. We obtain a correlation of r = 0.93 between theoretical and measured estimates of Kd values of the mutated U1A protein-RNA complexes relative to the wild type dissociation constant. The proposed method increases the efficiency of relative Kd values estimation for multiple protein mutants, allowing its applicability to protein engineering projects. PMID:27529183
Glutathione permeability of CFTR.
Linsdell, P; Hanrahan, J W
1998-07-01
The cystic fibrosis transmembrane conductance regulator (CFTR) forms an ion channel that is permeable both to Cl- and to larger organic anions. Here we show, using macroscopic current recording from excised membrane patches, that the anionic antioxidant tripeptide glutathione is permeant in the CFTR channel. This permeability may account for the high concentrations of glutathione that have been measured in the surface fluid that coats airway epithelial cells. Furthermore, loss of this pathway for glutathione transport may contribute to the reduced levels of glutathione observed in airway surface fluid of cystic fibrosis patients, which has been suggested to contribute to the oxidative stress observed in the lung in cystic fibrosis. We suggest that release of glutathione into airway surface fluid may be a novel function of CFTR. PMID:9688865
Folser, George R.
1980-01-01
Electrodes for use in an electrolytic cell, which are liquid-permeable and have low electrical resistance and high internal surface area are provided of a rigid, porous, carbonaceous matrix having activated carbon uniformly embedded throughout. The activated carbon may be catalyzed with platinum for improved electron transfer between electrode and electrolyte. Activated carbon is mixed with a powdered thermosetting phenolic resin and compacted to the desired shape in a heated mold to melt the resin and form the green electrode. The compact is then heated to a pyrolyzing temperature to carbonize and volatilize the resin, forming a rigid, porous structure. The permeable structure and high internal surface area are useful in electrolytic cells where it is necessary to continuously remove the products of the electrochemical reaction.
Species Tree Estimation for the Late Blight Pathogen, Phytophthora infestans, and Close Relatives
Blair, Jaime E.; Coffey, Michael D.; Martin, Frank N.
2012-01-01
To better understand the evolutionary history of a group of organisms, an accurate estimate of the species phylogeny must be known. Traditionally, gene trees have served as a proxy for the species tree, although it was acknowledged early on that these trees represented different evolutionary processes. Discordances among gene trees and between the gene trees and the species tree are also expected in closely related species that have rapidly diverged, due to processes such as the incomplete sorting of ancestral polymorphisms. Recently, methods have been developed for the explicit estimation of species trees, using information from multilocus gene trees while accommodating heterogeneity among them. Here we have used three distinct approaches to estimate the species tree for five Phytophthora pathogens, including P. infestans, the causal agent of late blight disease in potato and tomato. Our concatenation-based “supergene” approach was unable to resolve relationships even with data from both the nuclear and mitochondrial genomes, and from multiple isolates per species. Our multispecies coalescent approach using both Bayesian and maximum likelihood methods was able to estimate a moderately supported species tree showing a close relationship among P. infestans, P. andina, and P. ipomoeae. The topology of the species tree was also identical to the dominant phylogenetic history estimated in our third approach, Bayesian concordance analysis. Our results support previous suggestions that P. andina is a hybrid species, with P. infestans representing one parental lineage. The other parental lineage is not known, but represents an independent evolutionary lineage more closely related to P. ipomoeae. While all five species likely originated in the New World, further study is needed to determine when and under what conditions this hybridization event may have occurred. PMID:22615869
Tatham, Andrew J.; Meira-Freitas, Daniel; Weinreb, Robert N.; Marvasti, Amir H.; Zangwill, Linda M.; Medeiros, Felipe A.
2014-01-01
Purpose. To estimate retinal ganglion cell (RGC) losses associated with a relative afferent pupillary defect (RAPD) in glaucoma. Methods. A cross-sectional study was conducted including both eyes of 103 participants from the Diagnostic Innovations in Glaucoma Study. A total of 77 subjects had glaucoma in at least one eye and 26 were healthy. Pupil responses were assessed using an automated pupillometer that records the magnitude of RAPD as an “RAPD score.” Standard automated perimetry (SAP) and optical coherence tomography (OCT) also were performed. Retinal ganglion cell counts were estimated using empirical formulas that combine estimates from SAP and OCT. The estimated percentage RGC loss was calculated using the combined structure function index (CSFI). Results. There was good correlation between RAPD magnitude and intereye differences in estimated RGCs (R2 = 0.492, P < 0.001), mean deviation (R2 = 0.546, P < 0.001), retinal nerve fiber layer thickness (R2 = 0.362, P < 0.001), and CSFI (R2 = 0.484, P < 0.001). Therefore, a high RAPD score is likely to indicate large asymmetric RGC losses. The relationship between intereye difference in RGC counts and RAPD score was described best by the formula; RGC difference = 21,896 + 353,272 * RAPD score. No healthy subjects had an absolute RAPD score > 0.3, which was associated with asymmetry of 105,982 cells (or 12%). Conclusions. Good correlation between the magnitude of RAPD and intereye differences in mean deviation and estimated RGC counts suggests pupillometry may be useful for quantifying asymmetric damage in glaucoma. (ClinicalTrials.gov number, NCT00221897.) PMID:24282221
A new quasi-steady method to measure gas permeability of weakly permeable porous media
NASA Astrophysics Data System (ADS)
Jannot, Yves; Lasseux, Didier
2012-01-01
A new quasi-steady method for the determination of the apparent gas permeability of porous materials is presented in this paper along with the corresponding interpretative physical model derived from the unsteady flow equations. This method is mainly dedicated to the measurement of very low permeability of thin porous media, although thicker but more permeable samples may also be analyzed. The method relies on quasi-steady flow resulting from a (quasi) constant pressure maintained at the inlet face of the sample. Gas flow-rate, as low as 3 × 10-10 m3/s, is determined from the record of pressure increase in a reservoir connected to the outlet face of the sample. An estimate of the characteristic time, tc, to reach quasi-steady flow after imposing a constant pressure at the inlet is derived. It is validated by direct numerical simulations of the complete unsteady flow, clearly defining the required experimental duration for the method to apply. Experimental results obtained on rather permeable and thick rock samples are reported showing an excellent agreement of the measured permeability with that determined independently on the same sample whereas the experimental value of tc is also in very good agreement with the predicted one. The method is further employed on a composite material sheet allowing the identification of an apparent gas permeability of about 10-23 m2.
Mulholland, J.A.; Mukherjee, J.; Wornat, M.J.; Sarofim, A.F.; Rutledge, G.C. . Dept. of Chemical Engineering)
1993-08-01
The pyrolysis of pure anthracene at temperatures between 1,200 and 1,500 K produced all six bianthryl isomers whose relative yields appear to be related to steric factors. To evaluate the hypothesis that thermodynamic factors govern the product distribution of bianthryls in this system, the relative enthalpies and entropies of biaryl isomers were estimated by molecular orbital modeling, using the semiempirical AM1 (Austin Model 1). Computational analysis of several isomer sets demonstrates that the relative stabilities of a large number of biaryl isomers are determined largely by steric interactions caused by structural features defined as bays, coves, and fjords. These steric factors affect both the degree of biaryl twist in the preferred conformation and the freedom of internal rotation. Molecular orbital modeling supports the hypothesis that a thermodynamic distribution of bianthryl isomers is produced by anthracene pyrolysis.
Stress induced permeability anisotropy of Resedimented Boston Blue Clay
NASA Astrophysics Data System (ADS)
Adams, Amy L.; Germaine, John T.; Flemings, Peter B.; Day-Stirrat, Ruarri J.
2013-10-01
In Resedimented Boston Blue Clay (RBBC), a low-plasticity glacio-marine illitic mudrock, the ratio of the horizontal to vertical permeability (the permeability anisotropy, rk) increases from 1.2 to 1.9 as the porosity decreases from 0.5 to 0.37 and the permeability decreases by more than 1 order of magnitude. Backscattered Scanning Electron Microscope (BSEM) images taken at formation stress levels reveal that particles rotate perpendicular to the axial loading direction by ˜22°, with larger particles rotating more significantly and achieving more uniform alignment than smaller particles. We show experimentally that preferred platy particle orientation can explain our permeability anisotropy measurements. The permeability anisotropy of mechanically compressed mudrocks is minimal, <2.5. We use a novel approach (cubic specimens) to measure the evolution of permeability anisotropy in different directions on the same specimen, unlike most other methods. Modified analytic techniques allow calculation of the permeability anisotropy for a specimen using directional constant head permeability methods. A better understanding of the evolution of permeability anisotropy during sediment burial is important for modeling subsurface transport processes, including hydrocarbon migration and contaminant transport, as well as estimating in situ conditions such as pore pressure, overpressure, and effective stress.
NASA Astrophysics Data System (ADS)
Allègre, V.; Brodsky, E. E.; Nale, S. M.; Johnson, N. M.
2014-12-01
The use of water level oscillations driven by earth tides is a technique which has been used to infer rock properties such as permeability and storage at the field scale. The tidal method is attractive because it provides passively estimated permeability time series, allows identification of dynamic changes over time, and measures a hard to access scale ranging from a meters to tens of meters. It consists of computing the phase shift between tidally induced water level changes measured in boreholes, and theoretical earth tide strains. This leads to an estimate of the transmissivity, from which permeability can be deduced. To our knowledge, it has not been compared to standard method, such as pumping test analysis.In this work, water level data monitored before, during, and after two constant rate pumping tests performed in a shallow fractured aquifer were used, at the Santa Susana Field Site in Southern California. The two tests were one to five months long, the recordings lasting approximately 6 months. Tidal frequency oscillations appearing in the measurements were used to get permeability at thirteen locations, some of the wells providing several isolated open screened intervals at depth. As a comparison, permeabilities were also estimated from the fit of two aquifer tests at both early and late stages, using Theis solution (Gringarten solution gives similar results). The simple Theis solution is selected because it includes assumptions consistent with the assumptions in the isotropic and homogeneous tidal solution. The values obtained from both methods are consistent. No significant relation between permeability and faults located in the vicinity of the wells was identified, however, we do observe some variations at depth. Furthermore, some variability is observed in permeability time series during the pumping phases. This study shows that tidal responses lead to a passive and accurate capture of the shallow aquifer properties.
Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates.
Ganguly, Rajiv; Batterman, Stuart; Isakov, Vlad; Snyder, Michelle; Breen, Michael; Brakefield-Caldwell, Wilma
2015-01-01
Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approximations of roads in link-based emission inventories. Two automated geocoders (Bing Map and ArcGIS) along with handheld GPS instruments were used to geocode 160 home locations of children enrolled in an air pollution study investigating effects of traffic-related pollutants in Detroit, Michigan. The average and maximum positional errors using the automated geocoders were 35 and 196 m, respectively. Comparing road edge and road centerline, differences in house-to-highway distances averaged 23 m and reached 82 m. These differences were attributable to road curvature, road width and the presence of ramps, factors that should be considered in proximity measures used either directly as an exposure metric or as inputs to dispersion or other models. Effects of positional errors for the 160 homes on PM2.5 concentrations resulting from traffic-related emissions were predicted using a detailed road network and the RLINE dispersion model. Concentration errors averaged only 9%, but maximum errors reached 54% for annual averages and 87% for maximum 24-h averages. Whereas most geocoding errors appear modest in magnitude, 5% to 20% of residences are expected to have positional errors exceeding 100 m. Such errors can substantially alter exposure estimates near roads because of the dramatic spatial gradients of traffic-related pollutant concentrations. To ensure the accuracy of exposure estimates for traffic-related air pollutants, especially near roads, confirmation of geocoordinates is recommended. PMID:25670023
Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates
Ganguly, Rajiv; Batterman, Stuart; Isakov, Vlad; Snyder, Michelle; Breen, Michael; Brakefield-Caldwell, Wilma
2015-01-01
Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approximations of roads in link-based emission inventories. Two automated geocoders (Bing Map and ArcGIS) along with handheld GPS instruments were used to geocode 160 home locations of children enrolled in an air pollution study investigating effects of traffic-related pollutants in Detroit, Michigan. The average and maximum positional errors using the automated geocoders were 35 and 196 m, respectively. Comparing road edge and road centerline, differences in house-to-highway distances averaged 23 m and reached 82 m. These differences were attributable to road curvature, road width and the presence of ramps, factors that should be considered in proximity measures used either directly as an exposure metric or as inputs to dispersion or other models. Effects of positional errors for the 160 homes on PM2.5 concentrations resulting from traffic-related emissions were predicted using a detailed road network and the RLINE dispersion model. Concentration errors averaged only 9%, but maximum errors reached 54% for annual averages and 87% for maximum 24-h averages. Whereas most geocoding errors appear modest in magnitude, 5% to 20% of residences are expected to have positional errors exceeding 100 m. Such errors can substantially alter exposure estimates near roads because of the dramatic spatial gradients of traffic-related pollutant concentrations. To ensure the accuracy of exposure estimates for traffic-related air pollutants, especially near roads, confirmation of geocoordinates is recommended. PMID:25670023
NASA Astrophysics Data System (ADS)
West, M.; Dupuis, C.; Butler, K. E.
2009-05-01
The propagation of seismic waves through saturated poroelastic media can generate electric fields, known as seismoelectric effects, as a consequence of electrokinetic coupling associated with movement of pore fluid relative to solid matrix. There has, as a result, been a longstanding interest in using the seismoelectric effect to estimate permeability. Indeed, recent analyses and borehole logging experiments indicate that the amplitudes of seismoelectric signals induced by Stoneley waves may be used to estimate permeability. Curiously, however, theoretical models for the co-seismic electric fields that travel with compressional waves in homogeneous poroelastic media indicate that there is no explicit dependence on permeability at low frequencies. Rather, it would appear that the estimation of permeability from such co-seismic seismoelectric effects may require broadband measurements and the identification of a critical frequency above which the frequency dependence changes. Theoretical seismoelectric transfer functions for the case of compressional waves, and equations for the above-mentioned critical frequency (expressed in terms of permeability and other physical properties) have been derived independently by at least two groups. These equations have not been fully reconciled with each other and have not yet been extensively tested by comparison to field or lab measurements. We have analysed the frequency response of co-seismic seismoelectric effects induced by compressional seismic waves during vertical seismoelectric profiling experiments in a borehole penetrating glaciofluvial sediments. The measurements were made using electrodes and a clamped geophone in the borehole, and a special seismic source at surface that produced pulses with a bandwidth of several hundred Hz. Measurements within a sand layer confirmed that seismoelectric amplitudes scaled approximately linearly with the product of frequency and seismic particle velocity as predicted by theoretical
Point Cloud Based Relative Pose Estimation of a Satellite in Close Range
Liu, Lujiang; Zhao, Gaopeng; Bo, Yuming
2016-01-01
Determination of the relative pose of satellites is essential in space rendezvous operations and on-orbit servicing missions. The key problems are the adoption of suitable sensor on board of a chaser and efficient techniques for pose estimation. This paper aims to estimate the pose of a target satellite in close range on the basis of its known model by using point cloud data generated by a flash LIDAR sensor. A novel model based pose estimation method is proposed; it includes a fast and reliable pose initial acquisition method based on global optimal searching by processing the dense point cloud data directly, and a pose tracking method based on Iterative Closest Point algorithm. Also, a simulation system is presented in this paper in order to evaluate the performance of the sensor and generate simulated sensor point cloud data. It also provides truth pose of the test target so that the pose estimation error can be quantified. To investigate the effectiveness of the proposed approach and achievable pose accuracy, numerical simulation experiments are performed; results demonstrate algorithm capability of operating with point cloud directly and large pose variations. Also, a field testing experiment is conducted and results show that the proposed method is effective. PMID:27271633
NASA Astrophysics Data System (ADS)
Warren, Russell E.; Vanderbeek, Richard G.
2004-08-01
Detection and estimation of materials in the atmosphere by lidar has heretofore required that the spectral dependence of the relevant cross section coefficients -- backscatter in the case of aerosols and absorptivity for vapors -- be known in advance. While this typically is a reasonable assumption in the case of vapor, the aerosol backscatter coefficients are complicated functions of particle size, shape, and refractive index, and are therefore usually not well characterized a priori. Using incorrect parameters will give biased concentration estimates and impair discrimination ability. This paper describes an approach for estimating both the spectral dependence of the aerosol backscatter and relative concentration range-dependence of a set of materials using multi-wavelength lidar. The approach is based on state-space filtering that applies a Kalman filter in range for concentration, and updates the backscatter spectral estimates through a sequential least-squares algorithm at each time step. The method is illustrated on aerosol-release data of the bio-simulant ovalbumin collected by ECBC during field tests in 2002, as well as synthetic data sets.
Point Cloud Based Relative Pose Estimation of a Satellite in Close Range.
Liu, Lujiang; Zhao, Gaopeng; Bo, Yuming
2016-01-01
Determination of the relative pose of satellites is essential in space rendezvous operations and on-orbit servicing missions. The key problems are the adoption of suitable sensor on board of a chaser and efficient techniques for pose estimation. This paper aims to estimate the pose of a target satellite in close range on the basis of its known model by using point cloud data generated by a flash LIDAR sensor. A novel model based pose estimation method is proposed; it includes a fast and reliable pose initial acquisition method based on global optimal searching by processing the dense point cloud data directly, and a pose tracking method based on Iterative Closest Point algorithm. Also, a simulation system is presented in this paper in order to evaluate the performance of the sensor and generate simulated sensor point cloud data. It also provides truth pose of the test target so that the pose estimation error can be quantified. To investigate the effectiveness of the proposed approach and achievable pose accuracy, numerical simulation experiments are performed; results demonstrate algorithm capability of operating with point cloud directly and large pose variations. Also, a field testing experiment is conducted and results show that the proposed method is effective. PMID:27271633
Relative pose estimation of satellites using PMD-/CCD-sensor data fusion
NASA Astrophysics Data System (ADS)
Tzschichholz, Tristan; Boge, Toralf; Schilling, Klaus
2015-04-01
Rendezvous & Docking to passive objects, as of relevance for space debris removal, raises new challenges with respect to relative navigation. Whenever the position and orientation (pose) of an object is required in terrestrial and in space applications, sensor systems such as laser scanners and stereo vision systems are often employed. This paper presents an approach to pose estimation using a 3D time-of-flight camera for ranging information in combination with a high resolution grayscale camera. We have designed a pose estimation method that fuses the data streams of the two sensors in order to benefit from each sensors' advantages. A rigorous test campaign on a Real-Time Hardware-In-The-Loop Rendezvous and Docking Simulator - the European Proximity Operations Simulator (EPOS) - was performed in order to evaluate the performance of the resulting algorithm. The proposed pose estimation method does not exceed an average distance error of 3 cm while being capable of providing pose estimates at up to 60 FPS on recent hardware. Thus, when regarding proximity operations, an attractive sensor system is used to characterize the dynamics of the target object for safe approach results.
The estimated prevalence and incidence of late stage age related macular degeneration in the UK
Jarrar, Zakariya; Wormald, Richard; Cook, Derek G; Fletcher, Astrid E; Rudnicka, Alicja R
2012-01-01
Background UK estimates of age related macular degeneration (AMD) occurrence vary. Aims To estimate prevalence, number and incidence of AMD by type in the UK population aged ≥50 years. Methods Age-specific prevalence rates of AMD obtained from a Bayesian meta-analysis of AMD prevalence were applied to UK 2007–2009 population data. Incidence was estimated from modelled age-specific prevalence. Results Overall prevalence of late AMD was 2.4% (95% credible interval (CrI) 1.7% to 3.3%), equivalent to 513 000 cases (95% CrI 363 000 to 699 000); estimated to increase to 679 000 cases by 2020. Prevalences were 4.8% aged ≥65 years, 12.2% aged ≥80 years. Geographical atrophy (GA) prevalence rates were 1.3% (95% CrI 0.9% to 1.9%), 2.6% (95% CrI 1.8% to 3.7%) and 6.7% (95% CrI 4.6% to 9.6%); neovascular AMD (NVAMD) 1.2% (95% CrI 0.9% to 1.7%), 2.5% (95% CrI 1.8% to 3.4%) and 6.3% (95% CrI 4.5% to 8.6%), respectively. The estimated number of prevalent cases of late AMD were 60% higher in women versus men (314 000 cases in women, 192 000 men). Annual incidence of late AMD, GA and NVAMD per 1000 women was 4.1 (95% CrI 2.4% to 6.8%), 2.4 (95% CrI 1.5% to 3.9%) and 2.3 (95% CrI 1.4% to 4.0%); in men 2.6 (95% CrI 1.5% to 4.4%), 1.7 (95% CrI 1.0% to 2.8%) and 1.4 (95% CrI 0.8% to 2.4%), respectively. 71 000 new cases of late AMD were estimated per year. Conclusions These estimates will guide health and social service provision for those with late AMD and enable estimation of the cost of introducing new treatments. PMID:22329913
Estimation of Heterogeneity in Diagnostic Parameters of Age-related Diseases.
Blokh, David; Stambler, Ilia
2014-08-01
The heterogeneity of parameters is a ubiquitous biological phenomenon, with critical implications for biological systems functioning in normal and diseased states. We developed a method to estimate the level of objects set heterogeneity with reference to particular parameters and applied it to type II diabetes and heart disease, as examples of age-related systemic dysfunctions. The Friedman test was used to establish the existence of heterogeneity. The Newman-Keuls multiple comparison method was used to determine clusters. The normalized Shannon entropy was used to provide the quantitative evaluation of heterogeneity. There was obtained an estimate for the heterogeneity of the diagnostic parameters in healthy subjects, as well as in heart disease and type II diabetes patients, which was strongly related to their age. With aging, as with the diseases, the level of heterogeneity (entropy) was reduced, indicating a formal analogy between these phenomena. The similarity of the patterns in aging and disease suggested a kind of "early aging" of the diseased subjects, or alternatively a "disease-like" aging process, with reference to these particular parameters. The proposed method and its validation on the chronic age-related disease samples may support a way toward a formal mathematical relation between aging and chronic diseases and a formal definition of aging and disease, as determined by particular heterogeneity (entropy) changes. PMID:25110613
Estimation of the intrinsic stresses in alpha-alumina in relation with its elaboration mode
Boumaza, A.; Djelloul, A.
2010-05-15
The specific signatures of alpha-Al{sub 2}O{sub 3} by Fourier transform infrared (FTIR) spectroscopy were investigated to estimate the intrinsic stress in this compound according to its elaboration mode. Thus, alpha-alumina was prepared either by calcination of boehmite or gibbsite and also generated by oxidation of a metallic FeCrAl alloy. FTIR results were mainly supported by X-ray diffraction (XRD) patterns that allowed to determine the crystallite size and the strain in the various alpha aluminas. Moreover, the infrared peak at 378.7 cm{sup -1} was used as a reference for stress free alpha-alumina and the shift of this peak allowed to estimate intrinsic stresses, which were related to the morphology and to the specific surface area of aluminas according to their elaboration mode. These interpretations were confirmed by results obtained by cathodoluminescence experiments. - Graphical abstract: The infrared peak at 378.7 cm{sup -1} was used as a reference for stress free alpha-alumina and the shift of this peak allowed to estimate intrinsic stresses, which were related to the morphology and to the specific surface area of aluminas according to their elaboration mode.
Permeability of noble gases through Kapton, butyl, nylon, and “Silver Shield”
NASA Astrophysics Data System (ADS)
Schowalter, Steven J.; Connolly, Colin B.; Doyle, John M.
2010-04-01
Noble gas permeabilities and diffusivities of Kapton, butyl, nylon, and "Silver Shield" are measured at temperatures between 22 and 115C. The breakthrough times and solubilities at 22C are also determined. The relationship of the room temperature permeabilities to the noble gas atomic radii is used to estimate radon permeability for each material studied. For the noble gases tested, Kapton and Silver Shield have the lowest permeabilities and diffusivities, followed by nylon and butyl, respectively.
Permeability reduction in granite under hydrothermal conditions
Morrow, C.A.; Moore, Diane E.; Lockner, D.A.
2001-01-01
The formation of impermeable fault seals between earthquake events is a feature of many models of earthquake generation, suggesting that earthquake recurrence may depend in part on the rate of permeability reduction of fault zone materials under hydrothermal conditions. In this study, permeability measurements were conducted on intact, fractured, and gouge-bearing Westerly granite at an effective pressure of 50 MPa and at temperatures from 150?? to 500??C, simulating conditions in the earthquake-generating portions of fault zones. Pore fluids were cycled back and forth under a 2 MPa pressure differential for periods of up to 40 days. Permeability of the granite decreased with time t, following the exponential relation k = c(10-rt). For intact samples run between 250?? and 500??C the time constant for permeability decrease r was proportional to temperature and ranged between 0.001 and 0.1 days-1 (i.e., between 0.4 and 40 decades year-1 loss of permeability). Values of r for the lower-temperature experiments differed little from the 250??C runs. In contrast, prefractured samples showed higher rates of permeability decrease at a given temperature. The surfaces of the fractured samples showed evidence of dissolution and mineral growth that increased in abundance with both temperature and time. The experimentally grown mineral assemblages varied with temperature and were consistent with a rock-dominated hydrothermal system. As such mineral deposits progressively seal the fractured samples, their rates of permeability decrease approach the rates for intact rocks at the same temperature. These results place constraints on models of precipitation sealing and suggest that fault rocks may seal at a rate consistent with earthquake recurrence intervals of typical fault zones.
Methods to Estimate Acclimatization to Urban Heat Island Effects on Heat- and Cold-Related Mortality
Milojevic, Ai; Armstrong, Ben G.; Gasparrini, Antonio; Bohnenstengel, Sylvia I.; Barratt, Benjamin; Wilkinson, Paul
2016-01-01
Background: Investigators have examined whether heat mortality risk is increased in neighborhoods subject to the urban heat island (UHI) effect but have not identified degrees of difference in susceptibility to heat and cold between cool and hot areas, which we call acclimatization to the UHI. Objectives: We developed methods to examine and quantify the degree of acclimatization to heat- and cold-related mortality in relation to UHI anomalies and applied these methods to London, UK. Methods: Case–crossover analyses were undertaken on 1993–2006 mortality data from London UHI decile groups defined by anomalies from the London average of modeled air temperature at a 1-km grid resolution. We estimated how UHI anomalies modified excess mortality on cold and hot days for London overall and displaced a fixed-shape temperature-mortality function (“shifted spline” model). We also compared the observed associations with those expected under no or full acclimatization to the UHI. Results: The relative risk of death on hot versus normal days differed very little across UHI decile groups. A 1°C UHI anomaly multiplied the risk of heat death by 1.004 (95% CI: 0.950, 1.061) (interaction rate ratio) compared with the expected value of 1.070 (1.057, 1.082) if there were no acclimatization. The corresponding UHI interaction for cold was 1.020 (0.979, 1.063) versus 1.030 (1.026, 1.034) (actual versus expected under no acclimatization, respectively). Fitted splines for heat shifted little across UHI decile groups, again suggesting acclimatization. For cold, the splines shifted somewhat in the direction of no acclimatization, but did not exclude acclimatization. Conclusions: We have proposed two analytical methods for estimating the degree of acclimatization to the heat- and cold-related mortality burdens associated with UHIs. The results for London suggest relatively complete acclimatization to the UHI effect on summer heat–related mortality, but less clear evidence for
Strain-dependent permeability of volcanic rocks.
NASA Astrophysics Data System (ADS)
Farquharson, Jamie; Heap, Michael; Baud, Patrick
2016-04-01
We explore permeability evolution during deformation of volcanic materials using a suite of rocks with varying compositions and physical properties (such as porosity ϕ). 40 mm × 20 mm cylindrical samples were made from a range of extrusive rocks, including andesites from Colima, Mexico (ϕ˜0.08; 0.18; 0.21), Kumamoto, Japan (ϕ˜0.13), and Ruapehu, New Zealand (ϕ˜0.15), and basalt from Mt Etna, Italy (ϕ˜0.04). Gas permeability of each sample was measured before and after triaxial deformation using a steady-state benchtop permeameter. To study the strain-dependence of permeability in volcanic rocks, we deformed samples to 2, 3, 4, 6, and 12 % axial strain at a constant strain rate of 10‑5 s‑1. Further, the influence of failure mode - dilatant or compactant - on permeability was assessed by repeating experiments at different confining pressures. During triaxial deformation, porosity change of the samples was monitored by a servo-controlled pore fluid pump. Below an initial porosity of ˜0.18, and at low confining pressures (≤ 20 MPa), we observe a dilatant failure mode (shear fracture formation). With increasing axial strain, stress is accommodated by fault sliding and the generation of ash-sized gouge between the fracture planes. In higher-porosity samples, or at relatively higher confining pressures (≥ 60 MPa), we observe compactant deformation characterised by a monotonous decrease in porosity with increasing axial strain. The relative permeability k' is given by the change in permeability divided by the initial reference state. When behaviour is dilatant, k' tends to be positive: permeability increases with progressive deformation. However, results suggest that after a threshold amount of strain, k' can decrease. k' always is negative (permeability decreases during deformation) when compaction is the dominant behaviour. Our results show that - in the absence of a sealing or healing process - the efficiency of a fault to transmit fluids is
Increased Vascular permeability produced by human platelet granule cationic extract
Nachman, Ralph L.; Weksler, Babette; Ferris, Barbara
1970-01-01
A cationic protein extract obtained from isolated human platelet granules increased vascular permeability in mouse and rabbit skin. The permeability-enhancing effect was not inhibited by soybean trypsin and pancreatic trypsin inhibitor, methylsergide maleate, carboxypeptidase B, and C[unk]1 inactivator. Permeability-enhancing activity was blocked by prior treatment of challenged animals with antihistamine. The nondializable relatively heat-stable cationic granule protein extract possessed potent mastocytolytic activity. The experiments described suggest that human platelets exert a permeability-enhancing effect by lysosomal release of cationic proteins which cause histamine release from adjacent tissue mast cells. Images PMID:4391559
NASA Astrophysics Data System (ADS)
Blackman, Jonathan; Field, Scott; Galley, Chad; Hemberger, Daniel; Scheel, Mark; Schmidt, Patricia; Smith, Rory; SXS Collaboration Collaboration
2016-03-01
We are now in the advanced detector era of gravitational wave astronomy, and the merger of two black holes (BHs) is one of the most promising sources of gravitational waves that could be detected on earth. To infer the BH masses and spins, the observed signal must be compared to waveforms predicted by general relativity for millions of binary configurations. Numerical relativity (NR) simulations can produce accurate waveforms, but are prohibitively expensive to use for parameter estimation. Other waveform models are fast enough but may lack accuracy in portions of the parameter space. Numerical relativity surrogate models attempt to rapidly predict the results of a NR code with a small or negligible modeling error, after being trained on a set of input waveforms. Such surrogate models are ideal for parameter estimation, as they are both fast and accurate, and have already been built for the case of non-spinning BHs. Using 250 input waveforms, we build a surrogate model for waveforms from the Spectral Einstein Code (SpEC) for a subspace of precessing systems.
Uchiyama, T; Bessho, T; Akazawa, K
1998-06-01
Static relations between elbow joint angle and torque at constant muscle activity in normal volunteers were investigated with the aid of an artificial neural network technique. A subject sat on a chair and moved his upper- and forearm in a horizontal plane at the height of his shoulder. The subject was instructed to maintain the elbow joint at a pre-determined angle. The wrist was then pulled to extend the elbow joint by the gravitational force of a weight hanging from a pulley. Integrated electromyograms (IEMGs), elbow and shoulder joint angles and elbow joint torque were measured. Then the relation among IEMGs, joint angles and torque was modeled with the aid of the artificial neural network, where IEMGs and joint angles were the inputs and torque was the output. After back propagation learning, we presented various combinations of IEMGs, shoulder and elbow joint angles to the model and estimated the elbow joint torque to obtain the torque-angle relation for constant muscle activation. The elbow joint torque increased and then decreased with extension of the elbow joint. This suggests that if the forearm is displaced from an equilibrium point, the torque angle relation would not act like a simple spring. In a view of the musculoskeletal structure of the elbow joint, the relation between the elbow joint angle and the moment arm of the elbow flexor muscles seems to have a dominant effect on the torque-angle relation. PMID:9755039
Methods for estimating dispersal probabilities and related parameters using marked animals
Bennetts, R.E.; Nichols, J.D.; Pradel, R.; Lebreton, J.D.; Kitchens, W.M.
2001-01-01
Deriving valid inferences about the causes and consequences of dispersal from empirical studies depends largely on our ability reliably to estimate parameters associated with dispersal. Here, we present a review of the methods available for estimating dispersal and related parameters using marked individuals. We emphasize methods that place dispersal in a probabilistic framework. In this context, we define a dispersal event as a movement of a specified distance or from one predefined patch to another, the magnitude of the distance or the definition of a `patch? depending on the ecological or evolutionary question(s) being addressed. We have organized the chapter based on four general classes of data for animals that are captured, marked, and released alive: (1) recovery data, in which animals are recovered dead at a subsequent time, (2) recapture/resighting data, in which animals are either recaptured or resighted alive on subsequent sampling occasions, (3) known-status data, in which marked animals are reobserved alive or dead at specified times with probability 1.0, and (4) combined data, in which data are of more than one type (e.g., live recapture and ring recovery). For each data type, we discuss the data required, the estimation techniques, and the types of questions that might be addressed from studies conducted at single and multiple sites.
The Permeability of Territorial Space: Some Evidence from Military Warfare.
ERIC Educational Resources Information Center
Khoury, Robert M.
1984-01-01
Investigated military invasions (N=58) of the territorial boundaries of nation-states, and attempted to document empirically the territorial space permeability function. Results showed that the function relating intrusion to discomfort was found to be conspicuously similar to the personal space permeability function described by Hayduk (1981).…
Permeability of the South Ellwood Fault, Offshore Santa Barbara, California
NASA Astrophysics Data System (ADS)
Boles, J. R.; Horner, S.; Garven, G.
2009-12-01
Natural methane migrates from faulted and fractured siliceous Miocene-age shale hydrocarbon reservoirs to the seabed of the Santa Barbara channel in southern California. At one locality near Platform Holly, about 2 km offshore, where seepage is monitored from two steel and concrete tents on the seabed (area~1860 m2), seepage rate can be related to wells producing 1 km beneath the tents. A new well, perforated at 914 m (3000 ft) beneath the collection tents, directly affects the seepage into the tents. When the well is shut down, seepage production rates increase at a constant rate of 45.3 m3 day/day (1.6 MCF/day/day) to 31.2 m3 day/day (1.1 MCF/day/day) over shutdown periods ranging from 21 days in 2003 to 45 days in 2005, respectively. Using seismic and well data, a fault with about 60 m (200 ft) of throw has been identified running along the crest of the South Ellwood anticline. Using these changes in flow rate, the estimated pressure differences between the seep tent and the perforation intervals in the well, we have calculated the permeability with respect to gas for the 914 m fracture/fault flow path, assuming steady Darcian flow, to be about 3.0E-14 m2 (30 millidarcys, md). In another well, no longer in production, we observe tidal-cycle pressure variations indicating communication with the seabed and anomalous pressure build up that indicates influx of about 5 m3 (25 barrels) of seawater per day. Chemical and isotopic analysis confirms seawater mixing into the reservoir. Using an estimated fault volume of 6.3E+05 m3, we calculate a permeability of 1.9E-14 m2 (19 md) from the Darcy equation (Boles and Horner, 2003) for this well. These two permeability estimates, calculated by different methods, are remarkably similar and indicate that large fault conduits can have permeability of 10’s of md over kilometer length scales. Note: MCF= thousand cubic feet
Paracellular and transcellular pathways facilitate insulin permeability in rat gut.
Lane, Majella E; Corrigan, Owen I
2006-02-01
The aim of this study was to conduct a systematic investigation of the absorption of insulin in the rat intestine in the presence of permeation enhancers and protease inhibitors. An in-situ perfused rat gut model was used for the co-perfusion of insulin and PEG 4000 in the presence or absence of bile salts, bile salt:fatty acid surfactant systems and protease inhibitors. Perfusion experiments were conducted for 180 min with perfusate and blood collection at regular intervals. Permeability coefficients for insulin were calculated from plasma insulin and PEG 4000 permeability coefficients were calculated from lumenal disappearance data. In the absence of enzyme inhibitors, insulin permeability was consistently lower than PEG 4000, but increased in proportion to PEG 4000 permeability. Large increases in insulin permeability were obtained for mixed micellar systems and protease inhibitors. In the presence of protease inhibitors and simple micelle systems, PEG 4000 permeability was three-fold greater than insulin permeability. In the presence of absorption enhancers, PEG 4000 permeability increased up to a maximum value of 3.63 x 10(-6)cm s(-1), a value five-fold less than that of the estimated aqueous boundary layer permeability for PEG 4000. This suggests that PEG 4000 permeability is primarily membrane controlled. Insulin permeability is enhanced to a maximum value of 9.17 x 10(-6)cm s(-1), suggesting that paracellular transport routes do not account exclusively for insulin permeation across the intestinal epithelium. The results add support to suggestions that routes other than the paracellular route may contribute to insulin absorption in rat gut. PMID:16451757
A tool for computing time-dependent permeability reduction of fractured volcanic conduit margins.
NASA Astrophysics Data System (ADS)
Farquharson, Jamie; Wadsworth, Fabian; Heap, Michael; Baud, Patrick
2016-04-01
Laterally-oriented fractures within volcanic conduit margins are thought to play an important role in tempering eruption explosivity by allowing magmatic volatiles to outgas. The permeability of a fractured conduit margin - the equivalent permeability - can be modelled as the sum of permeability contributions of the edifice host rock and the fracture(s) within it. We present here a flexible MATLAB® tool which computes the time-dependent equivalent permeability of a volcanic conduit margin containing ash-filled fractures. The tool is designed so that the end-user can define a wide range of input parameters to yield equivalent permeability estimates for their application. The time-dependence of the equivalent permeability is incorporated by considering permeability decrease as a function of porosity loss in the ash-filled fractures due to viscous sintering (after Russell and Quane, 2005), which is in turn dependent on the depth and temperature of each fracture and the crystal-content of the magma (all user-defined variables). The initial viscosity of the granular material filling the fracture is dependent on the water content (Hess and Dingwell, 1996), which is computed assuming equilibrium depth-dependent water content (Liu et al., 2005). Crystallinity is subsequently accounted for by employing the particle-suspension rheological model of Mueller et al. (2010). The user then defines the number of fractures, their widths, and their depths, and the lengthscale of interest (e.g. the length of the conduit). Using these data, the combined influence of transient fractures on the equivalent permeability of the conduit margin is then calculated by adapting a parallel-plate flow model (developed by Baud et al., 2012 for porous sandstones), for host rock permeabilities from 10‑11 to 10‑22 m2. The calculated values of porosity and equivalent permeability with time for each host rock permeability is then output in text and worksheet file formats. We introduce two
Energy Science and Technology Software Center (ESTSC)
1999-05-19
Version 00 RELAP4/MOD7/101 performs best estimate analyses of nuclear reactors or related systems undergoing a transient. Transient thermal-hydraulic, two-phase phenomena are calculated from formulations of one-dimensional, homogeneous, equilibrium conservation equations for water mass, momentum, and energy. Heat structures are modeled using a transient one-dimensional heat conduction solution that is coupled to the fluid through heat transfer relations. Various explicit models are used to calculate nonhomogeneous, nonequilibrium behavior including a phase separation model, a vertical slipmore » model, and a nonequilibrium model. Other models are used to represent critical flow, reactor kinetics, pressurized water reactor reflood behavior, nuclear fuel rod swelling and blockage, and components such as pumps, valves, and accumulators.« less
NASA Astrophysics Data System (ADS)
Protopopov, E. A.; Val'ter, A. I.; Protopopov, A. A.; Malenko, P. I.
2015-07-01
An approach is proposed to obtain regression relations to estimate the mechanical properties of steels subjected to solid-solution hardening. The applicability of the developed approach is shown for hot-rolled sheet austenitic iron-nickel and nickel alloys after quenching, toughened low-alloy structural steels with a sorbite structure in the case of full hardenabilty, sheet corrosion-resistant ferritic steels after softening heat treatment, and corrosion-resistant austenitic steels after austenitization. The derived regression relations serve as the basis for correcting the chemical composition of a metal melt to ensure the required level of the mechanical properties of ready products by controlling the degree of solid-solution hardening.
NASA Astrophysics Data System (ADS)
Taylor, Bettina B.; Taylor, Marc H.; Dinter, Tilman; Bracher, Astrid
2013-06-01
Phycobiliproteins are a family of water-soluble pigment proteins that play an important role as accessory or antenna pigments and absorb in the green part of the light spectrum poorly used by chlorophyll a. The phycoerythrins (PEs) are one of four types of phycobiliproteins that are generally distinguished based on their absorption properties. As PEs are water soluble, they are generally not captured with conventional pigment analysis. Here we present a statistical model based on in situ measurements of three transatlantic cruises which allows us to derive relative PE concentration from standardized hyperspectral underwater radiance measurements (Lu). The model relies on Empirical Orthogonal Function (EOF) analysis of Lu spectra and, subsequently, a Generalized Linear Model with measured PE concentrations as the response variable and EOF loadings as predictor variables. The method is used to predict relative PE concentrations throughout the water column and to calculate integrated PE estimates based on those profiles.
Source estimation with surface-related multiples—fast ambiguity-resolved seismic imaging
NASA Astrophysics Data System (ADS)
Tu, Ning; Aravkin, Aleksandr; van Leeuwen, Tristan; Lin, Tim; Herrmann, Felix J.
2016-03-01
We address the problem of obtaining a reliable seismic image without prior knowledge of the source wavelet, especially from data that contain strong surface-related multiples. Conventional reverse-time migration requires prior knowledge of the source wavelet, which is either technically or computationally challenging to accurately determine; inaccurate estimates of the source wavelet can result in seriously degraded reverse-time migrated images, and therefore wrong geological interpretations. To solve this problem, we present a "wavelet-free" imaging procedure that simultaneously inverts for the source wavelet and the seismic image, by tightly integrating source estimation into a fast least-squares imaging framework, namely compressive imaging, given a reasonably accurate background velocity model. However, this joint inversion problem is difficult to solve as it is plagued with local minima and the ambiguity with respect to amplitude scalings, because of the multiplicative, and therefore nonlinear, appearance of the source wavelet in the otherwise linear formalism. We have found a way to solve this nonlinear joint-inversion problem using a technique called variable projection, and a way to overcome the scaling ambiguity by including surface-related multiples in our imaging procedure following recent developments in surface-related multiple prediction by sparse inversion. As a result, we obtain without prior knowledge of the source wavelet high-resolution seismic images, comparable in quality to images obtained assuming the true source wavelet is known. By leveraging the computationally efficient compressive-imaging methodology, these results are obtained at affordable computational costs compared with conventional processing work flows that include surface-related multiple removal and reverse-time migration.
Source estimation with surface-related multiples—fast ambiguity-resolved seismic imaging
NASA Astrophysics Data System (ADS)
Tu, Ning; Aravkin, Aleksandr; van Leeuwen, Tristan; Lin, Tim; Herrmann, Felix J.
2016-06-01
We address the problem of obtaining a reliable seismic image without prior knowledge of the source wavelet, especially from data that contain strong surface-related multiples. Conventional reverse-time migration requires prior knowledge of the source wavelet, which is either technically or computationally challenging to accurately determine; inaccurate estimates of the source wavelet can result in seriously degraded reverse-time migrated images, and therefore wrong geological interpretations. To solve this problem, we present a `wavelet-free' imaging procedure that simultaneously inverts for the source wavelet and the seismic image, by tightly integrating source estimation into a fast least-squares imaging framework, namely compressive imaging, given a reasonably accurate background velocity model. However, this joint inversion problem is difficult to solve as it is plagued with local minima and the ambiguity with respect to amplitude scalings because of the multiplicative, and therefore nonlinear, appearance of the source wavelet in the otherwise linear formalism. We have found a way to solve this nonlinear joint-inversion problem using a technique called variable projection, and a way to overcome the scaling ambiguity by including surface-related multiples in our imaging procedure following recent developments in surface-related multiple prediction by sparse inversion. As a result, we obtain without prior knowledge of the source wavelet high-resolution seismic images, comparable in quality to images obtained assuming the true source wavelet is known. By leveraging the computationally efficient compressive-imaging methodology, these results are obtained at affordable computational costs compared with conventional processing work flows that include surface-related multiple removal and reverse-time migration.
Effect of distance-related heterogeneity on population size estimates from point counts
Efford, M.G.; Dawson, D.K.
2009-01-01
Point counts are used widely to index bird populations. Variation in the proportion of birds counted is a known source of error, and for robust inference it has been advocated that counts be converted to estimates of absolute population size. We used simulation to assess nine methods for the conduct and analysis of point counts when the data included distance-related heterogeneity of individual detection probability. Distance from the observer is a ubiquitous source of heterogeneity, because nearby birds are more easily detected than distant ones. Several recent methods (dependent double-observer, time of first detection, time of detection, independent multiple-observer, and repeated counts) do not account for distance-related heterogeneity, at least in their simpler forms. We assessed bias in estimates of population size by simulating counts with fixed radius w over four time intervals (occasions). Detection probability per occasion was modeled as a half-normal function of distance with scale parameter sigma and intercept g(0) = 1.0. Bias varied with sigma/w; values of sigma inferred from published studies were often 50% for a 100-m fixed-radius count. More critically, the bias of adjusted counts sometimes varied more than that of unadjusted counts, and inference from adjusted counts would be less robust. The problem was not solved by using mixture models or including distance as a covariate. Conventional distance sampling performed well in simulations, but its assumptions are difficult to meet in the field. We conclude that no existing method allows effective estimation of population size from point counts.
Estimating pregnancy-related mortality from census data: experience in Latin America
Queiroz, Bernardo L; Wong, Laura; Plata, Jorge; Del Popolo, Fabiana; Rosales, Jimmy; Stanton, Cynthia
2009-01-01
Abstract Objective To assess the feasibility of measuring maternal mortality in countries lacking accurate birth and death registration through national population censuses by a detailed evaluation of such data for three Latin American countries. Methods We used established demographic techniques, including the general growth balance method, to evaluate the completeness and coverage of the household death data obtained through population censuses. We also compared parity to cumulative fertility data to evaluate the coverage of recent household births. After evaluating the data and adjusting it as necessary, we calculated pregnancy-related mortality ratios (PRMRs) per 100 000 live births and used them to estimate maternal mortality. Findings The PRMRs for Honduras (2001), Nicaragua (2005) and Paraguay (2002) were 168, 95 and 178 per 100 000 live births, respectively. Surprisingly, evaluation of the data for Nicaragua and Paraguay showed overreporting of adult deaths, so a downward adjustment of 20% to 30% was required. In Honduras, the number of adult female deaths required substantial upward adjustment. The number of live births needed minimal adjustment. The adjusted PRMR estimates are broadly consistent with existing estimates of maternal mortality from various data sources, though the comparison varies by source. Conclusion Census data can be used to measure pregnancy-related mortality as a proxy for maternal mortality in countries with poor death registration. However, because our data were obtained from countries with reasonably good statistical systems and literate populations, we cannot be certain the methods employed in the study will be equally useful in more challenging environments. Our data evaluation and adjustment methods worked, but with considerable uncertainty. Ways of quantifying this uncertainty are needed. PMID:19551237
How should detection probability be incorporated into estimates of relative abundance?
MacKenzie, D.I.; Kendall, W.L.
2002-01-01
Determination of the relative abundance of two populations, separated by time or space, is of interest in many ecological situations. We focus on two estimators of relative abundance, which assume that the probability that an individual is detected at least once in the survey is either equal or unequal for the two populations. We present three methods for incorporating the collected information into our inference. The first method, proposed previously, is a traditional hypothesis test for evidence that detection probabilities are unequal. However, we feel that, a priori, it is more likely that detection probabilities are actually different; hence, the burden of proof should be shifted, requiring evidence that detection probabilities are practically equivalent. The second method we present, equivalence testing, is one approach to doing so. Third, we suggest that model averaging could be used by combining the two estimators according to derived model weights. These differing approaches are applied to a mark-recapture experiment on Nuttail's cottontail rabbit (Sylvilagus nuttallii) conducted in central Oregon during 1974 and 1975, which has been previously analyzed by other authors.
Calibrated Tully-fisher Relations For Improved Photometric Estimates Of Disk Rotation Velocities
NASA Astrophysics Data System (ADS)
Reyes, Reinabelle; Mandelbaum, R.; Gunn, J. E.; Pizagno, J.
2011-01-01
We present calibrated scaling relations (also referred to as Tully-Fisher relations or TFRs) between rotation velocity and photometric quantities-- absolute magnitude, stellar mass, and synthetic magnitude (a linear combination of absolute magnitude and color)-- of disk galaxies at z 0.1. First, we selected a parent disk sample of 170,000 galaxies from SDSS DR7, with redshifts between 0.02 and 0.10 and r band absolute magnitudes between -18.0 and -22.5. Then, we constructed a child disk sample of 189 galaxies that span the parameter space-- in absolute magnitude, color, and disk size-- covered by the parent sample, and for which we have obtained kinematic data. Long-slit spectroscopy were obtained from the Dual Imaging Spectrograph (DIS) at the Apache Point Observatory 3.5 m for 99 galaxies, and from Pizagno et al. (2007) for 95 galaxies (five have repeat observations). We find the best photometric estimator of disk rotation velocity to be a synthetic magnitude with a color correction that is consistent with the Bell et al. (2003) color-based stellar mass ratio. The improved rotation velocity estimates have a wide range of scientific applications, and in particular, in combination with weak lensing measurements, they enable us to constrain the ratio of optical-to-virial velocity in disk galaxies.
IMPACT OF CURING TEMPERATURE ON THE SATURATED LIQUID PERMEABILITY OF SALTSTONE
Williams, F.; Harbour, J.
2011-02-14
E and hydraulic conductivity. Therefore, it is possible to use E values to estimate the values of hydraulic conductivity. Measurement of Young's modulus is much easier than the measurement of permeability of Saltstone mixes and facilitates the measurement of the time dependence hydraulic conductivity. The results presented in this report show that changes in permeability as a function of curing temperature appear to be related to microstructural changes in the cured Saltstone mixes. Backscattered electron microscopy images revealed significant differences between the samples cured at different temperatures.
The geometric mean concept for interpreting the permeability of heterogeneous geomaterials
NASA Astrophysics Data System (ADS)
Selvadurai, Patrick; Selvadurai, Paul
2015-04-01
Naturally occurring geomaterials are heterogeneous and the estimation of the effective permeability characteristics of such geomaterials presents a challenge not only in terms of the experimental procedures that should be used to ensure flow through the porous medium but also in the correct use of the theoretical concepts needed to accurately interpret the data. The general consensus is that the flow path in a test needs to be drastically reduced if steady state tests are considered as a suitable experimental technique. The disadvantage of flow path reduction is that the tested volume may not be altogether representative of the rock, particularly if it displays heterogeneity in the scale of the sample being tested. Also, if the sample is not correctly restrained, the differential pressures needed to initiate steady flow can introduce damage in the sample leading to erroneous estimates of permeability. The alternative approach is to use large enough samples that can capture the spatial heterogeneity but develop testing procedures that can test examine the steady state flow process as a problem in three-dimensional fluid flow that can capture the spatial distribution of permeability. The paper discusses theoretical and computational approaches that have been developed for the estimation of the spatial distribution of permeability in a cuboidal Indiana Limestone sample measuring 450 mm. The "Patch Permeability Test" developed in connection with the research allows the measurements of the surface permeability of the block and through kriging techniques estimate the permeability within the block sample. The research promotes the use of the "Geometric Mean" concept for the description of the effective permeability of the heterogeneous porous medium where the spatial distribution conforms to a lognormal pattern. The effectiveness of the approach is that the techniques can be applied to examine the effective permeability of heterogeneous low permeability materials such as
Singh, Gitanjali M.; Micha, Renata; Khatibzadeh, Shahab; Lim, Stephen; Ezzati, Majid; Mozaffarian, Dariush
2015-01-01
Background Sugar-sweetened beverages (SSBs) are consumed globally and contribute to adiposity. However, the worldwide impact of SSBs on burdens of adiposity-related cardiovascular diseases (CVD), cancers, and diabetes has not been assessed by nation, age, and sex. Methods and Results We modeled global, regional, and national burdens of disease associated with SSB consumption by age/sex in 2010. Data on SSB consumption levels were pooled from national dietary surveys worldwide. The effects of SSB intake on BMI and diabetes, and of elevated BMI on CVD, diabetes, and cancers were derived from large prospective cohort pooling studies. Disease-specific mortality/morbidity data were obtained from Global Burden of Diseases, Injuries, and Risk Factors 2010 Study. We computed cause-specific population-attributable fractions for SSB consumption, which were multiplied by cause-specific mortality/morbidity to compute estimates of SSB-attributable death/disability. Analyses were done by country/age/sex; uncertainties of all input data were propagated into final estimates. Worldwide, the model estimated 184,000(95%UI=161,000–208,000) deaths/year attributable to SSB consumption: 133,000(126,000–139,000) from diabetes, 45,000(26,000–61,000) from CVD, and 6,450(4,300–8,600) from cancers. 5.0% of SSB-related deaths occurred in low-income, 70.9% in middle-income, and 24.1% in high-income countries. Proportional mortality due to SSBs ranged from <1% in Japanese >65y to 30% in Mexicans <45y. Among the 20 most populous countries, Mexico had largest absolute (405 deaths/million adults) and proportional (12.1%) deaths from SSBs. A total of 8.5(2.8, 19.2) million disability-adjusted life years (DALYs) were related to SSB intake (4.5% of diabetes-related DALYs). Conclusions SSBs, are a single, modifiable component of diet, that can impact preventable death/disability in adults in high, middle, and low-income countries, indicating an urgent need for strong global prevention programs
Urban energy consumption and related carbon emission estimation: a study at the sector scale
NASA Astrophysics Data System (ADS)
Lu, Weiwei; Chen, Chen; Su, Meirong; Chen, Bin; Cai, Yanpeng; Xing, Tao
2013-12-01
With rapid economic development and energy consumption growth, China has become the largest energy consumer in the world. Impelled by extensive international concern, there is an urgent need to analyze the characteristics of energy consumption and related carbon emission, with the objective of saving energy, reducing carbon emission, and lessening environmental impact. Focusing on urban ecosystems, the biggest energy consumer, a method for estimating energy consumption and related carbon emission was established at the urban sector scale in this paper. Based on data for 1996-2010, the proposed method was applied to Beijing in a case study to analyze the consumption of different energy resources (i.e., coal, oil, gas, and electricity) and related carbon emission in different sectors (i.e., agriculture, industry, construction, transportation, household, and service sectors). The results showed that coal and oil contributed most to energy consumption and carbon emission among different energy resources during the study period, while the industrial sector consumed the most energy and emitted the most carbon among different sectors. Suggestions were put forward for energy conservation and emission reduction in Beijing. The analysis of energy consumption and related carbon emission at the sector scale is helpful for practical energy saving and emission reduction in urban ecosystems.
Comparability of National Estimates for Traumatic Brain Injury-Related Medical Encounters
Taylor, Christopher A.; Greenspan, Arlene I.; Xu, Likang; Kresnow, Marcie-jo
2015-01-01
Objective To describe similarities and differences in the number of civilian traumatic brain injury (TBI)-related hospitalizations and emergency department visits between national databases that capture US hospital data. Participants TBI-related hospitalizations included in the National Hospital Discharge Survey (NHDS) and Healthcare Cost and Utilization Project Nationwide Inpatient Sample (HCUP-NIS) and emergency department visits in the National Hospital Ambulatory Medical Care Survey (NHAMCS) and HCUP Nationwide Emergency Department Sample (HCUP-NEDS) for 2006–2010. Design Cross-sectional design. Main Measures Nationwide counts of TBI-related medical encounters. Results Overall, the frequency of TBI is comparable when comparing NHDS with HCUP-NIS and NHAMCS with HCUP-NEDS. However, annual counts in both NHDS and NHAMCS are consistently unstable when examined in smaller subgroups, such as by age group and injury mechanism. Injury mechanism is consistently missing from many more records in NHDS compared with HCUP-NIS. Conclusion Given the large sample size of HCUP-NIS and HCUP-NEDS, these data can offer a valuable resource for examining TBI-related hospitalization and emergency department visits, especially by subgroup. These data hold promise for future examinations of annual TBI counts, but ongoing comparisons with national probability samples will be necessary to ensure that HCUP continues to track with estimates from these data. PMID:25955702
Surficial permeability of the axial valley seafloor: Endeavour Segment, Juan de Fuca Ridge
NASA Astrophysics Data System (ADS)
Hearn, Casey K.; Homola, Kira L.; Johnson, H. Paul
2013-09-01
Hydrothermal systems at mid-ocean spreading centers play a fundamental role in Earth's geothermal budget. One underexamined facet of marine hydrothermal systems is the role that permeability of the uppermost seafloor veneer plays in the distribution of hydrothermal fluid. As both the initial and final vertical gateway for subsurface fluid circulation, uppermost seafloor permeability may influence the local spatial distribution of hydrothermal flow. A method of deriving a photomosaic from seafloor video was developed and utilized to estimate relative surface permeability in an active hydrothermal area on the Endeavour Segment of the Juan de Fuca Ridge. The mosaic resolves seafloor geology of the axial valley seafloor at submeter resolution over an area greater than 1 km2. Results indicate that the valley walls and basal talus slope are topographically rugged and unsedimented, providing minimal resistance to fluid transmission. Elsewhere, the axial valley floor is capped by an unbroken blanket of low-permeability sediment, resisting fluid exchange with the subsurface reservoir. Active fluid emission sites were restricted to the high-permeability zone at the base of the western wall. A series of inactive fossil hydrothermal structures form a linear trend along the western bounding wall, oriented orthogonal to the spreading axis. High-temperature vent locations appear to have migrated over 100 m along-ridge-strike over the decade between surveys. While initially an expression of subsurface faulting, this spatial pattern suggests that increases in seafloor permeability from sedimentation may be at least a secondary contributing factor in regulating fluid flow across the seafloor interface.
Chapman, Steven W; Parker, Beth L; Sale, Tom C; Doner, Lee Ann
2012-08-01
It is now widely recognized that contaminant release from low permeability zones can sustain plumes long after primary sources are depleted, particularly for chlorinated solvents where regulatory limits are orders of magnitude below source concentrations. This has led to efforts to appropriately characterize sites and apply models for prediction incorporating these effects. A primary challenge is that diffusion processes are controlled by small-scale concentration gradients and capturing mass distribution in low permeability zones requires much higher resolution than commonly practiced. This paper explores validity of using numerical models (HydroGeoSphere, FEFLOW, MODFLOW/MT3DMS) in high resolution mode to simulate scenarios involving diffusion into and out of low permeability zones: 1) a laboratory tank study involving a continuous sand body with suspended clay layers which was 'loaded' with bromide and fluorescein (for visualization) tracers followed by clean water flushing, and 2) the two-layer analytical solution of Sale et al. (2008) involving a relatively simple scenario with an aquifer and underlying low permeability layer. All three models are shown to provide close agreement when adequate spatial and temporal discretization are applied to represent problem geometry, resolve flow fields and capture advective transport in the sands and diffusive transfer with low permeability layers and minimize numerical dispersion. The challenge for application at field sites then becomes appropriate site characterization to inform the models, capturing the style of the low permeability zone geometry and incorporating reasonable hydrogeologic parameters and estimates of source history, for scenario testing and more accurate prediction of plume response, leading to better site decision making. PMID:22750557
2013-01-01
Background HPV is related to a number of cancer types, causing a considerable burden in both genders in Europe. Female vaccination programs can substantially reduce the incidence of HPV-related diseases in women and, to some extent, men through herd immunity. The objective was to estimate the incremental benefit of vaccinating boys and girls using the quadrivalent HPV vaccine in Europe versus girls-only vaccination. Incremental benefits in terms of reduction in the incidence of HPV 6, 11, 16 and 18-related diseases (including cervical, vaginal, vulvar, anal, penile, and head and neck carcinomas and genital warts) were assessed. Methods The analysis was performed using a model constructed in Microsoft®Excel, based on a previously-published dynamic transmission model of HPV vaccination and published European epidemiological data on incidence of HPV-related diseases. The incremental benefits of vaccinating 12-year old girls and boys versus girls-only vaccination was assessed (70% vaccine coverage were assumed for both). Sensitivity analyses around vaccine coverage and duration of protection were performed. Results Compared with screening alone, girls-only vaccination led to 84% reduction in HPV 16/18-related carcinomas in females and a 61% reduction in males. Vaccination of girls and boys led to a 90% reduction in HPV 16/18-related carcinomas in females and 86% reduction in males versus screening alone. Relative to a girls-only program, vaccination of girls and boys led to a reduction in female and male HPV-related carcinomas of 40% and 65%, respectively and a reduction in the incidence of HPV 6/11-related genital warts of 58% for females and 71% for males versus girls-only vaccination. Conclusions In Europe, the vaccination of 12-year old boys and girls against HPV 6, 11, 16 and 18 would be associated with substantial additional clinical benefits in terms of reduced incidence of HPV-related genital warts and carcinomas versus girls-only vaccination. The incremental
Inter-system biases estimation in multi-GNSS relative positioning with GPS and Galileo
NASA Astrophysics Data System (ADS)
Deprez, Cecile; Warnant, Rene
2016-04-01
The recent increase in the number of Global Navigation Satellite Systems (GNSS) opens new perspectives in the field of high precision positioning. Particularly, the European Galileo program has experienced major progress in 2015 with the launch of 6 satellites belonging to the new Full Operational Capability (FOC) generation. Associated with the ongoing GPS modernization, many more frequencies and satellites are now available. Therefore, multi-GNSS relative positioning based on GPS and Galileo overlapping frequencies should entail better accuracy and reliability in position estimations. However, the differences between satellite systems induce inter-system biases (ISBs) inside the multi-GNSS equations of observation. Once these biases estimated and removed from the model, a solution involving a unique pivot satellite for the two considered constellations can be obtained. Such an approach implies that the addition of even one single Galileo satellite to the GPS-only model will strengthen it. The combined use of L1 and L5 from GPS with E1 and E5a from Galileo in zero baseline double differences (ZB DD) based on a unique pivot satellite is employed to resolve ISBs. This model removes all the satellite- and receiver-dependant error sources by differentiating and the zero baseline configuration allows atmospheric and multipath effects elimination. An analysis of the long-term stability of ISBs is conducted on various pairs of receivers over large time spans. The possible influence of temperature variations inside the receivers over ISB values is also investigated. Our study is based on the 5 multi-GNSS receivers (2 Septentrio PolaRx4, 1 Septentrio PolaRxS and 2 Trimble NetR9) installed on the roof of our building in Liege. The estimated ISBs are then used as corrections in the multi-GNSS observation model and the resulting accuracy of multi-GNSS positioning is compared to GPS and Galileo standalone solutions.
NASA Astrophysics Data System (ADS)
Misra, Gaurav; Izadi, Maziar; Sanyal, Amit; Scheeres, Daniel
2016-04-01
The effects of dynamical coupling between the rotational (attitude) and translational (orbital) motion of spacecraft near small Solar System bodies is investigated. This coupling arises due to the weak gravity of these bodies, as well as solar radiation pressure. The traditional approach assumes a point-mass spacecraft model to describe the translational motion of the spacecraft, while the attitude motion is considered to be completely decoupled from the translational motion. The model used here to describe the rigid-body spacecraft dynamics includes the non-uniform rotating gravity field of the small body up to second degree and order along with the attitude dependent terms, solar tide, and solar radiation pressure. This model shows that the second degree and order gravity terms due to the small body affect the dynamics of the spacecraft to the same extent as the orbit-attitude coupling due to the primary gravity (zeroth order) term. Variational integrators are used to simulate the dynamics of both the rigid spacecraft and the point mass. The small bodies considered here are modeled after Near-Earth Objects (NEO) 101955 Bennu, and 25143 Itokawa, and are assumed to be triaxial ellipsoids with uniform density. Differences in the numerically obtained trajectories of a rigid spacecraft and a point mass are then compared, to illustrate the impact of the orbit-attitude coupling on spacecraft dynamics in proximity of small bodies. Possible implications on the performance of model-based spacecraft control and on the station-keeping budget, if the orbit-attitude coupling is not accounted for in the model of the dynamics, are also discussed. An almost globally asymptotically stable motion estimation scheme based solely on visual/optical feedback that estimates the relative motion of the asteroid with respect to the spacecraft is also obtained. This estimation scheme does not require a model of the dynamics of the asteroid, which makes it perfectly suited for asteroids whose
Permeability across lipid membranes.
Shinoda, Wataru
2016-10-01
Molecular permeation through lipid membranes is a fundamental biological process that is important for small neutral molecules and drug molecules. Precise characterization of free energy surface and diffusion coefficients along the permeation pathway is required in order to predict molecular permeability and elucidate the molecular mechanisms of permeation. Several recent technical developments, including improved molecular models and efficient sampling schemes, are illustrated in this review. For larger penetrants, explicit consideration of multiple collective variables, including orientational, conformational degrees of freedom, are required to be considered in addition to the distance from the membrane center along the membrane normal. Although computationally demanding, this method can provide significant insights into the molecular mechanisms of permeation for molecules of medical and pharmaceutical importance. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:27085977
NASA Astrophysics Data System (ADS)
Ueda, Haruhiko; Takeuchi, Tsutomu T.
2006-04-01
A new technique based on a graph-theoretical approach is proposed for identifying and estimating voids in two-dimensional galaxy distributions. A relative neighborhood graph is utilized for identifying two-dimensional voids. The loop angle that characterizes the size of the voids is defined, and the distribution function as well as the average of loop angles are used for estimating the voids statistically. We applied our new technique to two-dimensional voids in Cold Dark Matter (CDM) simulations. Low-density, middle-density, and high-density CDM models were adopted for examining the nature of two-dimensional voids. >From our analyses, we found that the average of the loop angle in the low-density CDM model is apparently larger than that in the middle-density or the high-density CDM models. However, the difference between the middle-density and the high-density CDM models is subtle. We also analyzed the observational two-dimensional galaxy distributions and compared the two-dimensional mock samples that are constructed from CDM simulations. From our analyses, we succeeded to restrict the density parameter of our universe.
Modeling and Syndromic Surveillance for Estimating Weather-Induced Heat-Related Illness
Perry, Alexander G.; Korenberg, Michael J.; Hall, Geoffrey G.; Moore, Kieran M.
2011-01-01
This paper compares syndromic surveillance and predictive weather-based models for estimating emergency department (ED) visits for Heat-Related Illness (HRI). A retrospective time-series analysis of weather station observations and ICD-coded HRI ED visits to ten hospitals in south eastern Ontario, Canada, was performed from April 2003 to December 2008 using hospital data from the National Ambulatory Care Reporting System (NACRS) database, ED patient chief complaint data collected by a syndromic surveillance system, and weather data from Environment Canada. Poisson regression and Fast Orthogonal Search (FOS), a nonlinear time series modeling technique, were used to construct models for the expected number of HRI ED visits using weather predictor variables (temperature, humidity, and wind speed). Estimates of HRI visits from regression models using both weather variables and visit counts captured by syndromic surveillance as predictors were slightly more highly correlated with NACRS HRI ED visits than either regression models using only weather predictors or syndromic surveillance counts. PMID:21647355
Estimation of building-related construction and demolition waste in Shanghai.
Ding, Tao; Xiao, Jianzhuang
2014-11-01
One methodology is proposed to estimate the quantification and composition of building-related construction and demolition (C&D) waste in a fast developing region like Shanghai, PR China. The varieties of structure types and building waste intensities due to the requirement of progressive building design and structure codes in different decades are considered in this regional C&D waste estimation study. It is concluded that approximately 13.71 million tons of C&D waste was generated in 2012 in Shanghai, of which more than 80% of this C&D waste was concrete, bricks and blocks. Analysis from this study can be applied to facilitate C&D waste governors and researchers the duty of formulating precise policies and specifications. As a matter of fact, at least a half of the enormous amount of C&D waste could be recycled if implementing proper recycling technologies and measures. The appropriate managements would be economically and environmentally beneficial to Shanghai where the per capita per year output of C&D waste has been as high as 842 kg in 2010. PMID:25164857
But other than mesothelioma? An estimate of the proportion of work-related cancers in Quebec
Labrèche, F.; Duguay, P.; Boucher, A.; Arcand, R.
2016-01-01
Background More than 30 exposures in the workplace are proven carcinogens. In the present study, we aimed to estimate the burden of occupational cancer in Quebec so as to increase awareness among stakeholders and to prioritize research activities. Methods Work-attributable fractions—that is, the proportions of cancers attributable to work—as published in Finland and the United Kingdom were applied to Quebec 2002–2006 cancer incidence and mortality data to estimate the number of work-related cases for 28 cancer sites. Results Overall, 6.0% of incident cancers (men: 9.1%; women: 2.7%) and 7.6% of cancer deaths (men: 11.8%; women: 2.8%) could be attributable to work, resulting annually in an average of 2160 new cancer diagnoses and 1190 cancer deaths in Quebec. Incident cancers of the lung, prostate, skin, bladder, and (female) breast were the most numerous; cancer sites resulting in more deaths were lung, (female) breast, and pleura. During the same period, compensation statistics reported annual averages of 94.3 incident cancers and 61.9 cancer deaths, mostly involving mesothelioma (64% of compensated incident cancers) and lung cancer (30% of compensated incident cancers). Conclusions Increased recognition of workplace cancers by all stakeholders, from workers and employers to treating physicians, will foster appropriate preventive measures for safer workplaces. PMID:27122983
Tsunami source parameters estimated from slip distribution and their relation to tsunami intensity
NASA Astrophysics Data System (ADS)
Bolshakova, Anna; Nosov, Mikhail; Kolesov, Sergey
2015-04-01
Estimation of the level of tsunami hazard on the basis of earthquake moment magnitude often fails. The most important reason for this is that tsunamis are related to earthquakes in a complex and ambiguous way. In order to reveal a measure of tsunamigenic potential of an earthquake that would be better than moment magnitude of earthquake we introduce a set of tsunami source parameters that can be calculated from co-seismic ocean-bottom deformation and bathymetry. We consider more than two hundred ocean-bottom earthquakes (1923-2014) those for which detailed slip distribution data (Finite Fault Model) are available on USGS, UCSB, Caltech, and eQuake-RC sites. Making use of the Okada formulae the vector fields of co-seismic deformation of ocean bottom are estimated from the slip distribution data. Taking into account bathymetry (GEBCO_08) we determine tsunami source parameters such as double amplitude of bottom deformation, displaced water volume, potential energy of initial elevation, etc. The tsunami source parameters are examined as a function of earthquake moment magnitude. The contribution of horisontal component of ocean bottom deformation to tsunami generation is investigated. We analyse the Soloviev-Imamura tsunami intensity as a function of tsunami source parameters. The possibility of usage of tsunami source parameters instead of moment magnitude in tsunami warning is discussed. This work was supported by the Russian Foundation for Basic Research, project 14-05-31295
van Hees, Vincent T; van Lummel, Rob C; Westerterp, Klaas R
2009-06-01
Activity-related energy expenditure (AEE) is difficult to quantify, especially under sedentary conditions. Here, a model was developed using the detected type of physical activity (PA) and movement intensity (MI), based on a tri-axial seismic accelerometer (DynaPort MiniMod; McRoberts B.V., The Hague, the Netherlands), with energy expenditure for PA as a reference. The relation between AEE (J/min/kg), MI, and the type of PA was determined for standardized PAs as performed in a laboratory including: lying, sitting, standing, and walking. AEE (J/min/kg) was calculated from total energy expenditure (TEE) and sleeping metabolic rate (SMR) as assessed with indirect calorimetry ((TEEx0.9)-SMR). Subsequently, the model was validated over 23-h intervals in a respiration chamber. Subjects were 15 healthy women (age: 22+/-2 years; BMI: 24.0+/-4.0 kg/m2). Predicted AEE in the chamber was significantly related to measured AEE both within (r2=0.81+/-0.06, P<0.00001) and between (r2=0.70, P<0.001) subjects. The explained variation in AEE by the model was higher than the explained variation by MI alone. This shows that a tri-axial seismic accelerometer is a valid tool for estimating AEE under sedentary conditions. PMID:19282829
NASA Astrophysics Data System (ADS)
Jordan, Rachel E.; Hardy, Janet P.; Perron, Frank E., Jr.; Fisk, David J.
1999-09-01
Air permeability and capillary pressure are macroscopic snow properties that are influenced by the pore structure of the snow cover. Formulas for predicting fluid transport, species elution, and acoustive wave propagation require parameterization of one or both of these properties. We report paired measurements of permeability and capillary rise from snow samples at field sites in Hanover, New Hampshire, and Sleepers River Research Watershed, Danville, Vermont. We augment these data with laboratory tests on sieved snow and glass beads. Our measurements demonstrate a linear relationship between permeability and the ratio of porosity and the square of capillary rise, which we corroborate theoretically using a simple conduit model of the pore space. We propose that scatter in the data results, in part, from the effect of crystal shape on air flow and imbibition contact angle.Since the early measurements and classification schemes of Bader in 1939, many investigators have expanded the database of permeability observations for a wide range of snow types. We summarize these data and report our own recent observations from the New England sites and from an additional site in Manitoba, Canada. Our measurements are in the high range of reported values. However, after normalizing our data by the square of grain diameter, they follow the empirical function of Shimizu fairly closely. This agreement supports our measurements, and demonstrates the usefulness of Shimizu's function for snow types other than the relatively dense, fine-grained snow used in his analysis.Our normalized permeability data for low density snow, as well as the Shimizu function, are below theoretical predictions for suspensions of spheres and infinite cylinders. By extending the model for spheres to oblate spheroids and discs, we estimate permeability that is in closer agreement with our data. We suggest that a decrease in surface-to-volume ratio as snow ages may account for a relative increase in
Observation to empirical PGA ratio estimates the relative thickness of sediment
NASA Astrophysics Data System (ADS)
Muzli, M.; Abidin, Z.; Sunarjo
2016-05-01
The amplification of earthquake seismic waves near the surface can vary significantly spatially due to differences in the thickness of sediments above the bedrock. Normally, the determination of sediment thickness is done by comparing the amplitude of the earthquake waveform recorded on the surface with the waveforms recorded on the sensors located on bedrock or borehole. This method, however, is still difficult to use, especially in Indonesia due to the small number of borehole sensors. As an alternative we propose a method to estimate the relative thickness of sediment in a region. It can be done by calculating the PGA ratio between the waveform recorded on the surface with the one calculated using an empirical formula. We then validate these results using the Horizontal to Vertical Spectral Ratio (HVSR) method.
Radiometric Approach for Estimating Relative Changes in Intra-Glacier Average Temperature
NASA Astrophysics Data System (ADS)
Jezek, K. C.; Johnson, J.; Aksoy, M.
2012-12-01
NASA's IceBridge Project uses a suite of airborne instruments to characterize most of the important variables necessary to understand current ice sheet behavior and to predict future changes in ice sheet volume. Derived geophysical quantities include: ice sheet surface elevation; ice sheet thickness; surface accumulation rate; internal layer stratigraphy; ocean bathymetry; basal geology. At present, internal ice sheet temperature is absent from the parameters list, yet temperature is a primary factor in determining the ease at which ice deforms internally and also the rate at which the ice flows across the base. In this paper, we present calculations to show that radiometry may provide clues to relative and perhaps absolute variations in ice sheet internal temperatures. We assume the Debye dielectric dispersion model driven by temperatures estimated using the Robin model to compute radio frequency loss through the ice. We discretely layer the ice sheet to compute local emission, estimate interference effects and also take into account reflectivity at the surface and the base of the ice sheet. At this stage, we ignore scattering in the firn and we also ignore higher frequency dielectric dispersions along with direct current resistivities. We find some sensitivity between the depth-integrated brightness temperature and average internal temperature depending on the ice thickness and surface accumulation rate. Further, we observe that changing from a frozen to a water based ice sheet alters the measured brightness temperature again to a degree depending on the modeled ice sheet configuration. We go on to present SMOS satellite data acquired over Lake Vostok, Antarctica. The SMOS data suggest a relationship between relatively cool brightness temperatures and the location of the lake. We conclude with comments concerning the practicality and advantage of adding radiometry to the IceBridge instrument suite.
Quantifying tight-gas sandstone permeability via critical path analysis
Technology Transfer Automated Retrieval System (TEKTRAN)
Rock permeability has been actively investigated over the past several decades by the geosciences community. However, its accurate estimation still presents significant technical challenges, especially in spatially complex rocks. In this letter, we apply critical path analysis (CPA) to estimate perm...
NASA Astrophysics Data System (ADS)
Grimwood, A.; Messa, A.; Bamber, J. C.
2015-03-01
A combined correlation method is introduced to optical coherence elastography for axial displacement estimation. Its performance is compared with that of amplitude correlation tracking and phase shift estimation. Relative sensitivities to small (sub-micron), and large (pixel-scale) axial displacements are analysed for a Perspex test object and gelatine phantom. The combined correlation method exhibited good overall performance, with a larger dynamic range than phase shift estimation and higher sensitivity than amplitude correlation tracking.
Porosity and permeability evolution of clay faults: in situ experiments
NASA Astrophysics Data System (ADS)
Henry, P.; Guglielmi, Y.; Seguy, S.; Lefevre, M.; Ghani, I.; Gent, G.; Castilla, R.; Gout, C.; Dick, P.; Nussbaum, C.; Durand, J.
2015-12-01
Fault models associating low permeability cores with high permeability damage zones are widely accepted, however, constitutive laws relating permeability with fault structure, stress, and strain remain poorly constrained. We here present preliminary results of hydromechanical experiments performed at the 10 m scale in fault zones in Toarcian and Aalenian black shale formations. Intact formations have a very low permeability (10-19 to 10-22 m2). One case (in IRSN's Tournemire Underground Research Laboratory) displays a porosity increase in and around the fault core and abundant veins and calcite cemented small faults in the damage zone. The other case (Mont Terri Swisstopo Underground Research Laboratory) displays a porosity decrease in the fault core zone and few veins. However, under the present stress state, the static permeability of the fractured zones at both locations is higher than that of the intact formation by up to 3 orders of magnitude. During borehole pressurization tests three regimes of permeability variations are observed. (1) Fracture permeability first increases progressively as a function of fluid pressure (2) When a threshold is reached, permeability further increases by 100 or more, but strain as well as permeability variations remain in most part reversible. (3) When a steady pressure is maintained in the injection borehole (from 20 minutes to several days) flow rate tends to decrease with time. These results show that high transient permeability may locally occur in a fault zone under conditions when most of the deformation is reversible, opening the possibility of transient fluid migration decoupled from slip along faults that are not favorably oriented. However, during one test, more than 1 mm of irreversible slip occurred along one of the main interfaces, associated with a sudden increase in flow rate (from 11 to more than 40 l/min). This suggests that when slip occurs, it could result in permeability variations that may remain difficult
Erickson, Marilyn C; Ma, Li M; Doyle, Michael P
2015-11-01
Shelf life of fish packaged under modified atmosphere (MA) is extended, but within the United States, commercial application of MA with impermeable packaging films is restricted due to concerns that botulinum toxin production would precede spoilage when contaminated fish are held at abusive storage temperatures. Use of semipermeable packaging films has been advocated; however, previous studies are inconclusive in determining the oxygen transmission rate (OTR) of a film that is needed to achieve an acceptable margin of safety (i.e., toxin production occurs only after spoilage). This study was conducted to determine the influence of OTR (target OTRs of 3 to 15,000) on the development of spoilage volatiles and toxin in salmon inoculated with type E Clostridium botulinum and subjected to air, vacuum, or 75:25 CO2:N2 MA and storage temperatures of 4, 8, 12, or 16°C. The most dominant headspace volatile peak that was produced during spoilage of samples at 4, 8 or 12°C was a peak, having a Kovats retention index (KI) of 753, and at which external standards of 2- or 3-methyl 1-butanol also eluted. Under anaerobic conditions, both the aerobic microbial populations and the size of the KI 753 spoilage peak were less in inoculated samples compared with uninoculated samples. C. botulinum-inoculated samples that were stored at 12 or 16°C under conditions favorable for anaerobic growth were also characterized by a KI 688 peak. Using a previously developed model that related the percentage of elderly consumers who would prepare a sample having the KI 753 spoilage peak of a specific size, it was determined that for salmon packaged with 3 or 3,000 OTR films under any atmosphere and stored at 12 or 16°C, 2 to 61% of the consumers could potentially prepare toxin-contaminated samples. Hence, when abusive storage conditions are suspected, the fish should not be consumed. PMID:26555524
Comparative skin permeability of neonatal and adult timber rattlesnakes (Crotalus horridus).
Agugliaro, Joseph; Reinert, Howard K
2005-05-01
Skin permeability and lipid content were determined using shed epidermis of neonatal and adult timber rattlesnakes (Crotalus horridus) from the Coastal Plain Pine Barrens of New Jersey and from the Appalachian Mountains of northern Pennsylvania. Differences between populations due to habitat and within populations due to age were tested. Skin permeability was not found to differ according to locality (P>0.05), but rates were significantly different for age. Permeability of adult epidermis was greater than that of neonates (P<0.01). Lipid content did not differ by locality (P>0.05), but differed between ages, paralleling the results found for permeation rates. Neonate sheds had a greater amount of extractable lipids than adult sheds (P<0.01). Despite the lower skin permeability of neonates, our estimates indicate that the percentage of their total body water content lost per hour may still be 2.2 times that of adults. Resistance to cutaneous water loss may be advantageous to neonates given their relatively large surface area-to-volume ratio. PMID:15893947
Models for Gas Hydrate-Bearing Sediments Inferred from Hydraulic Permeability and Elastic Velocities
Lee, Myung W.
2008-01-01
Elastic velocities and hydraulic permeability of gas hydrate-bearing sediments strongly depend on how gas hydrate accumulates in pore spaces and various gas hydrate accumulation models are proposed to predict physical property changes due to gas hydrate concentrations. Elastic velocities and permeability predicted from a cementation model differ noticeably from those from a pore-filling model. A nuclear magnetic resonance (NMR) log provides in-situ water-filled porosity and hydraulic permeability of gas hydrate-bearing sediments. To test the two competing models, the NMR log along with conventional logs such as velocity and resistivity logs acquired at the Mallik 5L-38 well, Mackenzie Delta, Canada, were analyzed. When the clay content is less than about 12 percent, the NMR porosity is 'accurate' and the gas hydrate concentrations from the NMR log are comparable to those estimated from an electrical resistivity log. The variation of elastic velocities and relative permeability with respect to the gas hydrate concentration indicates that the dominant effect of gas hydrate in the pore space is the pore-filling characteristic.
Technology Transfer Automated Retrieval System (TEKTRAN)
Background: Several observational studies have investigated the relation of dietary phylloquinone and menaquinone intake with occurrence of chronic diseases. Most of these studies relied on food frequency questionnaires (FFQ) to estimate the intake of phylloquinone and menaquinones. However, none of...
Connexin channel permeability to cytoplasmic molecules.
Harris, Andrew L
2007-01-01
Connexin channels are known to be permeable to a variety of cytoplasmic molecules. The first observation of second messenger junctional permeability, made approximately 30 years ago, sparked broad interest in gap junction channels as mediators of intercellular molecular signaling. Since then, much has been learned about the diversity of connexin channels with regard to isoform diversity, tissue and developmental distribution, modes of channel regulation, assembly, expression, biochemical modification and permeability, all of which appear to be dynamically regulated. This information has expanded the potential roles of connexin channels in development, physiology and disease, and made their elucidation much more complex--30 years ago such an orchestra of junctional dynamics was unanticipated. Only recently, however, have investigators been able to directly address, in this more complex framework, the key issue: what specific biological molecules, second messengers and others, are able to permeate the various types of connexin channels, and how well? An important related issue, given the ever-growing list of connexin-related pathologies, is how these permeabilities are altered by disease-causing connexin mutations. Together, many studies show that a variety of cytoplasmic molecules can permeate the different types of connexin channels. A few studies reveal differences in permeation by different molecules through a particular type of connexin channel, and differences in permeation by a particular molecule through different types of connexin channels. This article describes and evaluates the various methods used to obtain these data, presents an annotated compilation of the results, and discusses the findings in the context of what can be inferred about mechanism of selectivity and potential relevance to signaling. The data strongly suggest that highly specific interactions take place between connexin pores and specific biological molecular permeants, and that those
Relative Scale Estimation and 3D Registration of Multi-Modal Geometry Using Growing Least Squares.
Mellado, Nicolas; Dellepiane, Matteo; Scopigno, Roberto
2016-09-01
The advent of low cost scanning devices and the improvement of multi-view stereo techniques have made the acquisition of 3D geometry ubiquitous. Data gathered from different devices, however, result in large variations in detail, scale, and coverage. Registration of such data is essential before visualizing, comparing and archiving them. However, state-of-the-art methods for geometry registration cannot be directly applied due to intrinsic differences between the models, e.g., sampling, scale, noise. In this paper we present a method for the automatic registration of multi-modal geometric data, i.e., acquired by devices with different properties (e.g., resolution, noise, data scaling). The method uses a descriptor based on Growing Least Squares, and is robust to noise, variation in sampling density, details, and enables scale-invariant matching. It allows not only the measurement of the similarity between the geometry surrounding two points, but also the estimation of their relative scale. As it is computed locally, it can be used to analyze large point clouds composed of millions of points. We implemented our approach in two registration procedures (assisted and automatic) and applied them successfully on a number of synthetic and real cases. We show that using our method, multi-modal models can be automatically registered, regardless of their differences in noise, detail, scale, and unknown relative coverage. PMID:26672045
Permeability Measurements in Carbon-Epoxy Composites
NASA Technical Reports Server (NTRS)
Zdenek, Michael J.
1999-01-01
To determine the permeability of the composite feedline, that is proposed to be used in the X-33 Reusable Launch Vehicle (RLV), three 8 x 8-in. coupons were constructed. Two of the coupons were layed-up with 4 plies of plain weave prepreg [0/90, plus or minus 45, plus or minus 45, 0/90] and the other one layed-up with 4 plies of unidirectional prepreg [0, 90, 90, 0]. The coupons were vacuumed bagged and cured to manufactures specifications. The coupons were then placed in an apparatus to test for permeability. Nitrogen gas was used to permeate through the coupons at a pressure of 5 psig. A manometer was placed on the opposite side of the coupons and was used to measure the height of the fluid with respect to time. From this data the mass flow rate of the gas could be calculated since the area of the manometer and the density of the gas is known. The results of the test are given. The permeability constant was calculated using Darcy's law, which related the pressure drop, flow rate of the permeating gas and resistance to flow through the coupon created. To put the results into prospective the permeability of sand stone and granite is 1E-15 and 1E-20 respectively.
Human Disc Nucleus Properties and Vertebral Endplate Permeability
Rodriguez, Azucena G.; Slichter, Chloe K.; Acosta, Frank L.; Rodriguez-Soto, Ana E.; Burghardt, Andrew J.; Majumdar, Sharmila; Lotz, Jeffrey C.
2010-01-01
Study of human cadaveric discs quantifying endplate permeability and porosity and correlating these with measures of disc quality: cell density, proteoglycan content, and overall degeneration. Permeability and porosity increased with age and were not correlated with cell density or overall degeneration, suggesting that endplate calcification may not accelerate disc degeneration. Study Design Experimental quantification of relationships between vertebral endplate morphology, permeability, disc cell density, glycosaminoglycan content and degeneration in samples harvested from human cadaveric spines. Objective To test the hypothesis that variation in endplate permeability and porosity contribute to changes in intervertebral disc cell density and overall degeneration. Summary of Background Data Cells within the intervertebral disc are dependent on diffusive exchange with capillaries in the adjacent vertebral bone. Previous findings suggest that blocked routes of transport negatively affect disc quality, yet there are no quantitative relationships between human vertebral endplate permeability, porosity, cell density and disc degeneration. Such relationships would be valuable for clarifying degeneration risk factors, and patient features that may impede efforts at disc tissue engineering. Methods Fifty-one motion segments were harvested from 13 frozen cadaveric human lumbar spines (32 to 85 years) and classified for degeneration using the MRI-based Pfirrmann scale. A cylindrical core was harvested from the center of each motion segment that included vertebral bony and cartilage endplates along with adjacent nucleus tissue. The endplate mobility, a type of permeability, was measured directly using a custom-made permeameter before and after the cartilage endplate was removed. Cell density within the nucleus tissue was estimated using the picogreen method while the nuclear GAG content was quantified using the DMMB technique. Specimens were imaged at 8 μm resolution using
Estimating return periods of extreme values from relatively short time series of winds
NASA Astrophysics Data System (ADS)
Jonasson, Kristjan; Agustsson, Halfdan; Rognvaldsson, Olafur; Arfeuille, Gilles
2013-04-01
An important factor for determining the prospect of individual wind farm sites is the frequency of extreme winds at hub height. Here, extreme winds are defined as the value of the highest 10 minutes averaged wind speed with a 50 year return period, i.e. annual exceeding probability of 2% (Rodrigo, 2010). A frequently applied method to estimate winds in the lowest few hundred meters above ground is to extrapolate observed 10-meter winds logarithmically to higher altitudes. Recent study by Drechsel et al. (2012) showed however that this methodology is not as accurate as interpolating simulated results from the global ECMWF numerical weather prediction (NWP) model to the desired height. Observations of persistent low level jets near Colima in SW-Mexico also show that the logarithmic approach can give highly inaccurate results for some regions (Arfeuille et al., 2012). To address these shortcomings of limited, and/or poorly representative, observations and extrapolations of winds one can use NWP models to dynamically scale down relatively coarse resolution atmospheric analysis. In the case of limited computing resources one has typically to make a compromise between spatial resolution and the duration of the simulated period, both of which can limit the quality of the wind farm siting. A common method to estimate maximum winds is to fit an extreme value distribution (e.g. Gumbel, gev or Pareto) to the maximum values of each year of available data, or the tail of these values. If data are only available for a short period, e.g. 10 or 15 years, then this will give a rather inaccurate estimate. It is possible to deal with this problem by utilizing monthly or weekly maxima, but this introduces new problems: seasonal variation, autocorrelation of neighboring values, and increased discrepancy between data and fitted distribution. We introduce a new method to estimate return periods of extreme values of winds at hub height from relatively short time series of winds, simulated
Parental Estimates of Their Own and Their Relatives' Intelligence. A Spanish Replication
ERIC Educational Resources Information Center
Perez, Luz F.; Gonzalez, Coral; Beltran, Jesus A.
2010-01-01
In this study, Spanish mothers and fathers (N = 108) estimated their own general and multiple intelligences, as well as those of their children and of their own parents. The mothers' self-estimates of their verbal, logical-mathematical, spatial, and corporal intelligence were lower than the fathers'. The mothers made lower estimates of their…
Unsaturated and Saturated Permeabilities of Fiber Reinforcement: Critics and Suggestions
NASA Astrophysics Data System (ADS)
Park, Chung Hae; Krawczak, Patricia
2015-04-01
In general, permeability measurement results show a strong scattering according to the measurement method, the type of test fluid and the fluid injection condition, even though permeability is regarded as a unique property of porous medium. In particular, the discrepancy between the unsaturated and saturated permeabilities for the same fabric has been widely reported. In the literature, relative permeability has been adopted to model the unsaturated flow. This approach has some limits in the modeling of double-scale porosity medium. We address this issue of permeability measurement by rigorously examining the mass conservation condition. Finally, we identify that the pressure gradient is non-linear with positive curvature in the unsaturated flow and a misinterpretation of pressure gradient is the main reason for the difference between the saturated and unsaturated permeabilities of the same fiber reinforcement. We propose to use a fixed value of permeability and to modify the mass conservation equation if there are air voids which are entrapped inside the fiber tow. Finally, we also suggest some guidelines and future perspectives to obtain more consistent permeability measurement results.
Permeability alteration induced by drying of brines in porous media
NASA Astrophysics Data System (ADS)
Peysson, Y.
2012-11-01
Permeability of reservoir rocks can be strongly altered by salt precipitation induced by drying. Indeed, gas injection in deep saline aquifers leads first to the brine displacement. The liquid saturation decreases near the injection point and reaches a residual water saturation. But at longer time, the water mass transfer to the gas phase by evaporation can become significant and the dissolved salt can precipitate in the porous structure. The solid salts fill the pores and the permeability decreases. Permeability alteration by salting out is a risk of injectivity decline in the context of CO2 geological storage in saline aquifers where high level of gas injection has to be maintained over decades. However, this problem has been poorly investigated. It implies physical processes that are strongly coupled: drying, water and gas flows in the porous structure and precipitation. This work is an experimental investigation aiming at measuring on natural rock samples the permeability alteration induced by convective drying where dry gas is injected through the sample. We show that alteration of permeability is strong and total blockage of the flow is even possible. We also show that the change in porosity due to the solid salt is heterogeneous along the rock samples. A local permeability-porosity relationship has been estimated from the measurements and we could deduce the permeability alteration function of time by modeling the drying dynamic. We show that it starts very early because capillary backflows are extremely efficient in this process to accumulate solid salt near the injection surfaces.
Scale Dependence of Equivalent Permeability Tensor in Naturally Fractured Reservoirs
NASA Astrophysics Data System (ADS)
Azizmohammadi, S.; Matthäi, S. K.; Paul, J. D.
2012-04-01
Fracture geometries in naturally fractured reservoirs are usually inferred from sparse subsurface observations from well logs or cores. Since the largest fractures tend to be the least frequent, they are often undersampled. Therefore, interpretations based on samples taken at any scale smaller than that of interest contain a bias, misrepresenting the true characteristics of the fracture system. This bias may lead to the incorrect characterisation of the reservoir, upscaling and gridding. In this work, we investigate the variation of the equivalent permeability and its anisotropy in naturally fractured rocks as a function of sample size. We use a two dimensional linear elastic model of fracture aperture, taking into account the far-field stresses in conjunction with the parallel plate model, to determine fracture permeability. These apertures are applied to fractured reservoir analogues mapped in the field to numerically estimate permeability. We then employ a finite element scheme to compute equivalent permeability tensors for random samples of the fractured porous medium at specific length scales. We find that the distribution of the principle component of equivalent permeability tensor computed at each scale size appears to be dependent upon the underlying attributes of the fracture networks. We notice a clear trend between the mean equivalent permeability and sample size. Our findings suggest that fracture geometries in naturally fractured reservoirs should be sampled at the scales of interest; if not, the equivalent permeability of such reservoirs might be significantly underestimated.
Correlation of Three Techniques for Determining Soil Permeability
ERIC Educational Resources Information Center
Winneberger, John T.
1974-01-01
Discusses problems of acquiring adequate results when measuring for soil permeability. Correlates three relatively simple techniques that could be helpful to the inexperienced technician dealing with septic tank practices. An appendix includes procedures for valid percolation tests. (MLB)
Waldman, John R.; Fabrizio, Mary C.
1994-01-01
Stock contribution studies of mixed-stock fisheries rely on the application of classification algorithms to samples of unknown origin. Although the performance of these algorithms can be assessed, there are no guidelines regarding decisions about including minor stocks, pooling stocks into regional groups, or sampling discrete substocks to adequately characterize a stock. We examined these questions for striped bass Morone saxatilis of the U.S. Atlantic coast by applying linear discriminant functions to meristic and morphometric data from fish collected from spawning areas. Some of our samples were from the Hudson and Roanoke rivers and four tributaries of the Chesapeake Bay. We also collected fish of mixed-stock origin from the Atlantic Ocean near Montauk, New York. Inclusion of the minor stock from the Roanoke River in the classification algorithm decreased the correct-classification rate, whereas grouping of the Roanoke River and Chesapeake Bay stock into a regional (''southern'') group increased the overall resolution. The increased resolution was offset by our inability to obtain separate contribution estimates of the groups that were pooled. Although multivariate analysis of variance indicated significant differences among Chesapeake Bay substocks, increasing the number of substocks in the discriminant analysis decreased the overall correct-classification rate. Although the inclusion of one, two, three, or four substocks in the classification algorithm did not greatly affect the overall correct-classification rates, the specific combination of substocks significantly affected the relative contribution estimates derived from the mixed-stock sample. Future studies of this kind must balance the costs and benefits of including minor stocks and would profit from examination of the variation in discriminant characters among all Chesapeake Bay substocks.
Estimating relative sea-level rise and submergence potential at a coastal wetland
Cahoon, Donald R.
2015-01-01
A tide gauge records a combined signal of the vertical change (positive or negative) in the level of both the sea and the land to which the gauge is affixed; or relative sea-level change, which is typically referred to as relative sea-level rise (RSLR). Complicating this situation, coastal wetlands exhibit dynamic surface elevation change (both positive and negative), as revealed by surface elevation table (SET) measurements, that is not recorded at tide gauges. Because the usefulness of RSLR is in the ability to tie the change in sea level to the local topography, it is important that RSLR be calculated at a wetland that reflects these local dynamic surface elevation changes in order to better estimate wetland submergence potential. A rationale is described for calculating wetland RSLR (RSLRwet) by subtracting the SET wetland elevation change from the tide gauge RSLR. The calculation is possible because the SET and tide gauge independently measure vertical land motion in different portions of the substrate. For 89 wetlands where RSLRwet was evaluated, wetland elevation change differed significantly from zero for 80 % of them, indicating that RSLRwet at these wetlands differed from the local tide gauge RSLR. When compared to tide gauge RSLR, about 39 % of wetlands experienced an elevation rate surplus and 58 % an elevation rate deficit (i.e., sea level becoming lower and higher, respectively, relative to the wetland surface). These proportions were consistent across saltmarsh, mangrove, and freshwater wetland types. Comparison of wetland elevation change and RSLR is confounded by high levels of temporal and spatial variability, and would be improved by co-locating tide gauge and SET stations near each other and obtaining long-term records for both.
Determining permeability of tight rock samples using inverse modeling
NASA Astrophysics Data System (ADS)
Finsterle, Stefan; Persoff, Peter
1997-08-01
Data from gas-pressure-pulse-decay experiments have been analyzed by means of numerical simulation in combination with automatic model calibration techniques to determine hydrologie properties of low-permeability, low-porosity rock samples. Porosity, permeability, and Klinkenberg slip factor have been estimated for a core plug from The Geysers geothermal field, California. The experiments were conducted using a specially designed permeameter with small gas reservoirs. Pressure changes were measured as gas flowed from the pressurized upstream reservoir through the sample to the downstream reservoir. A simultaneous inversion of data from three experiments performed on different pressure levels allows for independent estimation of absolute permeability and gas permeability which is pressure-dependent due to enhanced slip flow. With this measurement and analysis technique we can determine matrix properties with permeabilities as low as 10-21 m2. In this paper we discuss the procedure of parameter estimation by inverse modeling. We will focus on the error analysis, which reveals estimation uncertainty and parameter correlations. This information can also be used to evaluate and optimize the design of an experiment. The impact of systematic errors due to potential leakage and uncertainty in the initial conditions will also be addressed. The case studies clearly illustrate the need for a thorough error analysis of inverse modeling results.
Water permeability of elastomers.
Held, H R; Landi, S
1977-01-01
In a previous study it has been shown that the free moisture content in freeze-dried BCG vaccine dispensed in vials sealed with rubber stoppers increased during storage. The search for the source of this increase led us to explore the possibility that this additional moisture could originate from the rubber stoppers themselves. Therefore, the water permeability of various rubber stoppers has been studied, and the water content of grey butyl stoppers during some operations (autoclaving, oven-drying, freeze-drying, storage) used in the manufacturing of BCG vaccine has been determined. Our experiments showed: rapid water uptake during steam-autoclaving and rapid water release during subsequent oven-drying of the stoppers; a slow water uptake of the stoppers during freeze-drying and a slow water permeation through the stoppers when vials containing Indicating Drierite were stored in a water-saturated atmosphere. Among 12 types of rubber stoppers tested, the grey butyl stoppers and the silicone stoppers showed the lowest water uptake. Moisture-resistant wrappings decreased significantly the moisture uptake of Drierite. To delay moisture from reaching the vaccine it is recommended that the stoppers employed be as dry as possible. PMID:881425
NASA Technical Reports Server (NTRS)
Slavin, Thomas J.; Cao, Tuan Q.; Kliss, Mark H.
1993-01-01
The purpose of the Permeable Membrane Experiment is to gather flight data on three areas of membrane performance that are influenced by the presence of gravity. These areas are: (1) Liquid/gas phase separation, (2) gas bubble interference with diffusion through porous membranes and (3) wetting characteristics of hydrophilic membrane surfaces. These data are important in understaning the behavior of membrane/liquid/gas interfaces where surface tension forces predominate. The data will be compared with 1-g data already obtained and with predicted micrograviity behavior. The data will be used to develop designs for phase separation and plant nutrient delivery systems and will be available to the life support community for use in developing technologies which employ membranes. A conceptual design has been developed to conduct three membrane experiments, in sequence, aboard a single Complex Autonomous Payload (CAP) carrier to be carried in the Shuttle Orbiter payload bay. One experiment is conducted for each of the three membrane performance areas under study. These experiments are discussed in this paper.
Edge type affects leaf-level water relations and estimated transpiration of Eucalyptus arenacea.
Wright, Thomas E; Tausz, Michael; Kasel, Sabine; Volkova, Liubov; Merchant, Andrew; Bennett, Lauren T
2012-03-01
While edge effects on tree water relations are well described for closed forests, they remain under-examined in more open forest types. Similarly, there has been minimal evaluation of the effects of contrasting land uses on the water relations of open forest types in highly fragmented landscapes. We examined edge effects on the water relations and gas exchange of a dominant tree (Eucalyptus arenacea Marginson & Ladiges) in an open forest type (temperate woodland) of south-eastern Australia. Edge effects in replicate woodlands adjoined by cleared agricultural land (pasture edges) were compared with those adjoined by 7- to 9-year-old eucalypt plantation with a 25m fire break (plantation edges). Consistent with studies in closed forest types, edge effects were pronounced at pasture edges where photosynthesis, transpiration and stomatal conductance were greater for edge trees than interior trees (75m into woodlands), and were related to greater light availability and significantly higher branch water potentials at woodland edges than interiors. Nonetheless, gas exchange values were only ∼50% greater for edge than interior trees, compared with ∼200% previously found in closed forest types. In contrast to woodlands adjoined by pasture, gas exchange in winter was significantly lower for edge than interior trees in woodlands adjoined by plantations, consistent with shading and buffering effects of plantations on edge microclimate. Plantation edge effects were less pronounced in summer, although higher water use efficiency of edge than interior woodland trees indicated possible competition for water between plantation trees and woodland edge trees in the drier months (an effect that might have been more pronounced were there no firebreak between the two land uses). Scaling up of leaf-level water relations to stand transpiration using a Jarvis-type phenomenological model indicated similar differences between edge types. That is, transpiration was greater at pasture than
Sucrose, xylitol, and erythritol increase PMMA permeability for depot antibiotics.
McLaren, Alex C; McLaren, Sandra G; Hickmon, Miranda K
2007-08-01
Release of antibiotics from antibiotic-loaded PMMA is dependent on its permeability. Loading PMMA with soluble particulate filler has been proposed to increase permeability and antibiotic release for beads and spacers. We therefore assessed particulate sucrose, xylitol, and erythritol as fillers to increase the permeability and elution kinetics of filler-loaded PMMA. Based on lower solubility, we hypothesized that erythritol would not enhance permeability and elution as much as xylitol and sucrose. We made filler-loaded PMMA beads with each of the three fillers combined with phenolphthalein, and soaked in 0.1% NaOH solution. Permeability was assessed qualitatively by relative depth of phenolphthalein color change caused by penetration of NaOH solution into subsequently split beads. Elution was quantitatively assessed by spectrophotometric light absorption measurements of the eluent. Fluid penetration reached the center of 7-mm beads by day 15, similar for all three materials. Elution of phenolphthalein was greater for xylitol than for the other two materials. Particulate sucrose, xylitol, and erythritol fillers increase PMMA permeability and elution kinetics but relative solubility did not determine the relative degree of enhancement of permeability and elution by these materials. PMID:17549030
NASA Astrophysics Data System (ADS)
Noirot, M.; Jourde, H.; Massonnat, G.
2010-12-01
Field permeability knowledge of aquifers or hydrocarbon-bearing reservoirs is mainly the result of plug measurements, permeability modeling using log data, and well test interpretation. Plug measurements provide permeability values at small scale (few cm3), while well tests estimate an equivalent permeability value that characterizes the reservoir at a larger scale (hundreds of cubic meters) within the investigated volume. However, these methods only sample or average the permeability field, but do not allow capturing the actual heterogeneity and anisotropy of the field. An interesting way to get permeability data at intermediate scale (close to borehole scale) is related to the use of WFT data. Wire line Formation Testers were initially developed to measure the pressure of the reservoir at different depths in the wells. The sampling of the fluid in the reservoir (using a piston) leads to a pressure drawdown in the formation, and the evolution of pressure is recorded from a probe. Consequently, pressure transient behavior from a WFT test is very similar to the one that can be recorded during a well test, the only difference being the investigated volume, that is much smaller. The analytical interpretation (diffusivity equation) of this pressure transient gives the mobility value (permeability over viscosity ratio) of the reservoir. The mobility value is obtained by considering a spherical flow behavior. If fluid viscosity can be estimated, then permeability can be assessed. From various types of sand-shales (turbiditic environment) or carbonate reservoirs, about 420 WFT tests have been analyzed and interpreted with the following workflow: 1. data quality discussion: a test is considered to be valid when a pressure drawdown is recorded by the gauge. 2. spherical flow identification: -1/2 slope on the pressure derivative curve. 3. evaluation of mobility and permeability. According to the wells, valid tests represent a ratio ranging between 32% and 79%, while the
Morrow, C.A.; Lockner, D.A.
1997-01-01
Permeability, porosity, and volumetric strain measurements were conducted on granite cores obtained at depths of 0.7 to 1.6 km from the Illinois UPH 3 drillhole at effective confining pressures from 5 to 100 MPa. Initial permeabilities were in the range of 10-17 to 10-19 m2 and dropped rapidly with applied pressure to values between 10-20 and 10-24 m2 at 100 MPa, typical of other deep granite core samples. These values are several decades lower than equivalent weathered surface granites at comparable effective confining pressures, where weathering products in cracks and pores inhibit crack closure with applied pressure. Permeabilities of the Illinois cores were inversely related to sample depth, suggesting that stress relief and thermal microfractures induced during core retrieval dominated the fluid flow. Thus these samples provide an upper bound on in situ matrix permeability values. A comparison of core permeability from UPH 3 and other deep drillholes shows that stress relief damage can often dominate laboratory permeability measurements. We conclude that it may be difficult to make meaningful estimates of in situ permeability based on either borehole samples (possible damage during retrieval) or surface-derived analogs (altered by weathering). Volumetric strain determined from porosity measurements was compared with differential strain analysis (DSA) data reported by other investigators on samples from the same depths in the drillhole. Our strain measurements (0.002 to 0.005 at 100 MPa) were nearly twice as large as the DSA values, probably because of the crack-enhancing effects of fluids present in our samples that are absent in the dry DSA cores, as well as other time-dependent deformation effects. This difference in observed strain magnitudes between the two measurement methods may be an important consideration if strain and/or porosity data from deep core samples are used in models of stress, fluid circulation, and excess fluid pressure generation in the
NASA Astrophysics Data System (ADS)
Farquharson, Jamie; Heap, Michael J.; Varley, Nick R.; Baud, Patrick; Reuschlé, Thierry
2015-05-01
Permeability of the edifice is one of the key parameters governing eruptive style, magnitude, and frequency of active stratovolcanoes. This study presents a suite of density and permeability field measurements from 572 samples of edifice-forming andesite from Volcán de Colima, Mexico. The breadth of the density distribution of the rocks collected (corresponding to porosity values from 2.5 to 73%), and the increasing bimodality towards the vent, are indicative of the explosive-effusive behaviour that characterises active composite volcanoes. Measured field permeabilities are in the range of 10- 16 to 10- 11 m2, encompassing values significantly greater than those generally assumed for fluid transport in magma, and thus emphasising the importance of host-rock permeability in facilitating outgassing of volatiles and, in turn, governing eruption dynamics. For any given porosity we observe up to four orders of magnitude in permeability. This range of scatter was found to be unaffected for the most part by meso-scale textural differences, oxidation, or alteration. A complementary laboratory and microstructural study reveals that the andesites collected are microstructurally diverse and complex. For example, anomalously high surface areas are measured in samples with significant inter-microlite microporosity. However, these micropores do not serve to significantly increase porosity or pore connectivity, resulting in under-estimation of fluid pathway tortuosities using the Kozeny-Carman relation. Indeed, calculated tortuosity values highlight that the Kozeny-Carman relation poorly predicts connectivity and does not therefore capture the microstructural complexity of the studied volcanic rocks. A changepoint porosity value, where the permeability-porosity power-law exponent changes, is identified at around 14% porosity using a Bayesian Information Criterion analysis. Here we assume a change in the dominant microstructural element controlling fluid flow, i.e. from crack- to
Nicoll, A; Ciancio, B C; Lopez Chavarrias, V; Mølbak, K; Pebody, R; Pedzinski, B; Penttinen, P; van der Sande, M; Snacken, R; Van Kerkhove, M D
2012-01-01
Two methodologies are used for describing and estimating influenza-related mortality: Individual-based methods, which use death certification and laboratory diagnosis and predominately determine patterns and risk factors for mortality, and population-based methods, which use statistical and modelling techniques to estimate numbers of premature deaths. The total numbers of deaths generated from the two methods cannot be compared. The former are prone to underestimation, especially when identifying influenza-related deaths in older people. The latter are cruder and have to allow for confounding factors, notably other seasonal infections and climate effects. There is no routine system estimating overall European influenza-related premature mortality, apart from a pilot system EuroMOMO. It is not possible at present to estimate the overall influenza mortality due to the 2009 influenza pandemic in Europe, and the totals based on individual deaths are a minimum estimate. However, the pattern of mortality differed considerably between the 2009 pandemic in Europe and the interpandemic period 1970 to 2008, with pandemic deaths in 2009 occurring in younger and healthier persons. Common methods should be agreed to estimate influenza-related mortality at national level in Europe, and individual surveillance should be instituted for influenza-related deaths in key groups such as pregnant women and children. PMID:22587958
Gundel, L.; McKone, T.; Daisey, J.
1995-12-31
The purpose of this presentation is to show how advanced measurement technologies for determination of the gas and particulate phase distributions of persistent organic pollutants (POPs) can, with appropriate modeling efforts, lead to better understanding of how atmospheric phase distribution impacts exposure persistence or half-life. New data collected in California with both conventional and diffusion-denuder-based samplers are used to (1) assess the direction and magnitude of sampling biases in existing databases of POPs including organochlorines and polycyclic aromatic hydrocarbons, and (2) compare predictions of persistence and half life using a regional fugacity exposure model (CalTOX). For many POPs, there are data quality problems in measurements of the partitioning between the gas phase and airborne particulate matter, between the gas phase and soils, and between the gas phase and vegetation. Whether intermedia transport takes place in gas or particulate phase can have a strong impact of the estimated persistence of potential human and ecosystem exposure. Most phase distribution measurements use filters followed by adsorbents to determining the relative concentrations of particulate-phase and gas-phase SVOC. In these measurements use filters followed by adsorbents to determining the relative concentrations of particulate-phase and gas-phase SVOC. In these systems, desorption of semi-volatile compounds form the particles on the filters, or adsorption of gases by the filter materials can lead to incorrect measurements of gas- and particulate-phase concentrations. Because the gas phase is collected before the particulate phase, diffusion denuder technology provides a less artifact-encumbered approach for accurate determination of phase distributions of semivolatile species.
Direct estimation of QBO-related gravity wave drag from satellite observations
NASA Astrophysics Data System (ADS)
Ern, Manfred; Ploeger, Felix; Preusse, Peter; Kalisch, Silvio; Riese, Martin
2014-05-01
The quasi-biennial oscillation (QBO) of the zonal wind in the tropical stratosphere is an important process in atmospheric dynamics. Effects of the QBO are found also in the mesosphere and in the extra-tropics. The QBO even has influence on the surface weather and climate, for example during winter in the northern hemisphere at midlatitudes. Still, climate models have large difficulties in reproducing a realistic QBO. The QBO is driven by atmospheric waves. Both global scale waves and mesoscale gravity waves (GWs) contribute. It has been proposed that the driving of the QBO by GWs is more important than that of the global scale waves. The relative importance of GWs is however still highly uncertain, and a direct estimation of the QBO driving by GWs from global observations is still missing. We derive GW temperature variances, GW momentum fluxes and GW drag from three years of High Resolution Dynamics Limb Sounder (HIRDLS) and from 11 years of Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite data. These observations are compared with the drag that is still missing in the tropical momentum budget of the ECMWF ERA Interim (ERAI) reanalysis after considering zonal wind tendency, Coriolis force, advection terms and drag of resolved global-scale waves. The meteorological fields of ERAI are quite realistic because ERAI is strongly constrained by data assimilation. Therefore this missing drag can be attributed to GWs not resolved by the model. We find good qualitative agreement between observed GW drag and the missing drag in ERAI. During eastward QBO wind shear even the magnitude of observed and ERAI missing drag are in good agreement. During westward shear, however, observed drag is much lower than the ERAI missing drag. This asymmetry might hint at uncertainties in the advection terms of ERAI. Further, observed GW spectra indicate that QBO-related GW dissipation is mainly due to critical level filtering.
Estimates of aerosol species scattering characteristics as a function of relative humidity
NASA Astrophysics Data System (ADS)
Malm, William C.; Day, Derek E.
The absorption of water by ambient aerosols can significantly increase the light scattering coefficient and thereby affect issues such as visibility and climate forcing. Although water absorption by inorganic compounds and mixtures of inorganic compounds can often be modeled with adequate certainty for most applications, modeling water uptake by organic aerosols at present is speculative. In this paper, we present data in the form of f (RH)=b scat(RH)/b scat,dry , where bscat(RH) is the scattering coefficient measured at some relative humidity (RH)>20% and bscat,dry is the scattering coefficient measured at RH <20%. The f(RH) has been measured at Great Smoky Mountains National Park in Tennessee and at Grand Canyon National Park in Arizona. The f(RH) curves obtained from these two sites, which show distinctly different aerosol composition and average RH values, are compared. We also present comparisons between the measured water uptake by ambient aerosol with modeled water uptake by inorganic compounds to estimate the water uptake by organic aerosol.
Relative potency estimates of acceptable residues and reentry intervals after nerve agent release.
Watson, A P; Jones, T D; Adams, J D
1992-06-01
In the event of an unplanned release of a chemical warfare agent during any stage of the Chemical Stockpile Disposal Program, the potential exists for off-post contamination of drinking water, forage crops, grains, garden produce, and livestock. The more persistent agents, such as the organophosphate nerve agent VX, pose the greatest human health concern for reentry. A relative potency approach comparing the toxicity of VX to organophosphate insecticide analogues is developed and used to estimate allowable residues for VX in agricultural products and reentry intervals for public access to contaminated areas. Analysis of mammalian LD50 data by all exposure routes indicates that VX is 10(3) to 10(4) times more toxic than most commercially available organophosphate insecticides. Thus, allowable residues of VX could be considered at concentration levels 10(3) to 10(4) lower than those established for certain insecticides by the U.S. EPA. Evaluation of reentry intervals developed for these organophosphate analogues indicate that, if environmental monitoring cannot reliably demonstrate acceptable levels of VX, restricted access to suspect or contaminated areas may be on the order of weeks to months following agent release. Planning for relocation, mass care centers, and quarantine should take this time period into account. PMID:1376237
Kasa, Srinivasulu; Raja Sekhar Reddy, M; Kadaboina, Raja Sekhar; Murki, Veerender; Mulukutla, Venkata Suryanarayana
2014-08-01
A novel, simple, sensitive and stability-indicating high-performance liquid chromatography method was developed and validated for the quantification of impurities (process related and degradants) and the assay determination of Bendamustine hydrochloride. A chromatographic separation of Bendamustine and its impurities was achieved with an Inertsil ODS-2 analytical column, 250 × 4.6 mm, 5 µm, using gradient elution with mobile phase A consisting of a mixture of water and trifluoroacetic acid (1000:1, v/v) and mobile phase B consisting of acetonitrile. The instrumental settings included a flow rate of 1.0 mL/min, column temperature of 27°C and a detector wavelength of 233 nm, using a photodiode array detector. The tailing factor for Bendamustine was 1.10. Bendamustine hydrochloride was exposed to thermal, photolytic, hydrolytic and oxidative stress conditions and the stressed samples were analyzed by the proposed method. Peak homogeneity data of Bendamustine were obtained by using a photodiode array detector in the stressed sample chromatograms, which demonstrated the specificity of the method for estimation in the presence of degradants. The developed method was validated for parameters such as precision, accuracy, linearity, limit of detection, limit of quantification, ruggedness and robustness. The stability tests were also performed on drug substances as per International Conference on Harmonization guidelines. PMID:23825351
Relative potency estimates of acceptable residues and reentry intervals after nerve agent release
Watson, A.P.; Jones, T.D.; Adams, J.D. )
1992-06-01
In the event of an unplanned release of a chemical warfare agent during any stage of the Chemical Stockpile Disposal Program, the potential exists for off-post contamination of drinking water, forage crops, grains, garden produce, and livestock. The more persistent agents, such as the organophosphate nerve agent VX, pose the greatest human health concern for reentry. A relative potency approach comparing the toxicity of VX to organophosphate insecticide analogues is developed and used to estimate allowable residues for VX in agricultural products and reentry intervals for public access to contaminated areas. Analysis of mammalian LD50 data by all exposure routes indicates that VX is 10(3) to 10(4) times more toxic than most commercially available organophosphate insecticides. Thus, allowable residues of VX could be considered at concentration levels 10(3) to 10(4) lower than those established for certain insecticides by the U.S. EPA. Evaluation of reentry intervals developed for these organophosphate analogues indicate that, if environmental monitoring cannot reliably demonstrate acceptable levels of VX, restricted access to suspect or contaminated areas may be on the order of weeks to months following agent release. Planning for relocation, mass care centers, and quarantine should take this time period into account.
Cardoso, Luis; Fritton, Susannah P.; Gailani, Gaffar; Benalla, Mohammed; Cowin, Stephen C.
2012-01-01
This contribution reviews recent research performed to assess the porosity and permeability of bone tissue with the objective of understanding interstitial fluid movement. Bone tissue mechanotransduction is considered to occur due to the passage of interstitial pore fluid adjacent to dendritic cell structures in the lacunar-canalicular porosity. The movement of interstitial fluid is also necessary for the nutrition of osteocytes. This review will focus on four topics related to improved assessment of bone interstitial fluid flow. First, the advantages and limitations of imaging technologies to visualize bone porosities and architecture at several length scales are summarized. Second, recent efforts to measure the vascular porosity and lacunar-canalicular microarchitecture are discussed. Third, studies associated with the measurement and estimation of the fluid pressure and permeability in the vascular and lacunar-canalicular domains are summarized. Fourth, the development of recent models to represent the interchange of fluids between the bone porosities is described. PMID:23174418
Murray, Regan; Flockhart, Logan; Pintar, Katarina; Fazil, Aamir; Nesbitt, Andrea; Marshall, Barbara; Tataryn, Joanne; Pollari, Frank
2015-01-01
Abstract Foodborne illness estimates help to set food safety priorities and create public health policies. The Public Health Agency of Canada estimates that 4 million episodes of foodborne illness occur each year in Canada due to 30 known pathogens and unspecified agents. The main objective of this study was to estimate the number of domestically acquired foodborne illness–related hospitalizations and deaths. Using the estimates of foodborne illness for Canada along with data from the Canadian Hospitalization Morbidity Database (for years 2000–2010) and relevant international literature, the number of hospitalizations and deaths for 30 pathogens and unspecified agents were calculated. Analysis accounted for under-reporting and underdiagnosis. Estimates of the proportion foodborne and the proportion travel-related were incorporated for each pathogen. Monte Carlo simulations were performed to account for uncertainty generating mean estimates and 90% probability intervals. It is estimated that each year there are 4000 hospitalizations (range 3200–4800) and 105 (range 75–139) deaths associated with domestically acquired foodborne illness related to 30 known pathogens and 7600 (range 5900–9650) hospitalizations and 133 (range 77–192) deaths associated with unspecified agents, for a total estimate of 11,600 (range 9250–14,150) hospitalizations and 238 (range 155–323) deaths associated with domestically acquired foodborne illness in Canada. Key pathogens associated with these hospitalizations or deaths include norovirus, nontyphoidal Salmonella spp., Campylobacter spp., VTEC O157 and Listeria monocytogenes. This is the first time Canada has established pathogen-specific estimates of domestically acquired foodborne illness–related hospitalizations and deaths. This information illustrates the substantial burden of foodborne illness in Canada. PMID:26259128
Estimation of desert-dust-related ice nuclei profiles from polarization lidar
NASA Astrophysics Data System (ADS)
Mamouri, Rodanthi-Elisavet; Nisantzi, Argyro; Hadjimitsis, Diofantos; Ansmann, Albert
2015-04-01
This paper presents a methodology based on the use of active remote sensing techniques for the estimation of ice nuclei concentrations (INC) for desert dust plumes. Although this method can be applied to other aerosol components, in this study we focus on desert dust. The method makes use of the polarization lidar technique for the separation of dust and non-dust contributions to the particle backscatter and extinction coefficients. The profile of the dust extinction coefficient is converted to APC280 (dust particles with radius larger than 280 nm) and, in a second step, APC280 is converted to INC by means of an APC-INC relationship from the literature. The observed close relationship between dust extinction at 500 nm and APC280 is the key to a successful INC retrieval. The correlation between dust extinction coefficient and APC280 is studied by means of AERONET sun/sky photometer at Morocco, Cape Verde, Barbados, and Cyprus, during situations dominated by desert dust outbreaks. In the present study, polarization lidar observations of the EARLINET (European Aerosol Research Lidar Network) lidar at the Cyprus University of Technology (CUT), Limassol (34.7o N, 33o E), Cyprus were used together with spaceborne lidar observations during CALIPSO satellite overpasses to demonstrate the potential of the new INC retrieval method. A good agreement between the CALIOP (Cloud Aerosol Lidar with Orthogonal Polarization) and our CUT lidar observations regarding the retrieval of dust extinction coefficient, APC280, and INC profiles were found and corroborate the potential of CALIOP to provide 3-D global desert-dust-related INC data sets. In the next step, efforts should be undertaken towards the establishment of a global, height-resolved INC climatology for desert dust plumes. Realistic global INC distributions are required for an improved estimation of aerosol effects on cloud formation and the better quantification of the indirect aerosol effect on climate. Acknowledgements
Geothermal Permeability Enhancement - Final Report
Joe Beall; Mark Walters
2009-06-30
The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.
Respiratory mucosal permeability in asthma
Elwood, R.K.; Kennedy, S.; Belzberg, A.; Hogg, J.C.; Pare, P.D.
1983-09-01
The permeability of respiratory mucosa to technetium-labeled diethylenetriamine pentacetic acid (/sup 99m/Tc-DTPA) was measured in 10 clinically stable chronic asthmatics and the results were compared with those in 9 nonasthmatic control subjects. Nonspecific bronchial reactivity was measured using methacholine, and the PC20 was calculated. The intrapulmonary distribution and dose of the inhaled /sup 99m/Tc-DTPA was determined by a gamma camera and the half-life of the aerosolized label in the lung was calculated. The accumulation of radioactivity in the blood was monitored and a permeability index was calculated at 10, 25, and 60 min after aerosolization. Despite marked differences in airway reactivity, no differences in either parameter of permeability could be detected between the asthmatics and the control group. It is concluded that clinically stable asthmatics do not demonstrate increase mucosal permeability to small solutes when compared with normal subjects.
Fractal Analysis of Stress Sensitivity of Permeability in Porous Media
NASA Astrophysics Data System (ADS)
Tan, Xiao-Hua; Li, Xiao-Ping; Liu, Jian-Yi; Zhang, Lie-Hui; Cai, Jianchao
2015-12-01
A permeability model for porous media considering the stress sensitivity is derived based on mechanics of materials and the fractal characteristics of solid cluster size distribution. The permeability of porous media considering the stress sensitivity is related to solid cluster fractal dimension, solid cluster fractal tortuosity dimension, solid cluster minimum diameter and solid cluster maximum diameter, Young's modulus, Poisson's ratio, as well as power index. Every parameter has clear physical meaning without the use of empirical constants. The model predictions of permeability show good agreement with those obtained by the available experimental expression. The proposed model may be conducible to a better understanding of the mechanism for flow in elastic porous media.
Predicting the permeability of sedimentary rocks from microstructure
Schlueter, E.M.
1995-01-01
Permeability is linked to other properties of porous media such as capillary pressure and relative permeability. In order to understand the relationships, one has to understand how all those properties are conditioned by the connectivity and geometrical properties of the pore space. In this study, we look at a natural porous material which is defined as a two-phase material in which the interconnected pore space constitutes one phase and the solid matrix the other. Laboratory samples are tested using fluid flow experiments to determine the relationship of macroscopic properties such as permeability to rock microstructure. Kozeny-Carman and other equations are developed to further quantify these relationships.
We describe a framework for estimating the human dose at which a chemical significantly alters a biological pathway in vivo, making use of in vitro assay data and an in vitro derived pharmacokinetic model, coupled with estimates of population variability and uncertainty. The q...
ERIC Educational Resources Information Center
Phillips, Daniel W.; Montello, Daniel R.
2015-01-01
Previous research has examined heuristics--simplified decision-making rules-of-thumb--for geospatial reasoning. This study examined at two locations the influence of beliefs about local coastline orientation on estimated directions to local and distant places; estimates were made immediately or after fifteen seconds. This study goes beyond…
Permeability of soils in Mississippi
O'Hara, Charles G.
1994-01-01
The permeability of soils in Mississippi was determined and mapped using a geographic information system (GIS). Soil permeabilities in Mississippi were determined to range in value from nearly 0.0 to values exceeding 5.0 inches per hour. The U.S. Soil Conservation Service's State Soil Geographic Data Base (STATSGO) was used as the primary source of data for the determination of area-weighted soil permeability. STATSGO provides soil layer properties that are spatially referenced to mapped areas. These mapped areas are referred to as polygons in the GIS. The polygons arc boundaries of soils mapped as a group and are given unique Map Unit Identifiers (MUIDs). The data describing the physical characteristics of the soils within each polygon are stored in a tabular data base format and are referred to as attributes. The U.S. Soil Conservation Service developed STATSGO to be primarily used as a guide for regional resource planning, management, and monitoring. STATSGO was designed so that soil information could be extracted from properties tables at the layer level, combined by component, and statistically expanded to cover the entire map unit. The results of this study provide a mapped value for permeability which is representative of the vertical permeability of soils in that area. The resultant permeability map provides a representative vertical soil permeability for a given area sufficient for county, multi- county, and area planning, and will be used as the soil permeability data component in the evaluation of the susceptibility of major aquifers to contami- nation in Mississippi.
Insights into reptile dermal contaminant exposure: Reptile skin permeability to pesticides.
Weir, Scott M; Talent, Larry G; Anderson, Todd A; Salice, Christopher J
2016-07-01
There is growing interest in improving ecological risk assessment exposure estimation, specifically by incorporating dermal exposure. At the same time, there is a growing interest in amphibians and reptiles as receptors in ecological risk assessment, despite generally receiving less research than more traditional receptors. Previous research has suggested that dermal exposure may be more important than previously considered for reptiles. We measured reptile skin permeability to four pesticides (thiamethoxam, malathion, tebuthiuron, trifluralin) using ventral skin samples. All four pesticides penetrated the skin but generally had low permeability. There was no apparent relationship between physicochemical properties and permeability coefficients. Malathion had a significantly greater permeability rate at all time points compared to the other pesticides. Tebuthiuron had a greater permeability than thiamethoxam. Reptiles and mammals appear to have similar skin permeability suggesting that dermal exposure estimates for mammals may be representative of reptiles. PMID:27037770
Holleczek, Bernd; Brenner, Hermann
2013-05-01
Period analysis is increasingly employed in analyses of long-term survival of patients with chronic diseases such as cancer, as it derives more up-to-date survival estimates than traditional cohort based approaches. It has recently been extended with regression modelling using generalized linear models, which increases the precision of the survival estimates and enables to assess and account for effects of additional covariates. This paper provides a detailed presentation how model based period analysis may be used to derive population-based absolute and relative survival estimates using the freely available R language and statistical environment and already available R programs for period analysis. After an introduction of the underlying regression model and a description of the software tools we provide a step-by-step implementation of two regression models in R and illustrate how estimates and a test for trend over time in relative survival may be derived using data from a population based cancer registry. PMID:23116692
Permeability of naturally fractured reservoirs
Teufel, L.W. )
1991-03-01
Hydraulic fracture stress data collected from carbonate and clastic reservoirs show that the minimum horizontal in situ stress decreases with reservoir depletion and pore pressure drawdown. The reduction in minimum horizontal stress is, in part, a poro-elastic effect that is linear with pore pressure drawdown and can be approximated by an unlaxial compaction model. The observed change in horizontal stress is equal to 40% to 80% of the net change in pore pressure. This type of stress behavior has important implications for reservoir management of naturally fractured reservoirs, because conductivity of fractures is highly stress sensitive. Laboratory studies clearly demonstrate that with increasing effective normal stress fracture apertures close and conductivity decreases. Accordingly, in sharp contrast to the standard procedure, predictions of changes in fracture permeability during reservoir depletion should not be made simply as a function of pore pressure drawdown, but more importantly should be based on how the effective in situ stresses change during drawdown and the orientation of natural fractures relative to the in situ stress field. The increase in the effective overburden stress will be the largest and equal to the magnitude of the pore pressure decline because the overburden stress is constant and does not change with drawdown. However, the increase in the effective minimum horizontal stress will be much smaller. Accordingly, for a reservoir with several sets of fractures with similar morphology, the reduction in fracture conductivity during drawdown will be greatest for horizontal fractures and least for vertical fractures aligned with the maximum horizontal stress direction.
Timescales for permeability reduction and strength recovery in densifying magma
NASA Astrophysics Data System (ADS)
Heap, M. J.; Farquharson, J. I.; Wadsworth, F. B.; Kolzenburg, S.; Russell, J. K.
2015-11-01
Transitions between effusive and explosive behaviour are routine for many active volcanoes. The permeability of the system, thought to help regulate eruption style, is likely therefore in a state of constant change. Viscous densification of conduit magma during effusive periods, resulting in physical and textural property modifications, may reduce permeability to that preparatory for an explosive eruption. We present here a study designed to estimate timescales of permeability reduction and strength recovery during viscous magma densification by coupling measurements of permeability and strength (using samples from a suite of variably welded, yet compositionally identical, volcanic deposits) with a rheological model for viscous compaction and a micromechanical model, respectively. Bayesian Information Criterion analysis confirms that our porosity-permeability data are best described by two power laws that intersect at a porosity of 0.155 (the "changepoint" porosity). Above and below this changepoint, the permeability-porosity relationship has a power law exponent of 8.8 and 1.0, respectively. Quantitative pore size analysis and micromechanical modelling highlight that the high exponent above the changepoint is due to the closure of wide (∼200-300 μm) inter-granular flow channels during viscous densification and that, below the changepoint, the fluid pathway is restricted to narrow (∼50 μm) channels. The large number of such narrow channels allows porosity loss without considerable permeability reduction, explaining the switch to a lower exponent. Using these data, our modelling predicts a permeability reduction of four orders of magnitude (for volcanically relevant temperatures and depths) and a strength increase of a factor of six on the order of days to weeks. This discrepancy suggests that, while the viscous densification of conduit magma will inhibit outgassing efficiency over time, the regions of the conduit prone to fracturing, such as the margins, will
Permeability anisotropy of serpentinite and fluid migration in subduction zones
NASA Astrophysics Data System (ADS)
Kawano, S.; Katayama, I.; Okazaki, K.
2010-12-01
at low-pressure and the other is a gradual decline due to crystal grain boundary consolidation at high-pressure. Intrinsic permeability for sample perpendicular to schistosity was about 100 times lower than that parallel to schistosity. Porosity at atmospheric pressure was estimated about 0.5%. Assumeing a constant pressure derivative for porosity and permeability, flow velocity parallel to the foliation was 44cm/year. This result represent that fluid migration is much faster than the plate subducting rate. These experimental data show that fluid migration was influenced by not only water buoyancy but also by the schistosity of the rock (deformation geometry). In this case, released water from subducting oceanic slab can be migrated along plate interfaces.
Plio-Pleistocene stratigraphy and relative sea level estimates: an emerging global perspective
NASA Astrophysics Data System (ADS)
Hearty, Paul; O'Leary, Michael; Rovere, Alessio; Raymo, Maureen; Sandstrom, Michael
2015-04-01
The historical rise of atmospheric CO2 to over 400 ppmv amplifies the need to better understand natural systems during past warmer interglacials. This change over the past 150 years approximates the CO2 range of full glacial-interglacial cycles. Resulting future global impacts are likely, and accurate geological field data would help us better understand the past behavior of sea level (SL) and ice sheets. The middle Pliocene warm period (MPWP) offers an approximate analogue for a 400-ppmv world. Before PLIOMAX (www.pliomax.org), only a handful of estimates of relative sea levels (RSL) along with considerable uncertainties were available for the MPWP. Precise elevations of Plio-Pleistocene RSL indicators were measured with decimeter accuracy using an OmniStar dGPS at sites in Australia, South Africa, Argentina, and other seemingly stable locations. High-resolution SL indicators include wave abrasion surfaces, sub- and intertidal sedimentary structures, and in situ marine invertebrates such as shallow water oysters and barnacles. In addition, thousands of km of terraced coastline was surveyed with dGPS between study sites. The coastal geomorphic expression of Pliocene SL is profound. From ~5 to 3 Ma, high frequency orbitally-paced, low amplitude SL oscillations acted as a shoreline "buzz saw" on hard bedrock, forming extensive high terraces. In high sediment environments such as that of the southeast US Atlantic Coastal Plain, relatively stable Pliocene ocean levels trapped huge volumes of fluvial sediments in the coastal zone, resulting in broad sandy terraces and extensive dune fields. However, glacio-isostatic adjustment (GIA), dynamic topography (DT), and other post-depositional processes have warped these marine terraces by tens of meters since the Pliocene (Raymo et al. 2011, Rovere et al 2014). The PLIOMAX team has documented precise RSLs from numerous global sites that clearly indicate that global ice volume was significantly reduced during intervals of the
Number of trials required to estimate a free-energy difference, using fluctuation relations.
Yunger Halpern, Nicole; Jarzynski, Christopher
2016-05-01
The difference ΔF between free energies has applications in biology, chemistry, and pharmacology. The value of ΔF can be estimated from experiments or simulations, via fluctuation theorems developed in statistical mechanics. Calculating the error in a ΔF